if_fe.c revision 347962
1/*-
2 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3 *
4 * This software may be used, modified, copied, distributed, and sold, in
5 * both source and binary form provided that the above copyright, these
6 * terms and the following disclaimer are retained.  The name of the author
7 * and/or the contributor may not be used to endorse or promote products
8 * derived from this software without specific prior written permission.
9 *
10 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20 * SUCH DAMAGE.
21 */
22
23#include <sys/cdefs.h>
24__FBSDID("$FreeBSD: stable/11/sys/dev/fe/if_fe.c 347962 2019-05-18 20:43:13Z brooks $");
25
26/*
27 *
28 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
29 * Contributed by M. Sekiguchi. <seki@sysrap.cs.fujitsu.co.jp>
30 *
31 * This version is intended to be a generic template for various
32 * MB86960A/MB86965A based Ethernet cards.  It currently supports
33 * Fujitsu FMV-180 series for ISA and Allied-Telesis AT1700/RE2000
34 * series for ISA, as well as Fujitsu MBH10302 PC Card.
35 * There are some currently-
36 * unused hooks embedded, which are primarily intended to support
37 * other types of Ethernet cards, but the author is not sure whether
38 * they are useful.
39 *
40 * This version also includes some alignments to support RE1000,
41 * C-NET(98)P2 and so on. These cards are not for AT-compatibles,
42 * but for NEC PC-98 bus -- a proprietary bus architecture available
43 * only in Japan. Confusingly, it is different from the Microsoft's
44 * PC98 architecture. :-{
45 * Further work for PC-98 version will be available as a part of
46 * FreeBSD(98) project.
47 *
48 * This software is a derivative work of if_ed.c version 1.56 by David
49 * Greenman available as a part of FreeBSD 2.0 RELEASE source distribution.
50 *
51 * The following lines are retained from the original if_ed.c:
52 *
53 * Copyright (C) 1993, David Greenman. This software may be used, modified,
54 *   copied, distributed, and sold, in both source and binary form provided
55 *   that the above copyright and these terms are retained. Under no
56 *   circumstances is the author responsible for the proper functioning
57 *   of this software, nor does the author assume any responsibility
58 *   for damages incurred with its use.
59 */
60
61/*
62 * TODO:
63 *  o   To support ISA PnP auto configuration for FMV-183/184.
64 *  o   To support REX-9886/87(PC-98 only).
65 *  o   To reconsider mbuf usage.
66 *  o   To reconsider transmission buffer usage, including
67 *      transmission buffer size (currently 4KB x 2) and pros-and-
68 *      cons of multiple frame transmission.
69 *  o   To test IPX codes.
70 *  o   To test new-bus frontend.
71 */
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/systm.h>
77#include <sys/socket.h>
78#include <sys/sockio.h>
79#include <sys/mbuf.h>
80
81#include <sys/bus.h>
82#include <machine/bus.h>
83#include <sys/rman.h>
84
85#include <net/ethernet.h>
86#include <net/if.h>
87#include <net/if_var.h>
88#include <net/if_dl.h>
89#include <net/if_mib.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <netinet/in.h>
94#include <netinet/if_ether.h>
95
96#include <net/bpf.h>
97
98#include <dev/fe/mb86960.h>
99#include <dev/fe/if_fereg.h>
100#include <dev/fe/if_fevar.h>
101
102/*
103 * Transmit just one packet per a "send" command to 86960.
104 * This option is intended for performance test.  An EXPERIMENTAL option.
105 */
106#ifndef FE_SINGLE_TRANSMISSION
107#define FE_SINGLE_TRANSMISSION 0
108#endif
109
110/*
111 * Maximum loops when interrupt.
112 * This option prevents an infinite loop due to hardware failure.
113 * (Some laptops make an infinite loop after PC Card is ejected.)
114 */
115#ifndef FE_MAX_LOOP
116#define FE_MAX_LOOP 0x800
117#endif
118
119/*
120 * Device configuration flags.
121 */
122
123/* DLCR6 settings.  */
124#define FE_FLAGS_DLCR6_VALUE	0x007F
125
126/* Force DLCR6 override.  */
127#define FE_FLAGS_OVERRIDE_DLCR6	0x0080
128
129
130devclass_t fe_devclass;
131
132/*
133 * Special filter values.
134 */
135static struct fe_filter const fe_filter_nothing = { FE_FILTER_NOTHING };
136static struct fe_filter const fe_filter_all     = { FE_FILTER_ALL };
137
138/* Standard driver entry points.  These can be static.  */
139static void		fe_init		(void *);
140static void		fe_init_locked	(struct fe_softc *);
141static driver_intr_t	fe_intr;
142static int		fe_ioctl	(struct ifnet *, u_long, caddr_t);
143static void		fe_start	(struct ifnet *);
144static void		fe_start_locked	(struct ifnet *);
145static void		fe_watchdog	(void *);
146static int		fe_medchange	(struct ifnet *);
147static void		fe_medstat	(struct ifnet *, struct ifmediareq *);
148
149/* Local functions.  Order of declaration is confused.  FIXME.  */
150static int	fe_get_packet	( struct fe_softc *, u_short );
151static void	fe_tint		( struct fe_softc *, u_char );
152static void	fe_rint		( struct fe_softc *, u_char );
153static void	fe_xmit		( struct fe_softc * );
154static void	fe_write_mbufs	( struct fe_softc *, struct mbuf * );
155static void	fe_setmode	( struct fe_softc * );
156static void	fe_loadmar	( struct fe_softc * );
157
158#ifdef DIAGNOSTIC
159static void	fe_emptybuffer	( struct fe_softc * );
160#endif
161
162/*
163 * Fe driver specific constants which relate to 86960/86965.
164 */
165
166/* Interrupt masks  */
167#define FE_TMASK ( FE_D2_COLL16 | FE_D2_TXDONE )
168#define FE_RMASK ( FE_D3_OVRFLO | FE_D3_CRCERR \
169		 | FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY )
170
171/* Maximum number of iterations for a receive interrupt.  */
172#define FE_MAX_RECV_COUNT ( ( 65536 - 2048 * 2 ) / 64 )
173	/*
174	 * Maximum size of SRAM is 65536,
175	 * minimum size of transmission buffer in fe is 2x2KB,
176	 * and minimum amount of received packet including headers
177	 * added by the chip is 64 bytes.
178	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
179	 * of packets in the receive buffer.
180	 */
181
182/*
183 * Miscellaneous definitions not directly related to hardware.
184 */
185
186/* The following line must be delete when "net/if_media.h" support it.  */
187#ifndef IFM_10_FL
188#define IFM_10_FL	/* 13 */ IFM_10_5
189#endif
190
191#if 0
192/* Mapping between media bitmap (in fe_softc.mbitmap) and ifm_media.  */
193static int const bit2media [] = {
194			IFM_HDX | IFM_ETHER | IFM_AUTO,
195			IFM_HDX | IFM_ETHER | IFM_MANUAL,
196			IFM_HDX | IFM_ETHER | IFM_10_T,
197			IFM_HDX | IFM_ETHER | IFM_10_2,
198			IFM_HDX | IFM_ETHER | IFM_10_5,
199			IFM_HDX | IFM_ETHER | IFM_10_FL,
200			IFM_FDX | IFM_ETHER | IFM_10_T,
201	/* More can be come here... */
202			0
203};
204#else
205/* Mapping between media bitmap (in fe_softc.mbitmap) and ifm_media.  */
206static int const bit2media [] = {
207			IFM_ETHER | IFM_AUTO,
208			IFM_ETHER | IFM_MANUAL,
209			IFM_ETHER | IFM_10_T,
210			IFM_ETHER | IFM_10_2,
211			IFM_ETHER | IFM_10_5,
212			IFM_ETHER | IFM_10_FL,
213			IFM_ETHER | IFM_10_T,
214	/* More can be come here... */
215			0
216};
217#endif
218
219/*
220 * Check for specific bits in specific registers have specific values.
221 * A common utility function called from various sub-probe routines.
222 */
223int
224fe_simple_probe (struct fe_softc const * sc,
225		 struct fe_simple_probe_struct const * sp)
226{
227	struct fe_simple_probe_struct const *p;
228	int8_t bits;
229
230	for (p  = sp; p->mask != 0; p++) {
231	    bits = fe_inb(sc, p->port);
232 	    printf("port %d, mask %x, bits %x read %x\n", p->port,
233	      p->mask, p->bits, bits);
234		if ((bits & p->mask) != p->bits)
235			return 0;
236	}
237	return 1;
238}
239
240/* Test if a given 6 byte value is a valid Ethernet station (MAC)
241   address.  "Vendor" is an expected vendor code (first three bytes,)
242   or a zero when nothing expected.  */
243int
244fe_valid_Ether_p (u_char const * addr, unsigned vendor)
245{
246#ifdef FE_DEBUG
247	printf("fe?: validating %6D against %06x\n", addr, ":", vendor);
248#endif
249
250	/* All zero is not allowed as a vendor code.  */
251	if (addr[0] == 0 && addr[1] == 0 && addr[2] == 0) return 0;
252
253	switch (vendor) {
254	    case 0x000000:
255		/* Legal Ethernet address (stored in ROM) must have
256		   its Group and Local bits cleared.  */
257		if ((addr[0] & 0x03) != 0) return 0;
258		break;
259	    case 0x020000:
260		/* Same as above, but a local address is allowed in
261                   this context.  */
262		if (ETHER_IS_MULTICAST(addr)) return 0;
263		break;
264	    default:
265		/* Make sure the vendor part matches if one is given.  */
266		if (   addr[0] != ((vendor >> 16) & 0xFF)
267		    || addr[1] != ((vendor >>  8) & 0xFF)
268		    || addr[2] != ((vendor      ) & 0xFF)) return 0;
269		break;
270	}
271
272	/* Host part must not be all-zeros nor all-ones.  */
273	if (addr[3] == 0xFF && addr[4] == 0xFF && addr[5] == 0xFF) return 0;
274	if (addr[3] == 0x00 && addr[4] == 0x00 && addr[5] == 0x00) return 0;
275
276	/* Given addr looks like an Ethernet address.  */
277	return 1;
278}
279
280/* Fill our softc struct with default value.  */
281void
282fe_softc_defaults (struct fe_softc *sc)
283{
284	/* Prepare for typical register prototypes.  We assume a
285           "typical" board has <32KB> of <fast> SRAM connected with a
286           <byte-wide> data lines.  */
287	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
288	sc->proto_dlcr5 = 0;
289	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
290		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
291	sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
292	sc->proto_bmpr13 = 0;
293
294	/* Assume the probe process (to be done later) is stable.  */
295	sc->stability = 0;
296
297	/* A typical board needs no hooks.  */
298	sc->init = NULL;
299	sc->stop = NULL;
300
301	/* Assume the board has no software-controllable media selection.  */
302	sc->mbitmap = MB_HM;
303	sc->defmedia = MB_HM;
304	sc->msel = NULL;
305}
306
307/* Common error reporting routine used in probe routines for
308   "soft configured IRQ"-type boards.  */
309void
310fe_irq_failure (char const *name, int unit, int irq, char const *list)
311{
312	printf("fe%d: %s board is detected, but %s IRQ was given\n",
313	       unit, name, (irq == NO_IRQ ? "no" : "invalid"));
314	if (list != NULL) {
315		printf("fe%d: specify an IRQ from %s in kernel config\n",
316		       unit, list);
317	}
318}
319
320/*
321 * Hardware (vendor) specific hooks.
