mpr.c revision 322658
1265236Sken/*-
2265236Sken * Copyright (c) 2009 Yahoo! Inc.
3283661Sslm * Copyright (c) 2011-2015 LSI Corp.
4299265Sslm * Copyright (c) 2013-2016 Avago Technologies
5265236Sken * All rights reserved.
6265236Sken *
7265236Sken * Redistribution and use in source and binary forms, with or without
8265236Sken * modification, are permitted provided that the following conditions
9265236Sken * are met:
10265236Sken * 1. Redistributions of source code must retain the above copyright
11265236Sken *    notice, this list of conditions and the following disclaimer.
12265236Sken * 2. Redistributions in binary form must reproduce the above copyright
13265236Sken *    notice, this list of conditions and the following disclaimer in the
14265236Sken *    documentation and/or other materials provided with the distribution.
15265236Sken *
16265236Sken * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17265236Sken * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18265236Sken * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19265236Sken * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20265236Sken * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21265236Sken * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22265236Sken * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23265236Sken * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24265236Sken * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25265236Sken * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26265236Sken * SUCH DAMAGE.
27265236Sken *
28283661Sslm * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29283661Sslm *
30265236Sken */
31265236Sken
32265236Sken#include <sys/cdefs.h>
33265236Sken__FBSDID("$FreeBSD: stable/11/sys/dev/mpr/mpr.c 322658 2017-08-18 14:25:07Z ken $");
34265236Sken
35283661Sslm/* Communications core for Avago Technologies (LSI) MPT3 */
36265236Sken
37265236Sken/* TODO Move headers to mprvar */
38265236Sken#include <sys/types.h>
39265236Sken#include <sys/param.h>
40265236Sken#include <sys/systm.h>
41265236Sken#include <sys/kernel.h>
42265236Sken#include <sys/selinfo.h>
43265236Sken#include <sys/lock.h>
44265236Sken#include <sys/mutex.h>
45265236Sken#include <sys/module.h>
46265236Sken#include <sys/bus.h>
47265236Sken#include <sys/conf.h>
48265236Sken#include <sys/bio.h>
49265236Sken#include <sys/malloc.h>
50265236Sken#include <sys/uio.h>
51265236Sken#include <sys/sysctl.h>
52265236Sken#include <sys/queue.h>
53265236Sken#include <sys/kthread.h>
54265236Sken#include <sys/taskqueue.h>
55265236Sken#include <sys/endian.h>
56265236Sken#include <sys/eventhandler.h>
57265236Sken
58265236Sken#include <machine/bus.h>
59265236Sken#include <machine/resource.h>
60265236Sken#include <sys/rman.h>
61265236Sken#include <sys/proc.h>
62265236Sken
63265236Sken#include <dev/pci/pcivar.h>
64265236Sken
65265236Sken#include <cam/cam.h>
66319435Sslm#include <cam/cam_ccb.h>
67265236Sken#include <cam/scsi/scsi_all.h>
68265236Sken
69265236Sken#include <dev/mpr/mpi/mpi2_type.h>
70265236Sken#include <dev/mpr/mpi/mpi2.h>
71265236Sken#include <dev/mpr/mpi/mpi2_ioc.h>
72265236Sken#include <dev/mpr/mpi/mpi2_sas.h>
73319435Sslm#include <dev/mpr/mpi/mpi2_pci.h>
74265236Sken#include <dev/mpr/mpi/mpi2_cnfg.h>
75265236Sken#include <dev/mpr/mpi/mpi2_init.h>
76265236Sken#include <dev/mpr/mpi/mpi2_tool.h>
77265236Sken#include <dev/mpr/mpr_ioctl.h>
78265236Sken#include <dev/mpr/mprvar.h>
79265236Sken#include <dev/mpr/mpr_table.h>
80319435Sslm#include <dev/mpr/mpr_sas.h>
81265236Sken
82265236Skenstatic int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
83265236Skenstatic int mpr_init_queues(struct mpr_softc *sc);
84265236Skenstatic int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
85265236Skenstatic int mpr_transition_operational(struct mpr_softc *sc);
86265236Skenstatic int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
87265236Skenstatic void mpr_iocfacts_free(struct mpr_softc *sc);
88265236Skenstatic void mpr_startup(void *arg);
89265236Skenstatic int mpr_send_iocinit(struct mpr_softc *sc);
90265236Skenstatic int mpr_alloc_queues(struct mpr_softc *sc);
91265236Skenstatic int mpr_alloc_replies(struct mpr_softc *sc);
92265236Skenstatic int mpr_alloc_requests(struct mpr_softc *sc);
93319435Sslmstatic int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
94265236Skenstatic int mpr_attach_log(struct mpr_softc *sc);
95265236Skenstatic __inline void mpr_complete_command(struct mpr_softc *sc,
96265236Sken    struct mpr_command *cm);
97265236Skenstatic void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
98265236Sken    MPI2_EVENT_NOTIFICATION_REPLY *reply);
99299265Sslmstatic void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
100265236Skenstatic void mpr_periodic(void *);
101265236Skenstatic int mpr_reregister_events(struct mpr_softc *sc);
102299265Sslmstatic void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
103299265Sslmstatic int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
104265236Skenstatic int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
105265236SkenSYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
106265236Sken
107265236SkenMALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
108265236Sken
109265236Sken/*
110265236Sken * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
111265236Sken * any state and back to its initialization state machine.
112265236Sken */
113265236Skenstatic char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
114265236Sken
115265236Sken/*
116265236Sken * Added this union to smoothly convert le64toh cm->cm_desc.Words.
117319435Sslm * Compiler only supports uint64_t to be passed as an argument.
118265236Sken * Otherwise it will through this error:
119265236Sken * "aggregate value used where an integer was expected"
120265236Sken */
121265236Skentypedef union _reply_descriptor {
122265236Sken        u64 word;
123265236Sken        struct {
124265236Sken                u32 low;
125265236Sken                u32 high;
126265236Sken        } u;
127319435Sslm} reply_descriptor, request_descriptor;
128265236Sken
129265236Sken/* Rate limit chain-fail messages to 1 per minute */
130265236Skenstatic struct timeval mpr_chainfail_interval = { 60, 0 };
131265236Sken
132265236Sken/*
133265236Sken * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
134265236Sken * If this function is called from process context, it can sleep
135265236Sken * and there is no harm to sleep, in case if this fuction is called
136265236Sken * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
137265236Sken * based on sleep flags driver will call either msleep, pause or DELAY.
138265236Sken * msleep and pause are of same variant, but pause is used when mpr_mtx
139265236Sken * is not hold by driver.
140265236Sken */
141265236Skenstatic int
142265236Skenmpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
143265236Sken{
144265236Sken	uint32_t reg;
145265236Sken	int i, error, tries = 0;
146265236Sken	uint8_t first_wait_done = FALSE;
147265236Sken
148265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
149265236Sken
150265236Sken	/* Clear any pending interrupts */
151265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
152265236Sken
153265236Sken	/*
154265236Sken	 * Force NO_SLEEP for threads prohibited to sleep
155265236Sken 	 * e.a Thread from interrupt handler are prohibited to sleep.
156265236Sken 	 */
157265236Sken#if __FreeBSD_version >= 1000029
158265236Sken	if (curthread->td_no_sleeping)
159265236Sken#else //__FreeBSD_version < 1000029
160265236Sken	if (curthread->td_pflags & TDP_NOSLEEPING)
161265236Sken#endif //__FreeBSD_version >= 1000029
162265236Sken		sleep_flag = NO_SLEEP;
163265236Sken
164265236Sken	/* Push the magic sequence */
165265236Sken	error = ETIMEDOUT;
166265236Sken	while (tries++ < 20) {
167265236Sken		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
168265236Sken			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
169265236Sken			    mpt2_reset_magic[i]);
170265236Sken
171265236Sken		/* wait 100 msec */
172265236Sken		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
173265236Sken			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
174265236Sken			    "mprdiag", hz/10);
175265236Sken		else if (sleep_flag == CAN_SLEEP)
176265236Sken			pause("mprdiag", hz/10);
177265236Sken		else
178265236Sken			DELAY(100 * 1000);
179265236Sken
180265236Sken		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
181265236Sken		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
182265236Sken			error = 0;
183265236Sken			break;
184265236Sken		}
185265236Sken	}
186265236Sken	if (error)
187265236Sken		return (error);
188265236Sken
189265236Sken	/* Send the actual reset.  XXX need to refresh the reg? */
190265236Sken	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
191265236Sken	    reg | MPI2_DIAG_RESET_ADAPTER);
192265236Sken
193265236Sken	/* Wait up to 300 seconds in 50ms intervals */
194265236Sken	error = ETIMEDOUT;
195265236Sken	for (i = 0; i < 6000; i++) {
196265236Sken		/*
197265236Sken		 * Wait 50 msec. If this is the first time through, wait 256
198265236Sken		 * msec to satisfy Diag Reset timing requirements.
199265236Sken		 */
200265236Sken		if (first_wait_done) {
201265236Sken			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
202265236Sken				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
203265236Sken				    "mprdiag", hz/20);
204265236Sken			else if (sleep_flag == CAN_SLEEP)
205265236Sken				pause("mprdiag", hz/20);
206265236Sken			else
207265236Sken				DELAY(50 * 1000);
208265236Sken		} else {
209265236Sken			DELAY(256 * 1000);
210265236Sken			first_wait_done = TRUE;
211265236Sken		}
212265236Sken		/*
213265236Sken		 * Check for the RESET_ADAPTER bit to be cleared first, then
214265236Sken		 * wait for the RESET state to be cleared, which takes a little
215265236Sken		 * longer.
216265236Sken		 */
217265236Sken		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
218265236Sken		if (reg & MPI2_DIAG_RESET_ADAPTER) {
219265236Sken			continue;
220265236Sken		}
221265236Sken		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
222265236Sken		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
223265236Sken			error = 0;
224265236Sken			break;
225265236Sken		}
226265236Sken	}
227265236Sken	if (error)
228265236Sken		return (error);
229265236Sken
230265236Sken	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
231265236Sken
232265236Sken	return (0);
233265236Sken}
234265236Sken
235265236Skenstatic int
236265236Skenmpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
237265236Sken{
238265236Sken
239265236Sken	MPR_FUNCTRACE(sc);
240265236Sken
241265236Sken	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
242265236Sken	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
243265236Sken	    MPI2_DOORBELL_FUNCTION_SHIFT);
244265236Sken
245265236Sken	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
246265236Sken		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
247265236Sken				__func__);
248265236Sken		return (ETIMEDOUT);
249265236Sken	}
250265236Sken
251265236Sken	return (0);
252265236Sken}
253265236Sken
254265236Skenstatic int
255265236Skenmpr_transition_ready(struct mpr_softc *sc)
256265236Sken{
257265236Sken	uint32_t reg, state;
258265236Sken	int error, tries = 0;
259265236Sken	int sleep_flags;
260265236Sken
261265236Sken	MPR_FUNCTRACE(sc);
262265236Sken	/* If we are in attach call, do not sleep */
263265236Sken	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
264265236Sken	    ? CAN_SLEEP : NO_SLEEP;
265265236Sken
266265236Sken	error = 0;
267265236Sken	while (tries++ < 1200) {
268265236Sken		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
269265236Sken		mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
270265236Sken
271265236Sken		/*
272265236Sken		 * Ensure the IOC is ready to talk.  If it's not, try
273265236Sken		 * resetting it.
274265236Sken		 */
275265236Sken		if (reg & MPI2_DOORBELL_USED) {
276265236Sken			mpr_diag_reset(sc, sleep_flags);
277265236Sken			DELAY(50000);
278265236Sken			continue;
279265236Sken		}
280265236Sken
281265236Sken		/* Is the adapter owned by another peer? */
282265236Sken		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
283265236Sken		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
284265236Sken			device_printf(sc->mpr_dev, "IOC is under the control "
285265236Sken			    "of another peer host, aborting initialization.\n");
286265236Sken			return (ENXIO);
287265236Sken		}
288265236Sken
289265236Sken		state = reg & MPI2_IOC_STATE_MASK;
290265236Sken		if (state == MPI2_IOC_STATE_READY) {
291265236Sken			/* Ready to go! */
292265236Sken			error = 0;
293265236Sken			break;
294265236Sken		} else if (state == MPI2_IOC_STATE_FAULT) {
295265236Sken			mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
296265236Sken			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
297265236Sken			mpr_diag_reset(sc, sleep_flags);
298265236Sken		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
299265236Sken			/* Need to take ownership */
300265236Sken			mpr_message_unit_reset(sc, sleep_flags);
301265236Sken		} else if (state == MPI2_IOC_STATE_RESET) {
302265236Sken			/* Wait a bit, IOC might be in transition */
303265236Sken			mpr_dprint(sc, MPR_FAULT,
304265236Sken			    "IOC in unexpected reset state\n");
305265236Sken		} else {
306265236Sken			mpr_dprint(sc, MPR_FAULT,
307265236Sken			    "IOC in unknown state 0x%x\n", state);
308265236Sken			error = EINVAL;
309265236Sken			break;
310265236Sken		}
311265236Sken
312265236Sken		/* Wait 50ms for things to settle down. */
313265236Sken		DELAY(50000);
314265236Sken	}
315265236Sken
316265236Sken	if (error)
317265236Sken		device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
318265236Sken	return (error);
319265236Sken}
320265236Sken
321265236Skenstatic int
322265236Skenmpr_transition_operational(struct mpr_softc *sc)
323265236Sken{
324265236Sken	uint32_t reg, state;
325265236Sken	int error;
326265236Sken
327265236Sken	MPR_FUNCTRACE(sc);
328265236Sken
329265236Sken	error = 0;
330265236Sken	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
331265236Sken	mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
332265236Sken
333265236Sken	state = reg & MPI2_IOC_STATE_MASK;
334265236Sken	if (state != MPI2_IOC_STATE_READY) {
335265236Sken		if ((error = mpr_transition_ready(sc)) != 0) {
336265236Sken			mpr_dprint(sc, MPR_FAULT,
337265236Sken			    "%s failed to transition ready\n", __func__);
338265236Sken			return (error);
339265236Sken		}
340265236Sken	}
341265236Sken
342265236Sken	error = mpr_send_iocinit(sc);
343265236Sken	return (error);
344265236Sken}
345265236Sken
346265236Sken/*
347265236Sken * This is called during attach and when re-initializing due to a Diag Reset.
348265236Sken * IOC Facts is used to allocate many of the structures needed by the driver.
349265236Sken * If called from attach, de-allocation is not required because the driver has
350265236Sken * not allocated any structures yet, but if called from a Diag Reset, previously
351265236Sken * allocated structures based on IOC Facts will need to be freed and re-
352265236Sken * allocated bases on the latest IOC Facts.
353265236Sken */
354265236Skenstatic int
355265236Skenmpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
356265236Sken{
357283661Sslm	int error;
358265236Sken	Mpi2IOCFactsReply_t saved_facts;
359265236Sken	uint8_t saved_mode, reallocating;
360265236Sken
361265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
362265236Sken
363265236Sken	/* Save old IOC Facts and then only reallocate if Facts have changed */
364265236Sken	if (!attaching) {
365265236Sken		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
366265236Sken	}
367265236Sken
368265236Sken	/*
369265236Sken	 * Get IOC Facts.  In all cases throughout this function, panic if doing
370265236Sken	 * a re-initialization and only return the error if attaching so the OS
371265236Sken	 * can handle it.
372265236Sken	 */
373265236Sken	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
374265236Sken		if (attaching) {
375265236Sken			mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
376265236Sken			    "with error %d\n", __func__, error);
377265236Sken			return (error);
378265236Sken		} else {
379265236Sken			panic("%s failed to get IOC Facts with error %d\n",
380265236Sken			    __func__, error);
381265236Sken		}
382265236Sken	}
383265236Sken
384322658Sken	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
385265236Sken
386265236Sken	snprintf(sc->fw_version, sizeof(sc->fw_version),
387265236Sken	    "%02d.%02d.%02d.%02d",
388265236Sken	    sc->facts->FWVersion.Struct.Major,
389265236Sken	    sc->facts->FWVersion.Struct.Minor,
390265236Sken	    sc->facts->FWVersion.Struct.Unit,
391265236Sken	    sc->facts->FWVersion.Struct.Dev);
392265236Sken
393265236Sken	mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
394265236Sken	    MPR_DRIVER_VERSION);
395265236Sken	mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
396265236Sken	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
397265236Sken	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
398319435Sslm	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
399319435Sslm	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
400265236Sken
401265236Sken	/*
402265236Sken	 * If the chip doesn't support event replay then a hard reset will be
403265236Sken	 * required to trigger a full discovery.  Do the reset here then
404265236Sken	 * retransition to Ready.  A hard reset might have already been done,
405265236Sken	 * but it doesn't hurt to do it again.  Only do this if attaching, not
406265236Sken	 * for a Diag Reset.
407265236Sken	 */
408265236Sken	if (attaching) {
409265236Sken		if ((sc->facts->IOCCapabilities &
410265236Sken		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
411265236Sken			mpr_diag_reset(sc, NO_SLEEP);
412265236Sken			if ((error = mpr_transition_ready(sc)) != 0) {
413265236Sken				mpr_dprint(sc, MPR_FAULT, "%s failed to "
414265236Sken				    "transition to ready with error %d\n",
415265236Sken				    __func__, error);
416265236Sken				return (error);
417265236Sken			}
418265236Sken		}
419265236Sken	}
420265236Sken
421265236Sken	/*
422265236Sken	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
423265236Sken	 * changed from the previous IOC Facts, log a warning, but only if
424265236Sken	 * checking this after a Diag Reset and not during attach.
