mlx4_en_tx.c revision 297966
1/*
2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34#include <linux/page.h>
35#include <linux/mlx4/cq.h>
36#include <linux/slab.h>
37#include <linux/mlx4/qp.h>
38#include <linux/if_vlan.h>
39#include <linux/vmalloc.h>
40#include <linux/moduleparam.h>
41
42#include <netinet/in_systm.h>
43#include <netinet/in.h>
44#include <netinet/if_ether.h>
45#include <netinet/ip.h>
46#include <netinet/ip6.h>
47#include <netinet/tcp.h>
48#include <netinet/tcp_lro.h>
49#include <netinet/udp.h>
50
51#include "mlx4_en.h"
52
53enum {
54	MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
55	MAX_BF = 256,
56	MIN_PKT_LEN = 17,
57};
58
59static int inline_thold __read_mostly = MAX_INLINE;
60
61module_param_named(inline_thold, inline_thold, uint, 0444);
62MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
63
64int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
65			   struct mlx4_en_tx_ring **pring, u32 size,
66			   u16 stride, int node, int queue_idx)
67{
68	struct mlx4_en_dev *mdev = priv->mdev;
69	struct mlx4_en_tx_ring *ring;
70	uint32_t x;
71	int tmp;
72	int err;
73
74	ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
75	if (!ring) {
76		ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
77		if (!ring) {
78			en_err(priv, "Failed allocating TX ring\n");
79			return -ENOMEM;
80		}
81	}
82
83	/* Create DMA descriptor TAG */
84	if ((err = -bus_dma_tag_create(
85	    bus_get_dma_tag(mdev->pdev->dev.bsddev),
86	    1,					/* any alignment */
87	    0,					/* no boundary */
88	    BUS_SPACE_MAXADDR,			/* lowaddr */
89	    BUS_SPACE_MAXADDR,			/* highaddr */
90	    NULL, NULL,				/* filter, filterarg */
91	    MLX4_EN_TX_MAX_PAYLOAD_SIZE,	/* maxsize */
92	    MLX4_EN_TX_MAX_MBUF_FRAGS,		/* nsegments */
93	    MLX4_EN_TX_MAX_MBUF_SIZE,		/* maxsegsize */
94	    0,					/* flags */
95	    NULL, NULL,				/* lockfunc, lockfuncarg */
96	    &ring->dma_tag)))
97		goto done;
98
99	ring->size = size;
100	ring->size_mask = size - 1;
101	ring->stride = stride;
102	ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE));
103	mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
104	mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
105
106	/* Allocate the buf ring */
107	ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
108		M_WAITOK, &ring->tx_lock.m);
109	if (ring->br == NULL) {
110		en_err(priv, "Failed allocating tx_info ring\n");
111		err = -ENOMEM;
112		goto err_free_dma_tag;
113	}
114
115	tmp = size * sizeof(struct mlx4_en_tx_info);
116	ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node);
117	if (!ring->tx_info) {
118		ring->tx_info = kzalloc(tmp, GFP_KERNEL);
119		if (!ring->tx_info) {
120			err = -ENOMEM;
121			goto err_ring;
122		}
123	}
124
125	/* Create DMA descriptor MAPs */
126	for (x = 0; x != size; x++) {
127		err = -bus_dmamap_create(ring->dma_tag, 0,
128		    &ring->tx_info[x].dma_map);
129		if (err != 0) {
130			while (x--) {
131				bus_dmamap_destroy(ring->dma_tag,
132				    ring->tx_info[x].dma_map);
133			}
134			goto err_info;
135		}
136	}
137
138	en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
139		 ring->tx_info, tmp);
140
141	ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
142
143	/* Allocate HW buffers on provided NUMA node */
144	err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
145				 2 * PAGE_SIZE);
146	if (err) {
147		en_err(priv, "Failed allocating hwq resources\n");
148		goto err_dma_map;
149	}
150
151	err = mlx4_en_map_buffer(&ring->wqres.buf);
152	if (err) {
153		en_err(priv, "Failed to map TX buffer\n");
154		goto err_hwq_res;
155	}
156
157	ring->buf = ring->wqres.buf.direct.buf;
158
159	en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
160	       "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
161	       ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
162
163	err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
164				    MLX4_RESERVE_BF_QP);
165	if (err) {
