isci_controller.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * BSD LICENSE
5 *
6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 *   * Redistributions of source code must retain the above copyright
14 *     notice, this list of conditions and the following disclaimer.
15 *   * Redistributions in binary form must reproduce the above copyright
16 *     notice, this list of conditions and the following disclaimer in
17 *     the documentation and/or other materials provided with the
18 *     distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/dev/isci/isci_controller.c 330897 2018-03-14 03:19:51Z eadler $");
35
36#include <dev/isci/isci.h>
37
38#include <sys/conf.h>
39#include <sys/malloc.h>
40
41#include <cam/cam_periph.h>
42#include <cam/cam_xpt_periph.h>
43
44#include <dev/isci/scil/sci_memory_descriptor_list.h>
45#include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
46
47#include <dev/isci/scil/scif_controller.h>
48#include <dev/isci/scil/scif_library.h>
49#include <dev/isci/scil/scif_io_request.h>
50#include <dev/isci/scil/scif_task_request.h>
51#include <dev/isci/scil/scif_remote_device.h>
52#include <dev/isci/scil/scif_domain.h>
53#include <dev/isci/scil/scif_user_callback.h>
54#include <dev/isci/scil/scic_sgpio.h>
55
56#include <dev/led/led.h>
57
58void isci_action(struct cam_sim *sim, union ccb *ccb);
59void isci_poll(struct cam_sim *sim);
60
61#define ccb_sim_ptr sim_priv.entries[0].ptr
62
63/**
64 * @brief This user callback will inform the user that the controller has
65 *        had a serious unexpected error.  The user should not the error,
66 *        disable interrupts, and wait for current ongoing processing to
67 *        complete.  Subsequently, the user should reset the controller.
68 *
69 * @param[in]  controller This parameter specifies the controller that had
70 *                        an error.
71 *
72 * @return none
73 */
74void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
75    SCI_CONTROLLER_ERROR error)
76{
77
78	isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
79	    error);
80}
81
82/**
83 * @brief This user callback will inform the user that the controller has
84 *        finished the start process.
85 *
86 * @param[in]  controller This parameter specifies the controller that was
87 *             started.
88 * @param[in]  completion_status This parameter specifies the results of
89 *             the start operation.  SCI_SUCCESS indicates successful
90 *             completion.
91 *
92 * @return none
93 */
94void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
95    SCI_STATUS completion_status)
96{
97	uint32_t index;
98	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
99	    sci_object_get_association(controller);
100
101	isci_controller->is_started = TRUE;
102
103	/* Set bits for all domains.  We will clear them one-by-one once
104	 *  the domains complete discovery, or return error when calling
105	 *  scif_domain_discover.  Once all bits are clear, we will register
106	 *  the controller with CAM.
107	 */
108	isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
109
110	for(index = 0; index < SCI_MAX_DOMAINS; index++) {
111		SCI_STATUS status;
112		SCI_DOMAIN_HANDLE_T domain =
113		    isci_controller->domain[index].sci_object;
114
115		status = scif_domain_discover(
116			domain,
117			scif_domain_get_suggested_discover_timeout(domain),
118			DEVICE_TIMEOUT
119		);
120
121		if (status != SCI_SUCCESS)
122		{
123			isci_controller_domain_discovery_complete(
124			    isci_controller, &isci_controller->domain[index]);
125		}
126	}
127}
128
129/**
130 * @brief This user callback will inform the user that the controller has
131 *        finished the stop process. Note, after user calls
132 *        scif_controller_stop(), before user receives this controller stop
133 *        complete callback, user should not expect any callback from
134 *        framework, such like scif_cb_domain_change_notification().
135 *
136 * @param[in]  controller This parameter specifies the controller that was
137 *             stopped.
138 * @param[in]  completion_status This parameter specifies the results of
139 *             the stop operation.  SCI_SUCCESS indicates successful
140 *             completion.
141 *
142 * @return none
143 */
144void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
145    SCI_STATUS completion_status)
146{
147	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
148	    sci_object_get_association(controller);
149
150	isci_controller->is_started = FALSE;
151}
152
153static void
154isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
155{
156	SCI_PHYSICAL_ADDRESS *phys_addr = arg;
157
158	*phys_addr = seg[0].ds_addr;
159}
160
161/**
162 * @brief This method will be invoked to allocate memory dynamically.
