if_iwm.c revision 330197
1/*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2
3/*
4 * Copyright (c) 2014 genua mbh <info@genua.de>
5 * Copyright (c) 2014 Fixup Software Ltd.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*-
21 * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22 * which were used as the reference documentation for this implementation.
23 *
24 * Driver version we are currently based off of is
25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26 *
27 ***********************************************************************
28 *
29 * This file is provided under a dual BSD/GPLv2 license.  When using or
30 * redistributing this file, you may do so under either license.
31 *
32 * GPL LICENSE SUMMARY
33 *
34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35 *
36 * This program is free software; you can redistribute it and/or modify
37 * it under the terms of version 2 of the GNU General Public License as
38 * published by the Free Software Foundation.
39 *
40 * This program is distributed in the hope that it will be useful, but
41 * WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43 * General Public License for more details.
44 *
45 * You should have received a copy of the GNU General Public License
46 * along with this program; if not, write to the Free Software
47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48 * USA
49 *
50 * The full GNU General Public License is included in this distribution
51 * in the file called COPYING.
52 *
53 * Contact Information:
54 *  Intel Linux Wireless <ilw@linux.intel.com>
55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56 *
57 *
58 * BSD LICENSE
59 *
60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 *  * Redistributions of source code must retain the above copyright
68 *    notice, this list of conditions and the following disclaimer.
69 *  * Redistributions in binary form must reproduce the above copyright
70 *    notice, this list of conditions and the following disclaimer in
71 *    the documentation and/or other materials provided with the
72 *    distribution.
73 *  * Neither the name Intel Corporation nor the names of its
74 *    contributors may be used to endorse or promote products derived
75 *    from this software without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88 */
89
90/*-
91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92 *
93 * Permission to use, copy, modify, and distribute this software for any
94 * purpose with or without fee is hereby granted, provided that the above
95 * copyright notice and this permission notice appear in all copies.
96 *
97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104 */
105#include <sys/cdefs.h>
106__FBSDID("$FreeBSD: stable/11/sys/dev/iwm/if_iwm.c 330197 2018-03-01 06:29:02Z eadler $");
107
108#include "opt_wlan.h"
109
110#include <sys/param.h>
111#include <sys/bus.h>
112#include <sys/conf.h>
113#include <sys/endian.h>
114#include <sys/firmware.h>
115#include <sys/kernel.h>
116#include <sys/malloc.h>
117#include <sys/mbuf.h>
118#include <sys/mutex.h>
119#include <sys/module.h>
120#include <sys/proc.h>
121#include <sys/rman.h>
122#include <sys/socket.h>
123#include <sys/sockio.h>
124#include <sys/sysctl.h>
125#include <sys/linker.h>
126
127#include <machine/bus.h>
128#include <machine/endian.h>
129#include <machine/resource.h>
130
131#include <dev/pci/pcivar.h>
132#include <dev/pci/pcireg.h>
133
134#include <net/bpf.h>
135
136#include <net/if.h>
137#include <net/if_var.h>
138#include <net/if_arp.h>
139#include <net/if_dl.h>
140#include <net/if_media.h>
141#include <net/if_types.h>
142
143#include <netinet/in.h>
144#include <netinet/in_systm.h>
145#include <netinet/if_ether.h>
146#include <netinet/ip.h>
147
148#include <net80211/ieee80211_var.h>
149#include <net80211/ieee80211_regdomain.h>
150#include <net80211/ieee80211_ratectl.h>
151#include <net80211/ieee80211_radiotap.h>
152
153#include <dev/iwm/if_iwmreg.h>
154#include <dev/iwm/if_iwmvar.h>
155#include <dev/iwm/if_iwm_config.h>
156#include <dev/iwm/if_iwm_debug.h>
157#include <dev/iwm/if_iwm_notif_wait.h>
158#include <dev/iwm/if_iwm_util.h>
159#include <dev/iwm/if_iwm_binding.h>
160#include <dev/iwm/if_iwm_phy_db.h>
161#include <dev/iwm/if_iwm_mac_ctxt.h>
162#include <dev/iwm/if_iwm_phy_ctxt.h>
163#include <dev/iwm/if_iwm_time_event.h>
164#include <dev/iwm/if_iwm_power.h>
165#include <dev/iwm/if_iwm_scan.h>
166
167#include <dev/iwm/if_iwm_pcie_trans.h>
168#include <dev/iwm/if_iwm_led.h>
169#include <dev/iwm/if_iwm_fw.h>
170
171const uint8_t iwm_nvm_channels[] = {
172	/* 2.4 GHz */
173	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
174	/* 5 GHz */
175	36, 40, 44, 48, 52, 56, 60, 64,
176	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
177	149, 153, 157, 161, 165
178};
179_Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
180    "IWM_NUM_CHANNELS is too small");
181
182const uint8_t iwm_nvm_channels_8000[] = {
183	/* 2.4 GHz */
184	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
185	/* 5 GHz */
186	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
187	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
188	149, 153, 157, 161, 165, 169, 173, 177, 181
189};
190_Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
191    "IWM_NUM_CHANNELS_8000 is too small");
192
193#define IWM_NUM_2GHZ_CHANNELS	14
194#define IWM_N_HW_ADDR_MASK	0xF
195
196/*
197 * XXX For now, there's simply a fixed set of rate table entries
198 * that are populated.
199 */
200const struct iwm_rate {
201	uint8_t rate;
202	uint8_t plcp;
203} iwm_rates[] = {
204	{   2,	IWM_RATE_1M_PLCP  },
205	{   4,	IWM_RATE_2M_PLCP  },
206	{  11,	IWM_RATE_5M_PLCP  },
207	{  22,	IWM_RATE_11M_PLCP },
208	{  12,	IWM_RATE_6M_PLCP  },
209	{  18,	IWM_RATE_9M_PLCP  },
210	{  24,	IWM_RATE_12M_PLCP },
211	{  36,	IWM_RATE_18M_PLCP },
212	{  48,	IWM_RATE_24M_PLCP },
213	{  72,	IWM_RATE_36M_PLCP },
214	{  96,	IWM_RATE_48M_PLCP },
215	{ 108,	IWM_RATE_54M_PLCP },
216};
217#define IWM_RIDX_CCK	0
218#define IWM_RIDX_OFDM	4
219#define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
220#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
221#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
222
223struct iwm_nvm_section {
224	uint16_t length;
225	uint8_t *data;
226};
227
228#define IWM_MVM_UCODE_ALIVE_TIMEOUT	hz
229#define IWM_MVM_UCODE_CALIB_TIMEOUT	(2*hz)
230
231struct iwm_mvm_alive_data {
232	int valid;
233	uint32_t scd_base_addr;
234};
235
236static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
237static int	iwm_firmware_store_section(struct iwm_softc *,
238                                           enum iwm_ucode_type,
239                                           const uint8_t *, size_t);
240static int	iwm_set_default_calib(struct iwm_softc *, const void *);
241static void	iwm_fw_info_free(struct iwm_fw_info *);
242static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
243static int	iwm_alloc_fwmem(struct iwm_softc *);
244static int	iwm_alloc_sched(struct iwm_softc *);
245static int	iwm_alloc_kw(struct iwm_softc *);
246static int	iwm_alloc_ict(struct iwm_softc *);
247static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
248static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
249static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
250static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
251                                  int);
252static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
253static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
254static void	iwm_enable_interrupts(struct iwm_softc *);
255static void	iwm_restore_interrupts(struct iwm_softc *);
256static void	iwm_disable_interrupts(struct iwm_softc *);
257static void	iwm_ict_reset(struct iwm_softc *);
258static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
259static void	iwm_stop_device(struct iwm_softc *);
260static void	iwm_mvm_nic_config(struct iwm_softc *);
261static int	iwm_nic_rx_init(struct iwm_softc *);
262static int	iwm_nic_tx_init(struct iwm_softc *);
263static int	iwm_nic_init(struct iwm_softc *);
264static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
265static int	iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t);
266static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
267                                   uint16_t, uint8_t *, uint16_t *);
268static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
269				     uint16_t *, uint32_t);
270static uint32_t	iwm_eeprom_channel_flags(uint16_t);
271static void	iwm_add_channel_band(struct iwm_softc *,
272		    struct ieee80211_channel[], int, int *, int, size_t,
273		    const uint8_t[]);
274static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
275		    struct ieee80211_channel[]);
276static struct iwm_nvm_data *
277	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
278			   const uint16_t *, const uint16_t *,
279			   const uint16_t *, const uint16_t *,
280			   const uint16_t *);
281static void	iwm_free_nvm_data(struct iwm_nvm_data *);
282static void	iwm_set_hw_address_family_8000(struct iwm_softc *,
283					       struct iwm_nvm_data *,
284					       const uint16_t *,
285					       const uint16_t *);
286static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
287			    const uint16_t *);
288static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
289static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
290				  const uint16_t *);
291static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
292				   const uint16_t *);
293static void	iwm_set_radio_cfg(const struct iwm_softc *,
294				  struct iwm_nvm_data *, uint32_t);
295static struct iwm_nvm_data *
296	iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
297static int	iwm_nvm_init(struct iwm_softc *);
298static int	iwm_pcie_load_section(struct iwm_softc *, uint8_t,
299				      const struct iwm_fw_desc *);
300static int	iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t,
301					     bus_addr_t, uint32_t);
302static int	iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
303						const struct iwm_fw_sects *,
304						int, int *);
305static int	iwm_pcie_load_cpu_sections(struct iwm_softc *,
306					   const struct iwm_fw_sects *,
307					   int, int *);
308static int	iwm_pcie_load_given_ucode_8000(struct iwm_softc *,
309					       const struct iwm_fw_sects *);
310static int	iwm_pcie_load_given_ucode(struct iwm_softc *,
311					  const struct iwm_fw_sects *);
312static int	iwm_start_fw(struct iwm_softc *, const struct iwm_fw_sects *);
313static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
314static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
315static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
316                                              enum iwm_ucode_type);
317static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
318static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
319static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
320					    struct iwm_rx_phy_info *);
321static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
322                                      struct iwm_rx_packet *,
323                                      struct iwm_rx_data *);
324static int	iwm_get_noise(struct iwm_softc *sc,
325		    const struct iwm_mvm_statistics_rx_non_phy *);
326static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct mbuf *);
327static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
328                                         struct iwm_rx_packet *,
329				         struct iwm_node *);
330static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
331                                  struct iwm_rx_data *);
332static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
333#if 0
334static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
335                                 uint16_t);
336#endif
337static const struct iwm_rate *
338	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
339			struct mbuf *, struct iwm_tx_cmd *);
340static int	iwm_tx(struct iwm_softc *, struct mbuf *,
341                       struct ieee80211_node *, int);
342static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
343			     const struct ieee80211_bpf_params *);
344static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
345				      uint32_t tfd_msk, uint32_t flags);
346static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
347					        struct iwm_mvm_add_sta_cmd *,
348                                                int *);
349static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
350                                       int);
351static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
352static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
353static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
354                                           struct iwm_int_sta *,
355				           const uint8_t *, uint16_t, uint16_t);
356static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
357static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
358static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
359static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
360static int	iwm_release(struct iwm_softc *, struct iwm_node *);
361static struct ieee80211_node *
362		iwm_node_alloc(struct ieee80211vap *,
363		               const uint8_t[IEEE80211_ADDR_LEN]);
364static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
365static int	iwm_media_change(struct ifnet *);
366static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
367static void	iwm_endscan_cb(void *, int);
368static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
369					struct iwm_sf_cfg_cmd *,
370					struct ieee80211_node *);
371static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
372static int	iwm_send_bt_init_conf(struct iwm_softc *);
373static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
374static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
375static int	iwm_init_hw(struct iwm_softc *);
376static void	iwm_init(struct iwm_softc *);
377static void	iwm_start(struct iwm_softc *);
378static void	iwm_stop(struct iwm_softc *);
379static void	iwm_watchdog(void *);
380static void	iwm_parent(struct ieee80211com *);
381#ifdef IWM_DEBUG
382static const char *
383		iwm_desc_lookup(uint32_t);
384static void	iwm_nic_error(struct iwm_softc *);
385static void	iwm_nic_umac_error(struct iwm_softc *);
386#endif
387static void	iwm_notif_intr(struct iwm_softc *);
388static void	iwm_intr(void *);
389static int	iwm_attach(device_t);
390static int	iwm_is_valid_ether_addr(uint8_t *);
391static void	iwm_preinit(void *);
392static int	iwm_detach_local(struct iwm_softc *sc, int);
393static void	iwm_init_task(void *);
394static void	iwm_radiotap_attach(struct iwm_softc *);
395static struct ieee80211vap *
396		iwm_vap_create(struct ieee80211com *,
397		               const char [IFNAMSIZ], int,
398		               enum ieee80211_opmode, int,
399		               const uint8_t [IEEE80211_ADDR_LEN],
400		               const uint8_t [IEEE80211_ADDR_LEN]);
401static void	iwm_vap_delete(struct ieee80211vap *);
402static void	iwm_scan_start(struct ieee80211com *);
403static void	iwm_scan_end(struct ieee80211com *);
404static void	iwm_update_mcast(struct ieee80211com *);
405static void	iwm_set_channel(struct ieee80211com *);
406static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
407static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
408static int	iwm_detach(device_t);
409
410/*
411 * Firmware parser.
412 */
413
414static int
415iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
416{
417	const struct iwm_fw_cscheme_list *l = (const void *)data;
418
419	if (dlen < sizeof(*l) ||
420	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
421		return EINVAL;
422
423	/* we don't actually store anything for now, always use s/w crypto */
424
425	return 0;
426}
427
428static int
429iwm_firmware_store_section(struct iwm_softc *sc,
430    enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
431{
432	struct iwm_fw_sects *fws;
433	struct iwm_fw_desc *fwone;
434
435	if (type >= IWM_UCODE_TYPE_MAX)
436		return EINVAL;
437	if (dlen < sizeof(uint32_t))
438		return EINVAL;
439
440	fws = &sc->sc_fw.fw_sects[type];
441	if (fws->fw_count >= IWM_UCODE_SECTION_MAX)
442		return EINVAL;
443
444	fwone = &fws->fw_sect[fws->fw_count];
445
446	/* first 32bit are device load offset */
447	memcpy(&fwone->offset, data, sizeof(uint32_t));
448
449	/* rest is data */
450	fwone->data = data + sizeof(uint32_t);
451	fwone->len = dlen - sizeof(uint32_t);
452
453	fws->fw_count++;
454
455	return 0;
456}
457
458#define IWM_DEFAULT_SCAN_CHANNELS 40
459
460/* iwlwifi: iwl-drv.c */
461struct iwm_tlv_calib_data {
462	uint32_t ucode_type;
463	struct iwm_tlv_calib_ctrl calib;
464} __packed;
465
466static int
467iwm_set_default_calib(struct iwm_softc *sc, const void *data)
468{
469	const struct iwm_tlv_calib_data *def_calib = data;
470	uint32_t ucode_type = le32toh(def_calib->ucode_type);
471
472	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
473		device_printf(sc->sc_dev,
474		    "Wrong ucode_type %u for default "
475		    "calibration.\n", ucode_type);
476		return EINVAL;
477	}
478
479	sc->sc_default_calib[ucode_type].flow_trigger =
480	    def_calib->calib.flow_trigger;
481	sc->sc_default_calib[ucode_type].event_trigger =
482	    def_calib->calib.event_trigger;
483
484	return 0;
485}
486
487static int
488iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data,
489			struct iwm_ucode_capabilities *capa)
490{
491	const struct iwm_ucode_api *ucode_api = (const void *)data;
492	uint32_t api_index = le32toh(ucode_api->api_index);
493	uint32_t api_flags = le32toh(ucode_api->api_flags);
494	int i;
495
496	if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
497		device_printf(sc->sc_dev,
498		    "api flags index %d larger than supported by driver\n",
499		    api_index);
500		/* don't return an error so we can load FW that has more bits */
501		return 0;
502	}
503
504	for (i = 0; i < 32; i++) {
505		if (api_flags & (1U << i))
506			setbit(capa->enabled_api, i + 32 * api_index);
507	}
508
509	return 0;
510}
511
512static int
513iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data,
514			   struct iwm_ucode_capabilities *capa)
515{
516	const struct iwm_ucode_capa *ucode_capa = (const void *)data;
517	uint32_t api_index = le32toh(ucode_capa->api_index);
518	uint32_t api_flags = le32toh(ucode_capa->api_capa);
519	int i;
520
521	if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
522		device_printf(sc->sc_dev,
523		    "capa flags index %d larger than supported by driver\n",
524		    api_index);
525		/* don't return an error so we can load FW that has more bits */
526		return 0;
527	}
528
529	for (i = 0; i < 32; i++) {
530		if (api_flags & (1U << i))
531			setbit(capa->enabled_capa, i + 32 * api_index);
532	}
533
534	return 0;
535}
536
537static void
538iwm_fw_info_free(struct iwm_fw_info *fw)
539{
540	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
541	fw->fw_fp = NULL;
542	/* don't touch fw->fw_status */
543	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
544}
545
546static int
547iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
548{
549	struct iwm_fw_info *fw = &sc->sc_fw;
550	const struct iwm_tlv_ucode_header *uhdr;
551	struct iwm_ucode_tlv tlv;
552	struct iwm_ucode_capabilities *capa = &sc->ucode_capa;
553	enum iwm_ucode_tlv_type tlv_type;
554	const struct firmware *fwp;
555	const uint8_t *data;
556	uint32_t usniffer_img;
557	uint32_t paging_mem_size;
558	int num_of_cpus;
559	int error = 0;
560	size_t len;
561
562	if (fw->fw_status == IWM_FW_STATUS_DONE &&
563	    ucode_type != IWM_UCODE_INIT)
564		return 0;
565
566	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
567		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
568	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
569
570	if (fw->fw_fp != NULL)
571		iwm_fw_info_free(fw);
572
573	/*
574	 * Load firmware into driver memory.
575	 * fw_fp will be set.
576	 */
577	IWM_UNLOCK(sc);
578	fwp = firmware_get(sc->cfg->fw_name);
579	IWM_LOCK(sc);
580	if (fwp == NULL) {
581		device_printf(sc->sc_dev,
582		    "could not read firmware %s (error %d)\n",
583		    sc->cfg->fw_name, error);
584		goto out;
585	}
586	fw->fw_fp = fwp;
587
588	/* (Re-)Initialize default values. */
589	capa->flags = 0;
590	capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH;
591	capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
592	memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa));
593	memset(capa->enabled_api, 0, sizeof(capa->enabled_api));
594	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
595
596	/*
597	 * Parse firmware contents
598	 */
599
600	uhdr = (const void *)fw->fw_fp->data;
601	if (*(const uint32_t *)fw->fw_fp->data != 0
602	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
603		device_printf(sc->sc_dev, "invalid firmware %s\n",
604		    sc->cfg->fw_name);
605		error = EINVAL;
606		goto out;
607	}
608
609	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
610	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
611	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
612	    IWM_UCODE_API(le32toh(uhdr->ver)));
613	data = uhdr->data;
614	len = fw->fw_fp->datasize - sizeof(*uhdr);
615
616	while (len >= sizeof(tlv)) {
617		size_t tlv_len;
618		const void *tlv_data;
619
620		memcpy(&tlv, data, sizeof(tlv));
621		tlv_len = le32toh(tlv.length);
622		tlv_type = le32toh(tlv.type);
623
624		len -= sizeof(tlv);
625		data += sizeof(tlv);
626		tlv_data = data;
627
628		if (len < tlv_len) {
629			device_printf(sc->sc_dev,
630			    "firmware too short: %zu bytes\n",
631			    len);
632			error = EINVAL;
633			goto parse_out;
634		}
635
636		switch ((int)tlv_type) {
637		case IWM_UCODE_TLV_PROBE_MAX_LEN:
638			if (tlv_len < sizeof(uint32_t)) {
639				device_printf(sc->sc_dev,
640				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
641				    __func__,
642				    (int) tlv_len);
643				error = EINVAL;
644				goto parse_out;
645			}
646			capa->max_probe_length =
647			    le32toh(*(const uint32_t *)tlv_data);
648			/* limit it to something sensible */
649			if (capa->max_probe_length >
650			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
651				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
652				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
653				    "ridiculous\n", __func__);
654				error = EINVAL;
655				goto parse_out;
656			}
657			break;
658		case IWM_UCODE_TLV_PAN:
659			if (tlv_len) {
660				device_printf(sc->sc_dev,
661				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
662				    __func__,
663				    (int) tlv_len);
664				error = EINVAL;
665				goto parse_out;
666			}
667			capa->flags |= IWM_UCODE_TLV_FLAGS_PAN;
668			break;
669		case IWM_UCODE_TLV_FLAGS:
670			if (tlv_len < sizeof(uint32_t)) {
671				device_printf(sc->sc_dev,
672				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
673				    __func__,
674				    (int) tlv_len);
675				error = EINVAL;
676				goto parse_out;
677			}
678			/*
679			 * Apparently there can be many flags, but Linux driver
680			 * parses only the first one, and so do we.
681			 *
682			 * XXX: why does this override IWM_UCODE_TLV_PAN?
