if_hatmvar.h revision 118169
1/*
2 * Copyright (c) 2001-2003
3 *	Fraunhofer Institute for Open Communication Systems (FhG Fokus).
4 * 	All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * Author: Hartmut Brandt <harti@freebsd.org>
28 *
29 * $FreeBSD: head/sys/dev/hatm/if_hatmvar.h 118169 2003-07-29 14:05:45Z harti $
30 *
31 * Fore HE driver for NATM
32 */
33
34/*
35 * Debug statistics of the HE driver
36 */
37struct istats {
38	uint32_t	tdprq_full;
39	uint32_t	hbuf_error;
40	uint32_t	crc_error;
41	uint32_t	len_error;
42	uint32_t	flow_closed;
43	uint32_t	flow_drop;
44	uint32_t	tpd_no_mem;
45	uint32_t	rx_seg;
46	uint32_t	empty_hbuf;
47	uint32_t	short_aal5;
48	uint32_t	badlen_aal5;
49	uint32_t	bug_bad_isw;
50	uint32_t	bug_no_irq_upd;
51	uint32_t	itype_tbrq;
52	uint32_t	itype_tpd;
53	uint32_t	itype_rbps;
54	uint32_t	itype_rbpl;
55	uint32_t	itype_rbrq;
56	uint32_t	itype_rbrqt;
57	uint32_t	itype_unknown;
58	uint32_t	itype_phys;
59	uint32_t	itype_err;
60	uint32_t	defrag;
61	uint32_t	mcc;
62	uint32_t	oec;
63	uint32_t	dcc;
64	uint32_t	cec;
65};
66
67/* Card memory layout parameters */
68#define HE_CONFIG_MEM_LAYOUT {						\
69	{			/* 155 */				\
70	  20,			/* cells_per_row */			\
71	  1024,			/* bytes_per_row */			\
72	  512,			/* r0_numrows */			\
73	  1018,			/* tx_numrows */			\
74	  512,			/* r1_numrows */			\
75	  6,			/* r0_startrow */			\
76	  2			/* cells_per_lbuf */			\
77	}, {			/* 622 */				\
78	  40,			/* cells_per_row */			\
79	  2048,			/* bytes_per_row */			\
80	  256,			/* r0_numrows */			\
81	  512,			/* tx_numrows */			\
82	  256,			/* r1_numrows */			\
83	  0,			/* r0_startrow */			\
84	  4			/* cells_per_lbuf */			\
85	}								\
86}
87
88/*********************************************************************/
89struct hatm_softc;
90
91/*
92 * A chunk of DMA-able memory
93 */
94struct dmamem {
95	u_int		size;		/* in bytes */
96	u_int		align;		/* alignement */
97	bus_dma_tag_t	tag;		/* DMA tag */
98	void		*base;		/* the memory */
99	bus_addr_t	paddr;		/* physical address */
100	bus_dmamap_t	map;		/* the MAP */
101};
102
103/*
104 * RBP (Receive Buffer Pool) queue entry and queue.
105 */
106struct herbp {
107	u_int		size;		/* RBP number of entries (power of two) */
108	u_int		thresh;		/* interrupt treshold */
109	uint32_t	bsize;		/* buffer size in bytes */
110	u_int		offset;		/* free space at start for small bufs */
111	uint32_t	mask;		/* mask for index */
112	struct dmamem	mem;		/* the queue area */
113	struct he_rbpen	*rbp;
114	uint32_t	head, tail;	/* head and tail */
115};
116
117/*
118 * RBRQ (Receive Buffer Return Queue) entry and queue.