163 *
164 * @param[in]  controller This parameter represents the controller
165 *             object for which to allocate memory.
166 * @param[out] mde This parameter represents the memory descriptor to
167 *             be filled in by the user that will reference the newly
168 *             allocated memory.
169 *
170 * @return none
171 */
172void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
173    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
174{
175	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
176	    sci_object_get_association(controller);
177
178	/*
179	 * Note this routine is only used for buffers needed to translate
180	 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
181	 *
182	 * We first try to pull a buffer from the controller's pool, and only
183	 * call contigmalloc if one isn't there.
184	 */
185	if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
186		sci_pool_get(isci_controller->unmap_buffer_pool,
187		    mde->virtual_address);
188	} else
189		mde->virtual_address = contigmalloc(PAGE_SIZE,
190		    M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
191		    mde->constant_memory_alignment, 0);
192
193	if (mde->virtual_address != NULL)
194		bus_dmamap_load(isci_controller->buffer_dma_tag,
195		    NULL, mde->virtual_address, PAGE_SIZE,
196		    isci_single_map, &mde->physical_address,
197		    BUS_DMA_NOWAIT);
198}
199
200/**
201 * @brief This method will be invoked to allocate memory dynamically.
202 *
203 * @param[in]  controller This parameter represents the controller
204 *             object for which to allocate memory.
205 * @param[out] mde This parameter represents the memory descriptor to
206 *             be filled in by the user that will reference the newly
207 *             allocated memory.
208 *
209 * @return none
210 */
211void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
212    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
213{
214	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
215	    sci_object_get_association(controller);
216
217	/*
218	 * Put the buffer back into the controller's buffer pool, rather
219	 * than invoking configfree.  This helps reduce chance we won't
220	 * have buffers available when system is under memory pressure.
221	 */
222	sci_pool_put(isci_controller->unmap_buffer_pool,
223	    mde->virtual_address);
224}
225
226void isci_controller_construct(struct ISCI_CONTROLLER *controller,
227    struct isci_softc *isci)
228{
229	SCI_CONTROLLER_HANDLE_T scif_controller_handle;
230
231	scif_library_allocate_controller(isci->sci_library_handle,
232	    &scif_controller_handle);
233
234	scif_controller_construct(isci->sci_library_handle,
235	    scif_controller_handle, NULL);
236
237	controller->isci = isci;
238	controller->scif_controller_handle = scif_controller_handle;
239
240	/* This allows us to later use
241	 *  sci_object_get_association(scif_controller_handle)
242	 * inside of a callback routine to get our struct ISCI_CONTROLLER object
243	 */
244	sci_object_set_association(scif_controller_handle, (void *)controller);
245
246	controller->is_started = FALSE;
247	controller->is_frozen = FALSE;
248	controller->release_queued_ccbs = FALSE;
249	controller->sim = NULL;
250	controller->initial_discovery_mask = 0;
251
252	sci_fast_list_init(&controller->pending_device_reset_list);
253
254	mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
255
256	uint32_t domain_index;
257
258	for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
259		isci_domain_construct( &controller->domain[domain_index],
260		    domain_index, controller);
261	}
262
263	controller->timer_memory = malloc(
264	    sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
265	    M_NOWAIT | M_ZERO);
266
267	sci_pool_initialize(controller->timer_pool);
268
269	struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
270	    controller->timer_memory;
271
272	for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
273		sci_pool_put(controller->timer_pool, timer++);
274	}
275
276	sci_pool_initialize(controller->unmap_buffer_pool);
277}
278
279static void isci_led_fault_func(void *priv, int onoff)
280{
281	struct ISCI_PHY *phy = priv;
282
283	/* map onoff to the fault LED */
284	phy->led_fault = onoff;
285	scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
286		phy->led_fault, phy->led_locate, 0);
287}
288
289static void isci_led_locate_func(void *priv, int onoff)
290{
291	struct ISCI_PHY *phy = priv;
292
293	/* map onoff to the locate LED */
294	phy->led_locate = onoff;
295	scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
296		phy->led_fault, phy->led_locate, 0);
297}
298
299SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
300{
301	SCIC_USER_PARAMETERS_T scic_user_parameters;
302	SCI_CONTROLLER_HANDLE_T scic_controller_handle;
303	char led_name[64];
304	unsigned long tunable;
305	uint32_t io_shortage;
306	uint32_t fail_on_timeout;
307	int i;
308
309	scic_controller_handle =
310	    scif_controller_get_scic_handle(controller->scif_controller_handle);
311
312	if (controller->isci->oem_parameters_found == TRUE)
313	{
314		scic_oem_parameters_set(
315		    scic_controller_handle,
316		    &controller->oem_parameters,
317		    (uint8_t)(controller->oem_parameters_version));
318	}
319
320	scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
321
322	if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
323		scic_user_parameters.sds1.no_outbound_task_timeout =
324		    (uint8_t)tunable;
325
