t4.h revision 329017
1/*
2 * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 *
31 * $FreeBSD: stable/11/sys/dev/cxgbe/iw_cxgbe/t4.h 329017 2018-02-08 14:39:07Z np $
32 */
33#ifndef __T4_H__
34#define __T4_H__
35
36/*
37 * Fixme: Adding missing defines
38 */
39#define SGE_PF_KDOORBELL 0x0
40#define  QID_MASK    0xffff8000U
41#define  QID_SHIFT   15
42#define  QID(x)      ((x) << QID_SHIFT)
43#define  DBPRIO      0x00004000U
44#define  PIDX_MASK   0x00003fffU
45#define  PIDX_SHIFT  0
46#define  PIDX(x)     ((x) << PIDX_SHIFT)
47
48#define SGE_PF_GTS 0x4
49#define  INGRESSQID_MASK   0xffff0000U
50#define  INGRESSQID_SHIFT  16
51#define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
52#define  TIMERREG_MASK     0x0000e000U
53#define  TIMERREG_SHIFT    13
54#define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
55#define  SEINTARM_MASK     0x00001000U
56#define  SEINTARM_SHIFT    12
57#define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
58#define  CIDXINC_MASK      0x00000fffU
59#define  CIDXINC_SHIFT     0
60#define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
61
62#define T4_MAX_NUM_PD 65536
63#define T4_MAX_EQ_SIZE 65520
64#define T4_MAX_IQ_SIZE 65520
65#define T4_MAX_RQ_SIZE(n) (8192 - (n) - 1)
66#define T4_MAX_SQ_SIZE(n) (T4_MAX_EQ_SIZE - (n) - 1)
67#define T4_MAX_QP_DEPTH(n) (T4_MAX_RQ_SIZE(n))
68#define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 2)
69#define T4_MAX_MR_SIZE (~0ULL - 1)
70#define T4_PAGESIZE_MASK 0xffffffff000  /* 4KB-8TB */
71#define T4_STAG_UNSET 0xffffffff
72#define T4_FW_MAJ 0
73#define A_PCIE_MA_SYNC 0x30b4
74
75struct t4_status_page {
76	__be32 rsvd1;	/* flit 0 - hw owns */
77	__be16 rsvd2;
78	__be16 qid;
79	__be16 cidx;
80	__be16 pidx;
81	u8 qp_err;	/* flit 1 - sw owns */
82	u8 db_off;
83	u8 pad;
84	u16 host_wq_pidx;
85	u16 host_cidx;
86	u16 host_pidx;
87};
88
89#define T4_EQ_ENTRY_SIZE 64
90
91#define T4_SQ_NUM_SLOTS 5
92#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
93#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
94			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
95#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
96			sizeof(struct fw_ri_immd)))
97#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
98			sizeof(struct fw_ri_rdma_write_wr) - \
99			sizeof(struct fw_ri_immd)))
100#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
101			sizeof(struct fw_ri_rdma_write_wr) - \
102			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
103#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
104			sizeof(struct fw_ri_immd)) & ~31UL)
105#define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
106
107#define T4_RQ_NUM_SLOTS 2
108#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
109#define T4_MAX_RECV_SGE 4
110
111union t4_wr {
112	struct fw_ri_res_wr res;
113	struct fw_ri_wr ri;
114	struct fw_ri_rdma_write_wr write;
115	struct fw_ri_send_wr send;
116	struct fw_ri_rdma_read_wr read;
117	struct fw_ri_bind_mw_wr bind;
118	struct fw_ri_fr_nsmr_wr fr;
119	struct fw_ri_inv_lstag_wr inv;
120	struct t4_status_page status;
121	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
122};
123
124union t4_recv_wr {
125	struct fw_ri_recv_wr recv;
126	struct t4_status_page status;
127	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
128};
129
130static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
131			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
132{
133	wqe->send.opcode = (u8)opcode;
134	wqe->send.flags = flags;
135	wqe->send.wrid = wrid;
136	wqe->send.r1[0] = 0;
137	wqe->send.r1[1] = 0;
138	wqe->send.r1[2] = 0;
139	wqe->send.len16 = len16;
140}
141
142/* CQE/AE status codes */
143#define T4_ERR_SUCCESS                     0x0
144#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
145						/* STAG is offlimt, being 0, */
146						/* or STAG_key mismatch */
147#define T4_ERR_PDID                        0x2	/* PDID mismatch */
148#define T4_ERR_QPID                        0x3	/* QPID mismatch */
