if_iwn.c revision 314574
1/*-
2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4 * Copyright (c) 2008 Sam Leffler, Errno Consulting
5 * Copyright (c) 2011 Intel Corporation
6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22/*
23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24 * adapters.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/iwn/if_iwn.c 314574 2017-03-03 00:47:42Z avos $");
29
30#include "opt_wlan.h"
31#include "opt_iwn.h"
32
33#include <sys/param.h>
34#include <sys/sockio.h>
35#include <sys/sysctl.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/socket.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41#include <sys/bus.h>
42#include <sys/conf.h>
43#include <sys/rman.h>
44#include <sys/endian.h>
45#include <sys/firmware.h>
46#include <sys/limits.h>
47#include <sys/module.h>
48#include <sys/priv.h>
49#include <sys/queue.h>
50#include <sys/taskqueue.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <machine/clock.h>
55
56#include <dev/pci/pcireg.h>
57#include <dev/pci/pcivar.h>
58
59#include <net/if.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/if_media.h>
63
64#include <netinet/in.h>
65#include <netinet/if_ether.h>
66
67#include <net80211/ieee80211_var.h>
68#include <net80211/ieee80211_radiotap.h>
69#include <net80211/ieee80211_regdomain.h>
70#include <net80211/ieee80211_ratectl.h>
71
72#include <dev/iwn/if_iwnreg.h>
73#include <dev/iwn/if_iwnvar.h>
74#include <dev/iwn/if_iwn_devid.h>
75#include <dev/iwn/if_iwn_chip_cfg.h>
76#include <dev/iwn/if_iwn_debug.h>
77#include <dev/iwn/if_iwn_ioctl.h>
78
79struct iwn_ident {
80	uint16_t	vendor;
81	uint16_t	device;
82	const char	*name;
83};
84
85static const struct iwn_ident iwn_ident_table[] = {
86	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129	{ 0, 0, NULL }
130};
131
132static int	iwn_probe(device_t);
133static int	iwn_attach(device_t);
134static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137static void	iwn_radiotap_attach(struct iwn_softc *);
138static void	iwn_sysctlattach(struct iwn_softc *);
139static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141		    const uint8_t [IEEE80211_ADDR_LEN],
142		    const uint8_t [IEEE80211_ADDR_LEN]);
143static void	iwn_vap_delete(struct ieee80211vap *);
144static int	iwn_detach(device_t);
145static int	iwn_shutdown(device_t);
146static int	iwn_suspend(device_t);
147static int	iwn_resume(device_t);
148static int	iwn_nic_lock(struct iwn_softc *);
149static int	iwn_eeprom_lock(struct iwn_softc *);
150static int	iwn_init_otprom(struct iwn_softc *);
151static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154		    void **, bus_size_t, bus_size_t);
155static void	iwn_dma_contig_free(struct iwn_dma_info *);
156static int	iwn_alloc_sched(struct iwn_softc *);
157static void	iwn_free_sched(struct iwn_softc *);
158static int	iwn_alloc_kw(struct iwn_softc *);
159static void	iwn_free_kw(struct iwn_softc *);
160static int	iwn_alloc_ict(struct iwn_softc *);
161static void	iwn_free_ict(struct iwn_softc *);
162static int	iwn_alloc_fwmem(struct iwn_softc *);
163static void	iwn_free_fwmem(struct iwn_softc *);
164static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168		    int);
169static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171static void	iwn5000_ict_reset(struct iwn_softc *);
172static int	iwn_read_eeprom(struct iwn_softc *,
173		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174static void	iwn4965_read_eeprom(struct iwn_softc *);
175#ifdef	IWN_DEBUG
176static void	iwn4965_print_power_group(struct iwn_softc *, int);
177#endif
178static void	iwn5000_read_eeprom(struct iwn_softc *);
179static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181		    struct ieee80211_channel[]);
182static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183		    struct ieee80211_channel[]);
184static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186		    struct ieee80211_channel *);
187static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188		    struct ieee80211_channel[]);
189static int	iwn_setregdomain(struct ieee80211com *,
190		    struct ieee80211_regdomain *, int,
191		    struct ieee80211_channel[]);
192static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195static void	iwn_newassoc(struct ieee80211_node *, int);
196static int	iwn_media_change(struct ifnet *);
197static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198static void	iwn_calib_timeout(void *);
199static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200		    struct iwn_rx_data *);
201static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202		    struct iwn_rx_data *);
203static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204		    struct iwn_rx_data *);
205static void	iwn5000_rx_calib_results(struct iwn_softc *,
206		    struct iwn_rx_desc *, struct iwn_rx_data *);
207static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208		    struct iwn_rx_data *);
209static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210		    struct iwn_rx_data *);
211static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212		    struct iwn_rx_data *);
213static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
214		    uint8_t);
215static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
216static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
217static void	iwn_notif_intr(struct iwn_softc *);
218static void	iwn_wakeup_intr(struct iwn_softc *);
219static void	iwn_rftoggle_intr(struct iwn_softc *);
220static void	iwn_fatal_intr(struct iwn_softc *);
221static void	iwn_intr(void *);
222static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
223		    uint16_t);
224static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
225		    uint16_t);
226#ifdef notyet
227static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
228#endif
229static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
230		    struct ieee80211_node *);
231static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
232		    struct ieee80211_node *,
233		    const struct ieee80211_bpf_params *params);
234static void	iwn_xmit_task(void *arg0, int pending);
235static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236		    const struct ieee80211_bpf_params *);
237static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
238static void	iwn_scan_timeout(void *);
239static void	iwn_watchdog(void *);
240static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
241static void	iwn_parent(struct ieee80211com *);
242static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
243static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
244		    int);
245static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
246		    int);
247static int	iwn_set_link_quality(struct iwn_softc *,
248		    struct ieee80211_node *);
249static int	iwn_add_broadcast_node(struct iwn_softc *, int);
250static int	iwn_updateedca(struct ieee80211com *);
251static void	iwn_update_mcast(struct ieee80211com *);
252static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
253static int	iwn_set_critical_temp(struct iwn_softc *);
254static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
255static void	iwn4965_power_calibration(struct iwn_softc *, int);
256static int	iwn4965_set_txpower(struct iwn_softc *,
257		    struct ieee80211_channel *, int);
258static int	iwn5000_set_txpower(struct iwn_softc *,
259		    struct ieee80211_channel *, int);
260static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262static int	iwn_get_noise(const struct iwn_rx_general_stats *);
263static int	iwn4965_get_temperature(struct iwn_softc *);
264static int	iwn5000_get_temperature(struct iwn_softc *);
265static int	iwn_init_sensitivity(struct iwn_softc *);
266static void	iwn_collect_noise(struct iwn_softc *,
267		    const struct iwn_rx_general_stats *);
268static int	iwn4965_init_gains(struct iwn_softc *);
269static int	iwn5000_init_gains(struct iwn_softc *);
270static int	iwn4965_set_gains(struct iwn_softc *);
271static int	iwn5000_set_gains(struct iwn_softc *);
272static void	iwn_tune_sensitivity(struct iwn_softc *,
273		    const struct iwn_rx_stats *);
274static void	iwn_save_stats_counters(struct iwn_softc *,
275		    const struct iwn_stats *);
276static int	iwn_send_sensitivity(struct iwn_softc *);
277static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
278static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
279static int	iwn_send_btcoex(struct iwn_softc *);
280static int	iwn_send_advanced_btcoex(struct iwn_softc *);
281static int	iwn5000_runtime_calib(struct iwn_softc *);
282static int	iwn_config(struct iwn_softc *);
283static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
284		    struct ieee80211_scan_state *, struct ieee80211_channel *);
285static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
286static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
287static int	iwn_ampdu_rx_start(struct ieee80211_node *,
288		    struct ieee80211_rx_ampdu *, int, int, int);
289static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
290		    struct ieee80211_rx_ampdu *);
291static int	iwn_addba_request(struct ieee80211_node *,
292		    struct ieee80211_tx_ampdu *, int, int, int);
293static int	iwn_addba_response(struct ieee80211_node *,
294		    struct ieee80211_tx_ampdu *, int, int, int);
295static int	iwn_ampdu_tx_start(struct ieee80211com *,
296		    struct ieee80211_node *, uint8_t);
297static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
298		    struct ieee80211_tx_ampdu *);
299static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
300		    struct ieee80211_node *, int, uint8_t, uint16_t);
301static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
302		    uint8_t, uint16_t);
303static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
304		    struct ieee80211_node *, int, uint8_t, uint16_t);
305static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
306		    uint8_t, uint16_t);
307static int	iwn5000_query_calibration(struct iwn_softc *);
308static int	iwn5000_send_calibration(struct iwn_softc *);
309static int	iwn5000_send_wimax_coex(struct iwn_softc *);
310static int	iwn5000_crystal_calib(struct iwn_softc *);
311static int	iwn5000_temp_offset_calib(struct iwn_softc *);
312static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
313static int	iwn4965_post_alive(struct iwn_softc *);
314static int	iwn5000_post_alive(struct iwn_softc *);
315static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
316		    int);
317static int	iwn4965_load_firmware(struct iwn_softc *);
318static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
319		    const uint8_t *, int);
320static int	iwn5000_load_firmware(struct iwn_softc *);
321static int	iwn_read_firmware_leg(struct iwn_softc *,
322		    struct iwn_fw_info *);
323static int	iwn_read_firmware_tlv(struct iwn_softc *,
324		    struct iwn_fw_info *, uint16_t);
325static int	iwn_read_firmware(struct iwn_softc *);
326static void	iwn_unload_firmware(struct iwn_softc *);
327static int	iwn_clock_wait(struct iwn_softc *);
328static int	iwn_apm_init(struct iwn_softc *);
329static void	iwn_apm_stop_master(struct iwn_softc *);
330static void	iwn_apm_stop(struct iwn_softc *);
331static int	iwn4965_nic_config(struct iwn_softc *);
332static int	iwn5000_nic_config(struct iwn_softc *);
333static int	iwn_hw_prepare(struct iwn_softc *);
334static int	iwn_hw_init(struct iwn_softc *);
335static void	iwn_hw_stop(struct iwn_softc *);
336static void	iwn_radio_on(void *, int);
337static void	iwn_radio_off(void *, int);
338static void	iwn_panicked(void *, int);
339static void	iwn_init_locked(struct iwn_softc *);
340static void	iwn_init(struct iwn_softc *);
341static void	iwn_stop_locked(struct iwn_softc *);
342static void	iwn_stop(struct iwn_softc *);
343static void	iwn_scan_start(struct ieee80211com *);
344static void	iwn_scan_end(struct ieee80211com *);
345static void	iwn_set_channel(struct ieee80211com *);
346static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
347static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
348#ifdef	IWN_DEBUG
349static char	*iwn_get_csr_string(int);
350static void	iwn_debug_register(struct iwn_softc *);
351#endif
352
353static device_method_t iwn_methods[] = {
354	/* Device interface */
355	DEVMETHOD(device_probe,		iwn_probe),
356	DEVMETHOD(device_attach,	iwn_attach),
357	DEVMETHOD(device_detach,	iwn_detach),
358	DEVMETHOD(device_shutdown,	iwn_shutdown),
359	DEVMETHOD(device_suspend,	iwn_suspend),
360	DEVMETHOD(device_resume,	iwn_resume),
361
362	DEVMETHOD_END
363};
364
365static driver_t iwn_driver = {
366	"iwn",
367	iwn_methods,
368	sizeof(struct iwn_softc)
369};
370static devclass_t iwn_devclass;
371
372DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
373
374MODULE_VERSION(iwn, 1);
375
376MODULE_DEPEND(iwn, firmware, 1, 1, 1);
377MODULE_DEPEND(iwn, pci, 1, 1, 1);
378MODULE_DEPEND(iwn, wlan, 1, 1, 1);
379
380static d_ioctl_t iwn_cdev_ioctl;
381static d_open_t iwn_cdev_open;
382static d_close_t iwn_cdev_close;
383
384static struct cdevsw iwn_cdevsw = {
385	.d_version = D_VERSION,
386	.d_flags = 0,
387	.d_open = iwn_cdev_open,
388	.d_close = iwn_cdev_close,
389	.d_ioctl = iwn_cdev_ioctl,
390	.d_name = "iwn",
391};
392
393static int
394iwn_probe(device_t dev)
395{
396	const struct iwn_ident *ident;
397
398	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
399		if (pci_get_vendor(dev) == ident->vendor &&
400		    pci_get_device(dev) == ident->device) {
401			device_set_desc(dev, ident->name);
402			return (BUS_PROBE_DEFAULT);
403		}
404	}
405	return ENXIO;
406}
407
408static int
409iwn_is_3stream_device(struct iwn_softc *sc)
410{
411	/* XXX for now only 5300, until the 5350 can be tested */
412	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
413		return (1);
414	return (0);
415}
416
417static int
418iwn_attach(device_t dev)
419{
420	struct iwn_softc *sc = device_get_softc(dev);
421	struct ieee80211com *ic;
422	int i, error, rid;
423
424	sc->sc_dev = dev;
425
426#ifdef	IWN_DEBUG
427	error = resource_int_value(device_get_name(sc->sc_dev),
428	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
429	if (error != 0)
430		sc->sc_debug = 0;
431#else
432	sc->sc_debug = 0;
433#endif
434
435	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
436
437	/*
438	 * Get the offset of the PCI Express Capability Structure in PCI
439	 * Configuration Space.
440	 */
441	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
442	if (error != 0) {
443		device_printf(dev, "PCIe capability structure not found!\n");
444		return error;
445	}
446
447	/* Clear device-specific "PCI retry timeout" register (41h). */
448	pci_write_config(dev, 0x41, 0, 1);
449
450	/* Enable bus-mastering. */
451	pci_enable_busmaster(dev);
452
453	rid = PCIR_BAR(0);
454	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
455	    RF_ACTIVE);
456	if (sc->mem == NULL) {
457		device_printf(dev, "can't map mem space\n");
458		error = ENOMEM;
459		return error;
460	}
461	sc->sc_st = rman_get_bustag(sc->mem);
462	sc->sc_sh = rman_get_bushandle(sc->mem);
463
464	i = 1;
465	rid = 0;
466	if (pci_alloc_msi(dev, &i) == 0)
467		rid = 1;
468	/* Install interrupt handler. */
469	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
470	    (rid != 0 ? 0 : RF_SHAREABLE));
471	if (sc->irq == NULL) {
472		device_printf(dev, "can't map interrupt\n");
473		error = ENOMEM;
474		goto fail;
475	}
476
477	IWN_LOCK_INIT(sc);
478
479	/* Read hardware revision and attach. */
480	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
481	    & IWN_HW_REV_TYPE_MASK;
482	sc->subdevice_id = pci_get_subdevice(dev);
483
484	/*
485	 * 4965 versus 5000 and later have different methods.
486	 * Let's set those up first.
487	 */
488	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
489		error = iwn4965_attach(sc, pci_get_device(dev));
490	else
491		error = iwn5000_attach(sc, pci_get_device(dev));
492	if (error != 0) {
493		device_printf(dev, "could not attach device, error %d\n",
494		    error);
495		goto fail;
496	}
497
498	/*
499	 * Next, let's setup the various parameters of each NIC.
500	 */
501	error = iwn_config_specific(sc, pci_get_device(dev));
502	if (error != 0) {
503		device_printf(dev, "could not attach device, error %d\n",
504		    error);
505		goto fail;
506	}
507
508	if ((error = iwn_hw_prepare(sc)) != 0) {
509		device_printf(dev, "hardware not ready, error %d\n", error);
510		goto fail;
511	}
512
513	/* Allocate DMA memory for firmware transfers. */
514	if ((error = iwn_alloc_fwmem(sc)) != 0) {
515		device_printf(dev,
516		    "could not allocate memory for firmware, error %d\n",
517		    error);
518		goto fail;
519	}
520
521	/* Allocate "Keep Warm" page. */
522	if ((error = iwn_alloc_kw(sc)) != 0) {
523		device_printf(dev,
524		    "could not allocate keep warm page, error %d\n", error);
525		goto fail;
526	}
527
528	/* Allocate ICT table for 5000 Series. */
529	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
530	    (error = iwn_alloc_ict(sc)) != 0) {
531		device_printf(dev, "could not allocate ICT table, error %d\n",
532		    error);
533		goto fail;
534	}
535
536	/* Allocate TX scheduler "rings". */
537	if ((error = iwn_alloc_sched(sc)) != 0) {
538		device_printf(dev,
539		    "could not allocate TX scheduler rings, error %d\n", error);
540		goto fail;
541	}
542
543	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
544	for (i = 0; i < sc->ntxqs; i++) {
545		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
546			device_printf(dev,
547			    "could not allocate TX ring %d, error %d\n", i,
548			    error);
549			goto fail;
550		}
551	}
552
553	/* Allocate RX ring. */
554	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
555		device_printf(dev, "could not allocate RX ring, error %d\n",
556		    error);
557		goto fail;
558	}
559
560	/* Clear pending interrupts. */
561	IWN_WRITE(sc, IWN_INT, 0xffffffff);
562
563	ic = &sc->sc_ic;
564	ic->ic_softc = sc;
565	ic->ic_name = device_get_nameunit(dev);
566	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
567	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
568
569	/* Set device capabilities. */
570	ic->ic_caps =
571		  IEEE80211_C_STA		/* station mode supported */
572		| IEEE80211_C_MONITOR		/* monitor mode supported */
573#if 0
574		| IEEE80211_C_BGSCAN		/* background scanning */
575#endif
576		| IEEE80211_C_TXPMGT		/* tx power management */
577		| IEEE80211_C_SHSLOT		/* short slot time supported */
578		| IEEE80211_C_WPA
579		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580#if 0
581		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
582#endif
583		| IEEE80211_C_WME		/* WME */
584		| IEEE80211_C_PMGT		/* Station-side power mgmt */
585		;
586
587	/* Read MAC address, channels, etc from EEPROM. */
588	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
589		device_printf(dev, "could not read EEPROM, error %d\n",
590		    error);
591		goto fail;
592	}
593
594	/* Count the number of available chains. */
595	sc->ntxchains =
596	    ((sc->txchainmask >> 2) & 1) +
597	    ((sc->txchainmask >> 1) & 1) +
598	    ((sc->txchainmask >> 0) & 1);
599	sc->nrxchains =
600	    ((sc->rxchainmask >> 2) & 1) +
601	    ((sc->rxchainmask >> 1) & 1) +
602	    ((sc->rxchainmask >> 0) & 1);
603	if (bootverbose) {
604		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
605		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
606		    ic->ic_macaddr, ":");
607	}
608
609	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
610		ic->ic_rxstream = sc->nrxchains;
611		ic->ic_txstream = sc->ntxchains;
612
613		/*
614		 * Some of the 3 antenna devices (ie, the 4965) only supports
615		 * 2x2 operation.  So correct the number of streams if
616		 * it's not a 3-stream device.
617		 */
618		if (! iwn_is_3stream_device(sc)) {
619			if (ic->ic_rxstream > 2)
620				ic->ic_rxstream = 2;
621			if (ic->ic_txstream > 2)
622				ic->ic_txstream = 2;
623		}
624
625		ic->ic_htcaps =
626			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
627			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
628			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
629			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
630#ifdef notyet
631			| IEEE80211_HTCAP_GREENFIELD
632#if IWN_RBUF_SIZE == 8192
633			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
634#else
635			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
636#endif
637#endif
638			/* s/w capabilities */
639			| IEEE80211_HTC_HT		/* HT operation */
640			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
641#ifdef notyet
642			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
643#endif
644			;
645	}
646
647	ieee80211_ifattach(ic);
648	ic->ic_vap_create = iwn_vap_create;
649	ic->ic_ioctl = iwn_ioctl;
650	ic->ic_parent = iwn_parent;
651	ic->ic_vap_delete = iwn_vap_delete;
652	ic->ic_transmit = iwn_transmit;
653	ic->ic_raw_xmit = iwn_raw_xmit;
654	ic->ic_node_alloc = iwn_node_alloc;
655	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
656	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
658	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
659	sc->sc_addba_request = ic->ic_addba_request;
660	ic->ic_addba_request = iwn_addba_request;
661	sc->sc_addba_response = ic->ic_addba_response;
662	ic->ic_addba_response = iwn_addba_response;
663	sc->sc_addba_stop = ic->ic_addba_stop;
664	ic->ic_addba_stop = iwn_ampdu_tx_stop;
665	ic->ic_newassoc = iwn_newassoc;
666	ic->ic_wme.wme_update = iwn_updateedca;
667	ic->ic_update_mcast = iwn_update_mcast;
668	ic->ic_scan_start = iwn_scan_start;
669	ic->ic_scan_end = iwn_scan_end;
670	ic->ic_set_channel = iwn_set_channel;
671	ic->ic_scan_curchan = iwn_scan_curchan;
672	ic->ic_scan_mindwell = iwn_scan_mindwell;
673	ic->ic_getradiocaps = iwn_getradiocaps;
674	ic->ic_setregdomain = iwn_setregdomain;
675
676	iwn_radiotap_attach(sc);
677
678	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
679	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
680	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
681	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
682	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
683	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
684	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
685
686	mbufq_init(&sc->sc_xmit_queue, 1024);
687
688	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
689	    taskqueue_thread_enqueue, &sc->sc_tq);
690	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
691	if (error != 0) {
692		device_printf(dev, "can't start threads, error %d\n", error);
693		goto fail;
694	}
695
696	iwn_sysctlattach(sc);
697
698	/*
699	 * Hook our interrupt after all initialization is complete.
700	 */
701	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
702	    NULL, iwn_intr, sc, &sc->sc_ih);
703	if (error != 0) {
704		device_printf(dev, "can't establish interrupt, error %d\n",
705		    error);
706		goto fail;
707	}
708
709#if 0
710	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
711	    __func__,
712	    sizeof(struct iwn_stats),
713	    sizeof(struct iwn_stats_bt));
714#endif
715
716	if (bootverbose)
717		ieee80211_announce(ic);
718	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
719
720	/* Add debug ioctl right at the end */
721	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
722	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
723	if (sc->sc_cdev == NULL) {
724		device_printf(dev, "failed to create debug character device\n");
725	} else {
726		sc->sc_cdev->si_drv1 = sc;
727	}
728	return 0;
729fail:
730	iwn_detach(dev);
731	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
732	return error;
733}
734
735/*
736 * Define specific configuration based on device id and subdevice id
737 * pid : PCI device id
738 */
739static int
740iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
741{
742
743	switch (pid) {
744/* 4965 series */
745	case IWN_DID_4965_1:
746	case IWN_DID_4965_2:
747	case IWN_DID_4965_3:
748	case IWN_DID_4965_4:
749		sc->base_params = &iwn4965_base_params;
750		sc->limits = &iwn4965_sensitivity_limits;
751		sc->fwname = "iwn4965fw";
752		/* Override chains masks, ROM is known to be broken. */
753		sc->txchainmask = IWN_ANT_AB;
754		sc->rxchainmask = IWN_ANT_ABC;
755		/* Enable normal btcoex */
756		sc->sc_flags |= IWN_FLAG_BTCOEX;
757		break;
758/* 1000 Series */
759	case IWN_DID_1000_1:
760	case IWN_DID_1000_2:
761		switch(sc->subdevice_id) {
762			case	IWN_SDID_1000_1:
763			case	IWN_SDID_1000_2:
764			case	IWN_SDID_1000_3:
765			case	IWN_SDID_1000_4:
766			case	IWN_SDID_1000_5:
767			case	IWN_SDID_1000_6:
768			case	IWN_SDID_1000_7:
769			case	IWN_SDID_1000_8:
770			case	IWN_SDID_1000_9:
771			case	IWN_SDID_1000_10:
772			case	IWN_SDID_1000_11:
773			case	IWN_SDID_1000_12:
774				sc->limits = &iwn1000_sensitivity_limits;
775				sc->base_params = &iwn1000_base_params;
776				sc->fwname = "iwn1000fw";
777				break;
778			default:
779				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
780				    "0x%04x rev %d not supported (subdevice)\n", pid,
781				    sc->subdevice_id,sc->hw_type);
782				return ENOTSUP;
783		}
784		break;
785/* 6x00 Series */
786	case IWN_DID_6x00_2:
787	case IWN_DID_6x00_4:
788	case IWN_DID_6x00_1:
789	case IWN_DID_6x00_3:
790		sc->fwname = "iwn6000fw";
791		sc->limits = &iwn6000_sensitivity_limits;
792		switch(sc->subdevice_id) {
793			case IWN_SDID_6x00_1:
794			case IWN_SDID_6x00_2:
795			case IWN_SDID_6x00_8:
796				//iwl6000_3agn_cfg
797				sc->base_params = &iwn_6000_base_params;
798				break;
799			case IWN_SDID_6x00_3:
800			case IWN_SDID_6x00_6:
801			case IWN_SDID_6x00_9:
802				////iwl6000i_2agn
803			case IWN_SDID_6x00_4:
804			case IWN_SDID_6x00_7:
805			case IWN_SDID_6x00_10:
806				//iwl6000i_2abg_cfg
807			case IWN_SDID_6x00_5:
808				//iwl6000i_2bg_cfg
809				sc->base_params = &iwn_6000i_base_params;
810				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
811				sc->txchainmask = IWN_ANT_BC;
812				sc->rxchainmask = IWN_ANT_BC;
813				break;
814			default:
815				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
816				    "0x%04x rev %d not supported (subdevice)\n", pid,
817				    sc->subdevice_id,sc->hw_type);
818				return ENOTSUP;
819		}
820		break;
821/* 6x05 Series */
822	case IWN_DID_6x05_1:
823	case IWN_DID_6x05_2:
824		switch(sc->subdevice_id) {
825			case IWN_SDID_6x05_1:
826			case IWN_SDID_6x05_4:
827			case IWN_SDID_6x05_6:
828				//iwl6005_2agn_cfg
829			case IWN_SDID_6x05_2:
830			case IWN_SDID_6x05_5:
831			case IWN_SDID_6x05_7:
832				//iwl6005_2abg_cfg
833			case IWN_SDID_6x05_3:
834				//iwl6005_2bg_cfg
835			case IWN_SDID_6x05_8:
836			case IWN_SDID_6x05_9:
837				//iwl6005_2agn_sff_cfg
838			case IWN_SDID_6x05_10:
839				//iwl6005_2agn_d_cfg
840			case IWN_SDID_6x05_11:
841				//iwl6005_2agn_mow1_cfg
842			case IWN_SDID_6x05_12:
843				//iwl6005_2agn_mow2_cfg
844				sc->fwname = "iwn6000g2afw";
845				sc->limits = &iwn6000_sensitivity_limits;
846				sc->base_params = &iwn_6000g2_base_params;
847				break;
848			default:
849				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
850				    "0x%04x rev %d not supported (subdevice)\n", pid,
851				    sc->subdevice_id,sc->hw_type);
852				return ENOTSUP;
853		}
854		break;
855/* 6x35 Series */
856	case IWN_DID_6035_1:
857	case IWN_DID_6035_2:
858		switch(sc->subdevice_id) {
859			case IWN_SDID_6035_1:
860			case IWN_SDID_6035_2:
861			case IWN_SDID_6035_3:
862			case IWN_SDID_6035_4:
863				sc->fwname = "iwn6000g2bfw";
864				sc->limits = &iwn6235_sensitivity_limits;
865				sc->base_params = &iwn_6235_base_params;
866				break;
867			default:
868				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
869				    "0x%04x rev %d not supported (subdevice)\n", pid,
870				    sc->subdevice_id,sc->hw_type);
871				return ENOTSUP;
872		}
873		break;
874/* 6x50 WiFi/WiMax Series */
875	case IWN_DID_6050_1:
876	case IWN_DID_6050_2:
877		switch(sc->subdevice_id) {
878			case IWN_SDID_6050_1:
879			case IWN_SDID_6050_3:
880			case IWN_SDID_6050_5:
881				//iwl6050_2agn_cfg
882			case IWN_SDID_6050_2:
883			case IWN_SDID_6050_4:
884			case IWN_SDID_6050_6:
885				//iwl6050_2abg_cfg
886				sc->fwname = "iwn6050fw";
887				sc->txchainmask = IWN_ANT_AB;
888				sc->rxchainmask = IWN_ANT_AB;
889				sc->limits = &iwn6000_sensitivity_limits;
890				sc->base_params = &iwn_6050_base_params;
891				break;
892			default:
893				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
894				    "0x%04x rev %d not supported (subdevice)\n", pid,
895				    sc->subdevice_id,sc->hw_type);
896				return ENOTSUP;
897		}
898		break;
899/* 6150 WiFi/WiMax Series */
900	case IWN_DID_6150_1:
901	case IWN_DID_6150_2:
902		switch(sc->subdevice_id) {
903			case IWN_SDID_6150_1:
904			case IWN_SDID_6150_3:
905			case IWN_SDID_6150_5:
906				// iwl6150_bgn_cfg
907			case IWN_SDID_6150_2:
908			case IWN_SDID_6150_4:
909			case IWN_SDID_6150_6:
910				//iwl6150_bg_cfg
911				sc->fwname = "iwn6050fw";
912				sc->limits = &iwn6000_sensitivity_limits;
913				sc->base_params = &iwn_6150_base_params;
914				break;
915			default:
916				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
917				    "0x%04x rev %d not supported (subdevice)\n", pid,
918				    sc->subdevice_id,sc->hw_type);
919				return ENOTSUP;
920		}
921		break;
922/* 6030 Series and 1030 Series */
923	case IWN_DID_x030_1:
924	case IWN_DID_x030_2:
925	case IWN_DID_x030_3:
926	case IWN_DID_x030_4:
927		switch(sc->subdevice_id) {
928			case IWN_SDID_x030_1:
929			case IWN_SDID_x030_3:
930			case IWN_SDID_x030_5:
931			// iwl1030_bgn_cfg
932			case IWN_SDID_x030_2:
933			case IWN_SDID_x030_4:
934			case IWN_SDID_x030_6:
935			//iwl1030_bg_cfg
936			case IWN_SDID_x030_7:
937			case IWN_SDID_x030_10:
938			case IWN_SDID_x030_14:
939			//iwl6030_2agn_cfg
940			case IWN_SDID_x030_8:
941			case IWN_SDID_x030_11:
942			case IWN_SDID_x030_15:
943			// iwl6030_2bgn_cfg
944			case IWN_SDID_x030_9:
945			case IWN_SDID_x030_12:
946			case IWN_SDID_x030_16:
947			// iwl6030_2abg_cfg
948			case IWN_SDID_x030_13:
949			//iwl6030_2bg_cfg
950				sc->fwname = "iwn6000g2bfw";
951				sc->limits = &iwn6000_sensitivity_limits;
952				sc->base_params = &iwn_6000g2b_base_params;
953				break;
954			default:
955				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
956				    "0x%04x rev %d not supported (subdevice)\n", pid,
957				    sc->subdevice_id,sc->hw_type);
958				return ENOTSUP;
959		}
960		break;
961/* 130 Series WiFi */
962/* XXX: This series will need adjustment for rate.
963 * see rx_with_siso_diversity in linux kernel
964 */
965	case IWN_DID_130_1:
966	case IWN_DID_130_2:
967		switch(sc->subdevice_id) {
968			case IWN_SDID_130_1:
969			case IWN_SDID_130_3:
970			case IWN_SDID_130_5:
971			//iwl130_bgn_cfg
972			case IWN_SDID_130_2:
973			case IWN_SDID_130_4:
974			case IWN_SDID_130_6:
975			//iwl130_bg_cfg
976				sc->fwname = "iwn6000g2bfw";
977				sc->limits = &iwn6000_sensitivity_limits;
978				sc->base_params = &iwn_6000g2b_base_params;
979				break;
980			default:
981				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
982				    "0x%04x rev %d not supported (subdevice)\n", pid,
983				    sc->subdevice_id,sc->hw_type);
984				return ENOTSUP;
985		}
986		break;
987/* 100 Series WiFi */
988	case IWN_DID_100_1:
989	case IWN_DID_100_2:
990		switch(sc->subdevice_id) {
991			case IWN_SDID_100_1:
992			case IWN_SDID_100_2:
993			case IWN_SDID_100_3:
994			case IWN_SDID_100_4:
995			case IWN_SDID_100_5:
996			case IWN_SDID_100_6:
997				sc->limits = &iwn1000_sensitivity_limits;
998				sc->base_params = &iwn1000_base_params;
999				sc->fwname = "iwn100fw";
1000				break;
1001			default:
1002				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1003				    "0x%04x rev %d not supported (subdevice)\n", pid,
1004				    sc->subdevice_id,sc->hw_type);
1005				return ENOTSUP;
1006		}
1007		break;
1008
1009/* 105 Series */
1010/* XXX: This series will need adjustment for rate.
