mpr_user.c revision 299267
1/*-
2 * Copyright (c) 2008 Yahoo!, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the author nor the names of any co-contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31 */
32/*-
33 * Copyright (c) 2011-2015 LSI Corp.
34 * Copyright (c) 2013-2016 Avago Technologies
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59 *
60 * $FreeBSD: head/sys/dev/mpr/mpr_user.c 299267 2016-05-09 16:21:14Z slm $
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/dev/mpr/mpr_user.c 299267 2016-05-09 16:21:14Z slm $");
65
66#include "opt_compat.h"
67
68/* TODO Move headers to mprvar */
69#include <sys/types.h>
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/kernel.h>
73#include <sys/selinfo.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/conf.h>
77#include <sys/bio.h>
78#include <sys/malloc.h>
79#include <sys/uio.h>
80#include <sys/sysctl.h>
81#include <sys/ioccom.h>
82#include <sys/endian.h>
83#include <sys/queue.h>
84#include <sys/kthread.h>
85#include <sys/taskqueue.h>
86#include <sys/proc.h>
87#include <sys/sysent.h>
88
89#include <machine/bus.h>
90#include <machine/resource.h>
91#include <sys/rman.h>
92
93#include <cam/cam.h>
94#include <cam/cam_ccb.h>
95
96#include <dev/mpr/mpi/mpi2_type.h>
97#include <dev/mpr/mpi/mpi2.h>
98#include <dev/mpr/mpi/mpi2_ioc.h>
99#include <dev/mpr/mpi/mpi2_cnfg.h>
100#include <dev/mpr/mpi/mpi2_init.h>
101#include <dev/mpr/mpi/mpi2_tool.h>
102#include <dev/mpr/mpr_ioctl.h>
103#include <dev/mpr/mprvar.h>
104#include <dev/mpr/mpr_table.h>
105#include <dev/mpr/mpr_sas.h>
106#include <dev/pci/pcivar.h>
107#include <dev/pci/pcireg.h>
108
109static d_open_t		mpr_open;
110static d_close_t	mpr_close;
111static d_ioctl_t	mpr_ioctl_devsw;
112
113static struct cdevsw mpr_cdevsw = {
114	.d_version =	D_VERSION,
115	.d_flags =	0,
116	.d_open =	mpr_open,
117	.d_close =	mpr_close,
118	.d_ioctl =	mpr_ioctl_devsw,
119	.d_name =	"mpr",
120};
121
122typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
123static mpr_user_f	mpi_pre_ioc_facts;
124static mpr_user_f	mpi_pre_port_facts;
125static mpr_user_f	mpi_pre_fw_download;
126static mpr_user_f	mpi_pre_fw_upload;
127static mpr_user_f	mpi_pre_sata_passthrough;
128static mpr_user_f	mpi_pre_smp_passthrough;
129static mpr_user_f	mpi_pre_config;
130static mpr_user_f	mpi_pre_sas_io_unit_control;
131
132static int mpr_user_read_cfg_header(struct mpr_softc *,
133    struct mpr_cfg_page_req *);
134static int mpr_user_read_cfg_page(struct mpr_softc *,
135    struct mpr_cfg_page_req *, void *);
136static int mpr_user_read_extcfg_header(struct mpr_softc *,
137    struct mpr_ext_cfg_page_req *);
138static int mpr_user_read_extcfg_page(struct mpr_softc *,
139    struct mpr_ext_cfg_page_req *, void *);
140static int mpr_user_write_cfg_page(struct mpr_softc *,
141    struct mpr_cfg_page_req *, void *);
142static int mpr_user_setup_request(struct mpr_command *,
143    struct mpr_usr_command *);
144static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
145
146static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
147static void mpr_user_get_adapter_data(struct mpr_softc *sc,
148    mpr_adapter_data_t *data);
149static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
150static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
151    uint32_t unique_id);
152static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
153    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
154static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
155    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
156    uint32_t diag_type);
157static int mpr_diag_register(struct mpr_softc *sc,
158    mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
159static int mpr_diag_unregister(struct mpr_softc *sc,
160    mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
161static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
162    uint32_t *return_code);
163static int mpr_diag_read_buffer(struct mpr_softc *sc,
164    mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
165    uint32_t *return_code);
166static int mpr_diag_release(struct mpr_softc *sc,
167    mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
168static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
169    uint8_t *diag_action, uint32_t length, uint32_t *return_code);
170static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
171static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
172static void mpr_user_event_enable(struct mpr_softc *sc,
173    mpr_event_enable_t *data);
174static int mpr_user_event_report(struct mpr_softc *sc,
175    mpr_event_report_t *data);
176static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
177static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
178
179static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
180
181/* Macros from compat/freebsd32/freebsd32.h */
182#define	PTRIN(v)	(void *)(uintptr_t)(v)
183#define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
184
185#define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
186#define	PTRIN_CP(src,dst,fld)				\
187	do { (dst).fld = PTRIN((src).fld); } while (0)
188#define	PTROUT_CP(src,dst,fld) \
189	do { (dst).fld = PTROUT((src).fld); } while (0)
190
191/*
192 * MPI functions that support IEEE SGLs for SAS3.
193 */
194static uint8_t ieee_sgl_func_list[] = {
195	MPI2_FUNCTION_SCSI_IO_REQUEST,
196	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
197	MPI2_FUNCTION_SMP_PASSTHROUGH,
198	MPI2_FUNCTION_SATA_PASSTHROUGH,
199	MPI2_FUNCTION_FW_UPLOAD,
200	MPI2_FUNCTION_FW_DOWNLOAD,
201	MPI2_FUNCTION_TARGET_ASSIST,
202	MPI2_FUNCTION_TARGET_STATUS_SEND,
203	MPI2_FUNCTION_TOOLBOX
204};
205
206int
207mpr_attach_user(struct mpr_softc *sc)
208{
209	int unit;
210
211	unit = device_get_unit(sc->mpr_dev);
212	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
213	    "mpr%d", unit);
214
215	if (sc->mpr_cdev == NULL)
216		return (ENOMEM);
217
218	sc->mpr_cdev->si_drv1 = sc;
219	return (0);
220}
221
222void
223mpr_detach_user(struct mpr_softc *sc)
224{
225
226	/* XXX: do a purge of pending requests? */
227	if (sc->mpr_cdev != NULL)
228		destroy_dev(sc->mpr_cdev);
229}
230
231static int
232mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
233{
234
235	return (0);
236}
237
238static int
239mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
240{
241
242	return (0);
243}
244
245static int
246mpr_user_read_cfg_header(struct mpr_softc *sc,
247    struct mpr_cfg_page_req *page_req)
248{
249	MPI2_CONFIG_PAGE_HEADER *hdr;
250	struct mpr_config_params params;
251	int	    error;
252
253	hdr = &params.hdr.Struct;
254	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
255	params.page_address = le32toh(page_req->page_address);
256	hdr->PageVersion = 0;
257	hdr->PageLength = 0;
258	hdr->PageNumber = page_req->header.PageNumber;
259	hdr->PageType = page_req->header.PageType;
260	params.buffer = NULL;
261	params.length = 0;
262	params.callback = NULL;
263
264	if ((error = mpr_read_config_page(sc, &params)) != 0) {
265		/*
266		 * Leave the request. Without resetting the chip, it's
267		 * still owned by it and we'll just get into trouble
268		 * freeing it now. Mark it as abandoned so that if it
269		 * shows up later it can be freed.
270		 */
271		mpr_printf(sc, "read_cfg_header timed out\n");
272		return (ETIMEDOUT);
273	}
274
275	page_req->ioc_status = htole16(params.status);
276	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
277	    MPI2_IOCSTATUS_SUCCESS) {
278		bcopy(hdr, &page_req->header, sizeof(page_req->header));
279	}
280
281	return (0);
282}
283
284static int
285mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
286    void *buf)
287{
288	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
289	struct mpr_config_params params;
290	int	      error;
291
292	reqhdr = buf;
293	hdr = &params.hdr.Struct;
294	hdr->PageVersion = reqhdr->PageVersion;
295	hdr->PageLength = reqhdr->PageLength;
296	hdr->PageNumber = reqhdr->PageNumber;
297	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
298	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
299	params.page_address = le32toh(page_req->page_address);
300	params.buffer = buf;
301	params.length = le32toh(page_req->len);
302	params.callback = NULL;
303
304	if ((error = mpr_read_config_page(sc, &params)) != 0) {
305		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
306		return (ETIMEDOUT);
307	}
308
309	page_req->ioc_status = htole16(params.status);
310	return (0);
311}
312
313static int
314mpr_user_read_extcfg_header(struct mpr_softc *sc,
315    struct mpr_ext_cfg_page_req *ext_page_req)
316{
317	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
318	struct mpr_config_params params;
319	int	    error;
320
321	hdr = &params.hdr.Ext;
322	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
323	hdr->PageVersion = ext_page_req->header.PageVersion;
324	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
325	hdr->ExtPageLength = 0;
326	hdr->PageNumber = ext_page_req->header.PageNumber;
327	hdr->ExtPageType = ext_page_req->header.ExtPageType;
328	params.page_address = le32toh(ext_page_req->page_address);
329	params.buffer = NULL;
330	params.length = 0;
331	params.callback = NULL;
332
333	if ((error = mpr_read_config_page(sc, &params)) != 0) {
334		/*
335		 * Leave the request. Without resetting the chip, it's
336		 * still owned by it and we'll just get into trouble
337		 * freeing it now. Mark it as abandoned so that if it
338		 * shows up later it can be freed.
