mpr.c revision 298433
1/*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2015 Avago Technologies
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/dev/mpr/mpr.c 298433 2016-04-21 19:57:40Z pfg $");
34
35/* Communications core for Avago Technologies (LSI) MPT3 */
36
37/* TODO Move headers to mprvar */
38#include <sys/types.h>
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/selinfo.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/module.h>
46#include <sys/bus.h>
47#include <sys/conf.h>
48#include <sys/bio.h>
49#include <sys/malloc.h>
50#include <sys/uio.h>
51#include <sys/sysctl.h>
52#include <sys/queue.h>
53#include <sys/kthread.h>
54#include <sys/taskqueue.h>
55#include <sys/endian.h>
56#include <sys/eventhandler.h>
57
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/rman.h>
61#include <sys/proc.h>
62
63#include <dev/pci/pcivar.h>
64
65#include <cam/cam.h>
66#include <cam/scsi/scsi_all.h>
67
68#include <dev/mpr/mpi/mpi2_type.h>
69#include <dev/mpr/mpi/mpi2.h>
70#include <dev/mpr/mpi/mpi2_ioc.h>
71#include <dev/mpr/mpi/mpi2_sas.h>
72#include <dev/mpr/mpi/mpi2_cnfg.h>
73#include <dev/mpr/mpi/mpi2_init.h>
74#include <dev/mpr/mpi/mpi2_tool.h>
75#include <dev/mpr/mpr_ioctl.h>
76#include <dev/mpr/mprvar.h>
77#include <dev/mpr/mpr_table.h>
78
79static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
80static int mpr_init_queues(struct mpr_softc *sc);
81static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
82static int mpr_transition_operational(struct mpr_softc *sc);
83static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
84static void mpr_iocfacts_free(struct mpr_softc *sc);
85static void mpr_startup(void *arg);
86static int mpr_send_iocinit(struct mpr_softc *sc);
87static int mpr_alloc_queues(struct mpr_softc *sc);
88static int mpr_alloc_replies(struct mpr_softc *sc);
89static int mpr_alloc_requests(struct mpr_softc *sc);
90static int mpr_attach_log(struct mpr_softc *sc);
91static __inline void mpr_complete_command(struct mpr_softc *sc,
92    struct mpr_command *cm);
93static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
94    MPI2_EVENT_NOTIFICATION_REPLY *reply);
95static void mpr_config_complete(struct mpr_softc *sc,
96    struct mpr_command *cm);
97static void mpr_periodic(void *);
98static int mpr_reregister_events(struct mpr_softc *sc);
99static void mpr_enqueue_request(struct mpr_softc *sc,
100    struct mpr_command *cm);
101static int mpr_get_iocfacts(struct mpr_softc *sc,
102    MPI2_IOC_FACTS_REPLY *facts);
103static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
104SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
105
106MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
107
108/*
109 * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
110 * any state and back to its initialization state machine.
111 */
112static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
113
114/*
115 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
116 * Compiler only supports unint64_t to be passed as an argument.
117 * Otherwise it will through this error:
118 * "aggregate value used where an integer was expected"
119 */
120typedef union _reply_descriptor {
121        u64 word;
122        struct {
123                u32 low;
124                u32 high;
125        } u;
126}reply_descriptor,address_descriptor;
127
128/* Rate limit chain-fail messages to 1 per minute */
129static struct timeval mpr_chainfail_interval = { 60, 0 };
130
131/*
132 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
133 * If this function is called from process context, it can sleep
134 * and there is no harm to sleep, in case if this fuction is called
135 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
136 * based on sleep flags driver will call either msleep, pause or DELAY.
137 * msleep and pause are of same variant, but pause is used when mpr_mtx
138 * is not hold by driver.
139 */
140static int
141mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
142{
143	uint32_t reg;
144	int i, error, tries = 0;
145	uint8_t first_wait_done = FALSE;
146
147	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
148
149	/* Clear any pending interrupts */
150	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
151
152	/*
153	 * Force NO_SLEEP for threads prohibited to sleep
154 	 * e.a Thread from interrupt handler are prohibited to sleep.
155 	 */
156#if __FreeBSD_version >= 1000029
157	if (curthread->td_no_sleeping)
158#else //__FreeBSD_version < 1000029
159	if (curthread->td_pflags & TDP_NOSLEEPING)
160#endif //__FreeBSD_version >= 1000029
161		sleep_flag = NO_SLEEP;
162
163	/* Push the magic sequence */
164	error = ETIMEDOUT;
165	while (tries++ < 20) {
166		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
167			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
168			    mpt2_reset_magic[i]);
169
170		/* wait 100 msec */
171		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
172			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
173			    "mprdiag", hz/10);
174		else if (sleep_flag == CAN_SLEEP)
175			pause("mprdiag", hz/10);
176		else
177			DELAY(100 * 1000);
178
179		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
180		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
181			error = 0;
182			break;
183		}
184	}
185	if (error)
186		return (error);
187
188	/* Send the actual reset.  XXX need to refresh the reg? */
189	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
190	    reg | MPI2_DIAG_RESET_ADAPTER);
191
192	/* Wait up to 300 seconds in 50ms intervals */
193	error = ETIMEDOUT;
194	for (i = 0; i < 6000; i++) {
195		/*
196		 * Wait 50 msec. If this is the first time through, wait 256
197		 * msec to satisfy Diag Reset timing requirements.
198		 */
199		if (first_wait_done) {
200			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
201				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
202				    "mprdiag", hz/20);
203			else if (sleep_flag == CAN_SLEEP)
204				pause("mprdiag", hz/20);
205			else
206				DELAY(50 * 1000);
207		} else {
208			DELAY(256 * 1000);
209			first_wait_done = TRUE;
210		}
211		/*
212		 * Check for the RESET_ADAPTER bit to be cleared first, then
213		 * wait for the RESET state to be cleared, which takes a little
214		 * longer.
215		 */
216		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
217		if (reg & MPI2_DIAG_RESET_ADAPTER) {
218			continue;
219		}
220		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
221		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
222			error = 0;
223			break;
224		}
225	}
226	if (error)
227		return (error);
228
229	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
230
231	return (0);
232}
233
234static int
235mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
236{
237
238	MPR_FUNCTRACE(sc);
239
240	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
241	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
242	    MPI2_DOORBELL_FUNCTION_SHIFT);
243
244	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
245		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
246				__func__);
247		return (ETIMEDOUT);
248	}
249
250	return (0);
251}
252
253static int
254mpr_transition_ready(struct mpr_softc *sc)
255{
256	uint32_t reg, state;
257	int error, tries = 0;
258	int sleep_flags;
259
260	MPR_FUNCTRACE(sc);
261	/* If we are in attach call, do not sleep */
262	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
263	    ? CAN_SLEEP : NO_SLEEP;
264
265	error = 0;
266	while (tries++ < 1200) {
267		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
268		mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
269
270		/*
271		 * Ensure the IOC is ready to talk.  If it's not, try
272		 * resetting it.
273		 */
274		if (reg & MPI2_DOORBELL_USED) {
275			mpr_diag_reset(sc, sleep_flags);
276			DELAY(50000);
277			continue;
278		}
279
280		/* Is the adapter owned by another peer? */
281		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
282		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
283			device_printf(sc->mpr_dev, "IOC is under the control "
284			    "of another peer host, aborting initialization.\n");
285			return (ENXIO);
286		}
287
288		state = reg & MPI2_IOC_STATE_MASK;
289		if (state == MPI2_IOC_STATE_READY) {
290			/* Ready to go! */
291			error = 0;
292			break;
293		} else if (state == MPI2_IOC_STATE_FAULT) {
294			mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
295			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
296			mpr_diag_reset(sc, sleep_flags);
297		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
298			/* Need to take ownership */
299			mpr_message_unit_reset(sc, sleep_flags);
300		} else if (state == MPI2_IOC_STATE_RESET) {
301			/* Wait a bit, IOC might be in transition */
302			mpr_dprint(sc, MPR_FAULT,
303			    "IOC in unexpected reset state\n");
304		} else {
305			mpr_dprint(sc, MPR_FAULT,
306			    "IOC in unknown state 0x%x\n", state);
307			error = EINVAL;
308			break;
309		}
310
311		/* Wait 50ms for things to settle down. */
312		DELAY(50000);
313	}
314
315	if (error)
316		device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
317
318	return (error);
319}
320
321static int
322mpr_transition_operational(struct mpr_softc *sc)
323{
324	uint32_t reg, state;
325	int error;
326
327	MPR_FUNCTRACE(sc);
328
329	error = 0;
330	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
331	mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
332
333	state = reg & MPI2_IOC_STATE_MASK;
334	if (state != MPI2_IOC_STATE_READY) {
335		if ((error = mpr_transition_ready(sc)) != 0) {
336			mpr_dprint(sc, MPR_FAULT,
337			    "%s failed to transition ready\n", __func__);
338			return (error);
339		}
340	}
341
342	error = mpr_send_iocinit(sc);
343	return (error);
344}
345
346/*
347 * This is called during attach and when re-initializing due to a Diag Reset.
348 * IOC Facts is used to allocate many of the structures needed by the driver.
349 * If called from attach, de-allocation is not required because the driver has
350 * not allocated any structures yet, but if called from a Diag Reset, previously
351 * allocated structures based on IOC Facts will need to be freed and re-
352 * allocated bases on the latest IOC Facts.
353 */
354static int
355mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
356{
357	int error;
358	Mpi2IOCFactsReply_t saved_facts;
359	uint8_t saved_mode, reallocating;
360
361	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
362
363	/* Save old IOC Facts and then only reallocate if Facts have changed */
364	if (!attaching) {
365		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
366	}
367
368	/*
369	 * Get IOC Facts.  In all cases throughout this function, panic if doing
370	 * a re-initialization and only return the error if attaching so the OS
371	 * can handle it.
