if_iwm.c revision 330221
1/*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2
3/*
4 * Copyright (c) 2014 genua mbh <info@genua.de>
5 * Copyright (c) 2014 Fixup Software Ltd.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*-
21 * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22 * which were used as the reference documentation for this implementation.
23 *
24 * Driver version we are currently based off of is
25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26 *
27 ***********************************************************************
28 *
29 * This file is provided under a dual BSD/GPLv2 license.  When using or
30 * redistributing this file, you may do so under either license.
31 *
32 * GPL LICENSE SUMMARY
33 *
34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35 *
36 * This program is free software; you can redistribute it and/or modify
37 * it under the terms of version 2 of the GNU General Public License as
38 * published by the Free Software Foundation.
39 *
40 * This program is distributed in the hope that it will be useful, but
41 * WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43 * General Public License for more details.
44 *
45 * You should have received a copy of the GNU General Public License
46 * along with this program; if not, write to the Free Software
47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48 * USA
49 *
50 * The full GNU General Public License is included in this distribution
51 * in the file called COPYING.
52 *
53 * Contact Information:
54 *  Intel Linux Wireless <ilw@linux.intel.com>
55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56 *
57 *
58 * BSD LICENSE
59 *
60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 *  * Redistributions of source code must retain the above copyright
68 *    notice, this list of conditions and the following disclaimer.
69 *  * Redistributions in binary form must reproduce the above copyright
70 *    notice, this list of conditions and the following disclaimer in
71 *    the documentation and/or other materials provided with the
72 *    distribution.
73 *  * Neither the name Intel Corporation nor the names of its
74 *    contributors may be used to endorse or promote products derived
75 *    from this software without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88 */
89
90/*-
91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92 *
93 * Permission to use, copy, modify, and distribute this software for any
94 * purpose with or without fee is hereby granted, provided that the above
95 * copyright notice and this permission notice appear in all copies.
96 *
97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104 */
105#include <sys/cdefs.h>
106__FBSDID("$FreeBSD: stable/11/sys/dev/iwm/if_iwm.c 330221 2018-03-01 06:53:37Z eadler $");
107
108#include "opt_wlan.h"
109
110#include <sys/param.h>
111#include <sys/bus.h>
112#include <sys/conf.h>
113#include <sys/endian.h>
114#include <sys/firmware.h>
115#include <sys/kernel.h>
116#include <sys/malloc.h>
117#include <sys/mbuf.h>
118#include <sys/mutex.h>
119#include <sys/module.h>
120#include <sys/proc.h>
121#include <sys/rman.h>
122#include <sys/socket.h>
123#include <sys/sockio.h>
124#include <sys/sysctl.h>
125#include <sys/linker.h>
126
127#include <machine/bus.h>
128#include <machine/endian.h>
129#include <machine/resource.h>
130
131#include <dev/pci/pcivar.h>
132#include <dev/pci/pcireg.h>
133
134#include <net/bpf.h>
135
136#include <net/if.h>
137#include <net/if_var.h>
138#include <net/if_arp.h>
139#include <net/if_dl.h>
140#include <net/if_media.h>
141#include <net/if_types.h>
142
143#include <netinet/in.h>
144#include <netinet/in_systm.h>
145#include <netinet/if_ether.h>
146#include <netinet/ip.h>
147
148#include <net80211/ieee80211_var.h>
149#include <net80211/ieee80211_regdomain.h>
150#include <net80211/ieee80211_ratectl.h>
151#include <net80211/ieee80211_radiotap.h>
152
153#include <dev/iwm/if_iwmreg.h>
154#include <dev/iwm/if_iwmvar.h>
155#include <dev/iwm/if_iwm_config.h>
156#include <dev/iwm/if_iwm_debug.h>
157#include <dev/iwm/if_iwm_notif_wait.h>
158#include <dev/iwm/if_iwm_util.h>
159#include <dev/iwm/if_iwm_binding.h>
160#include <dev/iwm/if_iwm_phy_db.h>
161#include <dev/iwm/if_iwm_mac_ctxt.h>
162#include <dev/iwm/if_iwm_phy_ctxt.h>
163#include <dev/iwm/if_iwm_time_event.h>
164#include <dev/iwm/if_iwm_power.h>
165#include <dev/iwm/if_iwm_scan.h>
166#include <dev/iwm/if_iwm_sta.h>
167
168#include <dev/iwm/if_iwm_pcie_trans.h>
169#include <dev/iwm/if_iwm_led.h>
170#include <dev/iwm/if_iwm_fw.h>
171
172/* From DragonflyBSD */
173#define mtodoff(m, t, off)      ((t)((m)->m_data + (off)))
174
175const uint8_t iwm_nvm_channels[] = {
176	/* 2.4 GHz */
177	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
178	/* 5 GHz */
179	36, 40, 44, 48, 52, 56, 60, 64,
180	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
181	149, 153, 157, 161, 165
182};
183_Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
184    "IWM_NUM_CHANNELS is too small");
185
186const uint8_t iwm_nvm_channels_8000[] = {
187	/* 2.4 GHz */
188	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
189	/* 5 GHz */
190	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
191	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
192	149, 153, 157, 161, 165, 169, 173, 177, 181
193};
194_Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
195    "IWM_NUM_CHANNELS_8000 is too small");
196
197#define IWM_NUM_2GHZ_CHANNELS	14
198#define IWM_N_HW_ADDR_MASK	0xF
199
200/*
201 * XXX For now, there's simply a fixed set of rate table entries
202 * that are populated.
203 */
204const struct iwm_rate {
205	uint8_t rate;
206	uint8_t plcp;
207} iwm_rates[] = {
208	{   2,	IWM_RATE_1M_PLCP  },
209	{   4,	IWM_RATE_2M_PLCP  },
210	{  11,	IWM_RATE_5M_PLCP  },
211	{  22,	IWM_RATE_11M_PLCP },
212	{  12,	IWM_RATE_6M_PLCP  },
213	{  18,	IWM_RATE_9M_PLCP  },
214	{  24,	IWM_RATE_12M_PLCP },
215	{  36,	IWM_RATE_18M_PLCP },
216	{  48,	IWM_RATE_24M_PLCP },
217	{  72,	IWM_RATE_36M_PLCP },
218	{  96,	IWM_RATE_48M_PLCP },
219	{ 108,	IWM_RATE_54M_PLCP },
220};
221#define IWM_RIDX_CCK	0
222#define IWM_RIDX_OFDM	4
223#define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
224#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
225#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
226
227struct iwm_nvm_section {
228	uint16_t length;
229	uint8_t *data;
230};
231
232#define IWM_MVM_UCODE_ALIVE_TIMEOUT	hz
233#define IWM_MVM_UCODE_CALIB_TIMEOUT	(2*hz)
234
235struct iwm_mvm_alive_data {
236	int valid;
237	uint32_t scd_base_addr;
238};
239
240static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
241static int	iwm_firmware_store_section(struct iwm_softc *,
242                                           enum iwm_ucode_type,
243                                           const uint8_t *, size_t);
244static int	iwm_set_default_calib(struct iwm_softc *, const void *);
245static void	iwm_fw_info_free(struct iwm_fw_info *);
246static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
247static int	iwm_alloc_fwmem(struct iwm_softc *);
248static int	iwm_alloc_sched(struct iwm_softc *);
249static int	iwm_alloc_kw(struct iwm_softc *);
250static int	iwm_alloc_ict(struct iwm_softc *);
251static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
252static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
253static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
254static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
255                                  int);
256static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
257static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
258static void	iwm_enable_interrupts(struct iwm_softc *);
259static void	iwm_restore_interrupts(struct iwm_softc *);
260static void	iwm_disable_interrupts(struct iwm_softc *);
261static void	iwm_ict_reset(struct iwm_softc *);
262static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
263static void	iwm_stop_device(struct iwm_softc *);
264static void	iwm_mvm_nic_config(struct iwm_softc *);
265static int	iwm_nic_rx_init(struct iwm_softc *);
266static int	iwm_nic_tx_init(struct iwm_softc *);
267static int	iwm_nic_init(struct iwm_softc *);
268static int	iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t);
269static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
270                                   uint16_t, uint8_t *, uint16_t *);
271static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
272				     uint16_t *, uint32_t);
273static uint32_t	iwm_eeprom_channel_flags(uint16_t);
274static void	iwm_add_channel_band(struct iwm_softc *,
275		    struct ieee80211_channel[], int, int *, int, size_t,
276		    const uint8_t[]);
277static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
278		    struct ieee80211_channel[]);
279static struct iwm_nvm_data *
280	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
281			   const uint16_t *, const uint16_t *,
282			   const uint16_t *, const uint16_t *,
283			   const uint16_t *);
284static void	iwm_free_nvm_data(struct iwm_nvm_data *);
285static void	iwm_set_hw_address_family_8000(struct iwm_softc *,
286					       struct iwm_nvm_data *,
287					       const uint16_t *,
288					       const uint16_t *);
289static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
290			    const uint16_t *);
291static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
292static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
293				  const uint16_t *);
294static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
295				   const uint16_t *);
296static void	iwm_set_radio_cfg(const struct iwm_softc *,
297				  struct iwm_nvm_data *, uint32_t);
298static struct iwm_nvm_data *
299	iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
300static int	iwm_nvm_init(struct iwm_softc *);
301static int	iwm_pcie_load_section(struct iwm_softc *, uint8_t,
302				      const struct iwm_fw_desc *);
303static int	iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t,
304					     bus_addr_t, uint32_t);
305static int	iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
306						const struct iwm_fw_sects *,
307						int, int *);
308static int	iwm_pcie_load_cpu_sections(struct iwm_softc *,
309					   const struct iwm_fw_sects *,
310					   int, int *);
311static int	iwm_pcie_load_given_ucode_8000(struct iwm_softc *,
312					       const struct iwm_fw_sects *);
313static int	iwm_pcie_load_given_ucode(struct iwm_softc *,
314					  const struct iwm_fw_sects *);
315static int	iwm_start_fw(struct iwm_softc *, const struct iwm_fw_sects *);
316static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
317static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
318static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
319                                              enum iwm_ucode_type);
320static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
321static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
322static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
323					    struct iwm_rx_phy_info *);
324static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
325                                      struct iwm_rx_packet *);
326static int	iwm_get_noise(struct iwm_softc *sc,
327		    const struct iwm_mvm_statistics_rx_non_phy *);
328static boolean_t iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct mbuf *,
329				    uint32_t, boolean_t);
330static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
331                                         struct iwm_rx_packet *,
332				         struct iwm_node *);
333static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *);
334static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
335#if 0
336static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
337                                 uint16_t);
338#endif
339static const struct iwm_rate *
340	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
341			struct mbuf *, struct iwm_tx_cmd *);
342static int	iwm_tx(struct iwm_softc *, struct mbuf *,
343                       struct ieee80211_node *, int);
344static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
345			     const struct ieee80211_bpf_params *);
346static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_vap *);
347static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
348static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
349static int	iwm_release(struct iwm_softc *, struct iwm_node *);
350static struct ieee80211_node *
351		iwm_node_alloc(struct ieee80211vap *,
352		               const uint8_t[IEEE80211_ADDR_LEN]);
353static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
354static int	iwm_media_change(struct ifnet *);
355static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
356static void	iwm_endscan_cb(void *, int);
357static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
358					struct iwm_sf_cfg_cmd *,
359					struct ieee80211_node *);
360static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
361static int	iwm_send_bt_init_conf(struct iwm_softc *);
362static boolean_t iwm_mvm_is_lar_supported(struct iwm_softc *);
363static boolean_t iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *);
364static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
365static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
366static int	iwm_init_hw(struct iwm_softc *);
367static void	iwm_init(struct iwm_softc *);
368static void	iwm_start(struct iwm_softc *);
369static void	iwm_stop(struct iwm_softc *);
370static void	iwm_watchdog(void *);
371static void	iwm_parent(struct ieee80211com *);
372#ifdef IWM_DEBUG
373static const char *
374		iwm_desc_lookup(uint32_t);
375static void	iwm_nic_error(struct iwm_softc *);
376static void	iwm_nic_umac_error(struct iwm_softc *);
377#endif
378static void	iwm_handle_rxb(struct iwm_softc *, struct mbuf *);
379static void	iwm_notif_intr(struct iwm_softc *);
380static void	iwm_intr(void *);
381static int	iwm_attach(device_t);
382static int	iwm_is_valid_ether_addr(uint8_t *);
383static void	iwm_preinit(void *);
384static int	iwm_detach_local(struct iwm_softc *sc, int);
385static void	iwm_init_task(void *);
386static void	iwm_radiotap_attach(struct iwm_softc *);
387static struct ieee80211vap *
388		iwm_vap_create(struct ieee80211com *,
389		               const char [IFNAMSIZ], int,
390		               enum ieee80211_opmode, int,
391		               const uint8_t [IEEE80211_ADDR_LEN],
392		               const uint8_t [IEEE80211_ADDR_LEN]);
393static void	iwm_vap_delete(struct ieee80211vap *);
394static void	iwm_scan_start(struct ieee80211com *);
395static void	iwm_scan_end(struct ieee80211com *);
396static void	iwm_update_mcast(struct ieee80211com *);
397static void	iwm_set_channel(struct ieee80211com *);
398static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
399static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
400static int	iwm_detach(device_t);
401
402static int	iwm_lar_disable = 0;
403TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable);
404
405/*
406 * Firmware parser.
407 */
408
409static int
410iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
411{
412	const struct iwm_fw_cscheme_list *l = (const void *)data;
413
414	if (dlen < sizeof(*l) ||
415	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
416		return EINVAL;
417
418	/* we don't actually store anything for now, always use s/w crypto */
419
420	return 0;
421}
422
423static int
424iwm_firmware_store_section(struct iwm_softc *sc,
425    enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
426{
427	struct iwm_fw_sects *fws;
428	struct iwm_fw_desc *fwone;
429
430	if (type >= IWM_UCODE_TYPE_MAX)
431		return EINVAL;
432	if (dlen < sizeof(uint32_t))
433		return EINVAL;
434
435	fws = &sc->sc_fw.fw_sects[type];
436	if (fws->fw_count >= IWM_UCODE_SECTION_MAX)
437		return EINVAL;
438
439	fwone = &fws->fw_sect[fws->fw_count];
440
441	/* first 32bit are device load offset */
442	memcpy(&fwone->offset, data, sizeof(uint32_t));
443
444	/* rest is data */
445	fwone->data = data + sizeof(uint32_t);
446	fwone->len = dlen - sizeof(uint32_t);
447
448	fws->fw_count++;
449
450	return 0;
451}
452
453#define IWM_DEFAULT_SCAN_CHANNELS 40
454
455/* iwlwifi: iwl-drv.c */
456struct iwm_tlv_calib_data {
457	uint32_t ucode_type;
458	struct iwm_tlv_calib_ctrl calib;
459} __packed;
460
461static int
462iwm_set_default_calib(struct iwm_softc *sc, const void *data)
463{
464	const struct iwm_tlv_calib_data *def_calib = data;
465	uint32_t ucode_type = le32toh(def_calib->ucode_type);
466
467	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
468		device_printf(sc->sc_dev,
469		    "Wrong ucode_type %u for default "
470		    "calibration.\n", ucode_type);
471		return EINVAL;
472	}
473
474	sc->sc_default_calib[ucode_type].flow_trigger =
475	    def_calib->calib.flow_trigger;
476	sc->sc_default_calib[ucode_type].event_trigger =
477	    def_calib->calib.event_trigger;
478
479	return 0;
480}
481
482static int
483iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data,
484			struct iwm_ucode_capabilities *capa)
485{
486	const struct iwm_ucode_api *ucode_api = (const void *)data;
487	uint32_t api_index = le32toh(ucode_api->api_index);
488	uint32_t api_flags = le32toh(ucode_api->api_flags);
489	int i;
490
491	if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
492		device_printf(sc->sc_dev,
493		    "api flags index %d larger than supported by driver\n",
494		    api_index);
495		/* don't return an error so we can load FW that has more bits */
496		return 0;
497	}
498
499	for (i = 0; i < 32; i++) {
500		if (api_flags & (1U << i))
501			setbit(capa->enabled_api, i + 32 * api_index);
502	}
503
504	return 0;
505}
506
507static int
508iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data,
509			   struct iwm_ucode_capabilities *capa)
510{
511	const struct iwm_ucode_capa *ucode_capa = (const void *)data;
512	uint32_t api_index = le32toh(ucode_capa->api_index);
513	uint32_t api_flags = le32toh(ucode_capa->api_capa);
514	int i;
515
516	if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
517		device_printf(sc->sc_dev,
518		    "capa flags index %d larger than supported by driver\n",
519		    api_index);
520		/* don't return an error so we can load FW that has more bits */
521		return 0;
522	}
523
524	for (i = 0; i < 32; i++) {
525		if (api_flags & (1U << i))
526			setbit(capa->enabled_capa, i + 32 * api_index);
527	}
528
529	return 0;
530}
531
532static void
533iwm_fw_info_free(struct iwm_fw_info *fw)
534{
535	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
536	fw->fw_fp = NULL;
537	/* don't touch fw->fw_status */
538	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
539}
540
541static int
542iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
543{
544	struct iwm_fw_info *fw = &sc->sc_fw;
545	const struct iwm_tlv_ucode_header *uhdr;
546	const struct iwm_ucode_tlv *tlv;
547	struct iwm_ucode_capabilities *capa = &sc->ucode_capa;
548	enum iwm_ucode_tlv_type tlv_type;
549	const struct firmware *fwp;
550	const uint8_t *data;
551	uint32_t tlv_len;
552	uint32_t usniffer_img;
553	const uint8_t *tlv_data;
554	uint32_t paging_mem_size;
555	int num_of_cpus;
556	int error = 0;
557	size_t len;
558
559	if (fw->fw_status == IWM_FW_STATUS_DONE &&
560	    ucode_type != IWM_UCODE_INIT)
561		return 0;
562
563	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
564		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
565	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
566
567	if (fw->fw_fp != NULL)
568		iwm_fw_info_free(fw);
569
570	/*
571	 * Load firmware into driver memory.
572	 * fw_fp will be set.
573	 */
574	IWM_UNLOCK(sc);
575	fwp = firmware_get(sc->cfg->fw_name);
576	IWM_LOCK(sc);
577	if (fwp == NULL) {
578		device_printf(sc->sc_dev,
579		    "could not read firmware %s (error %d)\n",
580		    sc->cfg->fw_name, error);
581		goto out;
582	}
583	fw->fw_fp = fwp;
584
585	/* (Re-)Initialize default values. */
586	capa->flags = 0;
587	capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH;
588	capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
589	memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa));
590	memset(capa->enabled_api, 0, sizeof(capa->enabled_api));
591	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
592
593	/*
594	 * Parse firmware contents
595	 */
596
597	uhdr = (const void *)fw->fw_fp->data;
598	if (*(const uint32_t *)fw->fw_fp->data != 0
599	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
600		device_printf(sc->sc_dev, "invalid firmware %s\n",
601		    sc->cfg->fw_name);
602		error = EINVAL;
603		goto out;
604	}
605
606	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)",
607	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
608	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
609	    IWM_UCODE_API(le32toh(uhdr->ver)));
610	data = uhdr->data;
611	len = fw->fw_fp->datasize - sizeof(*uhdr);
612
613	while (len >= sizeof(*tlv)) {
614		len -= sizeof(*tlv);
615		tlv = (const void *)data;
616
617		tlv_len = le32toh(tlv->length);
618		tlv_type = le32toh(tlv->type);
619		tlv_data = tlv->data;
620
621		if (len < tlv_len) {
622			device_printf(sc->sc_dev,
623			    "firmware too short: %zu bytes\n",
624			    len);
625			error = EINVAL;
626			goto parse_out;
627		}
628		len -= roundup2(tlv_len, 4);
629		data += sizeof(tlv) + roundup2(tlv_len, 4);
630
631		switch ((int)tlv_type) {
632		case IWM_UCODE_TLV_PROBE_MAX_LEN:
633			if (tlv_len != sizeof(uint32_t)) {
634				device_printf(sc->sc_dev,
635				    "%s: PROBE_MAX_LEN (%d) != sizeof(uint32_t)\n",
636				    __func__,
637				    (int) tlv_len);
638				error = EINVAL;
639				goto parse_out;
640			}
641			capa->max_probe_length =
642			    le32_to_cpup((const uint32_t *)tlv_data);
643			/* limit it to something sensible */
644			if (capa->max_probe_length >
645			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
646				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
647				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
648				    "ridiculous\n", __func__);
649				error = EINVAL;
650				goto parse_out;
651			}
652			break;
653		case IWM_UCODE_TLV_PAN:
654			if (tlv_len) {
655				device_printf(sc->sc_dev,
656				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
657				    __func__,
658				    (int) tlv_len);
659				error = EINVAL;
660				goto parse_out;
661			}
662			capa->flags |= IWM_UCODE_TLV_FLAGS_PAN;
663			break;
664		case IWM_UCODE_TLV_FLAGS:
665			if (tlv_len < sizeof(uint32_t)) {
666				device_printf(sc->sc_dev,
667				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
668				    __func__,
669				    (int) tlv_len);
670				error = EINVAL;
671				goto parse_out;
672			}
673			if (tlv_len % sizeof(uint32_t)) {
674				device_printf(sc->sc_dev,
675				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) %% sizeof(uint32_t)\n",
676				    __func__,
677				    (int) tlv_len);
678				error = EINVAL;
679				goto parse_out;
680			}
681			/*
682			 * Apparently there can be many flags, but Linux driver
683			 * parses only the first one, and so do we.
684			 *
685			 * XXX: why does this override IWM_UCODE_TLV_PAN?
