if_iwi.c revision 313921
1/*-
2 * Copyright (c) 2004, 2005
3 *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/dev/iwi/if_iwi.c 313921 2017-02-18 19:19:08Z avos $");
32
33/*-
34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36 */
37
38#include <sys/param.h>
39#include <sys/sysctl.h>
40#include <sys/sockio.h>
41#include <sys/mbuf.h>
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/module.h>
49#include <sys/bus.h>
50#include <sys/endian.h>
51#include <sys/proc.h>
52#include <sys/mount.h>
53#include <sys/namei.h>
54#include <sys/linker.h>
55#include <sys/firmware.h>
56#include <sys/taskqueue.h>
57
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/rman.h>
61
62#include <dev/pci/pcireg.h>
63#include <dev/pci/pcivar.h>
64
65#include <net/bpf.h>
66#include <net/if.h>
67#include <net/if_var.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_dl.h>
71#include <net/if_media.h>
72#include <net/if_types.h>
73
74#include <net80211/ieee80211_var.h>
75#include <net80211/ieee80211_radiotap.h>
76#include <net80211/ieee80211_input.h>
77#include <net80211/ieee80211_regdomain.h>
78
79#include <netinet/in.h>
80#include <netinet/in_systm.h>
81#include <netinet/in_var.h>
82#include <netinet/ip.h>
83#include <netinet/if_ether.h>
84
85#include <dev/iwi/if_iwireg.h>
86#include <dev/iwi/if_iwivar.h>
87#include <dev/iwi/if_iwi_ioctl.h>
88
89#define IWI_DEBUG
90#ifdef IWI_DEBUG
91#define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
92#define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
93int iwi_debug = 0;
94SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
95
96static const char *iwi_fw_states[] = {
97	"IDLE", 		/* IWI_FW_IDLE */
98	"LOADING",		/* IWI_FW_LOADING */
99	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
100	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
101	"SCANNING",		/* IWI_FW_SCANNING */
102};
103#else
104#define DPRINTF(x)
105#define DPRINTFN(n, x)
106#endif
107
108MODULE_DEPEND(iwi, pci,  1, 1, 1);
109MODULE_DEPEND(iwi, wlan, 1, 1, 1);
110MODULE_DEPEND(iwi, firmware, 1, 1, 1);
111
112enum {
113	IWI_LED_TX,
114	IWI_LED_RX,
115	IWI_LED_POLL,
116};
117
118struct iwi_ident {
119	uint16_t	vendor;
120	uint16_t	device;
121	const char	*name;
122};
123
124static const struct iwi_ident iwi_ident_table[] = {
125	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
126	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
127	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
128	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
129
130	{ 0, 0, NULL }
131};
132
133static const uint8_t def_chan_2ghz[] =
134	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
135static const uint8_t def_chan_5ghz_band1[] =
136	{ 36, 40, 44, 48, 52, 56, 60, 64 };
137static const uint8_t def_chan_5ghz_band2[] =
138	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
139static const uint8_t def_chan_5ghz_band3[] =
140	{ 149, 153, 157, 161, 165 };
141
142static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
143		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
144		    const uint8_t [IEEE80211_ADDR_LEN],
145		    const uint8_t [IEEE80211_ADDR_LEN]);
146static void	iwi_vap_delete(struct ieee80211vap *);
147static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
148static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
149		    int);
150static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
151static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
152static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
153		    int, bus_addr_t, bus_addr_t);
154static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
155static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
156static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
157		    int);
158static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
159static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
160static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
161		    const uint8_t [IEEE80211_ADDR_LEN]);
162static void	iwi_node_free(struct ieee80211_node *);
163static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
164static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
165static void	iwi_wme_init(struct iwi_softc *);
166static int	iwi_wme_setparams(struct iwi_softc *);
167static int	iwi_wme_update(struct ieee80211com *);
168static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
169static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
170		    struct iwi_frame *);
171static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
172static void	iwi_rx_intr(struct iwi_softc *);
173static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
174static void	iwi_intr(void *);
175static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
176static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
177static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
178		    struct ieee80211_node *, int);
179static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
180		    const struct ieee80211_bpf_params *);
181static void	iwi_start(struct iwi_softc *);
182static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
183static void	iwi_watchdog(void *);
184static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
185static void	iwi_parent(struct ieee80211com *);
186static void	iwi_stop_master(struct iwi_softc *);
187static int	iwi_reset(struct iwi_softc *);
188static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
189static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
190static void	iwi_release_fw_dma(struct iwi_softc *sc);
191static int	iwi_config(struct iwi_softc *);
192static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
193static void	iwi_put_firmware(struct iwi_softc *);
194static void	iwi_monitor_scan(void *, int);
195static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
196static void	iwi_scan_start(struct ieee80211com *);
197static void	iwi_scan_end(struct ieee80211com *);
198static void	iwi_set_channel(struct ieee80211com *);
199static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
200static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
201static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
202static void	iwi_disassoc(void *, int);
203static int	iwi_disassociate(struct iwi_softc *, int quiet);
204static void	iwi_init_locked(struct iwi_softc *);
205static void	iwi_init(void *);
206static int	iwi_init_fw_dma(struct iwi_softc *, int);
207static void	iwi_stop_locked(void *);
208static void	iwi_stop(struct iwi_softc *);
209static void	iwi_restart(void *, int);
210static int	iwi_getrfkill(struct iwi_softc *);
211static void	iwi_radio_on(void *, int);
212static void	iwi_radio_off(void *, int);
213static void	iwi_sysctlattach(struct iwi_softc *);
214static void	iwi_led_event(struct iwi_softc *, int);
215static void	iwi_ledattach(struct iwi_softc *);
216static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
217static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
218		    struct ieee80211_channel []);
219
220static int iwi_probe(device_t);
221static int iwi_attach(device_t);
222static int iwi_detach(device_t);
223static int iwi_shutdown(device_t);
224static int iwi_suspend(device_t);
225static int iwi_resume(device_t);
226
227static device_method_t iwi_methods[] = {
228	/* Device interface */
229	DEVMETHOD(device_probe,		iwi_probe),
230	DEVMETHOD(device_attach,	iwi_attach),
231	DEVMETHOD(device_detach,	iwi_detach),
232	DEVMETHOD(device_shutdown,	iwi_shutdown),
233	DEVMETHOD(device_suspend,	iwi_suspend),
234	DEVMETHOD(device_resume,	iwi_resume),
235
236	DEVMETHOD_END
237};
238
239static driver_t iwi_driver = {
240	"iwi",
241	iwi_methods,
242	sizeof (struct iwi_softc)
243};
244
245static devclass_t iwi_devclass;
246
247DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
248
249MODULE_VERSION(iwi, 1);
250
251static __inline uint8_t
252MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
253{
254	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
255	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
256}
257
258static __inline uint32_t
259MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
260{
261	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
262	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
263}
264
265static int
266iwi_probe(device_t dev)
267{
268	const struct iwi_ident *ident;
269
270	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
271		if (pci_get_vendor(dev) == ident->vendor &&
272		    pci_get_device(dev) == ident->device) {
273			device_set_desc(dev, ident->name);
274			return (BUS_PROBE_DEFAULT);
275		}
276	}
277	return ENXIO;
278}
279
280static int
281iwi_attach(device_t dev)
282{
283	struct iwi_softc *sc = device_get_softc(dev);
284	struct ieee80211com *ic = &sc->sc_ic;
285	uint16_t val;
286	int i, error;
287
288	sc->sc_dev = dev;
289
290	IWI_LOCK_INIT(sc);
291	mbufq_init(&sc->sc_snd, ifqmaxlen);
292
293	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
294
295	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
296	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
297	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
298	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
299	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
300
301	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
302	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
303
304	pci_write_config(dev, 0x41, 0, 1);
305
306	/* enable bus-mastering */
307	pci_enable_busmaster(dev);
308
309	i = PCIR_BAR(0);
310	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
311	if (sc->mem == NULL) {
312		device_printf(dev, "could not allocate memory resource\n");
313		goto fail;
314	}
315
316	sc->sc_st = rman_get_bustag(sc->mem);
317	sc->sc_sh = rman_get_bushandle(sc->mem);
318
319	i = 0;
320	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
321	    RF_ACTIVE | RF_SHAREABLE);
322	if (sc->irq == NULL) {
323		device_printf(dev, "could not allocate interrupt resource\n");
324		goto fail;
325	}
326
327	if (iwi_reset(sc) != 0) {
328		device_printf(dev, "could not reset adapter\n");
329		goto fail;
330	}
331
332	/*
333	 * Allocate rings.
334	 */
335	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
336		device_printf(dev, "could not allocate Cmd ring\n");
337		goto fail;
338	}
339
340	for (i = 0; i < 4; i++) {
341		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
342		    IWI_CSR_TX1_RIDX + i * 4,
343		    IWI_CSR_TX1_WIDX + i * 4);
344		if (error != 0) {
345			device_printf(dev, "could not allocate Tx ring %d\n",
346				i+i);
347			goto fail;
348		}
349	}
350
351	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
352		device_printf(dev, "could not allocate Rx ring\n");
353		goto fail;
354	}
355
356	iwi_wme_init(sc);
357
358	ic->ic_softc = sc;
359	ic->ic_name = device_get_nameunit(dev);
360	ic->ic_opmode = IEEE80211_M_STA;
361	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
362
363	/* set device capabilities */
364	ic->ic_caps =
365	      IEEE80211_C_STA		/* station mode supported */
366	    | IEEE80211_C_IBSS		/* IBSS mode supported */
367	    | IEEE80211_C_MONITOR	/* monitor mode supported */
368	    | IEEE80211_C_PMGT		/* power save supported */
369	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
370	    | IEEE80211_C_WPA		/* 802.11i */
371	    | IEEE80211_C_WME		/* 802.11e */
372#if 0
373	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
374#endif
375	    ;
376
377	/* read MAC address from EEPROM */
378	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
379	ic->ic_macaddr[0] = val & 0xff;
380	ic->ic_macaddr[1] = val >> 8;
381	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
382	ic->ic_macaddr[2] = val & 0xff;
383	ic->ic_macaddr[3] = val >> 8;
384	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
385	ic->ic_macaddr[4] = val & 0xff;
386	ic->ic_macaddr[5] = val >> 8;
387
388	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
389	    ic->ic_channels);
390
391	ieee80211_ifattach(ic);
392	/* override default methods */
393	ic->ic_node_alloc = iwi_node_alloc;
394	sc->sc_node_free = ic->ic_node_free;
395	ic->ic_node_free = iwi_node_free;
396	ic->ic_raw_xmit = iwi_raw_xmit;
397	ic->ic_scan_start = iwi_scan_start;
398	ic->ic_scan_end = iwi_scan_end;
399	ic->ic_set_channel = iwi_set_channel;
400	ic->ic_scan_curchan = iwi_scan_curchan;
401	ic->ic_scan_mindwell = iwi_scan_mindwell;
402	ic->ic_wme.wme_update = iwi_wme_update;
403
404	ic->ic_vap_create = iwi_vap_create;
405	ic->ic_vap_delete = iwi_vap_delete;
406	ic->ic_ioctl = iwi_ioctl;
407	ic->ic_transmit = iwi_transmit;
408	ic->ic_parent = iwi_parent;
409	ic->ic_getradiocaps = iwi_getradiocaps;
410
411	ieee80211_radiotap_attach(ic,
412	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
413		IWI_TX_RADIOTAP_PRESENT,
414	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
415		IWI_RX_RADIOTAP_PRESENT);
416
417	iwi_sysctlattach(sc);
418	iwi_ledattach(sc);
419
420	/*
421	 * Hook our interrupt after all initialization is complete.