372	 */
373	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
374		if (attaching) {
375			mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
376			    "with error %d\n", __func__, error);
377			return (error);
378		} else {
379			panic("%s failed to get IOC Facts with error %d\n",
380			    __func__, error);
381		}
382	}
383
384	mpr_print_iocfacts(sc, sc->facts);
385
386	snprintf(sc->fw_version, sizeof(sc->fw_version),
387	    "%02d.%02d.%02d.%02d",
388	    sc->facts->FWVersion.Struct.Major,
389	    sc->facts->FWVersion.Struct.Minor,
390	    sc->facts->FWVersion.Struct.Unit,
391	    sc->facts->FWVersion.Struct.Dev);
392
393	mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
394	    MPR_DRIVER_VERSION);
395	mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
396	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
397	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
398	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
399
400	/*
401	 * If the chip doesn't support event replay then a hard reset will be
402	 * required to trigger a full discovery.  Do the reset here then
403	 * retransition to Ready.  A hard reset might have already been done,
404	 * but it doesn't hurt to do it again.  Only do this if attaching, not
405	 * for a Diag Reset.
406	 */
407	if (attaching) {
408		if ((sc->facts->IOCCapabilities &
409		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
410			mpr_diag_reset(sc, NO_SLEEP);
411			if ((error = mpr_transition_ready(sc)) != 0) {
412				mpr_dprint(sc, MPR_FAULT, "%s failed to "
413				    "transition to ready with error %d\n",
414				    __func__, error);
415				return (error);
416			}
417		}
418	}
419
420	/*
421	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
422	 * changed from the previous IOC Facts, log a warning, but only if
423	 * checking this after a Diag Reset and not during attach.
424	 */
425	saved_mode = sc->ir_firmware;
426	if (sc->facts->IOCCapabilities &
427	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
428		sc->ir_firmware = 1;
429	if (!attaching) {
430		if (sc->ir_firmware != saved_mode) {
431			mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
432			    "Facts does not match previous mode\n", __func__);
433		}
434	}
435
436	/* Only deallocate and reallocate if relevant IOC Facts have changed */
437	reallocating = FALSE;
438	if ((!attaching) &&
439	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
440	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
441	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
442	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
443	    (saved_facts.ProductID != sc->facts->ProductID) ||
444	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
445	    (saved_facts.IOCRequestFrameSize !=
446	    sc->facts->IOCRequestFrameSize) ||
447	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
448	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
449	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
450	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
451	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
452	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
453	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
454	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
455	    (saved_facts.MaxPersistentEntries !=
456	    sc->facts->MaxPersistentEntries))) {
457		reallocating = TRUE;
458	}
459
460	/*
461	 * Some things should be done if attaching or re-allocating after a Diag
462	 * Reset, but are not needed after a Diag Reset if the FW has not
463	 * changed.
464	 */
465	if (attaching || reallocating) {
466		/*
467		 * Check if controller supports FW diag buffers and set flag to
468		 * enable each type.
469		 */
470		if (sc->facts->IOCCapabilities &
471		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
472			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
473			    enabled = TRUE;
474		if (sc->facts->IOCCapabilities &
475		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
476			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
477			    enabled = TRUE;
478		if (sc->facts->IOCCapabilities &
479		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
480			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
481			    enabled = TRUE;
482
483		/*
484		 * Set flag if EEDP is supported and if TLR is supported.
485		 */
486		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
487			sc->eedp_enabled = TRUE;
488		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
489			sc->control_TLR = TRUE;
490
491		/*
492		 * Size the queues. Since the reply queues always need one free
493		 * entry, we'll just deduct one reply message here.
494		 */
495		sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
496		sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
497		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
498
499		/*
500		 * Initialize all Tail Queues
501		 */
502		TAILQ_INIT(&sc->req_list);
503		TAILQ_INIT(&sc->high_priority_req_list);
504		TAILQ_INIT(&sc->chain_list);
505		TAILQ_INIT(&sc->tm_list);
506	}
507
508	/*
509	 * If doing a Diag Reset and the FW is significantly different
510	 * (reallocating will be set above in IOC Facts comparison), then all
511	 * buffers based on the IOC Facts will need to be freed before they are
512	 * reallocated.
513	 */
514	if (reallocating) {
515		mpr_iocfacts_free(sc);
516		mprsas_realloc_targets(sc, saved_facts.MaxTargets);
517	}
518
519	/*
520	 * Any deallocation has been completed.  Now start reallocating
521	 * if needed.  Will only need to reallocate if attaching or if the new
522	 * IOC Facts are different from the previous IOC Facts after a Diag
523	 * Reset. Targets have already been allocated above if needed.
524	 */
525	if (attaching || reallocating) {
526		if (((error = mpr_alloc_queues(sc)) != 0) ||
527		    ((error = mpr_alloc_replies(sc)) != 0) ||
528		    ((error = mpr_alloc_requests(sc)) != 0)) {
529			if (attaching ) {
530				mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
531				    "queues with error %d\n", __func__, error);
532				mpr_free(sc);
533				return (error);
534			} else {
535				panic("%s failed to alloc queues with error "
536				    "%d\n", __func__, error);
537			}
538		}
539	}
540
541	/* Always initialize the queues */
542	bzero(sc->free_queue, sc->fqdepth * 4);
543	mpr_init_queues(sc);
544
545	/*
546	 * Always get the chip out of the reset state, but only panic if not
547	 * attaching.  If attaching and there is an error, that is handled by
548	 * the OS.
549	 */
550	error = mpr_transition_operational(sc);
551	if (error != 0) {
552		if (attaching) {
553			mpr_printf(sc, "%s failed to transition to "
554			    "operational with error %d\n", __func__, error);
555			mpr_free(sc);
556			return (error);
557		} else {
558			panic("%s failed to transition to operational with "
559			    "error %d\n", __func__, error);
560		}
561	}
562
563	/*
564	 * Finish the queue initialization.
565	 * These are set here instead of in mpr_init_queues() because the
566	 * IOC resets these values during the state transition in
567	 * mpr_transition_operational().  The free index is set to 1
568	 * because the corresponding index in the IOC is set to 0, and the
569	 * IOC treats the queues as full if both are set to the same value.
570	 * Hence the reason that the queue can't hold all of the possible
571	 * replies.
572	 */
573	sc->replypostindex = 0;
574	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
575	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
576
577	/*
578	 * Attach the subsystems so they can prepare their event masks.
579	 */
580	/* XXX Should be dynamic so that IM/IR and user modules can attach */
581	if (attaching) {
582		if (((error = mpr_attach_log(sc)) != 0) ||
583		    ((error = mpr_attach_sas(sc)) != 0) ||
584		    ((error = mpr_attach_user(sc)) != 0)) {
585			mpr_printf(sc, "%s failed to attach all subsystems: "
586			    "error %d\n", __func__, error);
587			mpr_free(sc);
588			return (error);
589		}
590
591		if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
592			mpr_printf(sc, "%s failed to setup interrupts\n",
593			    __func__);
594			mpr_free(sc);
595			return (error);
596		}
597	}
598
599	return (error);
600}
601
602/*
603 * This is called if memory is being free (during detach for example) and when
604 * buffers need to be reallocated due to a Diag Reset.
605 */
606static void
607mpr_iocfacts_free(struct mpr_softc *sc)
608{
609	struct mpr_command *cm;
610	int i;
611
612	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
613
614	if (sc->free_busaddr != 0)
615		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
616	if (sc->free_queue != NULL)
617		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
618		    sc->queues_map);
619	if (sc->queues_dmat != NULL)
620		bus_dma_tag_destroy(sc->queues_dmat);
621
622	if (sc->chain_busaddr != 0)
623		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
624	if (sc->chain_frames != NULL)
625		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
626		    sc->chain_map);
627	if (sc->chain_dmat != NULL)
628		bus_dma_tag_destroy(sc->chain_dmat);
629
630	if (sc->sense_busaddr != 0)
631		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
632	if (sc->sense_frames != NULL)
633		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
634		    sc->sense_map);
635	if (sc->sense_dmat != NULL)
636		bus_dma_tag_destroy(sc->sense_dmat);
637
638	if (sc->reply_busaddr != 0)
639		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
640	if (sc->reply_frames != NULL)
641		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
642		    sc->reply_map);
643	if (sc->reply_dmat != NULL)
644		bus_dma_tag_destroy(sc->reply_dmat);
645
646	if (sc->req_busaddr != 0)
647		bus_dmamap_unload(sc->req_dmat, sc->req_map);
648	if (sc->req_frames != NULL)
649		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
650	if (sc->req_dmat != NULL)
651		bus_dma_tag_destroy(sc->req_dmat);
652
653	if (sc->chains != NULL)
654		free(sc->chains, M_MPR);
655	if (sc->commands != NULL) {
656		for (i = 1; i < sc->num_reqs; i++) {
657			cm = &sc->commands[i];
658			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
659		}
660		free(sc->commands, M_MPR);
661	}
662	if (sc->buffer_dmat != NULL)
663		bus_dma_tag_destroy(sc->buffer_dmat);
664}
665
666/*
667 * The terms diag reset and hard reset are used interchangeably in the MPI
668 * docs to mean resetting the controller chip.  In this code diag reset
669 * cleans everything up, and the hard reset function just sends the reset
670 * sequence to the chip.  This should probably be refactored so that every
671 * subsystem gets a reset notification of some sort, and can clean up
672 * appropriately.
673 */
674int
675mpr_reinit(struct mpr_softc *sc)
676{
677	int error;
678	struct mprsas_softc *sassc;
679
680	sassc = sc->sassc;
681
682	MPR_FUNCTRACE(sc);
683
684	mtx_assert(&sc->mpr_mtx, MA_OWNED);
685
686	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
687		mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
688			   __func__);
689		return 0;
690	}
691
692	mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
693	/* make sure the completion callbacks can recognize they're getting
694	 * a NULL cm_reply due to a reset.
695	 */
696	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
697
698	/*
699	 * Mask interrupts here.