322 */
323
324/*
325 * Generic media selection scheme for MB86965 based boards.
326 */
327void
328fe_msel_965 (struct fe_softc *sc)
329{
330	u_char b13;
331
332	/* Find the appropriate bits for BMPR13 tranceiver control.  */
333	switch (IFM_SUBTYPE(sc->media.ifm_media)) {
334	    case IFM_AUTO: b13 = FE_B13_PORT_AUTO | FE_B13_TPTYPE_UTP; break;
335	    case IFM_10_T: b13 = FE_B13_PORT_TP   | FE_B13_TPTYPE_UTP; break;
336	    default:       b13 = FE_B13_PORT_AUI;  break;
337	}
338
339	/* Write it into the register.  It takes effect immediately.  */
340	fe_outb(sc, FE_BMPR13, sc->proto_bmpr13 | b13);
341}
342
343
344/*
345 * Fujitsu MB86965 JLI mode support routines.
346 */
347
348/*
349 * Routines to read all bytes from the config EEPROM through MB86965A.
350 * It is a MicroWire (3-wire) serial EEPROM with 6-bit address.
351 * (93C06 or 93C46.)
352 */
353static void
354fe_strobe_eeprom_jli (struct fe_softc *sc, u_short bmpr16)
355{
356	/*
357	 * We must guarantee 1us (or more) interval to access slow
358	 * EEPROMs.  The following redundant code provides enough
359	 * delay with ISA timing.  (Even if the bus clock is "tuned.")
360	 * Some modification will be needed on faster busses.
361	 */
362	fe_outb(sc, bmpr16, FE_B16_SELECT);
363	fe_outb(sc, bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
364	fe_outb(sc, bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
365	fe_outb(sc, bmpr16, FE_B16_SELECT);
366}
367
368void
369fe_read_eeprom_jli (struct fe_softc * sc, u_char * data)
370{
371	u_char n, val, bit;
372	u_char save16, save17;
373
374	/* Save the current value of the EEPROM interface registers.  */
375	save16 = fe_inb(sc, FE_BMPR16);
376	save17 = fe_inb(sc, FE_BMPR17);
377
378	/* Read bytes from EEPROM; two bytes per an iteration.  */
379	for (n = 0; n < JLI_EEPROM_SIZE / 2; n++) {
380
381		/* Reset the EEPROM interface.  */
382		fe_outb(sc, FE_BMPR16, 0x00);
383		fe_outb(sc, FE_BMPR17, 0x00);
384
385		/* Start EEPROM access.  */
386		fe_outb(sc, FE_BMPR16, FE_B16_SELECT);
387		fe_outb(sc, FE_BMPR17, FE_B17_DATA);
388		fe_strobe_eeprom_jli(sc, FE_BMPR16);
389
390		/* Pass the iteration count as well as a READ command.  */
391		val = 0x80 | n;
392		for (bit = 0x80; bit != 0x00; bit >>= 1) {
393			fe_outb(sc, FE_BMPR17, (val & bit) ? FE_B17_DATA : 0);
394			fe_strobe_eeprom_jli(sc, FE_BMPR16);
395		}
396		fe_outb(sc, FE_BMPR17, 0x00);
397
398		/* Read a byte.  */
399		val = 0;
400		for (bit = 0x80; bit != 0x00; bit >>= 1) {
401			fe_strobe_eeprom_jli(sc, FE_BMPR16);
402			if (fe_inb(sc, FE_BMPR17) & FE_B17_DATA)
403				val |= bit;
404		}
405		*data++ = val;
406
407		/* Read one more byte.  */
408		val = 0;
409		for (bit = 0x80; bit != 0x00; bit >>= 1) {
410			fe_strobe_eeprom_jli(sc, FE_BMPR16);
411			if (fe_inb(sc, FE_BMPR17) & FE_B17_DATA)
412				val |= bit;
413		}
414		*data++ = val;
415	}
416
417#if 0
418	/* Reset the EEPROM interface, again.  */
419	fe_outb(sc, FE_BMPR16, 0x00);
420	fe_outb(sc, FE_BMPR17, 0x00);
421#else
422	/* Make sure to restore the original value of EEPROM interface
423           registers, since we are not yet sure we have MB86965A on
424           the address.  */
425	fe_outb(sc, FE_BMPR17, save17);
426	fe_outb(sc, FE_BMPR16, save16);
427#endif
428
429#if 1
430	/* Report what we got.  */
431	if (bootverbose) {
432		int i;
433		data -= JLI_EEPROM_SIZE;
434		for (i = 0; i < JLI_EEPROM_SIZE; i += 16) {
435			if_printf(sc->ifp,
436			    "EEPROM(JLI):%3x: %16D\n", i, data + i, " ");
437		}
438	}
439#endif
440}
441
442void
443fe_init_jli (struct fe_softc * sc)
444{
445	/* "Reset" by writing into a magic location.  */
446	DELAY(200);
447	fe_outb(sc, 0x1E, fe_inb(sc, 0x1E));
448	DELAY(300);
449}
450
451
452/*
453 * SSi 78Q8377A support routines.
454 */
455
456/*
457 * Routines to read all bytes from the config EEPROM through 78Q8377A.
458 * It is a MicroWire (3-wire) serial EEPROM with 8-bit address.  (I.e.,
459 * 93C56 or 93C66.)
460 *
461 * As I don't have SSi manuals, (hmm, an old song again!) I'm not exactly
462 * sure the following code is correct...  It is just stolen from the
463 * C-NET(98)P2 support routine in FreeBSD(98).
464 */
465
466void
467fe_read_eeprom_ssi (struct fe_softc *sc, u_char *data)
468{
469	u_char val, bit;
470	int n;
471	u_char save6, save7, save12;
472
473	/* Save the current value for the DLCR registers we are about
474           to destroy.  */
475	save6 = fe_inb(sc, FE_DLCR6);
476	save7 = fe_inb(sc, FE_DLCR7);
477
478	/* Put the 78Q8377A into a state that we can access the EEPROM.  */
479	fe_outb(sc, FE_DLCR6,
480	    FE_D6_BBW_WORD | FE_D6_SBW_WORD | FE_D6_DLC_DISABLE);
481	fe_outb(sc, FE_DLCR7,
482	    FE_D7_BYTSWP_LH | FE_D7_RBS_BMPR | FE_D7_RDYPNS | FE_D7_POWER_UP);
483
484	/* Save the current value for the BMPR12 register, too.  */
485	save12 = fe_inb(sc, FE_DLCR12);
486
487	/* Read bytes from EEPROM; two bytes per an iteration.  */
488	for (n = 0; n < SSI_EEPROM_SIZE / 2; n++) {
489
490		/* Start EEPROM access  */
491		fe_outb(sc, FE_DLCR12, SSI_EEP);
492		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL);
493
494		/* Send the following four bits to the EEPROM in the
495		   specified order: a dummy bit, a start bit, and
496		   command bits (10) for READ.  */
497		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL                    );
498		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK          );	/* 0 */
499		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL           | SSI_DAT);
500		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK | SSI_DAT);	/* 1 */
501		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL           | SSI_DAT);
502		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK | SSI_DAT);	/* 1 */
503		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL                    );
504		fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK          );	/* 0 */
505
506		/* Pass the iteration count to the chip.  */
507		for (bit = 0x80; bit != 0x00; bit >>= 1) {
508		    val = ( n & bit ) ? SSI_DAT : 0;
509		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL           | val);
510		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK | val);
511		}
512
513		/* Read a byte.  */
514		val = 0;
515		for (bit = 0x80; bit != 0x00; bit >>= 1) {
516		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL);
517		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK);
518		    if (fe_inb(sc, FE_DLCR12) & SSI_DIN)
519			val |= bit;
520		}
521		*data++ = val;
522
523		/* Read one more byte.  */
524		val = 0;
525		for (bit = 0x80; bit != 0x00; bit >>= 1) {
526		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL);
527		    fe_outb(sc, FE_DLCR12, SSI_EEP | SSI_CSL | SSI_CLK);
528		    if (fe_inb(sc, FE_DLCR12) & SSI_DIN)
529			val |= bit;
530		}
531		*data++ = val;
532
533		fe_outb(sc, FE_DLCR12, SSI_EEP);
534	}
535
536	/* Reset the EEPROM interface.  (For now.)  */
537	fe_outb(sc, FE_DLCR12, 0x00);
538
539	/* Restore the saved register values, for the case that we
540           didn't have 78Q8377A at the given address.  */
541	fe_outb(sc, FE_DLCR12, save12);
542	fe_outb(sc, FE_DLCR7, save7);
543	fe_outb(sc, FE_DLCR6, save6);
544
545#if 1
546	/* Report what we got.  */
547	if (bootverbose) {
548		int i;
549		data -= SSI_EEPROM_SIZE;
550		for (i = 0; i < SSI_EEPROM_SIZE; i += 16) {
551			if_printf(sc->ifp,
552			    "EEPROM(SSI):%3x: %16D\n", i, data + i, " ");
553		}
554	}
555#endif
556}
557
558/*
559 * TDK/LANX boards support routines.
