bxe.c revision 305614
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/bxe/bxe.c 305614 2016-09-08 15:05:25Z pfg $");
29
30#define BXE_DRIVER_VERSION "1.78.81"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127    {
128        BRCM_VENDORID,
129        CHIP_NUM_57800,
130        PCI_ANY_ID, PCI_ANY_ID,
131        "QLogic NetXtreme II BCM57800 10GbE"
132    },
133    {
134        BRCM_VENDORID,
135        CHIP_NUM_57800_MF,
136        PCI_ANY_ID, PCI_ANY_ID,
137        "QLogic NetXtreme II BCM57800 MF 10GbE"
138    },
139    {
140        BRCM_VENDORID,
141        CHIP_NUM_57810,
142        PCI_ANY_ID, PCI_ANY_ID,
143        "QLogic NetXtreme II BCM57810 10GbE"
144    },
145    {
146        BRCM_VENDORID,
147        CHIP_NUM_57810_MF,
148        PCI_ANY_ID, PCI_ANY_ID,
149        "QLogic NetXtreme II BCM57810 MF 10GbE"
150    },
151    {
152        BRCM_VENDORID,
153        CHIP_NUM_57811,
154        PCI_ANY_ID, PCI_ANY_ID,
155        "QLogic NetXtreme II BCM57811 10GbE"
156    },
157    {
158        BRCM_VENDORID,
159        CHIP_NUM_57811_MF,
160        PCI_ANY_ID, PCI_ANY_ID,
161        "QLogic NetXtreme II BCM57811 MF 10GbE"
162    },
163    {
164        BRCM_VENDORID,
165        CHIP_NUM_57840_4_10,
166        PCI_ANY_ID, PCI_ANY_ID,
167        "QLogic NetXtreme II BCM57840 4x10GbE"
168    },
169    {
170        BRCM_VENDORID,
171        CHIP_NUM_57840_MF,
172        PCI_ANY_ID, PCI_ANY_ID,
173        "QLogic NetXtreme II BCM57840 MF 10GbE"
174    },
175    {
176        0, 0, 0, 0, NULL
177    }
178};
179
180MALLOC_DECLARE(M_BXE_ILT);
181MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182
183/*
184 * FreeBSD device entry points.
185 */
186static int bxe_probe(device_t);
187static int bxe_attach(device_t);
188static int bxe_detach(device_t);
189static int bxe_shutdown(device_t);
190
191/*
192 * FreeBSD KLD module/device interface event handler method.
193 */
194static device_method_t bxe_methods[] = {
195    /* Device interface (device_if.h) */
196    DEVMETHOD(device_probe,     bxe_probe),
197    DEVMETHOD(device_attach,    bxe_attach),
198    DEVMETHOD(device_detach,    bxe_detach),
199    DEVMETHOD(device_shutdown,  bxe_shutdown),
200    /* Bus interface (bus_if.h) */
201    DEVMETHOD(bus_print_child,  bus_generic_print_child),
202    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203    KOBJMETHOD_END
204};
205
206/*
207 * FreeBSD KLD Module data declaration
208 */
209static driver_t bxe_driver = {
210    "bxe",                   /* module name */
211    bxe_methods,             /* event handler */
212    sizeof(struct bxe_softc) /* extra data */
213};
214
215/*
216 * FreeBSD dev class is needed to manage dev instances and
217 * to associate with a bus type
218 */
219static devclass_t bxe_devclass;
220
221MODULE_DEPEND(bxe, pci, 1, 1, 1);
222MODULE_DEPEND(bxe, ether, 1, 1, 1);
223DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224
225/* resources needed for unloading a previously loaded device */
226
227#define BXE_PREV_WAIT_NEEDED 1
228struct mtx bxe_prev_mtx;
229MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230struct bxe_prev_list_node {
231    LIST_ENTRY(bxe_prev_list_node) node;
232    uint8_t bus;
233    uint8_t slot;
234    uint8_t path;
235    uint8_t aer; /* XXX automatic error recovery */
236    uint8_t undi;
237};
238static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239
240static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241
242/* Tunable device values... */
243
244SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245
246/* Debug */
247unsigned long bxe_debug = 0;
248SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249             &bxe_debug, 0, "Debug logging mode");
250
251/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252static int bxe_interrupt_mode = INTR_MODE_MSIX;
253SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255
256/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257static int bxe_queue_count = 4;
258SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259           &bxe_queue_count, 0, "Multi-Queue queue count");
260
261/* max number of buffers per queue (default RX_BD_USABLE) */
262static int bxe_max_rx_bufs = 0;
263SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265
266/* Host interrupt coalescing RX tick timer (usecs) */
267static int bxe_hc_rx_ticks = 25;
268SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270
271/* Host interrupt coalescing TX tick timer (usecs) */
272static int bxe_hc_tx_ticks = 50;
273SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275
276/* Maximum number of Rx packets to process at a time */
277static int bxe_rx_budget = 0xffffffff;
278SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279           &bxe_rx_budget, 0, "Rx processing budget");
280
281/* Maximum LRO aggregation size */
282static int bxe_max_aggregation_size = 0;
283SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284           &bxe_max_aggregation_size, 0, "max aggregation size");
285
286/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287static int bxe_mrrs = -1;
288SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289           &bxe_mrrs, 0, "PCIe maximum read request size");
290
291/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292static int bxe_autogreeen = 0;
293SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294           &bxe_autogreeen, 0, "AutoGrEEEn support");
295
296/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297static int bxe_udp_rss = 0;
298SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299           &bxe_udp_rss, 0, "UDP RSS support");
300
301
302#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303
304#define STATS_OFFSET32(stat_name)                   \
305    (offsetof(struct bxe_eth_stats, stat_name) / 4)
306
307#define Q_STATS_OFFSET32(stat_name)                   \
308    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309
310static const struct {
311    uint32_t offset;
312    uint32_t size;
313    uint32_t flags;
314#define STATS_FLAGS_PORT  1
315#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
316#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317    char string[STAT_NAME_LEN];
318} bxe_eth_stats_arr[] = {
319    { STATS_OFFSET32(total_bytes_received_hi),
320                8, STATS_FLAGS_BOTH, "rx_bytes" },
321    { STATS_OFFSET32(error_bytes_received_hi),
322                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323    { STATS_OFFSET32(total_unicast_packets_received_hi),
324                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325    { STATS_OFFSET32(total_multicast_packets_received_hi),
326                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327    { STATS_OFFSET32(total_broadcast_packets_received_hi),
328                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330                8, STATS_FLAGS_PORT, "rx_crc_errors" },
331    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332                8, STATS_FLAGS_PORT, "rx_align_errors" },
333    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338                8, STATS_FLAGS_PORT, "rx_fragments" },
339    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340                8, STATS_FLAGS_PORT, "rx_jabbers" },
341    { STATS_OFFSET32(no_buff_discard_hi),
342                8, STATS_FLAGS_BOTH, "rx_discards" },
343    { STATS_OFFSET32(mac_filter_discard),
344                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345    { STATS_OFFSET32(mf_tag_discard),
346                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347    { STATS_OFFSET32(pfc_frames_received_hi),
348                8, STATS_FLAGS_PORT, "pfc_frames_received" },
349    { STATS_OFFSET32(pfc_frames_sent_hi),
350                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351    { STATS_OFFSET32(brb_drop_hi),
352                8, STATS_FLAGS_PORT, "rx_brb_discard" },
353    { STATS_OFFSET32(brb_truncate_hi),
354                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355    { STATS_OFFSET32(pause_frames_received_hi),
356                8, STATS_FLAGS_PORT, "rx_pause_frames" },
357    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359    { STATS_OFFSET32(nig_timer_max),
360                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361    { STATS_OFFSET32(total_bytes_transmitted_hi),
362                8, STATS_FLAGS_BOTH, "tx_bytes" },
363    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364                8, STATS_FLAGS_PORT, "tx_error_bytes" },
365    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372                8, STATS_FLAGS_PORT, "tx_mac_errors" },
373    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376                8, STATS_FLAGS_PORT, "tx_single_collisions" },
377    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380                8, STATS_FLAGS_PORT, "tx_deferred" },
381    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384                8, STATS_FLAGS_PORT, "tx_late_collisions" },
