if_dc.c revision 331722
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/dev/dc/if_dc.c 331722 2018-03-29 02:50:57Z eadler $");
35
36/*
37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38 * series chips and several workalikes including the following:
39 *
40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43 * ASIX Electronics AX88140A (www.asix.com.tw)
44 * ASIX Electronics AX88141 (www.asix.com.tw)
45 * ADMtek AL981 (www.admtek.com.tw)
46 * ADMtek AN983 (www.admtek.com.tw)
47 * ADMtek CardBus AN985 (www.admtek.com.tw)
48 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50 * Accton EN1217 (www.accton.com)
51 * Xircom X3201 (www.xircom.com)
52 * Abocom FE2500
53 * Conexant LANfinity (www.conexant.com)
54 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55 *
56 * Datasheets for the 21143 are available at developer.intel.com.
57 * Datasheets for the clone parts can be found at their respective sites.
58 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59 * The PNIC II is essentially a Macronix 98715A chip; the only difference
60 * worth noting is that its multicast hash table is only 128 bits wide
61 * instead of 512.
62 *
63 * Written by Bill Paul <wpaul@ee.columbia.edu>
64 * Electrical Engineering Department
65 * Columbia University, New York City
66 */
67/*
68 * The Intel 21143 is the successor to the DEC 21140. It is basically
69 * the same as the 21140 but with a few new features. The 21143 supports
70 * three kinds of media attachments:
71 *
72 * o MII port, for 10Mbps and 100Mbps support and NWAY
73 *   autonegotiation provided by an external PHY.
74 * o SYM port, for symbol mode 100Mbps support.
75 * o 10baseT port.
76 * o AUI/BNC port.
77 *
78 * The 100Mbps SYM port and 10baseT port can be used together in
79 * combination with the internal NWAY support to create a 10/100
80 * autosensing configuration.
81 *
82 * Note that not all tulip workalikes are handled in this driver: we only
83 * deal with those which are relatively well behaved. The Winbond is
84 * handled separately due to its different register offsets and the
85 * special handling needed for its various bugs. The PNIC is handled
86 * here, but I'm not thrilled about it.
87 *
88 * All of the workalike chips use some form of MII transceiver support
89 * with the exception of the Macronix chips, which also have a SYM port.
90 * The ASIX AX88140A is also documented to have a SYM port, but all
91 * the cards I've seen use an MII transceiver, probably because the
92 * AX88140A doesn't support internal NWAY.
93 */
94
95#ifdef HAVE_KERNEL_OPTION_HEADERS
96#include "opt_device_polling.h"
97#endif
98
99#include <sys/param.h>
100#include <sys/endian.h>
101#include <sys/systm.h>
102#include <sys/sockio.h>
103#include <sys/mbuf.h>
104#include <sys/malloc.h>
105#include <sys/kernel.h>
106#include <sys/module.h>
107#include <sys/socket.h>
108
109#include <net/if.h>
110#include <net/if_var.h>
111#include <net/if_arp.h>
112#include <net/ethernet.h>
113#include <net/if_dl.h>
114#include <net/if_media.h>
115#include <net/if_types.h>
116#include <net/if_vlan_var.h>
117
118#include <net/bpf.h>
119
120#include <machine/bus.h>
121#include <machine/resource.h>
122#include <sys/bus.h>
123#include <sys/rman.h>
124
125#include <dev/mii/mii.h>
126#include <dev/mii/mii_bitbang.h>
127#include <dev/mii/miivar.h>
128
129#include <dev/pci/pcireg.h>
130#include <dev/pci/pcivar.h>
131
132#define	DC_USEIOSPACE
133
134#include <dev/dc/if_dcreg.h>
135
136#ifdef __sparc64__
137#include <dev/ofw/openfirm.h>
138#include <machine/ofw_machdep.h>
139#endif
140
141MODULE_DEPEND(dc, pci, 1, 1, 1);
142MODULE_DEPEND(dc, ether, 1, 1, 1);
143MODULE_DEPEND(dc, miibus, 1, 1, 1);
144
145/*
146 * "device miibus" is required in kernel config.  See GENERIC if you get
147 * errors here.
148 */
149#include "miibus_if.h"
150
151/*
152 * Various supported device vendors/types and their names.
153 */
154static const struct dc_type dc_devs[] = {
155	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
156		"Intel 21143 10/100BaseTX" },
157	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
158		"Davicom DM9009 10/100BaseTX" },
159	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
160		"Davicom DM9100 10/100BaseTX" },
161	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
162		"Davicom DM9102A 10/100BaseTX" },
163	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
164		"Davicom DM9102 10/100BaseTX" },
165	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
166		"ADMtek AL981 10/100BaseTX" },
167	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
168		"ADMtek AN983 10/100BaseTX" },
169	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
170		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
171	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
172		"ADMtek ADM9511 10/100BaseTX" },
173	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
174		"ADMtek ADM9513 10/100BaseTX" },
175	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
176		"ASIX AX88141 10/100BaseTX" },
177	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
178		"ASIX AX88140A 10/100BaseTX" },
179	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
180		"Macronix 98713A 10/100BaseTX" },
181	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
182		"Macronix 98713 10/100BaseTX" },
183	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
184		"Compex RL100-TX 10/100BaseTX" },
185	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
186		"Compex RL100-TX 10/100BaseTX" },
187	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
188		"Macronix 98725 10/100BaseTX" },
189	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
190		"Macronix 98715AEC-C 10/100BaseTX" },
191	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
192		"Macronix 98715/98715A 10/100BaseTX" },
193	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
194		"Macronix 98727/98732 10/100BaseTX" },
195	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
196		"LC82C115 PNIC II 10/100BaseTX" },
197	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
198		"82c169 PNIC 10/100BaseTX" },
199	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
200		"82c168 PNIC 10/100BaseTX" },
201	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
202		"Accton EN1217 10/100BaseTX" },
203	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
204		"Accton EN2242 MiniPCI 10/100BaseTX" },
205	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
206		"Xircom X3201 10/100BaseTX" },
207	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
208		"Neteasy DRP-32TXD Cardbus 10/100" },
209	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
210		"Abocom FE2500 10/100BaseTX" },
211	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
212		"Abocom FE2500MX 10/100BaseTX" },
213	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
214		"Conexant LANfinity MiniPCI 10/100BaseTX" },
215	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
216		"Hawking CB102 CardBus 10/100" },
217	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
218		"PlaneX FNW-3602-T CardBus 10/100" },
219	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
220		"3Com OfficeConnect 10/100B" },
221	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
222		"Microsoft MN-120 CardBus 10/100" },
223	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
224		"Microsoft MN-130 10/100" },
225	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
226		"Linksys PCMPC200 CardBus 10/100" },
227	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
228		"Linksys PCMPC200 CardBus 10/100" },
229	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
230		"ULi M5261 FastEthernet" },
231	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
232		"ULi M5263 FastEthernet" },
233	{ 0, 0, NULL }
234};
235
236static int dc_probe(device_t);
237static int dc_attach(device_t);
238static int dc_detach(device_t);
239static int dc_suspend(device_t);
240static int dc_resume(device_t);
241static const struct dc_type *dc_devtype(device_t);
242static void dc_discard_rxbuf(struct dc_softc *, int);
243static int dc_newbuf(struct dc_softc *, int);
244static int dc_encap(struct dc_softc *, struct mbuf **);
245static void dc_pnic_rx_bug_war(struct dc_softc *, int);
246static int dc_rx_resync(struct dc_softc *);
247static int dc_rxeof(struct dc_softc *);
248static void dc_txeof(struct dc_softc *);
249static void dc_tick(void *);
250static void dc_tx_underrun(struct dc_softc *);
251static void dc_intr(void *);
252static void dc_start(struct ifnet *);
253static void dc_start_locked(struct ifnet *);
254static int dc_ioctl(struct ifnet *, u_long, caddr_t);
255static void dc_init(void *);
256static void dc_init_locked(struct dc_softc *);
257static void dc_stop(struct dc_softc *);
258static void dc_watchdog(void *);
259static int dc_shutdown(device_t);
260static int dc_ifmedia_upd(struct ifnet *);
261static int dc_ifmedia_upd_locked(struct dc_softc *);
262static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
263
264static int dc_dma_alloc(struct dc_softc *);
265static void dc_dma_free(struct dc_softc *);
266static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
267
268static void dc_delay(struct dc_softc *);
269static void dc_eeprom_idle(struct dc_softc *);
270static void dc_eeprom_putbyte(struct dc_softc *, int);
271static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
272static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
273static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
274static void dc_eeprom_width(struct dc_softc *);
275static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
276
277static int dc_miibus_readreg(device_t, int, int);
278static int dc_miibus_writereg(device_t, int, int, int);
279static void dc_miibus_statchg(device_t);
280static void dc_miibus_mediainit(device_t);
281
282static void dc_setcfg(struct dc_softc *, int);
283static void dc_netcfg_wait(struct dc_softc *);
284static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
285static uint32_t dc_mchash_be(const uint8_t *);
286static void dc_setfilt_21143(struct dc_softc *);
287static void dc_setfilt_asix(struct dc_softc *);
288static void dc_setfilt_admtek(struct dc_softc *);
289static void dc_setfilt_uli(struct dc_softc *);
290static void dc_setfilt_xircom(struct dc_softc *);
291
292static void dc_setfilt(struct dc_softc *);
293
294static void dc_reset(struct dc_softc *);
295static int dc_list_rx_init(struct dc_softc *);
296static int dc_list_tx_init(struct dc_softc *);
297
298static int dc_read_srom(struct dc_softc *, int);
299static int dc_parse_21143_srom(struct dc_softc *);
300static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
301static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
302static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
303static void dc_apply_fixup(struct dc_softc *, int);
304static int dc_check_multiport(struct dc_softc *);
305
306/*
307 * MII bit-bang glue
308 */
309static uint32_t dc_mii_bitbang_read(device_t);
310static void dc_mii_bitbang_write(device_t, uint32_t);
311
312static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
313	dc_mii_bitbang_read,
314	dc_mii_bitbang_write,
315	{
316		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
317		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
318		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
319		0,			/* MII_BIT_DIR_HOST_PHY */
320		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
321	}
322};
323
324#ifdef DC_USEIOSPACE
325#define	DC_RES			SYS_RES_IOPORT
326#define	DC_RID			DC_PCI_CFBIO
327#else
328#define	DC_RES			SYS_RES_MEMORY
329#define	DC_RID			DC_PCI_CFBMA
330#endif
331
332static device_method_t dc_methods[] = {
333	/* Device interface */
334	DEVMETHOD(device_probe,		dc_probe),
335	DEVMETHOD(device_attach,	dc_attach),
336	DEVMETHOD(device_detach,	dc_detach),
337	DEVMETHOD(device_suspend,	dc_suspend),
338	DEVMETHOD(device_resume,	dc_resume),
339	DEVMETHOD(device_shutdown,	dc_shutdown),
340
341	/* MII interface */
342	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
343	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
344	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
345	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
346
347	DEVMETHOD_END
348};
349
350static driver_t dc_driver = {
351	"dc",
352	dc_methods,
353	sizeof(struct dc_softc)
354};
355
356static devclass_t dc_devclass;
357
358DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
359    SI_ORDER_ANY);
360DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
361
362#define	DC_SETBIT(sc, reg, x)				\
363	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
364
365#define	DC_CLRBIT(sc, reg, x)				\
366	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
367
368#define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
369#define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
370
371static void
372dc_delay(struct dc_softc *sc)
373{
374	int idx;
375
376	for (idx = (300 / 33) + 1; idx > 0; idx--)
377		CSR_READ_4(sc, DC_BUSCTL);
378}
379
380static void
381dc_eeprom_width(struct dc_softc *sc)
382{
383	int i;
384
385	/* Force EEPROM to idle state. */
386	dc_eeprom_idle(sc);
387
388	/* Enter EEPROM access mode. */
389	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
390	dc_delay(sc);
391	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
392	dc_delay(sc);
393	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394	dc_delay(sc);
395	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
396	dc_delay(sc);
397
398	for (i = 3; i--;) {
399		if (6 & (1 << i))
400			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
401		else
402			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
403		dc_delay(sc);
404		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405		dc_delay(sc);
406		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407		dc_delay(sc);
408	}
409
410	for (i = 1; i <= 12; i++) {
411		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412		dc_delay(sc);
413		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
414			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415			dc_delay(sc);
416			break;
417		}
418		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419		dc_delay(sc);
420	}
421
422	/* Turn off EEPROM access mode. */
423	dc_eeprom_idle(sc);
424
425	if (i < 4 || i > 12)
426		sc->dc_romwidth = 6;
427	else
428		sc->dc_romwidth = i;
429
430	/* Enter EEPROM access mode. */
431	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
432	dc_delay(sc);
433	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
434	dc_delay(sc);
435	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436	dc_delay(sc);
437	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
438	dc_delay(sc);
439
440	/* Turn off EEPROM access mode. */
441	dc_eeprom_idle(sc);
442}
443
444static void
445dc_eeprom_idle(struct dc_softc *sc)
446{
447	int i;
448
449	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
450	dc_delay(sc);
451	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
452	dc_delay(sc);
453	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
454	dc_delay(sc);
455	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
456	dc_delay(sc);
457
458	for (i = 0; i < 25; i++) {
459		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
460		dc_delay(sc);
461		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
462		dc_delay(sc);
463	}
464
465	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466	dc_delay(sc);
467	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
468	dc_delay(sc);
469	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
470}
471
472/*
473 * Send a read command and address to the EEPROM, check for ACK.
474 */
475static void
476dc_eeprom_putbyte(struct dc_softc *sc, int addr)
477{
478	int d, i;
479
480	d = DC_EECMD_READ >> 6;
481	for (i = 3; i--; ) {
482		if (d & (1 << i))
483			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
484		else
485			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
486		dc_delay(sc);
487		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
488		dc_delay(sc);
489		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
490		dc_delay(sc);
491	}
492
493	/*
494	 * Feed in each bit and strobe the clock.
495	 */
496	for (i = sc->dc_romwidth; i--;) {
497		if (addr & (1 << i)) {
498			SIO_SET(DC_SIO_EE_DATAIN);
499		} else {
500			SIO_CLR(DC_SIO_EE_DATAIN);
501		}
502		dc_delay(sc);
503		SIO_SET(DC_SIO_EE_CLK);
504		dc_delay(sc);
505		SIO_CLR(DC_SIO_EE_CLK);
506		dc_delay(sc);
507	}
508}
509
510/*
511 * Read a word of data stored in the EEPROM at address 'addr.'
512 * The PNIC 82c168/82c169 has its own non-standard way to read
513 * the EEPROM.