119 */
120struct herbrq {
121	u_int		size;		/* number of entries */
122	u_int		thresh;		/* interrupt threshold */
123	u_int		tout;		/* timeout value */
124	u_int		pcnt;		/* packet count threshold */
125	struct dmamem	mem;		/* memory */
126	struct he_rbrqen *rbrq;
127	uint32_t	head;		/* driver end */
128};
129
130/*
131 * TPDRQ (Transmit Packet Descriptor Ready Queue) entry and queue
132 */
133struct hetpdrq {
134	u_int		size;		/* number of entries */
135	struct dmamem	mem;		/* memory */
136	struct he_tpdrqen *tpdrq;
137	u_int		head;		/* head (copy of adapter) */
138	u_int		tail;		/* written back to adapter */
139};
140
141/*
142 * TBRQ (Transmit Buffer Return Queue) entry and queue
143 */
144struct hetbrq {
145	u_int		size;		/* number of entries */
146	u_int		thresh;		/* interrupt threshold */
147	struct dmamem	mem;		/* memory */
148	struct he_tbrqen *tbrq;
149	u_int		head;		/* adapter end */
150};
151
152/*==================================================================*/
153
154/*
155 * TPDs are 32 byte and must be aligned on 64 byte boundaries. That means,
156 * that half of the space is free. We use this space to plug in a link for
157 * the list of free TPDs. Note, that the m_act member of the mbufs contain
158 * a pointer to the dmamap.
159 *
160 * The maximum number of TDPs is the size of the common transmit packet
161 * descriptor ready queue plus the sizes of the transmit buffer return queues
162 * (currently only queue 0). We allocate and map these TPD when initializing
163 * the card. We also allocate on DMA map for each TPD. Only the map in the
164 * last TPD of a packets is used when a packet is transmitted.
165 * This is signalled by having the mbuf member of this TPD non-zero and
166 * pointing to the mbuf.
167 */
168#define HE_TPD_SIZE		64
169struct tpd {
170	struct he_tpd		tpd;	/* at beginning */
171	SLIST_ENTRY(tpd)	link;	/* free cid list link */
172	struct mbuf		*mbuf;	/* the buf chain */
173	bus_dmamap_t		map;	/* map */
174	uint32_t		cid;	/* CID */
175	uint16_t		no;	/* number of this tpd */
176};
177SLIST_HEAD(tpd_list, tpd);
178
179#define TPD_SET_USED(SC, I) do {				\
180	(SC)->tpd_used[(I) / 8] |= (1 << ((I) % 8));		\
181    } while (0)
182
183#define TPD_CLR_USED(SC, I) do {				\
184	(SC)->tpd_used[(I) / 8] &= ~(1 << ((I) % 8));		\
185    } while (0)
186
187#define TPD_TST_USED(SC, I) ((SC)->tpd_used[(I) / 8] & (1 << ((I) % 8)))
188
189#define TPD_ADDR(SC, I) ((struct tpd *)((char *)sc->tpds.base +	\
190    (I) * HE_TPD_SIZE))
191
192/*==================================================================*/
193
194/*
195 * External MBUFs. The card needs a lot of mbufs in the pools for high
196 * performance. The problem with using mbufs directly is that we would need
197 * a dmamap for each of the mbufs. This can exhaust iommu space on the sparc
198 * and it eats also a lot of processing time. So we use external mbufs
199 * for the small buffers and clusters for the large buffers.
200 * For receive group 0 we use 5 ATM cells, for group 1 one (52 byte) ATM
201 * cell. The mbuf storage is allocated pagewise and one dmamap is used per
202 * page.
203 *
204 * The handle we give to the card for the small buffers is a word combined
205 * of the page number and the number of the chunk in the page. This restricts
206 * the number of chunks per page to 256 (8 bit) and the number of pages to
207 * 65536 (16 bits).
208 *
209 * A chunk may be in one of three states: free, on the card and floating around
210 * in the system. If it is free, it is on one of the two free lists and
211 * start with a struct mbufx_free. Each page has a bitmap that tracks where
212 * its chunks are.
213 *
214 * For large buffers we use mbuf clusters. Here we have two problems: we need
215 * to track the buffers on the card (in the case we want to stop it) and
216 * we need to map the 64bit mbuf address to a 26bit handle for 64-bit machines.
217 * The card uses the buffers in the order we give it to the card. Therefor
218 * we can use a private array holding pointers to the mbufs as a circular
219 * queue for both tasks. This is done with the lbufs member of softc. The
220 * handle for these buffer is the lbufs index ored with a flag.