339		 */
340		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
341		return (ETIMEDOUT);
342	}
343
344	ext_page_req->ioc_status = htole16(params.status);
345	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
346	    MPI2_IOCSTATUS_SUCCESS) {
347		ext_page_req->header.PageVersion = hdr->PageVersion;
348		ext_page_req->header.PageNumber = hdr->PageNumber;
349		ext_page_req->header.PageType = hdr->PageType;
350		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
351		ext_page_req->header.ExtPageType = hdr->ExtPageType;
352	}
353
354	return (0);
355}
356
357static int
358mpr_user_read_extcfg_page(struct mpr_softc *sc,
359    struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
360{
361	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
362	struct mpr_config_params params;
363	int error;
364
365	reqhdr = buf;
366	hdr = &params.hdr.Ext;
367	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
368	params.page_address = le32toh(ext_page_req->page_address);
369	hdr->PageVersion = reqhdr->PageVersion;
370	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
371	hdr->PageNumber = reqhdr->PageNumber;
372	hdr->ExtPageType = reqhdr->ExtPageType;
373	hdr->ExtPageLength = reqhdr->ExtPageLength;
374	params.buffer = buf;
375	params.length = le32toh(ext_page_req->len);
376	params.callback = NULL;
377
378	if ((error = mpr_read_config_page(sc, &params)) != 0) {
379		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
380		return (ETIMEDOUT);
381	}
382
383	ext_page_req->ioc_status = htole16(params.status);
384	return (0);
385}
386
387static int
388mpr_user_write_cfg_page(struct mpr_softc *sc,
389    struct mpr_cfg_page_req *page_req, void *buf)
390{
391	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
392	struct mpr_config_params params;
393	u_int	      hdr_attr;
394	int	      error;
395
396	reqhdr = buf;
397	hdr = &params.hdr.Struct;
398	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
399	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
400	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
401		mpr_printf(sc, "page type 0x%x not changeable\n",
402			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
403		return (EINVAL);
404	}
405
406	/*
407	 * There isn't any point in restoring stripped out attributes
408	 * if you then mask them going down to issue the request.
409	 */
410
411	hdr->PageVersion = reqhdr->PageVersion;
412	hdr->PageLength = reqhdr->PageLength;
413	hdr->PageNumber = reqhdr->PageNumber;
414	hdr->PageType = reqhdr->PageType;
415	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
416	params.page_address = le32toh(page_req->page_address);
417	params.buffer = buf;
418	params.length = le32toh(page_req->len);
419	params.callback = NULL;
420
421	if ((error = mpr_write_config_page(sc, &params)) != 0) {
422		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
423		return (ETIMEDOUT);
424	}
425
426	page_req->ioc_status = htole16(params.status);
427	return (0);
428}
429
430void
431mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
432{
433	int off, space;
434
435	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
436	off = (uintptr_t)sge - (uintptr_t)req;
437
438	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
439            req, sge, off, space));
440
441	cm->cm_sge = sge;
442	cm->cm_sglsize = space - off;
443}
444
445/*
446 * Prepare the mpr_command for an IOC_FACTS request.
447 */
448static int
449mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
450{
451	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
452	MPI2_IOC_FACTS_REPLY *rpl;
453
454	if (cmd->req_len != sizeof *req)
455		return (EINVAL);
456	if (cmd->rpl_len != sizeof *rpl)
457		return (EINVAL);
458
459	cm->cm_sge = NULL;
460	cm->cm_sglsize = 0;
461	return (0);
462}
463
464/*
465 * Prepare the mpr_command for a PORT_FACTS request.
466 */
467static int
468mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
469{
470	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
471	MPI2_PORT_FACTS_REPLY *rpl;
472
473	if (cmd->req_len != sizeof *req)
474		return (EINVAL);
475	if (cmd->rpl_len != sizeof *rpl)
476		return (EINVAL);
477
478	cm->cm_sge = NULL;
479	cm->cm_sglsize = 0;
480	return (0);
481}
482
483/*
484 * Prepare the mpr_command for a FW_DOWNLOAD request.
485 */
486static int
487mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
488{
489	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
490	MPI2_FW_DOWNLOAD_REPLY *rpl;
491	int error;
492
493	if (cmd->req_len != sizeof *req)
494		return (EINVAL);
495	if (cmd->rpl_len != sizeof *rpl)
496		return (EINVAL);
497
498	if (cmd->len == 0)
499		return (EINVAL);
500
501	error = copyin(cmd->buf, cm->cm_data, cmd->len);
502	if (error != 0)
503		return (error);
504
505	mpr_init_sge(cm, req, &req->SGL);
506
507	/*
508	 * For now, the F/W image must be provided in a single request.
509	 */
510	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
511		return (EINVAL);
512	if (req->TotalImageSize != cmd->len)
513		return (EINVAL);
514
515	req->ImageOffset = 0;
516	req->ImageSize = cmd->len;
517
518	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
519
520	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
521}
522
523/*
524 * Prepare the mpr_command for a FW_UPLOAD request.
525 */
526static int
527mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
528{
529	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
530	MPI2_FW_UPLOAD_REPLY *rpl;
531
532	if (cmd->req_len != sizeof *req)
533		return (EINVAL);
534	if (cmd->rpl_len != sizeof *rpl)
535		return (EINVAL);
536
537	mpr_init_sge(cm, req, &req->SGL);
538	if (cmd->len == 0) {
539		/* Perhaps just asking what the size of the fw is? */
540		return (0);
541	}
542
543	req->ImageOffset = 0;
544	req->ImageSize = cmd->len;
545
546	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
547
548	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
549}
550
551/*
552 * Prepare the mpr_command for a SATA_PASSTHROUGH request.
553 */
554static int
555mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
556{
557	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
558	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
559
560	if (cmd->req_len != sizeof *req)
561		return (EINVAL);
562	if (cmd->rpl_len != sizeof *rpl)
563		return (EINVAL);
564
565	mpr_init_sge(cm, req, &req->SGL);
566	return (0);
567}
568
569/*
570 * Prepare the mpr_command for a SMP_PASSTHROUGH request.
571 */
572static int
573mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
574{
575	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
576	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
577
578	if (cmd->req_len != sizeof *req)
579		return (EINVAL);
580	if (cmd->rpl_len != sizeof *rpl)
581		return (EINVAL);
582
583	mpr_init_sge(cm, req, &req->SGL);
584	return (0);
585}
586
587/*
588 * Prepare the mpr_command for a CONFIG request.
589 */
590static int
591mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
592{
593	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
594	MPI2_CONFIG_REPLY *rpl;
595
596	if (cmd->req_len != sizeof *req)
597		return (EINVAL);
598	if (cmd->rpl_len != sizeof *rpl)
599		return (EINVAL);
600
601	mpr_init_sge(cm, req, &req->PageBufferSGE);
602	return (0);
603}
604
605/*
606 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
607 */
608static int
609mpi_pre_sas_io_unit_control(struct mpr_command *cm,
610			     struct mpr_usr_command *cmd)
611{
612
613	cm->cm_sge = NULL;
614	cm->cm_sglsize = 0;
615	return (0);
616}
617
618/*
619 * A set of functions to prepare an mpr_command for the various
620 * supported requests.