514 */
515static void
516dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
517{
518	int i;
519	uint32_t r;
520
521	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
522
523	for (i = 0; i < DC_TIMEOUT; i++) {
524		DELAY(1);
525		r = CSR_READ_4(sc, DC_SIO);
526		if (!(r & DC_PN_SIOCTL_BUSY)) {
527			*dest = (uint16_t)(r & 0xFFFF);
528			return;
529		}
530	}
531}
532
533/*
534 * Read a word of data stored in the EEPROM at address 'addr.'
535 * The Xircom X3201 has its own non-standard way to read
536 * the EEPROM, too.
537 */
538static void
539dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
540{
541
542	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
543
544	addr *= 2;
545	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
546	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
547	addr += 1;
548	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
549	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
550
551	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
552}
553
554/*
555 * Read a word of data stored in the EEPROM at address 'addr.'
556 */
557static void
558dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
559{
560	int i;
561	uint16_t word = 0;
562
563	/* Force EEPROM to idle state. */
564	dc_eeprom_idle(sc);
565
566	/* Enter EEPROM access mode. */
567	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
568	dc_delay(sc);
569	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
570	dc_delay(sc);
571	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
572	dc_delay(sc);
573	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
574	dc_delay(sc);
575
576	/*
577	 * Send address of word we want to read.
578	 */
579	dc_eeprom_putbyte(sc, addr);
580
581	/*
582	 * Start reading bits from EEPROM.
583	 */
584	for (i = 0x8000; i; i >>= 1) {
585		SIO_SET(DC_SIO_EE_CLK);
586		dc_delay(sc);
587		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
588			word |= i;
589		dc_delay(sc);
590		SIO_CLR(DC_SIO_EE_CLK);
591		dc_delay(sc);
592	}
593
594	/* Turn off EEPROM access mode. */
595	dc_eeprom_idle(sc);
596
597	*dest = word;
598}
599
600/*
601 * Read a sequence of words from the EEPROM.
602 */
603static void
604dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
605{
606	int i;
607	uint16_t word = 0, *ptr;
608
609	for (i = 0; i < cnt; i++) {
610		if (DC_IS_PNIC(sc))
611			dc_eeprom_getword_pnic(sc, off + i, &word);
612		else if (DC_IS_XIRCOM(sc))
613			dc_eeprom_getword_xircom(sc, off + i, &word);
614		else
615			dc_eeprom_getword(sc, off + i, &word);
616		ptr = (uint16_t *)(dest + (i * 2));
617		if (be)
618			*ptr = be16toh(word);
619		else
620			*ptr = le16toh(word);
621	}
622}
623
624/*
625 * Write the MII serial port for the MII bit-bang module.
626 */
627static void
628dc_mii_bitbang_write(device_t dev, uint32_t val)
629{
630	struct dc_softc *sc;
631
632	sc = device_get_softc(dev);
633
634	CSR_WRITE_4(sc, DC_SIO, val);
635	CSR_BARRIER_4(sc, DC_SIO,
636	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
637}
638
639/*
640 * Read the MII serial port for the MII bit-bang module.
641 */
642static uint32_t
643dc_mii_bitbang_read(device_t dev)
644{
645	struct dc_softc *sc;
646	uint32_t val;
647
648	sc = device_get_softc(dev);
649
650	val = CSR_READ_4(sc, DC_SIO);
651	CSR_BARRIER_4(sc, DC_SIO,
652	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
653
654	return (val);
655}
656
657static int
658dc_miibus_readreg(device_t dev, int phy, int reg)
659{
660	struct dc_softc *sc;
661	int i, rval, phy_reg = 0;
662
663	sc = device_get_softc(dev);
664
665	if (sc->dc_pmode != DC_PMODE_MII) {
666		if (phy == (MII_NPHY - 1)) {
667			switch (reg) {
668			case MII_BMSR:
669			/*
670			 * Fake something to make the probe
671			 * code think there's a PHY here.
672			 */
673				return (BMSR_MEDIAMASK);
674			case MII_PHYIDR1:
675				if (DC_IS_PNIC(sc))
676					return (DC_VENDORID_LO);
677				return (DC_VENDORID_DEC);
678			case MII_PHYIDR2:
679				if (DC_IS_PNIC(sc))
680					return (DC_DEVICEID_82C168);
681				return (DC_DEVICEID_21143);
682			default:
683				return (0);
684			}
685		} else
686			return (0);
687	}
688
689	if (DC_IS_PNIC(sc)) {
690		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
691		    (phy << 23) | (reg << 18));
692		for (i = 0; i < DC_TIMEOUT; i++) {
693			DELAY(1);
694			rval = CSR_READ_4(sc, DC_PN_MII);
695			if (!(rval & DC_PN_MII_BUSY)) {
696				rval &= 0xFFFF;
697				return (rval == 0xFFFF ? 0 : rval);
698			}
699		}
700		return (0);
701	}
702
703	if (sc->dc_type == DC_TYPE_ULI_M5263) {
704		CSR_WRITE_4(sc, DC_ROM,
705		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
706		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
707		    DC_ULI_PHY_OP_READ);
708		for (i = 0; i < DC_TIMEOUT; i++) {
709			DELAY(1);
710			rval = CSR_READ_4(sc, DC_ROM);
711			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
712				return (rval & DC_ULI_PHY_DATA_MASK);
713			}
714		}
715		if (i == DC_TIMEOUT)
716			device_printf(dev, "phy read timed out\n");
717		return (0);
718	}
719
720	if (DC_IS_COMET(sc)) {
721		switch (reg) {
722		case MII_BMCR:
723			phy_reg = DC_AL_BMCR;
724			break;
725		case MII_BMSR:
726			phy_reg = DC_AL_BMSR;
727			break;
728		case MII_PHYIDR1:
729			phy_reg = DC_AL_VENID;
730			break;
731		case MII_PHYIDR2:
732			phy_reg = DC_AL_DEVID;
733			break;
734		case MII_ANAR:
735			phy_reg = DC_AL_ANAR;
736			break;
737		case MII_ANLPAR:
738			phy_reg = DC_AL_LPAR;
739			break;
740		case MII_ANER:
741			phy_reg = DC_AL_ANER;
742			break;
743		default:
744			device_printf(dev, "phy_read: bad phy register %x\n",
745			    reg);
746			return (0);
747		}
748
749		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
750		if (rval == 0xFFFF)
751			return (0);
752		return (rval);
753	}
754
755	if (sc->dc_type == DC_TYPE_98713) {
756		phy_reg = CSR_READ_4(sc, DC_NETCFG);
757		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
758	}
759	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
760	if (sc->dc_type == DC_TYPE_98713)
761		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
762
763	return (rval);
764}
765
766static int
767dc_miibus_writereg(device_t dev, int phy, int reg, int data)
768{
769	struct dc_softc *sc;
770	int i, phy_reg = 0;
771
772	sc = device_get_softc(dev);
773
774	if (DC_IS_PNIC(sc)) {
775		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
776		    (phy << 23) | (reg << 10) | data);
777		for (i = 0; i < DC_TIMEOUT; i++) {
778			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
779				break;
780		}
781		return (0);
782	}
783
784	if (sc->dc_type == DC_TYPE_ULI_M5263) {
785		CSR_WRITE_4(sc, DC_ROM,
786		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
787		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
788		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
789		    DC_ULI_PHY_OP_WRITE);
790		DELAY(1);
791		return (0);
792	}
793
794	if (DC_IS_COMET(sc)) {
795		switch (reg) {
796		case MII_BMCR:
797			phy_reg = DC_AL_BMCR;
798			break;
799		case MII_BMSR:
800			phy_reg = DC_AL_BMSR;
801			break;
802		case MII_PHYIDR1:
803			phy_reg = DC_AL_VENID;
804			break;
805		case MII_PHYIDR2:
806			phy_reg = DC_AL_DEVID;
807			break;
808		case MII_ANAR:
809			phy_reg = DC_AL_ANAR;
810			break;
811		case MII_ANLPAR:
812			phy_reg = DC_AL_LPAR;
813			break;
814		case MII_ANER:
815			phy_reg = DC_AL_ANER;
816			break;
817		default:
818			device_printf(dev, "phy_write: bad phy register %x\n",
819			    reg);
820			return (0);
821			break;
822		}
823
824		CSR_WRITE_4(sc, phy_reg, data);
825		return (0);
826	}
827
828	if (sc->dc_type == DC_TYPE_98713) {
829		phy_reg = CSR_READ_4(sc, DC_NETCFG);
830		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
831	}
832	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
833	if (sc->dc_type == DC_TYPE_98713)
834		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
835
836	return (0);
837}
838
839static void
840dc_miibus_statchg(device_t dev)
841{
842	struct dc_softc *sc;
843	struct ifnet *ifp;
844	struct mii_data *mii;
845	struct ifmedia *ifm;
846
847	sc = device_get_softc(dev);
848
849	mii = device_get_softc(sc->dc_miibus);
850	ifp = sc->dc_ifp;
851	if (mii == NULL || ifp == NULL ||
852	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
853		return;
854
855	ifm = &mii->mii_media;
856	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
857		dc_setcfg(sc, ifm->ifm_media);
858		return;
859	} else if (!DC_IS_ADMTEK(sc))
860		dc_setcfg(sc, mii->mii_media_active);
861
862	sc->dc_link = 0;
863	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
864	    (IFM_ACTIVE | IFM_AVALID)) {
865		switch (IFM_SUBTYPE(mii->mii_media_active)) {
866		case IFM_10_T:
867		case IFM_100_TX:
868			sc->dc_link = 1;
869			break;
870		}
871	}
872}
873
874/*
875 * Special support for DM9102A cards with HomePNA PHYs. Note:
876 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
877 * to be impossible to talk to the management interface of the DM9801
878 * PHY (its MDIO pin is not connected to anything). Consequently,
879 * the driver has to just 'know' about the additional mode and deal
880 * with it itself. *sigh*
881 */
882static void
883dc_miibus_mediainit(device_t dev)
884{
885	struct dc_softc *sc;
886	struct mii_data *mii;
887	struct ifmedia *ifm;
888	int rev;
889
890	rev = pci_get_revid(dev);
891
892	sc = device_get_softc(dev);
893	mii = device_get_softc(sc->dc_miibus);
894	ifm = &mii->mii_media;
895
896	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
897		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
898}
899
900#define	DC_BITS_512	9
901#define	DC_BITS_128	7
902#define	DC_BITS_64	6
903
904static uint32_t
905dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
906{
907	uint32_t crc;
908
909	/* Compute CRC for the address value. */
910	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
911
912	/*
913	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
914	 * chips is only 128 bits wide.
915	 */
916	if (sc->dc_flags & DC_128BIT_HASH)
917		return (crc & ((1 << DC_BITS_128) - 1));
918
919	/* The hash table on the MX98715BEC is only 64 bits wide. */
920	if (sc->dc_flags & DC_64BIT_HASH)
921		return (crc & ((1 << DC_BITS_64) - 1));
922
923	/* Xircom's hash filtering table is different (read: weird) */
924	/* Xircom uses the LEAST significant bits */
925	if (DC_IS_XIRCOM(sc)) {
926		if ((crc & 0x180) == 0x180)
927			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
928		else
929			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
930			    (12 << 4));
931	}
932
933	return (crc & ((1 << DC_BITS_512) - 1));
934}
935
936/*
937 * Calculate CRC of a multicast group address, return the lower 6 bits.
938 */
939static uint32_t
940dc_mchash_be(const uint8_t *addr)
941{
942	uint32_t crc;
943
944	/* Compute CRC for the address value. */
945	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
946
947	/* Return the filter bit position. */
948	return ((crc >> 26) & 0x0000003F);
949}
950
951/*
952 * 21143-style RX filter setup routine. Filter programming is done by
953 * downloading a special setup frame into the TX engine. 21143, Macronix,
954 * PNIC, PNIC II and Davicom chips are programmed this way.
955 *
956 * We always program the chip using 'hash perfect' mode, i.e. one perfect
957 * address (our node address) and a 512-bit hash filter for multicast
958 * frames. We also sneak the broadcast address into the hash filter since
959 * we need that too.
960 */
961static void
962dc_setfilt_21143(struct dc_softc *sc)
963{
964	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
965	struct dc_desc *sframe;
966	uint32_t h, *sp;
967	struct ifmultiaddr *ifma;
968	struct ifnet *ifp;
969	int i;
970
971	ifp = sc->dc_ifp;
972
973	i = sc->dc_cdata.dc_tx_prod;
974	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
975	sc->dc_cdata.dc_tx_cnt++;
976	sframe = &sc->dc_ldata.dc_tx_list[i];
977	sp = sc->dc_cdata.dc_sbuf;
978	bzero(sp, DC_SFRAME_LEN);
979
980	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
981	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
982	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
983
984	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
985
986	/* If we want promiscuous mode, set the allframes bit. */
987	if (ifp->if_flags & IFF_PROMISC)
988		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
989	else
990		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
991
992	if (ifp->if_flags & IFF_ALLMULTI)
993		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
994	else
995		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
996
997	if_maddr_rlock(ifp);
998	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
999		if (ifma->ifma_addr->sa_family != AF_LINK)
1000			continue;
1001		h = dc_mchash_le(sc,
1002		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1003		sp[h >> 4] |= htole32(1 << (h & 0xF));
1004	}
1005	if_maddr_runlock(ifp);
1006
1007	if (ifp->if_flags & IFF_BROADCAST) {
1008		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1009		sp[h >> 4] |= htole32(1 << (h & 0xF));
1010	}
1011
1012	/* Set our MAC address. */
1013	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1014	sp[39] = DC_SP_MAC(eaddr[0]);
1015	sp[40] = DC_SP_MAC(eaddr[1]);
1016	sp[41] = DC_SP_MAC(eaddr[2]);
1017
1018	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1019	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1020	    BUS_DMASYNC_PREWRITE);
1021	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1022	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1023
1024	/*
1025	 * The PNIC takes an exceedingly long time to process its
1026	 * setup frame; wait 10ms after posting the setup frame
1027	 * before proceeding, just so it has time to swallow its
1028	 * medicine.
1029	 */
1030	DELAY(10000);
1031
1032	sc->dc_wdog_timer = 5;
1033}
1034
1035static void
1036dc_setfilt_admtek(struct dc_softc *sc)
1037{
1038	uint8_t eaddr[ETHER_ADDR_LEN];
1039	struct ifnet *ifp;
1040	struct ifmultiaddr *ifma;
1041	int h = 0;
1042	uint32_t hashes[2] = { 0, 0 };
1043
1044	ifp = sc->dc_ifp;
1045
1046	/* Init our MAC address. */
1047	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1048	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1049	    eaddr[1] << 8 | eaddr[0]);
1050	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1051
1052	/* If we want promiscuous mode, set the allframes bit. */
1053	if (ifp->if_flags & IFF_PROMISC)
1054		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1055	else
1056		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1057
1058	if (ifp->if_flags & IFF_ALLMULTI)
1059		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1060	else
1061		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1062
1063	/* First, zot all the existing hash bits. */
1064	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1065	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1066
1067	/*
1068	 * If we're already in promisc or allmulti mode, we
1069	 * don't have to bother programming the multicast filter.