166		en_err(priv, "failed reserving qp for TX ring\n");
167		goto err_map;
168	}
169
170	err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
171	if (err) {
172		en_err(priv, "Failed allocating qp %d\n", ring->qpn);
173		goto err_reserve;
174	}
175	ring->qp.event = mlx4_en_sqp_event;
176
177	err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
178	if (err) {
179		en_dbg(DRV, priv, "working without blueflame (%d)", err);
180		ring->bf.uar = &mdev->priv_uar;
181		ring->bf.uar->map = mdev->uar_map;
182		ring->bf_enabled = false;
183	} else
184		ring->bf_enabled = true;
185	ring->queue_index = queue_idx;
186	if (queue_idx < priv->num_tx_rings_p_up )
187		CPU_SET(queue_idx, &ring->affinity_mask);
188
189	*pring = ring;
190	return 0;
191
192err_reserve:
193	mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
194err_map:
195	mlx4_en_unmap_buffer(&ring->wqres.buf);
196err_hwq_res:
197	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
198err_dma_map:
199	for (x = 0; x != size; x++)
200		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
201err_info:
202	vfree(ring->tx_info);
203err_ring:
204	buf_ring_free(ring->br, M_DEVBUF);
205err_free_dma_tag:
206	bus_dma_tag_destroy(ring->dma_tag);
207done:
208	kfree(ring);
209	return err;
210}
211
212void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
213			     struct mlx4_en_tx_ring **pring)
214{
215	struct mlx4_en_dev *mdev = priv->mdev;
216	struct mlx4_en_tx_ring *ring = *pring;
217	uint32_t x;
218	en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
219
220	buf_ring_free(ring->br, M_DEVBUF);
221	if (ring->bf_enabled)
222		mlx4_bf_free(mdev->dev, &ring->bf);
223	mlx4_qp_remove(mdev->dev, &ring->qp);
224	mlx4_qp_free(mdev->dev, &ring->qp);
225	mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
226	mlx4_en_unmap_buffer(&ring->wqres.buf);
227	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
228	for (x = 0; x != ring->size; x++)
229		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
230	vfree(ring->tx_info);
231	mtx_destroy(&ring->tx_lock.m);
232	mtx_destroy(&ring->comp_lock.m);
233	bus_dma_tag_destroy(ring->dma_tag);
234	kfree(ring);
235	*pring = NULL;
236}
237
238int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
239			     struct mlx4_en_tx_ring *ring,
240			     int cq, int user_prio)
241{
242	struct mlx4_en_dev *mdev = priv->mdev;
243	int err;
244
245	ring->cqn = cq;
246	ring->prod = 0;
247	ring->cons = 0xffffffff;
248	ring->last_nr_txbb = 1;
249	ring->poll_cnt = 0;
250	ring->blocked = 0;
251	memset(ring->buf, 0, ring->buf_size);
252
253	ring->qp_state = MLX4_QP_STATE_RST;
254	ring->doorbell_qpn = ring->qp.qpn << 8;
255
256	mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
257				ring->cqn, user_prio, &ring->context);
258	if (ring->bf_enabled)
259		ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
260
261	err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
262			       &ring->qp, &ring->qp_state);
263	return err;
264}
265
266void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
267				struct mlx4_en_tx_ring *ring)
268{
269	struct mlx4_en_dev *mdev = priv->mdev;
270
271	mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
272		       MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
273}
274
275static volatile struct mlx4_wqe_data_seg *
276mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg,
277    struct mbuf *mb, int len, __be32 owner_bit)
278{
279	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
280
281	/* copy data into place */
282	m_copydata(mb, 0, len, inl + 4);
283	dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
284	return (dseg);
285}
286
287static void
288mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg,
289    int len, __be32 owner_bit)
290{
291}
292
293static void
294mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
295    struct mlx4_en_tx_ring *ring, u32 index, u8 owner)
296{
297	struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
