e1000_82575.c revision 295323
1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_82575.c 295323 2016-02-05 17:14:37Z erj $*/
34
35/*
36 * 82575EB Gigabit Network Connection
37 * 82575EB Gigabit Backplane Connection
38 * 82575GB Gigabit Network Connection
39 * 82576 Gigabit Network Connection
40 * 82576 Quad Port Gigabit Mezzanine Adapter
41 * 82580 Gigabit Network Connection
42 * I350 Gigabit Network Connection
43 */
44
45#include "e1000_api.h"
46#include "e1000_i210.h"
47
48static s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
49static s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
50static s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
51static void e1000_release_phy_82575(struct e1000_hw *hw);
52static s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
53static void e1000_release_nvm_82575(struct e1000_hw *hw);
54static s32  e1000_check_for_link_82575(struct e1000_hw *hw);
55static s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
56static s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
57static s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
58					 u16 *duplex);
59static s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
60static s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
61					   u16 *data);
62static s32  e1000_reset_hw_82575(struct e1000_hw *hw);
63static s32  e1000_reset_hw_82580(struct e1000_hw *hw);
64static s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
65				     u32 offset, u16 *data);
66static s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
67				      u32 offset, u16 data);
68static s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
69					  bool active);
70static s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
71					  bool active);
72static s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
73					  bool active);
74static s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
75static s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
76static s32  e1000_get_media_type_82575(struct e1000_hw *hw);
77static s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
78static s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
79static s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
80					    u32 offset, u16 data);
81static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
82static s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
83static s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
84						 u16 *speed, u16 *duplex);
85static s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
86static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
87static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
88static s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
89static s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
90static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
91static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
92static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
93static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
94static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
95static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
96static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
97static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
98static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
99						 u16 offset);
100static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
101						   u16 offset);
102static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
103static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
104static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
105static void e1000_clear_vfta_i350(struct e1000_hw *hw);
106
107static void e1000_i2c_start(struct e1000_hw *hw);
108static void e1000_i2c_stop(struct e1000_hw *hw);
109static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
110static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
111static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
112static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
113static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
114static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
115static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
116static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
117static bool e1000_get_i2c_data(u32 *i2cctl);
118
119static const u16 e1000_82580_rxpbs_table[] = {
120	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
121#define E1000_82580_RXPBS_TABLE_SIZE \
122	(sizeof(e1000_82580_rxpbs_table) / \
123	 sizeof(e1000_82580_rxpbs_table[0]))
124
125
126/**
127 *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
128 *  @hw: pointer to the HW structure
129 *
130 *  Called to determine if the I2C pins are being used for I2C or as an
131 *  external MDIO interface since the two options are mutually exclusive.
132 **/
133static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
134{
135	u32 reg = 0;
136	bool ext_mdio = FALSE;
137
138	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
139
140	switch (hw->mac.type) {
141	case e1000_82575:
142	case e1000_82576:
143		reg = E1000_READ_REG(hw, E1000_MDIC);
144		ext_mdio = !!(reg & E1000_MDIC_DEST);
145		break;
146	case e1000_82580:
147	case e1000_i350:
148	case e1000_i354:
149	case e1000_i210:
150	case e1000_i211:
151		reg = E1000_READ_REG(hw, E1000_MDICNFG);
152		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
153		break;
154	default:
155		break;
156	}
157	return ext_mdio;
158}
159
160/**
161 *  e1000_init_phy_params_82575 - Init PHY func ptrs.
162 *  @hw: pointer to the HW structure
163 **/
164static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
165{
166	struct e1000_phy_info *phy = &hw->phy;
167	s32 ret_val = E1000_SUCCESS;
168	u32 ctrl_ext;
169
170	DEBUGFUNC("e1000_init_phy_params_82575");
171
172	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
173	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
174
175	if (hw->phy.media_type != e1000_media_type_copper) {
176		phy->type = e1000_phy_none;
177		goto out;
178	}
179
180	phy->ops.power_up   = e1000_power_up_phy_copper;
181	phy->ops.power_down = e1000_power_down_phy_copper_82575;
182
183	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
184	phy->reset_delay_us	= 100;
185
186	phy->ops.acquire	= e1000_acquire_phy_82575;
187	phy->ops.check_reset_block = e1000_check_reset_block_generic;
188	phy->ops.commit		= e1000_phy_sw_reset_generic;
189	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
190	phy->ops.release	= e1000_release_phy_82575;
191
192	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
193
194	if (e1000_sgmii_active_82575(hw)) {
195		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
196		ctrl_ext |= E1000_CTRL_I2C_ENA;
197	} else {
198		phy->ops.reset = e1000_phy_hw_reset_generic;
199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200	}
201
202	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
203	e1000_reset_mdicnfg_82580(hw);
204
205	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
206		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
207		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
208	} else {
209		switch (hw->mac.type) {
210		case e1000_82580:
211		case e1000_i350:
212		case e1000_i354:
213			phy->ops.read_reg = e1000_read_phy_reg_82580;
214			phy->ops.write_reg = e1000_write_phy_reg_82580;
215			break;
216		case e1000_i210:
217		case e1000_i211:
218			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
219			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
220			break;
221		default:
222			phy->ops.read_reg = e1000_read_phy_reg_igp;
223			phy->ops.write_reg = e1000_write_phy_reg_igp;
224		}
225	}
226
227	/* Set phy->phy_addr and phy->id. */
228	ret_val = e1000_get_phy_id_82575(hw);
229
230	/* Verify phy id and set remaining function pointers */
231	switch (phy->id) {
232	case M88E1543_E_PHY_ID:
233	case M88E1512_E_PHY_ID:
234	case I347AT4_E_PHY_ID:
235	case M88E1112_E_PHY_ID:
236	case M88E1340M_E_PHY_ID:
237	case M88E1111_I_PHY_ID:
238		phy->type		= e1000_phy_m88;
239		phy->ops.check_polarity	= e1000_check_polarity_m88;
240		phy->ops.get_info	= e1000_get_phy_info_m88;
241		if (phy->id == I347AT4_E_PHY_ID ||
242		    phy->id == M88E1112_E_PHY_ID ||
243		    phy->id == M88E1340M_E_PHY_ID)
244			phy->ops.get_cable_length =
245					 e1000_get_cable_length_m88_gen2;
246		else if (phy->id == M88E1543_E_PHY_ID ||
247			 phy->id == M88E1512_E_PHY_ID)
248			phy->ops.get_cable_length =
249					 e1000_get_cable_length_m88_gen2;
250		else
251			phy->ops.get_cable_length = e1000_get_cable_length_m88;
252		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
253		/* Check if this PHY is confgured for media swap. */
254		if (phy->id == M88E1112_E_PHY_ID) {
255			u16 data;
256
257			ret_val = phy->ops.write_reg(hw,
258						     E1000_M88E1112_PAGE_ADDR,
259						     2);
260			if (ret_val)
261				goto out;
262
263			ret_val = phy->ops.read_reg(hw,
264						    E1000_M88E1112_MAC_CTRL_1,
265						    &data);
266			if (ret_val)
267				goto out;
268
269			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
270			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
271			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
272			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
273				hw->mac.ops.check_for_link =
274						e1000_check_for_link_media_swap;
275		}
276		if (phy->id == M88E1512_E_PHY_ID) {
277			ret_val = e1000_initialize_M88E1512_phy(hw);
278			if (ret_val)
279				goto out;
280		}
281		if (phy->id == M88E1543_E_PHY_ID) {
282			ret_val = e1000_initialize_M88E1543_phy(hw);
283			if (ret_val)
284				goto out;
285		}
286		break;
287	case IGP03E1000_E_PHY_ID:
288	case IGP04E1000_E_PHY_ID:
289		phy->type = e1000_phy_igp_3;
290		phy->ops.check_polarity = e1000_check_polarity_igp;
291		phy->ops.get_info = e1000_get_phy_info_igp;
292		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
293		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
294		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
295		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
296		break;
297	case I82580_I_PHY_ID:
298	case I350_I_PHY_ID:
299		phy->type = e1000_phy_82580;
300		phy->ops.check_polarity = e1000_check_polarity_82577;
301		phy->ops.force_speed_duplex =
302					 e1000_phy_force_speed_duplex_82577;
303		phy->ops.get_cable_length = e1000_get_cable_length_82577;
304		phy->ops.get_info = e1000_get_phy_info_82577;
305		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
306		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
307		break;
308	case I210_I_PHY_ID:
309		phy->type		= e1000_phy_i210;
310		phy->ops.check_polarity	= e1000_check_polarity_m88;
311		phy->ops.get_info	= e1000_get_phy_info_m88;
312		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
313		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
314		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
315		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
316		break;
317	default:
318		ret_val = -E1000_ERR_PHY;
319		goto out;
320	}
321
322out:
323	return ret_val;
324}
325
326/**
327 *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
328 *  @hw: pointer to the HW structure
329 **/
330s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
331{
332	struct e1000_nvm_info *nvm = &hw->nvm;
333	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
334	u16 size;
335
336	DEBUGFUNC("e1000_init_nvm_params_82575");
337
338	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
339		     E1000_EECD_SIZE_EX_SHIFT);
340	/*
341	 * Added to a constant, "size" becomes the left-shift value
342	 * for setting word_size.
343	 */
344	size += NVM_WORD_SIZE_BASE_SHIFT;
345
346	/* Just in case size is out of range, cap it to the largest
347	 * EEPROM size supported
348	 */
349	if (size > 15)
350		size = 15;
351
352	nvm->word_size = 1 << size;
353	if (hw->mac.type < e1000_i210) {
354		nvm->opcode_bits = 8;
355		nvm->delay_usec = 1;
356
357		switch (nvm->override) {
358		case e1000_nvm_override_spi_large:
359			nvm->page_size = 32;
360			nvm->address_bits = 16;
361			break;
362		case e1000_nvm_override_spi_small:
363			nvm->page_size = 8;
364			nvm->address_bits = 8;
365			break;
366		default:
367			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
368			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
369					    16 : 8;
370			break;
371		}
372		if (nvm->word_size == (1 << 15))
373			nvm->page_size = 128;
374
375		nvm->type = e1000_nvm_eeprom_spi;
376	} else {
377		nvm->type = e1000_nvm_flash_hw;
378	}
379
380	/* Function Pointers */
381	nvm->ops.acquire = e1000_acquire_nvm_82575;
382	nvm->ops.release = e1000_release_nvm_82575;
383	if (nvm->word_size < (1 << 15))
384		nvm->ops.read = e1000_read_nvm_eerd;
385	else
386		nvm->ops.read = e1000_read_nvm_spi;
387
388	nvm->ops.write = e1000_write_nvm_spi;
389	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
390	nvm->ops.update = e1000_update_nvm_checksum_generic;
391	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
392
393	/* override generic family function pointers for specific descendants */
394	switch (hw->mac.type) {
395	case e1000_82580:
396		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
397		nvm->ops.update = e1000_update_nvm_checksum_82580;
398		break;
399	case e1000_i350:
400	case e1000_i354:
401		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
402		nvm->ops.update = e1000_update_nvm_checksum_i350;
403		break;
404	default:
405		break;
406	}
407
408	return E1000_SUCCESS;
409}
410
411/**
412 *  e1000_init_mac_params_82575 - Init MAC func ptrs.
413 *  @hw: pointer to the HW structure
414 **/
415static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
416{
417	struct e1000_mac_info *mac = &hw->mac;
418	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
419
420	DEBUGFUNC("e1000_init_mac_params_82575");
421
422	/* Derives media type */
423	e1000_get_media_type_82575(hw);
424	/* Set mta register count */
425	mac->mta_reg_count = 128;
426	/* Set uta register count */
427	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
428	/* Set rar entry count */
429	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
430	if (mac->type == e1000_82576)
431		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
432	if (mac->type == e1000_82580)
433		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
434	if (mac->type == e1000_i350 || mac->type == e1000_i354)
435		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
436
437	/* Enable EEE default settings for EEE supported devices */
438	if (mac->type >= e1000_i350)
439		dev_spec->eee_disable = FALSE;
440
441	/* Allow a single clear of the SW semaphore on I210 and newer */
442	if (mac->type >= e1000_i210)
443		dev_spec->clear_semaphore_once = TRUE;
444
445	/* Set if part includes ASF firmware */
446	mac->asf_firmware_present = TRUE;
447	/* FWSM register */
448	mac->has_fwsm = TRUE;
449	/* ARC supported; valid only if manageability features are enabled. */
450	mac->arc_subsystem_valid =
451		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
452
453	/* Function pointers */
454
455	/* bus type/speed/width */
456	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
457	/* reset */
458	if (mac->type >= e1000_82580)
459		mac->ops.reset_hw = e1000_reset_hw_82580;
460	else
461	mac->ops.reset_hw = e1000_reset_hw_82575;
462	/* hw initialization */
463	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
464		mac->ops.init_hw = e1000_init_hw_i210;
465	else
466	mac->ops.init_hw = e1000_init_hw_82575;
467	/* link setup */
468	mac->ops.setup_link = e1000_setup_link_generic;
469	/* physical interface link setup */
470	mac->ops.setup_physical_interface =
471		(hw->phy.media_type == e1000_media_type_copper)
472		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
473	/* physical interface shutdown */
474	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
475	/* physical interface power up */
476	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
477	/* check for link */
478	mac->ops.check_for_link = e1000_check_for_link_82575;
479	/* read mac address */
480	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
481	/* configure collision distance */
482	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
483	/* multicast address update */
484	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
485	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
486		/* writing VFTA */
487		mac->ops.write_vfta = e1000_write_vfta_i350;
488		/* clearing VFTA */
489		mac->ops.clear_vfta = e1000_clear_vfta_i350;
490	} else {
491		/* writing VFTA */
492		mac->ops.write_vfta = e1000_write_vfta_generic;
493		/* clearing VFTA */
494		mac->ops.clear_vfta = e1000_clear_vfta_generic;
495	}
496	if (hw->mac.type >= e1000_82580)
497		mac->ops.validate_mdi_setting =
498				e1000_validate_mdi_setting_crossover_generic;
499	/* ID LED init */
500	mac->ops.id_led_init = e1000_id_led_init_generic;
501	/* blink LED */
502	mac->ops.blink_led = e1000_blink_led_generic;
503	/* setup LED */
504	mac->ops.setup_led = e1000_setup_led_generic;
505	/* cleanup LED */
506	mac->ops.cleanup_led = e1000_cleanup_led_generic;
507	/* turn on/off LED */
508	mac->ops.led_on = e1000_led_on_generic;
509	mac->ops.led_off = e1000_led_off_generic;
510	/* clear hardware counters */
511	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
512	/* link info */
513	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
514	/* acquire SW_FW sync */
515	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
516	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
517	if (mac->type >= e1000_i210) {
518		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
519		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
520	}
521
522	/* set lan id for port to determine which phy lock to use */
523	hw->mac.ops.set_lan_id(hw);
524
525	return E1000_SUCCESS;
526}
527
528/**
529 *  e1000_init_function_pointers_82575 - Init func ptrs.
