mpr.c revision 321415
1/*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2016 Avago Technologies
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/dev/mpr/mpr.c 321415 2017-07-24 14:42:43Z ken $");
34
35/* Communications core for Avago Technologies (LSI) MPT3 */
36
37/* TODO Move headers to mprvar */
38#include <sys/types.h>
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/selinfo.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/module.h>
46#include <sys/bus.h>
47#include <sys/conf.h>
48#include <sys/bio.h>
49#include <sys/malloc.h>
50#include <sys/uio.h>
51#include <sys/sysctl.h>
52#include <sys/queue.h>
53#include <sys/kthread.h>
54#include <sys/taskqueue.h>
55#include <sys/endian.h>
56#include <sys/eventhandler.h>
57
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/rman.h>
61#include <sys/proc.h>
62
63#include <dev/pci/pcivar.h>
64
65#include <cam/cam.h>
66#include <cam/cam_ccb.h>
67#include <cam/scsi/scsi_all.h>
68
69#include <dev/mpr/mpi/mpi2_type.h>
70#include <dev/mpr/mpi/mpi2.h>
71#include <dev/mpr/mpi/mpi2_ioc.h>
72#include <dev/mpr/mpi/mpi2_sas.h>
73#include <dev/mpr/mpi/mpi2_pci.h>
74#include <dev/mpr/mpi/mpi2_cnfg.h>
75#include <dev/mpr/mpi/mpi2_init.h>
76#include <dev/mpr/mpi/mpi2_tool.h>
77#include <dev/mpr/mpr_ioctl.h>
78#include <dev/mpr/mprvar.h>
79#include <dev/mpr/mpr_table.h>
80#include <dev/mpr/mpr_sas.h>
81
82static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
83static int mpr_init_queues(struct mpr_softc *sc);
84static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
85static int mpr_transition_operational(struct mpr_softc *sc);
86static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
87static void mpr_iocfacts_free(struct mpr_softc *sc);
88static void mpr_startup(void *arg);
89static int mpr_send_iocinit(struct mpr_softc *sc);
90static int mpr_alloc_queues(struct mpr_softc *sc);
91static int mpr_alloc_replies(struct mpr_softc *sc);
92static int mpr_alloc_requests(struct mpr_softc *sc);
93static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
94static int mpr_attach_log(struct mpr_softc *sc);
95static __inline void mpr_complete_command(struct mpr_softc *sc,
96    struct mpr_command *cm);
97static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
98    MPI2_EVENT_NOTIFICATION_REPLY *reply);
99static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
100static void mpr_periodic(void *);
101static int mpr_reregister_events(struct mpr_softc *sc);
102static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
103static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
104static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
105SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
106
107MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
108
109/*
110 * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
111 * any state and back to its initialization state machine.
112 */
113static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
114
115/*
116 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
117 * Compiler only supports uint64_t to be passed as an argument.
118 * Otherwise it will through this error:
119 * "aggregate value used where an integer was expected"
120 */
121typedef union _reply_descriptor {
122        u64 word;
123        struct {
124                u32 low;
125                u32 high;
126        } u;
127} reply_descriptor, request_descriptor;
128
129/* Rate limit chain-fail messages to 1 per minute */
130static struct timeval mpr_chainfail_interval = { 60, 0 };
131
132/*
133 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
134 * If this function is called from process context, it can sleep
135 * and there is no harm to sleep, in case if this fuction is called
136 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
137 * based on sleep flags driver will call either msleep, pause or DELAY.
138 * msleep and pause are of same variant, but pause is used when mpr_mtx
139 * is not hold by driver.
140 */
141static int
142mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
143{
144	uint32_t reg;
145	int i, error, tries = 0;
146	uint8_t first_wait_done = FALSE;
147
148	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
149
150	/* Clear any pending interrupts */
151	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
152
153	/*
154	 * Force NO_SLEEP for threads prohibited to sleep
155 	 * e.a Thread from interrupt handler are prohibited to sleep.
156 	 */
157#if __FreeBSD_version >= 1000029
158	if (curthread->td_no_sleeping)
159#else //__FreeBSD_version < 1000029
160	if (curthread->td_pflags & TDP_NOSLEEPING)
161#endif //__FreeBSD_version >= 1000029
162		sleep_flag = NO_SLEEP;
163
164	/* Push the magic sequence */
165	error = ETIMEDOUT;
166	while (tries++ < 20) {
167		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
168			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
169			    mpt2_reset_magic[i]);
170
171		/* wait 100 msec */
172		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
173			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
174			    "mprdiag", hz/10);
175		else if (sleep_flag == CAN_SLEEP)
176			pause("mprdiag", hz/10);
177		else
178			DELAY(100 * 1000);
179
180		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
181		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
182			error = 0;
183			break;
184		}
185	}
186	if (error)
187		return (error);
188
189	/* Send the actual reset.  XXX need to refresh the reg? */
190	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
191	    reg | MPI2_DIAG_RESET_ADAPTER);
192
193	/* Wait up to 300 seconds in 50ms intervals */
194	error = ETIMEDOUT;
195	for (i = 0; i < 6000; i++) {
196		/*
197		 * Wait 50 msec. If this is the first time through, wait 256
198		 * msec to satisfy Diag Reset timing requirements.
199		 */
200		if (first_wait_done) {
201			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
202				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
203				    "mprdiag", hz/20);
204			else if (sleep_flag == CAN_SLEEP)
205				pause("mprdiag", hz/20);
206			else
207				DELAY(50 * 1000);
208		} else {
209			DELAY(256 * 1000);
210			first_wait_done = TRUE;
211		}
212		/*
213		 * Check for the RESET_ADAPTER bit to be cleared first, then
214		 * wait for the RESET state to be cleared, which takes a little
215		 * longer.
216		 */
217		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
218		if (reg & MPI2_DIAG_RESET_ADAPTER) {
219			continue;
220		}
221		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
222		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
223			error = 0;
224			break;
225		}
226	}
227	if (error)
228		return (error);
229
230	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
231
232	return (0);
233}
234
235static int
236mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
237{
238
239	MPR_FUNCTRACE(sc);
240
241	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
242	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
243	    MPI2_DOORBELL_FUNCTION_SHIFT);
244
245	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
246		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
247				__func__);
248		return (ETIMEDOUT);
249	}
250
251	return (0);
252}
253
254static int
255mpr_transition_ready(struct mpr_softc *sc)
256{
257	uint32_t reg, state;
258	int error, tries = 0;
259	int sleep_flags;
260
261	MPR_FUNCTRACE(sc);
262	/* If we are in attach call, do not sleep */
263	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
264	    ? CAN_SLEEP : NO_SLEEP;
265
266	error = 0;
267	while (tries++ < 1200) {
268		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
269		mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
270
271		/*
272		 * Ensure the IOC is ready to talk.  If it's not, try
273		 * resetting it.
274		 */
275		if (reg & MPI2_DOORBELL_USED) {
276			mpr_diag_reset(sc, sleep_flags);
277			DELAY(50000);
278			continue;
279		}
280
281		/* Is the adapter owned by another peer? */
282		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
283		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
284			device_printf(sc->mpr_dev, "IOC is under the control "
285			    "of another peer host, aborting initialization.\n");
286			return (ENXIO);
287		}
288
289		state = reg & MPI2_IOC_STATE_MASK;
290		if (state == MPI2_IOC_STATE_READY) {
291			/* Ready to go! */
292			error = 0;
293			break;
294		} else if (state == MPI2_IOC_STATE_FAULT) {
295			mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
296			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
297			mpr_diag_reset(sc, sleep_flags);
298		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
299			/* Need to take ownership */
300			mpr_message_unit_reset(sc, sleep_flags);
301		} else if (state == MPI2_IOC_STATE_RESET) {
302			/* Wait a bit, IOC might be in transition */
303			mpr_dprint(sc, MPR_FAULT,
304			    "IOC in unexpected reset state\n");
305		} else {
306			mpr_dprint(sc, MPR_FAULT,
307			    "IOC in unknown state 0x%x\n", state);
308			error = EINVAL;
309			break;
310		}
311
312		/* Wait 50ms for things to settle down. */
313		DELAY(50000);
314	}
315
316	if (error)
317		device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
318	return (error);
319}
320
321static int
322mpr_transition_operational(struct mpr_softc *sc)
323{
324	uint32_t reg, state;
325	int error;
326
327	MPR_FUNCTRACE(sc);
328
329	error = 0;
330	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
331	mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
332
333	state = reg & MPI2_IOC_STATE_MASK;
334	if (state != MPI2_IOC_STATE_READY) {
335		if ((error = mpr_transition_ready(sc)) != 0) {
336			mpr_dprint(sc, MPR_FAULT,
337			    "%s failed to transition ready\n", __func__);
338			return (error);
339		}
340	}
341
342	error = mpr_send_iocinit(sc);
343	return (error);
344}
345
346/*
347 * This is called during attach and when re-initializing due to a Diag Reset.
348 * IOC Facts is used to allocate many of the structures needed by the driver.
349 * If called from attach, de-allocation is not required because the driver has
350 * not allocated any structures yet, but if called from a Diag Reset, previously
351 * allocated structures based on IOC Facts will need to be freed and re-
352 * allocated bases on the latest IOC Facts.
353 */
354static int
355mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
356{
357	int error;
358	Mpi2IOCFactsReply_t saved_facts;
359	uint8_t saved_mode, reallocating;
360
361	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
362
363	/* Save old IOC Facts and then only reallocate if Facts have changed */
364	if (!attaching) {
365		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
366	}
367
368	/*
369	 * Get IOC Facts.  In all cases throughout this function, panic if doing
370	 * a re-initialization and only return the error if attaching so the OS
371	 * can handle it.
372	 */
373	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
374		if (attaching) {
375			mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
376			    "with error %d\n", __func__, error);
377			return (error);
378		} else {
379			panic("%s failed to get IOC Facts with error %d\n",
380			    __func__, error);
381		}
382	}
383
384	mpr_print_iocfacts(sc, sc->facts);
385
386	snprintf(sc->fw_version, sizeof(sc->fw_version),
387	    "%02d.%02d.%02d.%02d",
388	    sc->facts->FWVersion.Struct.Major,
389	    sc->facts->FWVersion.Struct.Minor,
390	    sc->facts->FWVersion.Struct.Unit,
391	    sc->facts->FWVersion.Struct.Dev);
392
393	mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
394	    MPR_DRIVER_VERSION);
395	mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
396	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
397	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
398	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
399	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
400
401	/*
402	 * If the chip doesn't support event replay then a hard reset will be
403	 * required to trigger a full discovery.  Do the reset here then
404	 * retransition to Ready.  A hard reset might have already been done,
405	 * but it doesn't hurt to do it again.  Only do this if attaching, not
406	 * for a Diag Reset.
407	 */
408	if (attaching) {
409		if ((sc->facts->IOCCapabilities &
410		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
411			mpr_diag_reset(sc, NO_SLEEP);
412			if ((error = mpr_transition_ready(sc)) != 0) {
413				mpr_dprint(sc, MPR_FAULT, "%s failed to "
414				    "transition to ready with error %d\n",
415				    __func__, error);
416				return (error);
417			}
418		}
419	}
420
421	/*
422	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
423	 * changed from the previous IOC Facts, log a warning, but only if
424	 * checking this after a Diag Reset and not during attach.
425	 */
426	saved_mode = sc->ir_firmware;
427	if (sc->facts->IOCCapabilities &
428	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
429		sc->ir_firmware = 1;
430	if (!attaching) {
431		if (sc->ir_firmware != saved_mode) {
432			mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
433			    "Facts does not match previous mode\n", __func__);
434		}
435	}
436
437	/* Only deallocate and reallocate if relevant IOC Facts have changed */
438	reallocating = FALSE;
439	if ((!attaching) &&
440	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
441	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
442	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
443	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
444	    (saved_facts.ProductID != sc->facts->ProductID) ||
445	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
446	    (saved_facts.IOCRequestFrameSize !=
447	    sc->facts->IOCRequestFrameSize) ||
448	    (saved_facts.IOCMaxChainSegmentSize !=
449	    sc->facts->IOCMaxChainSegmentSize) ||
450	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
451	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
452	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
453	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
454	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
455	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
456	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
457	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
458	    (saved_facts.MaxPersistentEntries !=
459	    sc->facts->MaxPersistentEntries))) {
460		reallocating = TRUE;
461	}
462
463	/*
464	 * Some things should be done if attaching or re-allocating after a Diag
465	 * Reset, but are not needed after a Diag Reset if the FW has not
466	 * changed.
467	 */
468	if (attaching || reallocating) {
469		/*
470		 * Check if controller supports FW diag buffers and set flag to
471		 * enable each type.