326	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
327		scic_user_parameters.sds1.ssp_max_occupancy_timeout =
328		    (uint16_t)tunable;
329
330	if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
331		scic_user_parameters.sds1.stp_max_occupancy_timeout =
332		    (uint16_t)tunable;
333
334	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
335		scic_user_parameters.sds1.ssp_inactivity_timeout =
336		    (uint16_t)tunable;
337
338	if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
339		scic_user_parameters.sds1.stp_inactivity_timeout =
340		    (uint16_t)tunable;
341
342	if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
343		for (i = 0; i < SCI_MAX_PHYS; i++)
344			scic_user_parameters.sds1.phys[i].max_speed_generation =
345			    (uint8_t)tunable;
346
347	scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
348
349	/* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
350	 *  a workaround - one per domain.
351	 */
352	controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
353
354	if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
355	    &controller->queue_depth)) {
356		controller->queue_depth = max(1, min(controller->queue_depth,
357		    SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
358	}
359
360	/* Reserve one request so that we can ensure we have one available TC
361	 *  to do internal device resets.
362	 */
363	controller->sim_queue_depth = controller->queue_depth - 1;
364
365	/* Although we save one TC to do internal device resets, it is possible
366	 *  we could end up using several TCs for simultaneous device resets
367	 *  while at the same time having CAM fill our controller queue.  To
368	 *  simulate this condition, and how our driver handles it, we can set
369	 *  this io_shortage parameter, which will tell CAM that we have a
370	 *  large queue depth than we really do.
371	 */
372	io_shortage = 0;
373	TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
374	controller->sim_queue_depth += io_shortage;
375
376	fail_on_timeout = 1;
377	TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
378	controller->fail_on_task_timeout = fail_on_timeout;
379
380	/* Attach to CAM using xpt_bus_register now, then immediately freeze
381	 *  the simq.  It will get released later when initial domain discovery
382	 *  is complete.
383	 */
384	controller->has_been_scanned = FALSE;
385	mtx_lock(&controller->lock);
386	isci_controller_attach_to_cam(controller);
387	xpt_freeze_simq(controller->sim, 1);
388	mtx_unlock(&controller->lock);
389
390	for (i = 0; i < SCI_MAX_PHYS; i++) {
391		controller->phys[i].handle = scic_controller_handle;
392		controller->phys[i].index = i;
393
394		/* fault */
395		controller->phys[i].led_fault = 0;
396		sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
397		controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
398		    &controller->phys[i], led_name);
399
400		/* locate */
401		controller->phys[i].led_locate = 0;
402		sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
403		controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
404		    &controller->phys[i], led_name);
405	}
406
407	return (scif_controller_initialize(controller->scif_controller_handle));
408}
409
410int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
411{
412	int error;
413	device_t device =  controller->isci->device;
414	uint32_t max_segment_size = isci_io_request_get_max_io_size();
415	uint32_t status = 0;
416	struct ISCI_MEMORY *uncached_controller_memory =
417	    &controller->uncached_controller_memory;
418	struct ISCI_MEMORY *cached_controller_memory =
419	    &controller->cached_controller_memory;
420	struct ISCI_MEMORY *request_memory =
421	    &controller->request_memory;
422	POINTER_UINT virtual_address;
423	bus_addr_t physical_address;
424
425	controller->mdl = sci_controller_get_memory_descriptor_list_handle(
426	    controller->scif_controller_handle);
427
428	uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
429	    controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
430
431	error = isci_allocate_dma_buffer(device, uncached_controller_memory);
432
433	if (error != 0)
434	    return (error);
435
436	sci_mdl_decorator_assign_memory( controller->mdl,
437	    SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
438	    uncached_controller_memory->virtual_address,
439	    uncached_controller_memory->physical_address);
440
441	cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
442	    controller->mdl,
443	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
444	);
445
446	error = isci_allocate_dma_buffer(device, cached_controller_memory);
447
448	if (error != 0)
449	    return (error);
450
451	sci_mdl_decorator_assign_memory(controller->mdl,
452	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
453	    cached_controller_memory->virtual_address,
454	    cached_controller_memory->physical_address);
455
456	request_memory->size =
457	    controller->queue_depth * isci_io_request_get_object_size();
458
459	error = isci_allocate_dma_buffer(device, request_memory);
460
461	if (error != 0)
462	    return (error);
463
464	/* For STP PIO testing, we want to ensure we can force multiple SGLs
465	 *  since this has been a problem area in SCIL.  This tunable parameter
466	 *  will allow us to force DMA segments to a smaller size, ensuring
467	 *  that even if a physically contiguous buffer is attached to this
468	 *  I/O, the DMA subsystem will pass us multiple segments in our DMA
469	 *  load callback.