530 *  @hw: pointer to the HW structure
531 *
532 *  Called to initialize all function pointers and parameters.
533 **/
534void e1000_init_function_pointers_82575(struct e1000_hw *hw)
535{
536	DEBUGFUNC("e1000_init_function_pointers_82575");
537
538	hw->mac.ops.init_params = e1000_init_mac_params_82575;
539	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
540	hw->phy.ops.init_params = e1000_init_phy_params_82575;
541	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
542}
543
544/**
545 *  e1000_acquire_phy_82575 - Acquire rights to access PHY
546 *  @hw: pointer to the HW structure
547 *
548 *  Acquire access rights to the correct PHY.
549 **/
550static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
551{
552	u16 mask = E1000_SWFW_PHY0_SM;
553
554	DEBUGFUNC("e1000_acquire_phy_82575");
555
556	if (hw->bus.func == E1000_FUNC_1)
557		mask = E1000_SWFW_PHY1_SM;
558	else if (hw->bus.func == E1000_FUNC_2)
559		mask = E1000_SWFW_PHY2_SM;
560	else if (hw->bus.func == E1000_FUNC_3)
561		mask = E1000_SWFW_PHY3_SM;
562
563	return hw->mac.ops.acquire_swfw_sync(hw, mask);
564}
565
566/**
567 *  e1000_release_phy_82575 - Release rights to access PHY
568 *  @hw: pointer to the HW structure
569 *
570 *  A wrapper to release access rights to the correct PHY.
571 **/
572static void e1000_release_phy_82575(struct e1000_hw *hw)
573{
574	u16 mask = E1000_SWFW_PHY0_SM;
575
576	DEBUGFUNC("e1000_release_phy_82575");
577
578	if (hw->bus.func == E1000_FUNC_1)
579		mask = E1000_SWFW_PHY1_SM;
580	else if (hw->bus.func == E1000_FUNC_2)
581		mask = E1000_SWFW_PHY2_SM;
582	else if (hw->bus.func == E1000_FUNC_3)
583		mask = E1000_SWFW_PHY3_SM;
584
585	hw->mac.ops.release_swfw_sync(hw, mask);
586}
587
588/**
589 *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
590 *  @hw: pointer to the HW structure
591 *  @offset: register offset to be read
592 *  @data: pointer to the read data
593 *
594 *  Reads the PHY register at offset using the serial gigabit media independent
595 *  interface and stores the retrieved information in data.
596 **/
597static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
598					  u16 *data)
599{
600	s32 ret_val = -E1000_ERR_PARAM;
601
602	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
603
604	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
605		DEBUGOUT1("PHY Address %u is out of range\n", offset);
606		goto out;
607	}
608
609	ret_val = hw->phy.ops.acquire(hw);
610	if (ret_val)
611		goto out;
612
613	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
614
615	hw->phy.ops.release(hw);
616
617out:
618	return ret_val;
619}
620
621/**
622 *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
623 *  @hw: pointer to the HW structure
624 *  @offset: register offset to write to
625 *  @data: data to write at register offset
626 *
627 *  Writes the data to PHY register at the offset using the serial gigabit
628 *  media independent interface.
629 **/
630static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
631					   u16 data)
632{
633	s32 ret_val = -E1000_ERR_PARAM;
634
635	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
636
637	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
638		DEBUGOUT1("PHY Address %d is out of range\n", offset);
639		goto out;
640	}
641
642	ret_val = hw->phy.ops.acquire(hw);
643	if (ret_val)
644		goto out;
645
646	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
647
648	hw->phy.ops.release(hw);
649
650out:
651	return ret_val;
652}
653
654/**
655 *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
656 *  @hw: pointer to the HW structure
657 *
658 *  Retrieves the PHY address and ID for both PHY's which do and do not use
659 *  sgmi interface.
660 **/
661static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
662{
663	struct e1000_phy_info *phy = &hw->phy;
664	s32  ret_val = E1000_SUCCESS;
665	u16 phy_id;
666	u32 ctrl_ext;
667	u32 mdic;
668
669	DEBUGFUNC("e1000_get_phy_id_82575");
670
671	/* some i354 devices need an extra read for phy id */
672	if (hw->mac.type == e1000_i354)
673		e1000_get_phy_id(hw);
674
675	/*
676	 * For SGMII PHYs, we try the list of possible addresses until
677	 * we find one that works.  For non-SGMII PHYs
678	 * (e.g. integrated copper PHYs), an address of 1 should
679	 * work.  The result of this function should mean phy->phy_addr
680	 * and phy->id are set correctly.
681	 */
682	if (!e1000_sgmii_active_82575(hw)) {
683		phy->addr = 1;
684		ret_val = e1000_get_phy_id(hw);
685		goto out;
686	}
687
688	if (e1000_sgmii_uses_mdio_82575(hw)) {
689		switch (hw->mac.type) {
690		case e1000_82575:
691		case e1000_82576:
692			mdic = E1000_READ_REG(hw, E1000_MDIC);
693			mdic &= E1000_MDIC_PHY_MASK;
694			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
695			break;
696		case e1000_82580:
697		case e1000_i350:
698		case e1000_i354:
699		case e1000_i210:
700		case e1000_i211:
701			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
702			mdic &= E1000_MDICNFG_PHY_MASK;
703			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
704			break;
705		default:
706			ret_val = -E1000_ERR_PHY;
707			goto out;
708			break;
709		}
710		ret_val = e1000_get_phy_id(hw);
711		goto out;
712	}
713
714	/* Power on sgmii phy if it is disabled */
715	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
716	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
717			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
718	E1000_WRITE_FLUSH(hw);
719	msec_delay(300);
720
721	/*
722	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
723	 * Therefore, we need to test 1-7
724	 */
725	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
726		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
727		if (ret_val == E1000_SUCCESS) {
728			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
729				  phy_id, phy->addr);
730			/*
731			 * At the time of this writing, The M88 part is
732			 * the only supported SGMII PHY product.
733			 */
734			if (phy_id == M88_VENDOR)
735				break;
736		} else {
737			DEBUGOUT1("PHY address %u was unreadable\n",
738				  phy->addr);
739		}
740	}
741
742	/* A valid PHY type couldn't be found. */
743	if (phy->addr == 8) {
744		phy->addr = 0;
745		ret_val = -E1000_ERR_PHY;
746	} else {
747		ret_val = e1000_get_phy_id(hw);
748	}
749
750	/* restore previous sfp cage power state */
751	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
752
753out:
754	return ret_val;
755}
756
757/**
758 *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
759 *  @hw: pointer to the HW structure
760 *
761 *  Resets the PHY using the serial gigabit media independent interface.
762 **/
763static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
764{
765	s32 ret_val = E1000_SUCCESS;
766	struct e1000_phy_info *phy = &hw->phy;
767
768	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
769
770	/*
771	 * This isn't a TRUE "hard" reset, but is the only reset
772	 * available to us at this time.
773	 */
774
775	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
776
777	if (!(hw->phy.ops.write_reg))
778		goto out;
779
780	/*
781	 * SFP documentation requires the following to configure the SPF module
782	 * to work on SGMII.  No further documentation is given.
783	 */
784	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
785	if (ret_val)
786		goto out;
787
788	ret_val = hw->phy.ops.commit(hw);
789	if (ret_val)
790		goto out;
791
792	if (phy->id == M88E1512_E_PHY_ID)
793		ret_val = e1000_initialize_M88E1512_phy(hw);
794out:
795	return ret_val;
796}
797
798/**
799 *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
800 *  @hw: pointer to the HW structure
801 *  @active: TRUE to enable LPLU, FALSE to disable
802 *
803 *  Sets the LPLU D0 state according to the active flag.  When
804 *  activating LPLU this function also disables smart speed
805 *  and vice versa.  LPLU will not be activated unless the
806 *  device autonegotiation advertisement meets standards of
807 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
808 *  This is a function pointer entry point only called by
809 *  PHY setup routines.
810 **/
811static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
812{
813	struct e1000_phy_info *phy = &hw->phy;
814	s32 ret_val = E1000_SUCCESS;
815	u16 data;
816
817	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
818
819	if (!(hw->phy.ops.read_reg))
820		goto out;
821
822	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
823	if (ret_val)
824		goto out;
825
826	if (active) {
827		data |= IGP02E1000_PM_D0_LPLU;
828		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
829					     data);
830		if (ret_val)
831			goto out;
832
833		/* When LPLU is enabled, we should disable SmartSpeed */
834		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
835					    &data);
836		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
837		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
838					     data);
839		if (ret_val)
840			goto out;
841	} else {
842		data &= ~IGP02E1000_PM_D0_LPLU;
843		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
844					     data);
845		/*
846		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
847		 * during Dx states where the power conservation is most
848		 * important.  During driver activity we should enable
849		 * SmartSpeed, so performance is maintained.
850		 */
851		if (phy->smart_speed == e1000_smart_speed_on) {
852			ret_val = phy->ops.read_reg(hw,
853						    IGP01E1000_PHY_PORT_CONFIG,
854						    &data);
855			if (ret_val)
856				goto out;
857
858			data |= IGP01E1000_PSCFR_SMART_SPEED;
859			ret_val = phy->ops.write_reg(hw,
860						     IGP01E1000_PHY_PORT_CONFIG,
861						     data);
862			if (ret_val)
863				goto out;
864		} else if (phy->smart_speed == e1000_smart_speed_off) {
865			ret_val = phy->ops.read_reg(hw,
866						    IGP01E1000_PHY_PORT_CONFIG,
867						    &data);
868			if (ret_val)
869				goto out;
870
871			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
872			ret_val = phy->ops.write_reg(hw,
873						     IGP01E1000_PHY_PORT_CONFIG,
874						     data);
875			if (ret_val)
876				goto out;
877		}
878	}
879
880out:
881	return ret_val;
882}
883
884/**
885 *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
886 *  @hw: pointer to the HW structure
887 *  @active: TRUE to enable LPLU, FALSE to disable
888 *
889 *  Sets the LPLU D0 state according to the active flag.  When
890 *  activating LPLU this function also disables smart speed
891 *  and vice versa.  LPLU will not be activated unless the
892 *  device autonegotiation advertisement meets standards of
893 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
894 *  This is a function pointer entry point only called by
895 *  PHY setup routines.
896 **/
897static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
898{
899	struct e1000_phy_info *phy = &hw->phy;
900	u32 data;
901
902	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
903
904	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
905
906	if (active) {
907		data |= E1000_82580_PM_D0_LPLU;
908
909		/* When LPLU is enabled, we should disable SmartSpeed */
910		data &= ~E1000_82580_PM_SPD;
911	} else {
912		data &= ~E1000_82580_PM_D0_LPLU;
913
914		/*
915		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
916		 * during Dx states where the power conservation is most
917		 * important.  During driver activity we should enable
918		 * SmartSpeed, so performance is maintained.
919		 */
920		if (phy->smart_speed == e1000_smart_speed_on)
921			data |= E1000_82580_PM_SPD;
922		else if (phy->smart_speed == e1000_smart_speed_off)
923			data &= ~E1000_82580_PM_SPD;
924	}
925
926	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
927	return E1000_SUCCESS;
928}
929
930/**
931 *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
932 *  @hw: pointer to the HW structure
933 *  @active: boolean used to enable/disable lplu
934 *
935 *  Success returns 0, Failure returns 1
936 *
937 *  The low power link up (lplu) state is set to the power management level D3
938 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
939 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
940 *  is used during Dx states where the power conservation is most important.
941 *  During driver activity, SmartSpeed should be enabled so performance is
942 *  maintained.