1070	 */
1071	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1072		return;
1073
1074	/* Now program new ones. */
1075	if_maddr_rlock(ifp);
1076	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1077		if (ifma->ifma_addr->sa_family != AF_LINK)
1078			continue;
1079		if (DC_IS_CENTAUR(sc))
1080			h = dc_mchash_le(sc,
1081			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1082		else
1083			h = dc_mchash_be(
1084			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1085		if (h < 32)
1086			hashes[0] |= (1 << h);
1087		else
1088			hashes[1] |= (1 << (h - 32));
1089	}
1090	if_maddr_runlock(ifp);
1091
1092	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1093	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1094}
1095
1096static void
1097dc_setfilt_asix(struct dc_softc *sc)
1098{
1099	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1100	struct ifnet *ifp;
1101	struct ifmultiaddr *ifma;
1102	int h = 0;
1103	uint32_t hashes[2] = { 0, 0 };
1104
1105	ifp = sc->dc_ifp;
1106
1107	/* Init our MAC address. */
1108	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1109	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1110	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1111	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1112	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1113
1114	/* If we want promiscuous mode, set the allframes bit. */
1115	if (ifp->if_flags & IFF_PROMISC)
1116		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1117	else
1118		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1119
1120	if (ifp->if_flags & IFF_ALLMULTI)
1121		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1122	else
1123		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1124
1125	/*
1126	 * The ASIX chip has a special bit to enable reception
1127	 * of broadcast frames.
1128	 */
1129	if (ifp->if_flags & IFF_BROADCAST)
1130		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1131	else
1132		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1133
1134	/* first, zot all the existing hash bits */
1135	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1136	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1137	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1138	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1139
1140	/*
1141	 * If we're already in promisc or allmulti mode, we
1142	 * don't have to bother programming the multicast filter.
1143	 */
1144	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1145		return;
1146
1147	/* now program new ones */
1148	if_maddr_rlock(ifp);
1149	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1150		if (ifma->ifma_addr->sa_family != AF_LINK)
1151			continue;
1152		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1153		if (h < 32)
1154			hashes[0] |= (1 << h);
1155		else
1156			hashes[1] |= (1 << (h - 32));
1157	}
1158	if_maddr_runlock(ifp);
1159
1160	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1161	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1162	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1163	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1164}
1165
1166static void
1167dc_setfilt_uli(struct dc_softc *sc)
1168{
1169	uint8_t eaddr[ETHER_ADDR_LEN];
1170	struct ifnet *ifp;
1171	struct ifmultiaddr *ifma;
1172	struct dc_desc *sframe;
1173	uint32_t filter, *sp;
1174	uint8_t *ma;
1175	int i, mcnt;
1176
1177	ifp = sc->dc_ifp;
1178
1179	i = sc->dc_cdata.dc_tx_prod;
1180	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1181	sc->dc_cdata.dc_tx_cnt++;
1182	sframe = &sc->dc_ldata.dc_tx_list[i];
1183	sp = sc->dc_cdata.dc_sbuf;
1184	bzero(sp, DC_SFRAME_LEN);
1185
1186	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1187	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1188	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1189
1190	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1191
1192	/* Set station address. */
1193	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1194	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1195	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1196	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1197
1198	/* Set broadcast address. */
1199	*sp++ = DC_SP_MAC(0xFFFF);
1200	*sp++ = DC_SP_MAC(0xFFFF);
1201	*sp++ = DC_SP_MAC(0xFFFF);
1202
1203	/* Extract current filter configuration. */
1204	filter = CSR_READ_4(sc, DC_NETCFG);
1205	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1206
1207	/* Now build perfect filters. */
1208	mcnt = 0;
1209	if_maddr_rlock(ifp);
1210	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1211		if (ifma->ifma_addr->sa_family != AF_LINK)
1212			continue;
1213		if (mcnt >= DC_ULI_FILTER_NPERF) {
1214			filter |= DC_NETCFG_RX_ALLMULTI;
1215			break;
1216		}
1217		ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1218		*sp++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1219		*sp++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1220		*sp++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1221		mcnt++;
1222	}
1223	if_maddr_runlock(ifp);
1224
1225	for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1226		*sp++ = DC_SP_MAC(0xFFFF);
1227		*sp++ = DC_SP_MAC(0xFFFF);
1228		*sp++ = DC_SP_MAC(0xFFFF);
1229	}
1230
1231	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1232		CSR_WRITE_4(sc, DC_NETCFG,
1233		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1234	if (ifp->if_flags & IFF_PROMISC)
1235		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1236	if (ifp->if_flags & IFF_ALLMULTI)
1237		filter |= DC_NETCFG_RX_ALLMULTI;
1238	CSR_WRITE_4(sc, DC_NETCFG,
1239	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1240	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1241		CSR_WRITE_4(sc, DC_NETCFG, filter);
1242
1243	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1244	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1245	    BUS_DMASYNC_PREWRITE);
1246	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1247	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1248
1249	/*
1250	 * Wait some time...
1251	 */
1252	DELAY(1000);
1253
1254	sc->dc_wdog_timer = 5;
1255}
1256
1257static void
1258dc_setfilt_xircom(struct dc_softc *sc)
1259{
1260	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1261	struct ifnet *ifp;
1262	struct ifmultiaddr *ifma;
1263	struct dc_desc *sframe;
1264	uint32_t h, *sp;
1265	int i;
1266
1267	ifp = sc->dc_ifp;
1268	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1269
1270	i = sc->dc_cdata.dc_tx_prod;
1271	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1272	sc->dc_cdata.dc_tx_cnt++;
1273	sframe = &sc->dc_ldata.dc_tx_list[i];
1274	sp = sc->dc_cdata.dc_sbuf;
1275	bzero(sp, DC_SFRAME_LEN);
1276
1277	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1278	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1279	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1280
1281	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1282
1283	/* If we want promiscuous mode, set the allframes bit. */
1284	if (ifp->if_flags & IFF_PROMISC)
1285		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1286	else
1287		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1288
1289	if (ifp->if_flags & IFF_ALLMULTI)
1290		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1291	else
1292		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1293
1294	if_maddr_rlock(ifp);
1295	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1296		if (ifma->ifma_addr->sa_family != AF_LINK)
1297			continue;
1298		h = dc_mchash_le(sc,
1299		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1300		sp[h >> 4] |= htole32(1 << (h & 0xF));
1301	}
1302	if_maddr_runlock(ifp);
1303
1304	if (ifp->if_flags & IFF_BROADCAST) {
1305		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1306		sp[h >> 4] |= htole32(1 << (h & 0xF));
1307	}
1308
1309	/* Set our MAC address. */
1310	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1311	sp[0] = DC_SP_MAC(eaddr[0]);
1312	sp[1] = DC_SP_MAC(eaddr[1]);
1313	sp[2] = DC_SP_MAC(eaddr[2]);
1314
1315	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1316	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1317	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1318	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1319	    BUS_DMASYNC_PREWRITE);
1320	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1321	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1322
1323	/*
1324	 * Wait some time...
1325	 */
1326	DELAY(1000);
1327
1328	sc->dc_wdog_timer = 5;
1329}
1330
1331static void
1332dc_setfilt(struct dc_softc *sc)
1333{
1334
1335	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1336	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1337		dc_setfilt_21143(sc);
1338
1339	if (DC_IS_ASIX(sc))
1340		dc_setfilt_asix(sc);
1341
1342	if (DC_IS_ADMTEK(sc))
1343		dc_setfilt_admtek(sc);
1344
1345	if (DC_IS_ULI(sc))
1346		dc_setfilt_uli(sc);
1347
1348	if (DC_IS_XIRCOM(sc))
1349		dc_setfilt_xircom(sc);
1350}
1351
1352static void
1353dc_netcfg_wait(struct dc_softc *sc)
1354{
1355	uint32_t isr;
1356	int i;
1357
1358	for (i = 0; i < DC_TIMEOUT; i++) {
1359		isr = CSR_READ_4(sc, DC_ISR);
1360		if (isr & DC_ISR_TX_IDLE &&
1361		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1362		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1363			break;
1364		DELAY(10);
1365	}
1366	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1367		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1368			device_printf(sc->dc_dev,
1369			    "%s: failed to force tx to idle state\n", __func__);
1370		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1371		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1372		    !DC_HAS_BROKEN_RXSTATE(sc))
1373			device_printf(sc->dc_dev,
1374			    "%s: failed to force rx to idle state\n", __func__);
1375	}
1376}
1377
1378/*
1379 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1380 * the netconfig register, we first have to put the transmit and/or
1381 * receive logic in the idle state.
1382 */
1383static void
1384dc_setcfg(struct dc_softc *sc, int media)
1385{
1386	int restart = 0, watchdogreg;
1387
1388	if (IFM_SUBTYPE(media) == IFM_NONE)
1389		return;
1390
1391	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1392		restart = 1;
1393		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1394		dc_netcfg_wait(sc);
1395	}
1396
1397	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1398		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1399		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1400		if (sc->dc_pmode == DC_PMODE_MII) {
1401			if (DC_IS_INTEL(sc)) {
1402			/* There's a write enable bit here that reads as 1. */
1403				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1404				watchdogreg &= ~DC_WDOG_CTLWREN;
1405				watchdogreg |= DC_WDOG_JABBERDIS;
1406				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1407			} else {
1408				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1409			}
1410			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1411			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1412			if (sc->dc_type == DC_TYPE_98713)
1413				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1414				    DC_NETCFG_SCRAMBLER));
1415			if (!DC_IS_DAVICOM(sc))
1416				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1417			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1418		} else {
1419			if (DC_IS_PNIC(sc)) {
1420				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1421				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1422				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1423			}
1424			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1425			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1426			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1427		}
1428	}
1429
1430	if (IFM_SUBTYPE(media) == IFM_10_T) {
1431		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1432		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1433		if (sc->dc_pmode == DC_PMODE_MII) {
1434			/* There's a write enable bit here that reads as 1. */
1435			if (DC_IS_INTEL(sc)) {
1436				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1437				watchdogreg &= ~DC_WDOG_CTLWREN;
1438				watchdogreg |= DC_WDOG_JABBERDIS;
1439				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1440			} else {
1441				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1442			}
1443			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1444			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1445			if (sc->dc_type == DC_TYPE_98713)
1446				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1447			if (!DC_IS_DAVICOM(sc))
1448				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1449			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1450		} else {
1451			if (DC_IS_PNIC(sc)) {
1452				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1453				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1454				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1455			}
1456			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1457			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1458			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1459			if (DC_IS_INTEL(sc)) {
1460				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1461				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462				if ((media & IFM_GMASK) == IFM_FDX)
1463					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1464				else
1465					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1466				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1467				DC_CLRBIT(sc, DC_10BTCTRL,
1468				    DC_TCTL_AUTONEGENBL);
1469				DELAY(20000);
1470			}
1471		}
1472	}
1473
1474	/*
1475	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1476	 * PHY and we want HomePNA mode, set the portsel bit to turn
1477	 * on the external MII port.
1478	 */
1479	if (DC_IS_DAVICOM(sc)) {
1480		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1481			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1482			sc->dc_link = 1;
1483		} else {
1484			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1485		}
1486	}
1487
1488	if ((media & IFM_GMASK) == IFM_FDX) {
1489		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1490		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1491			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1492	} else {
1493		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1494		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1495			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1496	}
1497
1498	if (restart)
1499		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1500}
1501
1502static void
1503dc_reset(struct dc_softc *sc)
1504{
1505	int i;
1506
1507	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1508
1509	for (i = 0; i < DC_TIMEOUT; i++) {
1510		DELAY(10);
1511		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1512			break;
1513	}
1514
1515	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1516	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1517		DELAY(10000);
1518		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1519		i = 0;
1520	}
1521
1522	if (i == DC_TIMEOUT)
1523		device_printf(sc->dc_dev, "reset never completed!\n");
1524
1525	/* Wait a little while for the chip to get its brains in order. */
1526	DELAY(1000);
1527
1528	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1529	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1530	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1531
1532	/*
1533	 * Bring the SIA out of reset. In some cases, it looks
1534	 * like failing to unreset the SIA soon enough gets it
1535	 * into a state where it will never come out of reset
1536	 * until we reset the whole chip again.
1537	 */
1538	if (DC_IS_INTEL(sc)) {
1539		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1540		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1541		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1542	}
1543}
1544
1545static const struct dc_type *
1546dc_devtype(device_t dev)
1547{
1548	const struct dc_type *t;
1549	uint32_t devid;
1550	uint8_t rev;
1551
1552	t = dc_devs;
1553	devid = pci_get_devid(dev);
1554	rev = pci_get_revid(dev);
1555
1556	while (t->dc_name != NULL) {
1557		if (devid == t->dc_devid && rev >= t->dc_minrev)
1558			return (t);
1559		t++;
1560	}
1561
1562	return (NULL);
1563}
1564
1565/*
1566 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1567 * IDs against our list and return a device name if we find a match.
1568 * We do a little bit of extra work to identify the exact type of
1569 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1570 * but different revision IDs. The same is true for 98715/98715A
1571 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1572 * cases, the exact chip revision affects driver behavior.
1573 */
1574static int
1575dc_probe(device_t dev)
1576{
1577	const struct dc_type *t;
1578
1579	t = dc_devtype(dev);
1580
1581	if (t != NULL) {
1582		device_set_desc(dev, t->dc_name);
1583		return (BUS_PROBE_DEFAULT);
1584	}
1585
1586	return (ENXIO);
1587}
1588
1589static void
1590dc_apply_fixup(struct dc_softc *sc, int media)
1591{
1592	struct dc_mediainfo *m;
1593	uint8_t *p;
1594	int i;
1595	uint32_t reg;
1596
1597	m = sc->dc_mi;
1598
1599	while (m != NULL) {
1600		if (m->dc_media == media)
1601			break;
1602		m = m->dc_next;
1603	}
1604
1605	if (m == NULL)
1606		return;
1607
1608	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1609		reg = (p[0] | (p[1] << 8)) << 16;
1610		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1611	}
1612
1613	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1614		reg = (p[0] | (p[1] << 8)) << 16;
1615		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1616	}
1617}
1618
1619static int
1620dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1621{
1622	struct dc_mediainfo *m;
1623
1624	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1625	if (m == NULL) {
1626		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1627		return (ENOMEM);
1628	}
1629	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1630	case DC_SIA_CODE_10BT:
1631		m->dc_media = IFM_10_T;
1632		break;
1633	case DC_SIA_CODE_10BT_FDX:
1634		m->dc_media = IFM_10_T | IFM_FDX;
1635		break;
1636	case DC_SIA_CODE_10B2:
1637		m->dc_media = IFM_10_2;
1638		break;
1639	case DC_SIA_CODE_10B5:
1640		m->dc_media = IFM_10_5;
1641		break;
1642	default:
1643		break;
1644	}
1645
1646	/*
1647	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1648	 * Things apparently already work for cards that do
1649	 * supply Media Specific Data.