425265236Sken	 */
426265236Sken	saved_mode = sc->ir_firmware;
427265236Sken	if (sc->facts->IOCCapabilities &
428265236Sken	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
429265236Sken		sc->ir_firmware = 1;
430265236Sken	if (!attaching) {
431265236Sken		if (sc->ir_firmware != saved_mode) {
432265236Sken			mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
433265236Sken			    "Facts does not match previous mode\n", __func__);
434265236Sken		}
435265236Sken	}
436265236Sken
437265236Sken	/* Only deallocate and reallocate if relevant IOC Facts have changed */
438265236Sken	reallocating = FALSE;
439322658Sken	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
440322658Sken
441265236Sken	if ((!attaching) &&
442265236Sken	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
443265236Sken	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
444265236Sken	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
445265236Sken	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
446265236Sken	    (saved_facts.ProductID != sc->facts->ProductID) ||
447265236Sken	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
448265236Sken	    (saved_facts.IOCRequestFrameSize !=
449265236Sken	    sc->facts->IOCRequestFrameSize) ||
450299266Sslm	    (saved_facts.IOCMaxChainSegmentSize !=
451299266Sslm	    sc->facts->IOCMaxChainSegmentSize) ||
452265236Sken	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
453265236Sken	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
454265236Sken	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
455265236Sken	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
456265236Sken	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
457265236Sken	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
458265236Sken	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
459265236Sken	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
460265236Sken	    (saved_facts.MaxPersistentEntries !=
461265236Sken	    sc->facts->MaxPersistentEntries))) {
462265236Sken		reallocating = TRUE;
463322658Sken
464322658Sken		/* Record that we reallocated everything */
465322658Sken		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
466265236Sken	}
467265236Sken
468265236Sken	/*
469265236Sken	 * Some things should be done if attaching or re-allocating after a Diag
470265236Sken	 * Reset, but are not needed after a Diag Reset if the FW has not
471265236Sken	 * changed.
472265236Sken	 */
473265236Sken	if (attaching || reallocating) {
474265236Sken		/*
475265236Sken		 * Check if controller supports FW diag buffers and set flag to
476265236Sken		 * enable each type.
477265236Sken		 */
478265236Sken		if (sc->facts->IOCCapabilities &
479265236Sken		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
480265236Sken			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
481265236Sken			    enabled = TRUE;
482265236Sken		if (sc->facts->IOCCapabilities &
483265236Sken		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
484265236Sken			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
485265236Sken			    enabled = TRUE;
486265236Sken		if (sc->facts->IOCCapabilities &
487265236Sken		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
488265236Sken			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
489265236Sken			    enabled = TRUE;
490265236Sken
491265236Sken		/*
492319435Sslm		 * Set flags for some supported items.
493265236Sken		 */
494265236Sken		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
495265236Sken			sc->eedp_enabled = TRUE;
496265236Sken		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
497265236Sken			sc->control_TLR = TRUE;
498319435Sslm		if (sc->facts->IOCCapabilities &
499319435Sslm		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
500319435Sslm			sc->atomic_desc_capable = TRUE;
501265236Sken
502265236Sken		/*
503265236Sken		 * Size the queues. Since the reply queues always need one free
504265236Sken		 * entry, we'll just deduct one reply message here.
505265236Sken		 */
506265236Sken		sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
507265236Sken		sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
508265236Sken		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
509265236Sken
510265236Sken		/*
511265236Sken		 * Initialize all Tail Queues
512265236Sken		 */
513265236Sken		TAILQ_INIT(&sc->req_list);
514265236Sken		TAILQ_INIT(&sc->high_priority_req_list);
515265236Sken		TAILQ_INIT(&sc->chain_list);
516319435Sslm		TAILQ_INIT(&sc->prp_page_list);
517265236Sken		TAILQ_INIT(&sc->tm_list);
518265236Sken	}
519265236Sken
520265236Sken	/*
521265236Sken	 * If doing a Diag Reset and the FW is significantly different
522265236Sken	 * (reallocating will be set above in IOC Facts comparison), then all
523265236Sken	 * buffers based on the IOC Facts will need to be freed before they are
524265236Sken	 * reallocated.
525265236Sken	 */
526265236Sken	if (reallocating) {
527265236Sken		mpr_iocfacts_free(sc);
528319446Sslm		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
529319446Sslm		    saved_facts.MaxVolumes);
530265236Sken	}
531265236Sken
532265236Sken	/*
533265236Sken	 * Any deallocation has been completed.  Now start reallocating
534265236Sken	 * if needed.  Will only need to reallocate if attaching or if the new
535265236Sken	 * IOC Facts are different from the previous IOC Facts after a Diag
536265236Sken	 * Reset. Targets have already been allocated above if needed.
537265236Sken	 */
538265236Sken	if (attaching || reallocating) {
539265236Sken		if (((error = mpr_alloc_queues(sc)) != 0) ||
540265236Sken		    ((error = mpr_alloc_replies(sc)) != 0) ||
541265236Sken		    ((error = mpr_alloc_requests(sc)) != 0)) {
542265236Sken			if (attaching ) {
543265236Sken				mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
544265236Sken				    "queues with error %d\n", __func__, error);
545265236Sken				mpr_free(sc);
546265236Sken				return (error);
547265236Sken			} else {
548265236Sken				panic("%s failed to alloc queues with error "
549265236Sken				    "%d\n", __func__, error);
550265236Sken			}
551265236Sken		}
552265236Sken	}
553265236Sken
554265236Sken	/* Always initialize the queues */
555265236Sken	bzero(sc->free_queue, sc->fqdepth * 4);
556265236Sken	mpr_init_queues(sc);
557265236Sken
558265236Sken	/*
559265236Sken	 * Always get the chip out of the reset state, but only panic if not
560265236Sken	 * attaching.  If attaching and there is an error, that is handled by
561265236Sken	 * the OS.
562265236Sken	 */
563265236Sken	error = mpr_transition_operational(sc);
564265236Sken	if (error != 0) {
565265236Sken		if (attaching) {
566299265Sslm			mpr_printf(sc, "%s failed to transition to operational "
567299265Sslm			    "with error %d\n", __func__, error);
568265236Sken			mpr_free(sc);
569265236Sken			return (error);
570265236Sken		} else {
571265236Sken			panic("%s failed to transition to operational with "
572265236Sken			    "error %d\n", __func__, error);
573265236Sken		}
574265236Sken	}
575265236Sken
576265236Sken	/*
577265236Sken	 * Finish the queue initialization.
578265236Sken	 * These are set here instead of in mpr_init_queues() because the
579265236Sken	 * IOC resets these values during the state transition in
580265236Sken	 * mpr_transition_operational().  The free index is set to 1
581265236Sken	 * because the corresponding index in the IOC is set to 0, and the
582265236Sken	 * IOC treats the queues as full if both are set to the same value.
583265236Sken	 * Hence the reason that the queue can't hold all of the possible
584265236Sken	 * replies.
585265236Sken	 */
586265236Sken	sc->replypostindex = 0;
587265236Sken	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
588265236Sken	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
589265236Sken
590265236Sken	/*
591265236Sken	 * Attach the subsystems so they can prepare their event masks.
592265236Sken	 */
593265236Sken	/* XXX Should be dynamic so that IM/IR and user modules can attach */
594265236Sken	if (attaching) {
595265236Sken		if (((error = mpr_attach_log(sc)) != 0) ||
596265236Sken		    ((error = mpr_attach_sas(sc)) != 0) ||
597265236Sken		    ((error = mpr_attach_user(sc)) != 0)) {
598265236Sken			mpr_printf(sc, "%s failed to attach all subsystems: "
599265236Sken			    "error %d\n", __func__, error);
600265236Sken			mpr_free(sc);
601265236Sken			return (error);
602265236Sken		}
603265236Sken
604265236Sken		if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
605265236Sken			mpr_printf(sc, "%s failed to setup interrupts\n",
606265236Sken			    __func__);
607265236Sken			mpr_free(sc);
608265236Sken			return (error);
609265236Sken		}
610265236Sken	}
611265236Sken
612265236Sken	return (error);
613265236Sken}
614265236Sken
615265236Sken/*
616265236Sken * This is called if memory is being free (during detach for example) and when
617265236Sken * buffers need to be reallocated due to a Diag Reset.
618265236Sken */
619265236Skenstatic void
620265236Skenmpr_iocfacts_free(struct mpr_softc *sc)
621265236Sken{
622265236Sken	struct mpr_command *cm;
623265236Sken	int i;
624265236Sken
625265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
626265236Sken
627265236Sken	if (sc->free_busaddr != 0)
628265236Sken		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
629265236Sken	if (sc->free_queue != NULL)
630265236Sken		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
631265236Sken		    sc->queues_map);
632265236Sken	if (sc->queues_dmat != NULL)
633265236Sken		bus_dma_tag_destroy(sc->queues_dmat);
634265236Sken
635265236Sken	if (sc->chain_busaddr != 0)
636265236Sken		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
637265236Sken	if (sc->chain_frames != NULL)
638265236Sken		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
639265236Sken		    sc->chain_map);
640265236Sken	if (sc->chain_dmat != NULL)
641265236Sken		bus_dma_tag_destroy(sc->chain_dmat);
642265236Sken
643265236Sken	if (sc->sense_busaddr != 0)
644265236Sken		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
645265236Sken	if (sc->sense_frames != NULL)
646265236Sken		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
647265236Sken		    sc->sense_map);
648265236Sken	if (sc->sense_dmat != NULL)
649265236Sken		bus_dma_tag_destroy(sc->sense_dmat);
650265236Sken
651319435Sslm	if (sc->prp_page_busaddr != 0)
652319435Sslm		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
653319435Sslm	if (sc->prp_pages != NULL)
654319435Sslm		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
655319435Sslm		    sc->prp_page_map);
656319435Sslm	if (sc->prp_page_dmat != NULL)
657319435Sslm		bus_dma_tag_destroy(sc->prp_page_dmat);
658319435Sslm
659265236Sken	if (sc->reply_busaddr != 0)
660265236Sken		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
661265236Sken	if (sc->reply_frames != NULL)
662265236Sken		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
663265236Sken		    sc->reply_map);
664265236Sken	if (sc->reply_dmat != NULL)
665265236Sken		bus_dma_tag_destroy(sc->reply_dmat);
666265236Sken
667265236Sken	if (sc->req_busaddr != 0)
668265236Sken		bus_dmamap_unload(sc->req_dmat, sc->req_map);
669265236Sken	if (sc->req_frames != NULL)
670265236Sken		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
671265236Sken	if (sc->req_dmat != NULL)
672265236Sken		bus_dma_tag_destroy(sc->req_dmat);
673265236Sken
674265236Sken	if (sc->chains != NULL)
675265236Sken		free(sc->chains, M_MPR);
676319435Sslm	if (sc->prps != NULL)
677319435Sslm		free(sc->prps, M_MPR);
678265236Sken	if (sc->commands != NULL) {
679265236Sken		for (i = 1; i < sc->num_reqs; i++) {
680265236Sken			cm = &sc->commands[i];
681265236Sken			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
682265236Sken		}
683265236Sken		free(sc->commands, M_MPR);
684265236Sken	}
685265236Sken	if (sc->buffer_dmat != NULL)
686265236Sken		bus_dma_tag_destroy(sc->buffer_dmat);
687265236Sken}
688265236Sken
689265236Sken/*
690265236Sken * The terms diag reset and hard reset are used interchangeably in the MPI
691265236Sken * docs to mean resetting the controller chip.  In this code diag reset
692265236Sken * cleans everything up, and the hard reset function just sends the reset
693265236Sken * sequence to the chip.  This should probably be refactored so that every
694265236Sken * subsystem gets a reset notification of some sort, and can clean up
695265236Sken * appropriately.
696265236Sken */
697265236Skenint
698265236Skenmpr_reinit(struct mpr_softc *sc)
699265236Sken{
700265236Sken	int error;
701265236Sken	struct mprsas_softc *sassc;
702265236Sken
703265236Sken	sassc = sc->sassc;
704265236Sken
705265236Sken	MPR_FUNCTRACE(sc);
706265236Sken
707265236Sken	mtx_assert(&sc->mpr_mtx, MA_OWNED);
708265236Sken
709265236Sken	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
710265236Sken		mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
711299265Sslm		    __func__);
712265236Sken		return 0;
713265236Sken	}
714265236Sken
715265236Sken	mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
716265236Sken	/* make sure the completion callbacks can recognize they're getting
717265236Sken	 * a NULL cm_reply due to a reset.
718265236Sken	 */
719265236Sken	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
720265236Sken
721265236Sken	/*
722265236Sken	 * Mask interrupts here.
723265236Sken	 */
724265236Sken	mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
725265236Sken	mpr_mask_intr(sc);
726265236Sken
727265236Sken	error = mpr_diag_reset(sc, CAN_SLEEP);
728265236Sken	if (error != 0) {
729265236Sken		panic("%s hard reset failed with error %d\n", __func__, error);
730265236Sken	}
731265236Sken
732265236Sken	/* Restore the PCI state, including the MSI-X registers */
733265236Sken	mpr_pci_restore(sc);
734265236Sken
735265236Sken	/* Give the I/O subsystem special priority to get itself prepared */
736265236Sken	mprsas_handle_reinit(sc);
737265236Sken
738265236Sken	/*
739265236Sken	 * Get IOC Facts and allocate all structures based on this information.
740265236Sken	 * The attach function will also call mpr_iocfacts_allocate at startup.
741265236Sken	 * If relevant values have changed in IOC Facts, this function will free
742265236Sken	 * all of the memory based on IOC Facts and reallocate that memory.
743265236Sken	 */
744265236Sken	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
745265236Sken		panic("%s IOC Facts based allocation failed with error %d\n",
746265236Sken		    __func__, error);
747265236Sken	}
748265236Sken
749265236Sken	/*
750265236Sken	 * Mapping structures will be re-allocated after getting IOC Page8, so
751265236Sken	 * free these structures here.
752265236Sken	 */
753265236Sken	mpr_mapping_exit(sc);
754265236Sken
755265236Sken	/*
756265236Sken	 * The static page function currently read is IOC Page8.  Others can be
757265236Sken	 * added in future.  It's possible that the values in IOC Page8 have
758265236Sken	 * changed after a Diag Reset due to user modification, so always read
759265236Sken	 * these.  Interrupts are masked, so unmask them before getting config
760265236Sken	 * pages.
761265236Sken	 */
762265236Sken	mpr_unmask_intr(sc);
763265236Sken	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
764265236Sken	mpr_base_static_config_pages(sc);
765265236Sken
766265236Sken	/*
767265236Sken	 * Some mapping info is based in IOC Page8 data, so re-initialize the
768265236Sken	 * mapping tables.
769265236Sken	 */
770265236Sken	mpr_mapping_initialize(sc);
771265236Sken
772265236Sken	/*
773265236Sken	 * Restart will reload the event masks clobbered by the reset, and
774265236Sken	 * then enable the port.
775265236Sken	 */
776265236Sken	mpr_reregister_events(sc);
777265236Sken
778265236Sken	/* the end of discovery will release the simq, so we're done. */
779265236Sken	mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
780265236Sken	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
781283661Sslm	mprsas_release_simq_reinit(sassc);
782265236Sken
783265236Sken	return 0;
784265236Sken}
785265236Sken
786265236Sken/* Wait for the chip to ACK a word that we've put into its FIFO
787265236Sken * Wait for <timeout> seconds. In single loop wait for busy loop
788265236Sken * for 500 microseconds.
789265236Sken * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
790265236Sken * */
791265236Skenstatic int
792265236Skenmpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
793265236Sken{
794265236Sken	u32 cntdn, count;
795265236Sken	u32 int_status;
796265236Sken	u32 doorbell;
797265236Sken
798265236Sken	count = 0;
799265236Sken	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
800265236Sken	do {
801265236Sken		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
802265236Sken		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
803265236Sken			mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
804265236Sken			    "timeout(%d)\n", __func__, count, timeout);
805265236Sken			return 0;
806265236Sken		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
807265236Sken			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
808265236Sken			if ((doorbell & MPI2_IOC_STATE_MASK) ==
809265236Sken			    MPI2_IOC_STATE_FAULT) {
810265236Sken				mpr_dprint(sc, MPR_FAULT,
811265236Sken				    "fault_state(0x%04x)!\n", doorbell);
812265236Sken				return (EFAULT);
813265236Sken			}
814265236Sken		} else if (int_status == 0xFFFFFFFF)
815265236Sken			goto out;
816265236Sken
817265236Sken		/*
818265236Sken		 * If it can sleep, sleep for 1 milisecond, else busy loop for
819265236Sken 		 * 0.5 milisecond
820265236Sken		 */
821265236Sken		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
822283661Sslm			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
823283661Sslm			    hz/1000);
824265236Sken		else if (sleep_flag == CAN_SLEEP)
825265236Sken			pause("mprdba", hz/1000);
826265236Sken		else
827265236Sken			DELAY(500);
828265236Sken		count++;
829265236Sken	} while (--cntdn);
830265236Sken
831319435Sslmout:
832265236Sken	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
833265236Sken		"int_status(%x)!\n", __func__, count, int_status);
834265236Sken	return (ETIMEDOUT);
835265236Sken}
836265236Sken
837265236Sken/* Wait for the chip to signal that the next word in its FIFO can be fetched */
838265236Skenstatic int
839265236Skenmpr_wait_db_int(struct mpr_softc *sc)
840265236Sken{
841265236Sken	int retry;
842265236Sken
843265236Sken	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
844265236Sken		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
845265236Sken		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
846265236Sken			return (0);
847265236Sken		DELAY(2000);
848265236Sken	}
849265236Sken	return (ETIMEDOUT);
850265236Sken}
851265236Sken
852265236Sken/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
853265236Skenstatic int
854265236Skenmpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
855265236Sken    int req_sz, int reply_sz, int timeout)
856265236Sken{
857265236Sken	uint32_t *data32;
858265236Sken	uint16_t *data16;
859265236Sken	int i, count, ioc_sz, residual;
860265236Sken	int sleep_flags = CAN_SLEEP;
861265236Sken
862265236Sken#if __FreeBSD_version >= 1000029
863265236Sken	if (curthread->td_no_sleeping)
864265236Sken#else //__FreeBSD_version < 1000029
865265236Sken	if (curthread->td_pflags & TDP_NOSLEEPING)
866265236Sken#endif //__FreeBSD_version >= 1000029
867265236Sken		sleep_flags = NO_SLEEP;
868265236Sken
869265236Sken	/* Step 1 */
870265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
871265236Sken
872265236Sken	/* Step 2 */
873265236Sken	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
874265236Sken		return (EBUSY);
875265236Sken
876265236Sken	/* Step 3
877265236Sken	 * Announce that a message is coming through the doorbell.  Messages
878265236Sken	 * are pushed at 32bit words, so round up if needed.