943 **/
944s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
945{
946	struct e1000_phy_info *phy = &hw->phy;
947	u32 data;
948
949	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
950
951	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
952
953	if (!active) {
954		data &= ~E1000_82580_PM_D3_LPLU;
955		/*
956		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
957		 * during Dx states where the power conservation is most
958		 * important.  During driver activity we should enable
959		 * SmartSpeed, so performance is maintained.
960		 */
961		if (phy->smart_speed == e1000_smart_speed_on)
962			data |= E1000_82580_PM_SPD;
963		else if (phy->smart_speed == e1000_smart_speed_off)
964			data &= ~E1000_82580_PM_SPD;
965	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
966		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
967		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
968		data |= E1000_82580_PM_D3_LPLU;
969		/* When LPLU is enabled, we should disable SmartSpeed */
970		data &= ~E1000_82580_PM_SPD;
971	}
972
973	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
974	return E1000_SUCCESS;
975}
976
977/**
978 *  e1000_acquire_nvm_82575 - Request for access to EEPROM
979 *  @hw: pointer to the HW structure
980 *
981 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
982 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
983 *  Return successful if access grant bit set, else clear the request for
984 *  EEPROM access and return -E1000_ERR_NVM (-1).
985 **/
986static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
987{
988	s32 ret_val = E1000_SUCCESS;
989
990	DEBUGFUNC("e1000_acquire_nvm_82575");
991
992	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
993	if (ret_val)
994		goto out;
995
996	/*
997	 * Check if there is some access
998	 * error this access may hook on
999	 */
1000	if (hw->mac.type == e1000_i350) {
1001		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
1002		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
1003		    E1000_EECD_TIMEOUT)) {
1004			/* Clear all access error flags */
1005			E1000_WRITE_REG(hw, E1000_EECD, eecd |
1006					E1000_EECD_ERROR_CLR);
1007			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
1008		}
1009	}
1010
1011	if (hw->mac.type == e1000_82580) {
1012		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
1013		if (eecd & E1000_EECD_BLOCKED) {
1014			/* Clear access error flag */
1015			E1000_WRITE_REG(hw, E1000_EECD, eecd |
1016					E1000_EECD_BLOCKED);
1017			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
1018		}
1019	}
1020
1021	ret_val = e1000_acquire_nvm_generic(hw);
1022	if (ret_val)
1023		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
1024
1025out:
1026	return ret_val;
1027}
1028
1029/**
1030 *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
1031 *  @hw: pointer to the HW structure
1032 *
1033 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1034 *  then release the semaphores acquired.
1035 **/
1036static void e1000_release_nvm_82575(struct e1000_hw *hw)
1037{
1038	DEBUGFUNC("e1000_release_nvm_82575");
1039
1040	e1000_release_nvm_generic(hw);
1041
1042	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
1043}
1044
1045/**
1046 *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1047 *  @hw: pointer to the HW structure
1048 *  @mask: specifies which semaphore to acquire
1049 *
1050 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1051 *  will also specify which port we're acquiring the lock for.
1052 **/
1053static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1054{
1055	u32 swfw_sync;
1056	u32 swmask = mask;
1057	u32 fwmask = mask << 16;
1058	s32 ret_val = E1000_SUCCESS;
1059	s32 i = 0, timeout = 200;
1060
1061	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
1062
1063	while (i < timeout) {
1064		if (e1000_get_hw_semaphore_generic(hw)) {
1065			ret_val = -E1000_ERR_SWFW_SYNC;
1066			goto out;
1067		}
1068
1069		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
1070		if (!(swfw_sync & (fwmask | swmask)))
1071			break;
1072
1073		/*
1074		 * Firmware currently using resource (fwmask)
1075		 * or other software thread using resource (swmask)
1076		 */
1077		e1000_put_hw_semaphore_generic(hw);
1078		msec_delay_irq(5);
1079		i++;
1080	}
1081
1082	if (i == timeout) {
1083		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1084		ret_val = -E1000_ERR_SWFW_SYNC;
1085		goto out;
1086	}
1087
1088	swfw_sync |= swmask;
1089	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1090
1091	e1000_put_hw_semaphore_generic(hw);
1092
1093out:
1094	return ret_val;
1095}
1096
1097/**
1098 *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
1099 *  @hw: pointer to the HW structure
1100 *  @mask: specifies which semaphore to acquire
1101 *
1102 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1103 *  will also specify which port we're releasing the lock for.
1104 **/
1105static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1106{
1107	u32 swfw_sync;
1108
1109	DEBUGFUNC("e1000_release_swfw_sync_82575");
1110
1111	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
1112		; /* Empty */
1113
1114	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
1115	swfw_sync &= ~mask;
1116	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1117
1118	e1000_put_hw_semaphore_generic(hw);
1119}
1120
1121/**
1122 *  e1000_get_cfg_done_82575 - Read config done bit
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Read the management control register for the config done bit for
1126 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1127 *  to read the config done bit, so an error is *ONLY* logged and returns
1128 *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
1129 *  would not be able to be reset or change link.
1130 **/
1131static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
1132{
1133	s32 timeout = PHY_CFG_TIMEOUT;
1134	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1135
1136	DEBUGFUNC("e1000_get_cfg_done_82575");
1137
1138	if (hw->bus.func == E1000_FUNC_1)
1139		mask = E1000_NVM_CFG_DONE_PORT_1;
1140	else if (hw->bus.func == E1000_FUNC_2)
1141		mask = E1000_NVM_CFG_DONE_PORT_2;
1142	else if (hw->bus.func == E1000_FUNC_3)
1143		mask = E1000_NVM_CFG_DONE_PORT_3;
1144	while (timeout) {
1145		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
1146			break;
1147		msec_delay(1);
1148		timeout--;
1149	}
1150	if (!timeout)
1151		DEBUGOUT("MNG configuration cycle has not completed.\n");
1152
1153	/* If EEPROM is not marked present, init the PHY manually */
1154	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
1155	    (hw->phy.type == e1000_phy_igp_3))
1156		e1000_phy_init_script_igp3(hw);
1157
1158	return E1000_SUCCESS;
1159}
1160
1161/**
1162 *  e1000_get_link_up_info_82575 - Get link speed/duplex info
1163 *  @hw: pointer to the HW structure
1164 *  @speed: stores the current speed
1165 *  @duplex: stores the current duplex
1166 *
1167 *  This is a wrapper function, if using the serial gigabit media independent
1168 *  interface, use PCS to retrieve the link speed and duplex information.
1169 *  Otherwise, use the generic function to get the link speed and duplex info.
1170 **/
1171static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1172					u16 *duplex)
1173{
1174	s32 ret_val;
1175
1176	DEBUGFUNC("e1000_get_link_up_info_82575");
1177
1178	if (hw->phy.media_type != e1000_media_type_copper)
1179		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
1180							       duplex);
1181	else
1182		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
1183								    duplex);
1184
1185	return ret_val;
1186}
1187
1188/**
1189 *  e1000_check_for_link_82575 - Check for link
1190 *  @hw: pointer to the HW structure
1191 *
1192 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1193 *  use the generic interface for determining link.
1194 **/
1195static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
1196{
1197	s32 ret_val;
1198	u16 speed, duplex;
1199
1200	DEBUGFUNC("e1000_check_for_link_82575");
1201
1202	if (hw->phy.media_type != e1000_media_type_copper) {
1203		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
1204							       &duplex);
1205		/*
1206		 * Use this flag to determine if link needs to be checked or
1207		 * not.  If we have link clear the flag so that we do not
1208		 * continue to check for link.
1209		 */
1210		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1211
1212		/*
1213		 * Configure Flow Control now that Auto-Neg has completed.
1214		 * First, we need to restore the desired flow control
1215		 * settings because we may have had to re-autoneg with a
1216		 * different link partner.
1217		 */
1218		ret_val = e1000_config_fc_after_link_up_generic(hw);
1219		if (ret_val)
1220			DEBUGOUT("Error configuring flow control\n");
1221	} else {
1222		ret_val = e1000_check_for_copper_link_generic(hw);
1223	}
1224
1225	return ret_val;
1226}
1227
1228/**
1229 *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
1230 *  @hw: pointer to the HW structure
1231 *
1232 *  Poll the M88E1112 interfaces to see which interface achieved link.
1233 */
1234static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
1235{
1236	struct e1000_phy_info *phy = &hw->phy;
1237	s32 ret_val;
1238	u16 data;
1239	u8 port = 0;
1240
1241	DEBUGFUNC("e1000_check_for_link_media_swap");
1242
1243	/* Check for copper. */
1244	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1245	if (ret_val)
1246		return ret_val;
1247
1248	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1249	if (ret_val)
1250		return ret_val;
1251
1252	if (data & E1000_M88E1112_STATUS_LINK)
1253		port = E1000_MEDIA_PORT_COPPER;
1254
1255	/* Check for other. */
1256	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
1257	if (ret_val)
1258		return ret_val;
1259
1260	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	if (data & E1000_M88E1112_STATUS_LINK)
1265		port = E1000_MEDIA_PORT_OTHER;
1266
1267	/* Determine if a swap needs to happen. */
1268	if (port && (hw->dev_spec._82575.media_port != port)) {
1269		hw->dev_spec._82575.media_port = port;
1270		hw->dev_spec._82575.media_changed = TRUE;
1271	}
1272
1273	if (port == E1000_MEDIA_PORT_COPPER) {
1274		/* reset page to 0 */
1275		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1276		if (ret_val)
1277			return ret_val;
1278		e1000_check_for_link_82575(hw);
1279	} else {
1280		e1000_check_for_link_82575(hw);
1281		/* reset page to 0 */
1282		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1283		if (ret_val)
1284			return ret_val;
1285	}
1286
1287	return E1000_SUCCESS;
1288}
1289
1290/**
1291 *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1292 *  @hw: pointer to the HW structure
1293 **/
1294static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
1295{
1296	u32 reg;
1297
1298	DEBUGFUNC("e1000_power_up_serdes_link_82575");
1299
1300	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1301	    !e1000_sgmii_active_82575(hw))
1302		return;
1303
1304	/* Enable PCS to turn on link */
1305	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1306	reg |= E1000_PCS_CFG_PCS_EN;
1307	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1308
1309	/* Power up the laser */
1310	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1311	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1312	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1313
1314	/* flush the write to verify completion */
1315	E1000_WRITE_FLUSH(hw);
1316	msec_delay(1);
1317}
1318
1319/**
1320 *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1321 *  @hw: pointer to the HW structure
1322 *  @speed: stores the current speed
1323 *  @duplex: stores the current duplex
1324 *
1325 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1326 *  duplex, then store the values in the pointers provided.
1327 **/
1328static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
1329						u16 *speed, u16 *duplex)
1330{
1331	struct e1000_mac_info *mac = &hw->mac;
1332	u32 pcs;
1333	u32 status;
1334
1335	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
1336
1337	/*
1338	 * Read the PCS Status register for link state. For non-copper mode,
1339	 * the status register is not accurate. The PCS status register is
1340	 * used instead.
1341	 */
1342	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1343
1344	/*
1345	 * The link up bit determines when link is up on autoneg.
1346	 */
1347	if (pcs & E1000_PCS_LSTS_LINK_OK) {
1348		mac->serdes_has_link = TRUE;
1349
1350		/* Detect and store PCS speed */
1351		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1352			*speed = SPEED_1000;
1353		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1354			*speed = SPEED_100;
1355		else
1356			*speed = SPEED_10;
1357
1358		/* Detect and store PCS duplex */
1359		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1360			*duplex = FULL_DUPLEX;
1361		else
1362			*duplex = HALF_DUPLEX;
1363
1364		/* Check if it is an I354 2.5Gb backplane connection. */
1365		if (mac->type == e1000_i354) {
1366			status = E1000_READ_REG(hw, E1000_STATUS);
1367			if ((status & E1000_STATUS_2P5_SKU) &&
1368			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1369				*speed = SPEED_2500;
1370				*duplex = FULL_DUPLEX;
1371				DEBUGOUT("2500 Mbs, ");
1372				DEBUGOUT("Full Duplex\n");
1373			}
1374		}
1375
1376	} else {
1377		mac->serdes_has_link = FALSE;
1378		*speed = 0;
1379		*duplex = 0;
1380	}
1381
1382	return E1000_SUCCESS;
1383}
1384
1385/**
1386 *  e1000_shutdown_serdes_link_82575 - Remove link during power down
1387 *  @hw: pointer to the HW structure
1388 *
1389 *  In the case of serdes shut down sfp and PCS on driver unload
1390 *  when management pass thru is not enabled.
1391 **/
1392void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
1393{
1394	u32 reg;
1395
1396	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
1397
1398	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1399	    !e1000_sgmii_active_82575(hw))
1400		return;
1401
1402	if (!e1000_enable_mng_pass_thru(hw)) {
1403		/* Disable PCS to turn off link */
1404		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1405		reg &= ~E1000_PCS_CFG_PCS_EN;
1406		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1407
1408		/* shutdown the laser */
1409		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1410		reg |= E1000_CTRL_EXT_SDP3_DATA;
1411		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1412
1413		/* flush the write to verify completion */
1414		E1000_WRITE_FLUSH(hw);
1415		msec_delay(1);
1416	}
1417
1418	return;
1419}
1420
1421/**
1422 *  e1000_reset_hw_82575 - Reset hardware
1423 *  @hw: pointer to the HW structure
1424 *
1425 *  This resets the hardware into a known state.