683			 * Intentional or a bug?  Observations from
684			 * current firmware file:
685			 *  1) TLV_PAN is parsed first
686			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
687			 * ==> this resets TLV_PAN to itself... hnnnk
688			 */
689			capa->flags = le32toh(*(const uint32_t *)tlv_data);
690			break;
691		case IWM_UCODE_TLV_CSCHEME:
692			if ((error = iwm_store_cscheme(sc,
693			    tlv_data, tlv_len)) != 0) {
694				device_printf(sc->sc_dev,
695				    "%s: iwm_store_cscheme(): returned %d\n",
696				    __func__,
697				    error);
698				goto parse_out;
699			}
700			break;
701		case IWM_UCODE_TLV_NUM_OF_CPU:
702			if (tlv_len != sizeof(uint32_t)) {
703				device_printf(sc->sc_dev,
704				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) != sizeof(uint32_t)\n",
705				    __func__,
706				    (int) tlv_len);
707				error = EINVAL;
708				goto parse_out;
709			}
710			num_of_cpus = le32toh(*(const uint32_t *)tlv_data);
711			if (num_of_cpus == 2) {
712				fw->fw_sects[IWM_UCODE_REGULAR].is_dual_cpus =
713					TRUE;
714				fw->fw_sects[IWM_UCODE_INIT].is_dual_cpus =
715					TRUE;
716				fw->fw_sects[IWM_UCODE_WOWLAN].is_dual_cpus =
717					TRUE;
718			} else if ((num_of_cpus > 2) || (num_of_cpus < 1)) {
719				device_printf(sc->sc_dev,
720				    "%s: Driver supports only 1 or 2 CPUs\n",
721				    __func__);
722				error = EINVAL;
723				goto parse_out;
724			}
725			break;
726		case IWM_UCODE_TLV_SEC_RT:
727			if ((error = iwm_firmware_store_section(sc,
728			    IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) {
729				device_printf(sc->sc_dev,
730				    "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n",
731				    __func__,
732				    error);
733				goto parse_out;
734			}
735			break;
736		case IWM_UCODE_TLV_SEC_INIT:
737			if ((error = iwm_firmware_store_section(sc,
738			    IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) {
739				device_printf(sc->sc_dev,
740				    "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n",
741				    __func__,
742				    error);
743				goto parse_out;
744			}
745			break;
746		case IWM_UCODE_TLV_SEC_WOWLAN:
747			if ((error = iwm_firmware_store_section(sc,
748			    IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) {
749				device_printf(sc->sc_dev,
750				    "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n",
751				    __func__,
752				    error);
753				goto parse_out;
754			}
755			break;
756		case IWM_UCODE_TLV_DEF_CALIB:
757			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
758				device_printf(sc->sc_dev,
759				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
760				    __func__,
761				    (int) tlv_len,
762				    (int) sizeof(struct iwm_tlv_calib_data));
763				error = EINVAL;
764				goto parse_out;
765			}
766			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
767				device_printf(sc->sc_dev,
768				    "%s: iwm_set_default_calib() failed: %d\n",
769				    __func__,
770				    error);
771				goto parse_out;
772			}
773			break;
774		case IWM_UCODE_TLV_PHY_SKU:
775			if (tlv_len != sizeof(uint32_t)) {
776				error = EINVAL;
777				device_printf(sc->sc_dev,
778				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
779				    __func__,
780				    (int) tlv_len);
781				goto parse_out;
782			}
783			sc->sc_fw.phy_config =
784			    le32toh(*(const uint32_t *)tlv_data);
785			sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config &
786						  IWM_FW_PHY_CFG_TX_CHAIN) >>
787						  IWM_FW_PHY_CFG_TX_CHAIN_POS;
788			sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config &
789						  IWM_FW_PHY_CFG_RX_CHAIN) >>
790						  IWM_FW_PHY_CFG_RX_CHAIN_POS;
791			break;
792
793		case IWM_UCODE_TLV_API_CHANGES_SET: {
794			if (tlv_len != sizeof(struct iwm_ucode_api)) {
795				error = EINVAL;
796				goto parse_out;
797			}
798			if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) {
799				error = EINVAL;
800				goto parse_out;
801			}
802			break;
803		}
804
805		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
806			if (tlv_len != sizeof(struct iwm_ucode_capa)) {
807				error = EINVAL;
808				goto parse_out;
809			}
810			if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) {
811				error = EINVAL;
812				goto parse_out;
813			}
814			break;
815		}
816
817		case 48: /* undocumented TLV */
818		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
819		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
820			/* ignore, not used by current driver */
821			break;
822
823		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
824			if ((error = iwm_firmware_store_section(sc,
825			    IWM_UCODE_REGULAR_USNIFFER, tlv_data,
826			    tlv_len)) != 0)
827				goto parse_out;
828			break;
829
830		case IWM_UCODE_TLV_PAGING:
831			if (tlv_len != sizeof(uint32_t)) {
832				error = EINVAL;
833				goto parse_out;
834			}
835			paging_mem_size = le32toh(*(const uint32_t *)tlv_data);
836
837			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
838			    "%s: Paging: paging enabled (size = %u bytes)\n",
839			    __func__, paging_mem_size);
840			if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
841				device_printf(sc->sc_dev,
842					"%s: Paging: driver supports up to %u bytes for paging image\n",
843					__func__, IWM_MAX_PAGING_IMAGE_SIZE);
844				error = EINVAL;
845				goto out;
846			}
847			if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
848				device_printf(sc->sc_dev,
849				    "%s: Paging: image isn't multiple %u\n",
850				    __func__, IWM_FW_PAGING_SIZE);
851				error = EINVAL;
852				goto out;
853			}
854
855			sc->sc_fw.fw_sects[IWM_UCODE_REGULAR].paging_mem_size =
856			    paging_mem_size;
857			usniffer_img = IWM_UCODE_REGULAR_USNIFFER;
858			sc->sc_fw.fw_sects[usniffer_img].paging_mem_size =
859			    paging_mem_size;
860			break;
861
862		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
863			if (tlv_len != sizeof(uint32_t)) {
864				error = EINVAL;
865				goto parse_out;
866			}
867			capa->n_scan_channels =
868			    le32toh(*(const uint32_t *)tlv_data);
869			break;
870
871		case IWM_UCODE_TLV_FW_VERSION:
872			if (tlv_len != sizeof(uint32_t) * 3) {
873				error = EINVAL;
874				goto parse_out;
875			}
876			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
877			    "%d.%d.%d",
878			    le32toh(((const uint32_t *)tlv_data)[0]),
879			    le32toh(((const uint32_t *)tlv_data)[1]),
880			    le32toh(((const uint32_t *)tlv_data)[2]));
881			break;
882
883		case IWM_UCODE_TLV_FW_MEM_SEG:
884			break;
885
886		default:
887			device_printf(sc->sc_dev,
888			    "%s: unknown firmware section %d, abort\n",
889			    __func__, tlv_type);
890			error = EINVAL;
891			goto parse_out;
892		}
893
894		len -= roundup(tlv_len, 4);
895		data += roundup(tlv_len, 4);
896	}
897
898	KASSERT(error == 0, ("unhandled error"));
899
900 parse_out:
901	if (error) {
902		device_printf(sc->sc_dev, "firmware parse error %d, "
903		    "section type %d\n", error, tlv_type);
904	}
905
906 out:
907	if (error) {
908		fw->fw_status = IWM_FW_STATUS_NONE;
909		if (fw->fw_fp != NULL)
910			iwm_fw_info_free(fw);
911	} else
912		fw->fw_status = IWM_FW_STATUS_DONE;
913	wakeup(&sc->sc_fw);
914
915	return error;
916}
917
918/*
919 * DMA resource routines
920 */
921
922/* fwmem is used to load firmware onto the card */
923static int
924iwm_alloc_fwmem(struct iwm_softc *sc)
925{
926	/* Must be aligned on a 16-byte boundary. */
927	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
928	    IWM_FH_MEM_TB_MAX_LENGTH, 16);
929}
930
931/* tx scheduler rings.  not used? */
932static int
933iwm_alloc_sched(struct iwm_softc *sc)
934{
935	/* TX scheduler rings must be aligned on a 1KB boundary. */
936	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
937	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
938}
939
940/* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
941static int
942iwm_alloc_kw(struct iwm_softc *sc)
943{
944	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
945}
946
947/* interrupt cause table */
948static int
949iwm_alloc_ict(struct iwm_softc *sc)
950{
951	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
952	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
953}
954
955static int
956iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
957{
958	bus_size_t size;
959	int i, error;
960
961	ring->cur = 0;
962
963	/* Allocate RX descriptors (256-byte aligned). */
964	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
965	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
966	if (error != 0) {
967		device_printf(sc->sc_dev,
968		    "could not allocate RX ring DMA memory\n");
969		goto fail;
970	}
971	ring->desc = ring->desc_dma.vaddr;
972
973	/* Allocate RX status area (16-byte aligned). */
974	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
975	    sizeof(*ring->stat), 16);
976	if (error != 0) {
977		device_printf(sc->sc_dev,
978		    "could not allocate RX status DMA memory\n");
979		goto fail;
980	}
981	ring->stat = ring->stat_dma.vaddr;
982
983        /* Create RX buffer DMA tag. */
984        error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
985            BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
986            IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
987        if (error != 0) {
988                device_printf(sc->sc_dev,
989                    "%s: could not create RX buf DMA tag, error %d\n",
990                    __func__, error);
991                goto fail;
992        }
993
994	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
995	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
996	if (error != 0) {
997		device_printf(sc->sc_dev,
998		    "%s: could not create RX buf DMA map, error %d\n",
999		    __func__, error);
1000		goto fail;
1001	}
1002	/*
1003	 * Allocate and map RX buffers.
1004	 */
1005	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1006		struct iwm_rx_data *data = &ring->data[i];
1007		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1008		if (error != 0) {
1009			device_printf(sc->sc_dev,
1010			    "%s: could not create RX buf DMA map, error %d\n",
1011			    __func__, error);
1012			goto fail;
1013		}
1014		data->m = NULL;
1015
1016		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
1017			goto fail;
1018		}
1019	}
1020	return 0;
1021
1022fail:	iwm_free_rx_ring(sc, ring);
1023	return error;
1024}
1025
1026static void
1027iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1028{
1029	/* Reset the ring state */
1030	ring->cur = 0;
1031
1032	/*
1033	 * The hw rx ring index in shared memory must also be cleared,
1034	 * otherwise the discrepancy can cause reprocessing chaos.
1035	 */
1036	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1037}
1038
1039static void
1040iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1041{
1042	int i;
1043
1044	iwm_dma_contig_free(&ring->desc_dma);
1045	iwm_dma_contig_free(&ring->stat_dma);
1046
1047	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1048		struct iwm_rx_data *data = &ring->data[i];
1049
1050		if (data->m != NULL) {
1051			bus_dmamap_sync(ring->data_dmat, data->map,
1052			    BUS_DMASYNC_POSTREAD);
1053			bus_dmamap_unload(ring->data_dmat, data->map);
1054			m_freem(data->m);
1055			data->m = NULL;
1056		}
1057		if (data->map != NULL) {
1058			bus_dmamap_destroy(ring->data_dmat, data->map);
1059			data->map = NULL;
1060		}
1061	}
1062	if (ring->spare_map != NULL) {
1063		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1064		ring->spare_map = NULL;
1065	}
1066	if (ring->data_dmat != NULL) {
1067		bus_dma_tag_destroy(ring->data_dmat);
1068		ring->data_dmat = NULL;
1069	}
1070}
1071
1072static int
1073iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1074{
1075	bus_addr_t paddr;
1076	bus_size_t size;
1077	size_t maxsize;
1078	int nsegments;
1079	int i, error;
1080
1081	ring->qid = qid;
1082	ring->queued = 0;
1083	ring->cur = 0;
1084
1085	/* Allocate TX descriptors (256-byte aligned). */
1086	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1087	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1088	if (error != 0) {
1089		device_printf(sc->sc_dev,
1090		    "could not allocate TX ring DMA memory\n");
1091		goto fail;
1092	}
1093	ring->desc = ring->desc_dma.vaddr;
1094
1095	/*
1096	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1097	 * to allocate commands space for other rings.
1098	 */
1099	if (qid > IWM_MVM_CMD_QUEUE)
1100		return 0;
1101
1102	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1103	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1104	if (error != 0) {
1105		device_printf(sc->sc_dev,
1106		    "could not allocate TX cmd DMA memory\n");
1107		goto fail;
1108	}
1109	ring->cmd = ring->cmd_dma.vaddr;
1110
1111	/* FW commands may require more mapped space than packets. */
1112	if (qid == IWM_MVM_CMD_QUEUE) {
1113		maxsize = IWM_RBUF_SIZE;
1114		nsegments = 1;
1115	} else {
1116		maxsize = MCLBYTES;
1117		nsegments = IWM_MAX_SCATTER - 2;
1118	}
1119
1120	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1121	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1122            nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1123	if (error != 0) {
1124		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1125		goto fail;
1126	}
1127
1128	paddr = ring->cmd_dma.paddr;
1129	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1130		struct iwm_tx_data *data = &ring->data[i];
1131
1132		data->cmd_paddr = paddr;
1133		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1134		    + offsetof(struct iwm_tx_cmd, scratch);
1135		paddr += sizeof(struct iwm_device_cmd);
1136
1137		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1138		if (error != 0) {
1139			device_printf(sc->sc_dev,
1140			    "could not create TX buf DMA map\n");
1141			goto fail;
1142		}
1143	}
1144	KASSERT(paddr == ring->cmd_dma.paddr + size,
1145	    ("invalid physical address"));
1146	return 0;
1147
1148fail:	iwm_free_tx_ring(sc, ring);
1149	return error;
1150}
1151
1152static void
1153iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1154{
1155	int i;
1156
1157	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1158		struct iwm_tx_data *data = &ring->data[i];
1159
1160		if (data->m != NULL) {
1161			bus_dmamap_sync(ring->data_dmat, data->map,
1162			    BUS_DMASYNC_POSTWRITE);
1163			bus_dmamap_unload(ring->data_dmat, data->map);
1164			m_freem(data->m);
1165			data->m = NULL;
1166		}
1167	}
1168	/* Clear TX descriptors. */
1169	memset(ring->desc, 0, ring->desc_dma.size);
1170	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1171	    BUS_DMASYNC_PREWRITE);
1172	sc->qfullmsk &= ~(1 << ring->qid);
1173	ring->queued = 0;
1174	ring->cur = 0;
1175
1176	if (ring->qid == IWM_MVM_CMD_QUEUE && sc->cmd_hold_nic_awake)
1177		iwm_pcie_clear_cmd_in_flight(sc);
1178}
1179
1180static void
1181iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1182{
1183	int i;
1184
1185	iwm_dma_contig_free(&ring->desc_dma);
1186	iwm_dma_contig_free(&ring->cmd_dma);
1187
1188	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1189		struct iwm_tx_data *data = &ring->data[i];
1190
1191		if (data->m != NULL) {
1192			bus_dmamap_sync(ring->data_dmat, data->map,
1193			    BUS_DMASYNC_POSTWRITE);
1194			bus_dmamap_unload(ring->data_dmat, data->map);
1195			m_freem(data->m);
1196			data->m = NULL;
1197		}
1198		if (data->map != NULL) {
1199			bus_dmamap_destroy(ring->data_dmat, data->map);
1200			data->map = NULL;
1201		}
1202	}
1203	if (ring->data_dmat != NULL) {
1204		bus_dma_tag_destroy(ring->data_dmat);
1205		ring->data_dmat = NULL;
1206	}
1207}
1208
1209/*
1210 * High-level hardware frobbing routines
1211 */
1212
1213static void
1214iwm_enable_interrupts(struct iwm_softc *sc)
1215{
1216	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1217	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1218}
1219
1220static void
1221iwm_restore_interrupts(struct iwm_softc *sc)
1222{
1223	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1224}
1225
1226static void
1227iwm_disable_interrupts(struct iwm_softc *sc)
1228{
1229	/* disable interrupts */
1230	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1231
1232	/* acknowledge all interrupts */
1233	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1234	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1235}
1236
1237static void
1238iwm_ict_reset(struct iwm_softc *sc)
1239{
1240	iwm_disable_interrupts(sc);
1241
1242	/* Reset ICT table. */
1243	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1244	sc->ict_cur = 0;
1245
1246	/* Set physical address of ICT table (4KB aligned). */
1247	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1248	    IWM_CSR_DRAM_INT_TBL_ENABLE
1249	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1250	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1251	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1252
1253	/* Switch to ICT interrupt mode in driver. */
1254	sc->sc_flags |= IWM_FLAG_USE_ICT;
1255
1256	/* Re-enable interrupts. */
1257	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1258	iwm_enable_interrupts(sc);
1259}
1260
1261/* iwlwifi pcie/trans.c */
1262
1263/*
1264 * Since this .. hard-resets things, it's time to actually
1265 * mark the first vap (if any) as having no mac context.
1266 * It's annoying, but since the driver is potentially being
1267 * stop/start'ed whilst active (thanks openbsd port!) we
1268 * have to correctly track this.
1269 */
1270static void
1271iwm_stop_device(struct iwm_softc *sc)
1272{
1273	struct ieee80211com *ic = &sc->sc_ic;
1274	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1275	int chnl, qid;
1276	uint32_t mask = 0;
1277
1278	/* tell the device to stop sending interrupts */
1279	iwm_disable_interrupts(sc);
1280
1281	/*
1282	 * FreeBSD-local: mark the first vap as not-uploaded,
1283	 * so the next transition through auth/assoc
1284	 * will correctly populate the MAC context.
1285	 */
1286	if (vap) {
1287		struct iwm_vap *iv = IWM_VAP(vap);
1288		iv->is_uploaded = 0;
1289	}
1290
1291	/* device going down, Stop using ICT table */
1292	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1293
1294	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1295
1296	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1297
1298	if (iwm_nic_lock(sc)) {
1299		/* Stop each Tx DMA channel */
1300		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1301			IWM_WRITE(sc,
1302			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1303			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1304		}
1305
1306		/* Wait for DMA channels to be idle */
1307		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1308		    5000)) {
1309			device_printf(sc->sc_dev,
1310			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1311			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1312		}
1313		iwm_nic_unlock(sc);
1314	}
1315	iwm_pcie_rx_stop(sc);
1316
1317	/* Stop RX ring. */
1318	iwm_reset_rx_ring(sc, &sc->rxq);
1319
1320	/* Reset all TX rings. */
1321	for (qid = 0; qid < nitems(sc->txq); qid++)
1322		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1323
1324	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1325		/* Power-down device's busmaster DMA clocks */
1326		iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
1327		    IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1328		DELAY(5);
1329	}
1330
1331	/* Make sure (redundant) we've released our request to stay awake */
1332	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1333	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1334
1335	/* Stop the device, and put it in low power state */
1336	iwm_apm_stop(sc);
1337
1338	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1339	 * Clean again the interrupt here
1340	 */
1341	iwm_disable_interrupts(sc);
1342	/* stop and reset the on-board processor */
1343	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1344
1345	/*
1346	 * Even if we stop the HW, we still want the RF kill
1347	 * interrupt
1348	 */
1349	iwm_enable_rfkill_int(sc);
1350	iwm_check_rfkill(sc);
1351}
1352
1353/* iwlwifi: mvm/ops.c */
1354static void
1355iwm_mvm_nic_config(struct iwm_softc *sc)
1356{
1357	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1358	uint32_t reg_val = 0;
1359	uint32_t phy_config = iwm_mvm_get_phy_config(sc);
1360
1361	radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1362	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1363	radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1364	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1365	radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1366	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1367
1368	/* SKU control */
1369	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1370	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1371	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1372	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1373
1374	/* radio configuration */
1375	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1376	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1377	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1378
1379	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1380
1381	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1382	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1383	    radio_cfg_step, radio_cfg_dash);
1384
1385	/*
1386	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1387	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1388	 * to lose ownership and not being able to obtain it back.
1389	 */
1390	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1391		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1392		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1393		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1394	}
1395}
1396
1397static int
1398iwm_nic_rx_init(struct iwm_softc *sc)
1399{
1400	/*
1401	 * Initialize RX ring.  This is from the iwn driver.
1402	 */
1403	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1404
1405	/* Stop Rx DMA */
1406	iwm_pcie_rx_stop(sc);
1407
1408	if (!iwm_nic_lock(sc))
1409		return EBUSY;
1410
1411	/* reset and flush pointers */
1412	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1413	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1414	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1415	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1416
1417	/* Set physical address of RX ring (256-byte aligned). */
1418	IWM_WRITE(sc,
1419	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1420
1421	/* Set physical address of RX status (16-byte aligned). */
1422	IWM_WRITE(sc,
1423	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1424
1425	/* Enable RX. */
1426	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1427	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1428	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1429	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1430	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1431	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1432	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1433	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1434
1435	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1436
1437	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1438	if (sc->cfg->host_interrupt_operation_mode)
1439		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1440
1441	/*
1442	 * Thus sayeth el jefe (iwlwifi) via a comment:
1443	 *
1444	 * This value should initially be 0 (before preparing any
1445	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1446	 */
1447	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1448
1449	iwm_nic_unlock(sc);
1450
1451	return 0;
1452}
1453
1454static int
1455iwm_nic_tx_init(struct iwm_softc *sc)
1456{
1457	int qid;
1458
1459	if (!iwm_nic_lock(sc))
1460		return EBUSY;
1461
1462	/* Deactivate TX scheduler. */
1463	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1464
1465	/* Set physical address of "keep warm" page (16-byte aligned). */
1466	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1467
1468	/* Initialize TX rings. */
1469	for (qid = 0; qid < nitems(sc->txq); qid++) {
1470		struct iwm_tx_ring *txq = &sc->txq[qid];
1471
1472		/* Set physical address of TX ring (256-byte aligned). */
1473		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1474		    txq->desc_dma.paddr >> 8);
1475		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1476		    "%s: loading ring %d descriptors (%p) at %lx\n",
1477		    __func__,
1478		    qid, txq->desc,
1479		    (unsigned long) (txq->desc_dma.paddr >> 8));
1480	}
1481
1482	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1483
1484	iwm_nic_unlock(sc);
1485
1486	return 0;
1487}
1488
1489static int
1490iwm_nic_init(struct iwm_softc *sc)
1491{
1492	int error;
1493
1494	iwm_apm_init(sc);
1495	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1496		iwm_set_pwr(sc);
1497
1498	iwm_mvm_nic_config(sc);
1499
1500	if ((error = iwm_nic_rx_init(sc)) != 0)
1501		return error;
1502
1503	/*
1504	 * Ditto for TX, from iwn
1505	 */
1506	if ((error = iwm_nic_tx_init(sc)) != 0)
1507		return error;
1508
1509	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1510	    "%s: shadow registers enabled\n", __func__);
1511	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1512
1513	return 0;
1514}
1515
1516const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1517	IWM_MVM_TX_FIFO_VO,
1518	IWM_MVM_TX_FIFO_VI,
1519	IWM_MVM_TX_FIFO_BE,
1520	IWM_MVM_TX_FIFO_BK,
1521};
1522
1523static int
1524iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1525{
1526	if (!iwm_nic_lock(sc)) {
1527		device_printf(sc->sc_dev,
1528		    "%s: cannot enable txq %d\n",
1529		    __func__,
1530		    qid);
1531		return EBUSY;
1532	}
1533
1534	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1535
1536	if (qid == IWM_MVM_CMD_QUEUE) {
1537		/* unactivate before configuration */
1538		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1539		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1540		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1541
1542		iwm_nic_unlock(sc);
1543
1544		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1545
1546		if (!iwm_nic_lock(sc)) {
1547			device_printf(sc->sc_dev,
1548			    "%s: cannot enable txq %d\n", __func__, qid);
1549			return EBUSY;
1550		}
1551		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1552		iwm_nic_unlock(sc);
1553
1554		iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1555		/* Set scheduler window size and frame limit. */
1556		iwm_write_mem32(sc,
1557		    sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1558		    sizeof(uint32_t),
1559		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1560		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1561		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1562		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1563
1564		if (!iwm_nic_lock(sc)) {
1565			device_printf(sc->sc_dev,
1566			    "%s: cannot enable txq %d\n", __func__, qid);
1567			return EBUSY;
1568		}
1569		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1570		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1571		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1572		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1573		    IWM_SCD_QUEUE_STTS_REG_MSK);
1574	} else {
1575		struct iwm_scd_txq_cfg_cmd cmd;
1576		int error;
1577
1578		iwm_nic_unlock(sc);
1579
1580		memset(&cmd, 0, sizeof(cmd));
1581		cmd.scd_queue = qid;
1582		cmd.enable = 1;
1583		cmd.sta_id = sta_id;
1584		cmd.tx_fifo = fifo;
1585		cmd.aggregate = 0;
1586		cmd.window = IWM_FRAME_LIMIT;
1587
1588		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1589		    sizeof(cmd), &cmd);
1590		if (error) {
1591			device_printf(sc->sc_dev,
1592			    "cannot enable txq %d\n", qid);
1593			return error;
1594		}
1595
1596		if (!iwm_nic_lock(sc))
1597			return EBUSY;
1598	}
1599
1600	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1601	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1602
1603	iwm_nic_unlock(sc);
1604
1605	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1606	    __func__, qid, fifo);
1607
1608	return 0;
1609}
1610
1611static int
1612iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr)
1613{
1614	int error, chnl;
1615
1616	int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1617	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
1618
1619	if (!iwm_nic_lock(sc))
1620		return EBUSY;
1621
1622	iwm_ict_reset(sc);
1623
1624	iwm_nic_unlock(sc);
1625
1626	sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1627	if (scd_base_addr != 0 &&
1628	    scd_base_addr != sc->scd_base_addr) {
1629		device_printf(sc->sc_dev,
1630		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1631		    __func__, sc->scd_base_addr, scd_base_addr);
1632	}
1633
1634	/* reset context data, TX status and translation data */
1635	error = iwm_write_mem(sc,
1636	    sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1637	    NULL, clear_dwords);
1638	if (error)
1639		return EBUSY;
1640
1641	if (!iwm_nic_lock(sc))
1642		return EBUSY;
1643
1644	/* Set physical address of TX scheduler rings (1KB aligned). */
1645	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1646
1647	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1648
1649	iwm_nic_unlock(sc);
1650
1651	/* enable command channel */
1652	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1653	if (error)
1654		return error;
1655
1656	if (!iwm_nic_lock(sc))
1657		return EBUSY;
1658
1659	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1660
1661	/* Enable DMA channels. */
1662	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1663		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1664		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1665		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1666	}
1667
1668	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1669	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1670
1671	iwm_nic_unlock(sc);
1672
1673	/* Enable L1-Active */
1674	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
1675		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1676		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1677	}
1678
1679	return error;
1680}
1681
1682/*
1683 * NVM read access and content parsing.  We do not support
1684 * external NVM or writing NVM.