1011 * see rx_with_siso_diversity in linux kernel
1012 */
1013	case IWN_DID_105_1:
1014	case IWN_DID_105_2:
1015		switch(sc->subdevice_id) {
1016			case IWN_SDID_105_1:
1017			case IWN_SDID_105_2:
1018			case IWN_SDID_105_3:
1019			//iwl105_bgn_cfg
1020			case IWN_SDID_105_4:
1021			//iwl105_bgn_d_cfg
1022				sc->limits = &iwn2030_sensitivity_limits;
1023				sc->base_params = &iwn2000_base_params;
1024				sc->fwname = "iwn105fw";
1025				break;
1026			default:
1027				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1028				    "0x%04x rev %d not supported (subdevice)\n", pid,
1029				    sc->subdevice_id,sc->hw_type);
1030				return ENOTSUP;
1031		}
1032		break;
1033
1034/* 135 Series */
1035/* XXX: This series will need adjustment for rate.
1036 * see rx_with_siso_diversity in linux kernel
1037 */
1038	case IWN_DID_135_1:
1039	case IWN_DID_135_2:
1040		switch(sc->subdevice_id) {
1041			case IWN_SDID_135_1:
1042			case IWN_SDID_135_2:
1043			case IWN_SDID_135_3:
1044				sc->limits = &iwn2030_sensitivity_limits;
1045				sc->base_params = &iwn2030_base_params;
1046				sc->fwname = "iwn135fw";
1047				break;
1048			default:
1049				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1050				    "0x%04x rev %d not supported (subdevice)\n", pid,
1051				    sc->subdevice_id,sc->hw_type);
1052				return ENOTSUP;
1053		}
1054		break;
1055
1056/* 2x00 Series */
1057	case IWN_DID_2x00_1:
1058	case IWN_DID_2x00_2:
1059		switch(sc->subdevice_id) {
1060			case IWN_SDID_2x00_1:
1061			case IWN_SDID_2x00_2:
1062			case IWN_SDID_2x00_3:
1063			//iwl2000_2bgn_cfg
1064			case IWN_SDID_2x00_4:
1065			//iwl2000_2bgn_d_cfg
1066				sc->limits = &iwn2030_sensitivity_limits;
1067				sc->base_params = &iwn2000_base_params;
1068				sc->fwname = "iwn2000fw";
1069				break;
1070			default:
1071				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1072				    "0x%04x rev %d not supported (subdevice) \n",
1073				    pid, sc->subdevice_id, sc->hw_type);
1074				return ENOTSUP;
1075		}
1076		break;
1077/* 2x30 Series */
1078	case IWN_DID_2x30_1:
1079	case IWN_DID_2x30_2:
1080		switch(sc->subdevice_id) {
1081			case IWN_SDID_2x30_1:
1082			case IWN_SDID_2x30_3:
1083			case IWN_SDID_2x30_5:
1084			//iwl100_bgn_cfg
1085			case IWN_SDID_2x30_2:
1086			case IWN_SDID_2x30_4:
1087			case IWN_SDID_2x30_6:
1088			//iwl100_bg_cfg
1089				sc->limits = &iwn2030_sensitivity_limits;
1090				sc->base_params = &iwn2030_base_params;
1091				sc->fwname = "iwn2030fw";
1092				break;
1093			default:
1094				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1095				    "0x%04x rev %d not supported (subdevice)\n", pid,
1096				    sc->subdevice_id,sc->hw_type);
1097				return ENOTSUP;
1098		}
1099		break;
1100/* 5x00 Series */
1101	case IWN_DID_5x00_1:
1102	case IWN_DID_5x00_2:
1103	case IWN_DID_5x00_3:
1104	case IWN_DID_5x00_4:
1105		sc->limits = &iwn5000_sensitivity_limits;
1106		sc->base_params = &iwn5000_base_params;
1107		sc->fwname = "iwn5000fw";
1108		switch(sc->subdevice_id) {
1109			case IWN_SDID_5x00_1:
1110			case IWN_SDID_5x00_2:
1111			case IWN_SDID_5x00_3:
1112			case IWN_SDID_5x00_4:
1113			case IWN_SDID_5x00_9:
1114			case IWN_SDID_5x00_10:
1115			case IWN_SDID_5x00_11:
1116			case IWN_SDID_5x00_12:
1117			case IWN_SDID_5x00_17:
1118			case IWN_SDID_5x00_18:
1119			case IWN_SDID_5x00_19:
1120			case IWN_SDID_5x00_20:
1121			//iwl5100_agn_cfg
1122				sc->txchainmask = IWN_ANT_B;
1123				sc->rxchainmask = IWN_ANT_AB;
1124				break;
1125			case IWN_SDID_5x00_5:
1126			case IWN_SDID_5x00_6:
1127			case IWN_SDID_5x00_13:
1128			case IWN_SDID_5x00_14:
1129			case IWN_SDID_5x00_21:
1130			case IWN_SDID_5x00_22:
1131			//iwl5100_bgn_cfg
1132				sc->txchainmask = IWN_ANT_B;
1133				sc->rxchainmask = IWN_ANT_AB;
1134				break;
1135			case IWN_SDID_5x00_7:
1136			case IWN_SDID_5x00_8:
1137			case IWN_SDID_5x00_15:
1138			case IWN_SDID_5x00_16:
1139			case IWN_SDID_5x00_23:
1140			case IWN_SDID_5x00_24:
1141			//iwl5100_abg_cfg
1142				sc->txchainmask = IWN_ANT_B;
1143				sc->rxchainmask = IWN_ANT_AB;
1144				break;
1145			case IWN_SDID_5x00_25:
1146			case IWN_SDID_5x00_26:
1147			case IWN_SDID_5x00_27:
1148			case IWN_SDID_5x00_28:
1149			case IWN_SDID_5x00_29:
1150			case IWN_SDID_5x00_30:
1151			case IWN_SDID_5x00_31:
1152			case IWN_SDID_5x00_32:
1153			case IWN_SDID_5x00_33:
1154			case IWN_SDID_5x00_34:
1155			case IWN_SDID_5x00_35:
1156			case IWN_SDID_5x00_36:
1157			//iwl5300_agn_cfg
1158				sc->txchainmask = IWN_ANT_ABC;
1159				sc->rxchainmask = IWN_ANT_ABC;
1160				break;
1161			default:
1162				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1163				    "0x%04x rev %d not supported (subdevice)\n", pid,
1164				    sc->subdevice_id,sc->hw_type);
1165				return ENOTSUP;
1166		}
1167		break;
1168/* 5x50 Series */
1169	case IWN_DID_5x50_1:
1170	case IWN_DID_5x50_2:
1171	case IWN_DID_5x50_3:
1172	case IWN_DID_5x50_4:
1173		sc->limits = &iwn5000_sensitivity_limits;
1174		sc->base_params = &iwn5000_base_params;
1175		sc->fwname = "iwn5000fw";
1176		switch(sc->subdevice_id) {
1177			case IWN_SDID_5x50_1:
1178			case IWN_SDID_5x50_2:
1179			case IWN_SDID_5x50_3:
1180			//iwl5350_agn_cfg
1181				sc->limits = &iwn5000_sensitivity_limits;
1182				sc->base_params = &iwn5000_base_params;
1183				sc->fwname = "iwn5000fw";
1184				break;
1185			case IWN_SDID_5x50_4:
1186			case IWN_SDID_5x50_5:
1187			case IWN_SDID_5x50_8:
1188			case IWN_SDID_5x50_9:
1189			case IWN_SDID_5x50_10:
1190			case IWN_SDID_5x50_11:
1191			//iwl5150_agn_cfg
1192			case IWN_SDID_5x50_6:
1193			case IWN_SDID_5x50_7:
1194			case IWN_SDID_5x50_12:
1195			case IWN_SDID_5x50_13:
1196			//iwl5150_abg_cfg
1197				sc->limits = &iwn5000_sensitivity_limits;
1198				sc->fwname = "iwn5150fw";
1199				sc->base_params = &iwn_5x50_base_params;
1200				break;
1201			default:
1202				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1203				    "0x%04x rev %d not supported (subdevice)\n", pid,
1204				    sc->subdevice_id,sc->hw_type);
1205				return ENOTSUP;
1206		}
1207		break;
1208	default:
1209		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1210		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1211		     sc->hw_type);
1212		return ENOTSUP;
1213	}
1214	return 0;
1215}
1216
1217static int
1218iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1219{
1220	struct iwn_ops *ops = &sc->ops;
1221
1222	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1223	ops->load_firmware = iwn4965_load_firmware;
1224	ops->read_eeprom = iwn4965_read_eeprom;
1225	ops->post_alive = iwn4965_post_alive;
1226	ops->nic_config = iwn4965_nic_config;
1227	ops->update_sched = iwn4965_update_sched;
1228	ops->get_temperature = iwn4965_get_temperature;
1229	ops->get_rssi = iwn4965_get_rssi;
1230	ops->set_txpower = iwn4965_set_txpower;
1231	ops->init_gains = iwn4965_init_gains;
1232	ops->set_gains = iwn4965_set_gains;
1233	ops->add_node = iwn4965_add_node;
1234	ops->tx_done = iwn4965_tx_done;
1235	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1236	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1237	sc->ntxqs = IWN4965_NTXQUEUES;
1238	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1239	sc->ndmachnls = IWN4965_NDMACHNLS;
1240	sc->broadcast_id = IWN4965_ID_BROADCAST;
1241	sc->rxonsz = IWN4965_RXONSZ;
1242	sc->schedsz = IWN4965_SCHEDSZ;
1243	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1244	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1245	sc->fwsz = IWN4965_FWSZ;
1246	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1247	sc->limits = &iwn4965_sensitivity_limits;
1248	sc->fwname = "iwn4965fw";
1249	/* Override chains masks, ROM is known to be broken. */
1250	sc->txchainmask = IWN_ANT_AB;
1251	sc->rxchainmask = IWN_ANT_ABC;
1252	/* Enable normal btcoex */
1253	sc->sc_flags |= IWN_FLAG_BTCOEX;
1254
1255	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1256
1257	return 0;
1258}
1259
1260static int
1261iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1262{
1263	struct iwn_ops *ops = &sc->ops;
1264
1265	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1266
1267	ops->load_firmware = iwn5000_load_firmware;
1268	ops->read_eeprom = iwn5000_read_eeprom;
1269	ops->post_alive = iwn5000_post_alive;
1270	ops->nic_config = iwn5000_nic_config;
1271	ops->update_sched = iwn5000_update_sched;
1272	ops->get_temperature = iwn5000_get_temperature;
1273	ops->get_rssi = iwn5000_get_rssi;
1274	ops->set_txpower = iwn5000_set_txpower;
1275	ops->init_gains = iwn5000_init_gains;
1276	ops->set_gains = iwn5000_set_gains;
1277	ops->add_node = iwn5000_add_node;
1278	ops->tx_done = iwn5000_tx_done;
1279	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1280	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1281	sc->ntxqs = IWN5000_NTXQUEUES;
1282	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1283	sc->ndmachnls = IWN5000_NDMACHNLS;
1284	sc->broadcast_id = IWN5000_ID_BROADCAST;
1285	sc->rxonsz = IWN5000_RXONSZ;
1286	sc->schedsz = IWN5000_SCHEDSZ;
1287	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1288	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1289	sc->fwsz = IWN5000_FWSZ;
1290	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1291	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1292	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1293
1294	return 0;
1295}
1296
1297/*
1298 * Attach the interface to 802.11 radiotap.
1299 */
1300static void
1301iwn_radiotap_attach(struct iwn_softc *sc)
1302{
1303
1304	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1305	ieee80211_radiotap_attach(&sc->sc_ic,
1306	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1307		IWN_TX_RADIOTAP_PRESENT,
1308	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1309		IWN_RX_RADIOTAP_PRESENT);
1310	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1311}
1312
1313static void
1314iwn_sysctlattach(struct iwn_softc *sc)
1315{
1316#ifdef	IWN_DEBUG
1317	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1318	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1319
1320	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1321	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1322		"control debugging printfs");
1323#endif
1324}
1325
1326static struct ieee80211vap *
1327iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1328    enum ieee80211_opmode opmode, int flags,
1329    const uint8_t bssid[IEEE80211_ADDR_LEN],
1330    const uint8_t mac[IEEE80211_ADDR_LEN])
1331{
1332	struct iwn_softc *sc = ic->ic_softc;
1333	struct iwn_vap *ivp;
1334	struct ieee80211vap *vap;
1335
1336	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1337		return NULL;
1338
1339	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1340	vap = &ivp->iv_vap;
1341	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1342	ivp->ctx = IWN_RXON_BSS_CTX;
1343	vap->iv_bmissthreshold = 10;		/* override default */
1344	/* Override with driver methods. */
1345	ivp->iv_newstate = vap->iv_newstate;
1346	vap->iv_newstate = iwn_newstate;
1347	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1348
1349	ieee80211_ratectl_init(vap);
1350	/* Complete setup. */
1351	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1352	    mac);
1353	ic->ic_opmode = opmode;
1354	return vap;
1355}
1356
1357static void
1358iwn_vap_delete(struct ieee80211vap *vap)
1359{
1360	struct iwn_vap *ivp = IWN_VAP(vap);
1361
1362	ieee80211_ratectl_deinit(vap);
1363	ieee80211_vap_detach(vap);
1364	free(ivp, M_80211_VAP);
1365}
1366
1367static void
1368iwn_xmit_queue_drain(struct iwn_softc *sc)
1369{
1370	struct mbuf *m;
1371	struct ieee80211_node *ni;
1372
1373	IWN_LOCK_ASSERT(sc);
1374	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1375		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1376		ieee80211_free_node(ni);
1377		m_freem(m);
1378	}
1379}
1380
1381static int
1382iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1383{
1384
1385	IWN_LOCK_ASSERT(sc);
1386	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1387}
1388
1389static int
1390iwn_detach(device_t dev)
1391{
1392	struct iwn_softc *sc = device_get_softc(dev);
1393	int qid;
1394
1395	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1396
1397	if (sc->sc_ic.ic_softc != NULL) {
1398		/* Free the mbuf queue and node references */
1399		IWN_LOCK(sc);
1400		iwn_xmit_queue_drain(sc);
1401		IWN_UNLOCK(sc);
1402
1403		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1404		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1405		iwn_stop(sc);
1406
1407		taskqueue_drain_all(sc->sc_tq);
1408		taskqueue_free(sc->sc_tq);
1409
1410		callout_drain(&sc->watchdog_to);
1411		callout_drain(&sc->scan_timeout);
1412		callout_drain(&sc->calib_to);
1413		ieee80211_ifdetach(&sc->sc_ic);
1414	}
1415
1416	/* Uninstall interrupt handler. */
1417	if (sc->irq != NULL) {
1418		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1419		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1420		    sc->irq);
1421		pci_release_msi(dev);
1422	}
1423
1424	/* Free DMA resources. */
1425	iwn_free_rx_ring(sc, &sc->rxq);
1426	for (qid = 0; qid < sc->ntxqs; qid++)
1427		iwn_free_tx_ring(sc, &sc->txq[qid]);
1428	iwn_free_sched(sc);
1429	iwn_free_kw(sc);
1430	if (sc->ict != NULL)
1431		iwn_free_ict(sc);
1432	iwn_free_fwmem(sc);
1433
1434	if (sc->mem != NULL)
1435		bus_release_resource(dev, SYS_RES_MEMORY,
1436		    rman_get_rid(sc->mem), sc->mem);
1437
1438	if (sc->sc_cdev) {
1439		destroy_dev(sc->sc_cdev);
1440		sc->sc_cdev = NULL;
1441	}
1442
1443	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1444	IWN_LOCK_DESTROY(sc);
1445	return 0;
1446}
1447
1448static int
1449iwn_shutdown(device_t dev)
1450{
1451	struct iwn_softc *sc = device_get_softc(dev);
1452
1453	iwn_stop(sc);
1454	return 0;
1455}
1456
1457static int
1458iwn_suspend(device_t dev)
1459{
1460	struct iwn_softc *sc = device_get_softc(dev);
1461
1462	ieee80211_suspend_all(&sc->sc_ic);
1463	return 0;
1464}
1465
1466static int
1467iwn_resume(device_t dev)
1468{
1469	struct iwn_softc *sc = device_get_softc(dev);
1470
1471	/* Clear device-specific "PCI retry timeout" register (41h). */
1472	pci_write_config(dev, 0x41, 0, 1);
1473
1474	ieee80211_resume_all(&sc->sc_ic);
1475	return 0;
1476}
1477
1478static int
1479iwn_nic_lock(struct iwn_softc *sc)
1480{
1481	int ntries;
1482
1483	/* Request exclusive access to NIC. */
1484	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1485
1486	/* Spin until we actually get the lock. */
1487	for (ntries = 0; ntries < 1000; ntries++) {
1488		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1489		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1490		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1491			return 0;
1492		DELAY(10);
1493	}
1494	return ETIMEDOUT;
1495}
1496
1497static __inline void
1498iwn_nic_unlock(struct iwn_softc *sc)
1499{
1500	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1501}
1502
1503static __inline uint32_t
1504iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1505{
1506	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1507	IWN_BARRIER_READ_WRITE(sc);
1508	return IWN_READ(sc, IWN_PRPH_RDATA);
1509}
1510
1511static __inline void
1512iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1513{
1514	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1515	IWN_BARRIER_WRITE(sc);
1516	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1517}
1518
1519static __inline void
1520iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1521{
1522	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1523}
1524
1525static __inline void
1526iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1527{
1528	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1529}
1530
1531static __inline void
1532iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1533    const uint32_t *data, int count)
1534{
1535	for (; count > 0; count--, data++, addr += 4)
1536		iwn_prph_write(sc, addr, *data);
1537}
1538
1539static __inline uint32_t
1540iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1541{
1542	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1543	IWN_BARRIER_READ_WRITE(sc);
1544	return IWN_READ(sc, IWN_MEM_RDATA);
1545}
1546
1547static __inline void
1548iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1549{
1550	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1551	IWN_BARRIER_WRITE(sc);
1552	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1553}
1554
1555static __inline void
1556iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1557{
1558	uint32_t tmp;
1559
1560	tmp = iwn_mem_read(sc, addr & ~3);
1561	if (addr & 3)
1562		tmp = (tmp & 0x0000ffff) | data << 16;
1563	else
1564		tmp = (tmp & 0xffff0000) | data;
1565	iwn_mem_write(sc, addr & ~3, tmp);
1566}
1567
1568static __inline void
1569iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1570    int count)
1571{
1572	for (; count > 0; count--, addr += 4)
1573		*data++ = iwn_mem_read(sc, addr);
1574}
1575
1576static __inline void
1577iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1578    int count)
1579{
1580	for (; count > 0; count--, addr += 4)
1581		iwn_mem_write(sc, addr, val);
1582}
1583
1584static int
1585iwn_eeprom_lock(struct iwn_softc *sc)
1586{
1587	int i, ntries;
1588
1589	for (i = 0; i < 100; i++) {
1590		/* Request exclusive access to EEPROM. */
1591		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1592		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1593
1594		/* Spin until we actually get the lock. */
1595		for (ntries = 0; ntries < 100; ntries++) {
1596			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1597			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1598				return 0;
1599			DELAY(10);
1600		}
1601	}
1602	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1603	return ETIMEDOUT;
1604}
1605
1606static __inline void
1607iwn_eeprom_unlock(struct iwn_softc *sc)
1608{
1609	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1610}
1611
1612/*
1613 * Initialize access by host to One Time Programmable ROM.
1614 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1615 */
1616static int
1617iwn_init_otprom(struct iwn_softc *sc)
1618{
1619	uint16_t prev, base, next;
1620	int count, error;
1621
1622	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1623
1624	/* Wait for clock stabilization before accessing prph. */
1625	if ((error = iwn_clock_wait(sc)) != 0)
1626		return error;
1627
1628	if ((error = iwn_nic_lock(sc)) != 0)
1629		return error;
1630	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1631	DELAY(5);
1632	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1633	iwn_nic_unlock(sc);
1634
1635	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1636	if (sc->base_params->shadow_ram_support) {
1637		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1638		    IWN_RESET_LINK_PWR_MGMT_DIS);
1639	}
1640	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1641	/* Clear ECC status. */
1642	IWN_SETBITS(sc, IWN_OTP_GP,
1643	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1644
1645	/*
1646	 * Find the block before last block (contains the EEPROM image)
1647	 * for HW without OTP shadow RAM.
1648	 */
1649	if (! sc->base_params->shadow_ram_support) {
1650		/* Switch to absolute addressing mode. */
1651		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1652		base = prev = 0;
1653		for (count = 0; count < sc->base_params->max_ll_items;
1654		    count++) {
1655			error = iwn_read_prom_data(sc, base, &next, 2);
1656			if (error != 0)
1657				return error;
1658			if (next == 0)	/* End of linked-list. */
1659				break;
1660			prev = base;
1661			base = le16toh(next);
1662		}
1663		if (count == 0 || count == sc->base_params->max_ll_items)
1664			return EIO;
1665		/* Skip "next" word. */
1666		sc->prom_base = prev + 1;
1667	}
1668
1669	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1670
1671	return 0;
1672}
1673
1674static int
1675iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1676{
1677	uint8_t *out = data;
1678	uint32_t val, tmp;
1679	int ntries;
1680
1681	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1682
1683	addr += sc->prom_base;
1684	for (; count > 0; count -= 2, addr++) {
1685		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1686		for (ntries = 0; ntries < 10; ntries++) {
1687			val = IWN_READ(sc, IWN_EEPROM);
1688			if (val & IWN_EEPROM_READ_VALID)
1689				break;
1690			DELAY(5);
1691		}
1692		if (ntries == 10) {
1693			device_printf(sc->sc_dev,
1694			    "timeout reading ROM at 0x%x\n", addr);
1695			return ETIMEDOUT;
1696		}
1697		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1698			/* OTPROM, check for ECC errors. */
1699			tmp = IWN_READ(sc, IWN_OTP_GP);
1700			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1701				device_printf(sc->sc_dev,
1702				    "OTPROM ECC error at 0x%x\n", addr);
1703				return EIO;
1704			}
1705			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1706				/* Correctable ECC error, clear bit. */
1707				IWN_SETBITS(sc, IWN_OTP_GP,
1708				    IWN_OTP_GP_ECC_CORR_STTS);
1709			}
1710		}
1711		*out++ = val >> 16;
1712		if (count > 1)
1713			*out++ = val >> 24;
1714	}
1715
1716	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1717
1718	return 0;
1719}
1720
1721static void
1722iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1723{
1724	if (error != 0)
1725		return;
1726	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1727	*(bus_addr_t *)arg = segs[0].ds_addr;
1728}
1729
1730static int
1731iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1732    void **kvap, bus_size_t size, bus_size_t alignment)
1733{
1734	int error;
1735
1736	dma->tag = NULL;
1737	dma->size = size;
1738
1739	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1740	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1741	    1, size, 0, NULL, NULL, &dma->tag);
1742	if (error != 0)
1743		goto fail;
1744
1745	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1746	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1747	if (error != 0)
1748		goto fail;
1749
1750	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1751	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1752	if (error != 0)
1753		goto fail;
1754
1755	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1756
1757	if (kvap != NULL)
1758		*kvap = dma->vaddr;
1759
1760	return 0;
1761
1762fail:	iwn_dma_contig_free(dma);
1763	return error;
1764}
1765
1766static void
1767iwn_dma_contig_free(struct iwn_dma_info *dma)
1768{
1769	if (dma->vaddr != NULL) {
1770		bus_dmamap_sync(dma->tag, dma->map,
1771		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1772		bus_dmamap_unload(dma->tag, dma->map);
1773		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1774		dma->vaddr = NULL;
1775	}
1776	if (dma->tag != NULL) {
1777		bus_dma_tag_destroy(dma->tag);
1778		dma->tag = NULL;
1779	}
1780}
1781
1782static int
1783iwn_alloc_sched(struct iwn_softc *sc)
1784{
1785	/* TX scheduler rings must be aligned on a 1KB boundary. */
1786	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1787	    sc->schedsz, 1024);
1788}
1789
1790static void
1791iwn_free_sched(struct iwn_softc *sc)
1792{
1793	iwn_dma_contig_free(&sc->sched_dma);
1794}
1795
1796static int
1797iwn_alloc_kw(struct iwn_softc *sc)
1798{
1799	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1800	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1801}
1802
1803static void
1804iwn_free_kw(struct iwn_softc *sc)
1805{
1806	iwn_dma_contig_free(&sc->kw_dma);
1807}
1808
1809static int
1810iwn_alloc_ict(struct iwn_softc *sc)
1811{
1812	/* ICT table must be aligned on a 4KB boundary. */
1813	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1814	    IWN_ICT_SIZE, 4096);
1815}
1816
1817static void
1818iwn_free_ict(struct iwn_softc *sc)
1819{
1820	iwn_dma_contig_free(&sc->ict_dma);
1821}
1822
1823static int
1824iwn_alloc_fwmem(struct iwn_softc *sc)
1825{
1826	/* Must be aligned on a 16-byte boundary. */
1827	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1828}
1829
1830static void
1831iwn_free_fwmem(struct iwn_softc *sc)
1832{
1833	iwn_dma_contig_free(&sc->fw_dma);
1834}
1835
1836static int
1837iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1838{
1839	bus_size_t size;
1840	int i, error;
1841
1842	ring->cur = 0;
1843
1844	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1845
1846	/* Allocate RX descriptors (256-byte aligned). */
1847	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1848	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1849	    size, 256);
1850	if (error != 0) {
1851		device_printf(sc->sc_dev,
1852		    "%s: could not allocate RX ring DMA memory, error %d\n",
1853		    __func__, error);
1854		goto fail;
1855	}
1856
1857	/* Allocate RX status area (16-byte aligned). */
1858	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1859	    sizeof (struct iwn_rx_status), 16);
1860	if (error != 0) {
1861		device_printf(sc->sc_dev,
1862		    "%s: could not allocate RX status DMA memory, error %d\n",
1863		    __func__, error);
1864		goto fail;
1865	}
1866
1867	/* Create RX buffer DMA tag. */
1868	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1869	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1870	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1871	if (error != 0) {
1872		device_printf(sc->sc_dev,
1873		    "%s: could not create RX buf DMA tag, error %d\n",
1874		    __func__, error);
1875		goto fail;
1876	}
1877
1878	/*
1879	 * Allocate and map RX buffers.