149#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
150#define T4_ERR_WRAP                        0x5	/* Wrap error */
151#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
152#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
153						/* shared memory region */
154#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
155						/* shared memory region */
156#define T4_ERR_ECC                         0x9	/* ECC error detected */
157#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
158						/* reading PSTAG for a MW  */
159						/* Invalidate */
160#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
161						/* software error */
162#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
163#define T4_ERR_CRC                         0x10 /* CRC error */
164#define T4_ERR_MARKER                      0x11 /* Marker error */
165#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
166#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
167#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
168#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
169#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
170#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
171#define T4_ERR_MSN                         0x18 /* MSN error */
172#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
173#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
174						/* or READ_REQ */
175#define T4_ERR_MSN_GAP                     0x1B
176#define T4_ERR_MSN_RANGE                   0x1C
177#define T4_ERR_IRD_OVERFLOW                0x1D
178#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
179						/* software error */
180#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
181						/* mismatch) */
182/*
183 * CQE defs
184 */
185struct t4_cqe {
186	__be32 header;
187	__be32 len;
188	union {
189		struct {
190			__be32 stag;
191			__be32 msn;
192		} rcqe;
193		struct {
194			u32 nada1;
195			u16 nada2;
196			u16 cidx;
197		} scqe;
198		struct {
199			__be32 wrid_hi;
200			__be32 wrid_low;
201		} gen;
202		u64 drain_cookie;
203	} u;
204	__be64 reserved;
205	__be64 bits_type_ts;
206};
207
208/* macros for flit 0 of the cqe */
209
210#define S_CQE_QPID        12
211#define M_CQE_QPID        0xFFFFF
212#define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
213#define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
214
215#define S_CQE_SWCQE       11
216#define M_CQE_SWCQE       0x1
217#define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
218#define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
219
220#define S_CQE_STATUS      5
221#define M_CQE_STATUS      0x1F
222#define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
223#define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
224
225#define S_CQE_TYPE        4
226#define M_CQE_TYPE        0x1
227#define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
228#define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
229
230#define S_CQE_OPCODE      0
231#define M_CQE_OPCODE      0xF
232#define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
233#define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
234
235#define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
236#define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
237#define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
238#define SQ_TYPE(x)	  (CQE_TYPE((x)))
239#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
240#define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
241#define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
242
243#define CQE_SEND_OPCODE(x)(\
244	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
245	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
246	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
247	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
248
249#define CQE_LEN(x)        (be32_to_cpu((x)->len))
250
251/* used for RQ completion processing */
252#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