422	 */
423	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
424	    NULL, iwi_intr, sc, &sc->sc_ih);
425	if (error != 0) {
426		device_printf(dev, "could not set up interrupt\n");
427		goto fail;
428	}
429
430	if (bootverbose)
431		ieee80211_announce(ic);
432
433	return 0;
434fail:
435	/* XXX fix */
436	iwi_detach(dev);
437	return ENXIO;
438}
439
440static int
441iwi_detach(device_t dev)
442{
443	struct iwi_softc *sc = device_get_softc(dev);
444	struct ieee80211com *ic = &sc->sc_ic;
445
446	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
447
448	/* NB: do early to drain any pending tasks */
449	ieee80211_draintask(ic, &sc->sc_radiontask);
450	ieee80211_draintask(ic, &sc->sc_radiofftask);
451	ieee80211_draintask(ic, &sc->sc_restarttask);
452	ieee80211_draintask(ic, &sc->sc_disassoctask);
453	ieee80211_draintask(ic, &sc->sc_monitortask);
454
455	iwi_stop(sc);
456
457	ieee80211_ifdetach(ic);
458
459	iwi_put_firmware(sc);
460	iwi_release_fw_dma(sc);
461
462	iwi_free_cmd_ring(sc, &sc->cmdq);
463	iwi_free_tx_ring(sc, &sc->txq[0]);
464	iwi_free_tx_ring(sc, &sc->txq[1]);
465	iwi_free_tx_ring(sc, &sc->txq[2]);
466	iwi_free_tx_ring(sc, &sc->txq[3]);
467	iwi_free_rx_ring(sc, &sc->rxq);
468
469	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
470
471	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
472	    sc->mem);
473
474	delete_unrhdr(sc->sc_unr);
475	mbufq_drain(&sc->sc_snd);
476
477	IWI_LOCK_DESTROY(sc);
478
479	return 0;
480}
481
482static struct ieee80211vap *
483iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
484    enum ieee80211_opmode opmode, int flags,
485    const uint8_t bssid[IEEE80211_ADDR_LEN],
486    const uint8_t mac[IEEE80211_ADDR_LEN])
487{
488	struct iwi_softc *sc = ic->ic_softc;
489	struct iwi_vap *ivp;
490	struct ieee80211vap *vap;
491	int i;
492
493	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
494		return NULL;
495	/*
496	 * Get firmware image (and possibly dma memory) on mode change.
497	 */
498	if (iwi_get_firmware(sc, opmode))
499		return NULL;
500	/* allocate DMA memory for mapping firmware image */
501	i = sc->fw_fw.size;
502	if (sc->fw_boot.size > i)
503		i = sc->fw_boot.size;
504	/* XXX do we dma the ucode as well ? */
505	if (sc->fw_uc.size > i)
506		i = sc->fw_uc.size;
507	if (iwi_init_fw_dma(sc, i))
508		return NULL;
509
510	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
511	vap = &ivp->iwi_vap;
512	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
513	/* override the default, the setting comes from the linux driver */
514	vap->iv_bmissthreshold = 24;
515	/* override with driver methods */
516	ivp->iwi_newstate = vap->iv_newstate;
517	vap->iv_newstate = iwi_newstate;
518
519	/* complete setup */
520	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
521	    mac);
522	ic->ic_opmode = opmode;
523	return vap;
524}
525
526static void
527iwi_vap_delete(struct ieee80211vap *vap)
528{
529	struct iwi_vap *ivp = IWI_VAP(vap);
530
531	ieee80211_vap_detach(vap);
532	free(ivp, M_80211_VAP);
533}
534
535static void
536iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
537{
538	if (error != 0)
539		return;
540
541	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
542
543	*(bus_addr_t *)arg = segs[0].ds_addr;
544}
545
546static int
547iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
548{
549	int error;
550
551	ring->count = count;
552	ring->queued = 0;
553	ring->cur = ring->next = 0;
554
555	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
556	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
557	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
558	    NULL, NULL, &ring->desc_dmat);
559	if (error != 0) {
560		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
561		goto fail;
562	}
563
564	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
565	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
566	if (error != 0) {
567		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
568		goto fail;
569	}
570
571	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
572	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
573	if (error != 0) {
574		device_printf(sc->sc_dev, "could not load desc DMA map\n");
575		goto fail;
576	}
577
578	return 0;
579
580fail:	iwi_free_cmd_ring(sc, ring);
581	return error;
582}
583
584static void
585iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
586{
587	ring->queued = 0;
588	ring->cur = ring->next = 0;
589}
590
591static void
592iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
593{
594	if (ring->desc != NULL) {
595		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
596		    BUS_DMASYNC_POSTWRITE);
597		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
598		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
599	}
600
601	if (ring->desc_dmat != NULL)
602		bus_dma_tag_destroy(ring->desc_dmat);
603}
604
605static int
606iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
607    bus_addr_t csr_ridx, bus_addr_t csr_widx)
608{
609	int i, error;
610
611	ring->count = count;
612	ring->queued = 0;
613	ring->cur = ring->next = 0;
614	ring->csr_ridx = csr_ridx;
615	ring->csr_widx = csr_widx;
616
617	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
618	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
619	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
620	    NULL, &ring->desc_dmat);
621	if (error != 0) {
622		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
623		goto fail;
624	}
625
626	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
627	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
628	if (error != 0) {
629		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
630		goto fail;
631	}
632
633	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
634	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
635	if (error != 0) {
636		device_printf(sc->sc_dev, "could not load desc DMA map\n");
637		goto fail;
638	}
639
640	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
641	    M_NOWAIT | M_ZERO);
642	if (ring->data == NULL) {
643		device_printf(sc->sc_dev, "could not allocate soft data\n");
644		error = ENOMEM;
645		goto fail;
646	}
647
648	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
649	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
650	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
651	if (error != 0) {
652		device_printf(sc->sc_dev, "could not create data DMA tag\n");
653		goto fail;
654	}
655
656	for (i = 0; i < count; i++) {
657		error = bus_dmamap_create(ring->data_dmat, 0,
658		    &ring->data[i].map);
659		if (error != 0) {
660			device_printf(sc->sc_dev, "could not create DMA map\n");
661			goto fail;
662		}
663	}
664
665	return 0;
666
667fail:	iwi_free_tx_ring(sc, ring);
668	return error;
669}
670
671static void
672iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
673{
674	struct iwi_tx_data *data;
675	int i;
676
677	for (i = 0; i < ring->count; i++) {
678		data = &ring->data[i];
679
680		if (data->m != NULL) {
681			bus_dmamap_sync(ring->data_dmat, data->map,
682			    BUS_DMASYNC_POSTWRITE);
683			bus_dmamap_unload(ring->data_dmat, data->map);
684			m_freem(data->m);
685			data->m = NULL;
686		}
687
688		if (data->ni != NULL) {
689			ieee80211_free_node(data->ni);
690			data->ni = NULL;
691		}
692	}
693
694	ring->queued = 0;
695	ring->cur = ring->next = 0;
696}
697
698static void
699iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
700{
701	struct iwi_tx_data *data;
702	int i;
703
704	if (ring->desc != NULL) {
705		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
706		    BUS_DMASYNC_POSTWRITE);
707		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
708		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
709	}
710
711	if (ring->desc_dmat != NULL)
712		bus_dma_tag_destroy(ring->desc_dmat);
713
714	if (ring->data != NULL) {
715		for (i = 0; i < ring->count; i++) {
716			data = &ring->data[i];
717
718			if (data->m != NULL) {
719				bus_dmamap_sync(ring->data_dmat, data->map,
720				    BUS_DMASYNC_POSTWRITE);
721				bus_dmamap_unload(ring->data_dmat, data->map);
722				m_freem(data->m);
723			}
724
725			if (data->ni != NULL)
726				ieee80211_free_node(data->ni);
727
728			if (data->map != NULL)
729				bus_dmamap_destroy(ring->data_dmat, data->map);
730		}
731
732		free(ring->data, M_DEVBUF);
733	}
734
735	if (ring->data_dmat != NULL)
736		bus_dma_tag_destroy(ring->data_dmat);
737}
738
739static int
740iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
741{
742	struct iwi_rx_data *data;
743	int i, error;
744
745	ring->count = count;
746	ring->cur = 0;
747
748	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
749	    M_NOWAIT | M_ZERO);
750	if (ring->data == NULL) {
751		device_printf(sc->sc_dev, "could not allocate soft data\n");
752		error = ENOMEM;
753		goto fail;
754	}
755
756	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
757	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
758	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
759	if (error != 0) {
760		device_printf(sc->sc_dev, "could not create data DMA tag\n");
761		goto fail;
762	}
763
764	for (i = 0; i < count; i++) {
765		data = &ring->data[i];
766
767		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
768		if (error != 0) {
769			device_printf(sc->sc_dev, "could not create DMA map\n");
770			goto fail;
771		}
772
773		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
774		if (data->m == NULL) {
775			device_printf(sc->sc_dev,
776			    "could not allocate rx mbuf\n");
777			error = ENOMEM;
778			goto fail;
779		}
780
781		error = bus_dmamap_load(ring->data_dmat, data->map,
782		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
783		    &data->physaddr, 0);
784		if (error != 0) {
785			device_printf(sc->sc_dev,
786			    "could not load rx buf DMA map");
787			goto fail;
788		}
789
790		data->reg = IWI_CSR_RX_BASE + i * 4;
791	}
792
793	return 0;
794
795fail:	iwi_free_rx_ring(sc, ring);
796	return error;
797}
798
799static void
800iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
801{
802	ring->cur = 0;
803}
804
805static void
806iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
807{
808	struct iwi_rx_data *data;
809	int i;
810
811	if (ring->data != NULL) {
812		for (i = 0; i < ring->count; i++) {
813			data = &ring->data[i];
814
815			if (data->m != NULL) {
816				bus_dmamap_sync(ring->data_dmat, data->map,
817				    BUS_DMASYNC_POSTREAD);
818				bus_dmamap_unload(ring->data_dmat, data->map);
819				m_freem(data->m);
820			}
821
822			if (data->map != NULL)
823				bus_dmamap_destroy(ring->data_dmat, data->map);
824		}
825
826		free(ring->data, M_DEVBUF);
827	}
828
829	if (ring->data_dmat != NULL)
830		bus_dma_tag_destroy(ring->data_dmat);
831}
832
833static int
834iwi_shutdown(device_t dev)
835{
836	struct iwi_softc *sc = device_get_softc(dev);
837
838	iwi_stop(sc);
839	iwi_put_firmware(sc);		/* ??? XXX */
840
841	return 0;
842}
843
844static int
845iwi_suspend(device_t dev)
846{
847	struct iwi_softc *sc = device_get_softc(dev);
848	struct ieee80211com *ic = &sc->sc_ic;
849
850	ieee80211_suspend_all(ic);
851	return 0;
852}
853
854static int
855iwi_resume(device_t dev)
856{
857	struct iwi_softc *sc = device_get_softc(dev);
858	struct ieee80211com *ic = &sc->sc_ic;
859
860	pci_write_config(dev, 0x41, 0, 1);
861
862	ieee80211_resume_all(ic);
863	return 0;
864}
865
866static struct ieee80211_node *
867iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
868{
869	struct iwi_node *in;
870
871	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
872	if (in == NULL)
873		return NULL;
874	/* XXX assign sta table entry for adhoc */
875	in->in_station = -1;
876
877	return &in->in_node;
878}
879
880static void
881iwi_node_free(struct ieee80211_node *ni)
882{
883	struct ieee80211com *ic = ni->ni_ic;
884	struct iwi_softc *sc = ic->ic_softc;
885	struct iwi_node *in = (struct iwi_node *)ni;
886
887	if (in->in_station != -1) {
888		DPRINTF(("%s mac %6D station %u\n", __func__,
889		    ni->ni_macaddr, ":", in->in_station));
890		free_unr(sc->sc_unr, in->in_station);
891	}
892
893	sc->sc_node_free(ni);
894}
895
896/*
897 * Convert h/w rate code to IEEE rate code.
898 */
899static int
900iwi_cvtrate(int iwirate)
901{
902	switch (iwirate) {
903	case IWI_RATE_DS1:	return 2;
904	case IWI_RATE_DS2:	return 4;
905	case IWI_RATE_DS5:	return 11;
906	case IWI_RATE_DS11:	return 22;
907	case IWI_RATE_OFDM6:	return 12;
908	case IWI_RATE_OFDM9:	return 18;
909	case IWI_RATE_OFDM12:	return 24;
910	case IWI_RATE_OFDM18:	return 36;
911	case IWI_RATE_OFDM24:	return 48;
912	case IWI_RATE_OFDM36:	return 72;
913	case IWI_RATE_OFDM48:	return 96;
914	case IWI_RATE_OFDM54:	return 108;
915	}
916	return 0;
917}
918
919/*
920 * The firmware automatically adapts the transmit speed.  We report its current
921 * value here.
922 */
923static void
924iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
925{
926	struct ieee80211vap *vap = ifp->if_softc;
927	struct ieee80211com *ic = vap->iv_ic;
928	struct iwi_softc *sc = ic->ic_softc;
929	struct ieee80211_node *ni;
930
931	/* read current transmission rate from adapter */
932	ni = ieee80211_ref_node(vap->iv_bss);
933	ni->ni_txrate =
934	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
935	ieee80211_free_node(ni);
936	ieee80211_media_status(ifp, imr);
937}
938
939static int
940iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
941{
942	struct iwi_vap *ivp = IWI_VAP(vap);
943	struct ieee80211com *ic = vap->iv_ic;
944	struct iwi_softc *sc = ic->ic_softc;
945	IWI_LOCK_DECL;
946
947	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
948		ieee80211_state_name[vap->iv_state],
949		ieee80211_state_name[nstate], sc->flags));
950
951	IEEE80211_UNLOCK(ic);
952	IWI_LOCK(sc);
953	switch (nstate) {
954	case IEEE80211_S_INIT:
955		/*
956		 * NB: don't try to do this if iwi_stop_master has
957		 *     shutdown the firmware and disabled interrupts.
