bxe.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/11/sys/dev/bxe/bxe.c 330897 2018-03-14 03:19:51Z eadler $");
31
32#define BXE_DRIVER_VERSION "1.78.90"
33
34#include "bxe.h"
35#include "ecore_sp.h"
36#include "ecore_init.h"
37#include "ecore_init_ops.h"
38
39#include "57710_int_offsets.h"
40#include "57711_int_offsets.h"
41#include "57712_int_offsets.h"
42
43/*
44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
45 * explicitly here for older kernels that don't include this changeset.
46 */
47#ifndef CTLTYPE_U64
48#define CTLTYPE_U64      CTLTYPE_QUAD
49#define sysctl_handle_64 sysctl_handle_quad
50#endif
51
52/*
53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
54 * here as zero(0) for older kernels that don't include this changeset
55 * thereby masking the functionality.
56 */
57#ifndef CSUM_TCP_IPV6
58#define CSUM_TCP_IPV6 0
59#define CSUM_UDP_IPV6 0
60#endif
61
62/*
63 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
64 * for older kernels that don't include this changeset.
65 */
66#if __FreeBSD_version < 900035
67#define pci_find_cap pci_find_extcap
68#endif
69
70#define BXE_DEF_SB_ATT_IDX 0x0001
71#define BXE_DEF_SB_IDX     0x0002
72
73/*
74 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
75 * function HW initialization.
76 */
77#define FLR_WAIT_USEC     10000 /* 10 msecs */
78#define FLR_WAIT_INTERVAL 50    /* usecs */
79#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
80
81struct pbf_pN_buf_regs {
82    int pN;
83    uint32_t init_crd;
84    uint32_t crd;
85    uint32_t crd_freed;
86};
87
88struct pbf_pN_cmd_regs {
89    int pN;
90    uint32_t lines_occup;
91    uint32_t lines_freed;
92};
93
94/*
95 * PCI Device ID Table used by bxe_probe().
96 */
97#define BXE_DEVDESC_MAX 64
98static struct bxe_device_type bxe_devs[] = {
99    {
100        BRCM_VENDORID,
101        CHIP_NUM_57710,
102        PCI_ANY_ID, PCI_ANY_ID,
103        "QLogic NetXtreme II BCM57710 10GbE"
104    },
105    {
106        BRCM_VENDORID,
107        CHIP_NUM_57711,
108        PCI_ANY_ID, PCI_ANY_ID,
109        "QLogic NetXtreme II BCM57711 10GbE"
110    },
111    {
112        BRCM_VENDORID,
113        CHIP_NUM_57711E,
114        PCI_ANY_ID, PCI_ANY_ID,
115        "QLogic NetXtreme II BCM57711E 10GbE"
116    },
117    {
118        BRCM_VENDORID,
119        CHIP_NUM_57712,
120        PCI_ANY_ID, PCI_ANY_ID,
121        "QLogic NetXtreme II BCM57712 10GbE"
122    },
123    {
124        BRCM_VENDORID,
125        CHIP_NUM_57712_MF,
126        PCI_ANY_ID, PCI_ANY_ID,
127        "QLogic NetXtreme II BCM57712 MF 10GbE"
128    },
129    {
130        BRCM_VENDORID,
131        CHIP_NUM_57800,
132        PCI_ANY_ID, PCI_ANY_ID,
133        "QLogic NetXtreme II BCM57800 10GbE"
134    },
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800_MF,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 MF 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57810,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57810 10GbE"
146    },
147    {
148        BRCM_VENDORID,
149        CHIP_NUM_57810_MF,
150        PCI_ANY_ID, PCI_ANY_ID,
151        "QLogic NetXtreme II BCM57810 MF 10GbE"
152    },
153    {
154        BRCM_VENDORID,
155        CHIP_NUM_57811,
156        PCI_ANY_ID, PCI_ANY_ID,
157        "QLogic NetXtreme II BCM57811 10GbE"
158    },
159    {
160        BRCM_VENDORID,
161        CHIP_NUM_57811_MF,
162        PCI_ANY_ID, PCI_ANY_ID,
163        "QLogic NetXtreme II BCM57811 MF 10GbE"
164    },
165    {
166        BRCM_VENDORID,
167        CHIP_NUM_57840_4_10,
168        PCI_ANY_ID, PCI_ANY_ID,
169        "QLogic NetXtreme II BCM57840 4x10GbE"
170    },
171    {
172        QLOGIC_VENDORID,
173        CHIP_NUM_57840_4_10,
174        PCI_ANY_ID, PCI_ANY_ID,
175        "QLogic NetXtreme II BCM57840 4x10GbE"
176    },
177    {
178        BRCM_VENDORID,
179        CHIP_NUM_57840_2_20,
180        PCI_ANY_ID, PCI_ANY_ID,
181        "QLogic NetXtreme II BCM57840 2x20GbE"
182    },
183    {
184        BRCM_VENDORID,
185        CHIP_NUM_57840_MF,
186        PCI_ANY_ID, PCI_ANY_ID,
187        "QLogic NetXtreme II BCM57840 MF 10GbE"
188    },
189    {
190        0, 0, 0, 0, NULL
191    }
192};
193
194MALLOC_DECLARE(M_BXE_ILT);
195MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
196
197/*
198 * FreeBSD device entry points.
199 */
200static int bxe_probe(device_t);
201static int bxe_attach(device_t);
202static int bxe_detach(device_t);
203static int bxe_shutdown(device_t);
204
205/*
206 * FreeBSD KLD module/device interface event handler method.
207 */
208static device_method_t bxe_methods[] = {
209    /* Device interface (device_if.h) */
210    DEVMETHOD(device_probe,     bxe_probe),
211    DEVMETHOD(device_attach,    bxe_attach),
212    DEVMETHOD(device_detach,    bxe_detach),
213    DEVMETHOD(device_shutdown,  bxe_shutdown),
214    /* Bus interface (bus_if.h) */
215    DEVMETHOD(bus_print_child,  bus_generic_print_child),
216    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
217    KOBJMETHOD_END
218};
219
220/*
221 * FreeBSD KLD Module data declaration
222 */
223static driver_t bxe_driver = {
224    "bxe",                   /* module name */
225    bxe_methods,             /* event handler */
226    sizeof(struct bxe_softc) /* extra data */
227};
228
229/*
230 * FreeBSD dev class is needed to manage dev instances and
231 * to associate with a bus type
232 */
233static devclass_t bxe_devclass;
234
235MODULE_DEPEND(bxe, pci, 1, 1, 1);
236MODULE_DEPEND(bxe, ether, 1, 1, 1);
237DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
238
239/* resources needed for unloading a previously loaded device */
240
241#define BXE_PREV_WAIT_NEEDED 1
242struct mtx bxe_prev_mtx;
243MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
244struct bxe_prev_list_node {
245    LIST_ENTRY(bxe_prev_list_node) node;
246    uint8_t bus;
247    uint8_t slot;
248    uint8_t path;
249    uint8_t aer; /* XXX automatic error recovery */
250    uint8_t undi;
251};
252static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
253
254static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
255
256/* Tunable device values... */
257
258SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
259
260/* Debug */
261unsigned long bxe_debug = 0;
262SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
263             &bxe_debug, 0, "Debug logging mode");
264
265/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
266static int bxe_interrupt_mode = INTR_MODE_MSIX;
267SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
268           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
269
270/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
271static int bxe_queue_count = 4;
272SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
273           &bxe_queue_count, 0, "Multi-Queue queue count");
274
275/* max number of buffers per queue (default RX_BD_USABLE) */
276static int bxe_max_rx_bufs = 0;
277SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
278           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
279
280/* Host interrupt coalescing RX tick timer (usecs) */
281static int bxe_hc_rx_ticks = 25;
282SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
283           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
284
285/* Host interrupt coalescing TX tick timer (usecs) */
286static int bxe_hc_tx_ticks = 50;
287SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
288           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
289
290/* Maximum number of Rx packets to process at a time */
291static int bxe_rx_budget = 0xffffffff;
292SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
293           &bxe_rx_budget, 0, "Rx processing budget");
294
295/* Maximum LRO aggregation size */
296static int bxe_max_aggregation_size = 0;
297SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
298           &bxe_max_aggregation_size, 0, "max aggregation size");
299
300/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
301static int bxe_mrrs = -1;
302SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
303           &bxe_mrrs, 0, "PCIe maximum read request size");
304
305/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
306static int bxe_autogreeen = 0;
307SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
308           &bxe_autogreeen, 0, "AutoGrEEEn support");
309
310/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
311static int bxe_udp_rss = 0;
312SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
313           &bxe_udp_rss, 0, "UDP RSS support");
314
315
316#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
317
318#define STATS_OFFSET32(stat_name)                   \
319    (offsetof(struct bxe_eth_stats, stat_name) / 4)
320
321#define Q_STATS_OFFSET32(stat_name)                   \
322    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
323
324static const struct {
325    uint32_t offset;
326    uint32_t size;
327    uint32_t flags;
328#define STATS_FLAGS_PORT  1
329#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
330#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
331    char string[STAT_NAME_LEN];
332} bxe_eth_stats_arr[] = {
333    { STATS_OFFSET32(total_bytes_received_hi),
334                8, STATS_FLAGS_BOTH, "rx_bytes" },
335    { STATS_OFFSET32(error_bytes_received_hi),
336                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
337    { STATS_OFFSET32(total_unicast_packets_received_hi),
338                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
339    { STATS_OFFSET32(total_multicast_packets_received_hi),
340                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
341    { STATS_OFFSET32(total_broadcast_packets_received_hi),
342                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
343    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
344                8, STATS_FLAGS_PORT, "rx_crc_errors" },
345    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
346                8, STATS_FLAGS_PORT, "rx_align_errors" },
347    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
348                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
349    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
350                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
351    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
352                8, STATS_FLAGS_PORT, "rx_fragments" },
353    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
354                8, STATS_FLAGS_PORT, "rx_jabbers" },
355    { STATS_OFFSET32(no_buff_discard_hi),
356                8, STATS_FLAGS_BOTH, "rx_discards" },
357    { STATS_OFFSET32(mac_filter_discard),
358                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
359    { STATS_OFFSET32(mf_tag_discard),
360                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
361    { STATS_OFFSET32(pfc_frames_received_hi),
362                8, STATS_FLAGS_PORT, "pfc_frames_received" },
363    { STATS_OFFSET32(pfc_frames_sent_hi),
364                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
365    { STATS_OFFSET32(brb_drop_hi),
366                8, STATS_FLAGS_PORT, "rx_brb_discard" },
367    { STATS_OFFSET32(brb_truncate_hi),
368                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
369    { STATS_OFFSET32(pause_frames_received_hi),
370                8, STATS_FLAGS_PORT, "rx_pause_frames" },
371    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
372                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
373    { STATS_OFFSET32(nig_timer_max),
374                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
375    { STATS_OFFSET32(total_bytes_transmitted_hi),
376                8, STATS_FLAGS_BOTH, "tx_bytes" },
377    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
378                8, STATS_FLAGS_PORT, "tx_error_bytes" },
379    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
380                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
381    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
382                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
383    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
384                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
385    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
386                8, STATS_FLAGS_PORT, "tx_mac_errors" },
387    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
388                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
389    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
390                8, STATS_FLAGS_PORT, "tx_single_collisions" },
391    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
392                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
393    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
394                8, STATS_FLAGS_PORT, "tx_deferred" },
395    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
396                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
397    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
398                8, STATS_FLAGS_PORT, "tx_late_collisions" },
399    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
400                8, STATS_FLAGS_PORT, "tx_total_collisions" },
401    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
402                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
403    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
404                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
405    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
406                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
407    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
408                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
409    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
410                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
411    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
412                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
413    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
414                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
415    { STATS_OFFSET32(pause_frames_sent_hi),
416                8, STATS_FLAGS_PORT, "tx_pause_frames" },
417    { STATS_OFFSET32(total_tpa_aggregations_hi),
418                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
419    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
420                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
421    { STATS_OFFSET32(total_tpa_bytes_hi),
422                8, STATS_FLAGS_FUNC, "tpa_bytes"},
423    { STATS_OFFSET32(eee_tx_lpi),
424                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
425    { STATS_OFFSET32(rx_calls),
426                4, STATS_FLAGS_FUNC, "rx_calls"},
427    { STATS_OFFSET32(rx_pkts),
428                4, STATS_FLAGS_FUNC, "rx_pkts"},
429    { STATS_OFFSET32(rx_tpa_pkts),
430                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
431    { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
432                4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
433    { STATS_OFFSET32(rx_bxe_service_rxsgl),
434                4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
435    { STATS_OFFSET32(rx_jumbo_sge_pkts),
436                4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
437    { STATS_OFFSET32(rx_soft_errors),
438                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
439    { STATS_OFFSET32(rx_hw_csum_errors),
440                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
441    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
442                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
443    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
444                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
445    { STATS_OFFSET32(rx_budget_reached),
446                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
447    { STATS_OFFSET32(tx_pkts),
448                4, STATS_FLAGS_FUNC, "tx_pkts"},
449    { STATS_OFFSET32(tx_soft_errors),
450                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
451    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
452                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
453    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
454                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
455    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
456                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
457    { STATS_OFFSET32(tx_ofld_frames_lso),
458                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
459    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
460                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
461    { STATS_OFFSET32(tx_encap_failures),
462                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
463    { STATS_OFFSET32(tx_hw_queue_full),
464                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
465    { STATS_OFFSET32(tx_hw_max_queue_depth),
466                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
467    { STATS_OFFSET32(tx_dma_mapping_failure),
468                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
469    { STATS_OFFSET32(tx_max_drbr_queue_depth),
470                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
471    { STATS_OFFSET32(tx_window_violation_std),
472                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
473    { STATS_OFFSET32(tx_window_violation_tso),
474                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
475    { STATS_OFFSET32(tx_chain_lost_mbuf),
476                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
477    { STATS_OFFSET32(tx_frames_deferred),
478                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
479    { STATS_OFFSET32(tx_queue_xoff),
480                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
481    { STATS_OFFSET32(mbuf_defrag_attempts),
482                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
483    { STATS_OFFSET32(mbuf_defrag_failures),
484                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
485    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
486                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
487    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
488                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
489    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
490                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
491    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
492                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
493    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
494                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
495    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
496                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
497    { STATS_OFFSET32(mbuf_alloc_tx),
498                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
499    { STATS_OFFSET32(mbuf_alloc_rx),
500                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
501    { STATS_OFFSET32(mbuf_alloc_sge),
502                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
503    { STATS_OFFSET32(mbuf_alloc_tpa),
504                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
505    { STATS_OFFSET32(tx_queue_full_return),
506                4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
507    { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
508                4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
509    { STATS_OFFSET32(tx_request_link_down_failures),
510                4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
511    { STATS_OFFSET32(bd_avail_too_less_failures),
512                4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
513    { STATS_OFFSET32(tx_mq_not_empty),
514                4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
515    { STATS_OFFSET32(nsegs_path1_errors),
516                4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
517    { STATS_OFFSET32(nsegs_path2_errors),
518                4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
519
520
521};
522
523static const struct {
524    uint32_t offset;
525    uint32_t size;
526    char string[STAT_NAME_LEN];
527} bxe_eth_q_stats_arr[] = {
528    { Q_STATS_OFFSET32(total_bytes_received_hi),
529                8, "rx_bytes" },
530    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
531                8, "rx_ucast_packets" },
532    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
533                8, "rx_mcast_packets" },
534    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
535                8, "rx_bcast_packets" },
536    { Q_STATS_OFFSET32(no_buff_discard_hi),
537                8, "rx_discards" },
538    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
539                8, "tx_bytes" },
540    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
541                8, "tx_ucast_packets" },
542    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
543                8, "tx_mcast_packets" },
544    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
545                8, "tx_bcast_packets" },
546    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
547                8, "tpa_aggregations" },
548    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
549                8, "tpa_aggregated_frames"},
550    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
551                8, "tpa_bytes"},
552    { Q_STATS_OFFSET32(rx_calls),
553                4, "rx_calls"},
554    { Q_STATS_OFFSET32(rx_pkts),
555                4, "rx_pkts"},
556    { Q_STATS_OFFSET32(rx_tpa_pkts),
557                4, "rx_tpa_pkts"},
558    { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
559                4, "rx_erroneous_jumbo_sge_pkts"},
560    { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
561                4, "rx_bxe_service_rxsgl"},
562    { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
563                4, "rx_jumbo_sge_pkts"},
564    { Q_STATS_OFFSET32(rx_soft_errors),
565                4, "rx_soft_errors"},
566    { Q_STATS_OFFSET32(rx_hw_csum_errors),
567                4, "rx_hw_csum_errors"},
568    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
569                4, "rx_ofld_frames_csum_ip"},
570    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
571                4, "rx_ofld_frames_csum_tcp_udp"},
572    { Q_STATS_OFFSET32(rx_budget_reached),
573                4, "rx_budget_reached"},
574    { Q_STATS_OFFSET32(tx_pkts),
575                4, "tx_pkts"},
576    { Q_STATS_OFFSET32(tx_soft_errors),
577                4, "tx_soft_errors"},
578    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
579                4, "tx_ofld_frames_csum_ip"},
580    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
581                4, "tx_ofld_frames_csum_tcp"},
582    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
583                4, "tx_ofld_frames_csum_udp"},
584    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
585                4, "tx_ofld_frames_lso"},
586    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
587                4, "tx_ofld_frames_lso_hdr_splits"},
588    { Q_STATS_OFFSET32(tx_encap_failures),
589                4, "tx_encap_failures"},
590    { Q_STATS_OFFSET32(tx_hw_queue_full),
591                4, "tx_hw_queue_full"},
592    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
593                4, "tx_hw_max_queue_depth"},
594    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
595                4, "tx_dma_mapping_failure"},
596    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
597                4, "tx_max_drbr_queue_depth"},
598    { Q_STATS_OFFSET32(tx_window_violation_std),
599                4, "tx_window_violation_std"},
600    { Q_STATS_OFFSET32(tx_window_violation_tso),
601                4, "tx_window_violation_tso"},
602    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
603                4, "tx_chain_lost_mbuf"},
604    { Q_STATS_OFFSET32(tx_frames_deferred),
605                4, "tx_frames_deferred"},
606    { Q_STATS_OFFSET32(tx_queue_xoff),
607                4, "tx_queue_xoff"},
608    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
609                4, "mbuf_defrag_attempts"},
610    { Q_STATS_OFFSET32(mbuf_defrag_failures),
611                4, "mbuf_defrag_failures"},
612    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
613                4, "mbuf_rx_bd_alloc_failed"},
614    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
615                4, "mbuf_rx_bd_mapping_failed"},
616    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
617                4, "mbuf_rx_tpa_alloc_failed"},
618    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
619                4, "mbuf_rx_tpa_mapping_failed"},
620    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
621                4, "mbuf_rx_sge_alloc_failed"},
622    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
623                4, "mbuf_rx_sge_mapping_failed"},
624    { Q_STATS_OFFSET32(mbuf_alloc_tx),
625                4, "mbuf_alloc_tx"},
626    { Q_STATS_OFFSET32(mbuf_alloc_rx),
627                4, "mbuf_alloc_rx"},
628    { Q_STATS_OFFSET32(mbuf_alloc_sge),
629                4, "mbuf_alloc_sge"},
630    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
631                4, "mbuf_alloc_tpa"},
632    { Q_STATS_OFFSET32(tx_queue_full_return),
633                4, "tx_queue_full_return"},
634    { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
635                4, "bxe_tx_mq_sc_state_failures"},
636    { Q_STATS_OFFSET32(tx_request_link_down_failures),
637                4, "tx_request_link_down_failures"},
638    { Q_STATS_OFFSET32(bd_avail_too_less_failures),
639                4, "bd_avail_too_less_failures"},
640    { Q_STATS_OFFSET32(tx_mq_not_empty),
641                4, "tx_mq_not_empty"},
642    { Q_STATS_OFFSET32(nsegs_path1_errors),
643                4, "nsegs_path1_errors"},
644    { Q_STATS_OFFSET32(nsegs_path2_errors),
645                4, "nsegs_path2_errors"}
646
647
648};
649
650#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
651#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
652
653
654static void    bxe_cmng_fns_init(struct bxe_softc *sc,
655                                 uint8_t          read_cfg,
656                                 uint8_t          cmng_type);
657static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
658static void    storm_memset_cmng(struct bxe_softc *sc,
659                                 struct cmng_init *cmng,
660                                 uint8_t          port);
661static void    bxe_set_reset_global(struct bxe_softc *sc);
662static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
663static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
664                                 int              engine);
665static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
666static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
667                                   uint8_t          *global,
668                                   uint8_t          print);
669static void    bxe_int_disable(struct bxe_softc *sc);
670static int     bxe_release_leader_lock(struct bxe_softc *sc);
671static void    bxe_pf_disable(struct bxe_softc *sc);
672static void    bxe_free_fp_buffers(struct bxe_softc *sc);
673static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
674                                      struct bxe_fastpath *fp,
675                                      uint16_t            rx_bd_prod,
676                                      uint16_t            rx_cq_prod,
677                                      uint16_t            rx_sge_prod);
678static void    bxe_link_report_locked(struct bxe_softc *sc);
679static void    bxe_link_report(struct bxe_softc *sc);
680static void    bxe_link_status_update(struct bxe_softc *sc);
681static void    bxe_periodic_callout_func(void *xsc);
682static void    bxe_periodic_start(struct bxe_softc *sc);
683static void    bxe_periodic_stop(struct bxe_softc *sc);
684static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
685                                    uint16_t prev_index,
686                                    uint16_t index);
687static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
688                                     int                 queue);
689static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
690                                     uint16_t            index);
691static uint8_t bxe_txeof(struct bxe_softc *sc,
692                         struct bxe_fastpath *fp);
693static void    bxe_task_fp(struct bxe_fastpath *fp);
694static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
695                                     struct mbuf      *m,
696                                     uint8_t          contents);
697static int     bxe_alloc_mem(struct bxe_softc *sc);
698static void    bxe_free_mem(struct bxe_softc *sc);
699static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
700static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
701static int     bxe_interrupt_attach(struct bxe_softc *sc);
702static void    bxe_interrupt_detach(struct bxe_softc *sc);
703static void    bxe_set_rx_mode(struct bxe_softc *sc);
704static int     bxe_init_locked(struct bxe_softc *sc);
705static int     bxe_stop_locked(struct bxe_softc *sc);
706static __noinline int bxe_nic_load(struct bxe_softc *sc,
707                                   int              load_mode);
708static __noinline int bxe_nic_unload(struct bxe_softc *sc,
709                                     uint32_t         unload_mode,
710                                     uint8_t          keep_link);
711
712static void bxe_handle_sp_tq(void *context, int pending);
713static void bxe_handle_fp_tq(void *context, int pending);
714
715static int bxe_add_cdev(struct bxe_softc *sc);
716static void bxe_del_cdev(struct bxe_softc *sc);
717int bxe_grc_dump(struct bxe_softc *sc);
718static int bxe_alloc_buf_rings(struct bxe_softc *sc);
719static void bxe_free_buf_rings(struct bxe_softc *sc);
720
721/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
722uint32_t
723calc_crc32(uint8_t  *crc32_packet,
724           uint32_t crc32_length,
725           uint32_t crc32_seed,
726           uint8_t  complement)
727{
728   uint32_t byte         = 0;
729   uint32_t bit          = 0;
730   uint8_t  msb          = 0;
731   uint32_t temp         = 0;
732   uint32_t shft         = 0;
733   uint8_t  current_byte = 0;
734   uint32_t crc32_result = crc32_seed;
735   const uint32_t CRC32_POLY = 0x1edc6f41;
736
737   if ((crc32_packet == NULL) ||
738       (crc32_length == 0) ||
739       ((crc32_length % 8) != 0))
740    {
741        return (crc32_result);
742    }
743
744    for (byte = 0; byte < crc32_length; byte = byte + 1)
745    {
746        current_byte = crc32_packet[byte];
747        for (bit = 0; bit < 8; bit = bit + 1)
748        {
749            /* msb = crc32_result[31]; */
750            msb = (uint8_t)(crc32_result >> 31);
751
752            crc32_result = crc32_result << 1;
753
754            /* it (msb != current_byte[bit]) */
755            if (msb != (0x1 & (current_byte >> bit)))
756            {
757                crc32_result = crc32_result ^ CRC32_POLY;
758                /* crc32_result[0] = 1 */
759                crc32_result |= 1;
760            }
761        }
762    }
763
764    /* Last step is to:
765     * 1. "mirror" every bit
766     * 2. swap the 4 bytes
767     * 3. complement each bit
768     */
769
770    /* Mirror */
771    temp = crc32_result;
772    shft = sizeof(crc32_result) * 8 - 1;
773
774    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
775    {
776        temp <<= 1;
777        temp |= crc32_result & 1;
778        shft-- ;
779    }
780
781    /* temp[31-bit] = crc32_result[bit] */
782    temp <<= shft;
783
784    /* Swap */
785    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
786    {
787        uint32_t t0, t1, t2, t3;
788        t0 = (0x000000ff & (temp >> 24));
789        t1 = (0x0000ff00 & (temp >> 8));
790        t2 = (0x00ff0000 & (temp << 8));
791        t3 = (0xff000000 & (temp << 24));
792        crc32_result = t0 | t1 | t2 | t3;
793    }
794
795    /* Complement */
796    if (complement)
797    {
798        crc32_result = ~crc32_result;
799    }
800
801    return (crc32_result);
802}
803
804int
805bxe_test_bit(int                    nr,
806             volatile unsigned long *addr)
807{
808    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
809}
810
811void
812bxe_set_bit(unsigned int           nr,
813            volatile unsigned long *addr)
814{
815    atomic_set_acq_long(addr, (1 << nr));
816}
817
818void
819bxe_clear_bit(int                    nr,
820              volatile unsigned long *addr)
821{
822    atomic_clear_acq_long(addr, (1 << nr));
823}
824
825int
826bxe_test_and_set_bit(int                    nr,
827                       volatile unsigned long *addr)
828{
829    unsigned long x;
830    nr = (1 << nr);
831    do {
832        x = *addr;
833    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
834    // if (x & nr) bit_was_set; else bit_was_not_set;
835    return (x & nr);
836}
837
838int
839bxe_test_and_clear_bit(int                    nr,
840                       volatile unsigned long *addr)
841{
842    unsigned long x;
843    nr = (1 << nr);
844    do {
845        x = *addr;
846    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
847    // if (x & nr) bit_was_set; else bit_was_not_set;
848    return (x & nr);
849}
850
851int
852bxe_cmpxchg(volatile int *addr,
853            int          old,
854            int          new)
855{
856    int x;
857    do {
858        x = *addr;
859    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
860    return (x);
861}
862
863/*
864 * Get DMA memory from the OS.
865 *
866 * Validates that the OS has provided DMA buffers in response to a
867 * bus_dmamap_load call and saves the physical address of those buffers.
868 * When the callback is used the OS will return 0 for the mapping function
869 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
870 * failures back to the caller.
871 *
872 * Returns:
873 *   Nothing.
874 */
875static void
876bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
877{
878    struct bxe_dma *dma = arg;
879
880    if (error) {
881        dma->paddr = 0;
882        dma->nseg  = 0;
883        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
884    } else {
885        dma->paddr = segs->ds_addr;
886        dma->nseg  = nseg;
887    }
888}
889
890/*
891 * Allocate a block of memory and map it for DMA. No partial completions
892 * allowed and release any resources acquired if we can't acquire all
893 * resources.
894 *
895 * Returns:
896 *   0 = Success, !0 = Failure
897 */
898int
899bxe_dma_alloc(struct bxe_softc *sc,
900              bus_size_t       size,
901              struct bxe_dma   *dma,
902              const char       *msg)
903{
904    int rc;
905
906    if (dma->size > 0) {
907        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
908              (unsigned long)dma->size);
909        return (1);
910    }
911
912    memset(dma, 0, sizeof(*dma)); /* sanity */
913    dma->sc   = sc;
914    dma->size = size;
915    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
916
917    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
918                            BCM_PAGE_SIZE,      /* alignment */
919                            0,                  /* boundary limit */
920                            BUS_SPACE_MAXADDR,  /* restricted low */
921                            BUS_SPACE_MAXADDR,  /* restricted hi */
922                            NULL,               /* addr filter() */
923                            NULL,               /* addr filter() arg */
924                            size,               /* max map size */
925                            1,                  /* num discontinuous */
926                            size,               /* max seg size */
927                            BUS_DMA_ALLOCNOW,   /* flags */
928                            NULL,               /* lock() */
929                            NULL,               /* lock() arg */
930                            &dma->tag);         /* returned dma tag */
931    if (rc != 0) {
932        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
933        memset(dma, 0, sizeof(*dma));
934        return (1);
935    }
936
937    rc = bus_dmamem_alloc(dma->tag,
938                          (void **)&dma->vaddr,
939                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
940                          &dma->map);
941    if (rc != 0) {
942        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
943        bus_dma_tag_destroy(dma->tag);
944        memset(dma, 0, sizeof(*dma));
945        return (1);
946    }
947
948    rc = bus_dmamap_load(dma->tag,
949                         dma->map,
950                         dma->vaddr,
951                         size,
952                         bxe_dma_map_addr, /* BLOGD in here */
953                         dma,
954                         BUS_DMA_NOWAIT);
955    if (rc != 0) {
956        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
957        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
958        bus_dma_tag_destroy(dma->tag);
959        memset(dma, 0, sizeof(*dma));
960        return (1);
961    }
962
963    return (0);
964}
965
966void
967bxe_dma_free(struct bxe_softc *sc,
968             struct bxe_dma   *dma)
969{
970    if (dma->size > 0) {
971        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
972
973        bus_dmamap_sync(dma->tag, dma->map,
974                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
975        bus_dmamap_unload(dma->tag, dma->map);
976        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
977        bus_dma_tag_destroy(dma->tag);
978    }
979
980    memset(dma, 0, sizeof(*dma));
981}
982
983/*
984 * These indirect read and write routines are only during init.
985 * The locking is handled by the MCP.
986 */
987
988void
989bxe_reg_wr_ind(struct bxe_softc *sc,
990               uint32_t         addr,
991               uint32_t         val)
992{
993    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
994    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
995    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
996}
997
998uint32_t
999bxe_reg_rd_ind(struct bxe_softc *sc,
1000               uint32_t         addr)
1001{
1002    uint32_t val;
1003
1004    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1005    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1006    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1007
1008    return (val);
1009}
1010
1011static int
1012bxe_acquire_hw_lock(struct bxe_softc *sc,
1013                    uint32_t         resource)
1014{
1015    uint32_t lock_status;
1016    uint32_t resource_bit = (1 << resource);
1017    int func = SC_FUNC(sc);
1018    uint32_t hw_lock_control_reg;
1019    int cnt;
1020
1021    /* validate the resource is within range */
1022    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1023        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1024            " resource_bit 0x%x\n", resource, resource_bit);
1025        return (-1);
1026    }
1027
1028    if (func <= 5) {
1029        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1030    } else {
1031        hw_lock_control_reg =
1032                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1033    }
1034
1035    /* validate the resource is not already taken */
1036    lock_status = REG_RD(sc, hw_lock_control_reg);
1037    if (lock_status & resource_bit) {
1038        BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1039              resource, lock_status, resource_bit);
1040        return (-1);
1041    }
1042
1043    /* try every 5ms for 5 seconds */
1044    for (cnt = 0; cnt < 1000; cnt++) {
1045        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1046        lock_status = REG_RD(sc, hw_lock_control_reg);
1047        if (lock_status & resource_bit) {
1048            return (0);
1049        }
1050        DELAY(5000);
1051    }
1052
1053    BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1054        resource, resource_bit);
1055    return (-1);
1056}
1057
1058static int
1059bxe_release_hw_lock(struct bxe_softc *sc,
1060                    uint32_t         resource)
1061{
1062    uint32_t lock_status;
1063    uint32_t resource_bit = (1 << resource);
1064    int func = SC_FUNC(sc);
1065    uint32_t hw_lock_control_reg;
1066
1067    /* validate the resource is within range */
1068    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1069        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1070            " resource_bit 0x%x\n", resource, resource_bit);
1071        return (-1);
1072    }
1073
1074    if (func <= 5) {
1075        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1076    } else {
1077        hw_lock_control_reg =
1078                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1079    }
1080
1081    /* validate the resource is currently taken */
1082    lock_status = REG_RD(sc, hw_lock_control_reg);
1083    if (!(lock_status & resource_bit)) {
1084        BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1085              resource, lock_status, resource_bit);
1086        return (-1);
1087    }
1088
1089    REG_WR(sc, hw_lock_control_reg, resource_bit);
1090    return (0);
1091}
1092static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1093{
1094	BXE_PHY_LOCK(sc);
1095	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1096}
1097
1098static void bxe_release_phy_lock(struct bxe_softc *sc)
1099{
1100	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1101	BXE_PHY_UNLOCK(sc);
1102}
1103/*
1104 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1105 * had we done things the other way around, if two pfs from the same port
1106 * would attempt to access nvram at the same time, we could run into a
1107 * scenario such as:
1108 * pf A takes the port lock.
1109 * pf B succeeds in taking the same lock since they are from the same port.
1110 * pf A takes the per pf misc lock. Performs eeprom access.
1111 * pf A finishes. Unlocks the per pf misc lock.
1112 * Pf B takes the lock and proceeds to perform it's own access.
1113 * pf A unlocks the per port lock, while pf B is still working (!).
1114 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1115 * access corrupted by pf B).*
1116 */
1117static int
1118bxe_acquire_nvram_lock(struct bxe_softc *sc)
1119{
1120    int port = SC_PORT(sc);
1121    int count, i;
1122    uint32_t val = 0;
1123
1124    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1125    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1126
1127    /* adjust timeout for emulation/FPGA */
1128    count = NVRAM_TIMEOUT_COUNT;
1129    if (CHIP_REV_IS_SLOW(sc)) {
1130        count *= 100;
1131    }
1132
1133    /* request access to nvram interface */
1134    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1135           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1136
1137    for (i = 0; i < count*10; i++) {
1138        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1139        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1140            break;
1141        }
1142
1143        DELAY(5);
1144    }
1145
1146    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1147        BLOGE(sc, "Cannot get access to nvram interface "
1148            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1149            port, val);
1150        return (-1);
1151    }
1152
1153    return (0);
1154}
1155
1156static int
1157bxe_release_nvram_lock(struct bxe_softc *sc)
1158{
1159    int port = SC_PORT(sc);
1160    int count, i;
1161    uint32_t val = 0;
1162
1163    /* adjust timeout for emulation/FPGA */
1164    count = NVRAM_TIMEOUT_COUNT;
1165    if (CHIP_REV_IS_SLOW(sc)) {
1166        count *= 100;
1167    }
1168
1169    /* relinquish nvram interface */
1170    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1171           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1172
1173    for (i = 0; i < count*10; i++) {
1174        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1175        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1176            break;
1177        }
1178
1179        DELAY(5);
1180    }
1181
1182    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1183        BLOGE(sc, "Cannot free access to nvram interface "
1184            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1185            port, val);
1186        return (-1);
1187    }
1188
1189    /* release HW lock: protect against other PFs in PF Direct Assignment */
1190    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1191
1192    return (0);
1193}
1194
1195static void
1196bxe_enable_nvram_access(struct bxe_softc *sc)
1197{
1198    uint32_t val;
1199
1200    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1201
1202    /* enable both bits, even on read */
1203    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1204           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1205}
1206
1207static void
1208bxe_disable_nvram_access(struct bxe_softc *sc)
1209{
1210    uint32_t val;
1211
1212    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1213
1214    /* disable both bits, even after read */
1215    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1216           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1217                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1218}
1219
1220static int
1221bxe_nvram_read_dword(struct bxe_softc *sc,
1222                     uint32_t         offset,
1223                     uint32_t         *ret_val,
1224                     uint32_t         cmd_flags)
1225{
1226    int count, i, rc;
1227    uint32_t val;
1228
1229    /* build the command word */
1230    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1231
1232    /* need to clear DONE bit separately */
1233    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1234
1235    /* address of the NVRAM to read from */
1236    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1237           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1238
1239    /* issue a read command */
1240    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1241
1242    /* adjust timeout for emulation/FPGA */
1243    count = NVRAM_TIMEOUT_COUNT;
1244    if (CHIP_REV_IS_SLOW(sc)) {
1245        count *= 100;
1246    }
1247
1248    /* wait for completion */
1249    *ret_val = 0;
1250    rc = -1;
1251    for (i = 0; i < count; i++) {
1252        DELAY(5);
1253        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1254
1255        if (val & MCPR_NVM_COMMAND_DONE) {
1256            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1257            /* we read nvram data in cpu order
1258             * but ethtool sees it as an array of bytes
1259             * converting to big-endian will do the work
1260             */
1261            *ret_val = htobe32(val);
1262            rc = 0;
1263            break;
1264        }
1265    }
1266
1267    if (rc == -1) {
1268        BLOGE(sc, "nvram read timeout expired "
1269            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1270            offset, cmd_flags, val);
1271    }
1272
1273    return (rc);
1274}
1275
1276static int
1277bxe_nvram_read(struct bxe_softc *sc,
1278               uint32_t         offset,
1279               uint8_t          *ret_buf,
1280               int              buf_size)
1281{
1282    uint32_t cmd_flags;
1283    uint32_t val;
1284    int rc;
1285
1286    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1287        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1288              offset, buf_size);
1289        return (-1);
1290    }
1291
1292    if ((offset + buf_size) > sc->devinfo.flash_size) {
1293        BLOGE(sc, "Invalid parameter, "
1294                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1295              offset, buf_size, sc->devinfo.flash_size);
1296        return (-1);
1297    }
1298
1299    /* request access to nvram interface */
1300    rc = bxe_acquire_nvram_lock(sc);
1301    if (rc) {
1302        return (rc);
1303    }
1304
1305    /* enable access to nvram interface */
1306    bxe_enable_nvram_access(sc);
1307
1308    /* read the first word(s) */
1309    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1310    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1311        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1312        memcpy(ret_buf, &val, 4);
1313
1314        /* advance to the next dword */
1315        offset += sizeof(uint32_t);
1316        ret_buf += sizeof(uint32_t);
1317        buf_size -= sizeof(uint32_t);
1318        cmd_flags = 0;
1319    }
1320
1321    if (rc == 0) {
1322        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1323        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1324        memcpy(ret_buf, &val, 4);
1325    }
1326
1327    /* disable access to nvram interface */
1328    bxe_disable_nvram_access(sc);
1329    bxe_release_nvram_lock(sc);
1330
1331    return (rc);
1332}
1333
1334static int
1335bxe_nvram_write_dword(struct bxe_softc *sc,
1336                      uint32_t         offset,
1337                      uint32_t         val,
1338                      uint32_t         cmd_flags)
1339{
1340    int count, i, rc;
1341
1342    /* build the command word */
1343    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1344
1345    /* need to clear DONE bit separately */
1346    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1347
1348    /* write the data */
1349    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1350
1351    /* address of the NVRAM to write to */
1352    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1353           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1354
1355    /* issue the write command */
1356    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1357
1358    /* adjust timeout for emulation/FPGA */
1359    count = NVRAM_TIMEOUT_COUNT;
1360    if (CHIP_REV_IS_SLOW(sc)) {
1361        count *= 100;
1362    }
1363
1364    /* wait for completion */
1365    rc = -1;
1366    for (i = 0; i < count; i++) {
1367        DELAY(5);
1368        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1369        if (val & MCPR_NVM_COMMAND_DONE) {
1370            rc = 0;
1371            break;
1372        }
1373    }
1374
1375    if (rc == -1) {
1376        BLOGE(sc, "nvram write timeout expired "
1377            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1378            offset, cmd_flags, val);
1379    }
1380
1381    return (rc);
1382}
1383
1384#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1385
1386static int
1387bxe_nvram_write1(struct bxe_softc *sc,
1388                 uint32_t         offset,
1389                 uint8_t          *data_buf,
1390                 int              buf_size)
1391{
1392    uint32_t cmd_flags;
1393    uint32_t align_offset;
1394    uint32_t val;
1395    int rc;
1396
1397    if ((offset + buf_size) > sc->devinfo.flash_size) {
1398        BLOGE(sc, "Invalid parameter, "
1399                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1400              offset, buf_size, sc->devinfo.flash_size);
1401        return (-1);
1402    }
1403
1404    /* request access to nvram interface */
1405    rc = bxe_acquire_nvram_lock(sc);
1406    if (rc) {
1407        return (rc);
1408    }
1409
1410    /* enable access to nvram interface */
1411    bxe_enable_nvram_access(sc);
1412
1413    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1414    align_offset = (offset & ~0x03);
1415    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1416
1417    if (rc == 0) {
1418        val &= ~(0xff << BYTE_OFFSET(offset));
1419        val |= (*data_buf << BYTE_OFFSET(offset));
1420
1421        /* nvram data is returned as an array of bytes
1422         * convert it back to cpu order
1423         */
1424        val = be32toh(val);
1425
1426        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1427    }
1428
1429    /* disable access to nvram interface */
1430    bxe_disable_nvram_access(sc);
1431    bxe_release_nvram_lock(sc);
1432
1433    return (rc);
1434}
1435
1436static int
1437bxe_nvram_write(struct bxe_softc *sc,
1438                uint32_t         offset,
1439                uint8_t          *data_buf,
1440                int              buf_size)
1441{
1442    uint32_t cmd_flags;
1443    uint32_t val;
1444    uint32_t written_so_far;
1445    int rc;
1446
1447    if (buf_size == 1) {
1448        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1449    }
1450
1451    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1452        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1453              offset, buf_size);
1454        return (-1);
1455    }
1456
1457    if (buf_size == 0) {
1458        return (0); /* nothing to do */
1459    }
1460
1461    if ((offset + buf_size) > sc->devinfo.flash_size) {
1462        BLOGE(sc, "Invalid parameter, "
1463                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1464              offset, buf_size, sc->devinfo.flash_size);
1465        return (-1);
1466    }
1467
1468    /* request access to nvram interface */
1469    rc = bxe_acquire_nvram_lock(sc);
1470    if (rc) {
1471        return (rc);
1472    }
1473
1474    /* enable access to nvram interface */
1475    bxe_enable_nvram_access(sc);
1476
1477    written_so_far = 0;
1478    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1479    while ((written_so_far < buf_size) && (rc == 0)) {
1480        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1481            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1482        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1483            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1484        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1485            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1486        }
1487
1488        memcpy(&val, data_buf, 4);
1489
1490        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1491
1492        /* advance to the next dword */
1493        offset += sizeof(uint32_t);
1494        data_buf += sizeof(uint32_t);
1495        written_so_far += sizeof(uint32_t);
1496        cmd_flags = 0;
1497    }
1498
1499    /* disable access to nvram interface */
1500    bxe_disable_nvram_access(sc);
1501    bxe_release_nvram_lock(sc);
1502
1503    return (rc);
1504}
1505
1506/* copy command into DMAE command memory and set DMAE command Go */
1507void
1508bxe_post_dmae(struct bxe_softc    *sc,
1509              struct dmae_cmd *dmae,
1510              int                 idx)
1511{
1512    uint32_t cmd_offset;
1513    int i;
1514
1515    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1516    for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1517        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1518    }
1519
1520    REG_WR(sc, dmae_reg_go_c[idx], 1);
1521}
1522
1523uint32_t
1524bxe_dmae_opcode_add_comp(uint32_t opcode,
1525                         uint8_t  comp_type)
1526{
1527    return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1528                      DMAE_CMD_C_TYPE_ENABLE));
1529}
1530
1531uint32_t
1532bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1533{
1534    return (opcode & ~DMAE_CMD_SRC_RESET);
1535}
1536
1537uint32_t
1538bxe_dmae_opcode(struct bxe_softc *sc,
1539                uint8_t          src_type,
1540                uint8_t          dst_type,
1541                uint8_t          with_comp,
1542                uint8_t          comp_type)
1543{
1544    uint32_t opcode = 0;
1545
1546    opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1547               (dst_type << DMAE_CMD_DST_SHIFT));
1548
1549    opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1550
1551    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1552
1553    opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1554               (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1555
1556    opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1557
1558#ifdef __BIG_ENDIAN
1559    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1560#else
1561    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1562#endif
1563
1564    if (with_comp) {
1565        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1566    }
1567
1568    return (opcode);
1569}
1570
1571static void
1572bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1573                        struct dmae_cmd *dmae,
1574                        uint8_t             src_type,
1575                        uint8_t             dst_type)
1576{
1577    memset(dmae, 0, sizeof(struct dmae_cmd));
1578
1579    /* set the opcode */
1580    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1581                                   TRUE, DMAE_COMP_PCI);
1582
1583    /* fill in the completion parameters */
1584    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1585    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1586    dmae->comp_val     = DMAE_COMP_VAL;
1587}
1588
1589/* issue a DMAE command over the init channel and wait for completion */
1590static int
1591bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1592                         struct dmae_cmd *dmae)
1593{
1594    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1595    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1596
1597    BXE_DMAE_LOCK(sc);
1598
1599    /* reset completion */
1600    *wb_comp = 0;
1601
1602    /* post the command on the channel used for initializations */
1603    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1604
1605    /* wait for completion */
1606    DELAY(5);
1607
1608    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1609        if (!timeout ||
1610            (sc->recovery_state != BXE_RECOVERY_DONE &&
1611             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1612            BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1613                *wb_comp, sc->recovery_state);
1614            BXE_DMAE_UNLOCK(sc);
1615            return (DMAE_TIMEOUT);
1616        }
1617
1618        timeout--;
1619        DELAY(50);
1620    }
1621
1622    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1623        BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1624                *wb_comp, sc->recovery_state);
1625        BXE_DMAE_UNLOCK(sc);
1626        return (DMAE_PCI_ERROR);
1627    }
1628
1629    BXE_DMAE_UNLOCK(sc);
1630    return (0);
1631}
1632
1633void
1634bxe_read_dmae(struct bxe_softc *sc,
1635              uint32_t         src_addr,
1636              uint32_t         len32)
1637{
1638    struct dmae_cmd dmae;
1639    uint32_t *data;
1640    int i, rc;
1641
1642    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1643
1644    if (!sc->dmae_ready) {
1645        data = BXE_SP(sc, wb_data[0]);
1646
1647        for (i = 0; i < len32; i++) {
1648            data[i] = (CHIP_IS_E1(sc)) ?
1649                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1650                          REG_RD(sc, (src_addr + (i * 4)));
1651        }
1652
1653        return;
1654    }
1655
1656    /* set opcode and fixed command fields */
1657    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1658
1659    /* fill in addresses and len */
1660    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1661    dmae.src_addr_hi = 0;
1662    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1663    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1664    dmae.len         = len32;
1665
1666    /* issue the command and wait for completion */
1667    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1668        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1669    }
1670}
1671
1672void
1673bxe_write_dmae(struct bxe_softc *sc,
1674               bus_addr_t       dma_addr,
1675               uint32_t         dst_addr,
1676               uint32_t         len32)
1677{
1678    struct dmae_cmd dmae;
1679    int rc;
1680
1681    if (!sc->dmae_ready) {
1682        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1683
1684        if (CHIP_IS_E1(sc)) {
1685            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1686        } else {
1687            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1688        }
1689
1690        return;
1691    }
1692
1693    /* set opcode and fixed command fields */
1694    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1695
1696    /* fill in addresses and len */
1697    dmae.src_addr_lo = U64_LO(dma_addr);
1698    dmae.src_addr_hi = U64_HI(dma_addr);
1699    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1700    dmae.dst_addr_hi = 0;
1701    dmae.len         = len32;
1702
1703    /* issue the command and wait for completion */
1704    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1705        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1706    }
1707}
1708
1709void
1710bxe_write_dmae_phys_len(struct bxe_softc *sc,
1711                        bus_addr_t       phys_addr,
1712                        uint32_t         addr,
1713                        uint32_t         len)
1714{
1715    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1716    int offset = 0;
1717
1718    while (len > dmae_wr_max) {
1719        bxe_write_dmae(sc,
1720                       (phys_addr + offset), /* src DMA address */
1721                       (addr + offset),      /* dst GRC address */
1722                       dmae_wr_max);
1723        offset += (dmae_wr_max * 4);
1724        len -= dmae_wr_max;
1725    }
1726
1727    bxe_write_dmae(sc,
1728                   (phys_addr + offset), /* src DMA address */
1729                   (addr + offset),      /* dst GRC address */
1730                   len);
1731}
1732
1733void
1734bxe_set_ctx_validation(struct bxe_softc   *sc,
1735                       struct eth_context *cxt,
1736                       uint32_t           cid)
1737{
1738    /* ustorm cxt validation */
1739    cxt->ustorm_ag_context.cdu_usage =
1740        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1741            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1742    /* xcontext validation */
1743    cxt->xstorm_ag_context.cdu_reserved =
1744        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1745            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1746}
1747
1748static void
1749bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1750                            uint8_t          port,
1751                            uint8_t          fw_sb_id,
1752                            uint8_t          sb_index,
1753                            uint8_t          ticks)
1754{
1755    uint32_t addr =
1756        (BAR_CSTRORM_INTMEM +
1757         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1758
1759    REG_WR8(sc, addr, ticks);
1760
1761    BLOGD(sc, DBG_LOAD,
1762          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1763          port, fw_sb_id, sb_index, ticks);
1764}
1765
1766static void
1767bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1768                            uint8_t          port,
1769                            uint16_t         fw_sb_id,
1770                            uint8_t          sb_index,
1771                            uint8_t          disable)
1772{
1773    uint32_t enable_flag =
1774        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1775    uint32_t addr =
1776        (BAR_CSTRORM_INTMEM +
1777         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1778    uint8_t flags;
1779
1780    /* clear and set */
1781    flags = REG_RD8(sc, addr);
1782    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1783    flags |= enable_flag;
1784    REG_WR8(sc, addr, flags);
1785
1786    BLOGD(sc, DBG_LOAD,
1787          "port %d fw_sb_id %d sb_index %d disable %d\n",
1788          port, fw_sb_id, sb_index, disable);
1789}
1790
1791void
1792bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1793                             uint8_t          fw_sb_id,
1794                             uint8_t          sb_index,
1795                             uint8_t          disable,
1796                             uint16_t         usec)
1797{
1798    int port = SC_PORT(sc);
1799    uint8_t ticks = (usec / 4); /* XXX ??? */
1800
1801    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1802
1803    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1804    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1805}
1806
1807void
1808elink_cb_udelay(struct bxe_softc *sc,
1809                uint32_t         usecs)
1810{
1811    DELAY(usecs);
1812}
1813
1814uint32_t
1815elink_cb_reg_read(struct bxe_softc *sc,
1816                  uint32_t         reg_addr)
1817{
1818    return (REG_RD(sc, reg_addr));
1819}
1820
1821void
1822elink_cb_reg_write(struct bxe_softc *sc,
1823                   uint32_t         reg_addr,
1824                   uint32_t         val)
1825{
1826    REG_WR(sc, reg_addr, val);
1827}
1828
1829void
1830elink_cb_reg_wb_write(struct bxe_softc *sc,
1831                      uint32_t         offset,
1832                      uint32_t         *wb_write,
1833                      uint16_t         len)
1834{
1835    REG_WR_DMAE(sc, offset, wb_write, len);
1836}
1837
1838void
1839elink_cb_reg_wb_read(struct bxe_softc *sc,
1840                     uint32_t         offset,
1841                     uint32_t         *wb_write,
1842                     uint16_t         len)
1843{
1844    REG_RD_DMAE(sc, offset, wb_write, len);
1845}
1846
1847uint8_t
1848elink_cb_path_id(struct bxe_softc *sc)
1849{
1850    return (SC_PATH(sc));
1851}
1852
1853void
1854elink_cb_event_log(struct bxe_softc     *sc,
1855                   const elink_log_id_t elink_log_id,
1856                   ...)
1857{
1858    /* XXX */
1859    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1860}
1861
1862static int
1863bxe_set_spio(struct bxe_softc *sc,
1864             int              spio,
1865             uint32_t         mode)
1866{
1867    uint32_t spio_reg;
1868
1869    /* Only 2 SPIOs are configurable */
1870    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1871        BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1872        return (-1);
1873    }
1874
1875    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1876
1877    /* read SPIO and mask except the float bits */
1878    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1879
1880    switch (mode) {
1881    case MISC_SPIO_OUTPUT_LOW:
1882        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1883        /* clear FLOAT and set CLR */
1884        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1885        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1886        break;
1887
1888    case MISC_SPIO_OUTPUT_HIGH:
1889        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1890        /* clear FLOAT and set SET */
1891        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1892        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1893        break;
1894
1895    case MISC_SPIO_INPUT_HI_Z:
1896        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1897        /* set FLOAT */
1898        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1899        break;
1900
1901    default:
1902        break;
1903    }
1904
1905    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1906    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1907
1908    return (0);
1909}
1910
1911static int
1912bxe_gpio_read(struct bxe_softc *sc,
1913              int              gpio_num,
1914              uint8_t          port)
1915{
1916    /* The GPIO should be swapped if swap register is set and active */
1917    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1918                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1919    int gpio_shift = (gpio_num +
1920                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1921    uint32_t gpio_mask = (1 << gpio_shift);
1922    uint32_t gpio_reg;
1923
1924    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1925        BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1926            " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1927            gpio_mask);
1928        return (-1);
1929    }
1930
1931    /* read GPIO value */
1932    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1933
1934    /* get the requested pin value */
1935    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1936}
1937
1938static int
1939bxe_gpio_write(struct bxe_softc *sc,
1940               int              gpio_num,
1941               uint32_t         mode,
1942               uint8_t          port)
1943{
1944    /* The GPIO should be swapped if swap register is set and active */
1945    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1946                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1947    int gpio_shift = (gpio_num +
1948                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1949    uint32_t gpio_mask = (1 << gpio_shift);
1950    uint32_t gpio_reg;
1951
1952    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1953        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1954            " gpio_shift %d gpio_mask 0x%x\n",
1955            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1956        return (-1);
1957    }
1958
1959    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1960
1961    /* read GPIO and mask except the float bits */
1962    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1963
1964    switch (mode) {
1965    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1966        BLOGD(sc, DBG_PHY,
1967              "Set GPIO %d (shift %d) -> output low\n",
1968              gpio_num, gpio_shift);
1969        /* clear FLOAT and set CLR */
1970        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1971        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1972        break;
1973
1974    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1975        BLOGD(sc, DBG_PHY,
1976              "Set GPIO %d (shift %d) -> output high\n",
1977              gpio_num, gpio_shift);
1978        /* clear FLOAT and set SET */
1979        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1980        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1981        break;
1982
1983    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1984        BLOGD(sc, DBG_PHY,
1985              "Set GPIO %d (shift %d) -> input\n",
1986              gpio_num, gpio_shift);
1987        /* set FLOAT */
1988        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1989        break;
1990
1991    default:
1992        break;
1993    }
1994
1995    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1996    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1997
1998    return (0);
1999}
2000
2001static int
2002bxe_gpio_mult_write(struct bxe_softc *sc,
2003                    uint8_t          pins,
2004                    uint32_t         mode)
2005{
2006    uint32_t gpio_reg;
2007
2008    /* any port swapping should be handled by caller */
2009
2010    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2011
2012    /* read GPIO and mask except the float bits */
2013    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2014    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2016    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2017
2018    switch (mode) {
2019    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2020        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2021        /* set CLR */
2022        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2023        break;
2024
2025    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2026        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2027        /* set SET */
2028        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2029        break;
2030
2031    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2032        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2033        /* set FLOAT */
2034        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2035        break;
2036
2037    default:
2038        BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2039            " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2040        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041        return (-1);
2042    }
2043
2044    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2045    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2046
2047    return (0);
2048}
2049
2050static int
2051bxe_gpio_int_write(struct bxe_softc *sc,
2052                   int              gpio_num,
2053                   uint32_t         mode,
2054                   uint8_t          port)
2055{
2056    /* The GPIO should be swapped if swap register is set and active */
2057    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2058                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2059    int gpio_shift = (gpio_num +
2060                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2061    uint32_t gpio_mask = (1 << gpio_shift);
2062    uint32_t gpio_reg;
2063
2064    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2065        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2066            " gpio_shift %d gpio_mask 0x%x\n",
2067            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2068        return (-1);
2069    }
2070
2071    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2072
2073    /* read GPIO int */
2074    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2075
2076    switch (mode) {
2077    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2078        BLOGD(sc, DBG_PHY,
2079              "Clear GPIO INT %d (shift %d) -> output low\n",
2080              gpio_num, gpio_shift);
2081        /* clear SET and set CLR */
2082        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2083        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2084        break;
2085
2086    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2087        BLOGD(sc, DBG_PHY,
2088              "Set GPIO INT %d (shift %d) -> output high\n",
2089              gpio_num, gpio_shift);
2090        /* clear CLR and set SET */
2091        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2092        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2093        break;
2094
2095    default:
2096        break;
2097    }
2098
2099    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2100    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2101
2102    return (0);
2103}
2104
2105uint32_t
2106elink_cb_gpio_read(struct bxe_softc *sc,
2107                   uint16_t         gpio_num,
2108                   uint8_t          port)
2109{
2110    return (bxe_gpio_read(sc, gpio_num, port));
2111}
2112
2113uint8_t
2114elink_cb_gpio_write(struct bxe_softc *sc,
2115                    uint16_t         gpio_num,
2116                    uint8_t          mode, /* 0=low 1=high */
2117                    uint8_t          port)
2118{
2119    return (bxe_gpio_write(sc, gpio_num, mode, port));
2120}
2121
2122uint8_t
2123elink_cb_gpio_mult_write(struct bxe_softc *sc,
2124                         uint8_t          pins,
2125                         uint8_t          mode) /* 0=low 1=high */
2126{
2127    return (bxe_gpio_mult_write(sc, pins, mode));
2128}
2129
2130uint8_t
2131elink_cb_gpio_int_write(struct bxe_softc *sc,
2132                        uint16_t         gpio_num,
2133                        uint8_t          mode, /* 0=low 1=high */
2134                        uint8_t          port)
2135{
2136    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2137}
2138
2139void
2140elink_cb_notify_link_changed(struct bxe_softc *sc)
2141{
2142    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2143                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2144}
2145
2146/* send the MCP a request, block until there is a reply */
2147uint32_t
2148elink_cb_fw_command(struct bxe_softc *sc,
2149                    uint32_t         command,
2150                    uint32_t         param)
2151{
2152    int mb_idx = SC_FW_MB_IDX(sc);
2153    uint32_t seq;
2154    uint32_t rc = 0;
2155    uint32_t cnt = 1;
2156    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2157
2158    BXE_FWMB_LOCK(sc);
2159
2160    seq = ++sc->fw_seq;
2161    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2162    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2163
2164    BLOGD(sc, DBG_PHY,
2165          "wrote command 0x%08x to FW MB param 0x%08x\n",
2166          (command | seq), param);
2167
2168    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2169    do {
2170        DELAY(delay * 1000);
2171        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2172    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2173
2174    BLOGD(sc, DBG_PHY,
2175          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2176          cnt*delay, rc, seq);
2177
2178    /* is this a reply to our command? */
2179    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2180        rc &= FW_MSG_CODE_MASK;
2181    } else {
2182        /* Ruh-roh! */
2183        BLOGE(sc, "FW failed to respond!\n");
2184        // XXX bxe_fw_dump(sc);
2185        rc = 0;
2186    }
2187
2188    BXE_FWMB_UNLOCK(sc);
2189    return (rc);
2190}
2191
2192static uint32_t
2193bxe_fw_command(struct bxe_softc *sc,
2194               uint32_t         command,
2195               uint32_t         param)
2196{
2197    return (elink_cb_fw_command(sc, command, param));
2198}
2199
2200static void
2201__storm_memset_dma_mapping(struct bxe_softc *sc,
2202                           uint32_t         addr,
2203                           bus_addr_t       mapping)
2204{
2205    REG_WR(sc, addr, U64_LO(mapping));
2206    REG_WR(sc, (addr + 4), U64_HI(mapping));
2207}
2208
2209static void
2210storm_memset_spq_addr(struct bxe_softc *sc,
2211                      bus_addr_t       mapping,
2212                      uint16_t         abs_fid)
2213{
2214    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2215                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2216    __storm_memset_dma_mapping(sc, addr, mapping);
2217}
2218
2219static void
2220storm_memset_vf_to_pf(struct bxe_softc *sc,
2221                      uint16_t         abs_fid,
2222                      uint16_t         pf_id)
2223{
2224    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2225    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2226    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2227    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2228}
2229
2230static void
2231storm_memset_func_en(struct bxe_softc *sc,
2232                     uint16_t         abs_fid,
2233                     uint8_t          enable)
2234{
2235    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2236    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2237    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2238    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2239}
2240
2241static void
2242storm_memset_eq_data(struct bxe_softc       *sc,
2243                     struct event_ring_data *eq_data,
2244                     uint16_t               pfid)
2245{
2246    uint32_t addr;
2247    size_t size;
2248
2249    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2250    size = sizeof(struct event_ring_data);
2251    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2252}
2253
2254static void
2255storm_memset_eq_prod(struct bxe_softc *sc,
2256                     uint16_t         eq_prod,
2257                     uint16_t         pfid)
2258{
2259    uint32_t addr = (BAR_CSTRORM_INTMEM +
2260                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2261    REG_WR16(sc, addr, eq_prod);
2262}
2263
2264/*
2265 * Post a slowpath command.
2266 *
2267 * A slowpath command is used to propagate a configuration change through
2268 * the controller in a controlled manner, allowing each STORM processor and
2269 * other H/W blocks to phase in the change.  The commands sent on the
2270 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2271 * completion of the ramrod will occur in different ways.  Here's a
2272 * breakdown of ramrods and how they complete:
2273 *
2274 * RAMROD_CMD_ID_ETH_PORT_SETUP
2275 *   Used to setup the leading connection on a port.  Completes on the
2276 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2277 *
2278 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2279 *   Used to setup an additional connection on a port.  Completes on the
2280 *   RCQ of the multi-queue/RSS connection being initialized.
2281 *
2282 * RAMROD_CMD_ID_ETH_STAT_QUERY
2283 *   Used to force the storm processors to update the statistics database
2284 *   in host memory.  This ramrod is send on the leading connection CID and
2285 *   completes as an index increment of the CSTORM on the default status
2286 *   block.
2287 *
2288 * RAMROD_CMD_ID_ETH_UPDATE
2289 *   Used to update the state of the leading connection, usually to udpate
2290 *   the RSS indirection table.  Completes on the RCQ of the leading
2291 *   connection. (Not currently used under FreeBSD until OS support becomes
2292 *   available.)
2293 *
2294 * RAMROD_CMD_ID_ETH_HALT
2295 *   Used when tearing down a connection prior to driver unload.  Completes
2296 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2297 *   use this on the leading connection.
2298 *
2299 * RAMROD_CMD_ID_ETH_SET_MAC
2300 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2301 *   the RCQ of the leading connection.
2302 *
2303 * RAMROD_CMD_ID_ETH_CFC_DEL
2304 *   Used when tearing down a conneciton prior to driver unload.  Completes
2305 *   on the RCQ of the leading connection (since the current connection
2306 *   has been completely removed from controller memory).
2307 *
2308 * RAMROD_CMD_ID_ETH_PORT_DEL
2309 *   Used to tear down the leading connection prior to driver unload,
2310 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2311 *   default status block.
2312 *
2313 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2314 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2315 *   RSS connection that is being offloaded.  (Not currently used under
2316 *   FreeBSD.)
2317 *
2318 * There can only be one command pending per function.
2319 *
2320 * Returns:
2321 *   0 = Success, !0 = Failure.
2322 */
2323
2324/* must be called under the spq lock */
2325static inline
2326struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2327{
2328    struct eth_spe *next_spe = sc->spq_prod_bd;
2329
2330    if (sc->spq_prod_bd == sc->spq_last_bd) {
2331        /* wrap back to the first eth_spq */
2332        sc->spq_prod_bd = sc->spq;
2333        sc->spq_prod_idx = 0;
2334    } else {
2335        sc->spq_prod_bd++;
2336        sc->spq_prod_idx++;
2337    }
2338
2339    return (next_spe);
2340}
2341
2342/* must be called under the spq lock */
2343static inline
2344void bxe_sp_prod_update(struct bxe_softc *sc)
2345{
2346    int func = SC_FUNC(sc);
2347
2348    /*
2349     * Make sure that BD data is updated before writing the producer.
2350     * BD data is written to the memory, the producer is read from the
2351     * memory, thus we need a full memory barrier to ensure the ordering.
2352     */
2353    mb();
2354
2355    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2356             sc->spq_prod_idx);
2357
2358    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2359                      BUS_SPACE_BARRIER_WRITE);
2360}
2361
2362/**
2363 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2364 *
2365 * @cmd:      command to check
2366 * @cmd_type: command type
2367 */
2368static inline
2369int bxe_is_contextless_ramrod(int cmd,
2370                              int cmd_type)
2371{
2372    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2373        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2374        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2375        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2376        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2377        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2378        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2379        return (TRUE);
2380    } else {
2381        return (FALSE);
2382    }
2383}
2384
2385/**
2386 * bxe_sp_post - place a single command on an SP ring
2387 *
2388 * @sc:         driver handle
2389 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2390 * @cid:        SW CID the command is related to
2391 * @data_hi:    command private data address (high 32 bits)
2392 * @data_lo:    command private data address (low 32 bits)
2393 * @cmd_type:   command type (e.g. NONE, ETH)
2394 *
2395 * SP data is handled as if it's always an address pair, thus data fields are
2396 * not swapped to little endian in upper functions. Instead this function swaps
2397 * data as if it's two uint32 fields.