1880	 */
1881	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1882		struct iwn_rx_data *data = &ring->data[i];
1883		bus_addr_t paddr;
1884
1885		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1886		if (error != 0) {
1887			device_printf(sc->sc_dev,
1888			    "%s: could not create RX buf DMA map, error %d\n",
1889			    __func__, error);
1890			goto fail;
1891		}
1892
1893		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1894		    IWN_RBUF_SIZE);
1895		if (data->m == NULL) {
1896			device_printf(sc->sc_dev,
1897			    "%s: could not allocate RX mbuf\n", __func__);
1898			error = ENOBUFS;
1899			goto fail;
1900		}
1901
1902		error = bus_dmamap_load(ring->data_dmat, data->map,
1903		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1904		    &paddr, BUS_DMA_NOWAIT);
1905		if (error != 0 && error != EFBIG) {
1906			device_printf(sc->sc_dev,
1907			    "%s: can't map mbuf, error %d\n", __func__,
1908			    error);
1909			goto fail;
1910		}
1911
1912		bus_dmamap_sync(ring->data_dmat, data->map,
1913		    BUS_DMASYNC_PREREAD);
1914
1915		/* Set physical address of RX buffer (256-byte aligned). */
1916		ring->desc[i] = htole32(paddr >> 8);
1917	}
1918
1919	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1920	    BUS_DMASYNC_PREWRITE);
1921
1922	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1923
1924	return 0;
1925
1926fail:	iwn_free_rx_ring(sc, ring);
1927
1928	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1929
1930	return error;
1931}
1932
1933static void
1934iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1935{
1936	int ntries;
1937
1938	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1939
1940	if (iwn_nic_lock(sc) == 0) {
1941		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1942		for (ntries = 0; ntries < 1000; ntries++) {
1943			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1944			    IWN_FH_RX_STATUS_IDLE)
1945				break;
1946			DELAY(10);
1947		}
1948		iwn_nic_unlock(sc);
1949	}
1950	ring->cur = 0;
1951	sc->last_rx_valid = 0;
1952}
1953
1954static void
1955iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1956{
1957	int i;
1958
1959	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1960
1961	iwn_dma_contig_free(&ring->desc_dma);
1962	iwn_dma_contig_free(&ring->stat_dma);
1963
1964	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1965		struct iwn_rx_data *data = &ring->data[i];
1966
1967		if (data->m != NULL) {
1968			bus_dmamap_sync(ring->data_dmat, data->map,
1969			    BUS_DMASYNC_POSTREAD);
1970			bus_dmamap_unload(ring->data_dmat, data->map);
1971			m_freem(data->m);
1972			data->m = NULL;
1973		}
1974		if (data->map != NULL)
1975			bus_dmamap_destroy(ring->data_dmat, data->map);
1976	}
1977	if (ring->data_dmat != NULL) {
1978		bus_dma_tag_destroy(ring->data_dmat);
1979		ring->data_dmat = NULL;
1980	}
1981}
1982
1983static int
1984iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1985{
1986	bus_addr_t paddr;
1987	bus_size_t size;
1988	int i, error;
1989
1990	ring->qid = qid;
1991	ring->queued = 0;
1992	ring->cur = 0;
1993
1994	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1995
1996	/* Allocate TX descriptors (256-byte aligned). */
1997	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1998	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1999	    size, 256);
2000	if (error != 0) {
2001		device_printf(sc->sc_dev,
2002		    "%s: could not allocate TX ring DMA memory, error %d\n",
2003		    __func__, error);
2004		goto fail;
2005	}
2006
2007	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2008	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2009	    size, 4);
2010	if (error != 0) {
2011		device_printf(sc->sc_dev,
2012		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2013		    __func__, error);
2014		goto fail;
2015	}
2016
2017	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2018	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2019	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2020	if (error != 0) {
2021		device_printf(sc->sc_dev,
2022		    "%s: could not create TX buf DMA tag, error %d\n",
2023		    __func__, error);
2024		goto fail;
2025	}
2026
2027	paddr = ring->cmd_dma.paddr;
2028	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2029		struct iwn_tx_data *data = &ring->data[i];
2030
2031		data->cmd_paddr = paddr;
2032		data->scratch_paddr = paddr + 12;
2033		paddr += sizeof (struct iwn_tx_cmd);
2034
2035		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2036		if (error != 0) {
2037			device_printf(sc->sc_dev,
2038			    "%s: could not create TX buf DMA map, error %d\n",
2039			    __func__, error);
2040			goto fail;
2041		}
2042	}
2043
2044	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2045
2046	return 0;
2047
2048fail:	iwn_free_tx_ring(sc, ring);
2049	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2050	return error;
2051}
2052
2053static void
2054iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2055{
2056	int i;
2057
2058	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2059
2060	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2061		struct iwn_tx_data *data = &ring->data[i];
2062
2063		if (data->m != NULL) {
2064			bus_dmamap_sync(ring->data_dmat, data->map,
2065			    BUS_DMASYNC_POSTWRITE);
2066			bus_dmamap_unload(ring->data_dmat, data->map);
2067			m_freem(data->m);
2068			data->m = NULL;
2069		}
2070		if (data->ni != NULL) {
2071			ieee80211_free_node(data->ni);
2072			data->ni = NULL;
2073		}
2074	}
2075	/* Clear TX descriptors. */
2076	memset(ring->desc, 0, ring->desc_dma.size);
2077	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2078	    BUS_DMASYNC_PREWRITE);
2079	sc->qfullmsk &= ~(1 << ring->qid);
2080	ring->queued = 0;
2081	ring->cur = 0;
2082}
2083
2084static void
2085iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2086{
2087	int i;
2088
2089	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2090
2091	iwn_dma_contig_free(&ring->desc_dma);
2092	iwn_dma_contig_free(&ring->cmd_dma);
2093
2094	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2095		struct iwn_tx_data *data = &ring->data[i];
2096
2097		if (data->m != NULL) {
2098			bus_dmamap_sync(ring->data_dmat, data->map,
2099			    BUS_DMASYNC_POSTWRITE);
2100			bus_dmamap_unload(ring->data_dmat, data->map);
2101			m_freem(data->m);
2102		}
2103		if (data->map != NULL)
2104			bus_dmamap_destroy(ring->data_dmat, data->map);
2105	}
2106	if (ring->data_dmat != NULL) {
2107		bus_dma_tag_destroy(ring->data_dmat);
2108		ring->data_dmat = NULL;
2109	}
2110}
2111
2112static void
2113iwn5000_ict_reset(struct iwn_softc *sc)
2114{
2115	/* Disable interrupts. */
2116	IWN_WRITE(sc, IWN_INT_MASK, 0);
2117
2118	/* Reset ICT table. */
2119	memset(sc->ict, 0, IWN_ICT_SIZE);
2120	sc->ict_cur = 0;
2121
2122	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2123	    BUS_DMASYNC_PREWRITE);
2124
2125	/* Set physical address of ICT table (4KB aligned). */
2126	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2127	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2128	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2129
2130	/* Enable periodic RX interrupt. */
2131	sc->int_mask |= IWN_INT_RX_PERIODIC;
2132	/* Switch to ICT interrupt mode in driver. */
2133	sc->sc_flags |= IWN_FLAG_USE_ICT;
2134
2135	/* Re-enable interrupts. */
2136	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2137	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2138}
2139
2140static int
2141iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2142{
2143	struct iwn_ops *ops = &sc->ops;
2144	uint16_t val;
2145	int error;
2146
2147	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2148
2149	/* Check whether adapter has an EEPROM or an OTPROM. */
2150	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2151	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2152		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2153	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2154	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2155
2156	/* Adapter has to be powered on for EEPROM access to work. */
2157	if ((error = iwn_apm_init(sc)) != 0) {
2158		device_printf(sc->sc_dev,
2159		    "%s: could not power ON adapter, error %d\n", __func__,
2160		    error);
2161		return error;
2162	}
2163
2164	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2165		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2166		return EIO;
2167	}
2168	if ((error = iwn_eeprom_lock(sc)) != 0) {
2169		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2170		    __func__, error);
2171		return error;
2172	}
2173	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2174		if ((error = iwn_init_otprom(sc)) != 0) {
2175			device_printf(sc->sc_dev,
2176			    "%s: could not initialize OTPROM, error %d\n",
2177			    __func__, error);
2178			return error;
2179		}
2180	}
2181
2182	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2183	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2184	/* Check if HT support is bonded out. */
2185	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2186		sc->sc_flags |= IWN_FLAG_HAS_11N;
2187
2188	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2189	sc->rfcfg = le16toh(val);
2190	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2191	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2192	if (sc->txchainmask == 0)
2193		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2194	if (sc->rxchainmask == 0)
2195		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2196
2197	/* Read MAC address. */
2198	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2199
2200	/* Read adapter-specific information from EEPROM. */
2201	ops->read_eeprom(sc);
2202
2203	iwn_apm_stop(sc);	/* Power OFF adapter. */
2204
2205	iwn_eeprom_unlock(sc);
2206
2207	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2208
2209	return 0;
2210}
2211
2212static void
2213iwn4965_read_eeprom(struct iwn_softc *sc)
2214{
2215	uint32_t addr;
2216	uint16_t val;
2217	int i;
2218
2219	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2220
2221	/* Read regulatory domain (4 ASCII characters). */
2222	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2223
2224	/* Read the list of authorized channels (20MHz & 40MHz). */
2225	for (i = 0; i < IWN_NBANDS - 1; i++) {
2226		addr = iwn4965_regulatory_bands[i];
2227		iwn_read_eeprom_channels(sc, i, addr);
2228	}
2229
2230	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2231	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2232	sc->maxpwr2GHz = val & 0xff;
2233	sc->maxpwr5GHz = val >> 8;
2234	/* Check that EEPROM values are within valid range. */
2235	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2236		sc->maxpwr5GHz = 38;
2237	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2238		sc->maxpwr2GHz = 38;
2239	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2240	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2241
2242	/* Read samples for each TX power group. */
2243	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2244	    sizeof sc->bands);
2245
2246	/* Read voltage at which samples were taken. */
2247	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2248	sc->eeprom_voltage = (int16_t)le16toh(val);
2249	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2250	    sc->eeprom_voltage);
2251
2252#ifdef IWN_DEBUG
2253	/* Print samples. */
2254	if (sc->sc_debug & IWN_DEBUG_ANY) {
2255		for (i = 0; i < IWN_NBANDS - 1; i++)
2256			iwn4965_print_power_group(sc, i);
2257	}
2258#endif
2259
2260	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2261}
2262
2263#ifdef IWN_DEBUG
2264static void
2265iwn4965_print_power_group(struct iwn_softc *sc, int i)
2266{
2267	struct iwn4965_eeprom_band *band = &sc->bands[i];
2268	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2269	int j, c;
2270
2271	printf("===band %d===\n", i);
2272	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2273	printf("chan1 num=%d\n", chans[0].num);
2274	for (c = 0; c < 2; c++) {
2275		for (j = 0; j < IWN_NSAMPLES; j++) {
2276			printf("chain %d, sample %d: temp=%d gain=%d "
2277			    "power=%d pa_det=%d\n", c, j,
2278			    chans[0].samples[c][j].temp,
2279			    chans[0].samples[c][j].gain,
2280			    chans[0].samples[c][j].power,
2281			    chans[0].samples[c][j].pa_det);
2282		}
2283	}
2284	printf("chan2 num=%d\n", chans[1].num);
2285	for (c = 0; c < 2; c++) {
2286		for (j = 0; j < IWN_NSAMPLES; j++) {
2287			printf("chain %d, sample %d: temp=%d gain=%d "
2288			    "power=%d pa_det=%d\n", c, j,
2289			    chans[1].samples[c][j].temp,
2290			    chans[1].samples[c][j].gain,
2291			    chans[1].samples[c][j].power,
2292			    chans[1].samples[c][j].pa_det);
2293		}
2294	}
2295}
2296#endif
2297
2298static void
2299iwn5000_read_eeprom(struct iwn_softc *sc)
2300{
2301	struct iwn5000_eeprom_calib_hdr hdr;
2302	int32_t volt;
2303	uint32_t base, addr;
2304	uint16_t val;
2305	int i;
2306
2307	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2308
2309	/* Read regulatory domain (4 ASCII characters). */
2310	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2311	base = le16toh(val);
2312	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2313	    sc->eeprom_domain, 4);
2314
2315	/* Read the list of authorized channels (20MHz & 40MHz). */
2316	for (i = 0; i < IWN_NBANDS - 1; i++) {
2317		addr =  base + sc->base_params->regulatory_bands[i];
2318		iwn_read_eeprom_channels(sc, i, addr);
2319	}
2320
2321	/* Read enhanced TX power information for 6000 Series. */
2322	if (sc->base_params->enhanced_TX_power)
2323		iwn_read_eeprom_enhinfo(sc);
2324
2325	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2326	base = le16toh(val);
2327	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2328	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2329	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2330	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2331	sc->calib_ver = hdr.version;
2332
2333	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2334		sc->eeprom_voltage = le16toh(hdr.volt);
2335		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2336		sc->eeprom_temp_high=le16toh(val);
2337		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2338		sc->eeprom_temp = le16toh(val);
2339	}
2340
2341	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2342		/* Compute temperature offset. */
2343		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2344		sc->eeprom_temp = le16toh(val);
2345		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2346		volt = le16toh(val);
2347		sc->temp_off = sc->eeprom_temp - (volt / -5);
2348		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2349		    sc->eeprom_temp, volt, sc->temp_off);
2350	} else {
2351		/* Read crystal calibration. */
2352		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2353		    &sc->eeprom_crystal, sizeof (uint32_t));
2354		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2355		    le32toh(sc->eeprom_crystal));
2356	}
2357
2358	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2359
2360}
2361
2362/*
2363 * Translate EEPROM flags to net80211.
2364 */
2365static uint32_t
2366iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2367{
2368	uint32_t nflags;
2369
2370	nflags = 0;
2371	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2372		nflags |= IEEE80211_CHAN_PASSIVE;
2373	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2374		nflags |= IEEE80211_CHAN_NOADHOC;
2375	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2376		nflags |= IEEE80211_CHAN_DFS;
2377		/* XXX apparently IBSS may still be marked */
2378		nflags |= IEEE80211_CHAN_NOADHOC;
2379	}
2380
2381	return nflags;
2382}
2383
2384static void
2385iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2386    struct ieee80211_channel chans[])
2387{
2388	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2389	const struct iwn_chan_band *band = &iwn_bands[n];
2390	uint8_t bands[IEEE80211_MODE_BYTES];
2391	uint8_t chan;
2392	int i, error, nflags;
2393
2394	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2395
2396	memset(bands, 0, sizeof(bands));
2397	if (n == 0) {
2398		setbit(bands, IEEE80211_MODE_11B);
2399		setbit(bands, IEEE80211_MODE_11G);
2400		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2401			setbit(bands, IEEE80211_MODE_11NG);
2402	} else {
2403		setbit(bands, IEEE80211_MODE_11A);
2404		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2405			setbit(bands, IEEE80211_MODE_11NA);
2406	}
2407
2408	for (i = 0; i < band->nchan; i++) {
2409		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2410			DPRINTF(sc, IWN_DEBUG_RESET,
2411			    "skip chan %d flags 0x%x maxpwr %d\n",
2412			    band->chan[i], channels[i].flags,
2413			    channels[i].maxpwr);
2414			continue;
2415		}
2416
2417		chan = band->chan[i];
2418		nflags = iwn_eeprom_channel_flags(&channels[i]);
2419		error = ieee80211_add_channel(chans, maxchans, nchans,
2420		    chan, 0, channels[i].maxpwr, nflags, bands);
2421		if (error != 0)
2422			break;
2423
2424		/* Save maximum allowed TX power for this channel. */
2425		/* XXX wrong */
2426		sc->maxpwr[chan] = channels[i].maxpwr;
2427
2428		DPRINTF(sc, IWN_DEBUG_RESET,
2429		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2430		    channels[i].flags, channels[i].maxpwr);
2431	}
2432
2433	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2434
2435}
2436
2437static void
2438iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2439    struct ieee80211_channel chans[])
2440{
2441	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2442	const struct iwn_chan_band *band = &iwn_bands[n];
2443	uint8_t chan;
2444	int i, error, nflags;
2445
2446	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2447
2448	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2449		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2450		return;
2451	}
2452
2453	for (i = 0; i < band->nchan; i++) {
2454		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2455			DPRINTF(sc, IWN_DEBUG_RESET,
2456			    "skip chan %d flags 0x%x maxpwr %d\n",
2457			    band->chan[i], channels[i].flags,
2458			    channels[i].maxpwr);
2459			continue;
2460		}
2461
2462		chan = band->chan[i];
2463		nflags = iwn_eeprom_channel_flags(&channels[i]);
2464		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2465		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2466		    chan, channels[i].maxpwr, nflags);
2467		switch (error) {
2468		case EINVAL:
2469			device_printf(sc->sc_dev,
2470			    "%s: no entry for channel %d\n", __func__, chan);
2471			continue;
2472		case ENOENT:
2473			DPRINTF(sc, IWN_DEBUG_RESET,
2474			    "%s: skip chan %d, extension channel not found\n",
2475			    __func__, chan);
2476			continue;
2477		case ENOBUFS:
2478			device_printf(sc->sc_dev,
2479			    "%s: channel table is full!\n", __func__);
2480			break;
2481		case 0:
2482			DPRINTF(sc, IWN_DEBUG_RESET,
2483			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2484			    chan, channels[i].flags, channels[i].maxpwr);
2485			/* FALLTHROUGH */
2486		default:
2487			break;
2488		}
2489	}
2490
2491	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2492
2493}
2494
2495static void
2496iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2497{
2498	struct ieee80211com *ic = &sc->sc_ic;
2499
2500	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2501	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2502
2503	if (n < 5) {
2504		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2505		    ic->ic_channels);
2506	} else {
2507		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2508		    ic->ic_channels);
2509	}
2510	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2511}
2512
2513static struct iwn_eeprom_chan *
2514iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2515{
2516	int band, chan, i, j;
2517
2518	if (IEEE80211_IS_CHAN_HT40(c)) {
2519		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2520		if (IEEE80211_IS_CHAN_HT40D(c))
2521			chan = c->ic_extieee;
2522		else
2523			chan = c->ic_ieee;
2524		for (i = 0; i < iwn_bands[band].nchan; i++) {
2525			if (iwn_bands[band].chan[i] == chan)
2526				return &sc->eeprom_channels[band][i];
2527		}
2528	} else {
2529		for (j = 0; j < 5; j++) {
2530			for (i = 0; i < iwn_bands[j].nchan; i++) {
2531				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2532				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2533					return &sc->eeprom_channels[j][i];
2534			}
2535		}
2536	}
2537	return NULL;
2538}
2539
2540static void
2541iwn_getradiocaps(struct ieee80211com *ic,
2542    int maxchans, int *nchans, struct ieee80211_channel chans[])
2543{
2544	struct iwn_softc *sc = ic->ic_softc;
2545	int i;
2546
2547	/* Parse the list of authorized channels. */
2548	for (i = 0; i < 5 && *nchans < maxchans; i++)
2549		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2550	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2551		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2552}
2553
2554/*
2555 * Enforce flags read from EEPROM.
2556 */
2557static int
2558iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2559    int nchan, struct ieee80211_channel chans[])
2560{
2561	struct iwn_softc *sc = ic->ic_softc;
2562	int i;
2563
2564	for (i = 0; i < nchan; i++) {
2565		struct ieee80211_channel *c = &chans[i];
2566		struct iwn_eeprom_chan *channel;
2567
2568		channel = iwn_find_eeprom_channel(sc, c);
2569		if (channel == NULL) {
2570			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2571			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2572			return EINVAL;
2573		}
2574		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2575	}
2576
2577	return 0;
2578}
2579
2580static void
2581iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2582{
2583	struct iwn_eeprom_enhinfo enhinfo[35];
2584	struct ieee80211com *ic = &sc->sc_ic;
2585	struct ieee80211_channel *c;
2586	uint16_t val, base;
2587	int8_t maxpwr;
2588	uint8_t flags;
2589	int i, j;
2590
2591	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2592
2593	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2594	base = le16toh(val);
2595	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2596	    enhinfo, sizeof enhinfo);
2597
2598	for (i = 0; i < nitems(enhinfo); i++) {
2599		flags = enhinfo[i].flags;
2600		if (!(flags & IWN_ENHINFO_VALID))
2601			continue;	/* Skip invalid entries. */
2602
2603		maxpwr = 0;
2604		if (sc->txchainmask & IWN_ANT_A)
2605			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2606		if (sc->txchainmask & IWN_ANT_B)
2607			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2608		if (sc->txchainmask & IWN_ANT_C)
2609			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2610		if (sc->ntxchains == 2)
2611			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2612		else if (sc->ntxchains == 3)
2613			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2614
2615		for (j = 0; j < ic->ic_nchans; j++) {
2616			c = &ic->ic_channels[j];
2617			if ((flags & IWN_ENHINFO_5GHZ)) {
2618				if (!IEEE80211_IS_CHAN_A(c))
2619					continue;
2620			} else if ((flags & IWN_ENHINFO_OFDM)) {
2621				if (!IEEE80211_IS_CHAN_G(c))
2622					continue;
2623			} else if (!IEEE80211_IS_CHAN_B(c))
2624				continue;
2625			if ((flags & IWN_ENHINFO_HT40)) {
2626				if (!IEEE80211_IS_CHAN_HT40(c))
2627					continue;
2628			} else {
2629				if (IEEE80211_IS_CHAN_HT40(c))
2630					continue;
2631			}
2632			if (enhinfo[i].chan != 0 &&
2633			    enhinfo[i].chan != c->ic_ieee)
2634				continue;
2635
2636			DPRINTF(sc, IWN_DEBUG_RESET,
2637			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2638			    c->ic_flags, maxpwr / 2);
2639			c->ic_maxregpower = maxpwr / 2;
2640			c->ic_maxpower = maxpwr;
2641		}
2642	}
2643
2644	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2645
2646}
2647
2648static struct ieee80211_node *
2649iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2650{
2651	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2652}
2653
2654static __inline int
2655rate2plcp(int rate)
2656{
2657	switch (rate & 0xff) {
2658	case 12:	return 0xd;
2659	case 18:	return 0xf;
2660	case 24:	return 0x5;
2661	case 36:	return 0x7;
2662	case 48:	return 0x9;
2663	case 72:	return 0xb;
2664	case 96:	return 0x1;
2665	case 108:	return 0x3;
2666	case 2:		return 10;
2667	case 4:		return 20;
2668	case 11:	return 55;
2669	case 22:	return 110;
2670	}
2671	return 0;
2672}
2673
2674static int
2675iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2676{
2677
2678	return IWN_LSB(sc->txchainmask);
2679}
2680
2681static int
2682iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2683{
2684	int tx;
2685
2686	/*
2687	 * The '2 stream' setup is a bit .. odd.
2688	 *
2689	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2690	 * the firmware panics (eg Intel 5100.)
2691	 *
2692	 * For NICs that support two antennas, we use ANT_AB.
2693	 *
2694	 * For NICs that support three antennas, we use the two that
2695	 * wasn't the default one.
2696	 *
2697	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2698	 * this to only one antenna.
2699	 */
2700
2701	/* Default - transmit on the other antennas */
2702	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2703
2704	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2705	if (tx == 0)
2706		tx = IWN_ANT_AB;
2707
2708	/*
2709	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2710	 * the default chainmask
2711	 */
2712	else if (sc->ntxchains == 2)
2713		tx = sc->txchainmask;
2714
2715	return (tx);
2716}
2717
2718
2719
2720/*
2721 * Calculate the required PLCP value from the given rate,
2722 * to the given node.
2723 *
2724 * This will take the node configuration (eg 11n, rate table
2725 * setup, etc) into consideration.
2726 */
2727static uint32_t
2728iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2729    uint8_t rate)
2730{
2731	struct ieee80211com *ic = ni->ni_ic;
2732	uint32_t plcp = 0;
2733	int ridx;
2734
2735	/*
2736	 * If it's an MCS rate, let's set the plcp correctly
2737	 * and set the relevant flags based on the node config.
2738	 */
2739	if (rate & IEEE80211_RATE_MCS) {
2740		/*
2741		 * Set the initial PLCP value to be between 0->31 for
2742		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2743		 * flag.
2744		 */
2745		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2746
2747		/*
2748		 * XXX the following should only occur if both
2749		 * the local configuration _and_ the remote node
2750		 * advertise these capabilities.  Thus this code
2751		 * may need fixing!
2752		 */
2753
2754		/*
2755		 * Set the channel width and guard interval.
2756		 */
2757		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2758			plcp |= IWN_RFLAG_HT40;
2759			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2760				plcp |= IWN_RFLAG_SGI;
2761		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2762			plcp |= IWN_RFLAG_SGI;
2763		}
2764
2765		/*
2766		 * Ensure the selected rate matches the link quality
2767		 * table entries being used.
2768		 */
2769		if (rate > 0x8f)
2770			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2771		else if (rate > 0x87)
2772			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2773		else
2774			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2775	} else {
2776		/*
2777		 * Set the initial PLCP - fine for both
2778		 * OFDM and CCK rates.
2779		 */
2780		plcp = rate2plcp(rate);
2781
2782		/* Set CCK flag if it's CCK */
2783
2784		/* XXX It would be nice to have a method
2785		 * to map the ridx -> phy table entry
2786		 * so we could just query that, rather than
2787		 * this hack to check against IWN_RIDX_OFDM6.
2788		 */
2789		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2790		    rate & IEEE80211_RATE_VAL);
2791		if (ridx < IWN_RIDX_OFDM6 &&
2792		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2793			plcp |= IWN_RFLAG_CCK;
2794
2795		/* Set antenna configuration */
2796		/* XXX TODO: is this the right antenna to use for legacy? */
2797		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2798	}
2799
2800	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2801	    __func__,
2802	    rate,
2803	    plcp);
2804
2805	return (htole32(plcp));
2806}
2807
2808static void
2809iwn_newassoc(struct ieee80211_node *ni, int isnew)
2810{
2811	/* Doesn't do anything at the moment */
2812}
2813
2814static int
2815iwn_media_change(struct ifnet *ifp)
2816{
2817	int error;
2818
2819	error = ieee80211_media_change(ifp);
2820	/* NB: only the fixed rate can change and that doesn't need a reset */
2821	return (error == ENETRESET ? 0 : error);
2822}
2823
2824static int
2825iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2826{
2827	struct iwn_vap *ivp = IWN_VAP(vap);
2828	struct ieee80211com *ic = vap->iv_ic;
2829	struct iwn_softc *sc = ic->ic_softc;
2830	int error = 0;
2831
2832	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2833
2834	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2835	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2836
2837	IEEE80211_UNLOCK(ic);
2838	IWN_LOCK(sc);
2839	callout_stop(&sc->calib_to);
2840
2841	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2842
2843	switch (nstate) {
2844	case IEEE80211_S_ASSOC:
2845		if (vap->iv_state != IEEE80211_S_RUN)
2846			break;
2847		/* FALLTHROUGH */
2848	case IEEE80211_S_AUTH:
2849		if (vap->iv_state == IEEE80211_S_AUTH)
2850			break;
2851
2852		/*
2853		 * !AUTH -> AUTH transition requires state reset to handle
2854		 * reassociations correctly.
2855		 */
2856		sc->rxon->associd = 0;
2857		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2858		sc->calib.state = IWN_CALIB_STATE_INIT;
2859
2860		/* Wait until we hear a beacon before we transmit */
2861		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2862			sc->sc_beacon_wait = 1;
2863
2864		if ((error = iwn_auth(sc, vap)) != 0) {
2865			device_printf(sc->sc_dev,
2866			    "%s: could not move to auth state\n", __func__);
2867		}
2868		break;
2869
2870	case IEEE80211_S_RUN:
2871		/*
2872		 * RUN -> RUN transition; Just restart the timers.
2873		 */
2874		if (vap->iv_state == IEEE80211_S_RUN) {
2875			sc->calib_cnt = 0;
2876			break;
2877		}
2878
2879		/* Wait until we hear a beacon before we transmit */
2880		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2881			sc->sc_beacon_wait = 1;
2882
2883		/*
2884		 * !RUN -> RUN requires setting the association id
2885		 * which is done with a firmware cmd.  We also defer
2886		 * starting the timers until that work is done.
2887		 */
2888		if ((error = iwn_run(sc, vap)) != 0) {
2889			device_printf(sc->sc_dev,
2890			    "%s: could not move to run state\n", __func__);
2891		}
2892		break;
2893
2894	case IEEE80211_S_INIT:
2895		sc->calib.state = IWN_CALIB_STATE_INIT;
2896		/*
2897		 * Purge the xmit queue so we don't have old frames
2898		 * during a new association attempt.
2899		 */
2900		sc->sc_beacon_wait = 0;
2901		iwn_xmit_queue_drain(sc);
2902		break;
2903
2904	default:
2905		break;
2906	}
2907	IWN_UNLOCK(sc);
2908	IEEE80211_LOCK(ic);
2909	if (error != 0){
2910		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2911		return error;
2912	}
2913
2914	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2915
2916	return ivp->iv_newstate(vap, nstate, arg);
2917}
2918
2919static void
2920iwn_calib_timeout(void *arg)
2921{
2922	struct iwn_softc *sc = arg;
2923
2924	IWN_LOCK_ASSERT(sc);
2925
2926	/* Force automatic TX power calibration every 60 secs. */
2927	if (++sc->calib_cnt >= 120) {
2928		uint32_t flags = 0;
2929
2930		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2931		    "sending request for statistics");
2932		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2933		    sizeof flags, 1);
2934		sc->calib_cnt = 0;
2935	}
2936	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2937	    sc);
2938}
2939
2940/*
2941 * Process an RX_PHY firmware notification.  This is usually immediately
2942 * followed by an MPDU_RX_DONE notification.
2943 */
2944static void
2945iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2946    struct iwn_rx_data *data)
2947{
2948	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2949
2950	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2951	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2952
2953	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2954	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2955	sc->last_rx_valid = 1;
2956}
2957
2958/*
2959 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2960 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2961 */
2962static void
2963iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2964    struct iwn_rx_data *data)
2965{
2966	struct iwn_ops *ops = &sc->ops;
2967	struct ieee80211com *ic = &sc->sc_ic;
2968	struct iwn_rx_ring *ring = &sc->rxq;
2969	struct ieee80211_frame *wh;
2970	struct ieee80211_node *ni;
2971	struct mbuf *m, *m1;
2972	struct iwn_rx_stat *stat;
2973	caddr_t head;
2974	bus_addr_t paddr;
2975	uint32_t flags;
2976	int error, len, rssi, nf;
2977
2978	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2979
2980	if (desc->type == IWN_MPDU_RX_DONE) {
2981		/* Check for prior RX_PHY notification. */
2982		if (!sc->last_rx_valid) {
2983			DPRINTF(sc, IWN_DEBUG_ANY,
2984			    "%s: missing RX_PHY\n", __func__);
2985			return;
2986		}
2987		stat = &sc->last_rx_stat;
2988	} else
2989		stat = (struct iwn_rx_stat *)(desc + 1);
2990
2991	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2992
2993	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2994		device_printf(sc->sc_dev,
2995		    "%s: invalid RX statistic header, len %d\n", __func__,
2996		    stat->cfg_phy_len);
2997		return;
2998	}
2999	if (desc->type == IWN_MPDU_RX_DONE) {
3000		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3001		head = (caddr_t)(mpdu + 1);
3002		len = le16toh(mpdu->len);
3003	} else {
3004		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3005		len = le16toh(stat->len);
3006	}
3007
3008	flags = le32toh(*(uint32_t *)(head + len));
3009
3010	/* Discard frames with a bad FCS early. */
3011	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3012		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3013		    __func__, flags);
3014		counter_u64_add(ic->ic_ierrors, 1);
3015		return;
3016	}
3017	/* Discard frames that are too short. */
3018	if (len < sizeof (struct ieee80211_frame_ack)) {
3019		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3020		    __func__, len);
3021		counter_u64_add(ic->ic_ierrors, 1);
3022		return;
3023	}
3024
3025	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3026	if (m1 == NULL) {
3027		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3028		    __func__);
3029		counter_u64_add(ic->ic_ierrors, 1);
3030		return;
3031	}
3032	bus_dmamap_unload(ring->data_dmat, data->map);
3033
3034	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3035	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3036	if (error != 0 && error != EFBIG) {
3037		device_printf(sc->sc_dev,
3038		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3039		m_freem(m1);
3040
3041		/* Try to reload the old mbuf. */
3042		error = bus_dmamap_load(ring->data_dmat, data->map,
3043		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3044		    &paddr, BUS_DMA_NOWAIT);
3045		if (error != 0 && error != EFBIG) {
3046			panic("%s: could not load old RX mbuf", __func__);
3047		}
3048		bus_dmamap_sync(ring->data_dmat, data->map,
3049		    BUS_DMASYNC_PREREAD);
3050		/* Physical address may have changed. */
3051		ring->desc[ring->cur] = htole32(paddr >> 8);
3052		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3053		    BUS_DMASYNC_PREWRITE);
3054		counter_u64_add(ic->ic_ierrors, 1);
3055		return;
3056	}
3057
3058	bus_dmamap_sync(ring->data_dmat, data->map,
3059	    BUS_DMASYNC_PREREAD);
3060
3061	m = data->m;
3062	data->m = m1;
3063	/* Update RX descriptor. */
3064	ring->desc[ring->cur] = htole32(paddr >> 8);
3065	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3066	    BUS_DMASYNC_PREWRITE);
3067
3068	/* Finalize mbuf. */
3069	m->m_data = head;
3070	m->m_pkthdr.len = m->m_len = len;
3071
3072	/* Grab a reference to the source node. */
3073	wh = mtod(m, struct ieee80211_frame *);
3074	if (len >= sizeof(struct ieee80211_frame_min))
3075		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3076	else
3077		ni = NULL;
3078	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3079	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3080
3081	rssi = ops->get_rssi(sc, stat);
3082
3083	if (ieee80211_radiotap_active(ic)) {
3084		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3085
3086		tap->wr_flags = 0;
3087		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3088			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3089		tap->wr_dbm_antsignal = (int8_t)rssi;
3090		tap->wr_dbm_antnoise = (int8_t)nf;
3091		tap->wr_tsft = stat->tstamp;
3092		switch (stat->rate) {
3093		/* CCK rates. */
3094		case  10: tap->wr_rate =   2; break;
3095		case  20: tap->wr_rate =   4; break;
3096		case  55: tap->wr_rate =  11; break;
3097		case 110: tap->wr_rate =  22; break;
3098		/* OFDM rates. */
3099		case 0xd: tap->wr_rate =  12; break;
3100		case 0xf: tap->wr_rate =  18; break;
3101		case 0x5: tap->wr_rate =  24; break;
3102		case 0x7: tap->wr_rate =  36; break;
3103		case 0x9: tap->wr_rate =  48; break;
3104		case 0xb: tap->wr_rate =  72; break;
3105		case 0x1: tap->wr_rate =  96; break;
3106		case 0x3: tap->wr_rate = 108; break;
3107		/* Unknown rate: should not happen. */
3108		default:  tap->wr_rate =   0;
3109		}
3110	}
3111
3112	/*
3113	 * If it's a beacon and we're waiting, then do the
3114	 * wakeup.  This should unblock raw_xmit/start.
3115	 */
3116	if (sc->sc_beacon_wait) {
3117		uint8_t type, subtype;
3118		/* NB: Re-assign wh */
3119		wh = mtod(m, struct ieee80211_frame *);
3120		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3121		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3122		/*
3123		 * This assumes at this point we've received our own
3124		 * beacon.
3125		 */
3126		DPRINTF(sc, IWN_DEBUG_TRACE,
3127		    "%s: beacon_wait, type=%d, subtype=%d\n",
3128		    __func__, type, subtype);
3129		if (type == IEEE80211_FC0_TYPE_MGT &&
3130		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3131			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3132			    "%s: waking things up\n", __func__);
3133			/* queue taskqueue to transmit! */
3134			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3135		}
3136	}
3137
3138	IWN_UNLOCK(sc);
3139
3140	/* Send the frame to the 802.11 layer. */
3141	if (ni != NULL) {
3142		if (ni->ni_flags & IEEE80211_NODE_HT)
3143			m->m_flags |= M_AMPDU;
3144		(void)ieee80211_input(ni, m, rssi - nf, nf);
3145		/* Node is no longer needed. */
3146		ieee80211_free_node(ni);
3147	} else
3148		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3149
3150	IWN_LOCK(sc);
3151
3152	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3153
3154}
3155
3156/* Process an incoming Compressed BlockAck. */
3157static void
3158iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3159    struct iwn_rx_data *data)
3160{
3161	struct iwn_ops *ops = &sc->ops;
3162	struct iwn_node *wn;
3163	struct ieee80211_node *ni;
3164	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3165	struct iwn_tx_ring *txq;
3166	struct iwn_tx_data *txdata;
3167	struct ieee80211_tx_ampdu *tap;
3168	struct mbuf *m;
3169	uint64_t bitmap;
3170	uint16_t ssn;
3171	uint8_t tid;
3172	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3173	int tx_ok = 0, tx_err = 0;
3174
3175	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3176
3177	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3178
3179	qid = le16toh(ba->qid);
3180	txq = &sc->txq[ba->qid];
3181	tap = sc->qid2tap[ba->qid];
3182	tid = tap->txa_tid;
3183	wn = (void *)tap->txa_ni;
3184
3185	res = NULL;
3186	ssn = 0;
3187	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3188		res = tap->txa_private;
3189		ssn = tap->txa_start & 0xfff;
3190	}
3191
3192	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3193		txdata = &txq->data[txq->read];
3194
3195		/* Unmap and free mbuf. */
3196		bus_dmamap_sync(txq->data_dmat, txdata->map,
3197		    BUS_DMASYNC_POSTWRITE);
3198		bus_dmamap_unload(txq->data_dmat, txdata->map);
3199		m = txdata->m, txdata->m = NULL;
3200		ni = txdata->ni, txdata->ni = NULL;
3201
3202		KASSERT(ni != NULL, ("no node"));
3203		KASSERT(m != NULL, ("no mbuf"));
3204
3205		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3206		ieee80211_tx_complete(ni, m, 1);
3207
3208		txq->queued--;
3209		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3210	}
3211
3212	if (txq->queued == 0 && res != NULL) {
3213		iwn_nic_lock(sc);
3214		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3215		iwn_nic_unlock(sc);
3216		sc->qid2tap[qid] = NULL;
3217		free(res, M_DEVBUF);
3218		return;
3219	}
3220
3221	if (wn->agg[tid].bitmap == 0)
3222		return;
3223
3224	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3225	if (shift < 0)
3226		shift += 0x100;
3227
3228	if (wn->agg[tid].nframes > (64 - shift))
3229		return;
3230
3231	/*
3232	 * Walk the bitmap and calculate how many successful and failed
3233	 * attempts are made.
3234	 *
3235	 * Yes, the rate control code doesn't know these are A-MPDU
3236	 * subframes and that it's okay to fail some of these.