253#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
254
255/* used for SQ completion processing */
256#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
257
258/* generic accessor macros */
259#define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
260#define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
261#define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
262
263/* macros for flit 3 of the cqe */
264#define S_CQE_GENBIT	63
265#define M_CQE_GENBIT	0x1
266#define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
267#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
268
269#define S_CQE_OVFBIT	62
270#define M_CQE_OVFBIT	0x1
271#define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
272
273#define S_CQE_IQTYPE	60
274#define M_CQE_IQTYPE	0x3
275#define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
276
277#define M_CQE_TS	0x0fffffffffffffffULL
278#define G_CQE_TS(x)	((x) & M_CQE_TS)
279
280#define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
281#define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
282#define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
283
284struct t4_swsqe {
285	u64			wr_id;
286	struct t4_cqe		cqe;
287	int			read_len;
288	int			opcode;
289	int			complete;
290	int			signaled;
291	u16			idx;
292	int			flushed;
293};
294
295struct t4_sq {
296	union t4_wr *queue;
297	bus_addr_t dma_addr;
298	DECLARE_PCI_UNMAP_ADDR(mapping);
299	unsigned long phys_addr;
300	struct t4_swsqe *sw_sq;
301	struct t4_swsqe *oldest_read;
302	u64 udb;
303	size_t memsize;
304	u32 qid;
305	u16 in_use;
306	u16 size;
307	u16 cidx;
308	u16 pidx;
309	u16 wq_pidx;
310	u16 flags;
311	short flush_cidx;
312};
313
314struct t4_swrqe {
315	u64 wr_id;
316};
317
318struct t4_rq {
319	union  t4_recv_wr *queue;
320	bus_addr_t dma_addr;
321	DECLARE_PCI_UNMAP_ADDR(mapping);
322	struct t4_swrqe *sw_rq;
323	u64 udb;
324	size_t memsize;
325	u32 qid;
326	u32 msn;
327	u32 rqt_hwaddr;
328	u16 rqt_size;
329	u16 in_use;
330	u16 size;
331	u16 cidx;
332	u16 pidx;
333	u16 wq_pidx;
334};
335
336struct t4_wq {
337	struct t4_sq sq;
338	struct t4_rq rq;
339	void __iomem *db;
340	void __iomem *gts;
341	struct c4iw_rdev *rdev;
342	int flushed;
343};
344
345static inline int t4_rqes_posted(struct t4_wq *wq)
346{
347	return wq->rq.in_use;
348}
349
350static inline int t4_rq_empty(struct t4_wq *wq)
351{
352	return wq->rq.in_use == 0;
353}
354
355static inline int t4_rq_full(struct t4_wq *wq)
356{
357	return wq->rq.in_use == (wq->rq.size - 1);
358}
359
360static inline u32 t4_rq_avail(struct t4_wq *wq)
361{
362	return wq->rq.size - 1 - wq->rq.in_use;
363}
364
365static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
366{
367	wq->rq.in_use++;
368	if (++wq->rq.pidx == wq->rq.size)
369		wq->rq.pidx = 0;
370	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
371	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
372		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
373}
374
375static inline void t4_rq_consume(struct t4_wq *wq)
376{
377	wq->rq.in_use--;
378	wq->rq.msn++;
379	if (++wq->rq.cidx == wq->rq.size)
380		wq->rq.cidx = 0;
381}
382
383static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
384{
385	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
386}
387
388static inline u16 t4_rq_wq_size(struct t4_wq *wq)
389{
390		return wq->rq.size * T4_RQ_NUM_SLOTS;
391}
392
393static inline int t4_sq_empty(struct t4_wq *wq)
394{
395	return wq->sq.in_use == 0;
396}
397
398static inline int t4_sq_full(struct t4_wq *wq)
399{
400	return wq->sq.in_use == (wq->sq.size - 1);
401}
402
403static inline u32 t4_sq_avail(struct t4_wq *wq)
404{
405	return wq->sq.size - 1 - wq->sq.in_use;
406}
407
408static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409{
410	wq->sq.in_use++;
411	if (++wq->sq.pidx == wq->sq.size)
412		wq->sq.pidx = 0;
413	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416}
417
418static inline void t4_sq_consume(struct t4_wq *wq)