221 */
222#define MBUF0_SIZE	(5 * 48)	/* 240 */
223#define MBUF1_SIZE	(52)
224
225#define MBUF0_CHUNK	256		/* 16 free bytes */
226#define MBUF1_CHUNK	96		/* 44 free bytes */
227#ifdef XXX
228#define MBUF0_OFFSET	(MBUF0_CHUNK - sizeof(struct mbuf_chunk_hdr) \
229    - MBUF0_SIZE)
230#else
231#define MBUF0_OFFSET	0
232#endif
233#define MBUF1_OFFSET	(MBUF1_CHUNK - sizeof(struct mbuf_chunk_hdr) \
234    - MBUF1_SIZE)
235#define MBUFL_OFFSET	16		/* two pointers for HARP */
236
237#define MBUF_ALLOC_SIZE	(PAGE_SIZE)
238
239/* each allocated page has one of these structures at its very end. */
240struct mbuf_page_hdr {
241	uint8_t		card[32];	/* bitmap for on-card */
242	uint8_t		used[32];	/* bitmap for used but not on-card */
243	uint16_t	nchunks;	/* chunks on this page */
244	bus_dmamap_t	map;		/* the DMA MAP */
245	uint32_t	phys;		/* physical base address */
246	uint32_t	hdroff;		/* chunk header offset */
247	uint32_t	chunksize;	/* chunk size */
248};
249struct mbuf_page {
250	char	storage[MBUF_ALLOC_SIZE - sizeof(struct mbuf_page_hdr)];
251	struct mbuf_page_hdr	hdr;
252};
253
254/* numbers per page */
255#define MBUF0_PER_PAGE	((MBUF_ALLOC_SIZE - sizeof(struct mbuf_page_hdr)) / \
256    MBUF0_CHUNK)
257#define MBUF1_PER_PAGE	((MBUF_ALLOC_SIZE - sizeof(struct mbuf_page_hdr)) / \
258    MBUF1_CHUNK)
259
260#define MBUF_CLR_BIT(ARRAY, BIT) ((ARRAY)[(BIT) / 8] &= ~(1 << ((BIT) % 8)))
261#define MBUF_SET_BIT(ARRAY, BIT) ((ARRAY)[(BIT) / 8] |= (1 << ((BIT) % 8)))
262#define MBUF_TST_BIT(ARRAY, BIT) ((ARRAY)[(BIT) / 8] & (1 << ((BIT) % 8)))
263
264#define MBUF_MAKE_HANDLE(PAGENO, CHUNKNO) \
265	(((PAGENO) << 10) | (CHUNKNO))
266
267#define MBUF_PARSE_HANDLE(HANDLE, PAGENO, CHUNKNO) do {	\
268	(CHUNKNO) = (HANDLE) & 0x3ff;			\
269	(PAGENO) = ((HANDLE) >> 10) & 0x3ff;		\
270    } while (0)
271
272#define MBUF_LARGE_FLAG	(1 << 20)
273
274/* chunks have the following structure at the end */
275struct mbuf_chunk_hdr {
276	struct mbuf		*mbuf;
277	uint16_t		pageno;
278	uint16_t		chunkno;
279};
280
281#define MBUFX_STORAGE_SIZE(X) (MBUF##X##_CHUNK	\
282    - sizeof(struct mbuf_chunk_hdr))
283
284struct mbuf0_chunk {
285	char			storage[MBUFX_STORAGE_SIZE(0)];
286	struct mbuf_chunk_hdr	hdr;
287};
288
289struct mbuf1_chunk {
290	char			storage[MBUFX_STORAGE_SIZE(1)];
291	struct mbuf_chunk_hdr	hdr;
292};
293
294struct mbufx_free {
295	SLIST_ENTRY(mbufx_free)	link;
296};
297SLIST_HEAD(mbufx_free_list, mbufx_free);
298
299/*==================================================================*/
300
301/*
302 * Interrupt queue
303 */
304struct heirq {
305	u_int		size;	/* number of entries */
306	u_int		thresh;	/* re-interrupt threshold */
307	u_int		line;	/* interrupt line to use */
308	struct dmamem	mem;	/* interrupt queues */
309	uint32_t *	irq;	/* interrupt queue */
310	uint32_t 	head;	/* head index */
311	uint32_t *	tailp;	/* pointer to tail */
312	struct hatm_softc *sc;	/* back pointer */
313	u_int		group;	/* interrupt group */
314};
315
316/*
317 * This structure describes all information for a VCC open on the card.