470	 */
471	TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
472
473	/* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
474	 *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
475	 *  will enable better performance than creating the DMA maps every time we get
476	 *  an I/O.
477	 */
478	status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
479	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
480	    isci_io_request_get_max_io_size(),
481	    SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
482	    &controller->buffer_dma_tag);
483
484	sci_pool_initialize(controller->request_pool);
485
486	virtual_address = request_memory->virtual_address;
487	physical_address = request_memory->physical_address;
488
489	for (int i = 0; i < controller->queue_depth; i++) {
490		struct ISCI_REQUEST *request =
491		    (struct ISCI_REQUEST *)virtual_address;
492
493		isci_request_construct(request,
494		    controller->scif_controller_handle,
495		    controller->buffer_dma_tag, physical_address);
496
497		sci_pool_put(controller->request_pool, request);
498
499		virtual_address += isci_request_get_object_size();
500		physical_address += isci_request_get_object_size();
501	}
502
503	uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
504	    scif_remote_device_get_object_size();
505
506	controller->remote_device_memory = (uint8_t *) malloc(
507	    remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
508	    M_NOWAIT | M_ZERO);
509
510	sci_pool_initialize(controller->remote_device_pool);
511
512	uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
513
514	for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
515		struct ISCI_REMOTE_DEVICE *remote_device =
516		    (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
517
518		controller->remote_device[i] = NULL;
519		remote_device->index = i;
520		remote_device->is_resetting = FALSE;
521		remote_device->frozen_lun_mask = 0;
522		sci_fast_list_element_init(remote_device,
523		    &remote_device->pending_device_reset_element);
524		TAILQ_INIT(&remote_device->queued_ccbs);
525		remote_device->release_queued_ccb = FALSE;
526		remote_device->queued_ccb_in_progress = NULL;
527
528		/*
529		 * For the first SCI_MAX_DOMAINS device objects, do not put
530		 *  them in the pool, rather assign them to each domain.  This
531		 *  ensures that any device attached directly to port "i" will
532		 *  always get CAM target id "i".
533		 */
534		if (i < SCI_MAX_DOMAINS)
535			controller->domain[i].da_remote_device = remote_device;
536		else
537			sci_pool_put(controller->remote_device_pool,
538			    remote_device);
539		remote_device_memory_ptr += remote_device_size;
540	}
541
542	return (0);
543}
544
545void isci_controller_start(void *controller_handle)
546{
547	struct ISCI_CONTROLLER *controller =
548	    (struct ISCI_CONTROLLER *)controller_handle;
549	SCI_CONTROLLER_HANDLE_T scif_controller_handle =
550	    controller->scif_controller_handle;
551
552	scif_controller_start(scif_controller_handle,
553	    scif_controller_get_suggested_start_timeout(scif_controller_handle));
554
555	scic_controller_enable_interrupts(
556	    scif_controller_get_scic_handle(controller->scif_controller_handle));
557}
558
559void isci_controller_domain_discovery_complete(
560    struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
561{
562	if (!isci_controller->has_been_scanned)
563	{
564		/* Controller has not been scanned yet.  We'll clear
565		 *  the discovery bit for this domain, then check if all bits
566		 *  are now clear.  That would indicate that all domains are
567		 *  done with discovery and we can then proceed with initial
568		 *  scan.