958		 */
959		if (vap->iv_state == IEEE80211_S_RUN &&
960		    (sc->flags & IWI_FLAG_FW_INITED))
961			iwi_disassociate(sc, 0);
962		break;
963	case IEEE80211_S_AUTH:
964		iwi_auth_and_assoc(sc, vap);
965		break;
966	case IEEE80211_S_RUN:
967		if (vap->iv_opmode == IEEE80211_M_IBSS &&
968		    vap->iv_state == IEEE80211_S_SCAN) {
969			/*
970			 * XXX when joining an ibss network we are called
971			 * with a SCAN -> RUN transition on scan complete.
972			 * Use that to call iwi_auth_and_assoc.  On completing
973			 * the join we are then called again with an
974			 * AUTH -> RUN transition and we want to do nothing.
975			 * This is all totally bogus and needs to be redone.
976			 */
977			iwi_auth_and_assoc(sc, vap);
978		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
979			ieee80211_runtask(ic, &sc->sc_monitortask);
980		break;
981	case IEEE80211_S_ASSOC:
982		/*
983		 * If we are transitioning from AUTH then just wait
984		 * for the ASSOC status to come back from the firmware.
985		 * Otherwise we need to issue the association request.
986		 */
987		if (vap->iv_state == IEEE80211_S_AUTH)
988			break;
989		iwi_auth_and_assoc(sc, vap);
990		break;
991	default:
992		break;
993	}
994	IWI_UNLOCK(sc);
995	IEEE80211_LOCK(ic);
996	return ivp->iwi_newstate(vap, nstate, arg);
997}
998
999/*
1000 * WME parameters coming from IEEE 802.11e specification.  These values are
1001 * already declared in ieee80211_proto.c, but they are static so they can't
1002 * be reused here.
1003 */
1004static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1005	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1006	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1007	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1008	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1009};
1010
1011static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1012	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1013	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1014	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1015	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1016};
1017#define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1018#define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1019
1020static void
1021iwi_wme_init(struct iwi_softc *sc)
1022{
1023	const struct wmeParams *wmep;
1024	int ac;
1025
1026	memset(sc->wme, 0, sizeof sc->wme);
1027	for (ac = 0; ac < WME_NUM_AC; ac++) {
1028		/* set WME values for CCK modulation */
1029		wmep = &iwi_wme_cck_params[ac];
1030		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1031		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1032		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1033		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1034		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1035
1036		/* set WME values for OFDM modulation */
1037		wmep = &iwi_wme_ofdm_params[ac];
1038		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1039		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1040		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1041		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1042		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1043	}
1044}
1045
1046static int
1047iwi_wme_setparams(struct iwi_softc *sc)
1048{
1049	struct ieee80211com *ic = &sc->sc_ic;
1050	const struct wmeParams *wmep;
1051	int ac;
1052
1053	for (ac = 0; ac < WME_NUM_AC; ac++) {
1054		/* set WME values for current operating mode */
1055		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1056		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1057		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1058		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1059		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1060		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1061	}
1062
1063	DPRINTF(("Setting WME parameters\n"));
1064	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1065}
1066#undef IWI_USEC
1067#undef IWI_EXP2
1068
1069static int
1070iwi_wme_update(struct ieee80211com *ic)
1071{
1072	struct iwi_softc *sc = ic->ic_softc;
1073	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1074	IWI_LOCK_DECL;
1075
1076	/*
1077	 * We may be called to update the WME parameters in
1078	 * the adapter at various places.  If we're already
1079	 * associated then initiate the request immediately;
1080	 * otherwise we assume the params will get sent down
1081	 * to the adapter as part of the work iwi_auth_and_assoc
1082	 * does.
1083	 */
1084	if (vap->iv_state == IEEE80211_S_RUN) {
1085		IWI_LOCK(sc);
1086		iwi_wme_setparams(sc);
1087		IWI_UNLOCK(sc);
1088	}
1089	return (0);
1090}
1091
1092static int
1093iwi_wme_setie(struct iwi_softc *sc)
1094{
1095	struct ieee80211_wme_info wme;
1096
1097	memset(&wme, 0, sizeof wme);
1098	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1099	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1100	wme.wme_oui[0] = 0x00;
1101	wme.wme_oui[1] = 0x50;
1102	wme.wme_oui[2] = 0xf2;
1103	wme.wme_type = WME_OUI_TYPE;
1104	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1105	wme.wme_version = WME_VERSION;
1106	wme.wme_info = 0;
1107
1108	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1109	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1110}
1111
1112/*
1113 * Read 16 bits at address 'addr' from the serial EEPROM.
1114 */
1115static uint16_t
1116iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1117{
1118	uint32_t tmp;
1119	uint16_t val;
1120	int n;
1121
1122	/* clock C once before the first command */
1123	IWI_EEPROM_CTL(sc, 0);
1124	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1125	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1126	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1127
1128	/* write start bit (1) */
1129	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1130	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1131
1132	/* write READ opcode (10) */
1133	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1136	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1137
1138	/* write address A7-A0 */
1139	for (n = 7; n >= 0; n--) {
1140		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1141		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1142		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1143		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1144	}
1145
1146	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1147
1148	/* read data Q15-Q0 */
1149	val = 0;
1150	for (n = 15; n >= 0; n--) {
1151		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1152		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1154		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1155	}
1156
1157	IWI_EEPROM_CTL(sc, 0);
1158
1159	/* clear Chip Select and clock C */
1160	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1161	IWI_EEPROM_CTL(sc, 0);
1162	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1163
1164	return val;
1165}
1166
1167static void
1168iwi_setcurchan(struct iwi_softc *sc, int chan)
1169{
1170	struct ieee80211com *ic = &sc->sc_ic;
1171
1172	sc->curchan = chan;
1173	ieee80211_radiotap_chan_change(ic);
1174}
1175
1176static void
1177iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1178    struct iwi_frame *frame)
1179{
1180	struct ieee80211com *ic = &sc->sc_ic;
1181	struct mbuf *mnew, *m;
1182	struct ieee80211_node *ni;
1183	int type, error, framelen;
1184	int8_t rssi, nf;
1185	IWI_LOCK_DECL;
1186
1187	framelen = le16toh(frame->len);
1188	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1189		/*
1190		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1191		 *     out of bounds; need to figure out how to limit
1192		 *     frame size in the firmware
1193		 */
1194		/* XXX stat */
1195		DPRINTFN(1,
1196		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1197		    le16toh(frame->len), frame->chan, frame->rssi,
1198		    frame->rssi_dbm));
1199		return;
1200	}
1201
1202	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1203	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1204
1205	if (frame->chan != sc->curchan)
1206		iwi_setcurchan(sc, frame->chan);
1207
1208	/*
1209	 * Try to allocate a new mbuf for this ring element and load it before
1210	 * processing the current mbuf. If the ring element cannot be loaded,
1211	 * drop the received packet and reuse the old mbuf. In the unlikely
1212	 * case that the old mbuf can't be reloaded either, explicitly panic.
1213	 */
1214	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1215	if (mnew == NULL) {
1216		counter_u64_add(ic->ic_ierrors, 1);
1217		return;
1218	}
1219
1220	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1221
1222	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1223	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1224	    0);
1225	if (error != 0) {
1226		m_freem(mnew);
1227
1228		/* try to reload the old mbuf */
1229		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1230		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1231		    &data->physaddr, 0);
1232		if (error != 0) {
1233			/* very unlikely that it will fail... */
1234			panic("%s: could not load old rx mbuf",
1235			    device_get_name(sc->sc_dev));
1236		}
1237		counter_u64_add(ic->ic_ierrors, 1);
1238		return;
1239	}
1240
1241	/*
1242	 * New mbuf successfully loaded, update Rx ring and continue
1243	 * processing.
1244	 */
1245	m = data->m;
1246	data->m = mnew;
1247	CSR_WRITE_4(sc, data->reg, data->physaddr);
1248
1249	/* finalize mbuf */
1250	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1251	    sizeof (struct iwi_frame) + framelen;
1252
1253	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1254
1255	rssi = frame->rssi_dbm;
1256	nf = -95;
1257	if (ieee80211_radiotap_active(ic)) {
1258		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1259
1260		tap->wr_flags = 0;
1261		tap->wr_antsignal = rssi;
1262		tap->wr_antnoise = nf;
1263		tap->wr_rate = iwi_cvtrate(frame->rate);
1264		tap->wr_antenna = frame->antenna;
1265	}
1266	IWI_UNLOCK(sc);
1267
1268	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1269	if (ni != NULL) {
1270		type = ieee80211_input(ni, m, rssi, nf);
1271		ieee80211_free_node(ni);
1272	} else
1273		type = ieee80211_input_all(ic, m, rssi, nf);
1274
1275	IWI_LOCK(sc);
1276	if (sc->sc_softled) {
1277		/*
1278		 * Blink for any data frame.  Otherwise do a
1279		 * heartbeat-style blink when idle.  The latter
1280		 * is mainly for station mode where we depend on
1281		 * periodic beacon frames to trigger the poll event.
1282		 */
1283		if (type == IEEE80211_FC0_TYPE_DATA) {
1284			sc->sc_rxrate = frame->rate;
1285			iwi_led_event(sc, IWI_LED_RX);
1286		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1287			iwi_led_event(sc, IWI_LED_POLL);
1288	}
1289}
1290
1291/*
1292 * Check for an association response frame to see if QoS
1293 * has been negotiated.  We parse just enough to figure
1294 * out if we're supposed to use QoS.  The proper solution
1295 * is to pass the frame up so ieee80211_input can do the
1296 * work but that's made hard by how things currently are
1297 * done in the driver.
1298 */
1299static void
1300iwi_checkforqos(struct ieee80211vap *vap,
1301	const struct ieee80211_frame *wh, int len)
1302{
1303#define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1304	const uint8_t *frm, *efrm, *wme;
1305	struct ieee80211_node *ni;
1306	uint16_t capinfo, status, associd;
1307
1308	/* NB: +8 for capinfo, status, associd, and first ie */
1309	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1310	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1311		return;
1312	/*
1313	 * asresp frame format
1314	 *	[2] capability information
1315	 *	[2] status
1316	 *	[2] association ID
1317	 *	[tlv] supported rates
1318	 *	[tlv] extended supported rates
1319	 *	[tlv] WME
1320	 */
1321	frm = (const uint8_t *)&wh[1];
1322	efrm = ((const uint8_t *) wh) + len;
1323
1324	capinfo = le16toh(*(const uint16_t *)frm);
1325	frm += 2;
1326	status = le16toh(*(const uint16_t *)frm);
1327	frm += 2;
1328	associd = le16toh(*(const uint16_t *)frm);
1329	frm += 2;
1330
1331	wme = NULL;
1332	while (efrm - frm > 1) {
1333		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1334		switch (*frm) {
1335		case IEEE80211_ELEMID_VENDOR:
1336			if (iswmeoui(frm))
1337				wme = frm;
1338			break;
1339		}
1340		frm += frm[1] + 2;
1341	}
1342
1343	ni = ieee80211_ref_node(vap->iv_bss);
1344	ni->ni_capinfo = capinfo;
1345	ni->ni_associd = associd & 0x3fff;
1346	if (wme != NULL)
1347		ni->ni_flags |= IEEE80211_NODE_QOS;
1348	else
1349		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1350	ieee80211_free_node(ni);
1351#undef SUBTYPE
1352}
1353
1354static void
1355iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1356{
1357	struct iwi_notif_link_quality *lq;
1358	int len;
1359
1360	len = le16toh(notif->len);
1361
1362	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1363	    notif->type,
1364	    len,
1365	    sizeof(struct iwi_notif_link_quality)
1366	    ));
1367
1368	/* enforce length */
1369	if (len != sizeof(struct iwi_notif_link_quality)) {
1370		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1371		    notif->type,
1372		    len));
1373		return;
1374	}
1375
1376	lq = (struct iwi_notif_link_quality *)(notif + 1);
1377	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1378	sc->sc_linkqual_valid = 1;
1379}
1380
1381/*
1382 * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1383 */
1384
1385static void
1386iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1387{
1388	struct ieee80211com *ic = &sc->sc_ic;
1389	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1390	struct iwi_notif_scan_channel *chan;
1391	struct iwi_notif_scan_complete *scan;
1392	struct iwi_notif_authentication *auth;
1393	struct iwi_notif_association *assoc;
1394	struct iwi_notif_beacon_state *beacon;
1395
1396	switch (notif->type) {
1397	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1398		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1399
1400		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1401		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1402
1403		/* Reset the timer, the scan is still going */
1404		sc->sc_state_timer = 3;
1405		break;
1406
1407	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1408		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1409
1410		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1411		    scan->status));
1412
1413		IWI_STATE_END(sc, IWI_FW_SCANNING);
1414
1415		/*
1416		 * Monitor mode works by doing a passive scan to set
1417		 * the channel and enable rx.  Because we don't want
1418		 * to abort a scan lest the firmware crash we scan
1419		 * for a short period of time and automatically restart
1420		 * the scan when notified the sweep has completed.