318 * The array of these structures is indexed by the compressed connection ID
319 * (CID).
320 */
321struct hevcc {
322	u_int		vflags;		/* private flags */
323	void *		rxhand;		/* NATM protocol block */
324	u_int		rc;		/* rate control group for CBR */
325	struct mbuf *	chain;		/* partial received PDU */
326	struct mbuf *	last;		/* last mbuf in chain */
327
328	/* from the OPEN_VCC ioctl */
329	struct atmio_vcc param;		/* traffic parameters */
330
331	uint32_t	ibytes;
332	uint32_t	ipackets;
333	uint32_t	obytes;
334	uint32_t	opackets;
335	u_int		ntpds;		/* number of active TPDs */
336};
337#define HE_VCC_OPEN		0x000f0000
338#define HE_VCC_RX_OPEN		0x00010000
339#define HE_VCC_RX_CLOSING	0x00020000
340#define HE_VCC_TX_OPEN		0x00040000
341#define HE_VCC_TX_CLOSING	0x00080000
342#define HE_VCC_FLOW_CTRL	0x00100000
343#define HE_VCC_ASYNC		0x00200000
344
345/*
346 * CBR rate groups
347 */
348struct herg {
349	u_int	refcnt;		/* how many connections reference this group */
350	u_int	rate;		/* the value */
351};
352
353/*
354 * Softc
355 */
356struct hatm_softc {
357	struct ifatm		ifatm;		/* common ATM stuff */
358	struct mtx		mtx;		/* lock */
359	struct ifmedia		media;		/* media */
360	device_t		dev;		/* device */
361	int			memid;		/* resoure id for memory */
362	struct resource *	memres;		/* memory resource */
363	bus_space_handle_t	memh;		/* handle */
364	bus_space_tag_t		memt;		/* ... and tag */
365	bus_dma_tag_t		parent_tag;	/* global restriction */
366	struct cv		vcc_cv;		/* condition variable */
367	int			irqid;		/* resource id */
368	struct resource *	irqres;		/* resource */
369	void *			ih;		/* interrupt handle */
370	struct utopia		utopia;		/* utopia state */
371
372	/* rest has to be reset by stop */
373	int			he622;		/* this is a HE622 */
374	int			pci64;		/* 64bit bus */
375	char			prod_id[HE_EEPROM_PROD_ID_LEN + 1];
376	char			rev[HE_EEPROM_REV_LEN + 1];
377	struct heirq		irq_0;		/* interrupt queues 0 */
378
379	/* generic network controller state */
380	u_int			cells_per_row;
381	u_int			bytes_per_row;
382	u_int			r0_numrows;
383	u_int			tx_numrows;
384	u_int			r1_numrows;
385	u_int			r0_startrow;
386	u_int			tx_startrow;
387	u_int			r1_startrow;
388	u_int			cells_per_lbuf;
389	u_int			r0_numbuffs;
390	u_int			r1_numbuffs;
391	u_int			tx_numbuffs;
392
393	/* HSP */
394	struct he_hsp		*hsp;
395	struct dmamem		hsp_mem;
396
397	/*** TX ***/
398	struct hetbrq		tbrq;		/* TBRQ 0 */
399	struct hetpdrq		tpdrq;		/* TPDRQ */
400	struct tpd_list		tpd_free;	/* Free TPDs */
