ctau.c revision 126601
1/*
2 * Low-level subroutines for Cronyx-Tau adapter.
3 *
4 * Copyright (C) 1994-2001 Cronyx Engineering.
5 * Author: Serge Vakulenko, <vak@cronyx.ru>
6 *
7 * Copyright (C) 2003 Cronyx Engineering.
8 * Author: Roman Kurakin, <rik@cronyx.ru>
9 *
10 * This software is distributed with NO WARRANTIES, not even the implied
11 * warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 *
13 * Authors grant any other persons or organisations permission to use
14 * or modify this software as long as this message is kept with the software,
15 * all derivative works or modified versions.
16 *
17 * Cronyx Id: ctau.c,v 1.1.2.4 2003/12/11 17:33:43 rik Exp $
18 */
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/ctau/ctau.c 126601 2004-03-04 14:16:12Z bms $");
21
22#include <dev/cx/machdep.h>
23#include <dev/ctau/ctddk.h>
24#include <dev/ctau/ctaureg.h>
25#include <dev/ctau/hdc64570.h>
26#include <dev/ctau/ds2153.h>
27#include <dev/ctau/am8530.h>
28#include <dev/ctau/lxt318.h>
29#include <dev/cx/cronyxfw.h>
30
31#define DMA_MASK	0xd4	/* DMA mask register */
32#define DMA_MASK_CLEAR	0x04	/* DMA clear mask */
33#define DMA_MODE	0xd6	/* DMA mode register */
34#define DMA_MODE_MASTER 0xc0	/* DMA master mode */
35
36#define BYTE *(unsigned char*)&
37
38static unsigned char irqmask [] = {
39	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_3,
40	BCR0_IRQ_DIS,	BCR0_IRQ_5,	BCR0_IRQ_DIS,	BCR0_IRQ_7,
41	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_10,	BCR0_IRQ_11,
42	BCR0_IRQ_12,	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_15,
43};
44
45static unsigned char dmamask [] = {
46	BCR0_DMA_DIS,	BCR0_DMA_DIS,	BCR0_DMA_DIS,	BCR0_DMA_DIS,
47	BCR0_DMA_DIS,	BCR0_DMA_5,	BCR0_DMA_6,	BCR0_DMA_7,
48};
49
50static short porttab [] = {	       /* standard base port set */
51	0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0,
52	0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0
53};
54
55static short irqtab [] = { 3, 5, 7, 10, 11, 12, 15, 0 };
56static short dmatab [] = { 5, 6, 7, 0 };
57
58static int valid (short value, short *list)
59{
60	while (*list)
61		if (value == *list++)
62			return 1;
63	return 0;
64}
65
66long ct_baud = 256000;			/* default baud rate */
67unsigned char ct_chan_mode = M_HDLC;	/* default mode */
68
69static void ct_init_chan (ct_board_t *b, int num);
70static void ct_enable_loop (ct_chan_t *c);
71static void ct_disable_loop (ct_chan_t *c);
72
73int ct_download (port_t port, const unsigned char *firmware,
74	long bits, const cr_dat_tst_t *tst)
75{
76	unsigned char cr1, sr2;
77	long i, n, maxn = (bits + 7) >> 3;
78	int v, b;
79
80	inb (BSR3(port));
81	for (i=n=0; n<maxn; ++n) {
82		v = ((firmware[n] ^ ' ') << 1) | ((firmware[n] >> 7) & 1);
83		for (b=0; b<7; b+=2, i+=2) {
84			if (i >= bits)
85				break;
86			cr1 = 0;
87			if (v >> b & 1)
88				cr1 |= BCR1_TMS;
89			if (v >> b & 2)
90				cr1 |= BCR1_TDI;
91			outb (BCR1(port), cr1);
92			sr2 = inb (BSR2(port));
93			outb (BCR0(port), BCR0_TCK);
94			outb (BCR0(port), 0);
95			if (i >= tst->end)
96				++tst;
97			if (i >= tst->start && (sr2 & BSR2_LERR))
98				return (0);
99		}
100	}
101	return (1);
102}
103
104/*
105 * Firmware unpack algorithm.
106 */
107typedef struct {
108	const unsigned char *ptr;
109	unsigned char byte;
110	unsigned char count;
111} unpack_t;
112
113static unsigned short unpack_init (unpack_t *t, const unsigned char *ptr)
114{
115	unsigned short len;
116
117	len = *ptr++;
118	len |= *ptr++ << 8;
119	t->ptr = ptr;
120	t->byte = 0;
121	t->count = 0;
122	return len;
123}
124
125static unsigned char unpack_getchar (unpack_t *t)
126{
127	if (t->count > 0) {
128		--t->count;
129		return t->byte;
130	}
131	t->byte = *t->ptr++;
132	if (t->byte == 0)
133		t->count = *t->ptr++;
134	return t->byte;
135}
136
137/*
138 * Firmware download signals.
139 */
140#define nstatus(b)	(inb(BSR3(b)) & BSR3_NSTATUS)
141
142#define confdone(b)	(inb(BSR3(b)) & BSR3_CONF_DN)
143
144#define nconfig_set(b)	outb (bcr1_port, (bcr1 &= ~BCR1_NCONFIGI))
145#define nconfig_clr(b)	outb (bcr1_port, (bcr1 |= BCR1_NCONFIGI))
146
147#define dclk_tick(b) 	outb (BCR3(b), 0)
148
149#define putbit(b,bit) { if (bit) bcr1 |= BCR1_1KDAT; \
150			else bcr1 &= ~BCR1_1KDAT; \
151			outb (bcr1_port, bcr1); \
152			dclk_tick (b); }
153
154#define CTAU_DEBUG(x)	/*trace_str x*/
155
156int ct_download2 (port_t port, const unsigned char *fwaddr)
157{
158	unsigned short bytes;
159	unsigned char bcr1, val;
160	port_t bcr1_port;
161	unpack_t t;
162
163	/*
164	 * Set NCONFIG and wait until NSTATUS is set.
165	 */
166	bcr1_port = BCR1(port);
167	bcr1 = 0;
168	nconfig_set(port);
169	for (val=0; val<255; ++val)
170		if (nstatus(port))
171			break;
172
173	/*
174	 * Clear NCONFIG, wait 2 usec and check that NSTATUS is cleared.
175	 */
176	nconfig_clr(port);
177	for (val=0; val<2*3; ++val)
178		nconfig_clr(port);
179	if (nstatus(port)) {
180		CTAU_DEBUG (("Bad nstatus, downloading aborted (bsr3=0x%x).\n", inb(BSR3(port))));
181		nconfig_set(port);
182		return 0;
183	}
184
185	/*
186	 * Set NCONFIG and wait 5 usec.
187	 */
188	nconfig_set(port);
189	for (val=0; val<5*3; ++val)		/* Delay 5 msec. */
190		nconfig_set(port);
191
192	/*
193	 * � ������ `fwaddr' � ������ ������ ������ ����������� ������
194	 * ��� �������� firmware. �������� ������ ���� ����������� � ����������
195	 * ������ ������� `megaprog' � ������� �������� (� Makefile).
196	 */
197	bytes = unpack_init (&t, fwaddr);
198	for (; bytes>0; --bytes) {
199		val = unpack_getchar (&t);
200
201		if (nstatus(port) == 0) {
202			CTAU_DEBUG (("Bad nstatus, %d bytes remaining.\n", bytes));
203			goto failed;
204		}
205
206		if (confdone(port)) {
207			/* Ten extra clocks. Hope 50 is enough. */
208			for (val=0; val<50; ++val)
209				dclk_tick (port);
210
211			if (nstatus(port) == 0) {
212				CTAU_DEBUG (("Bad nstatus after confdone, %d bytes remaining (%d).\n",
213					bytes, t.ptr - fwaddr));
214				goto failed;
215			}
216
217			/* Succeeded. */
218			/*CTAU_DEBUG (("Download succeeded.\n"));*/
219			return 1;
220		}
221
222		putbit (port, val & 0x01);
223		putbit (port, val & 0x02);
224		putbit (port, val & 0x04);
225		putbit (port, val & 0x08);
226		putbit (port, val & 0x10);
227		putbit (port, val & 0x20);
228		putbit (port, val & 0x40);
229		putbit (port, val & 0x80);
230
231		/* if ((bytes & 1023) == 0) putch ('.'); */
232	}
233
234	CTAU_DEBUG (("Bad confdone.\n"));
235failed:
236	CTAU_DEBUG (("Downloading aborted.\n"));
237	return 0;
238}
239
240/*
241 * Detect Tau2 adapter.
242 */
243static int ct_probe2_board (port_t port)
244{
245	unsigned char sr3, osr3;
246	int i;
247
248	if (! valid (port, porttab))
249		return 0;
250
251	osr3 = inb (BSR3(port));
252	if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
253	    (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
254		return (0);
255	for (i=0; i<100; ++i) {
256		/* Do it twice */
257		sr3 = inb (BSR3(port));
258		sr3 = inb (BSR3(port));
259		if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
260		    (BSR3_IB | BSR3_IB_NEG))
261			return (0);
262		osr3 = sr3;
263	}
264	/* Reset the controller. */
265	outb (BCR0(port), 0);
266	return 1;
267}
268
269/*
270 * Check if the Tau board is present at the given base port.
