e1000_vf.c revision 228386
1/******************************************************************************
2
3  Copyright (c) 2001-2011, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_vf.c 228386 2011-12-10 06:55:02Z jfv $*/
34
35
36#include "e1000_api.h"
37
38
39static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41static void e1000_release_vf(struct e1000_hw *hw);
42static s32 e1000_acquire_vf(struct e1000_hw *hw);
43static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48				     u16 *duplex);
49static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
54
55/**
56 *  e1000_init_phy_params_vf - Inits PHY params
57 *  @hw: pointer to the HW structure
58 *
59 *  Doesn't do much - there's no PHY available to the VF.
60 **/
61static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62{
63	DEBUGFUNC("e1000_init_phy_params_vf");
64	hw->phy.type = e1000_phy_vf;
65	hw->phy.ops.acquire = e1000_acquire_vf;
66	hw->phy.ops.release = e1000_release_vf;
67
68	return E1000_SUCCESS;
69}
70
71/**
72 *  e1000_init_nvm_params_vf - Inits NVM params
73 *  @hw: pointer to the HW structure
74 *
75 *  Doesn't do much - there's no NVM available to the VF.
76 **/
77static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78{
79	DEBUGFUNC("e1000_init_nvm_params_vf");
80	hw->nvm.type = e1000_nvm_none;
81	hw->nvm.ops.acquire = e1000_acquire_vf;
82	hw->nvm.ops.release = e1000_release_vf;
83
84	return E1000_SUCCESS;
85}
86
87/**
88 *  e1000_init_mac_params_vf - Inits MAC params
89 *  @hw: pointer to the HW structure
90 **/
91static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92{
93	struct e1000_mac_info *mac = &hw->mac;
94
95	DEBUGFUNC("e1000_init_mac_params_vf");
96
97	/* Set media type */
98	/*
99	 * Virtual functions don't care what they're media type is as they
100	 * have no direct access to the PHY, or the media.  That is handled
101	 * by the physical function driver.
102	 */
103	hw->phy.media_type = e1000_media_type_unknown;
104
105	/* No ASF features for the VF driver */
106	mac->asf_firmware_present = FALSE;
107	/* ARC subsystem not supported */
108	mac->arc_subsystem_valid = FALSE;
109	/* Disable adaptive IFS mode so the generic funcs don't do anything */
110	mac->adaptive_ifs = FALSE;
111	/* VF's have no MTA Registers - PF feature only */
112	mac->mta_reg_count = 128;
113	/* VF's have no access to RAR entries  */
114	mac->rar_entry_count = 1;
115
116	/* Function pointers */
117	/* link setup */
118	mac->ops.setup_link = e1000_setup_link_vf;
119	/* bus type/speed/width */
120	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121	/* reset */
122	mac->ops.reset_hw = e1000_reset_hw_vf;
123	/* hw initialization */
124	mac->ops.init_hw = e1000_init_hw_vf;
125	/* check for link */
126	mac->ops.check_for_link = e1000_check_for_link_vf;
127	/* link info */
128	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129	/* multicast address update */
130	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131	/* set mac address */
132	mac->ops.rar_set = e1000_rar_set_vf;
133	/* read mac address */
134	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135
136
137	return E1000_SUCCESS;
138}
139
140/**
141 *  e1000_init_function_pointers_vf - Inits function pointers
142 *  @hw: pointer to the HW structure
143 **/
144void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145{
146	DEBUGFUNC("e1000_init_function_pointers_vf");
147
148	hw->mac.ops.init_params = e1000_init_mac_params_vf;
149	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150	hw->phy.ops.init_params = e1000_init_phy_params_vf;
151	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152}
153
154/**
155 *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
156 *  @hw: pointer to the HW structure
157 *
158 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
159 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
160 *  even want any SW to attempt to use them.
161 **/
162static s32 e1000_acquire_vf(struct e1000_hw *hw)
163{
164	return -E1000_ERR_PHY;
165}
166
167/**
168 *  e1000_release_vf - Release PHY or NVM
169 *  @hw: pointer to the HW structure
170 *
171 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
172 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 *  even want any SW to attempt to use them.