472		 */
473		if (sc->facts->IOCCapabilities &
474		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
475			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
476			    enabled = TRUE;
477		if (sc->facts->IOCCapabilities &
478		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
479			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
480			    enabled = TRUE;
481		if (sc->facts->IOCCapabilities &
482		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
483			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
484			    enabled = TRUE;
485
486		/*
487		 * Set flags for some supported items.
488		 */
489		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
490			sc->eedp_enabled = TRUE;
491		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
492			sc->control_TLR = TRUE;
493		if (sc->facts->IOCCapabilities &
494		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
495			sc->atomic_desc_capable = TRUE;
496
497		/*
498		 * Size the queues. Since the reply queues always need one free
499		 * entry, we'll just deduct one reply message here.
500		 */
501		sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
502		sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
503		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
504
505		/*
506		 * Initialize all Tail Queues
507		 */
508		TAILQ_INIT(&sc->req_list);
509		TAILQ_INIT(&sc->high_priority_req_list);
510		TAILQ_INIT(&sc->chain_list);
511		TAILQ_INIT(&sc->prp_page_list);
512		TAILQ_INIT(&sc->tm_list);
513	}
514
515	/*
516	 * If doing a Diag Reset and the FW is significantly different
517	 * (reallocating will be set above in IOC Facts comparison), then all
518	 * buffers based on the IOC Facts will need to be freed before they are
519	 * reallocated.
520	 */
521	if (reallocating) {
522		mpr_iocfacts_free(sc);
523		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
524		    saved_facts.MaxVolumes);
525	}
526
527	/*
528	 * Any deallocation has been completed.  Now start reallocating
529	 * if needed.  Will only need to reallocate if attaching or if the new
530	 * IOC Facts are different from the previous IOC Facts after a Diag
531	 * Reset. Targets have already been allocated above if needed.
532	 */
533	if (attaching || reallocating) {
534		if (((error = mpr_alloc_queues(sc)) != 0) ||
535		    ((error = mpr_alloc_replies(sc)) != 0) ||
536		    ((error = mpr_alloc_requests(sc)) != 0)) {
537			if (attaching ) {
538				mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
539				    "queues with error %d\n", __func__, error);
540				mpr_free(sc);
541				return (error);
542			} else {
543				panic("%s failed to alloc queues with error "
544				    "%d\n", __func__, error);
545			}
546		}
547	}
548
549	/* Always initialize the queues */
550	bzero(sc->free_queue, sc->fqdepth * 4);
551	mpr_init_queues(sc);
552
553	/*
554	 * Always get the chip out of the reset state, but only panic if not
555	 * attaching.  If attaching and there is an error, that is handled by
556	 * the OS.
557	 */
558	error = mpr_transition_operational(sc);
559	if (error != 0) {
560		if (attaching) {
561			mpr_printf(sc, "%s failed to transition to operational "
562			    "with error %d\n", __func__, error);
563			mpr_free(sc);
564			return (error);
565		} else {
566			panic("%s failed to transition to operational with "
567			    "error %d\n", __func__, error);
568		}
569	}
570
571	/*
572	 * Finish the queue initialization.
573	 * These are set here instead of in mpr_init_queues() because the
574	 * IOC resets these values during the state transition in
575	 * mpr_transition_operational().  The free index is set to 1
576	 * because the corresponding index in the IOC is set to 0, and the
577	 * IOC treats the queues as full if both are set to the same value.
578	 * Hence the reason that the queue can't hold all of the possible
579	 * replies.
580	 */
581	sc->replypostindex = 0;
582	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
583	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
584
585	/*
586	 * Attach the subsystems so they can prepare their event masks.
587	 */
588	/* XXX Should be dynamic so that IM/IR and user modules can attach */
589	if (attaching) {
590		if (((error = mpr_attach_log(sc)) != 0) ||
591		    ((error = mpr_attach_sas(sc)) != 0) ||
592		    ((error = mpr_attach_user(sc)) != 0)) {
593			mpr_printf(sc, "%s failed to attach all subsystems: "
594			    "error %d\n", __func__, error);
595			mpr_free(sc);
596			return (error);
597		}
598
599		if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
600			mpr_printf(sc, "%s failed to setup interrupts\n",
601			    __func__);
602			mpr_free(sc);
603			return (error);
604		}
605	}
606
607	return (error);
608}
609
610/*
611 * This is called if memory is being free (during detach for example) and when
612 * buffers need to be reallocated due to a Diag Reset.
613 */
614static void
615mpr_iocfacts_free(struct mpr_softc *sc)
616{
617	struct mpr_command *cm;
618	int i;
619
620	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
621
622	if (sc->free_busaddr != 0)
623		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
624	if (sc->free_queue != NULL)
625		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
626		    sc->queues_map);
627	if (sc->queues_dmat != NULL)
628		bus_dma_tag_destroy(sc->queues_dmat);
629
630	if (sc->chain_busaddr != 0)
631		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
632	if (sc->chain_frames != NULL)
633		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
634		    sc->chain_map);
635	if (sc->chain_dmat != NULL)
636		bus_dma_tag_destroy(sc->chain_dmat);
637
638	if (sc->sense_busaddr != 0)
639		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
640	if (sc->sense_frames != NULL)
641		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
642		    sc->sense_map);
643	if (sc->sense_dmat != NULL)
644		bus_dma_tag_destroy(sc->sense_dmat);
645
646	if (sc->prp_page_busaddr != 0)
647		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
648	if (sc->prp_pages != NULL)
649		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
650		    sc->prp_page_map);
651	if (sc->prp_page_dmat != NULL)
652		bus_dma_tag_destroy(sc->prp_page_dmat);
653
654	if (sc->reply_busaddr != 0)
655		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
656	if (sc->reply_frames != NULL)
657		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
658		    sc->reply_map);
659	if (sc->reply_dmat != NULL)
660		bus_dma_tag_destroy(sc->reply_dmat);
661
662	if (sc->req_busaddr != 0)
663		bus_dmamap_unload(sc->req_dmat, sc->req_map);
664	if (sc->req_frames != NULL)
665		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
666	if (sc->req_dmat != NULL)
667		bus_dma_tag_destroy(sc->req_dmat);
668
669	if (sc->chains != NULL)
670		free(sc->chains, M_MPR);
671	if (sc->prps != NULL)
672		free(sc->prps, M_MPR);
673	if (sc->commands != NULL) {
674		for (i = 1; i < sc->num_reqs; i++) {
675			cm = &sc->commands[i];
676			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
677		}
678		free(sc->commands, M_MPR);
679	}
680	if (sc->buffer_dmat != NULL)
681		bus_dma_tag_destroy(sc->buffer_dmat);
682}
683
684/*
685 * The terms diag reset and hard reset are used interchangeably in the MPI
686 * docs to mean resetting the controller chip.  In this code diag reset
687 * cleans everything up, and the hard reset function just sends the reset
688 * sequence to the chip.  This should probably be refactored so that every
689 * subsystem gets a reset notification of some sort, and can clean up
690 * appropriately.
691 */
692int
693mpr_reinit(struct mpr_softc *sc)
694{
695	int error;
696	struct mprsas_softc *sassc;
697
698	sassc = sc->sassc;
699
700	MPR_FUNCTRACE(sc);
701
702	mtx_assert(&sc->mpr_mtx, MA_OWNED);
703
704	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
705		mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
706		    __func__);
707		return 0;
708	}
709
710	mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
711	/* make sure the completion callbacks can recognize they're getting
712	 * a NULL cm_reply due to a reset.
713	 */
714	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
715
716	/*
717	 * Mask interrupts here.
718	 */
719	mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
720	mpr_mask_intr(sc);
721
722	error = mpr_diag_reset(sc, CAN_SLEEP);
723	if (error != 0) {
724		panic("%s hard reset failed with error %d\n", __func__, error);
725	}
726
727	/* Restore the PCI state, including the MSI-X registers */
728	mpr_pci_restore(sc);
729
730	/* Give the I/O subsystem special priority to get itself prepared */
731	mprsas_handle_reinit(sc);
732
733	/*
734	 * Get IOC Facts and allocate all structures based on this information.
735	 * The attach function will also call mpr_iocfacts_allocate at startup.
736	 * If relevant values have changed in IOC Facts, this function will free
737	 * all of the memory based on IOC Facts and reallocate that memory.
738	 */
739	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
740		panic("%s IOC Facts based allocation failed with error %d\n",
741		    __func__, error);
742	}
743
744	/*
745	 * Mapping structures will be re-allocated after getting IOC Page8, so
746	 * free these structures here.
747	 */
748	mpr_mapping_exit(sc);
749
750	/*
751	 * The static page function currently read is IOC Page8.  Others can be
752	 * added in future.  It's possible that the values in IOC Page8 have
753	 * changed after a Diag Reset due to user modification, so always read
754	 * these.  Interrupts are masked, so unmask them before getting config
755	 * pages.
756	 */
757	mpr_unmask_intr(sc);
758	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
759	mpr_base_static_config_pages(sc);
760
761	/*
762	 * Some mapping info is based in IOC Page8 data, so re-initialize the
763	 * mapping tables.
764	 */
765	mpr_mapping_initialize(sc);
766
767	/*
768	 * Restart will reload the event masks clobbered by the reset, and
769	 * then enable the port.
770	 */
771	mpr_reregister_events(sc);
772
773	/* the end of discovery will release the simq, so we're done. */
774	mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
775	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
776	mprsas_release_simq_reinit(sassc);
777
778	return 0;
779}
780
781/* Wait for the chip to ACK a word that we've put into its FIFO
782 * Wait for <timeout> seconds. In single loop wait for busy loop
783 * for 500 microseconds.
784 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
785 * */
786static int
787mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
788{
789	u32 cntdn, count;
790	u32 int_status;
791	u32 doorbell;
792
793	count = 0;
794	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
795	do {
796		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
797		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
798			mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
799			    "timeout(%d)\n", __func__, count, timeout);
800			return 0;
801		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
802			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
803			if ((doorbell & MPI2_IOC_STATE_MASK) ==
804			    MPI2_IOC_STATE_FAULT) {
805				mpr_dprint(sc, MPR_FAULT,
806				    "fault_state(0x%04x)!\n", doorbell);
807				return (EFAULT);
808			}
809		} else if (int_status == 0xFFFFFFFF)
810			goto out;
811
812		/*
813		 * If it can sleep, sleep for 1 milisecond, else busy loop for
814 		 * 0.5 milisecond
815		 */
816		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
817			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
818			    hz/1000);
819		else if (sleep_flag == CAN_SLEEP)
820			pause("mprdba", hz/1000);
821		else
822			DELAY(500);
823		count++;
824	} while (--cntdn);
825
826out:
827	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
828		"int_status(%x)!\n", __func__, count, int_status);
829	return (ETIMEDOUT);
830}
831
832/* Wait for the chip to signal that the next word in its FIFO can be fetched */
833static int
834mpr_wait_db_int(struct mpr_softc *sc)
835{
836	int retry;
837
838	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
839		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
840		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
841			return (0);
842		DELAY(2000);
843	}
844	return (ETIMEDOUT);
845}
846
847/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
848static int
849mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
850    int req_sz, int reply_sz, int timeout)
851{
852	uint32_t *data32;
853	uint16_t *data16;
854	int i, count, ioc_sz, residual;
855	int sleep_flags = CAN_SLEEP;
856
857#if __FreeBSD_version >= 1000029
858	if (curthread->td_no_sleeping)
859#else //__FreeBSD_version < 1000029
860	if (curthread->td_pflags & TDP_NOSLEEPING)
861#endif //__FreeBSD_version >= 1000029
862		sleep_flags = NO_SLEEP;
863
864	/* Step 1 */
865	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
866
867	/* Step 2 */
868	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
869		return (EBUSY);
870
871	/* Step 3
872	 * Announce that a message is coming through the doorbell.  Messages
873	 * are pushed at 32bit words, so round up if needed.
874	 */
875	count = (req_sz + 3) / 4;
876	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
877	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
878	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
879
880	/* Step 4 */
881	if (mpr_wait_db_int(sc) ||
882	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
883		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
884		return (ENXIO);
885	}
886	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
887	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
888		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
889		return (ENXIO);
890	}
891
892	/* Step 5 */
893	/* Clock out the message data synchronously in 32-bit dwords*/
894	data32 = (uint32_t *)req;
895	for (i = 0; i < count; i++) {
896		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
897		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
898			mpr_dprint(sc, MPR_FAULT,
899			    "Timeout while writing doorbell\n");
900			return (ENXIO);
901		}
902	}
903
904	/* Step 6 */
905	/* Clock in the reply in 16-bit words.  The total length of the
906	 * message is always in the 4th byte, so clock out the first 2 words
907	 * manually, then loop the rest.