271 * Read board status register 1 and check identification bits
272 * which should invert every next read.
273 * The "zero" bit should remain stable.
274 */
275int ct_probe_board (port_t port, int irq, int dma)
276{
277	unsigned char sr3, osr3;
278	int i;
279
280	if (! valid (port, porttab))
281		return 0;
282
283	if ((irq > 0) && (!valid (irq, irqtab)))
284		return 0;
285
286	if ((dma > 0) && (!valid (dma, dmatab)))
287		return 0;
288
289	osr3 = inb (BSR3(port));
290	if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
291	    (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
292		return (0);
293	for (i=0; i<100; ++i) {
294		sr3 = inb (BSR3(port));
295		if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
296		    (BSR3_IB | BSR3_IB_NEG))
297			return ct_probe2_board (port);
298		osr3 = sr3;
299	}
300	/* Reset the controller. */
301	outb (BCR0(port), 0);
302	return (1);
303}
304
305/*
306 * Check that the irq is functional.
307 * irq>0  - activate the interrupt from the adapter (irq=on)
308 * irq<0  - deactivate the interrupt (irq=off)
309 * irq==0 - free the interrupt line (irq=tri-state)
310 * Return the interrupt mask _before_ activating irq.
311 */
312int ct_probe_irq (ct_board_t *b, int irq)
313{
314	int mask;
315
316	outb (0x20, 0x0a);
317	mask = inb (0x20);
318	outb (0xa0, 0x0a);
319	mask |= inb (0xa0) << 8;
320
321	if (irq > 0) {
322		outb (BCR0(b->port), BCR0_HDRUN | irqmask[irq]);
323		outb (R(b->port,HD_TEPR_0R), 0);
324		outw (R(b->port,HD_TCONR_0R), 1);
325		outw (R(b->port,HD_TCNT_0R), 0);
326		outb (R(b->port,HD_TCSR_0R), TCSR_ENABLE | TCSR_INTR);
327		outb (IER2(b->port), IER2_RX_TME_0);
328	} else if (irq < 0) {
329		outb (BCR0(b->port), BCR0_HDRUN | irqmask[-irq]);
330		outb (IER0(b->port), 0);
331		outb (IER1(b->port), 0);
332		outb (IER2(b->port), 0);
333		outb (R(b->port,HD_TCSR_0R), 0);
334		cte_out (E1CS0 (b->port), DS_IMR2, 0);
335		cte_out (E1CS1 (b->port), DS_IMR2, 0);
336		if (-irq > 7) {
337			outb (0xa0, 0x60 | ((-irq) & 7));
338			outb (0x20, 0x62);
339		} else
340			outb (0x20, 0x60 | (-irq));
341	} else {
342		outb (BCR0(b->port), b->bcr0);
343		cte_out (E1CS0 (b->port), DS_IMR2, SR2_SEC);
344		cte_out (E1CS1 (b->port), DS_IMR2, SR2_SEC);
345	}
346
347	return mask;
348}
349
350void ct_init_board (ct_board_t *b, int num, port_t port, int irq, int dma,
351	int type, long osc)
352{
353	int i;
354
355	/* Initialize board structure. */
356	b->type = type;
357	b->port = port;
358	b->num = num;
359	b->irq = irq;
360	b->dma = dma;
361	b->osc = osc;
362
363	/* Get the board type. */
364	if (b->type == B_TAU)		 strcpy (b->name, "Tau");
365	else if (b->type == B_TAU_E1)	 strcpy (b->name, "Tau/E1");
366	else if (b->type == B_TAU_E1C)	 strcpy (b->name, "Tau/E1c");
367	else if (b->type == B_TAU_E1D)	 strcpy (b->name, "Tau/E1d");
368	else if (b->type == B_TAU_G703)  strcpy (b->name, "Tau/G.703");
369	else if (b->type == B_TAU_G703C) strcpy (b->name, "Tau/G.703c");
370	else if (b->type == B_TAU2)	 strcpy (b->name, "Tau2");
371	else if (b->type == B_TAU2_E1)	 strcpy (b->name, "Tau2/E1");
372	else if (b->type == B_TAU2_E1D)  strcpy (b->name, "Tau2/E1d");
373	else if (b->type == B_TAU2_G703) strcpy (b->name, "Tau2/G.703");
374	else				 strcpy (b->name, "Tau/???");
375
376	/* Set DMA and IRQ. */
377	b->bcr0 = BCR0_HDRUN | dmamask[b->dma] | irqmask[b->irq];
378
379	/* Clear DTR[0..1]. */
380	b->bcr1 = 0;
381	b->e1cfg = 0;
382
383	/* Initialize channel structures. */
384	for (i=0; i<NCHAN; ++i)
385		ct_init_chan (b, i);
386	ct_reinit_board (b);
387}
388
389/*
390 * Initialize the board structure.
391 */
392void ct_init (ct_board_t *b, int num, port_t port, int irq, int dma,
393	const unsigned char *firmware, long bits, const cr_dat_tst_t *tst,
394	const unsigned char *firmware2)
395{
396	static long tlen	       = 182;
397	static cr_dat_tst_t tvec []    = {{ 114, 178 }, { 182, 182 }};
398	static cr_dat_tst_t tvec2 []   = {{ 50,  178 }, { 182, 182 }};
399	static unsigned char tau []    = { 155,153,113,48,64,236,
400		48,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,183,};
401	static unsigned char e1 []     = { 155,153,113,48,64,236,
402		112,37,49,37,33,116,101,100,112,37,49,37,33,116,101,100,230,};
403	static unsigned char e1_2 []   = { 155,153,113,48,64,236,
404		112,37,49,37,33,116,101,100,96,97,53,49,49,96,97,100,230,};
405	static unsigned char e1_3 []   = { 155,153,113,48,64,236,
406		96,97,53,49,49,96,97,100,96,97,53,49,49,96,97,100,230,};
407	static unsigned char e1_4 []   = { 155,153,113,48,64,236,
408		96,97,53,49,49,96,97,100,112,37,49,37,33,116,101,100,230,};
409	static unsigned char g703 []   = { 155,153,113,48,64,236,
410		112,37,49,37,33,116,101,32,117,37,49,37,33,116,101,100,230,};
411	static unsigned char g703_2 [] = { 155,153,113,48,64,236,
412		112,37,49,37,33,116,101,32,101,97,53,49,49,96,97,100,230,};
413	static unsigned char g703_3 [] = { 155,153,113,48,64,236,
414		96,97,53,49,49,96,97,32,101,97,53,49,49,96,97,100,230,};
415	static unsigned char g703_4 [] = { 155,153,113,48,64,236,
416		96,97,53,49,49,96,97,32,117,37,49,37,33,116,101,100,230,};
417
418	int type = B_TAU;
419	long osc = (inb (BSR3(port)) & BSR3_ZERO) ? 8192000 : 10000000;
420
421	/* Get the board type. */
422	if (ct_probe2_board (port) && ct_download2 (port, firmware2)) {
423		/* Tau2, 1k30-based model */
424		unsigned char sr0 = inb (BSR0(port));
425		if (! (sr0 & BSR0_T703))
426			type = B_TAU2_G703;
427		else if (sr0 & BSR0_TE1)
428			type = B_TAU2;
429		else if (inb(E1SR(port)) & E1SR_REV)
430			type = B_TAU2_E1D;
431		else
432			type = B_TAU2_E1;
433	} else if (ct_download (port, tau, tlen, tvec)) {
434		if (! ct_download (port, firmware, bits, tst))
435			type = B_TAU;
436		else {
437			unsigned char sr0 = inb (BSR0(port));
438			if (! (sr0 & BSR0_T703))
439				type = B_TAU_G703C;
440			else if (sr0 & BSR0_TE1)
441				type = B_TAU;
442			else if (inb(E1SR(port)) & E1SR_REV)
443				type = B_TAU_E1D;
444			else
445				type = B_TAU_E1C;
446		}
447	} else if (ct_download (port, e1, tlen, tvec2) ||
448	    ct_download (port, e1_2, tlen, tvec2) ||
449	    ct_download (port, e1_3, tlen, tvec2) ||
450	    ct_download (port, e1_4, tlen, tvec2))
451		type = B_TAU_E1;
452	else if (ct_download (port, g703, tlen, tvec2) ||
453	    ct_download (port, g703_2, tlen, tvec2) ||
454	    ct_download (port, g703_3, tlen, tvec2) ||
455	    ct_download (port, g703_4, tlen, tvec2))
456		type = B_TAU_G703;
457	ct_init_board (b, num, port, irq, dma, type, osc);
458}
459
460/*
461 * Initialize the channel structure.
