1/*-
2 * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#ifndef ECORE_INIT_OPS_H
31#define ECORE_INIT_OPS_H
32
33
34
35
36
37
38
39
40
41
42static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
43static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
44static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
45				      ecore_dma_addr_t phys_addr, uint32_t addr,
46				      uint32_t len);
47
48static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
49			      const uint32_t *data, uint32_t len)
50{
51	uint32_t i;
52
53	for (i = 0; i < len; i++)
54		REG_WR(sc, addr + i*4, data[i]);
55}
56
57static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
58			      const uint32_t *data, uint32_t len)
59{
60	uint32_t i;
61
62	for (i = 0; i < len; i++)
63		ecore_reg_wr_ind(sc, addr + i*4, data[i]);
64}
65
66static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
67				uint8_t wb)
68{
69	if (DMAE_READY(sc))
70		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
71
72	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
73	else if (wb && CHIP_IS_E1(sc))
74		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
75
76	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
77	else
78		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
79}
80
81static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
82			    uint32_t len, uint8_t wb)
83{
84	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
85	uint32_t buf_len32 = buf_len/4;
86	uint32_t i;
87
88	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
89
90	for (i = 0; i < len; i += buf_len32) {
91		uint32_t cur_len = min(buf_len32, len - i);
92
93		ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
94	}
95}
96
97static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
98{
99	if (DMAE_READY(sc))
100		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
101
102	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
103	else if (CHIP_IS_E1(sc))
104		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
105
106	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
107	else
108		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
109}
110
111static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
112			     const uint32_t *data, uint32_t len64)
113{
114	uint32_t buf_len32 = FW_BUF_SIZE/4;
115	uint32_t len = len64*2;
116	uint64_t data64 = 0;
117	uint32_t i;
118
119	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
120	data64 = HILO_U64((*(data + 1)), (*data));
121
122	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
123	for (i = 0; i < len64; i++) {
124		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
125
126		*pdata = data64;
127	}
128
129	for (i = 0; i < len; i += buf_len32) {
130		uint32_t cur_len = min(buf_len32, len - i);
131
132		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
133	}
134}
135
136/*********************************************************
137   There are different blobs for each PRAM section.
138   In addition, each blob write operation is divided into a few operations
139   in order to decrease the amount of phys. contiguous buffer needed.
140   Thus, when we select a blob the address may be with some offset
141   from the beginning of PRAM section.
142   The same holds for the INT_TABLE sections.
143**********************************************************/
144#define IF_IS_INT_TABLE_ADDR(base, addr) \
145			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
146
147#define IF_IS_PRAM_ADDR(base, addr) \
148			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
149
150static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
151				const uint8_t *data)
152{
153	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
154		data = INIT_TSEM_INT_TABLE_DATA(sc);
155	else
156		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
157			data = INIT_CSEM_INT_TABLE_DATA(sc);
158	else
159		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
160			data = INIT_USEM_INT_TABLE_DATA(sc);
161	else
162		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
163			data = INIT_XSEM_INT_TABLE_DATA(sc);
164	else
165		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
166			data = INIT_TSEM_PRAM_DATA(sc);
167	else
168		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
169			data = INIT_CSEM_PRAM_DATA(sc);
170	else
171		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
172			data = INIT_USEM_PRAM_DATA(sc);
173	else
174		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
175			data = INIT_XSEM_PRAM_DATA(sc);
176
177	return data;
178}
179
180static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