2398 */
2399int
2400bxe_sp_post(struct bxe_softc *sc,
2401            int              command,
2402            int              cid,
2403            uint32_t         data_hi,
2404            uint32_t         data_lo,
2405            int              cmd_type)
2406{
2407    struct eth_spe *spe;
2408    uint16_t type;
2409    int common;
2410
2411    common = bxe_is_contextless_ramrod(command, cmd_type);
2412
2413    BXE_SP_LOCK(sc);
2414
2415    if (common) {
2416        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2417            BLOGE(sc, "EQ ring is full!\n");
2418            BXE_SP_UNLOCK(sc);
2419            return (-1);
2420        }
2421    } else {
2422        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2423            BLOGE(sc, "SPQ ring is full!\n");
2424            BXE_SP_UNLOCK(sc);
2425            return (-1);
2426        }
2427    }
2428
2429    spe = bxe_sp_get_next(sc);
2430
2431    /* CID needs port number to be encoded int it */
2432    spe->hdr.conn_and_cmd_data =
2433        htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2434
2435    type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2436
2437    /* TBD: Check if it works for VFs */
2438    type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2439             SPE_HDR_T_FUNCTION_ID);
2440
2441    spe->hdr.type = htole16(type);
2442
2443    spe->data.update_data_addr.hi = htole32(data_hi);
2444    spe->data.update_data_addr.lo = htole32(data_lo);
2445
2446    /*
2447     * It's ok if the actual decrement is issued towards the memory
2448     * somewhere between the lock and unlock. Thus no more explict
2449     * memory barrier is needed.
2450     */
2451    if (common) {
2452        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2453    } else {
2454        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2455    }
2456
2457    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2458    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2459          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2460    BLOGD(sc, DBG_SP,
2461          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2462          sc->spq_prod_idx,
2463          (uint32_t)U64_HI(sc->spq_dma.paddr),
2464          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2465          command,
2466          common,
2467          HW_CID(sc, cid),
2468          data_hi,
2469          data_lo,
2470          type,
2471          atomic_load_acq_long(&sc->cq_spq_left),
2472          atomic_load_acq_long(&sc->eq_spq_left));
2473
2474    bxe_sp_prod_update(sc);
2475
2476    BXE_SP_UNLOCK(sc);
2477    return (0);
2478}
2479
2480/**
2481 * bxe_debug_print_ind_table - prints the indirection table configuration.
2482 *
2483 * @sc: driver hanlde
2484 * @p:  pointer to rss configuration
2485 */
2486
2487/*
2488 * FreeBSD Device probe function.
2489 *
2490 * Compares the device found to the driver's list of supported devices and
2491 * reports back to the bsd loader whether this is the right driver for the device.
2492 * This is the driver entry function called from the "kldload" command.
2493 *
2494 * Returns:
2495 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2496 */
2497static int
2498bxe_probe(device_t dev)
2499{
2500    struct bxe_device_type *t;
2501    char *descbuf;
2502    uint16_t did, sdid, svid, vid;
2503
2504    /* Find our device structure */
2505    t = bxe_devs;
2506
2507    /* Get the data for the device to be probed. */
2508    vid  = pci_get_vendor(dev);
2509    did  = pci_get_device(dev);
2510    svid = pci_get_subvendor(dev);
2511    sdid = pci_get_subdevice(dev);
2512
2513    /* Look through the list of known devices for a match. */
2514    while (t->bxe_name != NULL) {
2515        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2516            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2517            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2518            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2519            if (descbuf == NULL)
2520                return (ENOMEM);
2521
2522            /* Print out the device identity. */
2523            snprintf(descbuf, BXE_DEVDESC_MAX,
2524                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2525                     (((pci_read_config(dev, PCIR_REVID, 4) &
2526                        0xf0) >> 4) + 'A'),
2527                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2528                     BXE_DRIVER_VERSION);
2529
2530            device_set_desc_copy(dev, descbuf);
2531            free(descbuf, M_TEMP);
2532            return (BUS_PROBE_DEFAULT);
2533        }
2534        t++;
2535    }
2536
2537    return (ENXIO);
2538}
2539
2540static void
2541bxe_init_mutexes(struct bxe_softc *sc)
2542{
2543#ifdef BXE_CORE_LOCK_SX
2544    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2545             "bxe%d_core_lock", sc->unit);
2546    sx_init(&sc->core_sx, sc->core_sx_name);
2547#else
2548    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2549             "bxe%d_core_lock", sc->unit);
2550    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2551#endif
2552
2553    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2554             "bxe%d_sp_lock", sc->unit);
2555    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2556
2557    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2558             "bxe%d_dmae_lock", sc->unit);
2559    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2560
2561    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2562             "bxe%d_phy_lock", sc->unit);
2563    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2564
2565    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2566             "bxe%d_fwmb_lock", sc->unit);
2567    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2568
2569    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2570             "bxe%d_print_lock", sc->unit);
2571    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2572
2573    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2574             "bxe%d_stats_lock", sc->unit);
2575    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2576
2577    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2578             "bxe%d_mcast_lock", sc->unit);
2579    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2580}
2581
2582static void
2583bxe_release_mutexes(struct bxe_softc *sc)
2584{
2585#ifdef BXE_CORE_LOCK_SX
2586    sx_destroy(&sc->core_sx);
2587#else
2588    if (mtx_initialized(&sc->core_mtx)) {
2589        mtx_destroy(&sc->core_mtx);
2590    }
2591#endif
2592
2593    if (mtx_initialized(&sc->sp_mtx)) {
2594        mtx_destroy(&sc->sp_mtx);
2595    }
2596
2597    if (mtx_initialized(&sc->dmae_mtx)) {
2598        mtx_destroy(&sc->dmae_mtx);
2599    }
2600
2601    if (mtx_initialized(&sc->port.phy_mtx)) {
2602        mtx_destroy(&sc->port.phy_mtx);
2603    }
2604
2605    if (mtx_initialized(&sc->fwmb_mtx)) {
2606        mtx_destroy(&sc->fwmb_mtx);
2607    }
2608
2609    if (mtx_initialized(&sc->print_mtx)) {
2610        mtx_destroy(&sc->print_mtx);
2611    }
2612
2613    if (mtx_initialized(&sc->stats_mtx)) {
2614        mtx_destroy(&sc->stats_mtx);
2615    }
2616
2617    if (mtx_initialized(&sc->mcast_mtx)) {
2618        mtx_destroy(&sc->mcast_mtx);
2619    }
2620}
2621
2622static void
2623bxe_tx_disable(struct bxe_softc* sc)
2624{
2625    if_t ifp = sc->ifp;
2626
2627    /* tell the stack the driver is stopped and TX queue is full */
2628    if (ifp !=  NULL) {
2629        if_setdrvflags(ifp, 0);
2630    }
2631}
2632
2633static void
2634bxe_drv_pulse(struct bxe_softc *sc)
2635{
2636    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2637             sc->fw_drv_pulse_wr_seq);
2638}
2639
2640static inline uint16_t
2641bxe_tx_avail(struct bxe_softc *sc,
2642             struct bxe_fastpath *fp)
2643{
2644    int16_t  used;
2645    uint16_t prod;
2646    uint16_t cons;
2647
2648    prod = fp->tx_bd_prod;
2649    cons = fp->tx_bd_cons;
2650
2651    used = SUB_S16(prod, cons);
2652
2653    return (int16_t)(sc->tx_ring_size) - used;
2654}
2655
2656static inline int
2657bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2658{
2659    uint16_t hw_cons;
2660
2661    mb(); /* status block fields can change */
2662    hw_cons = le16toh(*fp->tx_cons_sb);
2663    return (hw_cons != fp->tx_pkt_cons);
2664}
2665
2666static inline uint8_t
2667bxe_has_tx_work(struct bxe_fastpath *fp)
2668{
2669    /* expand this for multi-cos if ever supported */
2670    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2671}
2672
2673static inline int
2674bxe_has_rx_work(struct bxe_fastpath *fp)
2675{
2676    uint16_t rx_cq_cons_sb;
2677
2678    mb(); /* status block fields can change */
2679    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2680    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2681        rx_cq_cons_sb++;
2682    return (fp->rx_cq_cons != rx_cq_cons_sb);
2683}
2684
2685static void
2686bxe_sp_event(struct bxe_softc    *sc,
2687             struct bxe_fastpath *fp,
2688             union eth_rx_cqe    *rr_cqe)
2689{
2690    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2691    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2692    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2693    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2694
2695    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2696          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2697
2698    switch (command) {
2699    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2700        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2701        drv_cmd = ECORE_Q_CMD_UPDATE;
2702        break;
2703
2704    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2705        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2706        drv_cmd = ECORE_Q_CMD_SETUP;
2707        break;
2708
2709    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2710        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2711        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2712        break;
2713
2714    case (RAMROD_CMD_ID_ETH_HALT):
2715        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2716        drv_cmd = ECORE_Q_CMD_HALT;
2717        break;
2718
2719    case (RAMROD_CMD_ID_ETH_TERMINATE):
2720        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2721        drv_cmd = ECORE_Q_CMD_TERMINATE;
2722        break;
2723
2724    case (RAMROD_CMD_ID_ETH_EMPTY):
2725        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2726        drv_cmd = ECORE_Q_CMD_EMPTY;
2727        break;
2728
2729    default:
2730        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2731              command, fp->index);
2732        return;
2733    }
2734
2735    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2736        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2737        /*
2738         * q_obj->complete_cmd() failure means that this was
2739         * an unexpected completion.
2740         *
2741         * In this case we don't want to increase the sc->spq_left
2742         * because apparently we haven't sent this command the first
2743         * place.
2744         */
2745        // bxe_panic(sc, ("Unexpected SP completion\n"));
2746        return;
2747    }
2748
2749    atomic_add_acq_long(&sc->cq_spq_left, 1);
2750
2751    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2752          atomic_load_acq_long(&sc->cq_spq_left));
2753}
2754
2755/*
2756 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2757 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2758 * the current aggregation queue as in-progress.
2759 */
2760static void
2761bxe_tpa_start(struct bxe_softc            *sc,
2762              struct bxe_fastpath         *fp,
2763              uint16_t                    queue,
2764              uint16_t                    cons,
2765              uint16_t                    prod,
2766              struct eth_fast_path_rx_cqe *cqe)
2767{
2768    struct bxe_sw_rx_bd tmp_bd;
2769    struct bxe_sw_rx_bd *rx_buf;
2770    struct eth_rx_bd *rx_bd;
2771    int max_agg_queues;
2772    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2773    uint16_t index;
2774
2775    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2776                       "cons=%d prod=%d\n",
2777          fp->index, queue, cons, prod);
2778
2779    max_agg_queues = MAX_AGG_QS(sc);
2780
2781    KASSERT((queue < max_agg_queues),
2782            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2783             fp->index, queue, max_agg_queues));
2784
2785    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2786            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2787             fp->index, queue));
2788
2789    /* copy the existing mbuf and mapping from the TPA pool */
2790    tmp_bd = tpa_info->bd;
2791
2792    if (tmp_bd.m == NULL) {
2793        uint32_t *tmp;
2794
2795        tmp = (uint32_t *)cqe;
2796
2797        BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2798              fp->index, queue, cons, prod);
2799        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2800            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2801
2802        /* XXX Error handling? */
2803        return;
2804    }
2805
2806    /* change the TPA queue to the start state */
2807    tpa_info->state            = BXE_TPA_STATE_START;
2808    tpa_info->placement_offset = cqe->placement_offset;
2809    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2810    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2811    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2812
2813    fp->rx_tpa_queue_used |= (1 << queue);
2814
2815    /*
2816     * If all the buffer descriptors are filled with mbufs then fill in
2817     * the current consumer index with a new BD. Else if a maximum Rx
2818     * buffer limit is imposed then fill in the next producer index.
2819     */
2820    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2821                prod : cons;
2822
2823    /* move the received mbuf and mapping to TPA pool */
2824    tpa_info->bd = fp->rx_mbuf_chain[cons];
2825
2826    /* release any existing RX BD mbuf mappings */
2827    if (cons != index) {
2828        rx_buf = &fp->rx_mbuf_chain[cons];
2829
2830        if (rx_buf->m_map != NULL) {
2831            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2832                            BUS_DMASYNC_POSTREAD);
2833            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2834        }
2835
2836        /*
2837         * We get here when the maximum number of rx buffers is less than
2838         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2839         * it out here without concern of a memory leak.
2840         */
2841        fp->rx_mbuf_chain[cons].m = NULL;
2842    }
2843
2844    /* update the Rx SW BD with the mbuf info from the TPA pool */
2845    fp->rx_mbuf_chain[index] = tmp_bd;
2846
2847    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2848    rx_bd = &fp->rx_chain[index];
2849    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2850    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2851}
2852
2853/*
2854 * When a TPA aggregation is completed, loop through the individual mbufs
2855 * of the aggregation, combining them into a single mbuf which will be sent
2856 * up the stack. Refill all freed SGEs with mbufs as we go along.
2857 */
2858static int
2859bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2860                   struct bxe_fastpath       *fp,
2861                   struct bxe_sw_tpa_info    *tpa_info,
2862                   uint16_t                  queue,
2863                   uint16_t                  pages,
2864                   struct mbuf               *m,
2865			       struct eth_end_agg_rx_cqe *cqe,
2866                   uint16_t                  cqe_idx)
2867{
2868    struct mbuf *m_frag;
2869    uint32_t frag_len, frag_size, i;
2870    uint16_t sge_idx;
2871    int rc = 0;
2872    int j;
2873
2874    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2875
2876    BLOGD(sc, DBG_LRO,
2877          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2878          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2879
2880    /* make sure the aggregated frame is not too big to handle */
2881    if (pages > 8 * PAGES_PER_SGE) {
2882
2883        uint32_t *tmp = (uint32_t *)cqe;
2884
2885        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2886                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2887              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2888              tpa_info->len_on_bd, frag_size);
2889
2890        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2891            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2892
2893        bxe_panic(sc, ("sge page count error\n"));
2894        return (EINVAL);
2895    }
2896
2897    /*
2898     * Scan through the scatter gather list pulling individual mbufs into a
2899     * single mbuf for the host stack.
2900     */
2901    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2902        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2903
2904        /*
2905         * Firmware gives the indices of the SGE as if the ring is an array
2906         * (meaning that the "next" element will consume 2 indices).
2907         */
2908        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2909
2910        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2911                           "sge_idx=%d frag_size=%d frag_len=%d\n",
2912              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2913
2914        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2915
2916        /* allocate a new mbuf for the SGE */
2917        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2918        if (rc) {
2919            /* Leave all remaining SGEs in the ring! */
2920            return (rc);
2921        }
2922
2923        /* update the fragment length */
2924        m_frag->m_len = frag_len;
2925
2926        /* concatenate the fragment to the head mbuf */
2927        m_cat(m, m_frag);
2928        fp->eth_q_stats.mbuf_alloc_sge--;
2929
2930        /* update the TPA mbuf size and remaining fragment size */
2931        m->m_pkthdr.len += frag_len;
2932        frag_size -= frag_len;
2933    }
2934
2935    BLOGD(sc, DBG_LRO,
2936          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2937          fp->index, queue, frag_size);
2938
2939    return (rc);
2940}
2941
2942static inline void
2943bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2944{
2945    int i, j;
2946
2947    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2948        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2949
2950        for (j = 0; j < 2; j++) {
2951            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2952            idx--;
2953        }
2954    }
2955}
2956
2957static inline void
2958bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2959{
2960    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2961    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2962
2963    /*
2964     * Clear the two last indices in the page to 1. These are the indices that
2965     * correspond to the "next" element, hence will never be indicated and
2966     * should be removed from the calculations.
2967     */
2968    bxe_clear_sge_mask_next_elems(fp);
2969}
2970
2971static inline void
2972bxe_update_last_max_sge(struct bxe_fastpath *fp,
2973                        uint16_t            idx)
2974{
2975    uint16_t last_max = fp->last_max_sge;
2976
2977    if (SUB_S16(idx, last_max) > 0) {
2978        fp->last_max_sge = idx;
2979    }
2980}
2981
2982static inline void
2983bxe_update_sge_prod(struct bxe_softc          *sc,
2984                    struct bxe_fastpath       *fp,
2985                    uint16_t                  sge_len,
2986                    union eth_sgl_or_raw_data *cqe)
2987{
2988    uint16_t last_max, last_elem, first_elem;
2989    uint16_t delta = 0;
2990    uint16_t i;
2991
2992    if (!sge_len) {
2993        return;
2994    }
2995
2996    /* first mark all used pages */
2997    for (i = 0; i < sge_len; i++) {
2998        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2999                            RX_SGE(le16toh(cqe->sgl[i])));
3000    }
3001
3002    BLOGD(sc, DBG_LRO,
3003          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3004          fp->index, sge_len - 1,
3005          le16toh(cqe->sgl[sge_len - 1]));
3006
3007    /* assume that the last SGE index is the biggest */
3008    bxe_update_last_max_sge(fp,
3009                            le16toh(cqe->sgl[sge_len - 1]));
3010
3011    last_max = RX_SGE(fp->last_max_sge);
3012    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3013    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3014
3015    /* if ring is not full */
3016    if (last_elem + 1 != first_elem) {
3017        last_elem++;
3018    }
3019
3020    /* now update the prod */
3021    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3022        if (__predict_true(fp->sge_mask[i])) {
3023            break;
3024        }
3025
3026        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3027        delta += BIT_VEC64_ELEM_SZ;
3028    }
3029
3030    if (delta > 0) {
3031        fp->rx_sge_prod += delta;
3032        /* clear page-end entries */
3033        bxe_clear_sge_mask_next_elems(fp);
3034    }
3035
3036    BLOGD(sc, DBG_LRO,
3037          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3038          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3039}
3040
3041/*
3042 * The aggregation on the current TPA queue has completed. Pull the individual
3043 * mbuf fragments together into a single mbuf, perform all necessary checksum
3044 * calculations, and send the resuting mbuf to the stack.
3045 */
3046static void
3047bxe_tpa_stop(struct bxe_softc          *sc,
3048             struct bxe_fastpath       *fp,
3049             struct bxe_sw_tpa_info    *tpa_info,
3050             uint16_t                  queue,
3051             uint16_t                  pages,
3052			 struct eth_end_agg_rx_cqe *cqe,
3053             uint16_t                  cqe_idx)
3054{
3055    if_t ifp = sc->ifp;
3056    struct mbuf *m;
3057    int rc = 0;
3058
3059    BLOGD(sc, DBG_LRO,
3060          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3061          fp->index, queue, tpa_info->placement_offset,
3062          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3063
3064    m = tpa_info->bd.m;
3065
3066    /* allocate a replacement before modifying existing mbuf */
3067    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3068    if (rc) {
3069        /* drop the frame and log an error */
3070        fp->eth_q_stats.rx_soft_errors++;
3071        goto bxe_tpa_stop_exit;
3072    }
3073
3074    /* we have a replacement, fixup the current mbuf */
3075    m_adj(m, tpa_info->placement_offset);
3076    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3077
3078    /* mark the checksums valid (taken care of by the firmware) */
3079    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3080    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3081    m->m_pkthdr.csum_data = 0xffff;
3082    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3083                               CSUM_IP_VALID   |
3084                               CSUM_DATA_VALID |
3085                               CSUM_PSEUDO_HDR);
3086
3087    /* aggregate all of the SGEs into a single mbuf */
3088    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3089    if (rc) {
3090        /* drop the packet and log an error */
3091        fp->eth_q_stats.rx_soft_errors++;
3092        m_freem(m);
3093    } else {
3094        if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3095            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3096            m->m_flags |= M_VLANTAG;
3097        }
3098
3099        /* assign packet to this interface interface */
3100        if_setrcvif(m, ifp);
3101
3102#if __FreeBSD_version >= 800000
3103        /* specify what RSS queue was used for this flow */
3104        m->m_pkthdr.flowid = fp->index;
3105        BXE_SET_FLOWID(m);
3106#endif
3107
3108        if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3109        fp->eth_q_stats.rx_tpa_pkts++;
3110
3111        /* pass the frame to the stack */
3112        if_input(ifp, m);
3113    }
3114
3115    /* we passed an mbuf up the stack or dropped the frame */
3116    fp->eth_q_stats.mbuf_alloc_tpa--;
3117
3118bxe_tpa_stop_exit:
3119
3120    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3121    fp->rx_tpa_queue_used &= ~(1 << queue);
3122}
3123
3124static uint8_t
3125bxe_service_rxsgl(
3126                 struct bxe_fastpath *fp,
3127                 uint16_t len,
3128                 uint16_t lenonbd,
3129                 struct mbuf *m,
3130                 struct eth_fast_path_rx_cqe *cqe_fp)
3131{
3132    struct mbuf *m_frag;
3133    uint16_t frags, frag_len;
3134    uint16_t sge_idx = 0;
3135    uint16_t j;
3136    uint8_t i, rc = 0;
3137    uint32_t frag_size;
3138
3139    /* adjust the mbuf */
3140    m->m_len = lenonbd;
3141
3142    frag_size =  len - lenonbd;
3143    frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3144
3145    for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3146        sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3147
3148        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3149        frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3150        m_frag->m_len = frag_len;
3151
3152       /* allocate a new mbuf for the SGE */
3153        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3154        if (rc) {
3155            /* Leave all remaining SGEs in the ring! */
3156            return (rc);
3157        }
3158        fp->eth_q_stats.mbuf_alloc_sge--;
3159
3160        /* concatenate the fragment to the head mbuf */
3161        m_cat(m, m_frag);
3162
3163        frag_size -= frag_len;
3164    }
3165
3166    bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3167
3168    return rc;
3169}
3170
3171static uint8_t
3172bxe_rxeof(struct bxe_softc    *sc,
3173          struct bxe_fastpath *fp)
3174{
3175    if_t ifp = sc->ifp;
3176    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3177    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3178    int rx_pkts = 0;
3179    int rc = 0;
3180
3181    BXE_FP_RX_LOCK(fp);
3182
3183    /* CQ "next element" is of the size of the regular element */
3184    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3185    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3186        hw_cq_cons++;
3187    }
3188
3189    bd_cons = fp->rx_bd_cons;
3190    bd_prod = fp->rx_bd_prod;
3191    bd_prod_fw = bd_prod;
3192    sw_cq_cons = fp->rx_cq_cons;
3193    sw_cq_prod = fp->rx_cq_prod;
3194
3195    /*
3196     * Memory barrier necessary as speculative reads of the rx
3197     * buffer can be ahead of the index in the status block
3198     */
3199    rmb();
3200
3201    BLOGD(sc, DBG_RX,
3202          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3203          fp->index, hw_cq_cons, sw_cq_cons);
3204
3205    while (sw_cq_cons != hw_cq_cons) {
3206        struct bxe_sw_rx_bd *rx_buf = NULL;
3207        union eth_rx_cqe *cqe;
3208        struct eth_fast_path_rx_cqe *cqe_fp;
3209        uint8_t cqe_fp_flags;
3210        enum eth_rx_cqe_type cqe_fp_type;
3211        uint16_t len, lenonbd,  pad;
3212        struct mbuf *m = NULL;
3213
3214        comp_ring_cons = RCQ(sw_cq_cons);
3215        bd_prod = RX_BD(bd_prod);
3216        bd_cons = RX_BD(bd_cons);
3217
3218        cqe          = &fp->rcq_chain[comp_ring_cons];
3219        cqe_fp       = &cqe->fast_path_cqe;
3220        cqe_fp_flags = cqe_fp->type_error_flags;
3221        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3222
3223        BLOGD(sc, DBG_RX,
3224              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3225              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3226              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3227              fp->index,
3228              hw_cq_cons,
3229              sw_cq_cons,
3230              bd_prod,
3231              bd_cons,
3232              CQE_TYPE(cqe_fp_flags),
3233              cqe_fp_flags,
3234              cqe_fp->status_flags,
3235              le32toh(cqe_fp->rss_hash_result),
3236              le16toh(cqe_fp->vlan_tag),
3237              le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3238              le16toh(cqe_fp->len_on_bd));
3239
3240        /* is this a slowpath msg? */
3241        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3242            bxe_sp_event(sc, fp, cqe);
3243            goto next_cqe;
3244        }
3245
3246        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3247
3248        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3249            struct bxe_sw_tpa_info *tpa_info;
3250            uint16_t frag_size, pages;
3251            uint8_t queue;
3252
3253            if (CQE_TYPE_START(cqe_fp_type)) {
3254                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3255                              bd_cons, bd_prod, cqe_fp);
3256                m = NULL; /* packet not ready yet */
3257                goto next_rx;
3258            }
3259
3260            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3261                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3262
3263            queue = cqe->end_agg_cqe.queue_index;
3264            tpa_info = &fp->rx_tpa_info[queue];
3265
3266            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3267                  fp->index, queue);
3268
3269            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3270                         tpa_info->len_on_bd);
3271            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3272
3273            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3274                         &cqe->end_agg_cqe, comp_ring_cons);
3275
3276            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3277
3278            goto next_cqe;
3279        }
3280
3281        /* non TPA */
3282
3283        /* is this an error packet? */
3284        if (__predict_false(cqe_fp_flags &
3285                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3286            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3287            fp->eth_q_stats.rx_soft_errors++;
3288            goto next_rx;
3289        }
3290
3291        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3292        lenonbd = le16toh(cqe_fp->len_on_bd);
3293        pad = cqe_fp->placement_offset;
3294
3295        m = rx_buf->m;
3296
3297        if (__predict_false(m == NULL)) {
3298            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3299                  bd_cons, fp->index);
3300            goto next_rx;
3301        }
3302
3303        /* XXX double copy if packet length under a threshold */
3304
3305        /*
3306         * If all the buffer descriptors are filled with mbufs then fill in
3307         * the current consumer index with a new BD. Else if a maximum Rx
3308         * buffer limit is imposed then fill in the next producer index.
3309         */
3310        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3311                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3312                                      bd_prod : bd_cons);
3313        if (rc != 0) {
3314
3315            /* we simply reuse the received mbuf and don't post it to the stack */
3316            m = NULL;
3317
3318            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3319                  fp->index, rc);
3320            fp->eth_q_stats.rx_soft_errors++;
3321
3322            if (sc->max_rx_bufs != RX_BD_USABLE) {
3323                /* copy this consumer index to the producer index */
3324                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3325                       sizeof(struct bxe_sw_rx_bd));
3326                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3327            }
3328
3329            goto next_rx;
3330        }
3331
3332        /* current mbuf was detached from the bd */
3333        fp->eth_q_stats.mbuf_alloc_rx--;
3334
3335        /* we allocated a replacement mbuf, fixup the current one */
3336        m_adj(m, pad);
3337        m->m_pkthdr.len = m->m_len = len;
3338
3339        if ((len > 60) && (len > lenonbd)) {
3340            fp->eth_q_stats.rx_bxe_service_rxsgl++;
3341            rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3342            if (rc)
3343                break;
3344            fp->eth_q_stats.rx_jumbo_sge_pkts++;
3345        } else if (lenonbd < len) {
3346            fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3347        }
3348
3349        /* assign packet to this interface interface */
3350	if_setrcvif(m, ifp);
3351
3352        /* assume no hardware checksum has complated */
3353        m->m_pkthdr.csum_flags = 0;
3354
3355        /* validate checksum if offload enabled */
3356        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3357            /* check for a valid IP frame */
3358            if (!(cqe->fast_path_cqe.status_flags &
3359                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3360                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3361                if (__predict_false(cqe_fp_flags &
3362                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3363                    fp->eth_q_stats.rx_hw_csum_errors++;
3364                } else {
3365                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3366                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3367                }
3368            }
3369
3370            /* check for a valid TCP/UDP frame */
3371            if (!(cqe->fast_path_cqe.status_flags &
3372                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3373                if (__predict_false(cqe_fp_flags &
3374                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3375                    fp->eth_q_stats.rx_hw_csum_errors++;
3376                } else {
3377                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3378                    m->m_pkthdr.csum_data = 0xFFFF;
3379                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3380                                               CSUM_PSEUDO_HDR);
3381                }
3382            }
3383        }
3384
3385        /* if there is a VLAN tag then flag that info */
3386        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3387            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3388            m->m_flags |= M_VLANTAG;
3389        }
3390
3391#if __FreeBSD_version >= 800000
3392        /* specify what RSS queue was used for this flow */
3393        m->m_pkthdr.flowid = fp->index;
3394        BXE_SET_FLOWID(m);
3395#endif
3396
3397next_rx:
3398
3399        bd_cons    = RX_BD_NEXT(bd_cons);
3400        bd_prod    = RX_BD_NEXT(bd_prod);
3401        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3402
3403        /* pass the frame to the stack */
3404        if (__predict_true(m != NULL)) {
3405            if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3406            rx_pkts++;
3407            if_input(ifp, m);
3408        }
3409
3410next_cqe:
3411
3412        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3413        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3414
3415        /* limit spinning on the queue */
3416        if (rc != 0)
3417            break;
3418
3419        if (rx_pkts == sc->rx_budget) {
3420            fp->eth_q_stats.rx_budget_reached++;
3421            break;
3422        }
3423    } /* while work to do */
3424
3425    fp->rx_bd_cons = bd_cons;
3426    fp->rx_bd_prod = bd_prod_fw;
3427    fp->rx_cq_cons = sw_cq_cons;
3428    fp->rx_cq_prod = sw_cq_prod;
3429
3430    /* Update producers */
3431    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3432
3433    fp->eth_q_stats.rx_pkts += rx_pkts;
3434    fp->eth_q_stats.rx_calls++;
3435
3436    BXE_FP_RX_UNLOCK(fp);
3437
3438    return (sw_cq_cons != hw_cq_cons);
3439}
3440
3441static uint16_t
3442bxe_free_tx_pkt(struct bxe_softc    *sc,
3443                struct bxe_fastpath *fp,
3444                uint16_t            idx)
3445{
3446    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3447    struct eth_tx_start_bd *tx_start_bd;
3448    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3449    uint16_t new_cons;
3450    int nbd;
3451
3452    /* unmap the mbuf from non-paged memory */
3453    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3454
3455    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3456    nbd = le16toh(tx_start_bd->nbd) - 1;
3457
3458    new_cons = (tx_buf->first_bd + nbd);
3459
3460    /* free the mbuf */
3461    if (__predict_true(tx_buf->m != NULL)) {
3462        m_freem(tx_buf->m);
3463        fp->eth_q_stats.mbuf_alloc_tx--;
3464    } else {
3465        fp->eth_q_stats.tx_chain_lost_mbuf++;
3466    }
3467
3468    tx_buf->m = NULL;
3469    tx_buf->first_bd = 0;
3470
3471    return (new_cons);
3472}
3473
3474/* transmit timeout watchdog */
3475static int
3476bxe_watchdog(struct bxe_softc    *sc,
3477             struct bxe_fastpath *fp)
3478{
3479    BXE_FP_TX_LOCK(fp);
3480
3481    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3482        BXE_FP_TX_UNLOCK(fp);
3483        return (0);
3484    }
3485
3486    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3487    if(sc->trigger_grcdump) {
3488         /* taking grcdump */
3489         bxe_grc_dump(sc);
3490    }
3491
3492    BXE_FP_TX_UNLOCK(fp);
3493
3494    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3495    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3496
3497    return (-1);
3498}
3499
3500/* processes transmit completions */
3501static uint8_t
3502bxe_txeof(struct bxe_softc    *sc,
3503          struct bxe_fastpath *fp)
3504{
3505    if_t ifp = sc->ifp;
3506    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3507    uint16_t tx_bd_avail;
3508
3509    BXE_FP_TX_LOCK_ASSERT(fp);
3510
3511    bd_cons = fp->tx_bd_cons;
3512    hw_cons = le16toh(*fp->tx_cons_sb);
3513    sw_cons = fp->tx_pkt_cons;
3514
3515    while (sw_cons != hw_cons) {
3516        pkt_cons = TX_BD(sw_cons);
3517
3518        BLOGD(sc, DBG_TX,
3519              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3520              fp->index, hw_cons, sw_cons, pkt_cons);
3521
3522        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3523
3524        sw_cons++;
3525    }
3526
3527    fp->tx_pkt_cons = sw_cons;
3528    fp->tx_bd_cons  = bd_cons;
3529
3530    BLOGD(sc, DBG_TX,
3531          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3532          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3533
3534    mb();
3535
3536    tx_bd_avail = bxe_tx_avail(sc, fp);
3537
3538    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3539        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3540    } else {
3541        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3542    }
3543
3544    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3545        /* reset the watchdog timer if there are pending transmits */
3546        fp->watchdog_timer = BXE_TX_TIMEOUT;
3547        return (TRUE);
3548    } else {
3549        /* clear watchdog when there are no pending transmits */
3550        fp->watchdog_timer = 0;
3551        return (FALSE);
3552    }
3553}
3554
3555static void
3556bxe_drain_tx_queues(struct bxe_softc *sc)
3557{
3558    struct bxe_fastpath *fp;
3559    int i, count;
3560
3561    /* wait until all TX fastpath tasks have completed */
3562    for (i = 0; i < sc->num_queues; i++) {
3563        fp = &sc->fp[i];
3564
3565        count = 1000;
3566
3567        while (bxe_has_tx_work(fp)) {
3568
3569            BXE_FP_TX_LOCK(fp);
3570            bxe_txeof(sc, fp);
3571            BXE_FP_TX_UNLOCK(fp);
3572
3573            if (count == 0) {
3574                BLOGE(sc, "Timeout waiting for fp[%d] "
3575                          "transmits to complete!\n", i);
3576                bxe_panic(sc, ("tx drain failure\n"));
3577                return;
3578            }
3579
3580            count--;
3581            DELAY(1000);
3582            rmb();
3583        }
3584    }
3585
3586    return;
3587}
3588
3589static int
3590bxe_del_all_macs(struct bxe_softc          *sc,
3591                 struct ecore_vlan_mac_obj *mac_obj,
3592                 int                       mac_type,
3593                 uint8_t                   wait_for_comp)
3594{
3595    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3596    int rc;
3597
3598    /* wait for completion of requested */
3599    if (wait_for_comp) {
3600        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3601    }
3602
3603    /* Set the mac type of addresses we want to clear */
3604    bxe_set_bit(mac_type, &vlan_mac_flags);
3605
3606    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3607    if (rc < 0) {
3608        BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3609            rc, mac_type, wait_for_comp);
3610    }
3611
3612    return (rc);
3613}
3614
3615static int
3616bxe_fill_accept_flags(struct bxe_softc *sc,
3617                      uint32_t         rx_mode,
3618                      unsigned long    *rx_accept_flags,
3619                      unsigned long    *tx_accept_flags)
3620{
3621    /* Clear the flags first */
3622    *rx_accept_flags = 0;
3623    *tx_accept_flags = 0;
3624
3625    switch (rx_mode) {
3626    case BXE_RX_MODE_NONE:
3627        /*
3628         * 'drop all' supersedes any accept flags that may have been
3629         * passed to the function.
3630         */
3631        break;
3632
3633    case BXE_RX_MODE_NORMAL:
3634        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3635        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3636        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3637
3638        /* internal switching mode */
3639        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3640        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3641        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3642
3643        break;
3644
3645    case BXE_RX_MODE_ALLMULTI:
3646        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3647        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3648        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3649
3650        /* internal switching mode */
3651        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3652        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3653        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3654
3655        break;
3656
3657    case BXE_RX_MODE_PROMISC:
3658        /*
3659         * According to deffinition of SI mode, iface in promisc mode
3660         * should receive matched and unmatched (in resolution of port)
3661         * unicast packets.
3662         */
3663        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3664        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3665        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3666        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3667
3668        /* internal switching mode */
3669        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3670        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3671
3672        if (IS_MF_SI(sc)) {
3673            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3674        } else {
3675            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3676        }
3677
3678        break;
3679
3680    default:
3681        BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3682        return (-1);
3683    }
3684
3685    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3686    if (rx_mode != BXE_RX_MODE_NONE) {
3687        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3688        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3689    }
3690
3691    return (0);
3692}
3693
3694static int
3695bxe_set_q_rx_mode(struct bxe_softc *sc,
3696                  uint8_t          cl_id,
3697                  unsigned long    rx_mode_flags,
3698                  unsigned long    rx_accept_flags,
3699                  unsigned long    tx_accept_flags,
3700                  unsigned long    ramrod_flags)
3701{
3702    struct ecore_rx_mode_ramrod_params ramrod_param;
3703    int rc;
3704
3705    memset(&ramrod_param, 0, sizeof(ramrod_param));
3706
3707    /* Prepare ramrod parameters */
3708    ramrod_param.cid = 0;
3709    ramrod_param.cl_id = cl_id;
3710    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3711    ramrod_param.func_id = SC_FUNC(sc);
3712
3713    ramrod_param.pstate = &sc->sp_state;
3714    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3715
3716    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3717    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3718
3719    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3720
3721    ramrod_param.ramrod_flags = ramrod_flags;
3722    ramrod_param.rx_mode_flags = rx_mode_flags;
3723
3724    ramrod_param.rx_accept_flags = rx_accept_flags;
3725    ramrod_param.tx_accept_flags = tx_accept_flags;
3726
3727    rc = ecore_config_rx_mode(sc, &ramrod_param);
3728    if (rc < 0) {
3729        BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3730            "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3731            "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3732            (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3733            (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3734        return (rc);
3735    }
3736
3737    return (0);
3738}
3739
3740static int
3741bxe_set_storm_rx_mode(struct bxe_softc *sc)
3742{
3743    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3744    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3745    int rc;
3746
3747    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3748                               &tx_accept_flags);
3749    if (rc) {
3750        return (rc);
3751    }
3752
3753    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3754    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3755
3756    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3757    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3758                              rx_accept_flags, tx_accept_flags,
3759                              ramrod_flags));
3760}
3761
3762/* returns the "mcp load_code" according to global load_count array */
3763static int
3764bxe_nic_load_no_mcp(struct bxe_softc *sc)
3765{
3766    int path = SC_PATH(sc);
3767    int port = SC_PORT(sc);
3768
3769    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3770          path, load_count[path][0], load_count[path][1],
3771          load_count[path][2]);
3772    load_count[path][0]++;
3773    load_count[path][1 + port]++;
3774    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3775          path, load_count[path][0], load_count[path][1],
3776          load_count[path][2]);
3777    if (load_count[path][0] == 1) {
3778        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3779    } else if (load_count[path][1 + port] == 1) {
3780        return (FW_MSG_CODE_DRV_LOAD_PORT);
3781    } else {
3782        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3783    }
3784}
3785
3786/* returns the "mcp load_code" according to global load_count array */
3787static int
3788bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3789{
3790    int port = SC_PORT(sc);
3791    int path = SC_PATH(sc);
3792
3793    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3794          path, load_count[path][0], load_count[path][1],
3795          load_count[path][2]);
3796    load_count[path][0]--;
3797    load_count[path][1 + port]--;
3798    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3799          path, load_count[path][0], load_count[path][1],
3800          load_count[path][2]);
3801    if (load_count[path][0] == 0) {
3802        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3803    } else if (load_count[path][1 + port] == 0) {
3804        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3805    } else {
3806        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3807    }
3808}
3809
3810/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3811static uint32_t
3812bxe_send_unload_req(struct bxe_softc *sc,
3813                    int              unload_mode)
3814{
3815    uint32_t reset_code = 0;
3816
3817    /* Select the UNLOAD request mode */
3818    if (unload_mode == UNLOAD_NORMAL) {
3819        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3820    } else {
3821        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3822    }
3823
3824    /* Send the request to the MCP */
3825    if (!BXE_NOMCP(sc)) {
3826        reset_code = bxe_fw_command(sc, reset_code, 0);
3827    } else {
3828        reset_code = bxe_nic_unload_no_mcp(sc);
3829    }
3830
3831    return (reset_code);
3832}
3833
3834/* send UNLOAD_DONE command to the MCP */
3835static void
3836bxe_send_unload_done(struct bxe_softc *sc,
3837                     uint8_t          keep_link)
3838{
3839    uint32_t reset_param =
3840        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3841
3842    /* Report UNLOAD_DONE to MCP */
3843    if (!BXE_NOMCP(sc)) {
3844        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3845    }
3846}
3847
3848static int
3849bxe_func_wait_started(struct bxe_softc *sc)
3850{
3851    int tout = 50;
3852
3853    if (!sc->port.pmf) {
3854        return (0);
3855    }
3856
3857    /*
3858     * (assumption: No Attention from MCP at this stage)
3859     * PMF probably in the middle of TX disable/enable transaction
3860     * 1. Sync IRS for default SB
3861     * 2. Sync SP queue - this guarantees us that attention handling started
3862     * 3. Wait, that TX disable/enable transaction completes
3863     *
3864     * 1+2 guarantee that if DCBX attention was scheduled it already changed
3865     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3866     * received completion for the transaction the state is TX_STOPPED.
3867     * State will return to STARTED after completion of TX_STOPPED-->STARTED
3868     * transaction.
3869     */
3870
3871    /* XXX make sure default SB ISR is done */
3872    /* need a way to synchronize an irq (intr_mtx?) */
3873
3874    /* XXX flush any work queues */
3875
3876    while (ecore_func_get_state(sc, &sc->func_obj) !=
3877           ECORE_F_STATE_STARTED && tout--) {
3878        DELAY(20000);
3879    }
3880
3881    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3882        /*
3883         * Failed to complete the transaction in a "good way"
3884         * Force both transactions with CLR bit.
3885         */
3886        struct ecore_func_state_params func_params = { NULL };
3887
3888        BLOGE(sc, "Unexpected function state! "
3889                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3890
3891        func_params.f_obj = &sc->func_obj;
3892        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3893
3894        /* STARTED-->TX_STOPPED */
3895        func_params.cmd = ECORE_F_CMD_TX_STOP;
3896        ecore_func_state_change(sc, &func_params);
3897
3898        /* TX_STOPPED-->STARTED */
3899        func_params.cmd = ECORE_F_CMD_TX_START;
3900        return (ecore_func_state_change(sc, &func_params));
3901    }
3902
3903    return (0);
3904}
3905
3906static int
3907bxe_stop_queue(struct bxe_softc *sc,
3908               int              index)
3909{
3910    struct bxe_fastpath *fp = &sc->fp[index];
3911    struct ecore_queue_state_params q_params = { NULL };
3912    int rc;
3913
3914    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3915
3916    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3917    /* We want to wait for completion in this context */
3918    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3919
3920    /* Stop the primary connection: */
3921
3922    /* ...halt the connection */
3923    q_params.cmd = ECORE_Q_CMD_HALT;
3924    rc = ecore_queue_state_change(sc, &q_params);
3925    if (rc) {
3926        return (rc);
3927    }
3928
3929    /* ...terminate the connection */
3930    q_params.cmd = ECORE_Q_CMD_TERMINATE;
3931    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3932    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3933    rc = ecore_queue_state_change(sc, &q_params);
3934    if (rc) {
3935        return (rc);
3936    }
3937
3938    /* ...delete cfc entry */
3939    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3940    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3941    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3942    return (ecore_queue_state_change(sc, &q_params));
3943}
3944
3945/* wait for the outstanding SP commands */
3946static inline uint8_t
3947bxe_wait_sp_comp(struct bxe_softc *sc,
3948                 unsigned long    mask)
3949{
3950    unsigned long tmp;
3951    int tout = 5000; /* wait for 5 secs tops */
3952
3953    while (tout--) {
3954        mb();
3955        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3956            return (TRUE);
3957        }
3958
3959        DELAY(1000);
3960    }
3961
3962    mb();
3963
3964    tmp = atomic_load_acq_long(&sc->sp_state);
3965    if (tmp & mask) {
3966        BLOGE(sc, "Filtering completion timed out: "
3967                  "sp_state 0x%lx, mask 0x%lx\n",
3968              tmp, mask);
3969        return (FALSE);
3970    }
3971
3972    return (FALSE);
3973}
3974
3975static int
3976bxe_func_stop(struct bxe_softc *sc)
3977{
3978    struct ecore_func_state_params func_params = { NULL };
3979    int rc;
3980
3981    /* prepare parameters for function state transitions */
3982    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3983    func_params.f_obj = &sc->func_obj;
3984    func_params.cmd = ECORE_F_CMD_STOP;
3985
3986    /*
3987     * Try to stop the function the 'good way'. If it fails (in case
3988     * of a parity error during bxe_chip_cleanup()) and we are
3989     * not in a debug mode, perform a state transaction in order to
3990     * enable further HW_RESET transaction.
3991     */
3992    rc = ecore_func_state_change(sc, &func_params);
3993    if (rc) {
3994        BLOGE(sc, "FUNC_STOP ramrod failed. "
3995                  "Running a dry transaction (%d)\n", rc);
3996        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3997        return (ecore_func_state_change(sc, &func_params));
3998    }
3999
4000    return (0);
4001}
4002
4003static int
4004bxe_reset_hw(struct bxe_softc *sc,
4005             uint32_t         load_code)
4006{
4007    struct ecore_func_state_params func_params = { NULL };
4008
4009    /* Prepare parameters for function state transitions */
4010    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4011
4012    func_params.f_obj = &sc->func_obj;
4013    func_params.cmd = ECORE_F_CMD_HW_RESET;
4014
4015    func_params.params.hw_init.load_phase = load_code;
4016
4017    return (ecore_func_state_change(sc, &func_params));
4018}
4019
4020static void
4021bxe_int_disable_sync(struct bxe_softc *sc,
4022                     int              disable_hw)
4023{
4024    if (disable_hw) {
4025        /* prevent the HW from sending interrupts */
4026        bxe_int_disable(sc);
4027    }
4028
4029    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4030    /* make sure all ISRs are done */
4031
4032    /* XXX make sure sp_task is not running */
4033    /* cancel and flush work queues */
4034}
4035
4036static void
4037bxe_chip_cleanup(struct bxe_softc *sc,
4038                 uint32_t         unload_mode,
4039                 uint8_t          keep_link)
4040{
4041    int port = SC_PORT(sc);
4042    struct ecore_mcast_ramrod_params rparam = { NULL };
4043    uint32_t reset_code;
4044    int i, rc = 0;
4045
4046    bxe_drain_tx_queues(sc);
4047
4048    /* give HW time to discard old tx messages */
4049    DELAY(1000);
4050
4051    /* Clean all ETH MACs */
4052    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4053    if (rc < 0) {
4054        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4055    }
4056
4057    /* Clean up UC list  */
4058    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4059    if (rc < 0) {
4060        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4061    }
4062
4063    /* Disable LLH */
4064    if (!CHIP_IS_E1(sc)) {
4065        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4066    }
4067
4068    /* Set "drop all" to stop Rx */
4069
4070    /*
4071     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4072     * a race between the completion code and this code.
4073     */
4074    BXE_MCAST_LOCK(sc);
4075
4076    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4077        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4078    } else {
4079        bxe_set_storm_rx_mode(sc);
4080    }
4081
4082    /* Clean up multicast configuration */
4083    rparam.mcast_obj = &sc->mcast_obj;
4084    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4085    if (rc < 0) {
4086        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4087    }
4088
4089    BXE_MCAST_UNLOCK(sc);
4090
4091    // XXX bxe_iov_chip_cleanup(sc);
4092
4093    /*
4094     * Send the UNLOAD_REQUEST to the MCP. This will return if
4095     * this function should perform FUNCTION, PORT, or COMMON HW
4096     * reset.
4097     */
4098    reset_code = bxe_send_unload_req(sc, unload_mode);
4099
4100    /*
4101     * (assumption: No Attention from MCP at this stage)
4102     * PMF probably in the middle of TX disable/enable transaction
4103     */
4104    rc = bxe_func_wait_started(sc);
4105    if (rc) {
4106        BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4107    }
4108
4109    /*
4110     * Close multi and leading connections
4111     * Completions for ramrods are collected in a synchronous way
4112     */
4113    for (i = 0; i < sc->num_queues; i++) {
4114        if (bxe_stop_queue(sc, i)) {
4115            goto unload_error;
4116        }
4117    }
4118
4119    /*
4120     * If SP settings didn't get completed so far - something
4121     * very wrong has happen.
4122     */
4123    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4124        BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4125    }
4126
4127unload_error:
4128
4129    rc = bxe_func_stop(sc);
4130    if (rc) {
4131        BLOGE(sc, "Function stop failed!(%d)\n", rc);
4132    }
4133
4134    /* disable HW interrupts */
4135    bxe_int_disable_sync(sc, TRUE);
4136
4137    /* detach interrupts */
4138    bxe_interrupt_detach(sc);
4139
4140    /* Reset the chip */
4141    rc = bxe_reset_hw(sc, reset_code);
4142    if (rc) {
4143        BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4144    }
4145
4146    /* Report UNLOAD_DONE to MCP */
4147    bxe_send_unload_done(sc, keep_link);
4148}
4149
4150static void
4151bxe_disable_close_the_gate(struct bxe_softc *sc)
4152{
4153    uint32_t val;
4154    int port = SC_PORT(sc);
4155
4156    BLOGD(sc, DBG_LOAD,
4157          "Disabling 'close the gates'\n");
4158
4159    if (CHIP_IS_E1(sc)) {
4160        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4161                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4162        val = REG_RD(sc, addr);
4163        val &= ~(0x300);
4164        REG_WR(sc, addr, val);
4165    } else {
4166        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4167        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4168                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4169        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4170    }
4171}
4172
4173/*
4174 * Cleans the object that have internal lists without sending
4175 * ramrods. Should be run when interrutps are disabled.
4176 */
4177static void
4178bxe_squeeze_objects(struct bxe_softc *sc)
4179{
4180    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4181    struct ecore_mcast_ramrod_params rparam = { NULL };
4182    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4183    int rc;
4184
4185    /* Cleanup MACs' object first... */
4186
4187    /* Wait for completion of requested */
4188    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4189    /* Perform a dry cleanup */
4190    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4191
4192    /* Clean ETH primary MAC */
4193    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4194    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4195                             &ramrod_flags);
4196    if (rc != 0) {
4197        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4198    }
4199
4200    /* Cleanup UC list */
4201    vlan_mac_flags = 0;
4202    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4203    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4204                             &ramrod_flags);
4205    if (rc != 0) {
4206        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4207    }
4208
4209    /* Now clean mcast object... */
4210
4211    rparam.mcast_obj = &sc->mcast_obj;
4212    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4213
4214    /* Add a DEL command... */
4215    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4216    if (rc < 0) {
4217        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4218    }
4219
4220    /* now wait until all pending commands are cleared */
4221
4222    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4223    while (rc != 0) {
4224        if (rc < 0) {
4225            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4226            return;
4227        }
4228
4229        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4230    }
4231}
4232
4233/* stop the controller */
4234static __noinline int
4235bxe_nic_unload(struct bxe_softc *sc,
4236               uint32_t         unload_mode,
4237               uint8_t          keep_link)
4238{
4239    uint8_t global = FALSE;
4240    uint32_t val;
4241    int i;
4242
4243    BXE_CORE_LOCK_ASSERT(sc);
4244
4245    if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4246
4247    for (i = 0; i < sc->num_queues; i++) {
4248        struct bxe_fastpath *fp;
4249
4250        fp = &sc->fp[i];
4251        BXE_FP_TX_LOCK(fp);
4252        BXE_FP_TX_UNLOCK(fp);
4253    }
4254
4255    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4256
4257    /* mark driver as unloaded in shmem2 */
4258    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4259        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4260        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4261                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4262    }
4263
4264    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4265        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4266        /*
4267         * We can get here if the driver has been unloaded
4268         * during parity error recovery and is either waiting for a
4269         * leader to complete or for other functions to unload and
4270         * then ifconfig down has been issued. In this case we want to
4271         * unload and let other functions to complete a recovery
4272         * process.
4273         */
4274        sc->recovery_state = BXE_RECOVERY_DONE;
4275        sc->is_leader = 0;
4276        bxe_release_leader_lock(sc);
4277        mb();
4278
4279        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4280        BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4281            " state = 0x%x\n", sc->recovery_state, sc->state);
4282        return (-1);
4283    }
4284
4285    /*
4286     * Nothing to do during unload if previous bxe_nic_load()
4287     * did not completed successfully - all resourses are released.
4288     */
4289    if ((sc->state == BXE_STATE_CLOSED) ||
4290        (sc->state == BXE_STATE_ERROR)) {
4291        return (0);
4292    }
4293
4294    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4295    mb();
4296
4297    /* stop tx */
4298    bxe_tx_disable(sc);
4299
4300    sc->rx_mode = BXE_RX_MODE_NONE;
4301    /* XXX set rx mode ??? */
4302
4303    if (IS_PF(sc) && !sc->grcdump_done) {
4304        /* set ALWAYS_ALIVE bit in shmem */
4305        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4306
4307        bxe_drv_pulse(sc);
4308
4309        bxe_stats_handle(sc, STATS_EVENT_STOP);
4310        bxe_save_statistics(sc);
4311    }
4312
4313    /* wait till consumers catch up with producers in all queues */
4314    bxe_drain_tx_queues(sc);
4315
4316    /* if VF indicate to PF this function is going down (PF will delete sp
4317     * elements and clear initializations
4318     */
4319    if (IS_VF(sc)) {
4320        ; /* bxe_vfpf_close_vf(sc); */
4321    } else if (unload_mode != UNLOAD_RECOVERY) {
4322        /* if this is a normal/close unload need to clean up chip */
4323        if (!sc->grcdump_done)
4324            bxe_chip_cleanup(sc, unload_mode, keep_link);
4325    } else {
4326        /* Send the UNLOAD_REQUEST to the MCP */
4327        bxe_send_unload_req(sc, unload_mode);
4328
4329        /*
4330         * Prevent transactions to host from the functions on the
4331         * engine that doesn't reset global blocks in case of global
4332         * attention once gloabl blocks are reset and gates are opened
4333         * (the engine which leader will perform the recovery
4334         * last).
4335         */
4336        if (!CHIP_IS_E1x(sc)) {
4337            bxe_pf_disable(sc);
4338        }
4339
4340        /* disable HW interrupts */
4341        bxe_int_disable_sync(sc, TRUE);
4342
4343        /* detach interrupts */
4344        bxe_interrupt_detach(sc);
4345
4346        /* Report UNLOAD_DONE to MCP */
4347        bxe_send_unload_done(sc, FALSE);
4348    }
4349
4350    /*
4351     * At this stage no more interrupts will arrive so we may safely clean
4352     * the queue'able objects here in case they failed to get cleaned so far.
4353     */
4354    if (IS_PF(sc)) {
4355        bxe_squeeze_objects(sc);
4356    }
4357
4358    /* There should be no more pending SP commands at this stage */
4359    sc->sp_state = 0;
4360
4361    sc->port.pmf = 0;
4362
4363    bxe_free_fp_buffers(sc);
4364
4365    if (IS_PF(sc)) {
4366        bxe_free_mem(sc);
4367    }
4368
4369    bxe_free_fw_stats_mem(sc);
4370
4371    sc->state = BXE_STATE_CLOSED;
4372
4373    /*
4374     * Check if there are pending parity attentions. If there are - set
4375     * RECOVERY_IN_PROGRESS.
4376     */
4377    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4378        bxe_set_reset_in_progress(sc);
4379
4380        /* Set RESET_IS_GLOBAL if needed */
4381        if (global) {
4382            bxe_set_reset_global(sc);
4383        }
4384    }
4385
4386    /*
4387     * The last driver must disable a "close the gate" if there is no
4388     * parity attention or "process kill" pending.
4389     */
4390    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4391        bxe_reset_is_done(sc, SC_PATH(sc))) {
4392        bxe_disable_close_the_gate(sc);
4393    }
4394
4395    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4396
4397    return (0);
4398}
4399
4400/*
4401 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4402 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4403 */
4404static int
4405bxe_ifmedia_update(struct ifnet  *ifp)
4406{
4407    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4408    struct ifmedia *ifm;
4409
4410    ifm = &sc->ifmedia;
4411
4412    /* We only support Ethernet media type. */
4413    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4414        return (EINVAL);
4415    }
4416
4417    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4418    case IFM_AUTO:
4419         break;
4420    case IFM_10G_CX4:
4421    case IFM_10G_SR:
4422    case IFM_10G_T:
4423    case IFM_10G_TWINAX:
4424    default:
4425        /* We don't support changing the media type. */
4426        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4427              IFM_SUBTYPE(ifm->ifm_media));
4428        return (EINVAL);
4429    }
4430
4431    return (0);
4432}
4433
4434/*
4435 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4436 */
4437static void
4438bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4439{
4440    struct bxe_softc *sc = if_getsoftc(ifp);
4441
4442    /* Report link down if the driver isn't running. */
4443    if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4444        ifmr->ifm_active |= IFM_NONE;
4445        return;
4446    }
4447
4448    /* Setup the default interface info. */
4449    ifmr->ifm_status = IFM_AVALID;
4450    ifmr->ifm_active = IFM_ETHER;
4451
4452    if (sc->link_vars.link_up) {
4453        ifmr->ifm_status |= IFM_ACTIVE;
4454    } else {
4455        ifmr->ifm_active |= IFM_NONE;
4456        return;
4457    }
4458
4459    ifmr->ifm_active |= sc->media;
4460
4461    if (sc->link_vars.duplex == DUPLEX_FULL) {
4462        ifmr->ifm_active |= IFM_FDX;
4463    } else {
4464        ifmr->ifm_active |= IFM_HDX;
4465    }
4466}
4467
4468static void
4469bxe_handle_chip_tq(void *context,
4470                   int  pending)
4471{
4472    struct bxe_softc *sc = (struct bxe_softc *)context;
4473    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4474
4475    switch (work)
4476    {
4477
4478    case CHIP_TQ_REINIT:
4479        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4480            /* restart the interface */
4481            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4482            bxe_periodic_stop(sc);
4483            BXE_CORE_LOCK(sc);
4484            bxe_stop_locked(sc);
4485            bxe_init_locked(sc);
4486            BXE_CORE_UNLOCK(sc);
4487        }
4488        break;
4489
4490    default:
4491        break;
4492    }
4493}
4494
4495/*
4496 * Handles any IOCTL calls from the operating system.
4497 *
4498 * Returns:
4499 *   0 = Success, >0 Failure
4500 */
4501static int
4502bxe_ioctl(if_t ifp,
4503          u_long       command,
4504          caddr_t      data)
4505{
4506    struct bxe_softc *sc = if_getsoftc(ifp);
4507    struct ifreq *ifr = (struct ifreq *)data;
4508    int mask = 0;
4509    int reinit = 0;
4510    int error = 0;
4511
4512    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4513    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4514
4515    switch (command)
4516    {
4517    case SIOCSIFMTU:
4518        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4519              ifr->ifr_mtu);
4520
4521        if (sc->mtu == ifr->ifr_mtu) {
4522            /* nothing to change */
4523            break;
4524        }
4525
4526        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4527            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4528                  ifr->ifr_mtu, mtu_min, mtu_max);
4529            error = EINVAL;
4530            break;
4531        }
4532
4533        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4534                             (unsigned long)ifr->ifr_mtu);
4535	/*
4536        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4537                              (unsigned long)ifr->ifr_mtu);
4538	XXX - Not sure why it needs to be atomic
4539	*/
4540	if_setmtu(ifp, ifr->ifr_mtu);
4541        reinit = 1;
4542        break;
4543
4544    case SIOCSIFFLAGS:
4545        /* toggle the interface state up or down */
4546        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4547
4548	BXE_CORE_LOCK(sc);
4549        /* check if the interface is up */
4550        if (if_getflags(ifp) & IFF_UP) {
4551            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4552                /* set the receive mode flags */
4553                bxe_set_rx_mode(sc);
4554            } else if(sc->state != BXE_STATE_DISABLED) {
4555		bxe_init_locked(sc);
4556            }
4557        } else {
4558            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4559		bxe_periodic_stop(sc);
4560		bxe_stop_locked(sc);
4561            }
4562        }
4563	BXE_CORE_UNLOCK(sc);
4564
4565        break;
4566
4567    case SIOCADDMULTI:
4568    case SIOCDELMULTI:
4569        /* add/delete multicast addresses */
4570        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4571
4572        /* check if the interface is up */
4573        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4574            /* set the receive mode flags */
4575	    BXE_CORE_LOCK(sc);
4576            bxe_set_rx_mode(sc);
4577	    BXE_CORE_UNLOCK(sc);
4578        }
4579
4580        break;
4581
4582    case SIOCSIFCAP:
4583        /* find out which capabilities have changed */
4584        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4585
4586        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4587              mask);
4588
4589        /* toggle the LRO capabilites enable flag */
4590        if (mask & IFCAP_LRO) {
4591	    if_togglecapenable(ifp, IFCAP_LRO);
4592            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4593                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4594            reinit = 1;
4595        }
4596
4597        /* toggle the TXCSUM checksum capabilites enable flag */
4598        if (mask & IFCAP_TXCSUM) {
4599	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4600            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4601                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4602            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4603                if_sethwassistbits(ifp, (CSUM_IP      |
4604                                    CSUM_TCP      |
4605                                    CSUM_UDP      |
4606                                    CSUM_TSO      |
4607                                    CSUM_TCP_IPV6 |
4608                                    CSUM_UDP_IPV6), 0);
4609            } else {
4610		if_clearhwassist(ifp); /* XXX */
4611            }
4612        }
4613
4614        /* toggle the RXCSUM checksum capabilities enable flag */
4615        if (mask & IFCAP_RXCSUM) {
4616	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4617            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4618                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4619            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4620                if_sethwassistbits(ifp, (CSUM_IP      |
4621                                    CSUM_TCP      |
4622                                    CSUM_UDP      |
4623                                    CSUM_TSO      |
4624                                    CSUM_TCP_IPV6 |
4625                                    CSUM_UDP_IPV6), 0);
4626            } else {
4627		if_clearhwassist(ifp); /* XXX */
4628            }
4629        }
4630
4631        /* toggle TSO4 capabilities enabled flag */
4632        if (mask & IFCAP_TSO4) {
4633            if_togglecapenable(ifp, IFCAP_TSO4);
4634            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4635                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4636        }
4637
4638        /* toggle TSO6 capabilities enabled flag */
4639        if (mask & IFCAP_TSO6) {
4640	    if_togglecapenable(ifp, IFCAP_TSO6);
4641            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4642                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4643        }
4644
4645        /* toggle VLAN_HWTSO capabilities enabled flag */
4646        if (mask & IFCAP_VLAN_HWTSO) {
4647
4648	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4649            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4650                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4651        }
4652
4653        /* toggle VLAN_HWCSUM capabilities enabled flag */
4654        if (mask & IFCAP_VLAN_HWCSUM) {
4655            /* XXX investigate this... */
4656            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4657            error = EINVAL;
4658        }
4659
4660        /* toggle VLAN_MTU capabilities enable flag */
4661        if (mask & IFCAP_VLAN_MTU) {
4662            /* XXX investigate this... */
4663            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4664            error = EINVAL;
4665        }
4666
4667        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4668        if (mask & IFCAP_VLAN_HWTAGGING) {
4669            /* XXX investigate this... */
4670            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4671            error = EINVAL;
4672        }
4673
4674        /* toggle VLAN_HWFILTER capabilities enabled flag */
4675        if (mask & IFCAP_VLAN_HWFILTER) {
4676            /* XXX investigate this... */
4677            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4678            error = EINVAL;
4679        }
4680
4681        /* XXX not yet...
4682         * IFCAP_WOL_MAGIC
4683         */
4684
4685        break;
4686
4687    case SIOCSIFMEDIA:
4688    case SIOCGIFMEDIA:
4689        /* set/get interface media */
4690        BLOGD(sc, DBG_IOCTL,
4691              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4692              (command & 0xff));
4693        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4694        break;
4695
4696    default:
4697        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4698              (command & 0xff));
4699        error = ether_ioctl(ifp, command, data);
4700        break;
4701    }
4702
4703    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4704        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4705              "Re-initializing hardware from IOCTL change\n");
4706	bxe_periodic_stop(sc);
4707	BXE_CORE_LOCK(sc);
4708	bxe_stop_locked(sc);
4709	bxe_init_locked(sc);
4710	BXE_CORE_UNLOCK(sc);
4711    }
4712
4713    return (error);
4714}
4715
4716static __noinline void
4717bxe_dump_mbuf(struct bxe_softc *sc,
4718              struct mbuf      *m,
4719              uint8_t          contents)
4720{
4721    char * type;
4722    int i = 0;
4723
4724    if (!(sc->debug & DBG_MBUF)) {
4725        return;
4726    }
4727
4728    if (m == NULL) {
4729        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4730        return;
4731    }
4732
4733    while (m) {
4734
4735#if __FreeBSD_version >= 1000000
4736        BLOGD(sc, DBG_MBUF,
4737              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4738              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4739
4740        if (m->m_flags & M_PKTHDR) {
4741             BLOGD(sc, DBG_MBUF,
4742                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4743                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4744                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4745        }
4746#else
4747        BLOGD(sc, DBG_MBUF,
4748              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4749              i, m, m->m_len, m->m_flags,
4750              "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4751
4752        if (m->m_flags & M_PKTHDR) {
4753             BLOGD(sc, DBG_MBUF,
4754                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4755                   i, m->m_pkthdr.len, m->m_flags,
4756                   "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4757                   "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4758                   "\22M_PROMISC\23M_NOFREE",
4759                   (int)m->m_pkthdr.csum_flags,
4760                   "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4761                   "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4762                   "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4763                   "\14CSUM_PSEUDO_HDR");
4764        }
4765#endif /* #if __FreeBSD_version >= 1000000 */
4766
4767        if (m->m_flags & M_EXT) {
4768            switch (m->m_ext.ext_type) {
4769            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4770            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4771            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4772            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4773            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4774            case EXT_PACKET:     type = "EXT_PACKET";     break;
4775            case EXT_MBUF:       type = "EXT_MBUF";       break;
4776            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4777            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4778            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4779            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4780            default:             type = "UNKNOWN";        break;
4781            }
4782
4783            BLOGD(sc, DBG_MBUF,
4784                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
4785                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4786        }
4787
4788        if (contents) {
4789            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4790        }
4791
4792        m = m->m_next;
4793        i++;
4794    }
4795}
4796
4797/*
4798 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4799 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4800 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4801 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4802 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4803 */
4804static int
4805bxe_chktso_window(struct bxe_softc  *sc,
4806                  int               nsegs,
4807                  bus_dma_segment_t *segs,
4808                  struct mbuf       *m)
4809{
4810    uint32_t num_wnds, wnd_size, wnd_sum;
4811    int32_t frag_idx, wnd_idx;
4812    unsigned short lso_mss;
4813    int defrag;
4814
4815    defrag = 0;
4816    wnd_sum = 0;
4817    wnd_size = 10;
4818    num_wnds = nsegs - wnd_size;
4819    lso_mss = htole16(m->m_pkthdr.tso_segsz);
4820
4821    /*
4822     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4823     * first window sum of data while skipping the first assuming it is the
4824     * header in FreeBSD.