686			 * Intentional or a bug?  Observations from
687			 * current firmware file:
688			 *  1) TLV_PAN is parsed first
689			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
690			 * ==> this resets TLV_PAN to itself... hnnnk
691			 */
692			capa->flags = le32_to_cpup((const uint32_t *)tlv_data);
693			break;
694		case IWM_UCODE_TLV_CSCHEME:
695			if ((error = iwm_store_cscheme(sc,
696			    tlv_data, tlv_len)) != 0) {
697				device_printf(sc->sc_dev,
698				    "%s: iwm_store_cscheme(): returned %d\n",
699				    __func__,
700				    error);
701				goto parse_out;
702			}
703			break;
704		case IWM_UCODE_TLV_NUM_OF_CPU:
705			if (tlv_len != sizeof(uint32_t)) {
706				device_printf(sc->sc_dev,
707				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) != sizeof(uint32_t)\n",
708				    __func__,
709				    (int) tlv_len);
710				error = EINVAL;
711				goto parse_out;
712			}
713			num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data);
714			if (num_of_cpus == 2) {
715				fw->fw_sects[IWM_UCODE_REGULAR].is_dual_cpus =
716					TRUE;
717				fw->fw_sects[IWM_UCODE_INIT].is_dual_cpus =
718					TRUE;
719				fw->fw_sects[IWM_UCODE_WOWLAN].is_dual_cpus =
720					TRUE;
721			} else if ((num_of_cpus > 2) || (num_of_cpus < 1)) {
722				device_printf(sc->sc_dev,
723				    "%s: Driver supports only 1 or 2 CPUs\n",
724				    __func__);
725				error = EINVAL;
726				goto parse_out;
727			}
728			break;
729		case IWM_UCODE_TLV_SEC_RT:
730			if ((error = iwm_firmware_store_section(sc,
731			    IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) {
732				device_printf(sc->sc_dev,
733				    "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n",
734				    __func__,
735				    error);
736				goto parse_out;
737			}
738			break;
739		case IWM_UCODE_TLV_SEC_INIT:
740			if ((error = iwm_firmware_store_section(sc,
741			    IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) {
742				device_printf(sc->sc_dev,
743				    "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n",
744				    __func__,
745				    error);
746				goto parse_out;
747			}
748			break;
749		case IWM_UCODE_TLV_SEC_WOWLAN:
750			if ((error = iwm_firmware_store_section(sc,
751			    IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) {
752				device_printf(sc->sc_dev,
753				    "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n",
754				    __func__,
755				    error);
756				goto parse_out;
757			}
758			break;
759		case IWM_UCODE_TLV_DEF_CALIB:
760			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
761				device_printf(sc->sc_dev,
762				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
763				    __func__,
764				    (int) tlv_len,
765				    (int) sizeof(struct iwm_tlv_calib_data));
766				error = EINVAL;
767				goto parse_out;
768			}
769			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
770				device_printf(sc->sc_dev,
771				    "%s: iwm_set_default_calib() failed: %d\n",
772				    __func__,
773				    error);
774				goto parse_out;
775			}
776			break;
777		case IWM_UCODE_TLV_PHY_SKU:
778			if (tlv_len != sizeof(uint32_t)) {
779				error = EINVAL;
780				device_printf(sc->sc_dev,
781				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
782				    __func__,
783				    (int) tlv_len);
784				goto parse_out;
785			}
786			sc->sc_fw.phy_config =
787			    le32_to_cpup((const uint32_t *)tlv_data);
788			sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config &
789						  IWM_FW_PHY_CFG_TX_CHAIN) >>
790						  IWM_FW_PHY_CFG_TX_CHAIN_POS;
791			sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config &
792						  IWM_FW_PHY_CFG_RX_CHAIN) >>
793						  IWM_FW_PHY_CFG_RX_CHAIN_POS;
794			break;
795
796		case IWM_UCODE_TLV_API_CHANGES_SET: {
797			if (tlv_len != sizeof(struct iwm_ucode_api)) {
798				error = EINVAL;
799				goto parse_out;
800			}
801			if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) {
802				error = EINVAL;
803				goto parse_out;
804			}
805			break;
806		}
807
808		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
809			if (tlv_len != sizeof(struct iwm_ucode_capa)) {
810				error = EINVAL;
811				goto parse_out;
812			}
813			if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) {
814				error = EINVAL;
815				goto parse_out;
816			}
817			break;
818		}
819
820		case 48: /* undocumented TLV */
821		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
822		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
823			/* ignore, not used by current driver */
824			break;
825
826		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
827			if ((error = iwm_firmware_store_section(sc,
828			    IWM_UCODE_REGULAR_USNIFFER, tlv_data,
829			    tlv_len)) != 0)
830				goto parse_out;
831			break;
832
833		case IWM_UCODE_TLV_PAGING:
834			if (tlv_len != sizeof(uint32_t)) {
835				error = EINVAL;
836				goto parse_out;
837			}
838			paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data);
839
840			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
841			    "%s: Paging: paging enabled (size = %u bytes)\n",
842			    __func__, paging_mem_size);
843			if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
844				device_printf(sc->sc_dev,
845					"%s: Paging: driver supports up to %u bytes for paging image\n",
846					__func__, IWM_MAX_PAGING_IMAGE_SIZE);
847				error = EINVAL;
848				goto out;
849			}
850			if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
851				device_printf(sc->sc_dev,
852				    "%s: Paging: image isn't multiple %u\n",
853				    __func__, IWM_FW_PAGING_SIZE);
854				error = EINVAL;
855				goto out;
856			}
857
858			sc->sc_fw.fw_sects[IWM_UCODE_REGULAR].paging_mem_size =
859			    paging_mem_size;
860			usniffer_img = IWM_UCODE_REGULAR_USNIFFER;
861			sc->sc_fw.fw_sects[usniffer_img].paging_mem_size =
862			    paging_mem_size;
863			break;
864
865		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
866			if (tlv_len != sizeof(uint32_t)) {
867				error = EINVAL;
868				goto parse_out;
869			}
870			capa->n_scan_channels =
871			    le32_to_cpup((const uint32_t *)tlv_data);
872			break;
873
874		case IWM_UCODE_TLV_FW_VERSION:
875			if (tlv_len != sizeof(uint32_t) * 3) {
876				error = EINVAL;
877				goto parse_out;
878			}
879			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
880			    "%d.%d.%d",
881			    le32toh(((const uint32_t *)tlv_data)[0]),
882			    le32toh(((const uint32_t *)tlv_data)[1]),
883			    le32toh(((const uint32_t *)tlv_data)[2]));
884			break;
885
886		case IWM_UCODE_TLV_FW_MEM_SEG:
887			break;
888
889		default:
890			device_printf(sc->sc_dev,
891			    "%s: unknown firmware section %d, abort\n",
892			    __func__, tlv_type);
893			error = EINVAL;
894			goto parse_out;
895		}
896	}
897
898	KASSERT(error == 0, ("unhandled error"));
899
900 parse_out:
901	if (error) {
902		device_printf(sc->sc_dev, "firmware parse error %d, "
903		    "section type %d\n", error, tlv_type);
904	}
905
906 out:
907	if (error) {
908		fw->fw_status = IWM_FW_STATUS_NONE;
909		if (fw->fw_fp != NULL)
910			iwm_fw_info_free(fw);
911	} else
912		fw->fw_status = IWM_FW_STATUS_DONE;
913	wakeup(&sc->sc_fw);
914
915	return error;
916}
917
918/*
919 * DMA resource routines
920 */
921
922/* fwmem is used to load firmware onto the card */
923static int
924iwm_alloc_fwmem(struct iwm_softc *sc)
925{
926	/* Must be aligned on a 16-byte boundary. */
927	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
928	    IWM_FH_MEM_TB_MAX_LENGTH, 16);
929}
930
931/* tx scheduler rings.  not used? */
932static int
933iwm_alloc_sched(struct iwm_softc *sc)
934{
935	/* TX scheduler rings must be aligned on a 1KB boundary. */
936	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
937	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
938}
939
940/* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
941static int
942iwm_alloc_kw(struct iwm_softc *sc)
943{
944	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
945}
946
947/* interrupt cause table */
948static int
949iwm_alloc_ict(struct iwm_softc *sc)
950{
951	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
952	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
953}
954
955static int
956iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
957{
958	bus_size_t size;
959	int i, error;
960
961	ring->cur = 0;
962
963	/* Allocate RX descriptors (256-byte aligned). */
964	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
965	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
966	if (error != 0) {
967		device_printf(sc->sc_dev,
968		    "could not allocate RX ring DMA memory\n");
969		goto fail;
970	}
971	ring->desc = ring->desc_dma.vaddr;
972
973	/* Allocate RX status area (16-byte aligned). */
974	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
975	    sizeof(*ring->stat), 16);
976	if (error != 0) {
977		device_printf(sc->sc_dev,
978		    "could not allocate RX status DMA memory\n");
979		goto fail;
980	}
981	ring->stat = ring->stat_dma.vaddr;
982
983        /* Create RX buffer DMA tag. */
984        error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
985            BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
986            IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
987        if (error != 0) {
988                device_printf(sc->sc_dev,
989                    "%s: could not create RX buf DMA tag, error %d\n",
990                    __func__, error);
991                goto fail;
992        }
993
994	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
995	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
996	if (error != 0) {
997		device_printf(sc->sc_dev,
998		    "%s: could not create RX buf DMA map, error %d\n",
999		    __func__, error);
1000		goto fail;
1001	}
1002	/*
1003	 * Allocate and map RX buffers.
1004	 */
1005	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1006		struct iwm_rx_data *data = &ring->data[i];
1007		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1008		if (error != 0) {
1009			device_printf(sc->sc_dev,
1010			    "%s: could not create RX buf DMA map, error %d\n",
1011			    __func__, error);
1012			goto fail;
1013		}
1014		data->m = NULL;
1015
1016		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
1017			goto fail;
1018		}
1019	}
1020	return 0;
1021
1022fail:	iwm_free_rx_ring(sc, ring);
1023	return error;
1024}
1025
1026static void
1027iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1028{
1029	/* Reset the ring state */
1030	ring->cur = 0;
1031
1032	/*
1033	 * The hw rx ring index in shared memory must also be cleared,
1034	 * otherwise the discrepancy can cause reprocessing chaos.
1035	 */
1036	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1037}
1038
1039static void
1040iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1041{
1042	int i;
1043
1044	iwm_dma_contig_free(&ring->desc_dma);
1045	iwm_dma_contig_free(&ring->stat_dma);
1046
1047	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1048		struct iwm_rx_data *data = &ring->data[i];
1049
1050		if (data->m != NULL) {
1051			bus_dmamap_sync(ring->data_dmat, data->map,
1052			    BUS_DMASYNC_POSTREAD);
1053			bus_dmamap_unload(ring->data_dmat, data->map);
1054			m_freem(data->m);
1055			data->m = NULL;
1056		}
1057		if (data->map != NULL) {
1058			bus_dmamap_destroy(ring->data_dmat, data->map);
1059			data->map = NULL;
1060		}
1061	}
1062	if (ring->spare_map != NULL) {
1063		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1064		ring->spare_map = NULL;
1065	}
1066	if (ring->data_dmat != NULL) {
1067		bus_dma_tag_destroy(ring->data_dmat);
1068		ring->data_dmat = NULL;
1069	}
1070}
1071
1072static int
1073iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1074{
1075	bus_addr_t paddr;
1076	bus_size_t size;
1077	size_t maxsize;
1078	int nsegments;
1079	int i, error;
1080
1081	ring->qid = qid;
1082	ring->queued = 0;
1083	ring->cur = 0;
1084
1085	/* Allocate TX descriptors (256-byte aligned). */
1086	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1087	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1088	if (error != 0) {
1089		device_printf(sc->sc_dev,
1090		    "could not allocate TX ring DMA memory\n");
1091		goto fail;
1092	}
1093	ring->desc = ring->desc_dma.vaddr;
1094
1095	/*
1096	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1097	 * to allocate commands space for other rings.
1098	 */
1099	if (qid > IWM_MVM_CMD_QUEUE)
1100		return 0;
1101
1102	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1103	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1104	if (error != 0) {
1105		device_printf(sc->sc_dev,
1106		    "could not allocate TX cmd DMA memory\n");
1107		goto fail;
1108	}
1109	ring->cmd = ring->cmd_dma.vaddr;
1110
1111	/* FW commands may require more mapped space than packets. */
1112	if (qid == IWM_MVM_CMD_QUEUE) {
1113		maxsize = IWM_RBUF_SIZE;
1114		nsegments = 1;
1115	} else {
1116		maxsize = MCLBYTES;
1117		nsegments = IWM_MAX_SCATTER - 2;
1118	}
1119
1120	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1121	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1122            nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1123	if (error != 0) {
1124		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1125		goto fail;
1126	}
1127
1128	paddr = ring->cmd_dma.paddr;
1129	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1130		struct iwm_tx_data *data = &ring->data[i];
1131
1132		data->cmd_paddr = paddr;
1133		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1134		    + offsetof(struct iwm_tx_cmd, scratch);
1135		paddr += sizeof(struct iwm_device_cmd);
1136
1137		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1138		if (error != 0) {
1139			device_printf(sc->sc_dev,
1140			    "could not create TX buf DMA map\n");
1141			goto fail;
1142		}
1143	}
1144	KASSERT(paddr == ring->cmd_dma.paddr + size,
1145	    ("invalid physical address"));
1146	return 0;
1147
1148fail:	iwm_free_tx_ring(sc, ring);
1149	return error;
1150}
1151
1152static void
1153iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1154{
1155	int i;
1156
1157	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1158		struct iwm_tx_data *data = &ring->data[i];
1159
1160		if (data->m != NULL) {
1161			bus_dmamap_sync(ring->data_dmat, data->map,
1162			    BUS_DMASYNC_POSTWRITE);
1163			bus_dmamap_unload(ring->data_dmat, data->map);
1164			m_freem(data->m);
1165			data->m = NULL;
1166		}
1167	}
1168	/* Clear TX descriptors. */
1169	memset(ring->desc, 0, ring->desc_dma.size);
1170	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1171	    BUS_DMASYNC_PREWRITE);
1172	sc->qfullmsk &= ~(1 << ring->qid);
1173	ring->queued = 0;
1174	ring->cur = 0;
1175
1176	if (ring->qid == IWM_MVM_CMD_QUEUE && sc->cmd_hold_nic_awake)
1177		iwm_pcie_clear_cmd_in_flight(sc);
1178}
1179
1180static void
1181iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1182{
1183	int i;
1184
1185	iwm_dma_contig_free(&ring->desc_dma);
1186	iwm_dma_contig_free(&ring->cmd_dma);
1187
1188	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1189		struct iwm_tx_data *data = &ring->data[i];
1190
1191		if (data->m != NULL) {
1192			bus_dmamap_sync(ring->data_dmat, data->map,
1193			    BUS_DMASYNC_POSTWRITE);
1194			bus_dmamap_unload(ring->data_dmat, data->map);
1195			m_freem(data->m);
1196			data->m = NULL;
1197		}
1198		if (data->map != NULL) {
1199			bus_dmamap_destroy(ring->data_dmat, data->map);
1200			data->map = NULL;
1201		}
1202	}
1203	if (ring->data_dmat != NULL) {
1204		bus_dma_tag_destroy(ring->data_dmat);
1205		ring->data_dmat = NULL;
1206	}
1207}
1208
1209/*
1210 * High-level hardware frobbing routines
1211 */
1212
1213static void
1214iwm_enable_interrupts(struct iwm_softc *sc)
1215{
1216	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1217	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1218}
1219
1220static void
1221iwm_restore_interrupts(struct iwm_softc *sc)
1222{
1223	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1224}
1225
1226static void
1227iwm_disable_interrupts(struct iwm_softc *sc)
1228{
1229	/* disable interrupts */
1230	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1231
1232	/* acknowledge all interrupts */
1233	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1234	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1235}
1236
1237static void
1238iwm_ict_reset(struct iwm_softc *sc)
1239{
1240	iwm_disable_interrupts(sc);
1241
1242	/* Reset ICT table. */
1243	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1244	sc->ict_cur = 0;
1245
1246	/* Set physical address of ICT table (4KB aligned). */
1247	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1248	    IWM_CSR_DRAM_INT_TBL_ENABLE
1249	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1250	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1251	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1252
1253	/* Switch to ICT interrupt mode in driver. */
1254	sc->sc_flags |= IWM_FLAG_USE_ICT;
1255
1256	/* Re-enable interrupts. */
1257	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1258	iwm_enable_interrupts(sc);
1259}
1260
1261/* iwlwifi pcie/trans.c */
1262
1263/*
1264 * Since this .. hard-resets things, it's time to actually
1265 * mark the first vap (if any) as having no mac context.
1266 * It's annoying, but since the driver is potentially being
1267 * stop/start'ed whilst active (thanks openbsd port!) we
1268 * have to correctly track this.
1269 */
1270static void
1271iwm_stop_device(struct iwm_softc *sc)
1272{
1273	struct ieee80211com *ic = &sc->sc_ic;
1274	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1275	int chnl, qid;
1276	uint32_t mask = 0;
1277
1278	/* tell the device to stop sending interrupts */
1279	iwm_disable_interrupts(sc);
1280
1281	/*
1282	 * FreeBSD-local: mark the first vap as not-uploaded,
1283	 * so the next transition through auth/assoc
1284	 * will correctly populate the MAC context.
1285	 */
1286	if (vap) {
1287		struct iwm_vap *iv = IWM_VAP(vap);
1288		iv->phy_ctxt = NULL;
1289		iv->is_uploaded = 0;
1290	}
1291
1292	/* device going down, Stop using ICT table */
1293	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1294
1295	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1296
1297	if (iwm_nic_lock(sc)) {
1298		iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1299
1300		/* Stop each Tx DMA channel */
1301		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1302			IWM_WRITE(sc,
1303			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1304			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1305		}
1306
1307		/* Wait for DMA channels to be idle */
1308		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1309		    5000)) {
1310			device_printf(sc->sc_dev,
1311			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1312			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1313		}
1314		iwm_nic_unlock(sc);
1315	}
1316	iwm_pcie_rx_stop(sc);
1317
1318	/* Stop RX ring. */
1319	iwm_reset_rx_ring(sc, &sc->rxq);
1320
1321	/* Reset all TX rings. */
1322	for (qid = 0; qid < nitems(sc->txq); qid++)
1323		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1324
1325	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1326		/* Power-down device's busmaster DMA clocks */
1327		if (iwm_nic_lock(sc)) {
1328			iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
1329			    IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1330			iwm_nic_unlock(sc);
1331		}
1332		DELAY(5);
1333	}
1334
1335	/* Make sure (redundant) we've released our request to stay awake */
1336	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1337	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1338
1339	/* Stop the device, and put it in low power state */
1340	iwm_apm_stop(sc);
1341
1342	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1343	 * Clean again the interrupt here
1344	 */
1345	iwm_disable_interrupts(sc);
1346	/* stop and reset the on-board processor */
1347	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1348
1349	/*
1350	 * Even if we stop the HW, we still want the RF kill
1351	 * interrupt
1352	 */
1353	iwm_enable_rfkill_int(sc);
1354	iwm_check_rfkill(sc);
1355}
1356
1357/* iwlwifi: mvm/ops.c */
1358static void
1359iwm_mvm_nic_config(struct iwm_softc *sc)
1360{
1361	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1362	uint32_t reg_val = 0;
1363	uint32_t phy_config = iwm_mvm_get_phy_config(sc);
1364
1365	radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1366	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1367	radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1368	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1369	radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1370	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1371
1372	/* SKU control */
1373	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1374	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1375	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1376	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1377
1378	/* radio configuration */
1379	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1380	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1381	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1382
1383	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1384
1385	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1386	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1387	    radio_cfg_step, radio_cfg_dash);
1388
1389	/*
1390	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1391	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1392	 * to lose ownership and not being able to obtain it back.
1393	 */
1394	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1395		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1396		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1397		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1398	}
1399}
1400
1401static int
1402iwm_nic_rx_init(struct iwm_softc *sc)
1403{
1404	/*
1405	 * Initialize RX ring.  This is from the iwn driver.
1406	 */
1407	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1408
1409	/* Stop Rx DMA */
1410	iwm_pcie_rx_stop(sc);
1411
1412	if (!iwm_nic_lock(sc))
1413		return EBUSY;
1414
1415	/* reset and flush pointers */
1416	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1417	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1418	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1419	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1420
1421	/* Set physical address of RX ring (256-byte aligned). */
1422	IWM_WRITE(sc,
1423	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1424
1425	/* Set physical address of RX status (16-byte aligned). */
1426	IWM_WRITE(sc,
1427	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1428
1429	/* Enable Rx DMA
1430	 * XXX 5000 HW isn't supported by the iwm(4) driver.
1431	 * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
1432	 *      the credit mechanism in 5000 HW RX FIFO
1433	 * Direct rx interrupts to hosts
1434	 * Rx buffer size 4 or 8k or 12k
1435	 * RB timeout 0x10
1436	 * 256 RBDs
1437	 */
1438	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1439	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1440	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1441	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1442	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1443	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1444	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1445
1446	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1447
1448	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1449	if (sc->cfg->host_interrupt_operation_mode)
1450		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1451
1452	/*
1453	 * Thus sayeth el jefe (iwlwifi) via a comment:
1454	 *
1455	 * This value should initially be 0 (before preparing any
1456	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1457	 */
1458	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1459
1460	iwm_nic_unlock(sc);
1461
1462	return 0;
1463}
1464
1465static int
1466iwm_nic_tx_init(struct iwm_softc *sc)
1467{
1468	int qid;
1469
1470	if (!iwm_nic_lock(sc))
1471		return EBUSY;
1472
1473	/* Deactivate TX scheduler. */
1474	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1475
1476	/* Set physical address of "keep warm" page (16-byte aligned). */
1477	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1478
1479	/* Initialize TX rings. */
1480	for (qid = 0; qid < nitems(sc->txq); qid++) {
1481		struct iwm_tx_ring *txq = &sc->txq[qid];
1482
1483		/* Set physical address of TX ring (256-byte aligned). */
1484		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1485		    txq->desc_dma.paddr >> 8);
1486		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1487		    "%s: loading ring %d descriptors (%p) at %lx\n",
1488		    __func__,
1489		    qid, txq->desc,
1490		    (unsigned long) (txq->desc_dma.paddr >> 8));
1491	}
1492
1493	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1494
1495	iwm_nic_unlock(sc);
1496
1497	return 0;
1498}
1499
1500static int
1501iwm_nic_init(struct iwm_softc *sc)
1502{
1503	int error;
1504
1505	iwm_apm_init(sc);
1506	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1507		iwm_set_pwr(sc);
1508
1509	iwm_mvm_nic_config(sc);
1510
1511	if ((error = iwm_nic_rx_init(sc)) != 0)
1512		return error;
1513
1514	/*
1515	 * Ditto for TX, from iwn
1516	 */
1517	if ((error = iwm_nic_tx_init(sc)) != 0)
1518		return error;
1519
1520	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1521	    "%s: shadow registers enabled\n", __func__);
1522	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1523
1524	return 0;
1525}
1526
1527int
1528iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1529{
1530	if (!iwm_nic_lock(sc)) {
1531		device_printf(sc->sc_dev,
1532		    "%s: cannot enable txq %d\n",
1533		    __func__,
1534		    qid);
1535		return EBUSY;
1536	}
1537
1538	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1539
1540	if (qid == IWM_MVM_CMD_QUEUE) {
1541		/* unactivate before configuration */
1542		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1543		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1544		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1545
1546		iwm_nic_unlock(sc);
1547
1548		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1549
1550		if (!iwm_nic_lock(sc)) {
1551			device_printf(sc->sc_dev,
1552			    "%s: cannot enable txq %d\n", __func__, qid);
1553			return EBUSY;
1554		}
1555		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1556		iwm_nic_unlock(sc);
1557
1558		iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1559		/* Set scheduler window size and frame limit. */
1560		iwm_write_mem32(sc,
1561		    sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1562		    sizeof(uint32_t),
1563		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1564		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1565		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1566		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1567
1568		if (!iwm_nic_lock(sc)) {
1569			device_printf(sc->sc_dev,
1570			    "%s: cannot enable txq %d\n", __func__, qid);
1571			return EBUSY;
1572		}
1573		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1574		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1575		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1576		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1577		    IWM_SCD_QUEUE_STTS_REG_MSK);
1578	} else {
1579		struct iwm_scd_txq_cfg_cmd cmd;
1580		int error;
1581
1582		iwm_nic_unlock(sc);
1583
1584		memset(&cmd, 0, sizeof(cmd));
1585		cmd.scd_queue = qid;
1586		cmd.enable = 1;
1587		cmd.sta_id = sta_id;
1588		cmd.tx_fifo = fifo;
1589		cmd.aggregate = 0;
1590		cmd.window = IWM_FRAME_LIMIT;
1591
1592		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1593		    sizeof(cmd), &cmd);
1594		if (error) {
1595			device_printf(sc->sc_dev,
1596			    "cannot enable txq %d\n", qid);
1597			return error;
1598		}
1599
1600		if (!iwm_nic_lock(sc))
1601			return EBUSY;
1602	}
1603
1604	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1605	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1606
1607	iwm_nic_unlock(sc);
1608
1609	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1610	    __func__, qid, fifo);
1611
1612	return 0;
1613}
1614
1615static int
1616iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr)
1617{
1618	int error, chnl;
1619
1620	int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1621	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
1622
1623	if (!iwm_nic_lock(sc))
1624		return EBUSY;
1625
1626	iwm_ict_reset(sc);
1627
1628	sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1629	if (scd_base_addr != 0 &&
1630	    scd_base_addr != sc->scd_base_addr) {
1631		device_printf(sc->sc_dev,
1632		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1633		    __func__, sc->scd_base_addr, scd_base_addr);
1634	}
1635
1636	iwm_nic_unlock(sc);
1637
1638	/* reset context data, TX status and translation data */
1639	error = iwm_write_mem(sc,
1640	    sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1641	    NULL, clear_dwords);
1642	if (error)
1643		return EBUSY;
1644
1645	if (!iwm_nic_lock(sc))
1646		return EBUSY;
1647
1648	/* Set physical address of TX scheduler rings (1KB aligned). */
1649	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1650
1651	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1652
1653	iwm_nic_unlock(sc);
1654
1655	/* enable command channel */
1656	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1657	if (error)
1658		return error;
1659
1660	if (!iwm_nic_lock(sc))
1661		return EBUSY;
1662
1663	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1664
1665	/* Enable DMA channels. */
1666	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1667		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1668		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1669		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1670	}
1671
1672	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1673	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1674
1675	iwm_nic_unlock(sc);
1676
1677	/* Enable L1-Active */
1678	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
1679		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1680		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1681	}
1682
1683	return error;
1684}
1685
1686/*
1687 * NVM read access and content parsing.  We do not support
1688 * external NVM or writing NVM.