700	 */
701	mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
702	mpr_mask_intr(sc);
703
704	error = mpr_diag_reset(sc, CAN_SLEEP);
705	if (error != 0) {
706		panic("%s hard reset failed with error %d\n", __func__, error);
707	}
708
709	/* Restore the PCI state, including the MSI-X registers */
710	mpr_pci_restore(sc);
711
712	/* Give the I/O subsystem special priority to get itself prepared */
713	mprsas_handle_reinit(sc);
714
715	/*
716	 * Get IOC Facts and allocate all structures based on this information.
717	 * The attach function will also call mpr_iocfacts_allocate at startup.
718	 * If relevant values have changed in IOC Facts, this function will free
719	 * all of the memory based on IOC Facts and reallocate that memory.
720	 */
721	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
722		panic("%s IOC Facts based allocation failed with error %d\n",
723		    __func__, error);
724	}
725
726	/*
727	 * Mapping structures will be re-allocated after getting IOC Page8, so
728	 * free these structures here.
729	 */
730	mpr_mapping_exit(sc);
731
732	/*
733	 * The static page function currently read is IOC Page8.  Others can be
734	 * added in future.  It's possible that the values in IOC Page8 have
735	 * changed after a Diag Reset due to user modification, so always read
736	 * these.  Interrupts are masked, so unmask them before getting config
737	 * pages.
738	 */
739	mpr_unmask_intr(sc);
740	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
741	mpr_base_static_config_pages(sc);
742
743	/*
744	 * Some mapping info is based in IOC Page8 data, so re-initialize the
745	 * mapping tables.
746	 */
747	mpr_mapping_initialize(sc);
748
749	/*
750	 * Restart will reload the event masks clobbered by the reset, and
751	 * then enable the port.
752	 */
753	mpr_reregister_events(sc);
754
755	/* the end of discovery will release the simq, so we're done. */
756	mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
757	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
758	mprsas_release_simq_reinit(sassc);
759
760	return 0;
761}
762
763/* Wait for the chip to ACK a word that we've put into its FIFO
764 * Wait for <timeout> seconds. In single loop wait for busy loop
765 * for 500 microseconds.
766 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
767 * */
768static int
769mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
770{
771	u32 cntdn, count;
772	u32 int_status;
773	u32 doorbell;
774
775	count = 0;
776	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
777	do {
778		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
779		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
780			mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
781			    "timeout(%d)\n", __func__, count, timeout);
782			return 0;
783		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
784			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
785			if ((doorbell & MPI2_IOC_STATE_MASK) ==
786			    MPI2_IOC_STATE_FAULT) {
787				mpr_dprint(sc, MPR_FAULT,
788				    "fault_state(0x%04x)!\n", doorbell);
789				return (EFAULT);
790			}
791		} else if (int_status == 0xFFFFFFFF)
792			goto out;
793
794		/*
795		 * If it can sleep, sleep for 1 milisecond, else busy loop for
796 		 * 0.5 milisecond
797		 */
798		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
799			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
800			    hz/1000);
801		else if (sleep_flag == CAN_SLEEP)
802			pause("mprdba", hz/1000);
803		else
804			DELAY(500);
805		count++;
806	} while (--cntdn);
807
808	out:
809	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
810		"int_status(%x)!\n", __func__, count, int_status);
811	return (ETIMEDOUT);
812}
813
814/* Wait for the chip to signal that the next word in its FIFO can be fetched */
815static int
816mpr_wait_db_int(struct mpr_softc *sc)
817{
818	int retry;
819
820	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
821		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
822		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
823			return (0);
824		DELAY(2000);
825	}
826	return (ETIMEDOUT);
827}
828
829/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
830static int
831mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
832    int req_sz, int reply_sz, int timeout)
833{
834	uint32_t *data32;
835	uint16_t *data16;
836	int i, count, ioc_sz, residual;
837	int sleep_flags = CAN_SLEEP;
838
839#if __FreeBSD_version >= 1000029
840	if (curthread->td_no_sleeping)
841#else //__FreeBSD_version < 1000029
842	if (curthread->td_pflags & TDP_NOSLEEPING)
843#endif //__FreeBSD_version >= 1000029
844		sleep_flags = NO_SLEEP;
845
846	/* Step 1 */
847	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
848
849	/* Step 2 */
850	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
851		return (EBUSY);
852
853	/* Step 3
854	 * Announce that a message is coming through the doorbell.  Messages
855	 * are pushed at 32bit words, so round up if needed.
856	 */
857	count = (req_sz + 3) / 4;
858	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
859	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
860	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
861
862	/* Step 4 */
863	if (mpr_wait_db_int(sc) ||
864	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
865		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
866		return (ENXIO);
867	}
868	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
869	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
870		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
871		return (ENXIO);
872	}
873
874	/* Step 5 */
875	/* Clock out the message data synchronously in 32-bit dwords*/
876	data32 = (uint32_t *)req;
877	for (i = 0; i < count; i++) {
878		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
879		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
880			mpr_dprint(sc, MPR_FAULT,
881			    "Timeout while writing doorbell\n");
882			return (ENXIO);
883		}
884	}
885
886	/* Step 6 */
887	/* Clock in the reply in 16-bit words.  The total length of the
888	 * message is always in the 4th byte, so clock out the first 2 words
889	 * manually, then loop the rest.
890	 */
891	data16 = (uint16_t *)reply;
892	if (mpr_wait_db_int(sc) != 0) {
893		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
894		return (ENXIO);
895	}
896	data16[0] =
897	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
898	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
899	if (mpr_wait_db_int(sc) != 0) {
900		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
901		return (ENXIO);
902	}
903	data16[1] =
904	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
905	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
906
907	/* Number of 32bit words in the message */
908	ioc_sz = reply->MsgLength;
909
910	/*
911	 * Figure out how many 16bit words to clock in without overrunning.
912	 * The precision loss with dividing reply_sz can safely be
913	 * ignored because the messages can only be multiples of 32bits.
914	 */
915	residual = 0;
916	count = MIN((reply_sz / 4), ioc_sz) * 2;
917	if (count < ioc_sz * 2) {
918		residual = ioc_sz * 2 - count;
919		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
920		    "residual message words\n", residual);
921	}
922
923	for (i = 2; i < count; i++) {
924		if (mpr_wait_db_int(sc) != 0) {
925			mpr_dprint(sc, MPR_FAULT,
926			    "Timeout reading doorbell %d\n", i);
927			return (ENXIO);
928		}
929		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
930		    MPI2_DOORBELL_DATA_MASK;
931		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
932	}
933
934	/*
935	 * Pull out residual words that won't fit into the provided buffer.
936	 * This keeps the chip from hanging due to a driver programming
937	 * error.
938	 */
939	while (residual--) {
940		if (mpr_wait_db_int(sc) != 0) {
941			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
942			return (ENXIO);
943		}
944		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
945		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
946	}
947
948	/* Step 7 */
949	if (mpr_wait_db_int(sc) != 0) {
950		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
951		return (ENXIO);
952	}
953	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
954		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
955	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
956
957	return (0);
958}
959
960static void
961mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
962{
963	reply_descriptor rd;
964
965	MPR_FUNCTRACE(sc);
966	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
967	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
968
969	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
970	    MPR_FLAGS_SHUTDOWN))
971		mtx_assert(&sc->mpr_mtx, MA_OWNED);
972
973	if (++sc->io_cmds_active > sc->io_cmds_highwater)
974		sc->io_cmds_highwater++;
975
976	rd.u.low = cm->cm_desc.Words.Low;
977	rd.u.high = cm->cm_desc.Words.High;
978	rd.word = htole64(rd.word);
979	/* TODO-We may need to make below regwrite atomic */
980	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
981	    rd.u.low);
982	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
983	    rd.u.high);
984}
985
986/*
987 * Just the FACTS, ma'am.
988 */
989static int
990mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
991{
992	MPI2_DEFAULT_REPLY *reply;
993	MPI2_IOC_FACTS_REQUEST request;
994	int error, req_sz, reply_sz;
995
996	MPR_FUNCTRACE(sc);
997
998	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
999	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1000	reply = (MPI2_DEFAULT_REPLY *)facts;
1001
1002	bzero(&request, req_sz);
1003	request.Function = MPI2_FUNCTION_IOC_FACTS;
1004	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1005
1006	return (error);
1007}
1008
1009static int
1010mpr_send_iocinit(struct mpr_softc *sc)
1011{
1012	MPI2_IOC_INIT_REQUEST	init;
1013	MPI2_DEFAULT_REPLY	reply;
1014	int req_sz, reply_sz, error;
1015	struct timeval now;
1016	uint64_t time_in_msec;
1017
1018	MPR_FUNCTRACE(sc);
1019
1020	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1021	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1022	bzero(&init, req_sz);
1023	bzero(&reply, reply_sz);
1024
1025	/*
1026	 * Fill in the init block.  Note that most addresses are
1027	 * deliberately in the lower 32bits of memory.  This is a micro-
1028	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1029	 */
1030	init.Function = MPI2_FUNCTION_IOC_INIT;
1031	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1032	init.MsgVersion = htole16(MPI2_VERSION);
1033	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1034	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1035	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1036	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1037	init.SenseBufferAddressHigh = 0;
1038	init.SystemReplyAddressHigh = 0;
1039	init.SystemRequestFrameBaseAddress.High = 0;
1040	init.SystemRequestFrameBaseAddress.Low =
1041	    htole32((uint32_t)sc->req_busaddr);
1042	init.ReplyDescriptorPostQueueAddress.High = 0;
1043	init.ReplyDescriptorPostQueueAddress.Low =
1044	    htole32((uint32_t)sc->post_busaddr);
1045	init.ReplyFreeQueueAddress.High = 0;
1046	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1047	getmicrotime(&now);
1048	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1049	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1050	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1051
1052	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1053	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1054		error = ENXIO;
1055
1056	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1057	return (error);
1058}
1059
1060void
1061mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1062{
1063	bus_addr_t *addr;
1064
1065	addr = arg;
1066	*addr = segs[0].ds_addr;
1067}
1068
1069static int
1070mpr_alloc_queues(struct mpr_softc *sc)
1071{
1072	bus_addr_t queues_busaddr;
1073	uint8_t *queues;
1074	int qsize, fqsize, pqsize;
1075
1076	/*
1077	 * The reply free queue contains 4 byte entries in multiples of 16 and
1078	 * aligned on a 16 byte boundary. There must always be an unused entry.
