e1000_vf.c revision 209616
1/******************************************************************************
2
3  Copyright (c) 2001-2010, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_vf.c 209616 2010-06-30 21:05:51Z jfv $*/
34
35
36#include "e1000_api.h"
37
38
39static s32       e1000_init_phy_params_vf(struct e1000_hw *hw);
40static s32       e1000_init_nvm_params_vf(struct e1000_hw *hw);
41static void      e1000_release_vf(struct e1000_hw *hw);
42static s32       e1000_acquire_vf(struct e1000_hw *hw);
43static s32       e1000_setup_link_vf(struct e1000_hw *hw);
44static s32       e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45static s32       e1000_init_mac_params_vf(struct e1000_hw *hw);
46static s32       e1000_check_for_link_vf(struct e1000_hw *hw);
47static s32       e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48                                              u16 *duplex);
49static s32       e1000_init_hw_vf(struct e1000_hw *hw);
50static s32       e1000_reset_hw_vf(struct e1000_hw *hw);
51static void      e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52static void      e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53static s32       e1000_read_mac_addr_vf(struct e1000_hw *);
54
55/**
56 *  e1000_init_phy_params_vf - Inits PHY params
57 *  @hw: pointer to the HW structure
58 *
59 *  Doesn't do much - there's no PHY available to the VF.
60 **/
61static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62{
63	DEBUGFUNC("e1000_init_phy_params_vf");
64	hw->phy.type = e1000_phy_vf;
65	hw->phy.ops.acquire = e1000_acquire_vf;
66	hw->phy.ops.release = e1000_release_vf;
67
68	return E1000_SUCCESS;
69}
70
71/**
72 *  e1000_init_nvm_params_vf - Inits NVM params
73 *  @hw: pointer to the HW structure
74 *
75 *  Doesn't do much - there's no NVM available to the VF.
76 **/
77static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78{
79	DEBUGFUNC("e1000_init_nvm_params_vf");
80	hw->nvm.type = e1000_nvm_none;
81	hw->nvm.ops.acquire = e1000_acquire_vf;
82	hw->nvm.ops.release = e1000_release_vf;
83
84	return E1000_SUCCESS;
85}
86
87/**
88 *  e1000_init_mac_params_vf - Inits MAC params
89 *  @hw: pointer to the HW structure
90 **/
91static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92{
93	struct e1000_mac_info *mac = &hw->mac;
94
95	DEBUGFUNC("e1000_init_mac_params_vf");
96
97	/* Set media type */
98	/*
99	 * Virtual functions don't care what they're media type is as they
100	 * have no direct access to the PHY, or the media.  That is handled
101	 * by the physical function driver.
102	 */
103	hw->phy.media_type = e1000_media_type_unknown;
104
105	/* No ASF features for the VF driver */
106	mac->asf_firmware_present = FALSE;
107	/* ARC subsystem not supported */
108	mac->arc_subsystem_valid = FALSE;
109	/* Disable adaptive IFS mode so the generic funcs don't do anything */
110	mac->adaptive_ifs = FALSE;
111	/* VF's have no MTA Registers - PF feature only */
112	mac->mta_reg_count = 128;
113	/* VF's have no access to RAR entries  */
114	mac->rar_entry_count = 1;
115
116	/* Function pointers */
117	/* link setup */
118	mac->ops.setup_link = e1000_setup_link_vf;
119	/* bus type/speed/width */
120	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121	/* reset */
122	mac->ops.reset_hw = e1000_reset_hw_vf;
123	/* hw initialization */
124	mac->ops.init_hw = e1000_init_hw_vf;
125	/* check for link */
126	mac->ops.check_for_link = e1000_check_for_link_vf;
127	/* link info */
128	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129	/* multicast address update */
130	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131	/* set mac address */
132	mac->ops.rar_set = e1000_rar_set_vf;
133	/* read mac address */
134	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135
136
137	return E1000_SUCCESS;
138}
139
140/**
141 *  e1000_init_function_pointers_vf - Inits function pointers
142 *  @hw: pointer to the HW structure
143 **/
144void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145{
146	DEBUGFUNC("e1000_init_function_pointers_vf");
147
148	hw->mac.ops.init_params = e1000_init_mac_params_vf;
149	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150	hw->phy.ops.init_params = e1000_init_phy_params_vf;
151	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152}
153
154/**
155 *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
156 *  @hw: pointer to the HW structure
157 *
158 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
159 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
160 *  even want any SW to attempt to use them.