621 */
622struct mpr_user_func {
623	U8		Function;
624	mpr_user_f	*f_pre;
625} mpr_user_func_list[] = {
626	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
627	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
628	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
629	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
630	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
631	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
632	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
633	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
634	{ 0xFF,					NULL } /* list end */
635};
636
637static int
638mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
639{
640	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
641	struct mpr_user_func *f;
642
643	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
644		if (hdr->Function == f->Function)
645			return (f->f_pre(cm, cmd));
646	}
647	return (EINVAL);
648}
649
650static int
651mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
652{
653	MPI2_REQUEST_HEADER *hdr;
654	MPI2_DEFAULT_REPLY *rpl;
655	void *buf = NULL;
656	struct mpr_command *cm = NULL;
657	int err = 0;
658	int sz;
659
660	mpr_lock(sc);
661	cm = mpr_alloc_command(sc);
662
663	if (cm == NULL) {
664		mpr_printf(sc, "%s: no mpr requests\n", __func__);
665		err = ENOMEM;
666		goto Ret;
667	}
668	mpr_unlock(sc);
669
670	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
671
672	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
673	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
674
675	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
676		err = EINVAL;
677		goto RetFreeUnlocked;
678	}
679	err = copyin(cmd->req, hdr, cmd->req_len);
680	if (err != 0)
681		goto RetFreeUnlocked;
682
683	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
684	    hdr->Function, hdr->MsgFlags);
685
686	if (cmd->len > 0) {
687		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
688		if (!buf) {
689			mpr_printf(sc, "Cannot allocate memory %s %d\n",
690			    __func__, __LINE__);
691			return (ENOMEM);
692		}
693		cm->cm_data = buf;
694		cm->cm_length = cmd->len;
695	} else {
696		cm->cm_data = NULL;
697		cm->cm_length = 0;
698	}
699
700	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
701	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
702
703	err = mpr_user_setup_request(cm, cmd);
704	if (err == EINVAL) {
705		mpr_printf(sc, "%s: unsupported parameter or unsupported "
706		    "function in request (function = 0x%X)\n", __func__,
707		    hdr->Function);
708	}
709	if (err != 0)
710		goto RetFreeUnlocked;
711
712	mpr_lock(sc);
713	err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
714
715	if (err) {
716		mpr_printf(sc, "%s: invalid request: error %d\n",
717		    __func__, err);
718		goto Ret;
719	}
720
721	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
722	if (rpl != NULL)
723		sz = rpl->MsgLength * 4;
724	else
725		sz = 0;
726
727	if (sz > cmd->rpl_len) {
728		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
729		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
730		sz = cmd->rpl_len;
731	}
732
733	mpr_unlock(sc);
734	copyout(rpl, cmd->rpl, sz);
735	if (buf != NULL)
736		copyout(buf, cmd->buf, cmd->len);
737	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
738
739RetFreeUnlocked:
740	mpr_lock(sc);
741	if (cm != NULL)
742		mpr_free_command(sc, cm);
743Ret:
744	mpr_unlock(sc);
745	if (buf != NULL)
746		free(buf, M_MPRUSER);
747	return (err);
748}
749
750static int
751mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
752{
753	MPI2_REQUEST_HEADER	*hdr, tmphdr;
754	MPI2_DEFAULT_REPLY	*rpl;
755	struct mpr_command	*cm = NULL;
756	int			i, err = 0, dir = 0, sz;
757	uint8_t			tool, function = 0;
758	u_int			sense_len;
759	struct mprsas_target	*targ = NULL;
760
761	/*
762	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
763	 * bit to denote that a passthru is being processed.
764	 */
765	mpr_lock(sc);
766	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
767		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
768		    "allowed at a single time.", __func__);
769		mpr_unlock(sc);
770		return (EBUSY);
771	}
772	sc->mpr_flags |= MPR_FLAGS_BUSY;
773	mpr_unlock(sc);
774
775	/*
776	 * Do some validation on data direction.  Valid cases are:
777	 *    1) DataSize is 0 and direction is NONE
778	 *    2) DataSize is non-zero and one of:
779	 *        a) direction is READ or
780	 *        b) direction is WRITE or
781	 *        c) direction is BOTH and DataOutSize is non-zero
782	 * If valid and the direction is BOTH, change the direction to READ.
783	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
784	 */
785	if (((data->DataSize == 0) &&
786	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
787	    ((data->DataSize != 0) &&
788	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
789	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
790	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
791	    (data->DataOutSize != 0))))) {
792		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
793			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
794		else
795			data->DataOutSize = 0;
796	} else
797		return (EINVAL);
798
799	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
800	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
801	    data->PtrRequest, data->RequestSize, data->PtrReply,
802	    data->ReplySize, data->PtrData, data->DataSize,
803	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
804
805	/*
806	 * copy in the header so we know what we're dealing with before we
807	 * commit to allocating a command for it.
808	 */
809	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
810	if (err != 0)
811		goto RetFreeUnlocked;
812
813	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
814		err = EINVAL;
815		goto RetFreeUnlocked;
816	}
817
818	function = tmphdr.Function;
819	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
820	    function, tmphdr.MsgFlags);
821
822	/*
823	 * Handle a passthru TM request.
824	 */
825	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
826		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
827
828		mpr_lock(sc);
829		cm = mprsas_alloc_tm(sc);
830		if (cm == NULL) {
831			err = EINVAL;
832			goto Ret;
833		}
834
835		/* Copy the header in.  Only a small fixup is needed. */
836		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
837		bcopy(&tmphdr, task, data->RequestSize);
838		task->TaskMID = cm->cm_desc.Default.SMID;
839
840		cm->cm_data = NULL;
841		cm->cm_desc.HighPriority.RequestFlags =
842		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
843		cm->cm_complete = NULL;
844		cm->cm_complete_data = NULL;
845
846		targ = mprsas_find_target_by_handle(sc->sassc, 0,
847		    task->DevHandle);
848		if (targ == NULL) {
849			mpr_dprint(sc, MPR_INFO,
850			   "%s %d : invalid handle for requested TM 0x%x \n",
851			   __func__, __LINE__, task->DevHandle);
852			err = 1;
853		} else {
854			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
855			err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
856		}
857
858		if (err != 0) {
859			err = EIO;
860			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
861			    __func__);
862		}
863		/*
864		 * Copy the reply data and sense data to user space.
865		 */
866		if (cm->cm_reply != NULL) {
867			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
868			sz = rpl->MsgLength * 4;
869
870			if (sz > data->ReplySize) {
871				mpr_printf(sc, "%s: user reply buffer (%d) "
872				    "smaller than returned buffer (%d)\n",
873				    __func__, data->ReplySize, sz);
874			}
875			mpr_unlock(sc);
876			copyout(cm->cm_reply, PTRIN(data->PtrReply),
877			    data->ReplySize);
878			mpr_lock(sc);
879		}
880		mprsas_free_tm(sc, cm);
881		goto Ret;
882	}
883
884	mpr_lock(sc);
885	cm = mpr_alloc_command(sc);
886
887	if (cm == NULL) {
888		mpr_printf(sc, "%s: no mpr requests\n", __func__);
889		err = ENOMEM;
890		goto Ret;
891	}
892	mpr_unlock(sc);
893
894	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
895	bcopy(&tmphdr, hdr, data->RequestSize);
896
897	/*
898	 * Do some checking to make sure the IOCTL request contains a valid
899	 * request.  Then set the SGL info.
900	 */
901	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
902
903	/*
904	 * Set up for read, write or both.  From check above, DataOutSize will
905	 * be 0 if direction is READ or WRITE, but it will have some non-zero
906	 * value if the direction is BOTH.  So, just use the biggest size to get
907	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
908	 * up; the first is for the request and the second will contain the
909	 * response data. cm_out_len needs to be set here and this will be used
910	 * when the SGLs are set up.
911	 */
912	cm->cm_data = NULL;
913	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
914	cm->cm_out_len = data->DataOutSize;
915	cm->cm_flags = 0;
916	if (cm->cm_length != 0) {
917		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
918		    M_ZERO);
919		if (cm->cm_data == NULL) {
920			mpr_dprint(sc, MPR_FAULT, "%s: alloc failed for IOCTL "
921			    "passthru length %d\n", __func__, cm->cm_length);
922		} else {
923			cm->cm_flags = MPR_CM_FLAGS_DATAIN;
924			if (data->DataOutSize) {
925				cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
926				err = copyin(PTRIN(data->PtrDataOut),
927				    cm->cm_data, data->DataOutSize);
928			} else if (data->DataDirection ==
929			    MPR_PASS_THRU_DIRECTION_WRITE) {
930				cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
931				err = copyin(PTRIN(data->PtrData),
932				    cm->cm_data, data->DataSize);
933			}
934			if (err != 0)
935				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
936				    "IOCTL data from user space\n", __func__);
937		}
938	}
939	/*
940	 * Set this flag only if processing a command that does not need an
941	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
942	 * the flag only for that tool if processing a Toolbox function.
943	 */
944	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
945	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
946		if (function == ieee_sgl_func_list[i]) {
947			if (function == MPI2_FUNCTION_TOOLBOX)
948			{
949				tool = (uint8_t)hdr->FunctionDependent1;
950				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
951					break;
952			}
953			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
954			break;
955		}
956	}
957	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
958
959	/*
960	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
961	 * uses SCSI IO or Fast Path SCSI IO descriptor.
962	 */
963	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
964	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
965		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
966
967		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
968		/*
969		 * Put SGE for data and data_out buffer at the end of
970		 * scsi_io_request message header (64 bytes in total).