462 */
463static void ct_init_chan (ct_board_t *b, int i)
464{
465	ct_chan_t *c = b->chan + i;
466	port_t port = b->port;
467
468	c->num = i;
469	c->board = b;
470	switch (b->type) {
471	case B_TAU:
472	case B_TAU2:	  c->type = T_SERIAL; break;
473	case B_TAU_E1:
474	case B_TAU_E1C:
475	case B_TAU_E1D:
476	case B_TAU2_E1:
477	case B_TAU2_E1D:  c->type = T_E1;     break;
478	case B_TAU_G703:
479	case B_TAU_G703C:
480	case B_TAU2_G703: c->type = T_G703;   break;
481	}
482	if (c->num)
483		c->type |= T_SERIAL;
484
485#define reg(X,N) HD_##X##_##N
486#define set(X,N) c->X = R(port,reg(X,N))
487#define srx(X,N) c->RX.X = R(port,reg(X,N##R))
488#define stx(X,N) c->TX.X = R(port,reg(X,N##T))
489	if (i == 0) {
490		set(MD0, 0); set(MD1, 0);  set(MD2, 0); set(CTL, 0);
491		set(RXS, 0); set(TXS, 0);  set(TMC, 0); set(CMD, 0);
492		set(ST0, 0); set(ST1, 0);  set(ST2, 0); set(ST3, 0);
493		set(FST, 0); set(IE0, 0);  set(IE1, 0); set(IE2, 0);
494		set(FST, 0); set(IE0, 0);  set(IE1, 0); set(IE2, 0);
495		set(FIE, 0); set(SA0, 0);  set(SA1, 0); set(IDL, 0);
496		set(TRB, 0); set(RRC, 0);  set(TRC0,0); set(TRC1,0);
497		set(CST, 0);
498		srx(DAR, 0); srx(DARB,0);  srx(SAR, 0); srx(SARB,0);
499		srx(CDA, 0); srx(EDA, 0);  srx(BFL, 0); srx(BCR, 0);
500		srx(DSR, 0); srx(DMR, 0);  srx(FCT, 0); srx(DIR, 0);
501		srx(DCR, 0);
502		srx(TCNT,0); srx(TCONR,0); srx(TCSR,0); srx(TEPR,0);
503		stx(DAR, 0); stx(DARB,0);  stx(SAR, 0); stx(SARB,0);
504		stx(CDA, 0); stx(EDA, 0);  stx(BCR, 0);
505		stx(DSR, 0); stx(DMR, 0);  stx(FCT, 0); stx(DIR, 0);
506		stx(DCR, 0);
507		stx(TCNT,0); stx(TCONR,0); stx(TCSR,0); stx(TEPR,0);
508	} else {
509		set(MD0, 1); set(MD1, 1);  set(MD2, 1); set(CTL, 1);
510		set(RXS, 1); set(TXS, 1);  set(TMC, 1); set(CMD, 1);
511		set(ST0, 1); set(ST1, 1);  set(ST2, 1); set(ST3, 1);
512		set(FST, 1); set(IE0, 1);  set(IE1, 1); set(IE2, 1);
513		set(FST, 1); set(IE0, 1);  set(IE1, 1); set(IE2, 1);
514		set(FIE, 1); set(SA0, 1);  set(SA1, 1); set(IDL, 1);
515		set(TRB, 1); set(RRC, 1);  set(TRC0,1); set(TRC1,1);
516		set(CST, 1);
517		srx(DAR, 1); srx(DARB,1);  srx(SAR, 1); srx(SARB,1);
518		srx(CDA, 1); srx(EDA, 1);  srx(BFL, 1); srx(BCR, 1);
519		srx(DSR, 1); srx(DMR, 1);  srx(FCT, 1); srx(DIR, 1);
520		srx(DCR, 1);
521		srx(TCNT,1); srx(TCONR,1); srx(TCSR,1); srx(TEPR,1);
522		stx(DAR, 1); stx(DARB,1);  stx(SAR, 1); stx(SARB,1);
523		stx(CDA, 1); stx(EDA, 1);  stx(BCR, 1);
524		stx(DSR, 1); stx(DMR, 1);  stx(FCT, 1); stx(DIR, 1);
525		stx(DCR, 1);
526		stx(TCNT,1); stx(TCONR,1); stx(TCSR,1); stx(TEPR,1);
527	}
528#undef set
529#undef srx
530#undef stx
531#undef reg
532}
533
534/*
535 * Reinitialize the channels, using new options.
536 */
537void ct_reinit_chan (ct_chan_t *c)
538{
539	ct_board_t *b = c->board;
540	long s;
541	int i;
542
543	if (c->hopt.txs == CLK_LINE) {
544		/* External clock mode -- set zero baud rate. */
545		if (c->mode != M_ASYNC)
546			c->baud = 0;
547	} else if (c->baud == 0) {
548		/* No baud rate in internal clock mode -- set default values. */
549		if (c->mode == M_ASYNC)
550			c->baud = 9600;
551		else if (c->mode == M_HDLC)
552			c->baud = 64000;
553	}
554	switch (c->type) {
555	case T_E1_SERIAL:
556		if (b->opt.cfg == CFG_B)
557			break;
558		/* Fall through... */
559	case T_E1:
560		c->mode = M_E1;
561		c->hopt.txs = CLK_LINE;
562
563		/* Compute the baud value. */
564		if (c->num) {
565			s = b->opt.s1;
566			if (b->opt.cfg == CFG_C)
567				s &=~ b->opt.s0;
568		} else
569			s = b->opt.s0;
570		/* Skip timeslot 16 in CAS mode. */
571		if (c->gopt.cas)
572			s &=~ (1L << 16);
573
574		c->baud = 0;
575		for (i=0; i<32; ++i)
576			if ((s >> i) & 1)
577				c->baud += 64000;
578		c->gopt.rate = c->baud / 1000;
579
580		/* Set NRZ and clear INVCLK. */
581		c->opt.md2.encod = MD2_ENCOD_NRZ;
582		c->board->opt.bcr2 &= c->num ?
583			~(BCR2_INVTXC1 | BCR2_INVRXC1) :
584			~(BCR2_INVTXC0 | BCR2_INVRXC0);
585		break;
586
587	case T_G703_SERIAL:
588		if (b->opt.cfg == CFG_B)
589			break;
590		/* Fall through... */
591	case T_G703:
592		c->mode = M_G703;
593		c->hopt.txs = CLK_LINE;
594		c->baud = c->gopt.rate * 1000L;
595
596		/* Set NRZ/NRZI and clear INVCLK. */
597		if (c->opt.md2.encod != MD2_ENCOD_NRZ &&
598		    c->opt.md2.encod != MD2_ENCOD_NRZI)
599			c->opt.md2.encod = MD2_ENCOD_NRZ;
600		c->board->opt.bcr2 &= c->num ?
601			~(BCR2_INVTXC1 | BCR2_INVRXC1) :
602			~(BCR2_INVTXC0 | BCR2_INVRXC0);
603		break;
604	}
605}
606
607/*
608 * Reinitialize all channels, using new options and baud rate.
609 */
610void ct_reinit_board (ct_board_t *b)
611{
612	ct_chan_t *c;
613
614	b->opt = ct_board_opt_dflt;
615	for (c=b->chan; c<b->chan+NCHAN; ++c) {
616		c->opt = ct_chan_opt_dflt;
617		c->hopt = ct_opt_hdlc_dflt;
618		c->gopt = ct_opt_g703_dflt;
619		c->mode = ct_chan_mode;
620		c->baud = ct_baud;
621
622		ct_reinit_chan (c);
623	}
624}
625
626/*
627 * Set up the E1 controller of the Tau/E1 board.
628 * Frame sync signals:
629 * Configuration	Rsync0	Tsync0	Rsync1	Tsync1
630 * ---------------------------------------------------
631 * A (II)		out	out	out	out
632 * B,C,D (HI,K,D)	in	out	in	out
633 * ---------------------------------------------------
634 * BI			out	out	in	in	-- not implemented
635 * old B,C,D (HI,K,D)	out	in	out	in	-- old
636 */
637static void ct_setup_ctlr (ct_chan_t *c)
638{
639	ct_board_t *b = c->board;
640	port_t p = c->num ? E1CS1 (b->port) : E1CS0 (b->port);
641	unsigned char rcr1, rcr2, tcr1, tcr2, ccr1, licr;
642	unsigned long xcbr, tir;
643	int i;
644
645	rcr2 = RCR2_RSCLKM;
646	tcr1 = TCR1_TSIS | TCR1_TSO;
647	tcr2 = 0;
648	ccr1 = 0;
649	licr = 0;
650
651	if (b->opt.cfg != CFG_D) {
652		/* Enable monitoring channel, when not in telephony mode. */
653		rcr2 |= RCR2_SA_4;
654		tcr2 |= TCR2_SA_4;
655	}
656	if (b->opt.cfg == CFG_A) {
657		rcr1 = RCR1_RSO;
658	} else {
659		rcr1 = RCR1_RSI;
660		rcr2 |= RCR2_RESE;
661	}
662
663	if (c->gopt.cas)
664		tcr1 |= TCR1_T16S;
665	else
666		ccr1 |= CCR1_CCS;
667
668	if (c->gopt.hdb3)
669		ccr1 |= CCR1_THDB3 | CCR1_RHDB3;
670
671	if (c->gopt.crc4) {
672		ccr1 |= CCR1_TCRC4 | CCR1_RCRC4;
673		tcr2 |= TCR2_AEBE;
674	}
675
676	if (c->gopt.higain)
677		licr |= LICR_HIGAIN;
678	if (inb (E1SR (b->port)) & (c->num ? E1SR_TP1 : E1SR_TP0))
679		licr |= LICR_LB120P;
680	else
681		licr |= LICR_LB75P;
682
683	cte_out (p, DS_RCR1, rcr1);		/* receive control 1 */
684	cte_out (p, DS_RCR2, rcr2);		/* receive control 2 */
685	cte_out (p, DS_TCR1, tcr1);		/* transmit control 1 */
686	cte_out (p, DS_TCR2, tcr2);		/* transmit control 2 */
687	cte_out (p, DS_CCR1, ccr1);		/* common control 1 */
688	cte_out (p, DS_CCR2, CCR2_CNTCV | CCR2_AUTORA | CCR2_LOFA1);			/* common control 2 */
689	cte_out (p, DS_CCR3, CCR3_TSCLKM);	/* common control 3 */
690	cte_out (p, DS_LICR, licr);		/* line interface control */
691	cte_out (p, DS_IMR1, 0);		/* interrupt mask 1 */
692	cte_out (p, DS_IMR2, SR2_SEC);		/* interrupt mask 2 */
693	cte_out (p, DS_TEST1, 0);
694	cte_out (p, DS_TEST2, 0);
695	cte_out (p, DS_TAF, 0x9b);		/* transmit align frame */
696	cte_out (p, DS_TNAF, 0xdf);		/* transmit non-align frame */
697	cte_out (p, DS_TIDR, 0xff);		/* transmit idle definition */
698
699	cte_out (p, DS_TS, 0x0b);		/* transmit signaling 1 */
700	for (i=1; i<16; ++i)
701		/* transmit signaling 2..16 */
702		cte_out (p, (unsigned char) (DS_TS+i), 0xff);
703
704	/*
705	 * S0 == list of timeslots for channel 0
706	 * S1 == list of timeslots for channel 1
707	 * S2 == list of timeslots for E1 subchannel (pass through)
708	 *
709	 * Each channel uses the same timeslots for receive and transmit,
710	 * i.e. RCBRi == TCBRi.