4825     */
4826    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4827        wnd_sum += htole16(segs[frag_idx].ds_len);
4828    }
4829
4830    /* check the first 10 bd window size */
4831    if (wnd_sum < lso_mss) {
4832        return (1);
4833    }
4834
4835    /* run through the windows */
4836    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4837        /* subtract the first mbuf->m_len of the last wndw(-header) */
4838        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4839        /* add the next mbuf len to the len of our new window */
4840        wnd_sum += htole16(segs[frag_idx].ds_len);
4841        if (wnd_sum < lso_mss) {
4842            return (1);
4843        }
4844    }
4845
4846    return (0);
4847}
4848
4849static uint8_t
4850bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4851                    struct mbuf         *m,
4852                    uint32_t            *parsing_data)
4853{
4854    struct ether_vlan_header *eh = NULL;
4855    struct ip *ip4 = NULL;
4856    struct ip6_hdr *ip6 = NULL;
4857    caddr_t ip = NULL;
4858    struct tcphdr *th = NULL;
4859    int e_hlen, ip_hlen, l4_off;
4860    uint16_t proto;
4861
4862    if (m->m_pkthdr.csum_flags == CSUM_IP) {
4863        /* no L4 checksum offload needed */
4864        return (0);
4865    }
4866
4867    /* get the Ethernet header */
4868    eh = mtod(m, struct ether_vlan_header *);
4869
4870    /* handle VLAN encapsulation if present */
4871    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4872        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4873        proto  = ntohs(eh->evl_proto);
4874    } else {
4875        e_hlen = ETHER_HDR_LEN;
4876        proto  = ntohs(eh->evl_encap_proto);
4877    }
4878
4879    switch (proto) {
4880    case ETHERTYPE_IP:
4881        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4882        ip4 = (m->m_len < sizeof(struct ip)) ?
4883                  (struct ip *)m->m_next->m_data :
4884                  (struct ip *)(m->m_data + e_hlen);
4885        /* ip_hl is number of 32-bit words */
4886        ip_hlen = (ip4->ip_hl << 2);
4887        ip = (caddr_t)ip4;
4888        break;
4889    case ETHERTYPE_IPV6:
4890        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4891        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4892                  (struct ip6_hdr *)m->m_next->m_data :
4893                  (struct ip6_hdr *)(m->m_data + e_hlen);
4894        /* XXX cannot support offload with IPv6 extensions */
4895        ip_hlen = sizeof(struct ip6_hdr);
4896        ip = (caddr_t)ip6;
4897        break;
4898    default:
4899        /* We can't offload in this case... */
4900        /* XXX error stat ??? */
4901        return (0);
4902    }
4903
4904    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4905    l4_off = (e_hlen + ip_hlen);
4906
4907    *parsing_data |=
4908        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4909         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4910
4911    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4912                                  CSUM_TSO |
4913                                  CSUM_TCP_IPV6)) {
4914        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4915        th = (struct tcphdr *)(ip + ip_hlen);
4916        /* th_off is number of 32-bit words */
4917        *parsing_data |= ((th->th_off <<
4918                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4919                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4920        return (l4_off + (th->th_off << 2)); /* entire header length */
4921    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4922                                         CSUM_UDP_IPV6)) {
4923        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4924        return (l4_off + sizeof(struct udphdr)); /* entire header length */
4925    } else {
4926        /* XXX error stat ??? */
4927        return (0);
4928    }
4929}
4930
4931static uint8_t
4932bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4933                 struct mbuf                *m,
4934                 struct eth_tx_parse_bd_e1x *pbd)
4935{
4936    struct ether_vlan_header *eh = NULL;
4937    struct ip *ip4 = NULL;
4938    struct ip6_hdr *ip6 = NULL;
4939    caddr_t ip = NULL;
4940    struct tcphdr *th = NULL;
4941    struct udphdr *uh = NULL;
4942    int e_hlen, ip_hlen;
4943    uint16_t proto;
4944    uint8_t hlen;
4945    uint16_t tmp_csum;
4946    uint32_t *tmp_uh;
4947
4948    /* get the Ethernet header */
4949    eh = mtod(m, struct ether_vlan_header *);
4950
4951    /* handle VLAN encapsulation if present */
4952    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4953        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4954        proto  = ntohs(eh->evl_proto);
4955    } else {
4956        e_hlen = ETHER_HDR_LEN;
4957        proto  = ntohs(eh->evl_encap_proto);
4958    }
4959
4960    switch (proto) {
4961    case ETHERTYPE_IP:
4962        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4963        ip4 = (m->m_len < sizeof(struct ip)) ?
4964                  (struct ip *)m->m_next->m_data :
4965                  (struct ip *)(m->m_data + e_hlen);
4966        /* ip_hl is number of 32-bit words */
4967        ip_hlen = (ip4->ip_hl << 1);
4968        ip = (caddr_t)ip4;
4969        break;
4970    case ETHERTYPE_IPV6:
4971        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4972        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4973                  (struct ip6_hdr *)m->m_next->m_data :
4974                  (struct ip6_hdr *)(m->m_data + e_hlen);
4975        /* XXX cannot support offload with IPv6 extensions */
4976        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4977        ip = (caddr_t)ip6;
4978        break;
4979    default:
4980        /* We can't offload in this case... */
4981        /* XXX error stat ??? */
4982        return (0);
4983    }
4984
4985    hlen = (e_hlen >> 1);
4986
4987    /* note that rest of global_data is indirectly zeroed here */
4988    if (m->m_flags & M_VLANTAG) {
4989        pbd->global_data =
4990            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4991    } else {
4992        pbd->global_data = htole16(hlen);
4993    }
4994
4995    pbd->ip_hlen_w = ip_hlen;
4996
4997    hlen += pbd->ip_hlen_w;
4998
4999    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5000
5001    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5002                                  CSUM_TSO |
5003                                  CSUM_TCP_IPV6)) {
5004        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5005        /* th_off is number of 32-bit words */
5006        hlen += (uint16_t)(th->th_off << 1);
5007    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5008                                         CSUM_UDP_IPV6)) {
5009        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5010        hlen += (sizeof(struct udphdr) / 2);
5011    } else {
5012        /* valid case as only CSUM_IP was set */
5013        return (0);
5014    }
5015
5016    pbd->total_hlen_w = htole16(hlen);
5017
5018    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5019                                  CSUM_TSO |
5020                                  CSUM_TCP_IPV6)) {
5021        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5022        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5023    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5024                                         CSUM_UDP_IPV6)) {
5025        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5026
5027        /*
5028         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5029         * checksums and does not know anything about the UDP header and where
5030         * the checksum field is located. It only knows about TCP. Therefore
5031         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5032         * offload. Since the checksum field offset for TCP is 16 bytes and
5033         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5034         * bytes less than the start of the UDP header. This allows the
5035         * hardware to write the checksum in the correct spot. But the
5036         * hardware will compute a checksum which includes the last 10 bytes
5037         * of the IP header. To correct this we tweak the stack computed
5038         * pseudo checksum by folding in the calculation of the inverse
5039         * checksum for those final 10 bytes of the IP header. This allows
5040         * the correct checksum to be computed by the hardware.
5041         */
5042
5043        /* set pointer 10 bytes before UDP header */
5044        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5045
5046        /* calculate a pseudo header checksum over the first 10 bytes */
5047        tmp_csum = in_pseudo(*tmp_uh,
5048                             *(tmp_uh + 1),
5049                             *(uint16_t *)(tmp_uh + 2));
5050
5051        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5052    }
5053
5054    return (hlen * 2); /* entire header length, number of bytes */
5055}
5056
5057static void
5058bxe_set_pbd_lso_e2(struct mbuf *m,
5059                   uint32_t    *parsing_data)
5060{
5061    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5062                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5063                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5064
5065    /* XXX test for IPv6 with extension header... */
5066}
5067
5068static void
5069bxe_set_pbd_lso(struct mbuf                *m,
5070                struct eth_tx_parse_bd_e1x *pbd)
5071{
5072    struct ether_vlan_header *eh = NULL;
5073    struct ip *ip = NULL;
5074    struct tcphdr *th = NULL;
5075    int e_hlen;
5076
5077    /* get the Ethernet header */
5078    eh = mtod(m, struct ether_vlan_header *);
5079
5080    /* handle VLAN encapsulation if present */
5081    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5082                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5083
5084    /* get the IP and TCP header, with LSO entire header in first mbuf */
5085    /* XXX assuming IPv4 */
5086    ip = (struct ip *)(m->m_data + e_hlen);
5087    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5088
5089    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5090    pbd->tcp_send_seq = ntohl(th->th_seq);
5091    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5092
5093#if 1
5094        /* XXX IPv4 */
5095        pbd->ip_id = ntohs(ip->ip_id);
5096        pbd->tcp_pseudo_csum =
5097            ntohs(in_pseudo(ip->ip_src.s_addr,
5098                            ip->ip_dst.s_addr,
5099                            htons(IPPROTO_TCP)));
5100#else
5101        /* XXX IPv6 */
5102        pbd->tcp_pseudo_csum =
5103            ntohs(in_pseudo(&ip6->ip6_src,
5104                            &ip6->ip6_dst,
5105                            htons(IPPROTO_TCP)));
5106#endif
5107
5108    pbd->global_data |=
5109        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5110}
5111
5112/*
5113 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5114 * visible to the controller.
5115 *
5116 * If an mbuf is submitted to this routine and cannot be given to the
5117 * controller (e.g. it has too many fragments) then the function may free
5118 * the mbuf and return to the caller.
5119 *
5120 * Returns:
5121 *   0 = Success, !0 = Failure
5122 *   Note the side effect that an mbuf may be freed if it causes a problem.
5123 */
5124static int
5125bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5126{
5127    bus_dma_segment_t segs[32];
5128    struct mbuf *m0;
5129    struct bxe_sw_tx_bd *tx_buf;
5130    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5131    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5132    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5133    struct eth_tx_bd *tx_data_bd;
5134    struct eth_tx_bd *tx_total_pkt_size_bd;
5135    struct eth_tx_start_bd *tx_start_bd;
5136    uint16_t bd_prod, pkt_prod, total_pkt_size;
5137    uint8_t mac_type;
5138    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5139    struct bxe_softc *sc;
5140    uint16_t tx_bd_avail;
5141    struct ether_vlan_header *eh;
5142    uint32_t pbd_e2_parsing_data = 0;
5143    uint8_t hlen = 0;
5144    int tmp_bd;
5145    int i;
5146
5147    sc = fp->sc;
5148
5149#if __FreeBSD_version >= 800000
5150    M_ASSERTPKTHDR(*m_head);
5151#endif /* #if __FreeBSD_version >= 800000 */
5152
5153    m0 = *m_head;
5154    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5155    tx_start_bd = NULL;
5156    tx_data_bd = NULL;
5157    tx_total_pkt_size_bd = NULL;
5158
5159    /* get the H/W pointer for packets and BDs */
5160    pkt_prod = fp->tx_pkt_prod;
5161    bd_prod = fp->tx_bd_prod;
5162
5163    mac_type = UNICAST_ADDRESS;
5164
5165    /* map the mbuf into the next open DMAable memory */
5166    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5167    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5168                                    tx_buf->m_map, m0,
5169                                    segs, &nsegs, BUS_DMA_NOWAIT);
5170
5171    /* mapping errors */
5172    if(__predict_false(error != 0)) {
5173        fp->eth_q_stats.tx_dma_mapping_failure++;
5174        if (error == ENOMEM) {
5175            /* resource issue, try again later */
5176            rc = ENOMEM;
5177        } else if (error == EFBIG) {
5178            /* possibly recoverable with defragmentation */
5179            fp->eth_q_stats.mbuf_defrag_attempts++;
5180            m0 = m_defrag(*m_head, M_NOWAIT);
5181            if (m0 == NULL) {
5182                fp->eth_q_stats.mbuf_defrag_failures++;
5183                rc = ENOBUFS;
5184            } else {
5185                /* defrag successful, try mapping again */
5186                *m_head = m0;
5187                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5188                                                tx_buf->m_map, m0,
5189                                                segs, &nsegs, BUS_DMA_NOWAIT);
5190                if (error) {
5191                    fp->eth_q_stats.tx_dma_mapping_failure++;
5192                    rc = error;
5193                }
5194            }
5195        } else {
5196            /* unknown, unrecoverable mapping error */
5197            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5198            bxe_dump_mbuf(sc, m0, FALSE);
5199            rc = error;
5200        }
5201
5202        goto bxe_tx_encap_continue;
5203    }
5204
5205    tx_bd_avail = bxe_tx_avail(sc, fp);
5206
5207    /* make sure there is enough room in the send queue */
5208    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5209        /* Recoverable, try again later. */
5210        fp->eth_q_stats.tx_hw_queue_full++;
5211        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5212        rc = ENOMEM;
5213        goto bxe_tx_encap_continue;
5214    }
5215
5216    /* capture the current H/W TX chain high watermark */
5217    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5218                        (TX_BD_USABLE - tx_bd_avail))) {
5219        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5220    }
5221
5222    /* make sure it fits in the packet window */
5223    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5224        /*
5225         * The mbuf may be to big for the controller to handle. If the frame
5226         * is a TSO frame we'll need to do an additional check.
5227         */
5228        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5229            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5230                goto bxe_tx_encap_continue; /* OK to send */
5231            } else {
5232                fp->eth_q_stats.tx_window_violation_tso++;
5233            }
5234        } else {
5235            fp->eth_q_stats.tx_window_violation_std++;
5236        }
5237
5238        /* lets try to defragment this mbuf and remap it */
5239        fp->eth_q_stats.mbuf_defrag_attempts++;
5240        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5241
5242        m0 = m_defrag(*m_head, M_NOWAIT);
5243        if (m0 == NULL) {
5244            fp->eth_q_stats.mbuf_defrag_failures++;
5245            /* Ugh, just drop the frame... :( */
5246            rc = ENOBUFS;
5247        } else {
5248            /* defrag successful, try mapping again */
5249            *m_head = m0;
5250            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5251                                            tx_buf->m_map, m0,
5252                                            segs, &nsegs, BUS_DMA_NOWAIT);
5253            if (error) {
5254                fp->eth_q_stats.tx_dma_mapping_failure++;
5255                /* No sense in trying to defrag/copy chain, drop it. :( */
5256                rc = error;
5257            } else {
5258               /* if the chain is still too long then drop it */
5259                if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5260                    /*
5261                     * in case TSO is enabled nsegs should be checked against
5262                     * BXE_TSO_MAX_SEGMENTS
5263                     */
5264                    if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5265                        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5266                        fp->eth_q_stats.nsegs_path1_errors++;
5267                        rc = ENODEV;
5268                    }
5269                } else {
5270                    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5271                        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5272                        fp->eth_q_stats.nsegs_path2_errors++;
5273                        rc = ENODEV;
5274                    }
5275                }
5276            }
5277        }
5278    }
5279
5280bxe_tx_encap_continue:
5281
5282    /* Check for errors */
5283    if (rc) {
5284        if (rc == ENOMEM) {
5285            /* recoverable try again later  */
5286        } else {
5287            fp->eth_q_stats.tx_soft_errors++;
5288            fp->eth_q_stats.mbuf_alloc_tx--;
5289            m_freem(*m_head);
5290            *m_head = NULL;
5291        }
5292
5293        return (rc);
5294    }
5295
5296    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5297    if (m0->m_flags & M_BCAST) {
5298        mac_type = BROADCAST_ADDRESS;
5299    } else if (m0->m_flags & M_MCAST) {
5300        mac_type = MULTICAST_ADDRESS;
5301    }
5302
5303    /* store the mbuf into the mbuf ring */
5304    tx_buf->m        = m0;
5305    tx_buf->first_bd = fp->tx_bd_prod;
5306    tx_buf->flags    = 0;
5307
5308    /* prepare the first transmit (start) BD for the mbuf */
5309    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5310
5311    BLOGD(sc, DBG_TX,
5312          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5313          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5314
5315    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5316    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5317    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5318    total_pkt_size += tx_start_bd->nbytes;
5319    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5320
5321    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5322
5323    /* all frames have at least Start BD + Parsing BD */
5324    nbds = nsegs + 1;
5325    tx_start_bd->nbd = htole16(nbds);
5326
5327    if (m0->m_flags & M_VLANTAG) {
5328        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5329        tx_start_bd->bd_flags.as_bitfield |=
5330            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5331    } else {
5332        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5333        if (IS_VF(sc)) {
5334            /* map ethernet header to find type and header length */
5335            eh = mtod(m0, struct ether_vlan_header *);
5336            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5337        } else {
5338            /* used by FW for packet accounting */
5339            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5340        }
5341    }
5342
5343    /*
5344     * add a parsing BD from the chain. The parsing BD is always added
5345     * though it is only used for TSO and chksum
5346     */
5347    bd_prod = TX_BD_NEXT(bd_prod);
5348
5349    if (m0->m_pkthdr.csum_flags) {
5350        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5351            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5352            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5353        }
5354
5355        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5356            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5357                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5358        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5359            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5360                                                  ETH_TX_BD_FLAGS_IS_UDP |
5361                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5362        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5363                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5364            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5365        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5366            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5367                                                  ETH_TX_BD_FLAGS_IS_UDP);
5368        }
5369    }
5370
5371    if (!CHIP_IS_E1x(sc)) {
5372        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5373        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5374
5375        if (m0->m_pkthdr.csum_flags) {
5376            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5377        }
5378
5379        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5380                 mac_type);
5381    } else {
5382        uint16_t global_data = 0;
5383
5384        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5385        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5386
5387        if (m0->m_pkthdr.csum_flags) {
5388            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5389        }
5390
5391        SET_FLAG(global_data,
5392                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5393        pbd_e1x->global_data |= htole16(global_data);
5394    }
5395
5396    /* setup the parsing BD with TSO specific info */
5397    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5398        fp->eth_q_stats.tx_ofld_frames_lso++;
5399        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5400
5401        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5402            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5403
5404            /* split the first BD into header/data making the fw job easy */
5405            nbds++;
5406            tx_start_bd->nbd = htole16(nbds);
5407            tx_start_bd->nbytes = htole16(hlen);
5408
5409            bd_prod = TX_BD_NEXT(bd_prod);
5410
5411            /* new transmit BD after the tx_parse_bd */
5412            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5413            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5414            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5415            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5416            if (tx_total_pkt_size_bd == NULL) {
5417                tx_total_pkt_size_bd = tx_data_bd;
5418            }
5419
5420            BLOGD(sc, DBG_TX,
5421                  "TSO split header size is %d (%x:%x) nbds %d\n",
5422                  le16toh(tx_start_bd->nbytes),
5423                  le32toh(tx_start_bd->addr_hi),
5424                  le32toh(tx_start_bd->addr_lo),
5425                  nbds);
5426        }
5427
5428        if (!CHIP_IS_E1x(sc)) {
5429            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5430        } else {
5431            bxe_set_pbd_lso(m0, pbd_e1x);
5432        }
5433    }
5434
5435    if (pbd_e2_parsing_data) {
5436        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5437    }
5438
5439    /* prepare remaining BDs, start tx bd contains first seg/frag */
5440    for (i = 1; i < nsegs ; i++) {
5441        bd_prod = TX_BD_NEXT(bd_prod);
5442        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5443        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5444        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5445        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5446        if (tx_total_pkt_size_bd == NULL) {
5447            tx_total_pkt_size_bd = tx_data_bd;
5448        }
5449        total_pkt_size += tx_data_bd->nbytes;
5450    }
5451
5452    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5453
5454    if (tx_total_pkt_size_bd != NULL) {
5455        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5456    }
5457
5458    if (__predict_false(sc->debug & DBG_TX)) {
5459        tmp_bd = tx_buf->first_bd;
5460        for (i = 0; i < nbds; i++)
5461        {
5462            if (i == 0) {
5463                BLOGD(sc, DBG_TX,
5464                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5465                      "bd_flags=0x%x hdr_nbds=%d\n",
5466                      tx_start_bd,
5467                      tmp_bd,
5468                      le16toh(tx_start_bd->nbd),
5469                      le16toh(tx_start_bd->vlan_or_ethertype),
5470                      tx_start_bd->bd_flags.as_bitfield,
5471                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5472            } else if (i == 1) {
5473                if (pbd_e1x) {
5474                    BLOGD(sc, DBG_TX,
5475                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5476                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5477                          "tcp_seq=%u total_hlen_w=%u\n",
5478                          pbd_e1x,
5479                          tmp_bd,
5480                          pbd_e1x->global_data,
5481                          pbd_e1x->ip_hlen_w,
5482                          pbd_e1x->ip_id,
5483                          pbd_e1x->lso_mss,
5484                          pbd_e1x->tcp_flags,
5485                          pbd_e1x->tcp_pseudo_csum,
5486                          pbd_e1x->tcp_send_seq,
5487                          le16toh(pbd_e1x->total_hlen_w));
5488                } else { /* if (pbd_e2) */
5489                    BLOGD(sc, DBG_TX,
5490                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5491                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5492                          pbd_e2,
5493                          tmp_bd,
5494                          pbd_e2->data.mac_addr.dst_hi,
5495                          pbd_e2->data.mac_addr.dst_mid,
5496                          pbd_e2->data.mac_addr.dst_lo,
5497                          pbd_e2->data.mac_addr.src_hi,
5498                          pbd_e2->data.mac_addr.src_mid,
5499                          pbd_e2->data.mac_addr.src_lo,
5500                          pbd_e2->parsing_data);
5501                }
5502            }
5503
5504            if (i != 1) { /* skip parse db as it doesn't hold data */
5505                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5506                BLOGD(sc, DBG_TX,
5507                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5508                      tx_data_bd,
5509                      tmp_bd,
5510                      le16toh(tx_data_bd->nbytes),
5511                      le32toh(tx_data_bd->addr_hi),
5512                      le32toh(tx_data_bd->addr_lo));
5513            }
5514
5515            tmp_bd = TX_BD_NEXT(tmp_bd);
5516        }
5517    }
5518
5519    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5520
5521    /* update TX BD producer index value for next TX */
5522    bd_prod = TX_BD_NEXT(bd_prod);
5523
5524    /*
5525     * If the chain of tx_bd's describing this frame is adjacent to or spans
5526     * an eth_tx_next_bd element then we need to increment the nbds value.
5527     */
5528    if (TX_BD_IDX(bd_prod) < nbds) {
5529        nbds++;
5530    }
5531
5532    /* don't allow reordering of writes for nbd and packets */
5533    mb();
5534
5535    fp->tx_db.data.prod += nbds;
5536
5537    /* producer points to the next free tx_bd at this point */
5538    fp->tx_pkt_prod++;
5539    fp->tx_bd_prod = bd_prod;
5540
5541    DOORBELL(sc, fp->index, fp->tx_db.raw);
5542
5543    fp->eth_q_stats.tx_pkts++;
5544
5545    /* Prevent speculative reads from getting ahead of the status block. */
5546    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5547                      0, 0, BUS_SPACE_BARRIER_READ);
5548
5549    /* Prevent speculative reads from getting ahead of the doorbell. */
5550    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5551                      0, 0, BUS_SPACE_BARRIER_READ);
5552
5553    return (0);
5554}
5555
5556static void
5557bxe_tx_start_locked(struct bxe_softc *sc,
5558                    if_t ifp,
5559                    struct bxe_fastpath *fp)
5560{
5561    struct mbuf *m = NULL;
5562    int tx_count = 0;
5563    uint16_t tx_bd_avail;
5564
5565    BXE_FP_TX_LOCK_ASSERT(fp);
5566
5567    /* keep adding entries while there are frames to send */
5568    while (!if_sendq_empty(ifp)) {
5569
5570        /*
5571         * check for any frames to send
5572         * dequeue can still be NULL even if queue is not empty
5573         */
5574        m = if_dequeue(ifp);
5575        if (__predict_false(m == NULL)) {
5576            break;
5577        }
5578
5579        /* the mbuf now belongs to us */
5580        fp->eth_q_stats.mbuf_alloc_tx++;
5581
5582        /*
5583         * Put the frame into the transmit ring. If we don't have room,
5584         * place the mbuf back at the head of the TX queue, set the
5585         * OACTIVE flag, and wait for the NIC to drain the chain.
5586         */
5587        if (__predict_false(bxe_tx_encap(fp, &m))) {
5588            fp->eth_q_stats.tx_encap_failures++;
5589            if (m != NULL) {
5590                /* mark the TX queue as full and return the frame */
5591                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5592		if_sendq_prepend(ifp, m);
5593                fp->eth_q_stats.mbuf_alloc_tx--;
5594                fp->eth_q_stats.tx_queue_xoff++;
5595            }
5596
5597            /* stop looking for more work */
5598            break;
5599        }
5600
5601        /* the frame was enqueued successfully */
5602        tx_count++;
5603
5604        /* send a copy of the frame to any BPF listeners. */
5605        if_etherbpfmtap(ifp, m);
5606
5607        tx_bd_avail = bxe_tx_avail(sc, fp);
5608
5609        /* handle any completions if we're running low */
5610        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5611            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5612            bxe_txeof(sc, fp);
5613            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5614                break;
5615            }
5616        }
5617    }
5618
5619    /* all TX packets were dequeued and/or the tx ring is full */
5620    if (tx_count > 0) {
5621        /* reset the TX watchdog timeout timer */
5622        fp->watchdog_timer = BXE_TX_TIMEOUT;
5623    }
5624}
5625
5626/* Legacy (non-RSS) dispatch routine */
5627static void
5628bxe_tx_start(if_t ifp)
5629{
5630    struct bxe_softc *sc;
5631    struct bxe_fastpath *fp;
5632
5633    sc = if_getsoftc(ifp);
5634
5635    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5636        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5637        return;
5638    }
5639
5640    if (!sc->link_vars.link_up) {
5641        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5642        return;
5643    }
5644
5645    fp = &sc->fp[0];
5646
5647    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5648        fp->eth_q_stats.tx_queue_full_return++;
5649        return;
5650    }
5651
5652    BXE_FP_TX_LOCK(fp);
5653    bxe_tx_start_locked(sc, ifp, fp);
5654    BXE_FP_TX_UNLOCK(fp);
5655}
5656
5657#if __FreeBSD_version >= 901504
5658
5659static int
5660bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5661                       if_t                ifp,
5662                       struct bxe_fastpath *fp,
5663                       struct mbuf         *m)
5664{
5665    struct buf_ring *tx_br = fp->tx_br;
5666    struct mbuf *next;
5667    int depth, rc, tx_count;
5668    uint16_t tx_bd_avail;
5669
5670    rc = tx_count = 0;
5671
5672    BXE_FP_TX_LOCK_ASSERT(fp);
5673
5674    if (sc->state != BXE_STATE_OPEN)  {
5675        fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5676        return ENETDOWN;
5677    }
5678
5679    if (!tx_br) {
5680        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5681        return (EINVAL);
5682    }
5683
5684    if (m != NULL) {
5685        rc = drbr_enqueue(ifp, tx_br, m);
5686        if (rc != 0) {
5687            fp->eth_q_stats.tx_soft_errors++;
5688            goto bxe_tx_mq_start_locked_exit;
5689        }
5690    }
5691
5692    if (!sc->link_vars.link_up || !(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5693        fp->eth_q_stats.tx_request_link_down_failures++;
5694        goto bxe_tx_mq_start_locked_exit;
5695    }
5696
5697    /* fetch the depth of the driver queue */
5698    depth = drbr_inuse_drv(ifp, tx_br);
5699    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5700        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5701    }
5702
5703    /* keep adding entries while there are frames to send */
5704    while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5705        /* handle any completions if we're running low */
5706        tx_bd_avail = bxe_tx_avail(sc, fp);
5707        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5708            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5709            bxe_txeof(sc, fp);
5710            tx_bd_avail = bxe_tx_avail(sc, fp);
5711            if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5712                fp->eth_q_stats.bd_avail_too_less_failures++;
5713                m_freem(next);
5714                drbr_advance(ifp, tx_br);
5715                rc = ENOBUFS;
5716                break;
5717            }
5718        }
5719
5720        /* the mbuf now belongs to us */
5721        fp->eth_q_stats.mbuf_alloc_tx++;
5722
5723        /*
5724         * Put the frame into the transmit ring. If we don't have room,
5725         * place the mbuf back at the head of the TX queue, set the
5726         * OACTIVE flag, and wait for the NIC to drain the chain.
5727         */
5728        rc = bxe_tx_encap(fp, &next);
5729        if (__predict_false(rc != 0)) {
5730            fp->eth_q_stats.tx_encap_failures++;
5731            if (next != NULL) {
5732                /* mark the TX queue as full and save the frame */
5733                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5734                drbr_putback(ifp, tx_br, next);
5735                fp->eth_q_stats.mbuf_alloc_tx--;
5736                fp->eth_q_stats.tx_frames_deferred++;
5737            } else
5738                drbr_advance(ifp, tx_br);
5739
5740            /* stop looking for more work */
5741            break;
5742        }
5743
5744        /* the transmit frame was enqueued successfully */
5745        tx_count++;
5746
5747        /* send a copy of the frame to any BPF listeners */
5748	if_etherbpfmtap(ifp, next);
5749
5750        drbr_advance(ifp, tx_br);
5751    }
5752
5753    /* all TX packets were dequeued and/or the tx ring is full */
5754    if (tx_count > 0) {
5755        /* reset the TX watchdog timeout timer */
5756        fp->watchdog_timer = BXE_TX_TIMEOUT;
5757    }
5758
5759bxe_tx_mq_start_locked_exit:
5760    /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5761    if (!drbr_empty(ifp, tx_br)) {
5762        fp->eth_q_stats.tx_mq_not_empty++;
5763        taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5764    }
5765
5766    return (rc);
5767}
5768
5769static void
5770bxe_tx_mq_start_deferred(void *arg,
5771                         int pending)
5772{
5773    struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5774    struct bxe_softc *sc = fp->sc;
5775    if_t ifp = sc->ifp;
5776
5777    BXE_FP_TX_LOCK(fp);
5778    bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5779    BXE_FP_TX_UNLOCK(fp);
5780}
5781
5782/* Multiqueue (TSS) dispatch routine. */
5783static int
5784bxe_tx_mq_start(struct ifnet *ifp,
5785                struct mbuf  *m)
5786{
5787    struct bxe_softc *sc = if_getsoftc(ifp);
5788    struct bxe_fastpath *fp;
5789    int fp_index, rc;
5790
5791    fp_index = 0; /* default is the first queue */
5792
5793    /* check if flowid is set */
5794
5795    if (BXE_VALID_FLOWID(m))
5796        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5797
5798    fp = &sc->fp[fp_index];
5799
5800    if (sc->state != BXE_STATE_OPEN)  {
5801        fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5802        return ENETDOWN;
5803    }
5804
5805    if (BXE_FP_TX_TRYLOCK(fp)) {
5806        rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5807        BXE_FP_TX_UNLOCK(fp);
5808    } else {
5809        rc = drbr_enqueue(ifp, fp->tx_br, m);
5810        taskqueue_enqueue(fp->tq, &fp->tx_task);
5811    }
5812
5813    return (rc);
5814}
5815
5816static void
5817bxe_mq_flush(struct ifnet *ifp)
5818{
5819    struct bxe_softc *sc = if_getsoftc(ifp);
5820    struct bxe_fastpath *fp;
5821    struct mbuf *m;
5822    int i;
5823
5824    for (i = 0; i < sc->num_queues; i++) {
5825        fp = &sc->fp[i];
5826
5827        if (fp->state != BXE_FP_STATE_IRQ) {
5828            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5829                  fp->index, fp->state);
5830            continue;
5831        }
5832
5833        if (fp->tx_br != NULL) {
5834            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5835            BXE_FP_TX_LOCK(fp);
5836            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5837                m_freem(m);
5838            }
5839            BXE_FP_TX_UNLOCK(fp);
5840        }
5841    }
5842
5843    if_qflush(ifp);
5844}
5845
5846#endif /* FreeBSD_version >= 901504 */
5847
5848static uint16_t
5849bxe_cid_ilt_lines(struct bxe_softc *sc)
5850{
5851    if (IS_SRIOV(sc)) {
5852        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5853    }
5854    return (L2_ILT_LINES(sc));
5855}
5856
5857static void
5858bxe_ilt_set_info(struct bxe_softc *sc)
5859{
5860    struct ilt_client_info *ilt_client;
5861    struct ecore_ilt *ilt = sc->ilt;
5862    uint16_t line = 0;
5863
5864    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5865    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5866
5867    /* CDU */
5868    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5869    ilt_client->client_num = ILT_CLIENT_CDU;
5870    ilt_client->page_size = CDU_ILT_PAGE_SZ;
5871    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5872    ilt_client->start = line;
5873    line += bxe_cid_ilt_lines(sc);
5874
5875    if (CNIC_SUPPORT(sc)) {
5876        line += CNIC_ILT_LINES;
5877    }
5878
5879    ilt_client->end = (line - 1);
5880
5881    BLOGD(sc, DBG_LOAD,
5882          "ilt client[CDU]: start %d, end %d, "
5883          "psz 0x%x, flags 0x%x, hw psz %d\n",
5884          ilt_client->start, ilt_client->end,
5885          ilt_client->page_size,
5886          ilt_client->flags,
5887          ilog2(ilt_client->page_size >> 12));
5888
5889    /* QM */
5890    if (QM_INIT(sc->qm_cid_count)) {
5891        ilt_client = &ilt->clients[ILT_CLIENT_QM];
5892        ilt_client->client_num = ILT_CLIENT_QM;
5893        ilt_client->page_size = QM_ILT_PAGE_SZ;
5894        ilt_client->flags = 0;
5895        ilt_client->start = line;
5896
5897        /* 4 bytes for each cid */
5898        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5899                             QM_ILT_PAGE_SZ);
5900
5901        ilt_client->end = (line - 1);
5902
5903        BLOGD(sc, DBG_LOAD,
5904              "ilt client[QM]: start %d, end %d, "
5905              "psz 0x%x, flags 0x%x, hw psz %d\n",
5906              ilt_client->start, ilt_client->end,
5907              ilt_client->page_size, ilt_client->flags,
5908              ilog2(ilt_client->page_size >> 12));
5909    }
5910
5911    if (CNIC_SUPPORT(sc)) {
5912        /* SRC */
5913        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5914        ilt_client->client_num = ILT_CLIENT_SRC;
5915        ilt_client->page_size = SRC_ILT_PAGE_SZ;
5916        ilt_client->flags = 0;
5917        ilt_client->start = line;
5918        line += SRC_ILT_LINES;
5919        ilt_client->end = (line - 1);
5920
5921        BLOGD(sc, DBG_LOAD,
5922              "ilt client[SRC]: start %d, end %d, "
5923              "psz 0x%x, flags 0x%x, hw psz %d\n",
5924              ilt_client->start, ilt_client->end,
5925              ilt_client->page_size, ilt_client->flags,
5926              ilog2(ilt_client->page_size >> 12));
5927
5928        /* TM */
5929        ilt_client = &ilt->clients[ILT_CLIENT_TM];
5930        ilt_client->client_num = ILT_CLIENT_TM;
5931        ilt_client->page_size = TM_ILT_PAGE_SZ;
5932        ilt_client->flags = 0;
5933        ilt_client->start = line;
5934        line += TM_ILT_LINES;
5935        ilt_client->end = (line - 1);
5936
5937        BLOGD(sc, DBG_LOAD,
5938              "ilt client[TM]: start %d, end %d, "
5939              "psz 0x%x, flags 0x%x, hw psz %d\n",
5940              ilt_client->start, ilt_client->end,
5941              ilt_client->page_size, ilt_client->flags,
5942              ilog2(ilt_client->page_size >> 12));
5943    }
5944
5945    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5946}
5947
5948static void
5949bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5950{
5951    int i;
5952    uint32_t rx_buf_size;
5953
5954    rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5955
5956    for (i = 0; i < sc->num_queues; i++) {
5957        if(rx_buf_size <= MCLBYTES){
5958            sc->fp[i].rx_buf_size = rx_buf_size;
5959            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5960        }else if (rx_buf_size <= MJUMPAGESIZE){
5961            sc->fp[i].rx_buf_size = rx_buf_size;
5962            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5963        }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5964            sc->fp[i].rx_buf_size = MCLBYTES;
5965            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5966        }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5967            sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5968            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5969        }else {
5970            sc->fp[i].rx_buf_size = MCLBYTES;
5971            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5972        }
5973    }
5974}
5975
5976static int
5977bxe_alloc_ilt_mem(struct bxe_softc *sc)
5978{
5979    int rc = 0;
5980
5981    if ((sc->ilt =
5982         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5983                                    M_BXE_ILT,
5984                                    (M_NOWAIT | M_ZERO))) == NULL) {
5985        rc = 1;
5986    }
5987
5988    return (rc);
5989}
5990
5991static int
5992bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5993{
5994    int rc = 0;
5995
5996    if ((sc->ilt->lines =
5997         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5998                                    M_BXE_ILT,
5999                                    (M_NOWAIT | M_ZERO))) == NULL) {
6000        rc = 1;
6001    }
6002
6003    return (rc);
6004}
6005
6006static void
6007bxe_free_ilt_mem(struct bxe_softc *sc)
6008{
6009    if (sc->ilt != NULL) {
6010        free(sc->ilt, M_BXE_ILT);
6011        sc->ilt = NULL;
6012    }
6013}
6014
6015static void
6016bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6017{
6018    if (sc->ilt->lines != NULL) {
6019        free(sc->ilt->lines, M_BXE_ILT);
6020        sc->ilt->lines = NULL;
6021    }
6022}
6023
6024static void
6025bxe_free_mem(struct bxe_softc *sc)
6026{
6027    int i;
6028
6029    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6030        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6031        sc->context[i].vcxt = NULL;
6032        sc->context[i].size = 0;
6033    }
6034
6035    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6036
6037    bxe_free_ilt_lines_mem(sc);
6038
6039}
6040
6041static int
6042bxe_alloc_mem(struct bxe_softc *sc)
6043{
6044
6045    int context_size;
6046    int allocated;
6047    int i;
6048
6049    /*
6050     * Allocate memory for CDU context:
6051     * This memory is allocated separately and not in the generic ILT
6052     * functions because CDU differs in few aspects:
6053     * 1. There can be multiple entities allocating memory for context -
6054     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6055     * its own ILT lines.
6056     * 2. Since CDU page-size is not a single 4KB page (which is the case
6057     * for the other ILT clients), to be efficient we want to support
6058     * allocation of sub-page-size in the last entry.
6059     * 3. Context pointers are used by the driver to pass to FW / update
6060     * the context (for the other ILT clients the pointers are used just to
6061     * free the memory during unload).
6062     */
6063    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6064    for (i = 0, allocated = 0; allocated < context_size; i++) {
6065        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6066                                  (context_size - allocated));
6067
6068        if (bxe_dma_alloc(sc, sc->context[i].size,
6069                          &sc->context[i].vcxt_dma,
6070                          "cdu context") != 0) {
6071            bxe_free_mem(sc);
6072            return (-1);
6073        }
6074
6075        sc->context[i].vcxt =
6076            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6077
6078        allocated += sc->context[i].size;
6079    }
6080
6081    bxe_alloc_ilt_lines_mem(sc);
6082
6083    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6084          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6085    {
6086        for (i = 0; i < 4; i++) {
6087            BLOGD(sc, DBG_LOAD,
6088                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6089                  i,
6090                  sc->ilt->clients[i].page_size,
6091                  sc->ilt->clients[i].start,
6092                  sc->ilt->clients[i].end,
6093                  sc->ilt->clients[i].client_num,
6094                  sc->ilt->clients[i].flags);
6095        }
6096    }
6097    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6098        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6099        bxe_free_mem(sc);
6100        return (-1);
6101    }
6102
6103    return (0);
6104}
6105
6106static void
6107bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6108{
6109    struct bxe_softc *sc;
6110    int i;
6111
6112    sc = fp->sc;
6113
6114    if (fp->rx_mbuf_tag == NULL) {
6115        return;
6116    }
6117
6118    /* free all mbufs and unload all maps */
6119    for (i = 0; i < RX_BD_TOTAL; i++) {
6120        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6121            bus_dmamap_sync(fp->rx_mbuf_tag,
6122                            fp->rx_mbuf_chain[i].m_map,
6123                            BUS_DMASYNC_POSTREAD);
6124            bus_dmamap_unload(fp->rx_mbuf_tag,
6125                              fp->rx_mbuf_chain[i].m_map);
6126        }
6127
6128        if (fp->rx_mbuf_chain[i].m != NULL) {
6129            m_freem(fp->rx_mbuf_chain[i].m);
6130            fp->rx_mbuf_chain[i].m = NULL;
6131            fp->eth_q_stats.mbuf_alloc_rx--;
6132        }
6133    }
6134}
6135
6136static void
6137bxe_free_tpa_pool(struct bxe_fastpath *fp)
6138{
6139    struct bxe_softc *sc;
6140    int i, max_agg_queues;
6141
6142    sc = fp->sc;
6143
6144    if (fp->rx_mbuf_tag == NULL) {
6145        return;
6146    }
6147
6148    max_agg_queues = MAX_AGG_QS(sc);
6149
6150    /* release all mbufs and unload all DMA maps in the TPA pool */
6151    for (i = 0; i < max_agg_queues; i++) {
6152        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6153            bus_dmamap_sync(fp->rx_mbuf_tag,
6154                            fp->rx_tpa_info[i].bd.m_map,
6155                            BUS_DMASYNC_POSTREAD);
6156            bus_dmamap_unload(fp->rx_mbuf_tag,
6157                              fp->rx_tpa_info[i].bd.m_map);
6158        }
6159
6160        if (fp->rx_tpa_info[i].bd.m != NULL) {
6161            m_freem(fp->rx_tpa_info[i].bd.m);
6162            fp->rx_tpa_info[i].bd.m = NULL;
6163            fp->eth_q_stats.mbuf_alloc_tpa--;
6164        }
6165    }
6166}
6167
6168static void
6169bxe_free_sge_chain(struct bxe_fastpath *fp)
6170{
6171    struct bxe_softc *sc;
6172    int i;
6173
6174    sc = fp->sc;
6175
6176    if (fp->rx_sge_mbuf_tag == NULL) {
6177        return;
6178    }
6179
6180    /* rree all mbufs and unload all maps */
6181    for (i = 0; i < RX_SGE_TOTAL; i++) {
6182        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6183            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6184                            fp->rx_sge_mbuf_chain[i].m_map,
6185                            BUS_DMASYNC_POSTREAD);
6186            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6187                              fp->rx_sge_mbuf_chain[i].m_map);
6188        }
6189
6190        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6191            m_freem(fp->rx_sge_mbuf_chain[i].m);
6192            fp->rx_sge_mbuf_chain[i].m = NULL;
6193            fp->eth_q_stats.mbuf_alloc_sge--;
6194        }
6195    }
6196}
6197
6198static void
6199bxe_free_fp_buffers(struct bxe_softc *sc)
6200{
6201    struct bxe_fastpath *fp;
6202    int i;
6203
6204    for (i = 0; i < sc->num_queues; i++) {
6205        fp = &sc->fp[i];
6206
6207#if __FreeBSD_version >= 901504
6208        if (fp->tx_br != NULL) {
6209            /* just in case bxe_mq_flush() wasn't called */
6210            if (mtx_initialized(&fp->tx_mtx)) {
6211                struct mbuf *m;
6212
6213                BXE_FP_TX_LOCK(fp);
6214                while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6215                    m_freem(m);
6216                BXE_FP_TX_UNLOCK(fp);
6217            }
6218        }
6219#endif
6220
6221        /* free all RX buffers */
6222        bxe_free_rx_bd_chain(fp);
6223        bxe_free_tpa_pool(fp);
6224        bxe_free_sge_chain(fp);
6225
6226        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6227            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6228                  fp->eth_q_stats.mbuf_alloc_rx);
6229        }
6230
6231        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6232            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6233                  fp->eth_q_stats.mbuf_alloc_sge);
6234        }
6235
6236        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6237            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6238                  fp->eth_q_stats.mbuf_alloc_tpa);
6239        }
6240
6241        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6242            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6243                  fp->eth_q_stats.mbuf_alloc_tx);
6244        }
6245
6246        /* XXX verify all mbufs were reclaimed */
6247    }
6248}
6249
6250static int
6251bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6252                     uint16_t            prev_index,
6253                     uint16_t            index)
6254{
6255    struct bxe_sw_rx_bd *rx_buf;
6256    struct eth_rx_bd *rx_bd;
6257    bus_dma_segment_t segs[1];
6258    bus_dmamap_t map;
6259    struct mbuf *m;
6260    int nsegs, rc;
6261
6262    rc = 0;
6263
6264    /* allocate the new RX BD mbuf */
6265    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6266    if (__predict_false(m == NULL)) {
6267        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6268        return (ENOBUFS);
6269    }
6270
6271    fp->eth_q_stats.mbuf_alloc_rx++;
6272
6273    /* initialize the mbuf buffer length */
6274    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6275
6276    /* map the mbuf into non-paged pool */
6277    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6278                                 fp->rx_mbuf_spare_map,
6279                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6280    if (__predict_false(rc != 0)) {
6281        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6282        m_freem(m);
6283        fp->eth_q_stats.mbuf_alloc_rx--;
6284        return (rc);
6285    }
6286
6287    /* all mbufs must map to a single segment */
6288    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6289
6290    /* release any existing RX BD mbuf mappings */
6291
6292    if (prev_index != index) {
6293        rx_buf = &fp->rx_mbuf_chain[prev_index];
6294
6295        if (rx_buf->m_map != NULL) {
6296            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6297                            BUS_DMASYNC_POSTREAD);
6298            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6299        }
6300
6301        /*
6302         * We only get here from bxe_rxeof() when the maximum number
6303         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6304         * holds the mbuf in the prev_index so it's OK to NULL it out
6305         * here without concern of a memory leak.
6306         */
6307        fp->rx_mbuf_chain[prev_index].m = NULL;
6308    }
6309
6310    rx_buf = &fp->rx_mbuf_chain[index];
6311
6312    if (rx_buf->m_map != NULL) {
6313        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6314                        BUS_DMASYNC_POSTREAD);
6315        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6316    }
6317
6318    /* save the mbuf and mapping info for a future packet */
6319    map = (prev_index != index) ?
6320              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6321    rx_buf->m_map = fp->rx_mbuf_spare_map;
6322    fp->rx_mbuf_spare_map = map;
6323    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6324                    BUS_DMASYNC_PREREAD);
6325    rx_buf->m = m;
6326
6327    rx_bd = &fp->rx_chain[index];
6328    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6329    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6330
6331    return (rc);
6332}
6333
6334static int
6335bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6336                      int                 queue)
6337{
6338    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6339    bus_dma_segment_t segs[1];
6340    bus_dmamap_t map;
6341    struct mbuf *m;
6342    int nsegs;
6343    int rc = 0;
6344
6345    /* allocate the new TPA mbuf */
6346    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6347    if (__predict_false(m == NULL)) {
6348        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6349        return (ENOBUFS);
6350    }
6351
6352    fp->eth_q_stats.mbuf_alloc_tpa++;
6353
6354    /* initialize the mbuf buffer length */
6355    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6356
6357    /* map the mbuf into non-paged pool */
6358    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6359                                 fp->rx_tpa_info_mbuf_spare_map,
6360                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6361    if (__predict_false(rc != 0)) {
6362        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6363        m_free(m);
6364        fp->eth_q_stats.mbuf_alloc_tpa--;
6365        return (rc);
6366    }
6367
6368    /* all mbufs must map to a single segment */
6369    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6370
6371    /* release any existing TPA mbuf mapping */
6372    if (tpa_info->bd.m_map != NULL) {
6373        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6374                        BUS_DMASYNC_POSTREAD);
6375        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6376    }
6377
6378    /* save the mbuf and mapping info for the TPA mbuf */
6379    map = tpa_info->bd.m_map;
6380    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6381    fp->rx_tpa_info_mbuf_spare_map = map;
6382    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6383                    BUS_DMASYNC_PREREAD);
6384    tpa_info->bd.m = m;
6385    tpa_info->seg = segs[0];
6386
6387    return (rc);
6388}
6389
6390/*
6391 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6392 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6393 * chain.
6394 */
6395static int
6396bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6397                      uint16_t            index)
6398{
6399    struct bxe_sw_rx_bd *sge_buf;
6400    struct eth_rx_sge *sge;
6401    bus_dma_segment_t segs[1];
6402    bus_dmamap_t map;
6403    struct mbuf *m;
6404    int nsegs;
6405    int rc = 0;
6406
6407    /* allocate a new SGE mbuf */
6408    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6409    if (__predict_false(m == NULL)) {
6410        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6411        return (ENOMEM);
6412    }
6413
6414    fp->eth_q_stats.mbuf_alloc_sge++;
6415
6416    /* initialize the mbuf buffer length */
6417    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6418
6419    /* map the SGE mbuf into non-paged pool */
6420    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6421                                 fp->rx_sge_mbuf_spare_map,
6422                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6423    if (__predict_false(rc != 0)) {
6424        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6425        m_freem(m);
6426        fp->eth_q_stats.mbuf_alloc_sge--;
6427        return (rc);
6428    }
6429
6430    /* all mbufs must map to a single segment */
6431    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6432
6433    sge_buf = &fp->rx_sge_mbuf_chain[index];
6434
6435    /* release any existing SGE mbuf mapping */
6436    if (sge_buf->m_map != NULL) {
6437        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6438                        BUS_DMASYNC_POSTREAD);
6439        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6440    }
6441
6442    /* save the mbuf and mapping info for a future packet */
6443    map = sge_buf->m_map;
6444    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6445    fp->rx_sge_mbuf_spare_map = map;
6446    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6447                    BUS_DMASYNC_PREREAD);
6448    sge_buf->m = m;
6449
6450    sge = &fp->rx_sge_chain[index];
6451    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6452    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6453
6454    return (rc);
6455}
6456
6457static __noinline int
6458bxe_alloc_fp_buffers(struct bxe_softc *sc)
6459{
6460    struct bxe_fastpath *fp;
6461    int i, j, rc = 0;
6462    int ring_prod, cqe_ring_prod;
6463    int max_agg_queues;
6464
6465    for (i = 0; i < sc->num_queues; i++) {
6466        fp = &sc->fp[i];
6467
6468        ring_prod = cqe_ring_prod = 0;
6469        fp->rx_bd_cons = 0;
6470        fp->rx_cq_cons = 0;
6471
6472        /* allocate buffers for the RX BDs in RX BD chain */
6473        for (j = 0; j < sc->max_rx_bufs; j++) {
6474            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6475            if (rc != 0) {
6476                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6477                      i, rc);
6478                goto bxe_alloc_fp_buffers_error;
6479            }
6480
6481            ring_prod     = RX_BD_NEXT(ring_prod);
6482            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6483        }
6484
6485        fp->rx_bd_prod = ring_prod;
6486        fp->rx_cq_prod = cqe_ring_prod;
6487        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6488
6489        max_agg_queues = MAX_AGG_QS(sc);
6490
6491        fp->tpa_enable = TRUE;
6492
6493        /* fill the TPA pool */
6494        for (j = 0; j < max_agg_queues; j++) {
6495            rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6496            if (rc != 0) {
6497                BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6498                          i, j);
6499                fp->tpa_enable = FALSE;
6500                goto bxe_alloc_fp_buffers_error;
6501            }
6502
6503            fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6504        }
6505
6506        if (fp->tpa_enable) {
6507            /* fill the RX SGE chain */
6508            ring_prod = 0;
6509            for (j = 0; j < RX_SGE_USABLE; j++) {
6510                rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6511                if (rc != 0) {
6512                    BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6513                              i, ring_prod);
6514                    fp->tpa_enable = FALSE;
6515                    ring_prod = 0;
6516                    goto bxe_alloc_fp_buffers_error;
6517                }
6518
6519                ring_prod = RX_SGE_NEXT(ring_prod);
6520            }
6521
6522            fp->rx_sge_prod = ring_prod;
6523        }
6524    }
6525
6526    return (0);
6527
6528bxe_alloc_fp_buffers_error:
6529
6530    /* unwind what was already allocated */
6531    bxe_free_rx_bd_chain(fp);
6532    bxe_free_tpa_pool(fp);
6533    bxe_free_sge_chain(fp);
6534
6535    return (ENOBUFS);
6536}
6537
6538static void
6539bxe_free_fw_stats_mem(struct bxe_softc *sc)
6540{
6541    bxe_dma_free(sc, &sc->fw_stats_dma);
6542
6543    sc->fw_stats_num = 0;
6544
6545    sc->fw_stats_req_size = 0;
6546    sc->fw_stats_req = NULL;
6547    sc->fw_stats_req_mapping = 0;
6548
6549    sc->fw_stats_data_size = 0;
6550    sc->fw_stats_data = NULL;
6551    sc->fw_stats_data_mapping = 0;
6552}
6553
6554static int
6555bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6556{
6557    uint8_t num_queue_stats;
6558    int num_groups;
6559
6560    /* number of queues for statistics is number of eth queues */
6561    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6562
6563    /*
6564     * Total number of FW statistics requests =
6565     *   1 for port stats + 1 for PF stats + num of queues
6566     */
6567    sc->fw_stats_num = (2 + num_queue_stats);
6568
6569    /*
6570     * Request is built from stats_query_header and an array of
6571     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6572     * rules. The real number or requests is configured in the
6573     * stats_query_header.
6574     */
6575    num_groups =
6576        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6577         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6578
6579    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6580          sc->fw_stats_num, num_groups);
6581
6582    sc->fw_stats_req_size =
6583        (sizeof(struct stats_query_header) +
6584         (num_groups * sizeof(struct stats_query_cmd_group)));
6585
6586    /*
6587     * Data for statistics requests + stats_counter.
6588     * stats_counter holds per-STORM counters that are incremented when
6589     * STORM has finished with the current request. Memory for FCoE
6590     * offloaded statistics are counted anyway, even if they will not be sent.
6591     * VF stats are not accounted for here as the data of VF stats is stored
6592     * in memory allocated by the VF, not here.
6593     */
6594    sc->fw_stats_data_size =
6595        (sizeof(struct stats_counter) +
6596         sizeof(struct per_port_stats) +
6597         sizeof(struct per_pf_stats) +
6598         /* sizeof(struct fcoe_statistics_params) + */
6599         (sizeof(struct per_queue_stats) * num_queue_stats));
6600
6601    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6602                      &sc->fw_stats_dma, "fw stats") != 0) {
6603        bxe_free_fw_stats_mem(sc);
6604        return (-1);
6605    }
6606
6607    /* set up the shortcuts */
6608
6609    sc->fw_stats_req =
6610        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6611    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6612
6613    sc->fw_stats_data =
6614        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6615                                     sc->fw_stats_req_size);
6616    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6617                                 sc->fw_stats_req_size);
6618
6619    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6620          (uintmax_t)sc->fw_stats_req_mapping);
6621
6622    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6623          (uintmax_t)sc->fw_stats_data_mapping);
6624
6625    return (0);
6626}
6627
6628/*
6629 * Bits map:
6630 * 0-7  - Engine0 load counter.
6631 * 8-15 - Engine1 load counter.
6632 * 16   - Engine0 RESET_IN_PROGRESS bit.
6633 * 17   - Engine1 RESET_IN_PROGRESS bit.
6634 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6635 *        function on the engine
6636 * 19   - Engine1 ONE_IS_LOADED.
6637 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6638 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6639 *        for just the one belonging to its engine).
6640 */
6641#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6642#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6643#define BXE_PATH0_LOAD_CNT_SHIFT  0
6644#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6645#define BXE_PATH1_LOAD_CNT_SHIFT  8
6646#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6647#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6648#define BXE_GLOBAL_RESET_BIT      0x00040000
6649
6650/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6651static void
6652bxe_set_reset_global(struct bxe_softc *sc)
6653{
6654    uint32_t val;
6655    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6656    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6657    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6658    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6659}
6660
6661/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6662static void
6663bxe_clear_reset_global(struct bxe_softc *sc)
6664{
6665    uint32_t val;
6666    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6667    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6668    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6669    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6670}
6671
6672/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6673static uint8_t
6674bxe_reset_is_global(struct bxe_softc *sc)
6675{
6676    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6677    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6678    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6679}
6680
6681/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6682static void
6683bxe_set_reset_done(struct bxe_softc *sc)
6684{
6685    uint32_t val;
6686    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6687                                 BXE_PATH0_RST_IN_PROG_BIT;
6688
6689    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6690
6691    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6692    /* Clear the bit */
6693    val &= ~bit;
6694    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6695
6696    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6697}
6698
6699/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6700static void
6701bxe_set_reset_in_progress(struct bxe_softc *sc)
6702{
6703    uint32_t val;
6704    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6705                                 BXE_PATH0_RST_IN_PROG_BIT;
6706
6707    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6708
6709    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6710    /* Set the bit */
6711    val |= bit;
6712    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6713
6714    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6715}
6716
6717/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6718static uint8_t
6719bxe_reset_is_done(struct bxe_softc *sc,
6720                  int              engine)
6721{
6722    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6723    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6724                            BXE_PATH0_RST_IN_PROG_BIT;
6725
6726    /* return false if bit is set */
6727    return (val & bit) ? FALSE : TRUE;
6728}
6729
6730/* get the load status for an engine, should be run under rtnl lock */
6731static uint8_t
6732bxe_get_load_status(struct bxe_softc *sc,
6733                    int              engine)
6734{
6735    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6736                             BXE_PATH0_LOAD_CNT_MASK;
6737    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6738                              BXE_PATH0_LOAD_CNT_SHIFT;
6739    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6740
6741    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6742
6743    val = ((val & mask) >> shift);
6744
6745    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6746
6747    return (val != 0);
6748}
6749
6750/* set pf load mark */
6751/* XXX needs to be under rtnl lock */
6752static void
6753bxe_set_pf_load(struct bxe_softc *sc)
6754{
6755    uint32_t val;
6756    uint32_t val1;
6757    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6758                                  BXE_PATH0_LOAD_CNT_MASK;
6759    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6760                                   BXE_PATH0_LOAD_CNT_SHIFT;
6761
6762    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6763
6764    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6765    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6766
6767    /* get the current counter value */
6768    val1 = ((val & mask) >> shift);
6769
6770    /* set bit of this PF */
6771    val1 |= (1 << SC_ABS_FUNC(sc));
6772
6773    /* clear the old value */
6774    val &= ~mask;
6775
6776    /* set the new one */
6777    val |= ((val1 << shift) & mask);
6778
6779    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6780
6781    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6782}
6783
6784/* clear pf load mark */
6785/* XXX needs to be under rtnl lock */
6786static uint8_t
6787bxe_clear_pf_load(struct bxe_softc *sc)
6788{
6789    uint32_t val1, val;
6790    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6791                                  BXE_PATH0_LOAD_CNT_MASK;
6792    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6793                                   BXE_PATH0_LOAD_CNT_SHIFT;
6794
6795    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6796    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6797    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6798
6799    /* get the current counter value */
6800    val1 = (val & mask) >> shift;
6801
6802    /* clear bit of that PF */
6803    val1 &= ~(1 << SC_ABS_FUNC(sc));
6804
6805    /* clear the old value */
6806    val &= ~mask;
6807
6808    /* set the new one */
6809    val |= ((val1 << shift) & mask);
6810
6811    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6812    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6813    return (val1 != 0);
6814}
6815
6816/* send load requrest to mcp and analyze response */
6817static int
6818bxe_nic_load_request(struct bxe_softc *sc,
6819                     uint32_t         *load_code)
6820{
6821    /* init fw_seq */
6822    sc->fw_seq =
6823        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6824         DRV_MSG_SEQ_NUMBER_MASK);
6825
6826    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6827
6828    /* get the current FW pulse sequence */
6829    sc->fw_drv_pulse_wr_seq =
6830        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6831         DRV_PULSE_SEQ_MASK);
6832
6833    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6834          sc->fw_drv_pulse_wr_seq);
6835
6836    /* load request */
6837    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6838                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6839
6840    /* if the MCP fails to respond we must abort */
6841    if (!(*load_code)) {
6842        BLOGE(sc, "MCP response failure!\n");
6843        return (-1);
6844    }
6845
6846    /* if MCP refused then must abort */
6847    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6848        BLOGE(sc, "MCP refused load request\n");
6849        return (-1);
6850    }
6851
6852    return (0);
6853}
6854
6855/*
6856 * Check whether another PF has already loaded FW to chip. In virtualized
6857 * environments a pf from anoth VM may have already initialized the device
6858 * including loading FW.
6859 */
6860static int
6861bxe_nic_load_analyze_req(struct bxe_softc *sc,
6862                         uint32_t         load_code)
6863{
6864    uint32_t my_fw, loaded_fw;
6865
6866    /* is another pf loaded on this engine? */
6867    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6868        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6869        /* build my FW version dword */
6870        my_fw = (BCM_5710_FW_MAJOR_VERSION +
6871                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6872                 (BCM_5710_FW_REVISION_VERSION << 16) +
6873                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6874
6875        /* read loaded FW from chip */
6876        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6877        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6878              loaded_fw, my_fw);
6879
6880        /* abort nic load if version mismatch */
6881        if (my_fw != loaded_fw) {
6882            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6883                  loaded_fw, my_fw);
6884            return (-1);
6885        }
6886    }
6887
6888    return (0);
6889}
6890
6891/* mark PMF if applicable */
6892static void
6893bxe_nic_load_pmf(struct bxe_softc *sc,
6894                 uint32_t         load_code)
6895{
6896    uint32_t ncsi_oem_data_addr;
6897
6898    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6899        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6900        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6901        /*
6902         * Barrier here for ordering between the writing to sc->port.pmf here
6903         * and reading it from the periodic task.
6904         */
6905        sc->port.pmf = 1;
6906        mb();
6907    } else {
6908        sc->port.pmf = 0;
6909    }
6910
6911    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6912
6913    /* XXX needed? */
6914    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6915        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6916            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6917            if (ncsi_oem_data_addr) {
6918                REG_WR(sc,
6919                       (ncsi_oem_data_addr +
6920                        offsetof(struct glob_ncsi_oem_data, driver_version)),
6921                       0);
6922            }
6923        }
6924    }
6925}
6926
6927static void
6928bxe_read_mf_cfg(struct bxe_softc *sc)
6929{
6930    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6931    int abs_func;
6932    int vn;
6933
6934    if (BXE_NOMCP(sc)) {
6935        return; /* what should be the default bvalue in this case */
6936    }
6937
6938    /*
6939     * The formula for computing the absolute function number is...
6940     * For 2 port configuration (4 functions per port):
6941     *   abs_func = 2 * vn + SC_PORT + SC_PATH
6942     * For 4 port configuration (2 functions per port):
6943     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6944     */
6945    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6946        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6947        if (abs_func >= E1H_FUNC_MAX) {
6948            break;
6949        }
6950        sc->devinfo.mf_info.mf_config[vn] =
6951            MFCFG_RD(sc, func_mf_config[abs_func].config);
6952    }
6953
6954    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6955        FUNC_MF_CFG_FUNC_DISABLED) {
6956        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6957        sc->flags |= BXE_MF_FUNC_DIS;
6958    } else {
6959        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6960        sc->flags &= ~BXE_MF_FUNC_DIS;
6961    }
6962}
6963
6964/* acquire split MCP access lock register */
6965static int bxe_acquire_alr(struct bxe_softc *sc)
6966{
6967    uint32_t j, val;
6968
6969    for (j = 0; j < 1000; j++) {
6970        val = (1UL << 31);
6971        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6972        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6973        if (val & (1L << 31))
6974            break;
6975
6976        DELAY(5000);
6977    }
6978
6979    if (!(val & (1L << 31))) {
6980        BLOGE(sc, "Cannot acquire MCP access lock register\n");
6981        return (-1);
6982    }
6983
6984    return (0);
6985}
6986
6987/* release split MCP access lock register */
6988static void bxe_release_alr(struct bxe_softc *sc)
6989{
6990    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6991}
6992
6993static void
6994bxe_fan_failure(struct bxe_softc *sc)
6995{
6996    int port = SC_PORT(sc);
6997    uint32_t ext_phy_config;
6998
6999    /* mark the failure */
7000    ext_phy_config =
7001        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7002
7003    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7004    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7005    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7006             ext_phy_config);
7007
7008    /* log the failure */
7009    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7010              "the card to prevent permanent damage. "
7011              "Please contact OEM Support for assistance\n");
7012
7013    /* XXX */
7014#if 1
7015    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7016#else
7017    /*
7018     * Schedule device reset (unload)
7019     * This is due to some boards consuming sufficient power when driver is
7020     * up to overheat if fan fails.