3237	 */
3238	ni = tap->txa_ni;
3239	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3240	for (i = 0; bitmap; i++) {
3241		if ((bitmap & 1) == 0) {
3242			tx_err ++;
3243			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3244			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3245		} else {
3246			tx_ok ++;
3247			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3248			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3249		}
3250		bitmap >>= 1;
3251	}
3252
3253	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3254	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3255
3256}
3257
3258/*
3259 * Process a CALIBRATION_RESULT notification sent by the initialization
3260 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3261 */
3262static void
3263iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3264    struct iwn_rx_data *data)
3265{
3266	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3267	int len, idx = -1;
3268
3269	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3270
3271	/* Runtime firmware should not send such a notification. */
3272	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3273		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3274	    __func__);
3275		return;
3276	}
3277	len = (le32toh(desc->len) & 0x3fff) - 4;
3278	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3279
3280	switch (calib->code) {
3281	case IWN5000_PHY_CALIB_DC:
3282		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3283			idx = 0;
3284		break;
3285	case IWN5000_PHY_CALIB_LO:
3286		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3287			idx = 1;
3288		break;
3289	case IWN5000_PHY_CALIB_TX_IQ:
3290		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3291			idx = 2;
3292		break;
3293	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3294		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3295			idx = 3;
3296		break;
3297	case IWN5000_PHY_CALIB_BASE_BAND:
3298		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3299			idx = 4;
3300		break;
3301	}
3302	if (idx == -1)	/* Ignore other results. */
3303		return;
3304
3305	/* Save calibration result. */
3306	if (sc->calibcmd[idx].buf != NULL)
3307		free(sc->calibcmd[idx].buf, M_DEVBUF);
3308	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3309	if (sc->calibcmd[idx].buf == NULL) {
3310		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3311		    "not enough memory for calibration result %d\n",
3312		    calib->code);
3313		return;
3314	}
3315	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3316	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3317	sc->calibcmd[idx].len = len;
3318	memcpy(sc->calibcmd[idx].buf, calib, len);
3319}
3320
3321static void
3322iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3323    struct iwn_stats *stats, int len)
3324{
3325	struct iwn_stats_bt *stats_bt;
3326	struct iwn_stats *lstats;
3327
3328	/*
3329	 * First - check whether the length is the bluetooth or normal.
3330	 *
3331	 * If it's normal - just copy it and bump out.
3332	 * Otherwise we have to convert things.
3333	 */
3334
3335	if (len == sizeof(struct iwn_stats) + 4) {
3336		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3337		sc->last_stat_valid = 1;
3338		return;
3339	}
3340
3341	/*
3342	 * If it's not the bluetooth size - log, then just copy.
3343	 */
3344	if (len != sizeof(struct iwn_stats_bt) + 4) {
3345		DPRINTF(sc, IWN_DEBUG_STATS,
3346		    "%s: size of rx statistics (%d) not an expected size!\n",
3347		    __func__,
3348		    len);
3349		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3350		sc->last_stat_valid = 1;
3351		return;
3352	}
3353
3354	/*
3355	 * Ok. Time to copy.
3356	 */
3357	stats_bt = (struct iwn_stats_bt *) stats;
3358	lstats = &sc->last_stat;
3359
3360	/* flags */
3361	lstats->flags = stats_bt->flags;
3362	/* rx_bt */
3363	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3364	    sizeof(struct iwn_rx_phy_stats));
3365	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3366	    sizeof(struct iwn_rx_phy_stats));
3367	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3368	    sizeof(struct iwn_rx_general_stats));
3369	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3370	    sizeof(struct iwn_rx_ht_phy_stats));
3371	/* tx */
3372	memcpy(&lstats->tx, &stats_bt->tx,
3373	    sizeof(struct iwn_tx_stats));
3374	/* general */
3375	memcpy(&lstats->general, &stats_bt->general,
3376	    sizeof(struct iwn_general_stats));
3377
3378	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3379	sc->last_stat_valid = 1;
3380}
3381
3382/*
3383 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3384 * The latter is sent by the firmware after each received beacon.
3385 */
3386static void
3387iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3388    struct iwn_rx_data *data)
3389{
3390	struct iwn_ops *ops = &sc->ops;
3391	struct ieee80211com *ic = &sc->sc_ic;
3392	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3393	struct iwn_calib_state *calib = &sc->calib;
3394	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3395	struct iwn_stats *lstats;
3396	int temp;
3397
3398	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3399
3400	/* Ignore statistics received during a scan. */
3401	if (vap->iv_state != IEEE80211_S_RUN ||
3402	    (ic->ic_flags & IEEE80211_F_SCAN)){
3403		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3404	    __func__);
3405		return;
3406	}
3407
3408	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3409
3410	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3411	    "%s: received statistics, cmd %d, len %d\n",
3412	    __func__, desc->type, le16toh(desc->len));
3413	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3414
3415	/*
3416	 * Collect/track general statistics for reporting.
3417	 *
3418	 * This takes care of ensuring that the bluetooth sized message
3419	 * will be correctly converted to the legacy sized message.
3420	 */
3421	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3422
3423	/*
3424	 * And now, let's take a reference of it to use!
3425	 */
3426	lstats = &sc->last_stat;
3427
3428	/* Test if temperature has changed. */
3429	if (lstats->general.temp != sc->rawtemp) {
3430		/* Convert "raw" temperature to degC. */
3431		sc->rawtemp = stats->general.temp;
3432		temp = ops->get_temperature(sc);
3433		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3434		    __func__, temp);
3435
3436		/* Update TX power if need be (4965AGN only). */
3437		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3438			iwn4965_power_calibration(sc, temp);
3439	}
3440
3441	if (desc->type != IWN_BEACON_STATISTICS)
3442		return;	/* Reply to a statistics request. */
3443
3444	sc->noise = iwn_get_noise(&lstats->rx.general);
3445	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3446
3447	/* Test that RSSI and noise are present in stats report. */
3448	if (le32toh(lstats->rx.general.flags) != 1) {
3449		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3450		    "received statistics without RSSI");
3451		return;
3452	}
3453
3454	if (calib->state == IWN_CALIB_STATE_ASSOC)
3455		iwn_collect_noise(sc, &lstats->rx.general);
3456	else if (calib->state == IWN_CALIB_STATE_RUN) {
3457		iwn_tune_sensitivity(sc, &lstats->rx);
3458		/*
3459		 * XXX TODO: Only run the RX recovery if we're associated!
3460		 */
3461		iwn_check_rx_recovery(sc, lstats);
3462		iwn_save_stats_counters(sc, lstats);
3463	}
3464
3465	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3466}
3467
3468/*
3469 * Save the relevant statistic counters for the next calibration
3470 * pass.
3471 */
3472static void
3473iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3474{
3475	struct iwn_calib_state *calib = &sc->calib;
3476
3477	/* Save counters values for next call. */
3478	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3479	calib->fa_cck = le32toh(rs->rx.cck.fa);
3480	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3481	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3482	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3483
3484	/* Last time we received these tick values */
3485	sc->last_calib_ticks = ticks;
3486}
3487
3488/*
3489 * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3490 * and 5000 adapters have different incompatible TX status formats.
3491 */
3492static void
3493iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3494    struct iwn_rx_data *data)
3495{
3496	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3497	struct iwn_tx_ring *ring;
3498	int qid;
3499
3500	qid = desc->qid & 0xf;
3501	ring = &sc->txq[qid];
3502
3503	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3504	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3505	    __func__, desc->qid, desc->idx,
3506	    stat->rtsfailcnt,
3507	    stat->ackfailcnt,
3508	    stat->btkillcnt,
3509	    stat->rate, le16toh(stat->duration),
3510	    le32toh(stat->status));
3511
3512	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3513	if (qid >= sc->firstaggqueue) {
3514		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3515		    stat->ackfailcnt, &stat->status);
3516	} else {
3517		iwn_tx_done(sc, desc, stat->ackfailcnt,
3518		    le32toh(stat->status) & 0xff);
3519	}
3520}
3521
3522static void
3523iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3524    struct iwn_rx_data *data)
3525{
3526	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3527	struct iwn_tx_ring *ring;
3528	int qid;
3529
3530	qid = desc->qid & 0xf;
3531	ring = &sc->txq[qid];
3532
3533	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3534	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3535	    __func__, desc->qid, desc->idx,
3536	    stat->rtsfailcnt,
3537	    stat->ackfailcnt,
3538	    stat->btkillcnt,
3539	    stat->rate, le16toh(stat->duration),
3540	    le32toh(stat->status));
3541
3542#ifdef notyet
3543	/* Reset TX scheduler slot. */
3544	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3545#endif
3546
3547	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3548	if (qid >= sc->firstaggqueue) {
3549		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3550		    stat->ackfailcnt, &stat->status);
3551	} else {
3552		iwn_tx_done(sc, desc, stat->ackfailcnt,
3553		    le16toh(stat->status) & 0xff);
3554	}
3555}
3556
3557/*
3558 * Adapter-independent backend for TX_DONE firmware notifications.
3559 */
3560static void
3561iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3562    uint8_t status)
3563{
3564	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3565	struct iwn_tx_data *data = &ring->data[desc->idx];
3566	struct mbuf *m;
3567	struct ieee80211_node *ni;
3568	struct ieee80211vap *vap;
3569
3570	KASSERT(data->ni != NULL, ("no node"));
3571
3572	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3573
3574	/* Unmap and free mbuf. */
3575	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3576	bus_dmamap_unload(ring->data_dmat, data->map);
3577	m = data->m, data->m = NULL;
3578	ni = data->ni, data->ni = NULL;
3579	vap = ni->ni_vap;
3580
3581	/*
3582	 * Update rate control statistics for the node.
3583	 */
3584	if (status & IWN_TX_FAIL)
3585		ieee80211_ratectl_tx_complete(vap, ni,
3586		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3587	else
3588		ieee80211_ratectl_tx_complete(vap, ni,
3589		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3590
3591	/*
3592	 * Channels marked for "radar" require traffic to be received
3593	 * to unlock before we can transmit.  Until traffic is seen
3594	 * any attempt to transmit is returned immediately with status
3595	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3596	 * happen on first authenticate after scanning.  To workaround
3597	 * this we ignore a failure of this sort in AUTH state so the
3598	 * 802.11 layer will fall back to using a timeout to wait for
3599	 * the AUTH reply.  This allows the firmware time to see
3600	 * traffic so a subsequent retry of AUTH succeeds.  It's
3601	 * unclear why the firmware does not maintain state for
3602	 * channels recently visited as this would allow immediate
3603	 * use of the channel after a scan (where we see traffic).
3604	 */
3605	if (status == IWN_TX_FAIL_TX_LOCKED &&
3606	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3607		ieee80211_tx_complete(ni, m, 0);
3608	else
3609		ieee80211_tx_complete(ni, m,
3610		    (status & IWN_TX_FAIL) != 0);
3611
3612	sc->sc_tx_timer = 0;
3613	if (--ring->queued < IWN_TX_RING_LOMARK)
3614		sc->qfullmsk &= ~(1 << ring->qid);
3615
3616	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3617}
3618
3619/*
3620 * Process a "command done" firmware notification.  This is where we wakeup
3621 * processes waiting for a synchronous command completion.
3622 */
3623static void
3624iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3625{
3626	struct iwn_tx_ring *ring;
3627	struct iwn_tx_data *data;
3628	int cmd_queue_num;
3629
3630	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3631		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3632	else
3633		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3634
3635	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3636		return;	/* Not a command ack. */
3637
3638	ring = &sc->txq[cmd_queue_num];
3639	data = &ring->data[desc->idx];
3640
3641	/* If the command was mapped in an mbuf, free it. */
3642	if (data->m != NULL) {
3643		bus_dmamap_sync(ring->data_dmat, data->map,
3644		    BUS_DMASYNC_POSTWRITE);
3645		bus_dmamap_unload(ring->data_dmat, data->map);
3646		m_freem(data->m);
3647		data->m = NULL;
3648	}
3649	wakeup(&ring->desc[desc->idx]);
3650}
3651
3652static void
3653iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3654    int ackfailcnt, void *stat)
3655{
3656	struct iwn_ops *ops = &sc->ops;
3657	struct iwn_tx_ring *ring = &sc->txq[qid];
3658	struct iwn_tx_data *data;
3659	struct mbuf *m;
3660	struct iwn_node *wn;
3661	struct ieee80211_node *ni;
3662	struct ieee80211_tx_ampdu *tap;
3663	uint64_t bitmap;
3664	uint32_t *status = stat;
3665	uint16_t *aggstatus = stat;
3666	uint16_t ssn;
3667	uint8_t tid;
3668	int bit, i, lastidx, *res, seqno, shift, start;
3669
3670	/* XXX TODO: status is le16 field! Grr */
3671
3672	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3673	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3674	    __func__,
3675	    nframes,
3676	    *status);
3677
3678	tap = sc->qid2tap[qid];
3679	tid = tap->txa_tid;
3680	wn = (void *)tap->txa_ni;
3681	ni = tap->txa_ni;
3682
3683	/*
3684	 * XXX TODO: ACK and RTS failures would be nice here!
3685	 */
3686
3687	/*
3688	 * A-MPDU single frame status - if we failed to transmit it
3689	 * in A-MPDU, then it may be a permanent failure.
3690	 *
3691	 * XXX TODO: check what the Linux iwlwifi driver does here;
3692	 * there's some permanent and temporary failures that may be
3693	 * handled differently.
3694	 */
3695	if (nframes == 1) {
3696		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3697#ifdef	NOT_YET
3698			printf("ieee80211_send_bar()\n");
3699#endif
3700			/*
3701			 * If we completely fail a transmit, make sure a
3702			 * notification is pushed up to the rate control
3703			 * layer.
3704			 */
3705			ieee80211_ratectl_tx_complete(ni->ni_vap,
3706			    ni,
3707			    IEEE80211_RATECTL_TX_FAILURE,
3708			    &ackfailcnt,
3709			    NULL);
3710		} else {
3711			/*
3712			 * If nframes=1, then we won't be getting a BA for
3713			 * this frame.  Ensure that we correctly update the
3714			 * rate control code with how many retries were
3715			 * needed to send it.
3716			 */
3717			ieee80211_ratectl_tx_complete(ni->ni_vap,
3718			    ni,
3719			    IEEE80211_RATECTL_TX_SUCCESS,
3720			    &ackfailcnt,
3721			    NULL);
3722		}
3723	}
3724
3725	bitmap = 0;
3726	start = idx;
3727	for (i = 0; i < nframes; i++) {
3728		if (le16toh(aggstatus[i * 2]) & 0xc)
3729			continue;
3730
3731		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3732		bit = idx - start;
3733		shift = 0;
3734		if (bit >= 64) {
3735			shift = 0x100 - idx + start;
3736			bit = 0;
3737			start = idx;
3738		} else if (bit <= -64)
3739			bit = 0x100 - start + idx;
3740		else if (bit < 0) {
3741			shift = start - idx;
3742			start = idx;
3743			bit = 0;
3744		}
3745		bitmap = bitmap << shift;
3746		bitmap |= 1ULL << bit;
3747	}
3748	tap = sc->qid2tap[qid];
3749	tid = tap->txa_tid;
3750	wn = (void *)tap->txa_ni;
3751	wn->agg[tid].bitmap = bitmap;
3752	wn->agg[tid].startidx = start;
3753	wn->agg[tid].nframes = nframes;
3754
3755	res = NULL;
3756	ssn = 0;
3757	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3758		res = tap->txa_private;
3759		ssn = tap->txa_start & 0xfff;
3760	}
3761
3762	/* This is going nframes DWORDS into the descriptor? */
3763	seqno = le32toh(*(status + nframes)) & 0xfff;
3764	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3765		data = &ring->data[ring->read];
3766
3767		/* Unmap and free mbuf. */
3768		bus_dmamap_sync(ring->data_dmat, data->map,
3769		    BUS_DMASYNC_POSTWRITE);
3770		bus_dmamap_unload(ring->data_dmat, data->map);
3771		m = data->m, data->m = NULL;
3772		ni = data->ni, data->ni = NULL;
3773
3774		KASSERT(ni != NULL, ("no node"));
3775		KASSERT(m != NULL, ("no mbuf"));
3776		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3777		ieee80211_tx_complete(ni, m, 1);
3778
3779		ring->queued--;
3780		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3781	}
3782
3783	if (ring->queued == 0 && res != NULL) {
3784		iwn_nic_lock(sc);
3785		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3786		iwn_nic_unlock(sc);
3787		sc->qid2tap[qid] = NULL;
3788		free(res, M_DEVBUF);
3789		return;
3790	}
3791
3792	sc->sc_tx_timer = 0;
3793	if (ring->queued < IWN_TX_RING_LOMARK)
3794		sc->qfullmsk &= ~(1 << ring->qid);
3795
3796	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3797}
3798
3799/*
3800 * Process an INT_FH_RX or INT_SW_RX interrupt.
3801 */
3802static void
3803iwn_notif_intr(struct iwn_softc *sc)
3804{
3805	struct iwn_ops *ops = &sc->ops;
3806	struct ieee80211com *ic = &sc->sc_ic;
3807	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3808	uint16_t hw;
3809
3810	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3811	    BUS_DMASYNC_POSTREAD);
3812
3813	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3814	while (sc->rxq.cur != hw) {
3815		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3816		struct iwn_rx_desc *desc;
3817
3818		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3819		    BUS_DMASYNC_POSTREAD);
3820		desc = mtod(data->m, struct iwn_rx_desc *);
3821
3822		DPRINTF(sc, IWN_DEBUG_RECV,
3823		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3824		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3825		    desc->type, iwn_intr_str(desc->type),
3826		    le16toh(desc->len));
3827
3828		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3829			iwn_cmd_done(sc, desc);
3830
3831		switch (desc->type) {
3832		case IWN_RX_PHY:
3833			iwn_rx_phy(sc, desc, data);
3834			break;
3835
3836		case IWN_RX_DONE:		/* 4965AGN only. */
3837		case IWN_MPDU_RX_DONE:
3838			/* An 802.11 frame has been received. */
3839			iwn_rx_done(sc, desc, data);
3840			break;
3841
3842		case IWN_RX_COMPRESSED_BA:
3843			/* A Compressed BlockAck has been received. */
3844			iwn_rx_compressed_ba(sc, desc, data);
3845			break;
3846
3847		case IWN_TX_DONE:
3848			/* An 802.11 frame has been transmitted. */
3849			ops->tx_done(sc, desc, data);
3850			break;
3851
3852		case IWN_RX_STATISTICS:
3853		case IWN_BEACON_STATISTICS:
3854			iwn_rx_statistics(sc, desc, data);
3855			break;
3856
3857		case IWN_BEACON_MISSED:
3858		{
3859			struct iwn_beacon_missed *miss =
3860			    (struct iwn_beacon_missed *)(desc + 1);
3861			int misses;
3862
3863			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3864			    BUS_DMASYNC_POSTREAD);
3865			misses = le32toh(miss->consecutive);
3866
3867			DPRINTF(sc, IWN_DEBUG_STATE,
3868			    "%s: beacons missed %d/%d\n", __func__,
3869			    misses, le32toh(miss->total));
3870			/*
3871			 * If more than 5 consecutive beacons are missed,
3872			 * reinitialize the sensitivity state machine.
3873			 */
3874			if (vap->iv_state == IEEE80211_S_RUN &&
3875			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3876				if (misses > 5)
3877					(void)iwn_init_sensitivity(sc);
3878				if (misses >= vap->iv_bmissthreshold) {
3879					IWN_UNLOCK(sc);
3880					ieee80211_beacon_miss(ic);
3881					IWN_LOCK(sc);
3882				}
3883			}
3884			break;
3885		}
3886		case IWN_UC_READY:
3887		{
3888			struct iwn_ucode_info *uc =
3889			    (struct iwn_ucode_info *)(desc + 1);
3890
3891			/* The microcontroller is ready. */
3892			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3893			    BUS_DMASYNC_POSTREAD);
3894			DPRINTF(sc, IWN_DEBUG_RESET,
3895			    "microcode alive notification version=%d.%d "
3896			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3897			    uc->subtype, le32toh(uc->valid));
3898
3899			if (le32toh(uc->valid) != 1) {
3900				device_printf(sc->sc_dev,
3901				    "microcontroller initialization failed");
3902				break;
3903			}
3904			if (uc->subtype == IWN_UCODE_INIT) {
3905				/* Save microcontroller report. */
3906				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3907			}
3908			/* Save the address of the error log in SRAM. */
3909			sc->errptr = le32toh(uc->errptr);
3910			break;
3911		}
3912		case IWN_STATE_CHANGED:
3913		{
3914			/*
3915			 * State change allows hardware switch change to be
3916			 * noted. However, we handle this in iwn_intr as we
3917			 * get both the enable/disble intr.
3918			 */
3919			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3920			    BUS_DMASYNC_POSTREAD);
3921#ifdef	IWN_DEBUG
3922			uint32_t *status = (uint32_t *)(desc + 1);
3923			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3924			    "state changed to %x\n",
3925			    le32toh(*status));
3926#endif
3927			break;
3928		}
3929		case IWN_START_SCAN:
3930		{
3931			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3932			    BUS_DMASYNC_POSTREAD);
3933#ifdef	IWN_DEBUG
3934			struct iwn_start_scan *scan =
3935			    (struct iwn_start_scan *)(desc + 1);
3936			DPRINTF(sc, IWN_DEBUG_ANY,
3937			    "%s: scanning channel %d status %x\n",
3938			    __func__, scan->chan, le32toh(scan->status));
3939#endif
3940			break;
3941		}
3942		case IWN_STOP_SCAN:
3943		{
3944			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3945			    BUS_DMASYNC_POSTREAD);
3946#ifdef	IWN_DEBUG
3947			struct iwn_stop_scan *scan =
3948			    (struct iwn_stop_scan *)(desc + 1);
3949			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3950			    "scan finished nchan=%d status=%d chan=%d\n",
3951			    scan->nchan, scan->status, scan->chan);
3952#endif
3953			sc->sc_is_scanning = 0;
3954			callout_stop(&sc->scan_timeout);
3955			IWN_UNLOCK(sc);
3956			ieee80211_scan_next(vap);
3957			IWN_LOCK(sc);
3958			break;
3959		}
3960		case IWN5000_CALIBRATION_RESULT:
3961			iwn5000_rx_calib_results(sc, desc, data);
3962			break;
3963
3964		case IWN5000_CALIBRATION_DONE:
3965			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3966			wakeup(sc);
3967			break;
3968		}
3969
3970		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3971	}
3972
3973	/* Tell the firmware what we have processed. */
3974	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3975	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3976}
3977
3978/*
3979 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3980 * from power-down sleep mode.
3981 */
3982static void
3983iwn_wakeup_intr(struct iwn_softc *sc)
3984{
3985	int qid;
3986
3987	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3988	    __func__);
3989
3990	/* Wakeup RX and TX rings. */
3991	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3992	for (qid = 0; qid < sc->ntxqs; qid++) {
3993		struct iwn_tx_ring *ring = &sc->txq[qid];
3994		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3995	}
3996}
3997
3998static void
3999iwn_rftoggle_intr(struct iwn_softc *sc)
4000{
4001	struct ieee80211com *ic = &sc->sc_ic;
4002	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4003
4004	IWN_LOCK_ASSERT(sc);
4005
4006	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4007	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4008	if (tmp & IWN_GP_CNTRL_RFKILL)
4009		ieee80211_runtask(ic, &sc->sc_radioon_task);
4010	else
4011		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4012}
4013
4014/*
4015 * Dump the error log of the firmware when a firmware panic occurs.  Although
4016 * we can't debug the firmware because it is neither open source nor free, it
4017 * can help us to identify certain classes of problems.
4018 */
4019static void
4020iwn_fatal_intr(struct iwn_softc *sc)
4021{
4022	struct iwn_fw_dump dump;
4023	int i;
4024
4025	IWN_LOCK_ASSERT(sc);
4026
4027	/* Force a complete recalibration on next init. */
4028	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4029
4030	/* Check that the error log address is valid. */
4031	if (sc->errptr < IWN_FW_DATA_BASE ||
4032	    sc->errptr + sizeof (dump) >
4033	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4034		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4035		    sc->errptr);
4036		return;
4037	}
4038	if (iwn_nic_lock(sc) != 0) {
4039		printf("%s: could not read firmware error log\n", __func__);
4040		return;
4041	}
4042	/* Read firmware error log from SRAM. */
4043	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4044	    sizeof (dump) / sizeof (uint32_t));
4045	iwn_nic_unlock(sc);
4046
4047	if (dump.valid == 0) {
4048		printf("%s: firmware error log is empty\n", __func__);
4049		return;
4050	}
4051	printf("firmware error log:\n");
4052	printf("  error type      = \"%s\" (0x%08X)\n",
4053	    (dump.id < nitems(iwn_fw_errmsg)) ?
4054		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4055	    dump.id);
4056	printf("  program counter = 0x%08X\n", dump.pc);
4057	printf("  source line     = 0x%08X\n", dump.src_line);
4058	printf("  error data      = 0x%08X%08X\n",
4059	    dump.error_data[0], dump.error_data[1]);
4060	printf("  branch link     = 0x%08X%08X\n",
4061	    dump.branch_link[0], dump.branch_link[1]);
4062	printf("  interrupt link  = 0x%08X%08X\n",
4063	    dump.interrupt_link[0], dump.interrupt_link[1]);
4064	printf("  time            = %u\n", dump.time[0]);
4065
4066	/* Dump driver status (TX and RX rings) while we're here. */
4067	printf("driver status:\n");
4068	for (i = 0; i < sc->ntxqs; i++) {
4069		struct iwn_tx_ring *ring = &sc->txq[i];
4070		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4071		    i, ring->qid, ring->cur, ring->queued);
4072	}
4073	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4074}
4075
4076static void
4077iwn_intr(void *arg)
4078{
4079	struct iwn_softc *sc = arg;
4080	uint32_t r1, r2, tmp;
4081
4082	IWN_LOCK(sc);
4083
4084	/* Disable interrupts. */
4085	IWN_WRITE(sc, IWN_INT_MASK, 0);
4086
4087	/* Read interrupts from ICT (fast) or from registers (slow). */
4088	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4089		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4090		    BUS_DMASYNC_POSTREAD);
4091		tmp = 0;
4092		while (sc->ict[sc->ict_cur] != 0) {
4093			tmp |= sc->ict[sc->ict_cur];
4094			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4095			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4096		}
4097		tmp = le32toh(tmp);
4098		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4099			tmp = 0;
4100		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4101			tmp |= 0x8000;
4102		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4103		r2 = 0;	/* Unused. */
4104	} else {
4105		r1 = IWN_READ(sc, IWN_INT);
4106		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4107			IWN_UNLOCK(sc);
4108			return;	/* Hardware gone! */
4109		}
4110		r2 = IWN_READ(sc, IWN_FH_INT);
4111	}
4112
4113	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4114    , r1, r2);
4115
4116	if (r1 == 0 && r2 == 0)
4117		goto done;	/* Interrupt not for us. */
4118
4119	/* Acknowledge interrupts. */
4120	IWN_WRITE(sc, IWN_INT, r1);
4121	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4122		IWN_WRITE(sc, IWN_FH_INT, r2);
4123
4124	if (r1 & IWN_INT_RF_TOGGLED) {
4125		iwn_rftoggle_intr(sc);
4126		goto done;
4127	}
4128	if (r1 & IWN_INT_CT_REACHED) {
4129		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4130		    __func__);
4131	}
4132	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4133		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4134		    __func__);
4135#ifdef	IWN_DEBUG
4136		iwn_debug_register(sc);
4137#endif
4138		/* Dump firmware error log and stop. */
4139		iwn_fatal_intr(sc);
4140
4141		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4142		goto done;
4143	}
4144	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4145	    (r2 & IWN_FH_INT_RX)) {
4146		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4147			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4148				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4149			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4150			    IWN_INT_PERIODIC_DIS);
4151			iwn_notif_intr(sc);
4152			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4153				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4154				    IWN_INT_PERIODIC_ENA);
4155			}
4156		} else
4157			iwn_notif_intr(sc);
4158	}
4159
4160	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4161		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4162			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4163		wakeup(sc);	/* FH DMA transfer completed. */
4164	}
4165
4166	if (r1 & IWN_INT_ALIVE)
4167		wakeup(sc);	/* Firmware is alive. */
4168
4169	if (r1 & IWN_INT_WAKEUP)
4170		iwn_wakeup_intr(sc);
4171
4172done:
4173	/* Re-enable interrupts. */
4174	if (sc->sc_flags & IWN_FLAG_RUNNING)
4175		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4176
4177	IWN_UNLOCK(sc);
4178}
4179
4180/*
4181 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4182 * 5000 adapters use a slightly different format).
4183 */
4184static void
4185iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4186    uint16_t len)
4187{
4188	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4189
4190	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4191
4192	*w = htole16(len + 8);
4193	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4194	    BUS_DMASYNC_PREWRITE);
4195	if (idx < IWN_SCHED_WINSZ) {
4196		*(w + IWN_TX_RING_COUNT) = *w;
4197		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4198		    BUS_DMASYNC_PREWRITE);
4199	}
4200}
4201
4202static void
4203iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4204    uint16_t len)
4205{
4206	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4207
4208	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4209
4210	*w = htole16(id << 12 | (len + 8));
4211	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4212	    BUS_DMASYNC_PREWRITE);
4213	if (idx < IWN_SCHED_WINSZ) {
4214		*(w + IWN_TX_RING_COUNT) = *w;
4215		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4216		    BUS_DMASYNC_PREWRITE);
4217	}
4218}
4219
4220#ifdef notyet
4221static void
4222iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4223{
4224	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4225
4226	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4227
4228	*w = (*w & htole16(0xf000)) | htole16(1);
4229	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4230	    BUS_DMASYNC_PREWRITE);
4231	if (idx < IWN_SCHED_WINSZ) {
4232		*(w + IWN_TX_RING_COUNT) = *w;
4233		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4234		    BUS_DMASYNC_PREWRITE);
4235	}
4236}
4237#endif
4238
4239/*
4240 * Check whether OFDM 11g protection will be enabled for the given rate.
4241 *
4242 * The original driver code only enabled protection for OFDM rates.
4243 * It didn't check to see whether it was operating in 11a or 11bg mode.
4244 */
4245static int
4246iwn_check_rate_needs_protection(struct iwn_softc *sc,
4247    struct ieee80211vap *vap, uint8_t rate)
4248{
4249	struct ieee80211com *ic = vap->iv_ic;
4250
4251	/*
4252	 * Not in 2GHz mode? Then there's no need to enable OFDM
4253	 * 11bg protection.
4254	 */
4255	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4256		return (0);
4257	}
4258
4259	/*
4260	 * 11bg protection not enabled? Then don't use it.
4261	 */
4262	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4263		return (0);
4264
4265	/*
4266	 * If it's an 11n rate - no protection.
4267	 * We'll do it via a specific 11n check.
4268	 */
4269	if (rate & IEEE80211_RATE_MCS) {
4270		return (0);
4271	}
4272
4273	/*
4274	 * Do a rate table lookup.  If the PHY is CCK,
4275	 * don't do protection.
4276	 */
4277	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4278		return (0);
4279
4280	/*
4281	 * Yup, enable protection.
4282	 */
4283	return (1);
4284}
4285
4286/*
4287 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4288 * the link quality table that reflects this particular entry.
4289 */
4290static int
4291iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4292    uint8_t rate)
4293{
4294	struct ieee80211_rateset *rs;
4295	int is_11n;
4296	int nr;
4297	int i;
4298	uint8_t cmp_rate;
4299
4300	/*
4301	 * Figure out if we're using 11n or not here.
4302	 */
4303	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4304		is_11n = 1;
4305	else
4306		is_11n = 0;
4307
4308	/*
4309	 * Use the correct rate table.
4310	 */
4311	if (is_11n) {
4312		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4313		nr = ni->ni_htrates.rs_nrates;
4314	} else {
4315		rs = &ni->ni_rates;
4316		nr = rs->rs_nrates;
4317	}
4318
4319	/*
4320	 * Find the relevant link quality entry in the table.
4321	 */
4322	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4323		/*
4324		 * The link quality table index starts at 0 == highest
4325		 * rate, so we walk the rate table backwards.