298	struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *)
299	    (ring->buf + (index * TXBB_SIZE));
300	volatile __be32 *ptr = (__be32 *)tx_desc;
301	const __be32 stamp = cpu_to_be32(STAMP_VAL |
302	    ((u32)owner << STAMP_SHIFT));
303	u32 i;
304
305	/* Stamp the freed descriptor */
306	for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
307		*ptr = stamp;
308		ptr += STAMP_DWORDS;
309	}
310}
311
312static u32
313mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
314    struct mlx4_en_tx_ring *ring, u32 index)
315{
316	struct mlx4_en_tx_info *tx_info;
317	struct mbuf *mb;
318
319	tx_info = &ring->tx_info[index];
320	mb = tx_info->mb;
321
322	if (mb == NULL)
323		goto done;
324
325	bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
326	    BUS_DMASYNC_POSTWRITE);
327	bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
328
329        m_freem(mb);
330done:
331	return (tx_info->nr_txbb);
332}
333
334int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
335{
336	struct mlx4_en_priv *priv = netdev_priv(dev);
337	int cnt = 0;
338
339	/* Skip last polled descriptor */
340	ring->cons += ring->last_nr_txbb;
341	en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
342		 ring->cons, ring->prod);
343
344	if ((u32) (ring->prod - ring->cons) > ring->size) {
345                en_warn(priv, "Tx consumer passed producer!\n");
346		return 0;
347	}
348
349	while (ring->cons != ring->prod) {
350		ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
351		    ring->cons & ring->size_mask);
352		ring->cons += ring->last_nr_txbb;
353		cnt++;
354	}
355
356	if (cnt)
357		en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
358
359	return cnt;
360}
361
362static bool
363mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring)
364{
365	int wqs;
366	wqs = ring->size - (ring->prod - ring->cons);
367	return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS)));
368}
369
370static int mlx4_en_process_tx_cq(struct net_device *dev,
371				 struct mlx4_en_cq *cq)
372{
373	struct mlx4_en_priv *priv = netdev_priv(dev);
374	struct mlx4_cq *mcq = &cq->mcq;
375	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
376	struct mlx4_cqe *cqe;
377	u16 index;
378	u16 new_index, ring_index, stamp_index;
379	u32 txbbs_skipped = 0;
380	u32 txbbs_stamp = 0;
381	u32 cons_index = mcq->cons_index;
382	int size = cq->size;
383	u32 size_mask = ring->size_mask;
384	struct mlx4_cqe *buf = cq->buf;
385	int factor = priv->cqe_factor;
386
387	if (!priv->port_up)
388		return 0;
389
390	index = cons_index & size_mask;
391	cqe = &buf[(index << factor) + factor];
392	ring_index = ring->cons & size_mask;
393	stamp_index = ring_index;
394
395	/* Process all completed CQEs */
396	while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
397			cons_index & size)) {
398		/*
399		 * make sure we read the CQE after we read the
400		 * ownership bit
401		 */
402		rmb();
403
404		if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
405			     MLX4_CQE_OPCODE_ERROR)) {
406			en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
407			       ((struct mlx4_err_cqe *)cqe)->
408				       vendor_err_syndrome,
409			       ((struct mlx4_err_cqe *)cqe)->syndrome);
410		}
411
412		/* Skip over last polled CQE */
413		new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
414
415		do {
416			txbbs_skipped += ring->last_nr_txbb;
417			ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
418			/* free next descriptor */
419			ring->last_nr_txbb = mlx4_en_free_tx_desc(
420			    priv, ring, ring_index);
421			mlx4_en_stamp_wqe(priv, ring, stamp_index,
422					  !!((ring->cons + txbbs_stamp) &
423						ring->size));
424			stamp_index = ring_index;
425			txbbs_stamp = txbbs_skipped;
426		} while (ring_index != new_index);
427
428		++cons_index;
429		index = cons_index & size_mask;
430		cqe = &buf[(index << factor) + factor];
431	}
432
433
434	/*
435	 * To prevent CQ overflow we first update CQ consumer and only then
436	 * the ring consumer.