1689 * iwlwifi/mvm/nvm.c
1690 */
1691
1692/* Default NVM size to read */
1693#define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1694
1695#define IWM_NVM_WRITE_OPCODE 1
1696#define IWM_NVM_READ_OPCODE 0
1697
1698/* load nvm chunk response */
1699enum {
1700	IWM_READ_NVM_CHUNK_SUCCEED = 0,
1701	IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
1702};
1703
1704static int
1705iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1706	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1707{
1708	struct iwm_nvm_access_cmd nvm_access_cmd = {
1709		.offset = htole16(offset),
1710		.length = htole16(length),
1711		.type = htole16(section),
1712		.op_code = IWM_NVM_READ_OPCODE,
1713	};
1714	struct iwm_nvm_access_resp *nvm_resp;
1715	struct iwm_rx_packet *pkt;
1716	struct iwm_host_cmd cmd = {
1717		.id = IWM_NVM_ACCESS_CMD,
1718		.flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL,
1719		.data = { &nvm_access_cmd, },
1720	};
1721	int ret, bytes_read, offset_read;
1722	uint8_t *resp_data;
1723
1724	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1725
1726	ret = iwm_send_cmd(sc, &cmd);
1727	if (ret) {
1728		device_printf(sc->sc_dev,
1729		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1730		return ret;
1731	}
1732
1733	pkt = cmd.resp_pkt;
1734
1735	/* Extract NVM response */
1736	nvm_resp = (void *)pkt->data;
1737	ret = le16toh(nvm_resp->status);
1738	bytes_read = le16toh(nvm_resp->length);
1739	offset_read = le16toh(nvm_resp->offset);
1740	resp_data = nvm_resp->data;
1741	if (ret) {
1742		if ((offset != 0) &&
1743		    (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
1744			/*
1745			 * meaning of NOT_VALID_ADDRESS:
1746			 * driver try to read chunk from address that is
1747			 * multiple of 2K and got an error since addr is empty.
1748			 * meaning of (offset != 0): driver already
1749			 * read valid data from another chunk so this case
1750			 * is not an error.
1751			 */
1752			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1753				    "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
1754				    offset);
1755			*len = 0;
1756			ret = 0;
1757		} else {
1758			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1759				    "NVM access command failed with status %d\n", ret);
1760			ret = EIO;
1761		}
1762		goto exit;
1763	}
1764
1765	if (offset_read != offset) {
1766		device_printf(sc->sc_dev,
1767		    "NVM ACCESS response with invalid offset %d\n",
1768		    offset_read);
1769		ret = EINVAL;
1770		goto exit;
1771	}
1772
1773	if (bytes_read > length) {
1774		device_printf(sc->sc_dev,
1775		    "NVM ACCESS response with too much data "
1776		    "(%d bytes requested, %d bytes received)\n",
1777		    length, bytes_read);
1778		ret = EINVAL;
1779		goto exit;
1780	}
1781
1782	/* Write data to NVM */
1783	memcpy(data + offset, resp_data, bytes_read);
1784	*len = bytes_read;
1785
1786 exit:
1787	iwm_free_resp(sc, &cmd);
1788	return ret;
1789}
1790
1791/*
1792 * Reads an NVM section completely.
1793 * NICs prior to 7000 family don't have a real NVM, but just read
1794 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1795 * by uCode, we need to manually check in this case that we don't
1796 * overflow and try to read more than the EEPROM size.
1797 * For 7000 family NICs, we supply the maximal size we can read, and
1798 * the uCode fills the response with as much data as we can,
1799 * without overflowing, so no check is needed.
1800 */
1801static int
1802iwm_nvm_read_section(struct iwm_softc *sc,
1803	uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read)
1804{
1805	uint16_t seglen, length, offset = 0;
1806	int ret;
1807
1808	/* Set nvm section read length */
1809	length = IWM_NVM_DEFAULT_CHUNK_SIZE;
1810
1811	seglen = length;
1812
1813	/* Read the NVM until exhausted (reading less than requested) */
1814	while (seglen == length) {
1815		/* Check no memory assumptions fail and cause an overflow */
1816		if ((size_read + offset + length) >
1817		    sc->cfg->eeprom_size) {
1818			device_printf(sc->sc_dev,
1819			    "EEPROM size is too small for NVM\n");
1820			return ENOBUFS;
1821		}
1822
1823		ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen);
1824		if (ret) {
1825			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1826				    "Cannot read NVM from section %d offset %d, length %d\n",
1827				    section, offset, length);
1828			return ret;
1829		}
1830		offset += seglen;
1831	}
1832
1833	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1834		    "NVM section %d read completed\n", section);
1835	*len = offset;
1836	return 0;
1837}
1838
1839/*
1840 * BEGIN IWM_NVM_PARSE
1841 */
1842
1843/* iwlwifi/iwl-nvm-parse.c */
1844
1845/* NVM offsets (in words) definitions */
1846enum iwm_nvm_offsets {
1847	/* NVM HW-Section offset (in words) definitions */
1848	IWM_HW_ADDR = 0x15,
1849
1850/* NVM SW-Section offset (in words) definitions */
1851	IWM_NVM_SW_SECTION = 0x1C0,
1852	IWM_NVM_VERSION = 0,
1853	IWM_RADIO_CFG = 1,
1854	IWM_SKU = 2,
1855	IWM_N_HW_ADDRS = 3,
1856	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1857
1858/* NVM calibration section offset (in words) definitions */
1859	IWM_NVM_CALIB_SECTION = 0x2B8,
1860	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1861};
1862
1863enum iwm_8000_nvm_offsets {
1864	/* NVM HW-Section offset (in words) definitions */
1865	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1866	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1867	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1868	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1869	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1870
1871	/* NVM SW-Section offset (in words) definitions */
1872	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1873	IWM_NVM_VERSION_8000 = 0,
1874	IWM_RADIO_CFG_8000 = 0,
1875	IWM_SKU_8000 = 2,
1876	IWM_N_HW_ADDRS_8000 = 3,
1877
1878	/* NVM REGULATORY -Section offset (in words) definitions */
1879	IWM_NVM_CHANNELS_8000 = 0,
1880	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1881	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1882	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1883
1884	/* NVM calibration section offset (in words) definitions */
1885	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1886	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1887};
1888
1889/* SKU Capabilities (actual values from NVM definition) */
1890enum nvm_sku_bits {
1891	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1892	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1893	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1894	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1895};
1896
1897/* radio config bits (actual values from NVM definition) */
1898#define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1899#define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1900#define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1901#define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1902#define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1903#define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1904
1905#define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1906#define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1907#define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1908#define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1909#define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1910#define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1911
1912#define DEFAULT_MAX_TX_POWER 16
1913
1914/**
1915 * enum iwm_nvm_channel_flags - channel flags in NVM
1916 * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1917 * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1918 * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1919 * @IWM_NVM_CHANNEL_RADAR: radar detection required
1920 * XXX cannot find this (DFS) flag in iwm-nvm-parse.c
1921 * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1922 * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1923 * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1924 * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1925 * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1926 */
1927enum iwm_nvm_channel_flags {
1928	IWM_NVM_CHANNEL_VALID = (1 << 0),
1929	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1930	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1931	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1932	IWM_NVM_CHANNEL_DFS = (1 << 7),
1933	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1934	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1935	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1936	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1937};
1938
1939/*
1940 * Translate EEPROM flags to net80211.
1941 */
1942static uint32_t
1943iwm_eeprom_channel_flags(uint16_t ch_flags)
1944{
1945	uint32_t nflags;
1946
1947	nflags = 0;
1948	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1949		nflags |= IEEE80211_CHAN_PASSIVE;
1950	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1951		nflags |= IEEE80211_CHAN_NOADHOC;
1952	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1953		nflags |= IEEE80211_CHAN_DFS;
1954		/* Just in case. */
1955		nflags |= IEEE80211_CHAN_NOADHOC;
1956	}
1957
1958	return (nflags);
1959}
1960
1961static void
1962iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1963    int maxchans, int *nchans, int ch_idx, size_t ch_num,
1964    const uint8_t bands[])
1965{
1966	const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags;
1967	uint32_t nflags;
1968	uint16_t ch_flags;
1969	uint8_t ieee;
1970	int error;
1971
1972	for (; ch_idx < ch_num; ch_idx++) {
1973		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1974		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1975			ieee = iwm_nvm_channels[ch_idx];
1976		else
1977			ieee = iwm_nvm_channels_8000[ch_idx];
1978
1979		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1980			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1981			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1982			    ieee, ch_flags,
1983			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1984			    "5.2" : "2.4");
1985			continue;
1986		}
1987
1988		nflags = iwm_eeprom_channel_flags(ch_flags);
1989		error = ieee80211_add_channel(chans, maxchans, nchans,
1990		    ieee, 0, 0, nflags, bands);
1991		if (error != 0)
1992			break;
1993
1994		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1995		    "Ch. %d Flags %x [%sGHz] - Added\n",
1996		    ieee, ch_flags,
1997		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1998		    "5.2" : "2.4");
1999	}
2000}
2001
2002static void
2003iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
2004    struct ieee80211_channel chans[])
2005{
2006	struct iwm_softc *sc = ic->ic_softc;
2007	struct iwm_nvm_data *data = sc->nvm_data;
2008	uint8_t bands[IEEE80211_MODE_BYTES];
2009	size_t ch_num;
2010
2011	memset(bands, 0, sizeof(bands));
2012	/* 1-13: 11b/g channels. */
2013	setbit(bands, IEEE80211_MODE_11B);
2014	setbit(bands, IEEE80211_MODE_11G);
2015	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
2016	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
2017
2018	/* 14: 11b channel only. */
2019	clrbit(bands, IEEE80211_MODE_11G);
2020	iwm_add_channel_band(sc, chans, maxchans, nchans,
2021	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
2022
2023	if (data->sku_cap_band_52GHz_enable) {
2024		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
2025			ch_num = nitems(iwm_nvm_channels);
2026		else
2027			ch_num = nitems(iwm_nvm_channels_8000);
2028		memset(bands, 0, sizeof(bands));
2029		setbit(bands, IEEE80211_MODE_11A);
2030		iwm_add_channel_band(sc, chans, maxchans, nchans,
2031		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
2032	}
2033}
2034
2035static void
2036iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
2037	const uint16_t *mac_override, const uint16_t *nvm_hw)
2038{
2039	const uint8_t *hw_addr;
2040
2041	if (mac_override) {
2042		static const uint8_t reserved_mac[] = {
2043			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
2044		};
2045
2046		hw_addr = (const uint8_t *)(mac_override +
2047				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2048
2049		/*
2050		 * Store the MAC address from MAO section.
2051		 * No byte swapping is required in MAO section
2052		 */
2053		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2054
2055		/*
2056		 * Force the use of the OTP MAC address in case of reserved MAC
2057		 * address in the NVM, or if address is given but invalid.
2058		 */
2059		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2060		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2061		    iwm_is_valid_ether_addr(data->hw_addr) &&
2062		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2063			return;
2064
2065		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2066		    "%s: mac address from nvm override section invalid\n",
2067		    __func__);
2068	}
2069
2070	if (nvm_hw) {
2071		/* read the mac address from WFMP registers */
2072		uint32_t mac_addr0 =
2073		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2074		uint32_t mac_addr1 =
2075		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2076
2077		hw_addr = (const uint8_t *)&mac_addr0;
2078		data->hw_addr[0] = hw_addr[3];
2079		data->hw_addr[1] = hw_addr[2];
2080		data->hw_addr[2] = hw_addr[1];
2081		data->hw_addr[3] = hw_addr[0];
2082
2083		hw_addr = (const uint8_t *)&mac_addr1;
2084		data->hw_addr[4] = hw_addr[1];
2085		data->hw_addr[5] = hw_addr[0];
2086
2087		return;
2088	}
2089
2090	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2091	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2092}
2093
2094static int
2095iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2096	    const uint16_t *phy_sku)
2097{
2098	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2099		return le16_to_cpup(nvm_sw + IWM_SKU);
2100
2101	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2102}
2103
2104static int
2105iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2106{
2107	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2108		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2109	else
2110		return le32_to_cpup((const uint32_t *)(nvm_sw +
2111						IWM_NVM_VERSION_8000));
2112}
2113
2114static int
2115iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2116		  const uint16_t *phy_sku)
2117{
2118        if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2119                return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2120
2121        return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2122}
2123
2124static int
2125iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2126{
2127	int n_hw_addr;
2128
2129	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2130		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2131
2132	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2133
2134        return n_hw_addr & IWM_N_HW_ADDR_MASK;
2135}
2136
2137static void
2138iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2139		  uint32_t radio_cfg)
2140{
2141	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2142		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2143		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2144		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2145		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2146		return;
2147	}
2148
2149	/* set the radio configuration for family 8000 */
2150	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2151	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2152	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2153	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2154	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2155	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2156}
2157
2158static int
2159iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data,
2160		   const uint16_t *nvm_hw, const uint16_t *mac_override)
2161{
2162#ifdef notyet /* for FAMILY 9000 */
2163	if (cfg->mac_addr_from_csr) {
2164		iwm_set_hw_address_from_csr(sc, data);
2165        } else
2166#endif
2167	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2168		const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR);
2169
2170		/* The byte order is little endian 16 bit, meaning 214365 */
2171		data->hw_addr[0] = hw_addr[1];
2172		data->hw_addr[1] = hw_addr[0];
2173		data->hw_addr[2] = hw_addr[3];
2174		data->hw_addr[3] = hw_addr[2];
2175		data->hw_addr[4] = hw_addr[5];
2176		data->hw_addr[5] = hw_addr[4];
2177	} else {
2178		iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw);
2179	}
2180
2181	if (!iwm_is_valid_ether_addr(data->hw_addr)) {
2182		device_printf(sc->sc_dev, "no valid mac address was found\n");
2183		return EINVAL;
2184	}
2185
2186	return 0;
2187}
2188
2189static struct iwm_nvm_data *
2190iwm_parse_nvm_data(struct iwm_softc *sc,
2191		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2192		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2193		   const uint16_t *phy_sku, const uint16_t *regulatory)
2194{
2195	struct iwm_nvm_data *data;
2196	uint32_t sku, radio_cfg;
2197	uint16_t lar_config;
2198
2199	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2200		data = malloc(sizeof(*data) +
2201		    IWM_NUM_CHANNELS * sizeof(uint16_t),
2202		    M_DEVBUF, M_NOWAIT | M_ZERO);
2203	} else {
2204		data = malloc(sizeof(*data) +
2205		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t),
2206		    M_DEVBUF, M_NOWAIT | M_ZERO);
2207	}
2208	if (!data)
2209		return NULL;
2210
2211	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2212
2213	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2214	iwm_set_radio_cfg(sc, data, radio_cfg);
2215
2216	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2217	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2218	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2219	data->sku_cap_11n_enable = 0;
2220
2221	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2222
2223	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2224		uint16_t lar_offset = data->nvm_version < 0xE39 ?
2225				       IWM_NVM_LAR_OFFSET_8000_OLD :
2226				       IWM_NVM_LAR_OFFSET_8000;
2227
2228		lar_config = le16_to_cpup(regulatory + lar_offset);
2229		data->lar_enabled = !!(lar_config &
2230				       IWM_NVM_LAR_ENABLED_8000);
2231	}
2232
2233	/* If no valid mac address was found - bail out */
2234	if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) {
2235		free(data, M_DEVBUF);
2236		return NULL;
2237	}
2238
2239	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2240		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2241		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2242	} else {
2243		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2244		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2245	}
2246
2247	return data;
2248}
2249
2250static void
2251iwm_free_nvm_data(struct iwm_nvm_data *data)
2252{
2253	if (data != NULL)
2254		free(data, M_DEVBUF);
2255}
2256
2257static struct iwm_nvm_data *
2258iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2259{
2260	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2261
2262	/* Checking for required sections */
2263	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2264		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2265		    !sections[sc->cfg->nvm_hw_section_num].data) {
2266			device_printf(sc->sc_dev,
2267			    "Can't parse empty OTP/NVM sections\n");
2268			return NULL;
2269		}
2270	} else if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2271		/* SW and REGULATORY sections are mandatory */
2272		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2273		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2274			device_printf(sc->sc_dev,
2275			    "Can't parse empty OTP/NVM sections\n");
2276			return NULL;
2277		}
2278		/* MAC_OVERRIDE or at least HW section must exist */
2279		if (!sections[sc->cfg->nvm_hw_section_num].data &&
2280		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2281			device_printf(sc->sc_dev,
2282			    "Can't parse mac_address, empty sections\n");
2283			return NULL;
2284		}
2285
2286		/* PHY_SKU section is mandatory in B0 */
2287		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2288			device_printf(sc->sc_dev,
2289			    "Can't parse phy_sku in B0, empty sections\n");
2290			return NULL;
2291		}
2292	} else {
2293		panic("unknown device family %d\n", sc->cfg->device_family);
2294	}
2295
2296	hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data;
2297	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2298	calib = (const uint16_t *)
2299	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2300	regulatory = (const uint16_t *)
2301	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2302	mac_override = (const uint16_t *)
2303	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2304	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2305
2306	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2307	    phy_sku, regulatory);
2308}
2309
2310static int
2311iwm_nvm_init(struct iwm_softc *sc)
2312{
2313	struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS];
2314	int i, ret, section;
2315	uint32_t size_read = 0;
2316	uint8_t *nvm_buffer, *temp;
2317	uint16_t len;
2318
2319	memset(nvm_sections, 0, sizeof(nvm_sections));
2320
2321	if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS)
2322		return EINVAL;
2323
2324	/* load NVM values from nic */
2325	/* Read From FW NVM */
2326	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n");
2327
2328	nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO);
2329	if (!nvm_buffer)
2330		return ENOMEM;
2331	for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) {
2332		/* we override the constness for initial read */
2333		ret = iwm_nvm_read_section(sc, section, nvm_buffer,
2334					   &len, size_read);
2335		if (ret)
2336			continue;
2337		size_read += len;
2338		temp = malloc(len, M_DEVBUF, M_NOWAIT);
2339		if (!temp) {
2340			ret = ENOMEM;
2341			break;
2342		}
2343		memcpy(temp, nvm_buffer, len);
2344
2345		nvm_sections[section].data = temp;
2346		nvm_sections[section].length = len;
2347	}
2348	if (!size_read)
2349		device_printf(sc->sc_dev, "OTP is blank\n");
2350	free(nvm_buffer, M_DEVBUF);
2351
2352	sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections);
2353	if (!sc->nvm_data)
2354		return EINVAL;
2355	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
2356		    "nvm version = %x\n", sc->nvm_data->nvm_version);
2357
2358	for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) {
2359		if (nvm_sections[i].data != NULL)
2360			free(nvm_sections[i].data, M_DEVBUF);
2361	}
2362
2363	return 0;
2364}
2365
2366static int
2367iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num,
2368	const struct iwm_fw_desc *section)
2369{
2370	struct iwm_dma_info *dma = &sc->fw_dma;
2371	uint8_t *v_addr;
2372	bus_addr_t p_addr;
2373	uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len);
2374	int ret = 0;
2375
2376	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2377		    "%s: [%d] uCode section being loaded...\n",
2378		    __func__, section_num);
2379
2380	v_addr = dma->vaddr;
2381	p_addr = dma->paddr;
2382
2383	for (offset = 0; offset < section->len; offset += chunk_sz) {
2384		uint32_t copy_size, dst_addr;
2385		int extended_addr = FALSE;
2386
2387		copy_size = MIN(chunk_sz, section->len - offset);
2388		dst_addr = section->offset + offset;
2389
2390		if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2391		    dst_addr <= IWM_FW_MEM_EXTENDED_END)
2392			extended_addr = TRUE;
2393
2394		if (extended_addr)
2395			iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2396					  IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2397
2398		memcpy(v_addr, (const uint8_t *)section->data + offset,
2399		    copy_size);
2400		bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2401		ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr,
2402						   copy_size);
2403
2404		if (extended_addr)
2405			iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2406					    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2407
2408		if (ret) {
2409			device_printf(sc->sc_dev,
2410			    "%s: Could not load the [%d] uCode section\n",
2411			    __func__, section_num);
2412			break;
2413		}
2414	}
2415
2416	return ret;
2417}
2418
2419/*
2420 * ucode
2421 */
2422static int
2423iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2424			     bus_addr_t phy_addr, uint32_t byte_cnt)
2425{
2426	int ret;
2427
2428	sc->sc_fw_chunk_done = 0;
2429
2430	if (!iwm_nic_lock(sc))
2431		return EBUSY;
2432
2433	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2434	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2435
2436	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2437	    dst_addr);
2438
2439	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2440	    phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2441
2442	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2443	    (iwm_get_dma_hi_addr(phy_addr)
2444	     << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2445
2446	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2447	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2448	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2449	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2450
2451	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2452	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2453	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2454	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2455
2456	iwm_nic_unlock(sc);
2457
2458	/* wait up to 5s for this segment to load */
2459	ret = 0;
2460	while (!sc->sc_fw_chunk_done) {
2461		ret = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz);
2462		if (ret)
2463			break;
2464	}
2465
2466	if (ret != 0) {
2467		device_printf(sc->sc_dev,
2468		    "fw chunk addr 0x%x len %d failed to load\n",
2469		    dst_addr, byte_cnt);
2470		return ETIMEDOUT;
2471	}
2472
2473	return 0;
2474}
2475
2476static int
2477iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
2478	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2479{
2480	int shift_param;
2481	int i, ret = 0, sec_num = 0x1;
2482	uint32_t val, last_read_idx = 0;
2483
2484	if (cpu == 1) {
2485		shift_param = 0;
2486		*first_ucode_section = 0;
2487	} else {
2488		shift_param = 16;
2489		(*first_ucode_section)++;
2490	}
2491
2492	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2493		last_read_idx = i;
2494
2495		/*
2496		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2497		 * CPU1 to CPU2.
2498		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2499		 * CPU2 non paged to CPU2 paging sec.
2500		 */
2501		if (!image->fw_sect[i].data ||
2502		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2503		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2504			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2505				    "Break since Data not valid or Empty section, sec = %d\n",
2506				    i);
2507			break;
2508		}
2509		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2510		if (ret)
2511			return ret;
2512
2513		/* Notify the ucode of the loaded section number and status */
2514		if (iwm_nic_lock(sc)) {
2515			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2516			val = val | (sec_num << shift_param);
2517			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2518			sec_num = (sec_num << 1) | 0x1;
2519			iwm_nic_unlock(sc);
2520		}
2521	}
2522
2523	*first_ucode_section = last_read_idx;
2524
2525	iwm_enable_interrupts(sc);
2526
2527	if (iwm_nic_lock(sc)) {
2528		if (cpu == 1)
2529			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2530		else
2531			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2532		iwm_nic_unlock(sc);
2533	}
2534
2535	return 0;
2536}
2537
2538static int
2539iwm_pcie_load_cpu_sections(struct iwm_softc *sc,
2540	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2541{
2542	int shift_param;
2543	int i, ret = 0;
2544	uint32_t last_read_idx = 0;
2545
2546	if (cpu == 1) {
2547		shift_param = 0;
2548		*first_ucode_section = 0;
2549	} else {
2550		shift_param = 16;
2551		(*first_ucode_section)++;
2552	}
2553
2554	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2555		last_read_idx = i;
2556
2557		/*
2558		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2559		 * CPU1 to CPU2.