971		 * Following above SGEs, the residual space will be used by
972		 * sense data.
973		 */
974		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
975		    64);
976		scsi_io_req->SenseBufferLowAddress =
977		    htole32(cm->cm_sense_busaddr);
978
979		/*
980		 * Set SGLOffset0 value.  This is the number of dwords that SGL
981		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
982		 */
983		scsi_io_req->SGLOffset0 = 24;
984
985		/*
986		 * Setup descriptor info.  RAID passthrough must use the
987		 * default request descriptor which is already set, so if this
988		 * is a SCSI IO request, change the descriptor to SCSI IO or
989		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
990		 * handle the reply in the mprsas_scsio_complete function.
991		 */
992		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
993			targ = mprsas_find_target_by_handle(sc->sassc, 0,
994			    scsi_io_req->DevHandle);
995
996			if (!targ) {
997				printf("No Target found for handle %d\n",
998				    scsi_io_req->DevHandle);
999				err = EINVAL;
1000				goto RetFreeUnlocked;
1001			}
1002
1003			if (targ->scsi_req_desc_type ==
1004			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1005				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1006				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1007				cm->cm_desc.FastPathSCSIIO.DevHandle =
1008				    scsi_io_req->DevHandle;
1009				scsi_io_req->IoFlags |=
1010				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1011			} else {
1012				cm->cm_desc.SCSIIO.RequestFlags =
1013				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1014				cm->cm_desc.SCSIIO.DevHandle =
1015				    scsi_io_req->DevHandle;
1016			}
1017
1018			/*
1019			 * Make sure the DevHandle is not 0 because this is a
1020			 * likely error.
1021			 */
1022			if (scsi_io_req->DevHandle == 0) {
1023				err = EINVAL;
1024				goto RetFreeUnlocked;
1025			}
1026		}
1027	}
1028
1029	mpr_lock(sc);
1030
1031	err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1032
1033	if (err) {
1034		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1035		    err);
1036		mpr_unlock(sc);
1037		goto RetFreeUnlocked;
1038	}
1039
1040	/*
1041	 * Sync the DMA data, if any.  Then copy the data to user space.
1042	 */
1043	if (cm->cm_data != NULL) {
1044		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1045			dir = BUS_DMASYNC_POSTREAD;
1046		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1047			dir = BUS_DMASYNC_POSTWRITE;
1048		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1049		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1050
1051		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1052			mpr_unlock(sc);
1053			err = copyout(cm->cm_data,
1054			    PTRIN(data->PtrData), data->DataSize);
1055			mpr_lock(sc);
1056			if (err != 0)
1057				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1058				    "IOCTL data to user space\n", __func__);
1059		}
1060	}
1061
1062	/*
1063	 * Copy the reply data and sense data to user space.
1064	 */
1065	if (cm->cm_reply != NULL) {
1066		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1067		sz = rpl->MsgLength * 4;
1068
1069		if (sz > data->ReplySize) {
1070			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1071			    "than returned buffer (%d)\n", __func__,
1072			    data->ReplySize, sz);
1073		}
1074		mpr_unlock(sc);
1075		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1076		mpr_lock(sc);
1077
1078		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1079		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1080			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1081			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1082				sense_len =
1083				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1084				    SenseCount)), sizeof(struct
1085				    scsi_sense_data));
1086				mpr_unlock(sc);
1087				copyout(cm->cm_sense, cm->cm_req + 64,
1088				    sense_len);
1089				mpr_lock(sc);
1090			}
1091		}
1092	}
1093	mpr_unlock(sc);
1094
1095RetFreeUnlocked:
1096	mpr_lock(sc);
1097
1098	if (cm != NULL) {
1099		if (cm->cm_data)
1100			free(cm->cm_data, M_MPRUSER);
1101		mpr_free_command(sc, cm);
1102	}
1103Ret:
1104	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1105	mpr_unlock(sc);
1106
1107	return (err);
1108}
1109
1110static void
1111mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1112{
1113	Mpi2ConfigReply_t	mpi_reply;
1114	Mpi2BiosPage3_t		config_page;
1115
1116	/*
1117	 * Use the PCI interface functions to get the Bus, Device, and Function
1118	 * information.
1119	 */
1120	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1121	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1122	data->PciInformation.u.bits.FunctionNumber =
1123	    pci_get_function(sc->mpr_dev);
1124
1125	/*
1126	 * Get the FW version that should already be saved in IOC Facts.
1127	 */
1128	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1129
1130	/*
1131	 * General device info.
1132	 */
1133	data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1134	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1135	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1136	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1137	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1138
1139	/*
1140	 * Get the driver version.
1141	 */
1142	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1143
1144	/*
1145	 * Need to get BIOS Config Page 3 for the BIOS Version.
1146	 */
1147	data->BiosVersion = 0;
1148	mpr_lock(sc);
1149	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1150		printf("%s: Error while retrieving BIOS Version\n", __func__);
1151	else
1152		data->BiosVersion = config_page.BiosVersion;
1153	mpr_unlock(sc);
1154}
1155
1156static void
1157mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1158{
1159	int	i;
1160
1161	/*
1162	 * Use the PCI interface functions to get the Bus, Device, and Function
1163	 * information.
1164	 */
1165	data->BusNumber = pci_get_bus(sc->mpr_dev);
1166	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1167	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1168
1169	/*
1170	 * Now get the interrupt vector and the pci header.  The vector can
1171	 * only be 0 right now.  The header is the first 256 bytes of config
1172	 * space.
1173	 */
1174	data->InterruptVector = 0;
1175	for (i = 0; i < sizeof (data->PciHeader); i++) {
1176		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1177	}
1178}
1179
1180static uint8_t
1181mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1182{
1183	uint8_t	index;
1184
1185	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1186		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1187			return (index);
1188		}
1189	}
1190
1191	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1192}
1193
1194static int
1195mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1196    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1197{
1198	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1199	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1200	struct mpr_command		*cm = NULL;
1201	int				i, status;
1202
1203	/*
1204	 * If buffer is not enabled, just leave.
1205	 */
1206	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1207	if (!pBuffer->enabled) {
1208		return (MPR_DIAG_FAILURE);
1209	}
1210
1211	/*
1212	 * Clear some flags initially.
1213	 */
1214	pBuffer->force_release = FALSE;
1215	pBuffer->valid_data = FALSE;
1216	pBuffer->owned_by_firmware = FALSE;
1217
1218	/*
1219	 * Get a command.
1220	 */
1221	cm = mpr_alloc_command(sc);
1222	if (cm == NULL) {
1223		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1224		return (MPR_DIAG_FAILURE);
1225	}
1226
1227	/*
1228	 * Build the request for releasing the FW Diag Buffer and send it.
1229	 */
1230	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1231	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1232	req->BufferType = pBuffer->buffer_type;
1233	req->ExtendedType = pBuffer->extended_type;
1234	req->BufferLength = pBuffer->size;
1235	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1236		req->ProductSpecific[i] = pBuffer->product_specific[i];
1237	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1238	cm->cm_data = NULL;
1239	cm->cm_length = 0;
1240	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1241	cm->cm_complete_data = NULL;
1242
1243	/*
1244	 * Send command synchronously.
1245	 */
1246	status = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1247	if (status) {
1248		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1249		    status);
1250		status = MPR_DIAG_FAILURE;
1251		goto done;
1252	}
1253
1254	/*
1255	 * Process POST reply.
1256	 */
1257	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1258	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1259	    MPI2_IOCSTATUS_SUCCESS) {
1260		status = MPR_DIAG_FAILURE;
1261		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1262		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1263		    "TransferLength = 0x%x\n", __func__,
1264		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1265		    le32toh(reply->TransferLength));
1266		goto done;
1267	}
1268
1269	/*
1270	 * Post was successful.
1271	 */
1272	pBuffer->valid_data = TRUE;
1273	pBuffer->owned_by_firmware = TRUE;
1274	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1275	status = MPR_DIAG_SUCCESS;
1276
1277done:
1278	mpr_free_command(sc, cm);
1279	return (status);
1280}
1281
1282static int
1283mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1284    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1285    uint32_t diag_type)
1286{
1287	MPI2_DIAG_RELEASE_REQUEST	*req;
1288	MPI2_DIAG_RELEASE_REPLY		*reply;
1289	struct mpr_command		*cm = NULL;
1290	int				status;
1291
1292	/*
1293	 * If buffer is not enabled, just leave.
1294	 */
1295	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1296	if (!pBuffer->enabled) {
1297		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1298		    "supported by the IOC", __func__);
1299		return (MPR_DIAG_FAILURE);
1300	}
1301
1302	/*
1303	 * Clear some flags initially.
1304	 */
1305	pBuffer->force_release = FALSE;
1306	pBuffer->valid_data = FALSE;
1307	pBuffer->owned_by_firmware = FALSE;
1308
1309	/*
1310	 * Get a command.