385    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386                8, STATS_FLAGS_PORT, "tx_total_collisions" },
387    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401    { STATS_OFFSET32(pause_frames_sent_hi),
402                8, STATS_FLAGS_PORT, "tx_pause_frames" },
403    { STATS_OFFSET32(total_tpa_aggregations_hi),
404                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407    { STATS_OFFSET32(total_tpa_bytes_hi),
408                8, STATS_FLAGS_FUNC, "tpa_bytes"},
409    { STATS_OFFSET32(eee_tx_lpi),
410                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411    { STATS_OFFSET32(rx_calls),
412                4, STATS_FLAGS_FUNC, "rx_calls"},
413    { STATS_OFFSET32(rx_pkts),
414                4, STATS_FLAGS_FUNC, "rx_pkts"},
415    { STATS_OFFSET32(rx_tpa_pkts),
416                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417    { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418                4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419    { STATS_OFFSET32(rx_bxe_service_rxsgl),
420                4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421    { STATS_OFFSET32(rx_jumbo_sge_pkts),
422                4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423    { STATS_OFFSET32(rx_soft_errors),
424                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425    { STATS_OFFSET32(rx_hw_csum_errors),
426                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431    { STATS_OFFSET32(rx_budget_reached),
432                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433    { STATS_OFFSET32(tx_pkts),
434                4, STATS_FLAGS_FUNC, "tx_pkts"},
435    { STATS_OFFSET32(tx_soft_errors),
436                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443    { STATS_OFFSET32(tx_ofld_frames_lso),
444                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447    { STATS_OFFSET32(tx_encap_failures),
448                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449    { STATS_OFFSET32(tx_hw_queue_full),
450                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451    { STATS_OFFSET32(tx_hw_max_queue_depth),
452                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453    { STATS_OFFSET32(tx_dma_mapping_failure),
454                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455    { STATS_OFFSET32(tx_max_drbr_queue_depth),
456                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457    { STATS_OFFSET32(tx_window_violation_std),
458                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459    { STATS_OFFSET32(tx_window_violation_tso),
460                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461    { STATS_OFFSET32(tx_chain_lost_mbuf),
462                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463    { STATS_OFFSET32(tx_frames_deferred),
464                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465    { STATS_OFFSET32(tx_queue_xoff),
466                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467    { STATS_OFFSET32(mbuf_defrag_attempts),
468                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469    { STATS_OFFSET32(mbuf_defrag_failures),
470                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483    { STATS_OFFSET32(mbuf_alloc_tx),
484                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485    { STATS_OFFSET32(mbuf_alloc_rx),
486                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487    { STATS_OFFSET32(mbuf_alloc_sge),
488                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489    { STATS_OFFSET32(mbuf_alloc_tpa),
490                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
491    { STATS_OFFSET32(tx_queue_full_return),
492                4, STATS_FLAGS_FUNC, "tx_queue_full_return"}
493};
494
495static const struct {
496    uint32_t offset;
497    uint32_t size;
498    char string[STAT_NAME_LEN];
499} bxe_eth_q_stats_arr[] = {
500    { Q_STATS_OFFSET32(total_bytes_received_hi),
501                8, "rx_bytes" },
502    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
503                8, "rx_ucast_packets" },
504    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
505                8, "rx_mcast_packets" },
506    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
507                8, "rx_bcast_packets" },