1421		 */
1422		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1423			ieee80211_runtask(ic, &sc->sc_monitortask);
1424			break;
1425		}
1426
1427		if (scan->status == IWI_SCAN_COMPLETED) {
1428			/* NB: don't need to defer, net80211 does it for us */
1429			ieee80211_scan_next(vap);
1430		}
1431		break;
1432
1433	case IWI_NOTIF_TYPE_AUTHENTICATION:
1434		auth = (struct iwi_notif_authentication *)(notif + 1);
1435		switch (auth->state) {
1436		case IWI_AUTH_SUCCESS:
1437			DPRINTFN(2, ("Authentication succeeeded\n"));
1438			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1439			break;
1440		case IWI_AUTH_FAIL:
1441			/*
1442			 * These are delivered as an unsolicited deauth
1443			 * (e.g. due to inactivity) or in response to an
1444			 * associate request.
1445			 */
1446			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1447			if (vap->iv_state != IEEE80211_S_RUN) {
1448				DPRINTFN(2, ("Authentication failed\n"));
1449				vap->iv_stats.is_rx_auth_fail++;
1450				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1451			} else {
1452				DPRINTFN(2, ("Deauthenticated\n"));
1453				vap->iv_stats.is_rx_deauth++;
1454			}
1455			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1456			break;
1457		case IWI_AUTH_SENT_1:
1458		case IWI_AUTH_RECV_2:
1459		case IWI_AUTH_SEQ1_PASS:
1460			break;
1461		case IWI_AUTH_SEQ1_FAIL:
1462			DPRINTFN(2, ("Initial authentication handshake failed; "
1463				"you probably need shared key\n"));
1464			vap->iv_stats.is_rx_auth_fail++;
1465			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1466			/* XXX retry shared key when in auto */
1467			break;
1468		default:
1469			device_printf(sc->sc_dev,
1470			    "unknown authentication state %u\n", auth->state);
1471			break;
1472		}
1473		break;
1474
1475	case IWI_NOTIF_TYPE_ASSOCIATION:
1476		assoc = (struct iwi_notif_association *)(notif + 1);
1477		switch (assoc->state) {
1478		case IWI_AUTH_SUCCESS:
1479			/* re-association, do nothing */
1480			break;
1481		case IWI_ASSOC_SUCCESS:
1482			DPRINTFN(2, ("Association succeeded\n"));
1483			sc->flags |= IWI_FLAG_ASSOCIATED;
1484			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1485			iwi_checkforqos(vap,
1486			    (const struct ieee80211_frame *)(assoc+1),
1487			    le16toh(notif->len) - sizeof(*assoc) - 1);
1488			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1489			break;
1490		case IWI_ASSOC_INIT:
1491			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1492			switch (sc->fw_state) {
1493			case IWI_FW_ASSOCIATING:
1494				DPRINTFN(2, ("Association failed\n"));
1495				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1496				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1497				break;
1498
1499			case IWI_FW_DISASSOCIATING:
1500				DPRINTFN(2, ("Dissassociated\n"));
1501				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1502				vap->iv_stats.is_rx_disassoc++;
1503				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1504				break;
1505			}
1506			break;
1507		default:
1508			device_printf(sc->sc_dev,
1509			    "unknown association state %u\n", assoc->state);
1510			break;
1511		}
1512		break;
1513
1514	case IWI_NOTIF_TYPE_BEACON:
1515		/* XXX check struct length */
1516		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1517
1518		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1519		    beacon->state, le32toh(beacon->number)));
1520
1521		if (beacon->state == IWI_BEACON_MISS) {
1522			/*
1523			 * The firmware notifies us of every beacon miss
1524			 * so we need to track the count against the
1525			 * configured threshold before notifying the
1526			 * 802.11 layer.
1527			 * XXX try to roam, drop assoc only on much higher count
1528			 */
1529			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1530				DPRINTF(("Beacon miss: %u >= %u\n",
1531				    le32toh(beacon->number),
1532				    vap->iv_bmissthreshold));
1533				vap->iv_stats.is_beacon_miss++;
1534				/*
1535				 * It's pointless to notify the 802.11 layer
1536				 * as it'll try to send a probe request (which
1537				 * we'll discard) and then timeout and drop us
1538				 * into scan state.  Instead tell the firmware
1539				 * to disassociate and then on completion we'll
1540				 * kick the state machine to scan.
1541				 */
1542				ieee80211_runtask(ic, &sc->sc_disassoctask);
1543			}
1544		}
1545		break;
1546
1547	case IWI_NOTIF_TYPE_CALIBRATION:
1548	case IWI_NOTIF_TYPE_NOISE:
1549		/* XXX handle? */
1550		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1551		break;
1552	case IWI_NOTIF_TYPE_LINK_QUALITY:
1553		iwi_notif_link_quality(sc, notif);
1554		break;
1555
1556	default:
1557		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1558		    notif->type, notif->flags, le16toh(notif->len)));
1559		break;
1560	}
1561}
1562
1563static void
1564iwi_rx_intr(struct iwi_softc *sc)
1565{
1566	struct iwi_rx_data *data;
1567	struct iwi_hdr *hdr;
1568	uint32_t hw;
1569
1570	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1571
1572	for (; sc->rxq.cur != hw;) {
1573		data = &sc->rxq.data[sc->rxq.cur];
1574
1575		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1576		    BUS_DMASYNC_POSTREAD);
1577
1578		hdr = mtod(data->m, struct iwi_hdr *);
1579
1580		switch (hdr->type) {
1581		case IWI_HDR_TYPE_FRAME:
1582			iwi_frame_intr(sc, data, sc->rxq.cur,
1583			    (struct iwi_frame *)(hdr + 1));
1584			break;
1585
1586		case IWI_HDR_TYPE_NOTIF:
1587			iwi_notification_intr(sc,
1588			    (struct iwi_notif *)(hdr + 1));
1589			break;
1590
1591		default:
1592			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1593			    hdr->type);
1594		}
1595
1596		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1597
1598		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1599	}
1600
1601	/* tell the firmware what we have processed */
1602	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1603	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1604}
1605
1606static void
1607iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1608{
1609	struct iwi_tx_data *data;
1610	uint32_t hw;
1611
1612	hw = CSR_READ_4(sc, txq->csr_ridx);
1613
1614	while (txq->next != hw) {
1615		data = &txq->data[txq->next];
1616		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1617		bus_dmamap_sync(txq->data_dmat, data->map,
1618		    BUS_DMASYNC_POSTWRITE);
1619		bus_dmamap_unload(txq->data_dmat, data->map);
1620		ieee80211_tx_complete(data->ni, data->m, 0);
1621		data->ni = NULL;
1622		data->m = NULL;
1623		txq->queued--;
1624		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1625	}
1626	sc->sc_tx_timer = 0;
1627	if (sc->sc_softled)
1628		iwi_led_event(sc, IWI_LED_TX);
1629	iwi_start(sc);
1630}
1631
1632static void
1633iwi_fatal_error_intr(struct iwi_softc *sc)
1634{
1635	struct ieee80211com *ic = &sc->sc_ic;
1636	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1637
1638	device_printf(sc->sc_dev, "firmware error\n");
1639	if (vap != NULL)
1640		ieee80211_cancel_scan(vap);
1641	ieee80211_runtask(ic, &sc->sc_restarttask);
1642
1643	sc->flags &= ~IWI_FLAG_BUSY;
1644	sc->sc_busy_timer = 0;
1645	wakeup(sc);
1646}
1647
1648static void
1649iwi_radio_off_intr(struct iwi_softc *sc)
1650{
1651
1652	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1653}
1654
1655static void
1656iwi_intr(void *arg)
1657{
1658	struct iwi_softc *sc = arg;
1659	uint32_t r;
1660	IWI_LOCK_DECL;
1661
1662	IWI_LOCK(sc);
1663
1664	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1665		IWI_UNLOCK(sc);
1666		return;
1667	}
1668
1669	/* acknowledge interrupts */
1670	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1671
1672	if (r & IWI_INTR_FATAL_ERROR) {
1673		iwi_fatal_error_intr(sc);
1674		goto done;
1675	}
1676
1677	if (r & IWI_INTR_FW_INITED) {
1678		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1679			wakeup(sc);
1680	}
1681
1682	if (r & IWI_INTR_RADIO_OFF)
1683		iwi_radio_off_intr(sc);
1684
1685	if (r & IWI_INTR_CMD_DONE) {
1686		sc->flags &= ~IWI_FLAG_BUSY;
1687		sc->sc_busy_timer = 0;
1688		wakeup(sc);
1689	}
1690
1691	if (r & IWI_INTR_TX1_DONE)
1692		iwi_tx_intr(sc, &sc->txq[0]);
1693
1694	if (r & IWI_INTR_TX2_DONE)
1695		iwi_tx_intr(sc, &sc->txq[1]);
1696
1697	if (r & IWI_INTR_TX3_DONE)
1698		iwi_tx_intr(sc, &sc->txq[2]);
1699
1700	if (r & IWI_INTR_TX4_DONE)
1701		iwi_tx_intr(sc, &sc->txq[3]);
1702
1703	if (r & IWI_INTR_RX_DONE)
1704		iwi_rx_intr(sc);
1705
1706	if (r & IWI_INTR_PARITY_ERROR) {
1707		/* XXX rate-limit */
1708		device_printf(sc->sc_dev, "parity error\n");
1709	}
1710done:
1711	IWI_UNLOCK(sc);
1712}
1713
1714static int
1715iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1716{
1717	struct iwi_cmd_desc *desc;
1718
1719	IWI_LOCK_ASSERT(sc);
1720
1721	if (sc->flags & IWI_FLAG_BUSY) {
1722		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1723			__func__, type);
1724		return EAGAIN;
1725	}
1726	sc->flags |= IWI_FLAG_BUSY;
1727	sc->sc_busy_timer = 2;
1728
1729	desc = &sc->cmdq.desc[sc->cmdq.cur];
1730
1731	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1732	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1733	desc->type = type;
1734	desc->len = len;
1735	memcpy(desc->data, data, len);
1736
1737	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1738	    BUS_DMASYNC_PREWRITE);
1739
1740	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1741	    type, len));
1742
1743	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1744	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1745
1746	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1747}
1748
1749static void
1750iwi_write_ibssnode(struct iwi_softc *sc,
1751	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1752{
1753	struct iwi_ibssnode node;
1754
1755	/* write node information into NIC memory */
1756	memset(&node, 0, sizeof node);
1757	IEEE80211_ADDR_COPY(node.bssid, addr);
1758
1759	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1760
1761	CSR_WRITE_REGION_1(sc,
1762	    IWI_CSR_NODE_BASE + entry * sizeof node,
1763	    (uint8_t *)&node, sizeof node);
1764}
1765
1766static int
1767iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1768    int ac)
1769{
1770	struct ieee80211vap *vap = ni->ni_vap;
1771	struct ieee80211com *ic = ni->ni_ic;
1772	struct iwi_node *in = (struct iwi_node *)ni;
1773	const struct ieee80211_frame *wh;
1774	struct ieee80211_key *k;
1775	const struct chanAccParams *cap;
1776	struct iwi_tx_ring *txq = &sc->txq[ac];
1777	struct iwi_tx_data *data;
1778	struct iwi_tx_desc *desc;
1779	struct mbuf *mnew;
1780	bus_dma_segment_t segs[IWI_MAX_NSEG];
1781	int error, nsegs, hdrlen, i;
1782	int ismcast, flags, xflags, staid;
1783
1784	IWI_LOCK_ASSERT(sc);
1785	wh = mtod(m0, const struct ieee80211_frame *);
1786	/* NB: only data frames use this path */
1787	hdrlen = ieee80211_hdrsize(wh);
1788	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1789	flags = xflags = 0;
1790
1791	if (!ismcast)
1792		flags |= IWI_DATA_FLAG_NEED_ACK;
1793	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1794		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1795	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1796		xflags |= IWI_DATA_XFLAG_QOS;
1797		cap = &ic->ic_wme.wme_chanParams;
1798		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1799			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1800	}
1801
1802	/*
1803	 * This is only used in IBSS mode where the firmware expect an index
1804	 * in a h/w table instead of a destination address.