1311	 */
1312	cm = mpr_alloc_command(sc);
1313	if (cm == NULL) {
1314		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1315		return (MPR_DIAG_FAILURE);
1316	}
1317
1318	/*
1319	 * Build the request for releasing the FW Diag Buffer and send it.
1320	 */
1321	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1322	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1323	req->BufferType = pBuffer->buffer_type;
1324	cm->cm_data = NULL;
1325	cm->cm_length = 0;
1326	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1327	cm->cm_complete_data = NULL;
1328
1329	/*
1330	 * Send command synchronously.
1331	 */
1332	status = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1333	if (status) {
1334		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1335		    status);
1336		status = MPR_DIAG_FAILURE;
1337		goto done;
1338	}
1339
1340	/*
1341	 * Process RELEASE reply.
1342	 */
1343	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1344	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1345	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1346		status = MPR_DIAG_FAILURE;
1347		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1348		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1349		    __func__, le16toh(reply->IOCStatus),
1350		    le32toh(reply->IOCLogInfo));
1351		goto done;
1352	}
1353
1354	/*
1355	 * Release was successful.
1356	 */
1357	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1358	status = MPR_DIAG_SUCCESS;
1359
1360	/*
1361	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1362	 */
1363	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1364		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1365	}
1366
1367done:
1368	return (status);
1369}
1370
1371static int
1372mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1373    uint32_t *return_code)
1374{
1375	mpr_fw_diagnostic_buffer_t	*pBuffer;
1376	uint8_t				extended_type, buffer_type, i;
1377	uint32_t			buffer_size;
1378	uint32_t			unique_id;
1379	int				status;
1380
1381	extended_type = diag_register->ExtendedType;
1382	buffer_type = diag_register->BufferType;
1383	buffer_size = diag_register->RequestedBufferSize;
1384	unique_id = diag_register->UniqueId;
1385
1386	/*
1387	 * Check for valid buffer type
1388	 */
1389	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1390		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1391		return (MPR_DIAG_FAILURE);
1392	}
1393
1394	/*
1395	 * Get the current buffer and look up the unique ID.  The unique ID
1396	 * should not be found.  If it is, the ID is already in use.
1397	 */
1398	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1399	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1400	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1401		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1402		return (MPR_DIAG_FAILURE);
1403	}
1404
1405	/*
1406	 * The buffer's unique ID should not be registered yet, and the given
1407	 * unique ID cannot be 0.
1408	 */
1409	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1410	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1411		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1412		return (MPR_DIAG_FAILURE);
1413	}
1414
1415	/*
1416	 * If this buffer is already posted as immediate, just change owner.
1417	 */
1418	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1419	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1420		pBuffer->immediate = FALSE;
1421		pBuffer->unique_id = unique_id;
1422		return (MPR_DIAG_SUCCESS);
1423	}
1424
1425	/*
1426	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1427	 * that is allocated will be contiguous (nsegments = 1).
1428	 */
1429	if (!pBuffer->enabled) {
1430		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1431		return (MPR_DIAG_FAILURE);
1432	}
1433        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1434				1, 0,			/* algnmnt, boundary */
1435				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1436				BUS_SPACE_MAXADDR,	/* highaddr */
1437				NULL, NULL,		/* filter, filterarg */
1438                                buffer_size,		/* maxsize */
1439                                1,			/* nsegments */
1440                                buffer_size,		/* maxsegsize */
1441                                0,			/* flags */
1442                                NULL, NULL,		/* lockfunc, lockarg */
1443                                &sc->fw_diag_dmat)) {
1444		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer DMA "
1445		    "tag\n");
1446		return (ENOMEM);
1447        }
1448        if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1449	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1450		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer "
1451		    "memory\n");
1452		return (ENOMEM);
1453        }
1454        bzero(sc->fw_diag_buffer, buffer_size);
1455        bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1456	    buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0);
1457	pBuffer->size = buffer_size;
1458
1459	/*
1460	 * Copy the given info to the diag buffer and post the buffer.
1461	 */
1462	pBuffer->buffer_type = buffer_type;
1463	pBuffer->immediate = FALSE;
1464	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1465		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1466		    i++) {
1467			pBuffer->product_specific[i] =
1468			    diag_register->ProductSpecific[i];
1469		}
1470	}
1471	pBuffer->extended_type = extended_type;
1472	pBuffer->unique_id = unique_id;
1473	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1474
1475	/*
1476	 * In case there was a failure, free the DMA buffer.
1477	 */
1478	if (status == MPR_DIAG_FAILURE) {
1479		if (sc->fw_diag_busaddr != 0)
1480			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1481		if (sc->fw_diag_buffer != NULL)
1482			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1483			    sc->fw_diag_map);
1484		if (sc->fw_diag_dmat != NULL)
1485			bus_dma_tag_destroy(sc->fw_diag_dmat);
1486	}
1487
1488	return (status);
1489}
1490
1491static int
1492mpr_diag_unregister(struct mpr_softc *sc,
1493    mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1494{
1495	mpr_fw_diagnostic_buffer_t	*pBuffer;
1496	uint8_t				i;
1497	uint32_t			unique_id;
1498	int				status;
1499
1500	unique_id = diag_unregister->UniqueId;
1501
1502	/*
1503	 * Get the current buffer and look up the unique ID.  The unique ID
1504	 * should be there.
1505	 */
1506	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1507	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1508		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1509		return (MPR_DIAG_FAILURE);
1510	}
1511
1512	pBuffer = &sc->fw_diag_buffer_list[i];
1513
1514	/*
1515	 * Try to release the buffer from FW before freeing it.  If release
1516	 * fails, don't free the DMA buffer in case FW tries to access it
1517	 * later.  If buffer is not owned by firmware, can't release it.
1518	 */
1519	if (!pBuffer->owned_by_firmware) {
1520		status = MPR_DIAG_SUCCESS;
1521	} else {
1522		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1523		    MPR_FW_DIAG_TYPE_UNREGISTER);
1524	}
1525
1526	/*
1527	 * At this point, return the current status no matter what happens with
1528	 * the DMA buffer.
1529	 */
1530	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1531	if (status == MPR_DIAG_SUCCESS) {
1532		if (sc->fw_diag_busaddr != 0)
1533			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1534		if (sc->fw_diag_buffer != NULL)
1535			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1536			    sc->fw_diag_map);
1537		if (sc->fw_diag_dmat != NULL)
1538			bus_dma_tag_destroy(sc->fw_diag_dmat);
1539	}
1540
1541	return (status);
1542}
1543
1544static int
1545mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1546    uint32_t *return_code)
1547{
1548	mpr_fw_diagnostic_buffer_t	*pBuffer;
1549	uint8_t				i;
1550	uint32_t			unique_id;
1551
1552	unique_id = diag_query->UniqueId;
1553
1554	/*
1555	 * If ID is valid, query on ID.
1556	 * If ID is invalid, query on buffer type.
1557	 */
1558	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1559		i = diag_query->BufferType;
1560		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1561			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1562			return (MPR_DIAG_FAILURE);
1563		}
1564	} else {
1565		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1566		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1567			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1568			return (MPR_DIAG_FAILURE);
1569		}
1570	}
1571
1572	/*
1573	 * Fill query structure with the diag buffer info.
1574	 */
1575	pBuffer = &sc->fw_diag_buffer_list[i];
1576	diag_query->BufferType = pBuffer->buffer_type;
1577	diag_query->ExtendedType = pBuffer->extended_type;
1578	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1579		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1580		    i++) {
1581			diag_query->ProductSpecific[i] =
1582			    pBuffer->product_specific[i];
1583		}
1584	}
1585	diag_query->TotalBufferSize = pBuffer->size;
1586	diag_query->DriverAddedBufferSize = 0;
1587	diag_query->UniqueId = pBuffer->unique_id;
1588	diag_query->ApplicationFlags = 0;
1589	diag_query->DiagnosticFlags = 0;
1590
1591	/*
1592	 * Set/Clear application flags
1593	 */
1594	if (pBuffer->immediate) {
1595		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1596	} else {
1597		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1598	}
1599	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1600		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1601	} else {
1602		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1603	}
1604	if (pBuffer->owned_by_firmware) {
1605		diag_query->ApplicationFlags |=
1606		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1607	} else {
1608		diag_query->ApplicationFlags &=
1609		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1610	}
1611
1612	return (MPR_DIAG_SUCCESS);
1613}
1614
1615static int
1616mpr_diag_read_buffer(struct mpr_softc *sc,
1617    mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1618    uint32_t *return_code)
1619{
1620	mpr_fw_diagnostic_buffer_t	*pBuffer;
1621	uint8_t				i, *pData;
1622	uint32_t			unique_id;
1623	int				status;
1624
1625	unique_id = diag_read_buffer->UniqueId;
1626
1627	/*
1628	 * Get the current buffer and look up the unique ID.  The unique ID
1629	 * should be there.