181			     const uint32_t *data, uint32_t len)
182{
183	if (DMAE_READY(sc))
184		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
185
186	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
187	else if (CHIP_IS_E1(sc))
188		ecore_init_ind_wr(sc, addr, data, len);
189
190	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
191	else
192		ecore_init_str_wr(sc, addr, data, len);
193}
194
195#ifndef FW_ZIP_SUPPORT
196static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
197{
198	const uint8_t *data = NULL;
199
200	data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
201
202	if (DMAE_READY(sc))
203		VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
204
205	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
206	else if (CHIP_IS_E1(sc))
207		ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
208
209	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
210	else
211		ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
212}
213
214#endif
215
216static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
217			uint32_t val_hi)
218{
219	uint32_t wb_write[2];
220
221	wb_write[0] = val_lo;
222	wb_write[1] = val_hi;
223	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
224}
225
226static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
227			     uint32_t blob_off)
228{
229	const uint8_t *data = NULL;
230	int rc;
231	uint32_t i;
232
233	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
234
235	rc = ecore_gunzip(sc, data, len);
236	if (rc)
237		return;
238
239	/* gunzip_outlen is in dwords */
240	len = GUNZIP_OUTLEN(sc);
241	for (i = 0; i < len; i++)
242		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
243				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
244
245	ecore_write_big_buf_wb(sc, addr, len);
246}
247
248static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
249{
250	uint16_t op_start =
251		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
252						     STAGE_START)];
253	uint16_t op_end =
254		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
255						     STAGE_END)];
256	const union init_op *op;
257	uint32_t op_idx, op_type, addr, len;
258	const uint32_t *data, *data_base;
259
260	/* If empty block */
261	if (op_start == op_end)
262		return;
263
264	data_base = INIT_DATA(sc);
265
266	for (op_idx = op_start; op_idx < op_end; op_idx++) {
267
268		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
269		/* Get generic data */
270		op_type = op->raw.op;
271		addr = op->raw.offset;
272		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
273		 * OP_WR64 (we assume that op_arr_write and op_write have the
274		 * same structure).
275		 */
276		len = op->arr_wr.data_len;
277		data = data_base + op->arr_wr.data_off;
278
279		switch (op_type) {
280		case OP_RD:
281			REG_RD(sc, addr);
282			break;
283		case OP_WR:
284			REG_WR(sc, addr, op->write.val);
285			break;
286		case OP_SW:
287			ecore_init_str_wr(sc, addr, data, len);
288			break;
289		case OP_WB:
290			ecore_init_wr_wb(sc, addr, data, len);
291			break;
292#ifndef FW_ZIP_SUPPORT
293		case OP_FW:
294			ecore_init_fw(sc, addr, len);
295			break;
296#endif
297		case OP_ZR:
298			ecore_init_fill(sc, addr, 0, op->zero.len, 0);
299			break;
300		case OP_WB_ZR:
301			ecore_init_fill(sc, addr, 0, op->zero.len, 1);
302			break;
303		case OP_ZP:
304			ecore_init_wr_zp(sc, addr, len,
305					 op->arr_wr.data_off);
306			break;
307		case OP_WR_64:
308			ecore_init_wr_64(sc, addr, data, len);
309			break;
310		case OP_IF_MODE_AND:
311			/* if any of the flags doesn't match, skip the
312			 * conditional block.
313			 */
314			if ((INIT_MODE_FLAGS(sc) &
315				op->if_mode.mode_bit_map) !=
316				op->if_mode.mode_bit_map)
317				op_idx += op->if_mode.cmd_offset;
318			break;
319		case OP_IF_MODE_OR:
320			/* if all the flags don't match, skip the conditional
321			 * block.
322			 */
323			if ((INIT_MODE_FLAGS(sc) &
324				op->if_mode.mode_bit_map) == 0)
325				op_idx += op->if_mode.cmd_offset;
326			break;
327		    /* the following opcodes are unused at the moment. */
328		case OP_IF_PHASE:
329		case OP_RT:
330		case OP_DELAY:
331		case OP_VERIFY:
332		default:
333			/* Should never get here! */
334
335			break;
336		}
337	}
338}
339
340
341/****************************************************************************
342* PXP Arbiter
343****************************************************************************/
344/*
345 * This code configures the PCI read/write arbiter
346 * which implements a weighted round robin
347 * between the virtual queues in the chip.
348 *
349 * The values were derived for each PCI max payload and max request size.