437	 */
438	mcq->cons_index = cons_index;
439	mlx4_cq_set_ci(mcq);
440	wmb();
441	ring->cons += txbbs_skipped;
442
443	/* Wakeup Tx queue if it was stopped and ring is not full */
444	if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) {
445		ring->blocked = 0;
446		if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
447			atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
448		ring->wake_queue++;
449		priv->port_stats.wake_queue++;
450	}
451	return (0);
452}
453
454void mlx4_en_tx_irq(struct mlx4_cq *mcq)
455{
456	struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
457	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
458	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
459
460	if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock))
461		return;
462	mlx4_en_process_tx_cq(cq->dev, cq);
463	mod_timer(&cq->timer, jiffies + 1);
464	spin_unlock(&ring->comp_lock);
465}
466
467void mlx4_en_poll_tx_cq(unsigned long data)
468{
469	struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
470	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
471	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
472	u32 inflight;
473
474	INC_PERF_COUNTER(priv->pstats.tx_poll);
475
476	if (priv->port_up == 0)
477		return;
478	if (!spin_trylock(&ring->comp_lock)) {
479		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
480		return;
481	}
482	mlx4_en_process_tx_cq(cq->dev, cq);
483	inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
484
485	/* If there are still packets in flight and the timer has not already
486	 * been scheduled by the Tx routine then schedule it here to guarantee
487	 * completion processing of these packets */
488	if (inflight && priv->port_up)
489		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
490
491	spin_unlock(&ring->comp_lock);
492}
493
494static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
495{
496	struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
497	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
498
499	if (priv->port_up == 0)
500		return;
501
502	/* If we don't have a pending timer, set one up to catch our recent
503	   post in case the interface becomes idle */
504	if (!timer_pending(&cq->timer))
505		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
506
507	/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
508	if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
509		if (spin_trylock(&ring->comp_lock)) {
510			mlx4_en_process_tx_cq(priv->dev, cq);
511			spin_unlock(&ring->comp_lock);
512		}
513}
514
515static u16
516mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb)
517{
518	u16 retval;
519
520	/* only copy from first fragment, if possible */
521	retval = MIN(ring->inline_thold, mb->m_len);
522
523	/* check for too little data */
524	if (unlikely(retval < MIN_PKT_LEN))
525		retval = MIN(ring->inline_thold, mb->m_pkthdr.len);
526	return (retval);
527}
528
529static int
530mlx4_en_get_header_size(struct mbuf *mb)
531{
532	struct ether_vlan_header *eh;
533        struct tcphdr *th;
534        struct ip *ip;
535        int ip_hlen, tcp_hlen;
536	struct ip6_hdr *ip6;
537	uint16_t eth_type;
538	int eth_hdr_len;
539
540	eh = mtod(mb, struct ether_vlan_header *);
541	if (mb->m_len < ETHER_HDR_LEN)
542		return (0);
543	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
544		eth_type = ntohs(eh->evl_proto);
545		eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
546	} else {
547		eth_type = ntohs(eh->evl_encap_proto);
548		eth_hdr_len = ETHER_HDR_LEN;
549	}
550	if (mb->m_len < eth_hdr_len)
551		return (0);
552	switch (eth_type) {
553	case ETHERTYPE_IP:
554		ip = (struct ip *)(mb->m_data + eth_hdr_len);
555		if (mb->m_len < eth_hdr_len + sizeof(*ip))
556			return (0);
557		if (ip->ip_p != IPPROTO_TCP)
558			return (0);
559		ip_hlen = ip->ip_hl << 2;
560		eth_hdr_len += ip_hlen;
561		break;
562	case ETHERTYPE_IPV6:
563		ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
564		if (mb->m_len < eth_hdr_len + sizeof(*ip6))
565			return (0);
566		if (ip6->ip6_nxt != IPPROTO_TCP)
567			return (0);
568		eth_hdr_len += sizeof(*ip6);
569		break;
570	default:
571		return (0);
572	}
573	if (mb->m_len < eth_hdr_len + sizeof(*th))
574		return (0);
575	th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
576	tcp_hlen = th->th_off << 2;
577	eth_hdr_len += tcp_hlen;
578	if (mb->m_len < eth_hdr_len)
579		return (0);
580	return (eth_hdr_len);
581}
582
583static volatile struct mlx4_wqe_data_seg *
584mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg,
585    struct mbuf *mb, int len, __be32 owner_bit)
586{