1650	 */
1651	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1652		m->dc_gp_len = 2;
1653		m->dc_gp_ptr =
1654		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1655	} else {
1656		m->dc_gp_len = 2;
1657		m->dc_gp_ptr =
1658		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1659	}
1660
1661	m->dc_next = sc->dc_mi;
1662	sc->dc_mi = m;
1663
1664	sc->dc_pmode = DC_PMODE_SIA;
1665	return (0);
1666}
1667
1668static int
1669dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1670{
1671	struct dc_mediainfo *m;
1672
1673	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1674	if (m == NULL) {
1675		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1676		return (ENOMEM);
1677	}
1678	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1679		m->dc_media = IFM_100_TX;
1680
1681	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1682		m->dc_media = IFM_100_TX | IFM_FDX;
1683
1684	m->dc_gp_len = 2;
1685	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1686
1687	m->dc_next = sc->dc_mi;
1688	sc->dc_mi = m;
1689
1690	sc->dc_pmode = DC_PMODE_SYM;
1691	return (0);
1692}
1693
1694static int
1695dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1696{
1697	struct dc_mediainfo *m;
1698	uint8_t *p;
1699
1700	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1701	if (m == NULL) {
1702		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1703		return (ENOMEM);
1704	}
1705	/* We abuse IFM_AUTO to represent MII. */
1706	m->dc_media = IFM_AUTO;
1707	m->dc_gp_len = l->dc_gpr_len;
1708
1709	p = (uint8_t *)l;
1710	p += sizeof(struct dc_eblock_mii);
1711	m->dc_gp_ptr = p;
1712	p += 2 * l->dc_gpr_len;
1713	m->dc_reset_len = *p;
1714	p++;
1715	m->dc_reset_ptr = p;
1716
1717	m->dc_next = sc->dc_mi;
1718	sc->dc_mi = m;
1719	return (0);
1720}
1721
1722static int
1723dc_read_srom(struct dc_softc *sc, int bits)
1724{
1725	int size;
1726
1727	size = DC_ROM_SIZE(bits);
1728	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1729	if (sc->dc_srom == NULL) {
1730		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1731		return (ENOMEM);
1732	}
1733	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1734	return (0);
1735}
1736
1737static int
1738dc_parse_21143_srom(struct dc_softc *sc)
1739{
1740	struct dc_leaf_hdr *lhdr;
1741	struct dc_eblock_hdr *hdr;
1742	int error, have_mii, i, loff;
1743	char *ptr;
1744
1745	have_mii = 0;
1746	loff = sc->dc_srom[27];
1747	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1748
1749	ptr = (char *)lhdr;
1750	ptr += sizeof(struct dc_leaf_hdr) - 1;
1751	/*
1752	 * Look if we got a MII media block.
1753	 */
1754	for (i = 0; i < lhdr->dc_mcnt; i++) {
1755		hdr = (struct dc_eblock_hdr *)ptr;
1756		if (hdr->dc_type == DC_EBLOCK_MII)
1757		    have_mii++;
1758
1759		ptr += (hdr->dc_len & 0x7F);
1760		ptr++;
1761	}
1762
1763	/*
1764	 * Do the same thing again. Only use SIA and SYM media
1765	 * blocks if no MII media block is available.
1766	 */
1767	ptr = (char *)lhdr;
1768	ptr += sizeof(struct dc_leaf_hdr) - 1;
1769	error = 0;
1770	for (i = 0; i < lhdr->dc_mcnt; i++) {
1771		hdr = (struct dc_eblock_hdr *)ptr;
1772		switch (hdr->dc_type) {
1773		case DC_EBLOCK_MII:
1774			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1775			break;
1776		case DC_EBLOCK_SIA:
1777			if (! have_mii)
1778				error = dc_decode_leaf_sia(sc,
1779				    (struct dc_eblock_sia *)hdr);
1780			break;
1781		case DC_EBLOCK_SYM:
1782			if (! have_mii)
1783				error = dc_decode_leaf_sym(sc,
1784				    (struct dc_eblock_sym *)hdr);
1785			break;
1786		default:
1787			/* Don't care. Yet. */
1788			break;
1789		}
1790		ptr += (hdr->dc_len & 0x7F);
1791		ptr++;
1792	}
1793	return (error);
1794}
1795
1796static void
1797dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1798{
1799	bus_addr_t *paddr;
1800
1801	KASSERT(nseg == 1,
1802	    ("%s: wrong number of segments (%d)", __func__, nseg));
1803	paddr = arg;
1804	*paddr = segs->ds_addr;
1805}
1806
1807static int
1808dc_dma_alloc(struct dc_softc *sc)
1809{
1810	int error, i;
1811
1812	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1813	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1814	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1815	    NULL, NULL, &sc->dc_ptag);
1816	if (error) {
1817		device_printf(sc->dc_dev,
1818		    "failed to allocate parent DMA tag\n");
1819		goto fail;
1820	}
1821
1822	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1823	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1824	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1825	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1826	if (error) {
1827		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1828		goto fail;
1829	}
1830
1831	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1832	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1833	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1834	if (error) {
1835		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1836		goto fail;
1837	}
1838
1839	/* RX descriptor list. */
1840	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1841	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1842	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1843	if (error) {
1844		device_printf(sc->dc_dev,
1845		    "failed to allocate DMA'able memory for RX list\n");
1846		goto fail;
1847	}
1848	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1849	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1850	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1851	if (error) {
1852		device_printf(sc->dc_dev,
1853		    "failed to load DMA'able memory for RX list\n");
1854		goto fail;
1855	}
1856	/* TX descriptor list. */
1857	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1858	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1859	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1860	if (error) {
1861		device_printf(sc->dc_dev,
1862		    "failed to allocate DMA'able memory for TX list\n");
1863		goto fail;
1864	}
1865	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1866	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1867	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1868	if (error) {
1869		device_printf(sc->dc_dev,
1870		    "cannot load DMA'able memory for TX list\n");
1871		goto fail;
1872	}
1873
1874	/*
1875	 * Allocate a busdma tag and DMA safe memory for the multicast
1876	 * setup frame.
1877	 */
1878	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1879	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1880	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1881	    0, NULL, NULL, &sc->dc_stag);
1882	if (error) {
1883		device_printf(sc->dc_dev,
1884		    "failed to create DMA tag for setup frame\n");
1885		goto fail;
1886	}
1887	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1888	    BUS_DMA_NOWAIT, &sc->dc_smap);
1889	if (error) {
1890		device_printf(sc->dc_dev,
1891		    "failed to allocate DMA'able memory for setup frame\n");
1892		goto fail;
1893	}
1894	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1895	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1896	if (error) {
1897		device_printf(sc->dc_dev,
1898		    "cannot load DMA'able memory for setup frame\n");
1899		goto fail;
1900	}
1901
1902	/* Allocate a busdma tag for RX mbufs. */
1903	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1904	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1905	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1906	if (error) {
1907		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1908		goto fail;
1909	}
1910
1911	/* Allocate a busdma tag for TX mbufs. */
1912	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1913	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1914	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1915	    0, NULL, NULL, &sc->dc_tx_mtag);
1916	if (error) {
1917		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1918		goto fail;
1919	}
1920
1921	/* Create the TX/RX busdma maps. */
1922	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1923		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1924		    &sc->dc_cdata.dc_tx_map[i]);
1925		if (error) {
1926			device_printf(sc->dc_dev,
1927			    "failed to create TX mbuf dmamap\n");
1928			goto fail;
1929		}
1930	}
1931	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1932		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1933		    &sc->dc_cdata.dc_rx_map[i]);
1934		if (error) {
1935			device_printf(sc->dc_dev,
1936			    "failed to create RX mbuf dmamap\n");
1937			goto fail;
1938		}
1939	}
1940	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1941	if (error) {
1942		device_printf(sc->dc_dev,
1943		    "failed to create spare RX mbuf dmamap\n");
1944		goto fail;
1945	}
1946
1947fail:
1948	return (error);
1949}
1950
1951static void
1952dc_dma_free(struct dc_softc *sc)
1953{
1954	int i;
1955
1956	/* RX buffers. */
1957	if (sc->dc_rx_mtag != NULL) {
1958		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1959			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1960				bus_dmamap_destroy(sc->dc_rx_mtag,
1961				    sc->dc_cdata.dc_rx_map[i]);
1962		}
1963		if (sc->dc_sparemap != NULL)
1964			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1965		bus_dma_tag_destroy(sc->dc_rx_mtag);
1966	}
1967
1968	/* TX buffers. */
1969	if (sc->dc_rx_mtag != NULL) {
1970		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1971			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1972				bus_dmamap_destroy(sc->dc_tx_mtag,
1973				    sc->dc_cdata.dc_tx_map[i]);
1974		}
1975		bus_dma_tag_destroy(sc->dc_tx_mtag);
1976	}
1977
1978	/* RX descriptor list. */
1979	if (sc->dc_rx_ltag) {
1980		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1981			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1982		if (sc->dc_ldata.dc_rx_list != NULL)
1983			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1984			    sc->dc_rx_lmap);
1985		bus_dma_tag_destroy(sc->dc_rx_ltag);
1986	}
1987
1988	/* TX descriptor list. */
1989	if (sc->dc_tx_ltag) {
1990		if (sc->dc_ldata.dc_tx_list_paddr != 0)
1991			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
1992		if (sc->dc_ldata.dc_tx_list != NULL)
1993			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
1994			    sc->dc_tx_lmap);
1995		bus_dma_tag_destroy(sc->dc_tx_ltag);
1996	}
1997
1998	/* multicast setup frame. */
1999	if (sc->dc_stag) {
2000		if (sc->dc_saddr != 0)
2001			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2002		if (sc->dc_cdata.dc_sbuf != NULL)
2003			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2004			    sc->dc_smap);
2005		bus_dma_tag_destroy(sc->dc_stag);
2006	}
2007}
2008
2009/*
2010 * Attach the interface. Allocate softc structures, do ifmedia
2011 * setup and ethernet/BPF attach.
2012 */
2013static int
2014dc_attach(device_t dev)
2015{
2016	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2017	uint32_t command;
2018	struct dc_softc *sc;
2019	struct ifnet *ifp;
2020	struct dc_mediainfo *m;
2021	uint32_t reg, revision;
2022	uint16_t *srom;
2023	int error, mac_offset, n, phy, rid, tmp;
2024	uint8_t *mac;
2025
2026	sc = device_get_softc(dev);
2027	sc->dc_dev = dev;
2028
2029	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2030	    MTX_DEF);
2031
2032	/*
2033	 * Map control/status registers.
2034	 */
2035	pci_enable_busmaster(dev);
2036
2037	rid = DC_RID;
2038	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2039
2040	if (sc->dc_res == NULL) {
2041		device_printf(dev, "couldn't map ports/memory\n");
2042		error = ENXIO;
2043		goto fail;
2044	}
2045
2046	sc->dc_btag = rman_get_bustag(sc->dc_res);
2047	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2048
2049	/* Allocate interrupt. */
2050	rid = 0;
2051	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2052	    RF_SHAREABLE | RF_ACTIVE);
2053
2054	if (sc->dc_irq == NULL) {
2055		device_printf(dev, "couldn't map interrupt\n");
2056		error = ENXIO;
2057		goto fail;
2058	}
2059
2060	/* Need this info to decide on a chip type. */
2061	sc->dc_info = dc_devtype(dev);
2062	revision = pci_get_revid(dev);
2063
2064	error = 0;
2065	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2066	if (sc->dc_info->dc_devid !=
2067	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2068	    sc->dc_info->dc_devid !=
2069	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2070		dc_eeprom_width(sc);
2071
2072	switch (sc->dc_info->dc_devid) {
2073	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2074		sc->dc_type = DC_TYPE_21143;
2075		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2076		sc->dc_flags |= DC_REDUCED_MII_POLL;
2077		/* Save EEPROM contents so we can parse them later. */
2078		error = dc_read_srom(sc, sc->dc_romwidth);
2079		if (error != 0)
2080			goto fail;
2081		break;
2082	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2083	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2084	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2085		sc->dc_type = DC_TYPE_DM9102;
2086		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2087		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2088		sc->dc_flags |= DC_TX_ALIGN;
2089		sc->dc_pmode = DC_PMODE_MII;
2090
2091		/* Increase the latency timer value. */
2092		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2093		break;
2094	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2095		sc->dc_type = DC_TYPE_AL981;
2096		sc->dc_flags |= DC_TX_USE_TX_INTR;
2097		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2098		sc->dc_pmode = DC_PMODE_MII;
2099		error = dc_read_srom(sc, sc->dc_romwidth);
2100		if (error != 0)
2101			goto fail;
2102		break;
2103	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2104	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2105	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2106	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2107	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2108	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2109	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2110	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2111	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2112	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2113	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2114	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2115	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2116	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2117	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2118		sc->dc_type = DC_TYPE_AN983;
2119		sc->dc_flags |= DC_64BIT_HASH;
2120		sc->dc_flags |= DC_TX_USE_TX_INTR;
2121		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2122		sc->dc_pmode = DC_PMODE_MII;
2123		/* Don't read SROM for - auto-loaded on reset */
2124		break;
2125	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2126	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2127		if (revision < DC_REVISION_98713A) {
2128			sc->dc_type = DC_TYPE_98713;
2129		}
2130		if (revision >= DC_REVISION_98713A) {
2131			sc->dc_type = DC_TYPE_98713A;
2132			sc->dc_flags |= DC_21143_NWAY;
2133		}
2134		sc->dc_flags |= DC_REDUCED_MII_POLL;
2135		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2136		break;
2137	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2138	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2139		/*
2140		 * Macronix MX98715AEC-C/D/E parts have only a
2141		 * 128-bit hash table. We need to deal with these
2142		 * in the same manner as the PNIC II so that we
2143		 * get the right number of bits out of the
2144		 * CRC routine.