1079	 * This queue supplies fresh reply frames for the firmware to use.
1080	 *
1081	 * The reply descriptor post queue contains 8 byte entries in
1082	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1083	 * contains filled-in reply frames sent from the firmware to the host.
1084	 *
1085	 * These two queues are allocated together for simplicity.
1086	 */
1087	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1088	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1089	fqsize= sc->fqdepth * 4;
1090	pqsize = sc->pqdepth * 8;
1091	qsize = fqsize + pqsize;
1092
1093        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1094				16, 0,			/* algnmnt, boundary */
1095				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1096				BUS_SPACE_MAXADDR,	/* highaddr */
1097				NULL, NULL,		/* filter, filterarg */
1098                                qsize,			/* maxsize */
1099                                1,			/* nsegments */
1100                                qsize,			/* maxsegsize */
1101                                0,			/* flags */
1102                                NULL, NULL,		/* lockfunc, lockarg */
1103                                &sc->queues_dmat)) {
1104		device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1105		return (ENOMEM);
1106        }
1107        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1108	    &sc->queues_map)) {
1109		device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1110		return (ENOMEM);
1111        }
1112        bzero(queues, qsize);
1113        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1114	    mpr_memaddr_cb, &queues_busaddr, 0);
1115
1116	sc->free_queue = (uint32_t *)queues;
1117	sc->free_busaddr = queues_busaddr;
1118	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1119	sc->post_busaddr = queues_busaddr + fqsize;
1120
1121	return (0);
1122}
1123
1124static int
1125mpr_alloc_replies(struct mpr_softc *sc)
1126{
1127	int rsize, num_replies;
1128
1129	/*
1130	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1131	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1132	 * replies can be used at once.
1133	 */
1134	num_replies = max(sc->fqdepth, sc->num_replies);
1135
1136	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1137        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1138				4, 0,			/* algnmnt, boundary */
1139				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1140				BUS_SPACE_MAXADDR,	/* highaddr */
1141				NULL, NULL,		/* filter, filterarg */
1142                                rsize,			/* maxsize */
1143                                1,			/* nsegments */
1144                                rsize,			/* maxsegsize */
1145                                0,			/* flags */
1146                                NULL, NULL,		/* lockfunc, lockarg */
1147                                &sc->reply_dmat)) {
1148		device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1149		return (ENOMEM);
1150        }
1151        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1152	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1153		device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1154		return (ENOMEM);
1155        }
1156        bzero(sc->reply_frames, rsize);
1157        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1158	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1159
1160	return (0);
1161}
1162
1163static int
1164mpr_alloc_requests(struct mpr_softc *sc)
1165{
1166	struct mpr_command *cm;
1167	struct mpr_chain *chain;
1168	int i, rsize, nsegs;
1169
1170	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1171        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1172				16, 0,			/* algnmnt, boundary */
1173				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1174				BUS_SPACE_MAXADDR,	/* highaddr */
1175				NULL, NULL,		/* filter, filterarg */
1176                                rsize,			/* maxsize */
1177                                1,			/* nsegments */
1178                                rsize,			/* maxsegsize */
1179                                0,			/* flags */
1180                                NULL, NULL,		/* lockfunc, lockarg */
1181                                &sc->req_dmat)) {
1182		device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1183		return (ENOMEM);
1184        }
1185        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1186	    BUS_DMA_NOWAIT, &sc->req_map)) {
1187		device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1188		return (ENOMEM);
1189        }
1190        bzero(sc->req_frames, rsize);
1191        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1192	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1193
1194	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
1195        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1196				16, 0,			/* algnmnt, boundary */
1197				BUS_SPACE_MAXADDR,	/* lowaddr */
1198				BUS_SPACE_MAXADDR,	/* highaddr */
1199				NULL, NULL,		/* filter, filterarg */
1200                                rsize,			/* maxsize */
1201                                1,			/* nsegments */
1202                                rsize,			/* maxsegsize */
1203                                0,			/* flags */
1204                                NULL, NULL,		/* lockfunc, lockarg */
1205                                &sc->chain_dmat)) {
1206		device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1207		return (ENOMEM);
1208        }
1209        if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1210	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1211		device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1212		return (ENOMEM);
1213        }
1214        bzero(sc->chain_frames, rsize);
1215        bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1216	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1217
1218	rsize = MPR_SENSE_LEN * sc->num_reqs;
1219	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1220				1, 0,			/* algnmnt, boundary */
1221				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1222				BUS_SPACE_MAXADDR,	/* highaddr */
1223				NULL, NULL,		/* filter, filterarg */
1224                                rsize,			/* maxsize */
1225                                1,			/* nsegments */
1226                                rsize,			/* maxsegsize */
1227                                0,			/* flags */
1228                                NULL, NULL,		/* lockfunc, lockarg */
1229                                &sc->sense_dmat)) {
1230		device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1231		return (ENOMEM);
1232        }
1233        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1234	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1235		device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1236		return (ENOMEM);
1237        }
1238        bzero(sc->sense_frames, rsize);
1239        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1240	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1241
1242	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1243	    M_WAITOK | M_ZERO);
1244	if (!sc->chains) {
1245		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1246		    __func__, __LINE__);
1247		return (ENOMEM);
1248	}
1249	for (i = 0; i < sc->max_chains; i++) {
1250		chain = &sc->chains[i];
1251		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1252		    i * sc->facts->IOCRequestFrameSize * 4);
1253		chain->chain_busaddr = sc->chain_busaddr +
1254		    i * sc->facts->IOCRequestFrameSize * 4;
1255		mpr_free_chain(sc, chain);
1256		sc->chain_free_lowwater++;
1257	}
1258
1259	/* XXX Need to pick a more precise value */
1260	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1261        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1262				1, 0,			/* algnmnt, boundary */
1263				BUS_SPACE_MAXADDR,	/* lowaddr */
1264				BUS_SPACE_MAXADDR,	/* highaddr */
1265				NULL, NULL,		/* filter, filterarg */
1266                                BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1267                                nsegs,			/* nsegments */
1268                                BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1269                                BUS_DMA_ALLOCNOW,	/* flags */
1270                                busdma_lock_mutex,	/* lockfunc */
1271				&sc->mpr_mtx,		/* lockarg */
1272                                &sc->buffer_dmat)) {
1273		device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1274		return (ENOMEM);
1275        }
1276
1277	/*
1278	 * SMID 0 cannot be used as a free command per the firmware spec.
1279	 * Just drop that command instead of risking accounting bugs.
1280	 */
1281	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1282	    M_MPR, M_WAITOK | M_ZERO);
1283	if (!sc->commands) {
1284		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1285		    __func__, __LINE__);
1286		return (ENOMEM);
1287	}
1288	for (i = 1; i < sc->num_reqs; i++) {
1289		cm = &sc->commands[i];
1290		cm->cm_req = sc->req_frames +
1291		    i * sc->facts->IOCRequestFrameSize * 4;
1292		cm->cm_req_busaddr = sc->req_busaddr +
1293		    i * sc->facts->IOCRequestFrameSize * 4;
1294		cm->cm_sense = &sc->sense_frames[i];
1295		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1296		cm->cm_desc.Default.SMID = i;
1297		cm->cm_sc = sc;
1298		TAILQ_INIT(&cm->cm_chain_list);
1299		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1300
1301		/* XXX Is a failure here a critical problem? */
1302		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1303			if (i <= sc->facts->HighPriorityCredit)
1304				mpr_free_high_priority_command(sc, cm);
1305			else
1306				mpr_free_command(sc, cm);
1307		else {
1308			panic("failed to allocate command %d\n", i);
1309			sc->num_reqs = i;
1310			break;
1311		}
1312	}
1313
1314	return (0);
1315}
1316
1317static int
1318mpr_init_queues(struct mpr_softc *sc)
1319{
1320	int i;
1321
1322	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1323
1324	/*
1325	 * According to the spec, we need to use one less reply than we
1326	 * have space for on the queue.  So sc->num_replies (the number we
1327	 * use) should be less than sc->fqdepth (allocated size).
1328	 */
1329	if (sc->num_replies >= sc->fqdepth)
1330		return (EINVAL);
1331
1332	/*
1333	 * Initialize all of the free queue entries.
1334	 */
1335	for (i = 0; i < sc->fqdepth; i++)
1336		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
1337	sc->replyfreeindex = sc->num_replies;
1338
1339	return (0);
1340}
1341
1342/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1343 * Next are the global settings, if they exist.  Highest are the per-unit
1344 * settings, if they exist.
1345 */
1346static void
1347mpr_get_tunables(struct mpr_softc *sc)
1348{
1349	char tmpstr[80];
1350
1351	/* XXX default to some debugging for now */
1352	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1353	sc->disable_msix = 0;
1354	sc->disable_msi = 0;
1355	sc->max_chains = MPR_CHAIN_FRAMES;
1356	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1357	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1358
1359	/*
1360	 * Grab the global variables.
1361	 */
1362	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1363	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1364	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1365	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1366	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1367	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1368
1369	/* Grab the unit-instance variables */
1370	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1371	    device_get_unit(sc->mpr_dev));
1372	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1373
1374	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1375	    device_get_unit(sc->mpr_dev));
1376	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1377
1378	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1379	    device_get_unit(sc->mpr_dev));
1380	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1381
1382	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1383	    device_get_unit(sc->mpr_dev));
1384	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1385
1386	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1387	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1388	    device_get_unit(sc->mpr_dev));
1389	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1390
1391	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1392	    device_get_unit(sc->mpr_dev));
1393	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1394
1395	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1396	    device_get_unit(sc->mpr_dev));
1397	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1398}
1399
1400static void
1401mpr_setup_sysctl(struct mpr_softc *sc)
1402{
1403	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1404	struct sysctl_oid	*sysctl_tree = NULL;
1405	char tmpstr[80], tmpstr2[80];
1406
1407	/*
1408	 * Setup the sysctl variable so the user can change the debug level
1409	 * on the fly.