711	 */
712	if (b->opt.cfg == CFG_B)
713		b->opt.s1 = 0;
714	else if (b->opt.cfg == CFG_C)
715		b->opt.s1 &=~ b->opt.s0;
716	if (c->gopt.cas) {
717		/* Skip timeslot 16 in CAS mode. */
718		b->opt.s0 &=~ (1L << 16);
719		b->opt.s1 &=~ (1L << 16);
720	}
721	b->opt.s2 &=~ b->opt.s0;
722	b->opt.s2 &=~ b->opt.s1;
723
724	/*
725	 * Configuration A:
726	 *	xCBRi := Si
727	 *	TIRi  := ~Si
728	 *
729	 * Configuration B:
730	 *	xCBRi := Si
731	 *	TIRi  := 0
732	 *
733	 * Configuration C:		(S0 & S2 == 0)
734	 *	xCBR0 := S0
735	 *	xCBR1 := 0
736	 *	TIR0  := ~S0 & ~S2
737	 *	TIR1  := ~S2
738	 *
739	 * Configuration D:		(Si & Sj == 0)
740	 *	xCBR0 := S0
741	 *	xCBR1 := S1
742	 *	TIR0  := ~S0 & ~S1 & ~S2
743	 *	TIR1  := ~S2
744	 */
745	xcbr = c->num ? b->opt.s1 : b->opt.s0;
746	if (b->opt.cfg == CFG_A)
747		tir = ~xcbr;
748	else if (b->opt.cfg == CFG_D)
749		tir = 0;
750	else if (c->num == 0)
751		tir = ~(b->opt.s0 | b->opt.s1 | b->opt.s2);
752	else
753		tir = ~b->opt.s2;
754
755	/* Mark idle channels. */
756	cte_out (p, DS_TIR, (unsigned char) (tir & 0xfe));
757	cte_out (p, DS_TIR+1, (unsigned char) (tir >> 8));
758	cte_out (p, DS_TIR+2, (unsigned char) (tir >> 16));
759	cte_out (p, DS_TIR+3, (unsigned char) (tir >> 24));
760
761	/* Set up rx/tx timeslots. */
762	cte_out (p, DS_RCBR,   (unsigned char) (xcbr & 0xfe));
763	cte_out (p, DS_RCBR+1, (unsigned char) (xcbr >> 8));
764	cte_out (p, DS_RCBR+2, (unsigned char) (xcbr >> 16));
765	cte_out (p, DS_RCBR+3, (unsigned char) (xcbr >> 24));
766	cte_out (p, DS_TCBR,   (unsigned char) (xcbr & 0xfe));
767	cte_out (p, DS_TCBR+1, (unsigned char) (xcbr >> 8));
768	cte_out (p, DS_TCBR+2, (unsigned char) (xcbr >> 16));
769	cte_out (p, DS_TCBR+3, (unsigned char) (xcbr >> 24));
770
771	/* Reset the line interface. */
772	cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_LIRESET);
773	cte_out (p, DS_CCR3, CCR3_TSCLKM);
774
775	/* Reset the elastic store. */
776	cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_ESRESET);
777	cte_out (p, DS_CCR3, CCR3_TSCLKM);
778
779	/* Clear status registers. */
780	cte_ins (p, DS_SR1, 0xff);
781	cte_ins (p, DS_SR2, 0xff);
782	cte_ins (p, DS_RIR, 0xff);
783}
784
785/*
786 * Set up the serial controller of the Tau/E1 board.
787 */
788static void ct_setup_scc (port_t port)
789{
790#define SET(r,v) { cte_out2 (port, r, v); cte_out2 (port, AM_A | r, v); }
791
792	/* hardware reset */
793	cte_out2 (port, AM_MICR, MICR_RESET_HW);
794
795	SET (AM_PMR, 0x0c);		/* 2 stop bits */
796	SET (AM_IMR, 0);		/* no W/REQ signal */
797	cte_out2 (port, AM_IVR, 0);	/* interrupt vector */
798	SET (AM_RCR, 0xc0);		/* rx 8 bits/char */
799	SET (AM_TCR, 0x60);		/* tx 8 bits/char */
800	SET (AM_SAF, 0);		/* sync address field */
801	SET (AM_SFR, 0x7e);		/* sync flag register */
802	cte_out2 (port, AM_MICR, 0);	/* master interrupt control */
803	SET (AM_MCR, 0);		/* NRZ mode */
804	SET (AM_CMR, 0x08);		/* rxclk=RTxC, txclk=TRxC */
805	SET (AM_TCL, 0);		/* time constant low */
806	SET (AM_TCH, 0);		/* time constant high */
807	SET (AM_BCR, 0);		/* disable baud rate generator */
808
809	SET (AM_RCR, 0xc1);		/* enable rx */
810	SET (AM_TCR, 0x68);		/* enable tx */
811
812	SET (AM_SICR, 0);			/* no status interrupt */
813	SET (AM_CR, CR_RST_EXTINT);		/* reset external status */
814	SET (AM_CR, CR_RST_EXTINT);		/* reset ext/status twice */
815#undef SET
816}
817
818/*
819 * Set up the Tau/E1 board.
820 */
821void ct_setup_e1 (ct_board_t *b)
822{
823	/*
824	 * Control register 0:
825	 * 1) board configuration
826	 * 2) clock modes
827	 */
828	b->e1cfg &= E1CFG_LED;
829	switch (b->opt.cfg){
830	case CFG_C: b->e1cfg |= E1CFG_K;  break;
831	case CFG_B: b->e1cfg |= E1CFG_HI; break;
832	case CFG_D: b->e1cfg |= E1CFG_D;  break;
833	default:    b->e1cfg |= E1CFG_II; break;
834	}
835
836	if (b->opt.clk0 == GCLK_RCV)   b->e1cfg |= E1CFG_CLK0_RCV;
837	if (b->opt.clk0 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK0_RCLK1;
838	else			       b->e1cfg |= E1CFG_CLK0_INT;
839	if (b->opt.clk1 == GCLK_RCV)   b->e1cfg |= E1CFG_CLK1_RCV;
840	if (b->opt.clk1 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK1_RCLK0;
841	else			       b->e1cfg |= E1CFG_CLK1_INT;
842
843	outb (E1CFG (b->port), b->e1cfg);
844
845	/*
846	 * Set up serial controller.
847	 */
848	ct_setup_scc (b->port);
849
850	/*
851	 * Set up E1 controllers.
852	 */
853	ct_setup_ctlr (b->chan + 0);	/* channel 0 */
854	ct_setup_ctlr (b->chan + 1);	/* channel 1 */
855
856	/* Start the board (GRUN). */
857	b->e1cfg |= E1CFG_GRUN;
858	outb (E1CFG (b->port), b->e1cfg);
859}
860
861/*
862 * Set up the G.703 controller of the Tau/G.703 board.
863 */
864static void ct_setup_lxt (ct_chan_t *c)
865{
866	ctg_outx (c, LX_CCR1, LX_RESET); 	/* reset the chip */
867	/* Delay */
868	ctg_inx (c, LX_CCR1);
869	c->lx = LX_LOS; 		/* disable loss of sync interrupt */
870	if (c->num && c->board->opt.cfg == CFG_B)
871		c->lx |= LX_TAOS;	/* idle channel--transmit all ones */
872	if (c->gopt.hdb3)
873		c->lx |= LX_HDB3;	/* enable HDB3 encoding */
874	ctg_outx (c, LX_CCR1, c->lx);		/* setup the new mode */
875	ctg_outx (c, LX_CCR2, LX_CCR2_LH);	/* setup Long Haul mode */
876	ctg_outx (c, LX_CCR3, LX_CCR3_E1_LH);	/* setup Long Haul mode */
877}
878
879/*
880 * Set up the Tau/G.703 board.