1426 **/
1427static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
1428{
1429	u32 ctrl;
1430	s32 ret_val;
1431
1432	DEBUGFUNC("e1000_reset_hw_82575");
1433
1434	/*
1435	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1436	 * on the last TLP read/write transaction when MAC is reset.
1437	 */
1438	ret_val = e1000_disable_pcie_master_generic(hw);
1439	if (ret_val)
1440		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1441
1442	/* set the completion timeout for interface */
1443	ret_val = e1000_set_pcie_completion_timeout(hw);
1444	if (ret_val)
1445		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1446
1447	DEBUGOUT("Masking off all interrupts\n");
1448	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1449
1450	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1451	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1452	E1000_WRITE_FLUSH(hw);
1453
1454	msec_delay(10);
1455
1456	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1457
1458	DEBUGOUT("Issuing a global reset to MAC\n");
1459	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1460
1461	ret_val = e1000_get_auto_rd_done_generic(hw);
1462	if (ret_val) {
1463		/*
1464		 * When auto config read does not complete, do not
1465		 * return with an error. This can happen in situations
1466		 * where there is no eeprom and prevents getting link.
1467		 */
1468		DEBUGOUT("Auto Read Done did not complete\n");
1469	}
1470
1471	/* If EEPROM is not present, run manual init scripts */
1472	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
1473		e1000_reset_init_script_82575(hw);
1474
1475	/* Clear any pending interrupt events. */
1476	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1477	E1000_READ_REG(hw, E1000_ICR);
1478
1479	/* Install any alternate MAC address into RAR0 */
1480	ret_val = e1000_check_alt_mac_addr_generic(hw);
1481
1482	return ret_val;
1483}
1484
1485/**
1486 *  e1000_init_hw_82575 - Initialize hardware
1487 *  @hw: pointer to the HW structure
1488 *
1489 *  This inits the hardware readying it for operation.
1490 **/
1491s32 e1000_init_hw_82575(struct e1000_hw *hw)
1492{
1493	struct e1000_mac_info *mac = &hw->mac;
1494	s32 ret_val;
1495	u16 i, rar_count = mac->rar_entry_count;
1496
1497	DEBUGFUNC("e1000_init_hw_82575");
1498
1499	/* Initialize identification LED */
1500	ret_val = mac->ops.id_led_init(hw);
1501	if (ret_val) {
1502		DEBUGOUT("Error initializing identification LED\n");
1503		/* This is not fatal and we should not stop init due to this */
1504	}
1505
1506	/* Disabling VLAN filtering */
1507	DEBUGOUT("Initializing the IEEE VLAN\n");
1508	mac->ops.clear_vfta(hw);
1509
1510	/* Setup the receive address */
1511	e1000_init_rx_addrs_generic(hw, rar_count);
1512
1513	/* Zero out the Multicast HASH table */
1514	DEBUGOUT("Zeroing the MTA\n");
1515	for (i = 0; i < mac->mta_reg_count; i++)
1516		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1517
1518	/* Zero out the Unicast HASH table */
1519	DEBUGOUT("Zeroing the UTA\n");
1520	for (i = 0; i < mac->uta_reg_count; i++)
1521		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
1522
1523	/* Setup link and flow control */
1524	ret_val = mac->ops.setup_link(hw);
1525
1526	/* Set the default MTU size */
1527	hw->dev_spec._82575.mtu = 1500;
1528
1529	/*
1530	 * Clear all of the statistics registers (clear on read).  It is
1531	 * important that we do this after we have tried to establish link
1532	 * because the symbol error count will increment wildly if there
1533	 * is no link.
1534	 */
1535	e1000_clear_hw_cntrs_82575(hw);
1536
1537	return ret_val;
1538}
1539
1540/**
1541 *  e1000_setup_copper_link_82575 - Configure copper link settings
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1545 *  for link, once link is established calls to configure collision distance
1546 *  and flow control are called.
1547 **/
1548static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1549{
1550	u32 ctrl;
1551	s32 ret_val;
1552	u32 phpm_reg;
1553
1554	DEBUGFUNC("e1000_setup_copper_link_82575");
1555
1556	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1557	ctrl |= E1000_CTRL_SLU;
1558	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1559	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1560
1561	/* Clear Go Link Disconnect bit on supported devices */
1562	switch (hw->mac.type) {
1563	case e1000_82580:
1564	case e1000_i350:
1565	case e1000_i210:
1566	case e1000_i211:
1567		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1568		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1569		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1570		break;
1571	default:
1572		break;
1573	}
1574
1575	ret_val = e1000_setup_serdes_link_82575(hw);
1576	if (ret_val)
1577		goto out;
1578
1579	if (e1000_sgmii_active_82575(hw)) {
1580		/* allow time for SFP cage time to power up phy */
1581		msec_delay(300);
1582
1583		ret_val = hw->phy.ops.reset(hw);
1584		if (ret_val) {
1585			DEBUGOUT("Error resetting the PHY.\n");
1586			goto out;
1587		}
1588	}
1589	switch (hw->phy.type) {
1590	case e1000_phy_i210:
1591	case e1000_phy_m88:
1592		switch (hw->phy.id) {
1593		case I347AT4_E_PHY_ID:
1594		case M88E1112_E_PHY_ID:
1595		case M88E1340M_E_PHY_ID:
1596		case M88E1543_E_PHY_ID:
1597		case M88E1512_E_PHY_ID:
1598		case I210_I_PHY_ID:
1599			ret_val = e1000_copper_link_setup_m88_gen2(hw);
1600			break;
1601		default:
1602			ret_val = e1000_copper_link_setup_m88(hw);
1603			break;
1604		}
1605		break;
1606	case e1000_phy_igp_3:
1607		ret_val = e1000_copper_link_setup_igp(hw);
1608		break;
1609	case e1000_phy_82580:
1610		ret_val = e1000_copper_link_setup_82577(hw);
1611		break;
1612	default:
1613		ret_val = -E1000_ERR_PHY;
1614		break;
1615	}
1616
1617	if (ret_val)
1618		goto out;
1619
1620	ret_val = e1000_setup_copper_link_generic(hw);
1621out:
1622	return ret_val;
1623}
1624
1625/**
1626 *  e1000_setup_serdes_link_82575 - Setup link for serdes
1627 *  @hw: pointer to the HW structure
1628 *
1629 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1630 *  used on copper connections where the serialized gigabit media independent
1631 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1632 *  for auto-negotiation or forces speed/duplex.
1633 **/
1634static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1635{
1636	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1637	bool pcs_autoneg;
1638	s32 ret_val = E1000_SUCCESS;
1639	u16 data;
1640
1641	DEBUGFUNC("e1000_setup_serdes_link_82575");
1642
1643	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1644	    !e1000_sgmii_active_82575(hw))
1645		return ret_val;
1646
1647	/*
1648	 * On the 82575, SerDes loopback mode persists until it is
1649	 * explicitly turned off or a power cycle is performed.  A read to
1650	 * the register does not indicate its status.  Therefore, we ensure
1651	 * loopback mode is disabled during initialization.
1652	 */
1653	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1654
1655	/* power on the sfp cage if present */
1656	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1657	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1658	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1659
1660	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1661	ctrl_reg |= E1000_CTRL_SLU;
1662
1663	/* set both sw defined pins on 82575/82576*/
1664	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
1665		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1666
1667	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1668
1669	/* default pcs_autoneg to the same setting as mac autoneg */
1670	pcs_autoneg = hw->mac.autoneg;
1671
1672	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1673	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1674		/* sgmii mode lets the phy handle forcing speed/duplex */
1675		pcs_autoneg = TRUE;
1676		/* autoneg time out should be disabled for SGMII mode */
1677		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1678		break;
1679	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1680		/* disable PCS autoneg and support parallel detect only */
1681		pcs_autoneg = FALSE;
1682		/* fall through to default case */
1683	default:
1684		if (hw->mac.type == e1000_82575 ||
1685		    hw->mac.type == e1000_82576) {
1686			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1687			if (ret_val) {
1688				DEBUGOUT("NVM Read Error\n");
1689				return ret_val;
1690			}
1691
1692			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1693				pcs_autoneg = FALSE;
1694		}
1695
1696		/*
1697		 * non-SGMII modes only supports a speed of 1000/Full for the
1698		 * link so it is best to just force the MAC and let the pcs
1699		 * link either autoneg or be forced to 1000/Full
1700		 */
1701		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1702			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1703
1704		/* set speed of 1000/Full if speed/duplex is forced */
1705		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1706		break;
1707	}
1708
1709	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1710
1711	/*
1712	 * New SerDes mode allows for forcing speed or autonegotiating speed
1713	 * at 1gb. Autoneg should be default set by most drivers. This is the
1714	 * mode that will be compatible with older link partners and switches.
1715	 * However, both are supported by the hardware and some drivers/tools.
1716	 */
1717	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1718		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1719
1720	if (pcs_autoneg) {
1721		/* Set PCS register for autoneg */
1722		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1723		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1724
1725		/* Disable force flow control for autoneg */
1726		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1727
1728		/* Configure flow control advertisement for autoneg */
1729		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1730		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1731
1732		switch (hw->fc.requested_mode) {
1733		case e1000_fc_full:
1734		case e1000_fc_rx_pause:
1735			anadv_reg |= E1000_TXCW_ASM_DIR;
1736			anadv_reg |= E1000_TXCW_PAUSE;
1737			break;
1738		case e1000_fc_tx_pause:
1739			anadv_reg |= E1000_TXCW_ASM_DIR;
1740			break;
1741		default:
1742			break;
1743		}
1744
1745		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
1746
1747		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1748	} else {
1749		/* Set PCS register for forced link */
1750		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
1751
1752		/* Force flow control for forced link */
1753		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1754
1755		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1756	}
1757
1758	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1759
1760	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
1761		e1000_force_mac_fc_generic(hw);
1762
1763	return ret_val;
1764}
1765
1766/**
1767 *  e1000_get_media_type_82575 - derives current media type.
1768 *  @hw: pointer to the HW structure
1769 *
1770 *  The media type is chosen reflecting few settings.
1771 *  The following are taken into account:
1772 *  - link mode set in the current port Init Control Word #3
1773 *  - current link mode settings in CSR register
1774 *  - MDIO vs. I2C PHY control interface chosen
1775 *  - SFP module media type
1776 **/
1777static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
1778{
1779	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1780	s32 ret_val = E1000_SUCCESS;
1781	u32 ctrl_ext = 0;
1782	u32 link_mode = 0;
1783
1784	/* Set internal phy as default */
1785	dev_spec->sgmii_active = FALSE;
1786	dev_spec->module_plugged = FALSE;
1787
1788	/* Get CSR setting */
1789	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1790
1791	/* extract link mode setting */
1792	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
1793
1794	switch (link_mode) {
1795	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1796		hw->phy.media_type = e1000_media_type_internal_serdes;
1797		break;
1798	case E1000_CTRL_EXT_LINK_MODE_GMII:
1799		hw->phy.media_type = e1000_media_type_copper;
1800		break;
1801	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1802		/* Get phy control interface type set (MDIO vs. I2C)*/
1803		if (e1000_sgmii_uses_mdio_82575(hw)) {
1804			hw->phy.media_type = e1000_media_type_copper;
1805			dev_spec->sgmii_active = TRUE;
1806			break;
1807		}
1808		/* fall through for I2C based SGMII */
1809	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
1810		/* read media type from SFP EEPROM */
1811		ret_val = e1000_set_sfp_media_type_82575(hw);
1812		if ((ret_val != E1000_SUCCESS) ||
1813		    (hw->phy.media_type == e1000_media_type_unknown)) {
1814			/*
1815			 * If media type was not identified then return media
1816			 * type defined by the CTRL_EXT settings.
1817			 */
1818			hw->phy.media_type = e1000_media_type_internal_serdes;
1819
1820			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
1821				hw->phy.media_type = e1000_media_type_copper;
1822				dev_spec->sgmii_active = TRUE;
1823			}
1824
1825			break;
1826		}
1827
1828		/* do not change link mode for 100BaseFX */
1829		if (dev_spec->eth_flags.e100_base_fx)
1830			break;
1831
1832		/* change current link mode setting */
1833		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1834
1835		if (hw->phy.media_type == e1000_media_type_copper)
1836			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
1837		else
1838			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1839
1840		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1841
1842		break;
1843	}
1844
1845	return ret_val;
1846}
1847
1848/**
1849 *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
1850 *  @hw: pointer to the HW structure
1851 *
1852 *  The media type is chosen based on SFP module.
1853 *  compatibility flags retrieved from SFP ID EEPROM.