1410	 */
1411	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1412	    device_get_unit(sc->mpr_dev));
1413	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1414
1415	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1416	if (sysctl_ctx != NULL)
1417		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1418
1419	if (sysctl_tree == NULL) {
1420		sysctl_ctx_init(&sc->sysctl_ctx);
1421		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1422		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1423		    CTLFLAG_RD, 0, tmpstr);
1424		if (sc->sysctl_tree == NULL)
1425			return;
1426		sysctl_ctx = &sc->sysctl_ctx;
1427		sysctl_tree = sc->sysctl_tree;
1428	}
1429
1430	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1431	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1432	    "mpr debug level");
1433
1434	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1435	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1436	    "Disable the use of MSI-X interrupts");
1437
1438	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1439	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1440	    "Disable the use of MSI interrupts");
1441
1442	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1443	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1444	    strlen(sc->fw_version), "firmware version");
1445
1446	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1447	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1448	    strlen(MPR_DRIVER_VERSION), "driver version");
1449
1450	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1451	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1452	    &sc->io_cmds_active, 0, "number of currently active commands");
1453
1454	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1455	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1456	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1457
1458	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1459	    OID_AUTO, "chain_free", CTLFLAG_RD,
1460	    &sc->chain_free, 0, "number of free chain elements");
1461
1462	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1463	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1464	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1465
1466	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1467	    OID_AUTO, "max_chains", CTLFLAG_RD,
1468	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1469
1470	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1471	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1472	    "enable SSU to SATA SSD/HDD at shutdown");
1473
1474	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1475	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1476	    &sc->chain_alloc_fail, "chain allocation failures");
1477
1478	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1479	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1480	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1481	    "spinup after SATA ID error");
1482}
1483
1484int
1485mpr_attach(struct mpr_softc *sc)
1486{
1487	int error;
1488
1489	mpr_get_tunables(sc);
1490
1491	MPR_FUNCTRACE(sc);
1492
1493	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1494	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1495	TAILQ_INIT(&sc->event_list);
1496	timevalclear(&sc->lastfail);
1497
1498	if ((error = mpr_transition_ready(sc)) != 0) {
1499		mpr_printf(sc, "%s failed to transition ready\n", __func__);
1500		return (error);
1501	}
1502
1503	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1504	    M_ZERO|M_NOWAIT);
1505	if (!sc->facts) {
1506		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1507		    __func__, __LINE__);
1508		return (ENOMEM);
1509	}
1510
1511	/*
1512	 * Get IOC Facts and allocate all structures based on this information.
1513	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1514	 * Facts. If relevant values have changed in IOC Facts, this function
1515	 * will free all of the memory based on IOC Facts and reallocate that
1516	 * memory.  If this fails, any allocated memory should already be freed.
1517	 */
1518	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1519		mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1520		    "failed with error %d\n", __func__, error);
1521		return (error);
1522	}
1523
1524	/* Start the periodic watchdog check on the IOC Doorbell */
1525	mpr_periodic(sc);
1526
1527	/*
1528	 * The portenable will kick off discovery events that will drive the
1529	 * rest of the initialization process.  The CAM/SAS module will
1530	 * hold up the boot sequence until discovery is complete.
1531	 */
1532	sc->mpr_ich.ich_func = mpr_startup;
1533	sc->mpr_ich.ich_arg = sc;
1534	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1535		mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1536		error = EINVAL;
1537	}
1538
1539	/*
1540	 * Allow IR to shutdown gracefully when shutdown occurs.
1541	 */
1542	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1543	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1544
1545	if (sc->shutdown_eh == NULL)
1546		mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1547		    "failed\n");
1548
1549	mpr_setup_sysctl(sc);
1550
1551	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1552
1553	return (error);
1554}
1555
1556/* Run through any late-start handlers. */
1557static void
1558mpr_startup(void *arg)
1559{
1560	struct mpr_softc *sc;
1561
1562	sc = (struct mpr_softc *)arg;
1563
1564	mpr_lock(sc);
1565	mpr_unmask_intr(sc);
1566
1567	/* initialize device mapping tables */
1568	mpr_base_static_config_pages(sc);
1569	mpr_mapping_initialize(sc);
1570	mprsas_startup(sc);
1571	mpr_unlock(sc);
1572}
1573
1574/* Periodic watchdog.  Is called with the driver lock already held. */
1575static void
1576mpr_periodic(void *arg)
1577{
1578	struct mpr_softc *sc;
1579	uint32_t db;
1580
1581	sc = (struct mpr_softc *)arg;
1582	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1583		return;
1584
1585	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1586	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1587		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1588		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1589			panic("TEMPERATURE FAULT: STOPPING.");
1590		}
1591		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1592		mpr_reinit(sc);
1593	}
1594
1595	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1596}
1597
1598static void
1599mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1600    MPI2_EVENT_NOTIFICATION_REPLY *event)
1601{
1602	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1603
1604	mpr_print_event(sc, event);
1605
1606	switch (event->Event) {
1607	case MPI2_EVENT_LOG_DATA:
1608		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1609		if (sc->mpr_debug & MPR_EVENT)
1610			hexdump(event->EventData, event->EventDataLength, NULL,
1611			    0);
1612		break;
1613	case MPI2_EVENT_LOG_ENTRY_ADDED:
1614		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1615		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1616		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1617		     entry->LogSequence);
1618		break;
1619	default:
1620		break;
1621	}
1622	return;
1623}
1624
1625static int
1626mpr_attach_log(struct mpr_softc *sc)
1627{
1628	uint8_t events[16];
1629
1630	bzero(events, 16);
1631	setbit(events, MPI2_EVENT_LOG_DATA);
1632	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1633
1634	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1635	    &sc->mpr_log_eh);
1636
1637	return (0);
1638}
1639
1640static int
1641mpr_detach_log(struct mpr_softc *sc)
1642{
1643
1644	if (sc->mpr_log_eh != NULL)
1645		mpr_deregister_events(sc, sc->mpr_log_eh);
1646	return (0);
1647}
1648
1649/*
1650 * Free all of the driver resources and detach submodules.  Should be called
1651 * without the lock held.
1652 */
1653int
1654mpr_free(struct mpr_softc *sc)
1655{
1656	int error;
1657
1658	/* Turn off the watchdog */
1659	mpr_lock(sc);
1660	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1661	mpr_unlock(sc);
1662	/* Lock must not be held for this */
1663	callout_drain(&sc->periodic);
1664
1665	if (((error = mpr_detach_log(sc)) != 0) ||
1666	    ((error = mpr_detach_sas(sc)) != 0))
1667		return (error);
1668
1669	mpr_detach_user(sc);
1670
1671	/* Put the IOC back in the READY state. */
1672	mpr_lock(sc);
1673	if ((error = mpr_transition_ready(sc)) != 0) {
1674		mpr_unlock(sc);
1675		return (error);
1676	}
1677	mpr_unlock(sc);
1678
1679	if (sc->facts != NULL)
1680		free(sc->facts, M_MPR);
1681
1682	/*
1683	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1684	 * to free these buffers too.
1685	 */
1686	mpr_iocfacts_free(sc);
1687
1688	if (sc->sysctl_tree != NULL)
1689		sysctl_ctx_free(&sc->sysctl_ctx);
1690
1691	/* Deregister the shutdown function */
1692	if (sc->shutdown_eh != NULL)
1693		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1694
1695	mtx_destroy(&sc->mpr_mtx);
1696
1697	return (0);
1698}
1699
1700static __inline void
1701mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1702{
1703	MPR_FUNCTRACE(sc);
1704
1705	if (cm == NULL) {
1706		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1707		return;
1708	}
1709
1710	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1711		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1712
1713	if (cm->cm_complete != NULL) {
1714		mpr_dprint(sc, MPR_TRACE,
1715			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1716			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1717			   cm->cm_reply);
1718		cm->cm_complete(sc, cm);
1719	}
1720
1721	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1722		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1723		wakeup(cm);
1724	}
1725
1726	if (sc->io_cmds_active != 0) {
1727		sc->io_cmds_active--;
1728	} else {
1729		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1730		    "out of sync - resynching to 0\n");
1731	}
1732}
1733
1734static void
1735mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1736{
1737	union loginfo_type {
1738		u32	loginfo;
1739		struct {
1740			u32	subcode:16;
1741			u32	code:8;
1742			u32	originator:4;
1743			u32	bus_type:4;
1744		} dw;
1745	};
1746	union loginfo_type sas_loginfo;
1747	char *originator_str = NULL;
1748
1749	sas_loginfo.loginfo = log_info;
1750	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1751		return;
1752
1753	/* each nexus loss loginfo */
1754	if (log_info == 0x31170000)
1755		return;
1756
1757	/* eat the loginfos associated with task aborts */
1758	if ((log_info == 30050000) || (log_info == 0x31140000) ||
1759	    (log_info == 0x31130000))
1760		return;
1761
1762	switch (sas_loginfo.dw.originator) {
1763	case 0:
1764		originator_str = "IOP";
1765		break;
1766	case 1:
1767		originator_str = "PL";
1768		break;
1769	case 2:
1770		originator_str = "IR";
1771		break;
1772	}
1773
1774	mpr_dprint(sc, MPR_INFO, "log_info(0x%08x): originator(%s), "
1775	    "code(0x%02x), sub_code(0x%04x)\n", log_info,
1776	    originator_str, sas_loginfo.dw.code,
1777	    sas_loginfo.dw.subcode);
1778}
1779
1780static void
1781mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1782{
1783	MPI2DefaultReply_t *mpi_reply;
1784	u16 sc_status;
1785
1786	mpi_reply = (MPI2DefaultReply_t*)reply;
1787	sc_status = le16toh(mpi_reply->IOCStatus);
1788	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1789		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1790}
1791
1792void
1793mpr_intr(void *data)
1794{
1795	struct mpr_softc *sc;
1796	uint32_t status;
1797
1798	sc = (struct mpr_softc *)data;
1799	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1800
1801	/*
1802	 * Check interrupt status register to flush the bus.  This is
1803	 * needed for both INTx interrupts and driver-driven polling
1804	 */
1805	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1806	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1807		return;
1808
1809	mpr_lock(sc);
1810	mpr_intr_locked(data);
1811	mpr_unlock(sc);
1812	return;
1813}
1814
1815/*
1816 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1817 * chip.  Hopefully this theory is correct.