908	 */
909	data16 = (uint16_t *)reply;
910	if (mpr_wait_db_int(sc) != 0) {
911		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
912		return (ENXIO);
913	}
914	data16[0] =
915	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
916	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
917	if (mpr_wait_db_int(sc) != 0) {
918		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
919		return (ENXIO);
920	}
921	data16[1] =
922	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
923	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
924
925	/* Number of 32bit words in the message */
926	ioc_sz = reply->MsgLength;
927
928	/*
929	 * Figure out how many 16bit words to clock in without overrunning.
930	 * The precision loss with dividing reply_sz can safely be
931	 * ignored because the messages can only be multiples of 32bits.
932	 */
933	residual = 0;
934	count = MIN((reply_sz / 4), ioc_sz) * 2;
935	if (count < ioc_sz * 2) {
936		residual = ioc_sz * 2 - count;
937		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
938		    "residual message words\n", residual);
939	}
940
941	for (i = 2; i < count; i++) {
942		if (mpr_wait_db_int(sc) != 0) {
943			mpr_dprint(sc, MPR_FAULT,
944			    "Timeout reading doorbell %d\n", i);
945			return (ENXIO);
946		}
947		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
948		    MPI2_DOORBELL_DATA_MASK;
949		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
950	}
951
952	/*
953	 * Pull out residual words that won't fit into the provided buffer.
954	 * This keeps the chip from hanging due to a driver programming
955	 * error.
956	 */
957	while (residual--) {
958		if (mpr_wait_db_int(sc) != 0) {
959			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
960			return (ENXIO);
961		}
962		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
963		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
964	}
965
966	/* Step 7 */
967	if (mpr_wait_db_int(sc) != 0) {
968		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
969		return (ENXIO);
970	}
971	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
972		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
973	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
974
975	return (0);
976}
977
978static void
979mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
980{
981	request_descriptor rd;
982
983	MPR_FUNCTRACE(sc);
984	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
985	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
986
987	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
988	    MPR_FLAGS_SHUTDOWN))
989		mtx_assert(&sc->mpr_mtx, MA_OWNED);
990
991	if (++sc->io_cmds_active > sc->io_cmds_highwater)
992		sc->io_cmds_highwater++;
993
994	if (sc->atomic_desc_capable) {
995		rd.u.low = cm->cm_desc.Words.Low;
996		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
997		    rd.u.low);
998	} else {
999		rd.u.low = cm->cm_desc.Words.Low;
1000		rd.u.high = cm->cm_desc.Words.High;
1001		rd.word = htole64(rd.word);
1002		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1003		    rd.u.low);
1004		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1005		    rd.u.high);
1006	}
1007}
1008
1009/*
1010 * Just the FACTS, ma'am.
1011 */
1012static int
1013mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1014{
1015	MPI2_DEFAULT_REPLY *reply;
1016	MPI2_IOC_FACTS_REQUEST request;
1017	int error, req_sz, reply_sz;
1018
1019	MPR_FUNCTRACE(sc);
1020
1021	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1022	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1023	reply = (MPI2_DEFAULT_REPLY *)facts;
1024
1025	bzero(&request, req_sz);
1026	request.Function = MPI2_FUNCTION_IOC_FACTS;
1027	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1028
1029	return (error);
1030}
1031
1032static int
1033mpr_send_iocinit(struct mpr_softc *sc)
1034{
1035	MPI2_IOC_INIT_REQUEST	init;
1036	MPI2_DEFAULT_REPLY	reply;
1037	int req_sz, reply_sz, error;
1038	struct timeval now;
1039	uint64_t time_in_msec;
1040
1041	MPR_FUNCTRACE(sc);
1042
1043	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1044	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1045	bzero(&init, req_sz);
1046	bzero(&reply, reply_sz);
1047
1048	/*
1049	 * Fill in the init block.  Note that most addresses are
1050	 * deliberately in the lower 32bits of memory.  This is a micro-
1051	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1052	 */
1053	init.Function = MPI2_FUNCTION_IOC_INIT;
1054	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1055	init.MsgVersion = htole16(MPI2_VERSION);
1056	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1057	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1058	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1059	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1060	init.SenseBufferAddressHigh = 0;
1061	init.SystemReplyAddressHigh = 0;
1062	init.SystemRequestFrameBaseAddress.High = 0;
1063	init.SystemRequestFrameBaseAddress.Low =
1064	    htole32((uint32_t)sc->req_busaddr);
1065	init.ReplyDescriptorPostQueueAddress.High = 0;
1066	init.ReplyDescriptorPostQueueAddress.Low =
1067	    htole32((uint32_t)sc->post_busaddr);
1068	init.ReplyFreeQueueAddress.High = 0;
1069	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1070	getmicrotime(&now);
1071	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1072	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1073	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1074	init.HostPageSize = HOST_PAGE_SIZE_4K;
1075
1076	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1077	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1078		error = ENXIO;
1079
1080	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1081	return (error);
1082}
1083
1084void
1085mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1086{
1087	bus_addr_t *addr;
1088
1089	addr = arg;
1090	*addr = segs[0].ds_addr;
1091}
1092
1093static int
1094mpr_alloc_queues(struct mpr_softc *sc)
1095{
1096	bus_addr_t queues_busaddr;
1097	uint8_t *queues;
1098	int qsize, fqsize, pqsize;
1099
1100	/*
1101	 * The reply free queue contains 4 byte entries in multiples of 16 and
1102	 * aligned on a 16 byte boundary. There must always be an unused entry.
1103	 * This queue supplies fresh reply frames for the firmware to use.
1104	 *
1105	 * The reply descriptor post queue contains 8 byte entries in
1106	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1107	 * contains filled-in reply frames sent from the firmware to the host.
1108	 *
1109	 * These two queues are allocated together for simplicity.
1110	 */
1111	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1112	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1113	fqsize= sc->fqdepth * 4;
1114	pqsize = sc->pqdepth * 8;
1115	qsize = fqsize + pqsize;
1116
1117        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1118				16, 0,			/* algnmnt, boundary */
1119				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1120				BUS_SPACE_MAXADDR,	/* highaddr */
1121				NULL, NULL,		/* filter, filterarg */
1122                                qsize,			/* maxsize */
1123                                1,			/* nsegments */
1124                                qsize,			/* maxsegsize */
1125                                0,			/* flags */
1126                                NULL, NULL,		/* lockfunc, lockarg */
1127                                &sc->queues_dmat)) {
1128		device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1129		return (ENOMEM);
1130        }
1131        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1132	    &sc->queues_map)) {
1133		device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1134		return (ENOMEM);
1135        }
1136        bzero(queues, qsize);
1137        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1138	    mpr_memaddr_cb, &queues_busaddr, 0);
1139
1140	sc->free_queue = (uint32_t *)queues;
1141	sc->free_busaddr = queues_busaddr;
1142	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1143	sc->post_busaddr = queues_busaddr + fqsize;
1144
1145	return (0);
1146}
1147
1148static int
1149mpr_alloc_replies(struct mpr_softc *sc)
1150{
1151	int rsize, num_replies;
1152
1153	/*
1154	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1155	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1156	 * replies can be used at once.
1157	 */
1158	num_replies = max(sc->fqdepth, sc->num_replies);
1159
1160	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1161        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1162				4, 0,			/* algnmnt, boundary */
1163				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1164				BUS_SPACE_MAXADDR,	/* highaddr */
1165				NULL, NULL,		/* filter, filterarg */
1166                                rsize,			/* maxsize */
1167                                1,			/* nsegments */
1168                                rsize,			/* maxsegsize */
1169                                0,			/* flags */
1170                                NULL, NULL,		/* lockfunc, lockarg */
1171                                &sc->reply_dmat)) {
1172		device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1173		return (ENOMEM);
1174        }
1175        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1176	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1177		device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1178		return (ENOMEM);
1179        }
1180        bzero(sc->reply_frames, rsize);
1181        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1182	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1183
1184	return (0);
1185}
1186
1187static int
1188mpr_alloc_requests(struct mpr_softc *sc)
1189{
1190	struct mpr_command *cm;
1191	struct mpr_chain *chain;
1192	int i, rsize, nsegs;
1193
1194	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1195        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1196				16, 0,			/* algnmnt, boundary */
1197				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1198				BUS_SPACE_MAXADDR,	/* highaddr */
1199				NULL, NULL,		/* filter, filterarg */
1200                                rsize,			/* maxsize */
1201                                1,			/* nsegments */
1202                                rsize,			/* maxsegsize */
1203                                0,			/* flags */
1204                                NULL, NULL,		/* lockfunc, lockarg */
1205                                &sc->req_dmat)) {
1206		device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1207		return (ENOMEM);
1208        }
1209        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1210	    BUS_DMA_NOWAIT, &sc->req_map)) {
1211		device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1212		return (ENOMEM);
1213        }
1214        bzero(sc->req_frames, rsize);
1215        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1216	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1217
1218	/*
1219	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1220	 * get the size of a Chain Frame.  Previous versions use the size as a
1221	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
1222	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
1223	 * number of 16-byte elelements that can fit in a Chain Frame, which is
1224	 * the size of an IEEE Simple SGE.
1225	 */
1226	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1227		sc->chain_seg_size =
1228		    htole16(sc->facts->IOCMaxChainSegmentSize);
1229		if (sc->chain_seg_size == 0) {
1230			sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1231			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1232		} else {
1233			sc->chain_frame_size = sc->chain_seg_size *
1234			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1235		}
1236	} else {
1237		sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1238	}
1239	rsize = sc->chain_frame_size * sc->max_chains;
1240        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1241				16, 0,			/* algnmnt, boundary */
1242				BUS_SPACE_MAXADDR,	/* lowaddr */
1243				BUS_SPACE_MAXADDR,	/* highaddr */
1244				NULL, NULL,		/* filter, filterarg */
1245                                rsize,			/* maxsize */
1246                                1,			/* nsegments */
1247                                rsize,			/* maxsegsize */
1248                                0,			/* flags */
1249                                NULL, NULL,		/* lockfunc, lockarg */
1250                                &sc->chain_dmat)) {
1251		device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1252		return (ENOMEM);
1253        }
1254        if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1255	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1256		device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1257		return (ENOMEM);
1258        }
1259        bzero(sc->chain_frames, rsize);
1260        bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1261	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1262
1263	rsize = MPR_SENSE_LEN * sc->num_reqs;
1264	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1265				1, 0,			/* algnmnt, boundary */
1266				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1267				BUS_SPACE_MAXADDR,	/* highaddr */
1268				NULL, NULL,		/* filter, filterarg */
1269                                rsize,			/* maxsize */
1270                                1,			/* nsegments */
1271                                rsize,			/* maxsegsize */
1272                                0,			/* flags */
1273                                NULL, NULL,		/* lockfunc, lockarg */
1274                                &sc->sense_dmat)) {
1275		device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1276		return (ENOMEM);
1277        }
1278        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1279	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1280		device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1281		return (ENOMEM);
1282        }
1283        bzero(sc->sense_frames, rsize);
1284        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1285	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1286
1287	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1288	    M_WAITOK | M_ZERO);
1289	if (!sc->chains) {
1290		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1291		    __func__, __LINE__);
1292		return (ENOMEM);
1293	}
1294	for (i = 0; i < sc->max_chains; i++) {
1295		chain = &sc->chains[i];
1296		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1297		    i * sc->chain_frame_size);
1298		chain->chain_busaddr = sc->chain_busaddr +
1299		    i * sc->chain_frame_size;
1300		mpr_free_chain(sc, chain);
1301		sc->chain_free_lowwater++;
1302	}
1303
1304	/*
1305	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1306	 * these devices.
1307	 */
1308	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1309	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1310		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1311			return (ENOMEM);
1312	}
1313
1314	/* XXX Need to pick a more precise value */
1315	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1316        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1317				1, 0,			/* algnmnt, boundary */
1318				BUS_SPACE_MAXADDR,	/* lowaddr */
1319				BUS_SPACE_MAXADDR,	/* highaddr */
1320				NULL, NULL,		/* filter, filterarg */
1321                                BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1322                                nsegs,			/* nsegments */
1323                                BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1324                                BUS_DMA_ALLOCNOW,	/* flags */
1325                                busdma_lock_mutex,	/* lockfunc */
1326				&sc->mpr_mtx,		/* lockarg */
1327                                &sc->buffer_dmat)) {
1328		device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1329		return (ENOMEM);
1330        }
1331
1332	/*
1333	 * SMID 0 cannot be used as a free command per the firmware spec.
1334	 * Just drop that command instead of risking accounting bugs.