2560		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2561		 * CPU2 non paged to CPU2 paging sec.
2562		 */
2563		if (!image->fw_sect[i].data ||
2564		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2565		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2566			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2567				    "Break since Data not valid or Empty section, sec = %d\n",
2568				     i);
2569			break;
2570		}
2571
2572		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2573		if (ret)
2574			return ret;
2575	}
2576
2577	*first_ucode_section = last_read_idx;
2578
2579	return 0;
2580
2581}
2582
2583static int
2584iwm_pcie_load_given_ucode(struct iwm_softc *sc,
2585	const struct iwm_fw_sects *image)
2586{
2587	int ret = 0;
2588	int first_ucode_section;
2589
2590	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2591		     image->is_dual_cpus ? "Dual" : "Single");
2592
2593	/* load to FW the binary non secured sections of CPU1 */
2594	ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section);
2595	if (ret)
2596		return ret;
2597
2598	if (image->is_dual_cpus) {
2599		/* set CPU2 header address */
2600		if (iwm_nic_lock(sc)) {
2601			iwm_write_prph(sc,
2602				       IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
2603				       IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
2604			iwm_nic_unlock(sc);
2605		}
2606
2607		/* load to FW the binary sections of CPU2 */
2608		ret = iwm_pcie_load_cpu_sections(sc, image, 2,
2609						 &first_ucode_section);
2610		if (ret)
2611			return ret;
2612	}
2613
2614	iwm_enable_interrupts(sc);
2615
2616	/* release CPU reset */
2617	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2618
2619	return 0;
2620}
2621
2622int
2623iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc,
2624	const struct iwm_fw_sects *image)
2625{
2626	int ret = 0;
2627	int first_ucode_section;
2628
2629	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2630		    image->is_dual_cpus ? "Dual" : "Single");
2631
2632	/* configure the ucode to be ready to get the secured image */
2633	/* release CPU reset */
2634	if (iwm_nic_lock(sc)) {
2635		iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
2636		    IWM_RELEASE_CPU_RESET_BIT);
2637		iwm_nic_unlock(sc);
2638	}
2639
2640	/* load to FW the binary Secured sections of CPU1 */
2641	ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1,
2642	    &first_ucode_section);
2643	if (ret)
2644		return ret;
2645
2646	/* load to FW the binary sections of CPU2 */
2647	return iwm_pcie_load_cpu_sections_8000(sc, image, 2,
2648	    &first_ucode_section);
2649}
2650
2651/* XXX Get rid of this definition */
2652static inline void
2653iwm_enable_fw_load_int(struct iwm_softc *sc)
2654{
2655	IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n");
2656	sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
2657	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
2658}
2659
2660/* XXX Add proper rfkill support code */
2661static int
2662iwm_start_fw(struct iwm_softc *sc,
2663	const struct iwm_fw_sects *fw)
2664{
2665	int ret;
2666
2667	/* This may fail if AMT took ownership of the device */
2668	if (iwm_prepare_card_hw(sc)) {
2669		device_printf(sc->sc_dev,
2670		    "%s: Exit HW not ready\n", __func__);
2671		ret = EIO;
2672		goto out;
2673	}
2674
2675	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2676
2677	iwm_disable_interrupts(sc);
2678
2679	/* make sure rfkill handshake bits are cleared */
2680	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2681	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2682	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2683
2684	/* clear (again), then enable host interrupts */
2685	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2686
2687	ret = iwm_nic_init(sc);
2688	if (ret) {
2689		device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__);
2690		goto out;
2691	}
2692
2693	/*
2694	 * Now, we load the firmware and don't want to be interrupted, even
2695	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
2696	 * FH_TX interrupt which is needed to load the firmware). If the
2697	 * RF-Kill switch is toggled, we will find out after having loaded
2698	 * the firmware and return the proper value to the caller.
2699	 */
2700	iwm_enable_fw_load_int(sc);
2701
2702	/* really make sure rfkill handshake bits are cleared */
2703	/* maybe we should write a few times more?  just to make sure */
2704	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2705	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2706
2707	/* Load the given image to the HW */
2708	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2709		ret = iwm_pcie_load_given_ucode_8000(sc, fw);
2710	else
2711		ret = iwm_pcie_load_given_ucode(sc, fw);
2712
2713	/* XXX re-check RF-Kill state */
2714
2715out:
2716	return ret;
2717}
2718
2719static int
2720iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2721{
2722	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2723		.valid = htole32(valid_tx_ant),
2724	};
2725
2726	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2727	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2728}
2729
2730/* iwlwifi: mvm/fw.c */
2731static int
2732iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2733{
2734	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2735	enum iwm_ucode_type ucode_type = sc->cur_ucode;
2736
2737	/* Set parameters */
2738	phy_cfg_cmd.phy_cfg = htole32(iwm_mvm_get_phy_config(sc));
2739	phy_cfg_cmd.calib_control.event_trigger =
2740	    sc->sc_default_calib[ucode_type].event_trigger;
2741	phy_cfg_cmd.calib_control.flow_trigger =
2742	    sc->sc_default_calib[ucode_type].flow_trigger;
2743
2744	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2745	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2746	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2747	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2748}
2749
2750static int
2751iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data)
2752{
2753	struct iwm_mvm_alive_data *alive_data = data;
2754	struct iwm_mvm_alive_resp_ver1 *palive1;
2755	struct iwm_mvm_alive_resp_ver2 *palive2;
2756	struct iwm_mvm_alive_resp *palive;
2757
2758	if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive1)) {
2759		palive1 = (void *)pkt->data;
2760
2761		sc->support_umac_log = FALSE;
2762                sc->error_event_table =
2763                        le32toh(palive1->error_event_table_ptr);
2764                sc->log_event_table =
2765                        le32toh(palive1->log_event_table_ptr);
2766                alive_data->scd_base_addr = le32toh(palive1->scd_base_ptr);
2767
2768                alive_data->valid = le16toh(palive1->status) ==
2769                                    IWM_ALIVE_STATUS_OK;
2770                IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2771			    "Alive VER1 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2772			     le16toh(palive1->status), palive1->ver_type,
2773                             palive1->ver_subtype, palive1->flags);
2774	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive2)) {
2775		palive2 = (void *)pkt->data;
2776		sc->error_event_table =
2777			le32toh(palive2->error_event_table_ptr);
2778		sc->log_event_table =
2779			le32toh(palive2->log_event_table_ptr);
2780		alive_data->scd_base_addr = le32toh(palive2->scd_base_ptr);
2781		sc->umac_error_event_table =
2782                        le32toh(palive2->error_info_addr);
2783
2784		alive_data->valid = le16toh(palive2->status) ==
2785				    IWM_ALIVE_STATUS_OK;
2786		if (sc->umac_error_event_table)
2787			sc->support_umac_log = TRUE;
2788
2789		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2790			    "Alive VER2 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2791			    le16toh(palive2->status), palive2->ver_type,
2792			    palive2->ver_subtype, palive2->flags);
2793
2794		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2795			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2796			    palive2->umac_major, palive2->umac_minor);
2797	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) {
2798		palive = (void *)pkt->data;
2799
2800		sc->error_event_table =
2801			le32toh(palive->error_event_table_ptr);
2802		sc->log_event_table =
2803			le32toh(palive->log_event_table_ptr);
2804		alive_data->scd_base_addr = le32toh(palive->scd_base_ptr);
2805		sc->umac_error_event_table =
2806			le32toh(palive->error_info_addr);
2807
2808		alive_data->valid = le16toh(palive->status) ==
2809				    IWM_ALIVE_STATUS_OK;
2810		if (sc->umac_error_event_table)
2811			sc->support_umac_log = TRUE;
2812
2813		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2814			    "Alive VER3 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2815			    le16toh(palive->status), palive->ver_type,
2816			    palive->ver_subtype, palive->flags);
2817
2818		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2819			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2820			    le32toh(palive->umac_major),
2821			    le32toh(palive->umac_minor));
2822	}
2823
2824	return TRUE;
2825}
2826
2827static int
2828iwm_wait_phy_db_entry(struct iwm_softc *sc,
2829	struct iwm_rx_packet *pkt, void *data)
2830{
2831	struct iwm_phy_db *phy_db = data;
2832
2833	if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) {
2834		if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) {
2835			device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n",
2836			    __func__, pkt->hdr.code);
2837		}
2838		return TRUE;
2839	}
2840
2841	if (iwm_phy_db_set_section(phy_db, pkt)) {
2842		device_printf(sc->sc_dev,
2843		    "%s: iwm_phy_db_set_section failed\n", __func__);
2844	}
2845
2846	return FALSE;
2847}
2848
2849static int
2850iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2851	enum iwm_ucode_type ucode_type)
2852{
2853	struct iwm_notification_wait alive_wait;
2854	struct iwm_mvm_alive_data alive_data;
2855	const struct iwm_fw_sects *fw;
2856	enum iwm_ucode_type old_type = sc->cur_ucode;
2857	int error;
2858	static const uint16_t alive_cmd[] = { IWM_MVM_ALIVE };
2859
2860	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2861		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2862			error);
2863		return error;
2864	}
2865	fw = &sc->sc_fw.fw_sects[ucode_type];
2866	sc->cur_ucode = ucode_type;
2867	sc->ucode_loaded = FALSE;
2868
2869	memset(&alive_data, 0, sizeof(alive_data));
2870	iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait,
2871				   alive_cmd, nitems(alive_cmd),
2872				   iwm_alive_fn, &alive_data);
2873
2874	error = iwm_start_fw(sc, fw);
2875	if (error) {
2876		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2877		sc->cur_ucode = old_type;
2878		iwm_remove_notification(sc->sc_notif_wait, &alive_wait);
2879		return error;
2880	}
2881
2882	/*
2883	 * Some things may run in the background now, but we
2884	 * just wait for the ALIVE notification here.
2885	 */
2886	IWM_UNLOCK(sc);
2887	error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait,
2888				      IWM_MVM_UCODE_ALIVE_TIMEOUT);
2889	IWM_LOCK(sc);
2890	if (error) {
2891		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2892			uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a;
2893			if (iwm_nic_lock(sc)) {
2894				a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS);
2895				b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS);
2896				iwm_nic_unlock(sc);
2897			}
2898			device_printf(sc->sc_dev,
2899			    "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n",
2900			    a, b);
2901		}
2902		sc->cur_ucode = old_type;
2903		return error;
2904	}
2905
2906	if (!alive_data.valid) {
2907		device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n",
2908		    __func__);
2909		sc->cur_ucode = old_type;
2910		return EIO;
2911	}
2912
2913	iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr);
2914
2915	/*
2916	 * configure and operate fw paging mechanism.
2917	 * driver configures the paging flow only once, CPU2 paging image
2918	 * included in the IWM_UCODE_INIT image.
2919	 */
2920	if (fw->paging_mem_size) {
2921		error = iwm_save_fw_paging(sc, fw);
2922		if (error) {
2923			device_printf(sc->sc_dev,
2924			    "%s: failed to save the FW paging image\n",
2925			    __func__);
2926			return error;
2927		}
2928
2929		error = iwm_send_paging_cmd(sc, fw);
2930		if (error) {
2931			device_printf(sc->sc_dev,
2932			    "%s: failed to send the paging cmd\n", __func__);
2933			iwm_free_fw_paging(sc);
2934			return error;
2935		}
2936	}
2937
2938	if (!error)
2939		sc->ucode_loaded = TRUE;
2940	return error;
2941}
2942
2943/*
2944 * mvm misc bits
2945 */
2946
2947/*
2948 * follows iwlwifi/fw.c
2949 */
2950static int
2951iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2952{
2953	struct iwm_notification_wait calib_wait;
2954	static const uint16_t init_complete[] = {
2955		IWM_INIT_COMPLETE_NOTIF,
2956		IWM_CALIB_RES_NOTIF_PHY_DB
2957	};
2958	int ret;
2959
2960	/* do not operate with rfkill switch turned on */
2961	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2962		device_printf(sc->sc_dev,
2963		    "radio is disabled by hardware switch\n");
2964		return EPERM;
2965	}
2966
2967	iwm_init_notification_wait(sc->sc_notif_wait,
2968				   &calib_wait,
2969				   init_complete,
2970				   nitems(init_complete),
2971				   iwm_wait_phy_db_entry,
2972				   sc->sc_phy_db);
2973
2974	/* Will also start the device */
2975	ret = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_INIT);
2976	if (ret) {
2977		device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n",
2978		    ret);
2979		goto error;
2980	}
2981
2982	if (justnvm) {
2983		/* Read nvm */
2984		ret = iwm_nvm_init(sc);
2985		if (ret) {
2986			device_printf(sc->sc_dev, "failed to read nvm\n");
2987			goto error;
2988		}
2989		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr);
2990		goto error;
2991	}
2992
2993	ret = iwm_send_bt_init_conf(sc);
2994	if (ret) {
2995		device_printf(sc->sc_dev,
2996		    "failed to send bt coex configuration: %d\n", ret);
2997		goto error;
2998	}
2999
3000	/* Init Smart FIFO. */
3001	ret = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
3002	if (ret)
3003		goto error;
3004
3005	/* Send TX valid antennas before triggering calibrations */
3006	ret = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
3007	if (ret) {
3008		device_printf(sc->sc_dev,
3009		    "failed to send antennas before calibration: %d\n", ret);
3010		goto error;
3011	}
3012
3013	/*
3014	 * Send phy configurations command to init uCode
3015	 * to start the 16.0 uCode init image internal calibrations.
3016	 */
3017	ret = iwm_send_phy_cfg_cmd(sc);
3018	if (ret) {
3019		device_printf(sc->sc_dev,
3020		    "%s: Failed to run INIT calibrations: %d\n",
3021		    __func__, ret);
3022		goto error;
3023	}
3024
3025	/*
3026	 * Nothing to do but wait for the init complete notification
3027	 * from the firmware.
3028	 */
3029	IWM_UNLOCK(sc);
3030	ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait,
3031	    IWM_MVM_UCODE_CALIB_TIMEOUT);
3032	IWM_LOCK(sc);
3033
3034
3035	goto out;
3036
3037error:
3038	iwm_remove_notification(sc->sc_notif_wait, &calib_wait);
3039out:
3040	return ret;
3041}
3042
3043/*
3044 * receive side
3045 */
3046
3047/* (re)stock rx ring, called at init-time and at runtime */
3048static int
3049iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
3050{
3051	struct iwm_rx_ring *ring = &sc->rxq;
3052	struct iwm_rx_data *data = &ring->data[idx];
3053	struct mbuf *m;
3054	bus_dmamap_t dmamap;
3055	bus_dma_segment_t seg;
3056	int nsegs, error;
3057
3058	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
3059	if (m == NULL)
3060		return ENOBUFS;
3061
3062	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3063	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
3064	    &seg, &nsegs, BUS_DMA_NOWAIT);
3065	if (error != 0) {
3066		device_printf(sc->sc_dev,
3067		    "%s: can't map mbuf, error %d\n", __func__, error);
3068		m_freem(m);
3069		return error;
3070	}
3071
3072	if (data->m != NULL)
3073		bus_dmamap_unload(ring->data_dmat, data->map);
3074
3075	/* Swap ring->spare_map with data->map */
3076	dmamap = data->map;
3077	data->map = ring->spare_map;
3078	ring->spare_map = dmamap;
3079
3080	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
3081	data->m = m;
3082
3083	/* Update RX descriptor. */
3084	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
3085	ring->desc[idx] = htole32(seg.ds_addr >> 8);
3086	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3087	    BUS_DMASYNC_PREWRITE);
3088
3089	return 0;
3090}
3091
3092/* iwlwifi: mvm/rx.c */
3093/*
3094 * iwm_mvm_get_signal_strength - use new rx PHY INFO API
3095 * values are reported by the fw as positive values - need to negate
3096 * to obtain their dBM.  Account for missing antennas by replacing 0
3097 * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
3098 */
3099static int
3100iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
3101{
3102	int energy_a, energy_b, energy_c, max_energy;
3103	uint32_t val;
3104
3105	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
3106	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
3107	    IWM_RX_INFO_ENERGY_ANT_A_POS;
3108	energy_a = energy_a ? -energy_a : -256;
3109	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
3110	    IWM_RX_INFO_ENERGY_ANT_B_POS;
3111	energy_b = energy_b ? -energy_b : -256;
3112	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
3113	    IWM_RX_INFO_ENERGY_ANT_C_POS;
3114	energy_c = energy_c ? -energy_c : -256;
3115	max_energy = MAX(energy_a, energy_b);
3116	max_energy = MAX(max_energy, energy_c);
3117
3118	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3119	    "energy In A %d B %d C %d , and max %d\n",
3120	    energy_a, energy_b, energy_c, max_energy);
3121
3122	return max_energy;
3123}
3124
3125static void
3126iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3127{
3128	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
3129
3130	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
3131
3132	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
3133}
3134
3135/*
3136 * Retrieve the average noise (in dBm) among receivers.
3137 */
3138static int
3139iwm_get_noise(struct iwm_softc *sc,
3140    const struct iwm_mvm_statistics_rx_non_phy *stats)
3141{
3142	int i, total, nbant, noise;
3143
3144	total = nbant = noise = 0;
3145	for (i = 0; i < 3; i++) {
3146		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
3147		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
3148		    __func__,
3149		    i,
3150		    noise);
3151
3152		if (noise) {
3153			total += noise;
3154			nbant++;
3155		}
3156	}
3157
3158	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
3159	    __func__, nbant, total);
3160#if 0
3161	/* There should be at least one antenna but check anyway. */
3162	return (nbant == 0) ? -127 : (total / nbant) - 107;
3163#else
3164	/* For now, just hard-code it to -96 to be safe */
3165	return (-96);
3166#endif
3167}
3168
3169/*
3170 * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
3171 *
3172 * Handles the actual data of the Rx packet from the fw
3173 */
3174static boolean_t
3175iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset,
3176	boolean_t stolen)
3177{
3178	struct ieee80211com *ic = &sc->sc_ic;
3179	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3180	struct ieee80211_frame *wh;
3181	struct ieee80211_node *ni;
3182	struct ieee80211_rx_stats rxs;
3183	struct iwm_rx_phy_info *phy_info;
3184	struct iwm_rx_mpdu_res_start *rx_res;
3185	struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset);
3186	uint32_t len;
3187	uint32_t rx_pkt_status;
3188	int rssi;
3189
3190	phy_info = &sc->sc_last_phy_info;
3191	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
3192	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
3193	len = le16toh(rx_res->byte_count);
3194	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
3195
3196	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
3197		device_printf(sc->sc_dev,
3198		    "dsp size out of range [0,20]: %d\n",
3199		    phy_info->cfg_phy_cnt);
3200		goto fail;
3201	}
3202
3203	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
3204	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
3205		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3206		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
3207		goto fail;
3208	}
3209
3210	rssi = iwm_mvm_get_signal_strength(sc, phy_info);
3211
3212	/* Map it to relative value */
3213	rssi = rssi - sc->sc_noise;
3214
3215	/* replenish ring for the buffer we're going to feed to the sharks */
3216	if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
3217		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
3218		    __func__);
3219		goto fail;
3220	}
3221
3222	m->m_data = pkt->data + sizeof(*rx_res);
3223	m->m_pkthdr.len = m->m_len = len;
3224
3225	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3226	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
3227
3228	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3229
3230	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3231	    "%s: phy_info: channel=%d, flags=0x%08x\n",
3232	    __func__,
3233	    le16toh(phy_info->channel),
3234	    le16toh(phy_info->phy_flags));
3235
3236	/*
3237	 * Populate an RX state struct with the provided information.
3238	 */
3239	bzero(&rxs, sizeof(rxs));
3240	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
3241	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
3242	rxs.c_ieee = le16toh(phy_info->channel);
3243	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
3244		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
3245	} else {
3246		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
3247	}
3248
3249	/* rssi is in 1/2db units */
3250	rxs.rssi = rssi * 2;
3251	rxs.nf = sc->sc_noise;
3252
3253	if (ieee80211_radiotap_active_vap(vap)) {
3254		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
3255
3256		tap->wr_flags = 0;
3257		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
3258			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3259		tap->wr_chan_freq = htole16(rxs.c_freq);
3260		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
3261		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
3262		tap->wr_dbm_antsignal = (int8_t)rssi;
3263		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
3264		tap->wr_tsft = phy_info->system_timestamp;
3265		switch (phy_info->rate) {
3266		/* CCK rates. */
3267		case  10: tap->wr_rate =   2; break;
3268		case  20: tap->wr_rate =   4; break;
3269		case  55: tap->wr_rate =  11; break;
3270		case 110: tap->wr_rate =  22; break;
3271		/* OFDM rates. */
3272		case 0xd: tap->wr_rate =  12; break;
3273		case 0xf: tap->wr_rate =  18; break;
3274		case 0x5: tap->wr_rate =  24; break;
3275		case 0x7: tap->wr_rate =  36; break;
3276		case 0x9: tap->wr_rate =  48; break;
3277		case 0xb: tap->wr_rate =  72; break;
3278		case 0x1: tap->wr_rate =  96; break;
3279		case 0x3: tap->wr_rate = 108; break;
3280		/* Unknown rate: should not happen. */
3281		default:  tap->wr_rate =   0;
3282		}
3283	}
3284
3285	IWM_UNLOCK(sc);
3286	if (ni != NULL) {
3287		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3288		ieee80211_input_mimo(ni, m, &rxs);
3289		ieee80211_free_node(ni);
3290	} else {
3291		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3292		ieee80211_input_mimo_all(ic, m, &rxs);
3293	}
3294	IWM_LOCK(sc);
3295
3296	return TRUE;
3297
3298fail:	counter_u64_add(ic->ic_ierrors, 1);
3299	return FALSE;
3300}
3301
3302static int
3303iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3304	struct iwm_node *in)
3305{
3306	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3307	struct ieee80211_node *ni = &in->in_ni;
3308	struct ieee80211vap *vap = ni->ni_vap;
3309	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3310	int failack = tx_resp->failure_frame;
3311
3312	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3313
3314	/* Update rate control statistics. */
3315	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3316	    __func__,
3317	    (int) le16toh(tx_resp->status.status),
3318	    (int) le16toh(tx_resp->status.sequence),
3319	    tx_resp->frame_count,
3320	    tx_resp->bt_kill_count,
3321	    tx_resp->failure_rts,
3322	    tx_resp->failure_frame,
3323	    le32toh(tx_resp->initial_rate),
3324	    (int) le16toh(tx_resp->wireless_media_time));
3325
3326	if (status != IWM_TX_STATUS_SUCCESS &&
3327	    status != IWM_TX_STATUS_DIRECT_DONE) {
3328		ieee80211_ratectl_tx_complete(vap, ni,
3329		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
3330		return (1);
3331	} else {
3332		ieee80211_ratectl_tx_complete(vap, ni,
3333		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
3334		return (0);
3335	}
3336}
3337
3338static void
3339iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3340{
3341	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3342	int idx = cmd_hdr->idx;
3343	int qid = cmd_hdr->qid;
3344	struct iwm_tx_ring *ring = &sc->txq[qid];
3345	struct iwm_tx_data *txd = &ring->data[idx];
3346	struct iwm_node *in = txd->in;
3347	struct mbuf *m = txd->m;
3348	int status;
3349
3350	KASSERT(txd->done == 0, ("txd not done"));
3351	KASSERT(txd->in != NULL, ("txd without node"));
3352	KASSERT(txd->m != NULL, ("txd without mbuf"));
3353
3354	sc->sc_tx_timer = 0;
3355
3356	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3357
3358	/* Unmap and free mbuf. */
3359	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3360	bus_dmamap_unload(ring->data_dmat, txd->map);
3361
3362	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3363	    "free txd %p, in %p\n", txd, txd->in);
3364	txd->done = 1;
3365	txd->m = NULL;
3366	txd->in = NULL;
3367
3368	ieee80211_tx_complete(&in->in_ni, m, status);
3369
3370	if (--ring->queued < IWM_TX_RING_LOMARK) {
3371		sc->qfullmsk &= ~(1 << ring->qid);
3372		if (sc->qfullmsk == 0) {
3373			iwm_start(sc);
3374		}
3375	}
3376}
3377
3378/*
3379 * transmit side
3380 */
3381
3382/*
3383 * Process a "command done" firmware notification.  This is where we wakeup
3384 * processes waiting for a synchronous command completion.