2145		 */
2146		if (revision >= DC_REVISION_98715AEC_C &&
2147		    revision < DC_REVISION_98725)
2148			sc->dc_flags |= DC_128BIT_HASH;
2149		sc->dc_type = DC_TYPE_987x5;
2150		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2151		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2152		break;
2153	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2154		sc->dc_type = DC_TYPE_987x5;
2155		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2156		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2157		break;
2158	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2159		sc->dc_type = DC_TYPE_PNICII;
2160		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2161		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2162		break;
2163	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2164		sc->dc_type = DC_TYPE_PNIC;
2165		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2166		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2167		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2168		if (sc->dc_pnic_rx_buf == NULL) {
2169			device_printf(sc->dc_dev,
2170			    "Could not allocate PNIC RX buffer\n");
2171			error = ENOMEM;
2172			goto fail;
2173		}
2174		if (revision < DC_REVISION_82C169)
2175			sc->dc_pmode = DC_PMODE_SYM;
2176		break;
2177	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2178		sc->dc_type = DC_TYPE_ASIX;
2179		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2180		sc->dc_flags |= DC_REDUCED_MII_POLL;
2181		sc->dc_pmode = DC_PMODE_MII;
2182		break;
2183	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2184		sc->dc_type = DC_TYPE_XIRCOM;
2185		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2186				DC_TX_ALIGN;
2187		/*
2188		 * We don't actually need to coalesce, but we're doing
2189		 * it to obtain a double word aligned buffer.
2190		 * The DC_TX_COALESCE flag is required.
2191		 */
2192		sc->dc_pmode = DC_PMODE_MII;
2193		break;
2194	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2195		sc->dc_type = DC_TYPE_CONEXANT;
2196		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2197		sc->dc_flags |= DC_REDUCED_MII_POLL;
2198		sc->dc_pmode = DC_PMODE_MII;
2199		error = dc_read_srom(sc, sc->dc_romwidth);
2200		if (error != 0)
2201			goto fail;
2202		break;
2203	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2204	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2205		if (sc->dc_info->dc_devid ==
2206		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2207			sc->dc_type = DC_TYPE_ULI_M5261;
2208		else
2209			sc->dc_type = DC_TYPE_ULI_M5263;
2210		/* TX buffers should be aligned on 4 byte boundary. */
2211		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2212		    DC_TX_ALIGN;
2213		sc->dc_pmode = DC_PMODE_MII;
2214		error = dc_read_srom(sc, sc->dc_romwidth);
2215		if (error != 0)
2216			goto fail;
2217		break;
2218	default:
2219		device_printf(dev, "unknown device: %x\n",
2220		    sc->dc_info->dc_devid);
2221		break;
2222	}
2223
2224	/* Save the cache line size. */
2225	if (DC_IS_DAVICOM(sc))
2226		sc->dc_cachesize = 0;
2227	else
2228		sc->dc_cachesize = pci_get_cachelnsz(dev);
2229
2230	/* Reset the adapter. */
2231	dc_reset(sc);
2232
2233	/* Take 21143 out of snooze mode */
2234	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2235		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2236		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2237		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2238	}
2239
2240	/*
2241	 * Try to learn something about the supported media.
2242	 * We know that ASIX and ADMtek and Davicom devices
2243	 * will *always* be using MII media, so that's a no-brainer.
2244	 * The tricky ones are the Macronix/PNIC II and the
2245	 * Intel 21143.
2246	 */
2247	if (DC_IS_INTEL(sc)) {
2248		error = dc_parse_21143_srom(sc);
2249		if (error != 0)
2250			goto fail;
2251	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2252		if (sc->dc_type == DC_TYPE_98713)
2253			sc->dc_pmode = DC_PMODE_MII;
2254		else
2255			sc->dc_pmode = DC_PMODE_SYM;
2256	} else if (!sc->dc_pmode)
2257		sc->dc_pmode = DC_PMODE_MII;
2258
2259	/*
2260	 * Get station address from the EEPROM.
2261	 */
2262	switch(sc->dc_type) {
2263	case DC_TYPE_98713:
2264	case DC_TYPE_98713A:
2265	case DC_TYPE_987x5:
2266	case DC_TYPE_PNICII:
2267		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2268		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2269		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2270		break;
2271	case DC_TYPE_PNIC:
2272		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2273		break;
2274	case DC_TYPE_DM9102:
2275		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2276#ifdef __sparc64__
2277		/*
2278		 * If this is an onboard dc(4) the station address read from
2279		 * the EEPROM is all zero and we have to get it from the FCode.
2280		 */
2281		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2282			OF_getetheraddr(dev, (caddr_t)&eaddr);
2283#endif
2284		break;
2285	case DC_TYPE_21143:
2286	case DC_TYPE_ASIX:
2287		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2288		break;
2289	case DC_TYPE_AL981:
2290	case DC_TYPE_AN983:
2291		reg = CSR_READ_4(sc, DC_AL_PAR0);
2292		mac = (uint8_t *)&eaddr[0];
2293		mac[0] = (reg >> 0) & 0xff;
2294		mac[1] = (reg >> 8) & 0xff;
2295		mac[2] = (reg >> 16) & 0xff;
2296		mac[3] = (reg >> 24) & 0xff;
2297		reg = CSR_READ_4(sc, DC_AL_PAR1);
2298		mac[4] = (reg >> 0) & 0xff;
2299		mac[5] = (reg >> 8) & 0xff;
2300		break;
2301	case DC_TYPE_CONEXANT:
2302		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2303		    ETHER_ADDR_LEN);
2304		break;
2305	case DC_TYPE_XIRCOM:
2306		/* The MAC comes from the CIS. */
2307		mac = pci_get_ether(dev);
2308		if (!mac) {
2309			device_printf(dev, "No station address in CIS!\n");
2310			error = ENXIO;
2311			goto fail;
2312		}
2313		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2314		break;
2315	case DC_TYPE_ULI_M5261:
2316	case DC_TYPE_ULI_M5263:
2317		srom = (uint16_t *)sc->dc_srom;
2318		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2319			/*
2320			 * No valid SROM present, read station address
2321			 * from ID Table.
2322			 */
2323			device_printf(dev,
2324			    "Reading station address from ID Table.\n");
2325			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2326			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2327			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2328			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2329			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2330			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2331			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2332			mac = (uint8_t *)eaddr;
2333			for (n = 0; n < ETHER_ADDR_LEN; n++)
2334				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2335			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2336			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2337			DELAY(10);
2338		} else
2339			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2340			    0);
2341		break;
2342	default:
2343		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2344		break;
2345	}
2346
2347	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2348	/*
2349	 * If we still have invalid station address, see whether we can
2350	 * find station address for chip 0.  Some multi-port controllers
2351	 * just store station address for chip 0 if they have a shared
2352	 * SROM.
2353	 */
2354	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2355	    (sc->dc_eaddr[0] == 0xffffffff &&
2356	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2357		error = dc_check_multiport(sc);
2358		if (error == 0) {
2359			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2360			/* Extract media information. */
2361			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2362				while (sc->dc_mi != NULL) {
2363					m = sc->dc_mi->dc_next;
2364					free(sc->dc_mi, M_DEVBUF);
2365					sc->dc_mi = m;
2366				}
2367				error = dc_parse_21143_srom(sc);
2368				if (error != 0)
2369					goto fail;
2370			}
2371		} else if (error == ENOMEM)
2372			goto fail;
2373		else
2374			error = 0;
2375	}
2376
2377	if ((error = dc_dma_alloc(sc)) != 0)
2378		goto fail;
2379
2380	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2381	if (ifp == NULL) {
2382		device_printf(dev, "can not if_alloc()\n");
2383		error = ENOSPC;
2384		goto fail;
2385	}
2386	ifp->if_softc = sc;
2387	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2388	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2389	ifp->if_ioctl = dc_ioctl;
2390	ifp->if_start = dc_start;
2391	ifp->if_init = dc_init;
2392	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2393	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2394	IFQ_SET_READY(&ifp->if_snd);
2395
2396	/*
2397	 * Do MII setup. If this is a 21143, check for a PHY on the
2398	 * MII bus after applying any necessary fixups to twiddle the
2399	 * GPIO bits. If we don't end up finding a PHY, restore the
2400	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2401	 * driver instead.
2402	 */
2403	tmp = 0;
2404	if (DC_IS_INTEL(sc)) {
2405		dc_apply_fixup(sc, IFM_AUTO);
2406		tmp = sc->dc_pmode;
2407		sc->dc_pmode = DC_PMODE_MII;
2408	}
2409
2410	/*
2411	 * Setup General Purpose port mode and data so the tulip can talk
2412	 * to the MII.  This needs to be done before mii_attach so that
2413	 * we can actually see them.
2414	 */
2415	if (DC_IS_XIRCOM(sc)) {
2416		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2417		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2418		DELAY(10);
2419		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2420		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2421		DELAY(10);
2422	}
2423
2424	phy = MII_PHY_ANY;
2425	/*
2426	 * Note: both the AL981 and AN983 have internal PHYs, however the
2427	 * AL981 provides direct access to the PHY registers while the AN983
2428	 * uses a serial MII interface. The AN983's MII interface is also
2429	 * buggy in that you can read from any MII address (0 to 31), but
2430	 * only address 1 behaves normally. To deal with both cases, we
2431	 * pretend that the PHY is at MII address 1.
2432	 */
2433	if (DC_IS_ADMTEK(sc))
2434		phy = DC_ADMTEK_PHYADDR;
2435
2436	/*
2437	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2438	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2439	 * correct one.
2440	 */
2441	if (DC_IS_CONEXANT(sc))
2442		phy = DC_CONEXANT_PHYADDR;
2443
2444	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2445	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2446
2447	if (error && DC_IS_INTEL(sc)) {
2448		sc->dc_pmode = tmp;
2449		if (sc->dc_pmode != DC_PMODE_SIA)
2450			sc->dc_pmode = DC_PMODE_SYM;
2451		sc->dc_flags |= DC_21143_NWAY;
2452		/*
2453		 * For non-MII cards, we need to have the 21143
2454		 * drive the LEDs. Except there are some systems
2455		 * like the NEC VersaPro NoteBook PC which have no
2456		 * LEDs, and twiddling these bits has adverse effects
2457		 * on them. (I.e. you suddenly can't get a link.)
2458		 */
2459		if (!(pci_get_subvendor(dev) == 0x1033 &&
2460		    pci_get_subdevice(dev) == 0x8028))
2461			sc->dc_flags |= DC_TULIP_LEDS;
2462		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2463		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2464		    MII_OFFSET_ANY, 0);
2465	}
2466
2467	if (error) {
2468		device_printf(dev, "attaching PHYs failed\n");
2469		goto fail;
2470	}
2471
2472	if (DC_IS_ADMTEK(sc)) {
2473		/*
2474		 * Set automatic TX underrun recovery for the ADMtek chips
2475		 */
2476		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2477	}
2478
2479	/*
2480	 * Tell the upper layer(s) we support long frames.
2481	 */
2482	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2483	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2484	ifp->if_capenable = ifp->if_capabilities;
2485#ifdef DEVICE_POLLING
2486	ifp->if_capabilities |= IFCAP_POLLING;
2487#endif
2488
2489	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2490	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2491
2492	/*
2493	 * Call MI attach routine.
2494	 */
2495	ether_ifattach(ifp, (caddr_t)eaddr);
2496
2497	/* Hook interrupt last to avoid having to lock softc */
2498	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2499	    NULL, dc_intr, sc, &sc->dc_intrhand);
2500
2501	if (error) {
2502		device_printf(dev, "couldn't set up irq\n");
2503		ether_ifdetach(ifp);
2504		goto fail;
2505	}
2506
2507fail:
2508	if (error)
2509		dc_detach(dev);
2510	return (error);
2511}
2512
2513/*
2514 * Shutdown hardware and free up resources. This can be called any
2515 * time after the mutex has been initialized. It is called in both
2516 * the error case in attach and the normal detach case so it needs
2517 * to be careful about only freeing resources that have actually been
2518 * allocated.
2519 */
2520static int
2521dc_detach(device_t dev)
2522{
2523	struct dc_softc *sc;
2524	struct ifnet *ifp;
2525	struct dc_mediainfo *m;
2526
2527	sc = device_get_softc(dev);
2528	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2529
2530	ifp = sc->dc_ifp;
2531
2532#ifdef DEVICE_POLLING
2533	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2534		ether_poll_deregister(ifp);
2535#endif
2536
2537	/* These should only be active if attach succeeded */
2538	if (device_is_attached(dev)) {
2539		DC_LOCK(sc);
2540		dc_stop(sc);
2541		DC_UNLOCK(sc);
2542		callout_drain(&sc->dc_stat_ch);
2543		callout_drain(&sc->dc_wdog_ch);
2544		ether_ifdetach(ifp);
2545	}
2546	if (sc->dc_miibus)
2547		device_delete_child(dev, sc->dc_miibus);
2548	bus_generic_detach(dev);
2549
2550	if (sc->dc_intrhand)
2551		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2552	if (sc->dc_irq)
2553		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2554	if (sc->dc_res)
2555		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2556
2557	if (ifp != NULL)
2558		if_free(ifp);
2559
2560	dc_dma_free(sc);
2561
2562	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2563
2564	while (sc->dc_mi != NULL) {
2565		m = sc->dc_mi->dc_next;
2566		free(sc->dc_mi, M_DEVBUF);
2567		sc->dc_mi = m;
2568	}
2569	free(sc->dc_srom, M_DEVBUF);
2570
2571	mtx_destroy(&sc->dc_mtx);
2572
2573	return (0);
2574}
2575
2576/*
2577 * Initialize the transmit descriptors.
2578 */
2579static int
2580dc_list_tx_init(struct dc_softc *sc)
2581{
2582	struct dc_chain_data *cd;
2583	struct dc_list_data *ld;
2584	int i, nexti;
2585
2586	cd = &sc->dc_cdata;
2587	ld = &sc->dc_ldata;
2588	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2589		if (i == DC_TX_LIST_CNT - 1)
2590			nexti = 0;
2591		else
2592			nexti = i + 1;
2593		ld->dc_tx_list[i].dc_status = 0;
2594		ld->dc_tx_list[i].dc_ctl = 0;
2595		ld->dc_tx_list[i].dc_data = 0;
2596		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2597		cd->dc_tx_chain[i] = NULL;
2598	}
2599
2600	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2601	cd->dc_tx_pkts = 0;
2602	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2603	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2604	return (0);
2605}
2606
2607/*
2608 * Initialize the RX descriptors and allocate mbufs for them. Note that
2609 * we arrange the descriptors in a closed ring, so that the last descriptor
2610 * points back to the first.