881 */
882void ct_setup_g703 (ct_board_t *b)
883{
884	b->gmd0 = GMD_2048;
885	if (b->chan[0].gopt.pce) {
886		if (b->chan[0].gopt.pce2) b->gmd0 |= GMD_PCE_PCM2;
887		else			  b->gmd0 |= GMD_PCE_PCM2D;
888	}
889	if (b->opt.clk0)
890		b->gmd0 |= GMD_RSYNC;
891
892	b->gmd1 = 0;
893	if (b->chan[1].gopt.pce) {
894		if (b->chan[1].gopt.pce2) b->gmd1 |= GMD_PCE_PCM2;
895		else			  b->gmd1 |= GMD_PCE_PCM2D;
896	}
897	if (b->opt.clk1)
898		b->gmd1 |= GMD_RSYNC;
899
900	switch (b->chan[0].gopt.rate) {
901	case 2048: b->gmd0 |= GMD_2048; break;
902	case 1024: b->gmd0 |= GMD_1024; break;
903	case 512:  b->gmd0 |= GMD_512;	break;
904	case 256:  b->gmd0 |= GMD_256;	break;
905	case 128:  b->gmd0 |= GMD_128;	break;
906	case 64:   b->gmd0 |= GMD_64;	break;
907	}
908	switch (b->chan[1].gopt.rate) {
909	case 2048: b->gmd1 |= GMD_2048; break;
910	case 1024: b->gmd1 |= GMD_1024; break;
911	case 512:  b->gmd1 |= GMD_512;	break;
912	case 256:  b->gmd1 |= GMD_256;	break;
913
914	case 128:  b->gmd1 |= GMD_128;	break;
915	case 64:   b->gmd1 |= GMD_64;	break;
916	}
917
918	outb (GMD0(b->port), b->gmd0);
919	outb (GMD1(b->port), b->gmd1 | GMD1_NCS0 | GMD1_NCS1);
920
921	b->gmd2 &= GMD2_LED;
922	if (b->opt.cfg == CFG_B)   b->gmd2 |= GMD2_SERIAL;
923	outb (GMD2(b->port), b->gmd2);
924
925	/* Set up G.703 controllers. */
926	if ((b->chan + 0)->lx & LX_LLOOP) {
927		ct_setup_lxt (b->chan + 0);	/* channel 0 */
928		ct_enable_loop (b->chan + 0);
929	} else {
930		ct_setup_lxt (b->chan + 0);	/* channel 0 */
931	}
932	if ((b->chan + 1)->lx & LX_LLOOP) {
933		ct_setup_lxt (b->chan + 1);	/* channel 1 */
934		ct_enable_loop (b->chan + 1);
935	} else {
936		ct_setup_lxt (b->chan + 1);	/* channel 1 */
937	}
938
939	/* Clear errors. */
940	outb (GERR(b->port), 0xff);
941	outb (GLDR(b->port), 0xff);
942}
943
944/*
945 * Set up the board.
946 */
947int ct_setup_board (ct_board_t *b, const unsigned char *firmware,
948	long bits, const cr_dat_tst_t *tst)
949{
950	ct_chan_t *c;
951
952	/* Disable DMA channel. */
953	outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
954
955	/* Reset the controller. */
956	outb (BCR0(b->port), 0);
957
958	/* Load the firmware. */
959	if (firmware && (b->type == B_TAU || b->type == B_TAU_E1 ||
960	    b->type == B_TAU_G703) &&
961	    ! ct_download (b->port, firmware, bits, tst))
962		return (0);
963	if (firmware && (b->type == B_TAU2 || b->type == B_TAU2_E1 ||
964	     b->type == B_TAU2_E1D || b->type == B_TAU2_G703) &&
965	    ! ct_download2 (b->port, firmware))
966		return (0);
967
968	/* Enable DMA and IRQ. */
969	outb (BCR0(b->port), BCR0_HDRUN);
970	outb (BCR0(b->port), b->bcr0);
971
972	/* Clear DTR[0..1]. */
973	outb (BCR1(b->port), b->bcr1);
974
975	/* Set bus timing. */
976	b->bcr2 = b->opt.bcr2;
977	outb (BCR2(b->port), b->bcr2);
978
979	/*
980	 * Initialize the controller.
981	 */
982	/* Zero wait state mode. */
983	outb (WCRL(b->port), 0);
984	outb (WCRM(b->port), 0);
985	outb (WCRH(b->port), 0);
986
987	/* Clear interrupt modified vector register. */
988	outb (IMVR(b->port), 0);
989	outb (ITCR(b->port), ITCR_CYCLE_SINGLE | ITCR_VECT_MOD);
990
991	/* Disable all interrupts. */
992	outb (IER0(b->port), 0);
993	outb (IER1(b->port), 0);
994	outb (IER2(b->port), 0);
995
996	/* Set DMA parameters, enable master DMA mode. */
997	outb (PCR(b->port), BYTE b->opt.pcr);
998	outb (DMER(b->port), DME_ENABLE);
999
1000	/* Set up DMA channel to master mode. */
1001	outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER);
1002
1003	/* Enable DMA channel. */
1004	outb (DMA_MASK, b->dma & 3);
1005
1006	/* Disable byte-sync mode for Tau/G.703. */
1007	if (b->type == B_TAU_G703)
1008		outb (GMD2(b->port), 0);
1009
1010	/* Initialize all channels. */
1011	for (c=b->chan; c<b->chan+NCHAN; ++c)
1012		ct_setup_chan (c);
1013
1014	switch (b->type) {
1015	case B_TAU_G703:
1016	case B_TAU_G703C:
1017	case B_TAU2_G703:
1018		ct_setup_g703 (b);
1019		break;
1020	case B_TAU_E1:
1021	case B_TAU_E1C:
1022	case B_TAU_E1D:
1023	case B_TAU2_E1:
1024	case B_TAU2_E1D:
1025		ct_setup_e1 (b);
1026		break;
1027	}
1028	return (1);
1029}
1030
1031/*
1032 * Update the channel mode options.
1033 */
1034void ct_update_chan (ct_chan_t *c)
1035{
1036	int txbr, rxbr, tmc, txcout;
1037	unsigned char rxs, txs, dmr = 0;
1038	ct_md0_async_t amd0;
1039	ct_md0_hdlc_t hmd0;
1040	ct_md1_async_t amd1;
1041
1042	switch (c->mode) {	/* initialize the channel mode */
1043	case M_ASYNC: default:
1044		rxs = CLK_INT;
1045		txs = CLK_INT;
1046
1047		amd0.mode = MD0_MODE_ASYNC;
1048		amd0.stopb = MD0_STOPB_1;
1049		amd0.cts_rts_dcd = 0;
1050
1051		amd1.clk = MD1_CLK_16;
1052		amd1.txclen = amd1.rxclen = MD1_CLEN_8;
1053		amd1.parmode = MD1_PAR_NO;
1054
1055		outb (c->MD0, BYTE amd0);
1056		outb (c->MD1, BYTE amd1);
1057		outb (c->CTL, c->rts ? 0 : CTL_RTS_INV);
1058		break;
1059
1060	case M_E1:
1061	case M_G703:
1062	case M_HDLC:
1063		rxs = c->hopt.rxs;
1064		txs = c->hopt.txs;
1065
1066		if (c->mode == M_E1 && c->board->opt.cfg == CFG_D) {
1067			hmd0 = c->hopt.md0;
1068			hmd0.crc = 0;
1069
1070			outb (c->MD0, BYTE hmd0);
1071			outb (c->MD1, BYTE c->hopt.md1);
1072			outb (c->CTL, c->hopt.ctl & ~CTL_IDLE_PTRN);
1073			outb (c->SA0, c->hopt.sa0);
1074			outb (c->SA1, c->hopt.sa1);
1075			outb (c->IDL, 0x7e);	/* HDLC flag 01111110 */
1076		} else {
1077			outb (c->MD0, BYTE c->hopt.md0);
1078			outb (c->MD1, BYTE c->hopt.md1);
1079			outb (c->SA0, c->hopt.sa0);
1080			outb (c->SA1, c->hopt.sa1);
1081			outb (c->IDL, 0x7e);	/* HDLC flag 01111110 */
1082
1083			if (c->rts)
1084				outb (c->CTL, c->hopt.ctl & ~CTL_RTS_INV);
1085			else
1086				outb (c->CTL, c->hopt.ctl | CTL_RTS_INV);
1087		}
1088
1089		/* Chained-block DMA mode with frame counter. */
1090		dmr |= DMR_CHAIN_CNTE | DMR_CHAIN_NF | DMR_TMOD;
1091		break;
1092
1093	}
1094	outb (c->RX.DMR, dmr);
1095	outb (c->TX.DMR, dmr);
1096
1097	/* set mode-independent options */
1098	c->opt.md2.dpll_clk = MD2_DPLL_CLK_8;
1099	outb (c->MD2, BYTE c->opt.md2);
1100
1101	/* set up receiver and transmitter clocks */
1102	if (c->baud > 1024000) {
1103		/* turn off DPLL if the baud rate is too high */
1104		if (rxs == CLK_RXS_LINE_NS)	  rxs = CLK_LINE;
1105		else if (rxs == CLK_RXS_DPLL_INT) rxs = CLK_INT;
1106	}
1107	if (rxs == CLK_RXS_LINE_NS || rxs == CLK_RXS_DPLL_INT) {
1108		/* Using 1:8 sampling rate. */
1109		ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
1110		txbr = rxbr + 3;
1111	} else if (c->mode == M_ASYNC) {
1112		/* Using 1:16 sampling rate. */
1113		ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
1114		--rxbr;
1115		txbr = rxbr;
1116	} else {
1117		ct_compute_clock (c->board->osc, c->baud, &rxbr, &tmc);
1118		txbr = rxbr;
1119	}
1120	txs |= txbr;
1121	rxs |= rxbr;
1122	outb (c->TMC, tmc);
1123	outb (c->RXS, rxs);
1124
1125	/* Disable TXCOUT before changing TXS
1126	 * to avoid two transmitters on the same line.