401	u_int			tpd_nfree;	/* number of free TPDs */
402	u_int			tpd_total;	/* total TPDs */
403	uint8_t			*tpd_used;	/* bitmap of used TPDs */
404	struct dmamem		tpds;		/* TPD memory */
405	bus_dma_tag_t		tx_tag;		/* DMA tag for all tx mbufs */
406
407	/*** RX ***/
408	/* receive/transmit groups */
409	struct herbp		rbp_s0;		/* RBPS0 */
410	struct herbp		rbp_l0;		/* RBPL0 */
411	struct herbp		rbp_s1;		/* RBPS1 */
412	struct herbrq		rbrq_0;		/* RBRQ0 */
413	struct herbrq		rbrq_1;		/* RBRQ1 */
414
415	/* list of external mbuf storage */
416	bus_dma_tag_t		mbuf_tag;
417	struct mbuf_page	**mbuf_pages;
418	u_int			mbuf_npages;
419	struct mtx		mbuf0_mtx;
420	struct mbufx_free_list	mbuf0_list;
421	struct mtx		mbuf1_mtx;
422	struct mbufx_free_list	mbuf1_list;
423
424	/* mbuf cluster tracking and mapping for group 0 */
425	struct mbuf		**lbufs;	/* mbufs */
426	bus_dmamap_t		*rmaps;		/* DMA maps */
427	u_int			lbufs_size;
428	u_int			lbufs_next;
429
430	/* VCCs */
431	struct hevcc		*vccs[HE_MAX_VCCS];
432	u_int			cbr_bw;		/* BW allocated to CBR */
433	u_int			max_tpd;	/* per VCC */
434	u_int			open_vccs;
435	uma_zone_t		vcc_zone;
436
437	/* rate groups */
438	struct herg		rate_ctrl[HE_REGN_CS_STPER];
439
440	/* memory offsets */
441	u_int			tsrb, tsrc, tsrd;
442	u_int			rsrb;
443
444	struct cv		cv_rcclose;	/* condition variable */
445	uint32_t		rate_grid[16][16]; /* our copy */
446
447	/* sysctl support */
448	struct sysctl_ctx_list	sysctl_ctx;
449	struct sysctl_oid	*sysctl_tree;
450
451	/* internal statistics */
452	struct istats		istats;
453
454#ifdef HATM_DEBUG
455	/* debugging */
456	u_int			debug;
457#endif
458};
459
460#define READ4(SC,OFF)	bus_space_read_4(SC->memt, SC->memh, (OFF))
461#define READ2(SC,OFF)	bus_space_read_2(SC->memt, SC->memh, (OFF))
462#define READ1(SC,OFF)	bus_space_read_1(SC->memt, SC->memh, (OFF))
463
464#define WRITE4(SC,OFF,VAL) bus_space_write_4(SC->memt, SC->memh, (OFF), (VAL))
465#define WRITE2(SC,OFF,VAL) bus_space_write_2(SC->memt, SC->memh, (OFF), (VAL))
466#define WRITE1(SC,OFF,VAL) bus_space_write_1(SC->memt, SC->memh, (OFF), (VAL))
467
468#define BARRIER_R(SC) bus_space_barrier(SC->memt, SC->memh, 0, HE_REGO_END, \
469	BUS_SPACE_BARRIER_READ)
470#define BARRIER_W(SC) bus_space_barrier(SC->memt, SC->memh, 0, HE_REGO_END, \
471	BUS_SPACE_BARRIER_WRITE)
472#define BARRIER_RW(SC) bus_space_barrier(SC->memt, SC->memh, 0, HE_REGO_END, \
473	BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE)
474
475#define READ_SUNI(SC,OFF) READ4(SC, HE_REGO_SUNI + 4 * (OFF))