560 */
561
562/* It is assumed that the CLK line is low and SDA is high (float) upon entry.  */
563#define LNX_PH(D,K,N) \
564	((LNX_SDA_##D | LNX_CLK_##K) << N)
565#define LNX_CYCLE(D1,D2,D3,D4,K1,K2,K3,K4) \
566	(LNX_PH(D1,K1,0)|LNX_PH(D2,K2,8)|LNX_PH(D3,K3,16)|LNX_PH(D4,K4,24))
567
568#define LNX_CYCLE_START	LNX_CYCLE(HI,LO,LO,HI, HI,HI,LO,LO)
569#define LNX_CYCLE_STOP	LNX_CYCLE(LO,LO,HI,HI, LO,HI,HI,LO)
570#define LNX_CYCLE_HI	LNX_CYCLE(HI,HI,HI,HI, LO,HI,LO,LO)
571#define LNX_CYCLE_LO	LNX_CYCLE(LO,LO,LO,HI, LO,HI,LO,LO)
572#define LNX_CYCLE_INIT	LNX_CYCLE(LO,HI,HI,HI, LO,LO,LO,LO)
573
574static void
575fe_eeprom_cycle_lnx (struct fe_softc *sc, u_short reg20, u_long cycle)
576{
577	fe_outb(sc, reg20, (cycle      ) & 0xFF);
578	DELAY(15);
579	fe_outb(sc, reg20, (cycle >>  8) & 0xFF);
580	DELAY(15);
581	fe_outb(sc, reg20, (cycle >> 16) & 0xFF);
582	DELAY(15);
583	fe_outb(sc, reg20, (cycle >> 24) & 0xFF);
584	DELAY(15);
585}
586
587static u_char
588fe_eeprom_receive_lnx (struct fe_softc *sc, u_short reg20)
589{
590	u_char dat;
591
592	fe_outb(sc, reg20, LNX_CLK_HI | LNX_SDA_FL);
593	DELAY(15);
594	dat = fe_inb(sc, reg20);
595	fe_outb(sc, reg20, LNX_CLK_LO | LNX_SDA_FL);
596	DELAY(15);
597	return (dat & LNX_SDA_IN);
598}
599
600void
601fe_read_eeprom_lnx (struct fe_softc *sc, u_char *data)
602{
603	int i;
604	u_char n, bit, val;
605	u_char save20;
606	u_short reg20 = 0x14;
607
608	save20 = fe_inb(sc, reg20);
609
610	/* NOTE: DELAY() timing constants are approximately three
611           times longer (slower) than the required minimum.  This is
612           to guarantee a reliable operation under some tough
613           conditions...  Fortunately, this routine is only called
614           during the boot phase, so the speed is less important than
615           stability.  */
616
617#if 1
618	/* Reset the X24C01's internal state machine and put it into
619	   the IDLE state.  We usually don't need this, but *if*
620	   someone (e.g., probe routine of other driver) write some
621	   garbage into the register at 0x14, synchronization will be
622	   lost, and the normal EEPROM access protocol won't work.
623	   Moreover, as there are no easy way to reset, we need a
624	   _manoeuvre_ here.  (It even lacks a reset pin, so pushing
625	   the RESET button on the PC doesn't help!)  */
626	fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_INIT);
627	for (i = 0; i < 10; i++)
628		fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_START);
629	fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_STOP);
630	DELAY(10000);
631#endif
632
633	/* Issue a start condition.  */
634	fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_START);
635
636	/* Send seven bits of the starting address (zero, in this
637	   case) and a command bit for READ.  */
638	val = 0x01;
639	for (bit = 0x80; bit != 0x00; bit >>= 1) {
640		if (val & bit) {
641			fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_HI);
642		} else {
643			fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_LO);
644		}
645	}
646
647	/* Receive an ACK bit.  */
648	if (fe_eeprom_receive_lnx(sc, reg20)) {
649		/* ACK was not received.  EEPROM is not present (i.e.,
650		   this board was not a TDK/LANX) or not working
651		   properly.  */
652		if (bootverbose) {
653			if_printf(sc->ifp,
654			    "no ACK received from EEPROM(LNX)\n");
655		}
656		/* Clear the given buffer to indicate we could not get
657                   any info. and return.  */
658		bzero(data, LNX_EEPROM_SIZE);
659		goto RET;
660	}
661
662	/* Read bytes from EEPROM.  */
663	for (n = 0; n < LNX_EEPROM_SIZE; n++) {
664
665		/* Read a byte and store it into the buffer.  */
666		val = 0x00;
667		for (bit = 0x80; bit != 0x00; bit >>= 1) {
668			if (fe_eeprom_receive_lnx(sc, reg20))
669				val |= bit;
670		}
671		*data++ = val;
672
673		/* Acknowledge if we have to read more.  */
674		if (n < LNX_EEPROM_SIZE - 1) {
675			fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_LO);
676		}
677	}
678
679	/* Issue a STOP condition, de-activating the clock line.
680	   It will be safer to keep the clock line low than to leave
681	   it high.  */
682	fe_eeprom_cycle_lnx(sc, reg20, LNX_CYCLE_STOP);
683
684    RET:
685	fe_outb(sc, reg20, save20);
686
687#if 1
688	/* Report what we got.  */
689	if (bootverbose) {
690		data -= LNX_EEPROM_SIZE;
691		for (i = 0; i < LNX_EEPROM_SIZE; i += 16) {
692			if_printf(sc->ifp,
693			     "EEPROM(LNX):%3x: %16D\n", i, data + i, " ");
694		}
695	}
696#endif
697}
698
699void
700fe_init_lnx (struct fe_softc * sc)
701{
702	/* Reset the 86960.  Do we need this?  FIXME.  */
703	fe_outb(sc, 0x12, 0x06);
704	DELAY(100);
705	fe_outb(sc, 0x12, 0x07);
706	DELAY(100);
707
708	/* Setup IRQ control register on the ASIC.  */
709	fe_outb(sc, 0x14, sc->priv_info);
710}
711
712
713/*
714 * Ungermann-Bass boards support routine.
715 */
716void
717fe_init_ubn (struct fe_softc * sc)
718{
719 	/* Do we need this?  FIXME.  */
720	fe_outb(sc, FE_DLCR7,
721		sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
722 	fe_outb(sc, 0x18, 0x00);
723 	DELAY(200);
724
725	/* Setup IRQ control register on the ASIC.  */
726	fe_outb(sc, 0x14, sc->priv_info);
727}
728
729
730/*
731 * Install interface into kernel networking data structures
732 */
733int
734fe_attach (device_t dev)
735{
736	struct fe_softc *sc = device_get_softc(dev);
737	struct ifnet *ifp;
738	int flags = device_get_flags(dev);
739	int b, error;
740
741	ifp = sc->ifp = if_alloc(IFT_ETHER);
742	if (ifp == NULL) {
743		device_printf(dev, "can not ifalloc\n");
744		fe_release_resource(dev);
745		return (ENOSPC);
746	}
747
748	mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
749	    MTX_DEF);
750	callout_init_mtx(&sc->timer, &sc->lock, 0);
751
752	/*
753	 * Initialize ifnet structure
754	 */
755 	ifp->if_softc    = sc;
756	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
757	ifp->if_start    = fe_start;
758	ifp->if_ioctl    = fe_ioctl;
759	ifp->if_init     = fe_init;
760	ifp->if_linkmib  = &sc->mibdata;
761	ifp->if_linkmiblen = sizeof (sc->mibdata);
762
763#if 0 /* I'm not sure... */
764	sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
765#endif
766
767	/*
768	 * Set fixed interface flags.