174 **/
175static void e1000_release_vf(struct e1000_hw *hw)
176{
177	return;
178}
179
180/**
181 *  e1000_setup_link_vf - Sets up link.
182 *  @hw: pointer to the HW structure
183 *
184 *  Virtual functions cannot change link.
185 **/
186static s32 e1000_setup_link_vf(struct e1000_hw *hw)
187{
188	DEBUGFUNC("e1000_setup_link_vf");
189
190	return E1000_SUCCESS;
191}
192
193/**
194 *  e1000_get_bus_info_pcie_vf - Gets the bus info.
195 *  @hw: pointer to the HW structure
196 *
197 *  Virtual functions are not really on their own bus.
198 **/
199static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200{
201	struct e1000_bus_info *bus = &hw->bus;
202
203	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204
205	/* Do not set type PCI-E because we don't want disable master to run */
206	bus->type = e1000_bus_type_reserved;
207	bus->speed = e1000_bus_speed_2500;
208
209	return 0;
210}
211
212/**
213 *  e1000_get_link_up_info_vf - Gets link info.
214 *  @hw: pointer to the HW structure
215 *  @speed: pointer to 16 bit value to store link speed.
216 *  @duplex: pointer to 16 bit value to store duplex.
217 *
218 *  Since we cannot read the PHY and get accurate link info, we must rely upon
219 *  the status register's data which is often stale and inaccurate.
220 **/
221static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222				     u16 *duplex)
223{
224	s32 status;
225
226	DEBUGFUNC("e1000_get_link_up_info_vf");
227
228	status = E1000_READ_REG(hw, E1000_STATUS);
229	if (status & E1000_STATUS_SPEED_1000) {
230		*speed = SPEED_1000;
231		DEBUGOUT("1000 Mbs, ");
232	} else if (status & E1000_STATUS_SPEED_100) {
233		*speed = SPEED_100;
234		DEBUGOUT("100 Mbs, ");
235	} else {
236		*speed = SPEED_10;
237		DEBUGOUT("10 Mbs, ");
238	}
239
240	if (status & E1000_STATUS_FD) {
241		*duplex = FULL_DUPLEX;
242		DEBUGOUT("Full Duplex\n");
243	} else {
244		*duplex = HALF_DUPLEX;
245		DEBUGOUT("Half Duplex\n");
246	}
247
248	return E1000_SUCCESS;
249}
250
251/**
252 *  e1000_reset_hw_vf - Resets the HW
253 *  @hw: pointer to the HW structure
254 *
255 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256 *  This is all the reset we can perform on a VF.
257 **/
258static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259{
260	struct e1000_mbx_info *mbx = &hw->mbx;
261	u32 timeout = E1000_VF_INIT_TIMEOUT;
262	s32 ret_val = -E1000_ERR_MAC_INIT;
263	u32 ctrl, msgbuf[3];
264	u8 *addr = (u8 *)(&msgbuf[1]);
265
266	DEBUGFUNC("e1000_reset_hw_vf");
267
268	DEBUGOUT("Issuing a function level reset to MAC\n");
269	ctrl = E1000_READ_REG(hw, E1000_CTRL);
270	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271
272	/* we cannot reset while the RSTI / RSTD bits are asserted */
273	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274		timeout--;
275		usec_delay(5);
276	}
277
278	if (timeout) {
279		/* mailbox timeout can now become active */
280		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281
282		msgbuf[0] = E1000_VF_RESET;
283		mbx->ops.write_posted(hw, msgbuf, 1, 0);
284
285		msec_delay(10);
286
287		/* set our "perm_addr" based on info provided by PF */
288		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289		if (!ret_val) {
290			if (msgbuf[0] == (E1000_VF_RESET |
291			    E1000_VT_MSGTYPE_ACK))
292				memcpy(hw->mac.perm_addr, addr, 6);
293			else
294				ret_val = -E1000_ERR_MAC_INIT;
295		}
296	}
297
298	return ret_val;
299}
300
301/**
302 *  e1000_init_hw_vf - Inits the HW
303 *  @hw: pointer to the HW structure
304 *
305 *  Not much to do here except clear the PF Reset indication if there is one.