1630	 */
1631	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1632	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1633		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1634		return (MPR_DIAG_FAILURE);
1635	}
1636
1637	pBuffer = &sc->fw_diag_buffer_list[i];
1638
1639	/*
1640	 * Make sure requested read is within limits
1641	 */
1642	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1643	    pBuffer->size) {
1644		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1645		return (MPR_DIAG_FAILURE);
1646	}
1647
1648	/*
1649	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1650	 * buffer that was allocated is one contiguous buffer.
1651	 */
1652	pData = (uint8_t *)(sc->fw_diag_buffer +
1653	    diag_read_buffer->StartingOffset);
1654	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1655		return (MPR_DIAG_FAILURE);
1656	diag_read_buffer->Status = 0;
1657
1658	/*
1659	 * Set or clear the Force Release flag.
1660	 */
1661	if (pBuffer->force_release) {
1662		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1663	} else {
1664		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1665	}
1666
1667	/*
1668	 * If buffer is to be reregistered, make sure it's not already owned by
1669	 * firmware first.
1670	 */
1671	status = MPR_DIAG_SUCCESS;
1672	if (!pBuffer->owned_by_firmware) {
1673		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1674			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1675			    return_code);
1676		}
1677	}
1678
1679	return (status);
1680}
1681
1682static int
1683mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1684    uint32_t *return_code)
1685{
1686	mpr_fw_diagnostic_buffer_t	*pBuffer;
1687	uint8_t				i;
1688	uint32_t			unique_id;
1689	int				status;
1690
1691	unique_id = diag_release->UniqueId;
1692
1693	/*
1694	 * Get the current buffer and look up the unique ID.  The unique ID
1695	 * should be there.
1696	 */
1697	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1698	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1699		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1700		return (MPR_DIAG_FAILURE);
1701	}
1702
1703	pBuffer = &sc->fw_diag_buffer_list[i];
1704
1705	/*
1706	 * If buffer is not owned by firmware, it's already been released.
1707	 */
1708	if (!pBuffer->owned_by_firmware) {
1709		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1710		return (MPR_DIAG_FAILURE);
1711	}
1712
1713	/*
1714	 * Release the buffer.
1715	 */
1716	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1717	    MPR_FW_DIAG_TYPE_RELEASE);
1718	return (status);
1719}
1720
1721static int
1722mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1723    uint32_t length, uint32_t *return_code)
1724{
1725	mpr_fw_diag_register_t		diag_register;
1726	mpr_fw_diag_unregister_t	diag_unregister;
1727	mpr_fw_diag_query_t		diag_query;
1728	mpr_diag_read_buffer_t		diag_read_buffer;
1729	mpr_fw_diag_release_t		diag_release;
1730	int				status = MPR_DIAG_SUCCESS;
1731	uint32_t			original_return_code;
1732
1733	original_return_code = *return_code;
1734	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1735
1736	switch (action) {
1737		case MPR_FW_DIAG_TYPE_REGISTER:
1738			if (!length) {
1739				*return_code =
1740				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1741				status = MPR_DIAG_FAILURE;
1742				break;
1743			}
1744			if (copyin(diag_action, &diag_register,
1745			    sizeof(diag_register)) != 0)
1746				return (MPR_DIAG_FAILURE);
1747			status = mpr_diag_register(sc, &diag_register,
1748			    return_code);
1749			break;
1750
1751		case MPR_FW_DIAG_TYPE_UNREGISTER:
1752			if (length < sizeof(diag_unregister)) {
1753				*return_code =
1754				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1755				status = MPR_DIAG_FAILURE;
1756				break;
1757			}
1758			if (copyin(diag_action, &diag_unregister,
1759			    sizeof(diag_unregister)) != 0)
1760				return (MPR_DIAG_FAILURE);
1761			status = mpr_diag_unregister(sc, &diag_unregister,
1762			    return_code);
1763			break;
1764
1765		case MPR_FW_DIAG_TYPE_QUERY:
1766			if (length < sizeof (diag_query)) {
1767				*return_code =
1768				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1769				status = MPR_DIAG_FAILURE;
1770				break;
1771			}
1772			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1773			    != 0)
1774				return (MPR_DIAG_FAILURE);
1775			status = mpr_diag_query(sc, &diag_query, return_code);
1776			if (status == MPR_DIAG_SUCCESS)
1777				if (copyout(&diag_query, diag_action,
1778				    sizeof (diag_query)) != 0)
1779					return (MPR_DIAG_FAILURE);
1780			break;
1781
1782		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1783			if (copyin(diag_action, &diag_read_buffer,
1784			    sizeof(diag_read_buffer)) != 0)
1785				return (MPR_DIAG_FAILURE);
1786			if (length < diag_read_buffer.BytesToRead) {
1787				*return_code =
1788				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1789				status = MPR_DIAG_FAILURE;
1790				break;
1791			}
1792			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1793			    PTRIN(diag_read_buffer.PtrDataBuffer),
1794			    return_code);
1795			if (status == MPR_DIAG_SUCCESS) {
1796				if (copyout(&diag_read_buffer, diag_action,
1797				    sizeof(diag_read_buffer) -
1798				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1799				    0)
1800					return (MPR_DIAG_FAILURE);
1801			}
1802			break;
1803
1804		case MPR_FW_DIAG_TYPE_RELEASE:
1805			if (length < sizeof(diag_release)) {
1806				*return_code =
1807				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1808				status = MPR_DIAG_FAILURE;
1809				break;
1810			}
1811			if (copyin(diag_action, &diag_release,
1812			    sizeof(diag_release)) != 0)
1813				return (MPR_DIAG_FAILURE);
1814			status = mpr_diag_release(sc, &diag_release,
1815			    return_code);
1816			break;
1817
1818		default:
1819			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1820			status = MPR_DIAG_FAILURE;
1821			break;
1822	}
1823
1824	if ((status == MPR_DIAG_FAILURE) &&
1825	    (original_return_code == MPR_FW_DIAG_NEW) &&
1826	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1827		status = MPR_DIAG_SUCCESS;
1828
1829	return (status);
1830}
1831
1832static int
1833mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1834{
1835	int			status;
1836
1837	/*
1838	 * Only allow one diag action at one time.
1839	 */
1840	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
1841		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
1842		    "allowed at a single time.", __func__);
1843		return (EBUSY);
1844	}
1845	sc->mpr_flags |= MPR_FLAGS_BUSY;
1846
1847	/*
1848	 * Send diag action request
1849	 */
1850	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
1851	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
1852	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
1853	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
1854	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
1855		status = mpr_do_diag_action(sc, data->Action,
1856		    PTRIN(data->PtrDiagAction), data->Length,
1857		    &data->ReturnCode);
1858	} else
1859		status = EINVAL;
1860
1861	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1862	return (status);
1863}
1864
1865/*
1866 * Copy the event recording mask and the event queue size out.  For
1867 * clarification, the event recording mask (events_to_record) is not the same
1868 * thing as the event mask (event_mask).  events_to_record has a bit set for
1869 * every event type that is to be recorded by the driver, and event_mask has a
1870 * bit cleared for every event that is allowed into the driver from the IOC.
1871 * They really have nothing to do with each other.
1872 */
1873static void
1874mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
1875{
1876	uint8_t	i;
1877
1878	mpr_lock(sc);
1879	data->Entries = MPR_EVENT_QUEUE_SIZE;
1880
1881	for (i = 0; i < 4; i++) {
1882		data->Types[i] = sc->events_to_record[i];
1883	}
1884	mpr_unlock(sc);
1885}
1886
1887/*
1888 * Set the driver's event mask according to what's been given.  See
1889 * mpr_user_event_query for explanation of the event recording mask and the IOC
1890 * event mask.  It's the app's responsibility to enable event logging by setting
1891 * the bits in events_to_record.  Initially, no events will be logged.
1892 */
1893static void
1894mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
1895{
1896	uint8_t	i;
1897
1898	mpr_lock(sc);
1899	for (i = 0; i < 4; i++) {
1900		sc->events_to_record[i] = data->Types[i];
1901	}
1902	mpr_unlock(sc);
1903}
1904
1905/*
1906 * Copy out the events that have been recorded, up to the max events allowed.
1907 */
1908static int
1909mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
1910{
1911	int		status = 0;
1912	uint32_t	size;
1913
1914	mpr_lock(sc);
1915	size = data->Size;
1916	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1917		mpr_unlock(sc);
1918		if (copyout((void *)sc->recorded_events,
1919		    PTRIN(data->PtrEvents), size) != 0)
1920			status = EFAULT;
1921		mpr_lock(sc);
1922	} else {
1923		/*
1924		 * data->Size value is not large enough to copy event data.