879265236Sken	 */
880265236Sken	count = (req_sz + 3) / 4;
881265236Sken	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
882265236Sken	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
883265236Sken	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
884265236Sken
885265236Sken	/* Step 4 */
886265236Sken	if (mpr_wait_db_int(sc) ||
887265236Sken	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
888265236Sken		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
889265236Sken		return (ENXIO);
890265236Sken	}
891265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
892265236Sken	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
893265236Sken		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
894265236Sken		return (ENXIO);
895265236Sken	}
896265236Sken
897265236Sken	/* Step 5 */
898265236Sken	/* Clock out the message data synchronously in 32-bit dwords*/
899265236Sken	data32 = (uint32_t *)req;
900265236Sken	for (i = 0; i < count; i++) {
901265236Sken		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
902265236Sken		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
903265236Sken			mpr_dprint(sc, MPR_FAULT,
904265236Sken			    "Timeout while writing doorbell\n");
905265236Sken			return (ENXIO);
906265236Sken		}
907265236Sken	}
908265236Sken
909265236Sken	/* Step 6 */
910265236Sken	/* Clock in the reply in 16-bit words.  The total length of the
911265236Sken	 * message is always in the 4th byte, so clock out the first 2 words
912265236Sken	 * manually, then loop the rest.
913265236Sken	 */
914265236Sken	data16 = (uint16_t *)reply;
915265236Sken	if (mpr_wait_db_int(sc) != 0) {
916265236Sken		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
917265236Sken		return (ENXIO);
918265236Sken	}
919265236Sken	data16[0] =
920265236Sken	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
921265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
922265236Sken	if (mpr_wait_db_int(sc) != 0) {
923265236Sken		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
924265236Sken		return (ENXIO);
925265236Sken	}
926265236Sken	data16[1] =
927265236Sken	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
928265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
929265236Sken
930265236Sken	/* Number of 32bit words in the message */
931265236Sken	ioc_sz = reply->MsgLength;
932265236Sken
933265236Sken	/*
934265236Sken	 * Figure out how many 16bit words to clock in without overrunning.
935265236Sken	 * The precision loss with dividing reply_sz can safely be
936265236Sken	 * ignored because the messages can only be multiples of 32bits.
937265236Sken	 */
938265236Sken	residual = 0;
939265236Sken	count = MIN((reply_sz / 4), ioc_sz) * 2;
940265236Sken	if (count < ioc_sz * 2) {
941265236Sken		residual = ioc_sz * 2 - count;
942265236Sken		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
943265236Sken		    "residual message words\n", residual);
944265236Sken	}
945265236Sken
946265236Sken	for (i = 2; i < count; i++) {
947265236Sken		if (mpr_wait_db_int(sc) != 0) {
948265236Sken			mpr_dprint(sc, MPR_FAULT,
949265236Sken			    "Timeout reading doorbell %d\n", i);
950265236Sken			return (ENXIO);
951265236Sken		}
952265236Sken		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
953265236Sken		    MPI2_DOORBELL_DATA_MASK;
954265236Sken		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
955265236Sken	}
956265236Sken
957265236Sken	/*
958265236Sken	 * Pull out residual words that won't fit into the provided buffer.
959265236Sken	 * This keeps the chip from hanging due to a driver programming
960265236Sken	 * error.
961265236Sken	 */
962265236Sken	while (residual--) {
963265236Sken		if (mpr_wait_db_int(sc) != 0) {
964265236Sken			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
965265236Sken			return (ENXIO);
966265236Sken		}
967265236Sken		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
968265236Sken		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
969265236Sken	}
970265236Sken
971265236Sken	/* Step 7 */
972265236Sken	if (mpr_wait_db_int(sc) != 0) {
973265236Sken		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
974265236Sken		return (ENXIO);
975265236Sken	}
976265236Sken	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
977265236Sken		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
978265236Sken	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
979265236Sken
980265236Sken	return (0);
981265236Sken}
982265236Sken
983265236Skenstatic void
984265236Skenmpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
985265236Sken{
986319435Sslm	request_descriptor rd;
987265236Sken
988265236Sken	MPR_FUNCTRACE(sc);
989283661Sslm	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
990265236Sken	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
991265236Sken
992265236Sken	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
993265236Sken	    MPR_FLAGS_SHUTDOWN))
994265236Sken		mtx_assert(&sc->mpr_mtx, MA_OWNED);
995265236Sken
996265236Sken	if (++sc->io_cmds_active > sc->io_cmds_highwater)
997265236Sken		sc->io_cmds_highwater++;
998265236Sken
999319435Sslm	if (sc->atomic_desc_capable) {
1000319435Sslm		rd.u.low = cm->cm_desc.Words.Low;
1001319435Sslm		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1002319435Sslm		    rd.u.low);
1003319435Sslm	} else {
1004319435Sslm		rd.u.low = cm->cm_desc.Words.Low;
1005319435Sslm		rd.u.high = cm->cm_desc.Words.High;
1006319435Sslm		rd.word = htole64(rd.word);
1007319435Sslm		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1008319435Sslm		    rd.u.low);
1009319435Sslm		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1010319435Sslm		    rd.u.high);
1011319435Sslm	}
1012265236Sken}
1013265236Sken
1014265236Sken/*
1015265236Sken * Just the FACTS, ma'am.
1016265236Sken */
1017265236Skenstatic int
1018265236Skenmpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1019265236Sken{
1020265236Sken	MPI2_DEFAULT_REPLY *reply;
1021265236Sken	MPI2_IOC_FACTS_REQUEST request;
1022265236Sken	int error, req_sz, reply_sz;
1023265236Sken
1024265236Sken	MPR_FUNCTRACE(sc);
1025265236Sken
1026265236Sken	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1027265236Sken	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1028265236Sken	reply = (MPI2_DEFAULT_REPLY *)facts;
1029265236Sken
1030265236Sken	bzero(&request, req_sz);
1031265236Sken	request.Function = MPI2_FUNCTION_IOC_FACTS;
1032265236Sken	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1033265236Sken
1034265236Sken	return (error);
1035265236Sken}
1036265236Sken
1037265236Skenstatic int
1038265236Skenmpr_send_iocinit(struct mpr_softc *sc)
1039265236Sken{
1040265236Sken	MPI2_IOC_INIT_REQUEST	init;
1041265236Sken	MPI2_DEFAULT_REPLY	reply;
1042265236Sken	int req_sz, reply_sz, error;
1043265236Sken	struct timeval now;
1044265236Sken	uint64_t time_in_msec;
1045265236Sken
1046265236Sken	MPR_FUNCTRACE(sc);
1047265236Sken
1048265236Sken	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1049265236Sken	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1050265236Sken	bzero(&init, req_sz);
1051265236Sken	bzero(&reply, reply_sz);
1052265236Sken
1053265236Sken	/*
1054265236Sken	 * Fill in the init block.  Note that most addresses are
1055265236Sken	 * deliberately in the lower 32bits of memory.  This is a micro-
1056265236Sken	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1057265236Sken	 */
1058265236Sken	init.Function = MPI2_FUNCTION_IOC_INIT;
1059265236Sken	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1060265236Sken	init.MsgVersion = htole16(MPI2_VERSION);
1061265236Sken	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1062265236Sken	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1063265236Sken	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1064265236Sken	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1065265236Sken	init.SenseBufferAddressHigh = 0;
1066265236Sken	init.SystemReplyAddressHigh = 0;
1067265236Sken	init.SystemRequestFrameBaseAddress.High = 0;
1068265236Sken	init.SystemRequestFrameBaseAddress.Low =
1069265236Sken	    htole32((uint32_t)sc->req_busaddr);
1070265236Sken	init.ReplyDescriptorPostQueueAddress.High = 0;
1071265236Sken	init.ReplyDescriptorPostQueueAddress.Low =
1072265236Sken	    htole32((uint32_t)sc->post_busaddr);
1073265236Sken	init.ReplyFreeQueueAddress.High = 0;
1074265236Sken	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1075265236Sken	getmicrotime(&now);
1076265236Sken	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1077265236Sken	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1078265236Sken	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1079319435Sslm	init.HostPageSize = HOST_PAGE_SIZE_4K;
1080265236Sken
1081265236Sken	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1082265236Sken	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1083265236Sken		error = ENXIO;
1084265236Sken
1085265236Sken	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1086265236Sken	return (error);
1087265236Sken}
1088265236Sken
1089265236Skenvoid
1090265236Skenmpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1091265236Sken{
1092265236Sken	bus_addr_t *addr;
1093265236Sken
1094265236Sken	addr = arg;
1095265236Sken	*addr = segs[0].ds_addr;
1096265236Sken}
1097265236Sken
1098265236Skenstatic int
1099265236Skenmpr_alloc_queues(struct mpr_softc *sc)
1100265236Sken{
1101265236Sken	bus_addr_t queues_busaddr;
1102265236Sken	uint8_t *queues;
1103265236Sken	int qsize, fqsize, pqsize;
1104265236Sken
1105265236Sken	/*
1106265236Sken	 * The reply free queue contains 4 byte entries in multiples of 16 and
1107265236Sken	 * aligned on a 16 byte boundary. There must always be an unused entry.
1108265236Sken	 * This queue supplies fresh reply frames for the firmware to use.
1109265236Sken	 *
1110265236Sken	 * The reply descriptor post queue contains 8 byte entries in
1111265236Sken	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1112265236Sken	 * contains filled-in reply frames sent from the firmware to the host.
1113265236Sken	 *
1114265236Sken	 * These two queues are allocated together for simplicity.
1115265236Sken	 */
1116298433Spfg	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1117298433Spfg	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1118265236Sken	fqsize= sc->fqdepth * 4;
1119265236Sken	pqsize = sc->pqdepth * 8;
1120265236Sken	qsize = fqsize + pqsize;
1121265236Sken
1122265236Sken        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1123265236Sken				16, 0,			/* algnmnt, boundary */
1124265236Sken				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1125265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1126265236Sken				NULL, NULL,		/* filter, filterarg */
1127265236Sken                                qsize,			/* maxsize */
1128265236Sken                                1,			/* nsegments */
1129265236Sken                                qsize,			/* maxsegsize */
1130265236Sken                                0,			/* flags */
1131265236Sken                                NULL, NULL,		/* lockfunc, lockarg */
1132265236Sken                                &sc->queues_dmat)) {
1133265236Sken		device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1134265236Sken		return (ENOMEM);
1135265236Sken        }
1136265236Sken        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1137265236Sken	    &sc->queues_map)) {
1138265236Sken		device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1139265236Sken		return (ENOMEM);
1140265236Sken        }
1141265236Sken        bzero(queues, qsize);
1142265236Sken        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1143265236Sken	    mpr_memaddr_cb, &queues_busaddr, 0);
1144265236Sken
1145265236Sken	sc->free_queue = (uint32_t *)queues;
1146265236Sken	sc->free_busaddr = queues_busaddr;
1147265236Sken	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1148265236Sken	sc->post_busaddr = queues_busaddr + fqsize;
1149265236Sken
1150265236Sken	return (0);
1151265236Sken}
1152265236Sken
1153265236Skenstatic int
1154265236Skenmpr_alloc_replies(struct mpr_softc *sc)
1155265236Sken{
1156265236Sken	int rsize, num_replies;
1157265236Sken
1158265236Sken	/*
1159265236Sken	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1160265236Sken	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1161265236Sken	 * replies can be used at once.
1162265236Sken	 */
1163265236Sken	num_replies = max(sc->fqdepth, sc->num_replies);
1164265236Sken
1165265236Sken	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1166265236Sken        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1167265236Sken				4, 0,			/* algnmnt, boundary */
1168265236Sken				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1169265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1170265236Sken				NULL, NULL,		/* filter, filterarg */
1171265236Sken                                rsize,			/* maxsize */
1172265236Sken                                1,			/* nsegments */
1173265236Sken                                rsize,			/* maxsegsize */
1174265236Sken                                0,			/* flags */
1175265236Sken                                NULL, NULL,		/* lockfunc, lockarg */
1176265236Sken                                &sc->reply_dmat)) {
1177265236Sken		device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1178265236Sken		return (ENOMEM);
1179265236Sken        }
1180265236Sken        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1181265236Sken	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1182265236Sken		device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1183265236Sken		return (ENOMEM);
1184265236Sken        }
1185265236Sken        bzero(sc->reply_frames, rsize);
1186265236Sken        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1187265236Sken	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1188265236Sken
1189265236Sken	return (0);
1190265236Sken}
1191265236Sken
1192265236Skenstatic int
1193265236Skenmpr_alloc_requests(struct mpr_softc *sc)
1194265236Sken{
1195265236Sken	struct mpr_command *cm;
1196265236Sken	struct mpr_chain *chain;
1197265236Sken	int i, rsize, nsegs;
1198265236Sken
1199265236Sken	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1200265236Sken        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1201265236Sken				16, 0,			/* algnmnt, boundary */
1202265236Sken				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1203265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1204265236Sken				NULL, NULL,		/* filter, filterarg */
1205265236Sken                                rsize,			/* maxsize */
1206265236Sken                                1,			/* nsegments */
1207265236Sken                                rsize,			/* maxsegsize */
1208265236Sken                                0,			/* flags */
1209265236Sken                                NULL, NULL,		/* lockfunc, lockarg */
1210265236Sken                                &sc->req_dmat)) {
1211265236Sken		device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1212265236Sken		return (ENOMEM);
1213265236Sken        }
1214265236Sken        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1215265236Sken	    BUS_DMA_NOWAIT, &sc->req_map)) {
1216265236Sken		device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1217265236Sken		return (ENOMEM);
1218265236Sken        }
1219265236Sken        bzero(sc->req_frames, rsize);
1220265236Sken        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1221265236Sken	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1222265236Sken
1223299266Sslm	/*
1224299266Sslm	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1225299266Sslm	 * get the size of a Chain Frame.  Previous versions use the size as a
1226299266Sslm	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
1227299266Sslm	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
1228299266Sslm	 * number of 16-byte elelements that can fit in a Chain Frame, which is
1229299266Sslm	 * the size of an IEEE Simple SGE.
1230299266Sslm	 */
1231299266Sslm	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1232299266Sslm		sc->chain_seg_size =
1233299266Sslm		    htole16(sc->facts->IOCMaxChainSegmentSize);
1234299266Sslm		if (sc->chain_seg_size == 0) {
1235299266Sslm			sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1236299266Sslm			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1237299266Sslm		} else {
1238299266Sslm			sc->chain_frame_size = sc->chain_seg_size *
1239299266Sslm			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1240299266Sslm		}
1241299266Sslm	} else {
1242299266Sslm		sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1243299266Sslm	}
1244299266Sslm	rsize = sc->chain_frame_size * sc->max_chains;
1245265236Sken        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1246265236Sken				16, 0,			/* algnmnt, boundary */
1247265236Sken				BUS_SPACE_MAXADDR,	/* lowaddr */
1248265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1249265236Sken				NULL, NULL,		/* filter, filterarg */
1250265236Sken                                rsize,			/* maxsize */
1251265236Sken                                1,			/* nsegments */
1252265236Sken                                rsize,			/* maxsegsize */
1253265236Sken                                0,			/* flags */
1254265236Sken                                NULL, NULL,		/* lockfunc, lockarg */
1255265236Sken                                &sc->chain_dmat)) {
1256265236Sken		device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1257265236Sken		return (ENOMEM);
1258265236Sken        }
1259265236Sken        if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1260265236Sken	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1261265236Sken		device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1262265236Sken		return (ENOMEM);
1263265236Sken        }
1264265236Sken        bzero(sc->chain_frames, rsize);
1265265236Sken        bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1266265236Sken	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1267265236Sken
1268265236Sken	rsize = MPR_SENSE_LEN * sc->num_reqs;
1269265236Sken	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1270265236Sken				1, 0,			/* algnmnt, boundary */
1271265236Sken				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1272265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1273265236Sken				NULL, NULL,		/* filter, filterarg */
1274265236Sken                                rsize,			/* maxsize */
1275265236Sken                                1,			/* nsegments */
1276265236Sken                                rsize,			/* maxsegsize */
1277265236Sken                                0,			/* flags */
1278265236Sken                                NULL, NULL,		/* lockfunc, lockarg */
1279265236Sken                                &sc->sense_dmat)) {
1280265236Sken		device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1281265236Sken		return (ENOMEM);
1282265236Sken        }
1283265236Sken        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1284265236Sken	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1285265236Sken		device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1286265236Sken		return (ENOMEM);
1287265236Sken        }
1288265236Sken        bzero(sc->sense_frames, rsize);
1289265236Sken        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1290265236Sken	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1291265236Sken
1292265236Sken	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1293265236Sken	    M_WAITOK | M_ZERO);
1294265236Sken	if (!sc->chains) {
1295265236Sken		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1296265236Sken		    __func__, __LINE__);
1297265236Sken		return (ENOMEM);
1298265236Sken	}
1299265236Sken	for (i = 0; i < sc->max_chains; i++) {
1300265236Sken		chain = &sc->chains[i];
1301265236Sken		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1302299266Sslm		    i * sc->chain_frame_size);
1303265236Sken		chain->chain_busaddr = sc->chain_busaddr +
1304299266Sslm		    i * sc->chain_frame_size;
1305265236Sken		mpr_free_chain(sc, chain);
1306265236Sken		sc->chain_free_lowwater++;
1307265236Sken	}
1308265236Sken
1309319435Sslm	/*
1310319435Sslm	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1311319435Sslm	 * these devices.
1312319435Sslm	 */
1313319435Sslm	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1314319435Sslm	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1315319435Sslm		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1316319435Sslm			return (ENOMEM);
1317319435Sslm	}
1318319435Sslm
1319265236Sken	/* XXX Need to pick a more precise value */
1320265236Sken	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1321265236Sken        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1322265236Sken				1, 0,			/* algnmnt, boundary */
1323265236Sken				BUS_SPACE_MAXADDR,	/* lowaddr */
1324265236Sken				BUS_SPACE_MAXADDR,	/* highaddr */
1325265236Sken				NULL, NULL,		/* filter, filterarg */
1326265236Sken                                BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1327265236Sken                                nsegs,			/* nsegments */
1328265236Sken                                BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1329265236Sken                                BUS_DMA_ALLOCNOW,	/* flags */
1330265236Sken                                busdma_lock_mutex,	/* lockfunc */
1331265236Sken				&sc->mpr_mtx,		/* lockarg */
1332265236Sken                                &sc->buffer_dmat)) {
1333265236Sken		device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1334265236Sken		return (ENOMEM);
1335265236Sken        }
1336265236Sken
1337265236Sken	/*
1338265236Sken	 * SMID 0 cannot be used as a free command per the firmware spec.