4326		 */
4327		cmp_rate = rs->rs_rates[(nr - 1) - i];
4328		if (rate & IEEE80211_RATE_MCS)
4329			cmp_rate |= IEEE80211_RATE_MCS;
4330
4331#if 0
4332		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4333		    __func__,
4334		    i,
4335		    nr,
4336		    rate,
4337		    cmp_rate);
4338#endif
4339
4340		if (cmp_rate == rate)
4341			return (i);
4342	}
4343
4344	/* Failed? Start at the end */
4345	return (IWN_MAX_TX_RETRIES - 1);
4346}
4347
4348static int
4349iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4350{
4351	struct iwn_ops *ops = &sc->ops;
4352	const struct ieee80211_txparam *tp;
4353	struct ieee80211vap *vap = ni->ni_vap;
4354	struct ieee80211com *ic = ni->ni_ic;
4355	struct iwn_node *wn = (void *)ni;
4356	struct iwn_tx_ring *ring;
4357	struct iwn_tx_desc *desc;
4358	struct iwn_tx_data *data;
4359	struct iwn_tx_cmd *cmd;
4360	struct iwn_cmd_data *tx;
4361	struct ieee80211_frame *wh;
4362	struct ieee80211_key *k = NULL;
4363	struct mbuf *m1;
4364	uint32_t flags;
4365	uint16_t qos;
4366	u_int hdrlen;
4367	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4368	uint8_t tid, type;
4369	int ac, i, totlen, error, pad, nsegs = 0, rate;
4370
4371	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4372
4373	IWN_LOCK_ASSERT(sc);
4374
4375	wh = mtod(m, struct ieee80211_frame *);
4376	hdrlen = ieee80211_anyhdrsize(wh);
4377	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4378
4379	/* Select EDCA Access Category and TX ring for this frame. */
4380	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4381		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4382		tid = qos & IEEE80211_QOS_TID;
4383	} else {
4384		qos = 0;
4385		tid = 0;
4386	}
4387	ac = M_WME_GETAC(m);
4388	if (m->m_flags & M_AMPDU_MPDU) {
4389		uint16_t seqno;
4390		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4391
4392		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4393			return EINVAL;
4394		}
4395
4396		/*
4397		 * Queue this frame to the hardware ring that we've
4398		 * negotiated AMPDU TX on.
4399		 *
4400		 * Note that the sequence number must match the TX slot
4401		 * being used!
4402		 */
4403		ac = *(int *)tap->txa_private;
4404		seqno = ni->ni_txseqs[tid];
4405		*(uint16_t *)wh->i_seq =
4406		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4407		ring = &sc->txq[ac];
4408		if ((seqno % 256) != ring->cur) {
4409			device_printf(sc->sc_dev,
4410			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4411			    __func__,
4412			    m,
4413			    seqno,
4414			    seqno % 256,
4415			    ring->cur);
4416		}
4417		ni->ni_txseqs[tid]++;
4418	}
4419	ring = &sc->txq[ac];
4420	desc = &ring->desc[ring->cur];
4421	data = &ring->data[ring->cur];
4422
4423	/* Choose a TX rate index. */
4424	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4425	if (type == IEEE80211_FC0_TYPE_MGT)
4426		rate = tp->mgmtrate;
4427	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4428		rate = tp->mcastrate;
4429	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4430		rate = tp->ucastrate;
4431	else if (m->m_flags & M_EAPOL)
4432		rate = tp->mgmtrate;
4433	else {
4434		/* XXX pass pktlen */
4435		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4436		rate = ni->ni_txrate;
4437	}
4438
4439	/* Encrypt the frame if need be. */
4440	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4441		/* Retrieve key for TX. */
4442		k = ieee80211_crypto_encap(ni, m);
4443		if (k == NULL) {
4444			return ENOBUFS;
4445		}
4446		/* 802.11 header may have moved. */
4447		wh = mtod(m, struct ieee80211_frame *);
4448	}
4449	totlen = m->m_pkthdr.len;
4450
4451	if (ieee80211_radiotap_active_vap(vap)) {
4452		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4453
4454		tap->wt_flags = 0;
4455		tap->wt_rate = rate;
4456		if (k != NULL)
4457			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4458
4459		ieee80211_radiotap_tx(vap, m);
4460	}
4461
4462	/* Prepare TX firmware command. */
4463	cmd = &ring->cmd[ring->cur];
4464	cmd->code = IWN_CMD_TX_DATA;
4465	cmd->flags = 0;
4466	cmd->qid = ring->qid;
4467	cmd->idx = ring->cur;
4468
4469	tx = (struct iwn_cmd_data *)cmd->data;
4470	/* NB: No need to clear tx, all fields are reinitialized here. */
4471	tx->scratch = 0;	/* clear "scratch" area */
4472
4473	flags = 0;
4474	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4475		/* Unicast frame, check if an ACK is expected. */
4476		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4477		    IEEE80211_QOS_ACKPOLICY_NOACK)
4478			flags |= IWN_TX_NEED_ACK;
4479	}
4480	if ((wh->i_fc[0] &
4481	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4482	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4483		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4484
4485	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4486		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4487
4488	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4489	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4490		/* NB: Group frames are sent using CCK in 802.11b/g. */
4491		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4492			flags |= IWN_TX_NEED_RTS;
4493		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4494			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4495				flags |= IWN_TX_NEED_CTS;
4496			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4497				flags |= IWN_TX_NEED_RTS;
4498		} else if ((rate & IEEE80211_RATE_MCS) &&
4499			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4500			flags |= IWN_TX_NEED_RTS;
4501		}
4502
4503		/* XXX HT protection? */
4504
4505		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4506			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4507				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4508				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4509				flags |= IWN_TX_NEED_PROTECTION;
4510			} else
4511				flags |= IWN_TX_FULL_TXOP;
4512		}
4513	}
4514
4515	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4516	    type != IEEE80211_FC0_TYPE_DATA)
4517		tx->id = sc->broadcast_id;
4518	else
4519		tx->id = wn->id;
4520
4521	if (type == IEEE80211_FC0_TYPE_MGT) {
4522		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4523
4524		/* Tell HW to set timestamp in probe responses. */
4525		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4526			flags |= IWN_TX_INSERT_TSTAMP;
4527		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4528		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4529			tx->timeout = htole16(3);
4530		else
4531			tx->timeout = htole16(2);
4532	} else
4533		tx->timeout = htole16(0);
4534
4535	if (hdrlen & 3) {
4536		/* First segment length must be a multiple of 4. */
4537		flags |= IWN_TX_NEED_PADDING;
4538		pad = 4 - (hdrlen & 3);
4539	} else
4540		pad = 0;
4541
4542	tx->len = htole16(totlen);
4543	tx->tid = tid;
4544	tx->rts_ntries = 60;
4545	tx->data_ntries = 15;
4546	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4547	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4548	if (tx->id == sc->broadcast_id) {
4549		/* Group or management frame. */
4550		tx->linkq = 0;
4551	} else {
4552		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4553		flags |= IWN_TX_LINKQ;	/* enable MRR */
4554	}
4555
4556	/* Set physical address of "scratch area". */
4557	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4558	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4559
4560	/* Copy 802.11 header in TX command. */
4561	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4562
4563	/* Trim 802.11 header. */
4564	m_adj(m, hdrlen);
4565	tx->security = 0;
4566	tx->flags = htole32(flags);
4567
4568	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4569	    &nsegs, BUS_DMA_NOWAIT);
4570	if (error != 0) {
4571		if (error != EFBIG) {
4572			device_printf(sc->sc_dev,
4573			    "%s: can't map mbuf (error %d)\n", __func__, error);
4574			return error;
4575		}
4576		/* Too many DMA segments, linearize mbuf. */
4577		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4578		if (m1 == NULL) {
4579			device_printf(sc->sc_dev,
4580			    "%s: could not defrag mbuf\n", __func__);
4581			return ENOBUFS;
4582		}
4583		m = m1;
4584
4585		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4586		    segs, &nsegs, BUS_DMA_NOWAIT);
4587		if (error != 0) {
4588			device_printf(sc->sc_dev,
4589			    "%s: can't map mbuf (error %d)\n", __func__, error);
4590			return error;
4591		}
4592	}
4593
4594	data->m = m;
4595	data->ni = ni;
4596
4597	DPRINTF(sc, IWN_DEBUG_XMIT,
4598	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4599	    __func__,
4600	    ring->qid,
4601	    ring->cur,
4602	    m->m_pkthdr.len,
4603	    nsegs,
4604	    flags,
4605	    rate,
4606	    tx->rate);
4607
4608	/* Fill TX descriptor. */
4609	desc->nsegs = 1;
4610	if (m->m_len != 0)
4611		desc->nsegs += nsegs;
4612	/* First DMA segment is used by the TX command. */
4613	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4614	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4615	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4616	/* Other DMA segments are for data payload. */
4617	seg = &segs[0];
4618	for (i = 1; i <= nsegs; i++) {
4619		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4620		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4621		    seg->ds_len << 4);
4622		seg++;
4623	}
4624
4625	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4626	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4627	    BUS_DMASYNC_PREWRITE);
4628	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4629	    BUS_DMASYNC_PREWRITE);
4630
4631	/* Update TX scheduler. */
4632	if (ring->qid >= sc->firstaggqueue)
4633		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4634
4635	/* Kick TX ring. */
4636	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4637	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4638
4639	/* Mark TX ring as full if we reach a certain threshold. */
4640	if (++ring->queued > IWN_TX_RING_HIMARK)
4641		sc->qfullmsk |= 1 << ring->qid;
4642
4643	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4644
4645	return 0;
4646}
4647
4648static int
4649iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4650    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4651{
4652	struct iwn_ops *ops = &sc->ops;
4653	struct ieee80211vap *vap = ni->ni_vap;
4654	struct iwn_tx_cmd *cmd;
4655	struct iwn_cmd_data *tx;
4656	struct ieee80211_frame *wh;
4657	struct iwn_tx_ring *ring;
4658	struct iwn_tx_desc *desc;
4659	struct iwn_tx_data *data;
4660	struct mbuf *m1;
4661	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4662	uint32_t flags;
4663	u_int hdrlen;
4664	int ac, totlen, error, pad, nsegs = 0, i, rate;
4665	uint8_t type;
4666
4667	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4668
4669	IWN_LOCK_ASSERT(sc);
4670
4671	wh = mtod(m, struct ieee80211_frame *);
4672	hdrlen = ieee80211_anyhdrsize(wh);
4673	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4674
4675	ac = params->ibp_pri & 3;
4676
4677	ring = &sc->txq[ac];
4678	desc = &ring->desc[ring->cur];
4679	data = &ring->data[ring->cur];
4680
4681	/* Choose a TX rate. */
4682	rate = params->ibp_rate0;
4683	totlen = m->m_pkthdr.len;
4684
4685	/* Prepare TX firmware command. */
4686	cmd = &ring->cmd[ring->cur];
4687	cmd->code = IWN_CMD_TX_DATA;
4688	cmd->flags = 0;
4689	cmd->qid = ring->qid;
4690	cmd->idx = ring->cur;
4691
4692	tx = (struct iwn_cmd_data *)cmd->data;
4693	/* NB: No need to clear tx, all fields are reinitialized here. */
4694	tx->scratch = 0;	/* clear "scratch" area */
4695
4696	flags = 0;
4697	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4698		flags |= IWN_TX_NEED_ACK;
4699	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4700		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4701			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4702			flags &= ~IWN_TX_NEED_RTS;
4703			flags |= IWN_TX_NEED_PROTECTION;
4704		} else
4705			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4706	}
4707	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4708		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4709			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4710			flags &= ~IWN_TX_NEED_CTS;
4711			flags |= IWN_TX_NEED_PROTECTION;
4712		} else
4713			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4714	}
4715	if (type == IEEE80211_FC0_TYPE_MGT) {
4716		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4717
4718		/* Tell HW to set timestamp in probe responses. */
4719		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4720			flags |= IWN_TX_INSERT_TSTAMP;
4721
4722		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4723		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4724			tx->timeout = htole16(3);
4725		else
4726			tx->timeout = htole16(2);
4727	} else
4728		tx->timeout = htole16(0);
4729
4730	if (hdrlen & 3) {
4731		/* First segment length must be a multiple of 4. */
4732		flags |= IWN_TX_NEED_PADDING;
4733		pad = 4 - (hdrlen & 3);
4734	} else
4735		pad = 0;
4736
4737	if (ieee80211_radiotap_active_vap(vap)) {
4738		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4739
4740		tap->wt_flags = 0;
4741		tap->wt_rate = rate;
4742
4743		ieee80211_radiotap_tx(vap, m);
4744	}
4745
4746	tx->len = htole16(totlen);
4747	tx->tid = 0;
4748	tx->id = sc->broadcast_id;
4749	tx->rts_ntries = params->ibp_try1;
4750	tx->data_ntries = params->ibp_try0;
4751	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4752	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4753
4754	/* Group or management frame. */
4755	tx->linkq = 0;
4756
4757	/* Set physical address of "scratch area". */
4758	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4759	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4760
4761	/* Copy 802.11 header in TX command. */
4762	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4763
4764	/* Trim 802.11 header. */
4765	m_adj(m, hdrlen);
4766	tx->security = 0;
4767	tx->flags = htole32(flags);
4768
4769	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4770	    &nsegs, BUS_DMA_NOWAIT);
4771	if (error != 0) {
4772		if (error != EFBIG) {
4773			device_printf(sc->sc_dev,
4774			    "%s: can't map mbuf (error %d)\n", __func__, error);
4775			return error;
4776		}
4777		/* Too many DMA segments, linearize mbuf. */
4778		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4779		if (m1 == NULL) {
4780			device_printf(sc->sc_dev,
4781			    "%s: could not defrag mbuf\n", __func__);
4782			return ENOBUFS;
4783		}
4784		m = m1;
4785
4786		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4787		    segs, &nsegs, BUS_DMA_NOWAIT);
4788		if (error != 0) {
4789			device_printf(sc->sc_dev,
4790			    "%s: can't map mbuf (error %d)\n", __func__, error);
4791			return error;
4792		}
4793	}
4794
4795	data->m = m;
4796	data->ni = ni;
4797
4798	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4799	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4800
4801	/* Fill TX descriptor. */
4802	desc->nsegs = 1;
4803	if (m->m_len != 0)
4804		desc->nsegs += nsegs;
4805	/* First DMA segment is used by the TX command. */
4806	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4807	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4808	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4809	/* Other DMA segments are for data payload. */
4810	seg = &segs[0];
4811	for (i = 1; i <= nsegs; i++) {
4812		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4813		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4814		    seg->ds_len << 4);
4815		seg++;
4816	}
4817
4818	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4819	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4820	    BUS_DMASYNC_PREWRITE);
4821	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4822	    BUS_DMASYNC_PREWRITE);
4823
4824	/* Update TX scheduler. */
4825	if (ring->qid >= sc->firstaggqueue)
4826		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4827
4828	/* Kick TX ring. */
4829	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4830	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4831
4832	/* Mark TX ring as full if we reach a certain threshold. */
4833	if (++ring->queued > IWN_TX_RING_HIMARK)
4834		sc->qfullmsk |= 1 << ring->qid;
4835
4836	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4837
4838	return 0;
4839}
4840
4841static void
4842iwn_xmit_task(void *arg0, int pending)
4843{
4844	struct iwn_softc *sc = arg0;
4845	struct ieee80211_node *ni;
4846	struct mbuf *m;
4847	int error;
4848	struct ieee80211_bpf_params p;
4849	int have_p;
4850
4851	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4852
4853	IWN_LOCK(sc);
4854	/*
4855	 * Dequeue frames, attempt to transmit,
4856	 * then disable beaconwait when we're done.
4857	 */
4858	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4859		have_p = 0;
4860		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4861
4862		/* Get xmit params if appropriate */
4863		if (ieee80211_get_xmit_params(m, &p) == 0)
4864			have_p = 1;
4865
4866		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4867		    __func__, m, have_p);
4868
4869		/* If we have xmit params, use them */
4870		if (have_p)
4871			error = iwn_tx_data_raw(sc, m, ni, &p);
4872		else
4873			error = iwn_tx_data(sc, m, ni);
4874
4875		if (error != 0) {
4876			if_inc_counter(ni->ni_vap->iv_ifp,
4877			    IFCOUNTER_OERRORS, 1);
4878			ieee80211_free_node(ni);
4879			m_freem(m);
4880		}
4881	}
4882
4883	sc->sc_beacon_wait = 0;
4884	IWN_UNLOCK(sc);
4885}
4886
4887/*
4888 * raw frame xmit - free node/reference if failed.
4889 */
4890static int
4891iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4892    const struct ieee80211_bpf_params *params)
4893{
4894	struct ieee80211com *ic = ni->ni_ic;
4895	struct iwn_softc *sc = ic->ic_softc;
4896	int error = 0;
4897
4898	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4899
4900	IWN_LOCK(sc);
4901	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4902		m_freem(m);
4903		IWN_UNLOCK(sc);
4904		return (ENETDOWN);
4905	}
4906
4907	/* queue frame if we have to */
4908	if (sc->sc_beacon_wait) {
4909		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4910			m_freem(m);
4911			IWN_UNLOCK(sc);
4912			return (ENOBUFS);
4913		}
4914		/* Queued, so just return OK */
4915		IWN_UNLOCK(sc);
4916		return (0);
4917	}
4918
4919	if (params == NULL) {
4920		/*
4921		 * Legacy path; interpret frame contents to decide
4922		 * precisely how to send the frame.
4923		 */
4924		error = iwn_tx_data(sc, m, ni);
4925	} else {
4926		/*
4927		 * Caller supplied explicit parameters to use in
4928		 * sending the frame.
4929		 */
4930		error = iwn_tx_data_raw(sc, m, ni, params);
4931	}
4932	if (error == 0)
4933		sc->sc_tx_timer = 5;
4934	else
4935		m_freem(m);
4936
4937	IWN_UNLOCK(sc);
4938
4939	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4940
4941	return (error);
4942}
4943
4944/*
4945 * transmit - don't free mbuf if failed; don't free node ref if failed.
4946 */
4947static int
4948iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4949{
4950	struct iwn_softc *sc = ic->ic_softc;
4951	struct ieee80211_node *ni;
4952	int error;
4953
4954	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4955
4956	IWN_LOCK(sc);
4957	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4958		IWN_UNLOCK(sc);
4959		return (ENXIO);
4960	}
4961
4962	if (sc->qfullmsk) {
4963		IWN_UNLOCK(sc);
4964		return (ENOBUFS);
4965	}
4966
4967	error = iwn_tx_data(sc, m, ni);
4968	if (!error)
4969		sc->sc_tx_timer = 5;
4970	IWN_UNLOCK(sc);
4971	return (error);
4972}
4973
4974static void
4975iwn_scan_timeout(void *arg)
4976{
4977	struct iwn_softc *sc = arg;
4978	struct ieee80211com *ic = &sc->sc_ic;
4979
4980	ic_printf(ic, "scan timeout\n");
4981	ieee80211_restart_all(ic);
4982}
4983
4984static void
4985iwn_watchdog(void *arg)
4986{
4987	struct iwn_softc *sc = arg;
4988	struct ieee80211com *ic = &sc->sc_ic;
4989
4990	IWN_LOCK_ASSERT(sc);
4991
4992	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4993
4994	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4995
4996	if (sc->sc_tx_timer > 0) {
4997		if (--sc->sc_tx_timer == 0) {
4998			ic_printf(ic, "device timeout\n");
4999			ieee80211_restart_all(ic);
5000			return;
5001		}
5002	}
5003	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5004}
5005
5006static int
5007iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5008{
5009
5010	return (0);
5011}
5012
5013static int
5014iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5015{
5016
5017	return (0);
5018}
5019
5020static int
5021iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5022    struct thread *td)
5023{
5024	int rc;
5025	struct iwn_softc *sc = dev->si_drv1;
5026	struct iwn_ioctl_data *d;
5027
5028	rc = priv_check(td, PRIV_DRIVER);
5029	if (rc != 0)
5030		return (0);
5031
5032	switch (cmd) {
5033	case SIOCGIWNSTATS:
5034		d = (struct iwn_ioctl_data *) data;
5035		IWN_LOCK(sc);
5036		/* XXX validate permissions/memory/etc? */
5037		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5038		IWN_UNLOCK(sc);
5039		break;
5040	case SIOCZIWNSTATS:
5041		IWN_LOCK(sc);
5042		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5043		IWN_UNLOCK(sc);
5044		break;
5045	default:
5046		rc = EINVAL;
5047		break;
5048	}
5049	return (rc);
5050}
5051
5052static int
5053iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5054{
5055
5056	return (ENOTTY);
5057}
5058
5059static void
5060iwn_parent(struct ieee80211com *ic)
5061{
5062	struct iwn_softc *sc = ic->ic_softc;
5063	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5064	int startall = 0, stop = 0;
5065
5066	IWN_LOCK(sc);
5067	if (ic->ic_nrunning > 0) {
5068		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5069			iwn_init_locked(sc);
5070			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5071				startall = 1;
5072			else
5073				stop = 1;
5074		}
5075	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5076		iwn_stop_locked(sc);
5077	IWN_UNLOCK(sc);
5078	if (startall)
5079		ieee80211_start_all(ic);
5080	else if (vap != NULL && stop)
5081		ieee80211_stop(vap);
5082}
5083
5084/*
5085 * Send a command to the firmware.
5086 */
5087static int
5088iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5089{
5090	struct iwn_tx_ring *ring;
5091	struct iwn_tx_desc *desc;
5092	struct iwn_tx_data *data;
5093	struct iwn_tx_cmd *cmd;
5094	struct mbuf *m;
5095	bus_addr_t paddr;
5096	int totlen, error;
5097	int cmd_queue_num;
5098
5099	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5100
5101	if (async == 0)
5102		IWN_LOCK_ASSERT(sc);
5103
5104	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5105		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5106	else
5107		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5108
5109	ring = &sc->txq[cmd_queue_num];
5110	desc = &ring->desc[ring->cur];
5111	data = &ring->data[ring->cur];
5112	totlen = 4 + size;
5113
5114	if (size > sizeof cmd->data) {
5115		/* Command is too large to fit in a descriptor. */
5116		if (totlen > MCLBYTES)
5117			return EINVAL;
5118		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5119		if (m == NULL)
5120			return ENOMEM;
5121		cmd = mtod(m, struct iwn_tx_cmd *);
5122		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5123		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5124		if (error != 0) {
5125			m_freem(m);
5126			return error;
5127		}
5128		data->m = m;
5129	} else {
5130		cmd = &ring->cmd[ring->cur];
5131		paddr = data->cmd_paddr;
5132	}
5133
5134	cmd->code = code;
5135	cmd->flags = 0;
5136	cmd->qid = ring->qid;
5137	cmd->idx = ring->cur;
5138	memcpy(cmd->data, buf, size);
5139
5140	desc->nsegs = 1;
5141	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5142	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5143
5144	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5145	    __func__, iwn_intr_str(cmd->code), cmd->code,
5146	    cmd->flags, cmd->qid, cmd->idx);
5147
5148	if (size > sizeof cmd->data) {
5149		bus_dmamap_sync(ring->data_dmat, data->map,
5150		    BUS_DMASYNC_PREWRITE);
5151	} else {
5152		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5153		    BUS_DMASYNC_PREWRITE);
5154	}
5155	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5156	    BUS_DMASYNC_PREWRITE);
5157
5158	/* Kick command ring. */
5159	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5160	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5161
5162	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5163
5164	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5165}
5166
5167static int
5168iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5169{
5170	struct iwn4965_node_info hnode;
5171	caddr_t src, dst;
5172
5173	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5174
5175	/*
5176	 * We use the node structure for 5000 Series internally (it is
5177	 * a superset of the one for 4965AGN). We thus copy the common
5178	 * fields before sending the command.
5179	 */
5180	src = (caddr_t)node;
5181	dst = (caddr_t)&hnode;
5182	memcpy(dst, src, 48);
5183	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5184	memcpy(dst + 48, src + 72, 20);
5185	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5186}
5187
5188static int
5189iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5190{
5191
5192	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5193
5194	/* Direct mapping. */
5195	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5196}
5197
5198static int
5199iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5200{
5201	struct iwn_node *wn = (void *)ni;
5202	struct ieee80211_rateset *rs;
5203	struct iwn_cmd_link_quality linkq;
5204	int i, rate, txrate;
5205	int is_11n;
5206
5207	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5208
5209	memset(&linkq, 0, sizeof linkq);
5210	linkq.id = wn->id;
5211	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5212	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5213
5214	linkq.ampdu_max = 32;		/* XXX negotiated? */
5215	linkq.ampdu_threshold = 3;
5216	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5217
5218	DPRINTF(sc, IWN_DEBUG_XMIT,
5219	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5220	    __func__,
5221	    linkq.antmsk_1stream,
5222	    linkq.antmsk_2stream,
5223	    sc->ntxchains);
5224
5225	/*
5226	 * Are we using 11n rates? Ensure the channel is
5227	 * 11n _and_ we have some 11n rates, or don't
5228	 * try.
5229	 */
5230	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5231		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5232		is_11n = 1;
5233	} else {
5234		rs = &ni->ni_rates;
5235		is_11n = 0;
5236	}
5237
5238	/* Start at highest available bit-rate. */
5239	/*
5240	 * XXX this is all very dirty!
5241	 */
5242	if (is_11n)
5243		txrate = ni->ni_htrates.rs_nrates - 1;
5244	else
5245		txrate = rs->rs_nrates - 1;
5246	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5247		uint32_t plcp;
5248
5249		/*
5250		 * XXX TODO: ensure the last two slots are the two lowest
5251		 * rate entries, just for now.
5252		 */
5253		if (i == 14 || i == 15)
5254			txrate = 0;
5255
5256		if (is_11n)
5257			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5258		else
5259			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5260
5261		/* Do rate -> PLCP config mapping */
5262		plcp = iwn_rate_to_plcp(sc, ni, rate);
5263		linkq.retry[i] = plcp;
5264		DPRINTF(sc, IWN_DEBUG_XMIT,
5265		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5266		    __func__,
5267		    i,
5268		    txrate,
5269		    rate,
5270		    le32toh(plcp));
5271
5272		/*
5273		 * The mimo field is an index into the table which
5274		 * indicates the first index where it and subsequent entries
5275		 * will not be using MIMO.
5276		 *
5277		 * Since we're filling linkq from 0..15 and we're filling
5278		 * from the highest MCS rates to the lowest rates, if we
5279		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5280		 * the next entry.)  That way if the next entry is a non-MIMO
5281		 * entry, we're already pointing at it.
5282		 */
5283		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5284		    IEEE80211_RV(le32toh(plcp)) > 7)
5285			linkq.mimo = i + 1;
5286
5287		/* Next retry at immediate lower bit-rate. */
5288		if (txrate > 0)
5289			txrate--;
5290	}
5291	/*
5292	 * If we reached the end of the list and indeed we hit
5293	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5294	 * set mimo to 15.  Setting it to 16 panics the firmware.
5295	 */
5296	if (linkq.mimo > 15)
5297		linkq.mimo = 15;
5298
5299	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5300
5301	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5302
5303	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5304}
5305
5306/*
5307 * Broadcast node is used to send group-addressed and management frames.
5308 */
5309static int
5310iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5311{
5312	struct iwn_ops *ops = &sc->ops;
5313	struct ieee80211com *ic = &sc->sc_ic;
5314	struct iwn_node_info node;
5315	struct iwn_cmd_link_quality linkq;
5316	uint8_t txant;
5317	int i, error;
5318
5319	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5320
5321	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5322
5323	memset(&node, 0, sizeof node);
5324	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5325	node.id = sc->broadcast_id;
5326	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5327	if ((error = ops->add_node(sc, &node, async)) != 0)
5328		return error;
5329
5330	/* Use the first valid TX antenna. */
5331	txant = IWN_LSB(sc->txchainmask);
5332
5333	memset(&linkq, 0, sizeof linkq);
5334	linkq.id = sc->broadcast_id;
5335	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5336	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5337	linkq.ampdu_max = 64;
5338	linkq.ampdu_threshold = 3;
5339	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5340
5341	/* Use lowest mandatory bit-rate. */
5342	/* XXX rate table lookup? */
5343	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5344		linkq.retry[0] = htole32(0xd);
5345	else
5346		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5347	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5348	/* Use same bit-rate for all TX retries. */
5349	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5350		linkq.retry[i] = linkq.retry[0];
5351	}
5352
5353	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5354
5355	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5356}
5357
5358static int
5359iwn_updateedca(struct ieee80211com *ic)
5360{
5361#define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5362	struct iwn_softc *sc = ic->ic_softc;
5363	struct iwn_edca_params cmd;
5364	int aci;
5365
5366	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5367
5368	memset(&cmd, 0, sizeof cmd);
5369	cmd.flags = htole32(IWN_EDCA_UPDATE);
5370
5371	IEEE80211_LOCK(ic);
5372	for (aci = 0; aci < WME_NUM_AC; aci++) {
5373		const struct wmeParams *ac =
5374		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5375		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5376		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5377		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5378		cmd.ac[aci].txoplimit =
5379		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5380	}
5381	IEEE80211_UNLOCK(ic);
5382
5383	IWN_LOCK(sc);
5384	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5385	IWN_UNLOCK(sc);
5386
5387	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5388
5389	return 0;
5390#undef IWN_EXP2
5391}
5392
5393static void
5394iwn_update_mcast(struct ieee80211com *ic)
5395{
5396	/* Ignore */
5397}
5398
5399static void
5400iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5401{
5402	struct iwn_cmd_led led;
5403
5404	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5405
5406#if 0
5407	/* XXX don't set LEDs during scan? */
5408	if (sc->sc_is_scanning)
5409		return;
5410#endif
5411
5412	/* Clear microcode LED ownership. */
5413	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5414
5415	led.which = which;
5416	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5417	led.off = off;
5418	led.on = on;
5419	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5420}
5421
5422/*
5423 * Set the critical temperature at which the firmware will stop the radio
5424 * and notify us.
5425 */
5426static int
5427iwn_set_critical_temp(struct iwn_softc *sc)
5428{
5429	struct iwn_critical_temp crit;
5430	int32_t temp;
5431
5432	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5433
5434	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5435
5436	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5437		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5438	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5439		temp = IWN_CTOK(110);
5440	else
5441		temp = 110;
5442	memset(&crit, 0, sizeof crit);
5443	crit.tempR = htole32(temp);
5444	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5445	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5446}
5447
5448static int
5449iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5450{
5451	struct iwn_cmd_timing cmd;
5452	uint64_t val, mod;
5453
5454	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5455
5456	memset(&cmd, 0, sizeof cmd);
5457	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5458	cmd.bintval = htole16(ni->ni_intval);
5459	cmd.lintval = htole16(10);
5460
5461	/* Compute remaining time until next beacon. */
5462	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5463	mod = le64toh(cmd.tstamp) % val;
5464	cmd.binitval = htole32((uint32_t)(val - mod));
5465
5466	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5467	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5468
5469	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5470}
5471
5472static void
5473iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5474{
5475	struct ieee80211com *ic = &sc->sc_ic;
5476
5477	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5478
5479	/* Adjust TX power if need be (delta >= 3 degC). */
5480	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5481	    __func__, sc->temp, temp);
5482	if (abs(temp - sc->temp) >= 3) {
5483		/* Record temperature of last calibration. */
5484		sc->temp = temp;
5485		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5486	}
5487}
5488
5489/*
5490 * Set TX power for current channel (each rate has its own power settings).
5491 * This function takes into account the regulatory information from EEPROM,
5492 * the current temperature and the current voltage.