1805	 */
1806	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1807		if (!ismcast) {
1808			if (in->in_station == -1) {
1809				in->in_station = alloc_unr(sc->sc_unr);
1810				if (in->in_station == -1) {
1811					/* h/w table is full */
1812					if_inc_counter(ni->ni_vap->iv_ifp,
1813					    IFCOUNTER_OERRORS, 1);
1814					m_freem(m0);
1815					ieee80211_free_node(ni);
1816					return 0;
1817				}
1818				iwi_write_ibssnode(sc,
1819					ni->ni_macaddr, in->in_station);
1820			}
1821			staid = in->in_station;
1822		} else {
1823			/*
1824			 * Multicast addresses have no associated node
1825			 * so there will be no station entry.  We reserve
1826			 * entry 0 for one mcast address and use that.
1827			 * If there are many being used this will be
1828			 * expensive and we'll need to do a better job
1829			 * but for now this handles the broadcast case.
1830			 */
1831			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1832				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1833				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1834			}
1835			staid = 0;
1836		}
1837	} else
1838		staid = 0;
1839
1840	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1841		k = ieee80211_crypto_encap(ni, m0);
1842		if (k == NULL) {
1843			m_freem(m0);
1844			return ENOBUFS;
1845		}
1846
1847		/* packet header may have moved, reset our local pointer */
1848		wh = mtod(m0, struct ieee80211_frame *);
1849	}
1850
1851	if (ieee80211_radiotap_active_vap(vap)) {
1852		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1853
1854		tap->wt_flags = 0;
1855
1856		ieee80211_radiotap_tx(vap, m0);
1857	}
1858
1859	data = &txq->data[txq->cur];
1860	desc = &txq->desc[txq->cur];
1861
1862	/* save and trim IEEE802.11 header */
1863	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1864	m_adj(m0, hdrlen);
1865
1866	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1867	    &nsegs, 0);
1868	if (error != 0 && error != EFBIG) {
1869		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1870		    error);
1871		m_freem(m0);
1872		return error;
1873	}
1874	if (error != 0) {
1875		mnew = m_defrag(m0, M_NOWAIT);
1876		if (mnew == NULL) {
1877			device_printf(sc->sc_dev,
1878			    "could not defragment mbuf\n");
1879			m_freem(m0);
1880			return ENOBUFS;
1881		}
1882		m0 = mnew;
1883
1884		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1885		    m0, segs, &nsegs, 0);
1886		if (error != 0) {
1887			device_printf(sc->sc_dev,
1888			    "could not map mbuf (error %d)\n", error);
1889			m_freem(m0);
1890			return error;
1891		}
1892	}
1893
1894	data->m = m0;
1895	data->ni = ni;
1896
1897	desc->hdr.type = IWI_HDR_TYPE_DATA;
1898	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1899	desc->station = staid;
1900	desc->cmd = IWI_DATA_CMD_TX;
1901	desc->len = htole16(m0->m_pkthdr.len);
1902	desc->flags = flags;
1903	desc->xflags = xflags;
1904
1905#if 0
1906	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1907		desc->wep_txkey = vap->iv_def_txkey;
1908	else
1909#endif
1910		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1911
1912	desc->nseg = htole32(nsegs);
1913	for (i = 0; i < nsegs; i++) {
1914		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1915		desc->seg_len[i]  = htole16(segs[i].ds_len);
1916	}
1917
1918	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1919	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1920
1921	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1922	    ac, txq->cur, le16toh(desc->len), nsegs));
1923
1924	txq->queued++;
1925	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1926	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1927
1928	return 0;
1929}
1930
1931static int
1932iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1933	const struct ieee80211_bpf_params *params)
1934{
1935	/* no support; just discard */
1936	m_freem(m);
1937	ieee80211_free_node(ni);
1938	return 0;
1939}
1940
1941static int
1942iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1943{
1944	struct iwi_softc *sc = ic->ic_softc;
1945	int error;
1946	IWI_LOCK_DECL;
1947
1948	IWI_LOCK(sc);
1949	if (!sc->sc_running) {
1950		IWI_UNLOCK(sc);
1951		return (ENXIO);
1952	}
1953	error = mbufq_enqueue(&sc->sc_snd, m);
1954	if (error) {
1955		IWI_UNLOCK(sc);
1956		return (error);
1957	}
1958	iwi_start(sc);
1959	IWI_UNLOCK(sc);
1960	return (0);
1961}
1962
1963static void
1964iwi_start(struct iwi_softc *sc)
1965{
1966	struct mbuf *m;
1967	struct ieee80211_node *ni;
1968	int ac;
1969
1970	IWI_LOCK_ASSERT(sc);
1971
1972	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1973		ac = M_WME_GETAC(m);
1974		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1975			/* there is no place left in this ring; tail drop */
1976			/* XXX tail drop */
1977			mbufq_prepend(&sc->sc_snd, m);
1978			break;
1979		}
1980		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1981		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1982			ieee80211_free_node(ni);
1983			if_inc_counter(ni->ni_vap->iv_ifp,
1984			    IFCOUNTER_OERRORS, 1);
1985			break;
1986		}
1987		sc->sc_tx_timer = 5;
1988	}
1989}
1990
1991static void
1992iwi_watchdog(void *arg)
1993{
1994	struct iwi_softc *sc = arg;
1995	struct ieee80211com *ic = &sc->sc_ic;
1996
1997	IWI_LOCK_ASSERT(sc);
1998
1999	if (sc->sc_tx_timer > 0) {
2000		if (--sc->sc_tx_timer == 0) {
2001			device_printf(sc->sc_dev, "device timeout\n");
2002			counter_u64_add(ic->ic_oerrors, 1);
2003			ieee80211_runtask(ic, &sc->sc_restarttask);
2004		}
2005	}
2006	if (sc->sc_state_timer > 0) {
2007		if (--sc->sc_state_timer == 0) {
2008			device_printf(sc->sc_dev,
2009			    "firmware stuck in state %d, resetting\n",
2010			    sc->fw_state);
2011			if (sc->fw_state == IWI_FW_SCANNING)
2012				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2013			ieee80211_runtask(ic, &sc->sc_restarttask);
2014			sc->sc_state_timer = 3;
2015		}
2016	}
2017	if (sc->sc_busy_timer > 0) {
2018		if (--sc->sc_busy_timer == 0) {
2019			device_printf(sc->sc_dev,
2020			    "firmware command timeout, resetting\n");
2021			ieee80211_runtask(ic, &sc->sc_restarttask);
2022		}
2023	}
2024	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2025}
2026
2027static void
2028iwi_parent(struct ieee80211com *ic)
2029{
2030	struct iwi_softc *sc = ic->ic_softc;
2031	int startall = 0;
2032	IWI_LOCK_DECL;
2033
2034	IWI_LOCK(sc);
2035	if (ic->ic_nrunning > 0) {
2036		if (!sc->sc_running) {
2037			iwi_init_locked(sc);
2038			startall = 1;
2039		}
2040	} else if (sc->sc_running)
2041		iwi_stop_locked(sc);
2042	IWI_UNLOCK(sc);
2043	if (startall)
2044		ieee80211_start_all(ic);
2045}
2046
2047static int
2048iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2049{
2050	struct ifreq *ifr = data;
2051	struct iwi_softc *sc = ic->ic_softc;
2052	int error;
2053	IWI_LOCK_DECL;
2054
2055	IWI_LOCK(sc);
2056	switch (cmd) {
2057	case SIOCGIWISTATS:
2058		/* XXX validate permissions/memory/etc? */
2059		error = copyout(&sc->sc_linkqual, ifr->ifr_data,
2060		    sizeof(struct iwi_notif_link_quality));
2061		break;
2062	case SIOCZIWISTATS:
2063		memset(&sc->sc_linkqual, 0,
2064		    sizeof(struct iwi_notif_link_quality));
2065		error = 0;
2066		break;
2067	default:
2068		error = ENOTTY;
2069		break;
2070	}
2071	IWI_UNLOCK(sc);
2072
2073	return (error);
2074}
2075
2076static void
2077iwi_stop_master(struct iwi_softc *sc)
2078{
2079	uint32_t tmp;
2080	int ntries;
2081
2082	/* disable interrupts */
2083	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2084
2085	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2086	for (ntries = 0; ntries < 5; ntries++) {
2087		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2088			break;
2089		DELAY(10);
2090	}
2091	if (ntries == 5)
2092		device_printf(sc->sc_dev, "timeout waiting for master\n");
2093
2094	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2095	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2096
2097	sc->flags &= ~IWI_FLAG_FW_INITED;
2098}
2099
2100static int
2101iwi_reset(struct iwi_softc *sc)
2102{
2103	uint32_t tmp;
2104	int i, ntries;
2105
2106	iwi_stop_master(sc);
2107
2108	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2109	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2110
2111	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2112
2113	/* wait for clock stabilization */
2114	for (ntries = 0; ntries < 1000; ntries++) {
2115		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2116			break;
2117		DELAY(200);
2118	}
2119	if (ntries == 1000) {
2120		device_printf(sc->sc_dev,
2121		    "timeout waiting for clock stabilization\n");
2122		return EIO;
2123	}
2124
2125	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2126	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2127
2128	DELAY(10);
2129
2130	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2131	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2132
2133	/* clear NIC memory */
2134	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2135	for (i = 0; i < 0xc000; i++)
2136		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2137
2138	return 0;
2139}
2140
2141static const struct iwi_firmware_ohdr *
2142iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2143{
2144	const struct firmware *fp = fw->fp;
2145	const struct iwi_firmware_ohdr *hdr;
2146
2147	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2148		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2149		return NULL;
2150	}
2151	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2152	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2153	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2154		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2155		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2156		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2157		    IWI_FW_REQ_MINOR);
2158		return NULL;
2159	}
2160	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2161	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2162	fw->name = fp->name;
2163	return hdr;
2164}
2165
2166static const struct iwi_firmware_ohdr *
2167iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2168{
2169	const struct iwi_firmware_ohdr *hdr;
2170
2171	hdr = iwi_setup_ofw(sc, fw);
2172	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2173		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2174		    fw->name);
2175		hdr = NULL;
2176	}
2177	return hdr;
2178}
2179
2180static void
2181iwi_getfw(struct iwi_fw *fw, const char *fwname,
2182	  struct iwi_fw *uc, const char *ucname)
2183{
2184	if (fw->fp == NULL)
2185		fw->fp = firmware_get(fwname);
2186	/* NB: pre-3.0 ucode is packaged separately */
2187	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2188		uc->fp = firmware_get(ucname);
2189}
2190
2191/*
2192 * Get the required firmware images if not already loaded.
2193 * Note that we hold firmware images so long as the device
2194 * is marked up in case we need to reload them on device init.
2195 * This is necessary because we re-init the device sometimes
2196 * from a context where we cannot read from the filesystem
2197 * (e.g. from the taskqueue thread when rfkill is re-enabled).
2198 * XXX return 0 on success, 1 on error.
2199 *
2200 * NB: the order of get'ing and put'ing images here is
2201 * intentional to support handling firmware images bundled
2202 * by operating mode and/or all together in one file with
2203 * the boot firmware as "master".
2204 */
2205static int
2206iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2207{
2208	const struct iwi_firmware_hdr *hdr;
2209	const struct firmware *fp;
2210
2211	/* invalidate cached firmware on mode change */
2212	if (sc->fw_mode != opmode)
2213		iwi_put_firmware(sc);
2214
2215	switch (opmode) {
2216	case IEEE80211_M_STA:
2217		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2218		break;
2219	case IEEE80211_M_IBSS:
2220		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2221		break;
2222	case IEEE80211_M_MONITOR:
2223		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2224			  &sc->fw_uc, "iwi_ucode_monitor");
2225		break;
2226	default:
2227		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2228		return EINVAL;
2229	}
2230	fp = sc->fw_fw.fp;
2231	if (fp == NULL) {
2232		device_printf(sc->sc_dev, "could not load firmware\n");
2233		goto bad;
2234	}
2235	if (fp->version < 300) {
2236		/*
2237		 * Firmware prior to 3.0 was packaged as separate
2238		 * boot, firmware, and ucode images.  Verify the
2239		 * ucode image was read in, retrieve the boot image
2240		 * if needed, and check version stamps for consistency.
2241		 * The version stamps in the data are also checked
2242		 * above; this is a bit paranoid but is a cheap
2243		 * safeguard against mis-packaging.