1854 **/
1855static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
1856{
1857	s32 ret_val = E1000_ERR_CONFIG;
1858	u32 ctrl_ext = 0;
1859	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1860	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
1861	u8 tranceiver_type = 0;
1862	s32 timeout = 3;
1863
1864	/* Turn I2C interface ON and power on sfp cage */
1865	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1866	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1867	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
1868
1869	E1000_WRITE_FLUSH(hw);
1870
1871	/* Read SFP module data */
1872	while (timeout) {
1873		ret_val = e1000_read_sfp_data_byte(hw,
1874			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
1875			&tranceiver_type);
1876		if (ret_val == E1000_SUCCESS)
1877			break;
1878		msec_delay(100);
1879		timeout--;
1880	}
1881	if (ret_val != E1000_SUCCESS)
1882		goto out;
1883
1884	ret_val = e1000_read_sfp_data_byte(hw,
1885			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
1886			(u8 *)eth_flags);
1887	if (ret_val != E1000_SUCCESS)
1888		goto out;
1889
1890	/* Check if there is some SFP module plugged and powered */
1891	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
1892	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
1893		dev_spec->module_plugged = TRUE;
1894		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
1895			hw->phy.media_type = e1000_media_type_internal_serdes;
1896		} else if (eth_flags->e100_base_fx) {
1897			dev_spec->sgmii_active = TRUE;
1898			hw->phy.media_type = e1000_media_type_internal_serdes;
1899		} else if (eth_flags->e1000_base_t) {
1900			dev_spec->sgmii_active = TRUE;
1901			hw->phy.media_type = e1000_media_type_copper;
1902		} else {
1903			hw->phy.media_type = e1000_media_type_unknown;
1904			DEBUGOUT("PHY module has not been recognized\n");
1905			goto out;
1906		}
1907	} else {
1908		hw->phy.media_type = e1000_media_type_unknown;
1909	}
1910	ret_val = E1000_SUCCESS;
1911out:
1912	/* Restore I2C interface setting */
1913	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1914	return ret_val;
1915}
1916
1917/**
1918 *  e1000_valid_led_default_82575 - Verify a valid default LED config
1919 *  @hw: pointer to the HW structure
1920 *  @data: pointer to the NVM (EEPROM)
1921 *
1922 *  Read the EEPROM for the current default LED configuration.  If the
1923 *  LED configuration is not valid, set to a valid LED configuration.
1924 **/
1925static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1926{
1927	s32 ret_val;
1928
1929	DEBUGFUNC("e1000_valid_led_default_82575");
1930
1931	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1932	if (ret_val) {
1933		DEBUGOUT("NVM Read Error\n");
1934		goto out;
1935	}
1936
1937	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1938		switch (hw->phy.media_type) {
1939		case e1000_media_type_internal_serdes:
1940			*data = ID_LED_DEFAULT_82575_SERDES;
1941			break;
1942		case e1000_media_type_copper:
1943		default:
1944			*data = ID_LED_DEFAULT;
1945			break;
1946		}
1947	}
1948out:
1949	return ret_val;
1950}
1951
1952/**
1953 *  e1000_sgmii_active_82575 - Return sgmii state
1954 *  @hw: pointer to the HW structure
1955 *
1956 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1957 *  which can be enabled for use in the embedded applications.  Simply
1958 *  return the current state of the sgmii interface.
1959 **/
1960static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
1961{
1962	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1963	return dev_spec->sgmii_active;
1964}
1965
1966/**
1967 *  e1000_reset_init_script_82575 - Inits HW defaults after reset
1968 *  @hw: pointer to the HW structure
1969 *
1970 *  Inits recommended HW defaults after a reset when there is no EEPROM
1971 *  detected. This is only for the 82575.
1972 **/
1973static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
1974{
1975	DEBUGFUNC("e1000_reset_init_script_82575");
1976
1977	if (hw->mac.type == e1000_82575) {
1978		DEBUGOUT("Running reset init script for 82575\n");
1979		/* SerDes configuration via SERDESCTRL */
1980		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
1981		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
1982		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
1983		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
1984
1985		/* CCM configuration via CCMCTL register */
1986		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
1987		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
1988
1989		/* PCIe lanes configuration */
1990		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
1991		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
1992		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
1993		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
1994
1995		/* PCIe PLL Configuration */
1996		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
1997		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
1998		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
1999	}
2000
2001	return E1000_SUCCESS;
2002}
2003
2004/**
2005 *  e1000_read_mac_addr_82575 - Read device MAC address
2006 *  @hw: pointer to the HW structure
2007 **/
2008static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
2009{
2010	s32 ret_val;
2011
2012	DEBUGFUNC("e1000_read_mac_addr_82575");
2013
2014	/*
2015	 * If there's an alternate MAC address place it in RAR0
2016	 * so that it will override the Si installed default perm
2017	 * address.
2018	 */
2019	ret_val = e1000_check_alt_mac_addr_generic(hw);
2020	if (ret_val)
2021		goto out;
2022
2023	ret_val = e1000_read_mac_addr_generic(hw);
2024
2025out:
2026	return ret_val;
2027}
2028
2029/**
2030 *  e1000_config_collision_dist_82575 - Configure collision distance
2031 *  @hw: pointer to the HW structure
2032 *
2033 *  Configures the collision distance to the default value and is used
2034 *  during link setup.
2035 **/
2036static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
2037{
2038	u32 tctl_ext;
2039
2040	DEBUGFUNC("e1000_config_collision_dist_82575");
2041
2042	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
2043
2044	tctl_ext &= ~E1000_TCTL_EXT_COLD;
2045	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
2046
2047	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
2048	E1000_WRITE_FLUSH(hw);
2049}
2050
2051/**
2052 * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
2053 * @hw: pointer to the HW structure
2054 *
2055 * In the case of a PHY power down to save power, or to turn off link during a
2056 * driver unload, or wake on lan is not enabled, remove the link.
2057 **/
2058static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
2059{
2060	struct e1000_phy_info *phy = &hw->phy;
2061
2062	if (!(phy->ops.check_reset_block))
2063		return;
2064
2065	/* If the management interface is not enabled, then power down */
2066	if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
2067		e1000_power_down_phy_copper(hw);
2068
2069	return;
2070}
2071
2072/**
2073 *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
2074 *  @hw: pointer to the HW structure
2075 *
2076 *  Clears the hardware counters by reading the counter registers.
2077 **/
2078static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
2079{
2080	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
2081
2082	e1000_clear_hw_cntrs_base_generic(hw);
2083
2084	E1000_READ_REG(hw, E1000_PRC64);
2085	E1000_READ_REG(hw, E1000_PRC127);
2086	E1000_READ_REG(hw, E1000_PRC255);
2087	E1000_READ_REG(hw, E1000_PRC511);
2088	E1000_READ_REG(hw, E1000_PRC1023);
2089	E1000_READ_REG(hw, E1000_PRC1522);
2090	E1000_READ_REG(hw, E1000_PTC64);
2091	E1000_READ_REG(hw, E1000_PTC127);
2092	E1000_READ_REG(hw, E1000_PTC255);
2093	E1000_READ_REG(hw, E1000_PTC511);
2094	E1000_READ_REG(hw, E1000_PTC1023);
2095	E1000_READ_REG(hw, E1000_PTC1522);
2096
2097	E1000_READ_REG(hw, E1000_ALGNERRC);
2098	E1000_READ_REG(hw, E1000_RXERRC);
2099	E1000_READ_REG(hw, E1000_TNCRS);
2100	E1000_READ_REG(hw, E1000_CEXTERR);
2101	E1000_READ_REG(hw, E1000_TSCTC);
2102	E1000_READ_REG(hw, E1000_TSCTFC);
2103
2104	E1000_READ_REG(hw, E1000_MGTPRC);
2105	E1000_READ_REG(hw, E1000_MGTPDC);
2106	E1000_READ_REG(hw, E1000_MGTPTC);
2107
2108	E1000_READ_REG(hw, E1000_IAC);
2109	E1000_READ_REG(hw, E1000_ICRXOC);
2110
2111	E1000_READ_REG(hw, E1000_ICRXPTC);
2112	E1000_READ_REG(hw, E1000_ICRXATC);
2113	E1000_READ_REG(hw, E1000_ICTXPTC);
2114	E1000_READ_REG(hw, E1000_ICTXATC);
2115	E1000_READ_REG(hw, E1000_ICTXQEC);
2116	E1000_READ_REG(hw, E1000_ICTXQMTC);
2117	E1000_READ_REG(hw, E1000_ICRXDMTC);
2118
2119	E1000_READ_REG(hw, E1000_CBTMPC);
2120	E1000_READ_REG(hw, E1000_HTDPMC);
2121	E1000_READ_REG(hw, E1000_CBRMPC);
2122	E1000_READ_REG(hw, E1000_RPTHC);
2123	E1000_READ_REG(hw, E1000_HGPTC);
2124	E1000_READ_REG(hw, E1000_HTCBDPC);
2125	E1000_READ_REG(hw, E1000_HGORCL);
2126	E1000_READ_REG(hw, E1000_HGORCH);
2127	E1000_READ_REG(hw, E1000_HGOTCL);
2128	E1000_READ_REG(hw, E1000_HGOTCH);
2129	E1000_READ_REG(hw, E1000_LENERRS);
2130
2131	/* This register should not be read in copper configurations */
2132	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
2133	    e1000_sgmii_active_82575(hw))
2134		E1000_READ_REG(hw, E1000_SCVPC);
2135}
2136
2137/**
2138 *  e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
2139 *  @hw: pointer to the HW structure
2140 *
2141 *  After Rx enable, if manageability is enabled then there is likely some
2142 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
2143 *  function clears the fifos and flushes any packets that came in as rx was
2144 *  being enabled.
2145 **/
2146void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
2147{
2148	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
2149	int i, ms_wait;
2150
2151	DEBUGFUNC("e1000_rx_fifo_flush_82575");
2152
2153	/* disable IPv6 options as per hardware errata */
2154	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2155	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
2156	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2157
2158	if (hw->mac.type != e1000_82575 ||
2159	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
2160		return;
2161
2162	/* Disable all Rx queues */
2163	for (i = 0; i < 4; i++) {
2164		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
2165		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
2166				rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
2167	}
2168	/* Poll all queues to verify they have shut down */
2169	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2170		msec_delay(1);
2171		rx_enabled = 0;
2172		for (i = 0; i < 4; i++)
2173			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
2174		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2175			break;
2176	}
2177
2178	if (ms_wait == 10)
2179		DEBUGOUT("Queue disable timed out after 10ms\n");
2180
2181	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2182	 * incoming packets are rejected.  Set enable and wait 2ms so that
2183	 * any packet that was coming in as RCTL.EN was set is flushed
2184	 */
2185	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2186
2187	rlpml = E1000_READ_REG(hw, E1000_RLPML);
2188	E1000_WRITE_REG(hw, E1000_RLPML, 0);
2189
2190	rctl = E1000_READ_REG(hw, E1000_RCTL);
2191	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2192	temp_rctl |= E1000_RCTL_LPE;
2193
2194	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
2195	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2196	E1000_WRITE_FLUSH(hw);
2197	msec_delay(2);
2198
2199	/* Enable Rx queues that were previously enabled and restore our
2200	 * previous state
2201	 */
2202	for (i = 0; i < 4; i++)
2203		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
2204	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2205	E1000_WRITE_FLUSH(hw);
2206
2207	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
2208	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2209
2210	/* Flush receive errors generated by workaround */
2211	E1000_READ_REG(hw, E1000_ROC);
2212	E1000_READ_REG(hw, E1000_RNBC);
2213	E1000_READ_REG(hw, E1000_MPC);
2214}
2215
2216/**
2217 *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
2218 *  @hw: pointer to the HW structure
2219 *
2220 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2221 *  however the hardware default for these parts is 500us to 1ms which is less
2222 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2223 *  increase the value to either 10ms to 200ms for capability version 1 config,
2224 *  or 16ms to 55ms for version 2.
2225 **/
2226static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
2227{
2228	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
2229	s32 ret_val = E1000_SUCCESS;
2230	u16 pcie_devctl2;
2231
2232	/* only take action if timeout value is defaulted to 0 */
2233	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2234		goto out;
2235
2236	/*
2237	 * if capababilities version is type 1 we can write the
2238	 * timeout of 10ms to 200ms through the GCR register
2239	 */
2240	if (!(gcr & E1000_GCR_CAP_VER2)) {
2241		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2242		goto out;
2243	}
2244
2245	/*
2246	 * for version 2 capabilities we need to write the config space
2247	 * directly in order to set the completion timeout value for
2248	 * 16ms to 55ms
2249	 */
2250	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2251					  &pcie_devctl2);
2252	if (ret_val)
2253		goto out;
2254
2255	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2256
2257	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2258					   &pcie_devctl2);
2259out:
2260	/* disable completion timeout resend */
2261	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2262
2263	E1000_WRITE_REG(hw, E1000_GCR, gcr);
2264	return ret_val;
2265}
2266
2267/**
2268 *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2269 *  @hw: pointer to the hardware struct
2270 *  @enable: state to enter, either enabled or disabled
2271 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2272 *
2273 *  enables/disables L2 switch anti-spoofing functionality.
2274 **/
2275void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2276{
2277	u32 reg_val, reg_offset;
2278
2279	switch (hw->mac.type) {
2280	case e1000_82576:
2281		reg_offset = E1000_DTXSWC;
2282		break;
2283	case e1000_i350:
2284	case e1000_i354:
2285		reg_offset = E1000_TXSWC;
2286		break;
2287	default:
2288		return;
2289	}
2290
2291	reg_val = E1000_READ_REG(hw, reg_offset);
2292	if (enable) {
2293		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2294			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2295		/* The PF can spoof - it has to in order to
2296		 * support emulation mode NICs
2297		 */
2298		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2299	} else {
2300		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2301			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2302	}
2303	E1000_WRITE_REG(hw, reg_offset, reg_val);
2304}
2305
2306/**
2307 *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
2308 *  @hw: pointer to the hardware struct
2309 *  @enable: state to enter, either enabled or disabled
2310 *
2311 *  enables/disables L2 switch loopback functionality.