569		 */
570
571		isci_controller->initial_discovery_mask &=
572		    ~(1 << isci_domain->index);
573
574		if (isci_controller->initial_discovery_mask == 0) {
575			struct isci_softc *driver = isci_controller->isci;
576			uint8_t next_index = isci_controller->index + 1;
577
578			isci_controller->has_been_scanned = TRUE;
579
580			/* Unfreeze simq to allow initial scan to proceed. */
581			xpt_release_simq(isci_controller->sim, TRUE);
582
583#if __FreeBSD_version < 800000
584			/* When driver is loaded after boot, we need to
585			 *  explicitly rescan here for versions <8.0, because
586			 *  CAM only automatically scans new buses at boot
587			 *  time.
588			 */
589			union ccb *ccb = xpt_alloc_ccb_nowait();
590
591			xpt_create_path(&ccb->ccb_h.path, NULL,
592			    cam_sim_path(isci_controller->sim),
593			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
594
595			xpt_rescan(ccb);
596#endif
597
598			if (next_index < driver->controller_count) {
599				/*  There are more controllers that need to
600				 *   start.  So start the next one.
601				 */
602				isci_controller_start(
603				    &driver->controllers[next_index]);
604			}
605			else
606			{
607				/* All controllers have been started and completed discovery.
608				 *  Disestablish the config hook while will signal to the
609				 *  kernel during boot that it is safe to try to find and
610				 *  mount the root partition.
611				 */
612				config_intrhook_disestablish(
613				    &driver->config_hook);
614			}
615		}
616	}
617}
618
619int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
620{
621	struct isci_softc *isci = controller->isci;
622	device_t parent = device_get_parent(isci->device);
623	int unit = device_get_unit(isci->device);
624	struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
625
626	if(isci_devq == NULL) {
627		isci_log_message(0, "ISCI", "isci_devq is NULL \n");
628		return (-1);
629	}
630
631	controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
632	    controller, unit, &controller->lock, controller->sim_queue_depth,
633	    controller->sim_queue_depth, isci_devq);
634
635	if(controller->sim == NULL) {
636		isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
637		cam_simq_free(isci_devq);
638		return (-1);
639	}
640
641	if(xpt_bus_register(controller->sim, parent, controller->index)
642	    != CAM_SUCCESS) {
643		isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
644		cam_sim_free(controller->sim, TRUE);
645		mtx_unlock(&controller->lock);
646		return (-1);
647	}
648
649	if(xpt_create_path(&controller->path, NULL,
650	    cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
651	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
652		isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
653		xpt_bus_deregister(cam_sim_path(controller->sim));
654		cam_sim_free(controller->sim, TRUE);
655		mtx_unlock(&controller->lock);
656		return (-1);
657	}
658
659	return (0);
660}
661
662void isci_poll(struct cam_sim *sim)
663{
664	struct ISCI_CONTROLLER *controller =
665	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
666
667	isci_interrupt_poll_handler(controller);
668}
669
670void isci_action(struct cam_sim *sim, union ccb *ccb)
671{
672	struct ISCI_CONTROLLER *controller =
673	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
674
675	switch ( ccb->ccb_h.func_code ) {
676	case XPT_PATH_INQ:
677		{
678			struct ccb_pathinq *cpi = &ccb->cpi;
679			int bus = cam_sim_bus(sim);
680			ccb->ccb_h.ccb_sim_ptr = sim;
681			cpi->version_num = 1;
682			cpi->hba_inquiry = PI_TAG_ABLE;
683			cpi->target_sprt = 0;
684			cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
685			    PIM_UNMAPPED;
686			cpi->hba_eng_cnt = 0;
687			cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
688			cpi->max_lun = ISCI_MAX_LUN;
689#if __FreeBSD_version >= 800102
690			cpi->maxio = isci_io_request_get_max_io_size();
691#endif
692			cpi->unit_number = cam_sim_unit(sim);
693			cpi->bus_id = bus;
694			cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
695			cpi->base_transfer_speed = 300000;
696			strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
697			strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
698			strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
699			cpi->transport = XPORT_SAS;
700			cpi->transport_version = 0;
701			cpi->protocol = PROTO_SCSI;
702			cpi->protocol_version = SCSI_REV_SPC2;
703			cpi->ccb_h.status = CAM_REQ_CMP;