769	 */
770 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
771	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
772
773#if FE_SINGLE_TRANSMISSION
774	/* Override txb config to allocate minimum.  */
775	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
776	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
777#endif
778
779	/* Modify hardware config if it is requested.  */
780	if (flags & FE_FLAGS_OVERRIDE_DLCR6)
781		sc->proto_dlcr6 = flags & FE_FLAGS_DLCR6_VALUE;
782
783	/* Find TX buffer size, based on the hardware dependent proto.  */
784	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
785	  case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break;
786	  case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break;
787	  case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break;
788	  default:
789		/* Oops, we can't work with single buffer configuration.  */
790		if (bootverbose) {
791			if_printf(sc->ifp,
792			     "strange TXBSIZ config; fixing\n");
793		}
794		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
795		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
796		sc->txb_size = 2048;
797		break;
798	}
799
800	/* Initialize the if_media interface.  */
801	ifmedia_init(&sc->media, 0, fe_medchange, fe_medstat);
802	for (b = 0; bit2media[b] != 0; b++) {
803		if (sc->mbitmap & (1 << b)) {
804			ifmedia_add(&sc->media, bit2media[b], 0, NULL);
805		}
806	}
807	for (b = 0; bit2media[b] != 0; b++) {
808		if (sc->defmedia & (1 << b)) {
809			ifmedia_set(&sc->media, bit2media[b]);
810			break;
811		}
812	}
813#if 0	/* Turned off; this is called later, when the interface UPs.  */
814	fe_medchange(sc);
815#endif
816
817	/* Attach and stop the interface. */
818	FE_LOCK(sc);
819	fe_stop(sc);
820	FE_UNLOCK(sc);
821	ether_ifattach(sc->ifp, sc->enaddr);
822
823	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
824			       NULL, fe_intr, sc, &sc->irq_handle);
825	if (error) {
826		ether_ifdetach(ifp);
827		mtx_destroy(&sc->lock);
828		if_free(ifp);
829		fe_release_resource(dev);
830		return ENXIO;
831	}
832
833  	/* Print additional info when attached.  */
834 	device_printf(dev, "type %s%s\n", sc->typestr,
835		      (sc->proto_dlcr4 & FE_D4_DSC) ? ", full duplex" : "");
836	if (bootverbose) {
837		int buf, txb, bbw, sbw, ram;
838
839		buf = txb = bbw = sbw = ram = -1;
840		switch ( sc->proto_dlcr6 & FE_D6_BUFSIZ ) {
841		  case FE_D6_BUFSIZ_8KB:  buf =  8; break;
842		  case FE_D6_BUFSIZ_16KB: buf = 16; break;
843		  case FE_D6_BUFSIZ_32KB: buf = 32; break;
844		  case FE_D6_BUFSIZ_64KB: buf = 64; break;
845		}
846		switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
847		  case FE_D6_TXBSIZ_2x2KB: txb = 2; break;
848		  case FE_D6_TXBSIZ_2x4KB: txb = 4; break;
849		  case FE_D6_TXBSIZ_2x8KB: txb = 8; break;
850		}
851		switch ( sc->proto_dlcr6 & FE_D6_BBW ) {
852		  case FE_D6_BBW_BYTE: bbw =  8; break;
853		  case FE_D6_BBW_WORD: bbw = 16; break;
854		}
855		switch ( sc->proto_dlcr6 & FE_D6_SBW ) {
856		  case FE_D6_SBW_BYTE: sbw =  8; break;
857		  case FE_D6_SBW_WORD: sbw = 16; break;
858		}
859		switch ( sc->proto_dlcr6 & FE_D6_SRAM ) {
860		  case FE_D6_SRAM_100ns: ram = 100; break;
861		  case FE_D6_SRAM_150ns: ram = 150; break;
862		}
863		device_printf(dev, "SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
864			      buf, bbw, ram, txb, sbw);
865	}
866	if (sc->stability & UNSTABLE_IRQ)
867		device_printf(dev, "warning: IRQ number may be incorrect\n");
868	if (sc->stability & UNSTABLE_MAC)
869		device_printf(dev, "warning: above MAC address may be incorrect\n");
870	if (sc->stability & UNSTABLE_TYPE)
871		device_printf(dev, "warning: hardware type was not validated\n");
872
873	gone_by_fcp101_dev(dev);
874
875	return 0;
876}
877
878int
879fe_alloc_port(device_t dev, int size)
880{
881	struct fe_softc *sc = device_get_softc(dev);
882	struct resource *res;
883	int rid;
884
885	rid = 0;
886	res = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT, &rid,
887					  size, RF_ACTIVE);
888	if (res) {
889		sc->port_used = size;
890		sc->port_res = res;
891		return (0);
892	}
893
894	return (ENOENT);
895}
896
897int
898fe_alloc_irq(device_t dev, int flags)
899{
900	struct fe_softc *sc = device_get_softc(dev);
901	struct resource *res;
902	int rid;
903
904	rid = 0;
905	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | flags);
906	if (res) {
907		sc->irq_res = res;
908		return (0);
909	}
910
911	return (ENOENT);
912}
913
914void
915fe_release_resource(device_t dev)
916{
917	struct fe_softc *sc = device_get_softc(dev);
918
919	if (sc->port_res) {
920		bus_release_resource(dev, SYS_RES_IOPORT, 0, sc->port_res);
921		sc->port_res = NULL;
922	}
923	if (sc->irq_res) {
924		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
925		sc->irq_res = NULL;
926	}
927}
928
929/*
930 * Reset interface, after some (hardware) trouble is deteced.
931 */
932static void
933fe_reset (struct fe_softc *sc)
934{
935	/* Record how many packets are lost by this accident.  */
936	if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->txb_sched + sc->txb_count);
937	sc->mibdata.dot3StatsInternalMacTransmitErrors++;
938
939	/* Put the interface into known initial state.  */
940	fe_stop(sc);
941	if (sc->ifp->if_flags & IFF_UP)
942		fe_init_locked(sc);
943}
944
945/*
946 * Stop everything on the interface.
947 *
948 * All buffered packets, both transmitting and receiving,
949 * if any, will be lost by stopping the interface.
950 */
951void
952fe_stop (struct fe_softc *sc)
953{
954
955	FE_ASSERT_LOCKED(sc);
956
957	/* Disable interrupts.  */
958	fe_outb(sc, FE_DLCR2, 0x00);
959	fe_outb(sc, FE_DLCR3, 0x00);
960
961	/* Stop interface hardware.  */
962	DELAY(200);
963	fe_outb(sc, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
964	DELAY(200);
965
966	/* Clear all interrupt status.  */
967	fe_outb(sc, FE_DLCR0, 0xFF);
968	fe_outb(sc, FE_DLCR1, 0xFF);
969
970	/* Put the chip in stand-by mode.  */
971	DELAY(200);
972	fe_outb(sc, FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
973	DELAY(200);
974
975	/* Reset transmitter variables and interface flags.  */
976	sc->ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
977	sc->tx_timeout = 0;
978	callout_stop(&sc->timer);
979	sc->txb_free = sc->txb_size;
980	sc->txb_count = 0;
981	sc->txb_sched = 0;
982
983	/* MAR loading can be delayed.  */
984	sc->filter_change = 0;
985
986	/* Call a device-specific hook.  */
987	if (sc->stop)
988		sc->stop(sc);
989}
990
991/*
992 * Device timeout/watchdog routine. Entered if the device neglects to
993 * generate an interrupt after a transmit has been started on it.
994 */
995static void
996fe_watchdog (void *arg)
997{
998	struct fe_softc *sc = arg;
999
1000	FE_ASSERT_LOCKED(sc);
1001
1002	if (sc->tx_timeout && --sc->tx_timeout == 0) {
1003		struct ifnet *ifp = sc->ifp;
1004
1005		/* A "debug" message.  */
1006		if_printf(ifp, "transmission timeout (%d+%d)%s\n",
1007		    sc->txb_sched, sc->txb_count,
1008		    (ifp->if_flags & IFF_UP) ? "" : " when down");
1009		if (ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS) == 0 &&
1010		    ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS) == 0)
1011			if_printf(ifp, "wrong IRQ setting in config?\n");
1012		fe_reset(sc);
1013	}
1014	callout_reset(&sc->timer, hz, fe_watchdog, sc);
1015}
1016
1017/*
1018 * Initialize device.
1019 */
1020static void
1021fe_init (void * xsc)
1022{
1023	struct fe_softc *sc = xsc;
1024
1025	FE_LOCK(sc);
1026	fe_init_locked(sc);
1027	FE_UNLOCK(sc);
1028}
1029
1030static void
1031fe_init_locked (struct fe_softc *sc)
1032{
1033
1034	/* Start initializing 86960.  */
1035
1036	/* Call a hook before we start initializing the chip.  */
1037	if (sc->init)
1038		sc->init(sc);
1039
1040	/*
1041	 * Make sure to disable the chip, also.
1042	 * This may also help re-programming the chip after
1043	 * hot insertion of PCMCIAs.
1044	 */
1045	DELAY(200);
1046	fe_outb(sc, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1047	DELAY(200);
1048
1049	/* Power up the chip and select register bank for DLCRs.  */
1050	DELAY(200);
1051	fe_outb(sc, FE_DLCR7,
1052		sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1053	DELAY(200);
1054
1055	/* Feed the station address.  */
1056	fe_outblk(sc, FE_DLCR8, IF_LLADDR(sc->ifp), ETHER_ADDR_LEN);
1057
1058	/* Clear multicast address filter to receive nothing.  */
1059	fe_outb(sc, FE_DLCR7,
1060		sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
1061	fe_outblk(sc, FE_MAR8, fe_filter_nothing.data, FE_FILTER_LEN);
1062
1063	/* Select the BMPR bank for runtime register access.  */
1064	fe_outb(sc, FE_DLCR7,
1065		sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1066
1067	/* Initialize registers.  */
1068	fe_outb(sc, FE_DLCR0, 0xFF);	/* Clear all bits.  */
1069	fe_outb(sc, FE_DLCR1, 0xFF);	/* ditto.  */
1070	fe_outb(sc, FE_DLCR2, 0x00);
1071	fe_outb(sc, FE_DLCR3, 0x00);
1072	fe_outb(sc, FE_DLCR4, sc->proto_dlcr4);
1073	fe_outb(sc, FE_DLCR5, sc->proto_dlcr5);
1074	fe_outb(sc, FE_BMPR10, 0x00);
1075	fe_outb(sc, FE_BMPR11, FE_B11_CTRL_SKIP | FE_B11_MODE1);
1076	fe_outb(sc, FE_BMPR12, 0x00);
1077	fe_outb(sc, FE_BMPR13, sc->proto_bmpr13);
1078	fe_outb(sc, FE_BMPR14, 0x00);
1079	fe_outb(sc, FE_BMPR15, 0x00);
1080
1081	/* Enable interrupts.  */
1082	fe_outb(sc, FE_DLCR2, FE_TMASK);
1083	fe_outb(sc, FE_DLCR3, FE_RMASK);
1084
1085	/* Select requested media, just before enabling DLC.  */
1086	if (sc->msel)
1087		sc->msel(sc);
1088
1089	/* Enable transmitter and receiver.  */
1090	DELAY(200);
1091	fe_outb(sc, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1092	DELAY(200);
1093
1094#ifdef DIAGNOSTIC
1095	/*
1096	 * Make sure to empty the receive buffer.
1097	 *
1098	 * This may be redundant, but *if* the receive buffer were full
1099	 * at this point, then the driver would hang.  I have experienced
1100	 * some strange hang-up just after UP.  I hope the following
1101	 * code solve the problem.
1102	 *
1103	 * I have changed the order of hardware initialization.
1104	 * I think the receive buffer cannot have any packets at this
1105	 * point in this version.  The following code *must* be
1106	 * redundant now.  FIXME.
1107	 *
1108	 * I've heard a rumore that on some PC Card implementation of
1109	 * 8696x, the receive buffer can have some data at this point.
1110	 * The following message helps discovering the fact.  FIXME.