508    { Q_STATS_OFFSET32(no_buff_discard_hi),
509                8, "rx_discards" },
510    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
511                8, "tx_bytes" },
512    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
513                8, "tx_ucast_packets" },
514    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
515                8, "tx_mcast_packets" },
516    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
517                8, "tx_bcast_packets" },
518    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
519                8, "tpa_aggregations" },
520    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
521                8, "tpa_aggregated_frames"},
522    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
523                8, "tpa_bytes"},
524    { Q_STATS_OFFSET32(rx_calls),
525                4, "rx_calls"},
526    { Q_STATS_OFFSET32(rx_pkts),
527                4, "rx_pkts"},
528    { Q_STATS_OFFSET32(rx_tpa_pkts),
529                4, "rx_tpa_pkts"},
530    { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
531                4, "rx_erroneous_jumbo_sge_pkts"},
532    { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
533                4, "rx_bxe_service_rxsgl"},
534    { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
535                4, "rx_jumbo_sge_pkts"},
536    { Q_STATS_OFFSET32(rx_soft_errors),
537                4, "rx_soft_errors"},
538    { Q_STATS_OFFSET32(rx_hw_csum_errors),
539                4, "rx_hw_csum_errors"},
540    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
541                4, "rx_ofld_frames_csum_ip"},
542    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
543                4, "rx_ofld_frames_csum_tcp_udp"},
544    { Q_STATS_OFFSET32(rx_budget_reached),
545                4, "rx_budget_reached"},
546    { Q_STATS_OFFSET32(tx_pkts),
547                4, "tx_pkts"},
548    { Q_STATS_OFFSET32(tx_soft_errors),
549                4, "tx_soft_errors"},
550    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
551                4, "tx_ofld_frames_csum_ip"},
552    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
553                4, "tx_ofld_frames_csum_tcp"},
554    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
555                4, "tx_ofld_frames_csum_udp"},
556    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
557                4, "tx_ofld_frames_lso"},
558    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
559                4, "tx_ofld_frames_lso_hdr_splits"},
560    { Q_STATS_OFFSET32(tx_encap_failures),
561                4, "tx_encap_failures"},
562    { Q_STATS_OFFSET32(tx_hw_queue_full),
563                4, "tx_hw_queue_full"},
564    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
565                4, "tx_hw_max_queue_depth"},
566    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
567                4, "tx_dma_mapping_failure"},
568    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
569                4, "tx_max_drbr_queue_depth"},
570    { Q_STATS_OFFSET32(tx_window_violation_std),
571                4, "tx_window_violation_std"},
572    { Q_STATS_OFFSET32(tx_window_violation_tso),
573                4, "tx_window_violation_tso"},
574    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
575                4, "tx_chain_lost_mbuf"},
576    { Q_STATS_OFFSET32(tx_frames_deferred),
577                4, "tx_frames_deferred"},
578    { Q_STATS_OFFSET32(tx_queue_xoff),
579                4, "tx_queue_xoff"},
580    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
581                4, "mbuf_defrag_attempts"},
582    { Q_STATS_OFFSET32(mbuf_defrag_failures),
583                4, "mbuf_defrag_failures"},
584    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
585                4, "mbuf_rx_bd_alloc_failed"},
586    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
587                4, "mbuf_rx_bd_mapping_failed"},
588    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
589                4, "mbuf_rx_tpa_alloc_failed"},
590    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
591                4, "mbuf_rx_tpa_mapping_failed"},
592    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
593                4, "mbuf_rx_sge_alloc_failed"},
594    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
595                4, "mbuf_rx_sge_mapping_failed"},
596    { Q_STATS_OFFSET32(mbuf_alloc_tx),
597                4, "mbuf_alloc_tx"},