2244		 */
2245		if (sc->fw_uc.fp == NULL) {
2246			device_printf(sc->sc_dev, "could not load ucode\n");
2247			goto bad;
2248		}
2249		if (sc->fw_boot.fp == NULL) {
2250			sc->fw_boot.fp = firmware_get("iwi_boot");
2251			if (sc->fw_boot.fp == NULL) {
2252				device_printf(sc->sc_dev,
2253					"could not load boot firmware\n");
2254				goto bad;
2255			}
2256		}
2257		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2258		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2259			device_printf(sc->sc_dev,
2260			    "firmware version mismatch: "
2261			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2262			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2263			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2264			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2265			);
2266			goto bad;
2267		}
2268		/*
2269		 * Check and setup each image.
2270		 */
2271		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2272		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2273		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2274			goto bad;
2275	} else {
2276		/*
2277		 * Check and setup combined image.
2278		 */
2279		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2280			device_printf(sc->sc_dev, "image '%s' too small\n",
2281			    fp->name);
2282			goto bad;
2283		}
2284		hdr = (const struct iwi_firmware_hdr *)fp->data;
2285		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2286				+ le32toh(hdr->fsize)) {
2287			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2288			    fp->name);
2289			goto bad;
2290		}
2291		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2292		sc->fw_boot.size = le32toh(hdr->bsize);
2293		sc->fw_boot.name = fp->name;
2294		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2295		sc->fw_uc.size = le32toh(hdr->usize);
2296		sc->fw_uc.name = fp->name;
2297		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2298		sc->fw_fw.size = le32toh(hdr->fsize);
2299		sc->fw_fw.name = fp->name;
2300	}
2301#if 0
2302	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2303		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2304#endif
2305
2306	sc->fw_mode = opmode;
2307	return 0;
2308bad:
2309	iwi_put_firmware(sc);
2310	return 1;
2311}
2312
2313static void
2314iwi_put_fw(struct iwi_fw *fw)
2315{
2316	if (fw->fp != NULL) {
2317		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2318		fw->fp = NULL;
2319	}
2320	fw->data = NULL;
2321	fw->size = 0;
2322	fw->name = NULL;
2323}
2324
2325/*
2326 * Release any cached firmware images.
2327 */
2328static void
2329iwi_put_firmware(struct iwi_softc *sc)
2330{
2331	iwi_put_fw(&sc->fw_uc);
2332	iwi_put_fw(&sc->fw_fw);
2333	iwi_put_fw(&sc->fw_boot);
2334}
2335
2336static int
2337iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2338{
2339	uint32_t tmp;
2340	const uint16_t *w;
2341	const char *uc = fw->data;
2342	size_t size = fw->size;
2343	int i, ntries, error;
2344
2345	IWI_LOCK_ASSERT(sc);
2346	error = 0;
2347	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2348	    IWI_RST_STOP_MASTER);
2349	for (ntries = 0; ntries < 5; ntries++) {
2350		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2351			break;
2352		DELAY(10);
2353	}
2354	if (ntries == 5) {
2355		device_printf(sc->sc_dev, "timeout waiting for master\n");
2356		error = EIO;
2357		goto fail;
2358	}
2359
2360	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2361	DELAY(5000);
2362
2363	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2364	tmp &= ~IWI_RST_PRINCETON_RESET;
2365	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2366
2367	DELAY(5000);
2368	MEM_WRITE_4(sc, 0x3000e0, 0);
2369	DELAY(1000);
2370	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2371	DELAY(1000);
2372	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2373	DELAY(1000);
2374	MEM_WRITE_1(sc, 0x200000, 0x00);
2375	MEM_WRITE_1(sc, 0x200000, 0x40);
2376	DELAY(1000);
2377
2378	/* write microcode into adapter memory */
2379	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2380		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2381
2382	MEM_WRITE_1(sc, 0x200000, 0x00);
2383	MEM_WRITE_1(sc, 0x200000, 0x80);
2384
2385	/* wait until we get an answer */
2386	for (ntries = 0; ntries < 100; ntries++) {
2387		if (MEM_READ_1(sc, 0x200000) & 1)
2388			break;
2389		DELAY(100);
2390	}
2391	if (ntries == 100) {
2392		device_printf(sc->sc_dev,
2393		    "timeout waiting for ucode to initialize\n");
2394		error = EIO;
2395		goto fail;
2396	}
2397
2398	/* read the answer or the firmware will not initialize properly */
2399	for (i = 0; i < 7; i++)
2400		MEM_READ_4(sc, 0x200004);
2401
2402	MEM_WRITE_1(sc, 0x200000, 0x00);
2403
2404fail:
2405	return error;
2406}
2407
2408/* macro to handle unaligned little endian data in firmware image */
2409#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2410
2411static int
2412iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2413{
2414	u_char *p, *end;
2415	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2416	int ntries, error;
2417
2418	IWI_LOCK_ASSERT(sc);
2419
2420	/* copy firmware image to DMA memory */
2421	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2422
2423	/* make sure the adapter will get up-to-date values */
2424	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2425
2426	/* tell the adapter where the command blocks are stored */
2427	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2428
2429	/*
2430	 * Store command blocks into adapter's internal memory using register
2431	 * indirections. The adapter will read the firmware image through DMA
2432	 * using information stored in command blocks.
2433	 */
2434	src = sc->fw_physaddr;
2435	p = sc->fw_virtaddr;
2436	end = p + fw->size;
2437	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2438
2439	while (p < end) {
2440		dst = GETLE32(p); p += 4; src += 4;
2441		len = GETLE32(p); p += 4; src += 4;
2442		p += len;
2443
2444		while (len > 0) {
2445			mlen = min(len, IWI_CB_MAXDATALEN);
2446
2447			ctl = IWI_CB_DEFAULT_CTL | mlen;
2448			sum = ctl ^ src ^ dst;
2449
2450			/* write a command block */
2451			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2452			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2453			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2454			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2455
2456			src += mlen;
2457			dst += mlen;
2458			len -= mlen;
2459		}
2460	}
2461
2462	/* write a fictive final command block (sentinel) */
2463	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2464	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2465
2466	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2467	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2468	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2469
2470	/* tell the adapter to start processing command blocks */
2471	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2472
2473	/* wait until the adapter reaches the sentinel */
2474	for (ntries = 0; ntries < 400; ntries++) {
2475		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2476			break;
2477		DELAY(100);
2478	}
2479	/* sync dma, just in case */
2480	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2481	if (ntries == 400) {
2482		device_printf(sc->sc_dev,
2483		    "timeout processing command blocks for %s firmware\n",
2484		    fw->name);
2485		return EIO;
2486	}
2487
2488	/* we're done with command blocks processing */
2489	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2490
2491	/* allow interrupts so we know when the firmware is ready */
2492	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2493
2494	/* tell the adapter to initialize the firmware */
2495	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2496
2497	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2498	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2499
2500	/* wait at most one second for firmware initialization to complete */
2501	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2502		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2503		    "initialization to complete\n", fw->name);
2504	}
2505
2506	return error;
2507}
2508
2509static int
2510iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2511{
2512	uint32_t data;
2513
2514	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2515		/* XXX set more fine-grained operation */
2516		data = htole32(IWI_POWER_MODE_MAX);
2517	} else
2518		data = htole32(IWI_POWER_MODE_CAM);
2519
2520	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2521	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2522}
2523
2524static int
2525iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2526{
2527	struct iwi_wep_key wepkey;
2528	struct ieee80211_key *wk;
2529	int error, i;
2530
2531	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2532		wk = &vap->iv_nw_keys[i];
2533
2534		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2535		wepkey.idx = i;
2536		wepkey.len = wk->wk_keylen;
2537		memset(wepkey.key, 0, sizeof wepkey.key);
2538		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2539		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2540		    wepkey.len));
2541		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2542		    sizeof wepkey);
2543		if (error != 0)
2544			return error;
2545	}
2546	return 0;
2547}
2548
2549static int
2550iwi_config(struct iwi_softc *sc)
2551{
2552	struct ieee80211com *ic = &sc->sc_ic;
2553	struct iwi_configuration config;
2554	struct iwi_rateset rs;
2555	struct iwi_txpower power;
2556	uint32_t data;
2557	int error, i;
2558
2559	IWI_LOCK_ASSERT(sc);
2560
2561	DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":"));
2562	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr,
2563	    IEEE80211_ADDR_LEN);
2564	if (error != 0)
2565		return error;
2566
2567	memset(&config, 0, sizeof config);
2568	config.bluetooth_coexistence = sc->bluetooth;
2569	config.silence_threshold = 0x1e;
2570	config.antenna = sc->antenna;
2571	config.multicast_enabled = 1;
2572	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2573	config.disable_unicast_decryption = 1;
2574	config.disable_multicast_decryption = 1;
2575	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2576		config.allow_invalid_frames = 1;
2577		config.allow_beacon_and_probe_resp = 1;
2578		config.allow_mgt = 1;
2579	}
2580	DPRINTF(("Configuring adapter\n"));
2581	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2582	if (error != 0)
2583		return error;
2584	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2585		power.mode = IWI_MODE_11B;
2586		power.nchan = 11;
2587		for (i = 0; i < 11; i++) {
2588			power.chan[i].chan = i + 1;
2589			power.chan[i].power = IWI_TXPOWER_MAX;
2590		}
2591		DPRINTF(("Setting .11b channels tx power\n"));
2592		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2593		if (error != 0)
2594			return error;
2595
2596		power.mode = IWI_MODE_11G;
2597		DPRINTF(("Setting .11g channels tx power\n"));
2598		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2599		if (error != 0)
2600			return error;
2601	}
2602
2603	memset(&rs, 0, sizeof rs);
2604	rs.mode = IWI_MODE_11G;
2605	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2606	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2607	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2608	    rs.nrates);
2609	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2610	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2611	if (error != 0)
2612		return error;
2613
2614	memset(&rs, 0, sizeof rs);
2615	rs.mode = IWI_MODE_11A;
2616	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2617	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2618	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2619	    rs.nrates);
2620	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2621	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2622	if (error != 0)
2623		return error;
2624
2625	data = htole32(arc4random());
2626	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2627	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2628	if (error != 0)
2629		return error;
2630
2631	/* enable adapter */
2632	DPRINTF(("Enabling adapter\n"));
2633	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2634}
2635
2636static __inline void
2637set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2638{
2639	uint8_t *st = &scan->scan_type[ix / 2];
2640	if (ix % 2)
2641		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2642	else
2643		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2644}
2645
2646static int
2647scan_type(const struct ieee80211_scan_state *ss,
2648	const struct ieee80211_channel *chan)
2649{
2650	/* We can only set one essid for a directed scan */
2651	if (ss->ss_nssid != 0)
2652		return IWI_SCAN_TYPE_BDIRECTED;
2653	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2654	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2655		return IWI_SCAN_TYPE_BROADCAST;
2656	return IWI_SCAN_TYPE_PASSIVE;
2657}
2658
2659static __inline int
2660scan_band(const struct ieee80211_channel *c)
2661{
2662	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2663}
2664
2665static void
2666iwi_monitor_scan(void *arg, int npending)
2667{
2668	struct iwi_softc *sc = arg;
2669	IWI_LOCK_DECL;
2670
2671	IWI_LOCK(sc);
2672	(void) iwi_scanchan(sc, 2000, 0);
2673	IWI_UNLOCK(sc);
2674}
2675
2676/*
2677 * Start a scan on the current channel or all channels.
2678 */
2679static int
2680iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2681{
2682	struct ieee80211com *ic = &sc->sc_ic;
2683	struct ieee80211_channel *chan;
2684	struct ieee80211_scan_state *ss;
2685	struct iwi_scan_ext scan;
2686	int error = 0;
2687
2688	IWI_LOCK_ASSERT(sc);
2689	if (sc->fw_state == IWI_FW_SCANNING) {
2690		/*
2691		 * This should not happen as we only trigger scan_next after
2692		 * completion
2693		 */
2694		DPRINTF(("%s: called too early - still scanning\n", __func__));
2695		return (EBUSY);
2696	}
2697	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2698
2699	ss = ic->ic_scan;
2700
2701	memset(&scan, 0, sizeof scan);
2702	scan.full_scan_index = htole32(++sc->sc_scangen);
2703	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2704	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2705		/*
2706		 * Use very short dwell times for when we send probe request
2707		 * frames.  Without this bg scans hang.  Ideally this should
2708		 * be handled with early-termination as done by net80211 but
2709		 * that's not feasible (aborting a scan is problematic).