5493 */
5494static int
5495iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5496    int async)
5497{
5498/* Fixed-point arithmetic division using a n-bit fractional part. */
5499#define fdivround(a, b, n)	\
5500	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5501/* Linear interpolation. */
5502#define interpolate(x, x1, y1, x2, y2, n)	\
5503	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5504
5505	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5506	struct iwn_ucode_info *uc = &sc->ucode_info;
5507	struct iwn4965_cmd_txpower cmd;
5508	struct iwn4965_eeprom_chan_samples *chans;
5509	const uint8_t *rf_gain, *dsp_gain;
5510	int32_t vdiff, tdiff;
5511	int i, c, grp, maxpwr;
5512	uint8_t chan;
5513
5514	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5515	/* Retrieve current channel from last RXON. */
5516	chan = sc->rxon->chan;
5517	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5518	    chan);
5519
5520	memset(&cmd, 0, sizeof cmd);
5521	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5522	cmd.chan = chan;
5523
5524	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5525		maxpwr   = sc->maxpwr5GHz;
5526		rf_gain  = iwn4965_rf_gain_5ghz;
5527		dsp_gain = iwn4965_dsp_gain_5ghz;
5528	} else {
5529		maxpwr   = sc->maxpwr2GHz;
5530		rf_gain  = iwn4965_rf_gain_2ghz;
5531		dsp_gain = iwn4965_dsp_gain_2ghz;
5532	}
5533
5534	/* Compute voltage compensation. */
5535	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5536	if (vdiff > 0)
5537		vdiff *= 2;
5538	if (abs(vdiff) > 2)
5539		vdiff = 0;
5540	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5541	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5542	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5543
5544	/* Get channel attenuation group. */
5545	if (chan <= 20)		/* 1-20 */
5546		grp = 4;
5547	else if (chan <= 43)	/* 34-43 */
5548		grp = 0;
5549	else if (chan <= 70)	/* 44-70 */
5550		grp = 1;
5551	else if (chan <= 124)	/* 71-124 */
5552		grp = 2;
5553	else			/* 125-200 */
5554		grp = 3;
5555	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5556	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5557
5558	/* Get channel sub-band. */
5559	for (i = 0; i < IWN_NBANDS; i++)
5560		if (sc->bands[i].lo != 0 &&
5561		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5562			break;
5563	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5564		return EINVAL;
5565	chans = sc->bands[i].chans;
5566	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5567	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5568
5569	for (c = 0; c < 2; c++) {
5570		uint8_t power, gain, temp;
5571		int maxchpwr, pwr, ridx, idx;
5572
5573		power = interpolate(chan,
5574		    chans[0].num, chans[0].samples[c][1].power,
5575		    chans[1].num, chans[1].samples[c][1].power, 1);
5576		gain  = interpolate(chan,
5577		    chans[0].num, chans[0].samples[c][1].gain,
5578		    chans[1].num, chans[1].samples[c][1].gain, 1);
5579		temp  = interpolate(chan,
5580		    chans[0].num, chans[0].samples[c][1].temp,
5581		    chans[1].num, chans[1].samples[c][1].temp, 1);
5582		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5583		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5584		    __func__, c, power, gain, temp);
5585
5586		/* Compute temperature compensation. */
5587		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5588		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5589		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5590		    __func__, tdiff, sc->temp, temp);
5591
5592		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5593			/* Convert dBm to half-dBm. */
5594			maxchpwr = sc->maxpwr[chan] * 2;
5595			if ((ridx / 8) & 1)
5596				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5597
5598			pwr = maxpwr;
5599
5600			/* Adjust TX power based on rate. */
5601			if ((ridx % 8) == 5)
5602				pwr -= 15;	/* OFDM48: -7.5dB */
5603			else if ((ridx % 8) == 6)
5604				pwr -= 17;	/* OFDM54: -8.5dB */
5605			else if ((ridx % 8) == 7)
5606				pwr -= 20;	/* OFDM60: -10dB */
5607			else
5608				pwr -= 10;	/* Others: -5dB */
5609
5610			/* Do not exceed channel max TX power. */
5611			if (pwr > maxchpwr)
5612				pwr = maxchpwr;
5613
5614			idx = gain - (pwr - power) - tdiff - vdiff;
5615			if ((ridx / 8) & 1)	/* MIMO */
5616				idx += (int32_t)le32toh(uc->atten[grp][c]);
5617
5618			if (cmd.band == 0)
5619				idx += 9;	/* 5GHz */
5620			if (ridx == IWN_RIDX_MAX)
5621				idx += 5;	/* CCK */
5622
5623			/* Make sure idx stays in a valid range. */
5624			if (idx < 0)
5625				idx = 0;
5626			else if (idx > IWN4965_MAX_PWR_INDEX)
5627				idx = IWN4965_MAX_PWR_INDEX;
5628
5629			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5630			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5631			    __func__, c, ridx, idx);
5632			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5633			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5634		}
5635	}
5636
5637	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5638	    "%s: set tx power for chan %d\n", __func__, chan);
5639	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5640
5641#undef interpolate
5642#undef fdivround
5643}
5644
5645static int
5646iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5647    int async)
5648{
5649	struct iwn5000_cmd_txpower cmd;
5650	int cmdid;
5651
5652	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5653
5654	/*
5655	 * TX power calibration is handled automatically by the firmware
5656	 * for 5000 Series.
5657	 */
5658	memset(&cmd, 0, sizeof cmd);
5659	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5660	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5661	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5662	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5663	    "%s: setting TX power; rev=%d\n",
5664	    __func__,
5665	    IWN_UCODE_API(sc->ucode_rev));
5666	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5667		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5668	else
5669		cmdid = IWN_CMD_TXPOWER_DBM;
5670	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5671}
5672
5673/*
5674 * Retrieve the maximum RSSI (in dBm) among receivers.
5675 */
5676static int
5677iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5678{
5679	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5680	uint8_t mask, agc;
5681	int rssi;
5682
5683	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5684
5685	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5686	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5687
5688	rssi = 0;
5689	if (mask & IWN_ANT_A)
5690		rssi = MAX(rssi, phy->rssi[0]);
5691	if (mask & IWN_ANT_B)
5692		rssi = MAX(rssi, phy->rssi[2]);
5693	if (mask & IWN_ANT_C)
5694		rssi = MAX(rssi, phy->rssi[4]);
5695
5696	DPRINTF(sc, IWN_DEBUG_RECV,
5697	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5698	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5699	    rssi - agc - IWN_RSSI_TO_DBM);
5700	return rssi - agc - IWN_RSSI_TO_DBM;
5701}
5702
5703static int
5704iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5705{
5706	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5707	uint8_t agc;
5708	int rssi;
5709
5710	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5711
5712	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5713
5714	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5715		   le16toh(phy->rssi[1]) & 0xff);
5716	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5717
5718	DPRINTF(sc, IWN_DEBUG_RECV,
5719	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5720	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5721	    rssi - agc - IWN_RSSI_TO_DBM);
5722	return rssi - agc - IWN_RSSI_TO_DBM;
5723}
5724
5725/*
5726 * Retrieve the average noise (in dBm) among receivers.
5727 */
5728static int
5729iwn_get_noise(const struct iwn_rx_general_stats *stats)
5730{
5731	int i, total, nbant, noise;
5732
5733	total = nbant = 0;
5734	for (i = 0; i < 3; i++) {
5735		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5736			continue;
5737		total += noise;
5738		nbant++;
5739	}
5740	/* There should be at least one antenna but check anyway. */
5741	return (nbant == 0) ? -127 : (total / nbant) - 107;
5742}
5743
5744/*
5745 * Compute temperature (in degC) from last received statistics.
5746 */
5747static int
5748iwn4965_get_temperature(struct iwn_softc *sc)
5749{
5750	struct iwn_ucode_info *uc = &sc->ucode_info;
5751	int32_t r1, r2, r3, r4, temp;
5752
5753	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5754
5755	r1 = le32toh(uc->temp[0].chan20MHz);
5756	r2 = le32toh(uc->temp[1].chan20MHz);
5757	r3 = le32toh(uc->temp[2].chan20MHz);
5758	r4 = le32toh(sc->rawtemp);
5759
5760	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5761		return 0;
5762
5763	/* Sign-extend 23-bit R4 value to 32-bit. */
5764	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5765	/* Compute temperature in Kelvin. */
5766	temp = (259 * (r4 - r2)) / (r3 - r1);
5767	temp = (temp * 97) / 100 + 8;
5768
5769	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5770	    IWN_KTOC(temp));
5771	return IWN_KTOC(temp);
5772}
5773
5774static int
5775iwn5000_get_temperature(struct iwn_softc *sc)
5776{
5777	int32_t temp;
5778
5779	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5780
5781	/*
5782	 * Temperature is not used by the driver for 5000 Series because
5783	 * TX power calibration is handled by firmware.
5784	 */
5785	temp = le32toh(sc->rawtemp);
5786	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5787		temp = (temp / -5) + sc->temp_off;
5788		temp = IWN_KTOC(temp);
5789	}
5790	return temp;
5791}
5792
5793/*
5794 * Initialize sensitivity calibration state machine.
5795 */
5796static int
5797iwn_init_sensitivity(struct iwn_softc *sc)
5798{
5799	struct iwn_ops *ops = &sc->ops;
5800	struct iwn_calib_state *calib = &sc->calib;
5801	uint32_t flags;
5802	int error;
5803
5804	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5805
5806	/* Reset calibration state machine. */
5807	memset(calib, 0, sizeof (*calib));
5808	calib->state = IWN_CALIB_STATE_INIT;
5809	calib->cck_state = IWN_CCK_STATE_HIFA;
5810	/* Set initial correlation values. */
5811	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5812	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5813	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5814	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5815	calib->cck_x4      = 125;
5816	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5817	calib->energy_cck  = sc->limits->energy_cck;
5818
5819	/* Write initial sensitivity. */
5820	if ((error = iwn_send_sensitivity(sc)) != 0)
5821		return error;
5822
5823	/* Write initial gains. */
5824	if ((error = ops->init_gains(sc)) != 0)
5825		return error;
5826
5827	/* Request statistics at each beacon interval. */
5828	flags = 0;
5829	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5830	    __func__);
5831	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5832}
5833
5834/*
5835 * Collect noise and RSSI statistics for the first 20 beacons received
5836 * after association and use them to determine connected antennas and
5837 * to set differential gains.
5838 */
5839static void
5840iwn_collect_noise(struct iwn_softc *sc,
5841    const struct iwn_rx_general_stats *stats)
5842{
5843	struct iwn_ops *ops = &sc->ops;
5844	struct iwn_calib_state *calib = &sc->calib;
5845	struct ieee80211com *ic = &sc->sc_ic;
5846	uint32_t val;
5847	int i;
5848
5849	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5850
5851	/* Accumulate RSSI and noise for all 3 antennas. */
5852	for (i = 0; i < 3; i++) {
5853		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5854		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5855	}
5856	/* NB: We update differential gains only once after 20 beacons. */
5857	if (++calib->nbeacons < 20)
5858		return;
5859
5860	/* Determine highest average RSSI. */
5861	val = MAX(calib->rssi[0], calib->rssi[1]);
5862	val = MAX(calib->rssi[2], val);
5863
5864	/* Determine which antennas are connected. */
5865	sc->chainmask = sc->rxchainmask;
5866	for (i = 0; i < 3; i++)
5867		if (val - calib->rssi[i] > 15 * 20)
5868			sc->chainmask &= ~(1 << i);
5869	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5870	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5871	    __func__, sc->rxchainmask, sc->chainmask);
5872
5873	/* If none of the TX antennas are connected, keep at least one. */
5874	if ((sc->chainmask & sc->txchainmask) == 0)
5875		sc->chainmask |= IWN_LSB(sc->txchainmask);
5876
5877	(void)ops->set_gains(sc);
5878	calib->state = IWN_CALIB_STATE_RUN;
5879
5880#ifdef notyet
5881	/* XXX Disable RX chains with no antennas connected. */
5882	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5883	if (sc->sc_is_scanning)
5884		device_printf(sc->sc_dev,
5885		    "%s: is_scanning set, before RXON\n",
5886		    __func__);
5887	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5888#endif
5889
5890	/* Enable power-saving mode if requested by user. */
5891	if (ic->ic_flags & IEEE80211_F_PMGTON)
5892		(void)iwn_set_pslevel(sc, 0, 3, 1);
5893
5894	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5895
5896}
5897
5898static int
5899iwn4965_init_gains(struct iwn_softc *sc)
5900{
5901	struct iwn_phy_calib_gain cmd;
5902
5903	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5904
5905	memset(&cmd, 0, sizeof cmd);
5906	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5907	/* Differential gains initially set to 0 for all 3 antennas. */
5908	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5909	    "%s: setting initial differential gains\n", __func__);
5910	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5911}
5912
5913static int
5914iwn5000_init_gains(struct iwn_softc *sc)
5915{
5916	struct iwn_phy_calib cmd;
5917
5918	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5919
5920	memset(&cmd, 0, sizeof cmd);
5921	cmd.code = sc->reset_noise_gain;
5922	cmd.ngroups = 1;
5923	cmd.isvalid = 1;
5924	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5925	    "%s: setting initial differential gains\n", __func__);
5926	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5927}
5928
5929static int
5930iwn4965_set_gains(struct iwn_softc *sc)
5931{
5932	struct iwn_calib_state *calib = &sc->calib;
5933	struct iwn_phy_calib_gain cmd;
5934	int i, delta, noise;
5935
5936	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5937
5938	/* Get minimal noise among connected antennas. */
5939	noise = INT_MAX;	/* NB: There's at least one antenna. */
5940	for (i = 0; i < 3; i++)
5941		if (sc->chainmask & (1 << i))
5942			noise = MIN(calib->noise[i], noise);
5943
5944	memset(&cmd, 0, sizeof cmd);
5945	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5946	/* Set differential gains for connected antennas. */
5947	for (i = 0; i < 3; i++) {
5948		if (sc->chainmask & (1 << i)) {
5949			/* Compute attenuation (in unit of 1.5dB). */
5950			delta = (noise - (int32_t)calib->noise[i]) / 30;
5951			/* NB: delta <= 0 */
5952			/* Limit to [-4.5dB,0]. */
5953			cmd.gain[i] = MIN(abs(delta), 3);
5954			if (delta < 0)
5955				cmd.gain[i] |= 1 << 2;	/* sign bit */
5956		}
5957	}
5958	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5959	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5960	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5961	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5962}
5963
5964static int
5965iwn5000_set_gains(struct iwn_softc *sc)
5966{
5967	struct iwn_calib_state *calib = &sc->calib;
5968	struct iwn_phy_calib_gain cmd;
5969	int i, ant, div, delta;
5970
5971	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5972
5973	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5974	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5975
5976	memset(&cmd, 0, sizeof cmd);
5977	cmd.code = sc->noise_gain;
5978	cmd.ngroups = 1;
5979	cmd.isvalid = 1;
5980	/* Get first available RX antenna as referential. */
5981	ant = IWN_LSB(sc->rxchainmask);
5982	/* Set differential gains for other antennas. */
5983	for (i = ant + 1; i < 3; i++) {
5984		if (sc->chainmask & (1 << i)) {
5985			/* The delta is relative to antenna "ant". */
5986			delta = ((int32_t)calib->noise[ant] -
5987			    (int32_t)calib->noise[i]) / div;
5988			/* Limit to [-4.5dB,+4.5dB]. */
5989			cmd.gain[i - 1] = MIN(abs(delta), 3);
5990			if (delta < 0)
5991				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5992		}
5993	}
5994	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5995	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5996	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5997	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5998}
5999
6000/*
6001 * Tune RF RX sensitivity based on the number of false alarms detected
6002 * during the last beacon period.
6003 */
6004static void
6005iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6006{
6007#define inc(val, inc, max)			\
6008	if ((val) < (max)) {			\
6009		if ((val) < (max) - (inc))	\
6010			(val) += (inc);		\
6011		else				\
6012			(val) = (max);		\
6013		needs_update = 1;		\
6014	}
6015#define dec(val, dec, min)			\
6016	if ((val) > (min)) {			\
6017		if ((val) > (min) + (dec))	\
6018			(val) -= (dec);		\
6019		else				\
6020			(val) = (min);		\
6021		needs_update = 1;		\
6022	}
6023
6024	const struct iwn_sensitivity_limits *limits = sc->limits;
6025	struct iwn_calib_state *calib = &sc->calib;
6026	uint32_t val, rxena, fa;
6027	uint32_t energy[3], energy_min;
6028	uint8_t noise[3], noise_ref;
6029	int i, needs_update = 0;
6030
6031	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6032
6033	/* Check that we've been enabled long enough. */
6034	if ((rxena = le32toh(stats->general.load)) == 0){
6035		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6036		return;
6037	}
6038
6039	/* Compute number of false alarms since last call for OFDM. */
6040	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6041	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6042	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6043
6044	if (fa > 50 * rxena) {
6045		/* High false alarm count, decrease sensitivity. */
6046		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6047		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6048		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6049		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6050		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6051		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6052
6053	} else if (fa < 5 * rxena) {
6054		/* Low false alarm count, increase sensitivity. */
6055		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6056		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6057		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6058		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6059		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6060		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6061	}
6062
6063	/* Compute maximum noise among 3 receivers. */
6064	for (i = 0; i < 3; i++)
6065		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6066	val = MAX(noise[0], noise[1]);
6067	val = MAX(noise[2], val);
6068	/* Insert it into our samples table. */
6069	calib->noise_samples[calib->cur_noise_sample] = val;
6070	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6071
6072	/* Compute maximum noise among last 20 samples. */
6073	noise_ref = calib->noise_samples[0];
6074	for (i = 1; i < 20; i++)
6075		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6076
6077	/* Compute maximum energy among 3 receivers. */
6078	for (i = 0; i < 3; i++)
6079		energy[i] = le32toh(stats->general.energy[i]);
6080	val = MIN(energy[0], energy[1]);
6081	val = MIN(energy[2], val);
6082	/* Insert it into our samples table. */
6083	calib->energy_samples[calib->cur_energy_sample] = val;
6084	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6085
6086	/* Compute minimum energy among last 10 samples. */
6087	energy_min = calib->energy_samples[0];
6088	for (i = 1; i < 10; i++)
6089		energy_min = MAX(energy_min, calib->energy_samples[i]);
6090	energy_min += 6;
6091
6092	/* Compute number of false alarms since last call for CCK. */
6093	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6094	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6095	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6096
6097	if (fa > 50 * rxena) {
6098		/* High false alarm count, decrease sensitivity. */
6099		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6100		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6101		calib->cck_state = IWN_CCK_STATE_HIFA;
6102		calib->low_fa = 0;
6103
6104		if (calib->cck_x4 > 160) {
6105			calib->noise_ref = noise_ref;
6106			if (calib->energy_cck > 2)
6107				dec(calib->energy_cck, 2, energy_min);
6108		}
6109		if (calib->cck_x4 < 160) {
6110			calib->cck_x4 = 161;
6111			needs_update = 1;
6112		} else
6113			inc(calib->cck_x4, 3, limits->max_cck_x4);
6114
6115		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6116
6117	} else if (fa < 5 * rxena) {
6118		/* Low false alarm count, increase sensitivity. */
6119		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6120		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6121		calib->cck_state = IWN_CCK_STATE_LOFA;
6122		calib->low_fa++;
6123
6124		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6125		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6126		     calib->low_fa > 100)) {
6127			inc(calib->energy_cck, 2, limits->min_energy_cck);
6128			dec(calib->cck_x4,     3, limits->min_cck_x4);
6129			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6130		}
6131	} else {
6132		/* Not worth to increase or decrease sensitivity. */
6133		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6134		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6135		calib->low_fa = 0;
6136		calib->noise_ref = noise_ref;
6137
6138		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6139			/* Previous interval had many false alarms. */
6140			dec(calib->energy_cck, 8, energy_min);
6141		}
6142		calib->cck_state = IWN_CCK_STATE_INIT;
6143	}
6144
6145	if (needs_update)
6146		(void)iwn_send_sensitivity(sc);
6147
6148	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6149
6150#undef dec
6151#undef inc
6152}
6153
6154static int
6155iwn_send_sensitivity(struct iwn_softc *sc)
6156{
6157	struct iwn_calib_state *calib = &sc->calib;
6158	struct iwn_enhanced_sensitivity_cmd cmd;
6159	int len;
6160
6161	memset(&cmd, 0, sizeof cmd);
6162	len = sizeof (struct iwn_sensitivity_cmd);
6163	cmd.which = IWN_SENSITIVITY_WORKTBL;
6164	/* OFDM modulation. */
6165	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6166	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6167	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6168	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6169	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6170	cmd.energy_ofdm_th     = htole16(62);
6171	/* CCK modulation. */
6172	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6173	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6174	cmd.energy_cck         = htole16(calib->energy_cck);
6175	/* Barker modulation: use default values. */
6176	cmd.corr_barker        = htole16(190);
6177	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6178
6179	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6180	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6181	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6182	    calib->ofdm_mrc_x4, calib->cck_x4,
6183	    calib->cck_mrc_x4, calib->energy_cck);
6184
6185	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6186		goto send;
6187	/* Enhanced sensitivity settings. */
6188	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6189	cmd.ofdm_det_slope_mrc = htole16(668);
6190	cmd.ofdm_det_icept_mrc = htole16(4);
6191	cmd.ofdm_det_slope     = htole16(486);
6192	cmd.ofdm_det_icept     = htole16(37);
6193	cmd.cck_det_slope_mrc  = htole16(853);
6194	cmd.cck_det_icept_mrc  = htole16(4);
6195	cmd.cck_det_slope      = htole16(476);
6196	cmd.cck_det_icept      = htole16(99);
6197send:
6198	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6199}
6200
6201/*
6202 * Look at the increase of PLCP errors over time; if it exceeds
6203 * a programmed threshold then trigger an RF retune.
6204 */
6205static void
6206iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6207{
6208	int32_t delta_ofdm, delta_ht, delta_cck;
6209	struct iwn_calib_state *calib = &sc->calib;
6210	int delta_ticks, cur_ticks;
6211	int delta_msec;
6212	int thresh;
6213
6214	/*
6215	 * Calculate the difference between the current and
6216	 * previous statistics.
6217	 */
6218	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6219	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6220	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6221
6222	/*
6223	 * Calculate the delta in time between successive statistics
6224	 * messages.  Yes, it can roll over; so we make sure that
6225	 * this doesn't happen.
6226	 *
6227	 * XXX go figure out what to do about rollover
6228	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6229	 * XXX go stab signed integer overflow undefined-ness in the face.
6230	 */
6231	cur_ticks = ticks;
6232	delta_ticks = cur_ticks - sc->last_calib_ticks;
6233
6234	/*
6235	 * If any are negative, then the firmware likely reset; so just
6236	 * bail.  We'll pick this up next time.
6237	 */
6238	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6239		return;
6240
6241	/*
6242	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6243	 * so we can do some useful math with it.
6244	 */
6245	delta_msec = ticks_to_msecs(delta_ticks);
6246
6247	/*
6248	 * Calculate what our threshold is given the current delta_msec.
6249	 */
6250	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6251
6252	DPRINTF(sc, IWN_DEBUG_STATE,
6253	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6254	    __func__,
6255	    delta_msec,
6256	    delta_cck,
6257	    delta_ofdm,
6258	    delta_ht,
6259	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6260	    thresh);
6261
6262	/*
6263	 * If we need a retune, then schedule a single channel scan
6264	 * to a channel that isn't the currently active one!
6265	 *
6266	 * The math from linux iwlwifi:
6267	 *
6268	 * if ((delta * 100 / msecs) > threshold)
6269	 */
6270	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6271		DPRINTF(sc, IWN_DEBUG_ANY,
6272		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6273		    "over limit (%d); retune!\n",
6274		    __func__,
6275		    (delta_cck + delta_ofdm + delta_ht),
6276		    (delta_cck + delta_ofdm + delta_ht) * 100,
6277		    thresh);
6278	}
6279}
6280
6281/*
6282 * Set STA mode power saving level (between 0 and 5).
6283 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6284 */
6285static int
6286iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6287{
6288	struct iwn_pmgt_cmd cmd;
6289	const struct iwn_pmgt *pmgt;
6290	uint32_t max, skip_dtim;
6291	uint32_t reg;
6292	int i;
6293
6294	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6295	    "%s: dtim=%d, level=%d, async=%d\n",
6296	    __func__,
6297	    dtim,
6298	    level,
6299	    async);
6300
6301	/* Select which PS parameters to use. */
6302	if (dtim <= 2)
6303		pmgt = &iwn_pmgt[0][level];
6304	else if (dtim <= 10)
6305		pmgt = &iwn_pmgt[1][level];
6306	else
6307		pmgt = &iwn_pmgt[2][level];
6308
6309	memset(&cmd, 0, sizeof cmd);
6310	if (level != 0)	/* not CAM */
6311		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6312	if (level == 5)
6313		cmd.flags |= htole16(IWN_PS_FAST_PD);
6314	/* Retrieve PCIe Active State Power Management (ASPM). */
6315	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6316	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6317		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6318	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6319	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6320
6321	if (dtim == 0) {
6322		dtim = 1;
6323		skip_dtim = 0;
6324	} else
6325		skip_dtim = pmgt->skip_dtim;
6326	if (skip_dtim != 0) {
6327		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6328		max = pmgt->intval[4];
6329		if (max == (uint32_t)-1)
6330			max = dtim * (skip_dtim + 1);
6331		else if (max > dtim)
6332			max = rounddown(max, dtim);
6333	} else
6334		max = dtim;
6335	for (i = 0; i < 5; i++)
6336		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6337
6338	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6339	    level);
6340	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6341}
6342
6343static int
6344iwn_send_btcoex(struct iwn_softc *sc)
6345{
6346	struct iwn_bluetooth cmd;
6347
6348	memset(&cmd, 0, sizeof cmd);
6349	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6350	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6351	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6352	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6353	    __func__);
6354	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6355}
6356
6357static int
6358iwn_send_advanced_btcoex(struct iwn_softc *sc)
6359{
6360	static const uint32_t btcoex_3wire[12] = {
6361		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6362		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6363		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6364	};
6365	struct iwn6000_btcoex_config btconfig;
6366	struct iwn2000_btcoex_config btconfig2k;
6367	struct iwn_btcoex_priotable btprio;
6368	struct iwn_btcoex_prot btprot;
6369	int error, i;
6370	uint8_t flags;
6371
6372	memset(&btconfig, 0, sizeof btconfig);
6373	memset(&btconfig2k, 0, sizeof btconfig2k);
6374
6375	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6376	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6377
6378	if (sc->base_params->bt_sco_disable)
6379		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6380	else
6381		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6382
6383	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6384
6385	/* Default flags result is 145 as old value */
6386
6387	/*
6388	 * Flags value has to be review. Values must change if we
6389	 * which to disable it
6390	 */
6391	if (sc->base_params->bt_session_2) {
6392		btconfig2k.flags = flags;
6393		btconfig2k.max_kill = 5;
6394		btconfig2k.bt3_t7_timer = 1;
6395		btconfig2k.kill_ack = htole32(0xffff0000);
6396		btconfig2k.kill_cts = htole32(0xffff0000);
6397		btconfig2k.sample_time = 2;
6398		btconfig2k.bt3_t2_timer = 0xc;
6399
6400		for (i = 0; i < 12; i++)
6401			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6402		btconfig2k.valid = htole16(0xff);
6403		btconfig2k.prio_boost = htole32(0xf0);
6404		DPRINTF(sc, IWN_DEBUG_RESET,
6405		    "%s: configuring advanced bluetooth coexistence"
6406		    " session 2, flags : 0x%x\n",
6407		    __func__,
6408		    flags);
6409		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6410		    sizeof(btconfig2k), 1);
6411	} else {
6412		btconfig.flags = flags;
6413		btconfig.max_kill = 5;
6414		btconfig.bt3_t7_timer = 1;
6415		btconfig.kill_ack = htole32(0xffff0000);
6416		btconfig.kill_cts = htole32(0xffff0000);
6417		btconfig.sample_time = 2;
6418		btconfig.bt3_t2_timer = 0xc;
6419
6420		for (i = 0; i < 12; i++)
6421			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6422		btconfig.valid = htole16(0xff);
6423		btconfig.prio_boost = 0xf0;
6424		DPRINTF(sc, IWN_DEBUG_RESET,
6425		    "%s: configuring advanced bluetooth coexistence,"
6426		    " flags : 0x%x\n",
6427		    __func__,
6428		    flags);
6429		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6430		    sizeof(btconfig), 1);
6431	}
6432
6433	if (error != 0)
6434		return error;
6435
6436	memset(&btprio, 0, sizeof btprio);
6437	btprio.calib_init1 = 0x6;
6438	btprio.calib_init2 = 0x7;
6439	btprio.calib_periodic_low1 = 0x2;
6440	btprio.calib_periodic_low2 = 0x3;
6441	btprio.calib_periodic_high1 = 0x4;
6442	btprio.calib_periodic_high2 = 0x5;
6443	btprio.dtim = 0x6;
6444	btprio.scan52 = 0x8;
6445	btprio.scan24 = 0xa;
6446	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6447	    1);
6448	if (error != 0)
6449		return error;
6450
6451	/* Force BT state machine change. */
6452	memset(&btprot, 0, sizeof btprot);
6453	btprot.open = 1;
6454	btprot.type = 1;
6455	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6456	if (error != 0)
6457		return error;
6458	btprot.open = 0;
6459	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6460}
6461
6462static int
6463iwn5000_runtime_calib(struct iwn_softc *sc)
6464{
6465	struct iwn5000_calib_config cmd;
6466
6467	memset(&cmd, 0, sizeof cmd);
6468	cmd.ucode.once.enable = 0xffffffff;
6469	cmd.ucode.once.start = IWN5000_CALIB_DC;
6470	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6471	    "%s: configuring runtime calibration\n", __func__);
6472	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6473}
6474
6475static uint32_t
6476iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6477{
6478	struct ieee80211com *ic = &sc->sc_ic;
6479	uint32_t htflags = 0;
6480
6481	if (! IEEE80211_IS_CHAN_HT(c))
6482		return (0);
6483
6484	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6485
6486	if (IEEE80211_IS_CHAN_HT40(c)) {
6487		switch (ic->ic_curhtprotmode) {
6488		case IEEE80211_HTINFO_OPMODE_HT20PR:
6489			htflags |= IWN_RXON_HT_MODEPURE40;
6490			break;
6491		default:
6492			htflags |= IWN_RXON_HT_MODEMIXED;
6493			break;
6494		}
6495	}
6496	if (IEEE80211_IS_CHAN_HT40D(c))
6497		htflags |= IWN_RXON_HT_HT40MINUS;
6498
6499	return (htflags);
6500}
6501
6502static int
6503iwn_config(struct iwn_softc *sc)
6504{
6505	struct iwn_ops *ops = &sc->ops;
6506	struct ieee80211com *ic = &sc->sc_ic;
6507	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6508	const uint8_t *macaddr;
6509	uint32_t txmask;
6510	uint16_t rxchain;
6511	int error;
6512
6513	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6514
6515	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6516	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6517		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6518		    " exclusive each together. Review NIC config file. Conf"
6519		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6520		    sc->base_params->calib_need,
6521		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6522		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6523		return (EINVAL);
6524	}
6525
6526	/* Compute temperature calib if needed. Will be send by send calib */
6527	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6528		error = iwn5000_temp_offset_calib(sc);
6529		if (error != 0) {
6530			device_printf(sc->sc_dev,
6531			    "%s: could not set temperature offset\n", __func__);
6532			return (error);
6533		}
6534	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6535		error = iwn5000_temp_offset_calibv2(sc);
6536		if (error != 0) {
6537			device_printf(sc->sc_dev,
6538			    "%s: could not compute temperature offset v2\n",
6539			    __func__);
6540			return (error);
6541		}
6542	}
6543
6544	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6545		/* Configure runtime DC calibration. */
6546		error = iwn5000_runtime_calib(sc);
6547		if (error != 0) {
6548			device_printf(sc->sc_dev,
6549			    "%s: could not configure runtime calibration\n",
6550			    __func__);
6551			return error;
6552		}
6553	}
6554
6555	/* Configure valid TX chains for >=5000 Series. */
6556	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6557	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6558		txmask = htole32(sc->txchainmask);
6559		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6560		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6561		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6562		    sizeof txmask, 0);
6563		if (error != 0) {
6564			device_printf(sc->sc_dev,
6565			    "%s: could not configure valid TX chains, "
6566			    "error %d\n", __func__, error);
6567			return error;
6568		}
6569	}
6570
6571	/* Configure bluetooth coexistence. */
6572	error = 0;
6573
6574	/* Configure bluetooth coexistence if needed. */
6575	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6576		error = iwn_send_advanced_btcoex(sc);
6577	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6578		error = iwn_send_btcoex(sc);
6579
6580	if (error != 0) {
6581		device_printf(sc->sc_dev,
6582		    "%s: could not configure bluetooth coexistence, error %d\n",
6583		    __func__, error);
6584		return error;
6585	}
6586
6587	/* Set mode, channel, RX filter and enable RX. */
6588	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6589	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6590	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6591	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6592	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6593	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6594	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6595	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6596		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6597	switch (ic->ic_opmode) {
6598	case IEEE80211_M_STA:
6599		sc->rxon->mode = IWN_MODE_STA;
6600		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6601		break;
6602	case IEEE80211_M_MONITOR:
6603		sc->rxon->mode = IWN_MODE_MONITOR;
6604		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6605		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6606		break;
6607	default:
6608		/* Should not get there. */
6609		break;
6610	}
6611	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6612	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6613	sc->rxon->ht_single_mask = 0xff;
6614	sc->rxon->ht_dual_mask = 0xff;
6615	sc->rxon->ht_triple_mask = 0xff;
6616	/*
6617	 * In active association mode, ensure that
6618	 * all the receive chains are enabled.
6619	 *
6620	 * Since we're not yet doing SMPS, don't allow the
6621	 * number of idle RX chains to be less than the active
6622	 * number.