598    { Q_STATS_OFFSET32(mbuf_alloc_rx),
599                4, "mbuf_alloc_rx"},
600    { Q_STATS_OFFSET32(mbuf_alloc_sge),
601                4, "mbuf_alloc_sge"},
602    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
603                4, "mbuf_alloc_tpa"},
604    { Q_STATS_OFFSET32(tx_queue_full_return),
605                4, "tx_queue_full_return"}
606};
607
608#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
609#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
610
611
612static void    bxe_cmng_fns_init(struct bxe_softc *sc,
613                                 uint8_t          read_cfg,
614                                 uint8_t          cmng_type);
615static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
616static void    storm_memset_cmng(struct bxe_softc *sc,
617                                 struct cmng_init *cmng,
618                                 uint8_t          port);
619static void    bxe_set_reset_global(struct bxe_softc *sc);
620static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
621static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
622                                 int              engine);
623static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
624static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
625                                   uint8_t          *global,
626                                   uint8_t          print);
627static void    bxe_int_disable(struct bxe_softc *sc);
628static int     bxe_release_leader_lock(struct bxe_softc *sc);
629static void    bxe_pf_disable(struct bxe_softc *sc);
630static void    bxe_free_fp_buffers(struct bxe_softc *sc);
631static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
632                                      struct bxe_fastpath *fp,
633                                      uint16_t            rx_bd_prod,
634                                      uint16_t            rx_cq_prod,
635                                      uint16_t            rx_sge_prod);
636static void    bxe_link_report_locked(struct bxe_softc *sc);
637static void    bxe_link_report(struct bxe_softc *sc);
638static void    bxe_link_status_update(struct bxe_softc *sc);
639static void    bxe_periodic_callout_func(void *xsc);
640static void    bxe_periodic_start(struct bxe_softc *sc);
641static void    bxe_periodic_stop(struct bxe_softc *sc);
642static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
643                                    uint16_t prev_index,
644                                    uint16_t index);
645static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
646                                     int                 queue);
647static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
648                                     uint16_t            index);
649static uint8_t bxe_txeof(struct bxe_softc *sc,
650                         struct bxe_fastpath *fp);
651static void    bxe_task_fp(struct bxe_fastpath *fp);
652static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
653                                     struct mbuf      *m,
654                                     uint8_t          contents);
655static int     bxe_alloc_mem(struct bxe_softc *sc);
656static void    bxe_free_mem(struct bxe_softc *sc);
657static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
658static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
659static int     bxe_interrupt_attach(struct bxe_softc *sc);
660static void    bxe_interrupt_detach(struct bxe_softc *sc);
661static void    bxe_set_rx_mode(struct bxe_softc *sc);
662static int     bxe_init_locked(struct bxe_softc *sc);
663static int     bxe_stop_locked(struct bxe_softc *sc);
664static __noinline int bxe_nic_load(struct bxe_softc *sc,
665                                   int              load_mode);
666static __noinline int bxe_nic_unload(struct bxe_softc *sc,
667                                     uint32_t         unload_mode,
668                                     uint8_t          keep_link);
669
670static void bxe_handle_sp_tq(void *context, int pending);
671static void bxe_handle_fp_tq(void *context, int pending);
672
673static int bxe_add_cdev(struct bxe_softc *sc);
674static void bxe_del_cdev(struct bxe_softc *sc);
675static int bxe_alloc_buf_rings(struct bxe_softc *sc);
676static void bxe_free_buf_rings(struct bxe_softc *sc);
677
678/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
679uint32_t
680calc_crc32(uint8_t  *crc32_packet,
681           uint32_t crc32_length,