1111	 */
1112	if (!(fe_inb(sc, FE_DLCR5) & FE_D5_BUFEMP)) {
1113		if_printf(sc->ifp,
1114		    "receive buffer has some data after reset\n");
1115		fe_emptybuffer(sc);
1116	}
1117
1118	/* Do we need this here?  Actually, no.  I must be paranoia.  */
1119	fe_outb(sc, FE_DLCR0, 0xFF);	/* Clear all bits.  */
1120	fe_outb(sc, FE_DLCR1, 0xFF);	/* ditto.  */
1121#endif
1122
1123	/* Set 'running' flag, because we are now running.   */
1124	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
1125	callout_reset(&sc->timer, hz, fe_watchdog, sc);
1126
1127	/*
1128	 * At this point, the interface is running properly,
1129	 * except that it receives *no* packets.  we then call
1130	 * fe_setmode() to tell the chip what packets to be
1131	 * received, based on the if_flags and multicast group
1132	 * list.  It completes the initialization process.
1133	 */
1134	fe_setmode(sc);
1135
1136#if 0
1137	/* ...and attempt to start output queued packets.  */
1138	/* TURNED OFF, because the semi-auto media prober wants to UP
1139           the interface keeping it idle.  The upper layer will soon
1140           start the interface anyway, and there are no significant
1141           delay.  */
1142	fe_start_locked(sc->ifp);
1143#endif
1144}
1145
1146/*
1147 * This routine actually starts the transmission on the interface
1148 */
1149static void
1150fe_xmit (struct fe_softc *sc)
1151{
1152	/*
1153	 * Set a timer just in case we never hear from the board again.
1154	 * We use longer timeout for multiple packet transmission.
1155	 * I'm not sure this timer value is appropriate.  FIXME.
1156	 */
1157	sc->tx_timeout = 1 + sc->txb_count;
1158
1159	/* Update txb variables.  */
1160	sc->txb_sched = sc->txb_count;
1161	sc->txb_count = 0;
1162	sc->txb_free = sc->txb_size;
1163	sc->tx_excolls = 0;
1164
1165	/* Start transmitter, passing packets in TX buffer.  */
1166	fe_outb(sc, FE_BMPR10, sc->txb_sched | FE_B10_START);
1167}
1168
1169/*
1170 * Start output on interface.
1171 * We make one assumption here:
1172 *  1) that the IFF_DRV_OACTIVE flag is checked before this code is called
1173 *     (i.e. that the output part of the interface is idle)
1174 */
1175static void
1176fe_start (struct ifnet *ifp)
1177{
1178	struct fe_softc *sc = ifp->if_softc;
1179
1180	FE_LOCK(sc);
1181	fe_start_locked(ifp);
1182	FE_UNLOCK(sc);
1183}
1184
1185static void
1186fe_start_locked (struct ifnet *ifp)
1187{
1188	struct fe_softc *sc = ifp->if_softc;
1189	struct mbuf *m;
1190
1191#ifdef DIAGNOSTIC
1192	/* Just a sanity check.  */
1193	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1194		/*
1195		 * Txb_count and txb_free co-works to manage the
1196		 * transmission buffer.  Txb_count keeps track of the
1197		 * used potion of the buffer, while txb_free does unused
1198		 * potion.  So, as long as the driver runs properly,
1199		 * txb_count is zero if and only if txb_free is same
1200		 * as txb_size (which represents whole buffer.)
1201		 */
1202		if_printf(ifp, "inconsistent txb variables (%d, %d)\n",
1203			sc->txb_count, sc->txb_free);
1204		/*
1205		 * So, what should I do, then?
1206		 *
1207		 * We now know txb_count and txb_free contradicts.  We
1208		 * cannot, however, tell which is wrong.  More
1209		 * over, we cannot peek 86960 transmission buffer or
1210		 * reset the transmission buffer.  (In fact, we can
1211		 * reset the entire interface.  I don't want to do it.)
1212		 *
1213		 * If txb_count is incorrect, leaving it as-is will cause
1214		 * sending of garbage after next interrupt.  We have to
1215		 * avoid it.  Hence, we reset the txb_count here.  If
1216		 * txb_free was incorrect, resetting txb_count just loses
1217		 * some packets.  We can live with it.
1218		 */
1219		sc->txb_count = 0;
1220	}
1221#endif
1222
1223	/*
1224	 * First, see if there are buffered packets and an idle
1225	 * transmitter - should never happen at this point.
1226	 */
1227	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1228		if_printf(ifp, "transmitter idle with %d buffered packets\n",
1229		       sc->txb_count);
1230		fe_xmit(sc);
1231	}
1232
1233	/*
1234	 * Stop accepting more transmission packets temporarily, when
1235	 * a filter change request is delayed.  Updating the MARs on
1236	 * 86960 flushes the transmission buffer, so it is delayed
1237	 * until all buffered transmission packets have been sent
1238	 * out.
1239	 */
1240	if (sc->filter_change) {
1241		/*
1242		 * Filter change request is delayed only when the DLC is
1243		 * working.  DLC soon raise an interrupt after finishing
1244		 * the work.
1245		 */
1246		goto indicate_active;
1247	}
1248
1249	for (;;) {
1250
1251		/*
1252		 * See if there is room to put another packet in the buffer.
1253		 * We *could* do better job by peeking the send queue to
1254		 * know the length of the next packet.  Current version just
1255		 * tests against the worst case (i.e., longest packet).  FIXME.
1256		 *
1257		 * When adding the packet-peek feature, don't forget adding a
1258		 * test on txb_count against QUEUEING_MAX.
1259		 * There is a little chance the packet count exceeds
1260		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1261		 * configuration) and an application sends a bunch of small
1262		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1263		 * buffer can hold 130 blocks of 62 bytes long...
1264		 */
1265		if (sc->txb_free
1266		    < ETHER_MAX_LEN - ETHER_CRC_LEN + FE_DATA_LEN_LEN) {
1267			/* No room.  */
1268			goto indicate_active;
1269		}
1270
1271#if FE_SINGLE_TRANSMISSION
1272		if (sc->txb_count > 0) {
1273			/* Just one packet per a transmission buffer.  */
1274			goto indicate_active;
1275		}
1276#endif
1277
1278		/*
1279		 * Get the next mbuf chain for a packet to send.
1280		 */
1281		IF_DEQUEUE(&sc->ifp->if_snd, m);
1282		if (m == NULL) {
1283			/* No more packets to send.  */
1284			goto indicate_inactive;
1285		}
1286
1287		/*
1288		 * Copy the mbuf chain into the transmission buffer.
1289		 * txb_* variables are updated as necessary.
1290		 */
1291		fe_write_mbufs(sc, m);
1292
1293		/* Start transmitter if it's idle.  */
1294		if ((sc->txb_count > 0) && (sc->txb_sched == 0))
1295			fe_xmit(sc);
1296
1297		/*
1298		 * Tap off here if there is a bpf listener,
1299		 * and the device is *not* in promiscuous mode.
1300		 * (86960 receives self-generated packets if
1301		 * and only if it is in "receive everything"
1302		 * mode.)
1303		 */
1304		if (!(sc->ifp->if_flags & IFF_PROMISC))
1305			BPF_MTAP(sc->ifp, m);
1306
1307		m_freem(m);
1308	}
1309
1310  indicate_inactive:
1311	/*
1312	 * We are using the !OACTIVE flag to indicate to
1313	 * the outside world that we can accept an
1314	 * additional packet rather than that the
1315	 * transmitter is _actually_ active.  Indeed, the
1316	 * transmitter may be active, but if we haven't
1317	 * filled all the buffers with data then we still
1318	 * want to accept more.
1319	 */
1320	sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1321	return;
1322
1323  indicate_active:
1324	/*
1325	 * The transmitter is active, and there are no room for
1326	 * more outgoing packets in the transmission buffer.
1327	 */
1328	sc->ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1329	return;
1330}
1331
1332/*
1333 * Drop (skip) a packet from receive buffer in 86960 memory.
1334 */
1335static void
1336fe_droppacket (struct fe_softc * sc, int len)
1337{
1338	int i;
1339
1340	/*
1341	 * 86960 manual says that we have to read 8 bytes from the buffer
1342	 * before skip the packets and that there must be more than 8 bytes
1343	 * remaining in the buffer when issue a skip command.
1344	 * Remember, we have already read 4 bytes before come here.
1345	 */
1346	if (len > 12) {
1347		/* Read 4 more bytes, and skip the rest of the packet.  */
1348		if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1349		{
1350			(void) fe_inb(sc, FE_BMPR8);
1351			(void) fe_inb(sc, FE_BMPR8);
1352			(void) fe_inb(sc, FE_BMPR8);
1353			(void) fe_inb(sc, FE_BMPR8);
1354		}
1355		else
1356		{
1357			(void) fe_inw(sc, FE_BMPR8);
1358			(void) fe_inw(sc, FE_BMPR8);
1359		}
1360		fe_outb(sc, FE_BMPR14, FE_B14_SKIP);
1361	} else {
1362		/* We should not come here unless receiving RUNTs.  */
1363		if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1364		{
1365			for (i = 0; i < len; i++)
1366				(void) fe_inb(sc, FE_BMPR8);
1367		}
1368		else
1369		{
1370			for (i = 0; i < len; i += 2)
1371				(void) fe_inw(sc, FE_BMPR8);
1372		}
1373	}
1374}
1375
1376#ifdef DIAGNOSTIC
1377/*
1378 * Empty receiving buffer.
1379 */
1380static void
1381fe_emptybuffer (struct fe_softc * sc)
1382{
1383	int i;
1384	u_char saved_dlcr5;
1385
1386#ifdef FE_DEBUG
1387	if_printf(sc->ifp, "emptying receive buffer\n");
1388#endif
1389
1390	/*
1391	 * Stop receiving packets, temporarily.
1392	 */
1393	saved_dlcr5 = fe_inb(sc, FE_DLCR5);
1394	fe_outb(sc, FE_DLCR5, sc->proto_dlcr5);
1395	DELAY(1300);
1396
1397	/*
1398	 * When we come here, the receive buffer management may
1399	 * have been broken.  So, we cannot use skip operation.
1400	 * Just discard everything in the buffer.