1818 */
1819void
1820mpr_intr_msi(void *data)
1821{
1822	struct mpr_softc *sc;
1823
1824	sc = (struct mpr_softc *)data;
1825	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1826	mpr_lock(sc);
1827	mpr_intr_locked(data);
1828	mpr_unlock(sc);
1829	return;
1830}
1831
1832/*
1833 * The locking is overly broad and simplistic, but easy to deal with for now.
1834 */
1835void
1836mpr_intr_locked(void *data)
1837{
1838	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1839	struct mpr_softc *sc;
1840	struct mpr_command *cm = NULL;
1841	uint8_t flags;
1842	u_int pq;
1843	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1844	mpr_fw_diagnostic_buffer_t *pBuffer;
1845
1846	sc = (struct mpr_softc *)data;
1847
1848	pq = sc->replypostindex;
1849	mpr_dprint(sc, MPR_TRACE,
1850	    "%s sc %p starting with replypostindex %u\n",
1851	    __func__, sc, sc->replypostindex);
1852
1853	for ( ;; ) {
1854		cm = NULL;
1855		desc = &sc->post_queue[sc->replypostindex];
1856		flags = desc->Default.ReplyFlags &
1857		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1858		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
1859		    (le32toh(desc->Words.High) == 0xffffffff))
1860			break;
1861
1862		/* increment the replypostindex now, so that event handlers
1863		 * and cm completion handlers which decide to do a diag
1864		 * reset can zero it without it getting incremented again
1865		 * afterwards, and we break out of this loop on the next
1866		 * iteration since the reply post queue has been cleared to
1867		 * 0xFF and all descriptors look unused (which they are).
1868		 */
1869		if (++sc->replypostindex >= sc->pqdepth)
1870			sc->replypostindex = 0;
1871
1872		switch (flags) {
1873		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1874		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
1875			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
1876			cm->cm_reply = NULL;
1877			break;
1878		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1879		{
1880			uint32_t baddr;
1881			uint8_t *reply;
1882
1883			/*
1884			 * Re-compose the reply address from the address
1885			 * sent back from the chip.  The ReplyFrameAddress
1886			 * is the lower 32 bits of the physical address of
1887			 * particular reply frame.  Convert that address to
1888			 * host format, and then use that to provide the
1889			 * offset against the virtual address base
1890			 * (sc->reply_frames).
1891			 */
1892			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1893			reply = sc->reply_frames +
1894				(baddr - ((uint32_t)sc->reply_busaddr));
1895			/*
1896			 * Make sure the reply we got back is in a valid
1897			 * range.  If not, go ahead and panic here, since
1898			 * we'll probably panic as soon as we deference the
1899			 * reply pointer anyway.
1900			 */
1901			if ((reply < sc->reply_frames)
1902			 || (reply > (sc->reply_frames +
1903			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1904				printf("%s: WARNING: reply %p out of range!\n",
1905				       __func__, reply);
1906				printf("%s: reply_frames %p, fqdepth %d, "
1907				       "frame size %d\n", __func__,
1908				       sc->reply_frames, sc->fqdepth,
1909				       sc->facts->ReplyFrameSize * 4);
1910				printf("%s: baddr %#x,\n", __func__, baddr);
1911				/* LSI-TODO. See Linux Code for Graceful exit */
1912				panic("Reply address out of range");
1913			}
1914			if (le16toh(desc->AddressReply.SMID) == 0) {
1915				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1916				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1917					/*
1918					 * If SMID is 0 for Diag Buffer Post,
1919					 * this implies that the reply is due to
1920					 * a release function with a status that
1921					 * the buffer has been released.  Set
1922					 * the buffer flags accordingly.
1923					 */
1924					rel_rep =
1925					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1926					if (le16toh(rel_rep->IOCStatus) ==
1927					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1928					    {
1929						pBuffer =
1930						    &sc->fw_diag_buffer_list[
1931						    rel_rep->BufferType];
1932						pBuffer->valid_data = TRUE;
1933						pBuffer->owned_by_firmware =
1934						    FALSE;
1935						pBuffer->immediate = FALSE;
1936					}
1937				} else
1938					mpr_dispatch_event(sc, baddr,
1939					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1940					    reply);
1941			} else {
1942				cm = &sc->commands[
1943				    le16toh(desc->AddressReply.SMID)];
1944				cm->cm_reply = reply;
1945				cm->cm_reply_data =
1946				    le32toh(desc->AddressReply.
1947				    ReplyFrameAddress);
1948			}
1949			break;
1950		}
1951		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1952		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1953		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1954		default:
1955			/* Unhandled */
1956			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
1957			    desc->Default.ReplyFlags);
1958			cm = NULL;
1959			break;
1960		}
1961
1962		if (cm != NULL) {
1963			// Print Error reply frame
1964			if (cm->cm_reply)
1965				mpr_display_reply_info(sc,cm->cm_reply);
1966			mpr_complete_command(sc, cm);
1967		}
1968
1969		desc->Words.Low = 0xffffffff;
1970		desc->Words.High = 0xffffffff;
1971	}
1972
1973	if (pq != sc->replypostindex) {
1974		mpr_dprint(sc, MPR_TRACE,
1975		    "%s sc %p writing postindex %d\n",
1976		    __func__, sc, sc->replypostindex);
1977		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
1978		    sc->replypostindex);
1979	}
1980
1981	return;
1982}
1983
1984static void
1985mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
1986    MPI2_EVENT_NOTIFICATION_REPLY *reply)
1987{
1988	struct mpr_event_handle *eh;
1989	int event, handled = 0;
1990
1991	event = le16toh(reply->Event);
1992	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1993		if (isset(eh->mask, event)) {
1994			eh->callback(sc, data, reply);
1995			handled++;
1996		}
1997	}
1998
1999	if (handled == 0)
2000		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2001		    le16toh(event));
2002
2003	/*
2004	 * This is the only place that the event/reply should be freed.
2005	 * Anything wanting to hold onto the event data should have
2006	 * already copied it into their own storage.
2007	 */
2008	mpr_free_reply(sc, data);
2009}
2010
2011static void
2012mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2013{
2014	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2015
2016	if (cm->cm_reply)
2017		mpr_print_event(sc,
2018			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2019
2020	mpr_free_command(sc, cm);
2021
2022	/* next, send a port enable */
2023	mprsas_startup(sc);
2024}
2025
2026/*
2027 * For both register_events and update_events, the caller supplies a bitmap
2028 * of events that it _wants_.  These functions then turn that into a bitmask
2029 * suitable for the controller.
2030 */
2031int
2032mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2033    mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2034{
2035	struct mpr_event_handle *eh;
2036	int error = 0;
2037
2038	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2039	if (!eh) {
2040		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2041		    __func__, __LINE__);
2042		return (ENOMEM);
2043	}
2044	eh->callback = cb;
2045	eh->data = data;
2046	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2047	if (mask != NULL)
2048		error = mpr_update_events(sc, eh, mask);
2049	*handle = eh;
2050
2051	return (error);
2052}
2053
2054int
2055mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2056    uint8_t *mask)
2057{
2058	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2059	MPI2_EVENT_NOTIFICATION_REPLY *reply;
2060	struct mpr_command *cm;
2061	struct mpr_event_handle *eh;
2062	int error, i;
2063
2064	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2065
2066	if ((mask != NULL) && (handle != NULL))
2067		bcopy(mask, &handle->mask[0], 16);
2068	memset(sc->event_mask, 0xff, 16);
2069
2070	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2071		for (i = 0; i < 16; i++)
2072			sc->event_mask[i] &= ~eh->mask[i];
2073	}
2074
2075	if ((cm = mpr_alloc_command(sc)) == NULL)
2076		return (EBUSY);
2077	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2078	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2079	evtreq->MsgFlags = 0;
2080	evtreq->SASBroadcastPrimitiveMasks = 0;
2081#ifdef MPR_DEBUG_ALL_EVENTS
2082	{
2083		u_char fullmask[16];
2084		memset(fullmask, 0x00, 16);
2085		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2086	}
2087#else
2088		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2089#endif
2090	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2091	cm->cm_data = NULL;
2092
2093	error = mpr_request_polled(sc, cm);
2094	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2095	if ((reply == NULL) ||
2096	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2097		error = ENXIO;
2098
2099	if (reply)
2100		mpr_print_event(sc, reply);
2101
2102	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2103
2104	mpr_free_command(sc, cm);
2105	return (error);
2106}
2107
2108static int
2109mpr_reregister_events(struct mpr_softc *sc)
2110{
2111	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2112	struct mpr_command *cm;
2113	struct mpr_event_handle *eh;
2114	int error, i;
2115
2116	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2117
2118	/* first, reregister events */
2119
2120	memset(sc->event_mask, 0xff, 16);
2121
2122	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2123		for (i = 0; i < 16; i++)
2124			sc->event_mask[i] &= ~eh->mask[i];
2125	}
2126
2127	if ((cm = mpr_alloc_command(sc)) == NULL)
2128		return (EBUSY);
2129	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2130	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2131	evtreq->MsgFlags = 0;
2132	evtreq->SASBroadcastPrimitiveMasks = 0;
2133#ifdef MPR_DEBUG_ALL_EVENTS
2134	{
2135		u_char fullmask[16];
2136		memset(fullmask, 0x00, 16);
2137		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2138	}
2139#else
2140		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2141#endif
2142	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2143	cm->cm_data = NULL;
2144	cm->cm_complete = mpr_reregister_events_complete;
2145
2146	error = mpr_map_command(sc, cm);
2147
2148	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2149	    error);
2150	return (error);
2151}
2152
2153int
2154mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2155{
2156
2157	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2158	free(handle, M_MPR);
2159	return (mpr_update_events(sc, NULL, NULL));
2160}
2161
2162/*
2163 * Add a chain element as the next SGE for the specified command.