306 **/
307static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308{
309	DEBUGFUNC("e1000_init_hw_vf");
310
311	/* attempt to set and restore our mac address */
312	e1000_rar_set_vf(hw, hw->mac.addr, 0);
313
314	return E1000_SUCCESS;
315}
316
317/**
318 *  e1000_rar_set_vf - set device MAC address
319 *  @hw: pointer to the HW structure
320 *  @addr: pointer to the receive address
321 *  @index receive address array register
322 **/
323static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
324{
325	struct e1000_mbx_info *mbx = &hw->mbx;
326	u32 msgbuf[3];
327	u8 *msg_addr = (u8 *)(&msgbuf[1]);
328	s32 ret_val;
329
330	memset(msgbuf, 0, 12);
331	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
332	memcpy(msg_addr, addr, 6);
333	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
334
335	if (!ret_val)
336		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
337
338	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
339
340	/* if nacked the address was rejected, use "perm_addr" */
341	if (!ret_val &&
342	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
343		e1000_read_mac_addr_vf(hw);
344}
345
346/**
347 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
348 *  @hw: pointer to the HW structure
349 *  @mc_addr: pointer to a multicast address
350 *
351 *  Generates a multicast address hash value which is used to determine
352 *  the multicast filter table array address and new table value.
353 **/
354static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
355{
356	u32 hash_value, hash_mask;
357	u8 bit_shift = 0;
358
359	DEBUGFUNC("e1000_hash_mc_addr_generic");
360
361	/* Register count multiplied by bits per register */
362	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
363
364	/*
365	 * The bit_shift is the number of left-shifts
366	 * where 0xFF would still fall within the hash mask.
367	 */
368	while (hash_mask >> bit_shift != 0xFF)
369		bit_shift++;
370
371	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
372				  (((u16) mc_addr[5]) << bit_shift)));
373
374	return hash_value;
375}
376
377static void e1000_write_msg_read_ack(struct e1000_hw *hw,
378				     u32 *msg, u16 size)
379{
380	struct e1000_mbx_info *mbx = &hw->mbx;
381	u32 retmsg[E1000_VFMAILBOX_SIZE];
382	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
383
384	if (!retval)
385		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
386}
387
388/**
389 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
390 *  @hw: pointer to the HW structure
391 *  @mc_addr_list: array of multicast addresses to program
392 *  @mc_addr_count: number of multicast addresses to program
393 *
394 *  Updates the Multicast Table Array.
395 *  The caller must have a packed mc_addr_list of multicast addresses.
396 **/
397void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
398				  u8 *mc_addr_list, u32 mc_addr_count)
399{
400	u32 msgbuf[E1000_VFMAILBOX_SIZE];
401	u16 *hash_list = (u16 *)&msgbuf[1];
402	u32 hash_value;
403	u32 i;
404
405	DEBUGFUNC("e1000_update_mc_addr_list_vf");
406
407	/* Each entry in the list uses 1 16 bit word.  We have 30
408	 * 16 bit words available in our HW msg buffer (minus 1 for the
409	 * msg type).  That's 30 hash values if we pack 'em right.  If
410	 * there are more than 30 MC addresses to add then punt the
411	 * extras for now and then add code to handle more than 30 later.
412	 * It would be unusual for a server to request that many multi-cast
413	 * addresses except for in large enterprise network environments.