350 * since max payload and max request size are only known at run time,
351 * this is done as a separate init stage.
352 */
353
354#define NUM_WR_Q			13
355#define NUM_RD_Q			29
356#define MAX_RD_ORD			3
357#define MAX_WR_ORD			2
358
359/* configuration for one arbiter queue */
360struct arb_line {
361	int l;
362	int add;
363	int ubound;
364};
365
366/* derived configuration for each read queue for each max request size */
367static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
368/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
369	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
370	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
371	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
372	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
373	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
374	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
375	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
376	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
377/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
378	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
379	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
380	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
381	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
382	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
383	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
384	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
385	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
387/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
390	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
391	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
392	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
393	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
394	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
395	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
396	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
397};
398
399/* derived configuration for each write queue for each max request size */
400static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
401/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
402	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
403	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
404	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
405	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
406	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
407	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
408	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
409	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
410/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
411	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
412	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
413	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
414};
415
416/* register addresses for read queues */
417static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
418/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
419		PXP2_REG_RQ_BW_RD_UBOUND0},
420	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
421		PXP2_REG_PSWRQ_BW_UB1},
422	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
423		PXP2_REG_PSWRQ_BW_UB2},
424	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
425		PXP2_REG_PSWRQ_BW_UB3},
426	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
427		PXP2_REG_RQ_BW_RD_UBOUND4},
428	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
429		PXP2_REG_RQ_BW_RD_UBOUND5},
430	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
431		PXP2_REG_PSWRQ_BW_UB6},
432	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
433		PXP2_REG_PSWRQ_BW_UB7},
434	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
435		PXP2_REG_PSWRQ_BW_UB8},
436/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
437		PXP2_REG_PSWRQ_BW_UB9},
438	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
439		PXP2_REG_PSWRQ_BW_UB10},
440	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
441		PXP2_REG_PSWRQ_BW_UB11},
442	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
443		PXP2_REG_RQ_BW_RD_UBOUND12},
444	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
445		PXP2_REG_RQ_BW_RD_UBOUND13},
446	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
447		PXP2_REG_RQ_BW_RD_UBOUND14},
448	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
449		PXP2_REG_RQ_BW_RD_UBOUND15},
450	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
451		PXP2_REG_RQ_BW_RD_UBOUND16},
452	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
453		PXP2_REG_RQ_BW_RD_UBOUND17},
454	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
455		PXP2_REG_RQ_BW_RD_UBOUND18},
456/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
457		PXP2_REG_RQ_BW_RD_UBOUND19},
458	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
459		PXP2_REG_RQ_BW_RD_UBOUND20},
460	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
461		PXP2_REG_RQ_BW_RD_UBOUND22},
462	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
463		PXP2_REG_RQ_BW_RD_UBOUND23},
464	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
465		PXP2_REG_RQ_BW_RD_UBOUND24},
466	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
467		PXP2_REG_RQ_BW_RD_UBOUND25},
468	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
469		PXP2_REG_RQ_BW_RD_UBOUND26},
470	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
471		PXP2_REG_RQ_BW_RD_UBOUND27},
472	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
473		PXP2_REG_PSWRQ_BW_UB28}
474};
475
476/* register addresses for write queues */
477static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
478/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
479		PXP2_REG_PSWRQ_BW_UB1},