7021     */
7022    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7023    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7024#endif
7025}
7026
7027/* this function is called upon a link interrupt */
7028static void
7029bxe_link_attn(struct bxe_softc *sc)
7030{
7031    uint32_t pause_enabled = 0;
7032    struct host_port_stats *pstats;
7033    int cmng_fns;
7034    struct bxe_fastpath *fp;
7035    int i;
7036
7037    /* Make sure that we are synced with the current statistics */
7038    bxe_stats_handle(sc, STATS_EVENT_STOP);
7039	BLOGI(sc, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7040    elink_link_update(&sc->link_params, &sc->link_vars);
7041
7042    if (sc->link_vars.link_up) {
7043
7044        /* dropless flow control */
7045        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7046            pause_enabled = 0;
7047
7048            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7049                pause_enabled = 1;
7050            }
7051
7052            REG_WR(sc,
7053                   (BAR_USTRORM_INTMEM +
7054                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7055                   pause_enabled);
7056        }
7057
7058        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7059            pstats = BXE_SP(sc, port_stats);
7060            /* reset old mac stats */
7061            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7062        }
7063
7064        if (sc->state == BXE_STATE_OPEN) {
7065            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7066        }
7067
7068	/* Restart tx when the link comes back. */
7069        FOR_EACH_ETH_QUEUE(sc, i) {
7070            fp = &sc->fp[i];
7071            taskqueue_enqueue(fp->tq, &fp->tx_task);
7072	}
7073    }
7074
7075    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7076        cmng_fns = bxe_get_cmng_fns_mode(sc);
7077
7078        if (cmng_fns != CMNG_FNS_NONE) {
7079            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7080            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7081        } else {
7082            /* rate shaping and fairness are disabled */
7083            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7084        }
7085    }
7086
7087    bxe_link_report_locked(sc);
7088
7089    if (IS_MF(sc)) {
7090        ; // XXX bxe_link_sync_notify(sc);
7091    }
7092}
7093
7094static void
7095bxe_attn_int_asserted(struct bxe_softc *sc,
7096                      uint32_t         asserted)
7097{
7098    int port = SC_PORT(sc);
7099    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7100                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7101    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7102                                        NIG_REG_MASK_INTERRUPT_PORT0;
7103    uint32_t aeu_mask;
7104    uint32_t nig_mask = 0;
7105    uint32_t reg_addr;
7106    uint32_t igu_acked;
7107    uint32_t cnt;
7108
7109    if (sc->attn_state & asserted) {
7110        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7111    }
7112
7113    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7114
7115    aeu_mask = REG_RD(sc, aeu_addr);
7116
7117    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7118          aeu_mask, asserted);
7119
7120    aeu_mask &= ~(asserted & 0x3ff);
7121
7122    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7123
7124    REG_WR(sc, aeu_addr, aeu_mask);
7125
7126    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7127
7128    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7129    sc->attn_state |= asserted;
7130    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7131
7132    if (asserted & ATTN_HARD_WIRED_MASK) {
7133        if (asserted & ATTN_NIG_FOR_FUNC) {
7134
7135	    bxe_acquire_phy_lock(sc);
7136            /* save nig interrupt mask */
7137            nig_mask = REG_RD(sc, nig_int_mask_addr);
7138
7139            /* If nig_mask is not set, no need to call the update function */
7140            if (nig_mask) {
7141                REG_WR(sc, nig_int_mask_addr, 0);
7142
7143                bxe_link_attn(sc);
7144            }
7145
7146            /* handle unicore attn? */
7147        }
7148
7149        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7150            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7151        }
7152
7153        if (asserted & GPIO_2_FUNC) {
7154            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7155        }
7156
7157        if (asserted & GPIO_3_FUNC) {
7158            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7159        }
7160
7161        if (asserted & GPIO_4_FUNC) {
7162            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7163        }
7164
7165        if (port == 0) {
7166            if (asserted & ATTN_GENERAL_ATTN_1) {
7167                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7168                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7169            }
7170            if (asserted & ATTN_GENERAL_ATTN_2) {
7171                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7172                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7173            }
7174            if (asserted & ATTN_GENERAL_ATTN_3) {
7175                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7176                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7177            }
7178        } else {
7179            if (asserted & ATTN_GENERAL_ATTN_4) {
7180                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7181                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7182            }
7183            if (asserted & ATTN_GENERAL_ATTN_5) {
7184                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7185                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7186            }
7187            if (asserted & ATTN_GENERAL_ATTN_6) {
7188                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7189                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7190            }
7191        }
7192    } /* hardwired */
7193
7194    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7195        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7196    } else {
7197        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7198    }
7199
7200    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7201          asserted,
7202          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7203    REG_WR(sc, reg_addr, asserted);
7204
7205    /* now set back the mask */
7206    if (asserted & ATTN_NIG_FOR_FUNC) {
7207        /*
7208         * Verify that IGU ack through BAR was written before restoring
7209         * NIG mask. This loop should exit after 2-3 iterations max.
7210         */
7211        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7212            cnt = 0;
7213
7214            do {
7215                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7216            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7217                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7218
7219            if (!igu_acked) {
7220                BLOGE(sc, "Failed to verify IGU ack on time\n");
7221            }
7222
7223            mb();
7224        }
7225
7226        REG_WR(sc, nig_int_mask_addr, nig_mask);
7227
7228	bxe_release_phy_lock(sc);
7229    }
7230}
7231
7232static void
7233bxe_print_next_block(struct bxe_softc *sc,
7234                     int              idx,
7235                     const char       *blk)
7236{
7237    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7238}
7239
7240static int
7241bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7242                              uint32_t         sig,
7243                              int              par_num,
7244                              uint8_t          print)
7245{
7246    uint32_t cur_bit = 0;
7247    int i = 0;
7248
7249    for (i = 0; sig; i++) {
7250        cur_bit = ((uint32_t)0x1 << i);
7251        if (sig & cur_bit) {
7252            switch (cur_bit) {
7253            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7254                if (print)
7255                    bxe_print_next_block(sc, par_num++, "BRB");
7256                break;
7257            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7258                if (print)
7259                    bxe_print_next_block(sc, par_num++, "PARSER");
7260                break;
7261            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7262                if (print)
7263                    bxe_print_next_block(sc, par_num++, "TSDM");
7264                break;
7265            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7266                if (print)
7267                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7268                break;
7269            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7270                if (print)
7271                    bxe_print_next_block(sc, par_num++, "TCM");
7272                break;
7273            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7274                if (print)
7275                    bxe_print_next_block(sc, par_num++, "TSEMI");
7276                break;
7277            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7278                if (print)
7279                    bxe_print_next_block(sc, par_num++, "XPB");
7280                break;
7281            }
7282
7283            /* Clear the bit */
7284            sig &= ~cur_bit;
7285        }
7286    }
7287
7288    return (par_num);
7289}
7290
7291static int
7292bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7293                              uint32_t         sig,
7294                              int              par_num,
7295                              uint8_t          *global,
7296                              uint8_t          print)
7297{
7298    int i = 0;
7299    uint32_t cur_bit = 0;
7300    for (i = 0; sig; i++) {
7301        cur_bit = ((uint32_t)0x1 << i);
7302        if (sig & cur_bit) {
7303            switch (cur_bit) {
7304            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7305                if (print)
7306                    bxe_print_next_block(sc, par_num++, "PBF");
7307                break;
7308            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7309                if (print)
7310                    bxe_print_next_block(sc, par_num++, "QM");
7311                break;
7312            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7313                if (print)
7314                    bxe_print_next_block(sc, par_num++, "TM");
7315                break;
7316            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7317                if (print)
7318                    bxe_print_next_block(sc, par_num++, "XSDM");
7319                break;
7320            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7321                if (print)
7322                    bxe_print_next_block(sc, par_num++, "XCM");
7323                break;
7324            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7325                if (print)
7326                    bxe_print_next_block(sc, par_num++, "XSEMI");
7327                break;
7328            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7329                if (print)
7330                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7331                break;
7332            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7333                if (print)
7334                    bxe_print_next_block(sc, par_num++, "NIG");
7335                break;
7336            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7337                if (print)
7338                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7339                *global = TRUE;
7340                break;
7341            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7342                if (print)
7343                    bxe_print_next_block(sc, par_num++, "DEBUG");
7344                break;
7345            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7346                if (print)
7347                    bxe_print_next_block(sc, par_num++, "USDM");
7348                break;
7349            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7350                if (print)
7351                    bxe_print_next_block(sc, par_num++, "UCM");
7352                break;
7353            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7354                if (print)
7355                    bxe_print_next_block(sc, par_num++, "USEMI");
7356                break;
7357            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7358                if (print)
7359                    bxe_print_next_block(sc, par_num++, "UPB");
7360                break;
7361            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7362                if (print)
7363                    bxe_print_next_block(sc, par_num++, "CSDM");
7364                break;
7365            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7366                if (print)
7367                    bxe_print_next_block(sc, par_num++, "CCM");
7368                break;
7369            }
7370
7371            /* Clear the bit */
7372            sig &= ~cur_bit;
7373        }
7374    }
7375
7376    return (par_num);
7377}
7378
7379static int
7380bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7381                              uint32_t         sig,
7382                              int              par_num,
7383                              uint8_t          print)
7384{
7385    uint32_t cur_bit = 0;
7386    int i = 0;
7387
7388    for (i = 0; sig; i++) {
7389        cur_bit = ((uint32_t)0x1 << i);
7390        if (sig & cur_bit) {
7391            switch (cur_bit) {
7392            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7393                if (print)
7394                    bxe_print_next_block(sc, par_num++, "CSEMI");
7395                break;
7396            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7397                if (print)
7398                    bxe_print_next_block(sc, par_num++, "PXP");
7399                break;
7400            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7401                if (print)
7402                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7403                break;
7404            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7405                if (print)
7406                    bxe_print_next_block(sc, par_num++, "CFC");
7407                break;
7408            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7409                if (print)
7410                    bxe_print_next_block(sc, par_num++, "CDU");
7411                break;
7412            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7413                if (print)
7414                    bxe_print_next_block(sc, par_num++, "DMAE");
7415                break;
7416            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7417                if (print)
7418                    bxe_print_next_block(sc, par_num++, "IGU");
7419                break;
7420            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7421                if (print)
7422                    bxe_print_next_block(sc, par_num++, "MISC");
7423                break;
7424            }
7425
7426            /* Clear the bit */
7427            sig &= ~cur_bit;
7428        }
7429    }
7430
7431    return (par_num);
7432}
7433
7434static int
7435bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7436                              uint32_t         sig,
7437                              int              par_num,
7438                              uint8_t          *global,
7439                              uint8_t          print)
7440{
7441    uint32_t cur_bit = 0;
7442    int i = 0;
7443
7444    for (i = 0; sig; i++) {
7445        cur_bit = ((uint32_t)0x1 << i);
7446        if (sig & cur_bit) {
7447            switch (cur_bit) {
7448            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7449                if (print)
7450                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7451                *global = TRUE;
7452                break;
7453            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7454                if (print)
7455                    bxe_print_next_block(sc, par_num++,
7456                              "MCP UMP RX");
7457                *global = TRUE;
7458                break;
7459            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7460                if (print)
7461                    bxe_print_next_block(sc, par_num++,
7462                              "MCP UMP TX");
7463                *global = TRUE;
7464                break;
7465            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7466                if (print)
7467                    bxe_print_next_block(sc, par_num++,
7468                              "MCP SCPAD");
7469                *global = TRUE;
7470                break;
7471            }
7472
7473            /* Clear the bit */
7474            sig &= ~cur_bit;
7475        }
7476    }
7477
7478    return (par_num);
7479}
7480
7481static int
7482bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7483                              uint32_t         sig,
7484                              int              par_num,
7485                              uint8_t          print)
7486{
7487    uint32_t cur_bit = 0;
7488    int i = 0;
7489
7490    for (i = 0; sig; i++) {
7491        cur_bit = ((uint32_t)0x1 << i);
7492        if (sig & cur_bit) {
7493            switch (cur_bit) {
7494            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7495                if (print)
7496                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7497                break;
7498            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7499                if (print)
7500                    bxe_print_next_block(sc, par_num++, "ATC");
7501                break;
7502            }
7503
7504            /* Clear the bit */
7505            sig &= ~cur_bit;
7506        }
7507    }
7508
7509    return (par_num);
7510}
7511
7512static uint8_t
7513bxe_parity_attn(struct bxe_softc *sc,
7514                uint8_t          *global,
7515                uint8_t          print,
7516                uint32_t         *sig)
7517{
7518    int par_num = 0;
7519
7520    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7521        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7522        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7523        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7524        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7525        BLOGE(sc, "Parity error: HW block parity attention:\n"
7526                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7527              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7528              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7529              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7530              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7531              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7532
7533        if (print)
7534            BLOGI(sc, "Parity errors detected in blocks: ");
7535
7536        par_num =
7537            bxe_check_blocks_with_parity0(sc, sig[0] &
7538                                          HW_PRTY_ASSERT_SET_0,
7539                                          par_num, print);
7540        par_num =
7541            bxe_check_blocks_with_parity1(sc, sig[1] &
7542                                          HW_PRTY_ASSERT_SET_1,
7543                                          par_num, global, print);
7544        par_num =
7545            bxe_check_blocks_with_parity2(sc, sig[2] &
7546                                          HW_PRTY_ASSERT_SET_2,
7547                                          par_num, print);
7548        par_num =
7549            bxe_check_blocks_with_parity3(sc, sig[3] &
7550                                          HW_PRTY_ASSERT_SET_3,
7551                                          par_num, global, print);
7552        par_num =
7553            bxe_check_blocks_with_parity4(sc, sig[4] &
7554                                          HW_PRTY_ASSERT_SET_4,
7555                                          par_num, print);
7556
7557        if (print)
7558            BLOGI(sc, "\n");
7559
7560        return (TRUE);
7561    }
7562
7563    return (FALSE);
7564}
7565
7566static uint8_t
7567bxe_chk_parity_attn(struct bxe_softc *sc,
7568                    uint8_t          *global,
7569                    uint8_t          print)
7570{
7571    struct attn_route attn = { {0} };
7572    int port = SC_PORT(sc);
7573
7574    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7575    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7576    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7577    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7578
7579    /*
7580     * Since MCP attentions can't be disabled inside the block, we need to
7581     * read AEU registers to see whether they're currently disabled
7582     */
7583    attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7584                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7585                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7586                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7587
7588
7589    if (!CHIP_IS_E1x(sc))
7590        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7591
7592    return (bxe_parity_attn(sc, global, print, attn.sig));
7593}
7594
7595static void
7596bxe_attn_int_deasserted4(struct bxe_softc *sc,
7597                         uint32_t         attn)
7598{
7599    uint32_t val;
7600
7601    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7602        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7603        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7604        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7605            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7606        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7607            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7608        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7609            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7610        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7611            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7612        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7613            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7614        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7615            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7616        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7617            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7618        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7619            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7620        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7621            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7622    }
7623
7624    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7625        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7626        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7627        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7628            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7629        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7630            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7631        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7632            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7633        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7634            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7635        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7636            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7637        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7638            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7639    }
7640
7641    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7642                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7643        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7644              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7645                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7646    }
7647}
7648
7649static void
7650bxe_e1h_disable(struct bxe_softc *sc)
7651{
7652    int port = SC_PORT(sc);
7653
7654    bxe_tx_disable(sc);
7655
7656    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7657}
7658
7659static void
7660bxe_e1h_enable(struct bxe_softc *sc)
7661{
7662    int port = SC_PORT(sc);
7663
7664    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7665
7666    // XXX bxe_tx_enable(sc);
7667}
7668
7669/*
7670 * called due to MCP event (on pmf):
7671 *   reread new bandwidth configuration
7672 *   configure FW
7673 *   notify others function about the change
7674 */
7675static void
7676bxe_config_mf_bw(struct bxe_softc *sc)
7677{
7678    if (sc->link_vars.link_up) {
7679        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7680        // XXX bxe_link_sync_notify(sc);
7681    }
7682
7683    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7684}
7685
7686static void
7687bxe_set_mf_bw(struct bxe_softc *sc)
7688{
7689    bxe_config_mf_bw(sc);
7690    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7691}
7692
7693static void
7694bxe_handle_eee_event(struct bxe_softc *sc)
7695{
7696    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7697    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7698}
7699
7700#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7701
7702static void
7703bxe_drv_info_ether_stat(struct bxe_softc *sc)
7704{
7705    struct eth_stats_info *ether_stat =
7706        &sc->sp->drv_info_to_mcp.ether_stat;
7707
7708    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7709            ETH_STAT_INFO_VERSION_LEN);
7710
7711    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7712    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7713                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7714                                          ether_stat->mac_local + MAC_PAD,
7715                                          MAC_PAD, ETH_ALEN);
7716
7717    ether_stat->mtu_size = sc->mtu;
7718
7719    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7720    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7721        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7722    }
7723
7724    // XXX ether_stat->feature_flags |= ???;
7725
7726    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7727
7728    ether_stat->txq_size = sc->tx_ring_size;
7729    ether_stat->rxq_size = sc->rx_ring_size;
7730}
7731
7732static void
7733bxe_handle_drv_info_req(struct bxe_softc *sc)
7734{
7735    enum drv_info_opcode op_code;
7736    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7737
7738    /* if drv_info version supported by MFW doesn't match - send NACK */
7739    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7740        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7741        return;
7742    }
7743
7744    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7745               DRV_INFO_CONTROL_OP_CODE_SHIFT);
7746
7747    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7748
7749    switch (op_code) {
7750    case ETH_STATS_OPCODE:
7751        bxe_drv_info_ether_stat(sc);
7752        break;
7753    case FCOE_STATS_OPCODE:
7754    case ISCSI_STATS_OPCODE:
7755    default:
7756        /* if op code isn't supported - send NACK */
7757        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7758        return;
7759    }
7760
7761    /*
7762     * If we got drv_info attn from MFW then these fields are defined in
7763     * shmem2 for sure
7764     */
7765    SHMEM2_WR(sc, drv_info_host_addr_lo,
7766              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7767    SHMEM2_WR(sc, drv_info_host_addr_hi,
7768              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7769
7770    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7771}
7772
7773static void
7774bxe_dcc_event(struct bxe_softc *sc,
7775              uint32_t         dcc_event)
7776{
7777    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7778
7779    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7780        /*
7781         * This is the only place besides the function initialization
7782         * where the sc->flags can change so it is done without any
7783         * locks
7784         */
7785        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7786            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7787            sc->flags |= BXE_MF_FUNC_DIS;
7788            bxe_e1h_disable(sc);
7789        } else {
7790            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7791            sc->flags &= ~BXE_MF_FUNC_DIS;
7792            bxe_e1h_enable(sc);
7793        }
7794        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7795    }
7796
7797    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7798        bxe_config_mf_bw(sc);
7799        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7800    }
7801
7802    /* Report results to MCP */
7803    if (dcc_event)
7804        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7805    else
7806        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7807}
7808
7809static void
7810bxe_pmf_update(struct bxe_softc *sc)
7811{
7812    int port = SC_PORT(sc);
7813    uint32_t val;
7814
7815    sc->port.pmf = 1;
7816    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7817
7818    /*
7819     * We need the mb() to ensure the ordering between the writing to
7820     * sc->port.pmf here and reading it from the bxe_periodic_task().
7821     */
7822    mb();
7823
7824    /* queue a periodic task */
7825    // XXX schedule task...
7826
7827    // XXX bxe_dcbx_pmf_update(sc);
7828
7829    /* enable nig attention */
7830    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7831    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7832        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7833        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7834    } else if (!CHIP_IS_E1x(sc)) {
7835        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7836        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7837    }
7838
7839    bxe_stats_handle(sc, STATS_EVENT_PMF);
7840}
7841
7842static int
7843bxe_mc_assert(struct bxe_softc *sc)
7844{
7845    char last_idx;
7846    int i, rc = 0;
7847    uint32_t row0, row1, row2, row3;
7848
7849    /* XSTORM */
7850    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7851    if (last_idx)
7852        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7853
7854    /* print the asserts */
7855    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7856
7857        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7858        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7859        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7860        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7861
7862        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7863            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7864                  i, row3, row2, row1, row0);
7865            rc++;
7866        } else {
7867            break;
7868        }
7869    }
7870
7871    /* TSTORM */
7872    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7873    if (last_idx) {
7874        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7875    }
7876
7877    /* print the asserts */
7878    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7879
7880        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7881        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7882        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7883        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7884
7885        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7886            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7887                  i, row3, row2, row1, row0);
7888            rc++;
7889        } else {
7890            break;
7891        }
7892    }
7893
7894    /* CSTORM */
7895    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7896    if (last_idx) {
7897        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7898    }
7899
7900    /* print the asserts */
7901    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7902
7903        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7904        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7905        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7906        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7907
7908        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7909            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7910                  i, row3, row2, row1, row0);
7911            rc++;
7912        } else {
7913            break;
7914        }
7915    }
7916
7917    /* USTORM */
7918    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7919    if (last_idx) {
7920        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7921    }
7922
7923    /* print the asserts */
7924    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7925
7926        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7927        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7928        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7929        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7930
7931        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7932            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7933                  i, row3, row2, row1, row0);
7934            rc++;
7935        } else {
7936            break;
7937        }
7938    }
7939
7940    return (rc);
7941}
7942
7943static void
7944bxe_attn_int_deasserted3(struct bxe_softc *sc,
7945                         uint32_t         attn)
7946{
7947    int func = SC_FUNC(sc);
7948    uint32_t val;
7949
7950    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7951
7952        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7953
7954            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7955            bxe_read_mf_cfg(sc);
7956            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7957                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7958            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7959
7960            if (val & DRV_STATUS_DCC_EVENT_MASK)
7961                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7962
7963            if (val & DRV_STATUS_SET_MF_BW)
7964                bxe_set_mf_bw(sc);
7965
7966            if (val & DRV_STATUS_DRV_INFO_REQ)
7967                bxe_handle_drv_info_req(sc);
7968
7969            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7970                bxe_pmf_update(sc);
7971
7972            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7973                bxe_handle_eee_event(sc);
7974
7975            if (sc->link_vars.periodic_flags &
7976                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7977                /* sync with link */
7978		bxe_acquire_phy_lock(sc);
7979                sc->link_vars.periodic_flags &=
7980                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7981		bxe_release_phy_lock(sc);
7982                if (IS_MF(sc))
7983                    ; // XXX bxe_link_sync_notify(sc);
7984                bxe_link_report(sc);
7985            }
7986
7987            /*
7988             * Always call it here: bxe_link_report() will
7989             * prevent the link indication duplication.
7990             */
7991            bxe_link_status_update(sc);
7992
7993        } else if (attn & BXE_MC_ASSERT_BITS) {
7994
7995            BLOGE(sc, "MC assert!\n");
7996            bxe_mc_assert(sc);
7997            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7998            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7999            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8000            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8001            bxe_panic(sc, ("MC assert!\n"));
8002
8003        } else if (attn & BXE_MCP_ASSERT) {
8004
8005            BLOGE(sc, "MCP assert!\n");
8006            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8007            // XXX bxe_fw_dump(sc);
8008
8009        } else {
8010            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8011        }
8012    }
8013
8014    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8015        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8016        if (attn & BXE_GRC_TIMEOUT) {
8017            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8018            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8019        }
8020        if (attn & BXE_GRC_RSV) {
8021            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8022            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8023        }
8024        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8025    }
8026}
8027
8028static void
8029bxe_attn_int_deasserted2(struct bxe_softc *sc,
8030                         uint32_t         attn)
8031{
8032    int port = SC_PORT(sc);
8033    int reg_offset;
8034    uint32_t val0, mask0, val1, mask1;
8035    uint32_t val;
8036
8037    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8038        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8039        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8040        /* CFC error attention */
8041        if (val & 0x2) {
8042            BLOGE(sc, "FATAL error from CFC\n");
8043        }
8044    }
8045
8046    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8047        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8048        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8049        /* RQ_USDMDP_FIFO_OVERFLOW */
8050        if (val & 0x18000) {
8051            BLOGE(sc, "FATAL error from PXP\n");
8052        }
8053
8054        if (!CHIP_IS_E1x(sc)) {
8055            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8056            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8057        }
8058    }
8059
8060#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8061#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8062
8063    if (attn & AEU_PXP2_HW_INT_BIT) {
8064        /*  CQ47854 workaround do not panic on
8065         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8066         */
8067        if (!CHIP_IS_E1x(sc)) {
8068            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8069            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8070            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8071            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8072            /*
8073             * If the only PXP2_EOP_ERROR_BIT is set in
8074             * STS0 and STS1 - clear it
8075             *
8076             * probably we lose additional attentions between
8077             * STS0 and STS_CLR0, in this case user will not
8078             * be notified about them
8079             */
8080            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8081                !(val1 & mask1))
8082                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8083
8084            /* print the register, since no one can restore it */
8085            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8086
8087            /*
8088             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8089             * then notify
8090             */
8091            if (val0 & PXP2_EOP_ERROR_BIT) {
8092                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8093
8094                /*
8095                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8096                 * set then clear attention from PXP2 block without panic
8097                 */
8098                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8099                    ((val1 & mask1) == 0))
8100                    attn &= ~AEU_PXP2_HW_INT_BIT;
8101            }
8102        }
8103    }
8104
8105    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8106        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8107                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8108
8109        val = REG_RD(sc, reg_offset);
8110        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8111        REG_WR(sc, reg_offset, val);
8112
8113        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8114              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8115        bxe_panic(sc, ("HW block attention set2\n"));
8116    }
8117}
8118
8119static void
8120bxe_attn_int_deasserted1(struct bxe_softc *sc,
8121                         uint32_t         attn)
8122{
8123    int port = SC_PORT(sc);
8124    int reg_offset;
8125    uint32_t val;
8126
8127    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8128        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8129        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8130        /* DORQ discard attention */
8131        if (val & 0x2) {
8132            BLOGE(sc, "FATAL error from DORQ\n");
8133        }
8134    }
8135
8136    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8137        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8138                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8139
8140        val = REG_RD(sc, reg_offset);
8141        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8142        REG_WR(sc, reg_offset, val);
8143
8144        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8145              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8146        bxe_panic(sc, ("HW block attention set1\n"));
8147    }
8148}
8149
8150static void
8151bxe_attn_int_deasserted0(struct bxe_softc *sc,
8152                         uint32_t         attn)
8153{
8154    int port = SC_PORT(sc);
8155    int reg_offset;
8156    uint32_t val;
8157
8158    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8159                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8160
8161    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8162        val = REG_RD(sc, reg_offset);
8163        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8164        REG_WR(sc, reg_offset, val);
8165
8166        BLOGW(sc, "SPIO5 hw attention\n");
8167
8168        /* Fan failure attention */
8169        elink_hw_reset_phy(&sc->link_params);
8170        bxe_fan_failure(sc);
8171    }
8172
8173    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8174	bxe_acquire_phy_lock(sc);
8175        elink_handle_module_detect_int(&sc->link_params);
8176	bxe_release_phy_lock(sc);
8177    }
8178
8179    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8180        val = REG_RD(sc, reg_offset);
8181        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8182        REG_WR(sc, reg_offset, val);
8183
8184        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8185                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8186    }
8187}
8188
8189static void
8190bxe_attn_int_deasserted(struct bxe_softc *sc,
8191                        uint32_t         deasserted)
8192{
8193    struct attn_route attn;
8194    struct attn_route *group_mask;
8195    int port = SC_PORT(sc);
8196    int index;
8197    uint32_t reg_addr;
8198    uint32_t val;
8199    uint32_t aeu_mask;
8200    uint8_t global = FALSE;
8201
8202    /*
8203     * Need to take HW lock because MCP or other port might also
8204     * try to handle this event.
8205     */
8206    bxe_acquire_alr(sc);
8207
8208    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8209        /* XXX
8210         * In case of parity errors don't handle attentions so that
8211         * other function would "see" parity errors.
8212         */
8213        sc->recovery_state = BXE_RECOVERY_INIT;
8214        // XXX schedule a recovery task...
8215        /* disable HW interrupts */
8216        bxe_int_disable(sc);
8217        bxe_release_alr(sc);
8218        return;
8219    }
8220
8221    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8222    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8223    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8224    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8225    if (!CHIP_IS_E1x(sc)) {
8226        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8227    } else {
8228        attn.sig[4] = 0;
8229    }
8230
8231    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8232          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8233
8234    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8235        if (deasserted & (1 << index)) {
8236            group_mask = &sc->attn_group[index];
8237
8238            BLOGD(sc, DBG_INTR,
8239                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8240                  group_mask->sig[0], group_mask->sig[1],
8241                  group_mask->sig[2], group_mask->sig[3],
8242                  group_mask->sig[4]);
8243
8244            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8245            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8246            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8247            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8248            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8249        }
8250    }
8251
8252    bxe_release_alr(sc);
8253
8254    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8255        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8256                    COMMAND_REG_ATTN_BITS_CLR);
8257    } else {
8258        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8259    }
8260
8261    val = ~deasserted;
8262    BLOGD(sc, DBG_INTR,
8263          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8264          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8265    REG_WR(sc, reg_addr, val);
8266
8267    if (~sc->attn_state & deasserted) {
8268        BLOGE(sc, "IGU error\n");
8269    }
8270
8271    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8272                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8273
8274    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8275
8276    aeu_mask = REG_RD(sc, reg_addr);
8277
8278    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8279          aeu_mask, deasserted);
8280    aeu_mask |= (deasserted & 0x3ff);
8281    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8282
8283    REG_WR(sc, reg_addr, aeu_mask);
8284    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8285
8286    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8287    sc->attn_state &= ~deasserted;
8288    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8289}
8290
8291static void
8292bxe_attn_int(struct bxe_softc *sc)
8293{
8294    /* read local copy of bits */
8295    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8296    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8297    uint32_t attn_state = sc->attn_state;
8298
8299    /* look for changed bits */
8300    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8301    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8302
8303    BLOGD(sc, DBG_INTR,
8304          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8305          attn_bits, attn_ack, asserted, deasserted);
8306
8307    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8308        BLOGE(sc, "BAD attention state\n");
8309    }
8310
8311    /* handle bits that were raised */
8312    if (asserted) {
8313        bxe_attn_int_asserted(sc, asserted);
8314    }
8315
8316    if (deasserted) {
8317        bxe_attn_int_deasserted(sc, deasserted);
8318    }
8319}
8320
8321static uint16_t
8322bxe_update_dsb_idx(struct bxe_softc *sc)
8323{
8324    struct host_sp_status_block *def_sb = sc->def_sb;
8325    uint16_t rc = 0;
8326
8327    mb(); /* status block is written to by the chip */
8328
8329    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8330        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8331        rc |= BXE_DEF_SB_ATT_IDX;
8332    }
8333
8334    if (sc->def_idx != def_sb->sp_sb.running_index) {
8335        sc->def_idx = def_sb->sp_sb.running_index;
8336        rc |= BXE_DEF_SB_IDX;
8337    }
8338
8339    mb();
8340
8341    return (rc);
8342}
8343
8344static inline struct ecore_queue_sp_obj *
8345bxe_cid_to_q_obj(struct bxe_softc *sc,
8346                 uint32_t         cid)
8347{
8348    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8349    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8350}
8351
8352static void
8353bxe_handle_mcast_eqe(struct bxe_softc *sc)
8354{
8355    struct ecore_mcast_ramrod_params rparam;
8356    int rc;
8357
8358    memset(&rparam, 0, sizeof(rparam));
8359
8360    rparam.mcast_obj = &sc->mcast_obj;
8361
8362    BXE_MCAST_LOCK(sc);
8363
8364    /* clear pending state for the last command */
8365    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8366
8367    /* if there are pending mcast commands - send them */
8368    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8369        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8370        if (rc < 0) {
8371            BLOGD(sc, DBG_SP,
8372                "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8373        }
8374    }
8375
8376    BXE_MCAST_UNLOCK(sc);
8377}
8378
8379static void
8380bxe_handle_classification_eqe(struct bxe_softc      *sc,
8381                              union event_ring_elem *elem)
8382{
8383    unsigned long ramrod_flags = 0;
8384    int rc = 0;
8385    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8386    struct ecore_vlan_mac_obj *vlan_mac_obj;
8387
8388    /* always push next commands out, don't wait here */
8389    bit_set(&ramrod_flags, RAMROD_CONT);
8390
8391    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8392    case ECORE_FILTER_MAC_PENDING:
8393        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8394        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8395        break;
8396
8397    case ECORE_FILTER_MCAST_PENDING:
8398        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8399        /*
8400         * This is only relevant for 57710 where multicast MACs are
8401         * configured as unicast MACs using the same ramrod.
8402         */
8403        bxe_handle_mcast_eqe(sc);
8404        return;
8405
8406    default:
8407        BLOGE(sc, "Unsupported classification command: %d\n",
8408              elem->message.data.eth_event.echo);
8409        return;
8410    }
8411
8412    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8413
8414    if (rc < 0) {
8415        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8416    } else if (rc > 0) {
8417        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8418    }
8419}
8420
8421static void
8422bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8423                       union event_ring_elem *elem)
8424{
8425    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8426
8427    /* send rx_mode command again if was requested */
8428    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8429                               &sc->sp_state)) {
8430        bxe_set_storm_rx_mode(sc);
8431    }
8432}
8433
8434static void
8435bxe_update_eq_prod(struct bxe_softc *sc,
8436                   uint16_t         prod)
8437{
8438    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8439    wmb(); /* keep prod updates ordered */
8440}
8441
8442static void
8443bxe_eq_int(struct bxe_softc *sc)
8444{
8445    uint16_t hw_cons, sw_cons, sw_prod;
8446    union event_ring_elem *elem;
8447    uint8_t echo;
8448    uint32_t cid;
8449    uint8_t opcode;
8450    int spqe_cnt = 0;
8451    struct ecore_queue_sp_obj *q_obj;
8452    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8453    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8454
8455    hw_cons = le16toh(*sc->eq_cons_sb);
8456
8457    /*
8458     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8459     * when we get to the next-page we need to adjust so the loop
8460     * condition below will be met. The next element is the size of a
8461     * regular element and hence incrementing by 1
8462     */
8463    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8464        hw_cons++;
8465    }
8466
8467    /*
8468     * This function may never run in parallel with itself for a
8469     * specific sc and no need for a read memory barrier here.
8470     */
8471    sw_cons = sc->eq_cons;
8472    sw_prod = sc->eq_prod;
8473
8474    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8475          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8476
8477    for (;
8478         sw_cons != hw_cons;
8479         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8480
8481        elem = &sc->eq[EQ_DESC(sw_cons)];
8482
8483        /* elem CID originates from FW, actually LE */
8484        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8485        opcode = elem->message.opcode;
8486
8487        /* handle eq element */
8488        switch (opcode) {
8489
8490        case EVENT_RING_OPCODE_STAT_QUERY:
8491            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8492                  sc->stats_comp++);
8493            /* nothing to do with stats comp */
8494            goto next_spqe;
8495
8496        case EVENT_RING_OPCODE_CFC_DEL:
8497            /* handle according to cid range */
8498            /* we may want to verify here that the sc state is HALTING */
8499            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8500            q_obj = bxe_cid_to_q_obj(sc, cid);
8501            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8502                break;
8503            }
8504            goto next_spqe;
8505
8506        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8507            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8508            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8509                break;
8510            }
8511            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8512            goto next_spqe;
8513
8514        case EVENT_RING_OPCODE_START_TRAFFIC:
8515            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8516            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8517                break;
8518            }
8519            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8520            goto next_spqe;
8521
8522        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8523            echo = elem->message.data.function_update_event.echo;
8524            if (echo == SWITCH_UPDATE) {
8525                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8526                if (f_obj->complete_cmd(sc, f_obj,
8527                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8528                    break;
8529                }
8530            }
8531            else {
8532                BLOGD(sc, DBG_SP,
8533                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8534            }
8535            goto next_spqe;
8536
8537        case EVENT_RING_OPCODE_FORWARD_SETUP:
8538            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8539            if (q_obj->complete_cmd(sc, q_obj,
8540                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8541                break;
8542            }
8543            goto next_spqe;
8544
8545        case EVENT_RING_OPCODE_FUNCTION_START:
8546            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8547            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8548                break;
8549            }
8550            goto next_spqe;
8551
8552        case EVENT_RING_OPCODE_FUNCTION_STOP:
8553            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8554            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8555                break;
8556            }
8557            goto next_spqe;
8558        }
8559
8560        switch (opcode | sc->state) {
8561        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8562        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8563            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8564            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8565            rss_raw->clear_pending(rss_raw);
8566            break;
8567
8568        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8569        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8570        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8571        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8572        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8573        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8574            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8575            bxe_handle_classification_eqe(sc, elem);
8576            break;
8577
8578        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8579        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8580        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8581            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8582            bxe_handle_mcast_eqe(sc);
8583            break;
8584
8585        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8586        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8587        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8588            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8589            bxe_handle_rx_mode_eqe(sc, elem);
8590            break;
8591
8592        default:
8593            /* unknown event log error and continue */
8594            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8595                  elem->message.opcode, sc->state);
8596        }
8597
8598next_spqe:
8599        spqe_cnt++;
8600    } /* for */
8601
8602    mb();
8603    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8604
8605    sc->eq_cons = sw_cons;
8606    sc->eq_prod = sw_prod;
8607
8608    /* make sure that above mem writes were issued towards the memory */
8609    wmb();
8610
8611    /* update producer */
8612    bxe_update_eq_prod(sc, sc->eq_prod);
8613}
8614
8615static void
8616bxe_handle_sp_tq(void *context,
8617                 int  pending)
8618{
8619    struct bxe_softc *sc = (struct bxe_softc *)context;
8620    uint16_t status;
8621
8622    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8623
8624    /* what work needs to be performed? */
8625    status = bxe_update_dsb_idx(sc);
8626
8627    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8628
8629    /* HW attentions */
8630    if (status & BXE_DEF_SB_ATT_IDX) {
8631        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8632        bxe_attn_int(sc);
8633        status &= ~BXE_DEF_SB_ATT_IDX;
8634    }
8635
8636    /* SP events: STAT_QUERY and others */
8637    if (status & BXE_DEF_SB_IDX) {
8638        /* handle EQ completions */
8639        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8640        bxe_eq_int(sc);
8641        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8642                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8643        status &= ~BXE_DEF_SB_IDX;
8644    }
8645
8646    /* if status is non zero then something went wrong */
8647    if (__predict_false(status)) {
8648        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8649    }
8650
8651    /* ack status block only if something was actually handled */
8652    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8653               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8654
8655    /*
8656     * Must be called after the EQ processing (since eq leads to sriov
8657     * ramrod completion flows).
8658     * This flow may have been scheduled by the arrival of a ramrod
8659     * completion, or by the sriov code rescheduling itself.
8660     */
8661    // XXX bxe_iov_sp_task(sc);
8662
8663}
8664
8665static void
8666bxe_handle_fp_tq(void *context,
8667                 int  pending)
8668{
8669    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8670    struct bxe_softc *sc = fp->sc;
8671    uint8_t more_tx = FALSE;
8672    uint8_t more_rx = FALSE;
8673
8674    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8675
8676    /* XXX
8677     * IFF_DRV_RUNNING state can't be checked here since we process
8678     * slowpath events on a client queue during setup. Instead
8679     * we need to add a "process/continue" flag here that the driver
8680     * can use to tell the task here not to do anything.
8681     */
8682#if 0
8683    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8684        return;
8685    }
8686#endif
8687
8688    /* update the fastpath index */
8689    bxe_update_fp_sb_idx(fp);
8690
8691    /* XXX add loop here if ever support multiple tx CoS */
8692    /* fp->txdata[cos] */
8693    if (bxe_has_tx_work(fp)) {
8694        BXE_FP_TX_LOCK(fp);
8695        more_tx = bxe_txeof(sc, fp);
8696        BXE_FP_TX_UNLOCK(fp);
8697    }
8698
8699    if (bxe_has_rx_work(fp)) {
8700        more_rx = bxe_rxeof(sc, fp);
8701    }
8702
8703    if (more_rx /*|| more_tx*/) {
8704        /* still more work to do */
8705        taskqueue_enqueue(fp->tq, &fp->tq_task);
8706        return;
8707    }
8708
8709    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8710               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8711}
8712
8713static void
8714bxe_task_fp(struct bxe_fastpath *fp)
8715{
8716    struct bxe_softc *sc = fp->sc;
8717    uint8_t more_tx = FALSE;
8718    uint8_t more_rx = FALSE;
8719
8720    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8721
8722    /* update the fastpath index */
8723    bxe_update_fp_sb_idx(fp);
8724
8725    /* XXX add loop here if ever support multiple tx CoS */
8726    /* fp->txdata[cos] */
8727    if (bxe_has_tx_work(fp)) {
8728        BXE_FP_TX_LOCK(fp);
8729        more_tx = bxe_txeof(sc, fp);
8730        BXE_FP_TX_UNLOCK(fp);
8731    }
8732
8733    if (bxe_has_rx_work(fp)) {
8734        more_rx = bxe_rxeof(sc, fp);
8735    }
8736
8737    if (more_rx /*|| more_tx*/) {
8738        /* still more work to do, bail out if this ISR and process later */
8739        taskqueue_enqueue(fp->tq, &fp->tq_task);
8740        return;
8741    }
8742
8743    /*
8744     * Here we write the fastpath index taken before doing any tx or rx work.
8745     * It is very well possible other hw events occurred up to this point and
8746     * they were actually processed accordingly above. Since we're going to
8747     * write an older fastpath index, an interrupt is coming which we might
8748     * not do any work in.
8749     */
8750    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8751               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8752}
8753
8754/*
8755 * Legacy interrupt entry point.
8756 *
8757 * Verifies that the controller generated the interrupt and
8758 * then calls a separate routine to handle the various
8759 * interrupt causes: link, RX, and TX.
8760 */
8761static void
8762bxe_intr_legacy(void *xsc)
8763{
8764    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8765    struct bxe_fastpath *fp;
8766    uint16_t status, mask;
8767    int i;
8768
8769    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8770
8771    /*
8772     * 0 for ustorm, 1 for cstorm
8773     * the bits returned from ack_int() are 0-15
8774     * bit 0 = attention status block
8775     * bit 1 = fast path status block
8776     * a mask of 0x2 or more = tx/rx event
8777     * a mask of 1 = slow path event
8778     */
8779
8780    status = bxe_ack_int(sc);
8781
8782    /* the interrupt is not for us */
8783    if (__predict_false(status == 0)) {
8784        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8785        return;
8786    }
8787
8788    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8789
8790    FOR_EACH_ETH_QUEUE(sc, i) {
8791        fp = &sc->fp[i];
8792        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8793        if (status & mask) {
8794            /* acknowledge and disable further fastpath interrupts */
8795            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8796            bxe_task_fp(fp);
8797            status &= ~mask;
8798        }
8799    }
8800
8801    if (__predict_false(status & 0x1)) {
8802        /* acknowledge and disable further slowpath interrupts */
8803        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8804
8805        /* schedule slowpath handler */
8806        taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8807
8808        status &= ~0x1;
8809    }
8810
8811    if (__predict_false(status)) {
8812        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8813    }
8814}
8815
8816/* slowpath interrupt entry point */
8817static void
8818bxe_intr_sp(void *xsc)
8819{
8820    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8821
8822    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8823
8824    /* acknowledge and disable further slowpath interrupts */
8825    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8826
8827    /* schedule slowpath handler */
8828    taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8829}
8830
8831/* fastpath interrupt entry point */
8832static void
8833bxe_intr_fp(void *xfp)
8834{
8835    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8836    struct bxe_softc *sc = fp->sc;
8837
8838    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8839
8840    BLOGD(sc, DBG_INTR,
8841          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8842          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8843
8844    /* acknowledge and disable further fastpath interrupts */
8845    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8846
8847    bxe_task_fp(fp);
8848}
8849
8850/* Release all interrupts allocated by the driver. */
8851static void
8852bxe_interrupt_free(struct bxe_softc *sc)
8853{
8854    int i;
8855
8856    switch (sc->interrupt_mode) {
8857    case INTR_MODE_INTX:
8858        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8859        if (sc->intr[0].resource != NULL) {
8860            bus_release_resource(sc->dev,
8861                                 SYS_RES_IRQ,
8862                                 sc->intr[0].rid,
8863                                 sc->intr[0].resource);
8864        }
8865        break;
8866    case INTR_MODE_MSI:
8867        for (i = 0; i < sc->intr_count; i++) {
8868            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8869            if (sc->intr[i].resource && sc->intr[i].rid) {
8870                bus_release_resource(sc->dev,
8871                                     SYS_RES_IRQ,
8872                                     sc->intr[i].rid,
8873                                     sc->intr[i].resource);
8874            }
8875        }
8876        pci_release_msi(sc->dev);
8877        break;
8878    case INTR_MODE_MSIX:
8879        for (i = 0; i < sc->intr_count; i++) {
8880            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8881            if (sc->intr[i].resource && sc->intr[i].rid) {
8882                bus_release_resource(sc->dev,
8883                                     SYS_RES_IRQ,
8884                                     sc->intr[i].rid,
8885                                     sc->intr[i].resource);
8886            }
8887        }
8888        pci_release_msi(sc->dev);
8889        break;
8890    default:
8891        /* nothing to do as initial allocation failed */
8892        break;
8893    }
8894}
8895
8896/*
8897 * This function determines and allocates the appropriate
8898 * interrupt based on system capabilites and user request.
8899 *
8900 * The user may force a particular interrupt mode, specify
8901 * the number of receive queues, specify the method for
8902 * distribuitng received frames to receive queues, or use
8903 * the default settings which will automatically select the
8904 * best supported combination.  In addition, the OS may or
8905 * may not support certain combinations of these settings.
8906 * This routine attempts to reconcile the settings requested
8907 * by the user with the capabilites available from the system
8908 * to select the optimal combination of features.
8909 *
8910 * Returns:
8911 *   0 = Success, !0 = Failure.
8912 */
8913static int
8914bxe_interrupt_alloc(struct bxe_softc *sc)
8915{
8916    int msix_count = 0;
8917    int msi_count = 0;
8918    int num_requested = 0;
8919    int num_allocated = 0;
8920    int rid, i, j;
8921    int rc;
8922
8923    /* get the number of available MSI/MSI-X interrupts from the OS */
8924    if (sc->interrupt_mode > 0) {
8925        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8926            msix_count = pci_msix_count(sc->dev);
8927        }
8928
8929        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8930            msi_count = pci_msi_count(sc->dev);
8931        }
8932
8933        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8934              msi_count, msix_count);
8935    }
8936
8937    do { /* try allocating MSI-X interrupt resources (at least 2) */
8938        if (sc->interrupt_mode != INTR_MODE_MSIX) {
8939            break;
8940        }
8941
8942        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8943            (msix_count < 2)) {
8944            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8945            break;
8946        }
8947
8948        /* ask for the necessary number of MSI-X vectors */
8949        num_requested = min((sc->num_queues + 1), msix_count);
8950
8951        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8952
8953        num_allocated = num_requested;
8954        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8955            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8956            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8957            break;
8958        }
8959
8960        if (num_allocated < 2) { /* possible? */
8961            BLOGE(sc, "MSI-X allocation less than 2!\n");
8962            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8963            pci_release_msi(sc->dev);
8964            break;
8965        }
8966
8967        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8968              num_requested, num_allocated);
8969
8970        /* best effort so use the number of vectors allocated to us */
8971        sc->intr_count = num_allocated;
8972        sc->num_queues = num_allocated - 1;
8973
8974        rid = 1; /* initial resource identifier */
8975
8976        /* allocate the MSI-X vectors */
8977        for (i = 0; i < num_allocated; i++) {
8978            sc->intr[i].rid = (rid + i);
8979
8980            if ((sc->intr[i].resource =
8981                 bus_alloc_resource_any(sc->dev,
8982                                        SYS_RES_IRQ,
8983                                        &sc->intr[i].rid,
8984                                        RF_ACTIVE)) == NULL) {
8985                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8986                      i, (rid + i));
8987
8988                for (j = (i - 1); j >= 0; j--) {
8989                    bus_release_resource(sc->dev,
8990                                         SYS_RES_IRQ,
8991                                         sc->intr[j].rid,
8992                                         sc->intr[j].resource);
8993                }
8994
8995                sc->intr_count = 0;
8996                sc->num_queues = 0;
8997                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8998                pci_release_msi(sc->dev);
8999                break;
9000            }
9001
9002            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9003        }
9004    } while (0);
9005
9006    do { /* try allocating MSI vector resources (at least 2) */
9007        if (sc->interrupt_mode != INTR_MODE_MSI) {
9008            break;
9009        }
9010
9011        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9012            (msi_count < 1)) {
9013            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9014            break;
9015        }
9016
9017        /* ask for a single MSI vector */
9018        num_requested = 1;
9019
9020        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9021
9022        num_allocated = num_requested;
9023        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9024            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9025            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9026            break;
9027        }
9028
9029        if (num_allocated != 1) { /* possible? */
9030            BLOGE(sc, "MSI allocation is not 1!\n");
9031            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9032            pci_release_msi(sc->dev);
9033            break;
9034        }
9035
9036        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9037              num_requested, num_allocated);
9038
9039        /* best effort so use the number of vectors allocated to us */
9040        sc->intr_count = num_allocated;
9041        sc->num_queues = num_allocated;
9042
9043        rid = 1; /* initial resource identifier */
9044
9045        sc->intr[0].rid = rid;
9046
9047        if ((sc->intr[0].resource =
9048             bus_alloc_resource_any(sc->dev,
9049                                    SYS_RES_IRQ,
9050                                    &sc->intr[0].rid,
9051                                    RF_ACTIVE)) == NULL) {
9052            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9053            sc->intr_count = 0;
9054            sc->num_queues = 0;
9055            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9056            pci_release_msi(sc->dev);
9057            break;
9058        }
9059
9060        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9061    } while (0);
9062
9063    do { /* try allocating INTx vector resources */
9064        if (sc->interrupt_mode != INTR_MODE_INTX) {
9065            break;
9066        }
9067
9068        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9069
9070        /* only one vector for INTx */
9071        sc->intr_count = 1;
9072        sc->num_queues = 1;
9073
9074        rid = 0; /* initial resource identifier */
9075
9076        sc->intr[0].rid = rid;
9077
9078        if ((sc->intr[0].resource =
9079             bus_alloc_resource_any(sc->dev,
9080                                    SYS_RES_IRQ,
9081                                    &sc->intr[0].rid,
9082                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9083            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9084            sc->intr_count = 0;
9085            sc->num_queues = 0;
9086            sc->interrupt_mode = -1; /* Failed! */
9087            break;
9088        }
9089
9090        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9091    } while (0);
9092
9093    if (sc->interrupt_mode == -1) {
9094        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9095        rc = 1;
9096    } else {
9097        BLOGD(sc, DBG_LOAD,
9098              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9099              sc->interrupt_mode, sc->num_queues);
9100        rc = 0;
9101    }
9102
9103    return (rc);
9104}
9105
9106static void
9107bxe_interrupt_detach(struct bxe_softc *sc)
9108{
9109    struct bxe_fastpath *fp;
9110    int i;
9111
9112    /* release interrupt resources */
9113    for (i = 0; i < sc->intr_count; i++) {
9114        if (sc->intr[i].resource && sc->intr[i].tag) {
9115            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9116            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9117        }
9118    }
9119
9120    for (i = 0; i < sc->num_queues; i++) {
9121        fp = &sc->fp[i];
9122        if (fp->tq) {
9123            taskqueue_drain(fp->tq, &fp->tq_task);
9124            taskqueue_drain(fp->tq, &fp->tx_task);
9125            while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9126                NULL))
9127                taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9128            taskqueue_free(fp->tq);
9129            fp->tq = NULL;
9130        }
9131    }
9132
9133
9134    if (sc->sp_tq) {
9135        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9136        taskqueue_free(sc->sp_tq);
9137        sc->sp_tq = NULL;
9138    }
9139}
9140
9141/*
9142 * Enables interrupts and attach to the ISR.
9143 *
9144 * When using multiple MSI/MSI-X vectors the first vector
9145 * is used for slowpath operations while all remaining
9146 * vectors are used for fastpath operations.  If only a
9147 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9148 * ISR must look for both slowpath and fastpath completions.
9149 */
9150static int
9151bxe_interrupt_attach(struct bxe_softc *sc)
9152{
9153    struct bxe_fastpath *fp;
9154    int rc = 0;
9155    int i;
9156
9157    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9158             "bxe%d_sp_tq", sc->unit);
9159    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9160    sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9161                                 taskqueue_thread_enqueue,
9162                                 &sc->sp_tq);
9163    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9164                            "%s", sc->sp_tq_name);
9165
9166
9167    for (i = 0; i < sc->num_queues; i++) {
9168        fp = &sc->fp[i];
9169        snprintf(fp->tq_name, sizeof(fp->tq_name),
9170                 "bxe%d_fp%d_tq", sc->unit, i);
9171        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9172        TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9173        fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9174                                  taskqueue_thread_enqueue,
9175                                  &fp->tq);
9176        TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9177                          bxe_tx_mq_start_deferred, fp);
9178        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9179                                "%s", fp->tq_name);
9180    }
9181
9182    /* setup interrupt handlers */
9183    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9184        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9185
9186        /*
9187         * Setup the interrupt handler. Note that we pass the driver instance
9188         * to the interrupt handler for the slowpath.
9189         */
9190        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9191                                 (INTR_TYPE_NET | INTR_MPSAFE),
9192                                 NULL, bxe_intr_sp, sc,
9193                                 &sc->intr[0].tag)) != 0) {
9194            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9195            goto bxe_interrupt_attach_exit;
9196        }
9197
9198        bus_describe_intr(sc->dev, sc->intr[0].resource,
9199                          sc->intr[0].tag, "sp");
9200
9201        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9202
9203        /* initialize the fastpath vectors (note the first was used for sp) */
9204        for (i = 0; i < sc->num_queues; i++) {
9205            fp = &sc->fp[i];
9206            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9207
9208            /*
9209             * Setup the interrupt handler. Note that we pass the
9210             * fastpath context to the interrupt handler in this
9211             * case.
9212             */
9213            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9214                                     (INTR_TYPE_NET | INTR_MPSAFE),
9215                                     NULL, bxe_intr_fp, fp,
9216                                     &sc->intr[i + 1].tag)) != 0) {
9217                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9218                      (i + 1), rc);
9219                goto bxe_interrupt_attach_exit;
9220            }
9221
9222            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9223                              sc->intr[i + 1].tag, "fp%02d", i);
9224
9225            /* bind the fastpath instance to a cpu */
9226            if (sc->num_queues > 1) {
9227                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9228            }
9229
9230            fp->state = BXE_FP_STATE_IRQ;
9231        }
9232    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9233        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9234
9235        /*
9236         * Setup the interrupt handler. Note that we pass the
9237         * driver instance to the interrupt handler which
9238         * will handle both the slowpath and fastpath.
9239         */
9240        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9241                                 (INTR_TYPE_NET | INTR_MPSAFE),
9242                                 NULL, bxe_intr_legacy, sc,
9243                                 &sc->intr[0].tag)) != 0) {
9244            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9245            goto bxe_interrupt_attach_exit;
9246        }
9247
9248    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9249        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9250
9251        /*
9252         * Setup the interrupt handler. Note that we pass the
9253         * driver instance to the interrupt handler which
9254         * will handle both the slowpath and fastpath.
9255         */
9256        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9257                                 (INTR_TYPE_NET | INTR_MPSAFE),
9258                                 NULL, bxe_intr_legacy, sc,
9259                                 &sc->intr[0].tag)) != 0) {
9260            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9261            goto bxe_interrupt_attach_exit;
9262        }
9263    }
9264
9265bxe_interrupt_attach_exit:
9266
9267    return (rc);
9268}
9269
9270static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9271static int  bxe_init_hw_common(struct bxe_softc *sc);
9272static int  bxe_init_hw_port(struct bxe_softc *sc);
9273static int  bxe_init_hw_func(struct bxe_softc *sc);
9274static void bxe_reset_common(struct bxe_softc *sc);
9275static void bxe_reset_port(struct bxe_softc *sc);
9276static void bxe_reset_func(struct bxe_softc *sc);
9277static int  bxe_gunzip_init(struct bxe_softc *sc);
9278static void bxe_gunzip_end(struct bxe_softc *sc);
9279static int  bxe_init_firmware(struct bxe_softc *sc);
9280static void bxe_release_firmware(struct bxe_softc *sc);
9281
9282static struct
9283ecore_func_sp_drv_ops bxe_func_sp_drv = {
9284    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9285    .init_hw_cmn      = bxe_init_hw_common,
9286    .init_hw_port     = bxe_init_hw_port,
9287    .init_hw_func     = bxe_init_hw_func,
9288
9289    .reset_hw_cmn     = bxe_reset_common,
9290    .reset_hw_port    = bxe_reset_port,
9291    .reset_hw_func    = bxe_reset_func,
9292
9293    .gunzip_init      = bxe_gunzip_init,
9294    .gunzip_end       = bxe_gunzip_end,
9295
9296    .init_fw          = bxe_init_firmware,
9297    .release_fw       = bxe_release_firmware,
9298};
9299
9300static void
9301bxe_init_func_obj(struct bxe_softc *sc)
9302{
9303    sc->dmae_ready = 0;
9304
9305    ecore_init_func_obj(sc,
9306                        &sc->func_obj,
9307                        BXE_SP(sc, func_rdata),
9308                        BXE_SP_MAPPING(sc, func_rdata),
9309                        BXE_SP(sc, func_afex_rdata),
9310                        BXE_SP_MAPPING(sc, func_afex_rdata),
9311                        &bxe_func_sp_drv);
9312}
9313
9314static int
9315bxe_init_hw(struct bxe_softc *sc,
9316            uint32_t         load_code)
9317{
9318    struct ecore_func_state_params func_params = { NULL };
9319    int rc;
9320
9321    /* prepare the parameters for function state transitions */
9322    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9323
9324    func_params.f_obj = &sc->func_obj;
9325    func_params.cmd = ECORE_F_CMD_HW_INIT;
9326
9327    func_params.params.hw_init.load_phase = load_code;
9328
9329    /*
9330     * Via a plethora of function pointers, we will eventually reach
9331     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9332     */
9333    rc = ecore_func_state_change(sc, &func_params);
9334
9335    return (rc);
9336}
9337
9338static void
9339bxe_fill(struct bxe_softc *sc,
9340         uint32_t         addr,
9341         int              fill,
9342         uint32_t         len)
9343{
9344    uint32_t i;
9345
9346    if (!(len % 4) && !(addr % 4)) {
9347        for (i = 0; i < len; i += 4) {
9348            REG_WR(sc, (addr + i), fill);
9349        }
9350    } else {
9351        for (i = 0; i < len; i++) {
9352            REG_WR8(sc, (addr + i), fill);
9353        }
9354    }
9355}
9356
9357/* writes FP SP data to FW - data_size in dwords */
9358static void
9359bxe_wr_fp_sb_data(struct bxe_softc *sc,
9360                  int              fw_sb_id,
9361                  uint32_t         *sb_data_p,
9362                  uint32_t         data_size)
9363{
9364    int index;
9365
9366    for (index = 0; index < data_size; index++) {
9367        REG_WR(sc,
9368               (BAR_CSTRORM_INTMEM +
9369                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9370                (sizeof(uint32_t) * index)),
9371               *(sb_data_p + index));
9372    }
9373}
9374
9375static void
9376bxe_zero_fp_sb(struct bxe_softc *sc,
9377               int              fw_sb_id)
9378{
9379    struct hc_status_block_data_e2 sb_data_e2;
9380    struct hc_status_block_data_e1x sb_data_e1x;
9381    uint32_t *sb_data_p;
9382    uint32_t data_size = 0;
9383
9384    if (!CHIP_IS_E1x(sc)) {
9385        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9386        sb_data_e2.common.state = SB_DISABLED;
9387        sb_data_e2.common.p_func.vf_valid = FALSE;
9388        sb_data_p = (uint32_t *)&sb_data_e2;
9389        data_size = (sizeof(struct hc_status_block_data_e2) /
9390                     sizeof(uint32_t));
9391    } else {
9392        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9393        sb_data_e1x.common.state = SB_DISABLED;
9394        sb_data_e1x.common.p_func.vf_valid = FALSE;
9395        sb_data_p = (uint32_t *)&sb_data_e1x;
9396        data_size = (sizeof(struct hc_status_block_data_e1x) /
9397                     sizeof(uint32_t));
9398    }
9399
9400    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9401
9402    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9403             0, CSTORM_STATUS_BLOCK_SIZE);
9404    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9405             0, CSTORM_SYNC_BLOCK_SIZE);
9406}
9407
9408static void
9409bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9410                  struct hc_sp_status_block_data *sp_sb_data)
9411{
9412    int i;
9413
9414    for (i = 0;
9415         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9416         i++) {
9417        REG_WR(sc,
9418               (BAR_CSTRORM_INTMEM +
9419                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9420                (i * sizeof(uint32_t))),
9421               *((uint32_t *)sp_sb_data + i));
9422    }
9423}
9424
9425static void
9426bxe_zero_sp_sb(struct bxe_softc *sc)
9427{
9428    struct hc_sp_status_block_data sp_sb_data;
9429
9430    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9431
9432    sp_sb_data.state           = SB_DISABLED;
9433    sp_sb_data.p_func.vf_valid = FALSE;
9434
9435    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9436
9437    bxe_fill(sc,
9438             (BAR_CSTRORM_INTMEM +
9439              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9440              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9441    bxe_fill(sc,
9442             (BAR_CSTRORM_INTMEM +
9443              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9444              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9445}
9446
9447static void
9448bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9449                             int                       igu_sb_id,
9450                             int                       igu_seg_id)
9451{
9452    hc_sm->igu_sb_id      = igu_sb_id;
9453    hc_sm->igu_seg_id     = igu_seg_id;
9454    hc_sm->timer_value    = 0xFF;
9455    hc_sm->time_to_expire = 0xFFFFFFFF;
9456}
9457
9458static void
9459bxe_map_sb_state_machines(struct hc_index_data *index_data)
9460{
9461    /* zero out state machine indices */
9462
9463    /* rx indices */
9464    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9465
9466    /* tx indices */
9467    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9468    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9469    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9470    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9471
9472    /* map indices */
9473
9474    /* rx indices */
9475    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9476        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9477
9478    /* tx indices */
9479    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9480        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9481    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9482        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9483    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9484        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9485    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9486        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9487}
9488
9489static void
9490bxe_init_sb(struct bxe_softc *sc,
9491            bus_addr_t       busaddr,
9492            int              vfid,
9493            uint8_t          vf_valid,
9494            int              fw_sb_id,
9495            int              igu_sb_id)
9496{
9497    struct hc_status_block_data_e2  sb_data_e2;
9498    struct hc_status_block_data_e1x sb_data_e1x;
9499    struct hc_status_block_sm       *hc_sm_p;
9500    uint32_t *sb_data_p;
9501    int igu_seg_id;
9502    int data_size;
9503
9504    if (CHIP_INT_MODE_IS_BC(sc)) {
9505        igu_seg_id = HC_SEG_ACCESS_NORM;
9506    } else {
9507        igu_seg_id = IGU_SEG_ACCESS_NORM;
9508    }
9509
9510    bxe_zero_fp_sb(sc, fw_sb_id);
9511
9512    if (!CHIP_IS_E1x(sc)) {
9513        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9514        sb_data_e2.common.state = SB_ENABLED;
9515        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9516        sb_data_e2.common.p_func.vf_id = vfid;
9517        sb_data_e2.common.p_func.vf_valid = vf_valid;
9518        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9519        sb_data_e2.common.same_igu_sb_1b = TRUE;
9520        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9521        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9522        hc_sm_p = sb_data_e2.common.state_machine;
9523        sb_data_p = (uint32_t *)&sb_data_e2;
9524        data_size = (sizeof(struct hc_status_block_data_e2) /
9525                     sizeof(uint32_t));
9526        bxe_map_sb_state_machines(sb_data_e2.index_data);
9527    } else {
9528        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9529        sb_data_e1x.common.state = SB_ENABLED;
9530        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9531        sb_data_e1x.common.p_func.vf_id = 0xff;
9532        sb_data_e1x.common.p_func.vf_valid = FALSE;
9533        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9534        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9535        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9536        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9537        hc_sm_p = sb_data_e1x.common.state_machine;
9538        sb_data_p = (uint32_t *)&sb_data_e1x;
9539        data_size = (sizeof(struct hc_status_block_data_e1x) /
9540                     sizeof(uint32_t));
9541        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9542    }
9543
9544    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9545    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9546
9547    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9548
9549    /* write indices to HW - PCI guarantees endianity of regpairs */
9550    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9551}
9552
9553static inline uint8_t
9554bxe_fp_qzone_id(struct bxe_fastpath *fp)
9555{
9556    if (CHIP_IS_E1x(fp->sc)) {
9557        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9558    } else {
9559        return (fp->cl_id);
9560    }
9561}
9562
9563static inline uint32_t
9564bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9565                           struct bxe_fastpath *fp)
9566{
9567    uint32_t offset = BAR_USTRORM_INTMEM;
9568
9569    if (!CHIP_IS_E1x(sc)) {
9570        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9571    } else {
9572        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9573    }
9574
9575    return (offset);
9576}
9577
9578static void
9579bxe_init_eth_fp(struct bxe_softc *sc,
9580                int              idx)
9581{
9582    struct bxe_fastpath *fp = &sc->fp[idx];
9583    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9584    unsigned long q_type = 0;
9585    int cos;
9586
9587    fp->sc    = sc;
9588    fp->index = idx;
9589
9590    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9591    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9592
9593    fp->cl_id = (CHIP_IS_E1x(sc)) ?