682           uint32_t crc32_seed,
683           uint8_t  complement)
684{
685   uint32_t byte         = 0;
686   uint32_t bit          = 0;
687   uint8_t  msb          = 0;
688   uint32_t temp         = 0;
689   uint32_t shft         = 0;
690   uint8_t  current_byte = 0;
691   uint32_t crc32_result = crc32_seed;
692   const uint32_t CRC32_POLY = 0x1edc6f41;
693
694   if ((crc32_packet == NULL) ||
695       (crc32_length == 0) ||
696       ((crc32_length % 8) != 0))
697    {
698        return (crc32_result);
699    }
700
701    for (byte = 0; byte < crc32_length; byte = byte + 1)
702    {
703        current_byte = crc32_packet[byte];
704        for (bit = 0; bit < 8; bit = bit + 1)
705        {
706            /* msb = crc32_result[31]; */
707            msb = (uint8_t)(crc32_result >> 31);
708
709            crc32_result = crc32_result << 1;
710
711            /* it (msb != current_byte[bit]) */
712            if (msb != (0x1 & (current_byte >> bit)))
713            {
714                crc32_result = crc32_result ^ CRC32_POLY;
715                /* crc32_result[0] = 1 */
716                crc32_result |= 1;
717            }
718        }
719    }
720
721    /* Last step is to:
722     * 1. "mirror" every bit
723     * 2. swap the 4 bytes
724     * 3. complement each bit
725     */
726
727    /* Mirror */
728    temp = crc32_result;
729    shft = sizeof(crc32_result) * 8 - 1;
730
731    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
732    {
733        temp <<= 1;
734        temp |= crc32_result & 1;
735        shft-- ;
736    }
737
738    /* temp[31-bit] = crc32_result[bit] */
739    temp <<= shft;
740
741    /* Swap */
742    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
743    {
744        uint32_t t0, t1, t2, t3;
745        t0 = (0x000000ff & (temp >> 24));
746        t1 = (0x0000ff00 & (temp >> 8));
747        t2 = (0x00ff0000 & (temp << 8));
748        t3 = (0xff000000 & (temp << 24));
749        crc32_result = t0 | t1 | t2 | t3;
750    }
751
752    /* Complement */
753    if (complement)
754    {
755        crc32_result = ~crc32_result;
756    }
757
758    return (crc32_result);
759}
760
761int
762bxe_test_bit(int                    nr,
763             volatile unsigned long *addr)
764{
765    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
766}
767
768void
769bxe_set_bit(unsigned int           nr,
770            volatile unsigned long *addr)
771{
772    atomic_set_acq_long(addr, (1 << nr));
773}
774
775void
776bxe_clear_bit(int                    nr,
777              volatile unsigned long *addr)
778{
779    atomic_clear_acq_long(addr, (1 << nr));
780}
781
782int
783bxe_test_and_set_bit(int                    nr,
784                       volatile unsigned long *addr)
785{
786    unsigned long x;
787    nr = (1 << nr);
788    do {
789        x = *addr;
790    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
791    // if (x & nr) bit_was_set; else bit_was_not_set;
792    return (x & nr);
793}
794
795int
796bxe_test_and_clear_bit(int                    nr,
797                       volatile unsigned long *addr)
798{
799    unsigned long x;
800    nr = (1 << nr);
801    do {
802        x = *addr;
803    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
804    // if (x & nr) bit_was_set; else bit_was_not_set;
805    return (x & nr);
806}
807
808int
809bxe_cmpxchg(volatile int *addr,
810            int          old,
811            int          new)
812{
813    int x;
814    do {
815        x = *addr;
816    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
817    return (x);
818}
819
820/*
821 * Get DMA memory from the OS.
822 *
823 * Validates that the OS has provided DMA buffers in response to a
824 * bus_dmamap_load call and saves the physical address of those buffers.
825 * When the callback is used the OS will return 0 for the mapping function
826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
827 * failures back to the caller.
828 *
829 * Returns:
830 *   Nothing.
831 */
832static void
833bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
834{
835    struct bxe_dma *dma = arg;
836
837    if (error) {
838        dma->paddr = 0;
839        dma->nseg  = 0;
840        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
841    } else {
842        dma->paddr = segs->ds_addr;
843        dma->nseg  = nseg;
844    }
845}
846
847/*
848 * Allocate a block of memory and map it for DMA. No partial completions
849 * allowed and release any resources acquired if we can't acquire all
850 * resources.