2164 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2165 * only required for IEEE commands.  Therefore there is no code for commands
2166 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
2167 * shouldn't be requesting chains).
2168 */
2169static int
2170mpr_add_chain(struct mpr_command *cm, int segsleft)
2171{
2172	struct mpr_softc *sc = cm->cm_sc;
2173	MPI2_REQUEST_HEADER *req;
2174	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2175	struct mpr_chain *chain;
2176	int space, sgc_size, current_segs, rem_segs, segs_per_frame;
2177	uint8_t next_chain_offset = 0;
2178
2179	/*
2180	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
2181	 * only IEEE commands should be requesting chains.  Return some error
2182	 * code other than 0.
2183	 */
2184	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2185		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2186		    "an MPI SGL.\n");
2187		return(ENOBUFS);
2188	}
2189
2190	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2191	if (cm->cm_sglsize < sgc_size)
2192		panic("MPR: Need SGE Error Code\n");
2193
2194	chain = mpr_alloc_chain(cm->cm_sc);
2195	if (chain == NULL)
2196		return (ENOBUFS);
2197
2198	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
2199
2200	/*
2201	 * Note: a double-linked list is used to make it easier to walk for
2202	 * debugging.
2203	 */
2204	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2205
2206	/*
2207	 * Need to know if the number of frames left is more than 1 or not.  If
2208	 * more than 1 frame is required, NextChainOffset will need to be set,
2209	 * which will just be the last segment of the frame.
2210	 */
2211	rem_segs = 0;
2212	if (cm->cm_sglsize < (sgc_size * segsleft)) {
2213		/*
2214		 * rem_segs is the number of segements remaining after the
2215		 * segments that will go into the current frame.  Since it is
2216		 * known that at least one more frame is required, account for
2217		 * the chain element.  To know if more than one more frame is
2218		 * required, just check if there will be a remainder after using
2219		 * the current frame (with this chain) and the next frame.  If
2220		 * so the NextChainOffset must be the last element of the next
2221		 * frame.
2222		 */
2223		current_segs = (cm->cm_sglsize / sgc_size) - 1;
2224		rem_segs = segsleft - current_segs;
2225		segs_per_frame = space / sgc_size;
2226		if (rem_segs > segs_per_frame) {
2227			next_chain_offset = segs_per_frame - 1;
2228		}
2229	}
2230	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2231	ieee_sgc->Length = next_chain_offset ? htole32((uint32_t)space) :
2232	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2233	ieee_sgc->NextChainOffset = next_chain_offset;
2234	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2235	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2236	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2237	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2238	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2239	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2240	req->ChainOffset = ((sc->facts->IOCRequestFrameSize * 4) -
2241	    sgc_size) >> 4;
2242
2243	cm->cm_sglsize = space;
2244	return (0);
2245}
2246
2247/*
2248 * Add one scatter-gather element to the scatter-gather list for a command.
2249 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
2250 * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
2251 * chain, so don't consider any chain additions.
2252 */
2253int
2254mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2255    int segsleft)
2256{
2257	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2258	u32 sge_flags;
2259
2260	/*
2261	 * case 1: >=1 more segment, no room for anything (error)
2262	 * case 2: 1 more segment and enough room for it
2263         */
2264
2265	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2266		mpr_dprint(cm->cm_sc, MPR_ERROR,
2267		    "%s: warning: Not enough room for MPI SGL in frame.\n",
2268		    __func__);
2269		return(ENOBUFS);
2270	}
2271
2272	KASSERT(segsleft == 1,
2273	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2274	    segsleft));
2275
2276	/*
2277	 * There is one more segment left to add for the MPI SGL and there is
2278	 * enough room in the frame to add it.  This is the normal case because
2279	 * MPI SGL's don't have chains, otherwise something is wrong.
2280	 *
2281	 * If this is a bi-directional request, need to account for that
2282	 * here.  Save the pre-filled sge values.  These will be used
2283	 * either for the 2nd SGL or for a single direction SGL.  If
2284	 * cm_out_len is non-zero, this is a bi-directional request, so
2285	 * fill in the OUT SGL first, then the IN SGL, otherwise just
2286	 * fill in the IN SGL.  Note that at this time, when filling in
2287	 * 2 SGL's for a bi-directional request, they both use the same
2288	 * DMA buffer (same cm command).
2289	 */
2290	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2291	saved_address_low = sge->Address.Low;
2292	saved_address_high = sge->Address.High;
2293	if (cm->cm_out_len) {
2294		sge->FlagsLength = cm->cm_out_len |
2295		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2296		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2297		    MPI2_SGE_FLAGS_HOST_TO_IOC |
2298		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2299		    MPI2_SGE_FLAGS_SHIFT);
2300		cm->cm_sglsize -= len;
2301		/* Endian Safe code */
2302		sge_flags = sge->FlagsLength;
2303		sge->FlagsLength = htole32(sge_flags);
2304		sge->Address.High = htole32(sge->Address.High);
2305		sge->Address.Low = htole32(sge->Address.Low);
2306		bcopy(sge, cm->cm_sge, len);
2307		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2308	}
2309	sge->FlagsLength = saved_buf_len |
2310	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2311	    MPI2_SGE_FLAGS_END_OF_BUFFER |
2312	    MPI2_SGE_FLAGS_LAST_ELEMENT |
2313	    MPI2_SGE_FLAGS_END_OF_LIST |
2314	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2315	    MPI2_SGE_FLAGS_SHIFT);
2316	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
2317		sge->FlagsLength |=
2318		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2319		    MPI2_SGE_FLAGS_SHIFT);
2320	} else {
2321		sge->FlagsLength |=
2322		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2323		    MPI2_SGE_FLAGS_SHIFT);
2324	}
2325	sge->Address.Low = saved_address_low;
2326	sge->Address.High = saved_address_high;
2327
2328	cm->cm_sglsize -= len;
2329	/* Endian Safe code */
2330	sge_flags = sge->FlagsLength;
2331	sge->FlagsLength = htole32(sge_flags);
2332	sge->Address.High = htole32(sge->Address.High);
2333	sge->Address.Low = htole32(sge->Address.Low);
2334	bcopy(sge, cm->cm_sge, len);
2335	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2336	return (0);
2337}
2338
2339/*
2340 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
2341 * gather list for a command.  Maintain cm_sglsize and cm_sge as the
2342 * remaining size and pointer to the next SGE to fill in, respectively.
2343 */
2344int
2345mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
2346{
2347	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
2348	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
2349	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2350	uint32_t sge_length;
2351
2352	/*
2353	 * case 1: No room for chain or segment (error).
2354	 * case 2: Two or more segments left but only room for chain.
2355	 * case 3: Last segment and room for it, so set flags.
2356	 */
2357
2358	/*
2359	 * There should be room for at least one element, or there is a big
2360	 * problem.
2361	 */
2362	if (cm->cm_sglsize < ieee_sge_size)
2363		panic("MPR: Need SGE Error Code\n");
2364
2365	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
2366		if ((error = mpr_add_chain(cm, segsleft)) != 0)
2367			return (error);
2368	}
2369
2370	if (segsleft == 1) {
2371		/*
2372		 * If this is a bi-directional request, need to account for that
2373		 * here.  Save the pre-filled sge values.  These will be used
2374		 * either for the 2nd SGL or for a single direction SGL.  If
2375		 * cm_out_len is non-zero, this is a bi-directional request, so
2376		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2377		 * fill in the IN SGL.  Note that at this time, when filling in
2378		 * 2 SGL's for a bi-directional request, they both use the same
2379		 * DMA buffer (same cm command).
2380		 */
2381		saved_buf_len = sge->Length;
2382		saved_address_low = sge->Address.Low;
2383		saved_address_high = sge->Address.High;
2384		if (cm->cm_out_len) {
2385			sge->Length = cm->cm_out_len;
2386			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2387			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2388			cm->cm_sglsize -= ieee_sge_size;
2389			/* Endian Safe code */
2390			sge_length = sge->Length;
2391			sge->Length = htole32(sge_length);
2392			sge->Address.High = htole32(sge->Address.High);
2393			sge->Address.Low = htole32(sge->Address.Low);
2394			bcopy(sgep, cm->cm_sge, ieee_sge_size);
2395			cm->cm_sge =
2396			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2397			    ieee_sge_size);
2398		}
2399		sge->Length = saved_buf_len;
2400		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2401		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2402		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2403		sge->Address.Low = saved_address_low;
2404		sge->Address.High = saved_address_high;
2405	}
2406
2407	cm->cm_sglsize -= ieee_sge_size;
2408	/* Endian Safe code */
2409	sge_length = sge->Length;
2410	sge->Length = htole32(sge_length);
2411	sge->Address.High = htole32(sge->Address.High);
2412	sge->Address.Low = htole32(sge->Address.Low);
2413	bcopy(sgep, cm->cm_sge, ieee_sge_size);
2414	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2415	    ieee_sge_size);
2416	return (0);
2417}
2418
2419/*
2420 * Add one dma segment to the scatter-gather list for a command.
2421 */
2422int
2423mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2424    int segsleft)
2425{
2426	MPI2_SGE_SIMPLE64 sge;
2427	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
2428
2429	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
2430		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2431		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2432		ieee_sge.Length = len;
2433		mpr_from_u64(pa, &ieee_sge.Address);
2434
2435		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
2436	} else {
2437		/*
2438		 * This driver always uses 64-bit address elements for
2439		 * simplicity.