9594                    (SC_L_ID(sc) + idx) :
9595                    /* want client ID same as IGU SB ID for non-E1 */
9596                    fp->igu_sb_id;
9597    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9598
9599    /* setup sb indices */
9600    if (!CHIP_IS_E1x(sc)) {
9601        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9602        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9603    } else {
9604        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9605        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9606    }
9607
9608    /* init shortcut */
9609    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9610
9611    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9612
9613    /*
9614     * XXX If multiple CoS is ever supported then each fastpath structure
9615     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9616     */
9617    for (cos = 0; cos < sc->max_cos; cos++) {
9618        cids[cos] = idx;
9619    }
9620    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9621
9622    /* nothing more for a VF to do */
9623    if (IS_VF(sc)) {
9624        return;
9625    }
9626
9627    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9628                fp->fw_sb_id, fp->igu_sb_id);
9629
9630    bxe_update_fp_sb_idx(fp);
9631
9632    /* Configure Queue State object */
9633    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9634    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9635
9636    ecore_init_queue_obj(sc,
9637                         &sc->sp_objs[idx].q_obj,
9638                         fp->cl_id,
9639                         cids,
9640                         sc->max_cos,
9641                         SC_FUNC(sc),
9642                         BXE_SP(sc, q_rdata),
9643                         BXE_SP_MAPPING(sc, q_rdata),
9644                         q_type);
9645
9646    /* configure classification DBs */
9647    ecore_init_mac_obj(sc,
9648                       &sc->sp_objs[idx].mac_obj,
9649                       fp->cl_id,
9650                       idx,
9651                       SC_FUNC(sc),
9652                       BXE_SP(sc, mac_rdata),
9653                       BXE_SP_MAPPING(sc, mac_rdata),
9654                       ECORE_FILTER_MAC_PENDING,
9655                       &sc->sp_state,
9656                       ECORE_OBJ_TYPE_RX_TX,
9657                       &sc->macs_pool);
9658
9659    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9660          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9661}
9662
9663static inline void
9664bxe_update_rx_prod(struct bxe_softc    *sc,
9665                   struct bxe_fastpath *fp,
9666                   uint16_t            rx_bd_prod,
9667                   uint16_t            rx_cq_prod,
9668                   uint16_t            rx_sge_prod)
9669{
9670    struct ustorm_eth_rx_producers rx_prods = { 0 };
9671    uint32_t i;
9672
9673    /* update producers */
9674    rx_prods.bd_prod  = rx_bd_prod;
9675    rx_prods.cqe_prod = rx_cq_prod;
9676    rx_prods.sge_prod = rx_sge_prod;
9677
9678    /*
9679     * Make sure that the BD and SGE data is updated before updating the
9680     * producers since FW might read the BD/SGE right after the producer
9681     * is updated.
9682     * This is only applicable for weak-ordered memory model archs such
9683     * as IA-64. The following barrier is also mandatory since FW will
9684     * assumes BDs must have buffers.
9685     */
9686    wmb();
9687
9688    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9689        REG_WR(sc,
9690               (fp->ustorm_rx_prods_offset + (i * 4)),
9691               ((uint32_t *)&rx_prods)[i]);
9692    }
9693
9694    wmb(); /* keep prod updates ordered */
9695
9696    BLOGD(sc, DBG_RX,
9697          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9698          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9699}
9700
9701static void
9702bxe_init_rx_rings(struct bxe_softc *sc)
9703{
9704    struct bxe_fastpath *fp;
9705    int i;
9706
9707    for (i = 0; i < sc->num_queues; i++) {
9708        fp = &sc->fp[i];
9709
9710        fp->rx_bd_cons = 0;
9711
9712        /*
9713         * Activate the BD ring...
9714         * Warning, this will generate an interrupt (to the TSTORM)
9715         * so this can only be done after the chip is initialized
9716         */
9717        bxe_update_rx_prod(sc, fp,
9718                           fp->rx_bd_prod,
9719                           fp->rx_cq_prod,
9720                           fp->rx_sge_prod);
9721
9722        if (i != 0) {
9723            continue;
9724        }
9725
9726        if (CHIP_IS_E1(sc)) {
9727            REG_WR(sc,
9728                   (BAR_USTRORM_INTMEM +
9729                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9730                   U64_LO(fp->rcq_dma.paddr));
9731            REG_WR(sc,
9732                   (BAR_USTRORM_INTMEM +
9733                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9734                   U64_HI(fp->rcq_dma.paddr));
9735        }
9736    }
9737}
9738
9739static void
9740bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9741{
9742    SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9743    fp->tx_db.data.zero_fill1 = 0;
9744    fp->tx_db.data.prod = 0;
9745
9746    fp->tx_pkt_prod = 0;
9747    fp->tx_pkt_cons = 0;
9748    fp->tx_bd_prod = 0;
9749    fp->tx_bd_cons = 0;
9750    fp->eth_q_stats.tx_pkts = 0;
9751}
9752
9753static inline void
9754bxe_init_tx_rings(struct bxe_softc *sc)
9755{
9756    int i;
9757
9758    for (i = 0; i < sc->num_queues; i++) {
9759        bxe_init_tx_ring_one(&sc->fp[i]);
9760    }
9761}
9762
9763static void
9764bxe_init_def_sb(struct bxe_softc *sc)
9765{
9766    struct host_sp_status_block *def_sb = sc->def_sb;
9767    bus_addr_t mapping = sc->def_sb_dma.paddr;
9768    int igu_sp_sb_index;
9769    int igu_seg_id;
9770    int port = SC_PORT(sc);
9771    int func = SC_FUNC(sc);
9772    int reg_offset, reg_offset_en5;
9773    uint64_t section;
9774    int index, sindex;
9775    struct hc_sp_status_block_data sp_sb_data;
9776
9777    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9778
9779    if (CHIP_INT_MODE_IS_BC(sc)) {
9780        igu_sp_sb_index = DEF_SB_IGU_ID;
9781        igu_seg_id = HC_SEG_ACCESS_DEF;
9782    } else {
9783        igu_sp_sb_index = sc->igu_dsb_id;
9784        igu_seg_id = IGU_SEG_ACCESS_DEF;
9785    }
9786
9787    /* attentions */
9788    section = ((uint64_t)mapping +
9789               offsetof(struct host_sp_status_block, atten_status_block));
9790    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9791    sc->attn_state = 0;
9792
9793    reg_offset = (port) ?
9794                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9795                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9796    reg_offset_en5 = (port) ?
9797                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9798                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9799
9800    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9801        /* take care of sig[0]..sig[4] */
9802        for (sindex = 0; sindex < 4; sindex++) {
9803            sc->attn_group[index].sig[sindex] =
9804                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9805        }
9806
9807        if (!CHIP_IS_E1x(sc)) {
9808            /*
9809             * enable5 is separate from the rest of the registers,
9810             * and the address skip is 4 and not 16 between the
9811             * different groups
9812             */
9813            sc->attn_group[index].sig[4] =
9814                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9815        } else {
9816            sc->attn_group[index].sig[4] = 0;
9817        }
9818    }
9819
9820    if (sc->devinfo.int_block == INT_BLOCK_HC) {
9821        reg_offset = (port) ?
9822                         HC_REG_ATTN_MSG1_ADDR_L :
9823                         HC_REG_ATTN_MSG0_ADDR_L;
9824        REG_WR(sc, reg_offset, U64_LO(section));
9825        REG_WR(sc, (reg_offset + 4), U64_HI(section));
9826    } else if (!CHIP_IS_E1x(sc)) {
9827        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9828        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9829    }
9830
9831    section = ((uint64_t)mapping +
9832               offsetof(struct host_sp_status_block, sp_sb));
9833
9834    bxe_zero_sp_sb(sc);
9835
9836    /* PCI guarantees endianity of regpair */
9837    sp_sb_data.state           = SB_ENABLED;
9838    sp_sb_data.host_sb_addr.lo = U64_LO(section);
9839    sp_sb_data.host_sb_addr.hi = U64_HI(section);
9840    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9841    sp_sb_data.igu_seg_id      = igu_seg_id;
9842    sp_sb_data.p_func.pf_id    = func;
9843    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9844    sp_sb_data.p_func.vf_id    = 0xff;
9845
9846    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9847
9848    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9849}
9850
9851static void
9852bxe_init_sp_ring(struct bxe_softc *sc)
9853{
9854    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9855    sc->spq_prod_idx = 0;
9856    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9857    sc->spq_prod_bd = sc->spq;
9858    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9859}
9860
9861static void
9862bxe_init_eq_ring(struct bxe_softc *sc)
9863{
9864    union event_ring_elem *elem;
9865    int i;
9866
9867    for (i = 1; i <= NUM_EQ_PAGES; i++) {
9868        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9869
9870        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9871                                                 BCM_PAGE_SIZE *
9872                                                 (i % NUM_EQ_PAGES)));
9873        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9874                                                 BCM_PAGE_SIZE *
9875                                                 (i % NUM_EQ_PAGES)));
9876    }
9877
9878    sc->eq_cons    = 0;
9879    sc->eq_prod    = NUM_EQ_DESC;
9880    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9881
9882    atomic_store_rel_long(&sc->eq_spq_left,
9883                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9884                               NUM_EQ_DESC) - 1));
9885}
9886
9887static void
9888bxe_init_internal_common(struct bxe_softc *sc)
9889{
9890    int i;
9891
9892    /*
9893     * Zero this manually as its initialization is currently missing
9894     * in the initTool.
9895     */
9896    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9897        REG_WR(sc,
9898               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9899               0);
9900    }
9901
9902    if (!CHIP_IS_E1x(sc)) {
9903        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9904                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9905    }
9906}
9907
9908static void
9909bxe_init_internal(struct bxe_softc *sc,
9910                  uint32_t         load_code)
9911{
9912    switch (load_code) {
9913    case FW_MSG_CODE_DRV_LOAD_COMMON:
9914    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9915        bxe_init_internal_common(sc);
9916        /* no break */
9917
9918    case FW_MSG_CODE_DRV_LOAD_PORT:
9919        /* nothing to do */
9920        /* no break */
9921
9922    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9923        /* internal memory per function is initialized inside bxe_pf_init */
9924        break;
9925
9926    default:
9927        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9928        break;
9929    }
9930}
9931
9932static void
9933storm_memset_func_cfg(struct bxe_softc                         *sc,
9934                      struct tstorm_eth_function_common_config *tcfg,
9935                      uint16_t                                  abs_fid)
9936{
9937    uint32_t addr;
9938    size_t size;
9939
9940    addr = (BAR_TSTRORM_INTMEM +
9941            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9942    size = sizeof(struct tstorm_eth_function_common_config);
9943    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9944}
9945
9946static void
9947bxe_func_init(struct bxe_softc            *sc,
9948              struct bxe_func_init_params *p)
9949{
9950    struct tstorm_eth_function_common_config tcfg = { 0 };
9951
9952    if (CHIP_IS_E1x(sc)) {
9953        storm_memset_func_cfg(sc, &tcfg, p->func_id);
9954    }
9955
9956    /* Enable the function in the FW */
9957    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9958    storm_memset_func_en(sc, p->func_id, 1);
9959
9960    /* spq */
9961    if (p->func_flgs & FUNC_FLG_SPQ) {
9962        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9963        REG_WR(sc,
9964               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9965               p->spq_prod);
9966    }
9967}
9968
9969/*
9970 * Calculates the sum of vn_min_rates.
9971 * It's needed for further normalizing of the min_rates.
9972 * Returns:
9973 *   sum of vn_min_rates.
9974 *     or
9975 *   0 - if all the min_rates are 0.
9976 * In the later case fainess algorithm should be deactivated.
9977 * If all min rates are not zero then those that are zeroes will be set to 1.
9978 */
9979static void
9980bxe_calc_vn_min(struct bxe_softc       *sc,
9981                struct cmng_init_input *input)
9982{
9983    uint32_t vn_cfg;
9984    uint32_t vn_min_rate;
9985    int all_zero = 1;
9986    int vn;
9987
9988    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9989        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9990        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9991                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9992
9993        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9994            /* skip hidden VNs */
9995            vn_min_rate = 0;
9996        } else if (!vn_min_rate) {
9997            /* If min rate is zero - set it to 100 */
9998            vn_min_rate = DEF_MIN_RATE;
9999        } else {
10000            all_zero = 0;
10001        }
10002
10003        input->vnic_min_rate[vn] = vn_min_rate;
10004    }
10005
10006    /* if ETS or all min rates are zeros - disable fairness */
10007    if (BXE_IS_ETS_ENABLED(sc)) {
10008        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10009        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10010    } else if (all_zero) {
10011        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10012        BLOGD(sc, DBG_LOAD,
10013              "Fariness disabled (all MIN values are zeroes)\n");
10014    } else {
10015        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10016    }
10017}
10018
10019static inline uint16_t
10020bxe_extract_max_cfg(struct bxe_softc *sc,
10021                    uint32_t         mf_cfg)
10022{
10023    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10024                        FUNC_MF_CFG_MAX_BW_SHIFT);
10025
10026    if (!max_cfg) {
10027        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10028        max_cfg = 100;
10029    }
10030
10031    return (max_cfg);
10032}
10033
10034static void
10035bxe_calc_vn_max(struct bxe_softc       *sc,
10036                int                    vn,
10037                struct cmng_init_input *input)
10038{
10039    uint16_t vn_max_rate;
10040    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10041    uint32_t max_cfg;
10042
10043    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10044        vn_max_rate = 0;
10045    } else {
10046        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10047
10048        if (IS_MF_SI(sc)) {
10049            /* max_cfg in percents of linkspeed */
10050            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10051        } else { /* SD modes */
10052            /* max_cfg is absolute in 100Mb units */
10053            vn_max_rate = (max_cfg * 100);
10054        }
10055    }
10056
10057    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10058
10059    input->vnic_max_rate[vn] = vn_max_rate;
10060}
10061
10062static void
10063bxe_cmng_fns_init(struct bxe_softc *sc,
10064                  uint8_t          read_cfg,
10065                  uint8_t          cmng_type)
10066{
10067    struct cmng_init_input input;
10068    int vn;
10069
10070    memset(&input, 0, sizeof(struct cmng_init_input));
10071
10072    input.port_rate = sc->link_vars.line_speed;
10073
10074    if (cmng_type == CMNG_FNS_MINMAX) {
10075        /* read mf conf from shmem */
10076        if (read_cfg) {
10077            bxe_read_mf_cfg(sc);
10078        }
10079
10080        /* get VN min rate and enable fairness if not 0 */
10081        bxe_calc_vn_min(sc, &input);
10082
10083        /* get VN max rate */
10084        if (sc->port.pmf) {
10085            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10086                bxe_calc_vn_max(sc, vn, &input);
10087            }
10088        }
10089
10090        /* always enable rate shaping and fairness */
10091        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10092
10093        ecore_init_cmng(&input, &sc->cmng);
10094        return;
10095    }
10096
10097    /* rate shaping and fairness are disabled */
10098    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10099}
10100
10101static int
10102bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10103{
10104    if (CHIP_REV_IS_SLOW(sc)) {
10105        return (CMNG_FNS_NONE);
10106    }
10107
10108    if (IS_MF(sc)) {
10109        return (CMNG_FNS_MINMAX);
10110    }
10111
10112    return (CMNG_FNS_NONE);
10113}
10114
10115static void
10116storm_memset_cmng(struct bxe_softc *sc,
10117                  struct cmng_init *cmng,
10118                  uint8_t          port)
10119{
10120    int vn;
10121    int func;
10122    uint32_t addr;
10123    size_t size;
10124
10125    addr = (BAR_XSTRORM_INTMEM +
10126            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10127    size = sizeof(struct cmng_struct_per_port);
10128    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10129
10130    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10131        func = func_by_vn(sc, vn);
10132
10133        addr = (BAR_XSTRORM_INTMEM +
10134                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10135        size = sizeof(struct rate_shaping_vars_per_vn);
10136        ecore_storm_memset_struct(sc, addr, size,
10137                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10138
10139        addr = (BAR_XSTRORM_INTMEM +
10140                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10141        size = sizeof(struct fairness_vars_per_vn);
10142        ecore_storm_memset_struct(sc, addr, size,
10143                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10144    }
10145}
10146
10147static void
10148bxe_pf_init(struct bxe_softc *sc)
10149{
10150    struct bxe_func_init_params func_init = { 0 };
10151    struct event_ring_data eq_data = { { 0 } };
10152    uint16_t flags;
10153
10154    if (!CHIP_IS_E1x(sc)) {
10155        /* reset IGU PF statistics: MSIX + ATTN */
10156        /* PF */
10157        REG_WR(sc,
10158               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10159                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10160                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10161               0);
10162        /* ATTN */
10163        REG_WR(sc,
10164               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10165                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10166                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10167                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10168               0);
10169    }
10170
10171    /* function setup flags */
10172    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10173
10174    /*
10175     * This flag is relevant for E1x only.
10176     * E2 doesn't have a TPA configuration in a function level.
10177     */
10178    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10179
10180    func_init.func_flgs = flags;
10181    func_init.pf_id     = SC_FUNC(sc);
10182    func_init.func_id   = SC_FUNC(sc);
10183    func_init.spq_map   = sc->spq_dma.paddr;
10184    func_init.spq_prod  = sc->spq_prod_idx;
10185
10186    bxe_func_init(sc, &func_init);
10187
10188    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10189
10190    /*
10191     * Congestion management values depend on the link rate.
10192     * There is no active link so initial link rate is set to 10Gbps.
10193     * When the link comes up the congestion management values are
10194     * re-calculated according to the actual link rate.
10195     */
10196    sc->link_vars.line_speed = SPEED_10000;
10197    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10198
10199    /* Only the PMF sets the HW */
10200    if (sc->port.pmf) {
10201        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10202    }
10203
10204    /* init Event Queue - PCI bus guarantees correct endainity */
10205    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10206    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10207    eq_data.producer     = sc->eq_prod;
10208    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10209    eq_data.sb_id        = DEF_SB_ID;
10210    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10211}
10212
10213static void
10214bxe_hc_int_enable(struct bxe_softc *sc)
10215{
10216    int port = SC_PORT(sc);
10217    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10218    uint32_t val = REG_RD(sc, addr);
10219    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10220    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10221                           (sc->intr_count == 1)) ? TRUE : FALSE;
10222    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10223
10224    if (msix) {
10225        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10226                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10227        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10228                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10229        if (single_msix) {
10230            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10231        }
10232    } else if (msi) {
10233        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10234        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10235                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10236                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10237    } else {
10238        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10239                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10240                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10241                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10242
10243        if (!CHIP_IS_E1(sc)) {
10244            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10245                  val, port, addr);
10246
10247            REG_WR(sc, addr, val);
10248
10249            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10250        }
10251    }
10252
10253    if (CHIP_IS_E1(sc)) {
10254        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10255    }
10256
10257    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10258          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10259
10260    REG_WR(sc, addr, val);
10261
10262    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10263    mb();
10264
10265    if (!CHIP_IS_E1(sc)) {
10266        /* init leading/trailing edge */
10267        if (IS_MF(sc)) {
10268            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10269            if (sc->port.pmf) {
10270                /* enable nig and gpio3 attention */
10271                val |= 0x1100;
10272            }
10273        } else {
10274            val = 0xffff;
10275        }
10276
10277        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10278        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10279    }
10280
10281    /* make sure that interrupts are indeed enabled from here on */
10282    mb();
10283}
10284
10285static void
10286bxe_igu_int_enable(struct bxe_softc *sc)
10287{
10288    uint32_t val;
10289    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10290    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10291                           (sc->intr_count == 1)) ? TRUE : FALSE;
10292    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10293
10294    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10295
10296    if (msix) {
10297        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10298                 IGU_PF_CONF_SINGLE_ISR_EN);
10299        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10300                IGU_PF_CONF_ATTN_BIT_EN);
10301        if (single_msix) {
10302            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10303        }
10304    } else if (msi) {
10305        val &= ~IGU_PF_CONF_INT_LINE_EN;
10306        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10307                IGU_PF_CONF_ATTN_BIT_EN |
10308                IGU_PF_CONF_SINGLE_ISR_EN);
10309    } else {
10310        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10311        val |= (IGU_PF_CONF_INT_LINE_EN |
10312                IGU_PF_CONF_ATTN_BIT_EN |
10313                IGU_PF_CONF_SINGLE_ISR_EN);
10314    }
10315
10316    /* clean previous status - need to configure igu prior to ack*/
10317    if ((!msix) || single_msix) {
10318        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10319        bxe_ack_int(sc);
10320    }
10321
10322    val |= IGU_PF_CONF_FUNC_EN;
10323
10324    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10325          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10326
10327    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10328
10329    mb();
10330
10331    /* init leading/trailing edge */
10332    if (IS_MF(sc)) {
10333        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10334        if (sc->port.pmf) {
10335            /* enable nig and gpio3 attention */
10336            val |= 0x1100;
10337        }
10338    } else {
10339        val = 0xffff;
10340    }
10341
10342    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10343    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10344
10345    /* make sure that interrupts are indeed enabled from here on */
10346    mb();
10347}
10348
10349static void
10350bxe_int_enable(struct bxe_softc *sc)
10351{
10352    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10353        bxe_hc_int_enable(sc);
10354    } else {
10355        bxe_igu_int_enable(sc);
10356    }
10357}
10358
10359static void
10360bxe_hc_int_disable(struct bxe_softc *sc)
10361{
10362    int port = SC_PORT(sc);
10363    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10364    uint32_t val = REG_RD(sc, addr);
10365
10366    /*
10367     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10368     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10369     * block
10370     */
10371    if (CHIP_IS_E1(sc)) {
10372        /*
10373         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10374         * to prevent from HC sending interrupts after we exit the function
10375         */
10376        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10377
10378        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10379                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10380                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10381    } else {
10382        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10383                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10384                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10385                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10386    }
10387
10388    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10389
10390    /* flush all outstanding writes */
10391    mb();
10392
10393    REG_WR(sc, addr, val);
10394    if (REG_RD(sc, addr) != val) {
10395        BLOGE(sc, "proper val not read from HC IGU!\n");
10396    }
10397}
10398
10399static void
10400bxe_igu_int_disable(struct bxe_softc *sc)
10401{
10402    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10403
10404    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10405             IGU_PF_CONF_INT_LINE_EN |
10406             IGU_PF_CONF_ATTN_BIT_EN);
10407
10408    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10409
10410    /* flush all outstanding writes */
10411    mb();
10412
10413    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10414    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10415        BLOGE(sc, "proper val not read from IGU!\n");
10416    }
10417}
10418
10419static void
10420bxe_int_disable(struct bxe_softc *sc)
10421{
10422    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10423        bxe_hc_int_disable(sc);
10424    } else {
10425        bxe_igu_int_disable(sc);
10426    }
10427}
10428
10429static void
10430bxe_nic_init(struct bxe_softc *sc,
10431             int              load_code)
10432{
10433    int i;
10434
10435    for (i = 0; i < sc->num_queues; i++) {
10436        bxe_init_eth_fp(sc, i);
10437    }
10438
10439    rmb(); /* ensure status block indices were read */
10440
10441    bxe_init_rx_rings(sc);
10442    bxe_init_tx_rings(sc);
10443
10444    if (IS_VF(sc)) {
10445        return;
10446    }
10447
10448    /* initialize MOD_ABS interrupts */
10449    elink_init_mod_abs_int(sc, &sc->link_vars,
10450                           sc->devinfo.chip_id,
10451                           sc->devinfo.shmem_base,
10452                           sc->devinfo.shmem2_base,
10453                           SC_PORT(sc));
10454
10455    bxe_init_def_sb(sc);
10456    bxe_update_dsb_idx(sc);
10457    bxe_init_sp_ring(sc);
10458    bxe_init_eq_ring(sc);
10459    bxe_init_internal(sc, load_code);
10460    bxe_pf_init(sc);
10461    bxe_stats_init(sc);
10462
10463    /* flush all before enabling interrupts */
10464    mb();
10465
10466    bxe_int_enable(sc);
10467
10468    /* check for SPIO5 */
10469    bxe_attn_int_deasserted0(sc,
10470                             REG_RD(sc,
10471                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10472                                     SC_PORT(sc)*4)) &
10473                             AEU_INPUTS_ATTN_BITS_SPIO5);
10474}
10475
10476static inline void
10477bxe_init_objs(struct bxe_softc *sc)
10478{
10479    /* mcast rules must be added to tx if tx switching is enabled */
10480    ecore_obj_type o_type =
10481        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10482                                         ECORE_OBJ_TYPE_RX;
10483
10484    /* RX_MODE controlling object */
10485    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10486
10487    /* multicast configuration controlling object */
10488    ecore_init_mcast_obj(sc,
10489                         &sc->mcast_obj,
10490                         sc->fp[0].cl_id,
10491                         sc->fp[0].index,
10492                         SC_FUNC(sc),
10493                         SC_FUNC(sc),
10494                         BXE_SP(sc, mcast_rdata),
10495                         BXE_SP_MAPPING(sc, mcast_rdata),
10496                         ECORE_FILTER_MCAST_PENDING,
10497                         &sc->sp_state,
10498                         o_type);
10499
10500    /* Setup CAM credit pools */
10501    ecore_init_mac_credit_pool(sc,
10502                               &sc->macs_pool,
10503                               SC_FUNC(sc),
10504                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10505                                                 VNICS_PER_PATH(sc));
10506
10507    ecore_init_vlan_credit_pool(sc,
10508                                &sc->vlans_pool,
10509                                SC_ABS_FUNC(sc) >> 1,
10510                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10511                                                  VNICS_PER_PATH(sc));
10512
10513    /* RSS configuration object */
10514    ecore_init_rss_config_obj(sc,
10515                              &sc->rss_conf_obj,
10516                              sc->fp[0].cl_id,
10517                              sc->fp[0].index,
10518                              SC_FUNC(sc),
10519                              SC_FUNC(sc),
10520                              BXE_SP(sc, rss_rdata),
10521                              BXE_SP_MAPPING(sc, rss_rdata),
10522                              ECORE_FILTER_RSS_CONF_PENDING,
10523                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10524}
10525
10526/*
10527 * Initialize the function. This must be called before sending CLIENT_SETUP
10528 * for the first client.
10529 */
10530static inline int
10531bxe_func_start(struct bxe_softc *sc)
10532{
10533    struct ecore_func_state_params func_params = { NULL };
10534    struct ecore_func_start_params *start_params = &func_params.params.start;
10535
10536    /* Prepare parameters for function state transitions */
10537    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10538
10539    func_params.f_obj = &sc->func_obj;
10540    func_params.cmd = ECORE_F_CMD_START;
10541
10542    /* Function parameters */
10543    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10544    start_params->sd_vlan_tag = OVLAN(sc);
10545
10546    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10547        start_params->network_cos_mode = STATIC_COS;
10548    } else { /* CHIP_IS_E1X */
10549        start_params->network_cos_mode = FW_WRR;
10550    }
10551
10552    //start_params->gre_tunnel_mode = 0;
10553    //start_params->gre_tunnel_rss  = 0;
10554
10555    return (ecore_func_state_change(sc, &func_params));
10556}
10557
10558static int
10559bxe_set_power_state(struct bxe_softc *sc,
10560                    uint8_t          state)
10561{
10562    uint16_t pmcsr;
10563
10564    /* If there is no power capability, silently succeed */
10565    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10566        BLOGW(sc, "No power capability\n");
10567        return (0);
10568    }
10569
10570    pmcsr = pci_read_config(sc->dev,
10571                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10572                            2);
10573
10574    switch (state) {
10575    case PCI_PM_D0:
10576        pci_write_config(sc->dev,
10577                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10578                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10579
10580        if (pmcsr & PCIM_PSTAT_DMASK) {
10581            /* delay required during transition out of D3hot */
10582            DELAY(20000);
10583        }
10584
10585        break;
10586
10587    case PCI_PM_D3hot:
10588        /* XXX if there are other clients above don't shut down the power */
10589
10590        /* don't shut down the power for emulation and FPGA */
10591        if (CHIP_REV_IS_SLOW(sc)) {
10592            return (0);
10593        }
10594
10595        pmcsr &= ~PCIM_PSTAT_DMASK;
10596        pmcsr |= PCIM_PSTAT_D3;
10597
10598        if (sc->wol) {
10599            pmcsr |= PCIM_PSTAT_PMEENABLE;
10600        }
10601
10602        pci_write_config(sc->dev,
10603                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10604                         pmcsr, 4);
10605
10606        /*
10607         * No more memory access after this point until device is brought back
10608         * to D0 state.
10609         */
10610        break;
10611
10612    default:
10613        BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10614            state, pmcsr);
10615        return (-1);
10616    }
10617
10618    return (0);
10619}
10620
10621
10622/* return true if succeeded to acquire the lock */
10623static uint8_t
10624bxe_trylock_hw_lock(struct bxe_softc *sc,
10625                    uint32_t         resource)
10626{
10627    uint32_t lock_status;
10628    uint32_t resource_bit = (1 << resource);
10629    int func = SC_FUNC(sc);
10630    uint32_t hw_lock_control_reg;
10631
10632    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10633
10634    /* Validating that the resource is within range */
10635    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10636        BLOGD(sc, DBG_LOAD,
10637              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10638              resource, HW_LOCK_MAX_RESOURCE_VALUE);
10639        return (FALSE);
10640    }
10641
10642    if (func <= 5) {
10643        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10644    } else {
10645        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10646    }
10647
10648    /* try to acquire the lock */
10649    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10650    lock_status = REG_RD(sc, hw_lock_control_reg);
10651    if (lock_status & resource_bit) {
10652        return (TRUE);
10653    }
10654
10655    BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10656        "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10657        lock_status, resource_bit);
10658
10659    return (FALSE);
10660}
10661
10662/*
10663 * Get the recovery leader resource id according to the engine this function
10664 * belongs to. Currently only only 2 engines is supported.
10665 */
10666static int
10667bxe_get_leader_lock_resource(struct bxe_softc *sc)
10668{
10669    if (SC_PATH(sc)) {
10670        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10671    } else {
10672        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10673    }
10674}
10675
10676/* try to acquire a leader lock for current engine */
10677static uint8_t
10678bxe_trylock_leader_lock(struct bxe_softc *sc)
10679{
10680    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10681}
10682
10683static int
10684bxe_release_leader_lock(struct bxe_softc *sc)
10685{
10686    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10687}
10688
10689/* close gates #2, #3 and #4 */
10690static void
10691bxe_set_234_gates(struct bxe_softc *sc,
10692                  uint8_t          close)
10693{
10694    uint32_t val;
10695
10696    /* gates #2 and #4a are closed/opened for "not E1" only */
10697    if (!CHIP_IS_E1(sc)) {
10698        /* #4 */
10699        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10700        /* #2 */
10701        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10702    }
10703
10704    /* #3 */
10705    if (CHIP_IS_E1x(sc)) {
10706        /* prevent interrupts from HC on both ports */
10707        val = REG_RD(sc, HC_REG_CONFIG_1);
10708        REG_WR(sc, HC_REG_CONFIG_1,
10709               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10710               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10711
10712        val = REG_RD(sc, HC_REG_CONFIG_0);
10713        REG_WR(sc, HC_REG_CONFIG_0,
10714               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10715               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10716    } else {
10717        /* Prevent incoming interrupts in IGU */
10718        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10719
10720        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10721               (!close) ?
10722               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10723               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10724    }
10725
10726    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10727          close ? "closing" : "opening");
10728
10729    wmb();
10730}
10731
10732/* poll for pending writes bit, it should get cleared in no more than 1s */
10733static int
10734bxe_er_poll_igu_vq(struct bxe_softc *sc)
10735{
10736    uint32_t cnt = 1000;
10737    uint32_t pend_bits = 0;
10738
10739    do {
10740        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10741
10742        if (pend_bits == 0) {
10743            break;
10744        }
10745
10746        DELAY(1000);
10747    } while (--cnt > 0);
10748
10749    if (cnt == 0) {
10750        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10751        return (-1);
10752    }
10753
10754    return (0);
10755}
10756
10757#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10758
10759static void
10760bxe_clp_reset_prep(struct bxe_softc *sc,
10761                   uint32_t         *magic_val)
10762{
10763    /* Do some magic... */
10764    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10765    *magic_val = val & SHARED_MF_CLP_MAGIC;
10766    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10767}
10768
10769/* restore the value of the 'magic' bit */
10770static void
10771bxe_clp_reset_done(struct bxe_softc *sc,
10772                   uint32_t         magic_val)
10773{
10774    /* Restore the 'magic' bit value... */
10775    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10776    MFCFG_WR(sc, shared_mf_config.clp_mb,
10777              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10778}
10779
10780/* prepare for MCP reset, takes care of CLP configurations */
10781static void
10782bxe_reset_mcp_prep(struct bxe_softc *sc,
10783                   uint32_t         *magic_val)
10784{
10785    uint32_t shmem;
10786    uint32_t validity_offset;
10787
10788    /* set `magic' bit in order to save MF config */
10789    if (!CHIP_IS_E1(sc)) {
10790        bxe_clp_reset_prep(sc, magic_val);
10791    }
10792
10793    /* get shmem offset */
10794    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10795    validity_offset =
10796        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10797
10798    /* Clear validity map flags */
10799    if (shmem > 0) {
10800        REG_WR(sc, shmem + validity_offset, 0);
10801    }
10802}
10803
10804#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10805#define MCP_ONE_TIMEOUT  100    /* 100 ms */
10806
10807static void
10808bxe_mcp_wait_one(struct bxe_softc *sc)
10809{
10810    /* special handling for emulation and FPGA (10 times longer) */
10811    if (CHIP_REV_IS_SLOW(sc)) {
10812        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10813    } else {
10814        DELAY((MCP_ONE_TIMEOUT) * 1000);
10815    }
10816}
10817
10818/* initialize shmem_base and waits for validity signature to appear */
10819static int
10820bxe_init_shmem(struct bxe_softc *sc)
10821{
10822    int cnt = 0;
10823    uint32_t val = 0;
10824
10825    do {
10826        sc->devinfo.shmem_base     =
10827        sc->link_params.shmem_base =
10828            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10829
10830        if (sc->devinfo.shmem_base) {
10831            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10832            if (val & SHR_MEM_VALIDITY_MB)
10833                return (0);
10834        }
10835
10836        bxe_mcp_wait_one(sc);
10837
10838    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10839
10840    BLOGE(sc, "BAD MCP validity signature\n");
10841
10842    return (-1);
10843}
10844
10845static int
10846bxe_reset_mcp_comp(struct bxe_softc *sc,
10847                   uint32_t         magic_val)
10848{
10849    int rc = bxe_init_shmem(sc);
10850
10851    /* Restore the `magic' bit value */
10852    if (!CHIP_IS_E1(sc)) {
10853        bxe_clp_reset_done(sc, magic_val);
10854    }
10855
10856    return (rc);
10857}
10858
10859static void
10860bxe_pxp_prep(struct bxe_softc *sc)
10861{
10862    if (!CHIP_IS_E1(sc)) {
10863        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10864        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10865        wmb();
10866    }
10867}
10868
10869/*
10870 * Reset the whole chip except for:
10871 *      - PCIE core
10872 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10873 *      - IGU
10874 *      - MISC (including AEU)
10875 *      - GRC
10876 *      - RBCN, RBCP
10877 */
10878static void
10879bxe_process_kill_chip_reset(struct bxe_softc *sc,
10880                            uint8_t          global)
10881{
10882    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10883    uint32_t global_bits2, stay_reset2;
10884
10885    /*
10886     * Bits that have to be set in reset_mask2 if we want to reset 'global'
10887     * (per chip) blocks.
10888     */
10889    global_bits2 =
10890        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10891        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10892
10893    /*
10894     * Don't reset the following blocks.
10895     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10896     *            reset, as in 4 port device they might still be owned
10897     *            by the MCP (there is only one leader per path).
10898     */
10899    not_reset_mask1 =
10900        MISC_REGISTERS_RESET_REG_1_RST_HC |
10901        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10902        MISC_REGISTERS_RESET_REG_1_RST_PXP;
10903
10904    not_reset_mask2 =
10905        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10906        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10907        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10908        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10909        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10910        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10911        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10912        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10913        MISC_REGISTERS_RESET_REG_2_RST_ATC |
10914        MISC_REGISTERS_RESET_REG_2_PGLC |
10915        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10916        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10917        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10918        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10919        MISC_REGISTERS_RESET_REG_2_UMAC0 |
10920        MISC_REGISTERS_RESET_REG_2_UMAC1;
10921
10922    /*
10923     * Keep the following blocks in reset:
10924     *  - all xxMACs are handled by the elink code.
10925     */
10926    stay_reset2 =
10927        MISC_REGISTERS_RESET_REG_2_XMAC |
10928        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10929
10930    /* Full reset masks according to the chip */
10931    reset_mask1 = 0xffffffff;
10932
10933    if (CHIP_IS_E1(sc))
10934        reset_mask2 = 0xffff;
10935    else if (CHIP_IS_E1H(sc))
10936        reset_mask2 = 0x1ffff;
10937    else if (CHIP_IS_E2(sc))
10938        reset_mask2 = 0xfffff;
10939    else /* CHIP_IS_E3 */
10940        reset_mask2 = 0x3ffffff;
10941
10942    /* Don't reset global blocks unless we need to */
10943    if (!global)
10944        reset_mask2 &= ~global_bits2;
10945
10946    /*
10947     * In case of attention in the QM, we need to reset PXP
10948     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10949     * because otherwise QM reset would release 'close the gates' shortly
10950     * before resetting the PXP, then the PSWRQ would send a write
10951     * request to PGLUE. Then when PXP is reset, PGLUE would try to
10952     * read the payload data from PSWWR, but PSWWR would not
10953     * respond. The write queue in PGLUE would stuck, dmae commands
10954     * would not return. Therefore it's important to reset the second
10955     * reset register (containing the
10956     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10957     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10958     * bit).
10959     */
10960    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10961           reset_mask2 & (~not_reset_mask2));
10962
10963    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10964           reset_mask1 & (~not_reset_mask1));
10965
10966    mb();
10967    wmb();
10968
10969    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10970           reset_mask2 & (~stay_reset2));
10971
10972    mb();
10973    wmb();
10974
10975    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10976    wmb();
10977}
10978
10979static int
10980bxe_process_kill(struct bxe_softc *sc,
10981                 uint8_t          global)
10982{
10983    int cnt = 1000;
10984    uint32_t val = 0;
10985    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10986    uint32_t tags_63_32 = 0;
10987
10988    /* Empty the Tetris buffer, wait for 1s */
10989    do {
10990        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10991        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10992        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10993        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10994        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10995        if (CHIP_IS_E3(sc)) {
10996            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10997        }
10998
10999        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11000            ((port_is_idle_0 & 0x1) == 0x1) &&
11001            ((port_is_idle_1 & 0x1) == 0x1) &&
11002            (pgl_exp_rom2 == 0xffffffff) &&
11003            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11004            break;
11005        DELAY(1000);
11006    } while (cnt-- > 0);
11007
11008    if (cnt <= 0) {
11009        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11010                  "are still outstanding read requests after 1s! "
11011                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11012                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11013              sr_cnt, blk_cnt, port_is_idle_0,
11014              port_is_idle_1, pgl_exp_rom2);
11015        return (-1);
11016    }
11017
11018    mb();
11019
11020    /* Close gates #2, #3 and #4 */
11021    bxe_set_234_gates(sc, TRUE);
11022
11023    /* Poll for IGU VQs for 57712 and newer chips */
11024    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11025        return (-1);
11026    }
11027
11028    /* XXX indicate that "process kill" is in progress to MCP */
11029
11030    /* clear "unprepared" bit */
11031    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11032    mb();
11033
11034    /* Make sure all is written to the chip before the reset */
11035    wmb();
11036
11037    /*
11038     * Wait for 1ms to empty GLUE and PCI-E core queues,
11039     * PSWHST, GRC and PSWRD Tetris buffer.
11040     */
11041    DELAY(1000);
11042
11043    /* Prepare to chip reset: */
11044    /* MCP */
11045    if (global) {
11046        bxe_reset_mcp_prep(sc, &val);
11047    }
11048
11049    /* PXP */
11050    bxe_pxp_prep(sc);
11051    mb();
11052
11053    /* reset the chip */
11054    bxe_process_kill_chip_reset(sc, global);
11055    mb();
11056
11057    /* clear errors in PGB */
11058    if (!CHIP_IS_E1(sc))
11059        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11060
11061    /* Recover after reset: */
11062    /* MCP */
11063    if (global && bxe_reset_mcp_comp(sc, val)) {
11064        return (-1);
11065    }
11066
11067    /* XXX add resetting the NO_MCP mode DB here */
11068
11069    /* Open the gates #2, #3 and #4 */
11070    bxe_set_234_gates(sc, FALSE);
11071
11072    /* XXX
11073     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11074     * re-enable attentions
11075     */
11076
11077    return (0);
11078}
11079
11080static int
11081bxe_leader_reset(struct bxe_softc *sc)
11082{
11083    int rc = 0;
11084    uint8_t global = bxe_reset_is_global(sc);
11085    uint32_t load_code;
11086
11087    /*
11088     * If not going to reset MCP, load "fake" driver to reset HW while
11089     * driver is owner of the HW.
11090     */
11091    if (!global && !BXE_NOMCP(sc)) {
11092        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11093                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11094        if (!load_code) {
11095            BLOGE(sc, "MCP response failure, aborting\n");
11096            rc = -1;
11097            goto exit_leader_reset;
11098        }
11099
11100        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11101            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11102            BLOGE(sc, "MCP unexpected response, aborting\n");
11103            rc = -1;
11104            goto exit_leader_reset2;
11105        }
11106
11107        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11108        if (!load_code) {
11109            BLOGE(sc, "MCP response failure, aborting\n");
11110            rc = -1;
11111            goto exit_leader_reset2;
11112        }
11113    }
11114
11115    /* try to recover after the failure */
11116    if (bxe_process_kill(sc, global)) {
11117        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11118        rc = -1;
11119        goto exit_leader_reset2;
11120    }
11121
11122    /*
11123     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11124     * state.
11125     */
11126    bxe_set_reset_done(sc);
11127    if (global) {
11128        bxe_clear_reset_global(sc);
11129    }
11130
11131exit_leader_reset2:
11132
11133    /* unload "fake driver" if it was loaded */
11134    if (!global && !BXE_NOMCP(sc)) {
11135        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11136        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11137    }
11138
11139exit_leader_reset:
11140
11141    sc->is_leader = 0;
11142    bxe_release_leader_lock(sc);
11143
11144    mb();
11145    return (rc);
11146}
11147
11148/*
11149 * prepare INIT transition, parameters configured:
11150 *   - HC configuration
11151 *   - Queue's CDU context
11152 */
11153static void
11154bxe_pf_q_prep_init(struct bxe_softc               *sc,
11155                   struct bxe_fastpath            *fp,
11156                   struct ecore_queue_init_params *init_params)
11157{
11158    uint8_t cos;
11159    int cxt_index, cxt_offset;
11160
11161    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11162    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11163
11164    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11165    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11166
11167    /* HC rate */
11168    init_params->rx.hc_rate =
11169        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11170    init_params->tx.hc_rate =
11171        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11172
11173    /* FW SB ID */
11174    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11175
11176    /* CQ index among the SB indices */
11177    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11178    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11179
11180    /* set maximum number of COSs supported by this queue */
11181    init_params->max_cos = sc->max_cos;
11182
11183    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11184          fp->index, init_params->max_cos);
11185
11186    /* set the context pointers queue object */
11187    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11188        /* XXX change index/cid here if ever support multiple tx CoS */
11189        /* fp->txdata[cos]->cid */
11190        cxt_index = fp->index / ILT_PAGE_CIDS;
11191        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11192        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11193    }
11194}
11195
11196/* set flags that are common for the Tx-only and not normal connections */
11197static unsigned long
11198bxe_get_common_flags(struct bxe_softc    *sc,
11199                     struct bxe_fastpath *fp,
11200                     uint8_t             zero_stats)
11201{
11202    unsigned long flags = 0;
11203
11204    /* PF driver will always initialize the Queue to an ACTIVE state */
11205    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11206
11207    /*
11208     * tx only connections collect statistics (on the same index as the
11209     * parent connection). The statistics are zeroed when the parent
11210     * connection is initialized.
11211     */
11212
11213    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11214    if (zero_stats) {
11215        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11216    }
11217
11218    /*
11219     * tx only connections can support tx-switching, though their
11220     * CoS-ness doesn't survive the loopback
11221     */
11222    if (sc->flags & BXE_TX_SWITCHING) {
11223        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11224    }
11225
11226    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11227
11228    return (flags);
11229}
11230
11231static unsigned long
11232bxe_get_q_flags(struct bxe_softc    *sc,
11233                struct bxe_fastpath *fp,
11234                uint8_t             leading)
11235{
11236    unsigned long flags = 0;
11237
11238    if (IS_MF_SD(sc)) {
11239        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11240    }
11241
11242    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11243        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11244#if __FreeBSD_version >= 800000
11245        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11246#endif
11247    }
11248
11249    if (leading) {
11250        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11251        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11252    }
11253
11254    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11255
11256    /* merge with common flags */
11257    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11258}
11259
11260static void
11261bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11262                      struct bxe_fastpath               *fp,
11263                      struct ecore_general_setup_params *gen_init,
11264                      uint8_t                           cos)
11265{
11266    gen_init->stat_id = bxe_stats_id(fp);
11267    gen_init->spcl_id = fp->cl_id;
11268    gen_init->mtu = sc->mtu;
11269    gen_init->cos = cos;
11270}
11271
11272static void
11273bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11274                 struct bxe_fastpath           *fp,
11275                 struct rxq_pause_params       *pause,
11276                 struct ecore_rxq_setup_params *rxq_init)
11277{
11278    uint8_t max_sge = 0;
11279    uint16_t sge_sz = 0;
11280    uint16_t tpa_agg_size = 0;
11281
11282    pause->sge_th_lo = SGE_TH_LO(sc);
11283    pause->sge_th_hi = SGE_TH_HI(sc);
11284
11285    /* validate SGE ring has enough to cross high threshold */
11286    if (sc->dropless_fc &&
11287            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11288            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11289        BLOGW(sc, "sge ring threshold limit\n");
11290    }
11291
11292    /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11293    tpa_agg_size = (2 * sc->mtu);
11294    if (tpa_agg_size < sc->max_aggregation_size) {
11295        tpa_agg_size = sc->max_aggregation_size;
11296    }
11297
11298    max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11299    max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11300                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11301    sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11302
11303    /* pause - not for e1 */
11304    if (!CHIP_IS_E1(sc)) {
11305        pause->bd_th_lo = BD_TH_LO(sc);
11306        pause->bd_th_hi = BD_TH_HI(sc);
11307
11308        pause->rcq_th_lo = RCQ_TH_LO(sc);
11309        pause->rcq_th_hi = RCQ_TH_HI(sc);
11310
11311        /* validate rings have enough entries to cross high thresholds */
11312        if (sc->dropless_fc &&
11313            pause->bd_th_hi + FW_PREFETCH_CNT >
11314            sc->rx_ring_size) {
11315            BLOGW(sc, "rx bd ring threshold limit\n");
11316        }
11317
11318        if (sc->dropless_fc &&
11319            pause->rcq_th_hi + FW_PREFETCH_CNT >
11320            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11321            BLOGW(sc, "rcq ring threshold limit\n");
11322        }
11323
11324        pause->pri_map = 1;
11325    }
11326
11327    /* rxq setup */
11328    rxq_init->dscr_map   = fp->rx_dma.paddr;
11329    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11330    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11331    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11332
11333    /*
11334     * This should be a maximum number of data bytes that may be
11335     * placed on the BD (not including paddings).
11336     */
11337    rxq_init->buf_sz = (fp->rx_buf_size -
11338                        IP_HEADER_ALIGNMENT_PADDING);
11339
11340    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11341    rxq_init->tpa_agg_sz      = tpa_agg_size;
11342    rxq_init->sge_buf_sz      = sge_sz;
11343    rxq_init->max_sges_pkt    = max_sge;
11344    rxq_init->rss_engine_id   = SC_FUNC(sc);
11345    rxq_init->mcast_engine_id = SC_FUNC(sc);
11346
11347    /*
11348     * Maximum number or simultaneous TPA aggregation for this Queue.
11349     * For PF Clients it should be the maximum available number.
11350     * VF driver(s) may want to define it to a smaller value.
11351     */
11352    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11353
11354    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11355    rxq_init->fw_sb_id = fp->fw_sb_id;
11356
11357    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11358
11359    /*
11360     * configure silent vlan removal
11361     * if multi function mode is afex, then mask default vlan
11362     */
11363    if (IS_MF_AFEX(sc)) {
11364        rxq_init->silent_removal_value =
11365            sc->devinfo.mf_info.afex_def_vlan_tag;
11366        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11367    }
11368}
11369
11370static void
11371bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11372                 struct bxe_fastpath           *fp,
11373                 struct ecore_txq_setup_params *txq_init,
11374                 uint8_t                       cos)
11375{
11376    /*
11377     * XXX If multiple CoS is ever supported then each fastpath structure
11378     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11379     * fp->txdata[cos]->tx_dma.paddr;
11380     */
11381    txq_init->dscr_map     = fp->tx_dma.paddr;
11382    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11383    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11384    txq_init->fw_sb_id     = fp->fw_sb_id;
11385
11386    /*
11387     * set the TSS leading client id for TX classfication to the
11388     * leading RSS client id
11389     */
11390    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11391}
11392
11393/*
11394 * This function performs 2 steps in a queue state machine:
11395 *   1) RESET->INIT
11396 *   2) INIT->SETUP
11397 */
11398static int
11399bxe_setup_queue(struct bxe_softc    *sc,
11400                struct bxe_fastpath *fp,
11401                uint8_t             leading)
11402{
11403    struct ecore_queue_state_params q_params = { NULL };
11404    struct ecore_queue_setup_params *setup_params =
11405                        &q_params.params.setup;
11406    int rc;
11407
11408    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11409
11410    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11411
11412    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11413
11414    /* we want to wait for completion in this context */
11415    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11416
11417    /* prepare the INIT parameters */
11418    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11419
11420    /* Set the command */
11421    q_params.cmd = ECORE_Q_CMD_INIT;
11422
11423    /* Change the state to INIT */
11424    rc = ecore_queue_state_change(sc, &q_params);
11425    if (rc) {
11426        BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11427        return (rc);
11428    }
11429
11430    BLOGD(sc, DBG_LOAD, "init complete\n");
11431
11432    /* now move the Queue to the SETUP state */
11433    memset(setup_params, 0, sizeof(*setup_params));
11434
11435    /* set Queue flags */
11436    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11437
11438    /* set general SETUP parameters */
11439    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11440                          FIRST_TX_COS_INDEX);
11441
11442    bxe_pf_rx_q_prep(sc, fp,
11443                     &setup_params->pause_params,
11444                     &setup_params->rxq_params);
11445
11446    bxe_pf_tx_q_prep(sc, fp,
11447                     &setup_params->txq_params,
11448                     FIRST_TX_COS_INDEX);
11449
11450    /* Set the command */
11451    q_params.cmd = ECORE_Q_CMD_SETUP;
11452
11453    /* change the state to SETUP */
11454    rc = ecore_queue_state_change(sc, &q_params);
11455    if (rc) {
11456        BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11457        return (rc);
11458    }
11459
11460    return (rc);
11461}
11462
11463static int
11464bxe_setup_leading(struct bxe_softc *sc)
11465{
11466    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11467}
11468
11469static int
11470bxe_config_rss_pf(struct bxe_softc            *sc,
11471                  struct ecore_rss_config_obj *rss_obj,
11472                  uint8_t                     config_hash)
11473{
11474    struct ecore_config_rss_params params = { NULL };
11475    int i;
11476
11477    /*
11478     * Although RSS is meaningless when there is a single HW queue we
11479     * still need it enabled in order to have HW Rx hash generated.
11480     */
11481
11482    params.rss_obj = rss_obj;
11483
11484    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11485
11486    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11487
11488    /* RSS configuration */
11489    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11490    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11491    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11492    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11493    if (rss_obj->udp_rss_v4) {
11494        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11495    }
11496    if (rss_obj->udp_rss_v6) {
11497        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11498    }
11499
11500    /* Hash bits */
11501    params.rss_result_mask = MULTI_MASK;
11502
11503    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11504
11505    if (config_hash) {
11506        /* RSS keys */
11507        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11508            params.rss_key[i] = arc4random();
11509        }
11510
11511        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11512    }
11513
11514    return (ecore_config_rss(sc, &params));
11515}
11516
11517static int
11518bxe_config_rss_eth(struct bxe_softc *sc,
11519                   uint8_t          config_hash)
11520{
11521    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11522}
11523
11524static int
11525bxe_init_rss_pf(struct bxe_softc *sc)
11526{
11527    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11528    int i;
11529
11530    /*
11531     * Prepare the initial contents of the indirection table if
11532     * RSS is enabled
11533     */
11534    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11535        sc->rss_conf_obj.ind_table[i] =
11536            (sc->fp->cl_id + (i % num_eth_queues));
11537    }
11538
11539    if (sc->udp_rss) {
11540        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11541    }
11542
11543    /*
11544     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11545     * per-port, so if explicit configuration is needed, do it only
11546     * for a PMF.
11547     *
11548     * For 57712 and newer it's a per-function configuration.
11549     */
11550    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11551}
11552
11553static int
11554bxe_set_mac_one(struct bxe_softc          *sc,
11555                uint8_t                   *mac,
11556                struct ecore_vlan_mac_obj *obj,
11557                uint8_t                   set,
11558                int                       mac_type,
11559                unsigned long             *ramrod_flags)
11560{
11561    struct ecore_vlan_mac_ramrod_params ramrod_param;
11562    int rc;
11563
11564    memset(&ramrod_param, 0, sizeof(ramrod_param));
11565
11566    /* fill in general parameters */
11567    ramrod_param.vlan_mac_obj = obj;
11568    ramrod_param.ramrod_flags = *ramrod_flags;
11569
11570    /* fill a user request section if needed */
11571    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11572        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11573
11574        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11575
11576        /* Set the command: ADD or DEL */
11577        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11578                                            ECORE_VLAN_MAC_DEL;
11579    }
11580
11581    rc = ecore_config_vlan_mac(sc, &ramrod_param);
11582
11583    if (rc == ECORE_EXISTS) {
11584        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11585        /* do not treat adding same MAC as error */
11586        rc = 0;
11587    } else if (rc < 0) {
11588        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11589    }
11590
11591    return (rc);
11592}
11593
11594static int
11595bxe_set_eth_mac(struct bxe_softc *sc,
11596                uint8_t          set)
11597{
11598    unsigned long ramrod_flags = 0;
11599
11600    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11601
11602    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11603
11604    /* Eth MAC is set on RSS leading client (fp[0]) */
11605    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11606                            &sc->sp_objs->mac_obj,
11607                            set, ECORE_ETH_MAC, &ramrod_flags));
11608}
11609
11610static int
11611bxe_get_cur_phy_idx(struct bxe_softc *sc)
11612{
11613    uint32_t sel_phy_idx = 0;
11614
11615    if (sc->link_params.num_phys <= 1) {
11616        return (ELINK_INT_PHY);
11617    }
11618
11619    if (sc->link_vars.link_up) {
11620        sel_phy_idx = ELINK_EXT_PHY1;
11621        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11622        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11623            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11624             ELINK_SUPPORTED_FIBRE))
11625            sel_phy_idx = ELINK_EXT_PHY2;
11626    } else {
11627        switch (elink_phy_selection(&sc->link_params)) {
11628        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11629        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11630        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11631               sel_phy_idx = ELINK_EXT_PHY1;
11632               break;
11633        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11634        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11635               sel_phy_idx = ELINK_EXT_PHY2;
11636               break;
11637        }
11638    }
11639
11640    return (sel_phy_idx);
11641}
11642
11643static int
11644bxe_get_link_cfg_idx(struct bxe_softc *sc)
11645{
11646    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11647
11648    /*
11649     * The selected activated PHY is always after swapping (in case PHY
11650     * swapping is enabled). So when swapping is enabled, we need to reverse
11651     * the configuration
11652     */
11653
11654    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11655        if (sel_phy_idx == ELINK_EXT_PHY1)
11656            sel_phy_idx = ELINK_EXT_PHY2;
11657        else if (sel_phy_idx == ELINK_EXT_PHY2)
11658            sel_phy_idx = ELINK_EXT_PHY1;
11659    }
11660
11661    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11662}
11663
11664static void
11665bxe_set_requested_fc(struct bxe_softc *sc)
11666{
11667    /*
11668     * Initialize link parameters structure variables
11669     * It is recommended to turn off RX FC for jumbo frames
11670     * for better performance
11671     */
11672    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11673        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11674    } else {
11675        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11676    }
11677}
11678
11679static void
11680bxe_calc_fc_adv(struct bxe_softc *sc)
11681{
11682    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11683
11684
11685    sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11686                                           ADVERTISED_Pause);
11687
11688    switch (sc->link_vars.ieee_fc &
11689            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11690
11691    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11692        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11693                                          ADVERTISED_Pause);
11694        break;
11695
11696    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11697        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11698        break;
11699
11700    default:
11701        break;
11702
11703    }
11704}
11705
11706static uint16_t
11707bxe_get_mf_speed(struct bxe_softc *sc)
11708{
11709    uint16_t line_speed = sc->link_vars.line_speed;
11710    if (IS_MF(sc)) {
11711        uint16_t maxCfg =
11712            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11713
11714        /* calculate the current MAX line speed limit for the MF devices */
11715        if (IS_MF_SI(sc)) {
11716            line_speed = (line_speed * maxCfg) / 100;
11717        } else { /* SD mode */
11718            uint16_t vn_max_rate = maxCfg * 100;
11719
11720            if (vn_max_rate < line_speed) {
11721                line_speed = vn_max_rate;
11722            }
11723        }
11724    }
11725
11726    return (line_speed);
11727}
11728
11729static void
11730bxe_fill_report_data(struct bxe_softc            *sc,
11731                     struct bxe_link_report_data *data)
11732{
11733    uint16_t line_speed = bxe_get_mf_speed(sc);
11734
11735    memset(data, 0, sizeof(*data));
11736
11737    /* fill the report data with the effective line speed */
11738    data->line_speed = line_speed;
11739
11740    /* Link is down */
11741    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11742        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11743    }
11744
11745    /* Full DUPLEX */
11746    if (sc->link_vars.duplex == DUPLEX_FULL) {
11747        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11748    }
11749
11750    /* Rx Flow Control is ON */
11751    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11752        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11753    }
11754
11755    /* Tx Flow Control is ON */
11756    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11757        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11758    }
11759}
11760
11761/* report link status to OS, should be called under phy_lock */
11762static void
11763bxe_link_report_locked(struct bxe_softc *sc)
11764{
11765    struct bxe_link_report_data cur_data;
11766
11767    /* reread mf_cfg */
11768    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11769        bxe_read_mf_cfg(sc);
11770    }
11771
11772    /* Read the current link report info */
11773    bxe_fill_report_data(sc, &cur_data);
11774
11775    /* Don't report link down or exactly the same link status twice */
11776    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11777        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11778                      &sc->last_reported_link.link_report_flags) &&
11779         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11780                      &cur_data.link_report_flags))) {
11781        return;
11782    }
11783
11784	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11785					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11786    sc->link_cnt++;
11787
11788	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11789    /* report new link params and remember the state for the next time */
11790    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11791
11792    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11793                     &cur_data.link_report_flags)) {
11794        if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11795    } else {
11796        const char *duplex;
11797        const char *flow;
11798
11799        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11800                                   &cur_data.link_report_flags)) {
11801            duplex = "full";
11802			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11803        } else {
11804            duplex = "half";
11805			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11806        }
11807
11808        /*
11809         * Handle the FC at the end so that only these flags would be
11810         * possibly set. This way we may easily check if there is no FC
11811         * enabled.