1339265236Sken	 * Just drop that command instead of risking accounting bugs.
1340265236Sken	 */
1341265236Sken	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1342265236Sken	    M_MPR, M_WAITOK | M_ZERO);
1343265236Sken	if (!sc->commands) {
1344265236Sken		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1345265236Sken		    __func__, __LINE__);
1346265236Sken		return (ENOMEM);
1347265236Sken	}
1348265236Sken	for (i = 1; i < sc->num_reqs; i++) {
1349265236Sken		cm = &sc->commands[i];
1350265236Sken		cm->cm_req = sc->req_frames +
1351265236Sken		    i * sc->facts->IOCRequestFrameSize * 4;
1352265236Sken		cm->cm_req_busaddr = sc->req_busaddr +
1353265236Sken		    i * sc->facts->IOCRequestFrameSize * 4;
1354265236Sken		cm->cm_sense = &sc->sense_frames[i];
1355265236Sken		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1356265236Sken		cm->cm_desc.Default.SMID = i;
1357265236Sken		cm->cm_sc = sc;
1358265236Sken		TAILQ_INIT(&cm->cm_chain_list);
1359319435Sslm		TAILQ_INIT(&cm->cm_prp_page_list);
1360265236Sken		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1361265236Sken
1362265236Sken		/* XXX Is a failure here a critical problem? */
1363319435Sslm		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1364319435Sslm		    == 0) {
1365265236Sken			if (i <= sc->facts->HighPriorityCredit)
1366265236Sken				mpr_free_high_priority_command(sc, cm);
1367265236Sken			else
1368265236Sken				mpr_free_command(sc, cm);
1369319435Sslm		} else {
1370265236Sken			panic("failed to allocate command %d\n", i);
1371265236Sken			sc->num_reqs = i;
1372265236Sken			break;
1373265236Sken		}
1374265236Sken	}
1375265236Sken
1376265236Sken	return (0);
1377265236Sken}
1378265236Sken
1379319435Sslm/*
1380319435Sslm * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1381319435Sslm * which are scatter/gather lists for NVMe devices.
1382319435Sslm *
1383319435Sslm * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1384319435Sslm * and translated by FW.
1385319435Sslm *
1386319435Sslm * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1387319435Sslm */
1388265236Skenstatic int
1389319435Sslmmpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1390319435Sslm{
1391319435Sslm	int PRPs_per_page, PRPs_required, pages_required;
1392319435Sslm	int rsize, i;
1393319435Sslm	struct mpr_prp_page *prp_page;
1394319435Sslm
1395319435Sslm	/*
1396319435Sslm	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1397319435Sslm	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1398319435Sslm	 * MAX_IO_SIZE / PAGE_SIZE = 256
1399319435Sslm	 *
1400319435Sslm	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1401319435Sslm	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1402319435Sslm	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1403319435Sslm	 *
1404319435Sslm	 * Each of these buffers will need to be contiguous. For simplicity,
1405319435Sslm	 * only one buffer is allocated here, which has all of the space
1406319435Sslm	 * required for the NVMe Queue Depth. If there are problems allocating
1407319435Sslm	 * this one buffer, this function will need to change to allocate
1408319435Sslm	 * individual, contiguous NVME_QDEPTH buffers.
1409319435Sslm	 *
1410319435Sslm	 * The real calculation will use the real max io size. Above is just an
1411319435Sslm	 * example.
1412319435Sslm	 *
1413319435Sslm	 */
1414319435Sslm	PRPs_required = sc->maxio / PAGE_SIZE;
1415319435Sslm	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1416319435Sslm	pages_required = (PRPs_required / PRPs_per_page) + 1;
1417319435Sslm
1418319435Sslm	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1419319435Sslm	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1420319435Sslm	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1421319435Sslm				4, 0,			/* algnmnt, boundary */
1422319435Sslm				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1423319435Sslm				BUS_SPACE_MAXADDR,	/* highaddr */
1424319435Sslm				NULL, NULL,		/* filter, filterarg */
1425319435Sslm				rsize,			/* maxsize */
1426319435Sslm				1,			/* nsegments */
1427319435Sslm				rsize,			/* maxsegsize */
1428319435Sslm				0,			/* flags */
1429319435Sslm				NULL, NULL,		/* lockfunc, lockarg */
1430319435Sslm				&sc->prp_page_dmat)) {
1431319435Sslm		device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP DMA "
1432319435Sslm		    "tag\n");
1433319435Sslm		return (ENOMEM);
1434319435Sslm	}
1435319435Sslm	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1436319435Sslm	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1437319435Sslm		device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP memory\n");
1438319435Sslm		return (ENOMEM);
1439319435Sslm	}
1440319435Sslm	bzero(sc->prp_pages, rsize);
1441319435Sslm	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1442319435Sslm	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1443319435Sslm
1444319435Sslm	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1445319435Sslm	    M_WAITOK | M_ZERO);
1446319435Sslm	for (i = 0; i < NVME_QDEPTH; i++) {
1447319435Sslm		prp_page = &sc->prps[i];
1448319435Sslm		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1449319435Sslm		    i * sc->prp_buffer_size);
1450319435Sslm		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1451319435Sslm		    i * sc->prp_buffer_size);
1452319435Sslm		mpr_free_prp_page(sc, prp_page);
1453319435Sslm		sc->prp_pages_free_lowwater++;
1454319435Sslm	}
1455319435Sslm
1456319435Sslm	return (0);
1457319435Sslm}
1458319435Sslm
1459319435Sslmstatic int
1460265236Skenmpr_init_queues(struct mpr_softc *sc)
1461265236Sken{
1462265236Sken	int i;
1463265236Sken
1464265236Sken	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1465265236Sken
1466265236Sken	/*
1467265236Sken	 * According to the spec, we need to use one less reply than we
1468265236Sken	 * have space for on the queue.  So sc->num_replies (the number we
1469265236Sken	 * use) should be less than sc->fqdepth (allocated size).
1470265236Sken	 */
1471265236Sken	if (sc->num_replies >= sc->fqdepth)
1472265236Sken		return (EINVAL);
1473265236Sken
1474265236Sken	/*
1475265236Sken	 * Initialize all of the free queue entries.
1476265236Sken	 */
1477319435Sslm	for (i = 0; i < sc->fqdepth; i++) {
1478319435Sslm		sc->free_queue[i] = sc->reply_busaddr +
1479319435Sslm		    (i * sc->facts->ReplyFrameSize * 4);
1480319435Sslm	}
1481265236Sken	sc->replyfreeindex = sc->num_replies;
1482265236Sken
1483265236Sken	return (0);
1484265236Sken}
1485265236Sken
1486265236Sken/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1487265236Sken * Next are the global settings, if they exist.  Highest are the per-unit
1488265236Sken * settings, if they exist.
1489265236Sken */
1490322658Skenvoid
1491265236Skenmpr_get_tunables(struct mpr_softc *sc)
1492265236Sken{
1493265236Sken	char tmpstr[80];
1494265236Sken
1495265236Sken	/* XXX default to some debugging for now */
1496265236Sken	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1497265236Sken	sc->disable_msix = 0;
1498265236Sken	sc->disable_msi = 0;
1499265236Sken	sc->max_chains = MPR_CHAIN_FRAMES;
1500303029Sslm	sc->max_io_pages = MPR_MAXIO_PAGES;
1501283661Sslm	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1502283661Sslm	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1503319435Sslm	sc->use_phynum = 1;
1504265236Sken
1505265236Sken	/*
1506265236Sken	 * Grab the global variables.
1507265236Sken	 */
1508265236Sken	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1509265236Sken	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1510265236Sken	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1511265236Sken	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1512303029Sslm	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1513283661Sslm	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1514283661Sslm	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1515319435Sslm	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1516265236Sken
1517265236Sken	/* Grab the unit-instance variables */
1518265236Sken	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1519265236Sken	    device_get_unit(sc->mpr_dev));
1520265236Sken	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1521265236Sken
1522265236Sken	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1523265236Sken	    device_get_unit(sc->mpr_dev));
1524265236Sken	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1525265236Sken
1526265236Sken	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1527265236Sken	    device_get_unit(sc->mpr_dev));
1528265236Sken	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1529265236Sken
1530265236Sken	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1531265236Sken	    device_get_unit(sc->mpr_dev));
1532265236Sken	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1533265236Sken
1534303029Sslm	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1535303029Sslm	    device_get_unit(sc->mpr_dev));
1536303029Sslm	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1537303029Sslm
1538265236Sken	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1539265236Sken	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1540265236Sken	    device_get_unit(sc->mpr_dev));
1541265236Sken	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1542283661Sslm
1543283661Sslm	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1544283661Sslm	    device_get_unit(sc->mpr_dev));
1545283661Sslm	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1546283661Sslm
1547283661Sslm	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1548283661Sslm	    device_get_unit(sc->mpr_dev));
1549283661Sslm	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1550319435Sslm
1551319435Sslm	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1552319435Sslm	    device_get_unit(sc->mpr_dev));
1553319435Sslm	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1554265236Sken}
1555265236Sken
1556265236Skenstatic void
1557265236Skenmpr_setup_sysctl(struct mpr_softc *sc)
1558265236Sken{
1559265236Sken	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1560265236Sken	struct sysctl_oid	*sysctl_tree = NULL;
1561265236Sken	char tmpstr[80], tmpstr2[80];
1562265236Sken
1563265236Sken	/*
1564265236Sken	 * Setup the sysctl variable so the user can change the debug level
1565265236Sken	 * on the fly.
1566265236Sken	 */
1567265236Sken	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1568265236Sken	    device_get_unit(sc->mpr_dev));
1569265236Sken	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1570265236Sken
1571265236Sken	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1572265236Sken	if (sysctl_ctx != NULL)
1573265236Sken		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1574265236Sken
1575265236Sken	if (sysctl_tree == NULL) {
1576265236Sken		sysctl_ctx_init(&sc->sysctl_ctx);
1577265236Sken		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1578265236Sken		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1579265236Sken		    CTLFLAG_RD, 0, tmpstr);
1580265236Sken		if (sc->sysctl_tree == NULL)
1581265236Sken			return;
1582265236Sken		sysctl_ctx = &sc->sysctl_ctx;
1583265236Sken		sysctl_tree = sc->sysctl_tree;
1584265236Sken	}
1585265236Sken
1586265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1587265236Sken	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1588265236Sken	    "mpr debug level");
1589265236Sken
1590265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1591265236Sken	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1592265236Sken	    "Disable the use of MSI-X interrupts");
1593265236Sken
1594265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1595265236Sken	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1596265236Sken	    "Disable the use of MSI interrupts");
1597265236Sken
1598265236Sken	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1599273377Shselasky	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1600265236Sken	    strlen(sc->fw_version), "firmware version");
1601265236Sken
1602265236Sken	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1603265236Sken	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1604265236Sken	    strlen(MPR_DRIVER_VERSION), "driver version");
1605265236Sken
1606265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1607265236Sken	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1608265236Sken	    &sc->io_cmds_active, 0, "number of currently active commands");
1609265236Sken
1610265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1611265236Sken	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1612265236Sken	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1613265236Sken
1614265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1615265236Sken	    OID_AUTO, "chain_free", CTLFLAG_RD,
1616265236Sken	    &sc->chain_free, 0, "number of free chain elements");
1617265236Sken
1618265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1619265236Sken	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1620265236Sken	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1621265236Sken
1622265236Sken	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1623265236Sken	    OID_AUTO, "max_chains", CTLFLAG_RD,
1624265236Sken	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1625265236Sken
1626283661Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1627303029Sslm	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1628303029Sslm	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1629303029Sslm	    "IOCFacts)");
1630303029Sslm
1631303029Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1632283661Sslm	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1633283661Sslm	    "enable SSU to SATA SSD/HDD at shutdown");
1634283661Sslm
1635265236Sken	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1636265236Sken	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1637265236Sken	    &sc->chain_alloc_fail, "chain allocation failures");
1638283661Sslm
1639283661Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1640283661Sslm	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1641283661Sslm	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1642283661Sslm	    "spinup after SATA ID error");
1643319435Sslm
1644319435Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1645319435Sslm	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1646319435Sslm	    "Use the phy number for enumeration");
1647319435Sslm
1648319435Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1649319435Sslm	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1650319435Sslm	    &sc->prp_pages_free, 0, "number of free PRP pages");
1651319435Sslm
1652319435Sslm	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1653319435Sslm	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1654319435Sslm	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1655319435Sslm
1656319435Sslm	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1657319435Sslm	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1658319435Sslm	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1659265236Sken}
1660265236Sken
1661265236Skenint
1662265236Skenmpr_attach(struct mpr_softc *sc)
1663265236Sken{
1664265236Sken	int error;
1665265236Sken
1666265236Sken	MPR_FUNCTRACE(sc);
1667265236Sken
1668265236Sken	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1669265236Sken	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1670319446Sslm	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
1671265236Sken	TAILQ_INIT(&sc->event_list);
1672265236Sken	timevalclear(&sc->lastfail);
1673265236Sken
1674265236Sken	if ((error = mpr_transition_ready(sc)) != 0) {
1675265236Sken		mpr_printf(sc, "%s failed to transition ready\n", __func__);
1676265236Sken		return (error);
1677265236Sken	}
1678265236Sken
1679265236Sken	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1680265236Sken	    M_ZERO|M_NOWAIT);
1681265236Sken	if (!sc->facts) {
1682265236Sken		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1683265236Sken		    __func__, __LINE__);
1684265236Sken		return (ENOMEM);
1685265236Sken	}
1686265236Sken
1687265236Sken	/*
1688265236Sken	 * Get IOC Facts and allocate all structures based on this information.
1689265236Sken	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1690265236Sken	 * Facts. If relevant values have changed in IOC Facts, this function
1691265236Sken	 * will free all of the memory based on IOC Facts and reallocate that
1692265236Sken	 * memory.  If this fails, any allocated memory should already be freed.
1693265236Sken	 */
1694265236Sken	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1695265236Sken		mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1696265236Sken		    "failed with error %d\n", __func__, error);
1697265236Sken		return (error);
1698265236Sken	}
1699265236Sken
1700265236Sken	/* Start the periodic watchdog check on the IOC Doorbell */
1701265236Sken	mpr_periodic(sc);
1702265236Sken
1703265236Sken	/*
1704265236Sken	 * The portenable will kick off discovery events that will drive the
1705265236Sken	 * rest of the initialization process.  The CAM/SAS module will
1706265236Sken	 * hold up the boot sequence until discovery is complete.
1707265236Sken	 */
1708265236Sken	sc->mpr_ich.ich_func = mpr_startup;
1709265236Sken	sc->mpr_ich.ich_arg = sc;
1710265236Sken	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1711265236Sken		mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1712265236Sken		error = EINVAL;
1713265236Sken	}
1714265236Sken
1715265236Sken	/*
1716265236Sken	 * Allow IR to shutdown gracefully when shutdown occurs.
1717265236Sken	 */
1718265236Sken	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1719265236Sken	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1720265236Sken
1721265236Sken	if (sc->shutdown_eh == NULL)
1722265236Sken		mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1723265236Sken		    "failed\n");
1724265236Sken
1725265236Sken	mpr_setup_sysctl(sc);
1726265236Sken
1727265236Sken	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1728265236Sken
1729265236Sken	return (error);
1730265236Sken}
1731265236Sken
1732265236Sken/* Run through any late-start handlers. */
1733265236Skenstatic void
1734265236Skenmpr_startup(void *arg)
1735265236Sken{
1736265236Sken	struct mpr_softc *sc;
1737265236Sken
1738265236Sken	sc = (struct mpr_softc *)arg;
1739265236Sken
1740265236Sken	mpr_lock(sc);
1741265236Sken	mpr_unmask_intr(sc);
1742265236Sken
1743265236Sken	/* initialize device mapping tables */
1744265236Sken	mpr_base_static_config_pages(sc);
1745265236Sken	mpr_mapping_initialize(sc);
1746265236Sken	mprsas_startup(sc);
1747265236Sken	mpr_unlock(sc);
1748265236Sken}
1749265236Sken
1750265236Sken/* Periodic watchdog.  Is called with the driver lock already held. */
1751265236Skenstatic void
1752265236Skenmpr_periodic(void *arg)
1753265236Sken{
1754265236Sken	struct mpr_softc *sc;
1755265236Sken	uint32_t db;
1756265236Sken
1757265236Sken	sc = (struct mpr_softc *)arg;
1758265236Sken	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1759265236Sken		return;
1760265236Sken
1761265236Sken	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1762265236Sken	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1763265236Sken		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1764265236Sken		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1765265236Sken			panic("TEMPERATURE FAULT: STOPPING.");
1766265236Sken		}
1767265236Sken		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1768265236Sken		mpr_reinit(sc);
1769265236Sken	}
1770265236Sken
1771265236Sken	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1772265236Sken}
1773265236Sken
1774265236Skenstatic void
1775265236Skenmpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1776265236Sken    MPI2_EVENT_NOTIFICATION_REPLY *event)
1777265236Sken{
1778265236Sken	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1779265236Sken
1780322658Sken	MPR_DPRINT_EVENT(sc, generic, event);
1781265236Sken
1782265236Sken	switch (event->Event) {
1783265236Sken	case MPI2_EVENT_LOG_DATA:
1784265236Sken		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1785265236Sken		if (sc->mpr_debug & MPR_EVENT)
1786265236Sken			hexdump(event->EventData, event->EventDataLength, NULL,
1787265236Sken			    0);
1788265236Sken		break;
1789265236Sken	case MPI2_EVENT_LOG_ENTRY_ADDED:
1790265236Sken		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1791265236Sken		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1792265236Sken		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1793265236Sken		     entry->LogSequence);
1794265236Sken		break;
1795265236Sken	default:
1796265236Sken		break;
1797265236Sken	}
1798265236Sken	return;
1799265236Sken}
1800265236Sken
1801265236Skenstatic int
1802265236Skenmpr_attach_log(struct mpr_softc *sc)
1803265236Sken{
1804265236Sken	uint8_t events[16];
1805265236Sken
1806265236Sken	bzero(events, 16);
1807265236Sken	setbit(events, MPI2_EVENT_LOG_DATA);
1808265236Sken	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1809265236Sken
1810265236Sken	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1811265236Sken	    &sc->mpr_log_eh);
1812265236Sken
1813265236Sken	return (0);
1814265236Sken}
1815265236Sken
1816265236Skenstatic int
1817265236Skenmpr_detach_log(struct mpr_softc *sc)
1818265236Sken{
1819265236Sken
1820265236Sken	if (sc->mpr_log_eh != NULL)
1821265236Sken		mpr_deregister_events(sc, sc->mpr_log_eh);
1822265236Sken	return (0);
1823265236Sken}
1824265236Sken
1825265236Sken/*
1826265236Sken * Free all of the driver resources and detach submodules.  Should be called
1827265236Sken * without the lock held.