2611 */
2612static int
2613dc_list_rx_init(struct dc_softc *sc)
2614{
2615	struct dc_chain_data *cd;
2616	struct dc_list_data *ld;
2617	int i, nexti;
2618
2619	cd = &sc->dc_cdata;
2620	ld = &sc->dc_ldata;
2621
2622	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2623		if (dc_newbuf(sc, i) != 0)
2624			return (ENOBUFS);
2625		if (i == DC_RX_LIST_CNT - 1)
2626			nexti = 0;
2627		else
2628			nexti = i + 1;
2629		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2630	}
2631
2632	cd->dc_rx_prod = 0;
2633	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2634	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2635	return (0);
2636}
2637
2638/*
2639 * Initialize an RX descriptor and attach an MBUF cluster.
2640 */
2641static int
2642dc_newbuf(struct dc_softc *sc, int i)
2643{
2644	struct mbuf *m;
2645	bus_dmamap_t map;
2646	bus_dma_segment_t segs[1];
2647	int error, nseg;
2648
2649	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2650	if (m == NULL)
2651		return (ENOBUFS);
2652	m->m_len = m->m_pkthdr.len = MCLBYTES;
2653	m_adj(m, sizeof(u_int64_t));
2654
2655	/*
2656	 * If this is a PNIC chip, zero the buffer. This is part
2657	 * of the workaround for the receive bug in the 82c168 and
2658	 * 82c169 chips.
2659	 */
2660	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2661		bzero(mtod(m, char *), m->m_len);
2662
2663	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2664	    m, segs, &nseg, 0);
2665	if (error) {
2666		m_freem(m);
2667		return (error);
2668	}
2669	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2670	    nseg));
2671	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2672		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2673
2674	map = sc->dc_cdata.dc_rx_map[i];
2675	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2676	sc->dc_sparemap = map;
2677	sc->dc_cdata.dc_rx_chain[i] = m;
2678	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2679	    BUS_DMASYNC_PREREAD);
2680
2681	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2682	sc->dc_ldata.dc_rx_list[i].dc_data =
2683	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2684	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2685	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2686	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2687	return (0);
2688}
2689
2690/*
2691 * Grrrrr.
2692 * The PNIC chip has a terrible bug in it that manifests itself during
2693 * periods of heavy activity. The exact mode of failure if difficult to
2694 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2695 * will happen on slow machines. The bug is that sometimes instead of
2696 * uploading one complete frame during reception, it uploads what looks
2697 * like the entire contents of its FIFO memory. The frame we want is at
2698 * the end of the whole mess, but we never know exactly how much data has
2699 * been uploaded, so salvaging the frame is hard.
2700 *
2701 * There is only one way to do it reliably, and it's disgusting.
2702 * Here's what we know:
2703 *
2704 * - We know there will always be somewhere between one and three extra
2705 *   descriptors uploaded.
2706 *
2707 * - We know the desired received frame will always be at the end of the
2708 *   total data upload.
2709 *
2710 * - We know the size of the desired received frame because it will be
2711 *   provided in the length field of the status word in the last descriptor.
2712 *
2713 * Here's what we do:
2714 *
2715 * - When we allocate buffers for the receive ring, we bzero() them.
2716 *   This means that we know that the buffer contents should be all
2717 *   zeros, except for data uploaded by the chip.
2718 *
2719 * - We also force the PNIC chip to upload frames that include the
2720 *   ethernet CRC at the end.
2721 *
2722 * - We gather all of the bogus frame data into a single buffer.
2723 *
2724 * - We then position a pointer at the end of this buffer and scan
2725 *   backwards until we encounter the first non-zero byte of data.
2726 *   This is the end of the received frame. We know we will encounter
2727 *   some data at the end of the frame because the CRC will always be
2728 *   there, so even if the sender transmits a packet of all zeros,
2729 *   we won't be fooled.
2730 *
2731 * - We know the size of the actual received frame, so we subtract
2732 *   that value from the current pointer location. This brings us
2733 *   to the start of the actual received packet.
2734 *
2735 * - We copy this into an mbuf and pass it on, along with the actual
2736 *   frame length.
2737 *
2738 * The performance hit is tremendous, but it beats dropping frames all
2739 * the time.
2740 */
2741
2742#define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2743static void
2744dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2745{
2746	struct dc_desc *cur_rx;
2747	struct dc_desc *c = NULL;
2748	struct mbuf *m = NULL;
2749	unsigned char *ptr;
2750	int i, total_len;
2751	uint32_t rxstat = 0;
2752
2753	i = sc->dc_pnic_rx_bug_save;
2754	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2755	ptr = sc->dc_pnic_rx_buf;
2756	bzero(ptr, DC_RXLEN * 5);
2757
2758	/* Copy all the bytes from the bogus buffers. */
2759	while (1) {
2760		c = &sc->dc_ldata.dc_rx_list[i];
2761		rxstat = le32toh(c->dc_status);
2762		m = sc->dc_cdata.dc_rx_chain[i];
2763		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2764		ptr += DC_RXLEN;
2765		/* If this is the last buffer, break out. */
2766		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2767			break;
2768		dc_discard_rxbuf(sc, i);
2769		DC_INC(i, DC_RX_LIST_CNT);
2770	}
2771
2772	/* Find the length of the actual receive frame. */
2773	total_len = DC_RXBYTES(rxstat);
2774
2775	/* Scan backwards until we hit a non-zero byte. */
2776	while (*ptr == 0x00)
2777		ptr--;
2778
2779	/* Round off. */
2780	if ((uintptr_t)(ptr) & 0x3)
2781		ptr -= 1;
2782
2783	/* Now find the start of the frame. */
2784	ptr -= total_len;
2785	if (ptr < sc->dc_pnic_rx_buf)
2786		ptr = sc->dc_pnic_rx_buf;
2787
2788	/*
2789	 * Now copy the salvaged frame to the last mbuf and fake up
2790	 * the status word to make it look like a successful
2791	 * frame reception.
2792	 */
2793	bcopy(ptr, mtod(m, char *), total_len);
2794	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2795}
2796
2797/*
2798 * This routine searches the RX ring for dirty descriptors in the
2799 * event that the rxeof routine falls out of sync with the chip's
2800 * current descriptor pointer. This may happen sometimes as a result
2801 * of a "no RX buffer available" condition that happens when the chip
2802 * consumes all of the RX buffers before the driver has a chance to
2803 * process the RX ring. This routine may need to be called more than
2804 * once to bring the driver back in sync with the chip, however we
2805 * should still be getting RX DONE interrupts to drive the search
2806 * for new packets in the RX ring, so we should catch up eventually.
2807 */
2808static int
2809dc_rx_resync(struct dc_softc *sc)
2810{
2811	struct dc_desc *cur_rx;
2812	int i, pos;
2813
2814	pos = sc->dc_cdata.dc_rx_prod;
2815
2816	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2817		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2818		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2819			break;
2820		DC_INC(pos, DC_RX_LIST_CNT);
2821	}
2822
2823	/* If the ring really is empty, then just return. */
2824	if (i == DC_RX_LIST_CNT)
2825		return (0);
2826
2827	/* We've fallen behing the chip: catch it. */
2828	sc->dc_cdata.dc_rx_prod = pos;
2829
2830	return (EAGAIN);
2831}
2832
2833static void
2834dc_discard_rxbuf(struct dc_softc *sc, int i)
2835{
2836	struct mbuf *m;
2837
2838	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2839		m = sc->dc_cdata.dc_rx_chain[i];
2840		bzero(mtod(m, char *), m->m_len);
2841	}
2842
2843	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2844	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2845	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2846	    BUS_DMASYNC_PREWRITE);
2847}
2848
2849/*
2850 * A frame has been uploaded: pass the resulting mbuf chain up to
2851 * the higher level protocols.
2852 */
2853static int
2854dc_rxeof(struct dc_softc *sc)
2855{
2856	struct mbuf *m;
2857	struct ifnet *ifp;
2858	struct dc_desc *cur_rx;
2859	int i, total_len, rx_npkts;
2860	uint32_t rxstat;
2861
2862	DC_LOCK_ASSERT(sc);
2863
2864	ifp = sc->dc_ifp;
2865	rx_npkts = 0;
2866
2867	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2868	    BUS_DMASYNC_POSTWRITE);
2869	for (i = sc->dc_cdata.dc_rx_prod;
2870	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2871	    DC_INC(i, DC_RX_LIST_CNT)) {
2872#ifdef DEVICE_POLLING
2873		if (ifp->if_capenable & IFCAP_POLLING) {
2874			if (sc->rxcycles <= 0)
2875				break;
2876			sc->rxcycles--;
2877		}
2878#endif
2879		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2880		rxstat = le32toh(cur_rx->dc_status);
2881		if ((rxstat & DC_RXSTAT_OWN) != 0)
2882			break;
2883		m = sc->dc_cdata.dc_rx_chain[i];
2884		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2885		    BUS_DMASYNC_POSTREAD);
2886		total_len = DC_RXBYTES(rxstat);
2887		rx_npkts++;
2888
2889		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2890			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2891				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2892					sc->dc_pnic_rx_bug_save = i;
2893				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2894					continue;
2895				dc_pnic_rx_bug_war(sc, i);
2896				rxstat = le32toh(cur_rx->dc_status);
2897				total_len = DC_RXBYTES(rxstat);
2898			}
2899		}
2900
2901		/*
2902		 * If an error occurs, update stats, clear the
2903		 * status word and leave the mbuf cluster in place:
2904		 * it should simply get re-used next time this descriptor
2905		 * comes up in the ring.  However, don't report long
2906		 * frames as errors since they could be vlans.
2907		 */
2908		if ((rxstat & DC_RXSTAT_RXERR)) {
2909			if (!(rxstat & DC_RXSTAT_GIANT) ||
2910			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2911				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2912				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2913				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2914				if (rxstat & DC_RXSTAT_COLLSEEN)
2915					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2916				dc_discard_rxbuf(sc, i);
2917				if (rxstat & DC_RXSTAT_CRCERR)
2918					continue;
2919				else {
2920					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2921					dc_init_locked(sc);
2922					return (rx_npkts);
2923				}
2924			}
2925		}
2926
2927		/* No errors; receive the packet. */
2928		total_len -= ETHER_CRC_LEN;
2929#ifdef __NO_STRICT_ALIGNMENT
2930		/*
2931		 * On architectures without alignment problems we try to
2932		 * allocate a new buffer for the receive ring, and pass up
2933		 * the one where the packet is already, saving the expensive
2934		 * copy done in m_devget().
2935		 * If we are on an architecture with alignment problems, or
2936		 * if the allocation fails, then use m_devget and leave the
2937		 * existing buffer in the receive ring.
2938		 */
2939		if (dc_newbuf(sc, i) != 0) {
2940			dc_discard_rxbuf(sc, i);
2941			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2942			continue;
2943		}
2944		m->m_pkthdr.rcvif = ifp;
2945		m->m_pkthdr.len = m->m_len = total_len;
2946#else
2947		{
2948			struct mbuf *m0;
2949
2950			m0 = m_devget(mtod(m, char *), total_len,
2951				ETHER_ALIGN, ifp, NULL);
2952			dc_discard_rxbuf(sc, i);
2953			if (m0 == NULL) {
2954				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2955				continue;
2956			}
2957			m = m0;
2958		}
2959#endif
2960
2961		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2962		DC_UNLOCK(sc);
2963		(*ifp->if_input)(ifp, m);
2964		DC_LOCK(sc);
2965	}
2966
2967	sc->dc_cdata.dc_rx_prod = i;
2968	return (rx_npkts);
2969}
2970
2971/*
2972 * A frame was downloaded to the chip. It's safe for us to clean up
2973 * the list buffers.
2974 */
2975static void
2976dc_txeof(struct dc_softc *sc)
2977{
2978	struct dc_desc *cur_tx;
2979	struct ifnet *ifp;
2980	int idx, setup;
2981	uint32_t ctl, txstat;
2982
2983	if (sc->dc_cdata.dc_tx_cnt == 0)
2984		return;
2985
2986	ifp = sc->dc_ifp;
2987
2988	/*
2989	 * Go through our tx list and free mbufs for those
2990	 * frames that have been transmitted.
2991	 */
2992	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2993	    BUS_DMASYNC_POSTWRITE);
2994	setup = 0;
2995	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2996	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
2997		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
2998		txstat = le32toh(cur_tx->dc_status);
2999		ctl = le32toh(cur_tx->dc_ctl);
3000
3001		if (txstat & DC_TXSTAT_OWN)
3002			break;
3003
3004		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3005			continue;
3006
3007		if (ctl & DC_TXCTL_SETUP) {
3008			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3009			setup++;
3010			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3011			    BUS_DMASYNC_POSTWRITE);
3012			/*
3013			 * Yes, the PNIC is so brain damaged
3014			 * that it will sometimes generate a TX
3015			 * underrun error while DMAing the RX
3016			 * filter setup frame. If we detect this,
3017			 * we have to send the setup frame again,
3018			 * or else the filter won't be programmed
3019			 * correctly.
3020			 */
3021			if (DC_IS_PNIC(sc)) {
3022				if (txstat & DC_TXSTAT_ERRSUM)
3023					dc_setfilt(sc);
3024			}
3025			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3026			continue;
3027		}
3028
3029		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3030			/*
3031			 * XXX: Why does my Xircom taunt me so?
3032			 * For some reason it likes setting the CARRLOST flag
3033			 * even when the carrier is there. wtf?!?
3034			 * Who knows, but Conexant chips have the
3035			 * same problem. Maybe they took lessons
3036			 * from Xircom.
3037			 */
3038			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3039			    sc->dc_pmode == DC_PMODE_MII &&
3040			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3041			    DC_TXSTAT_NOCARRIER)))
3042				txstat &= ~DC_TXSTAT_ERRSUM;
3043		} else {
3044			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3045			    sc->dc_pmode == DC_PMODE_MII &&
3046			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3047			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3048				txstat &= ~DC_TXSTAT_ERRSUM;
3049		}
3050
3051		if (txstat & DC_TXSTAT_ERRSUM) {
3052			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3053			if (txstat & DC_TXSTAT_EXCESSCOLL)
3054				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3055			if (txstat & DC_TXSTAT_LATECOLL)
3056				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3057			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3058				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3059				dc_init_locked(sc);
3060				return;
3061			}
3062		} else
3063			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3064		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3065
3066		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3067		    BUS_DMASYNC_POSTWRITE);
3068		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3069		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3070		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3071	}
3072	sc->dc_cdata.dc_tx_cons = idx;
3073
3074	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3075		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3076		if (sc->dc_cdata.dc_tx_cnt == 0)
3077			sc->dc_wdog_timer = 0;
3078	}
3079	if (setup > 0)
3080		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3081		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082}
3083
3084static void
3085dc_tick(void *xsc)
3086{
3087	struct dc_softc *sc;
3088	struct mii_data *mii;
3089	struct ifnet *ifp;
3090	uint32_t r;
3091
3092	sc = xsc;
3093	DC_LOCK_ASSERT(sc);
3094	ifp = sc->dc_ifp;
3095	mii = device_get_softc(sc->dc_miibus);
3096
3097	/*
3098	 * Reclaim transmitted frames for controllers that do
3099	 * not generate TX completion interrupt for every frame.