11812         */
11813        if (cur_data.link_report_flags) {
11814            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11815                             &cur_data.link_report_flags) &&
11816                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11817                             &cur_data.link_report_flags)) {
11818                flow = "ON - receive & transmit";
11819            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11820                                    &cur_data.link_report_flags) &&
11821                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11822                                     &cur_data.link_report_flags)) {
11823                flow = "ON - receive";
11824            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11825                                     &cur_data.link_report_flags) &&
11826                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11827                                    &cur_data.link_report_flags)) {
11828                flow = "ON - transmit";
11829            } else {
11830                flow = "none"; /* possible? */
11831            }
11832        } else {
11833            flow = "none";
11834        }
11835
11836        if_link_state_change(sc->ifp, LINK_STATE_UP);
11837        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11838              cur_data.line_speed, duplex, flow);
11839    }
11840}
11841
11842static void
11843bxe_link_report(struct bxe_softc *sc)
11844{
11845    bxe_acquire_phy_lock(sc);
11846    bxe_link_report_locked(sc);
11847    bxe_release_phy_lock(sc);
11848}
11849
11850static void
11851bxe_link_status_update(struct bxe_softc *sc)
11852{
11853    if (sc->state != BXE_STATE_OPEN) {
11854        return;
11855    }
11856
11857    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11858        elink_link_status_update(&sc->link_params, &sc->link_vars);
11859    } else {
11860        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11861                                  ELINK_SUPPORTED_10baseT_Full |
11862                                  ELINK_SUPPORTED_100baseT_Half |
11863                                  ELINK_SUPPORTED_100baseT_Full |
11864                                  ELINK_SUPPORTED_1000baseT_Full |
11865                                  ELINK_SUPPORTED_2500baseX_Full |
11866                                  ELINK_SUPPORTED_10000baseT_Full |
11867                                  ELINK_SUPPORTED_TP |
11868                                  ELINK_SUPPORTED_FIBRE |
11869                                  ELINK_SUPPORTED_Autoneg |
11870                                  ELINK_SUPPORTED_Pause |
11871                                  ELINK_SUPPORTED_Asym_Pause);
11872        sc->port.advertising[0] = sc->port.supported[0];
11873
11874        sc->link_params.sc                = sc;
11875        sc->link_params.port              = SC_PORT(sc);
11876        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11877        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11878        sc->link_params.req_line_speed[0] = SPEED_10000;
11879        sc->link_params.speed_cap_mask[0] = 0x7f0000;
11880        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11881
11882        if (CHIP_REV_IS_FPGA(sc)) {
11883            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11884            sc->link_vars.line_speed  = ELINK_SPEED_1000;
11885            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11886                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11887        } else {
11888            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11889            sc->link_vars.line_speed  = ELINK_SPEED_10000;
11890            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11891                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11892        }
11893
11894        sc->link_vars.link_up = 1;
11895
11896        sc->link_vars.duplex    = DUPLEX_FULL;
11897        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11898
11899        if (IS_PF(sc)) {
11900            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11901            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11902            bxe_link_report(sc);
11903        }
11904    }
11905
11906    if (IS_PF(sc)) {
11907        if (sc->link_vars.link_up) {
11908            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11909        } else {
11910            bxe_stats_handle(sc, STATS_EVENT_STOP);
11911        }
11912        bxe_link_report(sc);
11913    } else {
11914        bxe_link_report(sc);
11915        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11916    }
11917}
11918
11919static int
11920bxe_initial_phy_init(struct bxe_softc *sc,
11921                     int              load_mode)
11922{
11923    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11924    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11925    struct elink_params *lp = &sc->link_params;
11926
11927    bxe_set_requested_fc(sc);
11928
11929    if (CHIP_REV_IS_SLOW(sc)) {
11930        uint32_t bond = CHIP_BOND_ID(sc);
11931        uint32_t feat = 0;
11932
11933        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11934            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11935        } else if (bond & 0x4) {
11936            if (CHIP_IS_E3(sc)) {
11937                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11938            } else {
11939                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11940            }
11941        } else if (bond & 0x8) {
11942            if (CHIP_IS_E3(sc)) {
11943                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11944            } else {
11945                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11946            }
11947        }
11948
11949        /* disable EMAC for E3 and above */
11950        if (bond & 0x2) {
11951            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11952        }
11953
11954        sc->link_params.feature_config_flags |= feat;
11955    }
11956
11957    bxe_acquire_phy_lock(sc);
11958
11959    if (load_mode == LOAD_DIAG) {
11960        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11961        /* Prefer doing PHY loopback at 10G speed, if possible */
11962        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11963            if (lp->speed_cap_mask[cfg_idx] &
11964                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11965                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11966            } else {
11967                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11968            }
11969        }
11970    }
11971
11972    if (load_mode == LOAD_LOOPBACK_EXT) {
11973        lp->loopback_mode = ELINK_LOOPBACK_EXT;
11974    }
11975
11976    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11977
11978    bxe_release_phy_lock(sc);
11979
11980    bxe_calc_fc_adv(sc);
11981
11982    if (sc->link_vars.link_up) {
11983        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11984        bxe_link_report(sc);
11985    }
11986
11987    if (!CHIP_REV_IS_SLOW(sc)) {
11988        bxe_periodic_start(sc);
11989    }
11990
11991    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11992    return (rc);
11993}
11994
11995/* must be called under IF_ADDR_LOCK */
11996
11997static int
11998bxe_set_mc_list(struct bxe_softc *sc)
11999{
12000    struct ecore_mcast_ramrod_params rparam = { NULL };
12001    int rc = 0;
12002    int mc_count = 0;
12003    int mcnt, i;
12004    struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12005    unsigned char *mta;
12006    if_t ifp = sc->ifp;
12007
12008    mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12009    if (!mc_count)
12010        return (0);
12011
12012    mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12013            mc_count, M_DEVBUF, M_NOWAIT);
12014
12015    if(mta == NULL) {
12016        BLOGE(sc, "Failed to allocate temp mcast list\n");
12017        return (-1);
12018    }
12019    bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12020
12021    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12022    mc_mac_start = mc_mac;
12023
12024    if (!mc_mac) {
12025        free(mta, M_DEVBUF);
12026        BLOGE(sc, "Failed to allocate temp mcast list\n");
12027        return (-1);
12028    }
12029    bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12030
12031    /* mta and mcnt not expected to be  different */
12032    if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12033
12034
12035    rparam.mcast_obj = &sc->mcast_obj;
12036    ECORE_LIST_INIT(&rparam.mcast_list);
12037
12038    for(i=0; i< mcnt; i++) {
12039
12040        mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12041        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12042
12043        BLOGD(sc, DBG_LOAD,
12044              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12045              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12046              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12047
12048        mc_mac++;
12049    }
12050    rparam.mcast_list_len = mc_count;
12051
12052    BXE_MCAST_LOCK(sc);
12053
12054    /* first, clear all configured multicast MACs */
12055    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12056    if (rc < 0) {
12057        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12058        BXE_MCAST_UNLOCK(sc);
12059    	free(mc_mac_start, M_DEVBUF);
12060        free(mta, M_DEVBUF);
12061        return (rc);
12062    }
12063
12064    /* Now add the new MACs */
12065    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12066    if (rc < 0) {
12067        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12068    }
12069
12070    BXE_MCAST_UNLOCK(sc);
12071
12072    free(mc_mac_start, M_DEVBUF);
12073    free(mta, M_DEVBUF);
12074
12075    return (rc);
12076}
12077
12078static int
12079bxe_set_uc_list(struct bxe_softc *sc)
12080{
12081    if_t ifp = sc->ifp;
12082    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12083    struct ifaddr *ifa;
12084    unsigned long ramrod_flags = 0;
12085    int rc;
12086
12087#if __FreeBSD_version < 800000
12088    IF_ADDR_LOCK(ifp);
12089#else
12090    if_addr_rlock(ifp);
12091#endif
12092
12093    /* first schedule a cleanup up of old configuration */
12094    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12095    if (rc < 0) {
12096        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12097#if __FreeBSD_version < 800000
12098        IF_ADDR_UNLOCK(ifp);
12099#else
12100        if_addr_runlock(ifp);
12101#endif
12102        return (rc);
12103    }
12104
12105    ifa = if_getifaddr(ifp); /* XXX Is this structure */
12106    while (ifa) {
12107        if (ifa->ifa_addr->sa_family != AF_LINK) {
12108            ifa = TAILQ_NEXT(ifa, ifa_link);
12109            continue;
12110        }
12111
12112        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12113                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12114        if (rc == -EEXIST) {
12115            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12116            /* do not treat adding same MAC as an error */
12117            rc = 0;
12118        } else if (rc < 0) {
12119            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12120#if __FreeBSD_version < 800000
12121            IF_ADDR_UNLOCK(ifp);
12122#else
12123            if_addr_runlock(ifp);
12124#endif
12125            return (rc);
12126        }
12127
12128        ifa = TAILQ_NEXT(ifa, ifa_link);
12129    }
12130
12131#if __FreeBSD_version < 800000
12132    IF_ADDR_UNLOCK(ifp);
12133#else
12134    if_addr_runlock(ifp);
12135#endif
12136
12137    /* Execute the pending commands */
12138    bit_set(&ramrod_flags, RAMROD_CONT);
12139    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12140                            ECORE_UC_LIST_MAC, &ramrod_flags));
12141}
12142
12143static void
12144bxe_set_rx_mode(struct bxe_softc *sc)
12145{
12146    if_t ifp = sc->ifp;
12147    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12148
12149    if (sc->state != BXE_STATE_OPEN) {
12150        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12151        return;
12152    }
12153
12154    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12155
12156    if (if_getflags(ifp) & IFF_PROMISC) {
12157        rx_mode = BXE_RX_MODE_PROMISC;
12158    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12159               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12160                CHIP_IS_E1(sc))) {
12161        rx_mode = BXE_RX_MODE_ALLMULTI;
12162    } else {
12163        if (IS_PF(sc)) {
12164            /* some multicasts */
12165            if (bxe_set_mc_list(sc) < 0) {
12166                rx_mode = BXE_RX_MODE_ALLMULTI;
12167            }
12168            if (bxe_set_uc_list(sc) < 0) {
12169                rx_mode = BXE_RX_MODE_PROMISC;
12170            }
12171        }
12172    }
12173
12174    sc->rx_mode = rx_mode;
12175
12176    /* schedule the rx_mode command */
12177    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12178        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12179        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12180        return;
12181    }
12182
12183    if (IS_PF(sc)) {
12184        bxe_set_storm_rx_mode(sc);
12185    }
12186}
12187
12188
12189/* update flags in shmem */
12190static void
12191bxe_update_drv_flags(struct bxe_softc *sc,
12192                     uint32_t         flags,
12193                     uint32_t         set)
12194{
12195    uint32_t drv_flags;
12196
12197    if (SHMEM2_HAS(sc, drv_flags)) {
12198        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12199        drv_flags = SHMEM2_RD(sc, drv_flags);
12200
12201        if (set) {
12202            SET_FLAGS(drv_flags, flags);
12203        } else {
12204            RESET_FLAGS(drv_flags, flags);
12205        }
12206
12207        SHMEM2_WR(sc, drv_flags, drv_flags);
12208        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12209
12210        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12211    }
12212}
12213
12214/* periodic timer callout routine, only runs when the interface is up */
12215
12216static void
12217bxe_periodic_callout_func(void *xsc)
12218{
12219    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12220    int i;
12221
12222    if (!BXE_CORE_TRYLOCK(sc)) {
12223        /* just bail and try again next time */
12224
12225        if ((sc->state == BXE_STATE_OPEN) &&
12226            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12227            /* schedule the next periodic callout */
12228            callout_reset(&sc->periodic_callout, hz,
12229                          bxe_periodic_callout_func, sc);
12230        }
12231
12232        return;
12233    }
12234
12235    if ((sc->state != BXE_STATE_OPEN) ||
12236        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12237        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12238        BXE_CORE_UNLOCK(sc);
12239        return;
12240        }
12241
12242
12243    /* Check for TX timeouts on any fastpath. */
12244    FOR_EACH_QUEUE(sc, i) {
12245        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12246            /* Ruh-Roh, chip was reset! */
12247            break;
12248        }
12249    }
12250
12251    if (!CHIP_REV_IS_SLOW(sc)) {
12252        /*
12253         * This barrier is needed to ensure the ordering between the writing
12254         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12255         * the reading here.
12256         */
12257        mb();
12258        if (sc->port.pmf) {
12259	    bxe_acquire_phy_lock(sc);
12260            elink_period_func(&sc->link_params, &sc->link_vars);
12261	    bxe_release_phy_lock(sc);
12262        }
12263    }
12264
12265    if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12266        int mb_idx = SC_FW_MB_IDX(sc);
12267        uint32_t drv_pulse;
12268        uint32_t mcp_pulse;
12269
12270        ++sc->fw_drv_pulse_wr_seq;
12271        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12272
12273        drv_pulse = sc->fw_drv_pulse_wr_seq;
12274        bxe_drv_pulse(sc);
12275
12276        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12277                     MCP_PULSE_SEQ_MASK);
12278
12279        /*
12280         * The delta between driver pulse and mcp response should
12281         * be 1 (before mcp response) or 0 (after mcp response).
12282         */
12283        if ((drv_pulse != mcp_pulse) &&
12284            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12285            /* someone lost a heartbeat... */
12286            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12287                  drv_pulse, mcp_pulse);
12288        }
12289    }
12290
12291    /* state is BXE_STATE_OPEN */
12292    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12293
12294    BXE_CORE_UNLOCK(sc);
12295
12296    if ((sc->state == BXE_STATE_OPEN) &&
12297        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12298        /* schedule the next periodic callout */
12299        callout_reset(&sc->periodic_callout, hz,
12300                      bxe_periodic_callout_func, sc);
12301    }
12302}
12303
12304static void
12305bxe_periodic_start(struct bxe_softc *sc)
12306{
12307    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12308    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12309}
12310
12311static void
12312bxe_periodic_stop(struct bxe_softc *sc)
12313{
12314    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12315    callout_drain(&sc->periodic_callout);
12316}
12317
12318/* start the controller */
12319static __noinline int
12320bxe_nic_load(struct bxe_softc *sc,
12321             int              load_mode)
12322{
12323    uint32_t val;
12324    int load_code = 0;
12325    int i, rc = 0;
12326
12327    BXE_CORE_LOCK_ASSERT(sc);
12328
12329    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12330
12331    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12332
12333    if (IS_PF(sc)) {
12334        /* must be called before memory allocation and HW init */
12335        bxe_ilt_set_info(sc);
12336    }
12337
12338    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12339
12340    bxe_set_fp_rx_buf_size(sc);
12341
12342    if (bxe_alloc_fp_buffers(sc) != 0) {
12343        BLOGE(sc, "Failed to allocate fastpath memory\n");
12344        sc->state = BXE_STATE_CLOSED;
12345        rc = ENOMEM;
12346        goto bxe_nic_load_error0;
12347    }
12348
12349    if (bxe_alloc_mem(sc) != 0) {
12350        sc->state = BXE_STATE_CLOSED;
12351        rc = ENOMEM;
12352        goto bxe_nic_load_error0;
12353    }
12354
12355    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12356        sc->state = BXE_STATE_CLOSED;
12357        rc = ENOMEM;
12358        goto bxe_nic_load_error0;
12359    }
12360
12361    if (IS_PF(sc)) {
12362        /* set pf load just before approaching the MCP */
12363        bxe_set_pf_load(sc);
12364
12365        /* if MCP exists send load request and analyze response */
12366        if (!BXE_NOMCP(sc)) {
12367            /* attempt to load pf */
12368            if (bxe_nic_load_request(sc, &load_code) != 0) {
12369                sc->state = BXE_STATE_CLOSED;
12370                rc = ENXIO;
12371                goto bxe_nic_load_error1;
12372            }
12373
12374            /* what did the MCP say? */
12375            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12376                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12377                sc->state = BXE_STATE_CLOSED;
12378                rc = ENXIO;
12379                goto bxe_nic_load_error2;
12380            }
12381        } else {
12382            BLOGI(sc, "Device has no MCP!\n");
12383            load_code = bxe_nic_load_no_mcp(sc);
12384        }
12385
12386        /* mark PMF if applicable */
12387        bxe_nic_load_pmf(sc, load_code);
12388
12389        /* Init Function state controlling object */
12390        bxe_init_func_obj(sc);
12391
12392        /* Initialize HW */
12393        if (bxe_init_hw(sc, load_code) != 0) {
12394            BLOGE(sc, "HW init failed\n");
12395            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12396            sc->state = BXE_STATE_CLOSED;
12397            rc = ENXIO;
12398            goto bxe_nic_load_error2;
12399        }
12400    }
12401
12402    /* set ALWAYS_ALIVE bit in shmem */
12403    sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12404    bxe_drv_pulse(sc);
12405    sc->flags |= BXE_NO_PULSE;
12406
12407    /* attach interrupts */
12408    if (bxe_interrupt_attach(sc) != 0) {
12409        sc->state = BXE_STATE_CLOSED;
12410        rc = ENXIO;
12411        goto bxe_nic_load_error2;
12412    }
12413
12414    bxe_nic_init(sc, load_code);
12415
12416    /* Init per-function objects */
12417    if (IS_PF(sc)) {
12418        bxe_init_objs(sc);
12419        // XXX bxe_iov_nic_init(sc);
12420
12421        /* set AFEX default VLAN tag to an invalid value */
12422        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12423        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12424
12425        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12426        rc = bxe_func_start(sc);
12427        if (rc) {
12428            BLOGE(sc, "Function start failed! rc = %d\n", rc);
12429            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12430            sc->state = BXE_STATE_ERROR;
12431            goto bxe_nic_load_error3;
12432        }
12433
12434        /* send LOAD_DONE command to MCP */
12435        if (!BXE_NOMCP(sc)) {
12436            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12437            if (!load_code) {
12438                BLOGE(sc, "MCP response failure, aborting\n");
12439                sc->state = BXE_STATE_ERROR;
12440                rc = ENXIO;
12441                goto bxe_nic_load_error3;
12442            }
12443        }
12444
12445        rc = bxe_setup_leading(sc);
12446        if (rc) {
12447            BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12448            sc->state = BXE_STATE_ERROR;
12449            goto bxe_nic_load_error3;
12450        }
12451
12452        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12453            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12454            if (rc) {
12455                BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12456                sc->state = BXE_STATE_ERROR;
12457                goto bxe_nic_load_error3;
12458            }
12459        }
12460
12461        rc = bxe_init_rss_pf(sc);
12462        if (rc) {
12463            BLOGE(sc, "PF RSS init failed\n");
12464            sc->state = BXE_STATE_ERROR;
12465            goto bxe_nic_load_error3;
12466        }
12467    }
12468    /* XXX VF */
12469
12470    /* now when Clients are configured we are ready to work */
12471    sc->state = BXE_STATE_OPEN;
12472
12473    /* Configure a ucast MAC */
12474    if (IS_PF(sc)) {
12475        rc = bxe_set_eth_mac(sc, TRUE);
12476    }
12477    if (rc) {
12478        BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12479        sc->state = BXE_STATE_ERROR;
12480        goto bxe_nic_load_error3;
12481    }
12482
12483    if (sc->port.pmf) {
12484        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12485        if (rc) {
12486            sc->state = BXE_STATE_ERROR;
12487            goto bxe_nic_load_error3;
12488        }
12489    }
12490
12491    sc->link_params.feature_config_flags &=
12492        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12493
12494    /* start fast path */
12495
12496    /* Initialize Rx filter */
12497    bxe_set_rx_mode(sc);
12498
12499    /* start the Tx */
12500    switch (/* XXX load_mode */LOAD_OPEN) {
12501    case LOAD_NORMAL:
12502    case LOAD_OPEN:
12503        break;
12504
12505    case LOAD_DIAG:
12506    case LOAD_LOOPBACK_EXT:
12507        sc->state = BXE_STATE_DIAG;
12508        break;
12509
12510    default:
12511        break;
12512    }
12513
12514    if (sc->port.pmf) {
12515        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12516    } else {
12517        bxe_link_status_update(sc);
12518    }
12519
12520    /* start the periodic timer callout */
12521    bxe_periodic_start(sc);
12522
12523    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12524        /* mark driver is loaded in shmem2 */
12525        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12526        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12527                  (val |
12528                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12529                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
12530    }
12531
12532    /* wait for all pending SP commands to complete */
12533    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12534        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12535        bxe_periodic_stop(sc);
12536        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12537        return (ENXIO);
12538    }
12539
12540    /* Tell the stack the driver is running! */
12541    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12542
12543    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12544
12545    return (0);
12546
12547bxe_nic_load_error3:
12548
12549    if (IS_PF(sc)) {
12550        bxe_int_disable_sync(sc, 1);
12551
12552        /* clean out queued objects */
12553        bxe_squeeze_objects(sc);
12554    }
12555
12556    bxe_interrupt_detach(sc);
12557
12558bxe_nic_load_error2:
12559
12560    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12561        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12562        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12563    }
12564
12565    sc->port.pmf = 0;
12566
12567bxe_nic_load_error1:
12568
12569    /* clear pf_load status, as it was already set */
12570    if (IS_PF(sc)) {
12571        bxe_clear_pf_load(sc);
12572    }
12573
12574bxe_nic_load_error0:
12575
12576    bxe_free_fw_stats_mem(sc);
12577    bxe_free_fp_buffers(sc);
12578    bxe_free_mem(sc);
12579
12580    return (rc);
12581}
12582
12583static int
12584bxe_init_locked(struct bxe_softc *sc)
12585{
12586    int other_engine = SC_PATH(sc) ? 0 : 1;
12587    uint8_t other_load_status, load_status;
12588    uint8_t global = FALSE;
12589    int rc;
12590
12591    BXE_CORE_LOCK_ASSERT(sc);
12592
12593    /* check if the driver is already running */
12594    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12595        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12596        return (0);
12597    }
12598
12599    bxe_set_power_state(sc, PCI_PM_D0);
12600
12601    /*
12602     * If parity occurred during the unload, then attentions and/or
12603     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12604     * loaded on the current engine to complete the recovery. Parity recovery
12605     * is only relevant for PF driver.
12606     */
12607    if (IS_PF(sc)) {
12608        other_load_status = bxe_get_load_status(sc, other_engine);
12609        load_status = bxe_get_load_status(sc, SC_PATH(sc));
12610
12611        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12612            bxe_chk_parity_attn(sc, &global, TRUE)) {
12613            do {
12614                /*
12615                 * If there are attentions and they are in global blocks, set
12616                 * the GLOBAL_RESET bit regardless whether it will be this
12617                 * function that will complete the recovery or not.
12618                 */
12619                if (global) {
12620                    bxe_set_reset_global(sc);
12621                }
12622
12623                /*
12624                 * Only the first function on the current engine should try
12625                 * to recover in open. In case of attentions in global blocks
12626                 * only the first in the chip should try to recover.
12627                 */
12628                if ((!load_status && (!global || !other_load_status)) &&
12629                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12630                    BLOGI(sc, "Recovered during init\n");
12631                    break;
12632                }
12633
12634                /* recovery has failed... */
12635                bxe_set_power_state(sc, PCI_PM_D3hot);
12636                sc->recovery_state = BXE_RECOVERY_FAILED;
12637
12638                BLOGE(sc, "Recovery flow hasn't properly "
12639                          "completed yet, try again later. "
12640                          "If you still see this message after a "
12641                          "few retries then power cycle is required.\n");
12642
12643                rc = ENXIO;
12644                goto bxe_init_locked_done;
12645            } while (0);
12646        }
12647    }
12648
12649    sc->recovery_state = BXE_RECOVERY_DONE;
12650
12651    rc = bxe_nic_load(sc, LOAD_OPEN);
12652
12653bxe_init_locked_done:
12654
12655    if (rc) {
12656        /* Tell the stack the driver is NOT running! */
12657        BLOGE(sc, "Initialization failed, "
12658                  "stack notified driver is NOT running!\n");
12659	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12660    }
12661
12662    return (rc);
12663}
12664
12665static int
12666bxe_stop_locked(struct bxe_softc *sc)
12667{
12668    BXE_CORE_LOCK_ASSERT(sc);
12669    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12670}
12671
12672/*
12673 * Handles controller initialization when called from an unlocked routine.
12674 * ifconfig calls this function.
12675 *
12676 * Returns:
12677 *   void
12678 */
12679static void
12680bxe_init(void *xsc)
12681{
12682    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12683
12684    BXE_CORE_LOCK(sc);
12685    bxe_init_locked(sc);
12686    BXE_CORE_UNLOCK(sc);
12687}
12688
12689static int
12690bxe_init_ifnet(struct bxe_softc *sc)
12691{
12692    if_t ifp;
12693    int capabilities;
12694
12695    /* ifconfig entrypoint for media type/status reporting */
12696    ifmedia_init(&sc->ifmedia, IFM_IMASK,
12697                 bxe_ifmedia_update,
12698                 bxe_ifmedia_status);
12699
12700    /* set the default interface values */
12701    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12702    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12703    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12704
12705    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12706	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12707
12708    /* allocate the ifnet structure */
12709    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12710        BLOGE(sc, "Interface allocation failed!\n");
12711        return (ENXIO);
12712    }
12713
12714    if_setsoftc(ifp, sc);
12715    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12716    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12717    if_setioctlfn(ifp, bxe_ioctl);
12718    if_setstartfn(ifp, bxe_tx_start);
12719    if_setgetcounterfn(ifp, bxe_get_counter);
12720#if __FreeBSD_version >= 901504
12721    if_settransmitfn(ifp, bxe_tx_mq_start);
12722    if_setqflushfn(ifp, bxe_mq_flush);
12723#endif
12724#ifdef FreeBSD8_0
12725    if_settimer(ifp, 0);
12726#endif
12727    if_setinitfn(ifp, bxe_init);
12728    if_setmtu(ifp, sc->mtu);
12729    if_sethwassist(ifp, (CSUM_IP      |
12730                        CSUM_TCP      |
12731                        CSUM_UDP      |
12732                        CSUM_TSO      |
12733                        CSUM_TCP_IPV6 |
12734                        CSUM_UDP_IPV6));
12735
12736    capabilities =
12737#if __FreeBSD_version < 700000
12738        (IFCAP_VLAN_MTU       |
12739         IFCAP_VLAN_HWTAGGING |
12740         IFCAP_HWCSUM         |
12741         IFCAP_JUMBO_MTU      |
12742         IFCAP_LRO);
12743#else
12744        (IFCAP_VLAN_MTU       |
12745         IFCAP_VLAN_HWTAGGING |
12746         IFCAP_VLAN_HWTSO     |
12747         IFCAP_VLAN_HWFILTER  |
12748         IFCAP_VLAN_HWCSUM    |
12749         IFCAP_HWCSUM         |
12750         IFCAP_JUMBO_MTU      |
12751         IFCAP_LRO            |
12752         IFCAP_TSO4           |
12753         IFCAP_TSO6           |
12754         IFCAP_WOL_MAGIC);
12755#endif
12756    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12757    if_setcapenable(ifp, if_getcapabilities(ifp));
12758    if_setbaudrate(ifp, IF_Gbps(10));
12759/* XXX */
12760    if_setsendqlen(ifp, sc->tx_ring_size);
12761    if_setsendqready(ifp);
12762/* XXX */
12763
12764    sc->ifp = ifp;
12765
12766    /* attach to the Ethernet interface list */
12767    ether_ifattach(ifp, sc->link_params.mac_addr);
12768
12769    return (0);
12770}
12771
12772static void
12773bxe_deallocate_bars(struct bxe_softc *sc)
12774{
12775    int i;
12776
12777    for (i = 0; i < MAX_BARS; i++) {
12778        if (sc->bar[i].resource != NULL) {
12779            bus_release_resource(sc->dev,
12780                                 SYS_RES_MEMORY,
12781                                 sc->bar[i].rid,
12782                                 sc->bar[i].resource);
12783            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12784                  i, PCIR_BAR(i));
12785        }
12786    }
12787}
12788
12789static int
12790bxe_allocate_bars(struct bxe_softc *sc)
12791{
12792    u_int flags;
12793    int i;
12794
12795    memset(sc->bar, 0, sizeof(sc->bar));
12796
12797    for (i = 0; i < MAX_BARS; i++) {
12798
12799        /* memory resources reside at BARs 0, 2, 4 */
12800        /* Run `pciconf -lb` to see mappings */
12801        if ((i != 0) && (i != 2) && (i != 4)) {
12802            continue;
12803        }
12804
12805        sc->bar[i].rid = PCIR_BAR(i);
12806
12807        flags = RF_ACTIVE;
12808        if (i == 0) {
12809            flags |= RF_SHAREABLE;
12810        }
12811
12812        if ((sc->bar[i].resource =
12813             bus_alloc_resource_any(sc->dev,
12814                                    SYS_RES_MEMORY,
12815                                    &sc->bar[i].rid,
12816                                    flags)) == NULL) {
12817            return (0);
12818        }
12819
12820        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12821        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12822        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12823
12824        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12825              i, PCIR_BAR(i),
12826              (void *)rman_get_start(sc->bar[i].resource),
12827              (void *)rman_get_end(sc->bar[i].resource),
12828              rman_get_size(sc->bar[i].resource),
12829              (void *)sc->bar[i].kva);
12830    }
12831
12832    return (0);
12833}
12834
12835static void
12836bxe_get_function_num(struct bxe_softc *sc)
12837{
12838    uint32_t val = 0;
12839
12840    /*
12841     * Read the ME register to get the function number. The ME register
12842     * holds the relative-function number and absolute-function number. The
12843     * absolute-function number appears only in E2 and above. Before that
12844     * these bits always contained zero, therefore we cannot blindly use them.
12845     */
12846
12847    val = REG_RD(sc, BAR_ME_REGISTER);
12848
12849    sc->pfunc_rel =
12850        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12851    sc->path_id =
12852        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12853
12854    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12855        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12856    } else {
12857        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12858    }
12859
12860    BLOGD(sc, DBG_LOAD,
12861          "Relative function %d, Absolute function %d, Path %d\n",
12862          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12863}
12864
12865static uint32_t
12866bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12867{
12868    uint32_t shmem2_size;
12869    uint32_t offset;
12870    uint32_t mf_cfg_offset_value;
12871
12872    /* Non 57712 */
12873    offset = (SHMEM_RD(sc, func_mb) +
12874              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12875
12876    /* 57712 plus */
12877    if (sc->devinfo.shmem2_base != 0) {
12878        shmem2_size = SHMEM2_RD(sc, size);
12879        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12880            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12881            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12882                offset = mf_cfg_offset_value;
12883            }
12884        }
12885    }
12886
12887    return (offset);
12888}
12889
12890static uint32_t
12891bxe_pcie_capability_read(struct bxe_softc *sc,
12892                         int    reg,
12893                         int    width)
12894{
12895    int pcie_reg;
12896
12897    /* ensure PCIe capability is enabled */
12898    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12899        if (pcie_reg != 0) {
12900            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12901            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12902        }
12903    }
12904
12905    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12906
12907    return (0);
12908}
12909
12910static uint8_t
12911bxe_is_pcie_pending(struct bxe_softc *sc)
12912{
12913    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12914            PCIM_EXP_STA_TRANSACTION_PND);
12915}
12916
12917/*
12918 * Walk the PCI capabiites list for the device to find what features are
12919 * supported. These capabilites may be enabled/disabled by firmware so it's
12920 * best to walk the list rather than make assumptions.
12921 */
12922static void
12923bxe_probe_pci_caps(struct bxe_softc *sc)
12924{
12925    uint16_t link_status;
12926    int reg;
12927
12928    /* check if PCI Power Management is enabled */
12929    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12930        if (reg != 0) {
12931            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12932
12933            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12934            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12935        }
12936    }
12937
12938    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12939
12940    /* handle PCIe 2.0 workarounds for 57710 */
12941    if (CHIP_IS_E1(sc)) {
12942        /* workaround for 57710 errata E4_57710_27462 */
12943        sc->devinfo.pcie_link_speed =
12944            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12945
12946        /* workaround for 57710 errata E4_57710_27488 */
12947        sc->devinfo.pcie_link_width =
12948            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12949        if (sc->devinfo.pcie_link_speed > 1) {
12950            sc->devinfo.pcie_link_width =
12951                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12952        }
12953    } else {
12954        sc->devinfo.pcie_link_speed =
12955            (link_status & PCIM_LINK_STA_SPEED);
12956        sc->devinfo.pcie_link_width =
12957            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12958    }
12959
12960    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12961          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12962
12963    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12964    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12965
12966    /* check if MSI capability is enabled */
12967    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12968        if (reg != 0) {
12969            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12970
12971            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12972            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12973        }
12974    }
12975
12976    /* check if MSI-X capability is enabled */
12977    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12978        if (reg != 0) {
12979            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12980
12981            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12982            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12983        }
12984    }
12985}
12986
12987static int
12988bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12989{
12990    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12991    uint32_t val;
12992
12993    /* get the outer vlan if we're in switch-dependent mode */
12994
12995    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12996    mf_info->ext_id = (uint16_t)val;
12997
12998    mf_info->multi_vnics_mode = 1;
12999
13000    if (!VALID_OVLAN(mf_info->ext_id)) {
13001        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13002        return (1);
13003    }
13004
13005    /* get the capabilities */
13006    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13007        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13008        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13009    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13010               FUNC_MF_CFG_PROTOCOL_FCOE) {
13011        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13012    } else {
13013        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13014    }
13015
13016    mf_info->vnics_per_port =
13017        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13018
13019    return (0);
13020}
13021
13022static uint32_t
13023bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13024{
13025    uint32_t retval = 0;
13026    uint32_t val;
13027
13028    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13029
13030    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13031        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13032            retval |= MF_PROTO_SUPPORT_ETHERNET;
13033        }
13034        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13035            retval |= MF_PROTO_SUPPORT_ISCSI;
13036        }
13037        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13038            retval |= MF_PROTO_SUPPORT_FCOE;
13039        }
13040    }
13041
13042    return (retval);
13043}
13044
13045static int
13046bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13047{
13048    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13049    uint32_t val;
13050
13051    /*
13052     * There is no outer vlan if we're in switch-independent mode.
13053     * If the mac is valid then assume multi-function.
13054     */
13055
13056    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13057
13058    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13059
13060    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13061
13062    mf_info->vnics_per_port =
13063        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13064
13065    return (0);
13066}
13067
13068static int
13069bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13070{
13071    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13072    uint32_t e1hov_tag;
13073    uint32_t func_config;
13074    uint32_t niv_config;
13075
13076    mf_info->multi_vnics_mode = 1;
13077
13078    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13079    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13080    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13081
13082    mf_info->ext_id =
13083        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13084                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13085
13086    mf_info->default_vlan =
13087        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13088                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13089
13090    mf_info->niv_allowed_priorities =
13091        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13092                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13093
13094    mf_info->niv_default_cos =
13095        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13096                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13097
13098    mf_info->afex_vlan_mode =
13099        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13100         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13101
13102    mf_info->niv_mba_enabled =
13103        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13104         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13105
13106    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13107
13108    mf_info->vnics_per_port =
13109        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13110
13111    return (0);
13112}
13113
13114static int
13115bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13116{
13117    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13118    uint32_t mf_cfg1;
13119    uint32_t mf_cfg2;
13120    uint32_t ovlan1;
13121    uint32_t ovlan2;
13122    uint8_t i, j;
13123
13124    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13125          SC_PORT(sc));
13126    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13127          mf_info->mf_config[SC_VN(sc)]);
13128    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13129          mf_info->multi_vnics_mode);
13130    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13131          mf_info->vnics_per_port);
13132    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13133          mf_info->ext_id);
13134    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13135          mf_info->min_bw[0], mf_info->min_bw[1],
13136          mf_info->min_bw[2], mf_info->min_bw[3]);
13137    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13138          mf_info->max_bw[0], mf_info->max_bw[1],
13139          mf_info->max_bw[2], mf_info->max_bw[3]);
13140    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13141          sc->mac_addr_str);
13142
13143    /* various MF mode sanity checks... */
13144
13145    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13146        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13147              SC_PORT(sc));
13148        return (1);
13149    }
13150
13151    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13152        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13153              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13154        return (1);
13155    }
13156
13157    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13158        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13159        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13160            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13161                  SC_VN(sc), OVLAN(sc));
13162            return (1);
13163        }
13164
13165        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13166            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13167                  mf_info->multi_vnics_mode, OVLAN(sc));
13168            return (1);
13169        }
13170
13171        /*
13172         * Verify all functions are either MF or SF mode. If MF, make sure
13173         * sure that all non-hidden functions have a valid ovlan. If SF,
13174         * make sure that all non-hidden functions have an invalid ovlan.
13175         */
13176        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13177            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13178            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13179            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13180                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13181                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13182                BLOGE(sc, "mf_mode=SD function %d MF config "
13183                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13184                      i, mf_info->multi_vnics_mode, ovlan1);
13185                return (1);
13186            }
13187        }
13188
13189        /* Verify all funcs on the same port each have a different ovlan. */
13190        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13191            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13192            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13193            /* iterate from the next function on the port to the max func */
13194            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13195                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13196                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13197                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13198                    VALID_OVLAN(ovlan1) &&
13199                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13200                    VALID_OVLAN(ovlan2) &&
13201                    (ovlan1 == ovlan2)) {
13202                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13203                              "have the same ovlan (%d)\n",
13204                          i, j, ovlan1);
13205                    return (1);
13206                }
13207            }
13208        }
13209    } /* MULTI_FUNCTION_SD */
13210
13211    return (0);
13212}
13213
13214static int
13215bxe_get_mf_cfg_info(struct bxe_softc *sc)
13216{
13217    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13218    uint32_t val, mac_upper;
13219    uint8_t i, vnic;
13220
13221    /* initialize mf_info defaults */
13222    mf_info->vnics_per_port   = 1;
13223    mf_info->multi_vnics_mode = FALSE;
13224    mf_info->path_has_ovlan   = FALSE;
13225    mf_info->mf_mode          = SINGLE_FUNCTION;
13226
13227    if (!CHIP_IS_MF_CAP(sc)) {
13228        return (0);
13229    }
13230
13231    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13232        BLOGE(sc, "Invalid mf_cfg_base!\n");
13233        return (1);
13234    }
13235
13236    /* get the MF mode (switch dependent / independent / single-function) */
13237
13238    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13239
13240    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13241    {
13242    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13243
13244        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13245
13246        /* check for legal upper mac bytes */
13247        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13248            mf_info->mf_mode = MULTI_FUNCTION_SI;
13249        } else {
13250            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13251        }
13252
13253        break;
13254
13255    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13256    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13257
13258        /* get outer vlan configuration */
13259        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13260
13261        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13262            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13263            mf_info->mf_mode = MULTI_FUNCTION_SD;
13264        } else {
13265            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13266        }
13267
13268        break;
13269
13270    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13271
13272        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13273        return (0);
13274
13275    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13276
13277        /*
13278         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13279         * and the MAC address is valid.
13280         */
13281        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13282
13283        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13284            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13285            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13286        } else {
13287            BLOGE(sc, "Invalid config for AFEX mode\n");
13288        }
13289
13290        break;
13291
13292    default:
13293
13294        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13295              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13296
13297        return (1);
13298    }
13299
13300    /* set path mf_mode (which could be different than function mf_mode) */
13301    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13302        mf_info->path_has_ovlan = TRUE;
13303    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13304        /*
13305         * Decide on path multi vnics mode. If we're not in MF mode and in
13306         * 4-port mode, this is good enough to check vnic-0 of the other port
13307         * on the same path
13308         */
13309        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13310            uint8_t other_port = !(PORT_ID(sc) & 1);
13311            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13312
13313            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13314
13315            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13316        }
13317    }
13318
13319    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13320        /* invalid MF config */
13321        if (SC_VN(sc) >= 1) {
13322            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13323            return (1);
13324        }
13325
13326        return (0);
13327    }
13328
13329    /* get the MF configuration */
13330    mf_info->mf_config[SC_VN(sc)] =
13331        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13332
13333    switch(mf_info->mf_mode)
13334    {
13335    case MULTI_FUNCTION_SD:
13336
13337        bxe_get_shmem_mf_cfg_info_sd(sc);
13338        break;
13339
13340    case MULTI_FUNCTION_SI:
13341
13342        bxe_get_shmem_mf_cfg_info_si(sc);
13343        break;
13344
13345    case MULTI_FUNCTION_AFEX:
13346
13347        bxe_get_shmem_mf_cfg_info_niv(sc);
13348        break;
13349
13350    default:
13351
13352        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13353              mf_info->mf_mode);
13354        return (1);
13355    }
13356
13357    /* get the congestion management parameters */
13358
13359    vnic = 0;
13360    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13361        /* get min/max bw */
13362        val = MFCFG_RD(sc, func_mf_config[i].config);
13363        mf_info->min_bw[vnic] =
13364            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13365        mf_info->max_bw[vnic] =
13366            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13367        vnic++;
13368    }
13369
13370    return (bxe_check_valid_mf_cfg(sc));
13371}
13372
13373static int
13374bxe_get_shmem_info(struct bxe_softc *sc)
13375{
13376    int port;
13377    uint32_t mac_hi, mac_lo, val;
13378
13379    port = SC_PORT(sc);
13380    mac_hi = mac_lo = 0;
13381
13382    sc->link_params.sc   = sc;
13383    sc->link_params.port = port;
13384
13385    /* get the hardware config info */
13386    sc->devinfo.hw_config =
13387        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13388    sc->devinfo.hw_config2 =
13389        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13390
13391    sc->link_params.hw_led_mode =
13392        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13393         SHARED_HW_CFG_LED_MODE_SHIFT);
13394
13395    /* get the port feature config */
13396    sc->port.config =
13397        SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13398
13399    /* get the link params */
13400    sc->link_params.speed_cap_mask[0] =
13401        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13402    sc->link_params.speed_cap_mask[1] =
13403        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13404
13405    /* get the lane config */
13406    sc->link_params.lane_config =
13407        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13408
13409    /* get the link config */
13410    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13411    sc->port.link_config[ELINK_INT_PHY] = val;
13412    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13413    sc->port.link_config[ELINK_EXT_PHY1] =
13414        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13415
13416    /* get the override preemphasis flag and enable it or turn it off */
13417    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13418    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13419        sc->link_params.feature_config_flags |=
13420            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13421    } else {
13422        sc->link_params.feature_config_flags &=
13423            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13424    }
13425
13426    /* get the initial value of the link params */
13427    sc->link_params.multi_phy_config =
13428        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13429
13430    /* get external phy info */
13431    sc->port.ext_phy_config =
13432        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13433
13434    /* get the multifunction configuration */
13435    bxe_get_mf_cfg_info(sc);
13436
13437    /* get the mac address */
13438    if (IS_MF(sc)) {
13439        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13440        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13441    } else {
13442        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13443        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13444    }
13445
13446    if ((mac_lo == 0) && (mac_hi == 0)) {
13447        *sc->mac_addr_str = 0;
13448        BLOGE(sc, "No Ethernet address programmed!\n");
13449    } else {
13450        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13451        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13452        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13453        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13454        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13455        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13456        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13457                 "%02x:%02x:%02x:%02x:%02x:%02x",
13458                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13459                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13460                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13461        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13462    }
13463
13464    return (0);
13465}
13466
13467static void
13468bxe_get_tunable_params(struct bxe_softc *sc)
13469{
13470    /* sanity checks */
13471
13472    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13473        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13474        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13475        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13476        bxe_interrupt_mode = INTR_MODE_MSIX;
13477    }
13478
13479    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13480        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13481        bxe_queue_count = 0;
13482    }
13483
13484    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13485        if (bxe_max_rx_bufs == 0) {
13486            bxe_max_rx_bufs = RX_BD_USABLE;
13487        } else {
13488            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13489            bxe_max_rx_bufs = 2048;
13490        }
13491    }
13492
13493    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13494        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13495        bxe_hc_rx_ticks = 25;
13496    }
13497
13498    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13499        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13500        bxe_hc_tx_ticks = 50;
13501    }
13502
13503    if (bxe_max_aggregation_size == 0) {
13504        bxe_max_aggregation_size = TPA_AGG_SIZE;
13505    }
13506
13507    if (bxe_max_aggregation_size > 0xffff) {
13508        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13509              bxe_max_aggregation_size);
13510        bxe_max_aggregation_size = TPA_AGG_SIZE;
13511    }
13512
13513    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13514        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13515        bxe_mrrs = -1;
13516    }
13517
13518    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13519        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13520        bxe_autogreeen = 0;
13521    }
13522
13523    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13524        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13525        bxe_udp_rss = 0;
13526    }
13527
13528    /* pull in user settings */
13529
13530    sc->interrupt_mode       = bxe_interrupt_mode;
13531    sc->max_rx_bufs          = bxe_max_rx_bufs;
13532    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13533    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13534    sc->max_aggregation_size = bxe_max_aggregation_size;
13535    sc->mrrs                 = bxe_mrrs;
13536    sc->autogreeen           = bxe_autogreeen;
13537    sc->udp_rss              = bxe_udp_rss;
13538
13539    if (bxe_interrupt_mode == INTR_MODE_INTX) {
13540        sc->num_queues = 1;
13541    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13542        sc->num_queues =
13543            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13544                MAX_RSS_CHAINS);
13545        if (sc->num_queues > mp_ncpus) {
13546            sc->num_queues = mp_ncpus;
13547        }
13548    }
13549
13550    BLOGD(sc, DBG_LOAD,
13551          "User Config: "
13552          "debug=0x%lx "
13553          "interrupt_mode=%d "
13554          "queue_count=%d "
13555          "hc_rx_ticks=%d "
13556          "hc_tx_ticks=%d "
13557          "rx_budget=%d "
13558          "max_aggregation_size=%d "
13559          "mrrs=%d "
13560          "autogreeen=%d "
13561          "udp_rss=%d\n",
13562          bxe_debug,
13563          sc->interrupt_mode,
13564          sc->num_queues,
13565          sc->hc_rx_ticks,
13566          sc->hc_tx_ticks,
13567          bxe_rx_budget,
13568          sc->max_aggregation_size,
13569          sc->mrrs,
13570          sc->autogreeen,
13571          sc->udp_rss);
13572}
13573
13574static int
13575bxe_media_detect(struct bxe_softc *sc)
13576{
13577    int port_type;
13578    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13579
13580    switch (sc->link_params.phy[phy_idx].media_type) {
13581    case ELINK_ETH_PHY_SFPP_10G_FIBER:
13582    case ELINK_ETH_PHY_XFP_FIBER:
13583        BLOGI(sc, "Found 10Gb Fiber media.\n");
13584        sc->media = IFM_10G_SR;
13585        port_type = PORT_FIBRE;
13586        break;
13587    case ELINK_ETH_PHY_SFP_1G_FIBER:
13588        BLOGI(sc, "Found 1Gb Fiber media.\n");
13589        sc->media = IFM_1000_SX;
13590        port_type = PORT_FIBRE;
13591        break;
13592    case ELINK_ETH_PHY_KR:
13593    case ELINK_ETH_PHY_CX4:
13594        BLOGI(sc, "Found 10GBase-CX4 media.\n");
13595        sc->media = IFM_10G_CX4;
13596        port_type = PORT_FIBRE;
13597        break;
13598    case ELINK_ETH_PHY_DA_TWINAX:
13599        BLOGI(sc, "Found 10Gb Twinax media.\n");
13600        sc->media = IFM_10G_TWINAX;
13601        port_type = PORT_DA;
13602        break;
13603    case ELINK_ETH_PHY_BASE_T:
13604        if (sc->link_params.speed_cap_mask[0] &
13605            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13606            BLOGI(sc, "Found 10GBase-T media.\n");
13607            sc->media = IFM_10G_T;
13608            port_type = PORT_TP;
13609        } else {
13610            BLOGI(sc, "Found 1000Base-T media.\n");
13611            sc->media = IFM_1000_T;
13612            port_type = PORT_TP;
13613        }
13614        break;
13615    case ELINK_ETH_PHY_NOT_PRESENT:
13616        BLOGI(sc, "Media not present.\n");
13617        sc->media = 0;
13618        port_type = PORT_OTHER;
13619        break;
13620    case ELINK_ETH_PHY_UNSPECIFIED:
13621    default:
13622        BLOGI(sc, "Unknown media!\n");
13623        sc->media = 0;
13624        port_type = PORT_OTHER;
13625        break;
13626    }
13627    return port_type;
13628}
13629
13630#define GET_FIELD(value, fname)                     \
13631    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13632#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13633#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13634
13635static int
13636bxe_get_igu_cam_info(struct bxe_softc *sc)
13637{
13638    int pfid = SC_FUNC(sc);
13639    int igu_sb_id;
13640    uint32_t val;
13641    uint8_t fid, igu_sb_cnt = 0;
13642
13643    sc->igu_base_sb = 0xff;
13644
13645    if (CHIP_INT_MODE_IS_BC(sc)) {
13646        int vn = SC_VN(sc);
13647        igu_sb_cnt = sc->igu_sb_cnt;
13648        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13649                           FP_SB_MAX_E1x);
13650        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13651                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13652        return (0);
13653    }
13654
13655    /* IGU in normal mode - read CAM */
13656    for (igu_sb_id = 0;
13657         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13658         igu_sb_id++) {
13659        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13660        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13661            continue;
13662        }
13663        fid = IGU_FID(val);
13664        if ((fid & IGU_FID_ENCODE_IS_PF)) {
13665            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13666                continue;
13667            }
13668            if (IGU_VEC(val) == 0) {
13669                /* default status block */
13670                sc->igu_dsb_id = igu_sb_id;
13671            } else {
13672                if (sc->igu_base_sb == 0xff) {
13673                    sc->igu_base_sb = igu_sb_id;
13674                }
13675                igu_sb_cnt++;
13676            }
13677        }
13678    }
13679
13680    /*
13681     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13682     * that number of CAM entries will not be equal to the value advertised in
13683     * PCI. Driver should use the minimal value of both as the actual status
13684     * block count
13685     */
13686    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13687
13688    if (igu_sb_cnt == 0) {
13689        BLOGE(sc, "CAM configuration error\n");
13690        return (-1);
13691    }
13692
13693    return (0);
13694}
13695
13696/*
13697 * Gather various information from the device config space, the device itself,
13698 * shmem, and the user input.
13699 */
13700static int
13701bxe_get_device_info(struct bxe_softc *sc)
13702{
13703    uint32_t val;
13704    int rc;
13705
13706    /* Get the data for the device */
13707    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13708    sc->devinfo.device_id    = pci_get_device(sc->dev);
13709    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13710    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13711
13712    /* get the chip revision (chip metal comes from pci config space) */
13713    sc->devinfo.chip_id     =
13714    sc->link_params.chip_id =
13715        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13716         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13717         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13718         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13719
13720    /* force 57811 according to MISC register */
13721    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13722        if (CHIP_IS_57810(sc)) {
13723            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13724                                   (sc->devinfo.chip_id & 0x0000ffff));
13725        } else if (CHIP_IS_57810_MF(sc)) {
13726            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13727                                   (sc->devinfo.chip_id & 0x0000ffff));
13728        }
13729        sc->devinfo.chip_id |= 0x1;
13730    }
13731
13732    BLOGD(sc, DBG_LOAD,
13733          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13734          sc->devinfo.chip_id,
13735          ((sc->devinfo.chip_id >> 16) & 0xffff),
13736          ((sc->devinfo.chip_id >> 12) & 0xf),
13737          ((sc->devinfo.chip_id >>  4) & 0xff),
13738          ((sc->devinfo.chip_id >>  0) & 0xf));
13739
13740    val = (REG_RD(sc, 0x2874) & 0x55);
13741    if ((sc->devinfo.chip_id & 0x1) ||
13742        (CHIP_IS_E1(sc) && val) ||
13743        (CHIP_IS_E1H(sc) && (val == 0x55))) {
13744        sc->flags |= BXE_ONE_PORT_FLAG;
13745        BLOGD(sc, DBG_LOAD, "single port device\n");
13746    }
13747
13748    /* set the doorbell size */
13749    sc->doorbell_size = (1 << BXE_DB_SHIFT);
13750
13751    /* determine whether the device is in 2 port or 4 port mode */
13752    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13753    if (CHIP_IS_E2E3(sc)) {
13754        /*
13755         * Read port4mode_en_ovwr[0]:
13756         *   If 1, four port mode is in port4mode_en_ovwr[1].
13757         *   If 0, four port mode is in port4mode_en[0].
13758         */
13759        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13760        if (val & 1) {
13761            val = ((val >> 1) & 1);
13762        } else {
13763            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13764        }
13765
13766        sc->devinfo.chip_port_mode =
13767            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13768
13769        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13770    }
13771
13772    /* get the function and path info for the device */
13773    bxe_get_function_num(sc);
13774
13775    /* get the shared memory base address */
13776    sc->devinfo.shmem_base     =
13777    sc->link_params.shmem_base =
13778        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13779    sc->devinfo.shmem2_base =
13780        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13781                                  MISC_REG_GENERIC_CR_0));
13782
13783    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13784          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13785
13786    if (!sc->devinfo.shmem_base) {
13787        /* this should ONLY prevent upcoming shmem reads */
13788        BLOGI(sc, "MCP not active\n");
13789        sc->flags |= BXE_NO_MCP_FLAG;
13790        return (0);
13791    }
13792
13793    /* make sure the shared memory contents are valid */
13794    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13795    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13796        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13797        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13798        return (0);
13799    }
13800    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13801
13802    /* get the bootcode version */
13803    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13804    snprintf(sc->devinfo.bc_ver_str,
13805             sizeof(sc->devinfo.bc_ver_str),
13806             "%d.%d.%d",
13807             ((sc->devinfo.bc_ver >> 24) & 0xff),
13808             ((sc->devinfo.bc_ver >> 16) & 0xff),
13809             ((sc->devinfo.bc_ver >>  8) & 0xff));
13810    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13811
13812    /* get the bootcode shmem address */
13813    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13814    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13815
13816    /* clean indirect addresses as they're not used */
13817    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13818    if (IS_PF(sc)) {
13819        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13820        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13821        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13822        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13823        if (CHIP_IS_E1x(sc)) {
13824            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13825            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13826            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13827            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13828        }
13829
13830        /*
13831         * Enable internal target-read (in case we are probed after PF
13832         * FLR). Must be done prior to any BAR read access. Only for
13833         * 57712 and up
13834         */
13835        if (!CHIP_IS_E1x(sc)) {
13836            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13837        }
13838    }
13839
13840    /* get the nvram size */
13841    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13842    sc->devinfo.flash_size =
13843        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13844    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13845
13846    /* get PCI capabilites */
13847    bxe_probe_pci_caps(sc);
13848
13849    bxe_set_power_state(sc, PCI_PM_D0);
13850
13851    /* get various configuration parameters from shmem */
13852    bxe_get_shmem_info(sc);
13853
13854    if (sc->devinfo.pcie_msix_cap_reg != 0) {
13855        val = pci_read_config(sc->dev,
13856                              (sc->devinfo.pcie_msix_cap_reg +
13857                               PCIR_MSIX_CTRL),
13858                              2);
13859        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13860    } else {
13861        sc->igu_sb_cnt = 1;
13862    }
13863
13864    sc->igu_base_addr = BAR_IGU_INTMEM;
13865
13866    /* initialize IGU parameters */
13867    if (CHIP_IS_E1x(sc)) {
13868        sc->devinfo.int_block = INT_BLOCK_HC;
13869        sc->igu_dsb_id = DEF_SB_IGU_ID;
13870        sc->igu_base_sb = 0;
13871    } else {
13872        sc->devinfo.int_block = INT_BLOCK_IGU;
13873
13874        /* do not allow device reset during IGU info preocessing */
13875        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13876
13877        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13878
13879        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13880            int tout = 5000;
13881
13882            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13883
13884            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13885            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13886            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13887
13888            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13889                tout--;
13890                DELAY(1000);
13891            }
13892
13893            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13894                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13895                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13896                return (-1);
13897            }
13898        }
13899
13900        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13901            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13902            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13903        } else {
13904            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13905        }
13906
13907        rc = bxe_get_igu_cam_info(sc);
13908
13909        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13910
13911        if (rc) {
13912            return (rc);
13913        }
13914    }
13915
13916    /*
13917     * Get base FW non-default (fast path) status block ID. This value is
13918     * used to initialize the fw_sb_id saved on the fp/queue structure to
13919     * determine the id used by the FW.
13920     */
13921    if (CHIP_IS_E1x(sc)) {
13922        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13923    } else {
13924        /*
13925         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13926         * the same queue are indicated on the same IGU SB). So we prefer
13927         * FW and IGU SBs to be the same value.