1685 * iwlwifi/mvm/nvm.c
1686 */
1687
1688/* Default NVM size to read */
1689#define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1690
1691#define IWM_NVM_WRITE_OPCODE 1
1692#define IWM_NVM_READ_OPCODE 0
1693
1694/* load nvm chunk response */
1695enum {
1696	IWM_READ_NVM_CHUNK_SUCCEED = 0,
1697	IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
1698};
1699
1700static int
1701iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1702	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1703{
1704	struct iwm_nvm_access_cmd nvm_access_cmd = {
1705		.offset = htole16(offset),
1706		.length = htole16(length),
1707		.type = htole16(section),
1708		.op_code = IWM_NVM_READ_OPCODE,
1709	};
1710	struct iwm_nvm_access_resp *nvm_resp;
1711	struct iwm_rx_packet *pkt;
1712	struct iwm_host_cmd cmd = {
1713		.id = IWM_NVM_ACCESS_CMD,
1714		.flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL,
1715		.data = { &nvm_access_cmd, },
1716	};
1717	int ret, bytes_read, offset_read;
1718	uint8_t *resp_data;
1719
1720	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1721
1722	ret = iwm_send_cmd(sc, &cmd);
1723	if (ret) {
1724		device_printf(sc->sc_dev,
1725		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1726		return ret;
1727	}
1728
1729	pkt = cmd.resp_pkt;
1730
1731	/* Extract NVM response */
1732	nvm_resp = (void *)pkt->data;
1733	ret = le16toh(nvm_resp->status);
1734	bytes_read = le16toh(nvm_resp->length);
1735	offset_read = le16toh(nvm_resp->offset);
1736	resp_data = nvm_resp->data;
1737	if (ret) {
1738		if ((offset != 0) &&
1739		    (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
1740			/*
1741			 * meaning of NOT_VALID_ADDRESS:
1742			 * driver try to read chunk from address that is
1743			 * multiple of 2K and got an error since addr is empty.
1744			 * meaning of (offset != 0): driver already
1745			 * read valid data from another chunk so this case
1746			 * is not an error.
1747			 */
1748			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1749				    "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
1750				    offset);
1751			*len = 0;
1752			ret = 0;
1753		} else {
1754			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1755				    "NVM access command failed with status %d\n", ret);
1756			ret = EIO;
1757		}
1758		goto exit;
1759	}
1760
1761	if (offset_read != offset) {
1762		device_printf(sc->sc_dev,
1763		    "NVM ACCESS response with invalid offset %d\n",
1764		    offset_read);
1765		ret = EINVAL;
1766		goto exit;
1767	}
1768
1769	if (bytes_read > length) {
1770		device_printf(sc->sc_dev,
1771		    "NVM ACCESS response with too much data "
1772		    "(%d bytes requested, %d bytes received)\n",
1773		    length, bytes_read);
1774		ret = EINVAL;
1775		goto exit;
1776	}
1777
1778	/* Write data to NVM */
1779	memcpy(data + offset, resp_data, bytes_read);
1780	*len = bytes_read;
1781
1782 exit:
1783	iwm_free_resp(sc, &cmd);
1784	return ret;
1785}
1786
1787/*
1788 * Reads an NVM section completely.
1789 * NICs prior to 7000 family don't have a real NVM, but just read
1790 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1791 * by uCode, we need to manually check in this case that we don't
1792 * overflow and try to read more than the EEPROM size.
1793 * For 7000 family NICs, we supply the maximal size we can read, and
1794 * the uCode fills the response with as much data as we can,
1795 * without overflowing, so no check is needed.
1796 */
1797static int
1798iwm_nvm_read_section(struct iwm_softc *sc,
1799	uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read)
1800{
1801	uint16_t seglen, length, offset = 0;
1802	int ret;
1803
1804	/* Set nvm section read length */
1805	length = IWM_NVM_DEFAULT_CHUNK_SIZE;
1806
1807	seglen = length;
1808
1809	/* Read the NVM until exhausted (reading less than requested) */
1810	while (seglen == length) {
1811		/* Check no memory assumptions fail and cause an overflow */
1812		if ((size_read + offset + length) >
1813		    sc->cfg->eeprom_size) {
1814			device_printf(sc->sc_dev,
1815			    "EEPROM size is too small for NVM\n");
1816			return ENOBUFS;
1817		}
1818
1819		ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen);
1820		if (ret) {
1821			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1822				    "Cannot read NVM from section %d offset %d, length %d\n",
1823				    section, offset, length);
1824			return ret;
1825		}
1826		offset += seglen;
1827	}
1828
1829	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1830		    "NVM section %d read completed\n", section);
1831	*len = offset;
1832	return 0;
1833}
1834
1835/*
1836 * BEGIN IWM_NVM_PARSE
1837 */
1838
1839/* iwlwifi/iwl-nvm-parse.c */
1840
1841/* NVM offsets (in words) definitions */
1842enum iwm_nvm_offsets {
1843	/* NVM HW-Section offset (in words) definitions */
1844	IWM_HW_ADDR = 0x15,
1845
1846/* NVM SW-Section offset (in words) definitions */
1847	IWM_NVM_SW_SECTION = 0x1C0,
1848	IWM_NVM_VERSION = 0,
1849	IWM_RADIO_CFG = 1,
1850	IWM_SKU = 2,
1851	IWM_N_HW_ADDRS = 3,
1852	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1853
1854/* NVM calibration section offset (in words) definitions */
1855	IWM_NVM_CALIB_SECTION = 0x2B8,
1856	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1857};
1858
1859enum iwm_8000_nvm_offsets {
1860	/* NVM HW-Section offset (in words) definitions */
1861	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1862	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1863	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1864	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1865	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1866
1867	/* NVM SW-Section offset (in words) definitions */
1868	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1869	IWM_NVM_VERSION_8000 = 0,
1870	IWM_RADIO_CFG_8000 = 0,
1871	IWM_SKU_8000 = 2,
1872	IWM_N_HW_ADDRS_8000 = 3,
1873
1874	/* NVM REGULATORY -Section offset (in words) definitions */
1875	IWM_NVM_CHANNELS_8000 = 0,
1876	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1877	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1878	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1879
1880	/* NVM calibration section offset (in words) definitions */
1881	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1882	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1883};
1884
1885/* SKU Capabilities (actual values from NVM definition) */
1886enum nvm_sku_bits {
1887	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1888	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1889	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1890	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1891};
1892
1893/* radio config bits (actual values from NVM definition) */
1894#define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1895#define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1896#define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1897#define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1898#define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1899#define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1900
1901#define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1902#define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1903#define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1904#define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1905#define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1906#define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1907
1908#define DEFAULT_MAX_TX_POWER 16
1909
1910/**
1911 * enum iwm_nvm_channel_flags - channel flags in NVM
1912 * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1913 * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1914 * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1915 * @IWM_NVM_CHANNEL_RADAR: radar detection required
1916 * XXX cannot find this (DFS) flag in iwm-nvm-parse.c
1917 * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1918 * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1919 * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1920 * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1921 * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1922 */
1923enum iwm_nvm_channel_flags {
1924	IWM_NVM_CHANNEL_VALID = (1 << 0),
1925	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1926	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1927	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1928	IWM_NVM_CHANNEL_DFS = (1 << 7),
1929	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1930	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1931	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1932	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1933};
1934
1935/*
1936 * Translate EEPROM flags to net80211.
1937 */
1938static uint32_t
1939iwm_eeprom_channel_flags(uint16_t ch_flags)
1940{
1941	uint32_t nflags;
1942
1943	nflags = 0;
1944	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1945		nflags |= IEEE80211_CHAN_PASSIVE;
1946	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1947		nflags |= IEEE80211_CHAN_NOADHOC;
1948	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1949		nflags |= IEEE80211_CHAN_DFS;
1950		/* Just in case. */
1951		nflags |= IEEE80211_CHAN_NOADHOC;
1952	}
1953
1954	return (nflags);
1955}
1956
1957static void
1958iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1959    int maxchans, int *nchans, int ch_idx, size_t ch_num,
1960    const uint8_t bands[])
1961{
1962	const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags;
1963	uint32_t nflags;
1964	uint16_t ch_flags;
1965	uint8_t ieee;
1966	int error;
1967
1968	for (; ch_idx < ch_num; ch_idx++) {
1969		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1970		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1971			ieee = iwm_nvm_channels[ch_idx];
1972		else
1973			ieee = iwm_nvm_channels_8000[ch_idx];
1974
1975		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1976			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1977			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1978			    ieee, ch_flags,
1979			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1980			    "5.2" : "2.4");
1981			continue;
1982		}
1983
1984		nflags = iwm_eeprom_channel_flags(ch_flags);
1985		error = ieee80211_add_channel(chans, maxchans, nchans,
1986		    ieee, 0, 0, nflags, bands);
1987		if (error != 0)
1988			break;
1989
1990		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1991		    "Ch. %d Flags %x [%sGHz] - Added\n",
1992		    ieee, ch_flags,
1993		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1994		    "5.2" : "2.4");
1995	}
1996}
1997
1998static void
1999iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
2000    struct ieee80211_channel chans[])
2001{
2002	struct iwm_softc *sc = ic->ic_softc;
2003	struct iwm_nvm_data *data = sc->nvm_data;
2004	uint8_t bands[IEEE80211_MODE_BYTES];
2005	size_t ch_num;
2006
2007	memset(bands, 0, sizeof(bands));
2008	/* 1-13: 11b/g channels. */
2009	setbit(bands, IEEE80211_MODE_11B);
2010	setbit(bands, IEEE80211_MODE_11G);
2011	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
2012	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
2013
2014	/* 14: 11b channel only. */
2015	clrbit(bands, IEEE80211_MODE_11G);
2016	iwm_add_channel_band(sc, chans, maxchans, nchans,
2017	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
2018
2019	if (data->sku_cap_band_52GHz_enable) {
2020		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
2021			ch_num = nitems(iwm_nvm_channels);
2022		else
2023			ch_num = nitems(iwm_nvm_channels_8000);
2024		memset(bands, 0, sizeof(bands));
2025		setbit(bands, IEEE80211_MODE_11A);
2026		iwm_add_channel_band(sc, chans, maxchans, nchans,
2027		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
2028	}
2029}
2030
2031static void
2032iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
2033	const uint16_t *mac_override, const uint16_t *nvm_hw)
2034{
2035	const uint8_t *hw_addr;
2036
2037	if (mac_override) {
2038		static const uint8_t reserved_mac[] = {
2039			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
2040		};
2041
2042		hw_addr = (const uint8_t *)(mac_override +
2043				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2044
2045		/*
2046		 * Store the MAC address from MAO section.
2047		 * No byte swapping is required in MAO section
2048		 */
2049		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2050
2051		/*
2052		 * Force the use of the OTP MAC address in case of reserved MAC
2053		 * address in the NVM, or if address is given but invalid.
2054		 */
2055		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2056		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2057		    iwm_is_valid_ether_addr(data->hw_addr) &&
2058		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2059			return;
2060
2061		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2062		    "%s: mac address from nvm override section invalid\n",
2063		    __func__);
2064	}
2065
2066	if (nvm_hw) {
2067		/* read the mac address from WFMP registers */
2068		uint32_t mac_addr0 =
2069		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2070		uint32_t mac_addr1 =
2071		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2072
2073		hw_addr = (const uint8_t *)&mac_addr0;
2074		data->hw_addr[0] = hw_addr[3];
2075		data->hw_addr[1] = hw_addr[2];
2076		data->hw_addr[2] = hw_addr[1];
2077		data->hw_addr[3] = hw_addr[0];
2078
2079		hw_addr = (const uint8_t *)&mac_addr1;
2080		data->hw_addr[4] = hw_addr[1];
2081		data->hw_addr[5] = hw_addr[0];
2082
2083		return;
2084	}
2085
2086	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2087	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2088}
2089
2090static int
2091iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2092	    const uint16_t *phy_sku)
2093{
2094	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2095		return le16_to_cpup(nvm_sw + IWM_SKU);
2096
2097	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2098}
2099
2100static int
2101iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2102{
2103	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2104		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2105	else
2106		return le32_to_cpup((const uint32_t *)(nvm_sw +
2107						IWM_NVM_VERSION_8000));
2108}
2109
2110static int
2111iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2112		  const uint16_t *phy_sku)
2113{
2114        if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2115                return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2116
2117        return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2118}
2119
2120static int
2121iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2122{
2123	int n_hw_addr;
2124
2125	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2126		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2127
2128	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2129
2130        return n_hw_addr & IWM_N_HW_ADDR_MASK;
2131}
2132
2133static void
2134iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2135		  uint32_t radio_cfg)
2136{
2137	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2138		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2139		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2140		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2141		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2142		return;
2143	}
2144
2145	/* set the radio configuration for family 8000 */
2146	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2147	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2148	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2149	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2150	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2151	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2152}
2153
2154static int
2155iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data,
2156		   const uint16_t *nvm_hw, const uint16_t *mac_override)
2157{
2158#ifdef notyet /* for FAMILY 9000 */
2159	if (cfg->mac_addr_from_csr) {
2160		iwm_set_hw_address_from_csr(sc, data);
2161        } else
2162#endif
2163	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2164		const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR);
2165
2166		/* The byte order is little endian 16 bit, meaning 214365 */
2167		data->hw_addr[0] = hw_addr[1];
2168		data->hw_addr[1] = hw_addr[0];
2169		data->hw_addr[2] = hw_addr[3];
2170		data->hw_addr[3] = hw_addr[2];
2171		data->hw_addr[4] = hw_addr[5];
2172		data->hw_addr[5] = hw_addr[4];
2173	} else {
2174		iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw);
2175	}
2176
2177	if (!iwm_is_valid_ether_addr(data->hw_addr)) {
2178		device_printf(sc->sc_dev, "no valid mac address was found\n");
2179		return EINVAL;
2180	}
2181
2182	return 0;
2183}
2184
2185static struct iwm_nvm_data *
2186iwm_parse_nvm_data(struct iwm_softc *sc,
2187		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2188		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2189		   const uint16_t *phy_sku, const uint16_t *regulatory)
2190{
2191	struct iwm_nvm_data *data;
2192	uint32_t sku, radio_cfg;
2193
2194	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2195		data = malloc(sizeof(*data) +
2196		    IWM_NUM_CHANNELS * sizeof(uint16_t),
2197		    M_DEVBUF, M_NOWAIT | M_ZERO);
2198	} else {
2199		data = malloc(sizeof(*data) +
2200		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t),
2201		    M_DEVBUF, M_NOWAIT | M_ZERO);
2202	}
2203	if (!data)
2204		return NULL;
2205
2206	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2207
2208	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2209	iwm_set_radio_cfg(sc, data, radio_cfg);
2210
2211	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2212	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2213	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2214	data->sku_cap_11n_enable = 0;
2215
2216	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2217
2218	/* If no valid mac address was found - bail out */
2219	if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) {
2220		free(data, M_DEVBUF);
2221		return NULL;
2222	}
2223
2224	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2225		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2226		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2227	} else {
2228		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2229		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2230	}
2231
2232	return data;
2233}
2234
2235static void
2236iwm_free_nvm_data(struct iwm_nvm_data *data)
2237{
2238	if (data != NULL)
2239		free(data, M_DEVBUF);
2240}
2241
2242static struct iwm_nvm_data *
2243iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2244{
2245	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2246
2247	/* Checking for required sections */
2248	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2249		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2250		    !sections[sc->cfg->nvm_hw_section_num].data) {
2251			device_printf(sc->sc_dev,
2252			    "Can't parse empty OTP/NVM sections\n");
2253			return NULL;
2254		}
2255	} else if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2256		/* SW and REGULATORY sections are mandatory */
2257		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2258		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2259			device_printf(sc->sc_dev,
2260			    "Can't parse empty OTP/NVM sections\n");
2261			return NULL;
2262		}
2263		/* MAC_OVERRIDE or at least HW section must exist */
2264		if (!sections[sc->cfg->nvm_hw_section_num].data &&
2265		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2266			device_printf(sc->sc_dev,
2267			    "Can't parse mac_address, empty sections\n");
2268			return NULL;
2269		}
2270
2271		/* PHY_SKU section is mandatory in B0 */
2272		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2273			device_printf(sc->sc_dev,
2274			    "Can't parse phy_sku in B0, empty sections\n");
2275			return NULL;
2276		}
2277	} else {
2278		panic("unknown device family %d\n", sc->cfg->device_family);
2279	}
2280
2281	hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data;
2282	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2283	calib = (const uint16_t *)
2284	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2285	regulatory = (const uint16_t *)
2286	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2287	mac_override = (const uint16_t *)
2288	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2289	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2290
2291	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2292	    phy_sku, regulatory);
2293}
2294
2295static int
2296iwm_nvm_init(struct iwm_softc *sc)
2297{
2298	struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS];
2299	int i, ret, section;
2300	uint32_t size_read = 0;
2301	uint8_t *nvm_buffer, *temp;
2302	uint16_t len;
2303
2304	memset(nvm_sections, 0, sizeof(nvm_sections));
2305
2306	if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS)
2307		return EINVAL;
2308
2309	/* load NVM values from nic */
2310	/* Read From FW NVM */
2311	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n");
2312
2313	nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO);
2314	if (!nvm_buffer)
2315		return ENOMEM;
2316	for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) {
2317		/* we override the constness for initial read */
2318		ret = iwm_nvm_read_section(sc, section, nvm_buffer,
2319					   &len, size_read);
2320		if (ret)
2321			continue;
2322		size_read += len;
2323		temp = malloc(len, M_DEVBUF, M_NOWAIT);
2324		if (!temp) {
2325			ret = ENOMEM;
2326			break;
2327		}
2328		memcpy(temp, nvm_buffer, len);
2329
2330		nvm_sections[section].data = temp;
2331		nvm_sections[section].length = len;
2332	}
2333	if (!size_read)
2334		device_printf(sc->sc_dev, "OTP is blank\n");
2335	free(nvm_buffer, M_DEVBUF);
2336
2337	sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections);
2338	if (!sc->nvm_data)
2339		return EINVAL;
2340	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
2341		    "nvm version = %x\n", sc->nvm_data->nvm_version);
2342
2343	for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) {
2344		if (nvm_sections[i].data != NULL)
2345			free(nvm_sections[i].data, M_DEVBUF);
2346	}
2347
2348	return 0;
2349}
2350
2351static int
2352iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num,
2353	const struct iwm_fw_desc *section)
2354{
2355	struct iwm_dma_info *dma = &sc->fw_dma;
2356	uint8_t *v_addr;
2357	bus_addr_t p_addr;
2358	uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len);
2359	int ret = 0;
2360
2361	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2362		    "%s: [%d] uCode section being loaded...\n",
2363		    __func__, section_num);
2364
2365	v_addr = dma->vaddr;
2366	p_addr = dma->paddr;
2367
2368	for (offset = 0; offset < section->len; offset += chunk_sz) {
2369		uint32_t copy_size, dst_addr;
2370		int extended_addr = FALSE;
2371
2372		copy_size = MIN(chunk_sz, section->len - offset);
2373		dst_addr = section->offset + offset;
2374
2375		if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2376		    dst_addr <= IWM_FW_MEM_EXTENDED_END)
2377			extended_addr = TRUE;
2378
2379		if (extended_addr)
2380			iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2381					  IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2382
2383		memcpy(v_addr, (const uint8_t *)section->data + offset,
2384		    copy_size);
2385		bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2386		ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr,
2387						   copy_size);
2388
2389		if (extended_addr)
2390			iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2391					    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2392
2393		if (ret) {
2394			device_printf(sc->sc_dev,
2395			    "%s: Could not load the [%d] uCode section\n",
2396			    __func__, section_num);
2397			break;
2398		}
2399	}
2400
2401	return ret;
2402}
2403
2404/*
2405 * ucode
2406 */
2407static int
2408iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2409			     bus_addr_t phy_addr, uint32_t byte_cnt)
2410{
2411	int ret;
2412
2413	sc->sc_fw_chunk_done = 0;
2414
2415	if (!iwm_nic_lock(sc))
2416		return EBUSY;
2417
2418	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2419	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2420
2421	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2422	    dst_addr);
2423
2424	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2425	    phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2426
2427	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2428	    (iwm_get_dma_hi_addr(phy_addr)
2429	     << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2430
2431	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2432	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2433	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2434	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2435
2436	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2437	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2438	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2439	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2440
2441	iwm_nic_unlock(sc);
2442
2443	/* wait up to 5s for this segment to load */
2444	ret = 0;
2445	while (!sc->sc_fw_chunk_done) {
2446		ret = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz);
2447		if (ret)
2448			break;
2449	}
2450
2451	if (ret != 0) {
2452		device_printf(sc->sc_dev,
2453		    "fw chunk addr 0x%x len %d failed to load\n",
2454		    dst_addr, byte_cnt);
2455		return ETIMEDOUT;
2456	}
2457
2458	return 0;
2459}
2460
2461static int
2462iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
2463	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2464{
2465	int shift_param;
2466	int i, ret = 0, sec_num = 0x1;
2467	uint32_t val, last_read_idx = 0;
2468
2469	if (cpu == 1) {
2470		shift_param = 0;
2471		*first_ucode_section = 0;
2472	} else {
2473		shift_param = 16;
2474		(*first_ucode_section)++;
2475	}
2476
2477	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2478		last_read_idx = i;
2479
2480		/*
2481		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2482		 * CPU1 to CPU2.