587	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
588	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
589
590	if (unlikely(len < MIN_PKT_LEN)) {
591		m_copydata(mb, 0, len, inl + 4);
592		memset(inl + 4 + len, 0, MIN_PKT_LEN - len);
593		dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT);
594	} else if (len <= spc) {
595		m_copydata(mb, 0, len, inl + 4);
596		dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
597	} else {
598		m_copydata(mb, 0, spc, inl + 4);
599		m_copydata(mb, spc, len - spc, inl + 8 + spc);
600		dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT);
601	}
602	return (dseg);
603}
604
605static void
606mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg,
607    int len, __be32 owner_bit)
608{
609	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
610	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
611
612	if (unlikely(len < MIN_PKT_LEN)) {
613		*(volatile uint32_t *)inl =
614		    SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN);
615	} else if (len <= spc) {
616		*(volatile uint32_t *)inl =
617		    SET_BYTE_COUNT((1 << 31) | len);
618	} else {
619		*(volatile uint32_t *)(inl + 4 + spc) =
620		    SET_BYTE_COUNT((1 << 31) | (len - spc));
621		wmb();
622		*(volatile uint32_t *)inl =
623		    SET_BYTE_COUNT((1 << 31) | spc);
624	}
625}
626
627static uint32_t hashrandom;
628static void hashrandom_init(void *arg)
629{
630	/*
631	 * It is assumed that the random subsystem has been
632	 * initialized when this function is called:
633	 */
634	hashrandom = m_ether_tcpip_hash_init();
635}
636SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL);
637
638u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
639{
640	struct mlx4_en_priv *priv = netdev_priv(dev);
641	u32 rings_p_up = priv->num_tx_rings_p_up;
642	u32 up = 0;
643	u32 queue_index;
644
645#if (MLX4_EN_NUM_UP > 1)
646	/* Obtain VLAN information if present */
647	if (mb->m_flags & M_VLANTAG) {
648		u32 vlan_tag = mb->m_pkthdr.ether_vtag;
649	        up = (vlan_tag >> 13) % MLX4_EN_NUM_UP;
650	}
651#endif
652	queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom);
653
654	return ((queue_index % rings_p_up) + (up * rings_p_up));
655}
656
657static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt)
658{
659	__iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8);
660}
661
662static u64 mlx4_en_mac_to_u64(u8 *addr)
663{
664        u64 mac = 0;
665        int i;
666
667        for (i = 0; i < ETHER_ADDR_LEN; i++) {
668                mac <<= 8;
669                mac |= addr[i];
670        }
671        return mac;
672}
673
674static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp)
675{
676	enum {
677		DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT,
678		CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
679		    MLX4_WQE_CTRL_SOLICITED),
680	};
681	bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS];
682	volatile struct mlx4_wqe_data_seg *dseg;
683	volatile struct mlx4_wqe_data_seg *dseg_inline;
684	volatile struct mlx4_en_tx_desc *tx_desc;
685	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
686	struct ifnet *ifp = priv->dev;
687	struct mlx4_en_tx_info *tx_info;
688	struct mbuf *mb = *mbp;
689	struct mbuf *m;
690	__be32 owner_bit;
691	int nr_segs;
692	int pad;
693	int err;
694	u32 bf_size;
695	u32 bf_prod;
696	u32 opcode;
697	u16 index;
698	u16 ds_cnt;
699	u16 ihs;
700
701	if (unlikely(!priv->port_up)) {
702		err = EINVAL;
703		goto tx_drop;
704	}
705
706	/* check if TX ring is full */
707	if (unlikely(mlx4_en_tx_ring_is_full(ring))) {
708			/* every full native Tx ring stops queue */
709			if (ring->blocked == 0)
710				atomic_add_int(&priv->blocked, 1);
711			/* Set HW-queue-is-full flag */
712			atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
713			priv->port_stats.queue_stopped++;
714		ring->blocked = 1;
715		priv->port_stats.queue_stopped++;
716		ring->queue_stopped++;
717
718		/* Use interrupts to find out when queue opened */
719		mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]);
720		return (ENOBUFS);
721        }
722
723	/* sanity check we are not wrapping around */
724	KASSERT(((~ring->prod) & ring->size_mask) >=
725	    (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring"));
726
727	/* Track current inflight packets for performance analysis */
728	AVG_PERF_COUNTER(priv->pstats.inflight_avg,
729			 (u32) (ring->prod - ring->cons - 1));
730
731	/* Track current mbuf packet header length */
732	AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
733
734	/* Grab an index and try to transmit packet */
735	owner_bit = (ring->prod & ring->size) ?