2312 **/
2313void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2314{
2315	u32 dtxswc;
2316
2317	switch (hw->mac.type) {
2318	case e1000_82576:
2319		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
2320		if (enable)
2321			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2322		else
2323			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2324		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
2325		break;
2326	case e1000_i350:
2327	case e1000_i354:
2328		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
2329		if (enable)
2330			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2331		else
2332			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2333		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
2334		break;
2335	default:
2336		/* Currently no other hardware supports loopback */
2337		break;
2338	}
2339
2340
2341}
2342
2343/**
2344 *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
2345 *  @hw: pointer to the hardware struct
2346 *  @enable: state to enter, either enabled or disabled
2347 *
2348 *  enables/disables replication of packets across multiple pools.
2349 **/
2350void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2351{
2352	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2353
2354	if (enable)
2355		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2356	else
2357		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2358
2359	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2360}
2361
2362/**
2363 *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
2364 *  @hw: pointer to the HW structure
2365 *  @offset: register offset to be read
2366 *  @data: pointer to the read data
2367 *
2368 *  Reads the MDI control register in the PHY at offset and stores the
2369 *  information read to data.
2370 **/
2371static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2372{
2373	s32 ret_val;
2374
2375	DEBUGFUNC("e1000_read_phy_reg_82580");
2376
2377	ret_val = hw->phy.ops.acquire(hw);
2378	if (ret_val)
2379		goto out;
2380
2381	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
2382
2383	hw->phy.ops.release(hw);
2384
2385out:
2386	return ret_val;
2387}
2388
2389/**
2390 *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
2391 *  @hw: pointer to the HW structure
2392 *  @offset: register offset to write to
2393 *  @data: data to write to register at offset
2394 *
2395 *  Writes data to MDI control register in the PHY at offset.
2396 **/
2397static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2398{
2399	s32 ret_val;
2400
2401	DEBUGFUNC("e1000_write_phy_reg_82580");
2402
2403	ret_val = hw->phy.ops.acquire(hw);
2404	if (ret_val)
2405		goto out;
2406
2407	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
2408
2409	hw->phy.ops.release(hw);
2410
2411out:
2412	return ret_val;
2413}
2414
2415/**
2416 *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2417 *  @hw: pointer to the HW structure
2418 *
2419 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2420 *  the values found in the EEPROM.  This addresses an issue in which these
2421 *  bits are not restored from EEPROM after reset.
2422 **/
2423static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
2424{
2425	s32 ret_val = E1000_SUCCESS;
2426	u32 mdicnfg;
2427	u16 nvm_data = 0;
2428
2429	DEBUGFUNC("e1000_reset_mdicnfg_82580");
2430
2431	if (hw->mac.type != e1000_82580)
2432		goto out;
2433	if (!e1000_sgmii_active_82575(hw))
2434		goto out;
2435
2436	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2437				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2438				   &nvm_data);
2439	if (ret_val) {
2440		DEBUGOUT("NVM Read Error\n");
2441		goto out;
2442	}
2443
2444	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
2445	if (nvm_data & NVM_WORD24_EXT_MDIO)
2446		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2447	if (nvm_data & NVM_WORD24_COM_MDIO)
2448		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2449	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
2450out:
2451	return ret_val;
2452}
2453
2454/**
2455 *  e1000_reset_hw_82580 - Reset hardware
2456 *  @hw: pointer to the HW structure
2457 *
2458 *  This resets function or entire device (all ports, etc.)
2459 *  to a known state.
2460 **/
2461static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
2462{
2463	s32 ret_val = E1000_SUCCESS;
2464	/* BH SW mailbox bit in SW_FW_SYNC */
2465	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2466	u32 ctrl;
2467	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2468
2469	DEBUGFUNC("e1000_reset_hw_82580");
2470
2471	hw->dev_spec._82575.global_device_reset = FALSE;
2472
2473	/* 82580 does not reliably do global_device_reset due to hw errata */
2474	if (hw->mac.type == e1000_82580)
2475		global_device_reset = FALSE;
2476
2477	/* Get current control state. */
2478	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2479
2480	/*
2481	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2482	 * on the last TLP read/write transaction when MAC is reset.
2483	 */
2484	ret_val = e1000_disable_pcie_master_generic(hw);
2485	if (ret_val)
2486		DEBUGOUT("PCI-E Master disable polling has failed.\n");
2487
2488	DEBUGOUT("Masking off all interrupts\n");
2489	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2490	E1000_WRITE_REG(hw, E1000_RCTL, 0);
2491	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
2492	E1000_WRITE_FLUSH(hw);
2493
2494	msec_delay(10);
2495
2496	/* Determine whether or not a global dev reset is requested */
2497	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
2498	    swmbsw_mask))
2499			global_device_reset = FALSE;
2500
2501	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
2502	    E1000_STAT_DEV_RST_SET))
2503		ctrl |= E1000_CTRL_DEV_RST;
2504	else
2505		ctrl |= E1000_CTRL_RST;
2506
2507	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2508
2509	switch (hw->device_id) {
2510	case E1000_DEV_ID_DH89XXCC_SGMII:
2511		break;
2512	default:
2513		E1000_WRITE_FLUSH(hw);
2514		break;
2515	}
2516
2517	/* Add delay to insure DEV_RST or RST has time to complete */
2518	msec_delay(5);
2519
2520	ret_val = e1000_get_auto_rd_done_generic(hw);
2521	if (ret_val) {
2522		/*
2523		 * When auto config read does not complete, do not
2524		 * return with an error. This can happen in situations
2525		 * where there is no eeprom and prevents getting link.
2526		 */
2527		DEBUGOUT("Auto Read Done did not complete\n");
2528	}
2529
2530	/* clear global device reset status bit */
2531	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
2532
2533	/* Clear any pending interrupt events. */
2534	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2535	E1000_READ_REG(hw, E1000_ICR);
2536
2537	ret_val = e1000_reset_mdicnfg_82580(hw);
2538	if (ret_val)
2539		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
2540
2541	/* Install any alternate MAC address into RAR0 */
2542	ret_val = e1000_check_alt_mac_addr_generic(hw);
2543
2544	/* Release semaphore */
2545	if (global_device_reset)
2546		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2547
2548	return ret_val;
2549}
2550
2551/**
2552 *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
2553 *  @data: data received by reading RXPBS register
2554 *
2555 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2556 *  This function converts the retrieved value into the correct table value
2557 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2558 *  0x0 36  72 144   1   2   4   8  16
2559 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2560 */
2561u16 e1000_rxpbs_adjust_82580(u32 data)
2562{
2563	u16 ret_val = 0;
2564
2565	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2566		ret_val = e1000_82580_rxpbs_table[data];
2567
2568	return ret_val;
2569}
2570
2571/**
2572 *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
2573 *  checksum
2574 *  @hw: pointer to the HW structure
2575 *  @offset: offset in words of the checksum protected region
2576 *
2577 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2578 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2579 **/
2580s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2581{
2582	s32 ret_val = E1000_SUCCESS;
2583	u16 checksum = 0;
2584	u16 i, nvm_data;
2585
2586	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
2587
2588	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2589		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2590		if (ret_val) {
2591			DEBUGOUT("NVM Read Error\n");
2592			goto out;
2593		}
2594		checksum += nvm_data;
2595	}
2596
2597	if (checksum != (u16) NVM_SUM) {
2598		DEBUGOUT("NVM Checksum Invalid\n");
2599		ret_val = -E1000_ERR_NVM;
2600		goto out;
2601	}
2602
2603out:
2604	return ret_val;
2605}
2606
2607/**
2608 *  e1000_update_nvm_checksum_with_offset - Update EEPROM
2609 *  checksum
2610 *  @hw: pointer to the HW structure
2611 *  @offset: offset in words of the checksum protected region
2612 *
2613 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2614 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2615 *  value to the EEPROM.
2616 **/
2617s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2618{
2619	s32 ret_val;
2620	u16 checksum = 0;
2621	u16 i, nvm_data;
2622
2623	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
2624
2625	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2626		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2627		if (ret_val) {
2628			DEBUGOUT("NVM Read Error while updating checksum.\n");
2629			goto out;
2630		}
2631		checksum += nvm_data;
2632	}
2633	checksum = (u16) NVM_SUM - checksum;
2634	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2635				    &checksum);
2636	if (ret_val)
2637		DEBUGOUT("NVM Write Error while updating checksum.\n");
2638
2639out:
2640	return ret_val;
2641}
2642
2643/**
2644 *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
2645 *  @hw: pointer to the HW structure
2646 *
2647 *  Calculates the EEPROM section checksum by reading/adding each word of
2648 *  the EEPROM and then verifies that the sum of the EEPROM is
2649 *  equal to 0xBABA.
2650 **/
2651static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
2652{
2653	s32 ret_val;
2654	u16 eeprom_regions_count = 1;
2655	u16 j, nvm_data;
2656	u16 nvm_offset;
2657
2658	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
2659
2660	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2661	if (ret_val) {
2662		DEBUGOUT("NVM Read Error\n");
2663		goto out;
2664	}
2665
2666	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2667		/* if chekcsums compatibility bit is set validate checksums
2668		 * for all 4 ports. */
2669		eeprom_regions_count = 4;
2670	}
2671
2672	for (j = 0; j < eeprom_regions_count; j++) {
2673		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2674		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2675								  nvm_offset);
2676		if (ret_val != E1000_SUCCESS)
2677			goto out;
2678	}
2679
2680out:
2681	return ret_val;
2682}
2683
2684/**
2685 *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
2686 *  @hw: pointer to the HW structure
2687 *
2688 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2689 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2690 *  checksum and writes the value to the EEPROM.
2691 **/
2692static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
2693{
2694	s32 ret_val;
2695	u16 j, nvm_data;
2696	u16 nvm_offset;
2697
2698	DEBUGFUNC("e1000_update_nvm_checksum_82580");
2699
2700	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2701	if (ret_val) {
2702		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
2703		goto out;
2704	}
2705
2706	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
2707		/* set compatibility bit to validate checksums appropriately */
2708		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2709		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2710					    &nvm_data);
2711		if (ret_val) {
2712			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
2713			goto out;
2714		}
2715	}
2716
2717	for (j = 0; j < 4; j++) {
2718		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2719		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2720		if (ret_val)
2721			goto out;
2722	}
2723
2724out:
2725	return ret_val;
2726}
2727
2728/**
2729 *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
2730 *  @hw: pointer to the HW structure
2731 *
2732 *  Calculates the EEPROM section checksum by reading/adding each word of
2733 *  the EEPROM and then verifies that the sum of the EEPROM is
2734 *  equal to 0xBABA.
2735 **/
2736static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
2737{
2738	s32 ret_val = E1000_SUCCESS;
2739	u16 j;
2740	u16 nvm_offset;
2741
2742	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
2743
2744	for (j = 0; j < 4; j++) {
2745		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2746		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2747								  nvm_offset);
2748		if (ret_val != E1000_SUCCESS)
2749			goto out;
2750	}
2751
2752out:
2753	return ret_val;
2754}
2755
2756/**
2757 *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
2758 *  @hw: pointer to the HW structure
2759 *
2760 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2761 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2762 *  checksum and writes the value to the EEPROM.
2763 **/
2764static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
2765{
2766	s32 ret_val = E1000_SUCCESS;
2767	u16 j;
2768	u16 nvm_offset;
2769
2770	DEBUGFUNC("e1000_update_nvm_checksum_i350");
2771
2772	for (j = 0; j < 4; j++) {
2773		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2774		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2775		if (ret_val != E1000_SUCCESS)
2776			goto out;
2777	}
2778
2779out:
2780	return ret_val;
2781}
2782
2783/**
2784 *  __e1000_access_emi_reg - Read/write EMI register
2785 *  @hw: pointer to the HW structure
2786 *  @addr: EMI address to program
2787 *  @data: pointer to value to read/write from/to the EMI address
2788 *  @read: boolean flag to indicate read or write
2789 **/
2790static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
2791				  u16 *data, bool read)
2792{
2793	s32 ret_val;
2794
2795	DEBUGFUNC("__e1000_access_emi_reg");
2796
2797	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2798	if (ret_val)
2799		return ret_val;
2800
2801	if (read)
2802		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2803	else
2804		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2805
2806	return ret_val;
2807}
2808
2809/**
2810 *  e1000_read_emi_reg - Read Extended Management Interface register
2811 *  @hw: pointer to the HW structure
2812 *  @addr: EMI address to program
2813 *  @data: value to be read from the EMI address
2814 **/
2815s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2816{
2817	DEBUGFUNC("e1000_read_emi_reg");
2818
2819	return __e1000_access_emi_reg(hw, addr, data, TRUE);
2820}
2821
2822/**
2823 *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
2824 *  @hw: pointer to the HW structure
2825 *
2826 *  Initialize Marvell 1512 to work correctly with Avoton.