161 **/
162static s32 e1000_acquire_vf(struct e1000_hw *hw)
163{
164	return -E1000_ERR_PHY;
165}
166
167/**
168 *  e1000_release_vf - Release PHY or NVM
169 *  @hw: pointer to the HW structure
170 *
171 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
172 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 *  even want any SW to attempt to use them.
174 **/
175static void e1000_release_vf(struct e1000_hw *hw)
176{
177	return;
178}
179
180/**
181 *  e1000_setup_link_vf - Sets up link.
182 *  @hw: pointer to the HW structure
183 *
184 *  Virtual functions cannot change link.
185 **/
186static s32 e1000_setup_link_vf(struct e1000_hw *hw)
187{
188	DEBUGFUNC("e1000_setup_link_vf");
189
190	return E1000_SUCCESS;
191}
192
193/**
194 *  e1000_get_bus_info_pcie_vf - Gets the bus info.
195 *  @hw: pointer to the HW structure
196 *
197 *  Virtual functions are not really on their own bus.
198 **/
199static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200{
201	struct e1000_bus_info *bus = &hw->bus;
202
203	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204
205	/* Do not set type PCI-E because we don't want disable master to run */
206	bus->type = e1000_bus_type_reserved;
207	bus->speed = e1000_bus_speed_2500;
208
209	return 0;
210}
211
212/**
213 *  e1000_get_link_up_info_vf - Gets link info.
214 *  @hw: pointer to the HW structure
215 *  @speed: pointer to 16 bit value to store link speed.
216 *  @duplex: pointer to 16 bit value to store duplex.
217 *
218 *  Since we cannot read the PHY and get accurate link info, we must rely upon
219 *  the status register's data which is often stale and inaccurate.
220 **/
221static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222                                     u16 *duplex)
223{
224	s32 status;
225
226	DEBUGFUNC("e1000_get_link_up_info_vf");
227
228	status = E1000_READ_REG(hw, E1000_STATUS);
229	if (status & E1000_STATUS_SPEED_1000) {
230		*speed = SPEED_1000;
231		DEBUGOUT("1000 Mbs, ");
232	} else if (status & E1000_STATUS_SPEED_100) {
233		*speed = SPEED_100;
234		DEBUGOUT("100 Mbs, ");
235	} else {
236		*speed = SPEED_10;
237		DEBUGOUT("10 Mbs, ");
238	}
239
240	if (status & E1000_STATUS_FD) {
241		*duplex = FULL_DUPLEX;
242		DEBUGOUT("Full Duplex\n");
243	} else {
244		*duplex = HALF_DUPLEX;
245		DEBUGOUT("Half Duplex\n");
246	}
247
248	return E1000_SUCCESS;
249}
250
251/**
252 *  e1000_reset_hw_vf - Resets the HW
253 *  @hw: pointer to the HW structure
254 *
255 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256 *  This is all the reset we can perform on a VF.
257 **/
258static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259{
260	struct e1000_mbx_info *mbx = &hw->mbx;
261	u32 timeout = E1000_VF_INIT_TIMEOUT;
262	s32 ret_val = -E1000_ERR_MAC_INIT;
263	u32 ctrl, msgbuf[3];
264	u8 *addr = (u8 *)(&msgbuf[1]);
265
266	DEBUGFUNC("e1000_reset_hw_vf");
267
268	DEBUGOUT("Issuing a function level reset to MAC\n");
269	ctrl = E1000_READ_REG(hw, E1000_CTRL);
270	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271
272	/* we cannot reset while the RSTI / RSTD bits are asserted */
273	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274		timeout--;
275		usec_delay(5);
276	}
277
278	if (timeout) {
279		/* mailbox timeout can now become active */
280		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281
282		msgbuf[0] = E1000_VF_RESET;
283		mbx->ops.write_posted(hw, msgbuf, 1, 0);
284
285		msec_delay(10);
286
287		/* set our "perm_addr" based on info provided by PF */
288		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289		if (!ret_val) {
290			if (msgbuf[0] == (E1000_VF_RESET |
291						E1000_VT_MSGTYPE_ACK))
292				memcpy(hw->mac.perm_addr, addr, 6);
293			else
294				ret_val = -E1000_ERR_MAC_INIT;
295		}
296	}
297
298	return ret_val;
299}
300
301/**
302 *  e1000_init_hw_vf - Inits the HW
303 *  @hw: pointer to the HW structure
304 *
305 *  Not much to do here except clear the PF Reset indication if there is one.