736		cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0;
737	index = ring->prod & ring->size_mask;
738	tx_desc = (volatile struct mlx4_en_tx_desc *)
739	    (ring->buf + index * TXBB_SIZE);
740	tx_info = &ring->tx_info[index];
741	dseg = &tx_desc->data;
742
743	/* send a copy of the frame to the BPF listener, if any */
744	if (ifp != NULL && ifp->if_bpf != NULL)
745		ETHER_BPF_MTAP(ifp, mb);
746
747	/* get default flags */
748	tx_desc->ctrl.srcrb_flags = CTRL_FLAGS;
749
750	if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
751		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
752
753	if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
754	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
755		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
756
757	/* do statistics */
758	if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) {
759		priv->port_stats.tx_chksum_offload++;
760		ring->tx_csum++;
761	}
762
763	/* check for VLAN tag */
764	if (mb->m_flags & M_VLANTAG) {
765		tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag);
766		tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN;
767	} else {
768		tx_desc->ctrl.vlan_tag = 0;
769		tx_desc->ctrl.ins_vlan = 0;
770	}
771
772	/* clear immediate field */
773	tx_desc->ctrl.imm = 0;
774
775	/* Handle LSO (TSO) packets */
776	if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
777		u32 payload_len;
778		u32 mss = mb->m_pkthdr.tso_segsz;
779		u32 num_pkts;
780
781		opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) |
782		    owner_bit;
783		ihs = mlx4_en_get_header_size(mb);
784		if (unlikely(ihs > MAX_INLINE)) {
785			ring->oversized_packets++;
786			err = EINVAL;
787			goto tx_drop;
788		}
789		tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs);
790		payload_len = mb->m_pkthdr.len - ihs;
791		if (unlikely(payload_len == 0))
792			num_pkts = 1;
793		else
794			num_pkts = DIV_ROUND_UP(payload_len, mss);
795		ring->bytes += payload_len + (num_pkts * ihs);
796		ring->packets += num_pkts;
797		priv->port_stats.tso_packets++;
798		/* store pointer to inline header */
799		dseg_inline = dseg;
800		/* copy data inline */
801		dseg = mlx4_en_store_inline_lso_data(dseg,
802		    mb, ihs, owner_bit);
803	} else {
804		opcode = cpu_to_be32(MLX4_OPCODE_SEND) |
805		    owner_bit;
806		ihs = mlx4_en_get_inline_hdr_size(ring, mb);
807		ring->bytes += max_t (unsigned int,
808		    mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
809		ring->packets++;
810		/* store pointer to inline header */
811		dseg_inline = dseg;
812		/* copy data inline */
813		dseg = mlx4_en_store_inline_data(dseg,
814		    mb, ihs, owner_bit);
815	}
816	m_adj(mb, ihs);
817
818	/* trim off empty mbufs */
819	while (mb->m_len == 0) {
820		mb = m_free(mb);
821		/* check if all data has been inlined */
822		if (mb == NULL) {
823			nr_segs = 0;
824			goto skip_dma;
825		}
826	}
827
828	err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
829	    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
830	if (unlikely(err == EFBIG)) {
831		/* Too many mbuf fragments */
832		m = m_defrag(mb, M_NOWAIT);
833		if (m == NULL) {
834			ring->oversized_packets++;
835			goto tx_drop;
836		}
837		mb = m;
838		/* Try again */
839		err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
840		    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
841	}
842	/* catch errors */
843	if (unlikely(err != 0)) {
844		ring->oversized_packets++;
845		goto tx_drop;
846	}
847	/* make sure all mbuf data is written to RAM */
848	bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
849	    BUS_DMASYNC_PREWRITE);
850
851skip_dma:
852	/* compute number of DS needed */
853	ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs;
854
855	/*
856	 * Check if the next request can wrap around and fill the end
857	 * of the current request with zero immediate data:
858	 */
859	pad = DIV_ROUND_UP(ds_cnt, DS_FACT);
860	pad = (~(ring->prod + pad)) & ring->size_mask;
861
862	if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) {
863		/*
864		 * Compute the least number of DS blocks we need to
865		 * pad in order to achieve a TX ring wraparound:
866		 */
867		pad = (DS_FACT * (pad + 1));
868	} else {
869		/*
870		 * The hardware will automatically jump to the next
871		 * TXBB. No need for padding.