3385 * from if_iwn
3386 */
3387static void
3388iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3389{
3390	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3391	struct iwm_tx_data *data;
3392
3393	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3394		return;	/* Not a command ack. */
3395	}
3396
3397	/* XXX wide commands? */
3398	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3399	    "cmd notification type 0x%x qid %d idx %d\n",
3400	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3401
3402	data = &ring->data[pkt->hdr.idx];
3403
3404	/* If the command was mapped in an mbuf, free it. */
3405	if (data->m != NULL) {
3406		bus_dmamap_sync(ring->data_dmat, data->map,
3407		    BUS_DMASYNC_POSTWRITE);
3408		bus_dmamap_unload(ring->data_dmat, data->map);
3409		m_freem(data->m);
3410		data->m = NULL;
3411	}
3412	wakeup(&ring->desc[pkt->hdr.idx]);
3413
3414	if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
3415		device_printf(sc->sc_dev,
3416		    "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
3417		    __func__, pkt->hdr.idx, ring->queued, ring->cur);
3418		/* XXX call iwm_force_nmi() */
3419	}
3420
3421	KASSERT(ring->queued > 0, ("ring->queued is empty?"));
3422	ring->queued--;
3423	if (ring->queued == 0)
3424		iwm_pcie_clear_cmd_in_flight(sc);
3425}
3426
3427#if 0
3428/*
3429 * necessary only for block ack mode
3430 */
3431void
3432iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3433	uint16_t len)
3434{
3435	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3436	uint16_t w_val;
3437
3438	scd_bc_tbl = sc->sched_dma.vaddr;
3439
3440	len += 8; /* magic numbers came naturally from paris */
3441	len = roundup(len, 4) / 4;
3442
3443	w_val = htole16(sta_id << 12 | len);
3444
3445	/* Update TX scheduler. */
3446	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3447	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3448	    BUS_DMASYNC_PREWRITE);
3449
3450	/* I really wonder what this is ?!? */
3451	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3452		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3453		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3454		    BUS_DMASYNC_PREWRITE);
3455	}
3456}
3457#endif
3458
3459/*
3460 * Take an 802.11 (non-n) rate, find the relevant rate
3461 * table entry.  return the index into in_ridx[].
3462 *
3463 * The caller then uses that index back into in_ridx
3464 * to figure out the rate index programmed /into/
3465 * the firmware for this given node.
3466 */
3467static int
3468iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3469    uint8_t rate)
3470{
3471	int i;
3472	uint8_t r;
3473
3474	for (i = 0; i < nitems(in->in_ridx); i++) {
3475		r = iwm_rates[in->in_ridx[i]].rate;
3476		if (rate == r)
3477			return (i);
3478	}
3479
3480	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3481	    "%s: couldn't find an entry for rate=%d\n",
3482	    __func__,
3483	    rate);
3484
3485	/* XXX Return the first */
3486	/* XXX TODO: have it return the /lowest/ */
3487	return (0);
3488}
3489
3490static int
3491iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3492{
3493	int i;
3494
3495	for (i = 0; i < nitems(iwm_rates); i++) {
3496		if (iwm_rates[i].rate == rate)
3497			return (i);
3498	}
3499	/* XXX error? */
3500	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3501	    "%s: couldn't find an entry for rate=%d\n",
3502	    __func__,
3503	    rate);
3504	return (0);
3505}
3506
3507/*
3508 * Fill in the rate related information for a transmit command.
3509 */
3510static const struct iwm_rate *
3511iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3512	struct mbuf *m, struct iwm_tx_cmd *tx)
3513{
3514	struct ieee80211_node *ni = &in->in_ni;
3515	struct ieee80211_frame *wh;
3516	const struct ieee80211_txparam *tp = ni->ni_txparms;
3517	const struct iwm_rate *rinfo;
3518	int type;
3519	int ridx, rate_flags;
3520
3521	wh = mtod(m, struct ieee80211_frame *);
3522	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3523
3524	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3525	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3526
3527	if (type == IEEE80211_FC0_TYPE_MGT) {
3528		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3529		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3530		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3531	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3532		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3533		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3534		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3535	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3536		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3537		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3538		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3539	} else if (m->m_flags & M_EAPOL) {
3540		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3541		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3542		    "%s: EAPOL\n", __func__);
3543	} else if (type == IEEE80211_FC0_TYPE_DATA) {
3544		int i;
3545
3546		/* for data frames, use RS table */
3547		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3548		/* XXX pass pktlen */
3549		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3550		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3551		ridx = in->in_ridx[i];
3552
3553		/* This is the index into the programmed table */
3554		tx->initial_rate_index = i;
3555		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3556
3557		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3558		    "%s: start with i=%d, txrate %d\n",
3559		    __func__, i, iwm_rates[ridx].rate);
3560	} else {
3561		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3562		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3563		    __func__, tp->mgmtrate);
3564	}
3565
3566	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3567	    "%s: frame type=%d txrate %d\n",
3568	        __func__, type, iwm_rates[ridx].rate);
3569
3570	rinfo = &iwm_rates[ridx];
3571
3572	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3573	    __func__, ridx,
3574	    rinfo->rate,
3575	    !! (IWM_RIDX_IS_CCK(ridx))
3576	    );
3577
3578	/* XXX TODO: hard-coded TX antenna? */
3579	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3580	if (IWM_RIDX_IS_CCK(ridx))
3581		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3582	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3583
3584	return rinfo;
3585}
3586
3587#define TB0_SIZE 16
3588static int
3589iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3590{
3591	struct ieee80211com *ic = &sc->sc_ic;
3592	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3593	struct iwm_node *in = IWM_NODE(ni);
3594	struct iwm_tx_ring *ring;
3595	struct iwm_tx_data *data;
3596	struct iwm_tfd *desc;
3597	struct iwm_device_cmd *cmd;
3598	struct iwm_tx_cmd *tx;
3599	struct ieee80211_frame *wh;
3600	struct ieee80211_key *k = NULL;
3601	struct mbuf *m1;
3602	const struct iwm_rate *rinfo;
3603	uint32_t flags;
3604	u_int hdrlen;
3605	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3606	int nsegs;
3607	uint8_t tid, type;
3608	int i, totlen, error, pad;
3609
3610	wh = mtod(m, struct ieee80211_frame *);
3611	hdrlen = ieee80211_anyhdrsize(wh);
3612	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3613	tid = 0;
3614	ring = &sc->txq[ac];
3615	desc = &ring->desc[ring->cur];
3616	memset(desc, 0, sizeof(*desc));
3617	data = &ring->data[ring->cur];
3618
3619	/* Fill out iwm_tx_cmd to send to the firmware */
3620	cmd = &ring->cmd[ring->cur];
3621	cmd->hdr.code = IWM_TX_CMD;
3622	cmd->hdr.flags = 0;
3623	cmd->hdr.qid = ring->qid;
3624	cmd->hdr.idx = ring->cur;
3625
3626	tx = (void *)cmd->data;
3627	memset(tx, 0, sizeof(*tx));
3628
3629	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3630
3631	/* Encrypt the frame if need be. */
3632	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3633		/* Retrieve key for TX && do software encryption. */
3634		k = ieee80211_crypto_encap(ni, m);
3635		if (k == NULL) {
3636			m_freem(m);
3637			return (ENOBUFS);
3638		}
3639		/* 802.11 header may have moved. */
3640		wh = mtod(m, struct ieee80211_frame *);
3641	}
3642
3643	if (ieee80211_radiotap_active_vap(vap)) {
3644		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3645
3646		tap->wt_flags = 0;
3647		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3648		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3649		tap->wt_rate = rinfo->rate;
3650		if (k != NULL)
3651			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3652		ieee80211_radiotap_tx(vap, m);
3653	}
3654
3655
3656	totlen = m->m_pkthdr.len;
3657
3658	flags = 0;
3659	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3660		flags |= IWM_TX_CMD_FLG_ACK;
3661	}
3662
3663	if (type == IEEE80211_FC0_TYPE_DATA
3664	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3665	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3666		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3667	}
3668
3669	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3670	    type != IEEE80211_FC0_TYPE_DATA)
3671		tx->sta_id = sc->sc_aux_sta.sta_id;
3672	else
3673		tx->sta_id = IWM_STATION_ID;
3674
3675	if (type == IEEE80211_FC0_TYPE_MGT) {
3676		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3677
3678		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3679		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3680			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3681		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3682			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3683		} else {
3684			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3685		}
3686	} else {
3687		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3688	}
3689
3690	if (hdrlen & 3) {
3691		/* First segment length must be a multiple of 4. */
3692		flags |= IWM_TX_CMD_FLG_MH_PAD;
3693		pad = 4 - (hdrlen & 3);
3694	} else
3695		pad = 0;
3696
3697	tx->driver_txop = 0;
3698	tx->next_frame_len = 0;
3699
3700	tx->len = htole16(totlen);
3701	tx->tid_tspec = tid;
3702	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3703
3704	/* Set physical address of "scratch area". */
3705	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3706	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3707
3708	/* Copy 802.11 header in TX command. */
3709	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3710
3711	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3712
3713	tx->sec_ctl = 0;
3714	tx->tx_flags |= htole32(flags);
3715
3716	/* Trim 802.11 header. */
3717	m_adj(m, hdrlen);
3718	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3719	    segs, &nsegs, BUS_DMA_NOWAIT);
3720	if (error != 0) {
3721		if (error != EFBIG) {
3722			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3723			    error);
3724			m_freem(m);
3725			return error;
3726		}
3727		/* Too many DMA segments, linearize mbuf. */
3728		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3729		if (m1 == NULL) {
3730			device_printf(sc->sc_dev,
3731			    "%s: could not defrag mbuf\n", __func__);
3732			m_freem(m);
3733			return (ENOBUFS);
3734		}
3735		m = m1;
3736
3737		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3738		    segs, &nsegs, BUS_DMA_NOWAIT);
3739		if (error != 0) {
3740			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3741			    error);
3742			m_freem(m);
3743			return error;
3744		}
3745	}
3746	data->m = m;
3747	data->in = in;
3748	data->done = 0;
3749
3750	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3751	    "sending txd %p, in %p\n", data, data->in);
3752	KASSERT(data->in != NULL, ("node is NULL"));
3753
3754	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3755	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3756	    ring->qid, ring->cur, totlen, nsegs,
3757	    le32toh(tx->tx_flags),
3758	    le32toh(tx->rate_n_flags),
3759	    tx->initial_rate_index
3760	    );
3761
3762	/* Fill TX descriptor. */
3763	desc->num_tbs = 2 + nsegs;
3764
3765	desc->tbs[0].lo = htole32(data->cmd_paddr);
3766	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3767	    (TB0_SIZE << 4);
3768	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3769	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3770	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3771	      + hdrlen + pad - TB0_SIZE) << 4);
3772
3773	/* Other DMA segments are for data payload. */
3774	for (i = 0; i < nsegs; i++) {
3775		seg = &segs[i];
3776		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3777		desc->tbs[i+2].hi_n_len = \
3778		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3779		    | ((seg->ds_len) << 4);
3780	}
3781
3782	bus_dmamap_sync(ring->data_dmat, data->map,
3783	    BUS_DMASYNC_PREWRITE);
3784	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3785	    BUS_DMASYNC_PREWRITE);
3786	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3787	    BUS_DMASYNC_PREWRITE);
3788
3789#if 0
3790	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3791#endif
3792
3793	/* Kick TX ring. */
3794	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3795	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3796
3797	/* Mark TX ring as full if we reach a certain threshold. */
3798	if (++ring->queued > IWM_TX_RING_HIMARK) {
3799		sc->qfullmsk |= 1 << ring->qid;
3800	}
3801
3802	return 0;
3803}
3804
3805static int
3806iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3807    const struct ieee80211_bpf_params *params)
3808{
3809	struct ieee80211com *ic = ni->ni_ic;
3810	struct iwm_softc *sc = ic->ic_softc;
3811	int error = 0;
3812
3813	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3814	    "->%s begin\n", __func__);
3815
3816	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3817		m_freem(m);
3818		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3819		    "<-%s not RUNNING\n", __func__);
3820		return (ENETDOWN);
3821        }
3822
3823	IWM_LOCK(sc);
3824	/* XXX fix this */
3825        if (params == NULL) {
3826		error = iwm_tx(sc, m, ni, 0);
3827	} else {
3828		error = iwm_tx(sc, m, ni, 0);
3829	}
3830	sc->sc_tx_timer = 5;
3831	IWM_UNLOCK(sc);
3832
3833        return (error);
3834}
3835
3836/*
3837 * mvm/tx.c
3838 */
3839
3840/*
3841 * Note that there are transports that buffer frames before they reach
3842 * the firmware. This means that after flush_tx_path is called, the
3843 * queue might not be empty. The race-free way to handle this is to:
3844 * 1) set the station as draining
3845 * 2) flush the Tx path
3846 * 3) wait for the transport queues to be empty
3847 */
3848int
3849iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3850{
3851	int ret;
3852	struct iwm_tx_path_flush_cmd flush_cmd = {
3853		.queues_ctl = htole32(tfd_msk),
3854		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3855	};
3856
3857	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3858	    sizeof(flush_cmd), &flush_cmd);
3859	if (ret)
3860                device_printf(sc->sc_dev,
3861		    "Flushing tx queue failed: %d\n", ret);
3862	return ret;
3863}
3864
3865/*
3866 * BEGIN mvm/quota.c
3867 */
3868
3869static int
3870iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp)
3871{
3872	struct iwm_time_quota_cmd cmd;
3873	int i, idx, ret, num_active_macs, quota, quota_rem;
3874	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3875	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3876	uint16_t id;
3877
3878	memset(&cmd, 0, sizeof(cmd));
3879
3880	/* currently, PHY ID == binding ID */
3881	if (ivp) {
3882		id = ivp->phy_ctxt->id;
3883		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3884		colors[id] = ivp->phy_ctxt->color;
3885
3886		if (1)
3887			n_ifs[id] = 1;
3888	}
3889
3890	/*
3891	 * The FW's scheduling session consists of
3892	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3893	 * equally between all the bindings that require quota
3894	 */
3895	num_active_macs = 0;
3896	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3897		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3898		num_active_macs += n_ifs[i];
3899	}
3900
3901	quota = 0;
3902	quota_rem = 0;
3903	if (num_active_macs) {
3904		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3905		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3906	}
3907
3908	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3909		if (colors[i] < 0)
3910			continue;
3911
3912		cmd.quotas[idx].id_and_color =
3913			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3914
3915		if (n_ifs[i] <= 0) {
3916			cmd.quotas[idx].quota = htole32(0);
3917			cmd.quotas[idx].max_duration = htole32(0);
3918		} else {
3919			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3920			cmd.quotas[idx].max_duration = htole32(0);
3921		}
3922		idx++;
3923	}
3924
3925	/* Give the remainder of the session to the first binding */
3926	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3927
3928	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3929	    sizeof(cmd), &cmd);
3930	if (ret)
3931		device_printf(sc->sc_dev,
3932		    "%s: Failed to send quota: %d\n", __func__, ret);
3933	return ret;
3934}
3935
3936/*
3937 * END mvm/quota.c
3938 */
3939
3940/*
3941 * ieee80211 routines
3942 */
3943
3944/*
3945 * Change to AUTH state in 80211 state machine.  Roughly matches what
3946 * Linux does in bss_info_changed().
3947 */
3948static int
3949iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3950{
3951	struct ieee80211_node *ni;
3952	struct iwm_node *in;
3953	struct iwm_vap *iv = IWM_VAP(vap);
3954	uint32_t duration;
3955	int error;
3956
3957	/*
3958	 * XXX i have a feeling that the vap node is being
3959	 * freed from underneath us. Grr.
3960	 */
3961	ni = ieee80211_ref_node(vap->iv_bss);
3962	in = IWM_NODE(ni);
3963	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3964	    "%s: called; vap=%p, bss ni=%p\n",
3965	    __func__,
3966	    vap,
3967	    ni);
3968
3969	in->in_assoc = 0;
3970
3971	/*
3972	 * Firmware bug - it'll crash if the beacon interval is less
3973	 * than 16. We can't avoid connecting at all, so refuse the
3974	 * station state change, this will cause net80211 to abandon
3975	 * attempts to connect to this AP, and eventually wpa_s will
3976	 * blacklist the AP...
3977	 */
3978	if (ni->ni_intval < 16) {
3979		device_printf(sc->sc_dev,
3980		    "AP %s beacon interval is %d, refusing due to firmware bug!\n",
3981		    ether_sprintf(ni->ni_bssid), ni->ni_intval);
3982		error = EINVAL;
3983		goto out;
3984	}
3985
3986	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3987	if (error != 0)
3988		return error;
3989
3990	error = iwm_allow_mcast(vap, sc);
3991	if (error) {
3992		device_printf(sc->sc_dev,
3993		    "%s: failed to set multicast\n", __func__);
3994		goto out;
3995	}
3996
3997	/*
3998	 * This is where it deviates from what Linux does.
3999	 *
4000	 * Linux iwlwifi doesn't reset the nic each time, nor does it
4001	 * call ctxt_add() here.  Instead, it adds it during vap creation,
4002	 * and always does a mac_ctx_changed().
4003	 *
4004	 * The openbsd port doesn't attempt to do that - it reset things
4005	 * at odd states and does the add here.
4006	 *
4007	 * So, until the state handling is fixed (ie, we never reset
4008	 * the NIC except for a firmware failure, which should drag
4009	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
4010	 * contexts that are required), let's do a dirty hack here.
4011	 */
4012	if (iv->is_uploaded) {
4013		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4014			device_printf(sc->sc_dev,
4015			    "%s: failed to update MAC\n", __func__);
4016			goto out;
4017		}
4018		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4019		    in->in_ni.ni_chan, 1, 1)) != 0) {
4020			device_printf(sc->sc_dev,
4021			    "%s: failed update phy ctxt\n", __func__);
4022			goto out;
4023		}
4024		iv->phy_ctxt = &sc->sc_phyctxt[0];
4025
4026		if ((error = iwm_mvm_binding_add_vif(sc, iv)) != 0) {
4027			device_printf(sc->sc_dev,
4028			    "%s: binding update cmd\n", __func__);
4029			goto out;
4030		}
4031		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4032			device_printf(sc->sc_dev,
4033			    "%s: failed to update sta\n", __func__);
4034			goto out;
4035		}
4036	} else {
4037		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
4038			device_printf(sc->sc_dev,
4039			    "%s: failed to add MAC\n", __func__);
4040			goto out;
4041		}
4042		if ((error = iwm_mvm_power_update_mac(sc)) != 0) {
4043			device_printf(sc->sc_dev,
4044			    "%s: failed to update power management\n",
4045			    __func__);
4046			goto out;
4047		}
4048		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4049		    in->in_ni.ni_chan, 1, 1)) != 0) {
4050			device_printf(sc->sc_dev,
4051			    "%s: failed add phy ctxt!\n", __func__);
4052			error = ETIMEDOUT;
4053			goto out;
4054		}
4055		iv->phy_ctxt = &sc->sc_phyctxt[0];
4056
4057		if ((error = iwm_mvm_binding_add_vif(sc, iv)) != 0) {
4058			device_printf(sc->sc_dev,
4059			    "%s: binding add cmd\n", __func__);
4060			goto out;
4061		}
4062		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
4063			device_printf(sc->sc_dev,
4064			    "%s: failed to add sta\n", __func__);
4065			goto out;
4066		}
4067	}
4068
4069	/*
4070	 * Prevent the FW from wandering off channel during association
4071	 * by "protecting" the session with a time event.
4072	 */
4073	/* XXX duration is in units of TU, not MS */
4074	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
4075	iwm_mvm_protect_session(sc, iv, duration, 500 /* XXX magic number */);
4076	DELAY(100);
4077
4078	error = 0;
4079out:
4080	ieee80211_free_node(ni);
4081	return (error);
4082}
4083
4084static int
4085iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
4086{
4087	struct iwm_node *in = IWM_NODE(vap->iv_bss);
4088	int error;
4089
4090	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4091		device_printf(sc->sc_dev,
4092		    "%s: failed to update STA\n", __func__);
4093		return error;
4094	}
4095
4096	in->in_assoc = 1;
4097	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4098		device_printf(sc->sc_dev,
4099		    "%s: failed to update MAC\n", __func__);
4100		return error;
4101	}
4102
4103	return 0;
4104}
4105
4106static int
4107iwm_release(struct iwm_softc *sc, struct iwm_node *in)
4108{
4109	uint32_t tfd_msk;
4110
4111	/*
4112	 * Ok, so *technically* the proper set of calls for going
4113	 * from RUN back to SCAN is:
4114	 *
4115	 * iwm_mvm_power_mac_disable(sc, in);
4116	 * iwm_mvm_mac_ctxt_changed(sc, vap);
4117	 * iwm_mvm_rm_sta(sc, in);
4118	 * iwm_mvm_update_quotas(sc, NULL);
4119	 * iwm_mvm_mac_ctxt_changed(sc, in);
4120	 * iwm_mvm_binding_remove_vif(sc, IWM_VAP(in->in_ni.ni_vap));
4121	 * iwm_mvm_mac_ctxt_remove(sc, in);
4122	 *
4123	 * However, that freezes the device not matter which permutations
4124	 * and modifications are attempted.  Obviously, this driver is missing
4125	 * something since it works in the Linux driver, but figuring out what
4126	 * is missing is a little more complicated.  Now, since we're going
4127	 * back to nothing anyway, we'll just do a complete device reset.
4128	 * Up your's, device!
4129	 */
4130	/*
4131	 * Just using 0xf for the queues mask is fine as long as we only
4132	 * get here from RUN state.
4133	 */
4134	tfd_msk = 0xf;
4135	mbufq_drain(&sc->sc_snd);
4136	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
4137	/*
4138	 * We seem to get away with just synchronously sending the
4139	 * IWM_TXPATH_FLUSH command.