851 *
852 * Returns:
853 *   0 = Success, !0 = Failure
854 */
855int
856bxe_dma_alloc(struct bxe_softc *sc,
857              bus_size_t       size,
858              struct bxe_dma   *dma,
859              const char       *msg)
860{
861    int rc;
862
863    if (dma->size > 0) {
864        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
865              (unsigned long)dma->size);
866        return (1);
867    }
868
869    memset(dma, 0, sizeof(*dma)); /* sanity */
870    dma->sc   = sc;
871    dma->size = size;
872    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
873
874    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
875                            BCM_PAGE_SIZE,      /* alignment */
876                            0,                  /* boundary limit */
877                            BUS_SPACE_MAXADDR,  /* restricted low */
878                            BUS_SPACE_MAXADDR,  /* restricted hi */
879                            NULL,               /* addr filter() */
880                            NULL,               /* addr filter() arg */
881                            size,               /* max map size */
882                            1,                  /* num discontinuous */
883                            size,               /* max seg size */
884                            BUS_DMA_ALLOCNOW,   /* flags */
885                            NULL,               /* lock() */
886                            NULL,               /* lock() arg */
887                            &dma->tag);         /* returned dma tag */
888    if (rc != 0) {
889        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
890        memset(dma, 0, sizeof(*dma));
891        return (1);
892    }
893
894    rc = bus_dmamem_alloc(dma->tag,
895                          (void **)&dma->vaddr,
896                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
897                          &dma->map);
898    if (rc != 0) {
899        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
900        bus_dma_tag_destroy(dma->tag);
901        memset(dma, 0, sizeof(*dma));
902        return (1);
903    }
904
905    rc = bus_dmamap_load(dma->tag,
906                         dma->map,
907                         dma->vaddr,
908                         size,
909                         bxe_dma_map_addr, /* BLOGD in here */
910                         dma,
911                         BUS_DMA_NOWAIT);
912    if (rc != 0) {
913        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
914        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
915        bus_dma_tag_destroy(dma->tag);
916        memset(dma, 0, sizeof(*dma));
917        return (1);
918    }
919
920    return (0);
921}
922
923void
924bxe_dma_free(struct bxe_softc *sc,
925             struct bxe_dma   *dma)
926{
927    if (dma->size > 0) {
928        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
929
930        bus_dmamap_sync(dma->tag, dma->map,
931                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
932        bus_dmamap_unload(dma->tag, dma->map);
933        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
934        bus_dma_tag_destroy(dma->tag);
935    }
936
937    memset(dma, 0, sizeof(*dma));
938}
939
940/*
941 * These indirect read and write routines are only during init.
942 * The locking is handled by the MCP.
943 */
944
945void
946bxe_reg_wr_ind(struct bxe_softc *sc,
947               uint32_t         addr,
948               uint32_t         val)
949{
950    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
951    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
952    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
953}
954
955uint32_t
956bxe_reg_rd_ind(struct bxe_softc *sc,
957               uint32_t         addr)
958{
959    uint32_t val;
960
961    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
962    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
963    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
964
965    return (val);
966}
967
968static int
969bxe_acquire_hw_lock(struct bxe_softc *sc,
970                    uint32_t         resource)
971{
972    uint32_t lock_status;
973    uint32_t resource_bit = (1 << resource);
974    int func = SC_FUNC(sc);
975    uint32_t hw_lock_control_reg;
976    int cnt;
977
978    /* validate the resource is within range */
979    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
980        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
981            " resource_bit 0x%x\n", resource, resource_bit);
982        return (-1);
983    }
984
985    if (func <= 5) {
986        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
987    } else {
988        hw_lock_control_reg =
989                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
990    }
991
992    /* validate the resource is not already taken */
993    lock_status = REG_RD(sc, hw_lock_control_reg);
994    if (lock_status & resource_bit) {
995        BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
996              resource, lock_status, resource_bit);
997        return (-1);
998    }
999
1000    /* try every 5ms for 5 seconds */