1335	 */
1336	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1337	    M_MPR, M_WAITOK | M_ZERO);
1338	if (!sc->commands) {
1339		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1340		    __func__, __LINE__);
1341		return (ENOMEM);
1342	}
1343	for (i = 1; i < sc->num_reqs; i++) {
1344		cm = &sc->commands[i];
1345		cm->cm_req = sc->req_frames +
1346		    i * sc->facts->IOCRequestFrameSize * 4;
1347		cm->cm_req_busaddr = sc->req_busaddr +
1348		    i * sc->facts->IOCRequestFrameSize * 4;
1349		cm->cm_sense = &sc->sense_frames[i];
1350		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1351		cm->cm_desc.Default.SMID = i;
1352		cm->cm_sc = sc;
1353		TAILQ_INIT(&cm->cm_chain_list);
1354		TAILQ_INIT(&cm->cm_prp_page_list);
1355		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1356
1357		/* XXX Is a failure here a critical problem? */
1358		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1359		    == 0) {
1360			if (i <= sc->facts->HighPriorityCredit)
1361				mpr_free_high_priority_command(sc, cm);
1362			else
1363				mpr_free_command(sc, cm);
1364		} else {
1365			panic("failed to allocate command %d\n", i);
1366			sc->num_reqs = i;
1367			break;
1368		}
1369	}
1370
1371	return (0);
1372}
1373
1374/*
1375 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1376 * which are scatter/gather lists for NVMe devices.
1377 *
1378 * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1379 * and translated by FW.
1380 *
1381 * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1382 */
1383static int
1384mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1385{
1386	int PRPs_per_page, PRPs_required, pages_required;
1387	int rsize, i;
1388	struct mpr_prp_page *prp_page;
1389
1390	/*
1391	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1392	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1393	 * MAX_IO_SIZE / PAGE_SIZE = 256
1394	 *
1395	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1396	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1397	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1398	 *
1399	 * Each of these buffers will need to be contiguous. For simplicity,
1400	 * only one buffer is allocated here, which has all of the space
1401	 * required for the NVMe Queue Depth. If there are problems allocating
1402	 * this one buffer, this function will need to change to allocate
1403	 * individual, contiguous NVME_QDEPTH buffers.
1404	 *
1405	 * The real calculation will use the real max io size. Above is just an
1406	 * example.
1407	 *
1408	 */
1409	PRPs_required = sc->maxio / PAGE_SIZE;
1410	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1411	pages_required = (PRPs_required / PRPs_per_page) + 1;
1412
1413	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1414	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1415	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1416				4, 0,			/* algnmnt, boundary */
1417				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1418				BUS_SPACE_MAXADDR,	/* highaddr */
1419				NULL, NULL,		/* filter, filterarg */
1420				rsize,			/* maxsize */
1421				1,			/* nsegments */
1422				rsize,			/* maxsegsize */
1423				0,			/* flags */
1424				NULL, NULL,		/* lockfunc, lockarg */
1425				&sc->prp_page_dmat)) {
1426		device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP DMA "
1427		    "tag\n");
1428		return (ENOMEM);
1429	}
1430	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1431	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1432		device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP memory\n");
1433		return (ENOMEM);
1434	}
1435	bzero(sc->prp_pages, rsize);
1436	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1437	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1438
1439	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1440	    M_WAITOK | M_ZERO);
1441	for (i = 0; i < NVME_QDEPTH; i++) {
1442		prp_page = &sc->prps[i];
1443		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1444		    i * sc->prp_buffer_size);
1445		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1446		    i * sc->prp_buffer_size);
1447		mpr_free_prp_page(sc, prp_page);
1448		sc->prp_pages_free_lowwater++;
1449	}
1450
1451	return (0);
1452}
1453
1454static int
1455mpr_init_queues(struct mpr_softc *sc)
1456{
1457	int i;
1458
1459	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1460
1461	/*
1462	 * According to the spec, we need to use one less reply than we
1463	 * have space for on the queue.  So sc->num_replies (the number we
1464	 * use) should be less than sc->fqdepth (allocated size).
1465	 */
1466	if (sc->num_replies >= sc->fqdepth)
1467		return (EINVAL);
1468
1469	/*
1470	 * Initialize all of the free queue entries.
1471	 */
1472	for (i = 0; i < sc->fqdepth; i++) {
1473		sc->free_queue[i] = sc->reply_busaddr +
1474		    (i * sc->facts->ReplyFrameSize * 4);
1475	}
1476	sc->replyfreeindex = sc->num_replies;
1477
1478	return (0);
1479}
1480
1481/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1482 * Next are the global settings, if they exist.  Highest are the per-unit
1483 * settings, if they exist.
1484 */
1485static void
1486mpr_get_tunables(struct mpr_softc *sc)
1487{
1488	char tmpstr[80];
1489
1490	/* XXX default to some debugging for now */
1491	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1492	sc->disable_msix = 0;
1493	sc->disable_msi = 0;
1494	sc->max_chains = MPR_CHAIN_FRAMES;
1495	sc->max_io_pages = MPR_MAXIO_PAGES;
1496	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1497	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1498	sc->use_phynum = 1;
1499
1500	/*
1501	 * Grab the global variables.
1502	 */
1503	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1504	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1505	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1506	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1507	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1508	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1509	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1510	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1511
1512	/* Grab the unit-instance variables */
1513	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1514	    device_get_unit(sc->mpr_dev));
1515	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1516
1517	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1518	    device_get_unit(sc->mpr_dev));
1519	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1520
1521	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1522	    device_get_unit(sc->mpr_dev));
1523	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1524
1525	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1526	    device_get_unit(sc->mpr_dev));
1527	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1528
1529	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1530	    device_get_unit(sc->mpr_dev));
1531	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1532
1533	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1534	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1535	    device_get_unit(sc->mpr_dev));
1536	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1537
1538	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1539	    device_get_unit(sc->mpr_dev));
1540	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1541
1542	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1543	    device_get_unit(sc->mpr_dev));
1544	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1545
1546	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1547	    device_get_unit(sc->mpr_dev));
1548	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1549}
1550
1551static void
1552mpr_setup_sysctl(struct mpr_softc *sc)
1553{
1554	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1555	struct sysctl_oid	*sysctl_tree = NULL;
1556	char tmpstr[80], tmpstr2[80];
1557
1558	/*
1559	 * Setup the sysctl variable so the user can change the debug level
1560	 * on the fly.
1561	 */
1562	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1563	    device_get_unit(sc->mpr_dev));
1564	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1565
1566	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1567	if (sysctl_ctx != NULL)
1568		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1569
1570	if (sysctl_tree == NULL) {
1571		sysctl_ctx_init(&sc->sysctl_ctx);
1572		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1573		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1574		    CTLFLAG_RD, 0, tmpstr);
1575		if (sc->sysctl_tree == NULL)
1576			return;
1577		sysctl_ctx = &sc->sysctl_ctx;
1578		sysctl_tree = sc->sysctl_tree;
1579	}
1580
1581	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1582	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1583	    "mpr debug level");
1584
1585	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1586	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1587	    "Disable the use of MSI-X interrupts");
1588
1589	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1590	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1591	    "Disable the use of MSI interrupts");
1592
1593	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1594	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1595	    strlen(sc->fw_version), "firmware version");
1596
1597	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1598	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1599	    strlen(MPR_DRIVER_VERSION), "driver version");
1600
1601	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1602	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1603	    &sc->io_cmds_active, 0, "number of currently active commands");
1604
1605	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1606	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1607	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1608
1609	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1610	    OID_AUTO, "chain_free", CTLFLAG_RD,
1611	    &sc->chain_free, 0, "number of free chain elements");
1612
1613	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1614	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1615	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1616
1617	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1618	    OID_AUTO, "max_chains", CTLFLAG_RD,
1619	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1620
1621	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1622	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1623	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1624	    "IOCFacts)");
1625
1626	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1627	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1628	    "enable SSU to SATA SSD/HDD at shutdown");
1629
1630	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1631	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1632	    &sc->chain_alloc_fail, "chain allocation failures");
1633
1634	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1635	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1636	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1637	    "spinup after SATA ID error");
1638
1639	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1640	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1641	    "Use the phy number for enumeration");
1642
1643	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1644	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1645	    &sc->prp_pages_free, 0, "number of free PRP pages");
1646
1647	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1648	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1649	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1650
1651	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1652	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1653	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1654}
1655
1656int
1657mpr_attach(struct mpr_softc *sc)
1658{
1659	int error;
1660
1661	mpr_get_tunables(sc);
1662
1663	MPR_FUNCTRACE(sc);
1664
1665	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1666	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1667	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
1668	TAILQ_INIT(&sc->event_list);
1669	timevalclear(&sc->lastfail);
1670
1671	if ((error = mpr_transition_ready(sc)) != 0) {
1672		mpr_printf(sc, "%s failed to transition ready\n", __func__);
1673		return (error);
1674	}
1675
1676	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1677	    M_ZERO|M_NOWAIT);
1678	if (!sc->facts) {
1679		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1680		    __func__, __LINE__);
1681		return (ENOMEM);
1682	}
1683
1684	/*
1685	 * Get IOC Facts and allocate all structures based on this information.
1686	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1687	 * Facts. If relevant values have changed in IOC Facts, this function
1688	 * will free all of the memory based on IOC Facts and reallocate that
1689	 * memory.  If this fails, any allocated memory should already be freed.
1690	 */
1691	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1692		mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1693		    "failed with error %d\n", __func__, error);
1694		return (error);
1695	}
1696
1697	/* Start the periodic watchdog check on the IOC Doorbell */
1698	mpr_periodic(sc);
1699
1700	/*
1701	 * The portenable will kick off discovery events that will drive the
1702	 * rest of the initialization process.  The CAM/SAS module will
1703	 * hold up the boot sequence until discovery is complete.
1704	 */
1705	sc->mpr_ich.ich_func = mpr_startup;
1706	sc->mpr_ich.ich_arg = sc;
1707	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1708		mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1709		error = EINVAL;
1710	}
1711
1712	/*
1713	 * Allow IR to shutdown gracefully when shutdown occurs.
1714	 */
1715	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1716	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1717
1718	if (sc->shutdown_eh == NULL)
1719		mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1720		    "failed\n");
1721
1722	mpr_setup_sysctl(sc);
1723
1724	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1725
1726	return (error);
1727}
1728
1729/* Run through any late-start handlers. */
1730static void
1731mpr_startup(void *arg)
1732{
1733	struct mpr_softc *sc;
1734
1735	sc = (struct mpr_softc *)arg;
1736
1737	mpr_lock(sc);
1738	mpr_unmask_intr(sc);
1739
1740	/* initialize device mapping tables */
1741	mpr_base_static_config_pages(sc);
1742	mpr_mapping_initialize(sc);
1743	mprsas_startup(sc);
1744	mpr_unlock(sc);
1745}
1746
1747/* Periodic watchdog.  Is called with the driver lock already held. */
1748static void
1749mpr_periodic(void *arg)
1750{
1751	struct mpr_softc *sc;
1752	uint32_t db;
1753
1754	sc = (struct mpr_softc *)arg;
1755	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1756		return;
1757
1758	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1759	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1760		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1761		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1762			panic("TEMPERATURE FAULT: STOPPING.");
1763		}
1764		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1765		mpr_reinit(sc);
1766	}
1767
1768	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1769}
1770
1771static void
1772mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1773    MPI2_EVENT_NOTIFICATION_REPLY *event)
1774{
1775	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1776
1777	mpr_print_event(sc, event);
1778
1779	switch (event->Event) {
1780	case MPI2_EVENT_LOG_DATA:
1781		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1782		if (sc->mpr_debug & MPR_EVENT)
1783			hexdump(event->EventData, event->EventDataLength, NULL,
1784			    0);
1785		break;
1786	case MPI2_EVENT_LOG_ENTRY_ADDED:
1787		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1788		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1789		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1790		     entry->LogSequence);
1791		break;
1792	default:
1793		break;
1794	}
1795	return;
1796}
1797
1798static int
1799mpr_attach_log(struct mpr_softc *sc)
1800{
1801	uint8_t events[16];
1802
1803	bzero(events, 16);
1804	setbit(events, MPI2_EVENT_LOG_DATA);
1805	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1806
1807	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1808	    &sc->mpr_log_eh);
1809
1810	return (0);
1811}
1812
1813static int
1814mpr_detach_log(struct mpr_softc *sc)
1815{
1816
1817	if (sc->mpr_log_eh != NULL)
1818		mpr_deregister_events(sc, sc->mpr_log_eh);
1819	return (0);
1820}
1821
1822/*
1823 * Free all of the driver resources and detach submodules.  Should be called
1824 * without the lock held.