4140	 */
4141//	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
4142	iwm_stop_device(sc);
4143	iwm_init_hw(sc);
4144	if (in)
4145		in->in_assoc = 0;
4146	return 0;
4147
4148#if 0
4149	int error;
4150
4151	iwm_mvm_power_mac_disable(sc, in);
4152
4153	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4154		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4155		return error;
4156	}
4157
4158	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4159		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4160		return error;
4161	}
4162	error = iwm_mvm_rm_sta(sc, in);
4163	in->in_assoc = 0;
4164	iwm_mvm_update_quotas(sc, NULL);
4165	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4166		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4167		return error;
4168	}
4169	iwm_mvm_binding_remove_vif(sc, IWM_VAP(in->in_ni.ni_vap));
4170
4171	iwm_mvm_mac_ctxt_remove(sc, in);
4172
4173	return error;
4174#endif
4175}
4176
4177static struct ieee80211_node *
4178iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4179{
4180	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4181	    M_NOWAIT | M_ZERO);
4182}
4183
4184uint8_t
4185iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
4186{
4187	int i;
4188	uint8_t rval;
4189
4190	for (i = 0; i < rs->rs_nrates; i++) {
4191		rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
4192		if (rval == iwm_rates[ridx].rate)
4193			return rs->rs_rates[i];
4194	}
4195
4196	return 0;
4197}
4198
4199static void
4200iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4201{
4202	struct ieee80211_node *ni = &in->in_ni;
4203	struct iwm_lq_cmd *lq = &in->in_lq;
4204	int nrates = ni->ni_rates.rs_nrates;
4205	int i, ridx, tab = 0;
4206//	int txant = 0;
4207
4208	if (nrates > nitems(lq->rs_table)) {
4209		device_printf(sc->sc_dev,
4210		    "%s: node supports %d rates, driver handles "
4211		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4212		return;
4213	}
4214	if (nrates == 0) {
4215		device_printf(sc->sc_dev,
4216		    "%s: node supports 0 rates, odd!\n", __func__);
4217		return;
4218	}
4219
4220	/*
4221	 * XXX .. and most of iwm_node is not initialised explicitly;
4222	 * it's all just 0x0 passed to the firmware.
4223	 */
4224
4225	/* first figure out which rates we should support */
4226	/* XXX TODO: this isn't 11n aware /at all/ */
4227	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4228	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4229	    "%s: nrates=%d\n", __func__, nrates);
4230
4231	/*
4232	 * Loop over nrates and populate in_ridx from the highest
4233	 * rate to the lowest rate.  Remember, in_ridx[] has
4234	 * IEEE80211_RATE_MAXSIZE entries!
4235	 */
4236	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4237		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4238
4239		/* Map 802.11 rate to HW rate index. */
4240		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4241			if (iwm_rates[ridx].rate == rate)
4242				break;
4243		if (ridx > IWM_RIDX_MAX) {
4244			device_printf(sc->sc_dev,
4245			    "%s: WARNING: device rate for %d not found!\n",
4246			    __func__, rate);
4247		} else {
4248			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4249			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4250			    __func__,
4251			    i,
4252			    rate,
4253			    ridx);
4254			in->in_ridx[i] = ridx;
4255		}
4256	}
4257
4258	/* then construct a lq_cmd based on those */
4259	memset(lq, 0, sizeof(*lq));
4260	lq->sta_id = IWM_STATION_ID;
4261
4262	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4263	if (ni->ni_flags & IEEE80211_NODE_HT)
4264		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4265
4266	/*
4267	 * are these used? (we don't do SISO or MIMO)
4268	 * need to set them to non-zero, though, or we get an error.
4269	 */
4270	lq->single_stream_ant_msk = 1;
4271	lq->dual_stream_ant_msk = 1;
4272
4273	/*
4274	 * Build the actual rate selection table.
4275	 * The lowest bits are the rates.  Additionally,
4276	 * CCK needs bit 9 to be set.  The rest of the bits
4277	 * we add to the table select the tx antenna
4278	 * Note that we add the rates in the highest rate first
4279	 * (opposite of ni_rates).
4280	 */
4281	/*
4282	 * XXX TODO: this should be looping over the min of nrates
4283	 * and LQ_MAX_RETRY_NUM.  Sigh.
4284	 */
4285	for (i = 0; i < nrates; i++) {
4286		int nextant;
4287
4288#if 0
4289		if (txant == 0)
4290			txant = iwm_mvm_get_valid_tx_ant(sc);
4291		nextant = 1<<(ffs(txant)-1);
4292		txant &= ~nextant;
4293#else
4294		nextant = iwm_mvm_get_valid_tx_ant(sc);
4295#endif
4296		/*
4297		 * Map the rate id into a rate index into
4298		 * our hardware table containing the
4299		 * configuration to use for this rate.
4300		 */
4301		ridx = in->in_ridx[i];
4302		tab = iwm_rates[ridx].plcp;
4303		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4304		if (IWM_RIDX_IS_CCK(ridx))
4305			tab |= IWM_RATE_MCS_CCK_MSK;
4306		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4307		    "station rate i=%d, rate=%d, hw=%x\n",
4308		    i, iwm_rates[ridx].rate, tab);
4309		lq->rs_table[i] = htole32(tab);
4310	}
4311	/* then fill the rest with the lowest possible rate */
4312	for (i = nrates; i < nitems(lq->rs_table); i++) {
4313		KASSERT(tab != 0, ("invalid tab"));
4314		lq->rs_table[i] = htole32(tab);
4315	}
4316}
4317
4318static int
4319iwm_media_change(struct ifnet *ifp)
4320{
4321	struct ieee80211vap *vap = ifp->if_softc;
4322	struct ieee80211com *ic = vap->iv_ic;
4323	struct iwm_softc *sc = ic->ic_softc;
4324	int error;
4325
4326	error = ieee80211_media_change(ifp);
4327	if (error != ENETRESET)
4328		return error;
4329
4330	IWM_LOCK(sc);
4331	if (ic->ic_nrunning > 0) {
4332		iwm_stop(sc);
4333		iwm_init(sc);
4334	}
4335	IWM_UNLOCK(sc);
4336	return error;
4337}
4338
4339
4340static int
4341iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4342{
4343	struct iwm_vap *ivp = IWM_VAP(vap);
4344	struct ieee80211com *ic = vap->iv_ic;
4345	struct iwm_softc *sc = ic->ic_softc;
4346	struct iwm_node *in;
4347	int error;
4348
4349	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4350	    "switching state %s -> %s\n",
4351	    ieee80211_state_name[vap->iv_state],
4352	    ieee80211_state_name[nstate]);
4353	IEEE80211_UNLOCK(ic);
4354	IWM_LOCK(sc);
4355
4356	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4357		iwm_led_blink_stop(sc);
4358
4359	/* disable beacon filtering if we're hopping out of RUN */
4360	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4361		iwm_mvm_disable_beacon_filter(sc);
4362
4363		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4364			in->in_assoc = 0;
4365
4366		if (nstate == IEEE80211_S_INIT) {
4367			IWM_UNLOCK(sc);
4368			IEEE80211_LOCK(ic);
4369			error = ivp->iv_newstate(vap, nstate, arg);
4370			IEEE80211_UNLOCK(ic);
4371			IWM_LOCK(sc);
4372			iwm_release(sc, NULL);
4373			IWM_UNLOCK(sc);
4374			IEEE80211_LOCK(ic);
4375			return error;
4376		}
4377
4378		/*
4379		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4380		 * above then the card will be completely reinitialized,
4381		 * so the driver must do everything necessary to bring the card
4382		 * from INIT to SCAN.
4383		 *
4384		 * Additionally, upon receiving deauth frame from AP,
4385		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4386		 * state. This will also fail with this driver, so bring the FSM
4387		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4388		 *
4389		 * XXX TODO: fix this for FreeBSD!
4390		 */
4391		if (nstate == IEEE80211_S_SCAN ||
4392		    nstate == IEEE80211_S_AUTH ||
4393		    nstate == IEEE80211_S_ASSOC) {
4394			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4395			    "Force transition to INIT; MGT=%d\n", arg);
4396			IWM_UNLOCK(sc);
4397			IEEE80211_LOCK(ic);
4398			/* Always pass arg as -1 since we can't Tx right now. */
4399			/*
4400			 * XXX arg is just ignored anyway when transitioning
4401			 *     to IEEE80211_S_INIT.
4402			 */
4403			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4404			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4405			    "Going INIT->SCAN\n");
4406			nstate = IEEE80211_S_SCAN;
4407			IEEE80211_UNLOCK(ic);
4408			IWM_LOCK(sc);
4409		}
4410	}
4411
4412	switch (nstate) {
4413	case IEEE80211_S_INIT:
4414	case IEEE80211_S_SCAN:
4415		if (vap->iv_state == IEEE80211_S_AUTH ||
4416		    vap->iv_state == IEEE80211_S_ASSOC) {
4417			int myerr;
4418			IWM_UNLOCK(sc);
4419			IEEE80211_LOCK(ic);
4420			myerr = ivp->iv_newstate(vap, nstate, arg);
4421			IEEE80211_UNLOCK(ic);
4422			IWM_LOCK(sc);
4423			error = iwm_mvm_rm_sta(sc, vap, FALSE);
4424                        if (error) {
4425                                device_printf(sc->sc_dev,
4426				    "%s: Failed to remove station: %d\n",
4427				    __func__, error);
4428			}
4429			error = iwm_mvm_mac_ctxt_changed(sc, vap);
4430                        if (error) {
4431                                device_printf(sc->sc_dev,
4432                                    "%s: Failed to change mac context: %d\n",
4433                                    __func__, error);
4434                        }
4435                        error = iwm_mvm_binding_remove_vif(sc, ivp);
4436                        if (error) {
4437                                device_printf(sc->sc_dev,
4438                                    "%s: Failed to remove channel ctx: %d\n",
4439                                    __func__, error);
4440                        }
4441			ivp->phy_ctxt = NULL;
4442			IWM_UNLOCK(sc);
4443			IEEE80211_LOCK(ic);
4444			return myerr;
4445		}
4446		break;
4447
4448	case IEEE80211_S_AUTH:
4449		if ((error = iwm_auth(vap, sc)) != 0) {
4450			device_printf(sc->sc_dev,
4451			    "%s: could not move to auth state: %d\n",
4452			    __func__, error);
4453			break;
4454		}
4455		break;
4456
4457	case IEEE80211_S_ASSOC:
4458		if ((error = iwm_assoc(vap, sc)) != 0) {
4459			device_printf(sc->sc_dev,
4460			    "%s: failed to associate: %d\n", __func__,
4461			    error);
4462			break;
4463		}
4464		break;
4465
4466	case IEEE80211_S_RUN:
4467	{
4468		struct iwm_host_cmd cmd = {
4469			.id = IWM_LQ_CMD,
4470			.len = { sizeof(in->in_lq), },
4471			.flags = IWM_CMD_SYNC,
4472		};
4473
4474		/* Update the association state, now we have it all */
4475		/* (eg associd comes in at this point */
4476		error = iwm_assoc(vap, sc);
4477		if (error != 0) {
4478			device_printf(sc->sc_dev,
4479			    "%s: failed to update association state: %d\n",
4480			    __func__,
4481			    error);
4482			break;
4483		}
4484
4485		in = IWM_NODE(vap->iv_bss);
4486		iwm_mvm_enable_beacon_filter(sc, in);
4487		iwm_mvm_power_update_mac(sc);
4488		iwm_mvm_update_quotas(sc, ivp);
4489		iwm_setrates(sc, in);
4490
4491		cmd.data[0] = &in->in_lq;
4492		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4493			device_printf(sc->sc_dev,
4494			    "%s: IWM_LQ_CMD failed\n", __func__);
4495		}
4496
4497		iwm_mvm_led_enable(sc);
4498		break;
4499	}
4500
4501	default:
4502		break;
4503	}
4504	IWM_UNLOCK(sc);
4505	IEEE80211_LOCK(ic);
4506
4507	return (ivp->iv_newstate(vap, nstate, arg));
4508}
4509
4510void
4511iwm_endscan_cb(void *arg, int pending)
4512{
4513	struct iwm_softc *sc = arg;
4514	struct ieee80211com *ic = &sc->sc_ic;
4515
4516	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4517	    "%s: scan ended\n",
4518	    __func__);
4519
4520	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4521}
4522
4523/*
4524 * Aging and idle timeouts for the different possible scenarios
4525 * in default configuration
4526 */
4527static const uint32_t
4528iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4529	{
4530		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4531		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4532	},
4533	{
4534		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4535		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4536	},
4537	{
4538		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4539		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4540	},
4541	{
4542		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4543		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4544	},
4545	{
4546		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4547		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4548	},
4549};
4550
4551/*
4552 * Aging and idle timeouts for the different possible scenarios
4553 * in single BSS MAC configuration.
4554 */
4555static const uint32_t
4556iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4557	{
4558		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4559		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4560	},
4561	{
4562		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4563		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4564	},
4565	{
4566		htole32(IWM_SF_MCAST_AGING_TIMER),
4567		htole32(IWM_SF_MCAST_IDLE_TIMER)
4568	},
4569	{
4570		htole32(IWM_SF_BA_AGING_TIMER),
4571		htole32(IWM_SF_BA_IDLE_TIMER)
4572	},
4573	{
4574		htole32(IWM_SF_TX_RE_AGING_TIMER),
4575		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4576	},
4577};
4578
4579static void
4580iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4581    struct ieee80211_node *ni)
4582{
4583	int i, j, watermark;
4584
4585	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4586
4587	/*
4588	 * If we are in association flow - check antenna configuration
4589	 * capabilities of the AP station, and choose the watermark accordingly.
4590	 */
4591	if (ni) {
4592		if (ni->ni_flags & IEEE80211_NODE_HT) {
4593#ifdef notyet
4594			if (ni->ni_rxmcs[2] != 0)
4595				watermark = IWM_SF_W_MARK_MIMO3;
4596			else if (ni->ni_rxmcs[1] != 0)
4597				watermark = IWM_SF_W_MARK_MIMO2;
4598			else
4599#endif
4600				watermark = IWM_SF_W_MARK_SISO;
4601		} else {
4602			watermark = IWM_SF_W_MARK_LEGACY;
4603		}
4604	/* default watermark value for unassociated mode. */
4605	} else {
4606		watermark = IWM_SF_W_MARK_MIMO2;
4607	}
4608	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4609
4610	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4611		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4612			sf_cmd->long_delay_timeouts[i][j] =
4613					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4614		}
4615	}
4616
4617	if (ni) {
4618		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4619		       sizeof(iwm_sf_full_timeout));
4620	} else {
4621		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4622		       sizeof(iwm_sf_full_timeout_def));
4623	}
4624}
4625
4626static int
4627iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4628{
4629	struct ieee80211com *ic = &sc->sc_ic;
4630	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4631	struct iwm_sf_cfg_cmd sf_cmd = {
4632		.state = htole32(IWM_SF_FULL_ON),
4633	};
4634	int ret = 0;
4635
4636	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4637		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4638
4639	switch (new_state) {
4640	case IWM_SF_UNINIT:
4641	case IWM_SF_INIT_OFF:
4642		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4643		break;
4644	case IWM_SF_FULL_ON:
4645		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4646		break;
4647	default:
4648		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4649		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4650			  new_state);
4651		return EINVAL;
4652	}
4653
4654	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4655				   sizeof(sf_cmd), &sf_cmd);
4656	return ret;
4657}
4658
4659static int
4660iwm_send_bt_init_conf(struct iwm_softc *sc)
4661{
4662	struct iwm_bt_coex_cmd bt_cmd;
4663
4664	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4665	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4666
4667	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4668	    &bt_cmd);
4669}
4670
4671static boolean_t
4672iwm_mvm_is_lar_supported(struct iwm_softc *sc)
4673{
4674	boolean_t nvm_lar = sc->nvm_data->lar_enabled;
4675	boolean_t tlv_lar = fw_has_capa(&sc->ucode_capa,
4676					IWM_UCODE_TLV_CAPA_LAR_SUPPORT);
4677
4678	if (iwm_lar_disable)
4679		return FALSE;
4680
4681	/*
4682	 * Enable LAR only if it is supported by the FW (TLV) &&
4683	 * enabled in the NVM
4684	 */
4685	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4686		return nvm_lar && tlv_lar;
4687	else
4688		return tlv_lar;
4689}
4690
4691static boolean_t
4692iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *sc)
4693{
4694	return fw_has_api(&sc->ucode_capa,
4695			  IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4696	       fw_has_capa(&sc->ucode_capa,
4697			   IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC);
4698}
4699
4700static int
4701iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4702{
4703	struct iwm_mcc_update_cmd mcc_cmd;
4704	struct iwm_host_cmd hcmd = {
4705		.id = IWM_MCC_UPDATE_CMD,
4706		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4707		.data = { &mcc_cmd },
4708	};
4709	int ret;
4710#ifdef IWM_DEBUG
4711	struct iwm_rx_packet *pkt;
4712	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4713	struct iwm_mcc_update_resp *mcc_resp;
4714	int n_channels;
4715	uint16_t mcc;
4716#endif
4717	int resp_v2 = fw_has_capa(&sc->ucode_capa,
4718	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4719
4720	if (!iwm_mvm_is_lar_supported(sc)) {
4721		IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n",
4722		    __func__);
4723		return 0;
4724	}
4725
4726	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4727	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4728	if (iwm_mvm_is_wifi_mcc_supported(sc))
4729		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4730	else
4731		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4732
4733	if (resp_v2)
4734		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4735	else
4736		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4737
4738	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4739	    "send MCC update to FW with '%c%c' src = %d\n",
4740	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4741
4742	ret = iwm_send_cmd(sc, &hcmd);
4743	if (ret)
4744		return ret;
4745
4746#ifdef IWM_DEBUG
4747	pkt = hcmd.resp_pkt;
4748
4749	/* Extract MCC response */
4750	if (resp_v2) {
4751		mcc_resp = (void *)pkt->data;
4752		mcc = mcc_resp->mcc;
4753		n_channels =  le32toh(mcc_resp->n_channels);
4754	} else {
4755		mcc_resp_v1 = (void *)pkt->data;
4756		mcc = mcc_resp_v1->mcc;
4757		n_channels =  le32toh(mcc_resp_v1->n_channels);
4758	}
4759
4760	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4761	if (mcc == 0)
4762		mcc = 0x3030;  /* "00" - world */
4763
4764	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4765	    "regulatory domain '%c%c' (%d channels available)\n",
4766	    mcc >> 8, mcc & 0xff, n_channels);
4767#endif
4768	iwm_free_resp(sc, &hcmd);
4769
4770	return 0;
4771}
4772
4773static void
4774iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4775{
4776	struct iwm_host_cmd cmd = {
4777		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4778		.len = { sizeof(uint32_t), },
4779		.data = { &backoff, },
4780	};
4781
4782	if (iwm_send_cmd(sc, &cmd) != 0) {
4783		device_printf(sc->sc_dev,
4784		    "failed to change thermal tx backoff\n");
4785	}
4786}
4787
4788static int
4789iwm_init_hw(struct iwm_softc *sc)
4790{
4791	struct ieee80211com *ic = &sc->sc_ic;
4792	int error, i, ac;
4793
4794	if ((error = iwm_start_hw(sc)) != 0) {
4795		printf("iwm_start_hw: failed %d\n", error);
4796		return error;
4797	}
4798
4799	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4800		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4801		return error;
4802	}
4803
4804	/*
4805	 * should stop and start HW since that INIT
4806	 * image just loaded
4807	 */
4808	iwm_stop_device(sc);
4809	sc->sc_ps_disabled = FALSE;
4810	if ((error = iwm_start_hw(sc)) != 0) {
4811		device_printf(sc->sc_dev, "could not initialize hardware\n");
4812		return error;
4813	}
4814
4815	/* omstart, this time with the regular firmware */
4816	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR);
4817	if (error) {
4818		device_printf(sc->sc_dev, "could not load firmware\n");
4819		goto error;
4820	}
4821
4822	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4823		device_printf(sc->sc_dev, "bt init conf failed\n");
4824		goto error;
4825	}
4826
4827	error = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
4828	if (error != 0) {
4829		device_printf(sc->sc_dev, "antenna config failed\n");
4830		goto error;
4831	}
4832
4833	/* Send phy db control command and then phy db calibration */
4834	if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0)
4835		goto error;
4836
4837	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4838		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4839		goto error;
4840	}
4841
4842	/* Add auxiliary station for scanning */
4843	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4844		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4845		goto error;
4846	}
4847
4848	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4849		/*
4850		 * The channel used here isn't relevant as it's
4851		 * going to be overwritten in the other flows.
4852		 * For now use the first channel we have.
4853		 */
4854		if ((error = iwm_mvm_phy_ctxt_add(sc,
4855		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4856			goto error;
4857	}
4858
4859	/* Initialize tx backoffs to the minimum. */
4860	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
4861		iwm_mvm_tt_tx_backoff(sc, 0);
4862
4863	error = iwm_mvm_power_update_device(sc);
4864	if (error)
4865		goto error;
4866
4867	if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4868		goto error;
4869
4870	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4871		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4872			goto error;
4873	}
4874
4875	/* Enable Tx queues. */
4876	for (ac = 0; ac < WME_NUM_AC; ac++) {
4877		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4878		    iwm_mvm_ac_to_tx_fifo[ac]);
4879		if (error)
4880			goto error;
4881	}
4882
4883	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4884		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4885		goto error;
4886	}
4887
4888	return 0;
4889
4890 error:
4891	iwm_stop_device(sc);
4892	return error;
4893}
4894
4895/* Allow multicast from our BSSID. */
4896static int
4897iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4898{
4899	struct ieee80211_node *ni = vap->iv_bss;
4900	struct iwm_mcast_filter_cmd *cmd;
4901	size_t size;
4902	int error;
4903
4904	size = roundup(sizeof(*cmd), 4);
4905	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4906	if (cmd == NULL)
4907		return ENOMEM;
4908	cmd->filter_own = 1;
4909	cmd->port_id = 0;
4910	cmd->count = 0;
4911	cmd->pass_all = 1;
4912	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4913
4914	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4915	    IWM_CMD_SYNC, size, cmd);
4916	free(cmd, M_DEVBUF);
4917
4918	return (error);
4919}
4920
4921/*
4922 * ifnet interfaces
4923 */
4924
4925static void
4926iwm_init(struct iwm_softc *sc)
4927{
4928	int error;
4929
4930	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4931		return;
4932	}
4933	sc->sc_generation++;
4934	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4935
4936	if ((error = iwm_init_hw(sc)) != 0) {
4937		printf("iwm_init_hw failed %d\n", error);
4938		iwm_stop(sc);
4939		return;
4940	}
4941
4942	/*
4943	 * Ok, firmware loaded and we are jogging
4944	 */
4945	sc->sc_flags |= IWM_FLAG_HW_INITED;
4946	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4947}
4948
4949static int
4950iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4951{
4952	struct iwm_softc *sc;
4953	int error;
4954
4955	sc = ic->ic_softc;
4956
4957	IWM_LOCK(sc);
4958	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4959		IWM_UNLOCK(sc);
4960		return (ENXIO);
4961	}
4962	error = mbufq_enqueue(&sc->sc_snd, m);
4963	if (error) {
4964		IWM_UNLOCK(sc);
4965		return (error);
4966	}
4967	iwm_start(sc);
4968	IWM_UNLOCK(sc);
4969	return (0);
4970}
4971
4972/*
4973 * Dequeue packets from sendq and call send.
4974 */
4975static void
4976iwm_start(struct iwm_softc *sc)
4977{
4978	struct ieee80211_node *ni;
4979	struct mbuf *m;
4980	int ac = 0;
4981
4982	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4983	while (sc->qfullmsk == 0 &&
4984		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4985		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4986		if (iwm_tx(sc, m, ni, ac) != 0) {
4987			if_inc_counter(ni->ni_vap->iv_ifp,
4988			    IFCOUNTER_OERRORS, 1);
4989			ieee80211_free_node(ni);
4990			continue;
4991		}
4992		sc->sc_tx_timer = 15;
4993	}
4994	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4995}
4996
4997static void
4998iwm_stop(struct iwm_softc *sc)
4999{
5000
5001	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
5002	sc->sc_flags |= IWM_FLAG_STOPPED;
5003	sc->sc_generation++;
5004	iwm_led_blink_stop(sc);
5005	sc->sc_tx_timer = 0;
5006	iwm_stop_device(sc);
5007	sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5008}
5009
5010static void
5011iwm_watchdog(void *arg)
5012{
5013	struct iwm_softc *sc = arg;
5014	struct ieee80211com *ic = &sc->sc_ic;
5015
5016	if (sc->sc_tx_timer > 0) {
5017		if (--sc->sc_tx_timer == 0) {
5018			device_printf(sc->sc_dev, "device timeout\n");
5019#ifdef IWM_DEBUG
5020			iwm_nic_error(sc);
5021#endif
5022			ieee80211_restart_all(ic);
5023			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
5024			return;
5025		}
5026	}
5027	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
5028}
5029
5030static void
5031iwm_parent(struct ieee80211com *ic)
5032{
5033	struct iwm_softc *sc = ic->ic_softc;
5034	int startall = 0;
5035
5036	IWM_LOCK(sc);
5037	if (ic->ic_nrunning > 0) {
5038		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
5039			iwm_init(sc);
5040			startall = 1;
5041		}
5042	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
5043		iwm_stop(sc);
5044	IWM_UNLOCK(sc);
5045	if (startall)
5046		ieee80211_start_all(ic);
5047}
5048
5049/*
5050 * The interrupt side of things
5051 */
5052
5053/*
5054 * error dumping routines are from iwlwifi/mvm/utils.c
5055 */
5056
5057/*
5058 * Note: This structure is read from the device with IO accesses,
5059 * and the reading already does the endian conversion. As it is
5060 * read with uint32_t-sized accesses, any members with a different size
5061 * need to be ordered correctly though!