2483		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2484		 * CPU2 non paged to CPU2 paging sec.
2485		 */
2486		if (!image->fw_sect[i].data ||
2487		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2488		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2489			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2490				    "Break since Data not valid or Empty section, sec = %d\n",
2491				    i);
2492			break;
2493		}
2494		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2495		if (ret)
2496			return ret;
2497
2498		/* Notify the ucode of the loaded section number and status */
2499		if (iwm_nic_lock(sc)) {
2500			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2501			val = val | (sec_num << shift_param);
2502			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2503			sec_num = (sec_num << 1) | 0x1;
2504			iwm_nic_unlock(sc);
2505		}
2506	}
2507
2508	*first_ucode_section = last_read_idx;
2509
2510	iwm_enable_interrupts(sc);
2511
2512	if (iwm_nic_lock(sc)) {
2513		if (cpu == 1)
2514			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2515		else
2516			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2517		iwm_nic_unlock(sc);
2518	}
2519
2520	return 0;
2521}
2522
2523static int
2524iwm_pcie_load_cpu_sections(struct iwm_softc *sc,
2525	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2526{
2527	int shift_param;
2528	int i, ret = 0;
2529	uint32_t last_read_idx = 0;
2530
2531	if (cpu == 1) {
2532		shift_param = 0;
2533		*first_ucode_section = 0;
2534	} else {
2535		shift_param = 16;
2536		(*first_ucode_section)++;
2537	}
2538
2539	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2540		last_read_idx = i;
2541
2542		/*
2543		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2544		 * CPU1 to CPU2.
2545		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2546		 * CPU2 non paged to CPU2 paging sec.
2547		 */
2548		if (!image->fw_sect[i].data ||
2549		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2550		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2551			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2552				    "Break since Data not valid or Empty section, sec = %d\n",
2553				     i);
2554			break;
2555		}
2556
2557		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2558		if (ret)
2559			return ret;
2560	}
2561
2562	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2563		iwm_set_bits_prph(sc,
2564				  IWM_CSR_UCODE_LOAD_STATUS_ADDR,
2565				  (IWM_LMPM_CPU_UCODE_LOADING_COMPLETED |
2566				   IWM_LMPM_CPU_HDRS_LOADING_COMPLETED |
2567				   IWM_LMPM_CPU_UCODE_LOADING_STARTED) <<
2568					shift_param);
2569
2570	*first_ucode_section = last_read_idx;
2571
2572	return 0;
2573
2574}
2575
2576static int
2577iwm_pcie_load_given_ucode(struct iwm_softc *sc,
2578	const struct iwm_fw_sects *image)
2579{
2580	int ret = 0;
2581	int first_ucode_section;
2582
2583	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2584		     image->is_dual_cpus ? "Dual" : "Single");
2585
2586	/* load to FW the binary non secured sections of CPU1 */
2587	ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section);
2588	if (ret)
2589		return ret;
2590
2591	if (image->is_dual_cpus) {
2592		/* set CPU2 header address */
2593                iwm_write_prph(sc,
2594			       IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
2595			       IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
2596
2597		/* load to FW the binary sections of CPU2 */
2598		ret = iwm_pcie_load_cpu_sections(sc, image, 2,
2599						 &first_ucode_section);
2600		if (ret)
2601			return ret;
2602	}
2603
2604	iwm_enable_interrupts(sc);
2605
2606	/* release CPU reset */
2607	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2608
2609	return 0;
2610}
2611
2612int
2613iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc,
2614	const struct iwm_fw_sects *image)
2615{
2616	int ret = 0;
2617	int first_ucode_section;
2618
2619	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2620		    image->is_dual_cpus ? "Dual" : "Single");
2621
2622	/* configure the ucode to be ready to get the secured image */
2623	/* release CPU reset */
2624	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2625
2626	/* load to FW the binary Secured sections of CPU1 */
2627	ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1,
2628	    &first_ucode_section);
2629	if (ret)
2630		return ret;
2631
2632	/* load to FW the binary sections of CPU2 */
2633	return iwm_pcie_load_cpu_sections_8000(sc, image, 2,
2634	    &first_ucode_section);
2635}
2636
2637/* XXX Get rid of this definition */
2638static inline void
2639iwm_enable_fw_load_int(struct iwm_softc *sc)
2640{
2641	IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n");
2642	sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
2643	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
2644}
2645
2646/* XXX Add proper rfkill support code */
2647static int
2648iwm_start_fw(struct iwm_softc *sc,
2649	const struct iwm_fw_sects *fw)
2650{
2651	int ret;
2652
2653	/* This may fail if AMT took ownership of the device */
2654	if (iwm_prepare_card_hw(sc)) {
2655		device_printf(sc->sc_dev,
2656		    "%s: Exit HW not ready\n", __func__);
2657		ret = EIO;
2658		goto out;
2659	}
2660
2661	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2662
2663	iwm_disable_interrupts(sc);
2664
2665	/* make sure rfkill handshake bits are cleared */
2666	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2667	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2668	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2669
2670	/* clear (again), then enable host interrupts */
2671	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2672
2673	ret = iwm_nic_init(sc);
2674	if (ret) {
2675		device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__);
2676		goto out;
2677	}
2678
2679	/*
2680	 * Now, we load the firmware and don't want to be interrupted, even
2681	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
2682	 * FH_TX interrupt which is needed to load the firmware). If the
2683	 * RF-Kill switch is toggled, we will find out after having loaded
2684	 * the firmware and return the proper value to the caller.
2685	 */
2686	iwm_enable_fw_load_int(sc);
2687
2688	/* really make sure rfkill handshake bits are cleared */
2689	/* maybe we should write a few times more?  just to make sure */
2690	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2691	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2692
2693	/* Load the given image to the HW */
2694	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2695		ret = iwm_pcie_load_given_ucode_8000(sc, fw);
2696	else
2697		ret = iwm_pcie_load_given_ucode(sc, fw);
2698
2699	/* XXX re-check RF-Kill state */
2700
2701out:
2702	return ret;
2703}
2704
2705static int
2706iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2707{
2708	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2709		.valid = htole32(valid_tx_ant),
2710	};
2711
2712	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2713	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2714}
2715
2716/* iwlwifi: mvm/fw.c */
2717static int
2718iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2719{
2720	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2721	enum iwm_ucode_type ucode_type = sc->cur_ucode;
2722
2723	/* Set parameters */
2724	phy_cfg_cmd.phy_cfg = htole32(iwm_mvm_get_phy_config(sc));
2725	phy_cfg_cmd.calib_control.event_trigger =
2726	    sc->sc_default_calib[ucode_type].event_trigger;
2727	phy_cfg_cmd.calib_control.flow_trigger =
2728	    sc->sc_default_calib[ucode_type].flow_trigger;
2729
2730	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2731	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2732	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2733	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2734}
2735
2736static int
2737iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data)
2738{
2739	struct iwm_mvm_alive_data *alive_data = data;
2740	struct iwm_mvm_alive_resp_ver1 *palive1;
2741	struct iwm_mvm_alive_resp_ver2 *palive2;
2742	struct iwm_mvm_alive_resp *palive;
2743
2744	if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive1)) {
2745		palive1 = (void *)pkt->data;
2746
2747		sc->support_umac_log = FALSE;
2748                sc->error_event_table =
2749                        le32toh(palive1->error_event_table_ptr);
2750                sc->log_event_table =
2751                        le32toh(palive1->log_event_table_ptr);
2752                alive_data->scd_base_addr = le32toh(palive1->scd_base_ptr);
2753
2754                alive_data->valid = le16toh(palive1->status) ==
2755                                    IWM_ALIVE_STATUS_OK;
2756                IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2757			    "Alive VER1 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2758			     le16toh(palive1->status), palive1->ver_type,
2759                             palive1->ver_subtype, palive1->flags);
2760	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive2)) {
2761		palive2 = (void *)pkt->data;
2762		sc->error_event_table =
2763			le32toh(palive2->error_event_table_ptr);
2764		sc->log_event_table =
2765			le32toh(palive2->log_event_table_ptr);
2766		alive_data->scd_base_addr = le32toh(palive2->scd_base_ptr);
2767		sc->umac_error_event_table =
2768                        le32toh(palive2->error_info_addr);
2769
2770		alive_data->valid = le16toh(palive2->status) ==
2771				    IWM_ALIVE_STATUS_OK;
2772		if (sc->umac_error_event_table)
2773			sc->support_umac_log = TRUE;
2774
2775		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2776			    "Alive VER2 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2777			    le16toh(palive2->status), palive2->ver_type,
2778			    palive2->ver_subtype, palive2->flags);
2779
2780		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2781			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2782			    palive2->umac_major, palive2->umac_minor);
2783	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) {
2784		palive = (void *)pkt->data;
2785
2786		sc->error_event_table =
2787			le32toh(palive->error_event_table_ptr);
2788		sc->log_event_table =
2789			le32toh(palive->log_event_table_ptr);
2790		alive_data->scd_base_addr = le32toh(palive->scd_base_ptr);
2791		sc->umac_error_event_table =
2792			le32toh(palive->error_info_addr);
2793
2794		alive_data->valid = le16toh(palive->status) ==
2795				    IWM_ALIVE_STATUS_OK;
2796		if (sc->umac_error_event_table)
2797			sc->support_umac_log = TRUE;
2798
2799		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2800			    "Alive VER3 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2801			    le16toh(palive->status), palive->ver_type,
2802			    palive->ver_subtype, palive->flags);
2803
2804		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2805			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2806			    le32toh(palive->umac_major),
2807			    le32toh(palive->umac_minor));
2808	}
2809
2810	return TRUE;
2811}
2812
2813static int
2814iwm_wait_phy_db_entry(struct iwm_softc *sc,
2815	struct iwm_rx_packet *pkt, void *data)
2816{
2817	struct iwm_phy_db *phy_db = data;
2818
2819	if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) {
2820		if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) {
2821			device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n",
2822			    __func__, pkt->hdr.code);
2823		}
2824		return TRUE;
2825	}
2826
2827	if (iwm_phy_db_set_section(phy_db, pkt)) {
2828		device_printf(sc->sc_dev,
2829		    "%s: iwm_phy_db_set_section failed\n", __func__);
2830	}
2831
2832	return FALSE;
2833}
2834
2835static int
2836iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2837	enum iwm_ucode_type ucode_type)
2838{
2839	struct iwm_notification_wait alive_wait;
2840	struct iwm_mvm_alive_data alive_data;
2841	const struct iwm_fw_sects *fw;
2842	enum iwm_ucode_type old_type = sc->cur_ucode;
2843	int error;
2844	static const uint16_t alive_cmd[] = { IWM_MVM_ALIVE };
2845
2846	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2847		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2848			error);
2849		return error;
2850	}
2851	fw = &sc->sc_fw.fw_sects[ucode_type];
2852	sc->cur_ucode = ucode_type;
2853	sc->ucode_loaded = FALSE;
2854
2855	memset(&alive_data, 0, sizeof(alive_data));
2856	iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait,
2857				   alive_cmd, nitems(alive_cmd),
2858				   iwm_alive_fn, &alive_data);
2859
2860	error = iwm_start_fw(sc, fw);
2861	if (error) {
2862		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2863		sc->cur_ucode = old_type;
2864		iwm_remove_notification(sc->sc_notif_wait, &alive_wait);
2865		return error;
2866	}
2867
2868	/*
2869	 * Some things may run in the background now, but we
2870	 * just wait for the ALIVE notification here.
2871	 */
2872	IWM_UNLOCK(sc);
2873	error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait,
2874				      IWM_MVM_UCODE_ALIVE_TIMEOUT);
2875	IWM_LOCK(sc);
2876	if (error) {
2877		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2878			device_printf(sc->sc_dev,
2879			    "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n",
2880			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS),
2881			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2882		}
2883		sc->cur_ucode = old_type;
2884		return error;
2885	}
2886
2887	if (!alive_data.valid) {
2888		device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n",
2889		    __func__);
2890		sc->cur_ucode = old_type;
2891		return EIO;
2892	}
2893
2894	iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr);
2895
2896	/*
2897	 * configure and operate fw paging mechanism.
2898	 * driver configures the paging flow only once, CPU2 paging image
2899	 * included in the IWM_UCODE_INIT image.
2900	 */
2901	if (fw->paging_mem_size) {
2902		error = iwm_save_fw_paging(sc, fw);
2903		if (error) {
2904			device_printf(sc->sc_dev,
2905			    "%s: failed to save the FW paging image\n",
2906			    __func__);
2907			return error;
2908		}
2909
2910		error = iwm_send_paging_cmd(sc, fw);
2911		if (error) {
2912			device_printf(sc->sc_dev,
2913			    "%s: failed to send the paging cmd\n", __func__);
2914			iwm_free_fw_paging(sc);
2915			return error;
2916		}
2917	}
2918
2919	if (!error)
2920		sc->ucode_loaded = TRUE;
2921	return error;
2922}
2923
2924/*
2925 * mvm misc bits
2926 */
2927
2928/*
2929 * follows iwlwifi/fw.c
2930 */
2931static int
2932iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2933{
2934	struct iwm_notification_wait calib_wait;
2935	static const uint16_t init_complete[] = {
2936		IWM_INIT_COMPLETE_NOTIF,
2937		IWM_CALIB_RES_NOTIF_PHY_DB
2938	};
2939	int ret;
2940
2941	/* do not operate with rfkill switch turned on */
2942	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2943		device_printf(sc->sc_dev,
2944		    "radio is disabled by hardware switch\n");
2945		return EPERM;
2946	}
2947
2948	iwm_init_notification_wait(sc->sc_notif_wait,
2949				   &calib_wait,
2950				   init_complete,
2951				   nitems(init_complete),
2952				   iwm_wait_phy_db_entry,
2953				   sc->sc_phy_db);
2954
2955	/* Will also start the device */
2956	ret = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_INIT);
2957	if (ret) {
2958		device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n",
2959		    ret);
2960		goto error;
2961	}
2962
2963	if (justnvm) {
2964		/* Read nvm */
2965		ret = iwm_nvm_init(sc);
2966		if (ret) {
2967			device_printf(sc->sc_dev, "failed to read nvm\n");
2968			goto error;
2969		}
2970		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr);
2971		goto error;
2972	}
2973
2974	ret = iwm_send_bt_init_conf(sc);
2975	if (ret) {
2976		device_printf(sc->sc_dev,
2977		    "failed to send bt coex configuration: %d\n", ret);
2978		goto error;
2979	}
2980
2981	/* Init Smart FIFO. */
2982	ret = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2983	if (ret)
2984		goto error;
2985
2986	/* Send TX valid antennas before triggering calibrations */
2987	ret = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
2988	if (ret) {
2989		device_printf(sc->sc_dev,
2990		    "failed to send antennas before calibration: %d\n", ret);
2991		goto error;
2992	}
2993
2994	/*
2995	 * Send phy configurations command to init uCode
2996	 * to start the 16.0 uCode init image internal calibrations.
2997	 */
2998	ret = iwm_send_phy_cfg_cmd(sc);
2999	if (ret) {
3000		device_printf(sc->sc_dev,
3001		    "%s: Failed to run INIT calibrations: %d\n",
3002		    __func__, ret);
3003		goto error;
3004	}
3005
3006	/*
3007	 * Nothing to do but wait for the init complete notification
3008	 * from the firmware.
3009	 */
3010	IWM_UNLOCK(sc);
3011	ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait,
3012	    IWM_MVM_UCODE_CALIB_TIMEOUT);
3013	IWM_LOCK(sc);
3014
3015
3016	goto out;
3017
3018error:
3019	iwm_remove_notification(sc->sc_notif_wait, &calib_wait);
3020out:
3021	return ret;
3022}
3023
3024/*
3025 * receive side
3026 */
3027
3028/* (re)stock rx ring, called at init-time and at runtime */
3029static int
3030iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
3031{
3032	struct iwm_rx_ring *ring = &sc->rxq;
3033	struct iwm_rx_data *data = &ring->data[idx];
3034	struct mbuf *m;
3035	bus_dmamap_t dmamap;
3036	bus_dma_segment_t seg;
3037	int nsegs, error;
3038
3039	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
3040	if (m == NULL)
3041		return ENOBUFS;
3042
3043	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3044	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
3045	    &seg, &nsegs, BUS_DMA_NOWAIT);
3046	if (error != 0) {
3047		device_printf(sc->sc_dev,
3048		    "%s: can't map mbuf, error %d\n", __func__, error);
3049		m_freem(m);
3050		return error;
3051	}
3052
3053	if (data->m != NULL)
3054		bus_dmamap_unload(ring->data_dmat, data->map);
3055
3056	/* Swap ring->spare_map with data->map */
3057	dmamap = data->map;
3058	data->map = ring->spare_map;
3059	ring->spare_map = dmamap;
3060
3061	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
3062	data->m = m;
3063
3064	/* Update RX descriptor. */
3065	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
3066	ring->desc[idx] = htole32(seg.ds_addr >> 8);
3067	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3068	    BUS_DMASYNC_PREWRITE);
3069
3070	return 0;
3071}
3072
3073/* iwlwifi: mvm/rx.c */
3074/*
3075 * iwm_mvm_get_signal_strength - use new rx PHY INFO API
3076 * values are reported by the fw as positive values - need to negate
3077 * to obtain their dBM.  Account for missing antennas by replacing 0
3078 * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
3079 */
3080static int
3081iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
3082{
3083	int energy_a, energy_b, energy_c, max_energy;
3084	uint32_t val;
3085
3086	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
3087	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
3088	    IWM_RX_INFO_ENERGY_ANT_A_POS;
3089	energy_a = energy_a ? -energy_a : -256;
3090	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
3091	    IWM_RX_INFO_ENERGY_ANT_B_POS;
3092	energy_b = energy_b ? -energy_b : -256;
3093	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
3094	    IWM_RX_INFO_ENERGY_ANT_C_POS;
3095	energy_c = energy_c ? -energy_c : -256;
3096	max_energy = MAX(energy_a, energy_b);
3097	max_energy = MAX(max_energy, energy_c);
3098
3099	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3100	    "energy In A %d B %d C %d , and max %d\n",
3101	    energy_a, energy_b, energy_c, max_energy);
3102
3103	return max_energy;
3104}
3105
3106static void
3107iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
3108	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3109{
3110	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
3111
3112	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
3113	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3114
3115	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
3116}
3117
3118/*
3119 * Retrieve the average noise (in dBm) among receivers.
3120 */
3121static int
3122iwm_get_noise(struct iwm_softc *sc,
3123    const struct iwm_mvm_statistics_rx_non_phy *stats)
3124{
3125	int i, total, nbant, noise;
3126
3127	total = nbant = noise = 0;
3128	for (i = 0; i < 3; i++) {
3129		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
3130		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
3131		    __func__,
3132		    i,
3133		    noise);
3134
3135		if (noise) {
3136			total += noise;
3137			nbant++;
3138		}
3139	}
3140
3141	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
3142	    __func__, nbant, total);
3143#if 0
3144	/* There should be at least one antenna but check anyway. */
3145	return (nbant == 0) ? -127 : (total / nbant) - 107;
3146#else
3147	/* For now, just hard-code it to -96 to be safe */
3148	return (-96);
3149#endif
3150}
3151
3152/*
3153 * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
3154 *
3155 * Handles the actual data of the Rx packet from the fw
3156 */
3157static void
3158iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m)
3159{
3160	struct ieee80211com *ic = &sc->sc_ic;
3161	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3162	struct ieee80211_frame *wh;
3163	struct ieee80211_node *ni;
3164	struct ieee80211_rx_stats rxs;
3165	struct iwm_rx_phy_info *phy_info;
3166	struct iwm_rx_mpdu_res_start *rx_res;
3167	struct iwm_rx_packet *pkt = mtod(m, struct iwm_rx_packet *);
3168	uint32_t len;
3169	uint32_t rx_pkt_status;
3170	int rssi;
3171
3172	phy_info = &sc->sc_last_phy_info;
3173	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
3174	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
3175	len = le16toh(rx_res->byte_count);
3176	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
3177
3178	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
3179		device_printf(sc->sc_dev,
3180		    "dsp size out of range [0,20]: %d\n",
3181		    phy_info->cfg_phy_cnt);
3182		goto fail;
3183	}
3184
3185	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
3186	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
3187		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3188		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
3189		goto fail;
3190	}
3191
3192	rssi = iwm_mvm_get_signal_strength(sc, phy_info);
3193
3194	/* Map it to relative value */
3195	rssi = rssi - sc->sc_noise;
3196
3197	/* replenish ring for the buffer we're going to feed to the sharks */
3198	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
3199		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
3200		    __func__);
3201		goto fail;
3202	}
3203
3204	m->m_data = pkt->data + sizeof(*rx_res);
3205	m->m_pkthdr.len = m->m_len = len;
3206
3207	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3208	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
3209
3210	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3211
3212	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3213	    "%s: phy_info: channel=%d, flags=0x%08x\n",
3214	    __func__,
3215	    le16toh(phy_info->channel),
3216	    le16toh(phy_info->phy_flags));
3217
3218	/*
3219	 * Populate an RX state struct with the provided information.