476#define WRITE_SUNI(SC,OFF,VAL) WRITE4(SC, HE_REGO_SUNI + 4 * (OFF), (VAL))
477
478#define READ_LB4(SC,OFF)						\
479    ({									\
480	WRITE4(SC, HE_REGO_LB_MEM_ADDR, (OFF));				\
481	WRITE4(SC, HE_REGO_LB_MEM_ACCESS,				\
482	    (HE_REGM_LB_MEM_HNDSHK | HE_REGM_LB_MEM_READ));		\
483	while((READ4(SC, HE_REGO_LB_MEM_ACCESS) & HE_REGM_LB_MEM_HNDSHK))\
484		;							\
485	READ4(SC, HE_REGO_LB_MEM_DATA);					\
486    })
487#define WRITE_LB4(SC,OFF,VAL)						\
488    do {								\
489	WRITE4(SC, HE_REGO_LB_MEM_ADDR, (OFF));				\
490	WRITE4(SC, HE_REGO_LB_MEM_DATA, (VAL));				\
491	WRITE4(SC, HE_REGO_LB_MEM_ACCESS,				\
492	    (HE_REGM_LB_MEM_HNDSHK | HE_REGM_LB_MEM_WRITE));		\
493	while((READ4(SC, HE_REGO_LB_MEM_ACCESS) & HE_REGM_LB_MEM_HNDSHK))\
494		;							\
495    } while(0)
496
497#define WRITE_MEM4(SC,OFF,VAL,SPACE)					\
498    do {								\
499	WRITE4(SC, HE_REGO_CON_DAT, (VAL));				\
500	WRITE4(SC, HE_REGO_CON_CTL,					\
501	    (SPACE | HE_REGM_CON_WE | HE_REGM_CON_STATUS | (OFF)));	\
502	while((READ4(SC, HE_REGO_CON_CTL) & HE_REGM_CON_STATUS) != 0)	\
503		;							\
504    } while(0)
505
506#define READ_MEM4(SC,OFF,SPACE)					\
507    ({									\
508	WRITE4(SC, HE_REGO_CON_CTL,					\
509	    (SPACE | HE_REGM_CON_STATUS | (OFF)));			\
510	while((READ4(SC, HE_REGO_CON_CTL) & HE_REGM_CON_STATUS) != 0)	\
511		;							\
512	READ4(SC, HE_REGO_CON_DAT);					\
513    })
514
515#define WRITE_TCM4(SC,OFF,VAL) WRITE_MEM4(SC,(OFF),(VAL),HE_REGM_CON_TCM)
516#define WRITE_RCM4(SC,OFF,VAL) WRITE_MEM4(SC,(OFF),(VAL),HE_REGM_CON_RCM)
517#define WRITE_MBOX4(SC,OFF,VAL) WRITE_MEM4(SC,(OFF),(VAL),HE_REGM_CON_MBOX)
518
519#define READ_TCM4(SC,OFF) READ_MEM4(SC,(OFF),HE_REGM_CON_TCM)
520#define READ_RCM4(SC,OFF) READ_MEM4(SC,(OFF),HE_REGM_CON_RCM)
521#define READ_MBOX4(SC,OFF) READ_MEM4(SC,(OFF),HE_REGM_CON_MBOX)
522
523#define WRITE_TCM(SC,OFF,BYTES,VAL) 					\
524	WRITE_MEM4(SC,(OFF) | ((~(BYTES) & 0xf) << HE_REGS_CON_DIS),	\
525	    (VAL), HE_REGM_CON_TCM)
526#define WRITE_RCM(SC,OFF,BYTES,VAL) 					\
527	WRITE_MEM4(SC,(OFF) | ((~(BYTES) & 0xf) << HE_REGS_CON_DIS),	\
528	    (VAL), HE_REGM_CON_RCM)
529
530#define READ_TSR(SC,CID,NR)						\
531    ({									\
532	uint32_t _v;							\
533	if((NR) <= 7) {							\
534		_v = READ_TCM4(SC, HE_REGO_TSRA(0,CID,NR));		\
535	} else if((NR) <= 11) {						\
536		_v = READ_TCM4(SC, HE_REGO_TSRB((SC)->tsrb,CID,(NR-8)));\
537	} else if((NR) <= 13) {						\
538		_v = READ_TCM4(SC, HE_REGO_TSRC((SC)->tsrc,CID,(NR-12)));\
539	} else {							\
540		_v = READ_TCM4(SC, HE_REGO_TSRD((SC)->tsrd,CID));	\