5062 */
5063struct iwm_error_event_table {
5064	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5065	uint32_t error_id;		/* type of error */
5066	uint32_t trm_hw_status0;	/* TRM HW status */
5067	uint32_t trm_hw_status1;	/* TRM HW status */
5068	uint32_t blink2;		/* branch link */
5069	uint32_t ilink1;		/* interrupt link */
5070	uint32_t ilink2;		/* interrupt link */
5071	uint32_t data1;		/* error-specific data */
5072	uint32_t data2;		/* error-specific data */
5073	uint32_t data3;		/* error-specific data */
5074	uint32_t bcon_time;		/* beacon timer */
5075	uint32_t tsf_low;		/* network timestamp function timer */
5076	uint32_t tsf_hi;		/* network timestamp function timer */
5077	uint32_t gp1;		/* GP1 timer register */
5078	uint32_t gp2;		/* GP2 timer register */
5079	uint32_t fw_rev_type;	/* firmware revision type */
5080	uint32_t major;		/* uCode version major */
5081	uint32_t minor;		/* uCode version minor */
5082	uint32_t hw_ver;		/* HW Silicon version */
5083	uint32_t brd_ver;		/* HW board version */
5084	uint32_t log_pc;		/* log program counter */
5085	uint32_t frame_ptr;		/* frame pointer */
5086	uint32_t stack_ptr;		/* stack pointer */
5087	uint32_t hcmd;		/* last host command header */
5088	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
5089				 * rxtx_flag */
5090	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
5091				 * host_flag */
5092	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
5093				 * enc_flag */
5094	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
5095				 * time_flag */
5096	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
5097				 * wico interrupt */
5098	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
5099	uint32_t wait_event;		/* wait event() caller address */
5100	uint32_t l2p_control;	/* L2pControlField */
5101	uint32_t l2p_duration;	/* L2pDurationField */
5102	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
5103	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
5104	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
5105				 * (LMPM_PMG_SEL) */
5106	uint32_t u_timestamp;	/* indicate when the date and time of the
5107				 * compilation */
5108	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
5109} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
5110
5111/*
5112 * UMAC error struct - relevant starting from family 8000 chip.
5113 * Note: This structure is read from the device with IO accesses,
5114 * and the reading already does the endian conversion. As it is
5115 * read with u32-sized accesses, any members with a different size
5116 * need to be ordered correctly though!
5117 */
5118struct iwm_umac_error_event_table {
5119	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5120	uint32_t error_id;	/* type of error */
5121	uint32_t blink1;	/* branch link */
5122	uint32_t blink2;	/* branch link */
5123	uint32_t ilink1;	/* interrupt link */
5124	uint32_t ilink2;	/* interrupt link */
5125	uint32_t data1;		/* error-specific data */
5126	uint32_t data2;		/* error-specific data */
5127	uint32_t data3;		/* error-specific data */
5128	uint32_t umac_major;
5129	uint32_t umac_minor;
5130	uint32_t frame_pointer;	/* core register 27*/
5131	uint32_t stack_pointer;	/* core register 28 */
5132	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
5133	uint32_t nic_isr_pref;	/* ISR status register */
5134} __packed;
5135
5136#define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
5137#define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
5138
5139#ifdef IWM_DEBUG
5140struct {
5141	const char *name;
5142	uint8_t num;
5143} advanced_lookup[] = {
5144	{ "NMI_INTERRUPT_WDG", 0x34 },
5145	{ "SYSASSERT", 0x35 },
5146	{ "UCODE_VERSION_MISMATCH", 0x37 },
5147	{ "BAD_COMMAND", 0x38 },
5148	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
5149	{ "FATAL_ERROR", 0x3D },
5150	{ "NMI_TRM_HW_ERR", 0x46 },
5151	{ "NMI_INTERRUPT_TRM", 0x4C },
5152	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
5153	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
5154	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
5155	{ "NMI_INTERRUPT_HOST", 0x66 },
5156	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
5157	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
5158	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
5159	{ "ADVANCED_SYSASSERT", 0 },
5160};
5161
5162static const char *
5163iwm_desc_lookup(uint32_t num)
5164{
5165	int i;
5166
5167	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
5168		if (advanced_lookup[i].num == num)
5169			return advanced_lookup[i].name;
5170
5171	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
5172	return advanced_lookup[i].name;
5173}
5174
5175static void
5176iwm_nic_umac_error(struct iwm_softc *sc)
5177{
5178	struct iwm_umac_error_event_table table;
5179	uint32_t base;
5180
5181	base = sc->umac_error_event_table;
5182
5183	if (base < 0x800000) {
5184		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
5185		    base);
5186		return;
5187	}
5188
5189	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5190		device_printf(sc->sc_dev, "reading errlog failed\n");
5191		return;
5192	}
5193
5194	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5195		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
5196		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5197		    sc->sc_flags, table.valid);
5198	}
5199
5200	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
5201		iwm_desc_lookup(table.error_id));
5202	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
5203	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
5204	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
5205	    table.ilink1);
5206	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
5207	    table.ilink2);
5208	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
5209	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
5210	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
5211	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
5212	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
5213	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
5214	    table.frame_pointer);
5215	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
5216	    table.stack_pointer);
5217	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
5218	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
5219	    table.nic_isr_pref);
5220}
5221
5222/*
5223 * Support for dumping the error log seemed like a good idea ...
5224 * but it's mostly hex junk and the only sensible thing is the
5225 * hw/ucode revision (which we know anyway).  Since it's here,
5226 * I'll just leave it in, just in case e.g. the Intel guys want to
5227 * help us decipher some "ADVANCED_SYSASSERT" later.
5228 */
5229static void
5230iwm_nic_error(struct iwm_softc *sc)
5231{
5232	struct iwm_error_event_table table;
5233	uint32_t base;
5234
5235	device_printf(sc->sc_dev, "dumping device error log\n");
5236	base = sc->error_event_table;
5237	if (base < 0x800000) {
5238		device_printf(sc->sc_dev,
5239		    "Invalid error log pointer 0x%08x\n", base);
5240		return;
5241	}
5242
5243	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5244		device_printf(sc->sc_dev, "reading errlog failed\n");
5245		return;
5246	}
5247
5248	if (!table.valid) {
5249		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5250		return;
5251	}
5252
5253	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5254		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5255		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5256		    sc->sc_flags, table.valid);
5257	}
5258
5259	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5260	    iwm_desc_lookup(table.error_id));
5261	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5262	    table.trm_hw_status0);
5263	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5264	    table.trm_hw_status1);
5265	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5266	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5267	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5268	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5269	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5270	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5271	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5272	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5273	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5274	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5275	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5276	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5277	    table.fw_rev_type);
5278	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5279	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5280	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5281	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5282	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5283	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5284	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5285	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5286	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5287	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5288	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5289	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5290	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5291	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5292	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5293	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5294	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5295	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5296	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5297
5298	if (sc->umac_error_event_table)
5299		iwm_nic_umac_error(sc);
5300}
5301#endif
5302
5303static void
5304iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m)
5305{
5306	struct ieee80211com *ic = &sc->sc_ic;
5307	struct iwm_cmd_response *cresp;
5308	struct mbuf *m1;
5309	uint32_t offset = 0;
5310	uint32_t maxoff = IWM_RBUF_SIZE;
5311	uint32_t nextoff;
5312	boolean_t stolen = FALSE;
5313
5314#define HAVEROOM(a)	\
5315    ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff)
5316
5317	while (HAVEROOM(offset)) {
5318		struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *,
5319		    offset);
5320		int qid, idx, code, len;
5321
5322		qid = pkt->hdr.qid;
5323		idx = pkt->hdr.idx;
5324
5325		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5326
5327		/*
5328		 * randomly get these from the firmware, no idea why.
5329		 * they at least seem harmless, so just ignore them for now
5330		 */
5331		if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) ||
5332		    pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) {
5333			break;
5334		}
5335
5336		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5337		    "rx packet qid=%d idx=%d type=%x\n",
5338		    qid & ~0x80, pkt->hdr.idx, code);
5339
5340		len = iwm_rx_packet_len(pkt);
5341		len += sizeof(uint32_t); /* account for status word */
5342		nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN);
5343
5344		iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt);
5345
5346		switch (code) {
5347		case IWM_REPLY_RX_PHY_CMD:
5348			iwm_mvm_rx_rx_phy_cmd(sc, pkt);
5349			break;
5350
5351		case IWM_REPLY_RX_MPDU_CMD: {
5352			/*
5353			 * If this is the last frame in the RX buffer, we
5354			 * can directly feed the mbuf to the sharks here.
5355			 */
5356			struct iwm_rx_packet *nextpkt = mtodoff(m,
5357			    struct iwm_rx_packet *, nextoff);
5358			if (!HAVEROOM(nextoff) ||
5359			    (nextpkt->hdr.code == 0 &&
5360			     (nextpkt->hdr.qid & ~0x80) == 0 &&
5361			     nextpkt->hdr.idx == 0) ||
5362			    (nextpkt->len_n_flags ==
5363			     htole32(IWM_FH_RSCSR_FRAME_INVALID))) {
5364				if (iwm_mvm_rx_rx_mpdu(sc, m, offset, stolen)) {
5365					stolen = FALSE;
5366					/* Make sure we abort the loop */
5367					nextoff = maxoff;
5368				}
5369				break;
5370			}
5371
5372			/*
5373			 * Use m_copym instead of m_split, because that
5374			 * makes it easier to keep a valid rx buffer in
5375			 * the ring, when iwm_mvm_rx_rx_mpdu() fails.
5376			 *
5377			 * We need to start m_copym() at offset 0, to get the
5378			 * M_PKTHDR flag preserved.
5379			 */
5380			m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT);
5381			if (m1) {
5382				if (iwm_mvm_rx_rx_mpdu(sc, m1, offset, stolen))
5383					stolen = TRUE;
5384				else
5385					m_freem(m1);
5386			}
5387			break;
5388		}
5389
5390		case IWM_TX_CMD:
5391			iwm_mvm_rx_tx_cmd(sc, pkt);
5392			break;
5393
5394		case IWM_MISSED_BEACONS_NOTIFICATION: {
5395			struct iwm_missed_beacons_notif *resp;
5396			int missed;
5397
5398			/* XXX look at mac_id to determine interface ID */
5399			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5400
5401			resp = (void *)pkt->data;
5402			missed = le32toh(resp->consec_missed_beacons);
5403
5404			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5405			    "%s: MISSED_BEACON: mac_id=%d, "
5406			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5407			    "num_rx=%d\n",
5408			    __func__,
5409			    le32toh(resp->mac_id),
5410			    le32toh(resp->consec_missed_beacons_since_last_rx),
5411			    le32toh(resp->consec_missed_beacons),
5412			    le32toh(resp->num_expected_beacons),
5413			    le32toh(resp->num_recvd_beacons));
5414
5415			/* Be paranoid */
5416			if (vap == NULL)
5417				break;
5418
5419			/* XXX no net80211 locking? */
5420			if (vap->iv_state == IEEE80211_S_RUN &&
5421			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5422				if (missed > vap->iv_bmissthreshold) {
5423					/* XXX bad locking; turn into task */
5424					IWM_UNLOCK(sc);
5425					ieee80211_beacon_miss(ic);
5426					IWM_LOCK(sc);
5427				}
5428			}
5429
5430			break;
5431		}
5432
5433		case IWM_MFUART_LOAD_NOTIFICATION:
5434			break;
5435
5436		case IWM_MVM_ALIVE:
5437			break;
5438
5439		case IWM_CALIB_RES_NOTIF_PHY_DB:
5440			break;
5441
5442		case IWM_STATISTICS_NOTIFICATION: {
5443			struct iwm_notif_statistics *stats;
5444			stats = (void *)pkt->data;
5445			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5446			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5447			break;
5448		}
5449
5450		case IWM_NVM_ACCESS_CMD:
5451		case IWM_MCC_UPDATE_CMD:
5452			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5453				memcpy(sc->sc_cmd_resp,
5454				    pkt, sizeof(sc->sc_cmd_resp));
5455			}
5456			break;
5457
5458		case IWM_MCC_CHUB_UPDATE_CMD: {
5459			struct iwm_mcc_chub_notif *notif;
5460			notif = (void *)pkt->data;
5461
5462			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5463			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5464			sc->sc_fw_mcc[2] = '\0';
5465			IWM_DPRINTF(sc, IWM_DEBUG_LAR,
5466			    "fw source %d sent CC '%s'\n",
5467			    notif->source_id, sc->sc_fw_mcc);
5468			break;
5469		}
5470
5471		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5472		case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
5473				 IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
5474			struct iwm_dts_measurement_notif_v1 *notif;
5475
5476			if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) {
5477				device_printf(sc->sc_dev,
5478				    "Invalid DTS_MEASUREMENT_NOTIFICATION\n");
5479				break;
5480			}
5481			notif = (void *)pkt->data;
5482			IWM_DPRINTF(sc, IWM_DEBUG_TEMP,
5483			    "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n",
5484			    notif->temp);
5485			break;
5486		}
5487
5488		case IWM_PHY_CONFIGURATION_CMD:
5489		case IWM_TX_ANT_CONFIGURATION_CMD:
5490		case IWM_ADD_STA:
5491		case IWM_MAC_CONTEXT_CMD:
5492		case IWM_REPLY_SF_CFG_CMD:
5493		case IWM_POWER_TABLE_CMD:
5494		case IWM_PHY_CONTEXT_CMD:
5495		case IWM_BINDING_CONTEXT_CMD:
5496		case IWM_TIME_EVENT_CMD:
5497		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5498		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5499		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
5500		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5501		case IWM_SCAN_OFFLOAD_ABORT_CMD:
5502		case IWM_REPLY_BEACON_FILTERING_CMD:
5503		case IWM_MAC_PM_POWER_TABLE:
5504		case IWM_TIME_QUOTA_CMD:
5505		case IWM_REMOVE_STA:
5506		case IWM_TXPATH_FLUSH:
5507		case IWM_LQ_CMD:
5508		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP,
5509				 IWM_FW_PAGING_BLOCK_CMD):
5510		case IWM_BT_CONFIG:
5511		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5512			cresp = (void *)pkt->data;
5513			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5514				memcpy(sc->sc_cmd_resp,
5515				    pkt, sizeof(*pkt)+sizeof(*cresp));
5516			}
5517			break;
5518
5519		/* ignore */
5520		case IWM_PHY_DB_CMD:
5521			break;
5522
5523		case IWM_INIT_COMPLETE_NOTIF:
5524			break;
5525
5526		case IWM_SCAN_OFFLOAD_COMPLETE: {
5527			struct iwm_periodic_scan_complete *notif;
5528			notif = (void *)pkt->data;
5529			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5530				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5531				ieee80211_runtask(ic, &sc->sc_es_task);
5532			}
5533			break;
5534		}
5535
5536		case IWM_SCAN_ITERATION_COMPLETE: {
5537			struct iwm_lmac_scan_complete_notif *notif;
5538			notif = (void *)pkt->data;
5539			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5540 			break;
5541		}
5542
5543		case IWM_SCAN_COMPLETE_UMAC: {
5544			struct iwm_umac_scan_complete *notif;
5545			notif = (void *)pkt->data;
5546
5547			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5548			    "UMAC scan complete, status=0x%x\n",
5549			    notif->status);
5550			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5551				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5552				ieee80211_runtask(ic, &sc->sc_es_task);
5553			}
5554			break;
5555		}
5556
5557		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5558			struct iwm_umac_scan_iter_complete_notif *notif;
5559			notif = (void *)pkt->data;
5560
5561			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5562			    "complete, status=0x%x, %d channels scanned\n",
5563			    notif->status, notif->scanned_channels);
5564			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5565			break;
5566		}
5567
5568		case IWM_REPLY_ERROR: {
5569			struct iwm_error_resp *resp;
5570			resp = (void *)pkt->data;
5571
5572			device_printf(sc->sc_dev,
5573			    "firmware error 0x%x, cmd 0x%x\n",
5574			    le32toh(resp->error_type),
5575			    resp->cmd_id);
5576			break;
5577		}
5578
5579		case IWM_TIME_EVENT_NOTIFICATION: {
5580			struct iwm_time_event_notif *notif;
5581			notif = (void *)pkt->data;
5582
5583			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5584			    "TE notif status = 0x%x action = 0x%x\n",
5585			    notif->status, notif->action);
5586			break;
5587		}
5588
5589		/*
5590		 * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG
5591		 * messages. Just ignore them for now.
5592		 */
5593		case IWM_DEBUG_LOG_MSG:
5594			break;
5595
5596		case IWM_MCAST_FILTER_CMD:
5597			break;
5598
5599		case IWM_SCD_QUEUE_CFG: {
5600			struct iwm_scd_txq_cfg_rsp *rsp;
5601			rsp = (void *)pkt->data;
5602
5603			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5604			    "queue cfg token=0x%x sta_id=%d "
5605			    "tid=%d scd_queue=%d\n",
5606			    rsp->token, rsp->sta_id, rsp->tid,
5607			    rsp->scd_queue);
5608			break;
5609		}
5610
5611		default:
5612			device_printf(sc->sc_dev,
5613			    "frame %d/%d %x UNHANDLED (this should "
5614			    "not happen)\n", qid & ~0x80, idx,
5615			    pkt->len_n_flags);
5616			break;
5617		}
5618
5619		/*
5620		 * Why test bit 0x80?  The Linux driver:
5621		 *
5622		 * There is one exception:  uCode sets bit 15 when it
5623		 * originates the response/notification, i.e. when the
5624		 * response/notification is not a direct response to a
5625		 * command sent by the driver.  For example, uCode issues
5626		 * IWM_REPLY_RX when it sends a received frame to the driver;
5627		 * it is not a direct response to any driver command.
5628		 *
5629		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5630		 * uses a slightly different format for pkt->hdr, and "qid"
5631		 * is actually the upper byte of a two-byte field.
5632		 */
5633		if (!(qid & (1 << 7)))
5634			iwm_cmd_done(sc, pkt);
5635
5636		offset = nextoff;
5637	}
5638	if (stolen)
5639		m_freem(m);
5640#undef HAVEROOM
5641}
5642
5643/*
5644 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5645 * Basic structure from if_iwn
5646 */
5647static void
5648iwm_notif_intr(struct iwm_softc *sc)
5649{
5650	uint16_t hw;
5651
5652	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5653	    BUS_DMASYNC_POSTREAD);
5654
5655	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5656
5657	/*
5658	 * Process responses
5659	 */
5660	while (sc->rxq.cur != hw) {
5661		struct iwm_rx_ring *ring = &sc->rxq;
5662		struct iwm_rx_data *data = &ring->data[ring->cur];
5663
5664		bus_dmamap_sync(ring->data_dmat, data->map,
5665		    BUS_DMASYNC_POSTREAD);
5666
5667		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5668		    "%s: hw = %d cur = %d\n", __func__, hw, ring->cur);
5669		iwm_handle_rxb(sc, data->m);
5670
5671		ring->cur = (ring->cur + 1) % IWM_RX_RING_COUNT;
5672	}
5673
5674	/*
5675	 * Tell the firmware that it can reuse the ring entries that
5676	 * we have just processed.
5677	 * Seems like the hardware gets upset unless we align
5678	 * the write by 8??
5679	 */
5680	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5681	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, rounddown2(hw, 8));
5682}
5683
5684static void
5685iwm_intr(void *arg)
5686{
5687	struct iwm_softc *sc = arg;
5688	int handled = 0;
5689	int r1, r2, rv = 0;
5690	int isperiodic = 0;
5691
5692	IWM_LOCK(sc);
5693	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5694
5695	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5696		uint32_t *ict = sc->ict_dma.vaddr;
5697		int tmp;
5698
5699		tmp = htole32(ict[sc->ict_cur]);
5700		if (!tmp)
5701			goto out_ena;
5702
5703		/*
5704		 * ok, there was something.  keep plowing until we have all.
5705		 */
5706		r1 = r2 = 0;
5707		while (tmp) {
5708			r1 |= tmp;
5709			ict[sc->ict_cur] = 0;
5710			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5711			tmp = htole32(ict[sc->ict_cur]);
5712		}
5713
5714		/* this is where the fun begins.  don't ask */
5715		if (r1 == 0xffffffff)
5716			r1 = 0;
5717
5718		/* i am not expected to understand this */
5719		if (r1 & 0xc0000)
5720			r1 |= 0x8000;
5721		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5722	} else {
5723		r1 = IWM_READ(sc, IWM_CSR_INT);
5724		/* "hardware gone" (where, fishing?) */
5725		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5726			goto out;
5727		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5728	}
5729	if (r1 == 0 && r2 == 0) {
5730		goto out_ena;
5731	}
5732
5733	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5734
5735	/* Safely ignore these bits for debug checks below */
5736	r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD);
5737
5738	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5739		int i;
5740		struct ieee80211com *ic = &sc->sc_ic;
5741		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5742
5743#ifdef IWM_DEBUG
5744		iwm_nic_error(sc);
5745#endif
5746		/* Dump driver status (TX and RX rings) while we're here. */
5747		device_printf(sc->sc_dev, "driver status:\n");
5748		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5749			struct iwm_tx_ring *ring = &sc->txq[i];
5750			device_printf(sc->sc_dev,
5751			    "  tx ring %2d: qid=%-2d cur=%-3d "
5752			    "queued=%-3d\n",
5753			    i, ring->qid, ring->cur, ring->queued);
5754		}
5755		device_printf(sc->sc_dev,
5756		    "  rx ring: cur=%d\n", sc->rxq.cur);
5757		device_printf(sc->sc_dev,
5758		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5759
5760		/* Don't stop the device; just do a VAP restart */
5761		IWM_UNLOCK(sc);
5762
5763		if (vap == NULL) {
5764			printf("%s: null vap\n", __func__);
5765			return;
5766		}
5767
5768		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5769		    "restarting\n", __func__, vap->iv_state);
5770
5771		ieee80211_restart_all(ic);
5772		return;
5773	}
5774
5775	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5776		handled |= IWM_CSR_INT_BIT_HW_ERR;
5777		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5778		iwm_stop(sc);
5779		rv = 1;
5780		goto out;
5781	}
5782
5783	/* firmware chunk loaded */
5784	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5785		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5786		handled |= IWM_CSR_INT_BIT_FH_TX;
5787		sc->sc_fw_chunk_done = 1;
5788		wakeup(&sc->sc_fw);
5789	}
5790
5791	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5792		handled |= IWM_CSR_INT_BIT_RF_KILL;
5793		if (iwm_check_rfkill(sc)) {
5794			device_printf(sc->sc_dev,
5795			    "%s: rfkill switch, disabling interface\n",
5796			    __func__);
5797			iwm_stop(sc);
5798		}
5799	}
5800
5801	/*
5802	 * The Linux driver uses periodic interrupts to avoid races.