3220	 */
3221	bzero(&rxs, sizeof(rxs));
3222	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
3223	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
3224	rxs.c_ieee = le16toh(phy_info->channel);
3225	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
3226		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
3227	} else {
3228		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
3229	}
3230
3231	/* rssi is in 1/2db units */
3232	rxs.rssi = rssi * 2;
3233	rxs.nf = sc->sc_noise;
3234
3235	if (ieee80211_radiotap_active_vap(vap)) {
3236		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
3237
3238		tap->wr_flags = 0;
3239		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
3240			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3241		tap->wr_chan_freq = htole16(rxs.c_freq);
3242		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
3243		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
3244		tap->wr_dbm_antsignal = (int8_t)rssi;
3245		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
3246		tap->wr_tsft = phy_info->system_timestamp;
3247		switch (phy_info->rate) {
3248		/* CCK rates. */
3249		case  10: tap->wr_rate =   2; break;
3250		case  20: tap->wr_rate =   4; break;
3251		case  55: tap->wr_rate =  11; break;
3252		case 110: tap->wr_rate =  22; break;
3253		/* OFDM rates. */
3254		case 0xd: tap->wr_rate =  12; break;
3255		case 0xf: tap->wr_rate =  18; break;
3256		case 0x5: tap->wr_rate =  24; break;
3257		case 0x7: tap->wr_rate =  36; break;
3258		case 0x9: tap->wr_rate =  48; break;
3259		case 0xb: tap->wr_rate =  72; break;
3260		case 0x1: tap->wr_rate =  96; break;
3261		case 0x3: tap->wr_rate = 108; break;
3262		/* Unknown rate: should not happen. */
3263		default:  tap->wr_rate =   0;
3264		}
3265	}
3266
3267	IWM_UNLOCK(sc);
3268	if (ni != NULL) {
3269		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3270		ieee80211_input_mimo(ni, m, &rxs);
3271		ieee80211_free_node(ni);
3272	} else {
3273		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3274		ieee80211_input_mimo_all(ic, m, &rxs);
3275	}
3276	IWM_LOCK(sc);
3277
3278	return;
3279
3280fail:	counter_u64_add(ic->ic_ierrors, 1);
3281}
3282
3283static int
3284iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3285	struct iwm_node *in)
3286{
3287	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3288	struct ieee80211_node *ni = &in->in_ni;
3289	struct ieee80211vap *vap = ni->ni_vap;
3290	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3291	int failack = tx_resp->failure_frame;
3292
3293	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3294
3295	/* Update rate control statistics. */
3296	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3297	    __func__,
3298	    (int) le16toh(tx_resp->status.status),
3299	    (int) le16toh(tx_resp->status.sequence),
3300	    tx_resp->frame_count,
3301	    tx_resp->bt_kill_count,
3302	    tx_resp->failure_rts,
3303	    tx_resp->failure_frame,
3304	    le32toh(tx_resp->initial_rate),
3305	    (int) le16toh(tx_resp->wireless_media_time));
3306
3307	if (status != IWM_TX_STATUS_SUCCESS &&
3308	    status != IWM_TX_STATUS_DIRECT_DONE) {
3309		ieee80211_ratectl_tx_complete(vap, ni,
3310		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
3311		return (1);
3312	} else {
3313		ieee80211_ratectl_tx_complete(vap, ni,
3314		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
3315		return (0);
3316	}
3317}
3318
3319static void
3320iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3321	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3322{
3323	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3324	int idx = cmd_hdr->idx;
3325	int qid = cmd_hdr->qid;
3326	struct iwm_tx_ring *ring = &sc->txq[qid];
3327	struct iwm_tx_data *txd = &ring->data[idx];
3328	struct iwm_node *in = txd->in;
3329	struct mbuf *m = txd->m;
3330	int status;
3331
3332	KASSERT(txd->done == 0, ("txd not done"));
3333	KASSERT(txd->in != NULL, ("txd without node"));
3334	KASSERT(txd->m != NULL, ("txd without mbuf"));
3335
3336	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3337
3338	sc->sc_tx_timer = 0;
3339
3340	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3341
3342	/* Unmap and free mbuf. */
3343	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3344	bus_dmamap_unload(ring->data_dmat, txd->map);
3345
3346	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3347	    "free txd %p, in %p\n", txd, txd->in);
3348	txd->done = 1;
3349	txd->m = NULL;
3350	txd->in = NULL;
3351
3352	ieee80211_tx_complete(&in->in_ni, m, status);
3353
3354	if (--ring->queued < IWM_TX_RING_LOMARK) {
3355		sc->qfullmsk &= ~(1 << ring->qid);
3356		if (sc->qfullmsk == 0) {
3357			iwm_start(sc);
3358		}
3359	}
3360}
3361
3362/*
3363 * transmit side
3364 */
3365
3366/*
3367 * Process a "command done" firmware notification.  This is where we wakeup
3368 * processes waiting for a synchronous command completion.
3369 * from if_iwn
3370 */
3371static void
3372iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3373{
3374	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3375	struct iwm_tx_data *data;
3376
3377	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3378		return;	/* Not a command ack. */
3379	}
3380
3381	/* XXX wide commands? */
3382	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3383	    "cmd notification type 0x%x qid %d idx %d\n",
3384	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3385
3386	data = &ring->data[pkt->hdr.idx];
3387
3388	/* If the command was mapped in an mbuf, free it. */
3389	if (data->m != NULL) {
3390		bus_dmamap_sync(ring->data_dmat, data->map,
3391		    BUS_DMASYNC_POSTWRITE);
3392		bus_dmamap_unload(ring->data_dmat, data->map);
3393		m_freem(data->m);
3394		data->m = NULL;
3395	}
3396	wakeup(&ring->desc[pkt->hdr.idx]);
3397
3398	if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
3399		device_printf(sc->sc_dev,
3400		    "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
3401		    __func__, pkt->hdr.idx, ring->queued, ring->cur);
3402		/* XXX call iwm_force_nmi() */
3403	}
3404
3405	KASSERT(ring->queued > 0, ("ring->queued is empty?"));
3406	ring->queued--;
3407	if (ring->queued == 0)
3408		iwm_pcie_clear_cmd_in_flight(sc);
3409}
3410
3411#if 0
3412/*
3413 * necessary only for block ack mode
3414 */
3415void
3416iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3417	uint16_t len)
3418{
3419	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3420	uint16_t w_val;
3421
3422	scd_bc_tbl = sc->sched_dma.vaddr;
3423
3424	len += 8; /* magic numbers came naturally from paris */
3425	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3426		len = roundup(len, 4) / 4;
3427
3428	w_val = htole16(sta_id << 12 | len);
3429
3430	/* Update TX scheduler. */
3431	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3432	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3433	    BUS_DMASYNC_PREWRITE);
3434
3435	/* I really wonder what this is ?!? */
3436	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3437		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3438		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3439		    BUS_DMASYNC_PREWRITE);
3440	}
3441}
3442#endif
3443
3444/*
3445 * Take an 802.11 (non-n) rate, find the relevant rate
3446 * table entry.  return the index into in_ridx[].
3447 *
3448 * The caller then uses that index back into in_ridx
3449 * to figure out the rate index programmed /into/
3450 * the firmware for this given node.
3451 */
3452static int
3453iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3454    uint8_t rate)
3455{
3456	int i;
3457	uint8_t r;
3458
3459	for (i = 0; i < nitems(in->in_ridx); i++) {
3460		r = iwm_rates[in->in_ridx[i]].rate;
3461		if (rate == r)
3462			return (i);
3463	}
3464
3465	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3466	    "%s: couldn't find an entry for rate=%d\n",
3467	    __func__,
3468	    rate);
3469
3470	/* XXX Return the first */
3471	/* XXX TODO: have it return the /lowest/ */
3472	return (0);
3473}
3474
3475static int
3476iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3477{
3478	int i;
3479
3480	for (i = 0; i < nitems(iwm_rates); i++) {
3481		if (iwm_rates[i].rate == rate)
3482			return (i);
3483	}
3484	/* XXX error? */
3485	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3486	    "%s: couldn't find an entry for rate=%d\n",
3487	    __func__,
3488	    rate);
3489	return (0);
3490}
3491
3492/*
3493 * Fill in the rate related information for a transmit command.
3494 */
3495static const struct iwm_rate *
3496iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3497	struct mbuf *m, struct iwm_tx_cmd *tx)
3498{
3499	struct ieee80211_node *ni = &in->in_ni;
3500	struct ieee80211_frame *wh;
3501	const struct ieee80211_txparam *tp = ni->ni_txparms;
3502	const struct iwm_rate *rinfo;
3503	int type;
3504	int ridx, rate_flags;
3505
3506	wh = mtod(m, struct ieee80211_frame *);
3507	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3508
3509	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3510	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3511
3512	if (type == IEEE80211_FC0_TYPE_MGT) {
3513		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3514		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3515		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3516	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3517		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3518		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3519		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3520	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3521		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3522		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3523		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3524	} else if (m->m_flags & M_EAPOL) {
3525		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3526		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3527		    "%s: EAPOL\n", __func__);
3528	} else if (type == IEEE80211_FC0_TYPE_DATA) {
3529		int i;
3530
3531		/* for data frames, use RS table */
3532		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3533		/* XXX pass pktlen */
3534		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3535		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3536		ridx = in->in_ridx[i];
3537
3538		/* This is the index into the programmed table */
3539		tx->initial_rate_index = i;
3540		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3541
3542		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3543		    "%s: start with i=%d, txrate %d\n",
3544		    __func__, i, iwm_rates[ridx].rate);
3545	} else {
3546		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3547		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3548		    __func__, tp->mgmtrate);
3549	}
3550
3551	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3552	    "%s: frame type=%d txrate %d\n",
3553	        __func__, type, iwm_rates[ridx].rate);
3554
3555	rinfo = &iwm_rates[ridx];
3556
3557	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3558	    __func__, ridx,
3559	    rinfo->rate,
3560	    !! (IWM_RIDX_IS_CCK(ridx))
3561	    );
3562
3563	/* XXX TODO: hard-coded TX antenna? */
3564	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3565	if (IWM_RIDX_IS_CCK(ridx))
3566		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3567	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3568
3569	return rinfo;
3570}
3571
3572#define TB0_SIZE 16
3573static int
3574iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3575{
3576	struct ieee80211com *ic = &sc->sc_ic;
3577	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3578	struct iwm_node *in = IWM_NODE(ni);
3579	struct iwm_tx_ring *ring;
3580	struct iwm_tx_data *data;
3581	struct iwm_tfd *desc;
3582	struct iwm_device_cmd *cmd;
3583	struct iwm_tx_cmd *tx;
3584	struct ieee80211_frame *wh;
3585	struct ieee80211_key *k = NULL;
3586	struct mbuf *m1;
3587	const struct iwm_rate *rinfo;
3588	uint32_t flags;
3589	u_int hdrlen;
3590	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3591	int nsegs;
3592	uint8_t tid, type;
3593	int i, totlen, error, pad;
3594
3595	wh = mtod(m, struct ieee80211_frame *);
3596	hdrlen = ieee80211_anyhdrsize(wh);
3597	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3598	tid = 0;
3599	ring = &sc->txq[ac];
3600	desc = &ring->desc[ring->cur];
3601	memset(desc, 0, sizeof(*desc));
3602	data = &ring->data[ring->cur];
3603
3604	/* Fill out iwm_tx_cmd to send to the firmware */
3605	cmd = &ring->cmd[ring->cur];
3606	cmd->hdr.code = IWM_TX_CMD;
3607	cmd->hdr.flags = 0;
3608	cmd->hdr.qid = ring->qid;
3609	cmd->hdr.idx = ring->cur;
3610
3611	tx = (void *)cmd->data;
3612	memset(tx, 0, sizeof(*tx));
3613
3614	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3615
3616	/* Encrypt the frame if need be. */
3617	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3618		/* Retrieve key for TX && do software encryption. */
3619		k = ieee80211_crypto_encap(ni, m);
3620		if (k == NULL) {
3621			m_freem(m);
3622			return (ENOBUFS);
3623		}
3624		/* 802.11 header may have moved. */
3625		wh = mtod(m, struct ieee80211_frame *);
3626	}
3627
3628	if (ieee80211_radiotap_active_vap(vap)) {
3629		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3630
3631		tap->wt_flags = 0;
3632		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3633		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3634		tap->wt_rate = rinfo->rate;
3635		if (k != NULL)
3636			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3637		ieee80211_radiotap_tx(vap, m);
3638	}
3639
3640
3641	totlen = m->m_pkthdr.len;
3642
3643	flags = 0;
3644	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3645		flags |= IWM_TX_CMD_FLG_ACK;
3646	}
3647
3648	if (type == IEEE80211_FC0_TYPE_DATA
3649	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3650	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3651		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3652	}
3653
3654	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3655	    type != IEEE80211_FC0_TYPE_DATA)
3656		tx->sta_id = sc->sc_aux_sta.sta_id;
3657	else
3658		tx->sta_id = IWM_STATION_ID;
3659
3660	if (type == IEEE80211_FC0_TYPE_MGT) {
3661		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3662
3663		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3664		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3665			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3666		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3667			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3668		} else {
3669			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3670		}
3671	} else {
3672		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3673	}
3674
3675	if (hdrlen & 3) {
3676		/* First segment length must be a multiple of 4. */
3677		flags |= IWM_TX_CMD_FLG_MH_PAD;
3678		pad = 4 - (hdrlen & 3);
3679	} else
3680		pad = 0;
3681
3682	tx->driver_txop = 0;
3683	tx->next_frame_len = 0;
3684
3685	tx->len = htole16(totlen);
3686	tx->tid_tspec = tid;
3687	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3688
3689	/* Set physical address of "scratch area". */
3690	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3691	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3692
3693	/* Copy 802.11 header in TX command. */
3694	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3695
3696	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3697
3698	tx->sec_ctl = 0;
3699	tx->tx_flags |= htole32(flags);
3700
3701	/* Trim 802.11 header. */
3702	m_adj(m, hdrlen);
3703	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3704	    segs, &nsegs, BUS_DMA_NOWAIT);
3705	if (error != 0) {
3706		if (error != EFBIG) {
3707			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3708			    error);
3709			m_freem(m);
3710			return error;
3711		}
3712		/* Too many DMA segments, linearize mbuf. */
3713		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3714		if (m1 == NULL) {
3715			device_printf(sc->sc_dev,
3716			    "%s: could not defrag mbuf\n", __func__);
3717			m_freem(m);
3718			return (ENOBUFS);
3719		}
3720		m = m1;
3721
3722		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3723		    segs, &nsegs, BUS_DMA_NOWAIT);
3724		if (error != 0) {
3725			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3726			    error);
3727			m_freem(m);
3728			return error;
3729		}
3730	}
3731	data->m = m;
3732	data->in = in;
3733	data->done = 0;
3734
3735	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3736	    "sending txd %p, in %p\n", data, data->in);
3737	KASSERT(data->in != NULL, ("node is NULL"));
3738
3739	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3740	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3741	    ring->qid, ring->cur, totlen, nsegs,
3742	    le32toh(tx->tx_flags),
3743	    le32toh(tx->rate_n_flags),
3744	    tx->initial_rate_index
3745	    );
3746
3747	/* Fill TX descriptor. */
3748	desc->num_tbs = 2 + nsegs;
3749
3750	desc->tbs[0].lo = htole32(data->cmd_paddr);
3751	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3752	    (TB0_SIZE << 4);
3753	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3754	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3755	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3756	      + hdrlen + pad - TB0_SIZE) << 4);
3757
3758	/* Other DMA segments are for data payload. */
3759	for (i = 0; i < nsegs; i++) {
3760		seg = &segs[i];
3761		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3762		desc->tbs[i+2].hi_n_len = \
3763		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3764		    | ((seg->ds_len) << 4);
3765	}
3766
3767	bus_dmamap_sync(ring->data_dmat, data->map,
3768	    BUS_DMASYNC_PREWRITE);
3769	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3770	    BUS_DMASYNC_PREWRITE);
3771	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3772	    BUS_DMASYNC_PREWRITE);
3773
3774#if 0
3775	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3776#endif
3777
3778	/* Kick TX ring. */
3779	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3780	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3781
3782	/* Mark TX ring as full if we reach a certain threshold. */
3783	if (++ring->queued > IWM_TX_RING_HIMARK) {
3784		sc->qfullmsk |= 1 << ring->qid;
3785	}
3786
3787	return 0;
3788}
3789
3790static int
3791iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3792    const struct ieee80211_bpf_params *params)
3793{
3794	struct ieee80211com *ic = ni->ni_ic;
3795	struct iwm_softc *sc = ic->ic_softc;
3796	int error = 0;
3797
3798	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3799	    "->%s begin\n", __func__);
3800
3801	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3802		m_freem(m);
3803		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3804		    "<-%s not RUNNING\n", __func__);
3805		return (ENETDOWN);
3806        }
3807
3808	IWM_LOCK(sc);
3809	/* XXX fix this */
3810        if (params == NULL) {
3811		error = iwm_tx(sc, m, ni, 0);
3812	} else {
3813		error = iwm_tx(sc, m, ni, 0);
3814	}
3815	sc->sc_tx_timer = 5;
3816	IWM_UNLOCK(sc);
3817
3818        return (error);
3819}
3820
3821/*
3822 * mvm/tx.c
3823 */
3824
3825/*
3826 * Note that there are transports that buffer frames before they reach
3827 * the firmware. This means that after flush_tx_path is called, the
3828 * queue might not be empty. The race-free way to handle this is to:
3829 * 1) set the station as draining
3830 * 2) flush the Tx path
3831 * 3) wait for the transport queues to be empty
3832 */
3833int
3834iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3835{
3836	int ret;
3837	struct iwm_tx_path_flush_cmd flush_cmd = {
3838		.queues_ctl = htole32(tfd_msk),
3839		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3840	};
3841
3842	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3843	    sizeof(flush_cmd), &flush_cmd);
3844	if (ret)
3845                device_printf(sc->sc_dev,
3846		    "Flushing tx queue failed: %d\n", ret);
3847	return ret;
3848}
3849
3850/*
3851 * BEGIN mvm/sta.c
3852 */
3853
3854static int
3855iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3856	struct iwm_mvm_add_sta_cmd *cmd, int *status)
3857{
3858	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3859	    cmd, status);
3860}
3861
3862/* send station add/update command to firmware */
3863static int
3864iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3865{
3866	struct iwm_mvm_add_sta_cmd add_sta_cmd;
3867	int ret;
3868	uint32_t status;
3869
3870	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3871
3872	add_sta_cmd.sta_id = IWM_STATION_ID;
3873	add_sta_cmd.mac_id_n_color
3874	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3875	        IWM_DEFAULT_COLOR));
3876	if (!update) {
3877		int ac;
3878		for (ac = 0; ac < WME_NUM_AC; ac++) {
3879			add_sta_cmd.tfd_queue_msk |=
3880			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3881		}
3882		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3883	}
3884	add_sta_cmd.add_modify = update ? 1 : 0;
3885	add_sta_cmd.station_flags_msk
3886	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3887	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3888	if (update)
3889		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3890
3891	status = IWM_ADD_STA_SUCCESS;
3892	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3893	if (ret)
3894		return ret;
3895
3896	switch (status) {
3897	case IWM_ADD_STA_SUCCESS:
3898		break;
3899	default:
3900		ret = EIO;
3901		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3902		break;
3903	}
3904
3905	return ret;
3906}
3907
3908static int
3909iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3910{
3911	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3912}
3913
3914static int
3915iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3916{
3917	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3918}
3919
3920static int
3921iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3922	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3923{
3924	struct iwm_mvm_add_sta_cmd cmd;
3925	int ret;
3926	uint32_t status;
3927
3928	memset(&cmd, 0, sizeof(cmd));
3929	cmd.sta_id = sta->sta_id;
3930	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3931
3932	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3933	cmd.tid_disable_tx = htole16(0xffff);
3934
3935	if (addr)
3936		IEEE80211_ADDR_COPY(cmd.addr, addr);
3937
3938	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3939	if (ret)
3940		return ret;
3941
3942	switch (status) {
3943	case IWM_ADD_STA_SUCCESS:
3944		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3945		    "%s: Internal station added.\n", __func__);
3946		return 0;
3947	default:
3948		device_printf(sc->sc_dev,
3949		    "%s: Add internal station failed, status=0x%x\n",
3950		    __func__, status);
3951		ret = EIO;
3952		break;
3953	}
3954	return ret;
3955}
3956
3957static int
3958iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3959{
3960	int ret;
3961
3962	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3963	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3964
3965	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3966	if (ret)
3967		return ret;
3968
3969	ret = iwm_mvm_add_int_sta_common(sc,
3970	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3971
3972	if (ret)
3973		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3974	return ret;
3975}
3976
3977/*
3978 * END mvm/sta.c
3979 */
3980
3981/*
3982 * BEGIN mvm/quota.c
3983 */
3984
3985static int
3986iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3987{
3988	struct iwm_time_quota_cmd cmd;
3989	int i, idx, ret, num_active_macs, quota, quota_rem;
3990	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3991	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3992	uint16_t id;
3993
3994	memset(&cmd, 0, sizeof(cmd));
3995
3996	/* currently, PHY ID == binding ID */
3997	if (in) {
3998		id = in->in_phyctxt->id;
3999		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
4000		colors[id] = in->in_phyctxt->color;
4001
4002		if (1)
4003			n_ifs[id] = 1;
4004	}
4005
4006	/*
4007	 * The FW's scheduling session consists of
4008	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
4009	 * equally between all the bindings that require quota
4010	 */
4011	num_active_macs = 0;
4012	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
4013		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
4014		num_active_macs += n_ifs[i];
4015	}
4016
4017	quota = 0;
4018	quota_rem = 0;
4019	if (num_active_macs) {
4020		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
4021		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
4022	}
4023
4024	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
4025		if (colors[i] < 0)
4026			continue;
4027
4028		cmd.quotas[idx].id_and_color =
4029			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
4030
4031		if (n_ifs[i] <= 0) {
4032			cmd.quotas[idx].quota = htole32(0);
4033			cmd.quotas[idx].max_duration = htole32(0);
4034		} else {
4035			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
4036			cmd.quotas[idx].max_duration = htole32(0);
4037		}
4038		idx++;
4039	}
4040
4041	/* Give the remainder of the session to the first binding */
4042	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
4043
4044	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
4045	    sizeof(cmd), &cmd);
4046	if (ret)
4047		device_printf(sc->sc_dev,
4048		    "%s: Failed to send quota: %d\n", __func__, ret);
4049	return ret;
4050}
4051
4052/*
4053 * END mvm/quota.c
4054 */
4055
4056/*
4057 * ieee80211 routines
4058 */
4059
4060/*
4061 * Change to AUTH state in 80211 state machine.  Roughly matches what
4062 * Linux does in bss_info_changed().
4063 */
4064static int
4065iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
4066{
4067	struct ieee80211_node *ni;
4068	struct iwm_node *in;
4069	struct iwm_vap *iv = IWM_VAP(vap);
4070	uint32_t duration;
4071	int error;
4072
4073	/*
4074	 * XXX i have a feeling that the vap node is being
4075	 * freed from underneath us. Grr.
4076	 */
4077	ni = ieee80211_ref_node(vap->iv_bss);
4078	in = IWM_NODE(ni);
4079	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
4080	    "%s: called; vap=%p, bss ni=%p\n",
4081	    __func__,
4082	    vap,
4083	    ni);
4084
4085	in->in_assoc = 0;
4086
4087	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
4088	if (error != 0)
4089		return error;
4090
4091	error = iwm_allow_mcast(vap, sc);
4092	if (error) {
4093		device_printf(sc->sc_dev,
4094		    "%s: failed to set multicast\n", __func__);
4095		goto out;
4096	}
4097
4098	/*
4099	 * This is where it deviates from what Linux does.
4100	 *
4101	 * Linux iwlwifi doesn't reset the nic each time, nor does it
4102	 * call ctxt_add() here.  Instead, it adds it during vap creation,
4103	 * and always does a mac_ctx_changed().
4104	 *
4105	 * The openbsd port doesn't attempt to do that - it reset things
4106	 * at odd states and does the add here.
4107	 *
4108	 * So, until the state handling is fixed (ie, we never reset
4109	 * the NIC except for a firmware failure, which should drag
4110	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
4111	 * contexts that are required), let's do a dirty hack here.