1828265236Sken */
1829265236Skenint
1830265236Skenmpr_free(struct mpr_softc *sc)
1831265236Sken{
1832265236Sken	int error;
1833265236Sken
1834265236Sken	/* Turn off the watchdog */
1835265236Sken	mpr_lock(sc);
1836265236Sken	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1837265236Sken	mpr_unlock(sc);
1838265236Sken	/* Lock must not be held for this */
1839265236Sken	callout_drain(&sc->periodic);
1840319446Sslm	callout_drain(&sc->device_check_callout);
1841265236Sken
1842265236Sken	if (((error = mpr_detach_log(sc)) != 0) ||
1843265236Sken	    ((error = mpr_detach_sas(sc)) != 0))
1844265236Sken		return (error);
1845265236Sken
1846265236Sken	mpr_detach_user(sc);
1847265236Sken
1848265236Sken	/* Put the IOC back in the READY state. */
1849265236Sken	mpr_lock(sc);
1850265236Sken	if ((error = mpr_transition_ready(sc)) != 0) {
1851265236Sken		mpr_unlock(sc);
1852265236Sken		return (error);
1853265236Sken	}
1854265236Sken	mpr_unlock(sc);
1855265236Sken
1856265236Sken	if (sc->facts != NULL)
1857265236Sken		free(sc->facts, M_MPR);
1858265236Sken
1859265236Sken	/*
1860265236Sken	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1861265236Sken	 * to free these buffers too.
1862265236Sken	 */
1863265236Sken	mpr_iocfacts_free(sc);
1864265236Sken
1865265236Sken	if (sc->sysctl_tree != NULL)
1866265236Sken		sysctl_ctx_free(&sc->sysctl_ctx);
1867265236Sken
1868265236Sken	/* Deregister the shutdown function */
1869265236Sken	if (sc->shutdown_eh != NULL)
1870265236Sken		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1871265236Sken
1872265236Sken	mtx_destroy(&sc->mpr_mtx);
1873265236Sken
1874265236Sken	return (0);
1875265236Sken}
1876265236Sken
1877265236Skenstatic __inline void
1878265236Skenmpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1879265236Sken{
1880265236Sken	MPR_FUNCTRACE(sc);
1881265236Sken
1882265236Sken	if (cm == NULL) {
1883265236Sken		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1884265236Sken		return;
1885265236Sken	}
1886265236Sken
1887265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1888265236Sken		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1889265236Sken
1890265236Sken	if (cm->cm_complete != NULL) {
1891265236Sken		mpr_dprint(sc, MPR_TRACE,
1892299265Sslm		    "%s cm %p calling cm_complete %p data %p reply %p\n",
1893299265Sslm		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
1894299265Sslm		    cm->cm_reply);
1895265236Sken		cm->cm_complete(sc, cm);
1896265236Sken	}
1897265236Sken
1898265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1899265236Sken		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1900265236Sken		wakeup(cm);
1901265236Sken	}
1902265236Sken
1903265236Sken	if (sc->io_cmds_active != 0) {
1904265236Sken		sc->io_cmds_active--;
1905265236Sken	} else {
1906265236Sken		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1907265236Sken		    "out of sync - resynching to 0\n");
1908265236Sken	}
1909265236Sken}
1910265236Sken
1911265236Skenstatic void
1912265236Skenmpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1913265236Sken{
1914265236Sken	union loginfo_type {
1915265236Sken		u32	loginfo;
1916265236Sken		struct {
1917265236Sken			u32	subcode:16;
1918265236Sken			u32	code:8;
1919265236Sken			u32	originator:4;
1920265236Sken			u32	bus_type:4;
1921265236Sken		} dw;
1922265236Sken	};
1923265236Sken	union loginfo_type sas_loginfo;
1924265236Sken	char *originator_str = NULL;
1925265236Sken
1926265236Sken	sas_loginfo.loginfo = log_info;
1927265236Sken	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1928265236Sken		return;
1929265236Sken
1930265236Sken	/* each nexus loss loginfo */
1931265236Sken	if (log_info == 0x31170000)
1932265236Sken		return;
1933265236Sken
1934265236Sken	/* eat the loginfos associated with task aborts */
1935265236Sken	if ((log_info == 30050000) || (log_info == 0x31140000) ||
1936265236Sken	    (log_info == 0x31130000))
1937265236Sken		return;
1938265236Sken
1939265236Sken	switch (sas_loginfo.dw.originator) {
1940265236Sken	case 0:
1941265236Sken		originator_str = "IOP";
1942265236Sken		break;
1943265236Sken	case 1:
1944265236Sken		originator_str = "PL";
1945265236Sken		break;
1946265236Sken	case 2:
1947265236Sken		originator_str = "IR";
1948265236Sken		break;
1949265236Sken	}
1950265236Sken
1951299268Sslm	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
1952299265Sslm	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
1953299265Sslm	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1954265236Sken}
1955265236Sken
1956265236Skenstatic void
1957265236Skenmpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1958265236Sken{
1959265236Sken	MPI2DefaultReply_t *mpi_reply;
1960265236Sken	u16 sc_status;
1961265236Sken
1962265236Sken	mpi_reply = (MPI2DefaultReply_t*)reply;
1963265236Sken	sc_status = le16toh(mpi_reply->IOCStatus);
1964265236Sken	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1965265236Sken		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1966265236Sken}
1967265236Sken
1968265236Skenvoid
1969265236Skenmpr_intr(void *data)
1970265236Sken{
1971265236Sken	struct mpr_softc *sc;
1972265236Sken	uint32_t status;
1973265236Sken
1974265236Sken	sc = (struct mpr_softc *)data;
1975265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1976265236Sken
1977265236Sken	/*
1978265236Sken	 * Check interrupt status register to flush the bus.  This is
1979265236Sken	 * needed for both INTx interrupts and driver-driven polling
1980265236Sken	 */
1981265236Sken	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1982265236Sken	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1983265236Sken		return;
1984265236Sken
1985265236Sken	mpr_lock(sc);
1986265236Sken	mpr_intr_locked(data);
1987265236Sken	mpr_unlock(sc);
1988265236Sken	return;
1989265236Sken}
1990265236Sken
1991265236Sken/*
1992265236Sken * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1993265236Sken * chip.  Hopefully this theory is correct.
1994265236Sken */
1995265236Skenvoid
1996265236Skenmpr_intr_msi(void *data)
1997265236Sken{
1998265236Sken	struct mpr_softc *sc;
1999265236Sken
2000265236Sken	sc = (struct mpr_softc *)data;
2001265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2002265236Sken	mpr_lock(sc);
2003265236Sken	mpr_intr_locked(data);
2004265236Sken	mpr_unlock(sc);
2005265236Sken	return;
2006265236Sken}
2007265236Sken
2008265236Sken/*
2009265236Sken * The locking is overly broad and simplistic, but easy to deal with for now.
2010265236Sken */
2011265236Skenvoid
2012265236Skenmpr_intr_locked(void *data)
2013265236Sken{
2014265236Sken	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2015265236Sken	struct mpr_softc *sc;
2016265236Sken	struct mpr_command *cm = NULL;
2017265236Sken	uint8_t flags;
2018265236Sken	u_int pq;
2019265236Sken	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2020265236Sken	mpr_fw_diagnostic_buffer_t *pBuffer;
2021265236Sken
2022265236Sken	sc = (struct mpr_softc *)data;
2023265236Sken
2024265236Sken	pq = sc->replypostindex;
2025265236Sken	mpr_dprint(sc, MPR_TRACE,
2026265236Sken	    "%s sc %p starting with replypostindex %u\n",
2027265236Sken	    __func__, sc, sc->replypostindex);
2028265236Sken
2029265236Sken	for ( ;; ) {
2030265236Sken		cm = NULL;
2031265236Sken		desc = &sc->post_queue[sc->replypostindex];
2032265236Sken		flags = desc->Default.ReplyFlags &
2033265236Sken		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2034265236Sken		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2035265236Sken		    (le32toh(desc->Words.High) == 0xffffffff))
2036265236Sken			break;
2037265236Sken
2038265236Sken		/* increment the replypostindex now, so that event handlers
2039265236Sken		 * and cm completion handlers which decide to do a diag
2040265236Sken		 * reset can zero it without it getting incremented again
2041265236Sken		 * afterwards, and we break out of this loop on the next
2042265236Sken		 * iteration since the reply post queue has been cleared to
2043265236Sken		 * 0xFF and all descriptors look unused (which they are).
2044265236Sken		 */
2045265236Sken		if (++sc->replypostindex >= sc->pqdepth)
2046265236Sken			sc->replypostindex = 0;
2047265236Sken
2048265236Sken		switch (flags) {
2049265236Sken		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2050265236Sken		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2051319435Sslm		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2052265236Sken			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2053265236Sken			cm->cm_reply = NULL;
2054265236Sken			break;
2055265236Sken		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2056265236Sken		{
2057265236Sken			uint32_t baddr;
2058265236Sken			uint8_t *reply;
2059265236Sken
2060265236Sken			/*
2061265236Sken			 * Re-compose the reply address from the address
2062265236Sken			 * sent back from the chip.  The ReplyFrameAddress
2063265236Sken			 * is the lower 32 bits of the physical address of
2064265236Sken			 * particular reply frame.  Convert that address to
2065265236Sken			 * host format, and then use that to provide the
2066265236Sken			 * offset against the virtual address base
2067265236Sken			 * (sc->reply_frames).
2068265236Sken			 */
2069265236Sken			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2070265236Sken			reply = sc->reply_frames +
2071265236Sken				(baddr - ((uint32_t)sc->reply_busaddr));
2072265236Sken			/*
2073265236Sken			 * Make sure the reply we got back is in a valid
2074265236Sken			 * range.  If not, go ahead and panic here, since
2075265236Sken			 * we'll probably panic as soon as we deference the
2076265236Sken			 * reply pointer anyway.
2077265236Sken			 */
2078265236Sken			if ((reply < sc->reply_frames)
2079265236Sken			 || (reply > (sc->reply_frames +
2080265236Sken			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
2081265236Sken				printf("%s: WARNING: reply %p out of range!\n",
2082265236Sken				       __func__, reply);
2083265236Sken				printf("%s: reply_frames %p, fqdepth %d, "
2084265236Sken				       "frame size %d\n", __func__,
2085265236Sken				       sc->reply_frames, sc->fqdepth,
2086265236Sken				       sc->facts->ReplyFrameSize * 4);
2087265236Sken				printf("%s: baddr %#x,\n", __func__, baddr);
2088265236Sken				/* LSI-TODO. See Linux Code for Graceful exit */
2089265236Sken				panic("Reply address out of range");
2090265236Sken			}
2091265236Sken			if (le16toh(desc->AddressReply.SMID) == 0) {
2092265236Sken				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2093265236Sken				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2094265236Sken					/*
2095265236Sken					 * If SMID is 0 for Diag Buffer Post,
2096265236Sken					 * this implies that the reply is due to
2097265236Sken					 * a release function with a status that
2098265236Sken					 * the buffer has been released.  Set
2099265236Sken					 * the buffer flags accordingly.
2100265236Sken					 */
2101265236Sken					rel_rep =
2102265236Sken					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2103299267Sslm					if ((le16toh(rel_rep->IOCStatus) &
2104299267Sslm					    MPI2_IOCSTATUS_MASK) ==
2105265236Sken					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2106299267Sslm					{
2107265236Sken						pBuffer =
2108265236Sken						    &sc->fw_diag_buffer_list[
2109265236Sken						    rel_rep->BufferType];
2110265236Sken						pBuffer->valid_data = TRUE;
2111265236Sken						pBuffer->owned_by_firmware =
2112265236Sken						    FALSE;
2113265236Sken						pBuffer->immediate = FALSE;
2114265236Sken					}
2115265236Sken				} else
2116265236Sken					mpr_dispatch_event(sc, baddr,
2117265236Sken					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2118265236Sken					    reply);
2119265236Sken			} else {
2120265236Sken				cm = &sc->commands[
2121265236Sken				    le16toh(desc->AddressReply.SMID)];
2122265236Sken				cm->cm_reply = reply;
2123265236Sken				cm->cm_reply_data =
2124265236Sken				    le32toh(desc->AddressReply.
2125265236Sken				    ReplyFrameAddress);
2126265236Sken			}
2127265236Sken			break;
2128265236Sken		}
2129265236Sken		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2130265236Sken		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2131265236Sken		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2132265236Sken		default:
2133265236Sken			/* Unhandled */
2134265236Sken			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2135265236Sken			    desc->Default.ReplyFlags);
2136265236Sken			cm = NULL;
2137265236Sken			break;
2138265236Sken		}
2139265236Sken
2140265236Sken		if (cm != NULL) {
2141265236Sken			// Print Error reply frame
2142265236Sken			if (cm->cm_reply)
2143265236Sken				mpr_display_reply_info(sc,cm->cm_reply);
2144265236Sken			mpr_complete_command(sc, cm);
2145265236Sken		}
2146265236Sken
2147265236Sken		desc->Words.Low = 0xffffffff;
2148265236Sken		desc->Words.High = 0xffffffff;
2149265236Sken	}
2150265236Sken
2151265236Sken	if (pq != sc->replypostindex) {
2152265236Sken		mpr_dprint(sc, MPR_TRACE,
2153265236Sken		    "%s sc %p writing postindex %d\n",
2154265236Sken		    __func__, sc, sc->replypostindex);
2155265236Sken		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2156265236Sken		    sc->replypostindex);
2157265236Sken	}
2158265236Sken
2159265236Sken	return;
2160265236Sken}
2161265236Sken
2162265236Skenstatic void
2163265236Skenmpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2164265236Sken    MPI2_EVENT_NOTIFICATION_REPLY *reply)
2165265236Sken{
2166265236Sken	struct mpr_event_handle *eh;
2167265236Sken	int event, handled = 0;
2168265236Sken
2169265236Sken	event = le16toh(reply->Event);
2170265236Sken	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2171265236Sken		if (isset(eh->mask, event)) {
2172265236Sken			eh->callback(sc, data, reply);
2173265236Sken			handled++;
2174265236Sken		}
2175265236Sken	}
2176265236Sken
2177265236Sken	if (handled == 0)
2178265236Sken		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2179265236Sken		    le16toh(event));
2180265236Sken
2181265236Sken	/*
2182265236Sken	 * This is the only place that the event/reply should be freed.
2183265236Sken	 * Anything wanting to hold onto the event data should have
2184265236Sken	 * already copied it into their own storage.
2185265236Sken	 */
2186265236Sken	mpr_free_reply(sc, data);
2187265236Sken}
2188265236Sken
2189265236Skenstatic void
2190265236Skenmpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2191265236Sken{
2192265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2193265236Sken
2194265236Sken	if (cm->cm_reply)
2195322658Sken		MPR_DPRINT_EVENT(sc, generic,
2196265236Sken			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2197265236Sken
2198265236Sken	mpr_free_command(sc, cm);
2199265236Sken
2200265236Sken	/* next, send a port enable */
2201265236Sken	mprsas_startup(sc);
2202265236Sken}
2203265236Sken
2204265236Sken/*
2205265236Sken * For both register_events and update_events, the caller supplies a bitmap
2206265236Sken * of events that it _wants_.  These functions then turn that into a bitmask
2207265236Sken * suitable for the controller.