5803	 * We cargo-cult like it's going out of fashion.
5804	 */
5805	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5806		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5807		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5808		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5809			IWM_WRITE_1(sc,
5810			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5811		isperiodic = 1;
5812	}
5813
5814	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5815		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5816		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5817
5818		iwm_notif_intr(sc);
5819
5820		/* enable periodic interrupt, see above */
5821		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5822			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5823			    IWM_CSR_INT_PERIODIC_ENA);
5824	}
5825
5826	if (__predict_false(r1 & ~handled))
5827		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5828		    "%s: unhandled interrupts: %x\n", __func__, r1);
5829	rv = 1;
5830
5831 out_ena:
5832	iwm_restore_interrupts(sc);
5833 out:
5834	IWM_UNLOCK(sc);
5835	return;
5836}
5837
5838/*
5839 * Autoconf glue-sniffing
5840 */
5841#define	PCI_VENDOR_INTEL		0x8086
5842#define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5843#define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5844#define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5845#define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5846#define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5847#define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5848#define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5849#define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5850#define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5851#define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5852
5853static const struct iwm_devices {
5854	uint16_t		device;
5855	const struct iwm_cfg	*cfg;
5856} iwm_devices[] = {
5857	{ PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg },
5858	{ PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg },
5859	{ PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg },
5860	{ PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg },
5861	{ PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg },
5862	{ PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg },
5863	{ PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg },
5864	{ PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg },
5865	{ PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg },
5866	{ PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg },
5867};
5868
5869static int
5870iwm_probe(device_t dev)
5871{
5872	int i;
5873
5874	for (i = 0; i < nitems(iwm_devices); i++) {
5875		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5876		    pci_get_device(dev) == iwm_devices[i].device) {
5877			device_set_desc(dev, iwm_devices[i].cfg->name);
5878			return (BUS_PROBE_DEFAULT);
5879		}
5880	}
5881
5882	return (ENXIO);
5883}
5884
5885static int
5886iwm_dev_check(device_t dev)
5887{
5888	struct iwm_softc *sc;
5889	uint16_t devid;
5890	int i;
5891
5892	sc = device_get_softc(dev);
5893
5894	devid = pci_get_device(dev);
5895	for (i = 0; i < nitems(iwm_devices); i++) {
5896		if (iwm_devices[i].device == devid) {
5897			sc->cfg = iwm_devices[i].cfg;
5898			return (0);
5899		}
5900	}
5901	device_printf(dev, "unknown adapter type\n");
5902	return ENXIO;
5903}
5904
5905/* PCI registers */
5906#define PCI_CFG_RETRY_TIMEOUT	0x041
5907
5908static int
5909iwm_pci_attach(device_t dev)
5910{
5911	struct iwm_softc *sc;
5912	int count, error, rid;
5913	uint16_t reg;
5914
5915	sc = device_get_softc(dev);
5916
5917	/* We disable the RETRY_TIMEOUT register (0x41) to keep
5918	 * PCI Tx retries from interfering with C3 CPU state */
5919	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
5920
5921	/* Enable bus-mastering and hardware bug workaround. */
5922	pci_enable_busmaster(dev);
5923	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5924	/* if !MSI */
5925	if (reg & PCIM_STATUS_INTxSTATE) {
5926		reg &= ~PCIM_STATUS_INTxSTATE;
5927	}
5928	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5929
5930	rid = PCIR_BAR(0);
5931	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5932	    RF_ACTIVE);
5933	if (sc->sc_mem == NULL) {
5934		device_printf(sc->sc_dev, "can't map mem space\n");
5935		return (ENXIO);
5936	}
5937	sc->sc_st = rman_get_bustag(sc->sc_mem);
5938	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5939
5940	/* Install interrupt handler. */
5941	count = 1;
5942	rid = 0;
5943	if (pci_alloc_msi(dev, &count) == 0)
5944		rid = 1;
5945	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5946	    (rid != 0 ? 0 : RF_SHAREABLE));
5947	if (sc->sc_irq == NULL) {
5948		device_printf(dev, "can't map interrupt\n");
5949			return (ENXIO);
5950	}
5951	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5952	    NULL, iwm_intr, sc, &sc->sc_ih);
5953	if (sc->sc_ih == NULL) {
5954		device_printf(dev, "can't establish interrupt");
5955			return (ENXIO);
5956	}
5957	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5958
5959	return (0);
5960}
5961
5962static void
5963iwm_pci_detach(device_t dev)
5964{
5965	struct iwm_softc *sc = device_get_softc(dev);
5966
5967	if (sc->sc_irq != NULL) {
5968		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5969		bus_release_resource(dev, SYS_RES_IRQ,
5970		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5971		pci_release_msi(dev);
5972        }
5973	if (sc->sc_mem != NULL)
5974		bus_release_resource(dev, SYS_RES_MEMORY,
5975		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5976}
5977
5978
5979
5980static int
5981iwm_attach(device_t dev)
5982{
5983	struct iwm_softc *sc = device_get_softc(dev);
5984	struct ieee80211com *ic = &sc->sc_ic;
5985	int error;
5986	int txq_i, i;
5987
5988	sc->sc_dev = dev;
5989	sc->sc_attached = 1;
5990	IWM_LOCK_INIT(sc);
5991	mbufq_init(&sc->sc_snd, ifqmaxlen);
5992	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5993	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5994	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5995
5996	sc->sc_notif_wait = iwm_notification_wait_init(sc);
5997	if (sc->sc_notif_wait == NULL) {
5998		device_printf(dev, "failed to init notification wait struct\n");
5999		goto fail;
6000	}
6001
6002	/* Init phy db */
6003	sc->sc_phy_db = iwm_phy_db_init(sc);
6004	if (!sc->sc_phy_db) {
6005		device_printf(dev, "Cannot init phy_db\n");
6006		goto fail;
6007	}
6008
6009	/* PCI attach */
6010	error = iwm_pci_attach(dev);
6011	if (error != 0)
6012		goto fail;
6013
6014	sc->sc_wantresp = -1;
6015
6016	/* Check device type */
6017	error = iwm_dev_check(dev);
6018	if (error != 0)
6019		goto fail;
6020
6021	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
6022	/*
6023	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
6024	 * changed, and now the revision step also includes bit 0-1 (no more
6025	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
6026	 * in the old format.
6027	 */
6028	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
6029		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
6030				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
6031
6032	if (iwm_prepare_card_hw(sc) != 0) {
6033		device_printf(dev, "could not initialize hardware\n");
6034		goto fail;
6035	}
6036
6037	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
6038		int ret;
6039		uint32_t hw_step;
6040
6041		/*
6042		 * In order to recognize C step the driver should read the
6043		 * chip version id located at the AUX bus MISC address.
6044		 */
6045		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
6046			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
6047		DELAY(2);
6048
6049		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
6050				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
6051				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
6052				   25000);
6053		if (!ret) {
6054			device_printf(sc->sc_dev,
6055			    "Failed to wake up the nic\n");
6056			goto fail;
6057		}
6058
6059		if (iwm_nic_lock(sc)) {
6060			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
6061			hw_step |= IWM_ENABLE_WFPM;
6062			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
6063			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
6064			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
6065			if (hw_step == 0x3)
6066				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
6067						(IWM_SILICON_C_STEP << 2);
6068			iwm_nic_unlock(sc);
6069		} else {
6070			device_printf(sc->sc_dev, "Failed to lock the nic\n");
6071			goto fail;
6072		}
6073	}
6074
6075	/* special-case 7265D, it has the same PCI IDs. */
6076	if (sc->cfg == &iwm7265_cfg &&
6077	    (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) {
6078		sc->cfg = &iwm7265d_cfg;
6079	}
6080
6081	/* Allocate DMA memory for firmware transfers. */
6082	if ((error = iwm_alloc_fwmem(sc)) != 0) {
6083		device_printf(dev, "could not allocate memory for firmware\n");
6084		goto fail;
6085	}
6086
6087	/* Allocate "Keep Warm" page. */
6088	if ((error = iwm_alloc_kw(sc)) != 0) {
6089		device_printf(dev, "could not allocate keep warm page\n");
6090		goto fail;
6091	}
6092
6093	/* We use ICT interrupts */
6094	if ((error = iwm_alloc_ict(sc)) != 0) {
6095		device_printf(dev, "could not allocate ICT table\n");
6096		goto fail;
6097	}
6098
6099	/* Allocate TX scheduler "rings". */
6100	if ((error = iwm_alloc_sched(sc)) != 0) {
6101		device_printf(dev, "could not allocate TX scheduler rings\n");
6102		goto fail;
6103	}
6104
6105	/* Allocate TX rings */
6106	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
6107		if ((error = iwm_alloc_tx_ring(sc,
6108		    &sc->txq[txq_i], txq_i)) != 0) {
6109			device_printf(dev,
6110			    "could not allocate TX ring %d\n",
6111			    txq_i);
6112			goto fail;
6113		}
6114	}
6115
6116	/* Allocate RX ring. */
6117	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
6118		device_printf(dev, "could not allocate RX ring\n");
6119		goto fail;
6120	}
6121
6122	/* Clear pending interrupts. */
6123	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
6124
6125	ic->ic_softc = sc;
6126	ic->ic_name = device_get_nameunit(sc->sc_dev);
6127	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
6128	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
6129
6130	/* Set device capabilities. */
6131	ic->ic_caps =
6132	    IEEE80211_C_STA |
6133	    IEEE80211_C_WPA |		/* WPA/RSN */
6134	    IEEE80211_C_WME |
6135	    IEEE80211_C_PMGT |
6136	    IEEE80211_C_SHSLOT |	/* short slot time supported */
6137	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
6138//	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
6139	    ;
6140	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
6141		sc->sc_phyctxt[i].id = i;
6142		sc->sc_phyctxt[i].color = 0;
6143		sc->sc_phyctxt[i].ref = 0;
6144		sc->sc_phyctxt[i].channel = NULL;
6145	}
6146
6147	/* Default noise floor */
6148	sc->sc_noise = -96;
6149
6150	/* Max RSSI */
6151	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
6152
6153	sc->sc_preinit_hook.ich_func = iwm_preinit;
6154	sc->sc_preinit_hook.ich_arg = sc;
6155	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
6156		device_printf(dev, "config_intrhook_establish failed\n");
6157		goto fail;
6158	}
6159
6160#ifdef IWM_DEBUG
6161	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
6162	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
6163	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
6164#endif
6165
6166	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6167	    "<-%s\n", __func__);
6168
6169	return 0;
6170
6171	/* Free allocated memory if something failed during attachment. */
6172fail:
6173	iwm_detach_local(sc, 0);
6174
6175	return ENXIO;
6176}
6177
6178static int
6179iwm_is_valid_ether_addr(uint8_t *addr)
6180{
6181	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
6182
6183	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
6184		return (FALSE);
6185
6186	return (TRUE);
6187}
6188
6189static int
6190iwm_wme_update(struct ieee80211com *ic)
6191{
6192#define IWM_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
6193	struct iwm_softc *sc = ic->ic_softc;
6194	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6195	struct iwm_vap *ivp = IWM_VAP(vap);
6196	struct iwm_node *in;
6197	struct wmeParams tmp[WME_NUM_AC];
6198	int aci, error;
6199
6200	if (vap == NULL)
6201		return (0);
6202
6203	IEEE80211_LOCK(ic);
6204	for (aci = 0; aci < WME_NUM_AC; aci++)
6205		tmp[aci] = ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
6206	IEEE80211_UNLOCK(ic);
6207
6208	IWM_LOCK(sc);
6209	for (aci = 0; aci < WME_NUM_AC; aci++) {
6210		const struct wmeParams *ac = &tmp[aci];
6211		ivp->queue_params[aci].aifsn = ac->wmep_aifsn;
6212		ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin);
6213		ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax);
6214		ivp->queue_params[aci].edca_txop =
6215		    IEEE80211_TXOP_TO_US(ac->wmep_txopLimit);
6216	}
6217	ivp->have_wme = TRUE;
6218	if (ivp->is_uploaded && vap->iv_bss != NULL) {
6219		in = IWM_NODE(vap->iv_bss);
6220		if (in->in_assoc) {
6221			if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
6222				device_printf(sc->sc_dev,
6223				    "%s: failed to update MAC\n", __func__);
6224			}
6225		}
6226	}
6227	IWM_UNLOCK(sc);
6228
6229	return (0);
6230#undef IWM_EXP2
6231}
6232
6233static void
6234iwm_preinit(void *arg)
6235{
6236	struct iwm_softc *sc = arg;
6237	device_t dev = sc->sc_dev;
6238	struct ieee80211com *ic = &sc->sc_ic;
6239	int error;
6240
6241	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6242	    "->%s\n", __func__);
6243
6244	IWM_LOCK(sc);
6245	if ((error = iwm_start_hw(sc)) != 0) {
6246		device_printf(dev, "could not initialize hardware\n");
6247		IWM_UNLOCK(sc);
6248		goto fail;
6249	}
6250
6251	error = iwm_run_init_mvm_ucode(sc, 1);
6252	iwm_stop_device(sc);
6253	if (error) {
6254		IWM_UNLOCK(sc);
6255		goto fail;
6256	}
6257	device_printf(dev,
6258	    "hw rev 0x%x, fw ver %s, address %s\n",
6259	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
6260	    sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr));
6261
6262	/* not all hardware can do 5GHz band */
6263	if (!sc->nvm_data->sku_cap_band_52GHz_enable)
6264		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
6265		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
6266	IWM_UNLOCK(sc);
6267
6268	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
6269	    ic->ic_channels);
6270
6271	/*
6272	 * At this point we've committed - if we fail to do setup,
6273	 * we now also have to tear down the net80211 state.
6274	 */
6275	ieee80211_ifattach(ic);
6276	ic->ic_vap_create = iwm_vap_create;
6277	ic->ic_vap_delete = iwm_vap_delete;
6278	ic->ic_raw_xmit = iwm_raw_xmit;
6279	ic->ic_node_alloc = iwm_node_alloc;
6280	ic->ic_scan_start = iwm_scan_start;
6281	ic->ic_scan_end = iwm_scan_end;
6282	ic->ic_update_mcast = iwm_update_mcast;
6283	ic->ic_getradiocaps = iwm_init_channel_map;
6284	ic->ic_set_channel = iwm_set_channel;
6285	ic->ic_scan_curchan = iwm_scan_curchan;
6286	ic->ic_scan_mindwell = iwm_scan_mindwell;
6287	ic->ic_wme.wme_update = iwm_wme_update;
6288	ic->ic_parent = iwm_parent;
6289	ic->ic_transmit = iwm_transmit;
6290	iwm_radiotap_attach(sc);
6291	if (bootverbose)
6292		ieee80211_announce(ic);
6293
6294	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6295	    "<-%s\n", __func__);
6296	config_intrhook_disestablish(&sc->sc_preinit_hook);
6297
6298	return;
6299fail:
6300	config_intrhook_disestablish(&sc->sc_preinit_hook);
6301	iwm_detach_local(sc, 0);
6302}
6303
6304/*
6305 * Attach the interface to 802.11 radiotap.
6306 */
6307static void
6308iwm_radiotap_attach(struct iwm_softc *sc)
6309{
6310        struct ieee80211com *ic = &sc->sc_ic;
6311
6312	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6313	    "->%s begin\n", __func__);
6314        ieee80211_radiotap_attach(ic,
6315            &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6316                IWM_TX_RADIOTAP_PRESENT,
6317            &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6318                IWM_RX_RADIOTAP_PRESENT);
6319	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6320	    "->%s end\n", __func__);
6321}
6322
6323static struct ieee80211vap *
6324iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6325    enum ieee80211_opmode opmode, int flags,
6326    const uint8_t bssid[IEEE80211_ADDR_LEN],
6327    const uint8_t mac[IEEE80211_ADDR_LEN])
6328{
6329	struct iwm_vap *ivp;
6330	struct ieee80211vap *vap;
6331
6332	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6333		return NULL;
6334	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6335	vap = &ivp->iv_vap;
6336	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6337	vap->iv_bmissthreshold = 10;            /* override default */
6338	/* Override with driver methods. */
6339	ivp->iv_newstate = vap->iv_newstate;
6340	vap->iv_newstate = iwm_newstate;
6341
6342	ivp->id = IWM_DEFAULT_MACID;
6343	ivp->color = IWM_DEFAULT_COLOR;
6344
6345	ivp->have_wme = FALSE;
6346
6347	ieee80211_ratectl_init(vap);
6348	/* Complete setup. */
6349	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6350	    mac);
6351	ic->ic_opmode = opmode;
6352
6353	return vap;
6354}
6355
6356static void
6357iwm_vap_delete(struct ieee80211vap *vap)
6358{
6359	struct iwm_vap *ivp = IWM_VAP(vap);
6360
6361	ieee80211_ratectl_deinit(vap);
6362	ieee80211_vap_detach(vap);
6363	free(ivp, M_80211_VAP);
6364}
6365
6366static void
6367iwm_scan_start(struct ieee80211com *ic)
6368{
6369	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6370	struct iwm_softc *sc = ic->ic_softc;
6371	int error;
6372
6373	IWM_LOCK(sc);
6374	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6375		/* This should not be possible */
6376		device_printf(sc->sc_dev,
6377		    "%s: Previous scan not completed yet\n", __func__);
6378	}
6379	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6380		error = iwm_mvm_umac_scan(sc);
6381	else
6382		error = iwm_mvm_lmac_scan(sc);
6383	if (error != 0) {
6384		device_printf(sc->sc_dev, "could not initiate scan\n");
6385		IWM_UNLOCK(sc);
6386		ieee80211_cancel_scan(vap);
6387	} else {
6388		sc->sc_flags |= IWM_FLAG_SCAN_RUNNING;
6389		iwm_led_blink_start(sc);
6390		IWM_UNLOCK(sc);
6391	}
6392}
6393
6394static void
6395iwm_scan_end(struct ieee80211com *ic)
6396{
6397	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6398	struct iwm_softc *sc = ic->ic_softc;
6399
6400	IWM_LOCK(sc);
6401	iwm_led_blink_stop(sc);
6402	if (vap->iv_state == IEEE80211_S_RUN)
6403		iwm_mvm_led_enable(sc);
6404	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6405		/*
6406		 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because
6407		 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq
6408		 * taskqueue.
6409		 */
6410		sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
6411		iwm_mvm_scan_stop_wait(sc);
6412	}
6413	IWM_UNLOCK(sc);
6414
6415	/*
6416	 * Make sure we don't race, if sc_es_task is still enqueued here.
6417	 * This is to make sure that it won't call ieee80211_scan_done
6418	 * when we have already started the next scan.
6419	 */
6420	taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL);
6421}
6422
6423static void
6424iwm_update_mcast(struct ieee80211com *ic)
6425{
6426}
6427
6428static void
6429iwm_set_channel(struct ieee80211com *ic)
6430{
6431}
6432
6433static void
6434iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6435{
6436}
6437
6438static void
6439iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6440{
6441	return;
6442}
6443
6444void
6445iwm_init_task(void *arg1)
6446{
6447	struct iwm_softc *sc = arg1;
6448
6449	IWM_LOCK(sc);
6450	while (sc->sc_flags & IWM_FLAG_BUSY)
6451		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6452	sc->sc_flags |= IWM_FLAG_BUSY;
6453	iwm_stop(sc);
6454	if (sc->sc_ic.ic_nrunning > 0)
6455		iwm_init(sc);
6456	sc->sc_flags &= ~IWM_FLAG_BUSY;
6457	wakeup(&sc->sc_flags);
6458	IWM_UNLOCK(sc);
6459}
6460
6461static int
6462iwm_resume(device_t dev)
6463{
6464	struct iwm_softc *sc = device_get_softc(dev);
6465	int do_reinit = 0;
6466
6467	/*
6468	 * We disable the RETRY_TIMEOUT register (0x41) to keep
6469	 * PCI Tx retries from interfering with C3 CPU state.
6470	 */
6471	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
6472	iwm_init_task(device_get_softc(dev));
6473
6474	IWM_LOCK(sc);
6475	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6476		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6477		do_reinit = 1;
6478	}
6479	IWM_UNLOCK(sc);
6480
6481	if (do_reinit)
6482		ieee80211_resume_all(&sc->sc_ic);
6483
6484	return 0;
6485}
6486
6487static int
6488iwm_suspend(device_t dev)
6489{
6490	int do_stop = 0;
6491	struct iwm_softc *sc = device_get_softc(dev);
6492
6493	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6494
6495	ieee80211_suspend_all(&sc->sc_ic);
6496
6497	if (do_stop) {
6498		IWM_LOCK(sc);
6499		iwm_stop(sc);
6500		sc->sc_flags |= IWM_FLAG_SCANNING;
6501		IWM_UNLOCK(sc);
6502	}
6503
6504	return (0);
6505}
6506
6507static int
6508iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6509{
6510	struct iwm_fw_info *fw = &sc->sc_fw;
6511	device_t dev = sc->sc_dev;
6512	int i;
6513
6514	if (!sc->sc_attached)
6515		return 0;
6516	sc->sc_attached = 0;
6517
6518	if (do_net80211)
6519		ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6520
6521	callout_drain(&sc->sc_led_blink_to);
6522	callout_drain(&sc->sc_watchdog_to);
6523	iwm_stop_device(sc);
6524	if (do_net80211) {
6525		ieee80211_ifdetach(&sc->sc_ic);
6526	}
6527
6528	iwm_phy_db_free(sc->sc_phy_db);
6529	sc->sc_phy_db = NULL;
6530
6531	iwm_free_nvm_data(sc->nvm_data);
6532
6533	/* Free descriptor rings */
6534	iwm_free_rx_ring(sc, &sc->rxq);
6535	for (i = 0; i < nitems(sc->txq); i++)
6536		iwm_free_tx_ring(sc, &sc->txq[i]);
6537
6538	/* Free firmware */
6539	if (fw->fw_fp != NULL)
6540		iwm_fw_info_free(fw);
6541
6542	/* Free scheduler */
6543	iwm_dma_contig_free(&sc->sched_dma);
6544	iwm_dma_contig_free(&sc->ict_dma);
6545	iwm_dma_contig_free(&sc->kw_dma);
6546	iwm_dma_contig_free(&sc->fw_dma);
6547
6548	iwm_free_fw_paging(sc);
6549
6550	/* Finished with the hardware - detach things */
6551	iwm_pci_detach(dev);
6552
6553	if (sc->sc_notif_wait != NULL) {
6554		iwm_notification_wait_free(sc->sc_notif_wait);
6555		sc->sc_notif_wait = NULL;
6556	}
6557
6558	mbufq_drain(&sc->sc_snd);
6559	IWM_LOCK_DESTROY(sc);
6560
6561	return (0);
6562}
6563
6564static int
6565iwm_detach(device_t dev)
6566{
6567	struct iwm_softc *sc = device_get_softc(dev);
6568
6569	return (iwm_detach_local(sc, 1));
6570}
6571
6572static device_method_t iwm_pci_methods[] = {
6573        /* Device interface */
6574        DEVMETHOD(device_probe,         iwm_probe),
6575        DEVMETHOD(device_attach,        iwm_attach),
6576        DEVMETHOD(device_detach,        iwm_detach),
6577        DEVMETHOD(device_suspend,       iwm_suspend),
6578        DEVMETHOD(device_resume,        iwm_resume),
6579
6580        DEVMETHOD_END
6581};
6582
6583static driver_t iwm_pci_driver = {
6584        "iwm",
6585        iwm_pci_methods,
6586        sizeof (struct iwm_softc)
6587};
6588
6589static devclass_t iwm_devclass;
6590
6591DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6592MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6593MODULE_DEPEND(iwm, pci, 1, 1, 1);
6594MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6595