1127	 * Enable it after TXS is set, if needed. */
1128	txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
1129	c->board->bcr1 &= ~txcout;
1130	outb (BCR1(c->board->port), c->board->bcr1);
1131	outb (c->TXS, txs);
1132	if ((txs & CLK_MASK) != CLK_LINE) {
1133		c->board->bcr1 |= txcout;
1134		outb (BCR1(c->board->port), c->board->bcr1);
1135	}
1136	if (c->board->type == B_TAU_E1D ||
1137	    c->board->type == B_TAU2_E1D)
1138		ct_set_phony (c, c->gopt.phony);
1139}
1140
1141/*
1142 * Initialize the channel.
1143 */
1144void ct_setup_chan (ct_chan_t *c)
1145{
1146	/* reset the channel */
1147	outb (c->RX.DSR, DSR_DMA_DISABLE);
1148	outb (c->TX.DSR, DSR_DMA_DISABLE);
1149	outb (c->CMD, CMD_TX_RESET);
1150	outb (c->CMD, CMD_TX_ABORT);
1151	outb (c->CMD, CMD_CHAN_RESET);
1152
1153	/* disable interrupts */
1154	outb (c->IE0, 0);
1155	outb (c->IE1, 0);
1156	outb (c->IE2, 0);
1157	outb (c->FIE, 0);
1158
1159	/* clear DTR, RTS */
1160	ct_set_dtr (c, 0);
1161	ct_set_rts (c, 0);
1162
1163	c->lx = LX_LOS;
1164	ct_update_chan (c);
1165}
1166
1167unsigned long ct_get_ts (ct_chan_t *c)
1168{
1169	return c->num ? c->board->opt.s1 : c->board->opt.s0;
1170}
1171
1172/*
1173 * Data transfer speed
1174 */
1175unsigned long ct_get_baud (ct_chan_t *c)
1176{
1177	unsigned long speed;
1178	unsigned long ts;
1179
1180	if (c->mode == M_G703) {
1181		speed = 1000 * c->gopt.rate;
1182	} else if (c->mode == M_E1) {
1183		ts = ct_get_ts (c);
1184		for (speed=0; ts; ts >>= 1) /* Each timeslot is 64 Kbps */
1185			if (ts & 1)
1186				speed += 64000;
1187	} else
1188		speed = (c->hopt.txs == CLK_INT) ? c->baud : 0;
1189	return speed;
1190}
1191
1192/*
1193 * Turn local loopback on
1194 */
1195static void ct_enable_loop (ct_chan_t *c)
1196{
1197	if (c->mode == M_E1) {
1198		unsigned short p = c->num ? E1CS1 (c->board->port) :
1199					    E1CS0 (c->board->port);
1200
1201		/* Local loopback. */
1202		cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) | CCR2_LLOOP);
1203
1204		/* Enable jitter attenuator at the transmit side. */
1205		cte_out (p, DS_LICR, cte_in (p, DS_LICR) | LICR_JA_TX);
1206		return;
1207	} else if (c->mode == M_G703) {
1208		c->lx = LX_LOS | LX_HDB3;
1209		ctg_outx (c, LX_CCR1, c->lx |= LX_LLOOP);
1210		return;
1211	} else if (c->mode == M_HDLC && ct_get_baud(c)) {
1212		unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
1213		unsigned char txs = inb (c->TXS) & ~CLK_MASK;
1214		int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
1215		c->opt.md2.loop = MD2_LLOOP;
1216
1217		/* Disable TXCOUT before changing TXS */
1218		/* to avoid two transmitters on the same line. */
1219		/* Enable it after TXS is set. */
1220		outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
1221
1222		outb (c->RXS, rxs | CLK_INT);
1223		outb (c->TXS, txs | CLK_INT);
1224
1225		c->board->bcr1 |= txcout;
1226		outb (BCR1(c->board->port), c->board->bcr1);
1227
1228		outb (c->MD2, *(unsigned char*)&c->opt.md2);
1229		return;
1230	}
1231}
1232
1233/*
1234 * Turn local loopback off
1235 */
1236static void ct_disable_loop (ct_chan_t *c)
1237{
1238	if (c->mode == M_E1) {
1239		unsigned short p = c->num ? E1CS1 (c->board->port) :
1240					    E1CS0 (c->board->port);
1241
1242		/* Local loopback. */
1243		cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) & ~CCR2_LLOOP);
1244
1245		/* Disable jitter attenuator at the transmit side. */
1246		cte_out (p, DS_LICR, cte_in (p, DS_LICR) & ~LICR_JA_TX);
1247		return;
1248	} else if (c->mode == M_G703) {
1249		c->lx = LX_LOS | LX_HDB3;
1250		ctg_outx (c, LX_CCR1, c->lx);
1251		return;
1252	} else if (c->mode == M_HDLC && ct_get_baud(c)) {
1253		unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
1254		unsigned char txs = inb (c->TXS) & ~CLK_MASK;
1255		int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
1256		c->opt.md2.loop = MD2_FDX;
1257
1258		outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
1259
1260		outb (c->RXS, rxs | CLK_LINE);
1261		if (ct_get_baud (c))
1262			outb (c->TXS, txs | CLK_INT);
1263		else
1264			outb (c->TXS, txs | CLK_LINE);
1265
1266		c->board->bcr1 |= txcout;
1267		outb (BCR1(c->board->port), c->board->bcr1);
1268
1269		outb (c->MD2, *(unsigned char*)&c->opt.md2);
1270		return;
1271	}
1272}
1273
1274/*
1275 * Turn local loopback on/off
1276 */
1277void ct_set_loop (ct_chan_t *c, int on)
1278{
1279	if (on)
1280		ct_enable_loop (c);
1281	else
1282		ct_disable_loop (c);
1283}
1284
1285int ct_get_loop (ct_chan_t *c)
1286{
1287	if (c->mode == M_E1) {
1288		unsigned short p = c->num ? E1CS1 (c->board->port) :
1289					    E1CS0 (c->board->port);
1290
1291		return cte_in (p, DS_CCR2) & CCR2_LLOOP;
1292	}
1293	if (c->mode == M_G703)
1294		return c->lx & LX_LLOOP;
1295
1296	/* M_HDLC */
1297	return (c->opt.md2.loop & MD2_LLOOP) != 0;
1298}
1299
1300void ct_set_phony (ct_chan_t *c, int on)
1301{
1302	/* Valid only for TauPCI-E1. */
1303	if (c->board->type != B_TAU_E1D &&
1304	    c->board->type != B_TAU2_E1D)
1305		return;
1306	c->gopt.phony = (on != 0);
1307	if (c->gopt.phony) {
1308		c->board->e1syn |= c->num ? E1SYN_ENS1 : E1SYN_ENS0;
1309		/* No receive/transmit crc. */
1310		c->hopt.md0.crc = 0;
1311	} else {
1312		c->board->e1syn &= ~(c->num ? E1SYN_ENS1 : E1SYN_ENS0);
1313		/* Enable crc. */
1314		c->hopt.md0.crc = 1;
1315	}
1316	outb (c->MD0, BYTE c->hopt.md0);
1317	outb (E1SYN(c->board->port), c->board->e1syn);
1318}
1319
1320void ct_start_receiver (ct_chan_t *c, int dma, unsigned long buf,
1321	unsigned len, unsigned long desc, unsigned long lim)
1322{
1323	int ier0 = inb (IER0(c->board->port));
1324	int ier1 = inb (IER1(c->board->port));
1325	int ier2 = inb (IER2(c->board->port));
1326	int ie0 = inb (c->IE0);
1327	int ie2 = inb (c->IE2);
1328
1329	if (dma) {
1330		ier1 |= c->num ? (IER1_RX_DMERE_1 | IER1_RX_DME_1) :
1331			(IER1_RX_DMERE_0 | IER1_RX_DME_0);
1332		if (c->mode == M_ASYNC) {
1333			ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
1334			ie0 |= IE0_RX_INTE;
1335			ie2 |= IE2_OVRNE | IE2_ASYNC_FRMEE | IE2_ASYNC_PEE;
1336		}
1337	} else {
1338		ier0 |= c->num ? (IER0_RX_INTE_1 | IER0_RX_RDYE_1) :