306 **/
307static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308{
309	DEBUGFUNC("e1000_init_hw_vf");
310
311	/* attempt to set and restore our mac address */
312	e1000_rar_set_vf(hw, hw->mac.addr, 0);
313
314	return E1000_SUCCESS;
315}
316
317/**
318 *  e1000_rar_set_vf - set device MAC address
319 *  @hw: pointer to the HW structure
320 *  @addr: pointer to the receive address
321 *  @index receive address array register
322 **/
323static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
324{
325	struct e1000_mbx_info *mbx = &hw->mbx;
326	u32 msgbuf[3];
327	u8 *msg_addr = (u8 *)(&msgbuf[1]);
328	s32 ret_val;
329
330	memset(msgbuf, 0, 12);
331	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
332	memcpy(msg_addr, addr, 6);
333	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
334
335	if (!ret_val)
336		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
337
338	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
339
340	/* if nacked the address was rejected, use "perm_addr" */
341	if (!ret_val &&
342	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
343		e1000_read_mac_addr_vf(hw);
344}
345
346/**
347 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
348 *  @hw: pointer to the HW structure
349 *  @mc_addr: pointer to a multicast address
350 *
351 *  Generates a multicast address hash value which is used to determine
352 *  the multicast filter table array address and new table value.
353 **/
354static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
355{
356	u32 hash_value, hash_mask;
357	u8 bit_shift = 0;
358
359	DEBUGFUNC("e1000_hash_mc_addr_generic");
360
361	/* Register count multiplied by bits per register */
362	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
363
364	/*
365	 * The bit_shift is the number of left-shifts
366	 * where 0xFF would still fall within the hash mask.
367	 */
368	while (hash_mask >> bit_shift != 0xFF)
369		bit_shift++;
370
371	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
372	                          (((u16) mc_addr[5]) << bit_shift)));
373
374	return hash_value;
375}
376
377/**
378 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
379 *  @hw: pointer to the HW structure
380 *  @mc_addr_list: array of multicast addresses to program
381 *  @mc_addr_count: number of multicast addresses to program
382 *
383 *  Updates the Multicast Table Array.
384 *  The caller must have a packed mc_addr_list of multicast addresses.
385 **/
386void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
387                                  u8 *mc_addr_list, u32 mc_addr_count)
388{
389	struct e1000_mbx_info *mbx = &hw->mbx;
390	u32 msgbuf[E1000_VFMAILBOX_SIZE];
391	u16 *hash_list = (u16 *)&msgbuf[1];
392	u32 hash_value;
393	u32 i;
394
395	DEBUGFUNC("e1000_update_mc_addr_list_vf");
396
397	/* Each entry in the list uses 1 16 bit word.  We have 30
398	 * 16 bit words available in our HW msg buffer (minus 1 for the
399	 * msg type).  That's 30 hash values if we pack 'em right.  If
400	 * there are more than 30 MC addresses to add then punt the
401	 * extras for now and then add code to handle more than 30 later.
402	 * It would be unusual for a server to request that many multi-cast
403	 * addresses except for in large enterprise network environments.