480	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
481		PXP2_REG_PSWRQ_BW_UB2},
482	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
483		PXP2_REG_PSWRQ_BW_UB3},
484	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
485		PXP2_REG_PSWRQ_BW_UB6},
486	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
487		PXP2_REG_PSWRQ_BW_UB7},
488	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
489		PXP2_REG_PSWRQ_BW_UB8},
490	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
491		PXP2_REG_PSWRQ_BW_UB9},
492	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
493		PXP2_REG_PSWRQ_BW_UB10},
494	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
495		PXP2_REG_PSWRQ_BW_UB11},
496/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
497		PXP2_REG_PSWRQ_BW_UB28},
498	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
499		PXP2_REG_RQ_BW_WR_UBOUND29},
500	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
501		PXP2_REG_RQ_BW_WR_UBOUND30}
502};
503
504static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
505			       int w_order)
506{
507	uint32_t val, i;
508
509	if (r_order > MAX_RD_ORD) {
510		ECORE_MSG(sc, "read order of %d  order adjusted to %d\n",
511			   r_order, MAX_RD_ORD);
512		r_order = MAX_RD_ORD;
513	}
514	if (w_order > MAX_WR_ORD) {
515		ECORE_MSG(sc, "write order of %d  order adjusted to %d\n",
516			   w_order, MAX_WR_ORD);
517		w_order = MAX_WR_ORD;
518	}
519	if (CHIP_REV_IS_FPGA(sc)) {
520		ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
521		w_order = 0;
522	}
523	ECORE_MSG(sc, "read order %d  write order %d\n", r_order, w_order);
524
525	for (i = 0; i < NUM_RD_Q-1; i++) {
526		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
527		REG_WR(sc, read_arb_addr[i].add,
528		       read_arb_data[i][r_order].add);
529		REG_WR(sc, read_arb_addr[i].ubound,
530		       read_arb_data[i][r_order].ubound);
531	}
532
533	for (i = 0; i < NUM_WR_Q-1; i++) {
534		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
535		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
536
537			REG_WR(sc, write_arb_addr[i].l,
538			       write_arb_data[i][w_order].l);
539
540			REG_WR(sc, write_arb_addr[i].add,
541			       write_arb_data[i][w_order].add);
542
543			REG_WR(sc, write_arb_addr[i].ubound,
544			       write_arb_data[i][w_order].ubound);
545		} else {
546
547			val = REG_RD(sc, write_arb_addr[i].l);
548			REG_WR(sc, write_arb_addr[i].l,
549			       val | (write_arb_data[i][w_order].l << 10));
550
551			val = REG_RD(sc, write_arb_addr[i].add);
552			REG_WR(sc, write_arb_addr[i].add,
553			       val | (write_arb_data[i][w_order].add << 10));
554
555			val = REG_RD(sc, write_arb_addr[i].ubound);
556			REG_WR(sc, write_arb_addr[i].ubound,
557			       val | (write_arb_data[i][w_order].ubound << 7));
558		}
559	}
560
561	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
562	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
563	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
564	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
565
566	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
567	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
568	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
569	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
570
571	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
572	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
573	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
574	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
575
576	if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
577		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
578
579	if (CHIP_IS_E3(sc))
580		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
581	else if (CHIP_IS_E2(sc))
582		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
583	else
584		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
585
586	if (!CHIP_IS_E1(sc)) {
587		/*    MPS      w_order     optimal TH      presently TH
588		 *    128         0             0               2
589		 *    256         1             1               3
590		 *    >=512       2             2               3
591		 */
592		/* DMAE is special */
593		if (!CHIP_IS_E1H(sc)) {
594			/* E2 can use optimal TH */
595			val = w_order;
596			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
597		} else {
598			val = ((w_order == 0) ? 2 : 3);
599			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
600		}
601
602		REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
603		REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
604		REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
605		REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
606		REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
607		REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
608		REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
609		REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
610		REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
611		REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
612	}
613
614	/* Validate number of tags suppoted by device */
615#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
616	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
617	val &= 0xFF;
618	if (val <= 0x20)
619		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
620}
621
622/****************************************************************************
623* ILT management
624****************************************************************************/
625/*
626 * This codes hides the low level HW interaction for ILT management and
627 * configuration. The API consists of a shadow ILT table which is set by the
628 * driver and a set of routines to use it to configure the HW.