1339			(IER0_RX_INTE_0 | IER0_RX_RDYE_0);
1340		ie0 |= IE0_RX_INTE | IE0_RX_RDYE;
1341	}
1342
1343	/* Start timer. */
1344	if (! dma) {
1345		outb (c->RX.TEPR, TEPR_64);	/* prescale to 16 kHz */
1346		outw (c->RX.TCONR, 160);	/* period is 10 msec */
1347		outw (c->RX.TCNT, 0);
1348		outb (c->RX.TCSR, TCSR_ENABLE | TCSR_INTR);
1349		ier2 |= c->num ? IER2_RX_TME_1 : IER2_RX_TME_0;
1350	}
1351
1352	/* Enable interrupts. */
1353	outb (IER0(c->board->port), ier0);
1354	outb (IER1(c->board->port), ier1);
1355	outb (IER2(c->board->port), ier2);
1356	outb (c->IE0, ie0);
1357	outb (c->IE2, ie2);
1358
1359	/* RXRDY:=1 when the receive buffer has more than RRC chars */
1360	outb (c->RRC, dma ? c->opt.dma_rrc : c->opt.pio_rrc);
1361
1362	/* Start receiver. */
1363	if (dma) {
1364		outb (c->RX.DCR, DCR_ABORT);
1365		if (c->mode == M_ASYNC) {
1366			/* Single-buffer DMA mode. */
1367			outb (c->RX.DARB, (unsigned char) (buf >> 16));
1368			outw (c->RX.DAR, (unsigned short) buf);
1369			outw (c->RX.BCR, len);
1370			outb (c->RX.DIR, DIR_EOTE);
1371		} else {
1372			/* Chained-buffer DMA mode. */
1373			outb (c->RX.SARB, (unsigned char) (desc >> 16));
1374			outw (c->RX.EDA, (unsigned short) lim);
1375			outw (c->RX.CDA, (unsigned short) desc);
1376			outw (c->RX.BFL, len);
1377			outb (c->RX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE |
1378				DIR_CHAIN_COFE);
1379		}
1380		outb (c->RX.DSR, DSR_DMA_ENABLE);
1381	}
1382	outb (c->CMD, CMD_RX_ENABLE);
1383}
1384
1385void ct_start_transmitter (ct_chan_t *c, int dma, unsigned long buf,
1386	unsigned len, unsigned long desc, unsigned long lim)
1387{
1388	int ier0 = inb (IER0(c->board->port));
1389	int ier1 = inb (IER1(c->board->port));
1390	int ie0 = inb (c->IE0);
1391	int ie1 = inb (c->IE1);
1392
1393	/* Enable underrun interrupt in HDLC and raw modes. */
1394	if (c->mode != M_ASYNC) {
1395		ier0 |= c->num ? IER0_TX_INTE_1 : IER0_TX_INTE_0;
1396		ie0 |= IE0_TX_INTE;
1397		ie1 |= IE1_HDLC_UDRNE;
1398	}
1399	if (dma)
1400		ier1 |= c->num ? (IER1_TX_DMERE_1 | IER1_TX_DME_1) :
1401			(IER1_TX_DMERE_0 | IER1_TX_DME_0);
1402	else {
1403		ier0 |= c->num ? IER0_TX_RDYE_1 : IER0_TX_RDYE_0;
1404		ie0 |= IE0_TX_RDYE;
1405	}
1406
1407	/* Enable interrupts. */
1408	outb (IER0(c->board->port), ier0);
1409	outb (IER1(c->board->port), ier1);
1410	outb (c->IE0, ie0);
1411	outb (c->IE1, ie1);
1412
1413	/* TXRDY:=1 when the transmit buffer has TRC0 or less chars,
1414	 * TXRDY:=0 when the transmit buffer has more than TRC1 chars */
1415	outb (c->TRC0, dma ? c->opt.dma_trc0 : c->opt.pio_trc0);
1416	outb (c->TRC1, dma ? c->opt.dma_trc1 : c->opt.pio_trc1);
1417
1418	/* Start transmitter. */
1419	if (dma) {
1420		outb (c->TX.DCR, DCR_ABORT);
1421		if (c->mode == M_ASYNC) {
1422			/* Single-buffer DMA mode. */
1423			outb (c->TX.SARB, (unsigned char) (buf >> 16));
1424			outw (c->TX.SAR, (unsigned short) buf);
1425			outw (c->TX.BCR, len);
1426			outb (c->TX.DIR, DIR_EOTE);
1427		} else {
1428			/* Chained-buffer DMA mode. */
1429			outb (c->TX.SARB, (unsigned char) (desc >> 16));
1430			outw (c->TX.EDA, (unsigned short) lim);
1431			outw (c->TX.CDA, (unsigned short) desc);
1432			outb (c->TX.DIR, /* DIR_CHAIN_EOME | */ DIR_CHAIN_BOFE |
1433				DIR_CHAIN_COFE);
1434		}
1435		/* Set DSR_DMA_ENABLE to begin! */
1436	}
1437	outb (c->CMD, CMD_TX_ENABLE);
1438
1439	/* Clear errors. */
1440	if (c->board->type == B_TAU_G703) {
1441		outb (GERR(c->board->port), 0xff);
1442		outb (GLDR(c->board->port), 0xff);
1443	}
1444}
1445
1446/*
1447 * Control DTR signal for the channel.
1448 * Turn it on/off.
1449 */
1450void ct_set_dtr (ct_chan_t *c, int on)
1451{
1452	if (on) {
1453		c->dtr = 1;
1454		c->board->bcr1 |= c->num ? BCR1_DTR1 : BCR1_DTR0;
1455	} else {
1456		c->dtr = 0;
1457		c->board->bcr1 &= ~(c->num ? BCR1_DTR1 : BCR1_DTR0);
1458	}
1459	outb (BCR1(c->board->port), c->board->bcr1);
1460}
1461
1462/*
1463 * Control RTS signal for the channel.
1464 * Turn it on/off.
1465 */
1466void ct_set_rts (ct_chan_t *c, int on)
1467{
1468	c->rts = (on != 0);
1469	if (c->rts)
1470		outb (c->CTL, inb (c->CTL) & ~CTL_RTS_INV);
1471	else
1472		outb (c->CTL, inb (c->CTL) | CTL_RTS_INV);
1473}
1474
1475/*
1476 * Control BREAK state in asynchronous mode.
1477 * Turn it on/off.
1478 */
1479void ct_set_brk (ct_chan_t *c, int on)
1480{
1481	if (c->mode != M_ASYNC)
1482		return;
1483	if (on)
1484		outb (c->CTL, inb (c->CTL) | CTL_BRK);
1485	else
1486		outb (c->CTL, inb (c->CTL) & ~CTL_BRK);
1487}
1488
1489/*
1490 * Get the state of DSR signal of the channel.
1491 */
1492int ct_get_dsr (ct_chan_t *c)
1493{
1494	return (inb (BSR1(c->board->port)) &
1495		(c->num ? BSR1_DSR1 : BSR1_DSR0)) != 0;
1496}
1497
1498/*
1499 * Get the G.703 line signal level.
1500 */
1501int ct_get_lq (ct_chan_t *c)
1502{
1503	unsigned char q1, q2, q3;
1504	static int lq_to_santibells [] = { 0, 95, 195, 285 };
1505	int i;
1506
1507	if (! (c->type & T_G703))
1508		return 0;
1509	q1 = inb (GLQ (c->board->port));
1510	/* Repeat reading the register to produce a 10-usec delay. */
1511	for (i=0; i<20; ++i)
1512		q2 = inb (GLQ (c->board->port));
1513	for (i=0; i<20; ++i)
1514		q3 = inb (GLQ (c->board->port));
1515	if (c->num) {
1516		q1 >>= GLQ_SHIFT;
1517		q2 >>= GLQ_SHIFT;
1518		q3 >>= GLQ_SHIFT;
1519	}
1520	q1 &= GLQ_MASK;
1521	q2 &= GLQ_MASK;
1522	q3 &= GLQ_MASK;
1523	if (q1 <= q2 && q2 <= q3) return lq_to_santibells [q2];
1524	if (q2 <= q3 && q3 <= q1) return lq_to_santibells [q3];
1525	if (q3 <= q1 && q1 <= q2) return lq_to_santibells [q1];
1526	if (q1 <= q3 && q3 <= q2) return lq_to_santibells [q3];
1527	if (q3 <= q2 && q2 <= q1) return lq_to_santibells [q2];
1528	/* if (q2 <= q1 && q1 <= q3) */ return lq_to_santibells [q1];
1529}
1530
1531/*
1532 * Get the state of CARRIER signal of the channel.
1533 */
1534int ct_get_cd (ct_chan_t *c)
1535{
1536	return (inb (c->ST3) & ST3_DCD_INV) == 0;
1537}
1538
1539/*
1540 * Get the state of CTS signal of the channel.
1541 */
1542int ct_get_cts (ct_chan_t *c)
1543{
1544	return (inb (c->ST3) & ST3_CTS_INV) == 0;
1545}
1546
1547/*
1548 * Turn LED on/off.