1825 */
1826int
1827mpr_free(struct mpr_softc *sc)
1828{
1829	int error;
1830
1831	/* Turn off the watchdog */
1832	mpr_lock(sc);
1833	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1834	mpr_unlock(sc);
1835	/* Lock must not be held for this */
1836	callout_drain(&sc->periodic);
1837	callout_drain(&sc->device_check_callout);
1838
1839	if (((error = mpr_detach_log(sc)) != 0) ||
1840	    ((error = mpr_detach_sas(sc)) != 0))
1841		return (error);
1842
1843	mpr_detach_user(sc);
1844
1845	/* Put the IOC back in the READY state. */
1846	mpr_lock(sc);
1847	if ((error = mpr_transition_ready(sc)) != 0) {
1848		mpr_unlock(sc);
1849		return (error);
1850	}
1851	mpr_unlock(sc);
1852
1853	if (sc->facts != NULL)
1854		free(sc->facts, M_MPR);
1855
1856	/*
1857	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1858	 * to free these buffers too.
1859	 */
1860	mpr_iocfacts_free(sc);
1861
1862	if (sc->sysctl_tree != NULL)
1863		sysctl_ctx_free(&sc->sysctl_ctx);
1864
1865	/* Deregister the shutdown function */
1866	if (sc->shutdown_eh != NULL)
1867		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1868
1869	mtx_destroy(&sc->mpr_mtx);
1870
1871	return (0);
1872}
1873
1874static __inline void
1875mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1876{
1877	MPR_FUNCTRACE(sc);
1878
1879	if (cm == NULL) {
1880		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1881		return;
1882	}
1883
1884	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1885		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1886
1887	if (cm->cm_complete != NULL) {
1888		mpr_dprint(sc, MPR_TRACE,
1889		    "%s cm %p calling cm_complete %p data %p reply %p\n",
1890		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
1891		    cm->cm_reply);
1892		cm->cm_complete(sc, cm);
1893	}
1894
1895	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1896		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1897		wakeup(cm);
1898	}
1899
1900	if (sc->io_cmds_active != 0) {
1901		sc->io_cmds_active--;
1902	} else {
1903		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1904		    "out of sync - resynching to 0\n");
1905	}
1906}
1907
1908static void
1909mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1910{
1911	union loginfo_type {
1912		u32	loginfo;
1913		struct {
1914			u32	subcode:16;
1915			u32	code:8;
1916			u32	originator:4;
1917			u32	bus_type:4;
1918		} dw;
1919	};
1920	union loginfo_type sas_loginfo;
1921	char *originator_str = NULL;
1922
1923	sas_loginfo.loginfo = log_info;
1924	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1925		return;
1926
1927	/* each nexus loss loginfo */
1928	if (log_info == 0x31170000)
1929		return;
1930
1931	/* eat the loginfos associated with task aborts */
1932	if ((log_info == 30050000) || (log_info == 0x31140000) ||
1933	    (log_info == 0x31130000))
1934		return;
1935
1936	switch (sas_loginfo.dw.originator) {
1937	case 0:
1938		originator_str = "IOP";
1939		break;
1940	case 1:
1941		originator_str = "PL";
1942		break;
1943	case 2:
1944		originator_str = "IR";
1945		break;
1946	}
1947
1948	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
1949	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
1950	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1951}
1952
1953static void
1954mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1955{
1956	MPI2DefaultReply_t *mpi_reply;
1957	u16 sc_status;
1958
1959	mpi_reply = (MPI2DefaultReply_t*)reply;
1960	sc_status = le16toh(mpi_reply->IOCStatus);
1961	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1962		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1963}
1964
1965void
1966mpr_intr(void *data)
1967{
1968	struct mpr_softc *sc;
1969	uint32_t status;
1970
1971	sc = (struct mpr_softc *)data;
1972	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1973
1974	/*
1975	 * Check interrupt status register to flush the bus.  This is
1976	 * needed for both INTx interrupts and driver-driven polling
1977	 */
1978	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1979	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1980		return;
1981
1982	mpr_lock(sc);
1983	mpr_intr_locked(data);
1984	mpr_unlock(sc);
1985	return;
1986}
1987
1988/*
1989 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1990 * chip.  Hopefully this theory is correct.
1991 */
1992void
1993mpr_intr_msi(void *data)
1994{
1995	struct mpr_softc *sc;
1996
1997	sc = (struct mpr_softc *)data;
1998	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1999	mpr_lock(sc);
2000	mpr_intr_locked(data);
2001	mpr_unlock(sc);
2002	return;
2003}
2004
2005/*
2006 * The locking is overly broad and simplistic, but easy to deal with for now.
2007 */
2008void
2009mpr_intr_locked(void *data)
2010{
2011	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2012	struct mpr_softc *sc;
2013	struct mpr_command *cm = NULL;
2014	uint8_t flags;
2015	u_int pq;
2016	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2017	mpr_fw_diagnostic_buffer_t *pBuffer;
2018
2019	sc = (struct mpr_softc *)data;
2020
2021	pq = sc->replypostindex;
2022	mpr_dprint(sc, MPR_TRACE,
2023	    "%s sc %p starting with replypostindex %u\n",
2024	    __func__, sc, sc->replypostindex);
2025
2026	for ( ;; ) {
2027		cm = NULL;
2028		desc = &sc->post_queue[sc->replypostindex];
2029		flags = desc->Default.ReplyFlags &
2030		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2031		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2032		    (le32toh(desc->Words.High) == 0xffffffff))
2033			break;
2034
2035		/* increment the replypostindex now, so that event handlers
2036		 * and cm completion handlers which decide to do a diag
2037		 * reset can zero it without it getting incremented again
2038		 * afterwards, and we break out of this loop on the next
2039		 * iteration since the reply post queue has been cleared to
2040		 * 0xFF and all descriptors look unused (which they are).
2041		 */
2042		if (++sc->replypostindex >= sc->pqdepth)
2043			sc->replypostindex = 0;
2044
2045		switch (flags) {
2046		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2047		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2048		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2049			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2050			cm->cm_reply = NULL;
2051			break;
2052		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2053		{
2054			uint32_t baddr;
2055			uint8_t *reply;
2056
2057			/*
2058			 * Re-compose the reply address from the address
2059			 * sent back from the chip.  The ReplyFrameAddress
2060			 * is the lower 32 bits of the physical address of
2061			 * particular reply frame.  Convert that address to
2062			 * host format, and then use that to provide the
2063			 * offset against the virtual address base
2064			 * (sc->reply_frames).
2065			 */
2066			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2067			reply = sc->reply_frames +
2068				(baddr - ((uint32_t)sc->reply_busaddr));
2069			/*
2070			 * Make sure the reply we got back is in a valid
2071			 * range.  If not, go ahead and panic here, since
2072			 * we'll probably panic as soon as we deference the
2073			 * reply pointer anyway.
2074			 */
2075			if ((reply < sc->reply_frames)
2076			 || (reply > (sc->reply_frames +
2077			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
2078				printf("%s: WARNING: reply %p out of range!\n",
2079				       __func__, reply);
2080				printf("%s: reply_frames %p, fqdepth %d, "
2081				       "frame size %d\n", __func__,
2082				       sc->reply_frames, sc->fqdepth,
2083				       sc->facts->ReplyFrameSize * 4);
2084				printf("%s: baddr %#x,\n", __func__, baddr);
2085				/* LSI-TODO. See Linux Code for Graceful exit */
2086				panic("Reply address out of range");
2087			}
2088			if (le16toh(desc->AddressReply.SMID) == 0) {
2089				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2090				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2091					/*
2092					 * If SMID is 0 for Diag Buffer Post,
2093					 * this implies that the reply is due to
2094					 * a release function with a status that
2095					 * the buffer has been released.  Set
2096					 * the buffer flags accordingly.
2097					 */
2098					rel_rep =
2099					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2100					if ((le16toh(rel_rep->IOCStatus) &
2101					    MPI2_IOCSTATUS_MASK) ==
2102					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2103					{
2104						pBuffer =
2105						    &sc->fw_diag_buffer_list[
2106						    rel_rep->BufferType];
2107						pBuffer->valid_data = TRUE;
2108						pBuffer->owned_by_firmware =
2109						    FALSE;
2110						pBuffer->immediate = FALSE;
2111					}
2112				} else
2113					mpr_dispatch_event(sc, baddr,
2114					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2115					    reply);
2116			} else {
2117				cm = &sc->commands[
2118				    le16toh(desc->AddressReply.SMID)];
2119				cm->cm_reply = reply;
2120				cm->cm_reply_data =
2121				    le32toh(desc->AddressReply.
2122				    ReplyFrameAddress);
2123			}
2124			break;
2125		}
2126		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2127		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2128		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2129		default:
2130			/* Unhandled */
2131			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2132			    desc->Default.ReplyFlags);
2133			cm = NULL;
2134			break;
2135		}
2136
2137		if (cm != NULL) {
2138			// Print Error reply frame
2139			if (cm->cm_reply)
2140				mpr_display_reply_info(sc,cm->cm_reply);
2141			mpr_complete_command(sc, cm);
2142		}
2143
2144		desc->Words.Low = 0xffffffff;
2145		desc->Words.High = 0xffffffff;
2146	}
2147
2148	if (pq != sc->replypostindex) {
2149		mpr_dprint(sc, MPR_TRACE,
2150		    "%s sc %p writing postindex %d\n",
2151		    __func__, sc, sc->replypostindex);
2152		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2153		    sc->replypostindex);
2154	}
2155
2156	return;
2157}
2158
2159static void
2160mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2161    MPI2_EVENT_NOTIFICATION_REPLY *reply)
2162{
2163	struct mpr_event_handle *eh;
2164	int event, handled = 0;
2165
2166	event = le16toh(reply->Event);
2167	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2168		if (isset(eh->mask, event)) {
2169			eh->callback(sc, data, reply);
2170			handled++;
2171		}
2172	}
2173
2174	if (handled == 0)
2175		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2176		    le16toh(event));
2177
2178	/*
2179	 * This is the only place that the event/reply should be freed.
2180	 * Anything wanting to hold onto the event data should have
2181	 * already copied it into their own storage.
2182	 */
2183	mpr_free_reply(sc, data);
2184}
2185
2186static void
2187mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2188{
2189	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2190
2191	if (cm->cm_reply)
2192		mpr_print_event(sc,
2193			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2194
2195	mpr_free_command(sc, cm);
2196
2197	/* next, send a port enable */
2198	mprsas_startup(sc);
2199}
2200
2201/*
2202 * For both register_events and update_events, the caller supplies a bitmap
2203 * of events that it _wants_.  These functions then turn that into a bitmask
2204 * suitable for the controller.
2205 */
2206int
2207mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2208    mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2209{
2210	struct mpr_event_handle *eh;
2211	int error = 0;
2212
2213	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2214	if (!eh) {
2215		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2216		    __func__, __LINE__);
2217		return (ENOMEM);
2218	}
2219	eh->callback = cb;
2220	eh->data = data;
2221	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2222	if (mask != NULL)
2223		error = mpr_update_events(sc, eh, mask);
2224	*handle = eh;
2225
2226	return (error);
2227}
2228
2229int
2230mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2231    uint8_t *mask)
2232{
2233	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2234	MPI2_EVENT_NOTIFICATION_REPLY *reply;
2235	struct mpr_command *cm;
2236	struct mpr_event_handle *eh;
2237	int error, i;
2238
2239	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2240
2241	if ((mask != NULL) && (handle != NULL))
2242		bcopy(mask, &handle->mask[0], 16);
2243	memset(sc->event_mask, 0xff, 16);
2244
2245	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2246		for (i = 0; i < 16; i++)
2247			sc->event_mask[i] &= ~eh->mask[i];
2248	}
2249
2250	if ((cm = mpr_alloc_command(sc)) == NULL)
2251		return (EBUSY);
2252	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2253	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2254	evtreq->MsgFlags = 0;
2255	evtreq->SASBroadcastPrimitiveMasks = 0;
2256#ifdef MPR_DEBUG_ALL_EVENTS
2257	{
2258		u_char fullmask[16];
2259		memset(fullmask, 0x00, 16);
2260		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2261	}
2262#else
2263		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2264#endif
2265	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2266	cm->cm_data = NULL;
2267
2268	error = mpr_request_polled(sc, cm);
2269	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2270	if ((reply == NULL) ||
2271	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2272		error = ENXIO;
2273
2274	if (reply)
2275		mpr_print_event(sc, reply);
2276
2277	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2278
2279	mpr_free_command(sc, cm);
2280	return (error);
2281}
2282
2283static int
2284mpr_reregister_events(struct mpr_softc *sc)
2285{
2286	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2287	struct mpr_command *cm;
2288	struct mpr_event_handle *eh;
2289	int error, i;
2290
2291	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2292
2293	/* first, reregister events */
2294
2295	memset(sc->event_mask, 0xff, 16);
2296
2297	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2298		for (i = 0; i < 16; i++)
2299			sc->event_mask[i] &= ~eh->mask[i];
2300	}
2301
2302	if ((cm = mpr_alloc_command(sc)) == NULL)
2303		return (EBUSY);
2304	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2305	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2306	evtreq->MsgFlags = 0;
2307	evtreq->SASBroadcastPrimitiveMasks = 0;
2308#ifdef MPR_DEBUG_ALL_EVENTS
2309	{
2310		u_char fullmask[16];
2311		memset(fullmask, 0x00, 16);
2312		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2313	}
2314#else
2315		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2316#endif
2317	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2318	cm->cm_data = NULL;
2319	cm->cm_complete = mpr_reregister_events_complete;
2320
2321	error = mpr_map_command(sc, cm);
2322
2323	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2324	    error);
2325	return (error);
2326}
2327
2328int
2329mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2330{
2331
2332	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2333	free(handle, M_MPR);
2334	return (mpr_update_events(sc, NULL, NULL));
2335}
2336
2337/**
2338* mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2339* native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2340* of the NVMe message (PRP1). If the data buffer is small enough to be described
2341* entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2342* describe a larger data buffer. If the data buffer is too large to describe
2343* using the two PRP entriess inside the NVMe message, then PRP1 describes the
2344* first data memory segment, and PRP2 contains a pointer to a PRP list located
2345* elsewhere in memory to describe the remaining data memory segments. The PRP
2346* list will be contiguous.