419{
420	BUG_ON(wq->sq.in_use < 1);
421	if (wq->sq.cidx == wq->sq.flush_cidx)
422		wq->sq.flush_cidx = -1;
423	wq->sq.in_use--;
424	if (++wq->sq.cidx == wq->sq.size)
425		wq->sq.cidx = 0;
426}
427
428static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
429{
430	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
431}
432
433static inline u16 t4_sq_wq_size(struct t4_wq *wq)
434{
435		return wq->sq.size * T4_SQ_NUM_SLOTS;
436}
437
438static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
439{
440	wmb();
441	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
442}
443
444static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
445{
446	wmb();
447	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
448}
449
450static inline int t4_wq_in_error(struct t4_wq *wq)
451{
452	return wq->rq.queue[wq->rq.size].status.qp_err;
453}
454
455static inline void t4_set_wq_in_error(struct t4_wq *wq)
456{
457	wq->rq.queue[wq->rq.size].status.qp_err = 1;
458}
459
460struct t4_cq {
461	struct t4_cqe *queue;
462	bus_addr_t dma_addr;
463	DECLARE_PCI_UNMAP_ADDR(mapping);
464	struct t4_cqe *sw_queue;
465	void __iomem *gts;
466	struct c4iw_rdev *rdev;
467	u64 ugts;
468	size_t memsize;
469	__be64 bits_type_ts;
470	u32 cqid;
471	u16 size; /* including status page */
472	u16 cidx;
473	u16 sw_pidx;
474	u16 sw_cidx;
475	u16 sw_in_use;
476	u16 cidx_inc;
477	u8 gen;
478	u8 error;
479};
480
481static inline int t4_arm_cq(struct t4_cq *cq, int se)
482{
483	u32 val;
484
485	while (cq->cidx_inc > CIDXINC_MASK) {
486		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
487		      INGRESSQID(cq->cqid);
488		writel(val, cq->gts);
489		cq->cidx_inc -= CIDXINC_MASK;
490	}
491	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
492	      INGRESSQID(cq->cqid);
493	writel(val, cq->gts);
494	cq->cidx_inc = 0;
495	return 0;
496}
497
498static inline void t4_swcq_produce(struct t4_cq *cq)
499{
500	cq->sw_in_use++;
501	BUG_ON(cq->sw_in_use >= cq->size);
502	if (++cq->sw_pidx == cq->size)
503		cq->sw_pidx = 0;
504}
505
506static inline void t4_swcq_consume(struct t4_cq *cq)
507{
508	BUG_ON(cq->sw_in_use < 1);
509	cq->sw_in_use--;
510	if (++cq->sw_cidx == cq->size)
511		cq->sw_cidx = 0;
512}
513
514static inline void t4_hwcq_consume(struct t4_cq *cq)
515{
516	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
517	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
518		u32 val;
519
520		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
521		      INGRESSQID(cq->cqid);
522		writel(val, cq->gts);
523		cq->cidx_inc = 0;
524	}
525	if (++cq->cidx == cq->size) {
526		cq->cidx = 0;
527		cq->gen ^= 1;
528	}
529}
530
531static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
532{
533	return (CQE_GENBIT(cqe) == cq->gen);
534}
535
536static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
537{
538	int ret;
539	u16 prev_cidx;
540
541	if (cq->cidx == 0)
542		prev_cidx = cq->size - 1;
543	else
544		prev_cidx = cq->cidx - 1;
545
546	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
547		ret = -EOVERFLOW;
548		cq->error = 1;
549		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
550	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
551		rmb();
552		*cqe = &cq->queue[cq->cidx];
553		ret = 0;
554	} else
555		ret = -ENODATA;
556	return ret;
557}
558
559static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
560{
561	if (cq->sw_in_use)
562		return &cq->sw_queue[cq->sw_cidx];
563	return NULL;
564}
565
566static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
567{
568	int ret = 0;
569
570	if (cq->error)
571		ret = -ENODATA;
572	else if (cq->sw_in_use)
573		*cqe = &cq->sw_queue[cq->sw_cidx];
574	else
575		ret = t4_next_hw_cqe(cq, cqe);
576	return ret;
577}
578
579static inline int t4_cq_in_error(struct t4_cq *cq)
580{
581	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
582}
583
584static inline void t4_set_cq_in_error(struct t4_cq *cq)
585{
586	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
587}
588#endif
589