2827 **/
2828s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
2829{
2830	struct e1000_phy_info *phy = &hw->phy;
2831	s32 ret_val = E1000_SUCCESS;
2832
2833	DEBUGFUNC("e1000_initialize_M88E1512_phy");
2834
2835	/* Check if this is correct PHY. */
2836	if (phy->id != M88E1512_E_PHY_ID)
2837		goto out;
2838
2839	/* Switch to PHY page 0xFF. */
2840	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2841	if (ret_val)
2842		goto out;
2843
2844	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2845	if (ret_val)
2846		goto out;
2847
2848	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2849	if (ret_val)
2850		goto out;
2851
2852	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2853	if (ret_val)
2854		goto out;
2855
2856	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2857	if (ret_val)
2858		goto out;
2859
2860	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2861	if (ret_val)
2862		goto out;
2863
2864	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2865	if (ret_val)
2866		goto out;
2867
2868	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2869	if (ret_val)
2870		goto out;
2871
2872	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2873	if (ret_val)
2874		goto out;
2875
2876	/* Switch to PHY page 0xFB. */
2877	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2878	if (ret_val)
2879		goto out;
2880
2881	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2882	if (ret_val)
2883		goto out;
2884
2885	/* Switch to PHY page 0x12. */
2886	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2887	if (ret_val)
2888		goto out;
2889
2890	/* Change mode to SGMII-to-Copper */
2891	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2892	if (ret_val)
2893		goto out;
2894
2895	/* Return the PHY to page 0. */
2896	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2897	if (ret_val)
2898		goto out;
2899
2900	ret_val = phy->ops.commit(hw);
2901	if (ret_val) {
2902		DEBUGOUT("Error committing the PHY changes\n");
2903		return ret_val;
2904	}
2905
2906	msec_delay(1000);
2907out:
2908	return ret_val;
2909}
2910
2911/**
2912 *  e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY
2913 *  @hw: pointer to the HW structure
2914 *
2915 *  Initialize Marvell 1543 to work correctly with Avoton.
2916 **/
2917s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw)
2918{
2919	struct e1000_phy_info *phy = &hw->phy;
2920	s32 ret_val = E1000_SUCCESS;
2921
2922	DEBUGFUNC("e1000_initialize_M88E1543_phy");
2923
2924	/* Check if this is correct PHY. */
2925	if (phy->id != M88E1543_E_PHY_ID)
2926		goto out;
2927
2928	/* Switch to PHY page 0xFF. */
2929	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2930	if (ret_val)
2931		goto out;
2932
2933	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2934	if (ret_val)
2935		goto out;
2936
2937	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2938	if (ret_val)
2939		goto out;
2940
2941	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2942	if (ret_val)
2943		goto out;
2944
2945	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2946	if (ret_val)
2947		goto out;
2948
2949	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2950	if (ret_val)
2951		goto out;
2952
2953	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2954	if (ret_val)
2955		goto out;
2956
2957	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2958	if (ret_val)
2959		goto out;
2960
2961	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2962	if (ret_val)
2963		goto out;
2964
2965	/* Switch to PHY page 0xFB. */
2966	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2967	if (ret_val)
2968		goto out;
2969
2970	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D);
2971	if (ret_val)
2972		goto out;
2973
2974	/* Switch to PHY page 0x12. */
2975	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2976	if (ret_val)
2977		goto out;
2978
2979	/* Change mode to SGMII-to-Copper */
2980	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2981	if (ret_val)
2982		goto out;
2983
2984	/* Switch to PHY page 1. */
2985	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2986	if (ret_val)
2987		goto out;
2988
2989	/* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */
2990	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2991	if (ret_val)
2992		goto out;
2993
2994	/* Return the PHY to page 0. */
2995	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2996	if (ret_val)
2997		goto out;
2998
2999	ret_val = phy->ops.commit(hw);
3000	if (ret_val) {
3001		DEBUGOUT("Error committing the PHY changes\n");
3002		return ret_val;
3003	}
3004
3005	msec_delay(1000);
3006out:
3007	return ret_val;
3008}
3009
3010/**
3011 *  e1000_set_eee_i350 - Enable/disable EEE support
3012 *  @hw: pointer to the HW structure
3013 *  @adv1g: boolean flag enabling 1G EEE advertisement
3014 *  @adv100m: boolean flag enabling 100M EEE advertisement
3015 *
3016 *  Enable/disable EEE based on setting in dev_spec structure.
3017 *
3018 **/
3019s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
3020{
3021	u32 ipcnfg, eeer;
3022
3023	DEBUGFUNC("e1000_set_eee_i350");
3024
3025	if ((hw->mac.type < e1000_i350) ||
3026	    (hw->phy.media_type != e1000_media_type_copper))
3027		goto out;
3028	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
3029	eeer = E1000_READ_REG(hw, E1000_EEER);
3030
3031	/* enable or disable per user setting */
3032	if (!(hw->dev_spec._82575.eee_disable)) {
3033		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
3034
3035		if (adv100M)
3036			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
3037		else
3038			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
3039
3040		if (adv1G)
3041			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
3042		else
3043			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
3044
3045		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
3046			 E1000_EEER_LPI_FC);
3047
3048		/* This bit should not be set in normal operation. */
3049		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
3050			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
3051	} else {
3052		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
3053		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
3054			  E1000_EEER_LPI_FC);
3055	}
3056	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
3057	E1000_WRITE_REG(hw, E1000_EEER, eeer);
3058	E1000_READ_REG(hw, E1000_IPCNFG);
3059	E1000_READ_REG(hw, E1000_EEER);
3060out:
3061
3062	return E1000_SUCCESS;
3063}
3064
3065/**
3066 *  e1000_set_eee_i354 - Enable/disable EEE support
3067 *  @hw: pointer to the HW structure
3068 *  @adv1g: boolean flag enabling 1G EEE advertisement
3069 *  @adv100m: boolean flag enabling 100M EEE advertisement
3070 *
3071 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
3072 *
3073 **/
3074s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
3075{
3076	struct e1000_phy_info *phy = &hw->phy;
3077	s32 ret_val = E1000_SUCCESS;
3078	u16 phy_data;
3079
3080	DEBUGFUNC("e1000_set_eee_i354");
3081
3082	if ((hw->phy.media_type != e1000_media_type_copper) ||
3083	    ((phy->id != M88E1543_E_PHY_ID) &&
3084	    (phy->id != M88E1512_E_PHY_ID)))
3085		goto out;
3086
3087	if (!hw->dev_spec._82575.eee_disable) {
3088		/* Switch to PHY page 18. */
3089		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
3090		if (ret_val)
3091			goto out;
3092
3093		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
3094					    &phy_data);
3095		if (ret_val)
3096			goto out;
3097
3098		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
3099		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
3100					     phy_data);
3101		if (ret_val)
3102			goto out;
3103
3104		/* Return the PHY to page 0. */
3105		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
3106		if (ret_val)
3107			goto out;
3108
3109		/* Turn on EEE advertisement. */
3110		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3111					       E1000_EEE_ADV_DEV_I354,
3112					       &phy_data);
3113		if (ret_val)
3114			goto out;
3115
3116		if (adv100M)
3117			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
3118		else
3119			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
3120
3121		if (adv1G)
3122			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
3123		else
3124			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
3125
3126		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3127						E1000_EEE_ADV_DEV_I354,
3128						phy_data);
3129	} else {
3130		/* Turn off EEE advertisement. */
3131		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3132					       E1000_EEE_ADV_DEV_I354,
3133					       &phy_data);
3134		if (ret_val)
3135			goto out;
3136
3137		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
3138			      E1000_EEE_ADV_1000_SUPPORTED);
3139		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3140						E1000_EEE_ADV_DEV_I354,
3141						phy_data);
3142	}
3143
3144out:
3145	return ret_val;
3146}
3147
3148/**
3149 *  e1000_get_eee_status_i354 - Get EEE status
3150 *  @hw: pointer to the HW structure
3151 *  @status: EEE status
3152 *
3153 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
3154 *  been received.
3155 **/
3156s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
3157{
3158	struct e1000_phy_info *phy = &hw->phy;
3159	s32 ret_val = E1000_SUCCESS;
3160	u16 phy_data;
3161
3162	DEBUGFUNC("e1000_get_eee_status_i354");
3163
3164	/* Check if EEE is supported on this device. */
3165	if ((hw->phy.media_type != e1000_media_type_copper) ||
3166	    ((phy->id != M88E1543_E_PHY_ID) &&
3167	    (phy->id != M88E1512_E_PHY_ID)))
3168		goto out;
3169
3170	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
3171				       E1000_PCS_STATUS_DEV_I354,
3172				       &phy_data);
3173	if (ret_val)
3174		goto out;
3175
3176	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
3177			      E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE;
3178
3179out:
3180	return ret_val;
3181}
3182
3183/* Due to a hw errata, if the host tries to  configure the VFTA register
3184 * while performing queries from the BMC or DMA, then the VFTA in some
3185 * cases won't be written.
3186 */
3187
3188/**
3189 *  e1000_clear_vfta_i350 - Clear VLAN filter table
3190 *  @hw: pointer to the HW structure
3191 *
3192 *  Clears the register array which contains the VLAN filter table by
3193 *  setting all the values to 0.
3194 **/
3195void e1000_clear_vfta_i350(struct e1000_hw *hw)
3196{
3197	u32 offset;
3198	int i;
3199
3200	DEBUGFUNC("e1000_clear_vfta_350");
3201
3202	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
3203		for (i = 0; i < 10; i++)
3204			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
3205
3206		E1000_WRITE_FLUSH(hw);
3207	}
3208}
3209
3210/**
3211 *  e1000_write_vfta_i350 - Write value to VLAN filter table
3212 *  @hw: pointer to the HW structure
3213 *  @offset: register offset in VLAN filter table
3214 *  @value: register value written to VLAN filter table
3215 *
3216 *  Writes value at the given offset in the register array which stores
3217 *  the VLAN filter table.
3218 **/
3219void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
3220{
3221	int i;
3222
3223	DEBUGFUNC("e1000_write_vfta_350");
3224
3225	for (i = 0; i < 10; i++)
3226		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
3227
3228	E1000_WRITE_FLUSH(hw);
3229}
3230
3231
3232/**
3233 *  e1000_set_i2c_bb - Enable I2C bit-bang
3234 *  @hw: pointer to the HW structure
3235 *
3236 *  Enable I2C bit-bang interface
3237 *
3238 **/
3239s32 e1000_set_i2c_bb(struct e1000_hw *hw)
3240{
3241	s32 ret_val = E1000_SUCCESS;
3242	u32 ctrl_ext, i2cparams;
3243
3244	DEBUGFUNC("e1000_set_i2c_bb");
3245
3246	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3247	ctrl_ext |= E1000_CTRL_I2C_ENA;
3248	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3249	E1000_WRITE_FLUSH(hw);
3250
3251	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
3252	i2cparams |= E1000_I2CBB_EN;
3253	i2cparams |= E1000_I2C_DATA_OE_N;
3254	i2cparams |= E1000_I2C_CLK_OE_N;
3255	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
3256	E1000_WRITE_FLUSH(hw);
3257
3258	return ret_val;
3259}
3260
3261/**
3262 *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
3263 *  @hw: pointer to hardware structure
3264 *  @byte_offset: byte offset to read
3265 *  @dev_addr: device address
3266 *  @data: value read
3267 *
3268 *  Performs byte read operation over I2C interface at
3269 *  a specified device address.
3270 **/
3271s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3272				u8 dev_addr, u8 *data)
3273{
3274	s32 status = E1000_SUCCESS;
3275	u32 max_retry = 10;
3276	u32 retry = 1;
3277	u16 swfw_mask = 0;
3278
3279	bool nack = TRUE;
3280
3281	DEBUGFUNC("e1000_read_i2c_byte_generic");
3282
3283	swfw_mask = E1000_SWFW_PHY0_SM;
3284
3285	do {
3286		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
3287		    != E1000_SUCCESS) {
3288			status = E1000_ERR_SWFW_SYNC;
3289			goto read_byte_out;
3290		}
3291
3292		e1000_i2c_start(hw);
3293
3294		/* Device Address and write indication */
3295		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3296		if (status != E1000_SUCCESS)
3297			goto fail;
3298
3299		status = e1000_get_i2c_ack(hw);
3300		if (status != E1000_SUCCESS)
3301			goto fail;
3302
3303		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3304		if (status != E1000_SUCCESS)
3305			goto fail;
3306
3307		status = e1000_get_i2c_ack(hw);
3308		if (status != E1000_SUCCESS)
3309			goto fail;
3310
3311		e1000_i2c_start(hw);
3312
3313		/* Device Address and read indication */
3314		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
3315		if (status != E1000_SUCCESS)
3316			goto fail;
3317
3318		status = e1000_get_i2c_ack(hw);
3319		if (status != E1000_SUCCESS)
3320			goto fail;
3321
3322		status = e1000_clock_in_i2c_byte(hw, data);
3323		if (status != E1000_SUCCESS)
3324			goto fail;
3325
3326		status = e1000_clock_out_i2c_bit(hw, nack);
3327		if (status != E1000_SUCCESS)
3328			goto fail;
3329
3330		e1000_i2c_stop(hw);
3331		break;
3332
3333fail:
3334		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3335		msec_delay(100);
3336		e1000_i2c_bus_clear(hw);
3337		retry++;
3338		if (retry < max_retry)
3339			DEBUGOUT("I2C byte read error - Retrying.\n");
3340		else
3341			DEBUGOUT("I2C byte read error.\n");
3342
3343	} while (retry < max_retry);
3344
3345	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3346
3347read_byte_out:
3348
3349	return status;
3350}
3351
3352/**
3353 *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
3354 *  @hw: pointer to hardware structure
3355 *  @byte_offset: byte offset to write
3356 *  @dev_addr: device address
3357 *  @data: value to write
3358 *
3359 *  Performs byte write operation over I2C interface at
3360 *  a specified device address.