2347
2348* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2349* consists of a list of PRP entries to describe a number of noncontigous
2350* physical memory segments as a single memory buffer, just as a SGL does. Note
2351* however, that this function is only used by the IOCTL call, so the memory
2352* given will be guaranteed to be contiguous. There is no need to translate
2353* non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2354* space that is one page size each.
2355*
2356* Each NVMe message contains two PRP entries. The first (PRP1) either contains
2357* a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2358* the second PRP element if the memory being described fits within 2 PRP
2359* entries, or a PRP list pointer if the PRP spans more than two entries.
2360*
2361* A PRP list pointer contains the address of a PRP list, structured as a linear
2362* array of PRP entries. Each PRP entry in this list describes a segment of
2363* physical memory.
2364*
2365* Each 64-bit PRP entry comprises an address and an offset field. The address
2366* always points to the beginning of a PAGE_SIZE physical memory page, and the
2367* offset describes where within that page the memory segment begins. Only the
2368* first element in a PRP list may contain a non-zero offest, implying that all
2369* memory segments following the first begin at the start of a PAGE_SIZE page.
2370*
2371* Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2372* with exceptions for the first and last elements in the list. If the memory
2373* being described by the list begins at a non-zero offset within the first page,
2374* then the first PRP element will contain a non-zero offset indicating where the
2375* region begins within the page. The last memory segment may end before the end
2376* of the PAGE_SIZE segment, depending upon the overall size of the memory being
2377* described by the PRP list.
2378*
2379* Since PRP entries lack any indication of size, the overall data buffer length
2380* is used to determine where the end of the data memory buffer is located, and
2381* how many PRP entries are required to describe it.
2382*
2383* Returns nothing.
2384*/
2385void
2386mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2387    Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2388    uint32_t data_in_sz, uint32_t data_out_sz)
2389{
2390	int			prp_size = PRP_ENTRY_SIZE;
2391	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2392	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2393	uint32_t		offset, entry_len, page_mask_result, page_mask;
2394	bus_addr_t		paddr;
2395	size_t			length;
2396	struct mpr_prp_page	*prp_page_info = NULL;
2397
2398	/*
2399	 * Not all commands require a data transfer. If no data, just return
2400	 * without constructing any PRP.
2401	 */
2402	if (!data_in_sz && !data_out_sz)
2403		return;
2404
2405	/*
2406	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2407	 * located at a 24 byte offset from the start of the NVMe command. Then
2408	 * set the current PRP entry pointer to PRP1.
2409	 */
2410	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2411	    NVME_CMD_PRP1_OFFSET);
2412	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2413	    NVME_CMD_PRP2_OFFSET);
2414	prp_entry = prp1_entry;
2415
2416	/*
2417	 * For the PRP entries, use the specially allocated buffer of
2418	 * contiguous memory. PRP Page allocation failures should not happen
2419	 * because there should be enough PRP page buffers to account for the
2420	 * possible NVMe QDepth.
2421	 */
2422	prp_page_info = mpr_alloc_prp_page(sc);
2423	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2424	    "used for building a native NVMe SGL.\n", __func__));
2425	prp_page = (uint64_t *)prp_page_info->prp_page;
2426	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2427
2428	/*
2429	 * Insert the allocated PRP page into the command's PRP page list. This
2430	 * will be freed when the command is freed.
2431	 */
2432	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2433
2434	/*
2435	 * Check if we are within 1 entry of a page boundary we don't want our
2436	 * first entry to be a PRP List entry.
2437	 */
2438	page_mask = PAGE_SIZE - 1;
2439	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2440	    page_mask;
2441	if (!page_mask_result)
2442	{
2443		/* Bump up to next page boundary. */
2444		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2445		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2446		    prp_size);
2447	}
2448
2449	/*
2450	 * Set PRP physical pointer, which initially points to the current PRP
2451	 * DMA memory page.
2452	 */
2453	prp_entry_phys = prp_page_phys;
2454
2455	/* Get physical address and length of the data buffer. */
2456	paddr = (bus_addr_t)data;
2457	if (data_in_sz)
2458		length = data_in_sz;
2459	else
2460		length = data_out_sz;
2461
2462	/* Loop while the length is not zero. */
2463	while (length)
2464	{
2465		/*
2466		 * Check if we need to put a list pointer here if we are at page
2467		 * boundary - prp_size (8 bytes).
2468		 */
2469		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2470		    prp_size) & page_mask;
2471		if (!page_mask_result)
2472		{
2473			/*
2474			 * This is the last entry in a PRP List, so we need to
2475			 * put a PRP list pointer here. What this does is:
2476			 *   - bump the current memory pointer to the next
2477			 *     address, which will be the next full page.
2478			 *   - set the PRP Entry to point to that page. This is
2479			 *     now the PRP List pointer.
2480			 *   - bump the PRP Entry pointer the start of the next
2481			 *     page. Since all of this PRP memory is contiguous,
2482			 *     no need to get a new page - it's just the next
2483			 *     address.
2484			 */
2485			prp_entry_phys++;
2486			*prp_entry =
2487			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2488			prp_entry++;
2489		}
2490
2491		/* Need to handle if entry will be part of a page. */
2492		offset = (uint32_t)paddr & page_mask;
2493		entry_len = PAGE_SIZE - offset;
2494
2495		if (prp_entry == prp1_entry)
2496		{
2497			/*
2498			 * Must fill in the first PRP pointer (PRP1) before
2499			 * moving on.
2500			 */
2501			*prp1_entry = htole64((uint64_t)paddr);
2502
2503			/*
2504			 * Now point to the second PRP entry within the
2505			 * command (PRP2).
2506			 */
2507			prp_entry = prp2_entry;
2508		}
2509		else if (prp_entry == prp2_entry)
2510		{
2511			/*
2512			 * Should the PRP2 entry be a PRP List pointer or just a
2513			 * regular PRP pointer? If there is more than one more
2514			 * page of data, must use a PRP List pointer.
2515			 */
2516			if (length > PAGE_SIZE)
2517			{
2518				/*
2519				 * PRP2 will contain a PRP List pointer because
2520				 * more PRP's are needed with this command. The
2521				 * list will start at the beginning of the
2522				 * contiguous buffer.
2523				 */
2524				*prp2_entry =
2525				    htole64(
2526				    (uint64_t)(uintptr_t)prp_entry_phys);
2527
2528				/*
2529				 * The next PRP Entry will be the start of the
2530				 * first PRP List.
2531				 */
2532				prp_entry = prp_page;
2533			}
2534			else
2535			{
2536				/*
2537				 * After this, the PRP Entries are complete.
2538				 * This command uses 2 PRP's and no PRP list.
2539				 */
2540				*prp2_entry = htole64((uint64_t)paddr);
2541			}
2542		}
2543		else
2544		{
2545			/*
2546			 * Put entry in list and bump the addresses.
2547			 *
2548			 * After PRP1 and PRP2 are filled in, this will fill in
2549			 * all remaining PRP entries in a PRP List, one per each
2550			 * time through the loop.
2551			 */
2552			*prp_entry = htole64((uint64_t)paddr);
2553			prp_entry++;
2554			prp_entry_phys++;
2555		}
2556
2557		/*
2558		 * Bump the phys address of the command's data buffer by the
2559		 * entry_len.
2560		 */
2561		paddr += entry_len;
2562
2563		/* Decrement length accounting for last partial page. */
2564		if (entry_len > length)
2565			length = 0;
2566		else
2567			length -= entry_len;
2568	}
2569}
2570
2571/*
2572 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2573 * determine if the driver needs to build a native SGL. If so, that native SGL
2574 * is built in the contiguous buffers allocated especially for PCIe SGL
2575 * creation. If the driver will not build a native SGL, return TRUE and a
2576 * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2577 * only.
2578 *
2579 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2580 */
2581static int
2582mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2583    bus_dma_segment_t *segs, int segs_left)
2584{
2585	uint32_t		i, sge_dwords, length, offset, entry_len;
2586	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2587	uint32_t		page_mask, page_mask_result, *curr_buff;
2588	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2589	uint32_t		first_page_data_size, end_residual;
2590	uint64_t		*msg_phys;
2591	bus_addr_t		paddr;
2592	int			build_native_sgl = 0, first_prp_entry;
2593	int			prp_size = PRP_ENTRY_SIZE;
2594	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2595	struct mpr_prp_page	*prp_page_info = NULL;
2596
2597	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2598
2599	/*
2600	 * Add up the sizes of each segment length to get the total transfer
2601	 * size, which will be checked against the Maximum Data Transfer Size.
2602	 * If the data transfer length exceeds the MDTS for this device, just
2603	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2604	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2605	 */
2606	for (i = 0; i < segs_left; i++)
2607		buff_len += htole32(segs[i].ds_len);
2608	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2609		return 1;
2610
2611	/* Create page_mask (to get offset within page) */
2612	page_mask = PAGE_SIZE - 1;
2613
2614	/*
2615	 * Check if the number of elements exceeds the max number that can be
2616	 * put in the main message frame (H/W can only translate an SGL that
2617	 * is contained entirely in the main message frame).
2618	 */
2619	sges_in_segment = (sc->facts->IOCRequestFrameSize -
2620	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2621	if (segs_left > sges_in_segment)
2622		build_native_sgl = 1;
2623	else
2624	{
2625		/*
2626		 * NVMe uses one PRP for each physical page (or part of physical
2627		 * page).
2628		 *    if 4 pages or less then IEEE is OK
2629		 *    if > 5 pages then we need to build a native SGL
2630		 *    if > 4 and <= 5 pages, then check the physical address of
2631		 *      the first SG entry, then if this first size in the page
2632		 *      is >= the residual beyond 4 pages then use IEEE,
2633		 *      otherwise use native SGL
2634		 */
2635		if (buff_len > (PAGE_SIZE * 5))
2636			build_native_sgl = 1;
2637		else if ((buff_len > (PAGE_SIZE * 4)) &&
2638		    (buff_len <= (PAGE_SIZE * 5)) )
2639		{
2640			msg_phys = (uint64_t *)segs[0].ds_addr;
2641			first_page_offset =
2642			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2643			    page_mask);
2644			first_page_data_size = PAGE_SIZE - first_page_offset;
2645			end_residual = buff_len % PAGE_SIZE;
2646
2647			/*
2648			 * If offset into first page pushes the end of the data
2649			 * beyond end of the 5th page, we need the extra PRP
2650			 * list.
2651			 */
2652			if (first_page_data_size < end_residual)
2653				build_native_sgl = 1;
2654
2655			/*
2656			 * Check if first SG entry size is < residual beyond 4
2657			 * pages.
2658			 */
2659			if (htole32(segs[0].ds_len) <
2660			    (buff_len - (PAGE_SIZE * 4)))
2661				build_native_sgl = 1;
2662		}
2663	}
2664
2665	/* check if native SGL is needed */
2666	if (!build_native_sgl)
2667		return 1;
2668
2669	/*
2670	 * Native SGL is needed.
2671	 * Put a chain element in main message frame that points to the first
2672	 * chain buffer.
2673	 *
2674	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2675	 *        a native SGL.