414	 */
415
416	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
417
418	if (mc_addr_count > 30) {
419		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
420		mc_addr_count = 30;
421	}
422
423	msgbuf[0] = E1000_VF_SET_MULTICAST;
424	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
425
426	for (i = 0; i < mc_addr_count; i++) {
427		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
428		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
429		hash_list[i] = hash_value & 0x0FFF;
430		mc_addr_list += ETH_ADDR_LEN;
431	}
432
433	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
434}
435
436/**
437 *  e1000_vfta_set_vf - Set/Unset vlan filter table address
438 *  @hw: pointer to the HW structure
439 *  @vid: determines the vfta register and bit to set/unset
440 *  @set: if TRUE then set bit, else clear bit
441 **/
442void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
443{
444	u32 msgbuf[2];
445
446	msgbuf[0] = E1000_VF_SET_VLAN;
447	msgbuf[1] = vid;
448	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
449	if (set)
450		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
451
452	e1000_write_msg_read_ack(hw, msgbuf, 2);
453}
454
455/** e1000_rlpml_set_vf - Set the maximum receive packet length
456 *  @hw: pointer to the HW structure
457 *  @max_size: value to assign to max frame size
458 **/
459void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
460{
461	u32 msgbuf[2];
462
463	msgbuf[0] = E1000_VF_SET_LPE;
464	msgbuf[1] = max_size;
465
466	e1000_write_msg_read_ack(hw, msgbuf, 2);
467}
468
469/**
470 *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
471 *  @hw: pointer to the HW structure
472 *  @uni: boolean indicating unicast promisc status
473 *  @multi: boolean indicating multicast promisc status
474 **/
475s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
476{
477	struct e1000_mbx_info *mbx = &hw->mbx;
478	u32 msgbuf = E1000_VF_SET_PROMISC;
479	s32 ret_val;
480
481	switch (type) {
482	case e1000_promisc_multicast:
483		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
484		break;
485	case e1000_promisc_enabled:
486		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
487	case e1000_promisc_unicast:
488		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
489	case e1000_promisc_disabled:
490		break;
491	default:
492		return -E1000_ERR_MAC_INIT;
493	}
494
495	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
496
497	if (!ret_val)
498		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
499
500	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
501		ret_val = -E1000_ERR_MAC_INIT;
502
503	return ret_val;
504}
505
506/**
507 *  e1000_read_mac_addr_vf - Read device MAC address
508 *  @hw: pointer to the HW structure
509 **/
510static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
511{
512	int i;
513
514	for (i = 0; i < ETH_ADDR_LEN; i++)
515		hw->mac.addr[i] = hw->mac.perm_addr[i];
516
517	return E1000_SUCCESS;
518}
519
520/**
521 *  e1000_check_for_link_vf - Check for link for a virtual interface
522 *  @hw: pointer to the HW structure
523 *
524 *  Checks to see if the underlying PF is still talking to the VF and
525 *  if it is then it reports the link state to the hardware, otherwise
526 *  it reports link down and returns an error.
527 **/
528static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
529{
530	struct e1000_mbx_info *mbx = &hw->mbx;
531	struct e1000_mac_info *mac = &hw->mac;
532	s32 ret_val = E1000_SUCCESS;
533	u32 in_msg = 0;
534
535	DEBUGFUNC("e1000_check_for_link_vf");
536
537	/*
538	 * We only want to run this if there has been a rst asserted.
539	 * in this case that could mean a link change, device reset,
540	 * or a virtual function reset
541	 */
542
543	/* If we were hit with a reset or timeout drop the link */
544	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
545		mac->get_link_status = TRUE;
546
547	if (!mac->get_link_status)
548		goto out;
549
550	/* if link status is down no point in checking to see if pf is up */
551	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
552		goto out;
553
554	/* if the read failed it could just be a mailbox collision, best wait
555	 * until we are called again and don't report an error */
556	if (mbx->ops.read(hw, &in_msg, 1, 0))
557		goto out;
558
559	/* if incoming message isn't clear to send we are waiting on response */
560	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
561		/* message is not CTS and is NACK we have lost CTS status */
562		if (in_msg & E1000_VT_MSGTYPE_NACK)
563			ret_val = -E1000_ERR_MAC_INIT;
564		goto out;
565	}
566
567	/* at this point we know the PF is talking to us, check and see if
568	 * we are still accepting timeout or if we had a timeout failure.
569	 * if we failed then we will need to reinit */
570	if (!mbx->timeout) {
571		ret_val = -E1000_ERR_MAC_INIT;
572		goto out;
573	}
574
575	/* if we passed all the tests above then the link is up and we no
576	 * longer need to check for link */
577	mac->get_link_status = FALSE;
578
579out:
580	return ret_val;
581}
582
583