2208265236Sken */
2209265236Skenint
2210265236Skenmpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2211265236Sken    mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2212265236Sken{
2213265236Sken	struct mpr_event_handle *eh;
2214265236Sken	int error = 0;
2215265236Sken
2216265236Sken	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2217265236Sken	if (!eh) {
2218265236Sken		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2219265236Sken		    __func__, __LINE__);
2220265236Sken		return (ENOMEM);
2221265236Sken	}
2222265236Sken	eh->callback = cb;
2223265236Sken	eh->data = data;
2224265236Sken	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2225265236Sken	if (mask != NULL)
2226265236Sken		error = mpr_update_events(sc, eh, mask);
2227265236Sken	*handle = eh;
2228265236Sken
2229265236Sken	return (error);
2230265236Sken}
2231265236Sken
2232265236Skenint
2233265236Skenmpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2234265236Sken    uint8_t *mask)
2235265236Sken{
2236265236Sken	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2237322658Sken	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2238322658Sken	struct mpr_command *cm = NULL;
2239265236Sken	struct mpr_event_handle *eh;
2240265236Sken	int error, i;
2241265236Sken
2242265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2243265236Sken
2244265236Sken	if ((mask != NULL) && (handle != NULL))
2245265236Sken		bcopy(mask, &handle->mask[0], 16);
2246265236Sken	memset(sc->event_mask, 0xff, 16);
2247265236Sken
2248265236Sken	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2249265236Sken		for (i = 0; i < 16; i++)
2250265236Sken			sc->event_mask[i] &= ~eh->mask[i];
2251265236Sken	}
2252265236Sken
2253265236Sken	if ((cm = mpr_alloc_command(sc)) == NULL)
2254265236Sken		return (EBUSY);
2255265236Sken	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2256265236Sken	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2257265236Sken	evtreq->MsgFlags = 0;
2258265236Sken	evtreq->SASBroadcastPrimitiveMasks = 0;
2259265236Sken#ifdef MPR_DEBUG_ALL_EVENTS
2260265236Sken	{
2261265236Sken		u_char fullmask[16];
2262265236Sken		memset(fullmask, 0x00, 16);
2263265236Sken		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2264265236Sken	}
2265265236Sken#else
2266265236Sken		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2267265236Sken#endif
2268265236Sken	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2269265236Sken	cm->cm_data = NULL;
2270265236Sken
2271322658Sken	error = mpr_request_polled(sc, &cm);
2272322658Sken	if (cm != NULL)
2273322658Sken		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2274265236Sken	if ((reply == NULL) ||
2275265236Sken	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2276265236Sken		error = ENXIO;
2277265236Sken
2278283661Sslm	if (reply)
2279322658Sken		MPR_DPRINT_EVENT(sc, generic, reply);
2280265236Sken
2281265236Sken	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2282265236Sken
2283322658Sken	if (cm != NULL)
2284322658Sken		mpr_free_command(sc, cm);
2285265236Sken	return (error);
2286265236Sken}
2287265236Sken
2288265236Skenstatic int
2289265236Skenmpr_reregister_events(struct mpr_softc *sc)
2290265236Sken{
2291265236Sken	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2292265236Sken	struct mpr_command *cm;
2293265236Sken	struct mpr_event_handle *eh;
2294265236Sken	int error, i;
2295265236Sken
2296265236Sken	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2297265236Sken
2298265236Sken	/* first, reregister events */
2299265236Sken
2300265236Sken	memset(sc->event_mask, 0xff, 16);
2301265236Sken
2302265236Sken	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2303265236Sken		for (i = 0; i < 16; i++)
2304265236Sken			sc->event_mask[i] &= ~eh->mask[i];
2305265236Sken	}
2306265236Sken
2307265236Sken	if ((cm = mpr_alloc_command(sc)) == NULL)
2308265236Sken		return (EBUSY);
2309265236Sken	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2310265236Sken	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2311265236Sken	evtreq->MsgFlags = 0;
2312265236Sken	evtreq->SASBroadcastPrimitiveMasks = 0;
2313265236Sken#ifdef MPR_DEBUG_ALL_EVENTS
2314265236Sken	{
2315265236Sken		u_char fullmask[16];
2316265236Sken		memset(fullmask, 0x00, 16);
2317265236Sken		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2318265236Sken	}
2319265236Sken#else
2320265236Sken		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2321265236Sken#endif
2322265236Sken	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2323265236Sken	cm->cm_data = NULL;
2324265236Sken	cm->cm_complete = mpr_reregister_events_complete;
2325265236Sken
2326265236Sken	error = mpr_map_command(sc, cm);
2327265236Sken
2328265236Sken	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2329265236Sken	    error);
2330265236Sken	return (error);
2331265236Sken}
2332265236Sken
2333265236Skenint
2334265236Skenmpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2335265236Sken{
2336265236Sken
2337265236Sken	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2338265236Sken	free(handle, M_MPR);
2339265236Sken	return (mpr_update_events(sc, NULL, NULL));
2340265236Sken}
2341265236Sken
2342319435Sslm/**
2343319435Sslm* mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2344319435Sslm* native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2345319435Sslm* of the NVMe message (PRP1). If the data buffer is small enough to be described
2346319435Sslm* entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2347319435Sslm* describe a larger data buffer. If the data buffer is too large to describe
2348319435Sslm* using the two PRP entriess inside the NVMe message, then PRP1 describes the
2349319435Sslm* first data memory segment, and PRP2 contains a pointer to a PRP list located
2350319435Sslm* elsewhere in memory to describe the remaining data memory segments. The PRP
2351319435Sslm* list will be contiguous.
2352319435Sslm
2353319435Sslm* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2354319435Sslm* consists of a list of PRP entries to describe a number of noncontigous
2355319435Sslm* physical memory segments as a single memory buffer, just as a SGL does. Note
2356319435Sslm* however, that this function is only used by the IOCTL call, so the memory
2357319435Sslm* given will be guaranteed to be contiguous. There is no need to translate
2358319435Sslm* non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2359319435Sslm* space that is one page size each.
2360319435Sslm*
2361319435Sslm* Each NVMe message contains two PRP entries. The first (PRP1) either contains
2362319435Sslm* a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2363319435Sslm* the second PRP element if the memory being described fits within 2 PRP
2364319435Sslm* entries, or a PRP list pointer if the PRP spans more than two entries.
2365319435Sslm*
2366319435Sslm* A PRP list pointer contains the address of a PRP list, structured as a linear
2367319435Sslm* array of PRP entries. Each PRP entry in this list describes a segment of
2368319435Sslm* physical memory.
2369319435Sslm*
2370319435Sslm* Each 64-bit PRP entry comprises an address and an offset field. The address
2371319435Sslm* always points to the beginning of a PAGE_SIZE physical memory page, and the
2372319435Sslm* offset describes where within that page the memory segment begins. Only the
2373319435Sslm* first element in a PRP list may contain a non-zero offest, implying that all
2374319435Sslm* memory segments following the first begin at the start of a PAGE_SIZE page.
2375319435Sslm*
2376319435Sslm* Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2377319435Sslm* with exceptions for the first and last elements in the list. If the memory
2378319435Sslm* being described by the list begins at a non-zero offset within the first page,
2379319435Sslm* then the first PRP element will contain a non-zero offset indicating where the
2380319435Sslm* region begins within the page. The last memory segment may end before the end
2381319435Sslm* of the PAGE_SIZE segment, depending upon the overall size of the memory being
2382319435Sslm* described by the PRP list.
2383319435Sslm*
2384319435Sslm* Since PRP entries lack any indication of size, the overall data buffer length
2385319435Sslm* is used to determine where the end of the data memory buffer is located, and
2386319435Sslm* how many PRP entries are required to describe it.
2387319435Sslm*
2388319435Sslm* Returns nothing.
2389319435Sslm*/
2390319435Sslmvoid
2391319435Sslmmpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2392319435Sslm    Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2393319435Sslm    uint32_t data_in_sz, uint32_t data_out_sz)
2394319435Sslm{
2395319435Sslm	int			prp_size = PRP_ENTRY_SIZE;
2396319435Sslm	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2397319435Sslm	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2398319435Sslm	uint32_t		offset, entry_len, page_mask_result, page_mask;
2399319435Sslm	bus_addr_t		paddr;
2400319435Sslm	size_t			length;
2401319435Sslm	struct mpr_prp_page	*prp_page_info = NULL;
2402319435Sslm
2403319435Sslm	/*
2404319435Sslm	 * Not all commands require a data transfer. If no data, just return
2405319435Sslm	 * without constructing any PRP.
2406319435Sslm	 */
2407319435Sslm	if (!data_in_sz && !data_out_sz)
2408319435Sslm		return;
2409319435Sslm
2410319435Sslm	/*
2411319435Sslm	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2412319435Sslm	 * located at a 24 byte offset from the start of the NVMe command. Then
2413319435Sslm	 * set the current PRP entry pointer to PRP1.
2414319435Sslm	 */
2415319435Sslm	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2416319435Sslm	    NVME_CMD_PRP1_OFFSET);
2417319435Sslm	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2418319435Sslm	    NVME_CMD_PRP2_OFFSET);
2419319435Sslm	prp_entry = prp1_entry;
2420319435Sslm
2421319435Sslm	/*
2422319435Sslm	 * For the PRP entries, use the specially allocated buffer of
2423319435Sslm	 * contiguous memory. PRP Page allocation failures should not happen
2424319435Sslm	 * because there should be enough PRP page buffers to account for the
2425319435Sslm	 * possible NVMe QDepth.
2426319435Sslm	 */
2427319435Sslm	prp_page_info = mpr_alloc_prp_page(sc);
2428319435Sslm	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2429319435Sslm	    "used for building a native NVMe SGL.\n", __func__));
2430319435Sslm	prp_page = (uint64_t *)prp_page_info->prp_page;
2431319435Sslm	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2432319435Sslm
2433319435Sslm	/*
2434319435Sslm	 * Insert the allocated PRP page into the command's PRP page list. This
2435319435Sslm	 * will be freed when the command is freed.
2436319435Sslm	 */
2437319435Sslm	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2438319435Sslm
2439319435Sslm	/*
2440319435Sslm	 * Check if we are within 1 entry of a page boundary we don't want our
2441319435Sslm	 * first entry to be a PRP List entry.
2442319435Sslm	 */
2443319435Sslm	page_mask = PAGE_SIZE - 1;
2444319435Sslm	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2445319435Sslm	    page_mask;
2446319435Sslm	if (!page_mask_result)
2447319435Sslm	{
2448319435Sslm		/* Bump up to next page boundary. */
2449319435Sslm		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2450319435Sslm		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2451319435Sslm		    prp_size);
2452319435Sslm	}
2453319435Sslm
2454319435Sslm	/*
2455319435Sslm	 * Set PRP physical pointer, which initially points to the current PRP
2456319435Sslm	 * DMA memory page.
2457319435Sslm	 */
2458319435Sslm	prp_entry_phys = prp_page_phys;
2459319435Sslm
2460319435Sslm	/* Get physical address and length of the data buffer. */
2461319435Sslm	paddr = (bus_addr_t)data;
2462319435Sslm	if (data_in_sz)
2463319435Sslm		length = data_in_sz;
2464319435Sslm	else
2465319435Sslm		length = data_out_sz;
2466319435Sslm
2467319435Sslm	/* Loop while the length is not zero. */
2468319435Sslm	while (length)
2469319435Sslm	{
2470319435Sslm		/*
2471319435Sslm		 * Check if we need to put a list pointer here if we are at page
2472319435Sslm		 * boundary - prp_size (8 bytes).
2473319435Sslm		 */
2474319435Sslm		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2475319435Sslm		    prp_size) & page_mask;
2476319435Sslm		if (!page_mask_result)
2477319435Sslm		{
2478319435Sslm			/*
2479319435Sslm			 * This is the last entry in a PRP List, so we need to
2480319435Sslm			 * put a PRP list pointer here. What this does is:
2481319435Sslm			 *   - bump the current memory pointer to the next
2482319435Sslm			 *     address, which will be the next full page.
2483319435Sslm			 *   - set the PRP Entry to point to that page. This is
2484319435Sslm			 *     now the PRP List pointer.
2485319435Sslm			 *   - bump the PRP Entry pointer the start of the next
2486319435Sslm			 *     page. Since all of this PRP memory is contiguous,
2487319435Sslm			 *     no need to get a new page - it's just the next
2488319435Sslm			 *     address.
2489319435Sslm			 */
2490319435Sslm			prp_entry_phys++;
2491319435Sslm			*prp_entry =
2492319435Sslm			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2493319435Sslm			prp_entry++;
2494319435Sslm		}
2495319435Sslm
2496319435Sslm		/* Need to handle if entry will be part of a page. */
2497319435Sslm		offset = (uint32_t)paddr & page_mask;
2498319435Sslm		entry_len = PAGE_SIZE - offset;
2499319435Sslm
2500319435Sslm		if (prp_entry == prp1_entry)
2501319435Sslm		{
2502319435Sslm			/*
2503319435Sslm			 * Must fill in the first PRP pointer (PRP1) before
2504319435Sslm			 * moving on.
2505319435Sslm			 */
2506319435Sslm			*prp1_entry = htole64((uint64_t)paddr);
2507319435Sslm
2508319435Sslm			/*
2509319435Sslm			 * Now point to the second PRP entry within the
2510319435Sslm			 * command (PRP2).
2511319435Sslm			 */
2512319435Sslm			prp_entry = prp2_entry;
2513319435Sslm		}
2514319435Sslm		else if (prp_entry == prp2_entry)
2515319435Sslm		{
2516319435Sslm			/*
2517319435Sslm			 * Should the PRP2 entry be a PRP List pointer or just a
2518319435Sslm			 * regular PRP pointer? If there is more than one more
2519319435Sslm			 * page of data, must use a PRP List pointer.
2520319435Sslm			 */
2521319435Sslm			if (length > PAGE_SIZE)
2522319435Sslm			{
2523319435Sslm				/*
2524319435Sslm				 * PRP2 will contain a PRP List pointer because
2525319435Sslm				 * more PRP's are needed with this command. The
2526319435Sslm				 * list will start at the beginning of the
2527319435Sslm				 * contiguous buffer.
2528319435Sslm				 */
2529319435Sslm				*prp2_entry =
2530319435Sslm				    htole64(
2531319435Sslm				    (uint64_t)(uintptr_t)prp_entry_phys);
2532319435Sslm
2533319435Sslm				/*
2534319435Sslm				 * The next PRP Entry will be the start of the
2535319435Sslm				 * first PRP List.
2536319435Sslm				 */
2537319435Sslm				prp_entry = prp_page;
2538319435Sslm			}
2539319435Sslm			else
2540319435Sslm			{
2541319435Sslm				/*
2542319435Sslm				 * After this, the PRP Entries are complete.
2543319435Sslm				 * This command uses 2 PRP's and no PRP list.
2544319435Sslm				 */
2545319435Sslm				*prp2_entry = htole64((uint64_t)paddr);
2546319435Sslm			}
2547319435Sslm		}
2548319435Sslm		else
2549319435Sslm		{
2550319435Sslm			/*
2551319435Sslm			 * Put entry in list and bump the addresses.
2552319435Sslm			 *
2553319435Sslm			 * After PRP1 and PRP2 are filled in, this will fill in
2554319435Sslm			 * all remaining PRP entries in a PRP List, one per each
2555319435Sslm			 * time through the loop.
2556319435Sslm			 */
2557319435Sslm			*prp_entry = htole64((uint64_t)paddr);
2558319435Sslm			prp_entry++;
2559319435Sslm			prp_entry_phys++;
2560319435Sslm		}
2561319435Sslm
2562319435Sslm		/*
2563319435Sslm		 * Bump the phys address of the command's data buffer by the
2564319435Sslm		 * entry_len.
2565319435Sslm		 */
2566319435Sslm		paddr += entry_len;
2567319435Sslm
2568319435Sslm		/* Decrement length accounting for last partial page. */
2569319435Sslm		if (entry_len > length)
2570319435Sslm			length = 0;
2571319435Sslm		else
2572319435Sslm			length -= entry_len;
2573319435Sslm	}
2574319435Sslm}
2575319435Sslm
2576265236Sken/*
2577319435Sslm * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2578319435Sslm * determine if the driver needs to build a native SGL. If so, that native SGL
2579319435Sslm * is built in the contiguous buffers allocated especially for PCIe SGL
2580319435Sslm * creation. If the driver will not build a native SGL, return TRUE and a
2581319435Sslm * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2582319435Sslm * only.
2583319435Sslm *
2584319435Sslm * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2585319435Sslm */
2586319435Sslmstatic int
2587319435Sslmmpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2588319435Sslm    bus_dma_segment_t *segs, int segs_left)
2589319435Sslm{
2590319435Sslm	uint32_t		i, sge_dwords, length, offset, entry_len;
2591319435Sslm	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2592319435Sslm	uint32_t		page_mask, page_mask_result, *curr_buff;
2593319435Sslm	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2594319435Sslm	uint32_t		first_page_data_size, end_residual;
2595319435Sslm	uint64_t		*msg_phys;
2596319435Sslm	bus_addr_t		paddr;
2597319435Sslm	int			build_native_sgl = 0, first_prp_entry;
2598319435Sslm	int			prp_size = PRP_ENTRY_SIZE;
2599319435Sslm	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2600319435Sslm	struct mpr_prp_page	*prp_page_info = NULL;
2601319435Sslm
2602319435Sslm	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2603319435Sslm
2604319435Sslm	/*
2605319435Sslm	 * Add up the sizes of each segment length to get the total transfer
2606319435Sslm	 * size, which will be checked against the Maximum Data Transfer Size.
2607319435Sslm	 * If the data transfer length exceeds the MDTS for this device, just
2608319435Sslm	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2609319435Sslm	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2610319435Sslm	 */
2611319435Sslm	for (i = 0; i < segs_left; i++)
2612319435Sslm		buff_len += htole32(segs[i].ds_len);
2613319435Sslm	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2614319435Sslm		return 1;
2615319435Sslm
2616319435Sslm	/* Create page_mask (to get offset within page) */
2617319435Sslm	page_mask = PAGE_SIZE - 1;
2618319435Sslm
2619319435Sslm	/*
2620319435Sslm	 * Check if the number of elements exceeds the max number that can be
2621319435Sslm	 * put in the main message frame (H/W can only translate an SGL that
2622319435Sslm	 * is contained entirely in the main message frame).
2623319435Sslm	 */
2624319435Sslm	sges_in_segment = (sc->facts->IOCRequestFrameSize -
2625319435Sslm	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2626319435Sslm	if (segs_left > sges_in_segment)
2627319435Sslm		build_native_sgl = 1;
2628319435Sslm	else
2629319435Sslm	{
2630319435Sslm		/*
2631319435Sslm		 * NVMe uses one PRP for each physical page (or part of physical
2632319435Sslm		 * page).
2633319435Sslm		 *    if 4 pages or less then IEEE is OK
2634319435Sslm		 *    if > 5 pages then we need to build a native SGL
2635319435Sslm		 *    if > 4 and <= 5 pages, then check the physical address of
2636319435Sslm		 *      the first SG entry, then if this first size in the page
2637319435Sslm		 *      is >= the residual beyond 4 pages then use IEEE,
2638319435Sslm		 *      otherwise use native SGL
2639319435Sslm		 */
2640319435Sslm		if (buff_len > (PAGE_SIZE * 5))
2641319435Sslm			build_native_sgl = 1;
2642319435Sslm		else if ((buff_len > (PAGE_SIZE * 4)) &&
2643319435Sslm		    (buff_len <= (PAGE_SIZE * 5)) )
2644319435Sslm		{
2645319435Sslm			msg_phys = (uint64_t *)segs[0].ds_addr;
2646319435Sslm			first_page_offset =
2647319435Sslm			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2648319435Sslm			    page_mask);
2649319435Sslm			first_page_data_size = PAGE_SIZE - first_page_offset;
2650319435Sslm			end_residual = buff_len % PAGE_SIZE;
2651319435Sslm
2652319435Sslm			/*
2653319435Sslm			 * If offset into first page pushes the end of the data
2654319435Sslm			 * beyond end of the 5th page, we need the extra PRP
2655319435Sslm			 * list.
2656319435Sslm			 */
2657319435Sslm			if (first_page_data_size < end_residual)
2658319435Sslm				build_native_sgl = 1;
2659319435Sslm
2660319435Sslm			/*
2661319435Sslm			 * Check if first SG entry size is < residual beyond 4
2662319435Sslm			 * pages.
2663319435Sslm			 */
2664319435Sslm			if (htole32(segs[0].ds_len) <
2665319435Sslm			    (buff_len - (PAGE_SIZE * 4)))
2666319435Sslm				build_native_sgl = 1;
2667319435Sslm		}
2668319435Sslm	}
2669319435Sslm
2670319435Sslm	/* check if native SGL is needed */
2671319435Sslm	if (!build_native_sgl)
2672319435Sslm		return 1;
2673319435Sslm
2674319435Sslm	/*
2675319435Sslm	 * Native SGL is needed.