3100	 */
3101	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3102		dc_txeof(sc);
3103
3104	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3105		if (sc->dc_flags & DC_21143_NWAY) {
3106			r = CSR_READ_4(sc, DC_10BTSTAT);
3107			if (IFM_SUBTYPE(mii->mii_media_active) ==
3108			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3109				sc->dc_link = 0;
3110				mii_mediachg(mii);
3111			}
3112			if (IFM_SUBTYPE(mii->mii_media_active) ==
3113			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3114				sc->dc_link = 0;
3115				mii_mediachg(mii);
3116			}
3117			if (sc->dc_link == 0)
3118				mii_tick(mii);
3119		} else {
3120			/*
3121			 * For NICs which never report DC_RXSTATE_WAIT, we
3122			 * have to bite the bullet...
3123			 */
3124			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3125			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3126			    sc->dc_cdata.dc_tx_cnt == 0)
3127				mii_tick(mii);
3128		}
3129	} else
3130		mii_tick(mii);
3131
3132	/*
3133	 * When the init routine completes, we expect to be able to send
3134	 * packets right away, and in fact the network code will send a
3135	 * gratuitous ARP the moment the init routine marks the interface
3136	 * as running. However, even though the MAC may have been initialized,
3137	 * there may be a delay of a few seconds before the PHY completes
3138	 * autonegotiation and the link is brought up. Any transmissions
3139	 * made during that delay will be lost. Dealing with this is tricky:
3140	 * we can't just pause in the init routine while waiting for the
3141	 * PHY to come ready since that would bring the whole system to
3142	 * a screeching halt for several seconds.
3143	 *
3144	 * What we do here is prevent the TX start routine from sending
3145	 * any packets until a link has been established. After the
3146	 * interface has been initialized, the tick routine will poll
3147	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3148	 * that time, packets will stay in the send queue, and once the
3149	 * link comes up, they will be flushed out to the wire.
3150	 */
3151	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3152		dc_start_locked(ifp);
3153
3154	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3155		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3156	else
3157		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3158}
3159
3160/*
3161 * A transmit underrun has occurred.  Back off the transmit threshold,
3162 * or switch to store and forward mode if we have to.
3163 */
3164static void
3165dc_tx_underrun(struct dc_softc *sc)
3166{
3167	uint32_t netcfg, isr;
3168	int i, reinit;
3169
3170	reinit = 0;
3171	netcfg = CSR_READ_4(sc, DC_NETCFG);
3172	device_printf(sc->dc_dev, "TX underrun -- ");
3173	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3174		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3175			printf("using store and forward mode\n");
3176			netcfg |= DC_NETCFG_STORENFWD;
3177		} else {
3178			printf("increasing TX threshold\n");
3179			sc->dc_txthresh += DC_TXTHRESH_INC;
3180			netcfg &= ~DC_NETCFG_TX_THRESH;
3181			netcfg |= sc->dc_txthresh;
3182		}
3183
3184		if (DC_IS_INTEL(sc)) {
3185			/*
3186			 * The real 21143 requires that the transmitter be idle
3187			 * in order to change the transmit threshold or store
3188			 * and forward state.
3189			 */
3190			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3191
3192			for (i = 0; i < DC_TIMEOUT; i++) {
3193				isr = CSR_READ_4(sc, DC_ISR);
3194				if (isr & DC_ISR_TX_IDLE)
3195					break;
3196				DELAY(10);
3197			}
3198			if (i == DC_TIMEOUT) {
3199				device_printf(sc->dc_dev,
3200				    "%s: failed to force tx to idle state\n",
3201				    __func__);
3202				reinit++;
3203			}
3204		}
3205	} else {
3206		printf("resetting\n");
3207		reinit++;
3208	}
3209
3210	if (reinit == 0) {
3211		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3212		if (DC_IS_INTEL(sc))
3213			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3214	} else {
3215		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3216		dc_init_locked(sc);
3217	}
3218}
3219
3220#ifdef DEVICE_POLLING
3221static poll_handler_t dc_poll;
3222
3223static int
3224dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3225{
3226	struct dc_softc *sc = ifp->if_softc;
3227	int rx_npkts = 0;
3228
3229	DC_LOCK(sc);
3230
3231	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3232		DC_UNLOCK(sc);
3233		return (rx_npkts);
3234	}
3235
3236	sc->rxcycles = count;
3237	rx_npkts = dc_rxeof(sc);
3238	dc_txeof(sc);
3239	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3240	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3241		dc_start_locked(ifp);
3242
3243	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3244		uint32_t	status;
3245
3246		status = CSR_READ_4(sc, DC_ISR);
3247		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3248			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3249			DC_ISR_BUS_ERR);
3250		if (!status) {
3251			DC_UNLOCK(sc);
3252			return (rx_npkts);
3253		}
3254		/* ack what we have */
3255		CSR_WRITE_4(sc, DC_ISR, status);
3256
3257		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3258			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3259			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3260
3261			if (dc_rx_resync(sc))
3262				dc_rxeof(sc);
3263		}
3264		/* restart transmit unit if necessary */
3265		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3266			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3267
3268		if (status & DC_ISR_TX_UNDERRUN)
3269			dc_tx_underrun(sc);
3270
3271		if (status & DC_ISR_BUS_ERR) {
3272			if_printf(ifp, "%s: bus error\n", __func__);
3273			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3274			dc_init_locked(sc);
3275		}
3276	}
3277	DC_UNLOCK(sc);
3278	return (rx_npkts);
3279}
3280#endif /* DEVICE_POLLING */
3281
3282static void
3283dc_intr(void *arg)
3284{
3285	struct dc_softc *sc;
3286	struct ifnet *ifp;
3287	uint32_t r, status;
3288	int n;
3289
3290	sc = arg;
3291
3292	if (sc->suspended)
3293		return;
3294
3295	DC_LOCK(sc);
3296	status = CSR_READ_4(sc, DC_ISR);
3297	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3298		DC_UNLOCK(sc);
3299		return;
3300	}
3301	ifp = sc->dc_ifp;
3302#ifdef DEVICE_POLLING
3303	if (ifp->if_capenable & IFCAP_POLLING) {
3304		DC_UNLOCK(sc);
3305		return;
3306	}
3307#endif
3308	/* Disable interrupts. */
3309	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3310
3311	for (n = 16; n > 0; n--) {
3312		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3313			break;
3314		/* Ack interrupts. */
3315		CSR_WRITE_4(sc, DC_ISR, status);
3316
3317		if (status & DC_ISR_RX_OK) {
3318			if (dc_rxeof(sc) == 0) {
3319				while (dc_rx_resync(sc))
3320					dc_rxeof(sc);
3321			}
3322		}
3323
3324		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3325			dc_txeof(sc);
3326
3327		if (status & DC_ISR_TX_IDLE) {
3328			dc_txeof(sc);
3329			if (sc->dc_cdata.dc_tx_cnt) {
3330				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3331				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3332			}
3333		}
3334
3335		if (status & DC_ISR_TX_UNDERRUN)
3336			dc_tx_underrun(sc);
3337
3338		if ((status & DC_ISR_RX_WATDOGTIMEO)
3339		    || (status & DC_ISR_RX_NOBUF)) {
3340			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3341			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3342			if (dc_rxeof(sc) == 0) {
3343				while (dc_rx_resync(sc))
3344					dc_rxeof(sc);
3345			}
3346		}
3347
3348		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3349			dc_start_locked(ifp);
3350
3351		if (status & DC_ISR_BUS_ERR) {
3352			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3353			dc_init_locked(sc);
3354			DC_UNLOCK(sc);
3355			return;
3356		}
3357		status = CSR_READ_4(sc, DC_ISR);
3358		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3359			break;
3360	}
3361
3362	/* Re-enable interrupts. */
3363	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3364		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3365
3366	DC_UNLOCK(sc);
3367}
3368
3369/*
3370 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3371 * pointers to the fragment pointers.
3372 */
3373static int
3374dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3375{
3376	bus_dma_segment_t segs[DC_MAXFRAGS];
3377	bus_dmamap_t map;
3378	struct dc_desc *f;
3379	struct mbuf *m;
3380	int cur, defragged, error, first, frag, i, idx, nseg;
3381
3382	m = NULL;
3383	defragged = 0;
3384	if (sc->dc_flags & DC_TX_COALESCE &&
3385	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3386		m = m_defrag(*m_head, M_NOWAIT);
3387		defragged = 1;
3388	} else {
3389		/*
3390		 * Count the number of frags in this chain to see if we
3391		 * need to m_collapse.  Since the descriptor list is shared
3392		 * by all packets, we'll m_collapse long chains so that they
3393		 * do not use up the entire list, even if they would fit.
3394		 */
3395		i = 0;
3396		for (m = *m_head; m != NULL; m = m->m_next)
3397			i++;
3398		if (i > DC_TX_LIST_CNT / 4 ||
3399		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3400		    DC_TX_LIST_RSVD) {
3401			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3402			defragged = 1;
3403		}
3404	}
3405	if (defragged != 0) {
3406		if (m == NULL) {
3407			m_freem(*m_head);
3408			*m_head = NULL;
3409			return (ENOBUFS);
3410		}
3411		*m_head = m;
3412	}
3413
3414	idx = sc->dc_cdata.dc_tx_prod;
3415	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3416	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3417	if (error == EFBIG) {
3418		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3419		    DC_MAXFRAGS)) == NULL) {
3420			m_freem(*m_head);
3421			*m_head = NULL;
3422			return (defragged != 0 ? error : ENOBUFS);
3423		}
3424		*m_head = m;
3425		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3426		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3427		if (error != 0) {
3428			m_freem(*m_head);
3429			*m_head = NULL;
3430			return (error);
3431		}
3432	} else if (error != 0)
3433		return (error);
3434	KASSERT(nseg <= DC_MAXFRAGS,
3435	    ("%s: wrong number of segments (%d)", __func__, nseg));
3436	if (nseg == 0) {
3437		m_freem(*m_head);
3438		*m_head = NULL;
3439		return (EIO);
3440	}
3441
3442	/* Check descriptor overruns. */
3443	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3444		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3445		return (ENOBUFS);
3446	}
3447	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3448	    BUS_DMASYNC_PREWRITE);
3449
3450	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3451	for (i = 0; i < nseg; i++) {
3452		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3453		    (frag == (DC_TX_LIST_CNT - 1)) &&
3454		    (first != sc->dc_cdata.dc_tx_first)) {
3455			bus_dmamap_unload(sc->dc_tx_mtag,
3456			    sc->dc_cdata.dc_tx_map[first]);
3457			m_freem(*m_head);
3458			*m_head = NULL;
3459			return (ENOBUFS);
3460		}
3461
3462		f = &sc->dc_ldata.dc_tx_list[frag];
3463		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3464		if (i == 0) {
3465			f->dc_status = 0;
3466			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3467		} else
3468			f->dc_status = htole32(DC_TXSTAT_OWN);
3469		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3470		cur = frag;
3471		DC_INC(frag, DC_TX_LIST_CNT);
3472	}
3473
3474	sc->dc_cdata.dc_tx_prod = frag;
3475	sc->dc_cdata.dc_tx_cnt += nseg;
3476	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3477	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3478	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3479		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3480		    htole32(DC_TXCTL_FINT);
3481	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3482		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3483	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3484	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3485		sc->dc_cdata.dc_tx_pkts = 0;
3486		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3487	}
3488	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3489
3490	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3491	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3492
3493	/*
3494	 * Swap the last and the first dmamaps to ensure the map for
3495	 * this transmission is placed at the last descriptor.
3496	 */
3497	map = sc->dc_cdata.dc_tx_map[cur];
3498	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3499	sc->dc_cdata.dc_tx_map[first] = map;
3500
3501	return (0);
3502}
3503
3504static void
3505dc_start(struct ifnet *ifp)
3506{
3507	struct dc_softc *sc;
3508
3509	sc = ifp->if_softc;
3510	DC_LOCK(sc);
3511	dc_start_locked(ifp);
3512	DC_UNLOCK(sc);
3513}
3514
3515/*
3516 * Main transmit routine
3517 * To avoid having to do mbuf copies, we put pointers to the mbuf data
3518 * regions directly in the transmit lists.  We also save a copy of the
3519 * pointers since the transmit list fragment pointers are physical
3520 * addresses.
3521 */
3522static void
3523dc_start_locked(struct ifnet *ifp)
3524{
3525	struct dc_softc *sc;
3526	struct mbuf *m_head;
3527	int queued;
3528
3529	sc = ifp->if_softc;
3530
3531	DC_LOCK_ASSERT(sc);
3532
3533	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3534	    IFF_DRV_RUNNING || sc->dc_link == 0)
3535		return;
3536
3537	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3538
3539	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3540		/*
3541		 * If there's no way we can send any packets, return now.
3542		 */
3543		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3544			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3545			break;
3546		}
3547		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3548		if (m_head == NULL)
3549			break;
3550
3551		if (dc_encap(sc, &m_head)) {
3552			if (m_head == NULL)
3553				break;
3554			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3555			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3556			break;
3557		}
3558
3559		queued++;
3560		/*
3561		 * If there's a BPF listener, bounce a copy of this frame
3562		 * to him.
3563		 */
3564		BPF_MTAP(ifp, m_head);
3565	}
3566
3567	if (queued > 0) {
3568		/* Transmit */
3569		if (!(sc->dc_flags & DC_TX_POLL))
3570			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3571
3572		/*
3573		 * Set a timeout in case the chip goes out to lunch.
3574		 */
3575		sc->dc_wdog_timer = 5;
3576	}
3577}
3578
3579static void
3580dc_init(void *xsc)
3581{
3582	struct dc_softc *sc = xsc;
3583
3584	DC_LOCK(sc);
3585	dc_init_locked(sc);
3586	DC_UNLOCK(sc);
3587}
3588
3589static void
3590dc_init_locked(struct dc_softc *sc)
3591{
3592	struct ifnet *ifp = sc->dc_ifp;
3593	struct mii_data *mii;
3594	struct ifmedia *ifm;
3595
3596	DC_LOCK_ASSERT(sc);
3597
3598	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3599		return;
3600
3601	mii = device_get_softc(sc->dc_miibus);
3602
3603	/*
3604	 * Cancel pending I/O and free all RX/TX buffers.