2710		 */
2711		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2712		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2713	} else {
2714		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2715		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2716	}
2717
2718	/* We can only set one essid for a directed scan */
2719	if (ss->ss_nssid != 0) {
2720		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2721		    ss->ss_ssid[0].len);
2722		if (error)
2723			return (error);
2724	}
2725
2726	if (allchan) {
2727		int i, next, band, b, bstart;
2728		/*
2729		 * Convert scan list to run-length encoded channel list
2730		 * the firmware requires (preserving the order setup by
2731		 * net80211).  The first entry in each run specifies the
2732		 * band and the count of items in the run.
2733		 */
2734		next = 0;		/* next open slot */
2735		bstart = 0;		/* NB: not needed, silence compiler */
2736		band = -1;		/* NB: impossible value */
2737		KASSERT(ss->ss_last > 0, ("no channels"));
2738		for (i = 0; i < ss->ss_last; i++) {
2739			chan = ss->ss_chans[i];
2740			b = scan_band(chan);
2741			if (b != band) {
2742				if (band != -1)
2743					scan.channels[bstart] =
2744					    (next - bstart) | band;
2745				/* NB: this allocates a slot for the run-len */
2746				band = b, bstart = next++;
2747			}
2748			if (next >= IWI_SCAN_CHANNELS) {
2749				DPRINTF(("truncating scan list\n"));
2750				break;
2751			}
2752			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2753			set_scan_type(&scan, next, scan_type(ss, chan));
2754			next++;
2755		}
2756		scan.channels[bstart] = (next - bstart) | band;
2757	} else {
2758		/* Scan the current channel only */
2759		chan = ic->ic_curchan;
2760		scan.channels[0] = 1 | scan_band(chan);
2761		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2762		set_scan_type(&scan, 1, scan_type(ss, chan));
2763	}
2764#ifdef IWI_DEBUG
2765	if (iwi_debug > 0) {
2766		static const char *scantype[8] =
2767		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2768		int i;
2769		printf("Scan request: index %u dwell %d/%d/%d\n"
2770		    , le32toh(scan.full_scan_index)
2771		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2772		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2773		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2774		);
2775		i = 0;
2776		do {
2777			int run = scan.channels[i];
2778			if (run == 0)
2779				break;
2780			printf("Scan %d %s channels:", run & 0x3f,
2781			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2782			for (run &= 0x3f, i++; run > 0; run--, i++) {
2783				uint8_t type = scan.scan_type[i/2];
2784				printf(" %u/%s", scan.channels[i],
2785				    scantype[(i & 1 ? type : type>>4) & 7]);
2786			}
2787			printf("\n");
2788		} while (i < IWI_SCAN_CHANNELS);
2789	}
2790#endif
2791
2792	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2793}
2794
2795static int
2796iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2797{
2798	struct iwi_sensitivity sens;
2799
2800	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2801
2802	memset(&sens, 0, sizeof sens);
2803	sens.rssi = htole16(rssi_dbm);
2804	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2805}
2806
2807static int
2808iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2809{
2810	struct ieee80211com *ic = vap->iv_ic;
2811	struct ifnet *ifp = vap->iv_ifp;
2812	struct ieee80211_node *ni;
2813	struct iwi_configuration config;
2814	struct iwi_associate *assoc = &sc->assoc;
2815	struct iwi_rateset rs;
2816	uint16_t capinfo;
2817	uint32_t data;
2818	int error, mode;
2819
2820	IWI_LOCK_ASSERT(sc);
2821
2822	ni = ieee80211_ref_node(vap->iv_bss);
2823
2824	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2825		DPRINTF(("Already associated\n"));
2826		return (-1);
2827	}
2828
2829	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2830	error = 0;
2831	mode = 0;
2832
2833	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2834		mode = IWI_MODE_11A;
2835	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2836		mode = IWI_MODE_11G;
2837	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2838		mode = IWI_MODE_11B;
2839
2840	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2841		memset(&config, 0, sizeof config);
2842		config.bluetooth_coexistence = sc->bluetooth;
2843		config.antenna = sc->antenna;
2844		config.multicast_enabled = 1;
2845		if (mode == IWI_MODE_11G)
2846			config.use_protection = 1;
2847		config.answer_pbreq =
2848		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2849		config.disable_unicast_decryption = 1;
2850		config.disable_multicast_decryption = 1;
2851		DPRINTF(("Configuring adapter\n"));
2852		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2853		if (error != 0)
2854			goto done;
2855	}
2856
2857#ifdef IWI_DEBUG
2858	if (iwi_debug > 0) {
2859		printf("Setting ESSID to ");
2860		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2861		printf("\n");
2862	}
2863#endif
2864	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2865	if (error != 0)
2866		goto done;
2867
2868	error = iwi_setpowermode(sc, vap);
2869	if (error != 0)
2870		goto done;
2871
2872	data = htole32(vap->iv_rtsthreshold);
2873	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2874	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2875	if (error != 0)
2876		goto done;
2877
2878	data = htole32(vap->iv_fragthreshold);
2879	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2880	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2881	if (error != 0)
2882		goto done;
2883
2884	/* the rate set has already been "negotiated" */
2885	memset(&rs, 0, sizeof rs);
2886	rs.mode = mode;
2887	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2888	rs.nrates = ni->ni_rates.rs_nrates;
2889	if (rs.nrates > IWI_RATESET_SIZE) {
2890		DPRINTF(("Truncating negotiated rate set from %u\n",
2891		    rs.nrates));
2892		rs.nrates = IWI_RATESET_SIZE;
2893	}
2894	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2895	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2896	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2897	if (error != 0)
2898		goto done;
2899
2900	memset(assoc, 0, sizeof *assoc);
2901
2902	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2903		/* NB: don't treat WME setup as failure */
2904		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2905			assoc->policy |= htole16(IWI_POLICY_WME);
2906		/* XXX complain on failure? */
2907	}
2908
2909	if (vap->iv_appie_wpa != NULL) {
2910		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2911
2912		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2913		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2914		if (error != 0)
2915			goto done;
2916	}
2917
2918	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2919	if (error != 0)
2920		goto done;
2921
2922	assoc->mode = mode;
2923	assoc->chan = ic->ic_curchan->ic_ieee;
2924	/*
2925	 * NB: do not arrange for shared key auth w/o privacy
2926	 *     (i.e. a wep key); it causes a firmware error.
2927	 */
2928	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2929	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2930		assoc->auth = IWI_AUTH_SHARED;
2931		/*
2932		 * It's possible to have privacy marked but no default
2933		 * key setup.  This typically is due to a user app bug
2934		 * but if we blindly grab the key the firmware will
2935		 * barf so avoid it for now.
2936		 */
2937		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2938			assoc->auth |= vap->iv_def_txkey << 4;
2939
2940		error = iwi_setwepkeys(sc, vap);
2941		if (error != 0)
2942			goto done;
2943	}
2944	if (vap->iv_flags & IEEE80211_F_WPA)
2945		assoc->policy |= htole16(IWI_POLICY_WPA);
2946	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2947		assoc->type = IWI_HC_IBSS_START;
2948	else
2949		assoc->type = IWI_HC_ASSOC;
2950	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2951
2952	if (vap->iv_opmode == IEEE80211_M_IBSS)
2953		capinfo = IEEE80211_CAPINFO_IBSS;
2954	else
2955		capinfo = IEEE80211_CAPINFO_ESS;
2956	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2957		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2958	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2959	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2960		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2961	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2962		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2963	assoc->capinfo = htole16(capinfo);
2964
2965	assoc->lintval = htole16(ic->ic_lintval);
2966	assoc->intval = htole16(ni->ni_intval);
2967	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2968	if (vap->iv_opmode == IEEE80211_M_IBSS)
2969		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2970	else
2971		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2972
2973	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2974	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2975	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2976	    assoc->bssid, ":", assoc->dst, ":",
2977	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2978	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2979	    le16toh(assoc->intval)));
2980	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2981done:
2982	ieee80211_free_node(ni);
2983	if (error)
2984		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2985
2986	return (error);
2987}
2988
2989static void
2990iwi_disassoc(void *arg, int pending)
2991{
2992	struct iwi_softc *sc = arg;
2993	IWI_LOCK_DECL;
2994
2995	IWI_LOCK(sc);
2996	iwi_disassociate(sc, 0);
2997	IWI_UNLOCK(sc);
2998}
2999
3000static int
3001iwi_disassociate(struct iwi_softc *sc, int quiet)
3002{
3003	struct iwi_associate *assoc = &sc->assoc;
3004
3005	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3006		DPRINTF(("Not associated\n"));
3007		return (-1);
3008	}
3009
3010	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3011
3012	if (quiet)
3013		assoc->type = IWI_HC_DISASSOC_QUIET;
3014	else
3015		assoc->type = IWI_HC_DISASSOC;
3016
3017	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3018	    assoc->bssid, ":", assoc->chan));
3019	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3020}
3021
3022/*
3023 * release dma resources for the firmware
3024 */
3025static void
3026iwi_release_fw_dma(struct iwi_softc *sc)
3027{
3028	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3029		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3030	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3031		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3032	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3033		bus_dma_tag_destroy(sc->fw_dmat);
3034
3035	sc->fw_flags = 0;
3036	sc->fw_dma_size = 0;
3037	sc->fw_dmat = NULL;
3038	sc->fw_map = NULL;
3039	sc->fw_physaddr = 0;
3040	sc->fw_virtaddr = NULL;
3041}
3042
3043/*
3044 * allocate the dma descriptor for the firmware.
3045 * Return 0 on success, 1 on error.
3046 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3047 */
3048static int
3049iwi_init_fw_dma(struct iwi_softc *sc, int size)
3050{
3051	if (sc->fw_dma_size >= size)
3052		return 0;
3053	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3054	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3055	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3056		device_printf(sc->sc_dev,
3057		    "could not create firmware DMA tag\n");
3058		goto error;
3059	}
3060	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3061	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3062	    &sc->fw_map) != 0) {
3063		device_printf(sc->sc_dev,
3064		    "could not allocate firmware DMA memory\n");
3065		goto error;
3066	}
3067	sc->fw_flags |= IWI_FW_HAVE_MAP;
3068	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3069	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3070		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3071		goto error;
3072	}
3073	sc->fw_flags |= IWI_FW_HAVE_PHY;
3074	sc->fw_dma_size = size;
3075	return 0;
3076
3077error:
3078	iwi_release_fw_dma(sc);
3079	return 1;
3080}
3081
3082static void
3083iwi_init_locked(struct iwi_softc *sc)
3084{
3085	struct iwi_rx_data *data;
3086	int i;
3087
3088	IWI_LOCK_ASSERT(sc);
3089
3090	if (sc->fw_state == IWI_FW_LOADING) {
3091		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3092		return;		/* XXX: condvar? */
3093	}
3094
3095	iwi_stop_locked(sc);
3096
3097	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3098
3099	if (iwi_reset(sc) != 0) {
3100		device_printf(sc->sc_dev, "could not reset adapter\n");
3101		goto fail;
3102	}
3103	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3104		device_printf(sc->sc_dev,
3105		    "could not load boot firmware %s\n", sc->fw_boot.name);
3106		goto fail;
3107	}
3108	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3109		device_printf(sc->sc_dev,
3110		    "could not load microcode %s\n", sc->fw_uc.name);
3111		goto fail;
3112	}
3113
3114	iwi_stop_master(sc);
3115
3116	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3117	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3118	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3119
3120	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3121	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3122	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3123
3124	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3125	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3126	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3127
3128	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3129	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3130	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3131
3132	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3133	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3134	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3135
3136	for (i = 0; i < sc->rxq.count; i++) {
3137		data = &sc->rxq.data[i];
3138		CSR_WRITE_4(sc, data->reg, data->physaddr);
3139	}
3140
3141	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3142
3143	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3144		device_printf(sc->sc_dev,
3145		    "could not load main firmware %s\n", sc->fw_fw.name);
3146		goto fail;
3147	}
3148	sc->flags |= IWI_FLAG_FW_INITED;
3149
3150	IWI_STATE_END(sc, IWI_FW_LOADING);
3151
3152	if (iwi_config(sc) != 0) {
3153		device_printf(sc->sc_dev, "unable to enable adapter\n");
3154		goto fail2;
3155	}
3156
3157	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3158	sc->sc_running = 1;
3159	return;
3160fail:
3161	IWI_STATE_END(sc, IWI_FW_LOADING);
3162fail2:
3163	iwi_stop_locked(sc);
3164}
3165
3166static void
3167iwi_init(void *priv)
3168{
3169	struct iwi_softc *sc = priv;
3170	struct ieee80211com *ic = &sc->sc_ic;
3171	IWI_LOCK_DECL;
3172
3173	IWI_LOCK(sc);
3174	iwi_init_locked(sc);
3175	IWI_UNLOCK(sc);
3176
3177	if (sc->sc_running)
3178		ieee80211_start_all(ic);
3179}
3180
3181static void
3182iwi_stop_locked(void *priv)
3183{
3184	struct iwi_softc *sc = priv;
3185
3186	IWI_LOCK_ASSERT(sc);
3187
3188	sc->sc_running = 0;
3189
3190	if (sc->sc_softled) {
3191		callout_stop(&sc->sc_ledtimer);
3192		sc->sc_blinking = 0;
3193	}
3194	callout_stop(&sc->sc_wdtimer);
3195	callout_stop(&sc->sc_rftimer);
3196
3197	iwi_stop_master(sc);
3198
3199	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3200
3201	/* reset rings */
3202	iwi_reset_cmd_ring(sc, &sc->cmdq);
3203	iwi_reset_tx_ring(sc, &sc->txq[0]);
3204	iwi_reset_tx_ring(sc, &sc->txq[1]);
3205	iwi_reset_tx_ring(sc, &sc->txq[2]);
3206	iwi_reset_tx_ring(sc, &sc->txq[3]);
3207	iwi_reset_rx_ring(sc, &sc->rxq);
3208
3209	sc->sc_tx_timer = 0;
3210	sc->sc_state_timer = 0;
3211	sc->sc_busy_timer = 0;
3212	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3213	sc->fw_state = IWI_FW_IDLE;
3214	wakeup(sc);
3215}
3216
3217static void
3218iwi_stop(struct iwi_softc *sc)
3219{
3220	IWI_LOCK_DECL;
3221
3222	IWI_LOCK(sc);
3223	iwi_stop_locked(sc);
3224	IWI_UNLOCK(sc);
3225}
3226
3227static void
3228iwi_restart(void *arg, int npending)
3229{
3230	struct iwi_softc *sc = arg;
3231
3232	iwi_init(sc);
3233}
3234
3235/*
3236 * Return whether or not the radio is enabled in hardware
3237 * (i.e. the rfkill switch is "off").