2676319435Sslm	 * Put a chain element in main message frame that points to the first
2677319435Sslm	 * chain buffer.
2678319435Sslm	 *
2679319435Sslm	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2680319435Sslm	 *        a native SGL.
2681319435Sslm	 */
2682319435Sslm
2683319435Sslm	/* Set main message chain element pointer */
2684319435Sslm	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2685319435Sslm
2686319435Sslm	/*
2687319435Sslm	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2688319435Sslm	 * message.
2689319435Sslm	 */
2690319435Sslm	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2691319435Sslm	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2692319435Sslm
2693319435Sslm	/*
2694319435Sslm	 * For the PRP entries, use the specially allocated buffer of
2695319435Sslm	 * contiguous memory. PRP Page allocation failures should not happen
2696319435Sslm	 * because there should be enough PRP page buffers to account for the
2697319435Sslm	 * possible NVMe QDepth.
2698319435Sslm	 */
2699319435Sslm	prp_page_info = mpr_alloc_prp_page(sc);
2700319435Sslm	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2701319435Sslm	    "used for building a native NVMe SGL.\n", __func__));
2702319435Sslm	curr_buff = (uint32_t *)prp_page_info->prp_page;
2703319435Sslm	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2704319435Sslm
2705319435Sslm	/*
2706319435Sslm	 * Insert the allocated PRP page into the command's PRP page list. This
2707319435Sslm	 * will be freed when the command is freed.
2708319435Sslm	 */
2709319435Sslm	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2710319435Sslm
2711319435Sslm	/*
2712319435Sslm	 * Check if we are within 1 entry of a page boundary we don't want our
2713319435Sslm	 * first entry to be a PRP List entry.
2714319435Sslm	 */
2715319435Sslm	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
2716319435Sslm	    page_mask;
2717319435Sslm	if (!page_mask_result) {
2718319435Sslm		/* Bump up to next page boundary. */
2719319435Sslm		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
2720319435Sslm		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
2721319435Sslm	}
2722319435Sslm
2723319435Sslm	/* Fill in the chain element and make it an NVMe segment type. */
2724319435Sslm	main_chain_element->Address.High =
2725319435Sslm	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
2726319435Sslm	main_chain_element->Address.Low =
2727319435Sslm	    htole32((uint32_t)(uintptr_t)msg_phys);
2728319435Sslm	main_chain_element->NextChainOffset = 0;
2729319435Sslm	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2730319435Sslm	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2731319435Sslm	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2732319435Sslm
2733319435Sslm	/* Set SGL pointer to start of contiguous PCIe buffer. */
2734319435Sslm	ptr_sgl = curr_buff;
2735319435Sslm	sge_dwords = 2;
2736319435Sslm	num_entries = 0;
2737319435Sslm
2738319435Sslm	/*
2739319435Sslm	 * NVMe has a very convoluted PRP format. One PRP is required for each
2740319435Sslm	 * page or partial page. We need to split up OS SG entries if they are
2741319435Sslm	 * longer than one page or cross a page boundary. We also have to insert
2742319435Sslm	 * a PRP list pointer entry as the last entry in each physical page of
2743319435Sslm	 * the PRP list.
2744319435Sslm	 *
2745319435Sslm	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
2746319435Sslm	 * in the main message in IEEE 64 format. The 2nd entry in the main
2747319435Sslm	 * message is the chain element, and the rest of the PRP entries are
2748319435Sslm	 * built in the contiguous PCIe buffer.
2749319435Sslm	 */
2750319435Sslm	first_prp_entry = 1;
2751319435Sslm	ptr_first_sgl = (uint32_t *)cm->cm_sge;
2752319435Sslm
2753319435Sslm	for (i = 0; i < segs_left; i++) {
2754319435Sslm		/* Get physical address and length of this SG entry. */
2755319435Sslm		paddr = segs[i].ds_addr;
2756319435Sslm		length = segs[i].ds_len;
2757319435Sslm
2758319435Sslm		/*
2759319435Sslm		 * Check whether a given SGE buffer lies on a non-PAGED
2760319435Sslm		 * boundary if this is not the first page. If so, this is not
2761319435Sslm		 * expected so have FW build the SGL.
2762319435Sslm		 */
2763319435Sslm		if (i) {
2764319435Sslm			if ((uint32_t)paddr & page_mask) {
2765319435Sslm				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
2766319435Sslm				    "building NVMe PRPs, low address is 0x%x\n",
2767319435Sslm				    (uint32_t)paddr);
2768319435Sslm				return 1;
2769319435Sslm			}
2770319435Sslm		}
2771319435Sslm
2772319435Sslm		/* Apart from last SGE, if any other SGE boundary is not page
2773319435Sslm		 * aligned then it means that hole exists. Existence of hole
2774319435Sslm		 * leads to data corruption. So fallback to IEEE SGEs.
2775319435Sslm		 */
2776319435Sslm		if (i != (segs_left - 1)) {
2777319435Sslm			if (((uint32_t)paddr + length) & page_mask) {
2778319435Sslm				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
2779319435Sslm				    "boundary while building NVMe PRPs, low "
2780319435Sslm				    "address: 0x%x and length: %u\n",
2781319435Sslm				    (uint32_t)paddr, length);
2782319435Sslm				return 1;
2783319435Sslm			}
2784319435Sslm		}
2785319435Sslm
2786319435Sslm		/* Loop while the length is not zero. */
2787319435Sslm		while (length) {
2788319435Sslm			/*
2789319435Sslm			 * Check if we need to put a list pointer here if we are
2790319435Sslm			 * at page boundary - prp_size.
2791319435Sslm			 */
2792319435Sslm			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
2793319435Sslm			    prp_size) & page_mask;
2794319435Sslm			if (!page_mask_result) {
2795319435Sslm				/*
2796319435Sslm				 * Need to put a PRP list pointer here.
2797319435Sslm				 */
2798319435Sslm				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2799319435Sslm				    prp_size);
2800319435Sslm				*ptr_sgl = htole32((uintptr_t)msg_phys);
2801319435Sslm				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
2802319435Sslm				    msg_phys >> 32);
2803319435Sslm				ptr_sgl += sge_dwords;
2804319435Sslm				num_entries++;
2805319435Sslm			}
2806319435Sslm
2807319435Sslm			/* Need to handle if entry will be part of a page. */
2808319435Sslm			offset = (uint32_t)paddr & page_mask;
2809319435Sslm			entry_len = PAGE_SIZE - offset;
2810319435Sslm			if (first_prp_entry) {
2811319435Sslm				/*
2812319435Sslm				 * Put IEEE entry in first SGE in main message.
2813319435Sslm				 * (Simple element, System addr, not end of
2814319435Sslm				 * list.)
2815319435Sslm				 */
2816319435Sslm				*ptr_first_sgl = htole32((uint32_t)paddr);
2817319435Sslm				*(ptr_first_sgl + 1) =
2818319435Sslm				    htole32((uint32_t)((uint64_t)paddr >> 32));
2819319435Sslm				*(ptr_first_sgl + 2) = htole32(entry_len);
2820319435Sslm				*(ptr_first_sgl + 3) = 0;
2821319435Sslm
2822319435Sslm				/* No longer the first PRP entry. */
2823319435Sslm				first_prp_entry = 0;
2824319435Sslm			} else {
2825319435Sslm				/* Put entry in list. */
2826319435Sslm				*ptr_sgl = htole32((uint32_t)paddr);
2827319435Sslm				*(ptr_sgl + 1) =
2828319435Sslm				    htole32((uint32_t)((uint64_t)paddr >> 32));
2829319435Sslm
2830319435Sslm				/* Bump ptr_sgl, msg_phys, and num_entries. */
2831319435Sslm				ptr_sgl += sge_dwords;
2832319435Sslm				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2833319435Sslm				    prp_size);
2834319435Sslm				num_entries++;
2835319435Sslm			}
2836319435Sslm
2837319435Sslm			/* Bump the phys address by the entry_len. */
2838319435Sslm			paddr += entry_len;
2839319435Sslm
2840319435Sslm			/* Decrement length accounting for last partial page. */
2841319435Sslm			if (entry_len > length)
2842319435Sslm				length = 0;
2843319435Sslm			else
2844319435Sslm				length -= entry_len;
2845319435Sslm		}
2846319435Sslm	}
2847319435Sslm
2848319435Sslm	/* Set chain element Length. */
2849319435Sslm	main_chain_element->Length = htole32(num_entries * prp_size);
2850319435Sslm
2851319435Sslm	/* Return 0, indicating we built a native SGL. */
2852319435Sslm	return 0;
2853319435Sslm}
2854319435Sslm
2855319435Sslm/*
2856265236Sken * Add a chain element as the next SGE for the specified command.
2857265236Sken * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2858265236Sken * only required for IEEE commands.  Therefore there is no code for commands
2859283661Sslm * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
2860283661Sslm * shouldn't be requesting chains).
2861265236Sken */
2862265236Skenstatic int
2863265236Skenmpr_add_chain(struct mpr_command *cm, int segsleft)
2864265236Sken{
2865265236Sken	struct mpr_softc *sc = cm->cm_sc;
2866265236Sken	MPI2_REQUEST_HEADER *req;
2867265236Sken	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2868265236Sken	struct mpr_chain *chain;
2869299266Sslm	int sgc_size, current_segs, rem_segs, segs_per_frame;
2870265236Sken	uint8_t next_chain_offset = 0;
2871265236Sken
2872265236Sken	/*
2873265236Sken	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
2874265236Sken	 * only IEEE commands should be requesting chains.  Return some error
2875265236Sken	 * code other than 0.
2876265236Sken	 */
2877265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2878265236Sken		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2879265236Sken		    "an MPI SGL.\n");
2880265236Sken		return(ENOBUFS);
2881265236Sken	}
2882265236Sken
2883265236Sken	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2884265236Sken	if (cm->cm_sglsize < sgc_size)
2885265236Sken		panic("MPR: Need SGE Error Code\n");
2886265236Sken
2887265236Sken	chain = mpr_alloc_chain(cm->cm_sc);
2888265236Sken	if (chain == NULL)
2889265236Sken		return (ENOBUFS);
2890265236Sken
2891265236Sken	/*
2892265236Sken	 * Note: a double-linked list is used to make it easier to walk for
2893265236Sken	 * debugging.
2894265236Sken	 */
2895265236Sken	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2896265236Sken
2897265236Sken	/*
2898265236Sken	 * Need to know if the number of frames left is more than 1 or not.  If
2899265236Sken	 * more than 1 frame is required, NextChainOffset will need to be set,
2900265236Sken	 * which will just be the last segment of the frame.
2901265236Sken	 */
2902265236Sken	rem_segs = 0;
2903265236Sken	if (cm->cm_sglsize < (sgc_size * segsleft)) {
2904265236Sken		/*
2905265236Sken		 * rem_segs is the number of segements remaining after the
2906265236Sken		 * segments that will go into the current frame.  Since it is
2907265236Sken		 * known that at least one more frame is required, account for
2908265236Sken		 * the chain element.  To know if more than one more frame is
2909265236Sken		 * required, just check if there will be a remainder after using
2910265236Sken		 * the current frame (with this chain) and the next frame.  If
2911265236Sken		 * so the NextChainOffset must be the last element of the next
2912265236Sken		 * frame.
2913265236Sken		 */
2914265236Sken		current_segs = (cm->cm_sglsize / sgc_size) - 1;
2915265236Sken		rem_segs = segsleft - current_segs;
2916299266Sslm		segs_per_frame = sc->chain_frame_size / sgc_size;
2917265236Sken		if (rem_segs > segs_per_frame) {
2918265236Sken			next_chain_offset = segs_per_frame - 1;
2919265236Sken		}
2920265236Sken	}
2921265236Sken	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2922299266Sslm	ieee_sgc->Length = next_chain_offset ?
2923299266Sslm	    htole32((uint32_t)sc->chain_frame_size) :
2924265236Sken	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2925265236Sken	ieee_sgc->NextChainOffset = next_chain_offset;
2926265236Sken	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2927265236Sken	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2928265236Sken	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2929265236Sken	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2930265236Sken	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2931265236Sken	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2932299266Sslm	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
2933265236Sken
2934299266Sslm	cm->cm_sglsize = sc->chain_frame_size;
2935265236Sken	return (0);
2936265236Sken}
2937265236Sken
2938265236Sken/*
2939265236Sken * Add one scatter-gather element to the scatter-gather list for a command.
2940283661Sslm * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
2941283661Sslm * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
2942283661Sslm * chain, so don't consider any chain additions.
2943265236Sken */
2944265236Skenint
2945265236Skenmpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2946265236Sken    int segsleft)
2947265236Sken{
2948265236Sken	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2949265236Sken	u32 sge_flags;
2950265236Sken
2951265236Sken	/*
2952265236Sken	 * case 1: >=1 more segment, no room for anything (error)
2953265236Sken	 * case 2: 1 more segment and enough room for it
2954265236Sken         */
2955265236Sken
2956265236Sken	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2957265236Sken		mpr_dprint(cm->cm_sc, MPR_ERROR,
2958265236Sken		    "%s: warning: Not enough room for MPI SGL in frame.\n",
2959265236Sken		    __func__);
2960265236Sken		return(ENOBUFS);
2961265236Sken	}
2962265236Sken
2963265236Sken	KASSERT(segsleft == 1,
2964265236Sken	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2965265236Sken	    segsleft));
2966265236Sken
2967265236Sken	/*
2968265236Sken	 * There is one more segment left to add for the MPI SGL and there is
2969265236Sken	 * enough room in the frame to add it.  This is the normal case because
2970265236Sken	 * MPI SGL's don't have chains, otherwise something is wrong.
2971265236Sken	 *
2972265236Sken	 * If this is a bi-directional request, need to account for that
2973265236Sken	 * here.  Save the pre-filled sge values.  These will be used
2974265236Sken	 * either for the 2nd SGL or for a single direction SGL.  If
2975265236Sken	 * cm_out_len is non-zero, this is a bi-directional request, so
2976265236Sken	 * fill in the OUT SGL first, then the IN SGL, otherwise just
2977265236Sken	 * fill in the IN SGL.  Note that at this time, when filling in
2978265236Sken	 * 2 SGL's for a bi-directional request, they both use the same
2979265236Sken	 * DMA buffer (same cm command).
2980265236Sken	 */
2981265236Sken	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2982265236Sken	saved_address_low = sge->Address.Low;
2983265236Sken	saved_address_high = sge->Address.High;
2984265236Sken	if (cm->cm_out_len) {
2985265236Sken		sge->FlagsLength = cm->cm_out_len |
2986265236Sken		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2987265236Sken		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2988265236Sken		    MPI2_SGE_FLAGS_HOST_TO_IOC |
2989265236Sken		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2990265236Sken		    MPI2_SGE_FLAGS_SHIFT);
2991265236Sken		cm->cm_sglsize -= len;
2992265236Sken		/* Endian Safe code */
2993265236Sken		sge_flags = sge->FlagsLength;
2994265236Sken		sge->FlagsLength = htole32(sge_flags);
2995265236Sken		sge->Address.High = htole32(sge->Address.High);
2996265236Sken		sge->Address.Low = htole32(sge->Address.Low);
2997265236Sken		bcopy(sge, cm->cm_sge, len);
2998265236Sken		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2999265236Sken	}
3000265236Sken	sge->FlagsLength = saved_buf_len |
3001265236Sken	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3002265236Sken	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3003265236Sken	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3004265236Sken	    MPI2_SGE_FLAGS_END_OF_LIST |
3005265236Sken	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3006265236Sken	    MPI2_SGE_FLAGS_SHIFT);
3007265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3008265236Sken		sge->FlagsLength |=
3009265236Sken		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3010265236Sken		    MPI2_SGE_FLAGS_SHIFT);
3011265236Sken	} else {
3012265236Sken		sge->FlagsLength |=
3013265236Sken		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3014265236Sken		    MPI2_SGE_FLAGS_SHIFT);
3015265236Sken	}
3016265236Sken	sge->Address.Low = saved_address_low;
3017265236Sken	sge->Address.High = saved_address_high;
3018265236Sken
3019265236Sken	cm->cm_sglsize -= len;
3020265236Sken	/* Endian Safe code */
3021265236Sken	sge_flags = sge->FlagsLength;
3022265236Sken	sge->FlagsLength = htole32(sge_flags);
3023265236Sken	sge->Address.High = htole32(sge->Address.High);
3024265236Sken	sge->Address.Low = htole32(sge->Address.Low);
3025265236Sken	bcopy(sge, cm->cm_sge, len);
3026265236Sken	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3027265236Sken	return (0);
3028265236Sken}
3029265236Sken
3030265236Sken/*
3031265236Sken * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3032265236Sken * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3033265236Sken * remaining size and pointer to the next SGE to fill in, respectively.
3034265236Sken */
3035265236Skenint
3036265236Skenmpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3037265236Sken{
3038265236Sken	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3039265236Sken	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3040265236Sken	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3041265236Sken	uint32_t sge_length;
3042265236Sken
3043265236Sken	/*
3044265236Sken	 * case 1: No room for chain or segment (error).
3045265236Sken	 * case 2: Two or more segments left but only room for chain.
3046265236Sken	 * case 3: Last segment and room for it, so set flags.
3047265236Sken	 */
3048265236Sken
3049265236Sken	/*
3050265236Sken	 * There should be room for at least one element, or there is a big
3051265236Sken	 * problem.
3052265236Sken	 */
3053265236Sken	if (cm->cm_sglsize < ieee_sge_size)
3054265236Sken		panic("MPR: Need SGE Error Code\n");
3055265236Sken
3056265236Sken	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3057265236Sken		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3058265236Sken			return (error);
3059265236Sken	}
3060265236Sken
3061265236Sken	if (segsleft == 1) {
3062265236Sken		/*
3063265236Sken		 * If this is a bi-directional request, need to account for that
3064265236Sken		 * here.  Save the pre-filled sge values.  These will be used
3065265236Sken		 * either for the 2nd SGL or for a single direction SGL.  If
3066265236Sken		 * cm_out_len is non-zero, this is a bi-directional request, so
3067265236Sken		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3068265236Sken		 * fill in the IN SGL.  Note that at this time, when filling in
3069265236Sken		 * 2 SGL's for a bi-directional request, they both use the same
3070265236Sken		 * DMA buffer (same cm command).
