t4.h revision 331769
1/*
2 * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 *
31 * $FreeBSD: stable/11/sys/dev/cxgbe/iw_cxgbe/t4.h 331769 2018-03-30 18:06:29Z hselasky $
32 */
33#ifndef __T4_H__
34#define __T4_H__
35
36#include "common/t4_regs_values.h"
37#include "common/t4_regs.h"
38/*
39 * Fixme: Adding missing defines
40 */
41#define SGE_PF_KDOORBELL 0x0
42#define  QID_MASK    0xffff8000U
43#define  QID_SHIFT   15
44#define  QID(x)      ((x) << QID_SHIFT)
45#define  DBPRIO      0x00004000U
46#define  PIDX_MASK   0x00003fffU
47#define  PIDX_SHIFT  0
48#define  PIDX(x)     ((x) << PIDX_SHIFT)
49
50#define SGE_PF_GTS 0x4
51#define  INGRESSQID_MASK   0xffff0000U
52#define  INGRESSQID_SHIFT  16
53#define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
54#define  TIMERREG_MASK     0x0000e000U
55#define  TIMERREG_SHIFT    13
56#define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
57#define  SEINTARM_MASK     0x00001000U
58#define  SEINTARM_SHIFT    12
59#define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
60#define  CIDXINC_MASK      0x00000fffU
61#define  CIDXINC_SHIFT     0
62#define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
63
64#define T4_MAX_NUM_PD 65536
65#define T4_MAX_MR_SIZE (~0ULL)
66#define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
67#define T4_STAG_UNSET 0xffffffff
68#define T4_FW_MAJ 0
69#define A_PCIE_MA_SYNC 0x30b4
70
71struct t4_status_page {
72	__be32 rsvd1;	/* flit 0 - hw owns */
73	__be16 rsvd2;
74	__be16 qid;
75	__be16 cidx;
76	__be16 pidx;
77	u8 qp_err;	/* flit 1 - sw owns */
78	u8 db_off;
79	u8 pad;
80	u16 host_wq_pidx;
81	u16 host_cidx;
82	u16 host_pidx;
83};
84
85#define T4_EQ_ENTRY_SIZE 64
86
87#define T4_SQ_NUM_SLOTS 5
88#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
89#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
90			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
91#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92			sizeof(struct fw_ri_immd)))
93#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
94			sizeof(struct fw_ri_rdma_write_wr) - \
95			sizeof(struct fw_ri_immd)))
96#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
97			sizeof(struct fw_ri_rdma_write_wr) - \
98			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
99#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
100			sizeof(struct fw_ri_immd)) & ~31UL)
101#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
102#define T4_MAX_FR_DSGL 1024
103#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
104
105static inline int t4_max_fr_depth(int use_dsgl)
106{
107	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
108}
109
110#define T4_RQ_NUM_SLOTS 2
111#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
112#define T4_MAX_RECV_SGE 4
113
114union t4_wr {
115	struct fw_ri_res_wr res;
116	struct fw_ri_wr ri;
117	struct fw_ri_rdma_write_wr write;
118	struct fw_ri_send_wr send;
119	struct fw_ri_rdma_read_wr read;
120	struct fw_ri_bind_mw_wr bind;
121	struct fw_ri_fr_nsmr_wr fr;
122	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
123	struct fw_ri_inv_lstag_wr inv;
124	struct t4_status_page status;
125	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
126};
127
128union t4_recv_wr {
129	struct fw_ri_recv_wr recv;
130	struct t4_status_page status;
131	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
132};
133
134static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
135			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
136{
137	wqe->send.opcode = (u8)opcode;
138	wqe->send.flags = flags;
139	wqe->send.wrid = wrid;
140	wqe->send.r1[0] = 0;
141	wqe->send.r1[1] = 0;
142	wqe->send.r1[2] = 0;
143	wqe->send.len16 = len16;
144}
145
146/* CQE/AE status codes */
147#define T4_ERR_SUCCESS                     0x0
148#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
149						/* STAG is offlimt, being 0, */
150						/* or STAG_key mismatch */
151#define T4_ERR_PDID                        0x2	/* PDID mismatch */
152#define T4_ERR_QPID                        0x3	/* QPID mismatch */
153#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
154#define T4_ERR_WRAP                        0x5	/* Wrap error */
155#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
156#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
157						/* shared memory region */
158#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
159						/* shared memory region */
160#define T4_ERR_ECC                         0x9	/* ECC error detected */
161#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
162						/* reading PSTAG for a MW  */
163						/* Invalidate */
164#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
165						/* software error */
166#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
167#define T4_ERR_CRC                         0x10 /* CRC error */
168#define T4_ERR_MARKER                      0x11 /* Marker error */