3361 **/
3362s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3363				 u8 dev_addr, u8 data)
3364{
3365	s32 status = E1000_SUCCESS;
3366	u32 max_retry = 1;
3367	u32 retry = 0;
3368	u16 swfw_mask = 0;
3369
3370	DEBUGFUNC("e1000_write_i2c_byte_generic");
3371
3372	swfw_mask = E1000_SWFW_PHY0_SM;
3373
3374	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
3375		status = E1000_ERR_SWFW_SYNC;
3376		goto write_byte_out;
3377	}
3378
3379	do {
3380		e1000_i2c_start(hw);
3381
3382		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3383		if (status != E1000_SUCCESS)
3384			goto fail;
3385
3386		status = e1000_get_i2c_ack(hw);
3387		if (status != E1000_SUCCESS)
3388			goto fail;
3389
3390		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3391		if (status != E1000_SUCCESS)
3392			goto fail;
3393
3394		status = e1000_get_i2c_ack(hw);
3395		if (status != E1000_SUCCESS)
3396			goto fail;
3397
3398		status = e1000_clock_out_i2c_byte(hw, data);
3399		if (status != E1000_SUCCESS)
3400			goto fail;
3401
3402		status = e1000_get_i2c_ack(hw);
3403		if (status != E1000_SUCCESS)
3404			goto fail;
3405
3406		e1000_i2c_stop(hw);
3407		break;
3408
3409fail:
3410		e1000_i2c_bus_clear(hw);
3411		retry++;
3412		if (retry < max_retry)
3413			DEBUGOUT("I2C byte write error - Retrying.\n");
3414		else
3415			DEBUGOUT("I2C byte write error.\n");
3416	} while (retry < max_retry);
3417
3418	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3419
3420write_byte_out:
3421
3422	return status;
3423}
3424
3425/**
3426 *  e1000_i2c_start - Sets I2C start condition
3427 *  @hw: pointer to hardware structure
3428 *
3429 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
3430 **/
3431static void e1000_i2c_start(struct e1000_hw *hw)
3432{
3433	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3434
3435	DEBUGFUNC("e1000_i2c_start");
3436
3437	/* Start condition must begin with data and clock high */
3438	e1000_set_i2c_data(hw, &i2cctl, 1);
3439	e1000_raise_i2c_clk(hw, &i2cctl);
3440
3441	/* Setup time for start condition (4.7us) */
3442	usec_delay(E1000_I2C_T_SU_STA);
3443
3444	e1000_set_i2c_data(hw, &i2cctl, 0);
3445
3446	/* Hold time for start condition (4us) */
3447	usec_delay(E1000_I2C_T_HD_STA);
3448
3449	e1000_lower_i2c_clk(hw, &i2cctl);
3450
3451	/* Minimum low period of clock is 4.7 us */
3452	usec_delay(E1000_I2C_T_LOW);
3453
3454}
3455
3456/**
3457 *  e1000_i2c_stop - Sets I2C stop condition
3458 *  @hw: pointer to hardware structure
3459 *
3460 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
3461 **/
3462static void e1000_i2c_stop(struct e1000_hw *hw)
3463{
3464	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3465
3466	DEBUGFUNC("e1000_i2c_stop");
3467
3468	/* Stop condition must begin with data low and clock high */
3469	e1000_set_i2c_data(hw, &i2cctl, 0);
3470	e1000_raise_i2c_clk(hw, &i2cctl);
3471
3472	/* Setup time for stop condition (4us) */
3473	usec_delay(E1000_I2C_T_SU_STO);
3474
3475	e1000_set_i2c_data(hw, &i2cctl, 1);
3476
3477	/* bus free time between stop and start (4.7us)*/
3478	usec_delay(E1000_I2C_T_BUF);
3479}
3480
3481/**
3482 *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
3483 *  @hw: pointer to hardware structure
3484 *  @data: data byte to clock in
3485 *
3486 *  Clocks in one byte data via I2C data/clock
3487 **/
3488static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
3489{
3490	s32 i;
3491	bool bit = 0;
3492
3493	DEBUGFUNC("e1000_clock_in_i2c_byte");
3494
3495	*data = 0;
3496	for (i = 7; i >= 0; i--) {
3497		e1000_clock_in_i2c_bit(hw, &bit);
3498		*data |= bit << i;
3499	}
3500
3501	return E1000_SUCCESS;
3502}
3503
3504/**
3505 *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
3506 *  @hw: pointer to hardware structure
3507 *  @data: data byte clocked out
3508 *
3509 *  Clocks out one byte data via I2C data/clock
3510 **/
3511static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
3512{
3513	s32 status = E1000_SUCCESS;
3514	s32 i;
3515	u32 i2cctl;
3516	bool bit = 0;
3517
3518	DEBUGFUNC("e1000_clock_out_i2c_byte");
3519
3520	for (i = 7; i >= 0; i--) {
3521		bit = (data >> i) & 0x1;
3522		status = e1000_clock_out_i2c_bit(hw, bit);
3523
3524		if (status != E1000_SUCCESS)
3525			break;
3526	}
3527
3528	/* Release SDA line (set high) */
3529	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3530
3531	i2cctl |= E1000_I2C_DATA_OE_N;
3532	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
3533	E1000_WRITE_FLUSH(hw);
3534
3535	return status;
3536}
3537
3538/**
3539 *  e1000_get_i2c_ack - Polls for I2C ACK
3540 *  @hw: pointer to hardware structure
3541 *
3542 *  Clocks in/out one bit via I2C data/clock
3543 **/
3544static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
3545{
3546	s32 status = E1000_SUCCESS;
3547	u32 i = 0;
3548	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3549	u32 timeout = 10;
3550	bool ack = TRUE;
3551
3552	DEBUGFUNC("e1000_get_i2c_ack");
3553
3554	e1000_raise_i2c_clk(hw, &i2cctl);
3555
3556	/* Minimum high period of clock is 4us */
3557	usec_delay(E1000_I2C_T_HIGH);
3558
3559	/* Wait until SCL returns high */
3560	for (i = 0; i < timeout; i++) {
3561		usec_delay(1);
3562		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3563		if (i2cctl & E1000_I2C_CLK_IN)
3564			break;
3565	}
3566	if (!(i2cctl & E1000_I2C_CLK_IN))
3567		return E1000_ERR_I2C;
3568
3569	ack = e1000_get_i2c_data(&i2cctl);
3570	if (ack) {
3571		DEBUGOUT("I2C ack was not received.\n");
3572		status = E1000_ERR_I2C;
3573	}
3574
3575	e1000_lower_i2c_clk(hw, &i2cctl);
3576
3577	/* Minimum low period of clock is 4.7 us */
3578	usec_delay(E1000_I2C_T_LOW);
3579
3580	return status;
3581}
3582
3583/**
3584 *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
3585 *  @hw: pointer to hardware structure
3586 *  @data: read data value
3587 *
3588 *  Clocks in one bit via I2C data/clock
3589 **/
3590static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
3591{
3592	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3593
3594	DEBUGFUNC("e1000_clock_in_i2c_bit");
3595
3596	e1000_raise_i2c_clk(hw, &i2cctl);
3597
3598	/* Minimum high period of clock is 4us */
3599	usec_delay(E1000_I2C_T_HIGH);
3600
3601	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3602	*data = e1000_get_i2c_data(&i2cctl);
3603
3604	e1000_lower_i2c_clk(hw, &i2cctl);
3605
3606	/* Minimum low period of clock is 4.7 us */
3607	usec_delay(E1000_I2C_T_LOW);
3608
3609	return E1000_SUCCESS;
3610}
3611
3612/**
3613 *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
3614 *  @hw: pointer to hardware structure
3615 *  @data: data value to write
3616 *
3617 *  Clocks out one bit via I2C data/clock
3618 **/
3619static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
3620{
3621	s32 status;
3622	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3623
3624	DEBUGFUNC("e1000_clock_out_i2c_bit");
3625
3626	status = e1000_set_i2c_data(hw, &i2cctl, data);
3627	if (status == E1000_SUCCESS) {
3628		e1000_raise_i2c_clk(hw, &i2cctl);
3629
3630		/* Minimum high period of clock is 4us */
3631		usec_delay(E1000_I2C_T_HIGH);
3632
3633		e1000_lower_i2c_clk(hw, &i2cctl);
3634
3635		/* Minimum low period of clock is 4.7 us.
3636		 * This also takes care of the data hold time.
3637		 */
3638		usec_delay(E1000_I2C_T_LOW);
3639	} else {
3640		status = E1000_ERR_I2C;
3641		DEBUGOUT1("I2C data was not set to %X\n", data);
3642	}
3643
3644	return status;
3645}
3646/**
3647 *  e1000_raise_i2c_clk - Raises the I2C SCL clock
3648 *  @hw: pointer to hardware structure
3649 *  @i2cctl: Current value of I2CCTL register
3650 *
3651 *  Raises the I2C clock line '0'->'1'
3652 **/
3653static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3654{
3655	DEBUGFUNC("e1000_raise_i2c_clk");
3656
3657	*i2cctl |= E1000_I2C_CLK_OUT;
3658	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3659	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3660	E1000_WRITE_FLUSH(hw);
3661
3662	/* SCL rise time (1000ns) */
3663	usec_delay(E1000_I2C_T_RISE);
3664}
3665
3666/**
3667 *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
3668 *  @hw: pointer to hardware structure
3669 *  @i2cctl: Current value of I2CCTL register
3670 *
3671 *  Lowers the I2C clock line '1'->'0'
3672 **/
3673static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3674{
3675
3676	DEBUGFUNC("e1000_lower_i2c_clk");
3677
3678	*i2cctl &= ~E1000_I2C_CLK_OUT;
3679	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3680	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3681	E1000_WRITE_FLUSH(hw);
3682
3683	/* SCL fall time (300ns) */
3684	usec_delay(E1000_I2C_T_FALL);
3685}
3686
3687/**
3688 *  e1000_set_i2c_data - Sets the I2C data bit
3689 *  @hw: pointer to hardware structure
3690 *  @i2cctl: Current value of I2CCTL register
3691 *  @data: I2C data value (0 or 1) to set
3692 *
3693 *  Sets the I2C data bit
3694 **/
3695static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
3696{
3697	s32 status = E1000_SUCCESS;
3698
3699	DEBUGFUNC("e1000_set_i2c_data");
3700
3701	if (data)
3702		*i2cctl |= E1000_I2C_DATA_OUT;
3703	else
3704		*i2cctl &= ~E1000_I2C_DATA_OUT;
3705
3706	*i2cctl &= ~E1000_I2C_DATA_OE_N;
3707	*i2cctl |= E1000_I2C_CLK_OE_N;
3708	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3709	E1000_WRITE_FLUSH(hw);
3710
3711	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
3712	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
3713
3714	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3715	if (data != e1000_get_i2c_data(i2cctl)) {
3716		status = E1000_ERR_I2C;
3717		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
3718	}
3719
3720	return status;
3721}
3722
3723/**
3724 *  e1000_get_i2c_data - Reads the I2C SDA data bit
3725 *  @hw: pointer to hardware structure
3726 *  @i2cctl: Current value of I2CCTL register
3727 *
3728 *  Returns the I2C data bit value
3729 **/
3730static bool e1000_get_i2c_data(u32 *i2cctl)
3731{
3732	bool data;
3733
3734	DEBUGFUNC("e1000_get_i2c_data");
3735
3736	if (*i2cctl & E1000_I2C_DATA_IN)
3737		data = 1;
3738	else
3739		data = 0;
3740
3741	return data;
3742}
3743
3744/**
3745 *  e1000_i2c_bus_clear - Clears the I2C bus
3746 *  @hw: pointer to hardware structure
3747 *
3748 *  Clears the I2C bus by sending nine clock pulses.
3749 *  Used when data line is stuck low.
3750 **/
3751void e1000_i2c_bus_clear(struct e1000_hw *hw)
3752{
3753	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3754	u32 i;
3755
3756	DEBUGFUNC("e1000_i2c_bus_clear");
3757
3758	e1000_i2c_start(hw);
3759
3760	e1000_set_i2c_data(hw, &i2cctl, 1);
3761
3762	for (i = 0; i < 9; i++) {
3763		e1000_raise_i2c_clk(hw, &i2cctl);
3764
3765		/* Min high period of clock is 4us */
3766		usec_delay(E1000_I2C_T_HIGH);
3767
3768		e1000_lower_i2c_clk(hw, &i2cctl);
3769
3770		/* Min low period of clock is 4.7us*/
3771		usec_delay(E1000_I2C_T_LOW);
3772	}
3773
3774	e1000_i2c_start(hw);
3775
3776	/* Put the i2c bus back to default state */
3777	e1000_i2c_stop(hw);
3778}
3779
3780