1549 */
1550void ct_led (ct_board_t *b, int on)
1551{
1552	switch (b->type) {
1553	case B_TAU_G703:
1554	case B_TAU_G703C:
1555	case B_TAU2_G703:
1556		if (on) b->gmd2 |= GMD2_LED;
1557		else	b->gmd2 &= ~GMD2_LED;
1558		outb (GMD2(b->port), b->gmd2);
1559		break;
1560	default:
1561		if (on) b->e1cfg |= E1CFG_LED;
1562		else	b->e1cfg &= ~E1CFG_LED;
1563		outb (E1CFG(b->port), b->e1cfg);
1564		break;
1565	}
1566}
1567
1568void ct_disable_dma (ct_board_t *b)
1569{
1570	/* Disable DMA channel. */
1571	outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
1572}
1573
1574void ct_compute_clock (long hz, long baud, int *txbr, int *tmc)
1575{
1576	if (baud < 100)
1577		baud = 100;
1578	*txbr = 0;
1579	if (4*baud > 3*hz)
1580		*tmc = 1;
1581	else {
1582		while (((hz / baud) >> ++*txbr) > 256)
1583			continue;
1584		*tmc = (((2 * hz / baud) >> *txbr) + 1) / 2;
1585	}
1586}
1587
1588/*
1589 * Access to DS2153 chips on the Tau/E1 board.
1590 * Examples:
1591 *	val = cte_in (E1CSi (base), DS_RCR1)
1592 *	cte_out (E1CSi (base), DS_CCR1, val)
1593 *	val = cte_ins (E1CSi (base), DS_SSR)
1594 */
1595unsigned char cte_in (port_t base, unsigned char reg)
1596{
1597	outb (base, reg);
1598	return inb (E1DAT (base & 0x3e0));
1599}
1600
1601void cte_out (port_t base, unsigned char reg, unsigned char val)
1602{
1603	outb (base, reg);
1604	outb (E1DAT (base & 0x3e0), val);
1605}
1606
1607/*
1608 * Get the DS2153 status register, using write-read-write scheme.
1609 */
1610unsigned char cte_ins (port_t base, unsigned char reg,
1611	unsigned char mask)
1612{
1613	unsigned char val;
1614	port_t rw = E1DAT (base & 0x3e0);
1615
1616	outb (base, reg); outb (rw, mask);		/* lock bits */
1617	outb (base, reg); val = inb (rw) & mask;	/* get values */
1618	outb (base, reg); outb (rw, val);		/* unlock bits */
1619	return val;
1620}
1621
1622/*
1623 * Access to 8530 chip on the Tau/E1 board.
1624 * Examples:
1625 *	val = cte_in2 (base, AM_RSR | AM_A)
1626 *	cte_out2 (base, AM_IMR, val)
1627 */
1628unsigned char cte_in2 (port_t base, unsigned char reg)
1629{
1630	outb (E1CS2(base), E1CS2_SCC | reg >> 4);
1631	outb (E1DAT(base), reg & 15);
1632	return inb (E1DAT(base));
1633}
1634
1635void cte_out2 (port_t base, unsigned char reg, unsigned char val)
1636{
1637	outb (E1CS2(base), E1CS2_SCC | reg >> 4);
1638	outb (E1DAT(base), reg & 15);
1639	outb (E1DAT(base), val);
1640}
1641
1642/*
1643 * Read the data from the 8530 receive fifo.
1644 */
1645unsigned char cte_in2d (ct_chan_t *c)
1646{
1647	outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
1648		(c->num ? 0 : E1CS2_AB));
1649	return inb (E1DAT(c->board->port));
1650}
1651
1652/*
1653 * Send the 8530 command.
1654 */
1655void cte_out2c (ct_chan_t *c, unsigned char val)
1656{
1657	outb (E1CS2(c->board->port), E1CS2_SCC | (c->num ? 0 : E1CS2_AB));
1658	outb (E1DAT(c->board->port), val);
1659}
1660
1661/*
1662 * Write the data to the 8530 transmit fifo.
1663 */
1664void cte_out2d (ct_chan_t *c, unsigned char val)
1665{
1666	outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
1667		(c->num ? 0 : E1CS2_AB));
1668	outb (E1DAT(c->board->port), val);
1669}
1670
1671/*
1672 * Access to LXT318 chip on the Tau/G.703 board.
1673 * Examples:
1674 *	val = ctg_inx (c)
1675 *	ctg_outx (c, val)
1676 */
1677static void ctg_output (port_t port, unsigned char val, unsigned char v0)
1678{
1679	int i;
1680
1681	for (i=0; i<8; ++i) {
1682		unsigned char v = v0;
1683		if ((val >> i) & 1)
1684			v |= GMD0_SDI;
1685		outb (port, v);
1686		outb (port, v);
1687		outb (port, v);
1688		outb (port, v);
1689		outb (port, v | GMD0_SCLK);
1690		outb (port, v | GMD0_SCLK);
1691		outb (port, v | GMD0_SCLK);
1692		outb (port, v | GMD0_SCLK);
1693	}
1694	outb (port, v0);
1695}
1696
1697void ctg_outx (ct_chan_t *c, unsigned char reg, unsigned char val)
1698{
1699	port_t port = GMD0(c->board->port);
1700
1701	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
1702	outb (GMD1(c->board->port), c->board->gmd1 |
1703		(c->num ? GMD1_NCS0 : GMD1_NCS1));
1704	ctg_output (port, (reg << 1) | LX_WRITE, c->board->gmd0);
1705	ctg_output (port, val, c->board->gmd0);
1706	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
1707}
1708
1709unsigned char ctg_inx (ct_chan_t *c, unsigned char reg)
1710{
1711	port_t port = GMD0(c->board->port);
1712	port_t data = GLDR(c->board->port);
1713	unsigned char val = 0, mask = c->num ? GLDR_C1 : GLDR_C0;
1714	int i;
1715
1716	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
1717	outb (GMD1(c->board->port), c->board->gmd1 |
1718		(c->num ? GMD1_NCS0 : GMD1_NCS1));
1719	ctg_output (port, (reg << 1) | LX_READ, c->board->gmd0);
1720	for (i=0; i<8; ++i) {
1721		outb (port, c->board->gmd0 | GMD0_SCLK);
1722		if (inb (data) & mask)
1723			val |= 1 << i;
1724		outb (port, c->board->gmd0);
1725	}
1726	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
1727	return val;
1728}
1729
1730/*
1731 * Adapter options
1732 */
1733ct_board_opt_t ct_board_opt_dflt = {
1734	0,			/* board control register 2 */
1735	{			/* DMA priority control register */
1736		PCR_PRIO_ROTATE,
1737		0,		/* all channels share the the bus hold */
1738		0,		/* hold the bus until all transfers done */
1739	},
1740	CFG_A,			/* E1/G.703 config: two independent channels */
1741	GCLK_INT,		/* E1/G.703 chan 0 internal tx clock source */
1742	GCLK_INT,		/* E1/G.703 chan 1 internal tx clock source */
1743	~0UL << 1,		/* E1 channel 0 timeslots 1..31 */
1744	~0UL << 1,		/* E1 channel 1 timeslots 1..31 */
1745	0,			/* no E1 subchannel timeslots */
1746};
1747
1748/*
1749 * Mode-independent channel options
1750 */
1751ct_chan_opt_t ct_chan_opt_dflt = {
1752	{			/* mode register 2 */
1753		MD2_FDX,	/* full duplex communication */
1754		0,		/* empty ADPLL clock rate */
1755		MD2_ENCOD_NRZ,	/* NRZ encoding */
1756	},
1757				/* DMA mode FIFO marks */
1758	15, 24, 30,		/* rx ready, tx empty, tx full */
1759				/* port i/o mode FIFO marks */
1760	15, 16, 30,		/* rx ready, tx empty, tx full */
1761};
1762
1763/*
1764 * Default HDLC options
1765 */
1766ct_opt_hdlc_t ct_opt_hdlc_dflt = {
1767	{			/* mode register 0 */
1768		1,		/* CRC preset to all ones (V.41) */
1769		1,		/* CRC-CCITT */
1770		1,		/* enable CRC */
1771		0,		/* disable automatic CTS/DCD */
1772		MD0_MODE_HDLC,	/* HDLC mode */
1773	},
1774	{			/* mode register 1 */
1775		MD1_ADDR_NOCHK, /* do not check address field */
1776	},
1777	CTL_IDLE_PTRN | CTL_UDRN_ABORT | CTL_RTS_INV,	/* control register */
1778	0, 0,			/* empty sync/address registers 0,1 */
1779	CLK_LINE,		/* receive clock source: RXC line input */
1780	CLK_LINE,		/* transmit clock source: TXC line input */
1781};
1782
1783/*
1784 * Default E1/G.703 options
1785 */
1786ct_opt_g703_t ct_opt_g703_dflt = {
1787	1,			/* HDB3 enable */
1788	0,			/* precoder disable */
1789	GTEST_DIS,		/* test disabled, normal operation */
1790	0,			/* CRC4 disable */
1791	0,			/* CCS signaling */
1792	0,			/* low gain */
1793	0,			/* no raw mode */
1794	0,			/* no PCM2 precoder compatibility */
1795	2048,			/* data rate 2048 kbit/sec */
1796};
1797