169#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
170#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
171#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
172#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
173#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
174#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
175#define T4_ERR_MSN                         0x18 /* MSN error */
176#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
177#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
178						/* or READ_REQ */
179#define T4_ERR_MSN_GAP                     0x1B
180#define T4_ERR_MSN_RANGE                   0x1C
181#define T4_ERR_IRD_OVERFLOW                0x1D
182#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
183						/* software error */
184#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
185						/* mismatch) */
186/*
187 * CQE defs
188 */
189struct t4_cqe {
190	__be32 header;
191	__be32 len;
192	union {
193		struct {
194			__be32 stag;
195			__be32 msn;
196		} rcqe;
197		struct {
198			u32 stag;
199			u16 nada2;
200			u16 cidx;
201		} scqe;
202		struct {
203			__be32 wrid_hi;
204			__be32 wrid_low;
205		} gen;
206		u64 drain_cookie;
207	} u;
208	__be64 reserved;
209	__be64 bits_type_ts;
210};
211
212/* macros for flit 0 of the cqe */
213
214#define S_CQE_QPID        12
215#define M_CQE_QPID        0xFFFFF
216#define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
217#define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
218
219#define S_CQE_SWCQE       11
220#define M_CQE_SWCQE       0x1
221#define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
222#define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
223
224#define S_CQE_STATUS      5
225#define M_CQE_STATUS      0x1F
226#define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
227#define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
228
229#define S_CQE_TYPE        4
230#define M_CQE_TYPE        0x1
231#define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
232#define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
233
234#define S_CQE_OPCODE      0
235#define M_CQE_OPCODE      0xF
236#define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
237#define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
238
239#define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
240#define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
241#define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
242#define SQ_TYPE(x)	  (CQE_TYPE((x)))
243#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
244#define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
245#define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
246
247#define CQE_SEND_OPCODE(x)(\
248	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
249	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
250	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
251	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
252
253#define CQE_LEN(x)        (be32_to_cpu((x)->len))
254
255/* used for RQ completion processing */
256#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
257#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
258
259/* used for SQ completion processing */
260#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
261#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
262
263/* generic accessor macros */
264#define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
265#define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
266#define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
267
268/* macros for flit 3 of the cqe */
269#define S_CQE_GENBIT	63
270#define M_CQE_GENBIT	0x1
271#define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
272#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
273
274#define S_CQE_OVFBIT	62
275#define M_CQE_OVFBIT	0x1
276#define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
277
278#define S_CQE_IQTYPE	60
279#define M_CQE_IQTYPE	0x3
280#define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
281
282#define M_CQE_TS	0x0fffffffffffffffULL
283#define G_CQE_TS(x)	((x) & M_CQE_TS)
284
285#define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
286#define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
287#define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
288
289struct t4_swsqe {
290	u64			wr_id;
291	struct t4_cqe		cqe;
292	int			read_len;
293	int			opcode;
294	int			complete;
295	int			signaled;
296	u16			idx;
297	int                     flushed;
298	struct timespec         host_ts;
299	u64                     sge_ts;
300};
301
302static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
303{
304#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
305	return pgprot_writecombine(prot);
306#else
307	return pgprot_noncached(prot);
308#endif