629 *
630 */
631
632/* ILT HW init operations */
633
634/* ILT memory management operations */
635#define ILT_MEMOP_ALLOC		0
636#define ILT_MEMOP_FREE		1
637
638/* the phys address is shifted right 12 bits and has an added
639 * 1=valid bit added to the 53rd bit
640 * then since this is a wide register(TM)
641 * we split it into two 32 bit writes
642 */
643#define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
644#define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
645#define ILT_RANGE(f, l)		(((l) << 10) | f)
646
647static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
648				 struct ilt_line *line, uint32_t size, uint8_t memop)
649{
650	if (memop == ILT_MEMOP_FREE) {
651		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
652		return 0;
653	}
654	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
655	if (!line->page)
656		return -1;
657	line->size = size;
658	return 0;
659}
660
661
662static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
663				   uint8_t memop)
664{
665	int i, rc;
666	struct ecore_ilt *ilt = SC_ILT(sc);
667	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
668
669	if (!ilt || !ilt->lines)
670		return -1;
671
672	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
673		return 0;
674
675	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
676		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
677					   ilt_cli->page_size, memop);
678	}
679	return rc;
680}
681
682static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
683{
684	int rc = 0;
685
686	if (CONFIGURE_NIC_MODE(sc))
687		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
688	if (!rc)
689		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
690
691	return rc;
692}
693
694static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
695{
696	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
697	if (!rc)
698		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
699	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
700		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
701
702	return rc;
703}
704
705static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
706			      ecore_dma_addr_t page_mapping)
707{
708	uint32_t reg;
709
710	if (CHIP_IS_E1(sc))
711		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
712	else
713		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
714
715	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
716}
717
718static void ecore_ilt_line_init_op(struct bxe_softc *sc,
719				   struct ecore_ilt *ilt, int idx, uint8_t initop)
720{
721	ecore_dma_addr_t	null_mapping;
722	int abs_idx = ilt->start_line + idx;
723
724
725	switch (initop) {
726	case INITOP_INIT:
727		/* set in the init-value array */
728	case INITOP_SET:
729		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
730		break;
731	case INITOP_CLEAR:
732		null_mapping = 0;
733		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
734		break;
735	}
736}
737
738static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
739				      struct ilt_client_info *ilt_cli,
740				      uint32_t ilt_start, uint8_t initop)
741{
742	uint32_t start_reg = 0;
743	uint32_t end_reg = 0;
744
745	/* The boundary is either SET or INIT,
746	   CLEAR => SET and for now SET ~~ INIT */
747
748	/* find the appropriate regs */
749	if (CHIP_IS_E1(sc)) {
750		switch (ilt_cli->client_num) {
751		case ILT_CLIENT_CDU:
752			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
753			break;
754		case ILT_CLIENT_QM:
755			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
756			break;
757		case ILT_CLIENT_SRC:
758			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
759			break;
760		case ILT_CLIENT_TM:
761			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
762			break;
763		}
764		REG_WR(sc, start_reg + SC_FUNC(sc)*4,
765		       ILT_RANGE((ilt_start + ilt_cli->start),
766				 (ilt_start + ilt_cli->end)));
767	} else {
768		switch (ilt_cli->client_num) {
769		case ILT_CLIENT_CDU:
770			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
771			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
772			break;
773		case ILT_CLIENT_QM:
774			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
775			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
776			break;
777		case ILT_CLIENT_SRC:
778			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
779			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
780			break;
781		case ILT_CLIENT_TM:
782			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
783			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
784			break;
785		}
786		REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
787		REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
788	}
789}
790
791static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
792					 struct ecore_ilt *ilt,
793					 struct ilt_client_info *ilt_cli,
794					 uint8_t initop)
795{
796	int i;
797
798	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
799		return;
800
801	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
802		ecore_ilt_line_init_op(sc, ilt, i, initop);
803
804	/* init/clear the ILT boundries */