3605	 */
3606	dc_stop(sc);
3607	dc_reset(sc);
3608	if (DC_IS_INTEL(sc)) {
3609		ifm = &mii->mii_media;
3610		dc_apply_fixup(sc, ifm->ifm_media);
3611	}
3612
3613	/*
3614	 * Set cache alignment and burst length.
3615	 */
3616	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3617		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3618	else
3619		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3620	/*
3621	 * Evenly share the bus between receive and transmit process.
3622	 */
3623	if (DC_IS_INTEL(sc))
3624		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3625	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3626		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3627	} else {
3628		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3629	}
3630	if (sc->dc_flags & DC_TX_POLL)
3631		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3632	switch(sc->dc_cachesize) {
3633	case 32:
3634		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3635		break;
3636	case 16:
3637		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3638		break;
3639	case 8:
3640		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3641		break;
3642	case 0:
3643	default:
3644		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3645		break;
3646	}
3647
3648	if (sc->dc_flags & DC_TX_STORENFWD)
3649		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3650	else {
3651		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3652			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3653		} else {
3654			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3655			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3656		}
3657	}
3658
3659	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3660	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3661
3662	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3663		/*
3664		 * The app notes for the 98713 and 98715A say that
3665		 * in order to have the chips operate properly, a magic
3666		 * number must be written to CSR16. Macronix does not
3667		 * document the meaning of these bits so there's no way
3668		 * to know exactly what they do. The 98713 has a magic
3669		 * number all its own; the rest all use a different one.
3670		 */
3671		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3672		if (sc->dc_type == DC_TYPE_98713)
3673			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3674		else
3675			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3676	}
3677
3678	if (DC_IS_XIRCOM(sc)) {
3679		/*
3680		 * setup General Purpose Port mode and data so the tulip
3681		 * can talk to the MII.
3682		 */
3683		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3684			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3685		DELAY(10);
3686		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3687			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3688		DELAY(10);
3689	}
3690
3691	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3692	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3693
3694	/* Init circular RX list. */
3695	if (dc_list_rx_init(sc) == ENOBUFS) {
3696		device_printf(sc->dc_dev,
3697		    "initialization failed: no memory for rx buffers\n");
3698		dc_stop(sc);
3699		return;
3700	}
3701
3702	/*
3703	 * Init TX descriptors.
3704	 */
3705	dc_list_tx_init(sc);
3706
3707	/*
3708	 * Load the address of the RX list.
3709	 */
3710	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3711	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3712
3713	/*
3714	 * Enable interrupts.
3715	 */
3716#ifdef DEVICE_POLLING
3717	/*
3718	 * ... but only if we are not polling, and make sure they are off in
3719	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3720	 * after a reset.
3721	 */
3722	if (ifp->if_capenable & IFCAP_POLLING)
3723		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3724	else
3725#endif
3726	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3727	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3728
3729	/* Initialize TX jabber and RX watchdog timer. */
3730	if (DC_IS_ULI(sc))
3731		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3732		    DC_WDOG_HOSTUNJAB);
3733
3734	/* Enable transmitter. */
3735	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3736
3737	/*
3738	 * If this is an Intel 21143 and we're not using the
3739	 * MII port, program the LED control pins so we get
3740	 * link and activity indications.
3741	 */
3742	if (sc->dc_flags & DC_TULIP_LEDS) {
3743		CSR_WRITE_4(sc, DC_WATCHDOG,
3744		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3745		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3746	}
3747
3748	/*
3749	 * Load the RX/multicast filter. We do this sort of late
3750	 * because the filter programming scheme on the 21143 and
3751	 * some clones requires DMAing a setup frame via the TX
3752	 * engine, and we need the transmitter enabled for that.
3753	 */
3754	dc_setfilt(sc);
3755
3756	/* Enable receiver. */
3757	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3758	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3759
3760	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3761	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3762
3763	dc_ifmedia_upd_locked(sc);
3764
3765	/* Clear missed frames and overflow counter. */
3766	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3767
3768	/* Don't start the ticker if this is a homePNA link. */
3769	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3770		sc->dc_link = 1;
3771	else {
3772		if (sc->dc_flags & DC_21143_NWAY)
3773			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3774		else
3775			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3776	}
3777
3778	sc->dc_wdog_timer = 0;
3779	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3780}
3781
3782/*
3783 * Set media options.
3784 */
3785static int
3786dc_ifmedia_upd(struct ifnet *ifp)
3787{
3788	struct dc_softc *sc;
3789	int error;
3790
3791	sc = ifp->if_softc;
3792	DC_LOCK(sc);
3793	error = dc_ifmedia_upd_locked(sc);
3794	DC_UNLOCK(sc);
3795	return (error);
3796}
3797
3798static int
3799dc_ifmedia_upd_locked(struct dc_softc *sc)
3800{
3801	struct mii_data *mii;
3802	struct ifmedia *ifm;
3803	int error;
3804
3805	DC_LOCK_ASSERT(sc);
3806
3807	sc->dc_link = 0;
3808	mii = device_get_softc(sc->dc_miibus);
3809	error = mii_mediachg(mii);
3810	if (error == 0) {
3811		ifm = &mii->mii_media;
3812		if (DC_IS_INTEL(sc))
3813			dc_setcfg(sc, ifm->ifm_media);
3814		else if (DC_IS_DAVICOM(sc) &&
3815		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3816			dc_setcfg(sc, ifm->ifm_media);
3817	}
3818
3819	return (error);
3820}
3821
3822/*
3823 * Report current media status.
3824 */
3825static void
3826dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3827{
3828	struct dc_softc *sc;
3829	struct mii_data *mii;
3830	struct ifmedia *ifm;
3831
3832	sc = ifp->if_softc;
3833	mii = device_get_softc(sc->dc_miibus);
3834	DC_LOCK(sc);
3835	mii_pollstat(mii);
3836	ifm = &mii->mii_media;
3837	if (DC_IS_DAVICOM(sc)) {
3838		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3839			ifmr->ifm_active = ifm->ifm_media;
3840			ifmr->ifm_status = 0;
3841			DC_UNLOCK(sc);
3842			return;
3843		}
3844	}
3845	ifmr->ifm_active = mii->mii_media_active;
3846	ifmr->ifm_status = mii->mii_media_status;
3847	DC_UNLOCK(sc);
3848}
3849
3850static int
3851dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3852{
3853	struct dc_softc *sc = ifp->if_softc;
3854	struct ifreq *ifr = (struct ifreq *)data;
3855	struct mii_data *mii;
3856	int error = 0;
3857
3858	switch (command) {
3859	case SIOCSIFFLAGS:
3860		DC_LOCK(sc);
3861		if (ifp->if_flags & IFF_UP) {
3862			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3863				(IFF_PROMISC | IFF_ALLMULTI);
3864
3865			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3866				if (need_setfilt)
3867					dc_setfilt(sc);
3868			} else {
3869				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3870				dc_init_locked(sc);
3871			}
3872		} else {
3873			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3874				dc_stop(sc);
3875		}
3876		sc->dc_if_flags = ifp->if_flags;
3877		DC_UNLOCK(sc);
3878		break;
3879	case SIOCADDMULTI:
3880	case SIOCDELMULTI:
3881		DC_LOCK(sc);
3882		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3883			dc_setfilt(sc);
3884		DC_UNLOCK(sc);
3885		break;
3886	case SIOCGIFMEDIA:
3887	case SIOCSIFMEDIA:
3888		mii = device_get_softc(sc->dc_miibus);
3889		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3890		break;
3891	case SIOCSIFCAP:
3892#ifdef DEVICE_POLLING
3893		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3894		    !(ifp->if_capenable & IFCAP_POLLING)) {
3895			error = ether_poll_register(dc_poll, ifp);
3896			if (error)
3897				return(error);
3898			DC_LOCK(sc);
3899			/* Disable interrupts */
3900			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3901			ifp->if_capenable |= IFCAP_POLLING;
3902			DC_UNLOCK(sc);
3903			return (error);
3904		}
3905		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3906		    ifp->if_capenable & IFCAP_POLLING) {
3907			error = ether_poll_deregister(ifp);
3908			/* Enable interrupts. */
3909			DC_LOCK(sc);
3910			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3911			ifp->if_capenable &= ~IFCAP_POLLING;
3912			DC_UNLOCK(sc);
3913			return (error);
3914		}
3915#endif /* DEVICE_POLLING */
3916		break;
3917	default:
3918		error = ether_ioctl(ifp, command, data);
3919		break;
3920	}
3921
3922	return (error);
3923}
3924
3925static void
3926dc_watchdog(void *xsc)
3927{
3928	struct dc_softc *sc = xsc;
3929	struct ifnet *ifp;
3930
3931	DC_LOCK_ASSERT(sc);
3932
3933	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3934		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3935		return;
3936	}
3937
3938	ifp = sc->dc_ifp;
3939	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3940	device_printf(sc->dc_dev, "watchdog timeout\n");
3941
3942	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3943	dc_init_locked(sc);
3944
3945	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3946		dc_start_locked(ifp);
3947}
3948
3949/*
3950 * Stop the adapter and free any mbufs allocated to the
3951 * RX and TX lists.
3952 */
3953static void
3954dc_stop(struct dc_softc *sc)
3955{
3956	struct ifnet *ifp;
3957	struct dc_list_data *ld;
3958	struct dc_chain_data *cd;
3959	int i;
3960	uint32_t ctl, netcfg;
3961
3962	DC_LOCK_ASSERT(sc);
3963
3964	ifp = sc->dc_ifp;
3965	ld = &sc->dc_ldata;
3966	cd = &sc->dc_cdata;
3967
3968	callout_stop(&sc->dc_stat_ch);
3969	callout_stop(&sc->dc_wdog_ch);
3970	sc->dc_wdog_timer = 0;
3971	sc->dc_link = 0;
3972
3973	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3974
3975	netcfg = CSR_READ_4(sc, DC_NETCFG);
3976	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3977		CSR_WRITE_4(sc, DC_NETCFG,
3978		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3979	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3980	/* Wait the completion of TX/RX SM. */
3981	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3982		dc_netcfg_wait(sc);
3983
3984	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3985	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3986
3987	/*
3988	 * Free data in the RX lists.
3989	 */
3990	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3991		if (cd->dc_rx_chain[i] != NULL) {
3992			bus_dmamap_sync(sc->dc_rx_mtag,
3993			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3994			bus_dmamap_unload(sc->dc_rx_mtag,
3995			    cd->dc_rx_map[i]);
3996			m_freem(cd->dc_rx_chain[i]);
3997			cd->dc_rx_chain[i] = NULL;
3998		}
3999	}
4000	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4001	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4002	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4003
4004	/*
4005	 * Free the TX list buffers.
4006	 */
4007	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4008		if (cd->dc_tx_chain[i] != NULL) {
4009			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4010			if (ctl & DC_TXCTL_SETUP) {
4011				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4012				    BUS_DMASYNC_POSTWRITE);
4013			} else {
4014				bus_dmamap_sync(sc->dc_tx_mtag,
4015				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4016				bus_dmamap_unload(sc->dc_tx_mtag,
4017				    cd->dc_tx_map[i]);
4018				m_freem(cd->dc_tx_chain[i]);
4019			}
4020			cd->dc_tx_chain[i] = NULL;
4021		}
4022	}
4023	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4024	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4025	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4026}
4027
4028/*
4029 * Device suspend routine.  Stop the interface and save some PCI
4030 * settings in case the BIOS doesn't restore them properly on
4031 * resume.
4032 */
4033static int
4034dc_suspend(device_t dev)
4035{
4036	struct dc_softc *sc;
4037
4038	sc = device_get_softc(dev);
4039	DC_LOCK(sc);
4040	dc_stop(sc);
4041	sc->suspended = 1;
4042	DC_UNLOCK(sc);
4043
4044	return (0);
4045}
4046
4047/*
4048 * Device resume routine.  Restore some PCI settings in case the BIOS
4049 * doesn't, re-enable busmastering, and restart the interface if
4050 * appropriate.
4051 */
4052static int
4053dc_resume(device_t dev)
4054{
4055	struct dc_softc *sc;
4056	struct ifnet *ifp;
4057
4058	sc = device_get_softc(dev);
4059	ifp = sc->dc_ifp;
4060
4061	/* reinitialize interface if necessary */
4062	DC_LOCK(sc);
4063	if (ifp->if_flags & IFF_UP)
4064		dc_init_locked(sc);
4065
4066	sc->suspended = 0;
4067	DC_UNLOCK(sc);
4068
4069	return (0);
4070}
4071
4072/*
4073 * Stop all chip I/O so that the kernel's probe routines don't
4074 * get confused by errant DMAs when rebooting.
4075 */
4076static int
4077dc_shutdown(device_t dev)
4078{
4079	struct dc_softc *sc;
4080
4081	sc = device_get_softc(dev);
4082
4083	DC_LOCK(sc);
4084	dc_stop(sc);
4085	DC_UNLOCK(sc);
4086
4087	return (0);
4088}
4089
4090static int
4091dc_check_multiport(struct dc_softc *sc)
4092{
4093	struct dc_softc *dsc;
4094	devclass_t dc;
4095	device_t child;
4096	uint8_t *eaddr;
4097	int unit;
4098
4099	dc = devclass_find("dc");
4100	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4101		child = devclass_get_device(dc, unit);
4102		if (child == NULL)
4103			continue;
4104		if (child == sc->dc_dev)
4105			continue;
4106		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4107			continue;
4108		if (unit > device_get_unit(sc->dc_dev))
4109			continue;
4110		if (device_is_attached(child) == 0)
4111			continue;
4112		dsc = device_get_softc(child);
4113		device_printf(sc->dc_dev,
4114		    "Using station address of %s as base\n",
4115		    device_get_nameunit(child));
4116		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4117		eaddr = (uint8_t *)sc->dc_eaddr;
4118		eaddr[5]++;
4119		/* Prepare SROM to parse again. */
4120		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4121		    sc->dc_romwidth != 0) {
4122			free(sc->dc_srom, M_DEVBUF);
4123			sc->dc_romwidth = dsc->dc_romwidth;
4124			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4125			    M_DEVBUF, M_NOWAIT);
4126			if (sc->dc_srom == NULL) {
4127				device_printf(sc->dc_dev,
4128				    "Could not allocate SROM buffer\n");
4129				return (ENOMEM);
4130			}
4131			bcopy(dsc->dc_srom, sc->dc_srom,
4132			    DC_ROM_SIZE(sc->dc_romwidth));
4133		}
4134		return (0);
4135	}
4136	return (ENOENT);
4137}
4138