309}
310
311enum {
312	T4_SQ_ONCHIP = (1<<0),
313};
314
315struct t4_sq {
316	union t4_wr *queue;
317	bus_addr_t dma_addr;
318	DEFINE_DMA_UNMAP_ADDR(mapping);
319	unsigned long phys_addr;
320	struct t4_swsqe *sw_sq;
321	struct t4_swsqe *oldest_read;
322	void __iomem *bar2_va;
323	u64 bar2_pa;
324	size_t memsize;
325	u32 bar2_qid;
326	u32 qid;
327	u16 in_use;
328	u16 size;
329	u16 cidx;
330	u16 pidx;
331	u16 wq_pidx;
332	u16 wq_pidx_inc;
333	u16 flags;
334	short flush_cidx;
335};
336
337struct t4_swrqe {
338	u64 wr_id;
339};
340
341struct t4_rq {
342	union  t4_recv_wr *queue;
343	bus_addr_t dma_addr;
344	DEFINE_DMA_UNMAP_ADDR(mapping);
345	unsigned long phys_addr;
346	struct t4_swrqe *sw_rq;
347	void __iomem *bar2_va;
348	u64 bar2_pa;
349	size_t memsize;
350	u32 bar2_qid;
351	u32 qid;
352	u32 msn;
353	u32 rqt_hwaddr;
354	u16 rqt_size;
355	u16 in_use;
356	u16 size;
357	u16 cidx;
358	u16 pidx;
359	u16 wq_pidx;
360	u16 wq_pidx_inc;
361};
362
363struct t4_wq {
364	struct t4_sq sq;
365	struct t4_rq rq;
366	struct c4iw_rdev *rdev;
367	int flushed;
368};
369
370static inline int t4_rqes_posted(struct t4_wq *wq)
371{
372	return wq->rq.in_use;
373}
374
375static inline int t4_rq_empty(struct t4_wq *wq)
376{
377	return wq->rq.in_use == 0;
378}
379
380static inline int t4_rq_full(struct t4_wq *wq)
381{
382	return wq->rq.in_use == (wq->rq.size - 1);
383}
384
385static inline u32 t4_rq_avail(struct t4_wq *wq)
386{
387	return wq->rq.size - 1 - wq->rq.in_use;
388}
389
390static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
391{
392	wq->rq.in_use++;
393	if (++wq->rq.pidx == wq->rq.size)
394		wq->rq.pidx = 0;
395	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
396	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
397		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
398}
399
400static inline void t4_rq_consume(struct t4_wq *wq)
401{
402	wq->rq.in_use--;
403	wq->rq.msn++;
404	if (++wq->rq.cidx == wq->rq.size)
405		wq->rq.cidx = 0;
406}
407
408static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
409{
410	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
411}
412
413static inline u16 t4_rq_wq_size(struct t4_wq *wq)
414{
415	return wq->rq.size * T4_RQ_NUM_SLOTS;
416}
417
418static inline int t4_sq_onchip(struct t4_sq *sq)
419{
420	return sq->flags & T4_SQ_ONCHIP;
421}
422
423static inline int t4_sq_empty(struct t4_wq *wq)
424{
425	return wq->sq.in_use == 0;
426}
427
428static inline int t4_sq_full(struct t4_wq *wq)
429{
430	return wq->sq.in_use == (wq->sq.size - 1);
431}
432
433static inline u32 t4_sq_avail(struct t4_wq *wq)
434{
435	return wq->sq.size - 1 - wq->sq.in_use;
436}
437
438static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
439{
440	wq->sq.in_use++;
441	if (++wq->sq.pidx == wq->sq.size)
442		wq->sq.pidx = 0;
443	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
444	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
445		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
446}
447
448static inline void t4_sq_consume(struct t4_wq *wq)
449{
450	BUG_ON(wq->sq.in_use < 1);
451	if (wq->sq.cidx == wq->sq.flush_cidx)
452		wq->sq.flush_cidx = -1;
453	wq->sq.in_use--;
454	if (++wq->sq.cidx == wq->sq.size)
455		wq->sq.cidx = 0;
456}
457
458static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
459{
460	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
461}
462
463static inline u16 t4_sq_wq_size(struct t4_wq *wq)
464{
465		return wq->sq.size * T4_SQ_NUM_SLOTS;
466}
467
468/* This function copies 64 byte coalesced work request to memory
469 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
470 * from the FIFO instead of from Host.
471 */
472static inline void pio_copy(u64 __iomem *dst, u64 *src)
473{
474	int count = 8;
475
476	while (count) {
477		writeq(*src, dst);
478		src++;
479		dst++;
480		count--;
481	}
482}
483
484static inline void
485t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
486{
487
488	/* Flush host queue memory writes. */
489	wmb();
490	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
491		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d\n",
492				__func__, wq->sq.pidx);
493		pio_copy((u64 __iomem *)
494				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
495				(u64 *)wqe);
496	} else {
497		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d\n",
498				__func__, wq->sq.pidx);
499		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
500				(void __iomem *)((u64)wq->sq.bar2_va +
501					SGE_UDB_KDOORBELL));
502	}
503
504	/* Flush user doorbell area writes. */
505	wmb();
506	return;
507}
508
509static inline void
510t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
511{
512
513	/* Flush host queue memory writes. */
514	wmb();
515	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
516		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d\n",
517				__func__, wq->rq.pidx);