4112	 */
4113	if (iv->is_uploaded) {
4114		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4115			device_printf(sc->sc_dev,
4116			    "%s: failed to update MAC\n", __func__);
4117			goto out;
4118		}
4119		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4120		    in->in_ni.ni_chan, 1, 1)) != 0) {
4121			device_printf(sc->sc_dev,
4122			    "%s: failed update phy ctxt\n", __func__);
4123			goto out;
4124		}
4125		in->in_phyctxt = &sc->sc_phyctxt[0];
4126
4127		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
4128			device_printf(sc->sc_dev,
4129			    "%s: binding update cmd\n", __func__);
4130			goto out;
4131		}
4132		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4133			device_printf(sc->sc_dev,
4134			    "%s: failed to update sta\n", __func__);
4135			goto out;
4136		}
4137	} else {
4138		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
4139			device_printf(sc->sc_dev,
4140			    "%s: failed to add MAC\n", __func__);
4141			goto out;
4142		}
4143		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4144		    in->in_ni.ni_chan, 1, 1)) != 0) {
4145			device_printf(sc->sc_dev,
4146			    "%s: failed add phy ctxt!\n", __func__);
4147			error = ETIMEDOUT;
4148			goto out;
4149		}
4150		in->in_phyctxt = &sc->sc_phyctxt[0];
4151
4152		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
4153			device_printf(sc->sc_dev,
4154			    "%s: binding add cmd\n", __func__);
4155			goto out;
4156		}
4157		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
4158			device_printf(sc->sc_dev,
4159			    "%s: failed to add sta\n", __func__);
4160			goto out;
4161		}
4162	}
4163
4164	/*
4165	 * Prevent the FW from wandering off channel during association
4166	 * by "protecting" the session with a time event.
4167	 */
4168	/* XXX duration is in units of TU, not MS */
4169	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
4170	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
4171	DELAY(100);
4172
4173	error = 0;
4174out:
4175	ieee80211_free_node(ni);
4176	return (error);
4177}
4178
4179static int
4180iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
4181{
4182	struct iwm_node *in = IWM_NODE(vap->iv_bss);
4183	int error;
4184
4185	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4186		device_printf(sc->sc_dev,
4187		    "%s: failed to update STA\n", __func__);
4188		return error;
4189	}
4190
4191	in->in_assoc = 1;
4192	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4193		device_printf(sc->sc_dev,
4194		    "%s: failed to update MAC\n", __func__);
4195		return error;
4196	}
4197
4198	return 0;
4199}
4200
4201static int
4202iwm_release(struct iwm_softc *sc, struct iwm_node *in)
4203{
4204	uint32_t tfd_msk;
4205
4206	/*
4207	 * Ok, so *technically* the proper set of calls for going
4208	 * from RUN back to SCAN is:
4209	 *
4210	 * iwm_mvm_power_mac_disable(sc, in);
4211	 * iwm_mvm_mac_ctxt_changed(sc, in);
4212	 * iwm_mvm_rm_sta(sc, in);
4213	 * iwm_mvm_update_quotas(sc, NULL);
4214	 * iwm_mvm_mac_ctxt_changed(sc, in);
4215	 * iwm_mvm_binding_remove_vif(sc, in);
4216	 * iwm_mvm_mac_ctxt_remove(sc, in);
4217	 *
4218	 * However, that freezes the device not matter which permutations
4219	 * and modifications are attempted.  Obviously, this driver is missing
4220	 * something since it works in the Linux driver, but figuring out what
4221	 * is missing is a little more complicated.  Now, since we're going
4222	 * back to nothing anyway, we'll just do a complete device reset.
4223	 * Up your's, device!
4224	 */
4225	/*
4226	 * Just using 0xf for the queues mask is fine as long as we only
4227	 * get here from RUN state.
4228	 */
4229	tfd_msk = 0xf;
4230	mbufq_drain(&sc->sc_snd);
4231	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
4232	/*
4233	 * We seem to get away with just synchronously sending the
4234	 * IWM_TXPATH_FLUSH command.
4235	 */
4236//	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
4237	iwm_stop_device(sc);
4238	iwm_init_hw(sc);
4239	if (in)
4240		in->in_assoc = 0;
4241	return 0;
4242
4243#if 0
4244	int error;
4245
4246	iwm_mvm_power_mac_disable(sc, in);
4247
4248	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4249		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4250		return error;
4251	}
4252
4253	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4254		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4255		return error;
4256	}
4257	error = iwm_mvm_rm_sta(sc, in);
4258	in->in_assoc = 0;
4259	iwm_mvm_update_quotas(sc, NULL);
4260	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4261		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4262		return error;
4263	}
4264	iwm_mvm_binding_remove_vif(sc, in);
4265
4266	iwm_mvm_mac_ctxt_remove(sc, in);
4267
4268	return error;
4269#endif
4270}
4271
4272static struct ieee80211_node *
4273iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4274{
4275	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4276	    M_NOWAIT | M_ZERO);
4277}
4278
4279static void
4280iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4281{
4282	struct ieee80211_node *ni = &in->in_ni;
4283	struct iwm_lq_cmd *lq = &in->in_lq;
4284	int nrates = ni->ni_rates.rs_nrates;
4285	int i, ridx, tab = 0;
4286//	int txant = 0;
4287
4288	if (nrates > nitems(lq->rs_table)) {
4289		device_printf(sc->sc_dev,
4290		    "%s: node supports %d rates, driver handles "
4291		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4292		return;
4293	}
4294	if (nrates == 0) {
4295		device_printf(sc->sc_dev,
4296		    "%s: node supports 0 rates, odd!\n", __func__);
4297		return;
4298	}
4299
4300	/*
4301	 * XXX .. and most of iwm_node is not initialised explicitly;
4302	 * it's all just 0x0 passed to the firmware.
4303	 */
4304
4305	/* first figure out which rates we should support */
4306	/* XXX TODO: this isn't 11n aware /at all/ */
4307	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4308	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4309	    "%s: nrates=%d\n", __func__, nrates);
4310
4311	/*
4312	 * Loop over nrates and populate in_ridx from the highest
4313	 * rate to the lowest rate.  Remember, in_ridx[] has
4314	 * IEEE80211_RATE_MAXSIZE entries!
4315	 */
4316	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4317		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4318
4319		/* Map 802.11 rate to HW rate index. */
4320		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4321			if (iwm_rates[ridx].rate == rate)
4322				break;
4323		if (ridx > IWM_RIDX_MAX) {
4324			device_printf(sc->sc_dev,
4325			    "%s: WARNING: device rate for %d not found!\n",
4326			    __func__, rate);
4327		} else {
4328			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4329			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4330			    __func__,
4331			    i,
4332			    rate,
4333			    ridx);
4334			in->in_ridx[i] = ridx;
4335		}
4336	}
4337
4338	/* then construct a lq_cmd based on those */
4339	memset(lq, 0, sizeof(*lq));
4340	lq->sta_id = IWM_STATION_ID;
4341
4342	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4343	if (ni->ni_flags & IEEE80211_NODE_HT)
4344		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4345
4346	/*
4347	 * are these used? (we don't do SISO or MIMO)
4348	 * need to set them to non-zero, though, or we get an error.
4349	 */
4350	lq->single_stream_ant_msk = 1;
4351	lq->dual_stream_ant_msk = 1;
4352
4353	/*
4354	 * Build the actual rate selection table.
4355	 * The lowest bits are the rates.  Additionally,
4356	 * CCK needs bit 9 to be set.  The rest of the bits
4357	 * we add to the table select the tx antenna
4358	 * Note that we add the rates in the highest rate first
4359	 * (opposite of ni_rates).
4360	 */
4361	/*
4362	 * XXX TODO: this should be looping over the min of nrates
4363	 * and LQ_MAX_RETRY_NUM.  Sigh.
4364	 */
4365	for (i = 0; i < nrates; i++) {
4366		int nextant;
4367
4368#if 0
4369		if (txant == 0)
4370			txant = iwm_mvm_get_valid_tx_ant(sc);
4371		nextant = 1<<(ffs(txant)-1);
4372		txant &= ~nextant;
4373#else
4374		nextant = iwm_mvm_get_valid_tx_ant(sc);
4375#endif
4376		/*
4377		 * Map the rate id into a rate index into
4378		 * our hardware table containing the
4379		 * configuration to use for this rate.
4380		 */
4381		ridx = in->in_ridx[i];
4382		tab = iwm_rates[ridx].plcp;
4383		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4384		if (IWM_RIDX_IS_CCK(ridx))
4385			tab |= IWM_RATE_MCS_CCK_MSK;
4386		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4387		    "station rate i=%d, rate=%d, hw=%x\n",
4388		    i, iwm_rates[ridx].rate, tab);
4389		lq->rs_table[i] = htole32(tab);
4390	}
4391	/* then fill the rest with the lowest possible rate */
4392	for (i = nrates; i < nitems(lq->rs_table); i++) {
4393		KASSERT(tab != 0, ("invalid tab"));
4394		lq->rs_table[i] = htole32(tab);
4395	}
4396}
4397
4398static int
4399iwm_media_change(struct ifnet *ifp)
4400{
4401	struct ieee80211vap *vap = ifp->if_softc;
4402	struct ieee80211com *ic = vap->iv_ic;
4403	struct iwm_softc *sc = ic->ic_softc;
4404	int error;
4405
4406	error = ieee80211_media_change(ifp);
4407	if (error != ENETRESET)
4408		return error;
4409
4410	IWM_LOCK(sc);
4411	if (ic->ic_nrunning > 0) {
4412		iwm_stop(sc);
4413		iwm_init(sc);
4414	}
4415	IWM_UNLOCK(sc);
4416	return error;
4417}
4418
4419
4420static int
4421iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4422{
4423	struct iwm_vap *ivp = IWM_VAP(vap);
4424	struct ieee80211com *ic = vap->iv_ic;
4425	struct iwm_softc *sc = ic->ic_softc;
4426	struct iwm_node *in;
4427	int error;
4428
4429	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4430	    "switching state %s -> %s\n",
4431	    ieee80211_state_name[vap->iv_state],
4432	    ieee80211_state_name[nstate]);
4433	IEEE80211_UNLOCK(ic);
4434	IWM_LOCK(sc);
4435
4436	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4437		iwm_led_blink_stop(sc);
4438
4439	/* disable beacon filtering if we're hopping out of RUN */
4440	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4441		iwm_mvm_disable_beacon_filter(sc);
4442
4443		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4444			in->in_assoc = 0;
4445
4446		if (nstate == IEEE80211_S_INIT) {
4447			IWM_UNLOCK(sc);
4448			IEEE80211_LOCK(ic);
4449			error = ivp->iv_newstate(vap, nstate, arg);
4450			IEEE80211_UNLOCK(ic);
4451			IWM_LOCK(sc);
4452			iwm_release(sc, NULL);
4453			IWM_UNLOCK(sc);
4454			IEEE80211_LOCK(ic);
4455			return error;
4456		}
4457
4458		/*
4459		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4460		 * above then the card will be completely reinitialized,
4461		 * so the driver must do everything necessary to bring the card
4462		 * from INIT to SCAN.
4463		 *
4464		 * Additionally, upon receiving deauth frame from AP,
4465		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4466		 * state. This will also fail with this driver, so bring the FSM
4467		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4468		 *
4469		 * XXX TODO: fix this for FreeBSD!
4470		 */
4471		if (nstate == IEEE80211_S_SCAN ||
4472		    nstate == IEEE80211_S_AUTH ||
4473		    nstate == IEEE80211_S_ASSOC) {
4474			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4475			    "Force transition to INIT; MGT=%d\n", arg);
4476			IWM_UNLOCK(sc);
4477			IEEE80211_LOCK(ic);
4478			/* Always pass arg as -1 since we can't Tx right now. */
4479			/*
4480			 * XXX arg is just ignored anyway when transitioning
4481			 *     to IEEE80211_S_INIT.
4482			 */
4483			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4484			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4485			    "Going INIT->SCAN\n");
4486			nstate = IEEE80211_S_SCAN;
4487			IEEE80211_UNLOCK(ic);
4488			IWM_LOCK(sc);
4489		}
4490	}
4491
4492	switch (nstate) {
4493	case IEEE80211_S_INIT:
4494		break;
4495
4496	case IEEE80211_S_AUTH:
4497		if ((error = iwm_auth(vap, sc)) != 0) {
4498			device_printf(sc->sc_dev,
4499			    "%s: could not move to auth state: %d\n",
4500			    __func__, error);
4501			break;
4502		}
4503		break;
4504
4505	case IEEE80211_S_ASSOC:
4506		if ((error = iwm_assoc(vap, sc)) != 0) {
4507			device_printf(sc->sc_dev,
4508			    "%s: failed to associate: %d\n", __func__,
4509			    error);
4510			break;
4511		}
4512		break;
4513
4514	case IEEE80211_S_RUN:
4515	{
4516		struct iwm_host_cmd cmd = {
4517			.id = IWM_LQ_CMD,
4518			.len = { sizeof(in->in_lq), },
4519			.flags = IWM_CMD_SYNC,
4520		};
4521
4522		/* Update the association state, now we have it all */
4523		/* (eg associd comes in at this point */
4524		error = iwm_assoc(vap, sc);
4525		if (error != 0) {
4526			device_printf(sc->sc_dev,
4527			    "%s: failed to update association state: %d\n",
4528			    __func__,
4529			    error);
4530			break;
4531		}
4532
4533		in = IWM_NODE(vap->iv_bss);
4534		iwm_mvm_power_mac_update_mode(sc, in);
4535		iwm_mvm_enable_beacon_filter(sc, in);
4536		iwm_mvm_update_quotas(sc, in);
4537		iwm_setrates(sc, in);
4538
4539		cmd.data[0] = &in->in_lq;
4540		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4541			device_printf(sc->sc_dev,
4542			    "%s: IWM_LQ_CMD failed\n", __func__);
4543		}
4544
4545		iwm_mvm_led_enable(sc);
4546		break;
4547	}
4548
4549	default:
4550		break;
4551	}
4552	IWM_UNLOCK(sc);
4553	IEEE80211_LOCK(ic);
4554
4555	return (ivp->iv_newstate(vap, nstate, arg));
4556}
4557
4558void
4559iwm_endscan_cb(void *arg, int pending)
4560{
4561	struct iwm_softc *sc = arg;
4562	struct ieee80211com *ic = &sc->sc_ic;
4563
4564	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4565	    "%s: scan ended\n",
4566	    __func__);
4567
4568	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4569}
4570
4571/*
4572 * Aging and idle timeouts for the different possible scenarios
4573 * in default configuration
4574 */
4575static const uint32_t
4576iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4577	{
4578		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4579		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4580	},
4581	{
4582		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4583		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4584	},
4585	{
4586		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4587		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4588	},
4589	{
4590		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4591		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4592	},
4593	{
4594		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4595		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4596	},
4597};
4598
4599/*
4600 * Aging and idle timeouts for the different possible scenarios
4601 * in single BSS MAC configuration.
4602 */
4603static const uint32_t
4604iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4605	{
4606		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4607		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4608	},
4609	{
4610		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4611		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4612	},
4613	{
4614		htole32(IWM_SF_MCAST_AGING_TIMER),
4615		htole32(IWM_SF_MCAST_IDLE_TIMER)
4616	},
4617	{
4618		htole32(IWM_SF_BA_AGING_TIMER),
4619		htole32(IWM_SF_BA_IDLE_TIMER)
4620	},
4621	{
4622		htole32(IWM_SF_TX_RE_AGING_TIMER),
4623		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4624	},
4625};
4626
4627static void
4628iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4629    struct ieee80211_node *ni)
4630{
4631	int i, j, watermark;
4632
4633	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4634
4635	/*
4636	 * If we are in association flow - check antenna configuration
4637	 * capabilities of the AP station, and choose the watermark accordingly.
4638	 */
4639	if (ni) {
4640		if (ni->ni_flags & IEEE80211_NODE_HT) {
4641#ifdef notyet
4642			if (ni->ni_rxmcs[2] != 0)
4643				watermark = IWM_SF_W_MARK_MIMO3;
4644			else if (ni->ni_rxmcs[1] != 0)
4645				watermark = IWM_SF_W_MARK_MIMO2;
4646			else
4647#endif
4648				watermark = IWM_SF_W_MARK_SISO;
4649		} else {
4650			watermark = IWM_SF_W_MARK_LEGACY;
4651		}
4652	/* default watermark value for unassociated mode. */
4653	} else {
4654		watermark = IWM_SF_W_MARK_MIMO2;
4655	}
4656	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4657
4658	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4659		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4660			sf_cmd->long_delay_timeouts[i][j] =
4661					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4662		}
4663	}
4664
4665	if (ni) {
4666		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4667		       sizeof(iwm_sf_full_timeout));
4668	} else {
4669		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4670		       sizeof(iwm_sf_full_timeout_def));
4671	}
4672}
4673
4674static int
4675iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4676{
4677	struct ieee80211com *ic = &sc->sc_ic;
4678	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4679	struct iwm_sf_cfg_cmd sf_cmd = {
4680		.state = htole32(IWM_SF_FULL_ON),
4681	};
4682	int ret = 0;
4683
4684	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4685		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4686
4687	switch (new_state) {
4688	case IWM_SF_UNINIT:
4689	case IWM_SF_INIT_OFF:
4690		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4691		break;
4692	case IWM_SF_FULL_ON:
4693		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4694		break;
4695	default:
4696		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4697		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4698			  new_state);
4699		return EINVAL;
4700	}
4701
4702	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4703				   sizeof(sf_cmd), &sf_cmd);
4704	return ret;
4705}
4706
4707static int
4708iwm_send_bt_init_conf(struct iwm_softc *sc)
4709{
4710	struct iwm_bt_coex_cmd bt_cmd;
4711
4712	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4713	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4714
4715	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4716	    &bt_cmd);
4717}
4718
4719static int
4720iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4721{
4722	struct iwm_mcc_update_cmd mcc_cmd;
4723	struct iwm_host_cmd hcmd = {
4724		.id = IWM_MCC_UPDATE_CMD,
4725		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4726		.data = { &mcc_cmd },
4727	};
4728	int ret;
4729#ifdef IWM_DEBUG
4730	struct iwm_rx_packet *pkt;
4731	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4732	struct iwm_mcc_update_resp *mcc_resp;
4733	int n_channels;
4734	uint16_t mcc;
4735#endif
4736	int resp_v2 = fw_has_capa(&sc->ucode_capa,
4737	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4738
4739	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4740	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4741	if (fw_has_api(&sc->ucode_capa, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4742	    fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4743		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4744	else
4745		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4746
4747	if (resp_v2)
4748		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4749	else
4750		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4751
4752	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4753	    "send MCC update to FW with '%c%c' src = %d\n",
4754	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4755
4756	ret = iwm_send_cmd(sc, &hcmd);
4757	if (ret)
4758		return ret;
4759
4760#ifdef IWM_DEBUG
4761	pkt = hcmd.resp_pkt;
4762
4763	/* Extract MCC response */
4764	if (resp_v2) {
4765		mcc_resp = (void *)pkt->data;
4766		mcc = mcc_resp->mcc;
4767		n_channels =  le32toh(mcc_resp->n_channels);
4768	} else {
4769		mcc_resp_v1 = (void *)pkt->data;
4770		mcc = mcc_resp_v1->mcc;
4771		n_channels =  le32toh(mcc_resp_v1->n_channels);
4772	}
4773
4774	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4775	if (mcc == 0)
4776		mcc = 0x3030;  /* "00" - world */
4777
4778	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4779	    "regulatory domain '%c%c' (%d channels available)\n",
4780	    mcc >> 8, mcc & 0xff, n_channels);
4781#endif
4782	iwm_free_resp(sc, &hcmd);
4783
4784	return 0;
4785}
4786
4787static void
4788iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4789{
4790	struct iwm_host_cmd cmd = {
4791		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4792		.len = { sizeof(uint32_t), },
4793		.data = { &backoff, },
4794	};
4795
4796	if (iwm_send_cmd(sc, &cmd) != 0) {
4797		device_printf(sc->sc_dev,
4798		    "failed to change thermal tx backoff\n");
4799	}
4800}
4801
4802static int
4803iwm_init_hw(struct iwm_softc *sc)
4804{
4805	struct ieee80211com *ic = &sc->sc_ic;
4806	int error, i, ac;
4807
4808	if ((error = iwm_start_hw(sc)) != 0) {
4809		printf("iwm_start_hw: failed %d\n", error);
4810		return error;
4811	}
4812
4813	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4814		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4815		return error;
4816	}
4817
4818	/*
4819	 * should stop and start HW since that INIT
4820	 * image just loaded
4821	 */
4822	iwm_stop_device(sc);
4823	if ((error = iwm_start_hw(sc)) != 0) {
4824		device_printf(sc->sc_dev, "could not initialize hardware\n");
4825		return error;
4826	}
4827
4828	/* omstart, this time with the regular firmware */
4829	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR);
4830	if (error) {
4831		device_printf(sc->sc_dev, "could not load firmware\n");
4832		goto error;
4833	}
4834
4835	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4836		device_printf(sc->sc_dev, "bt init conf failed\n");
4837		goto error;
4838	}
4839
4840	error = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
4841	if (error != 0) {
4842		device_printf(sc->sc_dev, "antenna config failed\n");
4843		goto error;
4844	}
4845
4846	/* Send phy db control command and then phy db calibration */
4847	if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0)
4848		goto error;
4849
4850	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4851		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4852		goto error;
4853	}
4854
4855	/* Add auxiliary station for scanning */
4856	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4857		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4858		goto error;
4859	}
4860
4861	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4862		/*
4863		 * The channel used here isn't relevant as it's
4864		 * going to be overwritten in the other flows.
4865		 * For now use the first channel we have.
4866		 */
4867		if ((error = iwm_mvm_phy_ctxt_add(sc,
4868		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4869			goto error;
4870	}
4871
4872	/* Initialize tx backoffs to the minimum. */
4873	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
4874		iwm_mvm_tt_tx_backoff(sc, 0);
4875
4876	error = iwm_mvm_power_update_device(sc);
4877	if (error)
4878		goto error;
4879
4880	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4881		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4882			goto error;
4883	}
4884
4885	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4886		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4887			goto error;
4888	}
4889
4890	/* Enable Tx queues. */
4891	for (ac = 0; ac < WME_NUM_AC; ac++) {
4892		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4893		    iwm_mvm_ac_to_tx_fifo[ac]);
4894		if (error)
4895			goto error;
4896	}
4897
4898	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4899		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4900		goto error;
4901	}
4902
4903	return 0;
4904
4905 error:
4906	iwm_stop_device(sc);
4907	return error;
4908}
4909
4910/* Allow multicast from our BSSID. */
4911static int
4912iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4913{
4914	struct ieee80211_node *ni = vap->iv_bss;
4915	struct iwm_mcast_filter_cmd *cmd;
4916	size_t size;
4917	int error;
4918
4919	size = roundup(sizeof(*cmd), 4);
4920	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4921	if (cmd == NULL)
4922		return ENOMEM;
4923	cmd->filter_own = 1;
4924	cmd->port_id = 0;
4925	cmd->count = 0;
4926	cmd->pass_all = 1;
4927	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4928
4929	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4930	    IWM_CMD_SYNC, size, cmd);
4931	free(cmd, M_DEVBUF);
4932
4933	return (error);
4934}
4935
4936/*
4937 * ifnet interfaces
4938 */
4939
4940static void
4941iwm_init(struct iwm_softc *sc)
4942{
4943	int error;
4944
4945	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4946		return;
4947	}
4948	sc->sc_generation++;
4949	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4950
4951	if ((error = iwm_init_hw(sc)) != 0) {
4952		printf("iwm_init_hw failed %d\n", error);
4953		iwm_stop(sc);
4954		return;
4955	}
4956
4957	/*
4958	 * Ok, firmware loaded and we are jogging
4959	 */
4960	sc->sc_flags |= IWM_FLAG_HW_INITED;
4961	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4962}
4963
4964static int
4965iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4966{
4967	struct iwm_softc *sc;
4968	int error;
4969
4970	sc = ic->ic_softc;
4971
4972	IWM_LOCK(sc);
4973	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4974		IWM_UNLOCK(sc);
4975		return (ENXIO);
4976	}
4977	error = mbufq_enqueue(&sc->sc_snd, m);
4978	if (error) {
4979		IWM_UNLOCK(sc);
4980		return (error);
4981	}
4982	iwm_start(sc);
4983	IWM_UNLOCK(sc);
4984	return (0);
4985}
4986
4987/*
4988 * Dequeue packets from sendq and call send.