1925		 */
1926		status = EFAULT;
1927	}
1928
1929	/*
1930	 * Change size value to match the number of bytes that were copied.
1931	 */
1932	if (status == 0)
1933		data->Size = sizeof(sc->recorded_events);
1934	mpr_unlock(sc);
1935
1936	return (status);
1937}
1938
1939/*
1940 * Record events into the driver from the IOC if they are not masked.
1941 */
1942void
1943mprsas_record_event(struct mpr_softc *sc,
1944    MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
1945{
1946	uint32_t	event;
1947	int		i, j;
1948	uint16_t	event_data_len;
1949	boolean_t	sendAEN = FALSE;
1950
1951	event = event_reply->Event;
1952
1953	/*
1954	 * Generate a system event to let anyone who cares know that a
1955	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
1956	 * event mask is set to.
1957	 */
1958	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
1959		sendAEN = TRUE;
1960	}
1961
1962	/*
1963	 * Record the event only if its corresponding bit is set in
1964	 * events_to_record.  event_index is the index into recorded_events and
1965	 * event_number is the overall number of an event being recorded since
1966	 * start-of-day.  event_index will roll over; event_number will never
1967	 * roll over.
1968	 */
1969	i = (uint8_t)(event / 32);
1970	j = (uint8_t)(event % 32);
1971	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
1972		i = sc->event_index;
1973		sc->recorded_events[i].Type = event;
1974		sc->recorded_events[i].Number = ++sc->event_number;
1975		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
1976		    4);
1977		event_data_len = event_reply->EventDataLength;
1978
1979		if (event_data_len > 0) {
1980			/*
1981			 * Limit data to size in m_event entry
1982			 */
1983			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
1984				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
1985			}
1986			for (j = 0; j < event_data_len; j++) {
1987				sc->recorded_events[i].Data[j] =
1988				    event_reply->EventData[j];
1989			}
1990
1991			/*
1992			 * check for index wrap-around
1993			 */
1994			if (++i == MPR_EVENT_QUEUE_SIZE) {
1995				i = 0;
1996			}
1997			sc->event_index = (uint8_t)i;
1998
1999			/*
2000			 * Set flag to send the event.
2001			 */
2002			sendAEN = TRUE;
2003		}
2004	}
2005
2006	/*
2007	 * Generate a system event if flag is set to let anyone who cares know
2008	 * that an event has occurred.
2009	 */
2010	if (sendAEN) {
2011//SLM-how to send a system event (see kqueue, kevent)
2012//		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2013//		    "SAS", NULL, NULL, DDI_NOSLEEP);
2014	}
2015}
2016
2017static int
2018mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2019{
2020	int	status = 0;
2021
2022	switch (data->Command) {
2023		/*
2024		 * IO access is not supported.
2025		 */
2026		case REG_IO_READ:
2027		case REG_IO_WRITE:
2028			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2029			    "Use memory access.");
2030			status = EINVAL;
2031			break;
2032
2033		case REG_MEM_READ:
2034			data->RegData = mpr_regread(sc, data->RegOffset);
2035			break;
2036
2037		case REG_MEM_WRITE:
2038			mpr_regwrite(sc, data->RegOffset, data->RegData);
2039			break;
2040
2041		default:
2042			status = EINVAL;
2043			break;
2044	}
2045
2046	return (status);
2047}
2048
2049static int
2050mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2051{
2052	uint8_t		bt2dh = FALSE;
2053	uint8_t		dh2bt = FALSE;
2054	uint16_t	dev_handle, bus, target;
2055
2056	bus = data->Bus;
2057	target = data->TargetID;
2058	dev_handle = data->DevHandle;
2059
2060	/*
2061	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2062	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2063	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2064	 * invalid.
2065	 */
2066	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2067		dh2bt = TRUE;
2068	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2069		bt2dh = TRUE;
2070	if (!dh2bt && !bt2dh)
2071		return (EINVAL);
2072
2073	/*
2074	 * Only handle bus of 0.  Make sure target is within range.
2075	 */
2076	if (bt2dh) {
2077		if (bus != 0)
2078			return (EINVAL);
2079
2080		if (target > sc->max_devices) {
2081			mpr_dprint(sc, MPR_FAULT, "Target ID is out of range "
2082			   "for Bus/Target to DevHandle mapping.");
2083			return (EINVAL);
2084		}
2085		dev_handle = sc->mapping_table[target].dev_handle;
2086		if (dev_handle)
2087			data->DevHandle = dev_handle;
2088	} else {
2089		bus = 0;
2090		target = mpr_mapping_get_sas_id_from_handle(sc, dev_handle);
2091		data->Bus = bus;
2092		data->TargetID = target;
2093	}
2094
2095	return (0);
2096}
2097
2098static int
2099mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2100    struct thread *td)
2101{
2102	struct mpr_softc *sc;
2103	struct mpr_cfg_page_req *page_req;
2104	struct mpr_ext_cfg_page_req *ext_page_req;
2105	void *mpr_page;
2106	int error, msleep_ret;
2107
2108	mpr_page = NULL;
2109	sc = dev->si_drv1;
2110	page_req = (void *)arg;
2111	ext_page_req = (void *)arg;
2112
2113	switch (cmd) {
2114	case MPRIO_READ_CFG_HEADER:
2115		mpr_lock(sc);
2116		error = mpr_user_read_cfg_header(sc, page_req);
2117		mpr_unlock(sc);
2118		break;
2119	case MPRIO_READ_CFG_PAGE:
2120		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2121		if (!mpr_page) {
2122			mpr_printf(sc, "Cannot allocate memory %s %d\n",
2123			    __func__, __LINE__);
2124			return (ENOMEM);
2125		}
2126		error = copyin(page_req->buf, mpr_page,
2127		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2128		if (error)
2129			break;
2130		mpr_lock(sc);
2131		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2132		mpr_unlock(sc);
2133		if (error)
2134			break;
2135		error = copyout(mpr_page, page_req->buf, page_req->len);
2136		break;
2137	case MPRIO_READ_EXT_CFG_HEADER:
2138		mpr_lock(sc);
2139		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2140		mpr_unlock(sc);
2141		break;
2142	case MPRIO_READ_EXT_CFG_PAGE:
2143		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2144		    M_WAITOK | M_ZERO);
2145		if (!mpr_page) {
2146			mpr_printf(sc, "Cannot allocate memory %s %d\n",
2147			    __func__, __LINE__);
2148			return (ENOMEM);
2149		}
2150		error = copyin(ext_page_req->buf, mpr_page,
2151		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2152		if (error)
2153			break;
2154		mpr_lock(sc);
2155		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2156		mpr_unlock(sc);
2157		if (error)
2158			break;
2159		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2160		break;
2161	case MPRIO_WRITE_CFG_PAGE:
2162		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2163		if (!mpr_page) {
2164			mpr_printf(sc, "Cannot allocate memory %s %d\n",
2165			    __func__, __LINE__);
2166			return (ENOMEM);
2167		}
2168		error = copyin(page_req->buf, mpr_page, page_req->len);
2169		if (error)
2170			break;
2171		mpr_lock(sc);
2172		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2173		mpr_unlock(sc);
2174		break;
2175	case MPRIO_MPR_COMMAND:
2176		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2177		break;
2178	case MPTIOCTL_PASS_THRU:
2179		/*
2180		 * The user has requested to pass through a command to be
2181		 * executed by the MPT firmware.  Call our routine which does
2182		 * this.  Only allow one passthru IOCTL at one time.
2183		 */
2184		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2185		break;
2186	case MPTIOCTL_GET_ADAPTER_DATA:
2187		/*
2188		 * The user has requested to read adapter data.  Call our
2189		 * routine which does this.
2190		 */
2191		error = 0;
2192		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2193		break;
2194	case MPTIOCTL_GET_PCI_INFO:
2195		/*
2196		 * The user has requested to read pci info.  Call
2197		 * our routine which does this.
2198		 */
2199		mpr_lock(sc);
2200		error = 0;
2201		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2202		mpr_unlock(sc);
2203		break;
2204	case MPTIOCTL_RESET_ADAPTER:
2205		mpr_lock(sc);
2206		sc->port_enable_complete = 0;
2207		uint32_t reinit_start = time_uptime;
2208		error = mpr_reinit(sc);
2209		/* Sleep for 300 second. */
2210		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2211		    PRIBIO, "mpr_porten", 300 * hz);
2212		mpr_unlock(sc);
2213		if (msleep_ret)
2214			printf("Port Enable did not complete after Diag "
2215			    "Reset msleep error %d.\n", msleep_ret);
2216		else
2217			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2218			    "completed in %d seconds.\n",
2219			    (uint32_t)(time_uptime - reinit_start));
2220		break;
2221	case MPTIOCTL_DIAG_ACTION:
2222		/*
2223		 * The user has done a diag buffer action.  Call our routine
2224		 * which does this.  Only allow one diag action at one time.