404	 */
405
406	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
407
408	if (mc_addr_count > 30) {
409		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
410		mc_addr_count = 30;
411	}
412
413	msgbuf[0] = E1000_VF_SET_MULTICAST;
414	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
415
416	for (i = 0; i < mc_addr_count; i++) {
417		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
418		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
419		hash_list[i] = hash_value & 0x0FFF;
420		mc_addr_list += ETH_ADDR_LEN;
421	}
422
423	mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
424}
425
426/**
427 *  e1000_vfta_set_vf - Set/Unset vlan filter table address
428 *  @hw: pointer to the HW structure
429 *  @vid: determines the vfta register and bit to set/unset
430 *  @set: if TRUE then set bit, else clear bit
431 **/
432void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
433{
434	struct e1000_mbx_info *mbx = &hw->mbx;
435	u32 msgbuf[2];
436
437	msgbuf[0] = E1000_VF_SET_VLAN;
438	msgbuf[1] = vid;
439	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
440	if (set)
441		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
442
443	mbx->ops.write_posted(hw, msgbuf, 2, 0);
444}
445
446/** e1000_rlpml_set_vf - Set the maximum receive packet length
447 *  @hw: pointer to the HW structure
448 *  @max_size: value to assign to max frame size
449 **/
450void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
451{
452	struct e1000_mbx_info *mbx = &hw->mbx;
453	u32 msgbuf[2];
454
455	msgbuf[0] = E1000_VF_SET_LPE;
456	msgbuf[1] = max_size;
457
458	mbx->ops.write_posted(hw, msgbuf, 2, 0);
459}
460
461/**
462 *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
463 *  @hw: pointer to the HW structure
464 *  @uni: boolean indicating unicast promisc status
465 *  @multi: boolean indicating multicast promisc status
466 **/
467s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
468{
469	struct e1000_mbx_info *mbx = &hw->mbx;
470	u32 msgbuf = E1000_VF_SET_PROMISC;
471	s32 ret_val;
472
473	switch (type) {
474	case e1000_promisc_multicast:
475		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
476		break;
477	case e1000_promisc_enabled:
478		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
479	case e1000_promisc_unicast:
480		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
481	case e1000_promisc_disabled:
482		break;
483	default:
484		return -E1000_ERR_MAC_INIT;
485	}
486
487	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
488
489	if (!ret_val)
490		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
491
492	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
493		ret_val = -E1000_ERR_MAC_INIT;
494
495	return ret_val;
496}
497
498/**
499 *  e1000_read_mac_addr_vf - Read device MAC address
500 *  @hw: pointer to the HW structure
501 **/
502static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
503{
504	int i;
505
506	for (i = 0; i < ETH_ADDR_LEN; i++)
507		hw->mac.addr[i] = hw->mac.perm_addr[i];
508
509	return E1000_SUCCESS;
510}
511
512/**
513 *  e1000_check_for_link_vf - Check for link for a virtual interface
514 *  @hw: pointer to the HW structure
515 *
516 *  Checks to see if the underlying PF is still talking to the VF and
517 *  if it is then it reports the link state to the hardware, otherwise
518 *  it reports link down and returns an error.
519 **/
520static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
521{
522	struct e1000_mbx_info *mbx = &hw->mbx;
523	struct e1000_mac_info *mac = &hw->mac;
524	s32 ret_val = E1000_SUCCESS;
525	u32 in_msg = 0;
526
527	DEBUGFUNC("e1000_check_for_link_vf");
528
529	/*
530	 * We only want to run this if there has been a rst asserted.
531	 * in this case that could mean a link change, device reset,
532	 * or a virtual function reset
533	 */
534
535	/* If we were hit with a reset drop the link */
536	if (!mbx->ops.check_for_rst(hw, 0))
537		mac->get_link_status = TRUE;
538
539	if (!mac->get_link_status)
540		goto out;
541
542	/* if link status is down no point in checking to see if pf is up */
543	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
544		goto out;
545
546	/* if the read failed it could just be a mailbox collision, best wait
547	 * until we are called again and don't report an error */
548	if (mbx->ops.read(hw, &in_msg, 1, 0))
549		goto out;
550
551	/* if incoming message isn't clear to send we are waiting on response */
552	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
553		/* message is not CTS and is NACK we have lost CTS status */
554		if (in_msg & E1000_VT_MSGTYPE_NACK)
555			ret_val = -E1000_ERR_MAC_INIT;
556		goto out;
557	}
558
559	/* at this point we know the PF is talking to us, check and see if
560	 * we are still accepting timeout or if we had a timeout failure.
561	 * if we failed then we will need to reinit */
562	if (!mbx->timeout) {
563		ret_val = -E1000_ERR_MAC_INIT;
564		goto out;
565	}
566
567	/* if we passed all the tests above then the link is up and we no
568	 * longer need to check for link */
569	mac->get_link_status = FALSE;
570
571out:
572	return ret_val;
573}
574
575