2676	 */
2677
2678	/* Set main message chain element pointer */
2679	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2680
2681	/*
2682	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2683	 * message.
2684	 */
2685	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2686	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2687
2688	/*
2689	 * For the PRP entries, use the specially allocated buffer of
2690	 * contiguous memory. PRP Page allocation failures should not happen
2691	 * because there should be enough PRP page buffers to account for the
2692	 * possible NVMe QDepth.
2693	 */
2694	prp_page_info = mpr_alloc_prp_page(sc);
2695	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2696	    "used for building a native NVMe SGL.\n", __func__));
2697	curr_buff = (uint32_t *)prp_page_info->prp_page;
2698	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2699
2700	/*
2701	 * Insert the allocated PRP page into the command's PRP page list. This
2702	 * will be freed when the command is freed.
2703	 */
2704	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2705
2706	/*
2707	 * Check if we are within 1 entry of a page boundary we don't want our
2708	 * first entry to be a PRP List entry.
2709	 */
2710	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
2711	    page_mask;
2712	if (!page_mask_result) {
2713		/* Bump up to next page boundary. */
2714		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
2715		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
2716	}
2717
2718	/* Fill in the chain element and make it an NVMe segment type. */
2719	main_chain_element->Address.High =
2720	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
2721	main_chain_element->Address.Low =
2722	    htole32((uint32_t)(uintptr_t)msg_phys);
2723	main_chain_element->NextChainOffset = 0;
2724	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2725	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2726	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2727
2728	/* Set SGL pointer to start of contiguous PCIe buffer. */
2729	ptr_sgl = curr_buff;
2730	sge_dwords = 2;
2731	num_entries = 0;
2732
2733	/*
2734	 * NVMe has a very convoluted PRP format. One PRP is required for each
2735	 * page or partial page. We need to split up OS SG entries if they are
2736	 * longer than one page or cross a page boundary. We also have to insert
2737	 * a PRP list pointer entry as the last entry in each physical page of
2738	 * the PRP list.
2739	 *
2740	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
2741	 * in the main message in IEEE 64 format. The 2nd entry in the main
2742	 * message is the chain element, and the rest of the PRP entries are
2743	 * built in the contiguous PCIe buffer.
2744	 */
2745	first_prp_entry = 1;
2746	ptr_first_sgl = (uint32_t *)cm->cm_sge;
2747
2748	for (i = 0; i < segs_left; i++) {
2749		/* Get physical address and length of this SG entry. */
2750		paddr = segs[i].ds_addr;
2751		length = segs[i].ds_len;
2752
2753		/*
2754		 * Check whether a given SGE buffer lies on a non-PAGED
2755		 * boundary if this is not the first page. If so, this is not
2756		 * expected so have FW build the SGL.
2757		 */
2758		if (i) {
2759			if ((uint32_t)paddr & page_mask) {
2760				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
2761				    "building NVMe PRPs, low address is 0x%x\n",
2762				    (uint32_t)paddr);
2763				return 1;
2764			}
2765		}
2766
2767		/* Apart from last SGE, if any other SGE boundary is not page
2768		 * aligned then it means that hole exists. Existence of hole
2769		 * leads to data corruption. So fallback to IEEE SGEs.
2770		 */
2771		if (i != (segs_left - 1)) {
2772			if (((uint32_t)paddr + length) & page_mask) {
2773				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
2774				    "boundary while building NVMe PRPs, low "
2775				    "address: 0x%x and length: %u\n",
2776				    (uint32_t)paddr, length);
2777				return 1;
2778			}
2779		}
2780
2781		/* Loop while the length is not zero. */
2782		while (length) {
2783			/*
2784			 * Check if we need to put a list pointer here if we are
2785			 * at page boundary - prp_size.
2786			 */
2787			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
2788			    prp_size) & page_mask;
2789			if (!page_mask_result) {
2790				/*
2791				 * Need to put a PRP list pointer here.
2792				 */
2793				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2794				    prp_size);
2795				*ptr_sgl = htole32((uintptr_t)msg_phys);
2796				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
2797				    msg_phys >> 32);
2798				ptr_sgl += sge_dwords;
2799				num_entries++;
2800			}
2801
2802			/* Need to handle if entry will be part of a page. */
2803			offset = (uint32_t)paddr & page_mask;
2804			entry_len = PAGE_SIZE - offset;
2805			if (first_prp_entry) {
2806				/*
2807				 * Put IEEE entry in first SGE in main message.
2808				 * (Simple element, System addr, not end of
2809				 * list.)
2810				 */
2811				*ptr_first_sgl = htole32((uint32_t)paddr);
2812				*(ptr_first_sgl + 1) =
2813				    htole32((uint32_t)((uint64_t)paddr >> 32));
2814				*(ptr_first_sgl + 2) = htole32(entry_len);
2815				*(ptr_first_sgl + 3) = 0;
2816
2817				/* No longer the first PRP entry. */
2818				first_prp_entry = 0;
2819			} else {
2820				/* Put entry in list. */
2821				*ptr_sgl = htole32((uint32_t)paddr);
2822				*(ptr_sgl + 1) =
2823				    htole32((uint32_t)((uint64_t)paddr >> 32));
2824
2825				/* Bump ptr_sgl, msg_phys, and num_entries. */
2826				ptr_sgl += sge_dwords;
2827				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2828				    prp_size);
2829				num_entries++;
2830			}
2831
2832			/* Bump the phys address by the entry_len. */
2833			paddr += entry_len;
2834
2835			/* Decrement length accounting for last partial page. */
2836			if (entry_len > length)
2837				length = 0;
2838			else
2839				length -= entry_len;
2840		}
2841	}
2842
2843	/* Set chain element Length. */
2844	main_chain_element->Length = htole32(num_entries * prp_size);
2845
2846	/* Return 0, indicating we built a native SGL. */
2847	return 0;
2848}
2849
2850/*
2851 * Add a chain element as the next SGE for the specified command.
2852 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2853 * only required for IEEE commands.  Therefore there is no code for commands
2854 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
2855 * shouldn't be requesting chains).
2856 */
2857static int
2858mpr_add_chain(struct mpr_command *cm, int segsleft)
2859{
2860	struct mpr_softc *sc = cm->cm_sc;
2861	MPI2_REQUEST_HEADER *req;
2862	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2863	struct mpr_chain *chain;
2864	int sgc_size, current_segs, rem_segs, segs_per_frame;
2865	uint8_t next_chain_offset = 0;
2866
2867	/*
2868	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
2869	 * only IEEE commands should be requesting chains.  Return some error
2870	 * code other than 0.
2871	 */
2872	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2873		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2874		    "an MPI SGL.\n");
2875		return(ENOBUFS);
2876	}
2877
2878	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2879	if (cm->cm_sglsize < sgc_size)
2880		panic("MPR: Need SGE Error Code\n");
2881
2882	chain = mpr_alloc_chain(cm->cm_sc);
2883	if (chain == NULL)
2884		return (ENOBUFS);
2885
2886	/*
2887	 * Note: a double-linked list is used to make it easier to walk for
2888	 * debugging.
2889	 */
2890	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2891
2892	/*
2893	 * Need to know if the number of frames left is more than 1 or not.  If
2894	 * more than 1 frame is required, NextChainOffset will need to be set,
2895	 * which will just be the last segment of the frame.
2896	 */
2897	rem_segs = 0;
2898	if (cm->cm_sglsize < (sgc_size * segsleft)) {
2899		/*
2900		 * rem_segs is the number of segements remaining after the
2901		 * segments that will go into the current frame.  Since it is
2902		 * known that at least one more frame is required, account for
2903		 * the chain element.  To know if more than one more frame is
2904		 * required, just check if there will be a remainder after using
2905		 * the current frame (with this chain) and the next frame.  If
2906		 * so the NextChainOffset must be the last element of the next
2907		 * frame.
2908		 */
2909		current_segs = (cm->cm_sglsize / sgc_size) - 1;
2910		rem_segs = segsleft - current_segs;
2911		segs_per_frame = sc->chain_frame_size / sgc_size;
2912		if (rem_segs > segs_per_frame) {
2913			next_chain_offset = segs_per_frame - 1;
2914		}
2915	}
2916	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2917	ieee_sgc->Length = next_chain_offset ?
2918	    htole32((uint32_t)sc->chain_frame_size) :
2919	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2920	ieee_sgc->NextChainOffset = next_chain_offset;
2921	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2922	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2923	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2924	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2925	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2926	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2927	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
2928
2929	cm->cm_sglsize = sc->chain_frame_size;
2930	return (0);
2931}
2932
2933/*
2934 * Add one scatter-gather element to the scatter-gather list for a command.
2935 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
2936 * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
2937 * chain, so don't consider any chain additions.
2938 */
2939int
2940mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2941    int segsleft)
2942{
2943	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2944	u32 sge_flags;
2945
2946	/*
2947	 * case 1: >=1 more segment, no room for anything (error)
2948	 * case 2: 1 more segment and enough room for it
2949         */
2950
2951	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2952		mpr_dprint(cm->cm_sc, MPR_ERROR,
2953		    "%s: warning: Not enough room for MPI SGL in frame.\n",
2954		    __func__);
2955		return(ENOBUFS);
2956	}
2957
2958	KASSERT(segsleft == 1,
2959	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2960	    segsleft));
2961
2962	/*
2963	 * There is one more segment left to add for the MPI SGL and there is
2964	 * enough room in the frame to add it.  This is the normal case because
2965	 * MPI SGL's don't have chains, otherwise something is wrong.
2966	 *
2967	 * If this is a bi-directional request, need to account for that
2968	 * here.  Save the pre-filled sge values.  These will be used
2969	 * either for the 2nd SGL or for a single direction SGL.  If
2970	 * cm_out_len is non-zero, this is a bi-directional request, so
2971	 * fill in the OUT SGL first, then the IN SGL, otherwise just
2972	 * fill in the IN SGL.  Note that at this time, when filling in
2973	 * 2 SGL's for a bi-directional request, they both use the same
2974	 * DMA buffer (same cm command).
2975	 */
2976	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2977	saved_address_low = sge->Address.Low;
2978	saved_address_high = sge->Address.High;
2979	if (cm->cm_out_len) {
2980		sge->FlagsLength = cm->cm_out_len |
2981		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2982		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2983		    MPI2_SGE_FLAGS_HOST_TO_IOC |
2984		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2985		    MPI2_SGE_FLAGS_SHIFT);
2986		cm->cm_sglsize -= len;
2987		/* Endian Safe code */
2988		sge_flags = sge->FlagsLength;
2989		sge->FlagsLength = htole32(sge_flags);
2990		sge->Address.High = htole32(sge->Address.High);
2991		sge->Address.Low = htole32(sge->Address.Low);
2992		bcopy(sge, cm->cm_sge, len);
2993		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2994	}
2995	sge->FlagsLength = saved_buf_len |
2996	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2997	    MPI2_SGE_FLAGS_END_OF_BUFFER |
2998	    MPI2_SGE_FLAGS_LAST_ELEMENT |
2999	    MPI2_SGE_FLAGS_END_OF_LIST |
3000	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3001	    MPI2_SGE_FLAGS_SHIFT);
3002	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3003		sge->FlagsLength |=
3004		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3005		    MPI2_SGE_FLAGS_SHIFT);
3006	} else {
3007		sge->FlagsLength |=
3008		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3009		    MPI2_SGE_FLAGS_SHIFT);
3010	}
3011	sge->Address.Low = saved_address_low;
3012	sge->Address.High = saved_address_high;
3013
3014	cm->cm_sglsize -= len;
3015	/* Endian Safe code */
3016	sge_flags = sge->FlagsLength;
3017	sge->FlagsLength = htole32(sge_flags);
3018	sge->Address.High = htole32(sge->Address.High);
3019	sge->Address.Low = htole32(sge->Address.Low);
3020	bcopy(sge, cm->cm_sge, len);
3021	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3022	return (0);
3023}
3024
3025/*
3026 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3027 * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3028 * remaining size and pointer to the next SGE to fill in, respectively.
3029 */
3030int
3031mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3032{
3033	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3034	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3035	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3036	uint32_t sge_length;
3037
3038	/*
3039	 * case 1: No room for chain or segment (error).
3040	 * case 2: Two or more segments left but only room for chain.
3041	 * case 3: Last segment and room for it, so set flags.
3042	 */
3043
3044	/*
3045	 * There should be room for at least one element, or there is a big
3046	 * problem.