1401	 */
1402	if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1403	{
1404		for (i = 0; i < 65536; i++) {
1405			if (fe_inb(sc, FE_DLCR5) & FE_D5_BUFEMP)
1406				break;
1407			(void) fe_inb(sc, FE_BMPR8);
1408		}
1409	}
1410	else
1411	{
1412		for (i = 0; i < 65536; i += 2) {
1413			if (fe_inb(sc, FE_DLCR5) & FE_D5_BUFEMP)
1414				break;
1415			(void) fe_inw(sc, FE_BMPR8);
1416		}
1417	}
1418
1419	/*
1420	 * Double check.
1421	 */
1422	if (fe_inb(sc, FE_DLCR5) & FE_D5_BUFEMP) {
1423		if_printf(sc->ifp,
1424		    "could not empty receive buffer\n");
1425		/* Hmm.  What should I do if this happens?  FIXME.  */
1426	}
1427
1428	/*
1429	 * Restart receiving packets.
1430	 */
1431	fe_outb(sc, FE_DLCR5, saved_dlcr5);
1432}
1433#endif
1434
1435/*
1436 * Transmission interrupt handler
1437 * The control flow of this function looks silly.  FIXME.
1438 */
1439static void
1440fe_tint (struct fe_softc * sc, u_char tstat)
1441{
1442	int left;
1443	int col;
1444
1445	/*
1446	 * Handle "excessive collision" interrupt.
1447	 */
1448	if (tstat & FE_D0_COLL16) {
1449
1450		/*
1451		 * Find how many packets (including this collided one)
1452		 * are left unsent in transmission buffer.
1453		 */
1454		left = fe_inb(sc, FE_BMPR10);
1455		if_printf(sc->ifp, "excessive collision (%d/%d)\n",
1456		       left, sc->txb_sched);
1457
1458		/*
1459		 * Clear the collision flag (in 86960) here
1460		 * to avoid confusing statistics.
1461		 */
1462		fe_outb(sc, FE_DLCR0, FE_D0_COLLID);
1463
1464		/*
1465		 * Restart transmitter, skipping the
1466		 * collided packet.
1467		 *
1468		 * We *must* skip the packet to keep network running
1469		 * properly.  Excessive collision error is an
1470		 * indication of the network overload.  If we
1471		 * tried sending the same packet after excessive
1472		 * collision, the network would be filled with
1473		 * out-of-time packets.  Packets belonging
1474		 * to reliable transport (such as TCP) are resent
1475		 * by some upper layer.
1476		 */
1477		fe_outb(sc, FE_BMPR11, FE_B11_CTRL_SKIP | FE_B11_MODE1);
1478
1479		/* Update statistics.  */
1480		sc->tx_excolls++;
1481	}
1482
1483	/*
1484	 * Handle "transmission complete" interrupt.
1485	 */
1486	if (tstat & FE_D0_TXDONE) {
1487
1488		/*
1489		 * Add in total number of collisions on last
1490		 * transmission.  We also clear "collision occurred" flag
1491		 * here.
1492		 *
1493		 * 86960 has a design flaw on collision count on multiple
1494		 * packet transmission.  When we send two or more packets
1495		 * with one start command (that's what we do when the
1496		 * transmission queue is crowded), 86960 informs us number
1497		 * of collisions occurred on the last packet on the
1498		 * transmission only.  Number of collisions on previous
1499		 * packets are lost.  I have told that the fact is clearly
1500		 * stated in the Fujitsu document.
1501		 *
1502		 * I considered not to mind it seriously.  Collision
1503		 * count is not so important, anyway.  Any comments?  FIXME.
1504		 */
1505
1506		if (fe_inb(sc, FE_DLCR0) & FE_D0_COLLID) {
1507
1508			/* Clear collision flag.  */
1509			fe_outb(sc, FE_DLCR0, FE_D0_COLLID);
1510
1511			/* Extract collision count from 86960.  */
1512			col = fe_inb(sc, FE_DLCR4);
1513			col = (col & FE_D4_COL) >> FE_D4_COL_SHIFT;
1514			if (col == 0) {
1515				/*
1516				 * Status register indicates collisions,
1517				 * while the collision count is zero.
1518				 * This can happen after multiple packet
1519				 * transmission, indicating that one or more
1520				 * previous packet(s) had been collided.
1521				 *
1522				 * Since the accurate number of collisions
1523				 * has been lost, we just guess it as 1;
1524				 * Am I too optimistic?  FIXME.
1525				 */
1526				col = 1;
1527			}
1528			if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, col);
1529			if (col == 1)
1530				sc->mibdata.dot3StatsSingleCollisionFrames++;
1531			else
1532				sc->mibdata.dot3StatsMultipleCollisionFrames++;
1533			sc->mibdata.dot3StatsCollFrequencies[col-1]++;
1534		}
1535
1536		/*
1537		 * Update transmission statistics.
1538		 * Be sure to reflect number of excessive collisions.
1539		 */
1540		col = sc->tx_excolls;
1541		if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, sc->txb_sched - col);
1542		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, col);
1543		if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, col * 16);
1544		sc->mibdata.dot3StatsExcessiveCollisions += col;
1545		sc->mibdata.dot3StatsCollFrequencies[15] += col;
1546		sc->txb_sched = 0;
1547
1548		/*
1549		 * The transmitter is no more active.
1550		 * Reset output active flag and watchdog timer.
1551		 */
1552		sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1553		sc->tx_timeout = 0;
1554
1555		/*
1556		 * If more data is ready to transmit in the buffer, start
1557		 * transmitting them.  Otherwise keep transmitter idle,
1558		 * even if more data is queued.  This gives receive
1559		 * process a slight priority.
1560		 */
1561		if (sc->txb_count > 0)
1562			fe_xmit(sc);
1563	}
1564}
1565
1566/*
1567 * Ethernet interface receiver interrupt.
1568 */
1569static void
1570fe_rint (struct fe_softc * sc, u_char rstat)
1571{
1572	u_short len;
1573	u_char status;
1574	int i;
1575
1576	/*
1577	 * Update statistics if this interrupt is caused by an error.
1578	 * Note that, when the system was not sufficiently fast, the
1579	 * receive interrupt might not be acknowledged immediately.  If
1580	 * one or more errornous frames were received before this routine
1581	 * was scheduled, they are ignored, and the following error stats
1582	 * give less than real values.
1583	 */
1584	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR | FE_D1_ALGERR | FE_D1_SRTPKT)) {
1585		if (rstat & FE_D1_OVRFLO)
1586			sc->mibdata.dot3StatsInternalMacReceiveErrors++;
1587		if (rstat & FE_D1_CRCERR)
1588			sc->mibdata.dot3StatsFCSErrors++;
1589		if (rstat & FE_D1_ALGERR)
1590			sc->mibdata.dot3StatsAlignmentErrors++;
1591#if 0
1592		/* The reference MAC receiver defined in 802.3
1593		   silently ignores short frames (RUNTs) without
1594		   notifying upper layer.  RFC 1650 (dot3 MIB) is
1595		   based on the 802.3, and it has no stats entry for
1596		   RUNTs...  */
1597		if (rstat & FE_D1_SRTPKT)
1598			sc->mibdata.dot3StatsFrameTooShorts++; /* :-) */
1599#endif
1600		if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
1601	}
1602
1603	/*
1604	 * MB86960 has a flag indicating "receive queue empty."
1605	 * We just loop, checking the flag, to pull out all received
1606	 * packets.
1607	 *
1608	 * We limit the number of iterations to avoid infinite-loop.
1609	 * The upper bound is set to unrealistic high value.
1610	 */
1611	for (i = 0; i < FE_MAX_RECV_COUNT * 2; i++) {
1612
1613		/* Stop the iteration if 86960 indicates no packets.  */
1614		if (fe_inb(sc, FE_DLCR5) & FE_D5_BUFEMP)
1615			return;
1616
1617		/*
1618		 * Extract a receive status byte.
1619		 * As our 86960 is in 16 bit bus access mode, we have to
1620		 * use inw() to get the status byte.  The significant
1621		 * value is returned in lower 8 bits.
1622		 */
1623		if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1624		{
1625			status = fe_inb(sc, FE_BMPR8);
1626			(void) fe_inb(sc, FE_BMPR8);
1627		}
1628		else
1629		{
1630			status = (u_char) fe_inw(sc, FE_BMPR8);
1631		}
1632
1633		/*
1634		 * Extract the packet length.
1635		 * It is a sum of a header (14 bytes) and a payload.
1636		 * CRC has been stripped off by the 86960.
1637		 */
1638		if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1639		{
1640			len  =  fe_inb(sc, FE_BMPR8);
1641			len |= (fe_inb(sc, FE_BMPR8) << 8);
1642		}
1643		else
1644		{
1645			len = fe_inw(sc, FE_BMPR8);
1646		}
1647
1648		/*
1649		 * AS our 86960 is programed to ignore errored frame,
1650		 * we must not see any error indication in the
1651		 * receive buffer.  So, any error condition is a
1652		 * serious error, e.g., out-of-sync of the receive
1653		 * buffer pointers.
1654		 */
1655		if ((status & 0xF0) != 0x20 ||
1656		    len > ETHER_MAX_LEN - ETHER_CRC_LEN ||
1657		    len < ETHER_MIN_LEN - ETHER_CRC_LEN) {
1658			if_printf(sc->ifp,
1659			    "RX buffer out-of-sync\n");
1660			if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
1661			sc->mibdata.dot3StatsInternalMacReceiveErrors++;
1662			fe_reset(sc);
1663			return;
1664		}
1665
1666		/*
1667		 * Go get a packet.
1668		 */
1669		if (fe_get_packet(sc, len) < 0) {
1670			/*
1671			 * Negative return from fe_get_packet()
1672			 * indicates no available mbuf.  We stop
1673			 * receiving packets, even if there are more
1674			 * in the buffer.  We hope we can get more
1675			 * mbuf next time.