6623	 */
6624	rxchain =
6625	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6626	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6627	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6628	sc->rxon->rxchain = htole16(rxchain);
6629	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6630	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6631	    __func__,
6632	    sc->rxchainmask,
6633	    sc->nrxchains);
6634
6635	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6636
6637	DPRINTF(sc, IWN_DEBUG_RESET,
6638	    "%s: setting configuration; flags=0x%08x\n",
6639	    __func__, le32toh(sc->rxon->flags));
6640	if (sc->sc_is_scanning)
6641		device_printf(sc->sc_dev,
6642		    "%s: is_scanning set, before RXON\n",
6643		    __func__);
6644	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6645	if (error != 0) {
6646		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6647		    __func__);
6648		return error;
6649	}
6650
6651	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6652		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6653		    __func__);
6654		return error;
6655	}
6656
6657	/* Configuration has changed, set TX power accordingly. */
6658	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6659		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6660		    __func__);
6661		return error;
6662	}
6663
6664	if ((error = iwn_set_critical_temp(sc)) != 0) {
6665		device_printf(sc->sc_dev,
6666		    "%s: could not set critical temperature\n", __func__);
6667		return error;
6668	}
6669
6670	/* Set power saving level to CAM during initialization. */
6671	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6672		device_printf(sc->sc_dev,
6673		    "%s: could not set power saving level\n", __func__);
6674		return error;
6675	}
6676
6677	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6678
6679	return 0;
6680}
6681
6682static uint16_t
6683iwn_get_active_dwell_time(struct iwn_softc *sc,
6684    struct ieee80211_channel *c, uint8_t n_probes)
6685{
6686	/* No channel? Default to 2GHz settings */
6687	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6688		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6689		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6690	}
6691
6692	/* 5GHz dwell time */
6693	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6694	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6695}
6696
6697/*
6698 * Limit the total dwell time to 85% of the beacon interval.
6699 *
6700 * Returns the dwell time in milliseconds.
6701 */
6702static uint16_t
6703iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6704{
6705	struct ieee80211com *ic = &sc->sc_ic;
6706	struct ieee80211vap *vap = NULL;
6707	int bintval = 0;
6708
6709	/* bintval is in TU (1.024mS) */
6710	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6711		vap = TAILQ_FIRST(&ic->ic_vaps);
6712		bintval = vap->iv_bss->ni_intval;
6713	}
6714
6715	/*
6716	 * If it's non-zero, we should calculate the minimum of
6717	 * it and the DWELL_BASE.
6718	 *
6719	 * XXX Yes, the math should take into account that bintval
6720	 * is 1.024mS, not 1mS..
6721	 */
6722	if (bintval > 0) {
6723		DPRINTF(sc, IWN_DEBUG_SCAN,
6724		    "%s: bintval=%d\n",
6725		    __func__,
6726		    bintval);
6727		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6728	}
6729
6730	/* No association context? Default */
6731	return (IWN_PASSIVE_DWELL_BASE);
6732}
6733
6734static uint16_t
6735iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6736{
6737	uint16_t passive;
6738
6739	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6740		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6741	} else {
6742		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6743	}
6744
6745	/* Clamp to the beacon interval if we're associated */
6746	return (iwn_limit_dwell(sc, passive));
6747}
6748
6749static int
6750iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6751    struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6752{
6753	struct ieee80211com *ic = &sc->sc_ic;
6754	struct ieee80211_node *ni = vap->iv_bss;
6755	struct iwn_scan_hdr *hdr;
6756	struct iwn_cmd_data *tx;
6757	struct iwn_scan_essid *essid;
6758	struct iwn_scan_chan *chan;
6759	struct ieee80211_frame *wh;
6760	struct ieee80211_rateset *rs;
6761	uint8_t *buf, *frm;
6762	uint16_t rxchain;
6763	uint8_t txant;
6764	int buflen, error;
6765	int is_active;
6766	uint16_t dwell_active, dwell_passive;
6767	uint32_t extra, scan_service_time;
6768
6769	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6770
6771	/*
6772	 * We are absolutely not allowed to send a scan command when another
6773	 * scan command is pending.
6774	 */
6775	if (sc->sc_is_scanning) {
6776		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6777		    __func__);
6778		return (EAGAIN);
6779	}
6780
6781	/* Assign the scan channel */
6782	c = ic->ic_curchan;
6783
6784	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6785	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6786	if (buf == NULL) {
6787		device_printf(sc->sc_dev,
6788		    "%s: could not allocate buffer for scan command\n",
6789		    __func__);
6790		return ENOMEM;
6791	}
6792	hdr = (struct iwn_scan_hdr *)buf;
6793	/*
6794	 * Move to the next channel if no frames are received within 10ms
6795	 * after sending the probe request.
6796	 */
6797	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6798	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6799	/*
6800	 * Max needs to be greater than active and passive and quiet!
6801	 * It's also in microseconds!
6802	 */
6803	hdr->max_svc = htole32(250 * 1024);
6804
6805	/*
6806	 * Reset scan: interval=100
6807	 * Normal scan: interval=becaon interval
6808	 * suspend_time: 100 (TU)
6809	 *
6810	 */
6811	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6812	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6813	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6814	hdr->pause_svc = htole32(scan_service_time);
6815
6816	/* Select antennas for scanning. */
6817	rxchain =
6818	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6819	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6820	    IWN_RXCHAIN_DRIVER_FORCE;
6821	if (IEEE80211_IS_CHAN_A(c) &&
6822	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6823		/* Ant A must be avoided in 5GHz because of an HW bug. */
6824		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6825	} else	/* Use all available RX antennas. */
6826		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6827	hdr->rxchain = htole16(rxchain);
6828	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6829
6830	tx = (struct iwn_cmd_data *)(hdr + 1);
6831	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6832	tx->id = sc->broadcast_id;
6833	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6834
6835	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6836		/* Send probe requests at 6Mbps. */
6837		tx->rate = htole32(0xd);
6838		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6839	} else {
6840		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6841		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6842		    sc->rxon->associd && sc->rxon->chan > 14)
6843			tx->rate = htole32(0xd);
6844		else {
6845			/* Send probe requests at 1Mbps. */
6846			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6847		}
6848		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6849	}
6850	/* Use the first valid TX antenna. */
6851	txant = IWN_LSB(sc->txchainmask);
6852	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6853
6854	/*
6855	 * Only do active scanning if we're announcing a probe request
6856	 * for a given SSID (or more, if we ever add it to the driver.)
6857	 */
6858	is_active = 0;
6859
6860	/*
6861	 * If we're scanning for a specific SSID, add it to the command.
6862	 *
6863	 * XXX maybe look at adding support for scanning multiple SSIDs?
6864	 */
6865	essid = (struct iwn_scan_essid *)(tx + 1);
6866	if (ss != NULL) {
6867		if (ss->ss_ssid[0].len != 0) {
6868			essid[0].id = IEEE80211_ELEMID_SSID;
6869			essid[0].len = ss->ss_ssid[0].len;
6870			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6871		}
6872
6873		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6874		    __func__,
6875		    ss->ss_ssid[0].len,
6876		    ss->ss_ssid[0].len,
6877		    ss->ss_ssid[0].ssid);
6878
6879		if (ss->ss_nssid > 0)
6880			is_active = 1;
6881	}
6882
6883	/*
6884	 * Build a probe request frame.  Most of the following code is a
6885	 * copy & paste of what is done in net80211.
6886	 */
6887	wh = (struct ieee80211_frame *)(essid + 20);
6888	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6889	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6890	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6891	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6892	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6893	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6894	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6895	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6896
6897	frm = (uint8_t *)(wh + 1);
6898	frm = ieee80211_add_ssid(frm, NULL, 0);
6899	frm = ieee80211_add_rates(frm, rs);
6900	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6901		frm = ieee80211_add_xrates(frm, rs);
6902	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6903		frm = ieee80211_add_htcap(frm, ni);
6904
6905	/* Set length of probe request. */
6906	tx->len = htole16(frm - (uint8_t *)wh);
6907
6908	/*
6909	 * If active scanning is requested but a certain channel is
6910	 * marked passive, we can do active scanning if we detect
6911	 * transmissions.
6912	 *
6913	 * There is an issue with some firmware versions that triggers
6914	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6915	 * on a radar channel even though this means that we should NOT
6916	 * send probes.
6917	 *
6918	 * The "good CRC threshold" is the number of frames that we
6919	 * need to receive during our dwell time on a channel before
6920	 * sending out probes -- setting this to a huge value will
6921	 * mean we never reach it, but at the same time work around
6922	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6923	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6924	 *
6925	 * This was fixed in later versions along with some other
6926	 * scan changes, and the threshold behaves as a flag in those
6927	 * versions.
6928	 */
6929
6930	/*
6931	 * If we're doing active scanning, set the crc_threshold
6932	 * to a suitable value.  This is different to active veruss
6933	 * passive scanning depending upon the channel flags; the
6934	 * firmware will obey that particular check for us.
6935	 */
6936	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6937		hdr->crc_threshold = is_active ?
6938		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6939	else
6940		hdr->crc_threshold = is_active ?
6941		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6942
6943	chan = (struct iwn_scan_chan *)frm;
6944	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6945	chan->flags = 0;
6946	if (ss->ss_nssid > 0)
6947		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6948	chan->dsp_gain = 0x6e;
6949
6950	/*
6951	 * Set the passive/active flag depending upon the channel mode.
6952	 * XXX TODO: take the is_active flag into account as well?
6953	 */
6954	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6955		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6956	else
6957		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6958
6959	/*
6960	 * Calculate the active/passive dwell times.
6961	 */
6962
6963	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6964	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6965
6966	/* Make sure they're valid */
6967	if (dwell_passive <= dwell_active)
6968		dwell_passive = dwell_active + 1;
6969
6970	chan->active = htole16(dwell_active);
6971	chan->passive = htole16(dwell_passive);
6972
6973	if (IEEE80211_IS_CHAN_5GHZ(c))
6974		chan->rf_gain = 0x3b;
6975	else
6976		chan->rf_gain = 0x28;
6977
6978	DPRINTF(sc, IWN_DEBUG_STATE,
6979	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6980	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6981	    "isactive=%d numssid=%d\n", __func__,
6982	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6983	    dwell_active, dwell_passive, scan_service_time,
6984	    hdr->crc_threshold, is_active, ss->ss_nssid);
6985
6986	hdr->nchan++;
6987	chan++;
6988	buflen = (uint8_t *)chan - buf;
6989	hdr->len = htole16(buflen);
6990
6991	if (sc->sc_is_scanning) {
6992		device_printf(sc->sc_dev,
6993		    "%s: called with is_scanning set!\n",
6994		    __func__);
6995	}
6996	sc->sc_is_scanning = 1;
6997
6998	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6999	    hdr->nchan);
7000	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7001	free(buf, M_DEVBUF);
7002	if (error == 0)
7003		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7004
7005	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7006
7007	return error;
7008}
7009
7010static int
7011iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7012{
7013	struct iwn_ops *ops = &sc->ops;
7014	struct ieee80211com *ic = &sc->sc_ic;
7015	struct ieee80211_node *ni = vap->iv_bss;
7016	int error;
7017
7018	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7019
7020	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7021	/* Update adapter configuration. */
7022	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7023	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7024	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7025	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7026		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7027	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7028		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7029	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7030		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7031	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7032		sc->rxon->cck_mask  = 0;
7033		sc->rxon->ofdm_mask = 0x15;
7034	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7035		sc->rxon->cck_mask  = 0x03;
7036		sc->rxon->ofdm_mask = 0;
7037	} else {
7038		/* Assume 802.11b/g. */
7039		sc->rxon->cck_mask  = 0x03;
7040		sc->rxon->ofdm_mask = 0x15;
7041	}
7042
7043	/* try HT */
7044	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7045
7046	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7047	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7048	    sc->rxon->ofdm_mask);
7049	if (sc->sc_is_scanning)
7050		device_printf(sc->sc_dev,
7051		    "%s: is_scanning set, before RXON\n",
7052		    __func__);
7053	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7054	if (error != 0) {
7055		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7056		    __func__, error);
7057		return error;
7058	}
7059
7060	/* Configuration has changed, set TX power accordingly. */
7061	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7062		device_printf(sc->sc_dev,
7063		    "%s: could not set TX power, error %d\n", __func__, error);
7064		return error;
7065	}
7066	/*
7067	 * Reconfiguring RXON clears the firmware nodes table so we must
7068	 * add the broadcast node again.
7069	 */
7070	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7071		device_printf(sc->sc_dev,
7072		    "%s: could not add broadcast node, error %d\n", __func__,
7073		    error);
7074		return error;
7075	}
7076
7077	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7078
7079	return 0;
7080}
7081
7082static int
7083iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7084{
7085	struct iwn_ops *ops = &sc->ops;
7086	struct ieee80211com *ic = &sc->sc_ic;
7087	struct ieee80211_node *ni = vap->iv_bss;
7088	struct iwn_node_info node;
7089	int error;
7090
7091	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7092
7093	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7094	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7095		/* Link LED blinks while monitoring. */
7096		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7097		return 0;
7098	}
7099	if ((error = iwn_set_timing(sc, ni)) != 0) {
7100		device_printf(sc->sc_dev,
7101		    "%s: could not set timing, error %d\n", __func__, error);
7102		return error;
7103	}
7104
7105	/* Update adapter configuration. */
7106	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7107	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7108	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7109	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7110	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7111		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7112	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7113		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7114	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7115		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7116	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7117		sc->rxon->cck_mask  = 0;
7118		sc->rxon->ofdm_mask = 0x15;
7119	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7120		sc->rxon->cck_mask  = 0x03;
7121		sc->rxon->ofdm_mask = 0;
7122	} else {
7123		/* Assume 802.11b/g. */
7124		sc->rxon->cck_mask  = 0x0f;
7125		sc->rxon->ofdm_mask = 0x15;
7126	}
7127	/* try HT */
7128	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7129	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7130	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7131	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7132	if (sc->sc_is_scanning)
7133		device_printf(sc->sc_dev,
7134		    "%s: is_scanning set, before RXON\n",
7135		    __func__);
7136	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7137	if (error != 0) {
7138		device_printf(sc->sc_dev,
7139		    "%s: could not update configuration, error %d\n", __func__,
7140		    error);
7141		return error;
7142	}
7143
7144	/* Configuration has changed, set TX power accordingly. */
7145	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7146		device_printf(sc->sc_dev,
7147		    "%s: could not set TX power, error %d\n", __func__, error);
7148		return error;
7149	}
7150
7151	/* Fake a join to initialize the TX rate. */
7152	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7153	iwn_newassoc(ni, 1);
7154
7155	/* Add BSS node. */
7156	memset(&node, 0, sizeof node);
7157	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7158	node.id = IWN_ID_BSS;
7159	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7160		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7161		case IEEE80211_HTCAP_SMPS_ENA:
7162			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7163			break;
7164		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7165			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7166			break;
7167		}
7168		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7169		    IWN_AMDPU_DENSITY(5));	/* 4us */
7170		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7171			node.htflags |= htole32(IWN_NODE_HT40);
7172	}
7173	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7174	error = ops->add_node(sc, &node, 1);
7175	if (error != 0) {
7176		device_printf(sc->sc_dev,
7177		    "%s: could not add BSS node, error %d\n", __func__, error);
7178		return error;
7179	}
7180	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7181	    __func__, node.id);
7182	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7183		device_printf(sc->sc_dev,
7184		    "%s: could not setup link quality for node %d, error %d\n",
7185		    __func__, node.id, error);
7186		return error;
7187	}
7188
7189	if ((error = iwn_init_sensitivity(sc)) != 0) {
7190		device_printf(sc->sc_dev,
7191		    "%s: could not set sensitivity, error %d\n", __func__,
7192		    error);
7193		return error;
7194	}
7195	/* Start periodic calibration timer. */
7196	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7197	sc->calib_cnt = 0;
7198	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7199	    sc);
7200
7201	/* Link LED always on while associated. */
7202	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7203
7204	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7205
7206	return 0;
7207}
7208
7209/*
7210 * This function is called by upper layer when an ADDBA request is received
7211 * from another STA and before the ADDBA response is sent.
7212 */
7213static int
7214iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7215    int baparamset, int batimeout, int baseqctl)
7216{
7217#define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7218	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7219	struct iwn_ops *ops = &sc->ops;
7220	struct iwn_node *wn = (void *)ni;
7221	struct iwn_node_info node;
7222	uint16_t ssn;
7223	uint8_t tid;
7224	int error;
7225
7226	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7227
7228	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7229	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7230
7231	memset(&node, 0, sizeof node);
7232	node.id = wn->id;
7233	node.control = IWN_NODE_UPDATE;
7234	node.flags = IWN_FLAG_SET_ADDBA;
7235	node.addba_tid = tid;
7236	node.addba_ssn = htole16(ssn);
7237	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7238	    wn->id, tid, ssn);
7239	error = ops->add_node(sc, &node, 1);
7240	if (error != 0)
7241		return error;
7242	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7243#undef MS
7244}
7245
7246/*
7247 * This function is called by upper layer on teardown of an HT-immediate
7248 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7249 */
7250static void
7251iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7252{
7253	struct ieee80211com *ic = ni->ni_ic;
7254	struct iwn_softc *sc = ic->ic_softc;
7255	struct iwn_ops *ops = &sc->ops;
7256	struct iwn_node *wn = (void *)ni;
7257	struct iwn_node_info node;
7258	uint8_t tid;
7259
7260	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7261
7262	/* XXX: tid as an argument */
7263	for (tid = 0; tid < WME_NUM_TID; tid++) {
7264		if (&ni->ni_rx_ampdu[tid] == rap)
7265			break;
7266	}
7267
7268	memset(&node, 0, sizeof node);
7269	node.id = wn->id;
7270	node.control = IWN_NODE_UPDATE;
7271	node.flags = IWN_FLAG_SET_DELBA;
7272	node.delba_tid = tid;
7273	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7274	(void)ops->add_node(sc, &node, 1);
7275	sc->sc_ampdu_rx_stop(ni, rap);
7276}
7277
7278static int
7279iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7280    int dialogtoken, int baparamset, int batimeout)
7281{
7282	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7283	int qid;
7284
7285	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7286
7287	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7288		if (sc->qid2tap[qid] == NULL)
7289			break;
7290	}
7291	if (qid == sc->ntxqs) {
7292		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7293		    __func__);
7294		return 0;
7295	}
7296	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7297	if (tap->txa_private == NULL) {
7298		device_printf(sc->sc_dev,
7299		    "%s: failed to alloc TX aggregation structure\n", __func__);
7300		return 0;
7301	}
7302	sc->qid2tap[qid] = tap;
7303	*(int *)tap->txa_private = qid;
7304	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7305	    batimeout);
7306}
7307
7308static int
7309iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7310    int code, int baparamset, int batimeout)
7311{
7312	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7313	int qid = *(int *)tap->txa_private;
7314	uint8_t tid = tap->txa_tid;
7315	int ret;
7316
7317	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7318
7319	if (code == IEEE80211_STATUS_SUCCESS) {
7320		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7321		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7322		if (ret != 1)
7323			return ret;
7324	} else {
7325		sc->qid2tap[qid] = NULL;
7326		free(tap->txa_private, M_DEVBUF);
7327		tap->txa_private = NULL;
7328	}
7329	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7330}
7331
7332/*
7333 * This function is called by upper layer when an ADDBA response is received
7334 * from another STA.
7335 */
7336static int
7337iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7338    uint8_t tid)
7339{
7340	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7341	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7342	struct iwn_ops *ops = &sc->ops;
7343	struct iwn_node *wn = (void *)ni;
7344	struct iwn_node_info node;
7345	int error, qid;
7346
7347	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7348
7349	/* Enable TX for the specified RA/TID. */
7350	wn->disable_tid &= ~(1 << tid);
7351	memset(&node, 0, sizeof node);
7352	node.id = wn->id;
7353	node.control = IWN_NODE_UPDATE;
7354	node.flags = IWN_FLAG_SET_DISABLE_TID;
7355	node.disable_tid = htole16(wn->disable_tid);
7356	error = ops->add_node(sc, &node, 1);
7357	if (error != 0)
7358		return 0;
7359
7360	if ((error = iwn_nic_lock(sc)) != 0)
7361		return 0;
7362	qid = *(int *)tap->txa_private;
7363	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7364	    __func__, wn->id, tid, tap->txa_start, qid);
7365	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7366	iwn_nic_unlock(sc);
7367
7368	iwn_set_link_quality(sc, ni);
7369	return 1;
7370}
7371
7372static void
7373iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7374{
7375	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7376	struct iwn_ops *ops = &sc->ops;
7377	uint8_t tid = tap->txa_tid;
7378	int qid;
7379
7380	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7381
7382	sc->sc_addba_stop(ni, tap);
7383
7384	if (tap->txa_private == NULL)
7385		return;
7386
7387	qid = *(int *)tap->txa_private;
7388	if (sc->txq[qid].queued != 0)
7389		return;
7390	if (iwn_nic_lock(sc) != 0)
7391		return;
7392	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7393	iwn_nic_unlock(sc);
7394	sc->qid2tap[qid] = NULL;
7395	free(tap->txa_private, M_DEVBUF);
7396	tap->txa_private = NULL;
7397}
7398
7399static void
7400iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7401    int qid, uint8_t tid, uint16_t ssn)
7402{
7403	struct iwn_node *wn = (void *)ni;
7404
7405	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7406
7407	/* Stop TX scheduler while we're changing its configuration. */
7408	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7409	    IWN4965_TXQ_STATUS_CHGACT);
7410
7411	/* Assign RA/TID translation to the queue. */
7412	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7413	    wn->id << 4 | tid);
7414
7415	/* Enable chain-building mode for the queue. */
7416	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7417
7418	/* Set starting sequence number from the ADDBA request. */
7419	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7420	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7421	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7422
7423	/* Set scheduler window size. */
7424	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7425	    IWN_SCHED_WINSZ);
7426	/* Set scheduler frame limit. */
7427	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7428	    IWN_SCHED_LIMIT << 16);
7429
7430	/* Enable interrupts for the queue. */
7431	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7432
7433	/* Mark the queue as active. */
7434	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7435	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7436	    iwn_tid2fifo[tid] << 1);
7437}
7438
7439static void
7440iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7441{
7442	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7443
7444	/* Stop TX scheduler while we're changing its configuration. */
7445	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7446	    IWN4965_TXQ_STATUS_CHGACT);
7447
7448	/* Set starting sequence number from the ADDBA request. */
7449	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7450	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7451
7452	/* Disable interrupts for the queue. */
7453	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7454
7455	/* Mark the queue as inactive. */
7456	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7457	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7458}
7459
7460static void
7461iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7462    int qid, uint8_t tid, uint16_t ssn)
7463{
7464	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7465
7466	struct iwn_node *wn = (void *)ni;
7467
7468	/* Stop TX scheduler while we're changing its configuration. */
7469	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7470	    IWN5000_TXQ_STATUS_CHGACT);
7471
7472	/* Assign RA/TID translation to the queue. */
7473	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7474	    wn->id << 4 | tid);
7475
7476	/* Enable chain-building mode for the queue. */
7477	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7478
7479	/* Enable aggregation for the queue. */
7480	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7481
7482	/* Set starting sequence number from the ADDBA request. */
7483	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7484	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7485	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7486
7487	/* Set scheduler window size and frame limit. */
7488	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7489	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7490
7491	/* Enable interrupts for the queue. */
7492	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7493
7494	/* Mark the queue as active. */
7495	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7496	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7497}
7498
7499static void
7500iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7501{
7502	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7503
7504	/* Stop TX scheduler while we're changing its configuration. */
7505	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7506	    IWN5000_TXQ_STATUS_CHGACT);
7507
7508	/* Disable aggregation for the queue. */
7509	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7510
7511	/* Set starting sequence number from the ADDBA request. */
7512	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7513	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7514
7515	/* Disable interrupts for the queue. */
7516	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7517
7518	/* Mark the queue as inactive. */
7519	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7520	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7521}
7522
7523/*
7524 * Query calibration tables from the initialization firmware.  We do this
7525 * only once at first boot.  Called from a process context.
7526 */
7527static int
7528iwn5000_query_calibration(struct iwn_softc *sc)
7529{
7530	struct iwn5000_calib_config cmd;
7531	int error;
7532
7533	memset(&cmd, 0, sizeof cmd);
7534	cmd.ucode.once.enable = htole32(0xffffffff);
7535	cmd.ucode.once.start  = htole32(0xffffffff);
7536	cmd.ucode.once.send   = htole32(0xffffffff);
7537	cmd.ucode.flags       = htole32(0xffffffff);
7538	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7539	    __func__);
7540	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7541	if (error != 0)
7542		return error;
7543
7544	/* Wait at most two seconds for calibration to complete. */
7545	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7546		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7547	return error;
7548}
7549
7550/*
7551 * Send calibration results to the runtime firmware.  These results were
7552 * obtained on first boot from the initialization firmware.
7553 */
7554static int
7555iwn5000_send_calibration(struct iwn_softc *sc)
7556{
7557	int idx, error;
7558
7559	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7560		if (!(sc->base_params->calib_need & (1<<idx))) {
7561			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7562			    "No need of calib %d\n",
7563			    idx);
7564			continue; /* no need for this calib */
7565		}
7566		if (sc->calibcmd[idx].buf == NULL) {
7567			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7568			    "Need calib idx : %d but no available data\n",
7569			    idx);
7570			continue;
7571		}
7572
7573		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7574		    "send calibration result idx=%d len=%d\n", idx,
7575		    sc->calibcmd[idx].len);
7576		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7577		    sc->calibcmd[idx].len, 0);
7578		if (error != 0) {
7579			device_printf(sc->sc_dev,
7580			    "%s: could not send calibration result, error %d\n",
7581			    __func__, error);
7582			return error;
7583		}
7584	}
7585	return 0;
7586}
7587
7588static int
7589iwn5000_send_wimax_coex(struct iwn_softc *sc)
7590{
7591	struct iwn5000_wimax_coex wimax;
7592
7593#if 0
7594	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7595		/* Enable WiMAX coexistence for combo adapters. */
7596		wimax.flags =
7597		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7598		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7599		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7600		    IWN_WIMAX_COEX_ENABLE;
7601		memcpy(wimax.events, iwn6050_wimax_events,
7602		    sizeof iwn6050_wimax_events);
7603	} else
7604#endif
7605	{
7606		/* Disable WiMAX coexistence. */
7607		wimax.flags = 0;
7608		memset(wimax.events, 0, sizeof wimax.events);
7609	}
7610	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7611	    __func__);
7612	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7613}
7614
7615static int
7616iwn5000_crystal_calib(struct iwn_softc *sc)
7617{
7618	struct iwn5000_phy_calib_crystal cmd;
7619
7620	memset(&cmd, 0, sizeof cmd);
7621	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7622	cmd.ngroups = 1;
7623	cmd.isvalid = 1;
7624	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7625	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7626	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7627	    cmd.cap_pin[0], cmd.cap_pin[1]);
7628	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7629}
7630
7631static int
7632iwn5000_temp_offset_calib(struct iwn_softc *sc)
7633{
7634	struct iwn5000_phy_calib_temp_offset cmd;
7635
7636	memset(&cmd, 0, sizeof cmd);
7637	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7638	cmd.ngroups = 1;
7639	cmd.isvalid = 1;
7640	if (sc->eeprom_temp != 0)
7641		cmd.offset = htole16(sc->eeprom_temp);
7642	else
7643		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7644	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7645	    le16toh(cmd.offset));
7646	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7647}
7648
7649static int
7650iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7651{
7652	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7653
7654	memset(&cmd, 0, sizeof cmd);
7655	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7656	cmd.ngroups = 1;
7657	cmd.isvalid = 1;
7658	if (sc->eeprom_temp != 0) {
7659		cmd.offset_low = htole16(sc->eeprom_temp);
7660		cmd.offset_high = htole16(sc->eeprom_temp_high);
7661	} else {
7662		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7663		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7664	}
7665	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7666
7667	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7668	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7669	    le16toh(cmd.offset_low),
7670	    le16toh(cmd.offset_high),
7671	    le16toh(cmd.burnt_voltage_ref));
7672
7673	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7674}
7675
7676/*
7677 * This function is called after the runtime firmware notifies us of its
7678 * readiness (called in a process context).
7679 */
7680static int
7681iwn4965_post_alive(struct iwn_softc *sc)
7682{
7683	int error, qid;
7684
7685	if ((error = iwn_nic_lock(sc)) != 0)
7686		return error;
7687
7688	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7689
7690	/* Clear TX scheduler state in SRAM. */
7691	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7692	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7693	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7694
7695	/* Set physical address of TX scheduler rings (1KB aligned). */
7696	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7697
7698	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7699
7700	/* Disable chain mode for all our 16 queues. */
7701	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7702
7703	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7704		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7705		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7706
7707		/* Set scheduler window size. */
7708		iwn_mem_write(sc, sc->sched_base +
7709		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7710		/* Set scheduler frame limit. */
7711		iwn_mem_write(sc, sc->sched_base +
7712		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7713		    IWN_SCHED_LIMIT << 16);
7714	}
7715
7716	/* Enable interrupts for all our 16 queues. */
7717	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7718	/* Identify TX FIFO rings (0-7). */
7719	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7720
7721	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7722	for (qid = 0; qid < 7; qid++) {
7723		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7724		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7725		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7726	}
7727	iwn_nic_unlock(sc);
7728	return 0;
7729}
7730
7731/*
7732 * This function is called after the initialization or runtime firmware
7733 * notifies us of its readiness (called in a process context).
7734 */
7735static int
7736iwn5000_post_alive(struct iwn_softc *sc)
7737{
7738	int error, qid;
7739
7740	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7741
7742	/* Switch to using ICT interrupt mode. */
7743	iwn5000_ict_reset(sc);
7744
7745	if ((error = iwn_nic_lock(sc)) != 0){
7746		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7747		return error;
7748	}
7749
7750	/* Clear TX scheduler state in SRAM. */
7751	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7752	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7753	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7754
7755	/* Set physical address of TX scheduler rings (1KB aligned). */
7756	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7757
7758	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7759
7760	/* Enable chain mode for all queues, except command queue. */
7761	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7762		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7763	else
7764		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7765	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7766
7767	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7768		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7769		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7770
7771		iwn_mem_write(sc, sc->sched_base +
7772		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7773		/* Set scheduler window size and frame limit. */
7774		iwn_mem_write(sc, sc->sched_base +
7775		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7776		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7777	}
7778
7779	/* Enable interrupts for all our 20 queues. */
7780	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7781	/* Identify TX FIFO rings (0-7). */
7782	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7783
7784	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7785	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7786		/* Mark TX rings as active. */
7787		for (qid = 0; qid < 11; qid++) {
7788			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7789			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7790			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7791		}
7792	} else {
7793		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7794		for (qid = 0; qid < 7; qid++) {
7795			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7796			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7797			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7798		}
7799	}
7800	iwn_nic_unlock(sc);
7801
7802	/* Configure WiMAX coexistence for combo adapters. */
7803	error = iwn5000_send_wimax_coex(sc);
7804	if (error != 0) {
7805		device_printf(sc->sc_dev,
7806		    "%s: could not configure WiMAX coexistence, error %d\n",
7807		    __func__, error);
7808		return error;
7809	}
7810	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7811		/* Perform crystal calibration. */
7812		error = iwn5000_crystal_calib(sc);
7813		if (error != 0) {
7814			device_printf(sc->sc_dev,
7815			    "%s: crystal calibration failed, error %d\n",
7816			    __func__, error);
7817			return error;
7818		}
7819	}
7820	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7821		/* Query calibration from the initialization firmware. */
7822		if ((error = iwn5000_query_calibration(sc)) != 0) {
7823			device_printf(sc->sc_dev,
7824			    "%s: could not query calibration, error %d\n",
7825			    __func__, error);
7826			return error;
7827		}
7828		/*
7829		 * We have the calibration results now, reboot with the
7830		 * runtime firmware (call ourselves recursively!)
7831		 */
7832		iwn_hw_stop(sc);
7833		error = iwn_hw_init(sc);
7834	} else {
7835		/* Send calibration results to runtime firmware. */
7836		error = iwn5000_send_calibration(sc);
7837	}
7838
7839	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7840
7841	return error;
7842}
7843
7844/*
7845 * The firmware boot code is small and is intended to be copied directly into
7846 * the NIC internal memory (no DMA transfer).