2225		 */
2226		mpr_lock(sc);
2227		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2228		mpr_unlock(sc);
2229		break;
2230	case MPTIOCTL_EVENT_QUERY:
2231		/*
2232		 * The user has done an event query. Call our routine which does
2233		 * this.
2234		 */
2235		error = 0;
2236		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2237		break;
2238	case MPTIOCTL_EVENT_ENABLE:
2239		/*
2240		 * The user has done an event enable. Call our routine which
2241		 * does this.
2242		 */
2243		error = 0;
2244		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2245		break;
2246	case MPTIOCTL_EVENT_REPORT:
2247		/*
2248		 * The user has done an event report. Call our routine which
2249		 * does this.
2250		 */
2251		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2252		break;
2253	case MPTIOCTL_REG_ACCESS:
2254		/*
2255		 * The user has requested register access.  Call our routine
2256		 * which does this.
2257		 */
2258		mpr_lock(sc);
2259		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2260		mpr_unlock(sc);
2261		break;
2262	case MPTIOCTL_BTDH_MAPPING:
2263		/*
2264		 * The user has requested to translate a bus/target to a
2265		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2266		 * which does this.
2267		 */
2268		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2269		break;
2270	default:
2271		error = ENOIOCTL;
2272		break;
2273	}
2274
2275	if (mpr_page != NULL)
2276		free(mpr_page, M_MPRUSER);
2277
2278	return (error);
2279}
2280
2281#ifdef COMPAT_FREEBSD32
2282
2283struct mpr_cfg_page_req32 {
2284	MPI2_CONFIG_PAGE_HEADER header;
2285	uint32_t page_address;
2286	uint32_t buf;
2287	int	len;
2288	uint16_t ioc_status;
2289};
2290
2291struct mpr_ext_cfg_page_req32 {
2292	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2293	uint32_t page_address;
2294	uint32_t buf;
2295	int	len;
2296	uint16_t ioc_status;
2297};
2298
2299struct mpr_raid_action32 {
2300	uint8_t action;
2301	uint8_t volume_bus;
2302	uint8_t volume_id;
2303	uint8_t phys_disk_num;
2304	uint32_t action_data_word;
2305	uint32_t buf;
2306	int len;
2307	uint32_t volume_status;
2308	uint32_t action_data[4];
2309	uint16_t action_status;
2310	uint16_t ioc_status;
2311	uint8_t write;
2312};
2313
2314struct mpr_usr_command32 {
2315	uint32_t req;
2316	uint32_t req_len;
2317	uint32_t rpl;
2318	uint32_t rpl_len;
2319	uint32_t buf;
2320	int len;
2321	uint32_t flags;
2322};
2323
2324#define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2325#define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2326#define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2327#define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2328#define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2329#define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2330#define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2331
2332static int
2333mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2334    struct thread *td)
2335{
2336	struct mpr_cfg_page_req32 *page32 = _arg;
2337	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2338	struct mpr_raid_action32 *raid32 = _arg;
2339	struct mpr_usr_command32 *user32 = _arg;
2340	union {
2341		struct mpr_cfg_page_req page;
2342		struct mpr_ext_cfg_page_req ext;
2343		struct mpr_raid_action raid;
2344		struct mpr_usr_command user;
2345	} arg;
2346	u_long cmd;
2347	int error;
2348
2349	switch (cmd32) {
2350	case MPRIO_READ_CFG_HEADER32:
2351	case MPRIO_READ_CFG_PAGE32:
2352	case MPRIO_WRITE_CFG_PAGE32:
2353		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2354			cmd = MPRIO_READ_CFG_HEADER;
2355		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2356			cmd = MPRIO_READ_CFG_PAGE;
2357		else
2358			cmd = MPRIO_WRITE_CFG_PAGE;
2359		CP(*page32, arg.page, header);
2360		CP(*page32, arg.page, page_address);
2361		PTRIN_CP(*page32, arg.page, buf);
2362		CP(*page32, arg.page, len);
2363		CP(*page32, arg.page, ioc_status);
2364		break;
2365
2366	case MPRIO_READ_EXT_CFG_HEADER32:
2367	case MPRIO_READ_EXT_CFG_PAGE32:
2368		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2369			cmd = MPRIO_READ_EXT_CFG_HEADER;
2370		else
2371			cmd = MPRIO_READ_EXT_CFG_PAGE;
2372		CP(*ext32, arg.ext, header);
2373		CP(*ext32, arg.ext, page_address);
2374		PTRIN_CP(*ext32, arg.ext, buf);
2375		CP(*ext32, arg.ext, len);
2376		CP(*ext32, arg.ext, ioc_status);
2377		break;
2378
2379	case MPRIO_RAID_ACTION32:
2380		cmd = MPRIO_RAID_ACTION;
2381		CP(*raid32, arg.raid, action);
2382		CP(*raid32, arg.raid, volume_bus);
2383		CP(*raid32, arg.raid, volume_id);
2384		CP(*raid32, arg.raid, phys_disk_num);
2385		CP(*raid32, arg.raid, action_data_word);
2386		PTRIN_CP(*raid32, arg.raid, buf);
2387		CP(*raid32, arg.raid, len);
2388		CP(*raid32, arg.raid, volume_status);
2389		bcopy(raid32->action_data, arg.raid.action_data,
2390		    sizeof arg.raid.action_data);
2391		CP(*raid32, arg.raid, ioc_status);
2392		CP(*raid32, arg.raid, write);
2393		break;
2394
2395	case MPRIO_MPR_COMMAND32:
2396		cmd = MPRIO_MPR_COMMAND;
2397		PTRIN_CP(*user32, arg.user, req);
2398		CP(*user32, arg.user, req_len);
2399		PTRIN_CP(*user32, arg.user, rpl);
2400		CP(*user32, arg.user, rpl_len);
2401		PTRIN_CP(*user32, arg.user, buf);
2402		CP(*user32, arg.user, len);
2403		CP(*user32, arg.user, flags);
2404		break;
2405	default:
2406		return (ENOIOCTL);
2407	}
2408
2409	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2410	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2411		switch (cmd32) {
2412		case MPRIO_READ_CFG_HEADER32:
2413		case MPRIO_READ_CFG_PAGE32:
2414		case MPRIO_WRITE_CFG_PAGE32:
2415			CP(arg.page, *page32, header);
2416			CP(arg.page, *page32, page_address);
2417			PTROUT_CP(arg.page, *page32, buf);
2418			CP(arg.page, *page32, len);
2419			CP(arg.page, *page32, ioc_status);
2420			break;
2421
2422		case MPRIO_READ_EXT_CFG_HEADER32:
2423		case MPRIO_READ_EXT_CFG_PAGE32:
2424			CP(arg.ext, *ext32, header);
2425			CP(arg.ext, *ext32, page_address);
2426			PTROUT_CP(arg.ext, *ext32, buf);
2427			CP(arg.ext, *ext32, len);
2428			CP(arg.ext, *ext32, ioc_status);
2429			break;
2430
2431		case MPRIO_RAID_ACTION32:
2432			CP(arg.raid, *raid32, action);
2433			CP(arg.raid, *raid32, volume_bus);
2434			CP(arg.raid, *raid32, volume_id);
2435			CP(arg.raid, *raid32, phys_disk_num);
2436			CP(arg.raid, *raid32, action_data_word);
2437			PTROUT_CP(arg.raid, *raid32, buf);
2438			CP(arg.raid, *raid32, len);
2439			CP(arg.raid, *raid32, volume_status);
2440			bcopy(arg.raid.action_data, raid32->action_data,
2441			    sizeof arg.raid.action_data);
2442			CP(arg.raid, *raid32, ioc_status);
2443			CP(arg.raid, *raid32, write);
2444			break;
2445
2446		case MPRIO_MPR_COMMAND32:
2447			PTROUT_CP(arg.user, *user32, req);
2448			CP(arg.user, *user32, req_len);
2449			PTROUT_CP(arg.user, *user32, rpl);
2450			CP(arg.user, *user32, rpl_len);
2451			PTROUT_CP(arg.user, *user32, buf);
2452			CP(arg.user, *user32, len);
2453			CP(arg.user, *user32, flags);
2454			break;
2455		}
2456	}
2457
2458	return (error);
2459}
2460#endif /* COMPAT_FREEBSD32 */
2461
2462static int
2463mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2464    struct thread *td)
2465{
2466#ifdef COMPAT_FREEBSD32
2467	if (SV_CURPROC_FLAG(SV_ILP32))
2468		return (mpr_ioctl32(dev, com, arg, flag, td));
2469#endif
2470	return (mpr_ioctl(dev, com, arg, flag, td));
2471}
2472