518		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
519					SGE_UDB_WCDOORBELL), (u64 *)wqe);
520	} else {
521		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d\n",
522				__func__, wq->rq.pidx);
523		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
524				(void __iomem *)((u64)wq->rq.bar2_va +
525					SGE_UDB_KDOORBELL));
526	}
527
528	/* Flush user doorbell area writes. */
529	wmb();
530	return;
531}
532
533static inline int t4_wq_in_error(struct t4_wq *wq)
534{
535	return wq->rq.queue[wq->rq.size].status.qp_err;
536}
537
538static inline void t4_set_wq_in_error(struct t4_wq *wq)
539{
540	wq->rq.queue[wq->rq.size].status.qp_err = 1;
541}
542
543enum t4_cq_flags {
544	CQ_ARMED	= 1,
545};
546
547struct t4_cq {
548	struct t4_cqe *queue;
549	bus_addr_t dma_addr;
550	DEFINE_DMA_UNMAP_ADDR(mapping);
551	struct t4_cqe *sw_queue;
552	void __iomem *bar2_va;
553	u64 bar2_pa;
554	u32 bar2_qid;
555	struct c4iw_rdev *rdev;
556	size_t memsize;
557	__be64 bits_type_ts;
558	u32 cqid;
559	u32 qid_mask;
560	int vector;
561	u16 size; /* including status page */
562	u16 cidx;
563	u16 sw_pidx;
564	u16 sw_cidx;
565	u16 sw_in_use;
566	u16 cidx_inc;
567	u8 gen;
568	u8 error;
569	unsigned long flags;
570};
571
572static inline void write_gts(struct t4_cq *cq, u32 val)
573{
574	writel(val | V_INGRESSQID(cq->bar2_qid),
575		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
576}
577
578static inline int t4_clear_cq_armed(struct t4_cq *cq)
579{
580	return test_and_clear_bit(CQ_ARMED, &cq->flags);
581}
582
583static inline int t4_arm_cq(struct t4_cq *cq, int se)
584{
585	u32 val;
586
587	set_bit(CQ_ARMED, &cq->flags);
588	while (cq->cidx_inc > CIDXINC_MASK) {
589		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
590		writel(val | V_INGRESSQID(cq->bar2_qid),
591		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
592		cq->cidx_inc -= CIDXINC_MASK;
593	}
594	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
595	writel(val | V_INGRESSQID(cq->bar2_qid),
596		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
597	cq->cidx_inc = 0;
598	return 0;
599}
600
601static inline void t4_swcq_produce(struct t4_cq *cq)
602{
603	cq->sw_in_use++;
604	if (cq->sw_in_use == cq->size) {
605		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u\n",
606			 __func__, cq->cqid);
607		cq->error = 1;
608		BUG_ON(1);
609	}
610	if (++cq->sw_pidx == cq->size)
611		cq->sw_pidx = 0;
612}
613
614static inline void t4_swcq_consume(struct t4_cq *cq)
615{
616	BUG_ON(cq->sw_in_use < 1);
617	cq->sw_in_use--;
618	if (++cq->sw_cidx == cq->size)
619		cq->sw_cidx = 0;
620}
621
622static inline void t4_hwcq_consume(struct t4_cq *cq)
623{
624	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
625	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
626		u32 val;
627
628		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
629		write_gts(cq, val);
630		cq->cidx_inc = 0;
631	}
632	if (++cq->cidx == cq->size) {
633		cq->cidx = 0;
634		cq->gen ^= 1;
635	}
636}
637
638static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
639{
640	return (CQE_GENBIT(cqe) == cq->gen);
641}
642
643static inline int t4_cq_notempty(struct t4_cq *cq)
644{
645	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
646}
647
648static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
649{
650	int ret;
651	u16 prev_cidx;
652
653	if (cq->cidx == 0)
654		prev_cidx = cq->size - 1;
655	else
656		prev_cidx = cq->cidx - 1;
657
658	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
659		ret = -EOVERFLOW;
660		cq->error = 1;
661		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
662		BUG_ON(1);
663	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
664
665		/* Ensure CQE is flushed to memory */
666		rmb();
667		*cqe = &cq->queue[cq->cidx];
668		ret = 0;
669	} else
670		ret = -ENODATA;
671	return ret;
672}
673
674static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
675{
676	if (cq->sw_in_use == cq->size) {
677		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u\n",
678			 __func__, cq->cqid);
679		cq->error = 1;
680		BUG_ON(1);
681		return NULL;
682	}
683	if (cq->sw_in_use)
684		return &cq->sw_queue[cq->sw_cidx];
685	return NULL;
686}
687
688static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
689{
690	int ret = 0;
691
692	if (cq->error)
693		ret = -ENODATA;
694	else if (cq->sw_in_use)
695		*cqe = &cq->sw_queue[cq->sw_cidx];
696	else
697		ret = t4_next_hw_cqe(cq, cqe);
698	return ret;
699}
700
701static inline int t4_cq_in_error(struct t4_cq *cq)
702{
703	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
704}
705
706static inline void t4_set_cq_in_error(struct t4_cq *cq)
707{
708	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
709}
710struct t4_dev_status_page {
711	u8 db_off;
712	u8 wc_supported;
713	u16 pad2;
714	u32 pad3;
715	u64 qp_start;
716	u64 qp_size;
717	u64 cq_start;
718	u64 cq_size;
719};
720#endif
721