541	}								\
542	_v;								\
543    })
544
545#define WRITE_TSR(SC,CID,NR,BEN,VAL)					\
546    do {								\
547	if((NR) <= 7) {							\
548		WRITE_TCM(SC, HE_REGO_TSRA(0,CID,NR),BEN,VAL);		\
549	} else if((NR) <= 11) {						\
550		WRITE_TCM(SC, HE_REGO_TSRB((SC)->tsrb,CID,(NR-8)),BEN,VAL);\
551	} else if((NR) <= 13) {						\
552		WRITE_TCM(SC, HE_REGO_TSRC((SC)->tsrc,CID,(NR-12)),BEN,VAL);\
553	} else {							\
554		WRITE_TCM(SC, HE_REGO_TSRD((SC)->tsrd,CID),BEN,VAL);	\
555	}								\
556    } while(0)
557
558#define READ_RSR(SC,CID,NR)						\
559    ({									\
560	uint32_t _v;							\
561	if((NR) <= 7) {							\
562		_v = READ_RCM4(SC, HE_REGO_RSRA(0,CID,NR));		\
563	} else {							\
564		_v = READ_RCM4(SC, HE_REGO_RSRB((SC)->rsrb,CID,(NR-8)));\
565	}								\
566	_v;								\
567    })
568
569#define WRITE_RSR(SC,CID,NR,BEN,VAL)					\
570    do {								\
571	if((NR) <= 7) {							\
572		WRITE_RCM(SC, HE_REGO_RSRA(0,CID,NR),BEN,VAL);		\
573	} else {							\
574		WRITE_RCM(SC, HE_REGO_RSRB((SC)->rsrb,CID,(NR-8)),BEN,VAL);\
575	}								\
576    } while(0)
577
578#ifdef HATM_DEBUG
579#define DBG(SC, FL, PRINT) do {						\
580	if((SC)->debug & DBG_##FL) { 					\
581		if_printf(&(SC)->ifatm.ifnet, "%s: ", __func__);	\
582		printf PRINT;						\
583		printf("\n");						\
584	}								\
585    } while (0)
586
587enum {
588	DBG_RX		= 0x0001,
589	DBG_TX		= 0x0002,
590	DBG_VCC		= 0x0004,
591	DBG_IOCTL	= 0x0008,
592	DBG_ATTACH	= 0x0010,
593	DBG_INTR	= 0x0020,
594	DBG_DMA		= 0x0040,
595	DBG_DMAH	= 0x0080,
596
597	DBG_ALL		= 0x00ff
598};
599
600#else
601#define DBG(SC, FL, PRINT)
602#endif
603
604u_int hatm_cps2atmf(uint32_t);
605u_int hatm_atmf2cps(uint32_t);
606
607void hatm_intr(void *);
608int hatm_ioctl(struct ifnet *, u_long, caddr_t);
609void hatm_initialize(struct hatm_softc *);
610void hatm_stop(struct hatm_softc *sc);
611void hatm_start(struct ifnet *);
612
613void hatm_rx(struct hatm_softc *sc, u_int cid, u_int flags, struct mbuf *m,
614    u_int len);
615void hatm_tx_complete(struct hatm_softc *sc, struct tpd *tpd, uint32_t);
616
617int hatm_tx_vcc_can_open(struct hatm_softc *sc, u_int cid, struct hevcc *);
618void hatm_tx_vcc_open(struct hatm_softc *sc, u_int cid);
619void hatm_rx_vcc_open(struct hatm_softc *sc, u_int cid);
620void hatm_tx_vcc_close(struct hatm_softc *sc, u_int cid);
621void hatm_rx_vcc_close(struct hatm_softc *sc, u_int cid);
622void hatm_tx_vcc_closed(struct hatm_softc *sc, u_int cid);
623void hatm_vcc_closed(struct hatm_softc *sc, u_int cid);
624