704			xpt_done(ccb);
705		}
706		break;
707	case XPT_GET_TRAN_SETTINGS:
708		{
709			struct ccb_trans_settings *general_settings = &ccb->cts;
710			struct ccb_trans_settings_sas *sas_settings =
711			    &general_settings->xport_specific.sas;
712			struct ccb_trans_settings_scsi *scsi_settings =
713			    &general_settings->proto_specific.scsi;
714			struct ISCI_REMOTE_DEVICE *remote_device;
715
716			remote_device = controller->remote_device[ccb->ccb_h.target_id];
717
718			if (remote_device == NULL) {
719				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
720				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
721				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
722				xpt_done(ccb);
723				break;
724			}
725
726			general_settings->protocol = PROTO_SCSI;
727			general_settings->transport = XPORT_SAS;
728			general_settings->protocol_version = SCSI_REV_SPC2;
729			general_settings->transport_version = 0;
730			scsi_settings->valid = CTS_SCSI_VALID_TQ;
731			scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
732			ccb->ccb_h.status &= ~CAM_STATUS_MASK;
733			ccb->ccb_h.status |= CAM_REQ_CMP;
734
735			sas_settings->bitrate =
736			    isci_remote_device_get_bitrate(remote_device);
737
738			if (sas_settings->bitrate != 0)
739				sas_settings->valid = CTS_SAS_VALID_SPEED;
740
741			xpt_done(ccb);
742		}
743		break;
744	case XPT_SCSI_IO:
745		if (ccb->ccb_h.flags & CAM_CDB_PHYS) {
746			ccb->ccb_h.status = CAM_REQ_INVALID;
747			xpt_done(ccb);
748			break;
749		}
750		isci_io_request_execute_scsi_io(ccb, controller);
751		break;
752#if __FreeBSD_version >= 900026
753	case XPT_SMP_IO:
754		isci_io_request_execute_smp_io(ccb, controller);
755		break;
756#endif
757	case XPT_SET_TRAN_SETTINGS:
758		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
759		ccb->ccb_h.status |= CAM_REQ_CMP;
760		xpt_done(ccb);
761		break;
762	case XPT_CALC_GEOMETRY:
763		cam_calc_geometry(&ccb->ccg, /*extended*/1);
764		xpt_done(ccb);
765		break;
766	case XPT_RESET_DEV:
767		{
768			struct ISCI_REMOTE_DEVICE *remote_device =
769			    controller->remote_device[ccb->ccb_h.target_id];
770
771			if (remote_device != NULL)
772				isci_remote_device_reset(remote_device, ccb);
773			else {
774				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
775				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
776				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
777				xpt_done(ccb);
778			}
779		}
780		break;
781	case XPT_RESET_BUS:
782		ccb->ccb_h.status = CAM_REQ_CMP;
783		xpt_done(ccb);
784		break;
785	default:
786		isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
787		    ccb->ccb_h.func_code);
788		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
789		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
790		ccb->ccb_h.status |= CAM_REQ_INVALID;
791		xpt_done(ccb);
792		break;
793	}
794}
795
796/*
797 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
798 *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
799 *  when SCIL denotes an I/O needs to be retried (typically because of mixing
800 *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
801 *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
802 *  a ready notification, we will retry the first I/O on the queue.
803 *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
804 *  the context of the completion handler, so we need to retry these I/O after
805 *  the completion handler is done executing.
806 */
807void
808isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
809{
810	struct ISCI_REMOTE_DEVICE *dev;
811	struct ccb_hdr *ccb_h;
812	uint8_t *ptr;
813	int dev_idx;
814
815	KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
816
817	controller->release_queued_ccbs = FALSE;
818	for (dev_idx = 0;
819	     dev_idx < SCI_MAX_REMOTE_DEVICES;
820	     dev_idx++) {
821
822		dev = controller->remote_device[dev_idx];
823		if (dev != NULL &&
824		    dev->release_queued_ccb == TRUE &&
825		    dev->queued_ccb_in_progress == NULL) {
826			dev->release_queued_ccb = FALSE;
827			ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
828
829			if (ccb_h == NULL)
830				continue;
831
832			ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio);
833			isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr);
834
835			dev->queued_ccb_in_progress = (union ccb *)ccb_h;
836			isci_io_request_execute_scsi_io(
837			    (union ccb *)ccb_h, controller);
838		}
839	}
840}
841