1676			 */
1677			if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, 1);
1678			sc->mibdata.dot3StatsMissedFrames++;
1679			fe_droppacket(sc, len);
1680			return;
1681		}
1682
1683		/* Successfully received a packet.  Update stat.  */
1684		if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, 1);
1685	}
1686
1687	/* Maximum number of frames has been received.  Something
1688           strange is happening here... */
1689	if_printf(sc->ifp, "unusual receive flood\n");
1690	sc->mibdata.dot3StatsInternalMacReceiveErrors++;
1691	fe_reset(sc);
1692}
1693
1694/*
1695 * Ethernet interface interrupt processor
1696 */
1697static void
1698fe_intr (void *arg)
1699{
1700	struct fe_softc *sc = arg;
1701	u_char tstat, rstat;
1702	int loop_count = FE_MAX_LOOP;
1703
1704	FE_LOCK(sc);
1705
1706	/* Loop until there are no more new interrupt conditions.  */
1707	while (loop_count-- > 0) {
1708		/*
1709		 * Get interrupt conditions, masking unneeded flags.
1710		 */
1711		tstat = fe_inb(sc, FE_DLCR0) & FE_TMASK;
1712		rstat = fe_inb(sc, FE_DLCR1) & FE_RMASK;
1713		if (tstat == 0 && rstat == 0) {
1714			FE_UNLOCK(sc);
1715			return;
1716		}
1717
1718		/*
1719		 * Reset the conditions we are acknowledging.
1720		 */
1721		fe_outb(sc, FE_DLCR0, tstat);
1722		fe_outb(sc, FE_DLCR1, rstat);
1723
1724		/*
1725		 * Handle transmitter interrupts.
1726		 */
1727		if (tstat)
1728			fe_tint(sc, tstat);
1729
1730		/*
1731		 * Handle receiver interrupts
1732		 */
1733		if (rstat)
1734			fe_rint(sc, rstat);
1735
1736		/*
1737		 * Update the multicast address filter if it is
1738		 * needed and possible.  We do it now, because
1739		 * we can make sure the transmission buffer is empty,
1740		 * and there is a good chance that the receive queue
1741		 * is empty.  It will minimize the possibility of
1742		 * packet loss.
1743		 */
1744		if (sc->filter_change &&
1745		    sc->txb_count == 0 && sc->txb_sched == 0) {
1746			fe_loadmar(sc);
1747			sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1748		}
1749
1750		/*
1751		 * If it looks like the transmitter can take more data,
1752		 * attempt to start output on the interface. This is done
1753		 * after handling the receiver interrupt to give the
1754		 * receive operation priority.
1755		 *
1756		 * BTW, I'm not sure in what case the OACTIVE is on at
1757		 * this point.  Is the following test redundant?
1758		 *
1759		 * No.  This routine polls for both transmitter and
1760		 * receiver interrupts.  86960 can raise a receiver
1761		 * interrupt when the transmission buffer is full.
1762		 */
1763		if ((sc->ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
1764			fe_start_locked(sc->ifp);
1765	}
1766	FE_UNLOCK(sc);
1767
1768	if_printf(sc->ifp, "too many loops\n");
1769}
1770
1771/*
1772 * Process an ioctl request. This code needs some work - it looks
1773 * pretty ugly.
1774 */
1775static int
1776fe_ioctl (struct ifnet * ifp, u_long command, caddr_t data)
1777{
1778	struct fe_softc *sc = ifp->if_softc;
1779	struct ifreq *ifr = (struct ifreq *)data;
1780	int error = 0;
1781
1782	switch (command) {
1783
1784	  case SIOCSIFFLAGS:
1785		/*
1786		 * Switch interface state between "running" and
1787		 * "stopped", reflecting the UP flag.
1788		 */
1789		FE_LOCK(sc);
1790		if (sc->ifp->if_flags & IFF_UP) {
1791			if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1792				fe_init_locked(sc);
1793		} else {
1794			if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1795				fe_stop(sc);
1796		}
1797
1798		/*
1799		 * Promiscuous and/or multicast flags may have changed,
1800		 * so reprogram the multicast filter and/or receive mode.
1801		 */
1802		fe_setmode(sc);
1803		FE_UNLOCK(sc);
1804
1805		/* Done.  */
1806		break;
1807
1808	  case SIOCADDMULTI:
1809	  case SIOCDELMULTI:
1810		/*
1811		 * Multicast list has changed; set the hardware filter
1812		 * accordingly.
1813		 */
1814		FE_LOCK(sc);
1815		fe_setmode(sc);
1816		FE_UNLOCK(sc);
1817		break;
1818
1819	  case SIOCSIFMEDIA:
1820	  case SIOCGIFMEDIA:
1821		/* Let if_media to handle these commands and to call
1822		   us back.  */
1823		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1824		break;
1825
1826	  default:
1827		error = ether_ioctl(ifp, command, data);
1828		break;
1829	}
1830
1831	return (error);
1832}
1833
1834/*
1835 * Retrieve packet from receive buffer and send to the next level up via
1836 * ether_input().
1837 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
1838 */
1839static int
1840fe_get_packet (struct fe_softc * sc, u_short len)
1841{
1842	struct ifnet *ifp = sc->ifp;
1843	struct ether_header *eh;
1844	struct mbuf *m;
1845
1846	FE_ASSERT_LOCKED(sc);
1847
1848	/*
1849	 * NFS wants the data be aligned to the word (4 byte)
1850	 * boundary.  Ethernet header has 14 bytes.  There is a
1851	 * 2-byte gap.
1852	 */
1853#define NFS_MAGIC_OFFSET 2
1854
1855	/*
1856	 * This function assumes that an Ethernet packet fits in an
1857	 * mbuf (with a cluster attached when necessary.)  On FreeBSD
1858	 * 2.0 for x86, which is the primary target of this driver, an
1859	 * mbuf cluster has 4096 bytes, and we are happy.  On ancient
1860	 * BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
1861	 * however.  If the following #error message were printed upon
1862	 * compile, you need to rewrite this function.
1863	 */
1864#if ( MCLBYTES < ETHER_MAX_LEN - ETHER_CRC_LEN + NFS_MAGIC_OFFSET )
1865#error "Too small MCLBYTES to use fe driver."
1866#endif
1867
1868	/*
1869	 * Our strategy has one more problem.  There is a policy on
1870	 * mbuf cluster allocation.  It says that we must have at
1871	 * least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
1872	 * allocate a cluster.  For a packet of a size between
1873	 * (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
1874	 * On the other hand, the current code is short, simple,
1875	 * and fast, however.  It does no harmful thing, just waists
1876	 * some memory.  Any comments?  FIXME.
1877	 */
1878
1879	/* Allocate an mbuf with packet header info.  */
1880	MGETHDR(m, M_NOWAIT, MT_DATA);
1881	if (m == NULL)
1882		return -1;
1883
1884	/* Attach a cluster if this packet doesn't fit in a normal mbuf.  */
1885	if (len > MHLEN - NFS_MAGIC_OFFSET) {
1886		if (!(MCLGET(m, M_NOWAIT))) {
1887			m_freem(m);
1888			return -1;
1889		}
1890	}
1891
1892	/* Initialize packet header info.  */
1893	m->m_pkthdr.rcvif = ifp;
1894	m->m_pkthdr.len = len;
1895
1896	/* Set the length of this packet.  */
1897	m->m_len = len;
1898
1899	/* The following silliness is to make NFS happy */
1900	m->m_data += NFS_MAGIC_OFFSET;
1901
1902	/* Get (actually just point to) the header part.  */
1903	eh = mtod(m, struct ether_header *);
1904
1905	/* Get a packet.  */
1906	if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1907	{
1908		fe_insb(sc, FE_BMPR8, (u_int8_t *)eh, len);
1909	}
1910	else
1911	{
1912		fe_insw(sc, FE_BMPR8, (u_int16_t *)eh, (len + 1) >> 1);
1913	}
1914
1915	/* Feed the packet to upper layer.  */
1916	FE_UNLOCK(sc);
1917	(*ifp->if_input)(ifp, m);
1918	FE_LOCK(sc);
1919	return 0;
1920}
1921
1922/*
1923 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
1924 * Returns number of bytes actually written, including length word.
1925 *
1926 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
1927 * Packets shorter than Ethernet minimum are legal, and we pad them
1928 * before sending out.  An exception is "partial" packets which are
1929 * shorter than mandatory Ethernet header.
1930 */
1931static void
1932fe_write_mbufs (struct fe_softc *sc, struct mbuf *m)
1933{
1934	u_short length, len;
1935	struct mbuf *mp;
1936	u_char *data;
1937	u_short savebyte;	/* WARNING: Architecture dependent!  */
1938#define NO_PENDING_BYTE 0xFFFF
1939
1940	static u_char padding [ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_HDR_LEN];
1941
1942#ifdef DIAGNOSTIC
1943	/* First, count up the total number of bytes to copy */
1944	length = 0;
1945	for (mp = m; mp != NULL; mp = mp->m_next)
1946		length += mp->m_len;
1947
1948	/* Check if this matches the one in the packet header.  */
1949	if (length != m->m_pkthdr.len) {
1950		if_printf(sc->ifp,
1951		    "packet length mismatch? (%d/%d)\n",
1952		    length, m->m_pkthdr.len);
1953	}
1954#else
1955	/* Just use the length value in the packet header.  */
1956	length = m->m_pkthdr.len;
1957#endif
1958
1959#ifdef DIAGNOSTIC
1960	/*
1961	 * Should never send big packets.  If such a packet is passed,
1962	 * it should be a bug of upper layer.  We just ignore it.
1963	 * ... Partial (too short) packets, neither.
1964	 */
1965	if (length < ETHER_HDR_LEN ||
1966	    length > ETHER_MAX_LEN - ETHER_CRC_LEN) {
1967		if_printf(sc->ifp,
1968		    "got an out-of-spec packet (%u bytes) to send\n", length);
1969		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
1970		sc->mibdata.dot3StatsInternalMacTransmitErrors++;
1971		return;
1972	}
1973#endif
1974
1975	/*
1976	 * Put the length word for this frame.
1977	 * Does 86960 accept odd length?  -- Yes.
1978	 * Do we need to pad the length to minimum size by ourselves?
1979	 * -- Generally yes.  But for (or will be) the last
1980	 * packet in the transmission buffer, we can skip the
1981	 * padding process.  It may gain performance slightly.  FIXME.