13928         */
13929        sc->base_fw_ndsb = sc->igu_base_sb;
13930    }
13931
13932    BLOGD(sc, DBG_LOAD,
13933          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13934          sc->igu_dsb_id, sc->igu_base_sb,
13935          sc->igu_sb_cnt, sc->base_fw_ndsb);
13936
13937    elink_phy_probe(&sc->link_params);
13938
13939    return (0);
13940}
13941
13942static void
13943bxe_link_settings_supported(struct bxe_softc *sc,
13944                            uint32_t         switch_cfg)
13945{
13946    uint32_t cfg_size = 0;
13947    uint32_t idx;
13948    uint8_t port = SC_PORT(sc);
13949
13950    /* aggregation of supported attributes of all external phys */
13951    sc->port.supported[0] = 0;
13952    sc->port.supported[1] = 0;
13953
13954    switch (sc->link_params.num_phys) {
13955    case 1:
13956        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13957        cfg_size = 1;
13958        break;
13959    case 2:
13960        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13961        cfg_size = 1;
13962        break;
13963    case 3:
13964        if (sc->link_params.multi_phy_config &
13965            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13966            sc->port.supported[1] =
13967                sc->link_params.phy[ELINK_EXT_PHY1].supported;
13968            sc->port.supported[0] =
13969                sc->link_params.phy[ELINK_EXT_PHY2].supported;
13970        } else {
13971            sc->port.supported[0] =
13972                sc->link_params.phy[ELINK_EXT_PHY1].supported;
13973            sc->port.supported[1] =
13974                sc->link_params.phy[ELINK_EXT_PHY2].supported;
13975        }
13976        cfg_size = 2;
13977        break;
13978    }
13979
13980    if (!(sc->port.supported[0] || sc->port.supported[1])) {
13981        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13982              SHMEM_RD(sc,
13983                       dev_info.port_hw_config[port].external_phy_config),
13984              SHMEM_RD(sc,
13985                       dev_info.port_hw_config[port].external_phy_config2));
13986        return;
13987    }
13988
13989    if (CHIP_IS_E3(sc))
13990        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13991    else {
13992        switch (switch_cfg) {
13993        case ELINK_SWITCH_CFG_1G:
13994            sc->port.phy_addr =
13995                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13996            break;
13997        case ELINK_SWITCH_CFG_10G:
13998            sc->port.phy_addr =
13999                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14000            break;
14001        default:
14002            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14003                  sc->port.link_config[0]);
14004            return;
14005        }
14006    }
14007
14008    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14009
14010    /* mask what we support according to speed_cap_mask per configuration */
14011    for (idx = 0; idx < cfg_size; idx++) {
14012        if (!(sc->link_params.speed_cap_mask[idx] &
14013              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14014            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14015        }
14016
14017        if (!(sc->link_params.speed_cap_mask[idx] &
14018              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14019            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14020        }
14021
14022        if (!(sc->link_params.speed_cap_mask[idx] &
14023              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14024            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14025        }
14026
14027        if (!(sc->link_params.speed_cap_mask[idx] &
14028              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14029            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14030        }
14031
14032        if (!(sc->link_params.speed_cap_mask[idx] &
14033              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14034            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14035        }
14036
14037        if (!(sc->link_params.speed_cap_mask[idx] &
14038              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14039            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14040        }
14041
14042        if (!(sc->link_params.speed_cap_mask[idx] &
14043              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14044            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14045        }
14046
14047        if (!(sc->link_params.speed_cap_mask[idx] &
14048              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14049            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14050        }
14051    }
14052
14053    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14054          sc->port.supported[0], sc->port.supported[1]);
14055	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14056					sc->port.supported[0], sc->port.supported[1]);
14057}
14058
14059static void
14060bxe_link_settings_requested(struct bxe_softc *sc)
14061{
14062    uint32_t link_config;
14063    uint32_t idx;
14064    uint32_t cfg_size = 0;
14065
14066    sc->port.advertising[0] = 0;
14067    sc->port.advertising[1] = 0;
14068
14069    switch (sc->link_params.num_phys) {
14070    case 1:
14071    case 2:
14072        cfg_size = 1;
14073        break;
14074    case 3:
14075        cfg_size = 2;
14076        break;
14077    }
14078
14079    for (idx = 0; idx < cfg_size; idx++) {
14080        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14081        link_config = sc->port.link_config[idx];
14082
14083        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14084        case PORT_FEATURE_LINK_SPEED_AUTO:
14085            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14086                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14087                sc->port.advertising[idx] |= sc->port.supported[idx];
14088                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14089                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14090                    sc->port.advertising[idx] |=
14091                        (ELINK_SUPPORTED_100baseT_Half |
14092                         ELINK_SUPPORTED_100baseT_Full);
14093            } else {
14094                /* force 10G, no AN */
14095                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14096                sc->port.advertising[idx] |=
14097                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14098                continue;
14099            }
14100            break;
14101
14102        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14103            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14104                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14105                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14106                                              ADVERTISED_TP);
14107            } else {
14108                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14109                          "speed_cap_mask=0x%08x\n",
14110                      link_config, sc->link_params.speed_cap_mask[idx]);
14111                return;
14112            }
14113            break;
14114
14115        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14116            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14117                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14118                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14119                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14120                                              ADVERTISED_TP);
14121				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14122								sc->link_params.req_duplex[idx]);
14123            } else {
14124                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14125                          "speed_cap_mask=0x%08x\n",
14126                      link_config, sc->link_params.speed_cap_mask[idx]);
14127                return;
14128            }
14129            break;
14130
14131        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14132            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14133                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14134                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14135                                              ADVERTISED_TP);
14136            } else {
14137                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14138                          "speed_cap_mask=0x%08x\n",
14139                      link_config, sc->link_params.speed_cap_mask[idx]);
14140                return;
14141            }
14142            break;
14143
14144        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14145            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14146                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14147                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14148                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14149                                              ADVERTISED_TP);
14150            } else {
14151                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14152                          "speed_cap_mask=0x%08x\n",
14153                      link_config, sc->link_params.speed_cap_mask[idx]);
14154                return;
14155            }
14156            break;
14157
14158        case PORT_FEATURE_LINK_SPEED_1G:
14159            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14160                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14161                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14162                                              ADVERTISED_TP);
14163            } else {
14164                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14165                          "speed_cap_mask=0x%08x\n",
14166                      link_config, sc->link_params.speed_cap_mask[idx]);
14167                return;
14168            }
14169            break;
14170
14171        case PORT_FEATURE_LINK_SPEED_2_5G:
14172            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14173                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14174                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14175                                              ADVERTISED_TP);
14176            } else {
14177                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14178                          "speed_cap_mask=0x%08x\n",
14179                      link_config, sc->link_params.speed_cap_mask[idx]);
14180                return;
14181            }
14182            break;
14183
14184        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14185            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14186                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14187                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14188                                              ADVERTISED_FIBRE);
14189            } else {
14190                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14191                          "speed_cap_mask=0x%08x\n",
14192                      link_config, sc->link_params.speed_cap_mask[idx]);
14193                return;
14194            }
14195            break;
14196
14197        case PORT_FEATURE_LINK_SPEED_20G:
14198            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14199            break;
14200
14201        default:
14202            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14203                      "speed_cap_mask=0x%08x\n",
14204                  link_config, sc->link_params.speed_cap_mask[idx]);
14205            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14206            sc->port.advertising[idx] = sc->port.supported[idx];
14207            break;
14208        }
14209
14210        sc->link_params.req_flow_ctrl[idx] =
14211            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14212
14213        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14214            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14215                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14216            } else {
14217                bxe_set_requested_fc(sc);
14218            }
14219        }
14220
14221        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14222                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14223              sc->link_params.req_line_speed[idx],
14224              sc->link_params.req_duplex[idx],
14225              sc->link_params.req_flow_ctrl[idx],
14226              sc->port.advertising[idx]);
14227		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14228						"advertising=0x%x\n",
14229						sc->link_params.req_line_speed[idx],
14230						sc->link_params.req_duplex[idx],
14231						sc->port.advertising[idx]);
14232    }
14233}
14234
14235static void
14236bxe_get_phy_info(struct bxe_softc *sc)
14237{
14238    uint8_t port = SC_PORT(sc);
14239    uint32_t config = sc->port.config;
14240    uint32_t eee_mode;
14241
14242    /* shmem data already read in bxe_get_shmem_info() */
14243
14244    ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14245                        "link_config0=0x%08x\n",
14246               sc->link_params.lane_config,
14247               sc->link_params.speed_cap_mask[0],
14248               sc->port.link_config[0]);
14249
14250
14251    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14252    bxe_link_settings_requested(sc);
14253
14254    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14255        sc->link_params.feature_config_flags |=
14256            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14257    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14258        sc->link_params.feature_config_flags &=
14259            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14260    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14261        sc->link_params.feature_config_flags |=
14262            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14263    }
14264
14265    /* configure link feature according to nvram value */
14266    eee_mode =
14267        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14268          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14269         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14270    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14271        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14272                                    ELINK_EEE_MODE_ENABLE_LPI |
14273                                    ELINK_EEE_MODE_OUTPUT_TIME);
14274    } else {
14275        sc->link_params.eee_mode = 0;
14276    }
14277
14278    /* get the media type */
14279    bxe_media_detect(sc);
14280	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14281}
14282
14283static void
14284bxe_get_params(struct bxe_softc *sc)
14285{
14286    /* get user tunable params */
14287    bxe_get_tunable_params(sc);
14288
14289    /* select the RX and TX ring sizes */
14290    sc->tx_ring_size = TX_BD_USABLE;
14291    sc->rx_ring_size = RX_BD_USABLE;
14292
14293    /* XXX disable WoL */
14294    sc->wol = 0;
14295}
14296
14297static void
14298bxe_set_modes_bitmap(struct bxe_softc *sc)
14299{
14300    uint32_t flags = 0;
14301
14302    if (CHIP_REV_IS_FPGA(sc)) {
14303        SET_FLAGS(flags, MODE_FPGA);
14304    } else if (CHIP_REV_IS_EMUL(sc)) {
14305        SET_FLAGS(flags, MODE_EMUL);
14306    } else {
14307        SET_FLAGS(flags, MODE_ASIC);
14308    }
14309
14310    if (CHIP_IS_MODE_4_PORT(sc)) {
14311        SET_FLAGS(flags, MODE_PORT4);
14312    } else {
14313        SET_FLAGS(flags, MODE_PORT2);
14314    }
14315
14316    if (CHIP_IS_E2(sc)) {
14317        SET_FLAGS(flags, MODE_E2);
14318    } else if (CHIP_IS_E3(sc)) {
14319        SET_FLAGS(flags, MODE_E3);
14320        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14321            SET_FLAGS(flags, MODE_E3_A0);
14322        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14323            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14324        }
14325    }
14326
14327    if (IS_MF(sc)) {
14328        SET_FLAGS(flags, MODE_MF);
14329        switch (sc->devinfo.mf_info.mf_mode) {
14330        case MULTI_FUNCTION_SD:
14331            SET_FLAGS(flags, MODE_MF_SD);
14332            break;
14333        case MULTI_FUNCTION_SI:
14334            SET_FLAGS(flags, MODE_MF_SI);
14335            break;
14336        case MULTI_FUNCTION_AFEX:
14337            SET_FLAGS(flags, MODE_MF_AFEX);
14338            break;
14339        }
14340    } else {
14341        SET_FLAGS(flags, MODE_SF);
14342    }
14343
14344#if defined(__LITTLE_ENDIAN)
14345    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14346#else /* __BIG_ENDIAN */
14347    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14348#endif
14349
14350    INIT_MODE_FLAGS(sc) = flags;
14351}
14352
14353static int
14354bxe_alloc_hsi_mem(struct bxe_softc *sc)
14355{
14356    struct bxe_fastpath *fp;
14357    bus_addr_t busaddr;
14358    int max_agg_queues;
14359    int max_segments;
14360    bus_size_t max_size;
14361    bus_size_t max_seg_size;
14362    char buf[32];
14363    int rc;
14364    int i, j;
14365
14366    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14367
14368    /* allocate the parent bus DMA tag */
14369    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14370                            1,                        /* alignment */
14371                            0,                        /* boundary limit */
14372                            BUS_SPACE_MAXADDR,        /* restricted low */
14373                            BUS_SPACE_MAXADDR,        /* restricted hi */
14374                            NULL,                     /* addr filter() */
14375                            NULL,                     /* addr filter() arg */
14376                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14377                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14378                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14379                            0,                        /* flags */
14380                            NULL,                     /* lock() */
14381                            NULL,                     /* lock() arg */
14382                            &sc->parent_dma_tag);     /* returned dma tag */
14383    if (rc != 0) {
14384        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14385        return (1);
14386    }
14387
14388    /************************/
14389    /* DEFAULT STATUS BLOCK */
14390    /************************/
14391
14392    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14393                      &sc->def_sb_dma, "default status block") != 0) {
14394        /* XXX */
14395        bus_dma_tag_destroy(sc->parent_dma_tag);
14396        return (1);
14397    }
14398
14399    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14400
14401    /***************/
14402    /* EVENT QUEUE */
14403    /***************/
14404
14405    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14406                      &sc->eq_dma, "event queue") != 0) {
14407        /* XXX */
14408        bxe_dma_free(sc, &sc->def_sb_dma);
14409        sc->def_sb = NULL;
14410        bus_dma_tag_destroy(sc->parent_dma_tag);
14411        return (1);
14412    }
14413
14414    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14415
14416    /*************/
14417    /* SLOW PATH */
14418    /*************/
14419
14420    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14421                      &sc->sp_dma, "slow path") != 0) {
14422        /* XXX */
14423        bxe_dma_free(sc, &sc->eq_dma);
14424        sc->eq = NULL;
14425        bxe_dma_free(sc, &sc->def_sb_dma);
14426        sc->def_sb = NULL;
14427        bus_dma_tag_destroy(sc->parent_dma_tag);
14428        return (1);
14429    }
14430
14431    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14432
14433    /*******************/
14434    /* SLOW PATH QUEUE */
14435    /*******************/
14436
14437    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14438                      &sc->spq_dma, "slow path queue") != 0) {
14439        /* XXX */
14440        bxe_dma_free(sc, &sc->sp_dma);
14441        sc->sp = NULL;
14442        bxe_dma_free(sc, &sc->eq_dma);
14443        sc->eq = NULL;
14444        bxe_dma_free(sc, &sc->def_sb_dma);
14445        sc->def_sb = NULL;
14446        bus_dma_tag_destroy(sc->parent_dma_tag);
14447        return (1);
14448    }
14449
14450    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14451
14452    /***************************/
14453    /* FW DECOMPRESSION BUFFER */
14454    /***************************/
14455
14456    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14457                      "fw decompression buffer") != 0) {
14458        /* XXX */
14459        bxe_dma_free(sc, &sc->spq_dma);
14460        sc->spq = NULL;
14461        bxe_dma_free(sc, &sc->sp_dma);
14462        sc->sp = NULL;
14463        bxe_dma_free(sc, &sc->eq_dma);
14464        sc->eq = NULL;
14465        bxe_dma_free(sc, &sc->def_sb_dma);
14466        sc->def_sb = NULL;
14467        bus_dma_tag_destroy(sc->parent_dma_tag);
14468        return (1);
14469    }
14470
14471    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14472
14473    if ((sc->gz_strm =
14474         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14475        /* XXX */
14476        bxe_dma_free(sc, &sc->gz_buf_dma);
14477        sc->gz_buf = NULL;
14478        bxe_dma_free(sc, &sc->spq_dma);
14479        sc->spq = NULL;
14480        bxe_dma_free(sc, &sc->sp_dma);
14481        sc->sp = NULL;
14482        bxe_dma_free(sc, &sc->eq_dma);
14483        sc->eq = NULL;
14484        bxe_dma_free(sc, &sc->def_sb_dma);
14485        sc->def_sb = NULL;
14486        bus_dma_tag_destroy(sc->parent_dma_tag);
14487        return (1);
14488    }
14489
14490    /*************/
14491    /* FASTPATHS */
14492    /*************/
14493
14494    /* allocate DMA memory for each fastpath structure */
14495    for (i = 0; i < sc->num_queues; i++) {
14496        fp = &sc->fp[i];
14497        fp->sc    = sc;
14498        fp->index = i;
14499
14500        /*******************/
14501        /* FP STATUS BLOCK */
14502        /*******************/
14503
14504        snprintf(buf, sizeof(buf), "fp %d status block", i);
14505        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14506                          &fp->sb_dma, buf) != 0) {
14507            /* XXX unwind and free previous fastpath allocations */
14508            BLOGE(sc, "Failed to alloc %s\n", buf);
14509            return (1);
14510        } else {
14511            if (CHIP_IS_E2E3(sc)) {
14512                fp->status_block.e2_sb =
14513                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14514            } else {
14515                fp->status_block.e1x_sb =
14516                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14517            }
14518        }
14519
14520        /******************/
14521        /* FP TX BD CHAIN */
14522        /******************/
14523
14524        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14525        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14526                          &fp->tx_dma, buf) != 0) {
14527            /* XXX unwind and free previous fastpath allocations */
14528            BLOGE(sc, "Failed to alloc %s\n", buf);
14529            return (1);
14530        } else {
14531            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14532        }
14533
14534        /* link together the tx bd chain pages */
14535        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14536            /* index into the tx bd chain array to last entry per page */
14537            struct eth_tx_next_bd *tx_next_bd =
14538                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14539            /* point to the next page and wrap from last page */
14540            busaddr = (fp->tx_dma.paddr +
14541                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14542            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14543            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14544        }
14545
14546        /******************/
14547        /* FP RX BD CHAIN */
14548        /******************/
14549
14550        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14551        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14552                          &fp->rx_dma, buf) != 0) {
14553            /* XXX unwind and free previous fastpath allocations */
14554            BLOGE(sc, "Failed to alloc %s\n", buf);
14555            return (1);
14556        } else {
14557            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14558        }
14559
14560        /* link together the rx bd chain pages */
14561        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14562            /* index into the rx bd chain array to last entry per page */
14563            struct eth_rx_bd *rx_bd =
14564                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14565            /* point to the next page and wrap from last page */
14566            busaddr = (fp->rx_dma.paddr +
14567                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14568            rx_bd->addr_hi = htole32(U64_HI(busaddr));
14569            rx_bd->addr_lo = htole32(U64_LO(busaddr));
14570        }
14571
14572        /*******************/
14573        /* FP RX RCQ CHAIN */
14574        /*******************/
14575
14576        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14577        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14578                          &fp->rcq_dma, buf) != 0) {
14579            /* XXX unwind and free previous fastpath allocations */
14580            BLOGE(sc, "Failed to alloc %s\n", buf);
14581            return (1);
14582        } else {
14583            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14584        }
14585
14586        /* link together the rcq chain pages */
14587        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14588            /* index into the rcq chain array to last entry per page */
14589            struct eth_rx_cqe_next_page *rx_cqe_next =
14590                (struct eth_rx_cqe_next_page *)
14591                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14592            /* point to the next page and wrap from last page */
14593            busaddr = (fp->rcq_dma.paddr +
14594                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14595            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14596            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14597        }
14598
14599        /*******************/
14600        /* FP RX SGE CHAIN */
14601        /*******************/
14602
14603        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14604        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14605                          &fp->rx_sge_dma, buf) != 0) {
14606            /* XXX unwind and free previous fastpath allocations */
14607            BLOGE(sc, "Failed to alloc %s\n", buf);
14608            return (1);
14609        } else {
14610            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14611        }
14612
14613        /* link together the sge chain pages */
14614        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14615            /* index into the rcq chain array to last entry per page */
14616            struct eth_rx_sge *rx_sge =
14617                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14618            /* point to the next page and wrap from last page */
14619            busaddr = (fp->rx_sge_dma.paddr +
14620                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14621            rx_sge->addr_hi = htole32(U64_HI(busaddr));
14622            rx_sge->addr_lo = htole32(U64_LO(busaddr));
14623        }
14624
14625        /***********************/
14626        /* FP TX MBUF DMA MAPS */
14627        /***********************/
14628
14629        /* set required sizes before mapping to conserve resources */
14630        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14631            max_size     = BXE_TSO_MAX_SIZE;
14632            max_segments = BXE_TSO_MAX_SEGMENTS;
14633            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14634        } else {
14635            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14636            max_segments = BXE_MAX_SEGMENTS;
14637            max_seg_size = MCLBYTES;
14638        }
14639
14640        /* create a dma tag for the tx mbufs */
14641        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14642                                1,                  /* alignment */
14643                                0,                  /* boundary limit */
14644                                BUS_SPACE_MAXADDR,  /* restricted low */
14645                                BUS_SPACE_MAXADDR,  /* restricted hi */
14646                                NULL,               /* addr filter() */
14647                                NULL,               /* addr filter() arg */
14648                                max_size,           /* max map size */
14649                                max_segments,       /* num discontinuous */
14650                                max_seg_size,       /* max seg size */
14651                                0,                  /* flags */
14652                                NULL,               /* lock() */
14653                                NULL,               /* lock() arg */
14654                                &fp->tx_mbuf_tag);  /* returned dma tag */
14655        if (rc != 0) {
14656            /* XXX unwind and free previous fastpath allocations */
14657            BLOGE(sc, "Failed to create dma tag for "
14658                      "'fp %d tx mbufs' (%d)\n", i, rc);
14659            return (1);
14660        }
14661
14662        /* create dma maps for each of the tx mbuf clusters */
14663        for (j = 0; j < TX_BD_TOTAL; j++) {
14664            if (bus_dmamap_create(fp->tx_mbuf_tag,
14665                                  BUS_DMA_NOWAIT,
14666                                  &fp->tx_mbuf_chain[j].m_map)) {
14667                /* XXX unwind and free previous fastpath allocations */
14668                BLOGE(sc, "Failed to create dma map for "
14669                          "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14670                return (1);
14671            }
14672        }
14673
14674        /***********************/
14675        /* FP RX MBUF DMA MAPS */
14676        /***********************/
14677
14678        /* create a dma tag for the rx mbufs */
14679        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14680                                1,                  /* alignment */
14681                                0,                  /* boundary limit */
14682                                BUS_SPACE_MAXADDR,  /* restricted low */
14683                                BUS_SPACE_MAXADDR,  /* restricted hi */
14684                                NULL,               /* addr filter() */
14685                                NULL,               /* addr filter() arg */
14686                                MJUM9BYTES,         /* max map size */
14687                                1,                  /* num discontinuous */
14688                                MJUM9BYTES,         /* max seg size */
14689                                0,                  /* flags */
14690                                NULL,               /* lock() */
14691                                NULL,               /* lock() arg */
14692                                &fp->rx_mbuf_tag);  /* returned dma tag */
14693        if (rc != 0) {
14694            /* XXX unwind and free previous fastpath allocations */
14695            BLOGE(sc, "Failed to create dma tag for "
14696                      "'fp %d rx mbufs' (%d)\n", i, rc);
14697            return (1);
14698        }
14699
14700        /* create dma maps for each of the rx mbuf clusters */
14701        for (j = 0; j < RX_BD_TOTAL; j++) {
14702            if (bus_dmamap_create(fp->rx_mbuf_tag,
14703                                  BUS_DMA_NOWAIT,
14704                                  &fp->rx_mbuf_chain[j].m_map)) {
14705                /* XXX unwind and free previous fastpath allocations */
14706                BLOGE(sc, "Failed to create dma map for "
14707                          "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14708                return (1);
14709            }
14710        }
14711
14712        /* create dma map for the spare rx mbuf cluster */
14713        if (bus_dmamap_create(fp->rx_mbuf_tag,
14714                              BUS_DMA_NOWAIT,
14715                              &fp->rx_mbuf_spare_map)) {
14716            /* XXX unwind and free previous fastpath allocations */
14717            BLOGE(sc, "Failed to create dma map for "
14718                      "'fp %d spare rx mbuf' (%d)\n", i, rc);
14719            return (1);
14720        }
14721
14722        /***************************/
14723        /* FP RX SGE MBUF DMA MAPS */
14724        /***************************/
14725
14726        /* create a dma tag for the rx sge mbufs */
14727        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14728                                1,                  /* alignment */
14729                                0,                  /* boundary limit */
14730                                BUS_SPACE_MAXADDR,  /* restricted low */
14731                                BUS_SPACE_MAXADDR,  /* restricted hi */
14732                                NULL,               /* addr filter() */
14733                                NULL,               /* addr filter() arg */
14734                                BCM_PAGE_SIZE,      /* max map size */
14735                                1,                  /* num discontinuous */
14736                                BCM_PAGE_SIZE,      /* max seg size */
14737                                0,                  /* flags */
14738                                NULL,               /* lock() */
14739                                NULL,               /* lock() arg */
14740                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
14741        if (rc != 0) {
14742            /* XXX unwind and free previous fastpath allocations */
14743            BLOGE(sc, "Failed to create dma tag for "
14744                      "'fp %d rx sge mbufs' (%d)\n", i, rc);
14745            return (1);
14746        }
14747
14748        /* create dma maps for the rx sge mbuf clusters */
14749        for (j = 0; j < RX_SGE_TOTAL; j++) {
14750            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14751                                  BUS_DMA_NOWAIT,
14752                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
14753                /* XXX unwind and free previous fastpath allocations */
14754                BLOGE(sc, "Failed to create dma map for "
14755                          "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14756                return (1);
14757            }
14758        }
14759
14760        /* create dma map for the spare rx sge mbuf cluster */
14761        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14762                              BUS_DMA_NOWAIT,
14763                              &fp->rx_sge_mbuf_spare_map)) {
14764            /* XXX unwind and free previous fastpath allocations */
14765            BLOGE(sc, "Failed to create dma map for "
14766                      "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14767            return (1);
14768        }
14769
14770        /***************************/
14771        /* FP RX TPA MBUF DMA MAPS */
14772        /***************************/
14773
14774        /* create dma maps for the rx tpa mbuf clusters */
14775        max_agg_queues = MAX_AGG_QS(sc);
14776
14777        for (j = 0; j < max_agg_queues; j++) {
14778            if (bus_dmamap_create(fp->rx_mbuf_tag,
14779                                  BUS_DMA_NOWAIT,
14780                                  &fp->rx_tpa_info[j].bd.m_map)) {
14781                /* XXX unwind and free previous fastpath allocations */
14782                BLOGE(sc, "Failed to create dma map for "
14783                          "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14784                return (1);
14785            }
14786        }
14787
14788        /* create dma map for the spare rx tpa mbuf cluster */
14789        if (bus_dmamap_create(fp->rx_mbuf_tag,
14790                              BUS_DMA_NOWAIT,
14791                              &fp->rx_tpa_info_mbuf_spare_map)) {
14792            /* XXX unwind and free previous fastpath allocations */
14793            BLOGE(sc, "Failed to create dma map for "
14794                      "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14795            return (1);
14796        }
14797
14798        bxe_init_sge_ring_bit_mask(fp);
14799    }
14800
14801    return (0);
14802}
14803
14804static void
14805bxe_free_hsi_mem(struct bxe_softc *sc)
14806{
14807    struct bxe_fastpath *fp;
14808    int max_agg_queues;
14809    int i, j;
14810
14811    if (sc->parent_dma_tag == NULL) {
14812        return; /* assume nothing was allocated */
14813    }
14814
14815    for (i = 0; i < sc->num_queues; i++) {
14816        fp = &sc->fp[i];
14817
14818        /*******************/
14819        /* FP STATUS BLOCK */
14820        /*******************/
14821
14822        bxe_dma_free(sc, &fp->sb_dma);
14823        memset(&fp->status_block, 0, sizeof(fp->status_block));
14824
14825        /******************/
14826        /* FP TX BD CHAIN */
14827        /******************/
14828
14829        bxe_dma_free(sc, &fp->tx_dma);
14830        fp->tx_chain = NULL;
14831
14832        /******************/
14833        /* FP RX BD CHAIN */
14834        /******************/
14835
14836        bxe_dma_free(sc, &fp->rx_dma);
14837        fp->rx_chain = NULL;
14838
14839        /*******************/
14840        /* FP RX RCQ CHAIN */
14841        /*******************/
14842
14843        bxe_dma_free(sc, &fp->rcq_dma);
14844        fp->rcq_chain = NULL;
14845
14846        /*******************/
14847        /* FP RX SGE CHAIN */
14848        /*******************/
14849
14850        bxe_dma_free(sc, &fp->rx_sge_dma);
14851        fp->rx_sge_chain = NULL;
14852
14853        /***********************/
14854        /* FP TX MBUF DMA MAPS */
14855        /***********************/
14856
14857        if (fp->tx_mbuf_tag != NULL) {
14858            for (j = 0; j < TX_BD_TOTAL; j++) {
14859                if (fp->tx_mbuf_chain[j].m_map != NULL) {
14860                    bus_dmamap_unload(fp->tx_mbuf_tag,
14861                                      fp->tx_mbuf_chain[j].m_map);
14862                    bus_dmamap_destroy(fp->tx_mbuf_tag,
14863                                       fp->tx_mbuf_chain[j].m_map);
14864                }
14865            }
14866
14867            bus_dma_tag_destroy(fp->tx_mbuf_tag);
14868            fp->tx_mbuf_tag = NULL;
14869        }
14870
14871        /***********************/
14872        /* FP RX MBUF DMA MAPS */
14873        /***********************/
14874
14875        if (fp->rx_mbuf_tag != NULL) {
14876            for (j = 0; j < RX_BD_TOTAL; j++) {
14877                if (fp->rx_mbuf_chain[j].m_map != NULL) {
14878                    bus_dmamap_unload(fp->rx_mbuf_tag,
14879                                      fp->rx_mbuf_chain[j].m_map);
14880                    bus_dmamap_destroy(fp->rx_mbuf_tag,
14881                                       fp->rx_mbuf_chain[j].m_map);
14882                }
14883            }
14884
14885            if (fp->rx_mbuf_spare_map != NULL) {
14886                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14887                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14888            }
14889
14890            /***************************/
14891            /* FP RX TPA MBUF DMA MAPS */
14892            /***************************/
14893
14894            max_agg_queues = MAX_AGG_QS(sc);
14895
14896            for (j = 0; j < max_agg_queues; j++) {
14897                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14898                    bus_dmamap_unload(fp->rx_mbuf_tag,
14899                                      fp->rx_tpa_info[j].bd.m_map);
14900                    bus_dmamap_destroy(fp->rx_mbuf_tag,
14901                                       fp->rx_tpa_info[j].bd.m_map);
14902                }
14903            }
14904
14905            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14906                bus_dmamap_unload(fp->rx_mbuf_tag,
14907                                  fp->rx_tpa_info_mbuf_spare_map);
14908                bus_dmamap_destroy(fp->rx_mbuf_tag,
14909                                   fp->rx_tpa_info_mbuf_spare_map);
14910            }
14911
14912            bus_dma_tag_destroy(fp->rx_mbuf_tag);
14913            fp->rx_mbuf_tag = NULL;
14914        }
14915
14916        /***************************/
14917        /* FP RX SGE MBUF DMA MAPS */
14918        /***************************/
14919
14920        if (fp->rx_sge_mbuf_tag != NULL) {
14921            for (j = 0; j < RX_SGE_TOTAL; j++) {
14922                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14923                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14924                                      fp->rx_sge_mbuf_chain[j].m_map);
14925                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14926                                       fp->rx_sge_mbuf_chain[j].m_map);
14927                }
14928            }
14929
14930            if (fp->rx_sge_mbuf_spare_map != NULL) {
14931                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14932                                  fp->rx_sge_mbuf_spare_map);
14933                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14934                                   fp->rx_sge_mbuf_spare_map);
14935            }
14936
14937            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14938            fp->rx_sge_mbuf_tag = NULL;
14939        }
14940    }
14941
14942    /***************************/
14943    /* FW DECOMPRESSION BUFFER */
14944    /***************************/
14945
14946    bxe_dma_free(sc, &sc->gz_buf_dma);
14947    sc->gz_buf = NULL;
14948    free(sc->gz_strm, M_DEVBUF);
14949    sc->gz_strm = NULL;
14950
14951    /*******************/
14952    /* SLOW PATH QUEUE */
14953    /*******************/
14954
14955    bxe_dma_free(sc, &sc->spq_dma);
14956    sc->spq = NULL;
14957
14958    /*************/
14959    /* SLOW PATH */
14960    /*************/
14961
14962    bxe_dma_free(sc, &sc->sp_dma);
14963    sc->sp = NULL;
14964
14965    /***************/
14966    /* EVENT QUEUE */
14967    /***************/
14968
14969    bxe_dma_free(sc, &sc->eq_dma);
14970    sc->eq = NULL;
14971
14972    /************************/
14973    /* DEFAULT STATUS BLOCK */
14974    /************************/
14975
14976    bxe_dma_free(sc, &sc->def_sb_dma);
14977    sc->def_sb = NULL;
14978
14979    bus_dma_tag_destroy(sc->parent_dma_tag);
14980    sc->parent_dma_tag = NULL;
14981}
14982
14983/*
14984 * Previous driver DMAE transaction may have occurred when pre-boot stage
14985 * ended and boot began. This would invalidate the addresses of the
14986 * transaction, resulting in was-error bit set in the PCI causing all
14987 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14988 * the interrupt which detected this from the pglueb and the was-done bit
14989 */
14990static void
14991bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14992{
14993    uint32_t val;
14994
14995    if (!CHIP_IS_E1x(sc)) {
14996        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14997        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14998            BLOGD(sc, DBG_LOAD,
14999                  "Clearing 'was-error' bit that was set in pglueb");
15000            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15001        }
15002    }
15003}
15004
15005static int
15006bxe_prev_mcp_done(struct bxe_softc *sc)
15007{
15008    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15009                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15010    if (!rc) {
15011        BLOGE(sc, "MCP response failure, aborting\n");
15012        return (-1);
15013    }
15014
15015    return (0);
15016}
15017
15018static struct bxe_prev_list_node *
15019bxe_prev_path_get_entry(struct bxe_softc *sc)
15020{
15021    struct bxe_prev_list_node *tmp;
15022
15023    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15024        if ((sc->pcie_bus == tmp->bus) &&
15025            (sc->pcie_device == tmp->slot) &&
15026            (SC_PATH(sc) == tmp->path)) {
15027            return (tmp);
15028        }
15029    }
15030
15031    return (NULL);
15032}
15033
15034static uint8_t
15035bxe_prev_is_path_marked(struct bxe_softc *sc)
15036{
15037    struct bxe_prev_list_node *tmp;
15038    int rc = FALSE;
15039
15040    mtx_lock(&bxe_prev_mtx);
15041
15042    tmp = bxe_prev_path_get_entry(sc);
15043    if (tmp) {
15044        if (tmp->aer) {
15045            BLOGD(sc, DBG_LOAD,
15046                  "Path %d/%d/%d was marked by AER\n",
15047                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15048        } else {
15049            rc = TRUE;
15050            BLOGD(sc, DBG_LOAD,
15051                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15052                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15053        }
15054    }
15055
15056    mtx_unlock(&bxe_prev_mtx);
15057
15058    return (rc);
15059}
15060
15061static int
15062bxe_prev_mark_path(struct bxe_softc *sc,
15063                   uint8_t          after_undi)
15064{
15065    struct bxe_prev_list_node *tmp;
15066
15067    mtx_lock(&bxe_prev_mtx);
15068
15069    /* Check whether the entry for this path already exists */
15070    tmp = bxe_prev_path_get_entry(sc);
15071    if (tmp) {
15072        if (!tmp->aer) {
15073            BLOGD(sc, DBG_LOAD,
15074                  "Re-marking AER in path %d/%d/%d\n",
15075                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15076        } else {
15077            BLOGD(sc, DBG_LOAD,
15078                  "Removing AER indication from path %d/%d/%d\n",
15079                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15080            tmp->aer = 0;
15081        }
15082
15083        mtx_unlock(&bxe_prev_mtx);
15084        return (0);
15085    }
15086
15087    mtx_unlock(&bxe_prev_mtx);
15088
15089    /* Create an entry for this path and add it */
15090    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15091                 (M_NOWAIT | M_ZERO));
15092    if (!tmp) {
15093        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15094        return (-1);
15095    }
15096
15097    tmp->bus  = sc->pcie_bus;
15098    tmp->slot = sc->pcie_device;
15099    tmp->path = SC_PATH(sc);
15100    tmp->aer  = 0;
15101    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15102
15103    mtx_lock(&bxe_prev_mtx);
15104
15105    BLOGD(sc, DBG_LOAD,
15106          "Marked path %d/%d/%d - finished previous unload\n",
15107          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15108    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15109
15110    mtx_unlock(&bxe_prev_mtx);
15111
15112    return (0);
15113}
15114
15115static int
15116bxe_do_flr(struct bxe_softc *sc)
15117{
15118    int i;
15119
15120    /* only E2 and onwards support FLR */
15121    if (CHIP_IS_E1x(sc)) {
15122        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15123        return (-1);
15124    }
15125
15126    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15127    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15128        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15129              sc->devinfo.bc_ver);
15130        return (-1);
15131    }
15132
15133    /* Wait for Transaction Pending bit clean */
15134    for (i = 0; i < 4; i++) {
15135        if (i) {
15136            DELAY(((1 << (i - 1)) * 100) * 1000);
15137        }
15138
15139        if (!bxe_is_pcie_pending(sc)) {
15140            goto clear;
15141        }
15142    }
15143
15144    BLOGE(sc, "PCIE transaction is not cleared, "
15145              "proceeding with reset anyway\n");
15146
15147clear:
15148
15149    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15150    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15151
15152    return (0);
15153}
15154
15155struct bxe_mac_vals {
15156    uint32_t xmac_addr;
15157    uint32_t xmac_val;
15158    uint32_t emac_addr;
15159    uint32_t emac_val;
15160    uint32_t umac_addr;
15161    uint32_t umac_val;
15162    uint32_t bmac_addr;
15163    uint32_t bmac_val[2];
15164};
15165
15166static void
15167bxe_prev_unload_close_mac(struct bxe_softc *sc,
15168                          struct bxe_mac_vals *vals)
15169{
15170    uint32_t val, base_addr, offset, mask, reset_reg;
15171    uint8_t mac_stopped = FALSE;
15172    uint8_t port = SC_PORT(sc);
15173    uint32_t wb_data[2];
15174
15175    /* reset addresses as they also mark which values were changed */
15176    vals->bmac_addr = 0;
15177    vals->umac_addr = 0;
15178    vals->xmac_addr = 0;
15179    vals->emac_addr = 0;
15180
15181    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15182
15183    if (!CHIP_IS_E3(sc)) {
15184        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15185        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15186        if ((mask & reset_reg) && val) {
15187            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15188            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15189                                    : NIG_REG_INGRESS_BMAC0_MEM;
15190            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15191                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15192
15193            /*
15194             * use rd/wr since we cannot use dmae. This is safe
15195             * since MCP won't access the bus due to the request
15196             * to unload, and no function on the path can be
15197             * loaded at this time.
15198             */
15199            wb_data[0] = REG_RD(sc, base_addr + offset);
15200            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15201            vals->bmac_addr = base_addr + offset;
15202            vals->bmac_val[0] = wb_data[0];
15203            vals->bmac_val[1] = wb_data[1];
15204            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15205            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15206            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15207        }
15208
15209        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15210        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15211        vals->emac_val = REG_RD(sc, vals->emac_addr);
15212        REG_WR(sc, vals->emac_addr, 0);
15213        mac_stopped = TRUE;
15214    } else {
15215        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15216            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15217            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15218            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15219            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15220            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15221            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15222            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15223            REG_WR(sc, vals->xmac_addr, 0);
15224            mac_stopped = TRUE;
15225        }
15226
15227        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15228        if (mask & reset_reg) {
15229            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15230            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15231            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15232            vals->umac_val = REG_RD(sc, vals->umac_addr);
15233            REG_WR(sc, vals->umac_addr, 0);
15234            mac_stopped = TRUE;
15235        }
15236    }
15237
15238    if (mac_stopped) {
15239        DELAY(20000);
15240    }
15241}
15242
15243#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15244#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15245#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15246#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15247
15248static void
15249bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15250                         uint8_t          port,
15251                         uint8_t          inc)
15252{
15253    uint16_t rcq, bd;
15254    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15255
15256    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15257    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15258
15259    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15260    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15261
15262    BLOGD(sc, DBG_LOAD,
15263          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15264          port, bd, rcq);
15265}
15266
15267static int
15268bxe_prev_unload_common(struct bxe_softc *sc)
15269{
15270    uint32_t reset_reg, tmp_reg = 0, rc;
15271    uint8_t prev_undi = FALSE;
15272    struct bxe_mac_vals mac_vals;
15273    uint32_t timer_count = 1000;
15274    uint32_t prev_brb;
15275
15276    /*
15277     * It is possible a previous function received 'common' answer,
15278     * but hasn't loaded yet, therefore creating a scenario of
15279     * multiple functions receiving 'common' on the same path.
15280     */
15281    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15282
15283    memset(&mac_vals, 0, sizeof(mac_vals));
15284
15285    if (bxe_prev_is_path_marked(sc)) {
15286        return (bxe_prev_mcp_done(sc));
15287    }
15288
15289    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15290
15291    /* Reset should be performed after BRB is emptied */
15292    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15293        /* Close the MAC Rx to prevent BRB from filling up */
15294        bxe_prev_unload_close_mac(sc, &mac_vals);
15295
15296        /* close LLH filters towards the BRB */
15297        elink_set_rx_filter(&sc->link_params, 0);
15298
15299        /*
15300         * Check if the UNDI driver was previously loaded.
15301         * UNDI driver initializes CID offset for normal bell to 0x7
15302         */
15303        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15304            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15305            if (tmp_reg == 0x7) {
15306                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15307                prev_undi = TRUE;
15308                /* clear the UNDI indication */
15309                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15310                /* clear possible idle check errors */
15311                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15312            }
15313        }
15314
15315        /* wait until BRB is empty */
15316        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15317        while (timer_count) {
15318            prev_brb = tmp_reg;
15319
15320            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15321            if (!tmp_reg) {
15322                break;
15323            }
15324
15325            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15326
15327            /* reset timer as long as BRB actually gets emptied */
15328            if (prev_brb > tmp_reg) {
15329                timer_count = 1000;
15330            } else {
15331                timer_count--;
15332            }
15333
15334            /* If UNDI resides in memory, manually increment it */
15335            if (prev_undi) {
15336                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15337            }
15338
15339            DELAY(10);
15340        }
15341
15342        if (!timer_count) {
15343            BLOGE(sc, "Failed to empty BRB\n");
15344        }
15345    }
15346
15347    /* No packets are in the pipeline, path is ready for reset */
15348    bxe_reset_common(sc);
15349
15350    if (mac_vals.xmac_addr) {
15351        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15352    }
15353    if (mac_vals.umac_addr) {
15354        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15355    }
15356    if (mac_vals.emac_addr) {
15357        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15358    }
15359    if (mac_vals.bmac_addr) {
15360        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15361        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15362    }
15363
15364    rc = bxe_prev_mark_path(sc, prev_undi);
15365    if (rc) {
15366        bxe_prev_mcp_done(sc);
15367        return (rc);
15368    }
15369
15370    return (bxe_prev_mcp_done(sc));
15371}
15372
15373static int
15374bxe_prev_unload_uncommon(struct bxe_softc *sc)
15375{
15376    int rc;
15377
15378    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15379
15380    /* Test if previous unload process was already finished for this path */
15381    if (bxe_prev_is_path_marked(sc)) {
15382        return (bxe_prev_mcp_done(sc));
15383    }
15384
15385    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15386
15387    /*
15388     * If function has FLR capabilities, and existing FW version matches
15389     * the one required, then FLR will be sufficient to clean any residue
15390     * left by previous driver
15391     */
15392    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15393    if (!rc) {
15394        /* fw version is good */
15395        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15396        rc = bxe_do_flr(sc);
15397    }
15398
15399    if (!rc) {
15400        /* FLR was performed */
15401        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15402        return (0);
15403    }
15404
15405    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15406
15407    /* Close the MCP request, return failure*/
15408    rc = bxe_prev_mcp_done(sc);
15409    if (!rc) {
15410        rc = BXE_PREV_WAIT_NEEDED;
15411    }
15412
15413    return (rc);
15414}
15415
15416static int
15417bxe_prev_unload(struct bxe_softc *sc)
15418{
15419    int time_counter = 10;
15420    uint32_t fw, hw_lock_reg, hw_lock_val;
15421    uint32_t rc = 0;
15422
15423    /*
15424     * Clear HW from errors which may have resulted from an interrupted
15425     * DMAE transaction.
15426     */
15427    bxe_prev_interrupted_dmae(sc);
15428
15429    /* Release previously held locks */
15430    hw_lock_reg =
15431        (SC_FUNC(sc) <= 5) ?
15432            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15433            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15434
15435    hw_lock_val = (REG_RD(sc, hw_lock_reg));
15436    if (hw_lock_val) {
15437        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15438            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15439            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15440                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15441        }
15442        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15443        REG_WR(sc, hw_lock_reg, 0xffffffff);
15444    } else {
15445        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15446    }
15447
15448    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15449        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15450        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15451    }
15452
15453    do {
15454        /* Lock MCP using an unload request */
15455        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15456        if (!fw) {
15457            BLOGE(sc, "MCP response failure, aborting\n");
15458            rc = -1;
15459            break;
15460        }
15461
15462        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15463            rc = bxe_prev_unload_common(sc);
15464            break;
15465        }
15466
15467        /* non-common reply from MCP night require looping */
15468        rc = bxe_prev_unload_uncommon(sc);
15469        if (rc != BXE_PREV_WAIT_NEEDED) {
15470            break;
15471        }
15472
15473        DELAY(20000);
15474    } while (--time_counter);
15475
15476    if (!time_counter || rc) {
15477        BLOGE(sc, "Failed to unload previous driver!"
15478            " time_counter %d rc %d\n", time_counter, rc);
15479        rc = -1;
15480    }
15481
15482    return (rc);
15483}
15484
15485void
15486bxe_dcbx_set_state(struct bxe_softc *sc,
15487                   uint8_t          dcb_on,
15488                   uint32_t         dcbx_enabled)
15489{
15490    if (!CHIP_IS_E1x(sc)) {
15491        sc->dcb_state = dcb_on;
15492        sc->dcbx_enabled = dcbx_enabled;
15493    } else {
15494        sc->dcb_state = FALSE;
15495        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15496    }
15497    BLOGD(sc, DBG_LOAD,
15498          "DCB state [%s:%s]\n",
15499          dcb_on ? "ON" : "OFF",
15500          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15501          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15502          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15503          "on-chip with negotiation" : "invalid");
15504}
15505
15506/* must be called after sriov-enable */
15507static int
15508bxe_set_qm_cid_count(struct bxe_softc *sc)
15509{
15510    int cid_count = BXE_L2_MAX_CID(sc);
15511
15512    if (IS_SRIOV(sc)) {
15513        cid_count += BXE_VF_CIDS;
15514    }
15515
15516    if (CNIC_SUPPORT(sc)) {
15517        cid_count += CNIC_CID_MAX;
15518    }
15519
15520    return (roundup(cid_count, QM_CID_ROUND));
15521}
15522
15523static void
15524bxe_init_multi_cos(struct bxe_softc *sc)
15525{
15526    int pri, cos;
15527
15528    uint32_t pri_map = 0; /* XXX change to user config */
15529
15530    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15531        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15532        if (cos < sc->max_cos) {
15533            sc->prio_to_cos[pri] = cos;
15534        } else {
15535            BLOGW(sc, "Invalid COS %d for priority %d "
15536                      "(max COS is %d), setting to 0\n",
15537                  cos, pri, (sc->max_cos - 1));
15538            sc->prio_to_cos[pri] = 0;
15539        }
15540    }
15541}
15542
15543static int
15544bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15545{
15546    struct bxe_softc *sc;
15547    int error, result;
15548
15549    result = 0;
15550    error = sysctl_handle_int(oidp, &result, 0, req);
15551
15552    if (error || !req->newptr) {
15553        return (error);
15554    }
15555
15556    if (result == 1) {
15557        uint32_t  temp;
15558        sc = (struct bxe_softc *)arg1;
15559
15560        BLOGI(sc, "... dumping driver state ...\n");
15561        temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15562        BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15563    }
15564
15565    return (error);
15566}
15567
15568static int
15569bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15570{
15571    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15572    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15573    uint32_t *offset;
15574    uint64_t value = 0;
15575    int index = (int)arg2;
15576
15577    if (index >= BXE_NUM_ETH_STATS) {
15578        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15579        return (-1);
15580    }
15581
15582    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15583
15584    switch (bxe_eth_stats_arr[index].size) {
15585    case 4:
15586        value = (uint64_t)*offset;
15587        break;
15588    case 8:
15589        value = HILO_U64(*offset, *(offset + 1));
15590        break;
15591    default:
15592        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15593              index, bxe_eth_stats_arr[index].size);
15594        return (-1);
15595    }
15596
15597    return (sysctl_handle_64(oidp, &value, 0, req));
15598}
15599
15600static int
15601bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15602{
15603    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15604    uint32_t *eth_stats;
15605    uint32_t *offset;
15606    uint64_t value = 0;
15607    uint32_t q_stat = (uint32_t)arg2;
15608    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15609    uint32_t index = (q_stat & 0xffff);
15610
15611    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15612
15613    if (index >= BXE_NUM_ETH_Q_STATS) {
15614        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15615        return (-1);
15616    }
15617
15618    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15619
15620    switch (bxe_eth_q_stats_arr[index].size) {
15621    case 4:
15622        value = (uint64_t)*offset;
15623        break;
15624    case 8:
15625        value = HILO_U64(*offset, *(offset + 1));
15626        break;
15627    default:
15628        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15629              index, bxe_eth_q_stats_arr[index].size);
15630        return (-1);
15631    }
15632
15633    return (sysctl_handle_64(oidp, &value, 0, req));
15634}
15635
15636static void bxe_force_link_reset(struct bxe_softc *sc)
15637{
15638
15639        bxe_acquire_phy_lock(sc);
15640        elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15641        bxe_release_phy_lock(sc);
15642}
15643
15644static int
15645bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15646{
15647        struct bxe_softc *sc = (struct bxe_softc *)arg1;;
15648        uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15649        int rc = 0;
15650        int error;
15651        int result;
15652
15653
15654        error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15655
15656        if (error || !req->newptr) {
15657                return (error);
15658        }
15659        if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15660                BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15661                sc->bxe_pause_param = 8;
15662        }
15663
15664        result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15665
15666
15667        if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15668                        BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15669                        return -EINVAL;
15670        }
15671
15672        if(IS_MF(sc))
15673                return 0;
15674       sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15675        if(result & ELINK_FLOW_CTRL_RX)
15676                sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15677
15678        if(result & ELINK_FLOW_CTRL_TX)
15679                sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15680        if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15681                sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15682
15683        if(result & 0x400) {
15684                if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15685                        sc->link_params.req_flow_ctrl[cfg_idx] =
15686                                ELINK_FLOW_CTRL_AUTO;
15687                }
15688                sc->link_params.req_fc_auto_adv = 0;
15689                if (result & ELINK_FLOW_CTRL_RX)
15690                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15691
15692                if (result & ELINK_FLOW_CTRL_TX)
15693                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15694                if (!sc->link_params.req_fc_auto_adv)
15695                        sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15696        }
15697         if (IS_PF(sc)) {
15698                        if (sc->link_vars.link_up) {
15699                                bxe_stats_handle(sc, STATS_EVENT_STOP);
15700                        }
15701			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15702                        bxe_force_link_reset(sc);
15703                        bxe_acquire_phy_lock(sc);
15704
15705                        rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15706
15707                        bxe_release_phy_lock(sc);
15708
15709                        bxe_calc_fc_adv(sc);
15710                        }
15711        }
15712        return rc;
15713}
15714
15715
15716static void
15717bxe_add_sysctls(struct bxe_softc *sc)
15718{
15719    struct sysctl_ctx_list *ctx;
15720    struct sysctl_oid_list *children;
15721    struct sysctl_oid *queue_top, *queue;
15722    struct sysctl_oid_list *queue_top_children, *queue_children;
15723    char queue_num_buf[32];
15724    uint32_t q_stat;
15725    int i, j;
15726
15727    ctx = device_get_sysctl_ctx(sc->dev);
15728    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15729
15730    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15731                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15732                      "version");
15733
15734    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15735             BCM_5710_FW_MAJOR_VERSION,
15736             BCM_5710_FW_MINOR_VERSION,
15737             BCM_5710_FW_REVISION_VERSION,
15738             BCM_5710_FW_ENGINEERING_VERSION);
15739
15740    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15741        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15742         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15743         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15744         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15745                                                                "Unknown"));
15746    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15747                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15748                    "multifunction vnics per port");
15749
15750    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15751        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15752         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15753         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15754                                              "???GT/s"),
15755        sc->devinfo.pcie_link_width);
15756
15757    sc->debug = bxe_debug;
15758
15759#if __FreeBSD_version >= 900000
15760    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15761                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15762                      "bootcode version");
15763    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15764                      CTLFLAG_RD, sc->fw_ver_str, 0,
15765                      "firmware version");
15766    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15767                      CTLFLAG_RD, sc->mf_mode_str, 0,
15768                      "multifunction mode");
15769    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15770                      CTLFLAG_RD, sc->mac_addr_str, 0,
15771                      "mac address");
15772    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15773                      CTLFLAG_RD, sc->pci_link_str, 0,
15774                      "pci link status");
15775    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15776                    CTLFLAG_RW, &sc->debug,
15777                    "debug logging mode");
15778#else
15779    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15780                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15781                      "bootcode version");
15782    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15783                      CTLFLAG_RD, &sc->fw_ver_str, 0,
15784                      "firmware version");
15785    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15786                      CTLFLAG_RD, &sc->mf_mode_str, 0,
15787                      "multifunction mode");
15788    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15789                      CTLFLAG_RD, &sc->mac_addr_str, 0,
15790                      "mac address");
15791    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15792                      CTLFLAG_RD, &sc->pci_link_str, 0,
15793                      "pci link status");
15794    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15795                    CTLFLAG_RW, &sc->debug, 0,
15796                    "debug logging mode");
15797#endif /* #if __FreeBSD_version >= 900000 */
15798
15799    sc->trigger_grcdump = 0;
15800    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15801                   CTLFLAG_RW, &sc->trigger_grcdump, 0,
15802                   "trigger grcdump should be invoked"
15803                   "  before collecting grcdump");
15804
15805    sc->grcdump_started = 0;
15806    sc->grcdump_done = 0;
15807    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15808                   CTLFLAG_RD, &sc->grcdump_done, 0,
15809                   "set by driver when grcdump is done");
15810
15811    sc->rx_budget = bxe_rx_budget;
15812    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15813                    CTLFLAG_RW, &sc->rx_budget, 0,
15814                    "rx processing budget");
15815
15816   SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
15817                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15818                    bxe_sysctl_pauseparam, "IU",
15819                    "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
15820
15821
15822    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15823                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15824                    bxe_sysctl_state, "IU", "dump driver state");
15825
15826    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15827        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15828                        bxe_eth_stats_arr[i].string,
15829                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15830                        bxe_sysctl_eth_stat, "LU",
15831                        bxe_eth_stats_arr[i].string);
15832    }
15833
15834    /* add a new parent node for all queues "dev.bxe.#.queue" */
15835    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15836                                CTLFLAG_RD, NULL, "queue");
15837    queue_top_children = SYSCTL_CHILDREN(queue_top);
15838
15839    for (i = 0; i < sc->num_queues; i++) {
15840        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15841        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15842        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15843                                queue_num_buf, CTLFLAG_RD, NULL,
15844                                "single queue");
15845        queue_children = SYSCTL_CHILDREN(queue);
15846
15847        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15848            q_stat = ((i << 16) | j);
15849            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15850                            bxe_eth_q_stats_arr[j].string,
15851                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15852                            bxe_sysctl_eth_q_stat, "LU",
15853                            bxe_eth_q_stats_arr[j].string);
15854        }
15855    }
15856}
15857
15858static int
15859bxe_alloc_buf_rings(struct bxe_softc *sc)
15860{
15861#if __FreeBSD_version >= 901504
15862
15863    int i;
15864    struct bxe_fastpath *fp;
15865
15866    for (i = 0; i < sc->num_queues; i++) {
15867
15868        fp = &sc->fp[i];
15869
15870        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15871                                   M_NOWAIT, &fp->tx_mtx);
15872        if (fp->tx_br == NULL)
15873            return (-1);
15874    }
15875#endif
15876    return (0);
15877}
15878
15879static void
15880bxe_free_buf_rings(struct bxe_softc *sc)
15881{
15882#if __FreeBSD_version >= 901504
15883
15884    int i;
15885    struct bxe_fastpath *fp;
15886
15887    for (i = 0; i < sc->num_queues; i++) {
15888
15889        fp = &sc->fp[i];
15890
15891        if (fp->tx_br) {
15892            buf_ring_free(fp->tx_br, M_DEVBUF);
15893            fp->tx_br = NULL;
15894        }
15895    }
15896
15897#endif
15898}
15899
15900static void
15901bxe_init_fp_mutexs(struct bxe_softc *sc)
15902{
15903    int i;
15904    struct bxe_fastpath *fp;
15905
15906    for (i = 0; i < sc->num_queues; i++) {
15907
15908        fp = &sc->fp[i];
15909
15910        snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15911            "bxe%d_fp%d_tx_lock", sc->unit, i);
15912        mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15913
15914        snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15915            "bxe%d_fp%d_rx_lock", sc->unit, i);
15916        mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15917    }
15918}
15919
15920static void
15921bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15922{
15923    int i;
15924    struct bxe_fastpath *fp;
15925
15926    for (i = 0; i < sc->num_queues; i++) {
15927
15928        fp = &sc->fp[i];
15929
15930        if (mtx_initialized(&fp->tx_mtx)) {
15931            mtx_destroy(&fp->tx_mtx);
15932        }
15933
15934        if (mtx_initialized(&fp->rx_mtx)) {
15935            mtx_destroy(&fp->rx_mtx);
15936        }
15937    }
15938}
15939
15940
15941/*
15942 * Device attach function.
15943 *
15944 * Allocates device resources, performs secondary chip identification, and
15945 * initializes driver instance variables. This function is called from driver
15946 * load after a successful probe.
15947 *
15948 * Returns:
15949 *   0 = Success, >0 = Failure
15950 */
15951static int
15952bxe_attach(device_t dev)
15953{
15954    struct bxe_softc *sc;
15955
15956    sc = device_get_softc(dev);
15957
15958    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15959
15960    sc->state = BXE_STATE_CLOSED;
15961
15962    sc->dev  = dev;
15963    sc->unit = device_get_unit(dev);
15964
15965    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15966
15967    sc->pcie_bus    = pci_get_bus(dev);
15968    sc->pcie_device = pci_get_slot(dev);
15969    sc->pcie_func   = pci_get_function(dev);
15970
15971    /* enable bus master capability */
15972    pci_enable_busmaster(dev);
15973
15974    /* get the BARs */
15975    if (bxe_allocate_bars(sc) != 0) {
15976        return (ENXIO);
15977    }
15978
15979    /* initialize the mutexes */
15980    bxe_init_mutexes(sc);
15981
15982    /* prepare the periodic callout */
15983    callout_init(&sc->periodic_callout, 0);
15984
15985    /* prepare the chip taskqueue */
15986    sc->chip_tq_flags = CHIP_TQ_NONE;
15987    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15988             "bxe%d_chip_tq", sc->unit);
15989    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15990    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15991                                   taskqueue_thread_enqueue,
15992                                   &sc->chip_tq);
15993    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15994                            "%s", sc->chip_tq_name);
15995
15996    /* get device info and set params */
15997    if (bxe_get_device_info(sc) != 0) {
15998        BLOGE(sc, "getting device info\n");
15999        bxe_deallocate_bars(sc);
16000        pci_disable_busmaster(dev);
16001        return (ENXIO);
16002    }
16003
16004    /* get final misc params */
16005    bxe_get_params(sc);
16006
16007    /* set the default MTU (changed via ifconfig) */
16008    sc->mtu = ETHERMTU;
16009
16010    bxe_set_modes_bitmap(sc);
16011
16012    /* XXX
16013     * If in AFEX mode and the function is configured for FCoE
16014     * then bail... no L2 allowed.
16015     */
16016
16017    /* get phy settings from shmem and 'and' against admin settings */
16018    bxe_get_phy_info(sc);
16019
16020    /* initialize the FreeBSD ifnet interface */
16021    if (bxe_init_ifnet(sc) != 0) {
16022        bxe_release_mutexes(sc);
16023        bxe_deallocate_bars(sc);
16024        pci_disable_busmaster(dev);
16025        return (ENXIO);
16026    }
16027
16028    if (bxe_add_cdev(sc) != 0) {
16029        if (sc->ifp != NULL) {
16030            ether_ifdetach(sc->ifp);
16031        }
16032        ifmedia_removeall(&sc->ifmedia);
16033        bxe_release_mutexes(sc);
16034        bxe_deallocate_bars(sc);
16035        pci_disable_busmaster(dev);
16036        return (ENXIO);
16037    }
16038
16039    /* allocate device interrupts */
16040    if (bxe_interrupt_alloc(sc) != 0) {
16041        bxe_del_cdev(sc);
16042        if (sc->ifp != NULL) {
16043            ether_ifdetach(sc->ifp);
16044        }
16045        ifmedia_removeall(&sc->ifmedia);
16046        bxe_release_mutexes(sc);
16047        bxe_deallocate_bars(sc);
16048        pci_disable_busmaster(dev);
16049        return (ENXIO);
16050    }
16051
16052    bxe_init_fp_mutexs(sc);
16053
16054    if (bxe_alloc_buf_rings(sc) != 0) {
16055	bxe_free_buf_rings(sc);
16056        bxe_interrupt_free(sc);
16057        bxe_del_cdev(sc);
16058        if (sc->ifp != NULL) {
16059            ether_ifdetach(sc->ifp);
16060        }
16061        ifmedia_removeall(&sc->ifmedia);
16062        bxe_release_mutexes(sc);
16063        bxe_deallocate_bars(sc);
16064        pci_disable_busmaster(dev);
16065        return (ENXIO);
16066    }
16067
16068    /* allocate ilt */
16069    if (bxe_alloc_ilt_mem(sc) != 0) {
16070	bxe_free_buf_rings(sc);
16071        bxe_interrupt_free(sc);
16072        bxe_del_cdev(sc);
16073        if (sc->ifp != NULL) {
16074            ether_ifdetach(sc->ifp);
16075        }
16076        ifmedia_removeall(&sc->ifmedia);
16077        bxe_release_mutexes(sc);
16078        bxe_deallocate_bars(sc);
16079        pci_disable_busmaster(dev);
16080        return (ENXIO);
16081    }
16082
16083    /* allocate the host hardware/software hsi structures */
16084    if (bxe_alloc_hsi_mem(sc) != 0) {
16085        bxe_free_ilt_mem(sc);
16086	bxe_free_buf_rings(sc);
16087        bxe_interrupt_free(sc);
16088        bxe_del_cdev(sc);
16089        if (sc->ifp != NULL) {
16090            ether_ifdetach(sc->ifp);
16091        }
16092        ifmedia_removeall(&sc->ifmedia);
16093        bxe_release_mutexes(sc);
16094        bxe_deallocate_bars(sc);
16095        pci_disable_busmaster(dev);
16096        return (ENXIO);
16097    }
16098
16099    /* need to reset chip if UNDI was active */
16100    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16101        /* init fw_seq */
16102        sc->fw_seq =
16103            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16104             DRV_MSG_SEQ_NUMBER_MASK);
16105        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16106        bxe_prev_unload(sc);
16107    }
16108
16109#if 1
16110    /* XXX */
16111    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16112#else
16113    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16114        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16115        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16116        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16117        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16118        bxe_dcbx_init_params(sc);
16119    } else {
16120        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16121    }
16122#endif
16123
16124    /* calculate qm_cid_count */
16125    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16126    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16127
16128    sc->max_cos = 1;
16129    bxe_init_multi_cos(sc);
16130
16131    bxe_add_sysctls(sc);
16132
16133    return (0);
16134}
16135
16136/*
16137 * Device detach function.
16138 *
16139 * Stops the controller, resets the controller, and releases resources.
16140 *
16141 * Returns:
16142 *   0 = Success, >0 = Failure
16143 */
16144static int
16145bxe_detach(device_t dev)
16146{
16147    struct bxe_softc *sc;
16148    if_t ifp;
16149
16150    sc = device_get_softc(dev);
16151
16152    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16153
16154    ifp = sc->ifp;
16155    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16156        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16157        return(EBUSY);
16158    }
16159
16160    bxe_del_cdev(sc);
16161
16162    /* stop the periodic callout */
16163    bxe_periodic_stop(sc);
16164
16165    /* stop the chip taskqueue */
16166    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16167    if (sc->chip_tq) {
16168        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16169        taskqueue_free(sc->chip_tq);
16170        sc->chip_tq = NULL;
16171    }
16172
16173    /* stop and reset the controller if it was open */
16174    if (sc->state != BXE_STATE_CLOSED) {
16175        BXE_CORE_LOCK(sc);
16176        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16177        sc->state = BXE_STATE_DISABLED;
16178        BXE_CORE_UNLOCK(sc);
16179    }
16180
16181    /* release the network interface */
16182    if (ifp != NULL) {
16183        ether_ifdetach(ifp);
16184    }
16185    ifmedia_removeall(&sc->ifmedia);
16186
16187    /* XXX do the following based on driver state... */
16188
16189    /* free the host hardware/software hsi structures */
16190    bxe_free_hsi_mem(sc);
16191
16192    /* free ilt */
16193    bxe_free_ilt_mem(sc);
16194
16195    bxe_free_buf_rings(sc);
16196
16197    /* release the interrupts */
16198    bxe_interrupt_free(sc);
16199
16200    /* Release the mutexes*/
16201    bxe_destroy_fp_mutexs(sc);
16202    bxe_release_mutexes(sc);
16203
16204
16205    /* Release the PCIe BAR mapped memory */
16206    bxe_deallocate_bars(sc);
16207
16208    /* Release the FreeBSD interface. */
16209    if (sc->ifp != NULL) {
16210        if_free(sc->ifp);
16211    }
16212
16213    pci_disable_busmaster(dev);
16214
16215    return (0);
16216}
16217
16218/*
16219 * Device shutdown function.
16220 *
16221 * Stops and resets the controller.
16222 *
16223 * Returns:
16224 *   Nothing
16225 */
16226static int
16227bxe_shutdown(device_t dev)
16228{
16229    struct bxe_softc *sc;
16230
16231    sc = device_get_softc(dev);
16232
16233    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16234
16235    /* stop the periodic callout */
16236    bxe_periodic_stop(sc);
16237
16238    BXE_CORE_LOCK(sc);
16239    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16240    BXE_CORE_UNLOCK(sc);
16241
16242    return (0);
16243}
16244
16245void
16246bxe_igu_ack_sb(struct bxe_softc *sc,
16247               uint8_t          igu_sb_id,
16248               uint8_t          segment,
16249               uint16_t         index,
16250               uint8_t          op,
16251               uint8_t          update)
16252{
16253    uint32_t igu_addr = sc->igu_base_addr;
16254    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16255    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16256}
16257
16258static void
16259bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16260                     uint8_t          func,
16261                     uint8_t          idu_sb_id,
16262                     uint8_t          is_pf)
16263{
16264    uint32_t data, ctl, cnt = 100;
16265    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16266    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16267    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16268    uint32_t sb_bit =  1 << (idu_sb_id%32);
16269    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16270    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16271
16272    /* Not supported in BC mode */
16273    if (CHIP_INT_MODE_IS_BC(sc)) {
16274        return;
16275    }
16276
16277    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16278             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16279            IGU_REGULAR_CLEANUP_SET |
16280            IGU_REGULAR_BCLEANUP);
16281
16282    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16283           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16284           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16285
16286    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16287            data, igu_addr_data);
16288    REG_WR(sc, igu_addr_data, data);
16289
16290    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16291                      BUS_SPACE_BARRIER_WRITE);
16292    mb();
16293
16294    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16295            ctl, igu_addr_ctl);
16296    REG_WR(sc, igu_addr_ctl, ctl);
16297
16298    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16299                      BUS_SPACE_BARRIER_WRITE);
16300    mb();
16301
16302    /* wait for clean up to finish */
16303    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16304        DELAY(20000);
16305    }
16306
16307    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16308        BLOGD(sc, DBG_LOAD,
16309              "Unable to finish IGU cleanup: "
16310              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16311              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16312    }
16313}
16314
16315static void
16316bxe_igu_clear_sb(struct bxe_softc *sc,
16317                 uint8_t          idu_sb_id)
16318{
16319    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16320}
16321
16322
16323
16324
16325
16326
16327
16328/*******************/
16329/* ECORE CALLBACKS */
16330/*******************/
16331
16332static void
16333bxe_reset_common(struct bxe_softc *sc)
16334{
16335    uint32_t val = 0x1400;
16336
16337    /* reset_common */
16338    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16339
16340    if (CHIP_IS_E3(sc)) {
16341        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16342        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16343    }
16344
16345    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16346}
16347
16348static void
16349bxe_common_init_phy(struct bxe_softc *sc)
16350{
16351    uint32_t shmem_base[2];
16352    uint32_t shmem2_base[2];
16353
16354    /* Avoid common init in case MFW supports LFA */
16355    if (SHMEM2_RD(sc, size) >
16356        (uint32_t)offsetof(struct shmem2_region,
16357                           lfa_host_addr[SC_PORT(sc)])) {
16358        return;
16359    }
16360
16361    shmem_base[0]  = sc->devinfo.shmem_base;
16362    shmem2_base[0] = sc->devinfo.shmem2_base;
16363
16364    if (!CHIP_IS_E1x(sc)) {
16365        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16366        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16367    }
16368
16369    bxe_acquire_phy_lock(sc);
16370    elink_common_init_phy(sc, shmem_base, shmem2_base,
16371                          sc->devinfo.chip_id, 0);
16372    bxe_release_phy_lock(sc);
16373}
16374
16375static void
16376bxe_pf_disable(struct bxe_softc *sc)
16377{
16378    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16379
16380    val &= ~IGU_PF_CONF_FUNC_EN;
16381
16382    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16383    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16384    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16385}
16386
16387static void
16388bxe_init_pxp(struct bxe_softc *sc)
16389{
16390    uint16_t devctl;
16391    int r_order, w_order;
16392
16393    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16394
16395    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16396
16397    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16398
16399    if (sc->mrrs == -1) {
16400        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16401    } else {
16402        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16403        r_order = sc->mrrs;
16404    }
16405
16406    ecore_init_pxp_arb(sc, r_order, w_order);
16407}
16408
16409static uint32_t
16410bxe_get_pretend_reg(struct bxe_softc *sc)
16411{
16412    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16413    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16414    return (base + (SC_ABS_FUNC(sc)) * stride);
16415}
16416
16417/*
16418 * Called only on E1H or E2.
16419 * When pretending to be PF, the pretend value is the function number 0..7.
16420 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16421 * combination.
16422 */
16423static int
16424bxe_pretend_func(struct bxe_softc *sc,
16425                 uint16_t         pretend_func_val)
16426{
16427    uint32_t pretend_reg;
16428
16429    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16430        return (-1);
16431    }
16432
16433    /* get my own pretend register */
16434    pretend_reg = bxe_get_pretend_reg(sc);
16435    REG_WR(sc, pretend_reg, pretend_func_val);
16436    REG_RD(sc, pretend_reg);
16437    return (0);
16438}
16439
16440static void
16441bxe_iov_init_dmae(struct bxe_softc *sc)
16442{
16443    return;
16444}
16445
16446static void
16447bxe_iov_init_dq(struct bxe_softc *sc)
16448{
16449    return;
16450}
16451
16452/* send a NIG loopback debug packet */
16453static void
16454bxe_lb_pckt(struct bxe_softc *sc)
16455{
16456    uint32_t wb_write[3];
16457
16458    /* Ethernet source and destination addresses */
16459    wb_write[0] = 0x55555555;
16460    wb_write[1] = 0x55555555;
16461    wb_write[2] = 0x20;     /* SOP */
16462    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16463
16464    /* NON-IP protocol */
16465    wb_write[0] = 0x09000000;
16466    wb_write[1] = 0x55555555;
16467    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16468    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16469}
16470
16471/*
16472 * Some of the internal memories are not directly readable from the driver.
16473 * To test them we send debug packets.
16474 */
16475static int
16476bxe_int_mem_test(struct bxe_softc *sc)
16477{
16478    int factor;
16479    int count, i;
16480    uint32_t val = 0;
16481
16482    if (CHIP_REV_IS_FPGA(sc)) {
16483        factor = 120;
16484    } else if (CHIP_REV_IS_EMUL(sc)) {
16485        factor = 200;
16486    } else {
16487        factor = 1;
16488    }
16489
16490    /* disable inputs of parser neighbor blocks */
16491    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16492    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16493    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16494    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16495
16496    /*  write 0 to parser credits for CFC search request */
16497    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16498
16499    /* send Ethernet packet */
16500    bxe_lb_pckt(sc);
16501
16502    /* TODO do i reset NIG statistic? */
16503    /* Wait until NIG register shows 1 packet of size 0x10 */
16504    count = 1000 * factor;
16505    while (count) {
16506        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16507        val = *BXE_SP(sc, wb_data[0]);
16508        if (val == 0x10) {
16509            break;
16510        }
16511
16512        DELAY(10000);
16513        count--;
16514    }
16515
16516    if (val != 0x10) {
16517        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16518        return (-1);
16519    }
16520
16521    /* wait until PRS register shows 1 packet */
16522    count = (1000 * factor);
16523    while (count) {
16524        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16525        if (val == 1) {
16526            break;
16527        }
16528
16529        DELAY(10000);
16530        count--;
16531    }
16532
16533    if (val != 0x1) {
16534        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16535        return (-2);
16536    }
16537
16538    /* Reset and init BRB, PRS */
16539    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16540    DELAY(50000);
16541    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16542    DELAY(50000);
16543    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16544    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16545
16546    /* Disable inputs of parser neighbor blocks */
16547    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16548    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16549    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16550    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16551
16552    /* Write 0 to parser credits for CFC search request */
16553    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16554
16555    /* send 10 Ethernet packets */
16556    for (i = 0; i < 10; i++) {
16557        bxe_lb_pckt(sc);
16558    }
16559
16560    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16561    count = (1000 * factor);
16562    while (count) {
16563        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16564        val = *BXE_SP(sc, wb_data[0]);
16565        if (val == 0xb0) {
16566            break;
16567        }
16568
16569        DELAY(10000);
16570        count--;
16571    }
16572
16573    if (val != 0xb0) {
16574        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16575        return (-3);
16576    }
16577
16578    /* Wait until PRS register shows 2 packets */
16579    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16580    if (val != 2) {
16581        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16582    }
16583
16584    /* Write 1 to parser credits for CFC search request */
16585    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16586
16587    /* Wait until PRS register shows 3 packets */
16588    DELAY(10000 * factor);
16589
16590    /* Wait until NIG register shows 1 packet of size 0x10 */
16591    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16592    if (val != 3) {
16593        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16594    }
16595
16596    /* clear NIG EOP FIFO */
16597    for (i = 0; i < 11; i++) {
16598        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16599    }
16600
16601    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16602    if (val != 1) {
16603        BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16604        return (-4);
16605    }
16606
16607    /* Reset and init BRB, PRS, NIG */
16608    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16609    DELAY(50000);
16610    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16611    DELAY(50000);
16612    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16613    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16614    if (!CNIC_SUPPORT(sc)) {
16615        /* set NIC mode */
16616        REG_WR(sc, PRS_REG_NIC_MODE, 1);
16617    }
16618
16619    /* Enable inputs of parser neighbor blocks */
16620    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16621    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16622    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16623    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16624
16625    return (0);
16626}
16627
16628static void
16629bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16630{
16631    int is_required;
16632    uint32_t val;
16633    int port;
16634
16635    is_required = 0;
16636    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16637           SHARED_HW_CFG_FAN_FAILURE_MASK);
16638
16639    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16640        is_required = 1;
16641    }
16642    /*
16643     * The fan failure mechanism is usually related to the PHY type since
16644     * the power consumption of the board is affected by the PHY. Currently,
16645     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16646     */
16647    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16648        for (port = PORT_0; port < PORT_MAX; port++) {
16649            is_required |= elink_fan_failure_det_req(sc,
16650                                                     sc->devinfo.shmem_base,
16651                                                     sc->devinfo.shmem2_base,
16652                                                     port);
16653        }
16654    }
16655
16656    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16657
16658    if (is_required == 0) {
16659        return;
16660    }
16661
16662    /* Fan failure is indicated by SPIO 5 */
16663    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16664
16665    /* set to active low mode */
16666    val = REG_RD(sc, MISC_REG_SPIO_INT);
16667    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16668    REG_WR(sc, MISC_REG_SPIO_INT, val);
16669
16670    /* enable interrupt to signal the IGU */
16671    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16672    val |= MISC_SPIO_SPIO5;
16673    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16674}
16675
16676static void
16677bxe_enable_blocks_attention(struct bxe_softc *sc)
16678{
16679    uint32_t val;
16680
16681    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16682    if (!CHIP_IS_E1x(sc)) {
16683        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16684    } else {
16685        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16686    }
16687    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16688    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16689    /*
16690     * mask read length error interrupts in brb for parser
16691     * (parsing unit and 'checksum and crc' unit)
16692     * these errors are legal (PU reads fixed length and CAC can cause
16693     * read length error on truncated packets)
16694     */
16695    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16696    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16697    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16698    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16699    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16700    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16701/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16702/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16703    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16704    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16705    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16706/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16707/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16708    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16709    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16710    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16711    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16712/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16713/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16714
16715    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16716           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16717           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16718    if (!CHIP_IS_E1x(sc)) {
16719        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16720                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16721    }
16722    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16723
16724    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16725    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16726    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16727/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16728
16729    if (!CHIP_IS_E1x(sc)) {
16730        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16731        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16732    }
16733
16734    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16735    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16736/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16737    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16738}
16739
16740/**
16741 * bxe_init_hw_common - initialize the HW at the COMMON phase.