7847 */
7848static int
7849iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7850{
7851	int error, ntries;
7852
7853	size /= sizeof (uint32_t);
7854
7855	if ((error = iwn_nic_lock(sc)) != 0)
7856		return error;
7857
7858	/* Copy microcode image into NIC memory. */
7859	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7860	    (const uint32_t *)ucode, size);
7861
7862	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7863	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7864	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7865
7866	/* Start boot load now. */
7867	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7868
7869	/* Wait for transfer to complete. */
7870	for (ntries = 0; ntries < 1000; ntries++) {
7871		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7872		    IWN_BSM_WR_CTRL_START))
7873			break;
7874		DELAY(10);
7875	}
7876	if (ntries == 1000) {
7877		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7878		    __func__);
7879		iwn_nic_unlock(sc);
7880		return ETIMEDOUT;
7881	}
7882
7883	/* Enable boot after power up. */
7884	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7885
7886	iwn_nic_unlock(sc);
7887	return 0;
7888}
7889
7890static int
7891iwn4965_load_firmware(struct iwn_softc *sc)
7892{
7893	struct iwn_fw_info *fw = &sc->fw;
7894	struct iwn_dma_info *dma = &sc->fw_dma;
7895	int error;
7896
7897	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7898	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7899	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7900	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7901	    fw->init.text, fw->init.textsz);
7902	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7903
7904	/* Tell adapter where to find initialization sections. */
7905	if ((error = iwn_nic_lock(sc)) != 0)
7906		return error;
7907	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7908	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7909	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7910	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7911	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7912	iwn_nic_unlock(sc);
7913
7914	/* Load firmware boot code. */
7915	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7916	if (error != 0) {
7917		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7918		    __func__);
7919		return error;
7920	}
7921	/* Now press "execute". */
7922	IWN_WRITE(sc, IWN_RESET, 0);
7923
7924	/* Wait at most one second for first alive notification. */
7925	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7926		device_printf(sc->sc_dev,
7927		    "%s: timeout waiting for adapter to initialize, error %d\n",
7928		    __func__, error);
7929		return error;
7930	}
7931
7932	/* Retrieve current temperature for initial TX power calibration. */
7933	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7934	sc->temp = iwn4965_get_temperature(sc);
7935
7936	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7937	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7938	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7939	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7940	    fw->main.text, fw->main.textsz);
7941	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7942
7943	/* Tell adapter where to find runtime sections. */
7944	if ((error = iwn_nic_lock(sc)) != 0)
7945		return error;
7946	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7947	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7948	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7949	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7950	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7951	    IWN_FW_UPDATED | fw->main.textsz);
7952	iwn_nic_unlock(sc);
7953
7954	return 0;
7955}
7956
7957static int
7958iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7959    const uint8_t *section, int size)
7960{
7961	struct iwn_dma_info *dma = &sc->fw_dma;
7962	int error;
7963
7964	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7965
7966	/* Copy firmware section into pre-allocated DMA-safe memory. */
7967	memcpy(dma->vaddr, section, size);
7968	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7969
7970	if ((error = iwn_nic_lock(sc)) != 0)
7971		return error;
7972
7973	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7974	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7975
7976	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7977	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7978	    IWN_LOADDR(dma->paddr));
7979	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7980	    IWN_HIADDR(dma->paddr) << 28 | size);
7981	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7982	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7983	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7984	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7985
7986	/* Kick Flow Handler to start DMA transfer. */
7987	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7988	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7989
7990	iwn_nic_unlock(sc);
7991
7992	/* Wait at most five seconds for FH DMA transfer to complete. */
7993	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7994}
7995
7996static int
7997iwn5000_load_firmware(struct iwn_softc *sc)
7998{
7999	struct iwn_fw_part *fw;
8000	int error;
8001
8002	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8003
8004	/* Load the initialization firmware on first boot only. */
8005	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8006	    &sc->fw.main : &sc->fw.init;
8007
8008	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8009	    fw->text, fw->textsz);
8010	if (error != 0) {
8011		device_printf(sc->sc_dev,
8012		    "%s: could not load firmware %s section, error %d\n",
8013		    __func__, ".text", error);
8014		return error;
8015	}
8016	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8017	    fw->data, fw->datasz);
8018	if (error != 0) {
8019		device_printf(sc->sc_dev,
8020		    "%s: could not load firmware %s section, error %d\n",
8021		    __func__, ".data", error);
8022		return error;
8023	}
8024
8025	/* Now press "execute". */
8026	IWN_WRITE(sc, IWN_RESET, 0);
8027	return 0;
8028}
8029
8030/*
8031 * Extract text and data sections from a legacy firmware image.
8032 */
8033static int
8034iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8035{
8036	const uint32_t *ptr;
8037	size_t hdrlen = 24;
8038	uint32_t rev;
8039
8040	ptr = (const uint32_t *)fw->data;
8041	rev = le32toh(*ptr++);
8042
8043	sc->ucode_rev = rev;
8044
8045	/* Check firmware API version. */
8046	if (IWN_FW_API(rev) <= 1) {
8047		device_printf(sc->sc_dev,
8048		    "%s: bad firmware, need API version >=2\n", __func__);
8049		return EINVAL;
8050	}
8051	if (IWN_FW_API(rev) >= 3) {
8052		/* Skip build number (version 2 header). */
8053		hdrlen += 4;
8054		ptr++;
8055	}
8056	if (fw->size < hdrlen) {
8057		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8058		    __func__, fw->size);
8059		return EINVAL;
8060	}
8061	fw->main.textsz = le32toh(*ptr++);
8062	fw->main.datasz = le32toh(*ptr++);
8063	fw->init.textsz = le32toh(*ptr++);
8064	fw->init.datasz = le32toh(*ptr++);
8065	fw->boot.textsz = le32toh(*ptr++);
8066
8067	/* Check that all firmware sections fit. */
8068	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8069	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8070		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8071		    __func__, fw->size);
8072		return EINVAL;
8073	}
8074
8075	/* Get pointers to firmware sections. */
8076	fw->main.text = (const uint8_t *)ptr;
8077	fw->main.data = fw->main.text + fw->main.textsz;
8078	fw->init.text = fw->main.data + fw->main.datasz;
8079	fw->init.data = fw->init.text + fw->init.textsz;
8080	fw->boot.text = fw->init.data + fw->init.datasz;
8081	return 0;
8082}
8083
8084/*
8085 * Extract text and data sections from a TLV firmware image.
8086 */
8087static int
8088iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8089    uint16_t alt)
8090{
8091	const struct iwn_fw_tlv_hdr *hdr;
8092	const struct iwn_fw_tlv *tlv;
8093	const uint8_t *ptr, *end;
8094	uint64_t altmask;
8095	uint32_t len, tmp;
8096
8097	if (fw->size < sizeof (*hdr)) {
8098		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8099		    __func__, fw->size);
8100		return EINVAL;
8101	}
8102	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8103	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8104		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8105		    __func__, le32toh(hdr->signature));
8106		return EINVAL;
8107	}
8108	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8109	    le32toh(hdr->build));
8110	sc->ucode_rev = le32toh(hdr->rev);
8111
8112	/*
8113	 * Select the closest supported alternative that is less than
8114	 * or equal to the specified one.
8115	 */
8116	altmask = le64toh(hdr->altmask);
8117	while (alt > 0 && !(altmask & (1ULL << alt)))
8118		alt--;	/* Downgrade. */
8119	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8120
8121	ptr = (const uint8_t *)(hdr + 1);
8122	end = (const uint8_t *)(fw->data + fw->size);
8123
8124	/* Parse type-length-value fields. */
8125	while (ptr + sizeof (*tlv) <= end) {
8126		tlv = (const struct iwn_fw_tlv *)ptr;
8127		len = le32toh(tlv->len);
8128
8129		ptr += sizeof (*tlv);
8130		if (ptr + len > end) {
8131			device_printf(sc->sc_dev,
8132			    "%s: firmware too short: %zu bytes\n", __func__,
8133			    fw->size);
8134			return EINVAL;
8135		}
8136		/* Skip other alternatives. */
8137		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8138			goto next;
8139
8140		switch (le16toh(tlv->type)) {
8141		case IWN_FW_TLV_MAIN_TEXT:
8142			fw->main.text = ptr;
8143			fw->main.textsz = len;
8144			break;
8145		case IWN_FW_TLV_MAIN_DATA:
8146			fw->main.data = ptr;
8147			fw->main.datasz = len;
8148			break;
8149		case IWN_FW_TLV_INIT_TEXT:
8150			fw->init.text = ptr;
8151			fw->init.textsz = len;
8152			break;
8153		case IWN_FW_TLV_INIT_DATA:
8154			fw->init.data = ptr;
8155			fw->init.datasz = len;
8156			break;
8157		case IWN_FW_TLV_BOOT_TEXT:
8158			fw->boot.text = ptr;
8159			fw->boot.textsz = len;
8160			break;
8161		case IWN_FW_TLV_ENH_SENS:
8162			if (!len)
8163				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8164			break;
8165		case IWN_FW_TLV_PHY_CALIB:
8166			tmp = le32toh(*ptr);
8167			if (tmp < 253) {
8168				sc->reset_noise_gain = tmp;
8169				sc->noise_gain = tmp + 1;
8170			}
8171			break;
8172		case IWN_FW_TLV_PAN:
8173			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8174			DPRINTF(sc, IWN_DEBUG_RESET,
8175			    "PAN Support found: %d\n", 1);
8176			break;
8177		case IWN_FW_TLV_FLAGS:
8178			if (len < sizeof(uint32_t))
8179				break;
8180			if (len % sizeof(uint32_t))
8181				break;
8182			sc->tlv_feature_flags = le32toh(*ptr);
8183			DPRINTF(sc, IWN_DEBUG_RESET,
8184			    "%s: feature: 0x%08x\n",
8185			    __func__,
8186			    sc->tlv_feature_flags);
8187			break;
8188		case IWN_FW_TLV_PBREQ_MAXLEN:
8189		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8190		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8191		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8192		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8193		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8194		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8195		case IWN_FW_TLV_WOWLAN_INST:
8196		case IWN_FW_TLV_WOWLAN_DATA:
8197			DPRINTF(sc, IWN_DEBUG_RESET,
8198			    "TLV type %d recognized but not handled\n",
8199			    le16toh(tlv->type));
8200			break;
8201		default:
8202			DPRINTF(sc, IWN_DEBUG_RESET,
8203			    "TLV type %d not handled\n", le16toh(tlv->type));
8204			break;
8205		}
8206 next:		/* TLV fields are 32-bit aligned. */
8207		ptr += (len + 3) & ~3;
8208	}
8209	return 0;
8210}
8211
8212static int
8213iwn_read_firmware(struct iwn_softc *sc)
8214{
8215	struct iwn_fw_info *fw = &sc->fw;
8216	int error;
8217
8218	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8219
8220	IWN_UNLOCK(sc);
8221
8222	memset(fw, 0, sizeof (*fw));
8223
8224	/* Read firmware image from filesystem. */
8225	sc->fw_fp = firmware_get(sc->fwname);
8226	if (sc->fw_fp == NULL) {
8227		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8228		    __func__, sc->fwname);
8229		IWN_LOCK(sc);
8230		return EINVAL;
8231	}
8232	IWN_LOCK(sc);
8233
8234	fw->size = sc->fw_fp->datasize;
8235	fw->data = (const uint8_t *)sc->fw_fp->data;
8236	if (fw->size < sizeof (uint32_t)) {
8237		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8238		    __func__, fw->size);
8239		error = EINVAL;
8240		goto fail;
8241	}
8242
8243	/* Retrieve text and data sections. */
8244	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8245		error = iwn_read_firmware_leg(sc, fw);
8246	else
8247		error = iwn_read_firmware_tlv(sc, fw, 1);
8248	if (error != 0) {
8249		device_printf(sc->sc_dev,
8250		    "%s: could not read firmware sections, error %d\n",
8251		    __func__, error);
8252		goto fail;
8253	}
8254
8255	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8256
8257	/* Make sure text and data sections fit in hardware memory. */
8258	if (fw->main.textsz > sc->fw_text_maxsz ||
8259	    fw->main.datasz > sc->fw_data_maxsz ||
8260	    fw->init.textsz > sc->fw_text_maxsz ||
8261	    fw->init.datasz > sc->fw_data_maxsz ||
8262	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8263	    (fw->boot.textsz & 3) != 0) {
8264		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8265		    __func__);
8266		error = EINVAL;
8267		goto fail;
8268	}
8269
8270	/* We can proceed with loading the firmware. */
8271	return 0;
8272
8273fail:	iwn_unload_firmware(sc);
8274	return error;
8275}
8276
8277static void
8278iwn_unload_firmware(struct iwn_softc *sc)
8279{
8280	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8281	sc->fw_fp = NULL;
8282}
8283
8284static int
8285iwn_clock_wait(struct iwn_softc *sc)
8286{
8287	int ntries;
8288
8289	/* Set "initialization complete" bit. */
8290	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8291
8292	/* Wait for clock stabilization. */
8293	for (ntries = 0; ntries < 2500; ntries++) {
8294		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8295			return 0;
8296		DELAY(10);
8297	}
8298	device_printf(sc->sc_dev,
8299	    "%s: timeout waiting for clock stabilization\n", __func__);
8300	return ETIMEDOUT;
8301}
8302
8303static int
8304iwn_apm_init(struct iwn_softc *sc)
8305{
8306	uint32_t reg;
8307	int error;
8308
8309	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8310
8311	/* Disable L0s exit timer (NMI bug workaround). */
8312	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8313	/* Don't wait for ICH L0s (ICH bug workaround). */
8314	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8315
8316	/* Set FH wait threshold to max (HW bug under stress workaround). */
8317	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8318
8319	/* Enable HAP INTA to move adapter from L1a to L0s. */
8320	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8321
8322	/* Retrieve PCIe Active State Power Management (ASPM). */
8323	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8324	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8325	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8326		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8327	else
8328		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8329
8330	if (sc->base_params->pll_cfg_val)
8331		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8332
8333	/* Wait for clock stabilization before accessing prph. */
8334	if ((error = iwn_clock_wait(sc)) != 0)
8335		return error;
8336
8337	if ((error = iwn_nic_lock(sc)) != 0)
8338		return error;
8339	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8340		/* Enable DMA and BSM (Bootstrap State Machine). */
8341		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8342		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8343		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8344	} else {
8345		/* Enable DMA. */
8346		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8347		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8348	}
8349	DELAY(20);
8350	/* Disable L1-Active. */
8351	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8352	iwn_nic_unlock(sc);
8353
8354	return 0;
8355}
8356
8357static void
8358iwn_apm_stop_master(struct iwn_softc *sc)
8359{
8360	int ntries;
8361
8362	/* Stop busmaster DMA activity. */
8363	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8364	for (ntries = 0; ntries < 100; ntries++) {
8365		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8366			return;
8367		DELAY(10);
8368	}
8369	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8370}
8371
8372static void
8373iwn_apm_stop(struct iwn_softc *sc)
8374{
8375	iwn_apm_stop_master(sc);
8376
8377	/* Reset the entire device. */
8378	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8379	DELAY(10);
8380	/* Clear "initialization complete" bit. */
8381	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8382}
8383
8384static int
8385iwn4965_nic_config(struct iwn_softc *sc)
8386{
8387	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8388
8389	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8390		/*
8391		 * I don't believe this to be correct but this is what the
8392		 * vendor driver is doing. Probably the bits should not be
8393		 * shifted in IWN_RFCFG_*.
8394		 */
8395		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8396		    IWN_RFCFG_TYPE(sc->rfcfg) |
8397		    IWN_RFCFG_STEP(sc->rfcfg) |
8398		    IWN_RFCFG_DASH(sc->rfcfg));
8399	}
8400	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8401	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8402	return 0;
8403}
8404
8405static int
8406iwn5000_nic_config(struct iwn_softc *sc)
8407{
8408	uint32_t tmp;
8409	int error;
8410
8411	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8412
8413	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8414		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8415		    IWN_RFCFG_TYPE(sc->rfcfg) |
8416		    IWN_RFCFG_STEP(sc->rfcfg) |
8417		    IWN_RFCFG_DASH(sc->rfcfg));
8418	}
8419	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8420	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8421
8422	if ((error = iwn_nic_lock(sc)) != 0)
8423		return error;
8424	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8425
8426	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8427		/*
8428		 * Select first Switching Voltage Regulator (1.32V) to
8429		 * solve a stability issue related to noisy DC2DC line
8430		 * in the silicon of 1000 Series.
8431		 */
8432		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8433		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8434		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8435		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8436	}
8437	iwn_nic_unlock(sc);
8438
8439	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8440		/* Use internal power amplifier only. */
8441		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8442	}
8443	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8444		/* Indicate that ROM calibration version is >=6. */
8445		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8446	}
8447	if (sc->base_params->additional_gp_drv_bit)
8448		IWN_SETBITS(sc, IWN_GP_DRIVER,
8449		    sc->base_params->additional_gp_drv_bit);
8450	return 0;
8451}
8452
8453/*
8454 * Take NIC ownership over Intel Active Management Technology (AMT).
8455 */
8456static int
8457iwn_hw_prepare(struct iwn_softc *sc)
8458{
8459	int ntries;
8460
8461	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8462
8463	/* Check if hardware is ready. */
8464	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8465	for (ntries = 0; ntries < 5; ntries++) {
8466		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8467		    IWN_HW_IF_CONFIG_NIC_READY)
8468			return 0;
8469		DELAY(10);
8470	}
8471
8472	/* Hardware not ready, force into ready state. */
8473	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8474	for (ntries = 0; ntries < 15000; ntries++) {
8475		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8476		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8477			break;
8478		DELAY(10);
8479	}
8480	if (ntries == 15000)
8481		return ETIMEDOUT;
8482
8483	/* Hardware should be ready now. */
8484	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8485	for (ntries = 0; ntries < 5; ntries++) {
8486		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8487		    IWN_HW_IF_CONFIG_NIC_READY)
8488			return 0;
8489		DELAY(10);
8490	}
8491	return ETIMEDOUT;
8492}
8493
8494static int
8495iwn_hw_init(struct iwn_softc *sc)
8496{
8497	struct iwn_ops *ops = &sc->ops;
8498	int error, chnl, qid;
8499
8500	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8501
8502	/* Clear pending interrupts. */
8503	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8504
8505	if ((error = iwn_apm_init(sc)) != 0) {
8506		device_printf(sc->sc_dev,
8507		    "%s: could not power ON adapter, error %d\n", __func__,
8508		    error);
8509		return error;
8510	}
8511
8512	/* Select VMAIN power source. */
8513	if ((error = iwn_nic_lock(sc)) != 0)
8514		return error;
8515	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8516	iwn_nic_unlock(sc);
8517
8518	/* Perform adapter-specific initialization. */
8519	if ((error = ops->nic_config(sc)) != 0)
8520		return error;
8521
8522	/* Initialize RX ring. */
8523	if ((error = iwn_nic_lock(sc)) != 0)
8524		return error;
8525	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8526	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8527	/* Set physical address of RX ring (256-byte aligned). */
8528	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8529	/* Set physical address of RX status (16-byte aligned). */
8530	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8531	/* Enable RX. */
8532	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8533	    IWN_FH_RX_CONFIG_ENA           |
8534	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8535	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8536	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8537	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8538	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8539	iwn_nic_unlock(sc);
8540	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8541
8542	if ((error = iwn_nic_lock(sc)) != 0)
8543		return error;
8544
8545	/* Initialize TX scheduler. */
8546	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8547
8548	/* Set physical address of "keep warm" page (16-byte aligned). */
8549	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8550
8551	/* Initialize TX rings. */
8552	for (qid = 0; qid < sc->ntxqs; qid++) {
8553		struct iwn_tx_ring *txq = &sc->txq[qid];
8554
8555		/* Set physical address of TX ring (256-byte aligned). */
8556		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8557		    txq->desc_dma.paddr >> 8);
8558	}
8559	iwn_nic_unlock(sc);
8560
8561	/* Enable DMA channels. */
8562	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8563		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8564		    IWN_FH_TX_CONFIG_DMA_ENA |
8565		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8566	}
8567
8568	/* Clear "radio off" and "commands blocked" bits. */
8569	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8570	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8571
8572	/* Clear pending interrupts. */
8573	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8574	/* Enable interrupt coalescing. */
8575	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8576	/* Enable interrupts. */
8577	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8578
8579	/* _Really_ make sure "radio off" bit is cleared! */
8580	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8581	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8582
8583	/* Enable shadow registers. */
8584	if (sc->base_params->shadow_reg_enable)
8585		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8586
8587	if ((error = ops->load_firmware(sc)) != 0) {
8588		device_printf(sc->sc_dev,
8589		    "%s: could not load firmware, error %d\n", __func__,
8590		    error);
8591		return error;
8592	}
8593	/* Wait at most one second for firmware alive notification. */
8594	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8595		device_printf(sc->sc_dev,
8596		    "%s: timeout waiting for adapter to initialize, error %d\n",
8597		    __func__, error);
8598		return error;
8599	}
8600	/* Do post-firmware initialization. */
8601
8602	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8603
8604	return ops->post_alive(sc);
8605}
8606
8607static void
8608iwn_hw_stop(struct iwn_softc *sc)
8609{
8610	int chnl, qid, ntries;
8611
8612	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8613
8614	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8615
8616	/* Disable interrupts. */
8617	IWN_WRITE(sc, IWN_INT_MASK, 0);
8618	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8619	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8620	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8621
8622	/* Make sure we no longer hold the NIC lock. */
8623	iwn_nic_unlock(sc);
8624
8625	/* Stop TX scheduler. */
8626	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8627
8628	/* Stop all DMA channels. */
8629	if (iwn_nic_lock(sc) == 0) {
8630		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8631			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8632			for (ntries = 0; ntries < 200; ntries++) {
8633				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8634				    IWN_FH_TX_STATUS_IDLE(chnl))
8635					break;
8636				DELAY(10);
8637			}
8638		}
8639		iwn_nic_unlock(sc);
8640	}
8641
8642	/* Stop RX ring. */
8643	iwn_reset_rx_ring(sc, &sc->rxq);
8644
8645	/* Reset all TX rings. */
8646	for (qid = 0; qid < sc->ntxqs; qid++)
8647		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8648
8649	if (iwn_nic_lock(sc) == 0) {
8650		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8651		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8652		iwn_nic_unlock(sc);
8653	}
8654	DELAY(5);
8655	/* Power OFF adapter. */
8656	iwn_apm_stop(sc);
8657}
8658
8659static void
8660iwn_radio_on(void *arg0, int pending)
8661{
8662	struct iwn_softc *sc = arg0;
8663	struct ieee80211com *ic = &sc->sc_ic;
8664	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8665
8666	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8667
8668	if (vap != NULL) {
8669		iwn_init(sc);
8670		ieee80211_init(vap);
8671	}
8672}
8673
8674static void
8675iwn_radio_off(void *arg0, int pending)
8676{
8677	struct iwn_softc *sc = arg0;
8678	struct ieee80211com *ic = &sc->sc_ic;
8679	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8680
8681	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8682
8683	iwn_stop(sc);
8684	if (vap != NULL)
8685		ieee80211_stop(vap);
8686
8687	/* Enable interrupts to get RF toggle notification. */
8688	IWN_LOCK(sc);
8689	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8690	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8691	IWN_UNLOCK(sc);
8692}
8693
8694static void
8695iwn_panicked(void *arg0, int pending)
8696{
8697	struct iwn_softc *sc = arg0;
8698	struct ieee80211com *ic = &sc->sc_ic;
8699	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8700#if 0
8701	int error;
8702#endif
8703
8704	if (vap == NULL) {
8705		printf("%s: null vap\n", __func__);
8706		return;
8707	}
8708
8709	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8710	    "restarting\n", __func__, vap->iv_state);
8711
8712	/*
8713	 * This is not enough work. We need to also reinitialise
8714	 * the correct transmit state for aggregation enabled queues,
8715	 * which has a very specific requirement of
8716	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8717	 * we definitely don't!) then the firmware will just panic again.
8718	 */
8719#if 1
8720	ieee80211_restart_all(ic);
8721#else
8722	IWN_LOCK(sc);
8723
8724	iwn_stop_locked(sc);
8725	iwn_init_locked(sc);
8726	if (vap->iv_state >= IEEE80211_S_AUTH &&
8727	    (error = iwn_auth(sc, vap)) != 0) {
8728		device_printf(sc->sc_dev,
8729		    "%s: could not move to auth state\n", __func__);
8730	}
8731	if (vap->iv_state >= IEEE80211_S_RUN &&
8732	    (error = iwn_run(sc, vap)) != 0) {
8733		device_printf(sc->sc_dev,
8734		    "%s: could not move to run state\n", __func__);
8735	}
8736
8737	IWN_UNLOCK(sc);
8738#endif
8739}
8740
8741static void
8742iwn_init_locked(struct iwn_softc *sc)
8743{
8744	int error;
8745
8746	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8747
8748	IWN_LOCK_ASSERT(sc);
8749
8750	sc->sc_flags |= IWN_FLAG_RUNNING;
8751
8752	if ((error = iwn_hw_prepare(sc)) != 0) {
8753		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8754		    __func__, error);
8755		goto fail;
8756	}
8757
8758	/* Initialize interrupt mask to default value. */
8759	sc->int_mask = IWN_INT_MASK_DEF;
8760	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8761
8762	/* Check that the radio is not disabled by hardware switch. */
8763	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8764		device_printf(sc->sc_dev,
8765		    "radio is disabled by hardware switch\n");
8766		/* Enable interrupts to get RF toggle notifications. */
8767		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8768		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8769		return;
8770	}
8771
8772	/* Read firmware images from the filesystem. */
8773	if ((error = iwn_read_firmware(sc)) != 0) {
8774		device_printf(sc->sc_dev,
8775		    "%s: could not read firmware, error %d\n", __func__,
8776		    error);
8777		goto fail;
8778	}
8779
8780	/* Initialize hardware and upload firmware. */
8781	error = iwn_hw_init(sc);
8782	iwn_unload_firmware(sc);
8783	if (error != 0) {
8784		device_printf(sc->sc_dev,
8785		    "%s: could not initialize hardware, error %d\n", __func__,
8786		    error);
8787		goto fail;
8788	}
8789
8790	/* Configure adapter now that it is ready. */
8791	if ((error = iwn_config(sc)) != 0) {
8792		device_printf(sc->sc_dev,
8793		    "%s: could not configure device, error %d\n", __func__,
8794		    error);
8795		goto fail;
8796	}
8797
8798	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8799
8800	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8801
8802	return;
8803
8804fail:
8805	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8806	iwn_stop_locked(sc);
8807	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8808}
8809
8810static void
8811iwn_init(struct iwn_softc *sc)
8812{
8813
8814	IWN_LOCK(sc);
8815	iwn_init_locked(sc);
8816	IWN_UNLOCK(sc);
8817
8818	if (sc->sc_flags & IWN_FLAG_RUNNING)
8819		ieee80211_start_all(&sc->sc_ic);
8820}
8821
8822static void
8823iwn_stop_locked(struct iwn_softc *sc)
8824{
8825
8826	IWN_LOCK_ASSERT(sc);
8827
8828	sc->sc_is_scanning = 0;
8829	sc->sc_tx_timer = 0;
8830	callout_stop(&sc->watchdog_to);
8831	callout_stop(&sc->scan_timeout);
8832	callout_stop(&sc->calib_to);
8833	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8834
8835	/* Power OFF hardware. */
8836	iwn_hw_stop(sc);
8837}
8838
8839static void
8840iwn_stop(struct iwn_softc *sc)
8841{
8842	IWN_LOCK(sc);
8843	iwn_stop_locked(sc);
8844	IWN_UNLOCK(sc);
8845}
8846
8847/*
8848 * Callback from net80211 to start a scan.
8849 */
8850static void
8851iwn_scan_start(struct ieee80211com *ic)
8852{
8853	struct iwn_softc *sc = ic->ic_softc;
8854
8855	IWN_LOCK(sc);
8856	/* make the link LED blink while we're scanning */
8857	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8858	IWN_UNLOCK(sc);
8859}
8860
8861/*
8862 * Callback from net80211 to terminate a scan.
8863 */
8864static void
8865iwn_scan_end(struct ieee80211com *ic)
8866{
8867	struct iwn_softc *sc = ic->ic_softc;
8868	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8869
8870	IWN_LOCK(sc);
8871	if (vap->iv_state == IEEE80211_S_RUN) {
8872		/* Set link LED to ON status if we are associated */
8873		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8874	}
8875	IWN_UNLOCK(sc);
8876}
8877
8878/*
8879 * Callback from net80211 to force a channel change.
8880 */
8881static void
8882iwn_set_channel(struct ieee80211com *ic)
8883{
8884	const struct ieee80211_channel *c = ic->ic_curchan;
8885	struct iwn_softc *sc = ic->ic_softc;
8886	int error;
8887
8888	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8889
8890	IWN_LOCK(sc);
8891	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8892	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8893	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8894	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8895
8896	/*
8897	 * Only need to set the channel in Monitor mode. AP scanning and auth
8898	 * are already taken care of by their respective firmware commands.
8899	 */
8900	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8901		error = iwn_config(sc);
8902		if (error != 0)
8903		device_printf(sc->sc_dev,
8904		    "%s: error %d settting channel\n", __func__, error);
8905	}
8906	IWN_UNLOCK(sc);
8907}
8908
8909/*
8910 * Callback from net80211 to start scanning of the current channel.
8911 */
8912static void
8913iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8914{
8915	struct ieee80211vap *vap = ss->ss_vap;
8916	struct ieee80211com *ic = vap->iv_ic;
8917	struct iwn_softc *sc = ic->ic_softc;
8918	int error;
8919
8920	IWN_LOCK(sc);
8921	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8922	IWN_UNLOCK(sc);
8923	if (error != 0)
8924		ieee80211_cancel_scan(vap);
8925}
8926
8927/*
8928 * Callback from net80211 to handle the minimum dwell time being met.
8929 * The intent is to terminate the scan but we just let the firmware
8930 * notify us when it's finished as we have no safe way to abort it.
8931 */
8932static void
8933iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8934{
8935	/* NB: don't try to abort scan; wait for firmware to finish */
8936}
8937#ifdef	IWN_DEBUG
8938#define	IWN_DESC(x) case x:	return #x
8939
8940/*
8941 * Translate CSR code to string
8942 */
8943static char *iwn_get_csr_string(int csr)
8944{
8945	switch (csr) {
8946		IWN_DESC(IWN_HW_IF_CONFIG);
8947		IWN_DESC(IWN_INT_COALESCING);
8948		IWN_DESC(IWN_INT);
8949		IWN_DESC(IWN_INT_MASK);
8950		IWN_DESC(IWN_FH_INT);
8951		IWN_DESC(IWN_GPIO_IN);
8952		IWN_DESC(IWN_RESET);
8953		IWN_DESC(IWN_GP_CNTRL);
8954		IWN_DESC(IWN_HW_REV);
8955		IWN_DESC(IWN_EEPROM);
8956		IWN_DESC(IWN_EEPROM_GP);
8957		IWN_DESC(IWN_OTP_GP);
8958		IWN_DESC(IWN_GIO);
8959		IWN_DESC(IWN_GP_UCODE);
8960		IWN_DESC(IWN_GP_DRIVER);
8961		IWN_DESC(IWN_UCODE_GP1);
8962		IWN_DESC(IWN_UCODE_GP2);
8963		IWN_DESC(IWN_LED);
8964		IWN_DESC(IWN_DRAM_INT_TBL);
8965		IWN_DESC(IWN_GIO_CHICKEN);
8966		IWN_DESC(IWN_ANA_PLL);
8967		IWN_DESC(IWN_HW_REV_WA);
8968		IWN_DESC(IWN_DBG_HPET_MEM);
8969	default:
8970		return "UNKNOWN CSR";
8971	}
8972}
8973
8974/*
8975 * This function print firmware register
8976 */
8977static void
8978iwn_debug_register(struct iwn_softc *sc)
8979{
8980	int i;
8981	static const uint32_t csr_tbl[] = {
8982		IWN_HW_IF_CONFIG,
8983		IWN_INT_COALESCING,
8984		IWN_INT,
8985		IWN_INT_MASK,
8986		IWN_FH_INT,
8987		IWN_GPIO_IN,
8988		IWN_RESET,
8989		IWN_GP_CNTRL,
8990		IWN_HW_REV,
8991		IWN_EEPROM,
8992		IWN_EEPROM_GP,
8993		IWN_OTP_GP,
8994		IWN_GIO,
8995		IWN_GP_UCODE,
8996		IWN_GP_DRIVER,
8997		IWN_UCODE_GP1,
8998		IWN_UCODE_GP2,
8999		IWN_LED,
9000		IWN_DRAM_INT_TBL,
9001		IWN_GIO_CHICKEN,
9002		IWN_ANA_PLL,
9003		IWN_HW_REV_WA,
9004		IWN_DBG_HPET_MEM,
9005	};
9006	DPRINTF(sc, IWN_DEBUG_REGISTER,
9007	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9008	    "\n");
9009	for (i = 0; i <  nitems(csr_tbl); i++){
9010		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9011			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9012		if ((i+1) % 3 == 0)
9013			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9014	}
9015	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9016}
9017#endif
9018
9019
9020