4989 */
4990static void
4991iwm_start(struct iwm_softc *sc)
4992{
4993	struct ieee80211_node *ni;
4994	struct mbuf *m;
4995	int ac = 0;
4996
4997	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4998	while (sc->qfullmsk == 0 &&
4999		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
5000		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5001		if (iwm_tx(sc, m, ni, ac) != 0) {
5002			if_inc_counter(ni->ni_vap->iv_ifp,
5003			    IFCOUNTER_OERRORS, 1);
5004			ieee80211_free_node(ni);
5005			continue;
5006		}
5007		sc->sc_tx_timer = 15;
5008	}
5009	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
5010}
5011
5012static void
5013iwm_stop(struct iwm_softc *sc)
5014{
5015
5016	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
5017	sc->sc_flags |= IWM_FLAG_STOPPED;
5018	sc->sc_generation++;
5019	iwm_led_blink_stop(sc);
5020	sc->sc_tx_timer = 0;
5021	iwm_stop_device(sc);
5022	sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5023}
5024
5025static void
5026iwm_watchdog(void *arg)
5027{
5028	struct iwm_softc *sc = arg;
5029	struct ieee80211com *ic = &sc->sc_ic;
5030
5031	if (sc->sc_tx_timer > 0) {
5032		if (--sc->sc_tx_timer == 0) {
5033			device_printf(sc->sc_dev, "device timeout\n");
5034#ifdef IWM_DEBUG
5035			iwm_nic_error(sc);
5036#endif
5037			ieee80211_restart_all(ic);
5038			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
5039			return;
5040		}
5041	}
5042	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
5043}
5044
5045static void
5046iwm_parent(struct ieee80211com *ic)
5047{
5048	struct iwm_softc *sc = ic->ic_softc;
5049	int startall = 0;
5050
5051	IWM_LOCK(sc);
5052	if (ic->ic_nrunning > 0) {
5053		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
5054			iwm_init(sc);
5055			startall = 1;
5056		}
5057	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
5058		iwm_stop(sc);
5059	IWM_UNLOCK(sc);
5060	if (startall)
5061		ieee80211_start_all(ic);
5062}
5063
5064/*
5065 * The interrupt side of things
5066 */
5067
5068/*
5069 * error dumping routines are from iwlwifi/mvm/utils.c
5070 */
5071
5072/*
5073 * Note: This structure is read from the device with IO accesses,
5074 * and the reading already does the endian conversion. As it is
5075 * read with uint32_t-sized accesses, any members with a different size
5076 * need to be ordered correctly though!
5077 */
5078struct iwm_error_event_table {
5079	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5080	uint32_t error_id;		/* type of error */
5081	uint32_t trm_hw_status0;	/* TRM HW status */
5082	uint32_t trm_hw_status1;	/* TRM HW status */
5083	uint32_t blink2;		/* branch link */
5084	uint32_t ilink1;		/* interrupt link */
5085	uint32_t ilink2;		/* interrupt link */
5086	uint32_t data1;		/* error-specific data */
5087	uint32_t data2;		/* error-specific data */
5088	uint32_t data3;		/* error-specific data */
5089	uint32_t bcon_time;		/* beacon timer */
5090	uint32_t tsf_low;		/* network timestamp function timer */
5091	uint32_t tsf_hi;		/* network timestamp function timer */
5092	uint32_t gp1;		/* GP1 timer register */
5093	uint32_t gp2;		/* GP2 timer register */
5094	uint32_t fw_rev_type;	/* firmware revision type */
5095	uint32_t major;		/* uCode version major */
5096	uint32_t minor;		/* uCode version minor */
5097	uint32_t hw_ver;		/* HW Silicon version */
5098	uint32_t brd_ver;		/* HW board version */
5099	uint32_t log_pc;		/* log program counter */
5100	uint32_t frame_ptr;		/* frame pointer */
5101	uint32_t stack_ptr;		/* stack pointer */
5102	uint32_t hcmd;		/* last host command header */
5103	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
5104				 * rxtx_flag */
5105	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
5106				 * host_flag */
5107	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
5108				 * enc_flag */
5109	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
5110				 * time_flag */
5111	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
5112				 * wico interrupt */
5113	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
5114	uint32_t wait_event;		/* wait event() caller address */
5115	uint32_t l2p_control;	/* L2pControlField */
5116	uint32_t l2p_duration;	/* L2pDurationField */
5117	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
5118	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
5119	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
5120				 * (LMPM_PMG_SEL) */
5121	uint32_t u_timestamp;	/* indicate when the date and time of the
5122				 * compilation */
5123	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
5124} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
5125
5126/*
5127 * UMAC error struct - relevant starting from family 8000 chip.
5128 * Note: This structure is read from the device with IO accesses,
5129 * and the reading already does the endian conversion. As it is
5130 * read with u32-sized accesses, any members with a different size
5131 * need to be ordered correctly though!
5132 */
5133struct iwm_umac_error_event_table {
5134	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5135	uint32_t error_id;	/* type of error */
5136	uint32_t blink1;	/* branch link */
5137	uint32_t blink2;	/* branch link */
5138	uint32_t ilink1;	/* interrupt link */
5139	uint32_t ilink2;	/* interrupt link */
5140	uint32_t data1;		/* error-specific data */
5141	uint32_t data2;		/* error-specific data */
5142	uint32_t data3;		/* error-specific data */
5143	uint32_t umac_major;
5144	uint32_t umac_minor;
5145	uint32_t frame_pointer;	/* core register 27*/
5146	uint32_t stack_pointer;	/* core register 28 */
5147	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
5148	uint32_t nic_isr_pref;	/* ISR status register */
5149} __packed;
5150
5151#define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
5152#define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
5153
5154#ifdef IWM_DEBUG
5155struct {
5156	const char *name;
5157	uint8_t num;
5158} advanced_lookup[] = {
5159	{ "NMI_INTERRUPT_WDG", 0x34 },
5160	{ "SYSASSERT", 0x35 },
5161	{ "UCODE_VERSION_MISMATCH", 0x37 },
5162	{ "BAD_COMMAND", 0x38 },
5163	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
5164	{ "FATAL_ERROR", 0x3D },
5165	{ "NMI_TRM_HW_ERR", 0x46 },
5166	{ "NMI_INTERRUPT_TRM", 0x4C },
5167	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
5168	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
5169	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
5170	{ "NMI_INTERRUPT_HOST", 0x66 },
5171	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
5172	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
5173	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
5174	{ "ADVANCED_SYSASSERT", 0 },
5175};
5176
5177static const char *
5178iwm_desc_lookup(uint32_t num)
5179{
5180	int i;
5181
5182	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
5183		if (advanced_lookup[i].num == num)
5184			return advanced_lookup[i].name;
5185
5186	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
5187	return advanced_lookup[i].name;
5188}
5189
5190static void
5191iwm_nic_umac_error(struct iwm_softc *sc)
5192{
5193	struct iwm_umac_error_event_table table;
5194	uint32_t base;
5195
5196	base = sc->umac_error_event_table;
5197
5198	if (base < 0x800000) {
5199		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
5200		    base);
5201		return;
5202	}
5203
5204	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5205		device_printf(sc->sc_dev, "reading errlog failed\n");
5206		return;
5207	}
5208
5209	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5210		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
5211		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5212		    sc->sc_flags, table.valid);
5213	}
5214
5215	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
5216		iwm_desc_lookup(table.error_id));
5217	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
5218	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
5219	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
5220	    table.ilink1);
5221	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
5222	    table.ilink2);
5223	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
5224	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
5225	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
5226	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
5227	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
5228	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
5229	    table.frame_pointer);
5230	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
5231	    table.stack_pointer);
5232	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
5233	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
5234	    table.nic_isr_pref);
5235}
5236
5237/*
5238 * Support for dumping the error log seemed like a good idea ...
5239 * but it's mostly hex junk and the only sensible thing is the
5240 * hw/ucode revision (which we know anyway).  Since it's here,
5241 * I'll just leave it in, just in case e.g. the Intel guys want to
5242 * help us decipher some "ADVANCED_SYSASSERT" later.
5243 */
5244static void
5245iwm_nic_error(struct iwm_softc *sc)
5246{
5247	struct iwm_error_event_table table;
5248	uint32_t base;
5249
5250	device_printf(sc->sc_dev, "dumping device error log\n");
5251	base = sc->error_event_table;
5252	if (base < 0x800000) {
5253		device_printf(sc->sc_dev,
5254		    "Invalid error log pointer 0x%08x\n", base);
5255		return;
5256	}
5257
5258	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5259		device_printf(sc->sc_dev, "reading errlog failed\n");
5260		return;
5261	}
5262
5263	if (!table.valid) {
5264		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5265		return;
5266	}
5267
5268	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5269		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5270		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5271		    sc->sc_flags, table.valid);
5272	}
5273
5274	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5275	    iwm_desc_lookup(table.error_id));
5276	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5277	    table.trm_hw_status0);
5278	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5279	    table.trm_hw_status1);
5280	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5281	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5282	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5283	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5284	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5285	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5286	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5287	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5288	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5289	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5290	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5291	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5292	    table.fw_rev_type);
5293	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5294	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5295	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5296	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5297	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5298	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5299	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5300	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5301	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5302	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5303	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5304	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5305	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5306	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5307	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5308	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5309	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5310	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5311	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5312
5313	if (sc->umac_error_event_table)
5314		iwm_nic_umac_error(sc);
5315}
5316#endif
5317
5318#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5319
5320/*
5321 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5322 * Basic structure from if_iwn
5323 */
5324static void
5325iwm_notif_intr(struct iwm_softc *sc)
5326{
5327	struct ieee80211com *ic = &sc->sc_ic;
5328	uint16_t hw;
5329
5330	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5331	    BUS_DMASYNC_POSTREAD);
5332
5333	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5334
5335	/*
5336	 * Process responses
5337	 */
5338	while (sc->rxq.cur != hw) {
5339		struct iwm_rx_ring *ring = &sc->rxq;
5340		struct iwm_rx_data *data = &ring->data[ring->cur];
5341		struct iwm_rx_packet *pkt;
5342		struct iwm_cmd_response *cresp;
5343		int qid, idx, code;
5344
5345		bus_dmamap_sync(ring->data_dmat, data->map,
5346		    BUS_DMASYNC_POSTREAD);
5347		pkt = mtod(data->m, struct iwm_rx_packet *);
5348
5349		qid = pkt->hdr.qid & ~0x80;
5350		idx = pkt->hdr.idx;
5351
5352		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5353		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5354		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5355		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, ring->cur, hw);
5356
5357		/*
5358		 * randomly get these from the firmware, no idea why.
5359		 * they at least seem harmless, so just ignore them for now
5360		 */
5361		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5362		    || pkt->len_n_flags == htole32(0x55550000))) {
5363			ADVANCE_RXQ(sc);
5364			continue;
5365		}
5366
5367		iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt);
5368
5369		switch (code) {
5370		case IWM_REPLY_RX_PHY_CMD:
5371			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5372			break;
5373
5374		case IWM_REPLY_RX_MPDU_CMD:
5375			iwm_mvm_rx_rx_mpdu(sc, data->m);
5376			break;
5377
5378		case IWM_TX_CMD:
5379			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5380			break;
5381
5382		case IWM_MISSED_BEACONS_NOTIFICATION: {
5383			struct iwm_missed_beacons_notif *resp;
5384			int missed;
5385
5386			/* XXX look at mac_id to determine interface ID */
5387			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5388
5389			resp = (void *)pkt->data;
5390			missed = le32toh(resp->consec_missed_beacons);
5391
5392			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5393			    "%s: MISSED_BEACON: mac_id=%d, "
5394			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5395			    "num_rx=%d\n",
5396			    __func__,
5397			    le32toh(resp->mac_id),
5398			    le32toh(resp->consec_missed_beacons_since_last_rx),
5399			    le32toh(resp->consec_missed_beacons),
5400			    le32toh(resp->num_expected_beacons),
5401			    le32toh(resp->num_recvd_beacons));
5402
5403			/* Be paranoid */
5404			if (vap == NULL)
5405				break;
5406
5407			/* XXX no net80211 locking? */
5408			if (vap->iv_state == IEEE80211_S_RUN &&
5409			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5410				if (missed > vap->iv_bmissthreshold) {
5411					/* XXX bad locking; turn into task */
5412					IWM_UNLOCK(sc);
5413					ieee80211_beacon_miss(ic);
5414					IWM_LOCK(sc);
5415				}
5416			}
5417
5418			break;
5419		}
5420
5421		case IWM_MFUART_LOAD_NOTIFICATION:
5422			break;
5423
5424		case IWM_MVM_ALIVE:
5425			break;
5426
5427		case IWM_CALIB_RES_NOTIF_PHY_DB:
5428			break;
5429
5430		case IWM_STATISTICS_NOTIFICATION: {
5431			struct iwm_notif_statistics *stats;
5432			stats = (void *)pkt->data;
5433			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5434			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5435			break;
5436		}
5437
5438		case IWM_NVM_ACCESS_CMD:
5439		case IWM_MCC_UPDATE_CMD:
5440			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5441				memcpy(sc->sc_cmd_resp,
5442				    pkt, sizeof(sc->sc_cmd_resp));
5443			}
5444			break;
5445
5446		case IWM_MCC_CHUB_UPDATE_CMD: {
5447			struct iwm_mcc_chub_notif *notif;
5448			notif = (void *)pkt->data;
5449
5450			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5451			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5452			sc->sc_fw_mcc[2] = '\0';
5453			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5454			    "fw source %d sent CC '%s'\n",
5455			    notif->source_id, sc->sc_fw_mcc);
5456			break;
5457		}
5458
5459		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5460		case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
5461				 IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
5462			struct iwm_dts_measurement_notif_v1 *notif;
5463
5464			if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) {
5465				device_printf(sc->sc_dev,
5466				    "Invalid DTS_MEASUREMENT_NOTIFICATION\n");
5467				break;
5468			}
5469			notif = (void *)pkt->data;
5470			IWM_DPRINTF(sc, IWM_DEBUG_TEMP,
5471			    "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n",
5472			    notif->temp);
5473			break;
5474		}
5475
5476		case IWM_PHY_CONFIGURATION_CMD:
5477		case IWM_TX_ANT_CONFIGURATION_CMD:
5478		case IWM_ADD_STA:
5479		case IWM_MAC_CONTEXT_CMD:
5480		case IWM_REPLY_SF_CFG_CMD:
5481		case IWM_POWER_TABLE_CMD:
5482		case IWM_PHY_CONTEXT_CMD:
5483		case IWM_BINDING_CONTEXT_CMD:
5484		case IWM_TIME_EVENT_CMD:
5485		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5486		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5487		case IWM_SCAN_ABORT_UMAC:
5488		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5489		case IWM_SCAN_OFFLOAD_ABORT_CMD:
5490		case IWM_REPLY_BEACON_FILTERING_CMD:
5491		case IWM_MAC_PM_POWER_TABLE:
5492		case IWM_TIME_QUOTA_CMD:
5493		case IWM_REMOVE_STA:
5494		case IWM_TXPATH_FLUSH:
5495		case IWM_LQ_CMD:
5496		case IWM_FW_PAGING_BLOCK_CMD:
5497		case IWM_BT_CONFIG:
5498		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5499			cresp = (void *)pkt->data;
5500			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5501				memcpy(sc->sc_cmd_resp,
5502				    pkt, sizeof(*pkt)+sizeof(*cresp));
5503			}
5504			break;
5505
5506		/* ignore */
5507		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5508			break;
5509
5510		case IWM_INIT_COMPLETE_NOTIF:
5511			break;
5512
5513		case IWM_SCAN_OFFLOAD_COMPLETE: {
5514			struct iwm_periodic_scan_complete *notif;
5515			notif = (void *)pkt->data;
5516			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5517				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5518				ieee80211_runtask(ic, &sc->sc_es_task);
5519			}
5520			break;
5521		}
5522
5523		case IWM_SCAN_ITERATION_COMPLETE: {
5524			struct iwm_lmac_scan_complete_notif *notif;
5525			notif = (void *)pkt->data;
5526			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5527 			break;
5528		}
5529
5530		case IWM_SCAN_COMPLETE_UMAC: {
5531			struct iwm_umac_scan_complete *notif;
5532			notif = (void *)pkt->data;
5533
5534			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5535			    "UMAC scan complete, status=0x%x\n",
5536			    notif->status);
5537			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5538				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5539				ieee80211_runtask(ic, &sc->sc_es_task);
5540			}
5541			break;
5542		}
5543
5544		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5545			struct iwm_umac_scan_iter_complete_notif *notif;
5546			notif = (void *)pkt->data;
5547
5548			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5549			    "complete, status=0x%x, %d channels scanned\n",
5550			    notif->status, notif->scanned_channels);
5551			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5552			break;
5553		}
5554
5555		case IWM_REPLY_ERROR: {
5556			struct iwm_error_resp *resp;
5557			resp = (void *)pkt->data;
5558
5559			device_printf(sc->sc_dev,
5560			    "firmware error 0x%x, cmd 0x%x\n",
5561			    le32toh(resp->error_type),
5562			    resp->cmd_id);
5563			break;
5564		}
5565
5566		case IWM_TIME_EVENT_NOTIFICATION: {
5567			struct iwm_time_event_notif *notif;
5568			notif = (void *)pkt->data;
5569
5570			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5571			    "TE notif status = 0x%x action = 0x%x\n",
5572			    notif->status, notif->action);
5573			break;
5574		}
5575
5576		case IWM_MCAST_FILTER_CMD:
5577			break;
5578
5579		case IWM_SCD_QUEUE_CFG: {
5580			struct iwm_scd_txq_cfg_rsp *rsp;
5581			rsp = (void *)pkt->data;
5582
5583			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5584			    "queue cfg token=0x%x sta_id=%d "
5585			    "tid=%d scd_queue=%d\n",
5586			    rsp->token, rsp->sta_id, rsp->tid,
5587			    rsp->scd_queue);
5588			break;
5589		}
5590
5591		default:
5592			device_printf(sc->sc_dev,
5593			    "frame %d/%d %x UNHANDLED (this should "
5594			    "not happen)\n", qid, idx,
5595			    pkt->len_n_flags);
5596			break;
5597		}
5598
5599		/*
5600		 * Why test bit 0x80?  The Linux driver:
5601		 *
5602		 * There is one exception:  uCode sets bit 15 when it
5603		 * originates the response/notification, i.e. when the
5604		 * response/notification is not a direct response to a
5605		 * command sent by the driver.  For example, uCode issues
5606		 * IWM_REPLY_RX when it sends a received frame to the driver;
5607		 * it is not a direct response to any driver command.
5608		 *
5609		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5610		 * uses a slightly different format for pkt->hdr, and "qid"
5611		 * is actually the upper byte of a two-byte field.
5612		 */
5613		if (!(pkt->hdr.qid & (1 << 7))) {
5614			iwm_cmd_done(sc, pkt);
5615		}
5616
5617		ADVANCE_RXQ(sc);
5618	}
5619
5620	/*
5621	 * Tell the firmware what we have processed.
5622	 * Seems like the hardware gets upset unless we align
5623	 * the write by 8??
5624	 */
5625	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5626	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5627}
5628
5629static void
5630iwm_intr(void *arg)
5631{
5632	struct iwm_softc *sc = arg;
5633	int handled = 0;
5634	int r1, r2, rv = 0;
5635	int isperiodic = 0;
5636
5637	IWM_LOCK(sc);
5638	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5639
5640	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5641		uint32_t *ict = sc->ict_dma.vaddr;
5642		int tmp;
5643
5644		tmp = htole32(ict[sc->ict_cur]);
5645		if (!tmp)
5646			goto out_ena;
5647
5648		/*
5649		 * ok, there was something.  keep plowing until we have all.
5650		 */
5651		r1 = r2 = 0;
5652		while (tmp) {
5653			r1 |= tmp;
5654			ict[sc->ict_cur] = 0;
5655			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5656			tmp = htole32(ict[sc->ict_cur]);
5657		}
5658
5659		/* this is where the fun begins.  don't ask */
5660		if (r1 == 0xffffffff)
5661			r1 = 0;
5662
5663		/* i am not expected to understand this */
5664		if (r1 & 0xc0000)
5665			r1 |= 0x8000;
5666		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5667	} else {
5668		r1 = IWM_READ(sc, IWM_CSR_INT);
5669		/* "hardware gone" (where, fishing?) */
5670		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5671			goto out;
5672		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5673	}
5674	if (r1 == 0 && r2 == 0) {
5675		goto out_ena;
5676	}
5677
5678	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5679
5680	/* Safely ignore these bits for debug checks below */
5681	r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD);
5682
5683	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5684		int i;
5685		struct ieee80211com *ic = &sc->sc_ic;
5686		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5687
5688#ifdef IWM_DEBUG
5689		iwm_nic_error(sc);
5690#endif
5691		/* Dump driver status (TX and RX rings) while we're here. */
5692		device_printf(sc->sc_dev, "driver status:\n");
5693		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5694			struct iwm_tx_ring *ring = &sc->txq[i];
5695			device_printf(sc->sc_dev,
5696			    "  tx ring %2d: qid=%-2d cur=%-3d "
5697			    "queued=%-3d\n",
5698			    i, ring->qid, ring->cur, ring->queued);
5699		}
5700		device_printf(sc->sc_dev,
5701		    "  rx ring: cur=%d\n", sc->rxq.cur);
5702		device_printf(sc->sc_dev,
5703		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5704
5705		/* Don't stop the device; just do a VAP restart */
5706		IWM_UNLOCK(sc);
5707
5708		if (vap == NULL) {
5709			printf("%s: null vap\n", __func__);
5710			return;
5711		}
5712
5713		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5714		    "restarting\n", __func__, vap->iv_state);
5715
5716		/* XXX TODO: turn this into a callout/taskqueue */
5717		ieee80211_restart_all(ic);
5718		return;
5719	}
5720
5721	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5722		handled |= IWM_CSR_INT_BIT_HW_ERR;
5723		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5724		iwm_stop(sc);
5725		rv = 1;
5726		goto out;
5727	}
5728
5729	/* firmware chunk loaded */
5730	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5731		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5732		handled |= IWM_CSR_INT_BIT_FH_TX;
5733		sc->sc_fw_chunk_done = 1;
5734		wakeup(&sc->sc_fw);
5735	}
5736
5737	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5738		handled |= IWM_CSR_INT_BIT_RF_KILL;
5739		if (iwm_check_rfkill(sc)) {
5740			device_printf(sc->sc_dev,
5741			    "%s: rfkill switch, disabling interface\n",
5742			    __func__);
5743			iwm_stop(sc);
5744		}
5745	}
5746
5747	/*
5748	 * The Linux driver uses periodic interrupts to avoid races.