3238 */
3239static int
3240iwi_getrfkill(struct iwi_softc *sc)
3241{
3242	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3243}
3244
3245static void
3246iwi_radio_on(void *arg, int pending)
3247{
3248	struct iwi_softc *sc = arg;
3249	struct ieee80211com *ic = &sc->sc_ic;
3250
3251	device_printf(sc->sc_dev, "radio turned on\n");
3252
3253	iwi_init(sc);
3254	ieee80211_notify_radio(ic, 1);
3255}
3256
3257static void
3258iwi_rfkill_poll(void *arg)
3259{
3260	struct iwi_softc *sc = arg;
3261
3262	IWI_LOCK_ASSERT(sc);
3263
3264	/*
3265	 * Check for a change in rfkill state.  We get an
3266	 * interrupt when a radio is disabled but not when
3267	 * it is enabled so we must poll for the latter.
3268	 */
3269	if (!iwi_getrfkill(sc)) {
3270		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3271		return;
3272	}
3273	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3274}
3275
3276static void
3277iwi_radio_off(void *arg, int pending)
3278{
3279	struct iwi_softc *sc = arg;
3280	struct ieee80211com *ic = &sc->sc_ic;
3281	IWI_LOCK_DECL;
3282
3283	device_printf(sc->sc_dev, "radio turned off\n");
3284
3285	ieee80211_notify_radio(ic, 0);
3286
3287	IWI_LOCK(sc);
3288	iwi_stop_locked(sc);
3289	iwi_rfkill_poll(sc);
3290	IWI_UNLOCK(sc);
3291}
3292
3293static int
3294iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3295{
3296	struct iwi_softc *sc = arg1;
3297	uint32_t size, buf[128];
3298
3299	memset(buf, 0, sizeof buf);
3300
3301	if (!(sc->flags & IWI_FLAG_FW_INITED))
3302		return SYSCTL_OUT(req, buf, sizeof buf);
3303
3304	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3305	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3306
3307	return SYSCTL_OUT(req, buf, size);
3308}
3309
3310static int
3311iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3312{
3313	struct iwi_softc *sc = arg1;
3314	int val = !iwi_getrfkill(sc);
3315
3316	return SYSCTL_OUT(req, &val, sizeof val);
3317}
3318
3319/*
3320 * Add sysctl knobs.
3321 */
3322static void
3323iwi_sysctlattach(struct iwi_softc *sc)
3324{
3325	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3326	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3327
3328	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3329	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3330	    "radio transmitter switch state (0=off, 1=on)");
3331
3332	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3333	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3334	    "statistics");
3335
3336	sc->bluetooth = 0;
3337	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3338	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3339
3340	sc->antenna = IWI_ANTENNA_AUTO;
3341	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3342	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3343}
3344
3345/*
3346 * LED support.
3347 *
3348 * Different cards have different capabilities.  Some have three
3349 * led's while others have only one.  The linux ipw driver defines
3350 * led's for link state (associated or not), band (11a, 11g, 11b),
3351 * and for link activity.  We use one led and vary the blink rate
3352 * according to the tx/rx traffic a la the ath driver.
3353 */
3354
3355static __inline uint32_t
3356iwi_toggle_event(uint32_t r)
3357{
3358	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3359		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3360}
3361
3362static uint32_t
3363iwi_read_event(struct iwi_softc *sc)
3364{
3365	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3366}
3367
3368static void
3369iwi_write_event(struct iwi_softc *sc, uint32_t v)
3370{
3371	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3372}
3373
3374static void
3375iwi_led_done(void *arg)
3376{
3377	struct iwi_softc *sc = arg;
3378
3379	sc->sc_blinking = 0;
3380}
3381
3382/*
3383 * Turn the activity LED off: flip the pin and then set a timer so no
3384 * update will happen for the specified duration.
3385 */
3386static void
3387iwi_led_off(void *arg)
3388{
3389	struct iwi_softc *sc = arg;
3390	uint32_t v;
3391
3392	v = iwi_read_event(sc);
3393	v &= ~sc->sc_ledpin;
3394	iwi_write_event(sc, iwi_toggle_event(v));
3395	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3396}
3397
3398/*
3399 * Blink the LED according to the specified on/off times.
3400 */
3401static void
3402iwi_led_blink(struct iwi_softc *sc, int on, int off)
3403{
3404	uint32_t v;
3405
3406	v = iwi_read_event(sc);
3407	v |= sc->sc_ledpin;
3408	iwi_write_event(sc, iwi_toggle_event(v));
3409	sc->sc_blinking = 1;
3410	sc->sc_ledoff = off;
3411	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3412}
3413
3414static void
3415iwi_led_event(struct iwi_softc *sc, int event)
3416{
3417	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3418	static const struct {
3419		u_int		rate;		/* tx/rx iwi rate */
3420		u_int16_t	timeOn;		/* LED on time (ms) */
3421		u_int16_t	timeOff;	/* LED off time (ms) */
3422	} blinkrates[] = {
3423		{ IWI_RATE_OFDM54, 40,  10 },
3424		{ IWI_RATE_OFDM48, 44,  11 },
3425		{ IWI_RATE_OFDM36, 50,  13 },
3426		{ IWI_RATE_OFDM24, 57,  14 },
3427		{ IWI_RATE_OFDM18, 67,  16 },
3428		{ IWI_RATE_OFDM12, 80,  20 },
3429		{ IWI_RATE_DS11,  100,  25 },
3430		{ IWI_RATE_OFDM9, 133,  34 },
3431		{ IWI_RATE_OFDM6, 160,  40 },
3432		{ IWI_RATE_DS5,   200,  50 },
3433		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3434		{ IWI_RATE_DS2,   267,  66 },
3435		{ IWI_RATE_DS1,   400, 100 },
3436		{            0,   500, 130 },	/* unknown rate/polling */
3437	};
3438	uint32_t txrate;
3439	int j = 0;			/* XXX silence compiler */
3440
3441	sc->sc_ledevent = ticks;	/* time of last event */
3442	if (sc->sc_blinking)		/* don't interrupt active blink */
3443		return;
3444	switch (event) {
3445	case IWI_LED_POLL:
3446		j = nitems(blinkrates)-1;
3447		break;
3448	case IWI_LED_TX:
3449		/* read current transmission rate from adapter */
3450		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3451		if (blinkrates[sc->sc_txrix].rate != txrate) {
3452			for (j = 0; j < nitems(blinkrates)-1; j++)
3453				if (blinkrates[j].rate == txrate)
3454					break;
3455			sc->sc_txrix = j;
3456		} else
3457			j = sc->sc_txrix;
3458		break;
3459	case IWI_LED_RX:
3460		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3461			for (j = 0; j < nitems(blinkrates)-1; j++)
3462				if (blinkrates[j].rate == sc->sc_rxrate)
3463					break;
3464			sc->sc_rxrix = j;
3465		} else
3466			j = sc->sc_rxrix;
3467		break;
3468	}
3469	/* XXX beware of overflow */
3470	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3471		(blinkrates[j].timeOff * hz) / 1000);
3472}
3473
3474static int
3475iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3476{
3477	struct iwi_softc *sc = arg1;
3478	int softled = sc->sc_softled;
3479	int error;
3480
3481	error = sysctl_handle_int(oidp, &softled, 0, req);
3482	if (error || !req->newptr)
3483		return error;
3484	softled = (softled != 0);
3485	if (softled != sc->sc_softled) {
3486		if (softled) {
3487			uint32_t v = iwi_read_event(sc);
3488			v &= ~sc->sc_ledpin;
3489			iwi_write_event(sc, iwi_toggle_event(v));
3490		}
3491		sc->sc_softled = softled;
3492	}
3493	return 0;
3494}
3495
3496static void
3497iwi_ledattach(struct iwi_softc *sc)
3498{
3499	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3500	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3501
3502	sc->sc_blinking = 0;
3503	sc->sc_ledstate = 1;
3504	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3505	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3506
3507	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3508		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3509		iwi_sysctl_softled, "I", "enable/disable software LED support");
3510	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3511		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3512		"pin setting to turn activity LED on");
3513	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3514		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3515		"idle time for inactivity LED (ticks)");
3516	/* XXX for debugging */
3517	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3518		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3519		"NIC type from EEPROM");
3520
3521	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3522	sc->sc_softled = 1;
3523
3524	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3525	if (sc->sc_nictype == 1) {
3526		/*
3527		 * NB: led's are reversed.
3528		 */
3529		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3530	}
3531}
3532
3533static void
3534iwi_scan_start(struct ieee80211com *ic)
3535{
3536	/* ignore */
3537}
3538
3539static void
3540iwi_set_channel(struct ieee80211com *ic)
3541{
3542	struct iwi_softc *sc = ic->ic_softc;
3543
3544	if (sc->fw_state == IWI_FW_IDLE)
3545		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3546}
3547
3548static void
3549iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3550{
3551	struct ieee80211vap *vap = ss->ss_vap;
3552	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3553	IWI_LOCK_DECL;
3554
3555	IWI_LOCK(sc);
3556	if (iwi_scanchan(sc, maxdwell, 0))
3557		ieee80211_cancel_scan(vap);
3558	IWI_UNLOCK(sc);
3559}
3560
3561static void
3562iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3563{
3564	/* NB: don't try to abort scan; wait for firmware to finish */
3565}
3566
3567static void
3568iwi_scan_end(struct ieee80211com *ic)
3569{
3570	struct iwi_softc *sc = ic->ic_softc;
3571	IWI_LOCK_DECL;
3572
3573	IWI_LOCK(sc);
3574	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3575	/* NB: make sure we're still scanning */
3576	if (sc->fw_state == IWI_FW_SCANNING)
3577		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3578	IWI_UNLOCK(sc);
3579}
3580
3581static void
3582iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3583{
3584	struct iwi_softc *sc = ic->ic_softc;
3585	device_t dev = sc->sc_dev;
3586
3587	memset(bands, 0, bands_sz);
3588	setbit(bands, IEEE80211_MODE_11B);
3589	setbit(bands, IEEE80211_MODE_11G);
3590	if (pci_get_device(dev) >= 0x4223)
3591		setbit(bands, IEEE80211_MODE_11A);
3592}
3593
3594static void
3595iwi_getradiocaps(struct ieee80211com *ic,
3596    int maxchans, int *nchans, struct ieee80211_channel chans[])
3597{
3598	uint8_t bands[IEEE80211_MODE_BYTES];
3599
3600	iwi_collect_bands(ic, bands, sizeof(bands));
3601	*nchans = 0;
3602	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3603		ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3604		    def_chan_2ghz, nitems(def_chan_2ghz), bands, 0);
3605	if (isset(bands, IEEE80211_MODE_11A)) {
3606		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3607		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3608		    bands, 0);
3609		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3610		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3611		    bands, 0);
3612		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3613		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3614		    bands, 0);
3615	}
3616}
3617