3047	 */
3048	if (cm->cm_sglsize < ieee_sge_size)
3049		panic("MPR: Need SGE Error Code\n");
3050
3051	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3052		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3053			return (error);
3054	}
3055
3056	if (segsleft == 1) {
3057		/*
3058		 * If this is a bi-directional request, need to account for that
3059		 * here.  Save the pre-filled sge values.  These will be used
3060		 * either for the 2nd SGL or for a single direction SGL.  If
3061		 * cm_out_len is non-zero, this is a bi-directional request, so
3062		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3063		 * fill in the IN SGL.  Note that at this time, when filling in
3064		 * 2 SGL's for a bi-directional request, they both use the same
3065		 * DMA buffer (same cm command).
3066		 */
3067		saved_buf_len = sge->Length;
3068		saved_address_low = sge->Address.Low;
3069		saved_address_high = sge->Address.High;
3070		if (cm->cm_out_len) {
3071			sge->Length = cm->cm_out_len;
3072			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3073			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3074			cm->cm_sglsize -= ieee_sge_size;
3075			/* Endian Safe code */
3076			sge_length = sge->Length;
3077			sge->Length = htole32(sge_length);
3078			sge->Address.High = htole32(sge->Address.High);
3079			sge->Address.Low = htole32(sge->Address.Low);
3080			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3081			cm->cm_sge =
3082			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3083			    ieee_sge_size);
3084		}
3085		sge->Length = saved_buf_len;
3086		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3087		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3088		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3089		sge->Address.Low = saved_address_low;
3090		sge->Address.High = saved_address_high;
3091	}
3092
3093	cm->cm_sglsize -= ieee_sge_size;
3094	/* Endian Safe code */
3095	sge_length = sge->Length;
3096	sge->Length = htole32(sge_length);
3097	sge->Address.High = htole32(sge->Address.High);
3098	sge->Address.Low = htole32(sge->Address.Low);
3099	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3100	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3101	    ieee_sge_size);
3102	return (0);
3103}
3104
3105/*
3106 * Add one dma segment to the scatter-gather list for a command.
3107 */
3108int
3109mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3110    int segsleft)
3111{
3112	MPI2_SGE_SIMPLE64 sge;
3113	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3114
3115	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3116		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3117		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3118		ieee_sge.Length = len;
3119		mpr_from_u64(pa, &ieee_sge.Address);
3120
3121		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3122	} else {
3123		/*
3124		 * This driver always uses 64-bit address elements for
3125		 * simplicity.
3126		 */
3127		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3128		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3129		/* Set Endian safe macro in mpr_push_sge */
3130		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3131		mpr_from_u64(pa, &sge.Address);
3132
3133		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3134	}
3135}
3136
3137static void
3138mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3139{
3140	struct mpr_softc *sc;
3141	struct mpr_command *cm;
3142	u_int i, dir, sflags;
3143
3144	cm = (struct mpr_command *)arg;
3145	sc = cm->cm_sc;
3146
3147	/*
3148	 * In this case, just print out a warning and let the chip tell the
3149	 * user they did the wrong thing.
3150	 */
3151	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3152		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3153		    "segments, more than the %d allowed\n", __func__, nsegs,
3154		    cm->cm_max_segs);
3155	}
3156
3157	/*
3158	 * Set up DMA direction flags.  Bi-directional requests are also handled
3159	 * here.  In that case, both direction flags will be set.
3160	 */
3161	sflags = 0;
3162	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3163		/*
3164		 * We have to add a special case for SMP passthrough, there
3165		 * is no easy way to generically handle it.  The first
3166		 * S/G element is used for the command (therefore the
3167		 * direction bit needs to be set).  The second one is used
3168		 * for the reply.  We'll leave it to the caller to make
3169		 * sure we only have two buffers.
3170		 */
3171		/*
3172		 * Even though the busdma man page says it doesn't make
3173		 * sense to have both direction flags, it does in this case.
3174		 * We have one s/g element being accessed in each direction.
3175		 */
3176		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3177
3178		/*
3179		 * Set the direction flag on the first buffer in the SMP
3180		 * passthrough request.  We'll clear it for the second one.
3181		 */
3182		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3183			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3184	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3185		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3186		dir = BUS_DMASYNC_PREWRITE;
3187	} else
3188		dir = BUS_DMASYNC_PREREAD;
3189
3190	/* Check if a native SG list is needed for an NVMe PCIe device. */
3191	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3192	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3193		/* A native SG list was built, skip to end. */
3194		goto out;
3195	}
3196
3197	for (i = 0; i < nsegs; i++) {
3198		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3199			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3200		}
3201		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3202		    sflags, nsegs - i);
3203		if (error != 0) {
3204			/* Resource shortage, roll back! */
3205			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3206				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3207				    "consider increasing hw.mpr.max_chains.\n");
3208			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3209			mpr_complete_command(sc, cm);
3210			return;
3211		}
3212	}
3213
3214out:
3215	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3216	mpr_enqueue_request(sc, cm);
3217
3218	return;
3219}
3220
3221static void
3222mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3223	     int error)
3224{
3225	mpr_data_cb(arg, segs, nsegs, error);
3226}
3227
3228/*
3229 * This is the routine to enqueue commands ansynchronously.
3230 * Note that the only error path here is from bus_dmamap_load(), which can
3231 * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3232 * assumed that if you have a command in-hand, then you have enough credits
3233 * to use it.
3234 */
3235int
3236mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3237{
3238	int error = 0;
3239
3240	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3241		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3242		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3243	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3244		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3245		    cm->cm_data, mpr_data_cb, cm, 0);
3246	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3247		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3248		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3249	} else {
3250		/* Add a zero-length element as needed */
3251		if (cm->cm_sge != NULL)
3252			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3253		mpr_enqueue_request(sc, cm);
3254	}
3255
3256	return (error);
3257}
3258
3259/*
3260 * This is the routine to enqueue commands synchronously.  An error of
3261 * EINPROGRESS from mpr_map_command() is ignored since the command will
3262 * be executed and enqueued automatically.  Other errors come from msleep().
3263 */
3264int
3265mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout,
3266    int sleep_flag)
3267{
3268	int error, rc;
3269	struct timeval cur_time, start_time;
3270
3271	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3272		return  EBUSY;
3273
3274	cm->cm_complete = NULL;
3275	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3276	error = mpr_map_command(sc, cm);
3277	if ((error != 0) && (error != EINPROGRESS))
3278		return (error);
3279
3280	// Check for context and wait for 50 mSec at a time until time has
3281	// expired or the command has finished.  If msleep can't be used, need
3282	// to poll.
3283#if __FreeBSD_version >= 1000029
3284	if (curthread->td_no_sleeping)
3285#else //__FreeBSD_version < 1000029
3286	if (curthread->td_pflags & TDP_NOSLEEPING)
3287#endif //__FreeBSD_version >= 1000029
3288		sleep_flag = NO_SLEEP;
3289	getmicrouptime(&start_time);
3290	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3291		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3292		if (error == EWOULDBLOCK) {
3293			/*
3294			 * Record the actual elapsed time in the case of a
3295			 * timeout for the message below.
3296			 */
3297			getmicrouptime(&cur_time);
3298			timevalsub(&cur_time, &start_time);
3299		}
3300	} else {
3301		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3302			mpr_intr_locked(sc);
3303			if (sleep_flag == CAN_SLEEP)
3304				pause("mprwait", hz/20);
3305			else
3306				DELAY(50000);
3307
3308			getmicrouptime(&cur_time);
3309			timevalsub(&cur_time, &start_time);
3310			if (cur_time.tv_sec > timeout) {
3311				error = EWOULDBLOCK;
3312				break;
3313			}
3314		}
3315	}
3316
3317	if (error == EWOULDBLOCK) {
3318		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3319		    " elapsed=%jd\n", __func__, timeout,
3320		    (intmax_t)cur_time.tv_sec);
3321		rc = mpr_reinit(sc);
3322		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3323		    "failed");
3324		error = ETIMEDOUT;
3325	}
3326	return (error);
3327}
3328
3329/*
3330 * This is the routine to enqueue a command synchonously and poll for
3331 * completion.  Its use should be rare.
3332 */
3333int
3334mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm)
3335{
3336	int error, timeout = 0, rc;
3337	struct timeval cur_time, start_time;
3338
3339	error = 0;
3340
3341	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3342	cm->cm_complete = NULL;
3343	mpr_map_command(sc, cm);
3344
3345	getmicrotime(&start_time);
3346	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3347		mpr_intr_locked(sc);
3348
3349		if (mtx_owned(&sc->mpr_mtx))
3350			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3351			    "mprpoll", hz/20);
3352		else
3353			pause("mprpoll", hz/20);
3354
3355		/*
3356		 * Check for real-time timeout and fail if more than 60 seconds.
3357		 */
3358		getmicrotime(&cur_time);
3359		timeout = cur_time.tv_sec - start_time.tv_sec;
3360		if (timeout > 60) {
3361			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3362			error = ETIMEDOUT;
3363			break;
3364		}
3365	}
3366
3367	if (error) {
3368		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3369		rc = mpr_reinit(sc);
3370		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3371		    "failed");
3372	}
3373	return (error);
3374}
3375
3376/*
3377 * The MPT driver had a verbose interface for config pages.  In this driver,
3378 * reduce it to much simpler terms, similar to the Linux driver.
3379 */
3380int
3381mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3382{
3383	MPI2_CONFIG_REQUEST *req;
3384	struct mpr_command *cm;
3385	int error;
3386
3387	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3388		return (EBUSY);
3389	}
3390
3391	cm = mpr_alloc_command(sc);
3392	if (cm == NULL) {
3393		return (EBUSY);
3394	}
3395
3396	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3397	req->Function = MPI2_FUNCTION_CONFIG;
3398	req->Action = params->action;
3399	req->SGLFlags = 0;
3400	req->ChainOffset = 0;
3401	req->PageAddress = params->page_address;
3402	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3403		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3404
3405		hdr = &params->hdr.Ext;
3406		req->ExtPageType = hdr->ExtPageType;
3407		req->ExtPageLength = hdr->ExtPageLength;
3408		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3409		req->Header.PageLength = 0; /* Must be set to zero */
3410		req->Header.PageNumber = hdr->PageNumber;
3411		req->Header.PageVersion = hdr->PageVersion;
3412	} else {
3413		MPI2_CONFIG_PAGE_HEADER *hdr;
3414
3415		hdr = &params->hdr.Struct;
3416		req->Header.PageType = hdr->PageType;
3417		req->Header.PageNumber = hdr->PageNumber;
3418		req->Header.PageLength = hdr->PageLength;
3419		req->Header.PageVersion = hdr->PageVersion;
3420	}
3421
3422	cm->cm_data = params->buffer;
3423	cm->cm_length = params->length;
3424	if (cm->cm_data != NULL) {
3425		cm->cm_sge = &req->PageBufferSGE;
3426		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3427		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3428	} else
3429		cm->cm_sge = NULL;
3430	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3431
3432	cm->cm_complete_data = params;
3433	if (params->callback != NULL) {
3434		cm->cm_complete = mpr_config_complete;
3435		return (mpr_map_command(sc, cm));
3436	} else {
3437		error = mpr_wait_command(sc, cm, 0, CAN_SLEEP);
3438		if (error) {
3439			mpr_dprint(sc, MPR_FAULT,
3440			    "Error %d reading config page\n", error);
3441			mpr_free_command(sc, cm);
3442			return (error);
3443		}
3444		mpr_config_complete(sc, cm);
3445	}
3446
3447	return (0);
3448}
3449
3450int
3451mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3452{
3453	return (EINVAL);
3454}
3455
3456static void
3457mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3458{
3459	MPI2_CONFIG_REPLY *reply;
3460	struct mpr_config_params *params;
3461
3462	MPR_FUNCTRACE(sc);
3463	params = cm->cm_complete_data;
3464
3465	if (cm->cm_data != NULL) {
3466		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3467		    BUS_DMASYNC_POSTREAD);
3468		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3469	}
3470
3471	/*
3472	 * XXX KDM need to do more error recovery?  This results in the
3473	 * device in question not getting probed.
3474	 */
3475	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3476		params->status = MPI2_IOCSTATUS_BUSY;
3477		goto done;
3478	}
3479
3480	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3481	if (reply == NULL) {
3482		params->status = MPI2_IOCSTATUS_BUSY;
3483		goto done;
3484	}
3485	params->status = reply->IOCStatus;
3486	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3487		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3488		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3489		params->hdr.Ext.PageType = reply->Header.PageType;
3490		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3491		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3492	} else {
3493		params->hdr.Struct.PageType = reply->Header.PageType;
3494		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3495		params->hdr.Struct.PageLength = reply->Header.PageLength;
3496		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3497	}
3498
3499done:
3500	mpr_free_command(sc, cm);
3501	if (params->callback != NULL)
3502		params->callback(sc, params);
3503
3504	return;
3505}
3506