805	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
806}
807
808static void ecore_ilt_client_init_op(struct bxe_softc *sc,
809				     struct ilt_client_info *ilt_cli, uint8_t initop)
810{
811	struct ecore_ilt *ilt = SC_ILT(sc);
812
813	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
814}
815
816static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
817					int cli_num, uint8_t initop)
818{
819	struct ecore_ilt *ilt = SC_ILT(sc);
820	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
821
822	ecore_ilt_client_init_op(sc, ilt_cli, initop);
823}
824
825static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
826{
827	if (CONFIGURE_NIC_MODE(sc))
828		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
829	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
830}
831
832static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
833{
834	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
835	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
836	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
837		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
838}
839
840static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
841				      uint32_t psz_reg, uint8_t initop)
842{
843	struct ecore_ilt *ilt = SC_ILT(sc);
844	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
845
846	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
847		return;
848
849	switch (initop) {
850	case INITOP_INIT:
851		/* set in the init-value array */
852	case INITOP_SET:
853		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
854		break;
855	case INITOP_CLEAR:
856		break;
857	}
858}
859
860/*
861 * called during init common stage, ilt clients should be initialized
862 * prioir to calling this function
863 */
864static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
865{
866	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
867				  PXP2_REG_RQ_CDU_P_SIZE, initop);
868	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
869				  PXP2_REG_RQ_QM_P_SIZE, initop);
870	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
871				  PXP2_REG_RQ_SRC_P_SIZE, initop);
872	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
873				  PXP2_REG_RQ_TM_P_SIZE, initop);
874}
875
876/****************************************************************************
877* QM initializations
878****************************************************************************/
879#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
880#define QM_INIT_MIN_CID_COUNT	31
881#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
882
883/* called during init port stage */
884static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
885				    uint8_t initop)
886{
887	int port = SC_PORT(sc);
888
889	if (QM_INIT(qm_cid_count)) {
890		switch (initop) {
891		case INITOP_INIT:
892			/* set in the init-value array */
893		case INITOP_SET:
894			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
895			       qm_cid_count/16 - 1);
896			break;
897		case INITOP_CLEAR:
898			break;
899		}
900	}
901}
902
903static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
904				   uint32_t base_reg, uint32_t reg)
905{
906	int i;
907	uint32_t wb_data[2] = {0, 0};
908	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
909		REG_WR(sc, base_reg + i*4,
910		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
911		ecore_init_wr_wb(sc, reg + i*8,
912				 wb_data, 2);
913	}
914}
915
916/* called during init common stage */
917static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
918				    uint8_t initop)
919{
920	if (!QM_INIT(qm_cid_count))
921		return;
922
923	switch (initop) {
924	case INITOP_INIT:
925		/* set in the init-value array */
926	case INITOP_SET:
927		ecore_qm_set_ptr_table(sc, qm_cid_count,
928				       QM_REG_BASEADDR, QM_REG_PTRTBL);
929		if (CHIP_IS_E1H(sc))
930			ecore_qm_set_ptr_table(sc, qm_cid_count,
931					       QM_REG_BASEADDR_EXT_A,
932					       QM_REG_PTRTBL_EXT_A);
933		break;
934	case INITOP_CLEAR:
935		break;
936	}
937}
938
939/****************************************************************************
940* SRC initializations
941****************************************************************************/
942#ifdef ECORE_L5
943/* called during init func stage */
944static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
945			      ecore_dma_addr_t t2_mapping, int src_cid_count)
946{
947	int i;
948	int port = SC_PORT(sc);
949
950	/* Initialize T2 */
951	for (i = 0; i < src_cid_count-1; i++)
952		t2[i].next = (uint64_t)(t2_mapping +
953			     (i+1)*sizeof(struct src_ent));
954
955	/* tell the searcher where the T2 table is */
956	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
957
958	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
959		    U64_LO(t2_mapping), U64_HI(t2_mapping));
960
961	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
962		    U64_LO((uint64_t)t2_mapping +
963			   (src_cid_count-1) * sizeof(struct src_ent)),
964		    U64_HI((uint64_t)t2_mapping +
965			   (src_cid_count-1) * sizeof(struct src_ent)));
966}
967#endif
968#endif /* ECORE_INIT_OPS_H */
969