5749	 * We cargo-cult like it's going out of fashion.
5750	 */
5751	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5752		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5753		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5754		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5755			IWM_WRITE_1(sc,
5756			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5757		isperiodic = 1;
5758	}
5759
5760	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5761		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5762		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5763
5764		iwm_notif_intr(sc);
5765
5766		/* enable periodic interrupt, see above */
5767		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5768			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5769			    IWM_CSR_INT_PERIODIC_ENA);
5770	}
5771
5772	if (__predict_false(r1 & ~handled))
5773		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5774		    "%s: unhandled interrupts: %x\n", __func__, r1);
5775	rv = 1;
5776
5777 out_ena:
5778	iwm_restore_interrupts(sc);
5779 out:
5780	IWM_UNLOCK(sc);
5781	return;
5782}
5783
5784/*
5785 * Autoconf glue-sniffing
5786 */
5787#define	PCI_VENDOR_INTEL		0x8086
5788#define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5789#define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5790#define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5791#define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5792#define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5793#define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5794#define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5795#define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5796#define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5797#define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5798
5799static const struct iwm_devices {
5800	uint16_t		device;
5801	const struct iwm_cfg	*cfg;
5802} iwm_devices[] = {
5803	{ PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg },
5804	{ PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg },
5805	{ PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg },
5806	{ PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg },
5807	{ PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg },
5808	{ PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg },
5809	{ PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg },
5810	{ PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg },
5811	{ PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg },
5812	{ PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg },
5813};
5814
5815static int
5816iwm_probe(device_t dev)
5817{
5818	int i;
5819
5820	for (i = 0; i < nitems(iwm_devices); i++) {
5821		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5822		    pci_get_device(dev) == iwm_devices[i].device) {
5823			device_set_desc(dev, iwm_devices[i].cfg->name);
5824			return (BUS_PROBE_DEFAULT);
5825		}
5826	}
5827
5828	return (ENXIO);
5829}
5830
5831static int
5832iwm_dev_check(device_t dev)
5833{
5834	struct iwm_softc *sc;
5835	uint16_t devid;
5836	int i;
5837
5838	sc = device_get_softc(dev);
5839
5840	devid = pci_get_device(dev);
5841	for (i = 0; i < nitems(iwm_devices); i++) {
5842		if (iwm_devices[i].device == devid) {
5843			sc->cfg = iwm_devices[i].cfg;
5844			return (0);
5845		}
5846	}
5847	device_printf(dev, "unknown adapter type\n");
5848	return ENXIO;
5849}
5850
5851/* PCI registers */
5852#define PCI_CFG_RETRY_TIMEOUT	0x041
5853
5854static int
5855iwm_pci_attach(device_t dev)
5856{
5857	struct iwm_softc *sc;
5858	int count, error, rid;
5859	uint16_t reg;
5860
5861	sc = device_get_softc(dev);
5862
5863	/* We disable the RETRY_TIMEOUT register (0x41) to keep
5864	 * PCI Tx retries from interfering with C3 CPU state */
5865	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
5866
5867	/* Enable bus-mastering and hardware bug workaround. */
5868	pci_enable_busmaster(dev);
5869	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5870	/* if !MSI */
5871	if (reg & PCIM_STATUS_INTxSTATE) {
5872		reg &= ~PCIM_STATUS_INTxSTATE;
5873	}
5874	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5875
5876	rid = PCIR_BAR(0);
5877	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5878	    RF_ACTIVE);
5879	if (sc->sc_mem == NULL) {
5880		device_printf(sc->sc_dev, "can't map mem space\n");
5881		return (ENXIO);
5882	}
5883	sc->sc_st = rman_get_bustag(sc->sc_mem);
5884	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5885
5886	/* Install interrupt handler. */
5887	count = 1;
5888	rid = 0;
5889	if (pci_alloc_msi(dev, &count) == 0)
5890		rid = 1;
5891	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5892	    (rid != 0 ? 0 : RF_SHAREABLE));
5893	if (sc->sc_irq == NULL) {
5894		device_printf(dev, "can't map interrupt\n");
5895			return (ENXIO);
5896	}
5897	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5898	    NULL, iwm_intr, sc, &sc->sc_ih);
5899	if (sc->sc_ih == NULL) {
5900		device_printf(dev, "can't establish interrupt");
5901			return (ENXIO);
5902	}
5903	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5904
5905	return (0);
5906}
5907
5908static void
5909iwm_pci_detach(device_t dev)
5910{
5911	struct iwm_softc *sc = device_get_softc(dev);
5912
5913	if (sc->sc_irq != NULL) {
5914		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5915		bus_release_resource(dev, SYS_RES_IRQ,
5916		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5917		pci_release_msi(dev);
5918        }
5919	if (sc->sc_mem != NULL)
5920		bus_release_resource(dev, SYS_RES_MEMORY,
5921		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5922}
5923
5924
5925
5926static int
5927iwm_attach(device_t dev)
5928{
5929	struct iwm_softc *sc = device_get_softc(dev);
5930	struct ieee80211com *ic = &sc->sc_ic;
5931	int error;
5932	int txq_i, i;
5933
5934	sc->sc_dev = dev;
5935	sc->sc_attached = 1;
5936	IWM_LOCK_INIT(sc);
5937	mbufq_init(&sc->sc_snd, ifqmaxlen);
5938	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5939	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5940	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5941
5942	sc->sc_notif_wait = iwm_notification_wait_init(sc);
5943	if (sc->sc_notif_wait == NULL) {
5944		device_printf(dev, "failed to init notification wait struct\n");
5945		goto fail;
5946	}
5947
5948	/* Init phy db */
5949	sc->sc_phy_db = iwm_phy_db_init(sc);
5950	if (!sc->sc_phy_db) {
5951		device_printf(dev, "Cannot init phy_db\n");
5952		goto fail;
5953	}
5954
5955	/* PCI attach */
5956	error = iwm_pci_attach(dev);
5957	if (error != 0)
5958		goto fail;
5959
5960	sc->sc_wantresp = -1;
5961
5962	/* Check device type */
5963	error = iwm_dev_check(dev);
5964	if (error != 0)
5965		goto fail;
5966
5967	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5968	/*
5969	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5970	 * changed, and now the revision step also includes bit 0-1 (no more
5971	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5972	 * in the old format.
5973	 */
5974	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
5975		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5976				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5977
5978	if (iwm_prepare_card_hw(sc) != 0) {
5979		device_printf(dev, "could not initialize hardware\n");
5980		goto fail;
5981	}
5982
5983	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
5984		int ret;
5985		uint32_t hw_step;
5986
5987		/*
5988		 * In order to recognize C step the driver should read the
5989		 * chip version id located at the AUX bus MISC address.
5990		 */
5991		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5992			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5993		DELAY(2);
5994
5995		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5996				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5997				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5998				   25000);
5999		if (!ret) {
6000			device_printf(sc->sc_dev,
6001			    "Failed to wake up the nic\n");
6002			goto fail;
6003		}
6004
6005		if (iwm_nic_lock(sc)) {
6006			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
6007			hw_step |= IWM_ENABLE_WFPM;
6008			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
6009			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
6010			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
6011			if (hw_step == 0x3)
6012				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
6013						(IWM_SILICON_C_STEP << 2);
6014			iwm_nic_unlock(sc);
6015		} else {
6016			device_printf(sc->sc_dev, "Failed to lock the nic\n");
6017			goto fail;
6018		}
6019	}
6020
6021	/* special-case 7265D, it has the same PCI IDs. */
6022	if (sc->cfg == &iwm7265_cfg &&
6023	    (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) {
6024		sc->cfg = &iwm7265d_cfg;
6025	}
6026
6027	/* Allocate DMA memory for firmware transfers. */
6028	if ((error = iwm_alloc_fwmem(sc)) != 0) {
6029		device_printf(dev, "could not allocate memory for firmware\n");
6030		goto fail;
6031	}
6032
6033	/* Allocate "Keep Warm" page. */
6034	if ((error = iwm_alloc_kw(sc)) != 0) {
6035		device_printf(dev, "could not allocate keep warm page\n");
6036		goto fail;
6037	}
6038
6039	/* We use ICT interrupts */
6040	if ((error = iwm_alloc_ict(sc)) != 0) {
6041		device_printf(dev, "could not allocate ICT table\n");
6042		goto fail;
6043	}
6044
6045	/* Allocate TX scheduler "rings". */
6046	if ((error = iwm_alloc_sched(sc)) != 0) {
6047		device_printf(dev, "could not allocate TX scheduler rings\n");
6048		goto fail;
6049	}
6050
6051	/* Allocate TX rings */
6052	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
6053		if ((error = iwm_alloc_tx_ring(sc,
6054		    &sc->txq[txq_i], txq_i)) != 0) {
6055			device_printf(dev,
6056			    "could not allocate TX ring %d\n",
6057			    txq_i);
6058			goto fail;
6059		}
6060	}
6061
6062	/* Allocate RX ring. */
6063	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
6064		device_printf(dev, "could not allocate RX ring\n");
6065		goto fail;
6066	}
6067
6068	/* Clear pending interrupts. */
6069	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
6070
6071	ic->ic_softc = sc;
6072	ic->ic_name = device_get_nameunit(sc->sc_dev);
6073	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
6074	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
6075
6076	/* Set device capabilities. */
6077	ic->ic_caps =
6078	    IEEE80211_C_STA |
6079	    IEEE80211_C_WPA |		/* WPA/RSN */
6080	    IEEE80211_C_WME |
6081	    IEEE80211_C_SHSLOT |	/* short slot time supported */
6082	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
6083//	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
6084	    ;
6085	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
6086		sc->sc_phyctxt[i].id = i;
6087		sc->sc_phyctxt[i].color = 0;
6088		sc->sc_phyctxt[i].ref = 0;
6089		sc->sc_phyctxt[i].channel = NULL;
6090	}
6091
6092	/* Default noise floor */
6093	sc->sc_noise = -96;
6094
6095	/* Max RSSI */
6096	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
6097
6098	sc->sc_preinit_hook.ich_func = iwm_preinit;
6099	sc->sc_preinit_hook.ich_arg = sc;
6100	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
6101		device_printf(dev, "config_intrhook_establish failed\n");
6102		goto fail;
6103	}
6104
6105#ifdef IWM_DEBUG
6106	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
6107	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
6108	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
6109#endif
6110
6111	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6112	    "<-%s\n", __func__);
6113
6114	return 0;
6115
6116	/* Free allocated memory if something failed during attachment. */
6117fail:
6118	iwm_detach_local(sc, 0);
6119
6120	return ENXIO;
6121}
6122
6123static int
6124iwm_is_valid_ether_addr(uint8_t *addr)
6125{
6126	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
6127
6128	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
6129		return (FALSE);
6130
6131	return (TRUE);
6132}
6133
6134static int
6135iwm_update_edca(struct ieee80211com *ic)
6136{
6137	struct iwm_softc *sc = ic->ic_softc;
6138
6139	device_printf(sc->sc_dev, "%s: called\n", __func__);
6140	return (0);
6141}
6142
6143static void
6144iwm_preinit(void *arg)
6145{
6146	struct iwm_softc *sc = arg;
6147	device_t dev = sc->sc_dev;
6148	struct ieee80211com *ic = &sc->sc_ic;
6149	int error;
6150
6151	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6152	    "->%s\n", __func__);
6153
6154	IWM_LOCK(sc);
6155	if ((error = iwm_start_hw(sc)) != 0) {
6156		device_printf(dev, "could not initialize hardware\n");
6157		IWM_UNLOCK(sc);
6158		goto fail;
6159	}
6160
6161	error = iwm_run_init_mvm_ucode(sc, 1);
6162	iwm_stop_device(sc);
6163	if (error) {
6164		IWM_UNLOCK(sc);
6165		goto fail;
6166	}
6167	device_printf(dev,
6168	    "hw rev 0x%x, fw ver %s, address %s\n",
6169	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
6170	    sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr));
6171
6172	/* not all hardware can do 5GHz band */
6173	if (!sc->nvm_data->sku_cap_band_52GHz_enable)
6174		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
6175		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
6176	IWM_UNLOCK(sc);
6177
6178	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
6179	    ic->ic_channels);
6180
6181	/*
6182	 * At this point we've committed - if we fail to do setup,
6183	 * we now also have to tear down the net80211 state.
6184	 */
6185	ieee80211_ifattach(ic);
6186	ic->ic_vap_create = iwm_vap_create;
6187	ic->ic_vap_delete = iwm_vap_delete;
6188	ic->ic_raw_xmit = iwm_raw_xmit;
6189	ic->ic_node_alloc = iwm_node_alloc;
6190	ic->ic_scan_start = iwm_scan_start;
6191	ic->ic_scan_end = iwm_scan_end;
6192	ic->ic_update_mcast = iwm_update_mcast;
6193	ic->ic_getradiocaps = iwm_init_channel_map;
6194	ic->ic_set_channel = iwm_set_channel;
6195	ic->ic_scan_curchan = iwm_scan_curchan;
6196	ic->ic_scan_mindwell = iwm_scan_mindwell;
6197	ic->ic_wme.wme_update = iwm_update_edca;
6198	ic->ic_parent = iwm_parent;
6199	ic->ic_transmit = iwm_transmit;
6200	iwm_radiotap_attach(sc);
6201	if (bootverbose)
6202		ieee80211_announce(ic);
6203
6204	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6205	    "<-%s\n", __func__);
6206	config_intrhook_disestablish(&sc->sc_preinit_hook);
6207
6208	return;
6209fail:
6210	config_intrhook_disestablish(&sc->sc_preinit_hook);
6211	iwm_detach_local(sc, 0);
6212}
6213
6214/*
6215 * Attach the interface to 802.11 radiotap.
6216 */
6217static void
6218iwm_radiotap_attach(struct iwm_softc *sc)
6219{
6220        struct ieee80211com *ic = &sc->sc_ic;
6221
6222	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6223	    "->%s begin\n", __func__);
6224        ieee80211_radiotap_attach(ic,
6225            &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6226                IWM_TX_RADIOTAP_PRESENT,
6227            &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6228                IWM_RX_RADIOTAP_PRESENT);
6229	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6230	    "->%s end\n", __func__);
6231}
6232
6233static struct ieee80211vap *
6234iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6235    enum ieee80211_opmode opmode, int flags,
6236    const uint8_t bssid[IEEE80211_ADDR_LEN],
6237    const uint8_t mac[IEEE80211_ADDR_LEN])
6238{
6239	struct iwm_vap *ivp;
6240	struct ieee80211vap *vap;
6241
6242	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6243		return NULL;
6244	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6245	vap = &ivp->iv_vap;
6246	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6247	vap->iv_bmissthreshold = 10;            /* override default */
6248	/* Override with driver methods. */
6249	ivp->iv_newstate = vap->iv_newstate;
6250	vap->iv_newstate = iwm_newstate;
6251
6252	ieee80211_ratectl_init(vap);
6253	/* Complete setup. */
6254	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6255	    mac);
6256	ic->ic_opmode = opmode;
6257
6258	return vap;
6259}
6260
6261static void
6262iwm_vap_delete(struct ieee80211vap *vap)
6263{
6264	struct iwm_vap *ivp = IWM_VAP(vap);
6265
6266	ieee80211_ratectl_deinit(vap);
6267	ieee80211_vap_detach(vap);
6268	free(ivp, M_80211_VAP);
6269}
6270
6271static void
6272iwm_scan_start(struct ieee80211com *ic)
6273{
6274	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6275	struct iwm_softc *sc = ic->ic_softc;
6276	int error;
6277
6278	IWM_LOCK(sc);
6279	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6280		/* This should not be possible */
6281		device_printf(sc->sc_dev,
6282		    "%s: Previous scan not completed yet\n", __func__);
6283	}
6284	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6285		error = iwm_mvm_umac_scan(sc);
6286	else
6287		error = iwm_mvm_lmac_scan(sc);
6288	if (error != 0) {
6289		device_printf(sc->sc_dev, "could not initiate scan\n");
6290		IWM_UNLOCK(sc);
6291		ieee80211_cancel_scan(vap);
6292	} else {
6293		sc->sc_flags |= IWM_FLAG_SCAN_RUNNING;
6294		iwm_led_blink_start(sc);
6295		IWM_UNLOCK(sc);
6296	}
6297}
6298
6299static void
6300iwm_scan_end(struct ieee80211com *ic)
6301{
6302	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6303	struct iwm_softc *sc = ic->ic_softc;
6304
6305	IWM_LOCK(sc);
6306	iwm_led_blink_stop(sc);
6307	if (vap->iv_state == IEEE80211_S_RUN)
6308		iwm_mvm_led_enable(sc);
6309	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6310		/*
6311		 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because
6312		 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq
6313		 * taskqueue.
6314		 */
6315		sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
6316		iwm_mvm_scan_stop_wait(sc);
6317	}
6318	IWM_UNLOCK(sc);
6319
6320	/*
6321	 * Make sure we don't race, if sc_es_task is still enqueued here.
6322	 * This is to make sure that it won't call ieee80211_scan_done
6323	 * when we have already started the next scan.
6324	 */
6325	taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL);
6326}
6327
6328static void
6329iwm_update_mcast(struct ieee80211com *ic)
6330{
6331}
6332
6333static void
6334iwm_set_channel(struct ieee80211com *ic)
6335{
6336}
6337
6338static void
6339iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6340{
6341}
6342
6343static void
6344iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6345{
6346	return;
6347}
6348
6349void
6350iwm_init_task(void *arg1)
6351{
6352	struct iwm_softc *sc = arg1;
6353
6354	IWM_LOCK(sc);
6355	while (sc->sc_flags & IWM_FLAG_BUSY)
6356		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6357	sc->sc_flags |= IWM_FLAG_BUSY;
6358	iwm_stop(sc);
6359	if (sc->sc_ic.ic_nrunning > 0)
6360		iwm_init(sc);
6361	sc->sc_flags &= ~IWM_FLAG_BUSY;
6362	wakeup(&sc->sc_flags);
6363	IWM_UNLOCK(sc);
6364}
6365
6366static int
6367iwm_resume(device_t dev)
6368{
6369	struct iwm_softc *sc = device_get_softc(dev);
6370	int do_reinit = 0;
6371
6372	/*
6373	 * We disable the RETRY_TIMEOUT register (0x41) to keep
6374	 * PCI Tx retries from interfering with C3 CPU state.
6375	 */
6376	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
6377	iwm_init_task(device_get_softc(dev));
6378
6379	IWM_LOCK(sc);
6380	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6381		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6382		do_reinit = 1;
6383	}
6384	IWM_UNLOCK(sc);
6385
6386	if (do_reinit)
6387		ieee80211_resume_all(&sc->sc_ic);
6388
6389	return 0;
6390}
6391
6392static int
6393iwm_suspend(device_t dev)
6394{
6395	int do_stop = 0;
6396	struct iwm_softc *sc = device_get_softc(dev);
6397
6398	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6399
6400	ieee80211_suspend_all(&sc->sc_ic);
6401
6402	if (do_stop) {
6403		IWM_LOCK(sc);
6404		iwm_stop(sc);
6405		sc->sc_flags |= IWM_FLAG_SCANNING;
6406		IWM_UNLOCK(sc);
6407	}
6408
6409	return (0);
6410}
6411
6412static int
6413iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6414{
6415	struct iwm_fw_info *fw = &sc->sc_fw;
6416	device_t dev = sc->sc_dev;
6417	int i;
6418
6419	if (!sc->sc_attached)
6420		return 0;
6421	sc->sc_attached = 0;
6422
6423	if (do_net80211)
6424		ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6425
6426	callout_drain(&sc->sc_led_blink_to);
6427	callout_drain(&sc->sc_watchdog_to);
6428	iwm_stop_device(sc);
6429	if (do_net80211) {
6430		ieee80211_ifdetach(&sc->sc_ic);
6431	}
6432
6433	iwm_phy_db_free(sc->sc_phy_db);
6434	sc->sc_phy_db = NULL;
6435
6436	iwm_free_nvm_data(sc->nvm_data);
6437
6438	/* Free descriptor rings */
6439	iwm_free_rx_ring(sc, &sc->rxq);
6440	for (i = 0; i < nitems(sc->txq); i++)
6441		iwm_free_tx_ring(sc, &sc->txq[i]);
6442
6443	/* Free firmware */
6444	if (fw->fw_fp != NULL)
6445		iwm_fw_info_free(fw);
6446
6447	/* Free scheduler */
6448	iwm_dma_contig_free(&sc->sched_dma);
6449	iwm_dma_contig_free(&sc->ict_dma);
6450	iwm_dma_contig_free(&sc->kw_dma);
6451	iwm_dma_contig_free(&sc->fw_dma);
6452
6453	iwm_free_fw_paging(sc);
6454
6455	/* Finished with the hardware - detach things */
6456	iwm_pci_detach(dev);
6457
6458	if (sc->sc_notif_wait != NULL) {
6459		iwm_notification_wait_free(sc->sc_notif_wait);
6460		sc->sc_notif_wait = NULL;
6461	}
6462
6463	mbufq_drain(&sc->sc_snd);
6464	IWM_LOCK_DESTROY(sc);
6465
6466	return (0);
6467}
6468
6469static int
6470iwm_detach(device_t dev)
6471{
6472	struct iwm_softc *sc = device_get_softc(dev);
6473
6474	return (iwm_detach_local(sc, 1));
6475}
6476
6477static device_method_t iwm_pci_methods[] = {
6478        /* Device interface */
6479        DEVMETHOD(device_probe,         iwm_probe),
6480        DEVMETHOD(device_attach,        iwm_attach),
6481        DEVMETHOD(device_detach,        iwm_detach),
6482        DEVMETHOD(device_suspend,       iwm_suspend),
6483        DEVMETHOD(device_resume,        iwm_resume),
6484
6485        DEVMETHOD_END
6486};
6487
6488static driver_t iwm_pci_driver = {
6489        "iwm",
6490        iwm_pci_methods,
6491        sizeof (struct iwm_softc)
6492};
6493
6494static devclass_t iwm_devclass;
6495
6496DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6497MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6498MODULE_DEPEND(iwm, pci, 1, 1, 1);
6499MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6500