2440		 */
2441		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2442		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2443		/* Set Endian safe macro in mpr_push_sge */
2444		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
2445		mpr_from_u64(pa, &sge.Address);
2446
2447		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
2448	}
2449}
2450
2451static void
2452mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2453{
2454	struct mpr_softc *sc;
2455	struct mpr_command *cm;
2456	u_int i, dir, sflags;
2457
2458	cm = (struct mpr_command *)arg;
2459	sc = cm->cm_sc;
2460
2461	/*
2462	 * In this case, just print out a warning and let the chip tell the
2463	 * user they did the wrong thing.
2464	 */
2465	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2466		mpr_dprint(sc, MPR_ERROR,
2467			   "%s: warning: busdma returned %d segments, "
2468			   "more than the %d allowed\n", __func__, nsegs,
2469			   cm->cm_max_segs);
2470	}
2471
2472	/*
2473	 * Set up DMA direction flags.  Bi-directional requests are also handled
2474	 * here.  In that case, both direction flags will be set.
2475	 */
2476	sflags = 0;
2477	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
2478		/*
2479		 * We have to add a special case for SMP passthrough, there
2480		 * is no easy way to generically handle it.  The first
2481		 * S/G element is used for the command (therefore the
2482		 * direction bit needs to be set).  The second one is used
2483		 * for the reply.  We'll leave it to the caller to make
2484		 * sure we only have two buffers.
2485		 */
2486		/*
2487		 * Even though the busdma man page says it doesn't make
2488		 * sense to have both direction flags, it does in this case.
2489		 * We have one s/g element being accessed in each direction.
2490		 */
2491		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2492
2493		/*
2494		 * Set the direction flag on the first buffer in the SMP
2495		 * passthrough request.  We'll clear it for the second one.
2496		 */
2497		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2498			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2499	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
2500		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2501		dir = BUS_DMASYNC_PREWRITE;
2502	} else
2503		dir = BUS_DMASYNC_PREREAD;
2504
2505	for (i = 0; i < nsegs; i++) {
2506		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
2507			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2508		}
2509		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2510		    sflags, nsegs - i);
2511		if (error != 0) {
2512			/* Resource shortage, roll back! */
2513			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
2514				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
2515				    "consider increasing hw.mpr.max_chains.\n");
2516			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
2517			mpr_complete_command(sc, cm);
2518			return;
2519		}
2520	}
2521
2522	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2523	mpr_enqueue_request(sc, cm);
2524
2525	return;
2526}
2527
2528static void
2529mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2530	     int error)
2531{
2532	mpr_data_cb(arg, segs, nsegs, error);
2533}
2534
2535/*
2536 * This is the routine to enqueue commands ansynchronously.
2537 * Note that the only error path here is from bus_dmamap_load(), which can
2538 * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2539 * assumed that if you have a command in-hand, then you have enough credits
2540 * to use it.
2541 */
2542int
2543mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
2544{
2545	int error = 0;
2546
2547	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
2548		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2549		    &cm->cm_uio, mpr_data_cb2, cm, 0);
2550	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
2551		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
2552		    cm->cm_data, mpr_data_cb, cm, 0);
2553	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2554		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2555		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
2556	} else {
2557		/* Add a zero-length element as needed */
2558		if (cm->cm_sge != NULL)
2559			mpr_add_dmaseg(cm, 0, 0, 0, 1);
2560		mpr_enqueue_request(sc, cm);
2561	}
2562
2563	return (error);
2564}
2565
2566/*
2567 * This is the routine to enqueue commands synchronously.  An error of
2568 * EINPROGRESS from mpr_map_command() is ignored since the command will
2569 * be executed and enqueued automatically.  Other errors come from msleep().
2570 */
2571int
2572mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout,
2573    int sleep_flag)
2574{
2575	int error, rc;
2576	struct timeval cur_time, start_time;
2577
2578	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
2579		return  EBUSY;
2580
2581	cm->cm_complete = NULL;
2582	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
2583	error = mpr_map_command(sc, cm);
2584	if ((error != 0) && (error != EINPROGRESS))
2585		return (error);
2586
2587	// Check for context and wait for 50 mSec at a time until time has
2588	// expired or the command has finished.  If msleep can't be used, need
2589	// to poll.
2590#if __FreeBSD_version >= 1000029
2591	if (curthread->td_no_sleeping)
2592#else //__FreeBSD_version < 1000029
2593	if (curthread->td_pflags & TDP_NOSLEEPING)
2594#endif //__FreeBSD_version >= 1000029
2595		sleep_flag = NO_SLEEP;
2596	getmicrotime(&start_time);
2597	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
2598		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
2599	} else {
2600		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2601			mpr_intr_locked(sc);
2602			if (sleep_flag == CAN_SLEEP)
2603				pause("mprwait", hz/20);
2604			else
2605				DELAY(50000);
2606
2607			getmicrotime(&cur_time);
2608			if ((cur_time.tv_sec - start_time.tv_sec) > timeout) {
2609				error = EWOULDBLOCK;
2610				break;
2611			}
2612		}
2613	}
2614
2615	if (error == EWOULDBLOCK) {
2616		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2617		rc = mpr_reinit(sc);
2618		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2619		    "failed");
2620		error = ETIMEDOUT;
2621	}
2622	return (error);
2623}
2624
2625/*
2626 * This is the routine to enqueue a command synchonously and poll for
2627 * completion.  Its use should be rare.
2628 */
2629int
2630mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm)
2631{
2632	int error, timeout = 0, rc;
2633	struct timeval cur_time, start_time;
2634
2635	error = 0;
2636
2637	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
2638	cm->cm_complete = NULL;
2639	mpr_map_command(sc, cm);
2640
2641	getmicrotime(&start_time);
2642	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2643		mpr_intr_locked(sc);
2644
2645		if (mtx_owned(&sc->mpr_mtx))
2646			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
2647			    "mprpoll", hz/20);
2648		else
2649			pause("mprpoll", hz/20);
2650
2651		/*
2652		 * Check for real-time timeout and fail if more than 60 seconds.
2653		 */
2654		getmicrotime(&cur_time);
2655		timeout = cur_time.tv_sec - start_time.tv_sec;
2656		if (timeout > 60) {
2657			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
2658			error = ETIMEDOUT;
2659			break;
2660		}
2661	}
2662
2663	if (error) {
2664		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2665		rc = mpr_reinit(sc);
2666		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ?
2667		    "success" : "failed");
2668	}
2669	return (error);
2670}
2671
2672/*
2673 * The MPT driver had a verbose interface for config pages.  In this driver,
2674 * reduce it to much simplier terms, similar to the Linux driver.
2675 */
2676int
2677mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2678{
2679	MPI2_CONFIG_REQUEST *req;
2680	struct mpr_command *cm;
2681	int error;
2682
2683	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2684		return (EBUSY);
2685	}
2686
2687	cm = mpr_alloc_command(sc);
2688	if (cm == NULL) {
2689		return (EBUSY);
2690	}
2691
2692	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2693	req->Function = MPI2_FUNCTION_CONFIG;
2694	req->Action = params->action;
2695	req->SGLFlags = 0;
2696	req->ChainOffset = 0;
2697	req->PageAddress = params->page_address;
2698	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2699		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2700
2701		hdr = &params->hdr.Ext;
2702		req->ExtPageType = hdr->ExtPageType;
2703		req->ExtPageLength = hdr->ExtPageLength;
2704		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2705		req->Header.PageLength = 0; /* Must be set to zero */
2706		req->Header.PageNumber = hdr->PageNumber;
2707		req->Header.PageVersion = hdr->PageVersion;
2708	} else {
2709		MPI2_CONFIG_PAGE_HEADER *hdr;
2710
2711		hdr = &params->hdr.Struct;
2712		req->Header.PageType = hdr->PageType;
2713		req->Header.PageNumber = hdr->PageNumber;
2714		req->Header.PageLength = hdr->PageLength;
2715		req->Header.PageVersion = hdr->PageVersion;
2716	}
2717
2718	cm->cm_data = params->buffer;
2719	cm->cm_length = params->length;
2720	if (cm->cm_data != NULL) {
2721		cm->cm_sge = &req->PageBufferSGE;
2722		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2723		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
2724	} else
2725		cm->cm_sge = NULL;
2726	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2727
2728	cm->cm_complete_data = params;
2729	if (params->callback != NULL) {
2730		cm->cm_complete = mpr_config_complete;
2731		return (mpr_map_command(sc, cm));
2732	} else {
2733		error = mpr_wait_command(sc, cm, 0, CAN_SLEEP);
2734		if (error) {
2735			mpr_dprint(sc, MPR_FAULT,
2736			    "Error %d reading config page\n", error);
2737			mpr_free_command(sc, cm);
2738			return (error);
2739		}
2740		mpr_config_complete(sc, cm);
2741	}
2742
2743	return (0);
2744}
2745
2746int
2747mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2748{
2749	return (EINVAL);
2750}
2751
2752static void
2753mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
2754{
2755	MPI2_CONFIG_REPLY *reply;
2756	struct mpr_config_params *params;
2757
2758	MPR_FUNCTRACE(sc);
2759	params = cm->cm_complete_data;
2760
2761	if (cm->cm_data != NULL) {
2762		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2763		    BUS_DMASYNC_POSTREAD);
2764		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2765	}
2766
2767	/*
2768	 * XXX KDM need to do more error recovery?  This results in the
2769	 * device in question not getting probed.
2770	 */
2771	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2772		params->status = MPI2_IOCSTATUS_BUSY;
2773		goto done;
2774	}
2775
2776	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2777	if (reply == NULL) {
2778		params->status = MPI2_IOCSTATUS_BUSY;
2779		goto done;
2780	}
2781	params->status = reply->IOCStatus;
2782	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2783		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2784		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2785		params->hdr.Ext.PageType = reply->Header.PageType;
2786		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
2787		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
2788	} else {
2789		params->hdr.Struct.PageType = reply->Header.PageType;
2790		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2791		params->hdr.Struct.PageLength = reply->Header.PageLength;
2792		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2793	}
2794
2795done:
2796	mpr_free_command(sc, cm);
2797	if (params->callback != NULL)
2798		params->callback(sc, params);
2799
2800	return;
2801}
2802