3071265236Sken		 */
3072265236Sken		saved_buf_len = sge->Length;
3073265236Sken		saved_address_low = sge->Address.Low;
3074265236Sken		saved_address_high = sge->Address.High;
3075265236Sken		if (cm->cm_out_len) {
3076265236Sken			sge->Length = cm->cm_out_len;
3077265236Sken			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3078265236Sken			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3079265236Sken			cm->cm_sglsize -= ieee_sge_size;
3080265236Sken			/* Endian Safe code */
3081265236Sken			sge_length = sge->Length;
3082265236Sken			sge->Length = htole32(sge_length);
3083265236Sken			sge->Address.High = htole32(sge->Address.High);
3084265236Sken			sge->Address.Low = htole32(sge->Address.Low);
3085265236Sken			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3086265236Sken			cm->cm_sge =
3087265236Sken			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3088265236Sken			    ieee_sge_size);
3089265236Sken		}
3090265236Sken		sge->Length = saved_buf_len;
3091265236Sken		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3092265236Sken		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3093265236Sken		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3094265236Sken		sge->Address.Low = saved_address_low;
3095265236Sken		sge->Address.High = saved_address_high;
3096265236Sken	}
3097265236Sken
3098265236Sken	cm->cm_sglsize -= ieee_sge_size;
3099265236Sken	/* Endian Safe code */
3100265236Sken	sge_length = sge->Length;
3101265236Sken	sge->Length = htole32(sge_length);
3102265236Sken	sge->Address.High = htole32(sge->Address.High);
3103265236Sken	sge->Address.Low = htole32(sge->Address.Low);
3104265236Sken	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3105265236Sken	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3106265236Sken	    ieee_sge_size);
3107265236Sken	return (0);
3108265236Sken}
3109265236Sken
3110265236Sken/*
3111265236Sken * Add one dma segment to the scatter-gather list for a command.
3112265236Sken */
3113265236Skenint
3114265236Skenmpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3115265236Sken    int segsleft)
3116265236Sken{
3117265236Sken	MPI2_SGE_SIMPLE64 sge;
3118265236Sken	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3119265236Sken
3120265236Sken	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3121265236Sken		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3122265236Sken		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3123265236Sken		ieee_sge.Length = len;
3124265236Sken		mpr_from_u64(pa, &ieee_sge.Address);
3125265236Sken
3126265236Sken		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3127265236Sken	} else {
3128265236Sken		/*
3129265236Sken		 * This driver always uses 64-bit address elements for
3130265236Sken		 * simplicity.
3131265236Sken		 */
3132265236Sken		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3133265236Sken		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3134265236Sken		/* Set Endian safe macro in mpr_push_sge */
3135265236Sken		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3136265236Sken		mpr_from_u64(pa, &sge.Address);
3137265236Sken
3138265236Sken		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3139265236Sken	}
3140265236Sken}
3141265236Sken
3142265236Skenstatic void
3143265236Skenmpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3144265236Sken{
3145265236Sken	struct mpr_softc *sc;
3146265236Sken	struct mpr_command *cm;
3147265236Sken	u_int i, dir, sflags;
3148265236Sken
3149265236Sken	cm = (struct mpr_command *)arg;
3150265236Sken	sc = cm->cm_sc;
3151265236Sken
3152265236Sken	/*
3153265236Sken	 * In this case, just print out a warning and let the chip tell the
3154265236Sken	 * user they did the wrong thing.
3155265236Sken	 */
3156265236Sken	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3157299265Sslm		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3158299265Sslm		    "segments, more than the %d allowed\n", __func__, nsegs,
3159299265Sslm		    cm->cm_max_segs);
3160265236Sken	}
3161265236Sken
3162265236Sken	/*
3163265236Sken	 * Set up DMA direction flags.  Bi-directional requests are also handled
3164265236Sken	 * here.  In that case, both direction flags will be set.
3165265236Sken	 */
3166265236Sken	sflags = 0;
3167265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3168265236Sken		/*
3169265236Sken		 * We have to add a special case for SMP passthrough, there
3170265236Sken		 * is no easy way to generically handle it.  The first
3171265236Sken		 * S/G element is used for the command (therefore the
3172265236Sken		 * direction bit needs to be set).  The second one is used
3173265236Sken		 * for the reply.  We'll leave it to the caller to make
3174265236Sken		 * sure we only have two buffers.
3175265236Sken		 */
3176265236Sken		/*
3177265236Sken		 * Even though the busdma man page says it doesn't make
3178265236Sken		 * sense to have both direction flags, it does in this case.
3179265236Sken		 * We have one s/g element being accessed in each direction.
3180265236Sken		 */
3181265236Sken		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3182265236Sken
3183265236Sken		/*
3184265236Sken		 * Set the direction flag on the first buffer in the SMP
3185265236Sken		 * passthrough request.  We'll clear it for the second one.
3186265236Sken		 */
3187265236Sken		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3188265236Sken			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3189265236Sken	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3190265236Sken		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3191265236Sken		dir = BUS_DMASYNC_PREWRITE;
3192265236Sken	} else
3193265236Sken		dir = BUS_DMASYNC_PREREAD;
3194265236Sken
3195319435Sslm	/* Check if a native SG list is needed for an NVMe PCIe device. */
3196319435Sslm	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3197319435Sslm	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3198319435Sslm		/* A native SG list was built, skip to end. */
3199319435Sslm		goto out;
3200319435Sslm	}
3201319435Sslm
3202265236Sken	for (i = 0; i < nsegs; i++) {
3203265236Sken		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3204265236Sken			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3205265236Sken		}
3206265236Sken		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3207265236Sken		    sflags, nsegs - i);
3208265236Sken		if (error != 0) {
3209265236Sken			/* Resource shortage, roll back! */
3210265236Sken			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3211265236Sken				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3212265236Sken				    "consider increasing hw.mpr.max_chains.\n");
3213265236Sken			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3214265236Sken			mpr_complete_command(sc, cm);
3215265236Sken			return;
3216265236Sken		}
3217265236Sken	}
3218265236Sken
3219319435Sslmout:
3220265236Sken	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3221265236Sken	mpr_enqueue_request(sc, cm);
3222265236Sken
3223265236Sken	return;
3224265236Sken}
3225265236Sken
3226265236Skenstatic void
3227265236Skenmpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3228265236Sken	     int error)
3229265236Sken{
3230265236Sken	mpr_data_cb(arg, segs, nsegs, error);
3231265236Sken}
3232265236Sken
3233265236Sken/*
3234265236Sken * This is the routine to enqueue commands ansynchronously.
3235265236Sken * Note that the only error path here is from bus_dmamap_load(), which can
3236265236Sken * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3237265236Sken * assumed that if you have a command in-hand, then you have enough credits
3238265236Sken * to use it.
3239265236Sken */
3240265236Skenint
3241265236Skenmpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3242265236Sken{
3243265236Sken	int error = 0;
3244265236Sken
3245265236Sken	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3246265236Sken		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3247265236Sken		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3248265236Sken	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3249265236Sken		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3250265236Sken		    cm->cm_data, mpr_data_cb, cm, 0);
3251265236Sken	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3252265236Sken		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3253265236Sken		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3254265236Sken	} else {
3255265236Sken		/* Add a zero-length element as needed */
3256265236Sken		if (cm->cm_sge != NULL)
3257265236Sken			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3258265236Sken		mpr_enqueue_request(sc, cm);
3259265236Sken	}
3260265236Sken
3261265236Sken	return (error);
3262265236Sken}
3263265236Sken
3264265236Sken/*
3265265236Sken * This is the routine to enqueue commands synchronously.  An error of
3266265236Sken * EINPROGRESS from mpr_map_command() is ignored since the command will
3267265236Sken * be executed and enqueued automatically.  Other errors come from msleep().
3268265236Sken */
3269265236Skenint
3270322658Skenmpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3271265236Sken    int sleep_flag)
3272265236Sken{
3273265236Sken	int error, rc;
3274265236Sken	struct timeval cur_time, start_time;
3275322658Sken	struct mpr_command *cm = *cmp;
3276265236Sken
3277265236Sken	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3278265236Sken		return  EBUSY;
3279265236Sken
3280265236Sken	cm->cm_complete = NULL;
3281265236Sken	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3282265236Sken	error = mpr_map_command(sc, cm);
3283265236Sken	if ((error != 0) && (error != EINPROGRESS))
3284265236Sken		return (error);
3285265236Sken
3286265236Sken	// Check for context and wait for 50 mSec at a time until time has
3287265236Sken	// expired or the command has finished.  If msleep can't be used, need
3288265236Sken	// to poll.
3289265236Sken#if __FreeBSD_version >= 1000029
3290265236Sken	if (curthread->td_no_sleeping)
3291265236Sken#else //__FreeBSD_version < 1000029
3292265236Sken	if (curthread->td_pflags & TDP_NOSLEEPING)
3293265236Sken#endif //__FreeBSD_version >= 1000029
3294265236Sken		sleep_flag = NO_SLEEP;
3295321415Sken	getmicrouptime(&start_time);
3296265236Sken	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3297265236Sken		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3298321415Sken		if (error == EWOULDBLOCK) {
3299321415Sken			/*
3300321415Sken			 * Record the actual elapsed time in the case of a
3301321415Sken			 * timeout for the message below.
3302321415Sken			 */
3303321415Sken			getmicrouptime(&cur_time);
3304321415Sken			timevalsub(&cur_time, &start_time);
3305321415Sken		}
3306265236Sken	} else {
3307265236Sken		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3308265236Sken			mpr_intr_locked(sc);
3309265236Sken			if (sleep_flag == CAN_SLEEP)
3310265236Sken				pause("mprwait", hz/20);
3311265236Sken			else
3312265236Sken				DELAY(50000);
3313265236Sken
3314321415Sken			getmicrouptime(&cur_time);
3315321415Sken			timevalsub(&cur_time, &start_time);
3316321415Sken			if (cur_time.tv_sec > timeout) {
3317265236Sken				error = EWOULDBLOCK;
3318265236Sken				break;
3319265236Sken			}
3320265236Sken		}
3321265236Sken	}
3322265236Sken
3323265236Sken	if (error == EWOULDBLOCK) {
3324321415Sken		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3325321415Sken		    " elapsed=%jd\n", __func__, timeout,
3326321415Sken		    (intmax_t)cur_time.tv_sec);
3327265236Sken		rc = mpr_reinit(sc);
3328265236Sken		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3329265236Sken		    "failed");
3330322658Sken		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3331322658Sken			/*
3332322658Sken			 * Tell the caller that we freed the command in a
3333322658Sken			 * reinit.
3334322658Sken			 */
3335322658Sken			*cmp = NULL;
3336322658Sken		}
3337265236Sken		error = ETIMEDOUT;
3338265236Sken	}
3339265236Sken	return (error);
3340265236Sken}
3341265236Sken
3342265236Sken/*
3343265236Sken * This is the routine to enqueue a command synchonously and poll for
3344265236Sken * completion.  Its use should be rare.
3345265236Sken */
3346265236Skenint
3347322658Skenmpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3348265236Sken{
3349322658Sken	int error, rc;
3350265236Sken	struct timeval cur_time, start_time;
3351322658Sken	struct mpr_command *cm = *cmp;
3352265236Sken
3353265236Sken	error = 0;
3354265236Sken
3355265236Sken	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3356265236Sken	cm->cm_complete = NULL;
3357265236Sken	mpr_map_command(sc, cm);
3358265236Sken
3359322658Sken	getmicrouptime(&start_time);
3360265236Sken	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3361265236Sken		mpr_intr_locked(sc);
3362265236Sken
3363265236Sken		if (mtx_owned(&sc->mpr_mtx))
3364265236Sken			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3365265236Sken			    "mprpoll", hz/20);
3366265236Sken		else
3367265236Sken			pause("mprpoll", hz/20);
3368265236Sken
3369265236Sken		/*
3370265236Sken		 * Check for real-time timeout and fail if more than 60 seconds.
3371265236Sken		 */
3372322658Sken		getmicrouptime(&cur_time);
3373322658Sken		timevalsub(&cur_time, &start_time);
3374322658Sken		if (cur_time.tv_sec > 60) {
3375265236Sken			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3376265236Sken			error = ETIMEDOUT;
3377265236Sken			break;
3378265236Sken		}
3379265236Sken	}
3380265236Sken
3381283661Sslm	if (error) {
3382265236Sken		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3383265236Sken		rc = mpr_reinit(sc);
3384299265Sslm		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3385299265Sslm		    "failed");
3386322658Sken
3387322658Sken		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3388322658Sken			/*
3389322658Sken			 * Tell the caller that we freed the command in a
3390322658Sken			 * reinit.
3391322658Sken			 */
3392322658Sken			*cmp = NULL;
3393322658Sken		}
3394265236Sken	}
3395265236Sken	return (error);
3396265236Sken}
3397265236Sken
3398265236Sken/*
3399265236Sken * The MPT driver had a verbose interface for config pages.  In this driver,
3400298955Spfg * reduce it to much simpler terms, similar to the Linux driver.
3401265236Sken */
3402265236Skenint
3403265236Skenmpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3404265236Sken{
3405265236Sken	MPI2_CONFIG_REQUEST *req;
3406265236Sken	struct mpr_command *cm;
3407265236Sken	int error;
3408265236Sken
3409265236Sken	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3410265236Sken		return (EBUSY);
3411265236Sken	}
3412265236Sken
3413265236Sken	cm = mpr_alloc_command(sc);
3414265236Sken	if (cm == NULL) {
3415265236Sken		return (EBUSY);
3416265236Sken	}
3417265236Sken
3418265236Sken	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3419265236Sken	req->Function = MPI2_FUNCTION_CONFIG;
3420265236Sken	req->Action = params->action;
3421265236Sken	req->SGLFlags = 0;
3422265236Sken	req->ChainOffset = 0;
3423265236Sken	req->PageAddress = params->page_address;
3424265236Sken	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3425265236Sken		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3426265236Sken
3427265236Sken		hdr = &params->hdr.Ext;
3428265236Sken		req->ExtPageType = hdr->ExtPageType;
3429265236Sken		req->ExtPageLength = hdr->ExtPageLength;
3430265236Sken		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3431265236Sken		req->Header.PageLength = 0; /* Must be set to zero */
3432265236Sken		req->Header.PageNumber = hdr->PageNumber;
3433265236Sken		req->Header.PageVersion = hdr->PageVersion;
3434265236Sken	} else {
3435265236Sken		MPI2_CONFIG_PAGE_HEADER *hdr;
3436265236Sken
3437265236Sken		hdr = &params->hdr.Struct;
3438265236Sken		req->Header.PageType = hdr->PageType;
3439265236Sken		req->Header.PageNumber = hdr->PageNumber;
3440265236Sken		req->Header.PageLength = hdr->PageLength;
3441265236Sken		req->Header.PageVersion = hdr->PageVersion;
3442265236Sken	}
3443265236Sken
3444265236Sken	cm->cm_data = params->buffer;
3445265236Sken	cm->cm_length = params->length;
3446283661Sslm	if (cm->cm_data != NULL) {
3447283661Sslm		cm->cm_sge = &req->PageBufferSGE;
3448283661Sslm		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3449283661Sslm		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3450283661Sslm	} else
3451283661Sslm		cm->cm_sge = NULL;
3452265236Sken	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3453265236Sken
3454265236Sken	cm->cm_complete_data = params;
3455265236Sken	if (params->callback != NULL) {
3456265236Sken		cm->cm_complete = mpr_config_complete;
3457265236Sken		return (mpr_map_command(sc, cm));
3458265236Sken	} else {
3459322658Sken		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3460265236Sken		if (error) {
3461265236Sken			mpr_dprint(sc, MPR_FAULT,
3462265236Sken			    "Error %d reading config page\n", error);
3463322658Sken			if (cm != NULL)
3464322658Sken				mpr_free_command(sc, cm);
3465265236Sken			return (error);
3466265236Sken		}
3467265236Sken		mpr_config_complete(sc, cm);
3468265236Sken	}
3469265236Sken
3470265236Sken	return (0);
3471265236Sken}
3472265236Sken
3473265236Skenint
3474265236Skenmpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3475265236Sken{
3476265236Sken	return (EINVAL);
3477265236Sken}
3478265236Sken
3479265236Skenstatic void
3480265236Skenmpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3481265236Sken{
3482265236Sken	MPI2_CONFIG_REPLY *reply;
3483265236Sken	struct mpr_config_params *params;
3484265236Sken
3485265236Sken	MPR_FUNCTRACE(sc);
3486265236Sken	params = cm->cm_complete_data;
3487265236Sken
3488265236Sken	if (cm->cm_data != NULL) {
3489265236Sken		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3490265236Sken		    BUS_DMASYNC_POSTREAD);
3491265236Sken		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3492265236Sken	}
3493265236Sken
3494265236Sken	/*
3495265236Sken	 * XXX KDM need to do more error recovery?  This results in the
3496265236Sken	 * device in question not getting probed.
3497265236Sken	 */
3498265236Sken	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3499265236Sken		params->status = MPI2_IOCSTATUS_BUSY;
3500265236Sken		goto done;
3501265236Sken	}
3502265236Sken
3503265236Sken	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3504265236Sken	if (reply == NULL) {
3505265236Sken		params->status = MPI2_IOCSTATUS_BUSY;
3506265236Sken		goto done;
3507265236Sken	}
3508265236Sken	params->status = reply->IOCStatus;
3509283661Sslm	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3510265236Sken		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3511265236Sken		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3512283661Sslm		params->hdr.Ext.PageType = reply->Header.PageType;
3513283661Sslm		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3514283661Sslm		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3515265236Sken	} else {
3516265236Sken		params->hdr.Struct.PageType = reply->Header.PageType;
3517265236Sken		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3518265236Sken		params->hdr.Struct.PageLength = reply->Header.PageLength;
3519265236Sken		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3520265236Sken	}
3521265236Sken
3522265236Skendone:
3523265236Sken	mpr_free_command(sc, cm);
3524265236Sken	if (params->callback != NULL)
3525265236Sken		params->callback(sc, params);
3526265236Sken
3527265236Sken	return;
3528265236Sken}
3529