1982	 */
1983	if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
1984	{
1985		len = max(length, ETHER_MIN_LEN - ETHER_CRC_LEN);
1986		fe_outb(sc, FE_BMPR8,  len & 0x00ff);
1987		fe_outb(sc, FE_BMPR8, (len & 0xff00) >> 8);
1988	}
1989	else
1990	{
1991		fe_outw(sc, FE_BMPR8,
1992			max(length, ETHER_MIN_LEN - ETHER_CRC_LEN));
1993	}
1994
1995	/*
1996	 * Update buffer status now.
1997	 * Truncate the length up to an even number, since we use outw().
1998	 */
1999	if ((sc->proto_dlcr6 & FE_D6_SBW) != FE_D6_SBW_BYTE)
2000	{
2001		length = (length + 1) & ~1;
2002	}
2003	sc->txb_free -= FE_DATA_LEN_LEN +
2004	    max(length, ETHER_MIN_LEN - ETHER_CRC_LEN);
2005	sc->txb_count++;
2006
2007	/*
2008	 * Transfer the data from mbuf chain to the transmission buffer.
2009	 * MB86960 seems to require that data be transferred as words, and
2010	 * only words.  So that we require some extra code to patch
2011	 * over odd-length mbufs.
2012	 */
2013	if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
2014	{
2015		/* 8-bit cards are easy.  */
2016		for (mp = m; mp != NULL; mp = mp->m_next) {
2017			if (mp->m_len)
2018				fe_outsb(sc, FE_BMPR8, mtod(mp, caddr_t),
2019					 mp->m_len);
2020		}
2021	}
2022	else
2023	{
2024		/* 16-bit cards are a pain.  */
2025		savebyte = NO_PENDING_BYTE;
2026		for (mp = m; mp != NULL; mp = mp->m_next) {
2027
2028			/* Ignore empty mbuf.  */
2029			len = mp->m_len;
2030			if (len == 0)
2031				continue;
2032
2033			/* Find the actual data to send.  */
2034			data = mtod(mp, caddr_t);
2035
2036			/* Finish the last byte.  */
2037			if (savebyte != NO_PENDING_BYTE) {
2038				fe_outw(sc, FE_BMPR8, savebyte | (*data << 8));
2039				data++;
2040				len--;
2041				savebyte = NO_PENDING_BYTE;
2042			}
2043
2044			/* output contiguous words */
2045			if (len > 1) {
2046				fe_outsw(sc, FE_BMPR8, (u_int16_t *)data,
2047					 len >> 1);
2048				data += len & ~1;
2049				len &= 1;
2050			}
2051
2052			/* Save a remaining byte, if there is one.  */
2053			if (len > 0)
2054				savebyte = *data;
2055		}
2056
2057		/* Spit the last byte, if the length is odd.  */
2058		if (savebyte != NO_PENDING_BYTE)
2059			fe_outw(sc, FE_BMPR8, savebyte);
2060	}
2061
2062	/* Pad to the Ethernet minimum length, if the packet is too short.  */
2063	if (length < ETHER_MIN_LEN - ETHER_CRC_LEN) {
2064		if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
2065		{
2066			fe_outsb(sc, FE_BMPR8, padding,
2067				 ETHER_MIN_LEN - ETHER_CRC_LEN - length);
2068		}
2069		else
2070		{
2071			fe_outsw(sc, FE_BMPR8, (u_int16_t *)padding,
2072				 (ETHER_MIN_LEN - ETHER_CRC_LEN - length) >> 1);
2073		}
2074	}
2075}
2076
2077/*
2078 * Compute the multicast address filter from the
2079 * list of multicast addresses we need to listen to.
2080 */
2081static struct fe_filter
2082fe_mcaf ( struct fe_softc *sc )
2083{
2084	int index;
2085	struct fe_filter filter;
2086	struct ifmultiaddr *ifma;
2087
2088	filter = fe_filter_nothing;
2089	if_maddr_rlock(sc->ifp);
2090	TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2091		if (ifma->ifma_addr->sa_family != AF_LINK)
2092			continue;
2093		index = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2094		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
2095#ifdef FE_DEBUG
2096		if_printf(sc->ifp, "hash(%6D) == %d\n",
2097			enm->enm_addrlo , ":", index);
2098#endif
2099
2100		filter.data[index >> 3] |= 1 << (index & 7);
2101	}
2102	if_maddr_runlock(sc->ifp);
2103	return ( filter );
2104}
2105
2106/*
2107 * Calculate a new "multicast packet filter" and put the 86960
2108 * receiver in appropriate mode.
2109 */
2110static void
2111fe_setmode (struct fe_softc *sc)
2112{
2113
2114	/*
2115	 * If the interface is not running, we postpone the update
2116	 * process for receive modes and multicast address filter
2117	 * until the interface is restarted.  It reduces some
2118	 * complicated job on maintaining chip states.  (Earlier versions
2119	 * of this driver had a bug on that point...)
2120	 *
2121	 * To complete the trick, fe_init() calls fe_setmode() after
2122	 * restarting the interface.
2123	 */
2124	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
2125		return;
2126
2127	/*
2128	 * Promiscuous mode is handled separately.
2129	 */
2130	if (sc->ifp->if_flags & IFF_PROMISC) {
2131		/*
2132		 * Program 86960 to receive all packets on the segment
2133		 * including those directed to other stations.
2134		 * Multicast filter stored in MARs are ignored
2135		 * under this setting, so we don't need to update it.
2136		 *
2137		 * Promiscuous mode in FreeBSD 2 is used solely by
2138		 * BPF, and BPF only listens to valid (no error) packets.
2139		 * So, we ignore erroneous ones even in this mode.
2140		 * (Older versions of fe driver mistook the point.)
2141		 */
2142		fe_outb(sc, FE_DLCR5,
2143			sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2144		sc->filter_change = 0;
2145		return;
2146	}
2147
2148	/*
2149	 * Turn the chip to the normal (non-promiscuous) mode.
2150	 */
2151	fe_outb(sc, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2152
2153	/*
2154	 * Find the new multicast filter value.
2155	 */
2156	if (sc->ifp->if_flags & IFF_ALLMULTI)
2157		sc->filter = fe_filter_all;
2158	else
2159		sc->filter = fe_mcaf(sc);
2160	sc->filter_change = 1;
2161
2162	/*
2163	 * We have to update the multicast filter in the 86960, A.S.A.P.
2164	 *
2165	 * Note that the DLC (Data Link Control unit, i.e. transmitter
2166	 * and receiver) must be stopped when feeding the filter, and
2167	 * DLC trashes all packets in both transmission and receive
2168	 * buffers when stopped.
2169	 *
2170	 * To reduce the packet loss, we delay the filter update
2171	 * process until buffers are empty.
2172	 */
2173	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2174	    !(fe_inb(sc, FE_DLCR1) & FE_D1_PKTRDY)) {
2175		/*
2176		 * Buffers are (apparently) empty.  Load
2177		 * the new filter value into MARs now.
2178		 */
2179		fe_loadmar(sc);
2180	} else {
2181		/*
2182		 * Buffers are not empty.  Mark that we have to update
2183		 * the MARs.  The new filter will be loaded by feintr()
2184		 * later.
2185		 */
2186	}
2187}
2188
2189/*
2190 * Load a new multicast address filter into MARs.
2191 *
2192 * The caller must have acquired the softc lock before fe_loadmar.
2193 * This function starts the DLC upon return.  So it can be called only
2194 * when the chip is working, i.e., from the driver's point of view, when
2195 * a device is RUNNING.  (I mistook the point in previous versions.)
2196 */
2197static void
2198fe_loadmar (struct fe_softc * sc)
2199{
2200	/* Stop the DLC (transmitter and receiver).  */
2201	DELAY(200);
2202	fe_outb(sc, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2203	DELAY(200);
2204
2205	/* Select register bank 1 for MARs.  */
2206	fe_outb(sc, FE_DLCR7, sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2207
2208	/* Copy filter value into the registers.  */
2209	fe_outblk(sc, FE_MAR8, sc->filter.data, FE_FILTER_LEN);
2210
2211	/* Restore the bank selection for BMPRs (i.e., runtime registers).  */
2212	fe_outb(sc, FE_DLCR7,
2213		sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2214
2215	/* Restart the DLC.  */
2216	DELAY(200);
2217	fe_outb(sc, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2218	DELAY(200);
2219
2220	/* We have just updated the filter.  */
2221	sc->filter_change = 0;
2222}
2223
2224/* Change the media selection.  */
2225static int
2226fe_medchange (struct ifnet *ifp)
2227{
2228	struct fe_softc *sc = (struct fe_softc *)ifp->if_softc;
2229
2230#ifdef DIAGNOSTIC
2231	/* If_media should not pass any request for a media which this
2232	   interface doesn't support.  */
2233	int b;
2234
2235	for (b = 0; bit2media[b] != 0; b++) {
2236		if (bit2media[b] == sc->media.ifm_media) break;
2237	}
2238	if (((1 << b) & sc->mbitmap) == 0) {
2239		if_printf(sc->ifp,
2240		    "got an unsupported media request (0x%x)\n",
2241		    sc->media.ifm_media);
2242		return EINVAL;
2243	}
2244#endif
2245
2246	/* We don't actually change media when the interface is down.
2247	   fe_init() will do the job, instead.  Should we also wait
2248	   until the transmission buffer being empty?  Changing the
2249	   media when we are sending a frame will cause two garbages
2250	   on wires, one on old media and another on new.  FIXME */
2251	FE_LOCK(sc);
2252	if (sc->ifp->if_flags & IFF_UP) {
2253		if (sc->msel) sc->msel(sc);
2254	}
2255	FE_UNLOCK(sc);
2256
2257	return 0;
2258}
2259
2260/* I don't know how I can support media status callback... FIXME.  */
2261static void
2262fe_medstat (struct ifnet *ifp, struct ifmediareq *ifmr)
2263{
2264	struct fe_softc *sc = ifp->if_softc;
2265
2266	ifmr->ifm_active = sc->media.ifm_media;
2267}
2268