872		 */
873		pad = 0;
874	}
875
876	/* compute total number of DS blocks */
877	ds_cnt += pad;
878	/*
879	 * When modifying this code, please ensure that the following
880	 * computation is always less than or equal to 0x3F:
881	 *
882	 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) +
883	 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT)
884	 *
885	 * Else the "ds_cnt" variable can become too big.
886	 */
887	tx_desc->ctrl.fence_size = (ds_cnt & 0x3f);
888
889	/* store pointer to mbuf */
890	tx_info->mb = mb;
891	tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT);
892	bf_size = ds_cnt * DS_SIZE_ALIGNMENT;
893	bf_prod = ring->prod;
894
895	/* compute end of "dseg" array */
896	dseg += nr_segs + pad;
897
898	/* pad using zero immediate dseg */
899	while (pad--) {
900		dseg--;
901		dseg->addr = 0;
902		dseg->lkey = 0;
903		wmb();
904		dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
905	}
906
907	/* fill segment list */
908	while (nr_segs--) {
909		if (unlikely(segs[nr_segs].ds_len == 0)) {
910			dseg--;
911			dseg->addr = 0;
912			dseg->lkey = 0;
913			wmb();
914			dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
915		} else {
916			dseg--;
917			dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr);
918			dseg->lkey = cpu_to_be32(priv->mdev->mr.key);
919			wmb();
920			dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len);
921		}
922	}
923
924	wmb();
925
926	/* write owner bits in reverse order */
927	if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO))
928		mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit);
929	else
930		mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit);
931
932	if (unlikely(priv->validate_loopback)) {
933		/* Copy dst mac address to wqe */
934                struct ether_header *ethh;
935                u64 mac;
936                u32 mac_l, mac_h;
937
938                ethh = mtod(mb, struct ether_header *);
939                mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
940                if (mac) {
941                        mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
942                        mac_l = (u32) (mac & 0xffffffff);
943                        tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
944                        tx_desc->ctrl.imm = cpu_to_be32(mac_l);
945                }
946	}
947
948	/* update producer counter */
949	ring->prod += tx_info->nr_txbb;
950
951	if (ring->bf_enabled && bf_size <= MAX_BF &&
952	    (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) {
953
954		/* store doorbell number */
955		*(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
956
957		/* or in producer number for this WQE */
958		opcode |= cpu_to_be32((bf_prod & 0xffff) << 8);
959
960		/*
961		 * Ensure the new descriptor hits memory before
962		 * setting ownership of this descriptor to HW:
963		 */
964		wmb();
965		tx_desc->ctrl.owner_opcode = opcode;
966		wmb();
967		mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset,
968		     (volatile unsigned long *) &tx_desc->ctrl, bf_size);
969		wmb();
970		ring->bf.offset ^= ring->bf.buf_size;
971	} else {
972		/*
973		 * Ensure the new descriptor hits memory before
974		 * setting ownership of this descriptor to HW:
975		 */
976		wmb();
977		tx_desc->ctrl.owner_opcode = opcode;
978		wmb();
979		writel(cpu_to_be32(ring->doorbell_qpn),
980		    ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL);
981	}
982
983	return (0);
984tx_drop:
985	*mbp = NULL;
986	m_freem(mb);
987	return (err);
988}
989
990static int
991mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
992{
993	struct mlx4_en_priv *priv = netdev_priv(dev);
994	struct mlx4_en_tx_ring *ring;
995	struct mbuf *next;
996	int enqueued, err = 0;
997
998	ring = priv->tx_ring[tx_ind];
999	if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1000	    IFF_DRV_RUNNING || priv->port_up == 0) {
1001		if (m != NULL)
1002			err = drbr_enqueue(dev, ring->br, m);
1003		return (err);
1004	}
1005
1006	enqueued = 0;
1007	if (m != NULL)
1008		/*
1009		 * If we can't insert mbuf into drbr, try to xmit anyway.