16742 *
16743 * @sc:     driver handle
16744 */
16745static int
16746bxe_init_hw_common(struct bxe_softc *sc)
16747{
16748    uint8_t abs_func_id;
16749    uint32_t val;
16750
16751    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16752          SC_ABS_FUNC(sc));
16753
16754    /*
16755     * take the RESET lock to protect undi_unload flow from accessing
16756     * registers while we are resetting the chip
16757     */
16758    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16759
16760    bxe_reset_common(sc);
16761
16762    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16763
16764    val = 0xfffc;
16765    if (CHIP_IS_E3(sc)) {
16766        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16767        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16768    }
16769
16770    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16771
16772    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16773
16774    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16775    BLOGD(sc, DBG_LOAD, "after misc block init\n");
16776
16777    if (!CHIP_IS_E1x(sc)) {
16778        /*
16779         * 4-port mode or 2-port mode we need to turn off master-enable for
16780         * everyone. After that we turn it back on for self. So, we disregard
16781         * multi-function, and always disable all functions on the given path,
16782         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16783         */
16784        for (abs_func_id = SC_PATH(sc);
16785             abs_func_id < (E2_FUNC_MAX * 2);
16786             abs_func_id += 2) {
16787            if (abs_func_id == SC_ABS_FUNC(sc)) {
16788                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16789                continue;
16790            }
16791
16792            bxe_pretend_func(sc, abs_func_id);
16793
16794            /* clear pf enable */
16795            bxe_pf_disable(sc);
16796
16797            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16798        }
16799    }
16800
16801    BLOGD(sc, DBG_LOAD, "after pf disable\n");
16802
16803    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16804
16805    if (CHIP_IS_E1(sc)) {
16806        /*
16807         * enable HW interrupt from PXP on USDM overflow
16808         * bit 16 on INT_MASK_0
16809         */
16810        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16811    }
16812
16813    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16814    bxe_init_pxp(sc);
16815
16816#ifdef __BIG_ENDIAN
16817    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16818    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16819    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16820    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16821    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16822    /* make sure this value is 0 */
16823    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16824
16825    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16826    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16827    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16828    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16829    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16830#endif
16831
16832    ecore_ilt_init_page_size(sc, INITOP_SET);
16833
16834    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16835        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16836    }
16837
16838    /* let the HW do it's magic... */
16839    DELAY(100000);
16840
16841    /* finish PXP init */
16842    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16843    if (val != 1) {
16844        BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16845            val);
16846        return (-1);
16847    }
16848    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16849    if (val != 1) {
16850        BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16851        return (-1);
16852    }
16853
16854    BLOGD(sc, DBG_LOAD, "after pxp init\n");
16855
16856    /*
16857     * Timer bug workaround for E2 only. We need to set the entire ILT to have
16858     * entries with value "0" and valid bit on. This needs to be done by the
16859     * first PF that is loaded in a path (i.e. common phase)
16860     */
16861    if (!CHIP_IS_E1x(sc)) {
16862/*
16863 * In E2 there is a bug in the timers block that can cause function 6 / 7
16864 * (i.e. vnic3) to start even if it is marked as "scan-off".
16865 * This occurs when a different function (func2,3) is being marked
16866 * as "scan-off". Real-life scenario for example: if a driver is being
16867 * load-unloaded while func6,7 are down. This will cause the timer to access
16868 * the ilt, translate to a logical address and send a request to read/write.
16869 * Since the ilt for the function that is down is not valid, this will cause
16870 * a translation error which is unrecoverable.
16871 * The Workaround is intended to make sure that when this happens nothing
16872 * fatal will occur. The workaround:
16873 *  1.  First PF driver which loads on a path will:
16874 *      a.  After taking the chip out of reset, by using pretend,
16875 *          it will write "0" to the following registers of
16876 *          the other vnics.
16877 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16878 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16879 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16880 *          And for itself it will write '1' to
16881 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16882 *          dmae-operations (writing to pram for example.)
16883 *          note: can be done for only function 6,7 but cleaner this
16884 *            way.
16885 *      b.  Write zero+valid to the entire ILT.
16886 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16887 *          VNIC3 (of that port). The range allocated will be the
16888 *          entire ILT. This is needed to prevent  ILT range error.
16889 *  2.  Any PF driver load flow:
16890 *      a.  ILT update with the physical addresses of the allocated
16891 *          logical pages.
16892 *      b.  Wait 20msec. - note that this timeout is needed to make
16893 *          sure there are no requests in one of the PXP internal
16894 *          queues with "old" ILT addresses.
16895 *      c.  PF enable in the PGLC.
16896 *      d.  Clear the was_error of the PF in the PGLC. (could have
16897 *          occurred while driver was down)
16898 *      e.  PF enable in the CFC (WEAK + STRONG)
16899 *      f.  Timers scan enable
16900 *  3.  PF driver unload flow:
16901 *      a.  Clear the Timers scan_en.
16902 *      b.  Polling for scan_on=0 for that PF.
16903 *      c.  Clear the PF enable bit in the PXP.
16904 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16905 *      e.  Write zero+valid to all ILT entries (The valid bit must
16906 *          stay set)
16907 *      f.  If this is VNIC 3 of a port then also init
16908 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16909 *          to the last enrty in the ILT.
16910 *
16911 *      Notes:
16912 *      Currently the PF error in the PGLC is non recoverable.
16913 *      In the future the there will be a recovery routine for this error.
16914 *      Currently attention is masked.
16915 *      Having an MCP lock on the load/unload process does not guarantee that
16916 *      there is no Timer disable during Func6/7 enable. This is because the
16917 *      Timers scan is currently being cleared by the MCP on FLR.
16918 *      Step 2.d can be done only for PF6/7 and the driver can also check if
16919 *      there is error before clearing it. But the flow above is simpler and
16920 *      more general.
16921 *      All ILT entries are written by zero+valid and not just PF6/7
16922 *      ILT entries since in the future the ILT entries allocation for
16923 *      PF-s might be dynamic.
16924 */
16925        struct ilt_client_info ilt_cli;
16926        struct ecore_ilt ilt;
16927
16928        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16929        memset(&ilt, 0, sizeof(struct ecore_ilt));
16930
16931        /* initialize dummy TM client */
16932        ilt_cli.start      = 0;
16933        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16934        ilt_cli.client_num = ILT_CLIENT_TM;
16935
16936        /*
16937         * Step 1: set zeroes to all ilt page entries with valid bit on
16938         * Step 2: set the timers first/last ilt entry to point
16939         * to the entire range to prevent ILT range error for 3rd/4th
16940         * vnic (this code assumes existence of the vnic)
16941         *
16942         * both steps performed by call to ecore_ilt_client_init_op()
16943         * with dummy TM client
16944         *
16945         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16946         * and his brother are split registers
16947         */
16948
16949        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16950        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16951        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16952
16953        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16954        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16955        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16956    }
16957
16958    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16959    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16960
16961    if (!CHIP_IS_E1x(sc)) {
16962        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16963                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16964
16965        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16966        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16967
16968        /* let the HW do it's magic... */
16969        do {
16970            DELAY(200000);
16971            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16972        } while (factor-- && (val != 1));
16973
16974        if (val != 1) {
16975            BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16976            return (-1);
16977        }
16978    }
16979
16980    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16981
16982    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16983
16984    bxe_iov_init_dmae(sc);
16985
16986    /* clean the DMAE memory */
16987    sc->dmae_ready = 1;
16988    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16989
16990    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16991
16992    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16993
16994    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16995
16996    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16997
16998    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16999    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17000    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17001    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17002
17003    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17004
17005    /* QM queues pointers table */
17006    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17007
17008    /* soft reset pulse */
17009    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17010    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17011
17012    if (CNIC_SUPPORT(sc))
17013        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17014
17015    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17016    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17017    if (!CHIP_REV_IS_SLOW(sc)) {
17018        /* enable hw interrupt from doorbell Q */
17019        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17020    }
17021
17022    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17023
17024    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17025    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17026
17027    if (!CHIP_IS_E1(sc)) {
17028        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17029    }
17030
17031    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17032        if (IS_MF_AFEX(sc)) {
17033            /*
17034             * configure that AFEX and VLAN headers must be
17035             * received in AFEX mode
17036             */
17037            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17038            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17039            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17040            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17041            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17042        } else {
17043            /*
17044             * Bit-map indicating which L2 hdrs may appear
17045             * after the basic Ethernet header
17046             */
17047            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17048                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17049        }
17050    }
17051
17052    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17053    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17054    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17055    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17056
17057    if (!CHIP_IS_E1x(sc)) {
17058        /* reset VFC memories */
17059        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17060               VFC_MEMORIES_RST_REG_CAM_RST |
17061               VFC_MEMORIES_RST_REG_RAM_RST);
17062        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17063               VFC_MEMORIES_RST_REG_CAM_RST |
17064               VFC_MEMORIES_RST_REG_RAM_RST);
17065
17066        DELAY(20000);
17067    }
17068
17069    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17070    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17071    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17072    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17073
17074    /* sync semi rtc */
17075    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17076           0x80000000);
17077    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17078           0x80000000);
17079
17080    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17081    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17082    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17083
17084    if (!CHIP_IS_E1x(sc)) {
17085        if (IS_MF_AFEX(sc)) {
17086            /*
17087             * configure that AFEX and VLAN headers must be
17088             * sent in AFEX mode
17089             */
17090            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17091            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17092            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17093            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17094            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17095        } else {
17096            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17097                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17098        }
17099    }
17100
17101    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17102
17103    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17104
17105    if (CNIC_SUPPORT(sc)) {
17106        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17107        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17108        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17109        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17110        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17111        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17112        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17113        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17114        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17115        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17116    }
17117    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17118
17119    if (sizeof(union cdu_context) != 1024) {
17120        /* we currently assume that a context is 1024 bytes */
17121        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17122              (long)sizeof(union cdu_context));
17123    }
17124
17125    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17126    val = (4 << 24) + (0 << 12) + 1024;
17127    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17128
17129    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17130
17131    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17132    /* enable context validation interrupt from CFC */
17133    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17134
17135    /* set the thresholds to prevent CFC/CDU race */
17136    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17137    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17138
17139    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17140        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17141    }
17142
17143    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17144    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17145
17146    /* Reset PCIE errors for debug */
17147    REG_WR(sc, 0x2814, 0xffffffff);
17148    REG_WR(sc, 0x3820, 0xffffffff);
17149
17150    if (!CHIP_IS_E1x(sc)) {
17151        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17152               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17153                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17154        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17155               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17156                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17157                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17158        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17159               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17160                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17161                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17162    }
17163
17164    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17165
17166    if (!CHIP_IS_E1(sc)) {
17167        /* in E3 this done in per-port section */
17168        if (!CHIP_IS_E3(sc))
17169            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17170    }
17171
17172    if (CHIP_IS_E1H(sc)) {
17173        /* not applicable for E2 (and above ...) */
17174        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17175    }
17176
17177    if (CHIP_REV_IS_SLOW(sc)) {
17178        DELAY(200000);
17179    }
17180
17181    /* finish CFC init */
17182    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17183    if (val != 1) {
17184        BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17185        return (-1);
17186    }
17187    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17188    if (val != 1) {
17189        BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17190        return (-1);
17191    }
17192    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17193    if (val != 1) {
17194        BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17195        return (-1);
17196    }
17197    REG_WR(sc, CFC_REG_DEBUG0, 0);
17198
17199    if (CHIP_IS_E1(sc)) {
17200        /* read NIG statistic to see if this is our first up since powerup */
17201        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17202        val = *BXE_SP(sc, wb_data[0]);
17203
17204        /* do internal memory self test */
17205        if ((val == 0) && bxe_int_mem_test(sc)) {
17206            BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17207            return (-1);
17208        }
17209    }
17210
17211    bxe_setup_fan_failure_detection(sc);
17212
17213    /* clear PXP2 attentions */
17214    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17215
17216    bxe_enable_blocks_attention(sc);
17217
17218    if (!CHIP_REV_IS_SLOW(sc)) {
17219        ecore_enable_blocks_parity(sc);
17220    }
17221
17222    if (!BXE_NOMCP(sc)) {
17223        if (CHIP_IS_E1x(sc)) {
17224            bxe_common_init_phy(sc);
17225        }
17226    }
17227
17228    return (0);
17229}
17230
17231/**
17232 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17233 *
17234 * @sc:     driver handle
17235 */
17236static int
17237bxe_init_hw_common_chip(struct bxe_softc *sc)
17238{
17239    int rc = bxe_init_hw_common(sc);
17240
17241    if (rc) {
17242        BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17243        return (rc);
17244    }
17245
17246    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17247    if (!BXE_NOMCP(sc)) {
17248        bxe_common_init_phy(sc);
17249    }
17250
17251    return (0);
17252}
17253
17254static int
17255bxe_init_hw_port(struct bxe_softc *sc)
17256{
17257    int port = SC_PORT(sc);
17258    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17259    uint32_t low, high;
17260    uint32_t val;
17261
17262    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17263
17264    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17265
17266    ecore_init_block(sc, BLOCK_MISC, init_phase);
17267    ecore_init_block(sc, BLOCK_PXP, init_phase);
17268    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17269
17270    /*
17271     * Timers bug workaround: disables the pf_master bit in pglue at
17272     * common phase, we need to enable it here before any dmae access are
17273     * attempted. Therefore we manually added the enable-master to the
17274     * port phase (it also happens in the function phase)
17275     */
17276    if (!CHIP_IS_E1x(sc)) {
17277        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17278    }
17279
17280    ecore_init_block(sc, BLOCK_ATC, init_phase);
17281    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17282    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17283    ecore_init_block(sc, BLOCK_QM, init_phase);
17284
17285    ecore_init_block(sc, BLOCK_TCM, init_phase);
17286    ecore_init_block(sc, BLOCK_UCM, init_phase);
17287    ecore_init_block(sc, BLOCK_CCM, init_phase);
17288    ecore_init_block(sc, BLOCK_XCM, init_phase);
17289
17290    /* QM cid (connection) count */
17291    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17292
17293    if (CNIC_SUPPORT(sc)) {
17294        ecore_init_block(sc, BLOCK_TM, init_phase);
17295        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17296        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17297    }
17298
17299    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17300
17301    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17302
17303    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17304        if (IS_MF(sc)) {
17305            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17306        } else if (sc->mtu > 4096) {
17307            if (BXE_ONE_PORT(sc)) {
17308                low = 160;
17309            } else {
17310                val = sc->mtu;
17311                /* (24*1024 + val*4)/256 */
17312                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17313            }
17314        } else {
17315            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17316        }
17317        high = (low + 56); /* 14*1024/256 */
17318        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17319        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17320    }
17321
17322    if (CHIP_IS_MODE_4_PORT(sc)) {
17323        REG_WR(sc, SC_PORT(sc) ?
17324               BRB1_REG_MAC_GUARANTIED_1 :
17325               BRB1_REG_MAC_GUARANTIED_0, 40);
17326    }
17327
17328    ecore_init_block(sc, BLOCK_PRS, init_phase);
17329    if (CHIP_IS_E3B0(sc)) {
17330        if (IS_MF_AFEX(sc)) {
17331            /* configure headers for AFEX mode */
17332            REG_WR(sc, SC_PORT(sc) ?
17333                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17334                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17335            REG_WR(sc, SC_PORT(sc) ?
17336                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17337                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17338            REG_WR(sc, SC_PORT(sc) ?
17339                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17340                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17341        } else {
17342            /* Ovlan exists only if we are in multi-function +
17343             * switch-dependent mode, in switch-independent there
17344             * is no ovlan headers
17345             */
17346            REG_WR(sc, SC_PORT(sc) ?
17347                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17348                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17349                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17350        }
17351    }
17352
17353    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17354    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17355    ecore_init_block(sc, BLOCK_USDM, init_phase);
17356    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17357
17358    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17359    ecore_init_block(sc, BLOCK_USEM, init_phase);
17360    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17361    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17362
17363    ecore_init_block(sc, BLOCK_UPB, init_phase);
17364    ecore_init_block(sc, BLOCK_XPB, init_phase);
17365
17366    ecore_init_block(sc, BLOCK_PBF, init_phase);
17367
17368    if (CHIP_IS_E1x(sc)) {
17369        /* configure PBF to work without PAUSE mtu 9000 */
17370        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17371
17372        /* update threshold */
17373        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17374        /* update init credit */
17375        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17376
17377        /* probe changes */
17378        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17379        DELAY(50);
17380        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17381    }
17382
17383    if (CNIC_SUPPORT(sc)) {
17384        ecore_init_block(sc, BLOCK_SRC, init_phase);
17385    }
17386
17387    ecore_init_block(sc, BLOCK_CDU, init_phase);
17388    ecore_init_block(sc, BLOCK_CFC, init_phase);
17389
17390    if (CHIP_IS_E1(sc)) {
17391        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17392        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17393    }
17394    ecore_init_block(sc, BLOCK_HC, init_phase);
17395
17396    ecore_init_block(sc, BLOCK_IGU, init_phase);
17397
17398    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17399    /* init aeu_mask_attn_func_0/1:
17400     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17401     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17402     *             bits 4-7 are used for "per vn group attention" */
17403    val = IS_MF(sc) ? 0xF7 : 0x7;
17404    /* Enable DCBX attention for all but E1 */
17405    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17406    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17407
17408    ecore_init_block(sc, BLOCK_NIG, init_phase);
17409
17410    if (!CHIP_IS_E1x(sc)) {
17411        /* Bit-map indicating which L2 hdrs may appear after the
17412         * basic Ethernet header
17413         */
17414        if (IS_MF_AFEX(sc)) {
17415            REG_WR(sc, SC_PORT(sc) ?
17416                   NIG_REG_P1_HDRS_AFTER_BASIC :
17417                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17418        } else {
17419            REG_WR(sc, SC_PORT(sc) ?
17420                   NIG_REG_P1_HDRS_AFTER_BASIC :
17421                   NIG_REG_P0_HDRS_AFTER_BASIC,
17422                   IS_MF_SD(sc) ? 7 : 6);
17423        }
17424
17425        if (CHIP_IS_E3(sc)) {
17426            REG_WR(sc, SC_PORT(sc) ?
17427                   NIG_REG_LLH1_MF_MODE :
17428                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17429        }
17430    }
17431    if (!CHIP_IS_E3(sc)) {
17432        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17433    }
17434
17435    if (!CHIP_IS_E1(sc)) {
17436        /* 0x2 disable mf_ov, 0x1 enable */
17437        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17438               (IS_MF_SD(sc) ? 0x1 : 0x2));
17439
17440        if (!CHIP_IS_E1x(sc)) {
17441            val = 0;
17442            switch (sc->devinfo.mf_info.mf_mode) {
17443            case MULTI_FUNCTION_SD:
17444                val = 1;
17445                break;
17446            case MULTI_FUNCTION_SI:
17447            case MULTI_FUNCTION_AFEX:
17448                val = 2;
17449                break;
17450            }
17451
17452            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17453                        NIG_REG_LLH0_CLS_TYPE), val);
17454        }
17455        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17456        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17457        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17458    }
17459
17460    /* If SPIO5 is set to generate interrupts, enable it for this port */
17461    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17462    if (val & MISC_SPIO_SPIO5) {
17463        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17464                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17465        val = REG_RD(sc, reg_addr);
17466        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17467        REG_WR(sc, reg_addr, val);
17468    }
17469
17470    return (0);
17471}
17472
17473static uint32_t
17474bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17475                       uint32_t         reg,
17476                       uint32_t         expected,
17477                       uint32_t         poll_count)
17478{
17479    uint32_t cur_cnt = poll_count;
17480    uint32_t val;
17481
17482    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17483        DELAY(FLR_WAIT_INTERVAL);
17484    }
17485
17486    return (val);
17487}
17488
17489static int
17490bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17491                              uint32_t         reg,
17492                              char             *msg,
17493                              uint32_t         poll_cnt)
17494{
17495    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17496
17497    if (val != 0) {
17498        BLOGE(sc, "%s usage count=%d\n", msg, val);
17499        return (1);
17500    }
17501
17502    return (0);
17503}
17504
17505/* Common routines with VF FLR cleanup */
17506static uint32_t
17507bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17508{
17509    /* adjust polling timeout */
17510    if (CHIP_REV_IS_EMUL(sc)) {
17511        return (FLR_POLL_CNT * 2000);
17512    }
17513
17514    if (CHIP_REV_IS_FPGA(sc)) {
17515        return (FLR_POLL_CNT * 120);
17516    }
17517
17518    return (FLR_POLL_CNT);
17519}
17520
17521static int
17522bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17523                           uint32_t         poll_cnt)
17524{
17525    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17526    if (bxe_flr_clnup_poll_hw_counter(sc,
17527                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17528                                      "CFC PF usage counter timed out",
17529                                      poll_cnt)) {
17530        return (1);
17531    }
17532
17533    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17534    if (bxe_flr_clnup_poll_hw_counter(sc,
17535                                      DORQ_REG_PF_USAGE_CNT,
17536                                      "DQ PF usage counter timed out",
17537                                      poll_cnt)) {
17538        return (1);
17539    }
17540
17541    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17542    if (bxe_flr_clnup_poll_hw_counter(sc,
17543                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17544                                      "QM PF usage counter timed out",
17545                                      poll_cnt)) {
17546        return (1);
17547    }
17548
17549    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17550    if (bxe_flr_clnup_poll_hw_counter(sc,
17551                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17552                                      "Timers VNIC usage counter timed out",
17553                                      poll_cnt)) {
17554        return (1);
17555    }
17556
17557    if (bxe_flr_clnup_poll_hw_counter(sc,
17558                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17559                                      "Timers NUM_SCANS usage counter timed out",
17560                                      poll_cnt)) {
17561        return (1);
17562    }
17563
17564    /* Wait DMAE PF usage counter to zero */
17565    if (bxe_flr_clnup_poll_hw_counter(sc,
17566                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17567                                      "DMAE dommand register timed out",
17568                                      poll_cnt)) {
17569        return (1);
17570    }
17571
17572    return (0);
17573}
17574
17575#define OP_GEN_PARAM(param)                                            \
17576    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17577#define OP_GEN_TYPE(type)                                           \
17578    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17579#define OP_GEN_AGG_VECT(index)                                             \
17580    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17581
17582static int
17583bxe_send_final_clnup(struct bxe_softc *sc,
17584                     uint8_t          clnup_func,
17585                     uint32_t         poll_cnt)
17586{
17587    uint32_t op_gen_command = 0;
17588    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17589                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17590    int ret = 0;
17591
17592    if (REG_RD(sc, comp_addr)) {
17593        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17594        return (1);
17595    }
17596
17597    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17598    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17599    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17600    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17601
17602    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17603    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17604
17605    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17606        BLOGE(sc, "FW final cleanup did not succeed\n");
17607        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17608              (REG_RD(sc, comp_addr)));
17609        bxe_panic(sc, ("FLR cleanup failed\n"));
17610        return (1);
17611    }
17612
17613    /* Zero completion for nxt FLR */
17614    REG_WR(sc, comp_addr, 0);
17615
17616    return (ret);
17617}
17618
17619static void
17620bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17621                       struct pbf_pN_buf_regs *regs,
17622                       uint32_t               poll_count)
17623{
17624    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17625    uint32_t cur_cnt = poll_count;
17626
17627    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17628    crd = crd_start = REG_RD(sc, regs->crd);
17629    init_crd = REG_RD(sc, regs->init_crd);
17630
17631    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17632    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17633    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17634
17635    while ((crd != init_crd) &&
17636           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17637            (init_crd - crd_start))) {
17638        if (cur_cnt--) {
17639            DELAY(FLR_WAIT_INTERVAL);
17640            crd = REG_RD(sc, regs->crd);
17641            crd_freed = REG_RD(sc, regs->crd_freed);
17642        } else {
17643            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17644            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17645            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17646            break;
17647        }
17648    }
17649
17650    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17651          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17652}
17653
17654static void
17655bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17656                       struct pbf_pN_cmd_regs *regs,
17657                       uint32_t               poll_count)
17658{
17659    uint32_t occup, to_free, freed, freed_start;
17660    uint32_t cur_cnt = poll_count;
17661
17662    occup = to_free = REG_RD(sc, regs->lines_occup);
17663    freed = freed_start = REG_RD(sc, regs->lines_freed);
17664
17665    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17666    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17667
17668    while (occup &&
17669           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17670        if (cur_cnt--) {
17671            DELAY(FLR_WAIT_INTERVAL);
17672            occup = REG_RD(sc, regs->lines_occup);
17673            freed = REG_RD(sc, regs->lines_freed);
17674        } else {
17675            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17676            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17677            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17678            break;
17679        }
17680    }
17681
17682    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17683          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17684}
17685
17686static void
17687bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17688{
17689    struct pbf_pN_cmd_regs cmd_regs[] = {
17690        {0, (CHIP_IS_E3B0(sc)) ?
17691            PBF_REG_TQ_OCCUPANCY_Q0 :
17692            PBF_REG_P0_TQ_OCCUPANCY,
17693            (CHIP_IS_E3B0(sc)) ?
17694            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17695            PBF_REG_P0_TQ_LINES_FREED_CNT},
17696        {1, (CHIP_IS_E3B0(sc)) ?
17697            PBF_REG_TQ_OCCUPANCY_Q1 :
17698            PBF_REG_P1_TQ_OCCUPANCY,
17699            (CHIP_IS_E3B0(sc)) ?
17700            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17701            PBF_REG_P1_TQ_LINES_FREED_CNT},
17702        {4, (CHIP_IS_E3B0(sc)) ?
17703            PBF_REG_TQ_OCCUPANCY_LB_Q :
17704            PBF_REG_P4_TQ_OCCUPANCY,
17705            (CHIP_IS_E3B0(sc)) ?
17706            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17707            PBF_REG_P4_TQ_LINES_FREED_CNT}
17708    };
17709
17710    struct pbf_pN_buf_regs buf_regs[] = {
17711        {0, (CHIP_IS_E3B0(sc)) ?
17712            PBF_REG_INIT_CRD_Q0 :
17713            PBF_REG_P0_INIT_CRD ,
17714            (CHIP_IS_E3B0(sc)) ?
17715            PBF_REG_CREDIT_Q0 :
17716            PBF_REG_P0_CREDIT,
17717            (CHIP_IS_E3B0(sc)) ?
17718            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17719            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17720        {1, (CHIP_IS_E3B0(sc)) ?
17721            PBF_REG_INIT_CRD_Q1 :
17722            PBF_REG_P1_INIT_CRD,
17723            (CHIP_IS_E3B0(sc)) ?
17724            PBF_REG_CREDIT_Q1 :
17725            PBF_REG_P1_CREDIT,
17726            (CHIP_IS_E3B0(sc)) ?
17727            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17728            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17729        {4, (CHIP_IS_E3B0(sc)) ?
17730            PBF_REG_INIT_CRD_LB_Q :
17731            PBF_REG_P4_INIT_CRD,
17732            (CHIP_IS_E3B0(sc)) ?
17733            PBF_REG_CREDIT_LB_Q :
17734            PBF_REG_P4_CREDIT,
17735            (CHIP_IS_E3B0(sc)) ?
17736            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17737            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17738    };
17739
17740    int i;
17741
17742    /* Verify the command queues are flushed P0, P1, P4 */
17743    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17744        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17745    }
17746
17747    /* Verify the transmission buffers are flushed P0, P1, P4 */
17748    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17749        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17750    }
17751}
17752
17753static void
17754bxe_hw_enable_status(struct bxe_softc *sc)
17755{
17756    uint32_t val;
17757
17758    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17759    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17760
17761    val = REG_RD(sc, PBF_REG_DISABLE_PF);
17762    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17763
17764    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17765    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17766
17767    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17768    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17769
17770    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17771    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17772
17773    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17774    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17775
17776    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17777    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17778
17779    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17780    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17781}
17782
17783static int
17784bxe_pf_flr_clnup(struct bxe_softc *sc)
17785{
17786    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17787
17788    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17789
17790    /* Re-enable PF target read access */
17791    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17792
17793    /* Poll HW usage counters */
17794    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17795    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17796        return (-1);
17797    }
17798
17799    /* Zero the igu 'trailing edge' and 'leading edge' */
17800
17801    /* Send the FW cleanup command */
17802    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17803        return (-1);
17804    }
17805
17806    /* ATC cleanup */
17807
17808    /* Verify TX hw is flushed */
17809    bxe_tx_hw_flushed(sc, poll_cnt);
17810
17811    /* Wait 100ms (not adjusted according to platform) */
17812    DELAY(100000);
17813
17814    /* Verify no pending pci transactions */
17815    if (bxe_is_pcie_pending(sc)) {
17816        BLOGE(sc, "PCIE Transactions still pending\n");
17817    }
17818
17819    /* Debug */
17820    bxe_hw_enable_status(sc);
17821
17822    /*
17823     * Master enable - Due to WB DMAE writes performed before this
17824     * register is re-initialized as part of the regular function init
17825     */
17826    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17827
17828    return (0);
17829}
17830
17831static int
17832bxe_init_hw_func(struct bxe_softc *sc)
17833{
17834    int port = SC_PORT(sc);
17835    int func = SC_FUNC(sc);
17836    int init_phase = PHASE_PF0 + func;
17837    struct ecore_ilt *ilt = sc->ilt;
17838    uint16_t cdu_ilt_start;
17839    uint32_t addr, val;
17840    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17841    int i, main_mem_width, rc;
17842
17843    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17844
17845    /* FLR cleanup */
17846    if (!CHIP_IS_E1x(sc)) {
17847        rc = bxe_pf_flr_clnup(sc);
17848        if (rc) {
17849            BLOGE(sc, "FLR cleanup failed!\n");
17850            // XXX bxe_fw_dump(sc);
17851            // XXX bxe_idle_chk(sc);
17852            return (rc);
17853        }
17854    }
17855
17856    /* set MSI reconfigure capability */
17857    if (sc->devinfo.int_block == INT_BLOCK_HC) {
17858        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17859        val = REG_RD(sc, addr);
17860        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17861        REG_WR(sc, addr, val);
17862    }
17863
17864    ecore_init_block(sc, BLOCK_PXP, init_phase);
17865    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17866
17867    ilt = sc->ilt;
17868    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17869
17870    for (i = 0; i < L2_ILT_LINES(sc); i++) {
17871        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17872        ilt->lines[cdu_ilt_start + i].page_mapping =
17873            sc->context[i].vcxt_dma.paddr;
17874        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17875    }
17876    ecore_ilt_init_op(sc, INITOP_SET);
17877
17878    /* Set NIC mode */
17879    REG_WR(sc, PRS_REG_NIC_MODE, 1);
17880    BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17881
17882    if (!CHIP_IS_E1x(sc)) {
17883        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17884
17885        /* Turn on a single ISR mode in IGU if driver is going to use
17886         * INT#x or MSI
17887         */
17888        if (sc->interrupt_mode != INTR_MODE_MSIX) {
17889            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17890        }
17891
17892        /*
17893         * Timers workaround bug: function init part.
17894         * Need to wait 20msec after initializing ILT,
17895         * needed to make sure there are no requests in
17896         * one of the PXP internal queues with "old" ILT addresses
17897         */
17898        DELAY(20000);
17899
17900        /*
17901         * Master enable - Due to WB DMAE writes performed before this
17902         * register is re-initialized as part of the regular function
17903         * init
17904         */
17905        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17906        /* Enable the function in IGU */
17907        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17908    }
17909
17910    sc->dmae_ready = 1;
17911
17912    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17913
17914    if (!CHIP_IS_E1x(sc))
17915        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17916
17917    ecore_init_block(sc, BLOCK_ATC, init_phase);
17918    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17919    ecore_init_block(sc, BLOCK_NIG, init_phase);
17920    ecore_init_block(sc, BLOCK_SRC, init_phase);
17921    ecore_init_block(sc, BLOCK_MISC, init_phase);
17922    ecore_init_block(sc, BLOCK_TCM, init_phase);
17923    ecore_init_block(sc, BLOCK_UCM, init_phase);
17924    ecore_init_block(sc, BLOCK_CCM, init_phase);
17925    ecore_init_block(sc, BLOCK_XCM, init_phase);
17926    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17927    ecore_init_block(sc, BLOCK_USEM, init_phase);
17928    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17929    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17930
17931    if (!CHIP_IS_E1x(sc))
17932        REG_WR(sc, QM_REG_PF_EN, 1);
17933
17934    if (!CHIP_IS_E1x(sc)) {
17935        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17936        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17937        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17938        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17939    }
17940    ecore_init_block(sc, BLOCK_QM, init_phase);
17941
17942    ecore_init_block(sc, BLOCK_TM, init_phase);
17943    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17944
17945    bxe_iov_init_dq(sc);
17946
17947    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17948    ecore_init_block(sc, BLOCK_PRS, init_phase);
17949    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17950    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17951    ecore_init_block(sc, BLOCK_USDM, init_phase);
17952    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17953    ecore_init_block(sc, BLOCK_UPB, init_phase);
17954    ecore_init_block(sc, BLOCK_XPB, init_phase);
17955    ecore_init_block(sc, BLOCK_PBF, init_phase);
17956    if (!CHIP_IS_E1x(sc))
17957        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17958
17959    ecore_init_block(sc, BLOCK_CDU, init_phase);
17960
17961    ecore_init_block(sc, BLOCK_CFC, init_phase);
17962
17963    if (!CHIP_IS_E1x(sc))
17964        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17965
17966    if (IS_MF(sc)) {
17967        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17968        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17969    }
17970
17971    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17972
17973    /* HC init per function */
17974    if (sc->devinfo.int_block == INT_BLOCK_HC) {
17975        if (CHIP_IS_E1H(sc)) {
17976            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17977
17978            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17979            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17980        }
17981        ecore_init_block(sc, BLOCK_HC, init_phase);
17982
17983    } else {
17984        int num_segs, sb_idx, prod_offset;
17985
17986        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17987
17988        if (!CHIP_IS_E1x(sc)) {
17989            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17990            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17991        }
17992
17993        ecore_init_block(sc, BLOCK_IGU, init_phase);
17994
17995        if (!CHIP_IS_E1x(sc)) {
17996            int dsb_idx = 0;
17997            /**
17998             * Producer memory:
17999             * E2 mode: address 0-135 match to the mapping memory;
18000             * 136 - PF0 default prod; 137 - PF1 default prod;
18001             * 138 - PF2 default prod; 139 - PF3 default prod;
18002             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18003             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18004             * 144-147 reserved.
18005             *
18006             * E1.5 mode - In backward compatible mode;
18007             * for non default SB; each even line in the memory
18008             * holds the U producer and each odd line hold
18009             * the C producer. The first 128 producers are for
18010             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18011             * producers are for the DSB for each PF.
18012             * Each PF has five segments: (the order inside each
18013             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18014             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18015             * 144-147 attn prods;
18016             */
18017            /* non-default-status-blocks */
18018            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18019                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18020            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18021                prod_offset = (sc->igu_base_sb + sb_idx) *
18022                    num_segs;
18023
18024                for (i = 0; i < num_segs; i++) {
18025                    addr = IGU_REG_PROD_CONS_MEMORY +
18026                            (prod_offset + i) * 4;
18027                    REG_WR(sc, addr, 0);
18028                }
18029                /* send consumer update with value 0 */
18030                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18031                           USTORM_ID, 0, IGU_INT_NOP, 1);
18032                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18033            }
18034
18035            /* default-status-blocks */
18036            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18037                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18038
18039            if (CHIP_IS_MODE_4_PORT(sc))
18040                dsb_idx = SC_FUNC(sc);
18041            else
18042                dsb_idx = SC_VN(sc);
18043
18044            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18045                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18046                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18047
18048            /*
18049             * igu prods come in chunks of E1HVN_MAX (4) -
18050             * does not matters what is the current chip mode
18051             */
18052            for (i = 0; i < (num_segs * E1HVN_MAX);
18053                 i += E1HVN_MAX) {
18054                addr = IGU_REG_PROD_CONS_MEMORY +
18055                            (prod_offset + i)*4;
18056                REG_WR(sc, addr, 0);
18057            }
18058            /* send consumer update with 0 */
18059            if (CHIP_INT_MODE_IS_BC(sc)) {
18060                bxe_ack_sb(sc, sc->igu_dsb_id,
18061                           USTORM_ID, 0, IGU_INT_NOP, 1);
18062                bxe_ack_sb(sc, sc->igu_dsb_id,
18063                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18064                bxe_ack_sb(sc, sc->igu_dsb_id,
18065                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18066                bxe_ack_sb(sc, sc->igu_dsb_id,
18067                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18068                bxe_ack_sb(sc, sc->igu_dsb_id,
18069                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18070            } else {
18071                bxe_ack_sb(sc, sc->igu_dsb_id,
18072                           USTORM_ID, 0, IGU_INT_NOP, 1);
18073                bxe_ack_sb(sc, sc->igu_dsb_id,
18074                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18075            }
18076            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18077
18078            /* !!! these should become driver const once
18079               rf-tool supports split-68 const */
18080            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18081            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18082            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18083            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18084            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18085            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18086        }
18087    }
18088
18089    /* Reset PCIE errors for debug */
18090    REG_WR(sc, 0x2114, 0xffffffff);
18091    REG_WR(sc, 0x2120, 0xffffffff);
18092
18093    if (CHIP_IS_E1x(sc)) {
18094        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18095        main_mem_base = HC_REG_MAIN_MEMORY +
18096                SC_PORT(sc) * (main_mem_size * 4);
18097        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18098        main_mem_width = 8;
18099
18100        val = REG_RD(sc, main_mem_prty_clr);
18101        if (val) {
18102            BLOGD(sc, DBG_LOAD,
18103                  "Parity errors in HC block during function init (0x%x)!\n",
18104                  val);
18105        }
18106
18107        /* Clear "false" parity errors in MSI-X table */
18108        for (i = main_mem_base;
18109             i < main_mem_base + main_mem_size * 4;
18110             i += main_mem_width) {
18111            bxe_read_dmae(sc, i, main_mem_width / 4);
18112            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18113                           i, main_mem_width / 4);
18114        }
18115        /* Clear HC parity attention */
18116        REG_RD(sc, main_mem_prty_clr);
18117    }
18118
18119#if 1
18120    /* Enable STORMs SP logging */
18121    REG_WR8(sc, BAR_USTRORM_INTMEM +
18122           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18123    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18124           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18125    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18126           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18127    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18128           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18129#endif
18130
18131    elink_phy_probe(&sc->link_params);
18132
18133    return (0);
18134}
18135
18136static void
18137bxe_link_reset(struct bxe_softc *sc)
18138{
18139    if (!BXE_NOMCP(sc)) {
18140	bxe_acquire_phy_lock(sc);
18141        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18142	bxe_release_phy_lock(sc);
18143    } else {
18144        if (!CHIP_REV_IS_SLOW(sc)) {
18145            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18146        }
18147    }
18148}
18149
18150static void
18151bxe_reset_port(struct bxe_softc *sc)
18152{
18153    int port = SC_PORT(sc);
18154    uint32_t val;
18155
18156	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18157    /* reset physical Link */
18158    bxe_link_reset(sc);
18159
18160    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18161
18162    /* Do not rcv packets to BRB */
18163    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18164    /* Do not direct rcv packets that are not for MCP to the BRB */
18165    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18166               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18167
18168    /* Configure AEU */
18169    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18170
18171    DELAY(100000);
18172
18173    /* Check for BRB port occupancy */
18174    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18175    if (val) {
18176        BLOGD(sc, DBG_LOAD,
18177              "BRB1 is not empty, %d blocks are occupied\n", val);
18178    }
18179
18180    /* TODO: Close Doorbell port? */
18181}
18182
18183static void
18184bxe_ilt_wr(struct bxe_softc *sc,
18185           uint32_t         index,
18186           bus_addr_t       addr)
18187{
18188    int reg;
18189    uint32_t wb_write[2];
18190
18191    if (CHIP_IS_E1(sc)) {
18192        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18193    } else {
18194        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18195    }
18196
18197    wb_write[0] = ONCHIP_ADDR1(addr);
18198    wb_write[1] = ONCHIP_ADDR2(addr);
18199    REG_WR_DMAE(sc, reg, wb_write, 2);
18200}
18201
18202static void
18203bxe_clear_func_ilt(struct bxe_softc *sc,
18204                   uint32_t         func)
18205{
18206    uint32_t i, base = FUNC_ILT_BASE(func);
18207    for (i = base; i < base + ILT_PER_FUNC; i++) {
18208        bxe_ilt_wr(sc, i, 0);
18209    }
18210}
18211
18212static void
18213bxe_reset_func(struct bxe_softc *sc)
18214{
18215    struct bxe_fastpath *fp;
18216    int port = SC_PORT(sc);
18217    int func = SC_FUNC(sc);
18218    int i;
18219
18220    /* Disable the function in the FW */
18221    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18222    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18223    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18224    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18225
18226    /* FP SBs */
18227    FOR_EACH_ETH_QUEUE(sc, i) {
18228        fp = &sc->fp[i];
18229        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18230                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18231                SB_DISABLED);
18232    }
18233
18234    /* SP SB */
18235    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18236            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18237            SB_DISABLED);
18238
18239    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18240        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18241    }
18242
18243    /* Configure IGU */
18244    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18245        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18246        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18247    } else {
18248        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18249        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18250    }
18251
18252    if (CNIC_LOADED(sc)) {
18253        /* Disable Timer scan */
18254        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18255        /*
18256         * Wait for at least 10ms and up to 2 second for the timers
18257         * scan to complete
18258         */
18259        for (i = 0; i < 200; i++) {
18260            DELAY(10000);
18261            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18262                break;
18263        }
18264    }
18265
18266    /* Clear ILT */
18267    bxe_clear_func_ilt(sc, func);
18268
18269    /*
18270     * Timers workaround bug for E2: if this is vnic-3,
18271     * we need to set the entire ilt range for this timers.
18272     */
18273    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18274        struct ilt_client_info ilt_cli;
18275        /* use dummy TM client */
18276        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18277        ilt_cli.start = 0;
18278        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18279        ilt_cli.client_num = ILT_CLIENT_TM;
18280
18281        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18282    }
18283
18284    /* this assumes that reset_port() called before reset_func()*/
18285    if (!CHIP_IS_E1x(sc)) {
18286        bxe_pf_disable(sc);
18287    }
18288
18289    sc->dmae_ready = 0;
18290}
18291
18292static int
18293bxe_gunzip_init(struct bxe_softc *sc)
18294{
18295    return (0);
18296}
18297
18298static void
18299bxe_gunzip_end(struct bxe_softc *sc)
18300{
18301    return;
18302}
18303
18304static int
18305bxe_init_firmware(struct bxe_softc *sc)
18306{
18307    if (CHIP_IS_E1(sc)) {
18308        ecore_init_e1_firmware(sc);
18309        sc->iro_array = e1_iro_arr;
18310    } else if (CHIP_IS_E1H(sc)) {
18311        ecore_init_e1h_firmware(sc);
18312        sc->iro_array = e1h_iro_arr;
18313    } else if (!CHIP_IS_E1x(sc)) {
18314        ecore_init_e2_firmware(sc);
18315        sc->iro_array = e2_iro_arr;
18316    } else {
18317        BLOGE(sc, "Unsupported chip revision\n");
18318        return (-1);
18319    }
18320
18321    return (0);
18322}
18323
18324static void
18325bxe_release_firmware(struct bxe_softc *sc)
18326{
18327    /* Do nothing */
18328    return;
18329}
18330
18331static int
18332ecore_gunzip(struct bxe_softc *sc,
18333             const uint8_t    *zbuf,
18334             int              len)
18335{
18336    /* XXX : Implement... */
18337    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18338    return (FALSE);
18339}
18340
18341static void
18342ecore_reg_wr_ind(struct bxe_softc *sc,
18343                 uint32_t         addr,
18344                 uint32_t         val)
18345{
18346    bxe_reg_wr_ind(sc, addr, val);
18347}
18348
18349static void
18350ecore_write_dmae_phys_len(struct bxe_softc *sc,
18351                          bus_addr_t       phys_addr,
18352                          uint32_t         addr,
18353                          uint32_t         len)
18354{
18355    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18356}
18357
18358void
18359ecore_storm_memset_struct(struct bxe_softc *sc,
18360                          uint32_t         addr,
18361                          size_t           size,
18362                          uint32_t         *data)
18363{
18364    uint8_t i;
18365    for (i = 0; i < size/4; i++) {
18366        REG_WR(sc, addr + (i * 4), data[i]);
18367    }
18368}
18369
18370
18371/*
18372 * character device - ioctl interface definitions
18373 */
18374
18375
18376#include "bxe_dump.h"
18377#include "bxe_ioctl.h"
18378#include <sys/conf.h>
18379
18380static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18381                struct thread *td);
18382
18383static struct cdevsw bxe_cdevsw = {
18384    .d_version = D_VERSION,
18385    .d_ioctl = bxe_eioctl,
18386    .d_name = "bxecnic",
18387};
18388
18389#define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18390
18391
18392#define DUMP_ALL_PRESETS        0x1FFF
18393#define DUMP_MAX_PRESETS        13
18394#define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18395#define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18396#define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18397#define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18398#define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18399
18400#define IS_REG_IN_PRESET(presets, idx)  \
18401                ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18402
18403
18404static int
18405bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18406{
18407    if (CHIP_IS_E1(sc))
18408        return dump_num_registers[0][preset-1];
18409    else if (CHIP_IS_E1H(sc))
18410        return dump_num_registers[1][preset-1];
18411    else if (CHIP_IS_E2(sc))
18412        return dump_num_registers[2][preset-1];
18413    else if (CHIP_IS_E3A0(sc))
18414        return dump_num_registers[3][preset-1];
18415    else if (CHIP_IS_E3B0(sc))
18416        return dump_num_registers[4][preset-1];
18417    else
18418        return 0;
18419}
18420
18421static int
18422bxe_get_total_regs_len32(struct bxe_softc *sc)
18423{
18424    uint32_t preset_idx;
18425    int regdump_len32 = 0;
18426
18427
18428    /* Calculate the total preset regs length */
18429    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18430        regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18431    }
18432
18433    return regdump_len32;
18434}
18435
18436static const uint32_t *
18437__bxe_get_page_addr_ar(struct bxe_softc *sc)
18438{
18439    if (CHIP_IS_E2(sc))
18440        return page_vals_e2;
18441    else if (CHIP_IS_E3(sc))
18442        return page_vals_e3;
18443    else
18444        return NULL;
18445}
18446
18447static uint32_t
18448__bxe_get_page_reg_num(struct bxe_softc *sc)
18449{
18450    if (CHIP_IS_E2(sc))
18451        return PAGE_MODE_VALUES_E2;
18452    else if (CHIP_IS_E3(sc))
18453        return PAGE_MODE_VALUES_E3;
18454    else
18455        return 0;
18456}
18457
18458static const uint32_t *
18459__bxe_get_page_write_ar(struct bxe_softc *sc)
18460{
18461    if (CHIP_IS_E2(sc))
18462        return page_write_regs_e2;
18463    else if (CHIP_IS_E3(sc))
18464        return page_write_regs_e3;
18465    else
18466        return NULL;
18467}
18468
18469static uint32_t
18470__bxe_get_page_write_num(struct bxe_softc *sc)
18471{
18472    if (CHIP_IS_E2(sc))
18473        return PAGE_WRITE_REGS_E2;
18474    else if (CHIP_IS_E3(sc))
18475        return PAGE_WRITE_REGS_E3;
18476    else
18477        return 0;
18478}
18479
18480static const struct reg_addr *
18481__bxe_get_page_read_ar(struct bxe_softc *sc)
18482{
18483    if (CHIP_IS_E2(sc))
18484        return page_read_regs_e2;
18485    else if (CHIP_IS_E3(sc))
18486        return page_read_regs_e3;
18487    else
18488        return NULL;
18489}
18490
18491static uint32_t
18492__bxe_get_page_read_num(struct bxe_softc *sc)
18493{
18494    if (CHIP_IS_E2(sc))
18495        return PAGE_READ_REGS_E2;
18496    else if (CHIP_IS_E3(sc))
18497        return PAGE_READ_REGS_E3;
18498    else
18499        return 0;
18500}
18501
18502static bool
18503bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18504{
18505    if (CHIP_IS_E1(sc))
18506        return IS_E1_REG(reg_info->chips);
18507    else if (CHIP_IS_E1H(sc))
18508        return IS_E1H_REG(reg_info->chips);
18509    else if (CHIP_IS_E2(sc))
18510        return IS_E2_REG(reg_info->chips);
18511    else if (CHIP_IS_E3A0(sc))
18512        return IS_E3A0_REG(reg_info->chips);
18513    else if (CHIP_IS_E3B0(sc))
18514        return IS_E3B0_REG(reg_info->chips);
18515    else
18516        return 0;
18517}
18518
18519static bool
18520bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18521{
18522    if (CHIP_IS_E1(sc))
18523        return IS_E1_REG(wreg_info->chips);
18524    else if (CHIP_IS_E1H(sc))
18525        return IS_E1H_REG(wreg_info->chips);
18526    else if (CHIP_IS_E2(sc))
18527        return IS_E2_REG(wreg_info->chips);
18528    else if (CHIP_IS_E3A0(sc))
18529        return IS_E3A0_REG(wreg_info->chips);
18530    else if (CHIP_IS_E3B0(sc))
18531        return IS_E3B0_REG(wreg_info->chips);
18532    else
18533        return 0;
18534}
18535
18536/**
18537 * bxe_read_pages_regs - read "paged" registers
18538 *
18539 * @bp          device handle
18540 * @p           output buffer
18541 *
18542 * Reads "paged" memories: memories that may only be read by first writing to a
18543 * specific address ("write address") and then reading from a specific address
18544 * ("read address"). There may be more than one write address per "page" and
18545 * more than one read address per write address.
18546 */
18547static void
18548bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18549{
18550    uint32_t i, j, k, n;
18551
18552    /* addresses of the paged registers */
18553    const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18554    /* number of paged registers */
18555    int num_pages = __bxe_get_page_reg_num(sc);
18556    /* write addresses */
18557    const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18558    /* number of write addresses */
18559    int write_num = __bxe_get_page_write_num(sc);
18560    /* read addresses info */
18561    const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18562    /* number of read addresses */
18563    int read_num = __bxe_get_page_read_num(sc);
18564    uint32_t addr, size;
18565
18566    for (i = 0; i < num_pages; i++) {
18567        for (j = 0; j < write_num; j++) {
18568            REG_WR(sc, write_addr[j], page_addr[i]);
18569
18570            for (k = 0; k < read_num; k++) {
18571                if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18572                    size = read_addr[k].size;
18573                    for (n = 0; n < size; n++) {
18574                        addr = read_addr[k].addr + n*4;
18575                        *p++ = REG_RD(sc, addr);
18576                    }
18577                }
18578            }
18579        }
18580    }
18581    return;
18582}
18583
18584
18585static int
18586bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18587{
18588    uint32_t i, j, addr;
18589    const struct wreg_addr *wreg_addr_p = NULL;
18590
18591    if (CHIP_IS_E1(sc))
18592        wreg_addr_p = &wreg_addr_e1;
18593    else if (CHIP_IS_E1H(sc))
18594        wreg_addr_p = &wreg_addr_e1h;
18595    else if (CHIP_IS_E2(sc))
18596        wreg_addr_p = &wreg_addr_e2;
18597    else if (CHIP_IS_E3A0(sc))
18598        wreg_addr_p = &wreg_addr_e3;
18599    else if (CHIP_IS_E3B0(sc))
18600        wreg_addr_p = &wreg_addr_e3b0;
18601    else
18602        return (-1);
18603
18604    /* Read the idle_chk registers */
18605    for (i = 0; i < IDLE_REGS_COUNT; i++) {
18606        if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18607            IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18608            for (j = 0; j < idle_reg_addrs[i].size; j++)
18609                *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18610        }
18611    }
18612
18613    /* Read the regular registers */
18614    for (i = 0; i < REGS_COUNT; i++) {
18615        if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18616            IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18617            for (j = 0; j < reg_addrs[i].size; j++)
18618                *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18619        }
18620    }
18621
18622    /* Read the CAM registers */
18623    if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18624        IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18625        for (i = 0; i < wreg_addr_p->size; i++) {
18626            *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18627
18628            /* In case of wreg_addr register, read additional
18629               registers from read_regs array
18630             */
18631            for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18632                addr = *(wreg_addr_p->read_regs);
18633                *p++ = REG_RD(sc, addr + j*4);
18634            }
18635        }
18636    }
18637
18638    /* Paged registers are supported in E2 & E3 only */
18639    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18640        /* Read "paged" registers */
18641        bxe_read_pages_regs(sc, p, preset);
18642    }
18643
18644    return 0;
18645}
18646
18647int
18648bxe_grc_dump(struct bxe_softc *sc)
18649{
18650    int rval = 0;
18651    uint32_t preset_idx;
18652    uint8_t *buf;
18653    uint32_t size;
18654    struct  dump_header *d_hdr;
18655    uint32_t i;
18656    uint32_t reg_val;
18657    uint32_t reg_addr;
18658    uint32_t cmd_offset;
18659    struct ecore_ilt *ilt = SC_ILT(sc);
18660    struct bxe_fastpath *fp;
18661    struct ilt_client_info *ilt_cli;
18662    int grc_dump_size;
18663
18664
18665    if (sc->grcdump_done || sc->grcdump_started)
18666	return (rval);
18667
18668    sc->grcdump_started = 1;
18669    BLOGI(sc, "Started collecting grcdump\n");
18670
18671    grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18672                sizeof(struct  dump_header);
18673
18674    sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18675
18676    if (sc->grc_dump == NULL) {
18677        BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18678        return(ENOMEM);
18679    }
18680
18681
18682
18683    /* Disable parity attentions as long as following dump may
18684     * cause false alarms by reading never written registers. We
18685     * will re-enable parity attentions right after the dump.
18686     */
18687
18688    /* Disable parity on path 0 */
18689    bxe_pretend_func(sc, 0);
18690
18691    ecore_disable_blocks_parity(sc);
18692
18693    /* Disable parity on path 1 */
18694    bxe_pretend_func(sc, 1);
18695    ecore_disable_blocks_parity(sc);
18696
18697    /* Return to current function */
18698    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18699
18700    buf = sc->grc_dump;
18701    d_hdr = sc->grc_dump;
18702
18703    d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18704    d_hdr->version = BNX2X_DUMP_VERSION;
18705    d_hdr->preset = DUMP_ALL_PRESETS;
18706
18707    if (CHIP_IS_E1(sc)) {
18708        d_hdr->dump_meta_data = DUMP_CHIP_E1;
18709    } else if (CHIP_IS_E1H(sc)) {
18710        d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18711    } else if (CHIP_IS_E2(sc)) {
18712        d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18713                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18714    } else if (CHIP_IS_E3A0(sc)) {
18715        d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18716                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18717    } else if (CHIP_IS_E3B0(sc)) {
18718        d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18719                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18720    }
18721
18722    buf += sizeof(struct  dump_header);
18723
18724    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18725
18726        /* Skip presets with IOR */
18727        if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18728            (preset_idx == 11))
18729            continue;
18730
18731        rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18732
18733	if (rval)
18734            break;
18735
18736        size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18737
18738        buf += size;
18739    }
18740
18741    bxe_pretend_func(sc, 0);
18742    ecore_clear_blocks_parity(sc);
18743    ecore_enable_blocks_parity(sc);
18744
18745    bxe_pretend_func(sc, 1);
18746    ecore_clear_blocks_parity(sc);
18747    ecore_enable_blocks_parity(sc);
18748
18749    /* Return to current function */
18750    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18751
18752
18753
18754    if(sc->state == BXE_STATE_OPEN) {
18755        if(sc->fw_stats_req  != NULL) {
18756    		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18757        			(uintmax_t)sc->fw_stats_req_mapping,
18758        			(uintmax_t)sc->fw_stats_data_mapping,
18759        			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18760		}
18761		if(sc->def_sb != NULL) {
18762			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18763        			(void *)sc->def_sb_dma.paddr, sc->def_sb,
18764        			sizeof(struct host_sp_status_block));
18765		}
18766		if(sc->eq_dma.vaddr != NULL) {
18767    		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18768        			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18769		}
18770		if(sc->sp_dma.vaddr != NULL) {
18771    		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18772        			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18773        			sizeof(struct bxe_slowpath));
18774		}
18775		if(sc->spq_dma.vaddr != NULL) {
18776    		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18777        			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18778		}
18779		if(sc->gz_buf_dma.vaddr != NULL) {
18780    		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18781        			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18782        			FW_BUF_SIZE);
18783		}
18784    	for (i = 0; i < sc->num_queues; i++) {
18785        	fp = &sc->fp[i];
18786			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
18787                        fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
18788                        fp->rx_sge_dma.vaddr != NULL) {
18789
18790				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18791            			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18792            			sizeof(union bxe_host_hc_status_block));
18793				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18794            			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18795            			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18796        		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18797            			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18798            			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18799        		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18800            			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18801            			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18802        		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18803            			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18804            			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18805    		}
18806		}
18807		if(ilt != NULL ) {
18808    		ilt_cli = &ilt->clients[1];
18809			if(ilt->lines != NULL) {
18810    		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18811        		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18812            			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18813            			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18814    		}
18815			}
18816		}
18817
18818
18819    	cmd_offset = DMAE_REG_CMD_MEM;
18820    	for (i = 0; i < 224; i++) {
18821        	reg_addr = (cmd_offset +(i * 4));
18822        	reg_val = REG_RD(sc, reg_addr);
18823        	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18824            			reg_addr, reg_val);
18825    	}
18826	}
18827
18828    BLOGI(sc, "Collection of grcdump done\n");
18829    sc->grcdump_done = 1;
18830    return(rval);
18831}
18832
18833static int
18834bxe_add_cdev(struct bxe_softc *sc)
18835{
18836    sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18837
18838    if (sc->eeprom == NULL) {
18839        BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18840        return (-1);
18841    }
18842
18843    sc->ioctl_dev = make_dev(&bxe_cdevsw,
18844                            sc->ifp->if_dunit,
18845                            UID_ROOT,
18846                            GID_WHEEL,
18847                            0600,
18848                            "%s",
18849                            if_name(sc->ifp));
18850
18851    if (sc->ioctl_dev == NULL) {
18852        free(sc->eeprom, M_DEVBUF);
18853        sc->eeprom = NULL;
18854        return (-1);
18855    }
18856
18857    sc->ioctl_dev->si_drv1 = sc;
18858
18859    return (0);
18860}
18861
18862static void
18863bxe_del_cdev(struct bxe_softc *sc)
18864{
18865    if (sc->ioctl_dev != NULL)
18866        destroy_dev(sc->ioctl_dev);
18867
18868    if (sc->eeprom != NULL) {
18869        free(sc->eeprom, M_DEVBUF);
18870        sc->eeprom = NULL;
18871    }
18872    sc->ioctl_dev = NULL;
18873
18874    return;
18875}
18876
18877static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18878{
18879
18880    if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18881        return FALSE;
18882
18883    return TRUE;
18884}
18885
18886
18887static int
18888bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18889{
18890    int rval = 0;
18891
18892    if(!bxe_is_nvram_accessible(sc)) {
18893        BLOGW(sc, "Cannot access eeprom when interface is down\n");
18894        return (-EAGAIN);
18895    }
18896    rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18897
18898
18899   return (rval);
18900}
18901
18902static int
18903bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18904{
18905    int rval = 0;
18906
18907    if(!bxe_is_nvram_accessible(sc)) {
18908        BLOGW(sc, "Cannot access eeprom when interface is down\n");
18909        return (-EAGAIN);
18910    }
18911    rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18912
18913   return (rval);
18914}
18915
18916static int
18917bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18918{
18919    int rval = 0;
18920
18921    switch (eeprom->eeprom_cmd) {
18922
18923    case BXE_EEPROM_CMD_SET_EEPROM:
18924
18925        rval = copyin(eeprom->eeprom_data, sc->eeprom,
18926                       eeprom->eeprom_data_len);
18927
18928        if (rval)
18929            break;
18930
18931        rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18932                       eeprom->eeprom_data_len);
18933        break;
18934
18935    case BXE_EEPROM_CMD_GET_EEPROM:
18936
18937        rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18938                       eeprom->eeprom_data_len);
18939
18940        if (rval) {
18941            break;
18942        }
18943
18944        rval = copyout(sc->eeprom, eeprom->eeprom_data,
18945                       eeprom->eeprom_data_len);
18946        break;
18947
18948    default:
18949            rval = EINVAL;
18950            break;
18951    }
18952
18953    if (rval) {
18954        BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18955    }
18956
18957    return (rval);
18958}
18959
18960static int
18961bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18962{
18963    uint32_t ext_phy_config;
18964    int port = SC_PORT(sc);
18965    int cfg_idx = bxe_get_link_cfg_idx(sc);
18966
18967    dev_p->supported = sc->port.supported[cfg_idx] |
18968            (sc->port.supported[cfg_idx ^ 1] &
18969            (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18970    dev_p->advertising = sc->port.advertising[cfg_idx];
18971    if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18972        ELINK_ETH_PHY_SFP_1G_FIBER) {
18973        dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18974        dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18975    }
18976    if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18977        !(sc->flags & BXE_MF_FUNC_DIS)) {
18978        dev_p->duplex = sc->link_vars.duplex;
18979        if (IS_MF(sc) && !BXE_NOMCP(sc))
18980            dev_p->speed = bxe_get_mf_speed(sc);
18981        else
18982            dev_p->speed = sc->link_vars.line_speed;
18983    } else {
18984        dev_p->duplex = DUPLEX_UNKNOWN;
18985        dev_p->speed = SPEED_UNKNOWN;
18986    }
18987
18988    dev_p->port = bxe_media_detect(sc);
18989
18990    ext_phy_config = SHMEM_RD(sc,
18991                         dev_info.port_hw_config[port].external_phy_config);
18992    if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18993        PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18994        dev_p->phy_address =  sc->port.phy_addr;
18995    else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18996            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18997        ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18998            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18999        dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19000    else
19001        dev_p->phy_address = 0;
19002
19003    if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19004        dev_p->autoneg = AUTONEG_ENABLE;
19005    else
19006       dev_p->autoneg = AUTONEG_DISABLE;
19007
19008
19009    return 0;
19010}
19011
19012static int
19013bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19014        struct thread *td)
19015{
19016    struct bxe_softc    *sc;
19017    int                 rval = 0;
19018    device_t            pci_dev;
19019    bxe_grcdump_t       *dump = NULL;
19020    int grc_dump_size;
19021    bxe_drvinfo_t   *drv_infop = NULL;
19022    bxe_dev_setting_t  *dev_p;
19023    bxe_dev_setting_t  dev_set;
19024    bxe_get_regs_t  *reg_p;
19025    bxe_reg_rdw_t *reg_rdw_p;
19026    bxe_pcicfg_rdw_t *cfg_rdw_p;
19027    bxe_perm_mac_addr_t *mac_addr_p;
19028
19029
19030    if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19031        return ENXIO;
19032
19033    pci_dev= sc->dev;
19034
19035    dump = (bxe_grcdump_t *)data;
19036
19037    switch(cmd) {
19038
19039        case BXE_GRC_DUMP_SIZE:
19040            dump->pci_func = sc->pcie_func;
19041            dump->grcdump_size =
19042                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19043                     sizeof(struct  dump_header);
19044            break;
19045
19046        case BXE_GRC_DUMP:
19047
19048            grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19049                                sizeof(struct  dump_header);
19050            if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19051                (dump->grcdump_size < grc_dump_size)) {
19052                rval = EINVAL;
19053                break;
19054            }
19055
19056            if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19057                (!sc->grcdump_started)) {
19058                rval =  bxe_grc_dump(sc);
19059            }
19060
19061            if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19062                (sc->grc_dump != NULL))  {
19063                dump->grcdump_dwords = grc_dump_size >> 2;
19064                rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19065                free(sc->grc_dump, M_DEVBUF);
19066                sc->grc_dump = NULL;
19067                sc->grcdump_started = 0;
19068                sc->grcdump_done = 0;
19069            }
19070
19071            break;
19072
19073        case BXE_DRV_INFO:
19074            drv_infop = (bxe_drvinfo_t *)data;
19075            snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19076            snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19077                BXE_DRIVER_VERSION);
19078            snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19079                sc->devinfo.bc_ver_str);
19080            snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19081                "%s", sc->fw_ver_str);
19082            drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19083            drv_infop->reg_dump_len =
19084                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19085                    + sizeof(struct  dump_header);
19086            snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19087                sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19088            break;
19089
19090        case BXE_DEV_SETTING:
19091            dev_p = (bxe_dev_setting_t *)data;
19092            bxe_get_settings(sc, &dev_set);
19093            dev_p->supported = dev_set.supported;
19094            dev_p->advertising = dev_set.advertising;
19095            dev_p->speed = dev_set.speed;
19096            dev_p->duplex = dev_set.duplex;
19097            dev_p->port = dev_set.port;
19098            dev_p->phy_address = dev_set.phy_address;
19099            dev_p->autoneg = dev_set.autoneg;
19100
19101            break;
19102
19103        case BXE_GET_REGS:
19104
19105            reg_p = (bxe_get_regs_t *)data;
19106            grc_dump_size = reg_p->reg_buf_len;
19107
19108            if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19109                bxe_grc_dump(sc);
19110            }
19111            if((sc->grcdump_done) && (sc->grcdump_started) &&
19112                (sc->grc_dump != NULL))  {
19113                rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19114                free(sc->grc_dump, M_DEVBUF);
19115                sc->grc_dump = NULL;
19116                sc->grcdump_started = 0;
19117                sc->grcdump_done = 0;
19118            }
19119
19120            break;
19121
19122        case BXE_RDW_REG:
19123            reg_rdw_p = (bxe_reg_rdw_t *)data;
19124            if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19125                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19126                reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19127
19128            if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19129                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19130                REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19131
19132            break;
19133
19134        case BXE_RDW_PCICFG:
19135            cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19136            if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19137
19138                cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19139                                         cfg_rdw_p->cfg_width);
19140
19141            } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19142                pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19143                            cfg_rdw_p->cfg_width);
19144            } else {
19145                BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19146            }
19147            break;
19148
19149        case BXE_MAC_ADDR:
19150            mac_addr_p = (bxe_perm_mac_addr_t *)data;
19151            snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19152                sc->mac_addr_str);
19153            break;
19154
19155        case BXE_EEPROM:
19156            rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19157            break;
19158
19159
19160        default:
19161            break;
19162    }
19163
19164    return (rval);
19165}
19166