1010		 * We keep the error we got so we could return that after xmit.
1011		 */
1012		err = drbr_enqueue(dev, ring->br, m);
1013
1014	/* Process the queue */
1015	while ((next = drbr_peek(dev, ring->br)) != NULL) {
1016		if (mlx4_en_xmit(priv, tx_ind, &next) != 0) {
1017			if (next == NULL) {
1018				drbr_advance(dev, ring->br);
1019			} else {
1020				drbr_putback(dev, ring->br, next);
1021			}
1022			break;
1023		}
1024		drbr_advance(dev, ring->br);
1025		enqueued++;
1026		if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
1027			break;
1028	}
1029
1030	if (enqueued > 0)
1031		ring->watchdog_time = ticks;
1032
1033	return (err);
1034}
1035
1036void
1037mlx4_en_tx_que(void *context, int pending)
1038{
1039	struct mlx4_en_tx_ring *ring;
1040	struct mlx4_en_priv *priv;
1041	struct net_device *dev;
1042	struct mlx4_en_cq *cq;
1043	int tx_ind;
1044	cq = context;
1045	dev = cq->dev;
1046	priv = dev->if_softc;
1047	tx_ind = cq->ring;
1048	ring = priv->tx_ring[tx_ind];
1049
1050	if (priv->port_up != 0 &&
1051	    (dev->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1052		mlx4_en_xmit_poll(priv, tx_ind);
1053		spin_lock(&ring->tx_lock);
1054                if (!drbr_empty(dev, ring->br))
1055			mlx4_en_transmit_locked(dev, tx_ind, NULL);
1056		spin_unlock(&ring->tx_lock);
1057	}
1058}
1059
1060int
1061mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
1062{
1063	struct mlx4_en_priv *priv = netdev_priv(dev);
1064	struct mlx4_en_tx_ring *ring;
1065	struct mlx4_en_cq *cq;
1066	int i, err = 0;
1067
1068	if (priv->port_up == 0) {
1069		m_freem(m);
1070		return (ENETDOWN);
1071	}
1072
1073	/* Compute which queue to use */
1074	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
1075		i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num;
1076	}
1077	else {
1078		i = mlx4_en_select_queue(dev, m);
1079	}
1080
1081	ring = priv->tx_ring[i];
1082	if (spin_trylock(&ring->tx_lock)) {
1083		err = mlx4_en_transmit_locked(dev, i, m);
1084		spin_unlock(&ring->tx_lock);
1085		/* Poll CQ here */
1086		mlx4_en_xmit_poll(priv, i);
1087	} else {
1088		err = drbr_enqueue(dev, ring->br, m);
1089		cq = priv->tx_cq[i];
1090		taskqueue_enqueue(cq->tq, &cq->cq_task);
1091	}
1092
1093	return (err);
1094}
1095
1096/*
1097 * Flush ring buffers.
1098 */
1099void
1100mlx4_en_qflush(struct ifnet *dev)
1101{
1102	struct mlx4_en_priv *priv = netdev_priv(dev);
1103	struct mlx4_en_tx_ring *ring;
1104	struct mbuf *m;
1105
1106	if (priv->port_up == 0)
1107		return;
1108
1109	for (int i = 0; i < priv->tx_ring_num; i++) {
1110		ring = priv->tx_ring[i];
1111		spin_lock(&ring->tx_lock);
1112		while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
1113			m_freem(m);
1114		spin_unlock(&ring->tx_lock);
1115	}
1116	if_qflush(dev);
1117}
1118