1001    for (cnt = 0; cnt < 1000; cnt++) {
1002        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1003        lock_status = REG_RD(sc, hw_lock_control_reg);
1004        if (lock_status & resource_bit) {
1005            return (0);
1006        }
1007        DELAY(5000);
1008    }
1009
1010    BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1011        resource, resource_bit);
1012    return (-1);
1013}
1014
1015static int
1016bxe_release_hw_lock(struct bxe_softc *sc,
1017                    uint32_t         resource)
1018{
1019    uint32_t lock_status;
1020    uint32_t resource_bit = (1 << resource);
1021    int func = SC_FUNC(sc);
1022    uint32_t hw_lock_control_reg;
1023
1024    /* validate the resource is within range */
1025    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1026        BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1027            " resource_bit 0x%x\n", resource, resource_bit);
1028        return (-1);
1029    }
1030
1031    if (func <= 5) {
1032        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1033    } else {
1034        hw_lock_control_reg =
1035                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1036    }
1037
1038    /* validate the resource is currently taken */
1039    lock_status = REG_RD(sc, hw_lock_control_reg);
1040    if (!(lock_status & resource_bit)) {
1041        BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1042              resource, lock_status, resource_bit);
1043        return (-1);
1044    }
1045
1046    REG_WR(sc, hw_lock_control_reg, resource_bit);
1047    return (0);
1048}
1049static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1050{
1051	BXE_PHY_LOCK(sc);
1052	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1053}
1054
1055static void bxe_release_phy_lock(struct bxe_softc *sc)
1056{
1057	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1058	BXE_PHY_UNLOCK(sc);
1059}
1060/*
1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1062 * had we done things the other way around, if two pfs from the same port
1063 * would attempt to access nvram at the same time, we could run into a
1064 * scenario such as:
1065 * pf A takes the port lock.
1066 * pf B succeeds in taking the same lock since they are from the same port.
1067 * pf A takes the per pf misc lock. Performs eeprom access.
1068 * pf A finishes. Unlocks the per pf misc lock.
1069 * Pf B takes the lock and proceeds to perform it's own access.
1070 * pf A unlocks the per port lock, while pf B is still working (!).
1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1072 * access corrupted by pf B).*
1073 */
1074static int
1075bxe_acquire_nvram_lock(struct bxe_softc *sc)
1076{
1077    int port = SC_PORT(sc);
1078    int count, i;
1079    uint32_t val = 0;
1080
1081    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1082    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1083
1084    /* adjust timeout for emulation/FPGA */
1085    count = NVRAM_TIMEOUT_COUNT;
1086    if (CHIP_REV_IS_SLOW(sc)) {
1087        count *= 100;
1088    }
1089
1090    /* request access to nvram interface */
1091    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1092           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1093
1094    for (i = 0; i < count*10; i++) {
1095        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1096        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1097            break;
1098        }
1099
1100        DELAY(5);
1101    }
1102
1103    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1104        BLOGE(sc, "Cannot get access to nvram interface "
1105            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1106            port, val);
1107        return (-1);
1108    }
1109
1110    return (0);
1111}
1112
1113static int
1114bxe_release_nvram_lock(struct bxe_softc *sc)
1115{
1116    int port = SC_PORT(sc);
1117    int count, i;
1118    uint32_t val = 0;
1119
1120    /* adjust timeout for emulation/FPGA */
1121    count = NVRAM_TIMEOUT_COUNT;
1122    if (CHIP_REV_IS_SLOW(sc)) {
1123        count *= 100;
1124    }
1125
1126    /* relinquish nvram interface */
1127    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1128           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1129
1130    for (i = 0; i < count*10; i++) {
1131        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1132        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1133            break;
1134        }
1135
1136        DELAY(5);
1137    }
1138
1139    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1140        BLOGE(sc, "Cannot free access to nvram interface "
1141            "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1142            port, val);
1143        return (-1);
1144    }
1145
1146    /* release HW lock: protect against other PFs in PF Direct Assignment */
1147    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1148
1149    return (0);
1150}
1151
1152static void
1153bxe_enable_nvram_access(struct bxe_softc *sc)
1154{
1155    uint32_t val;
1156
1157    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1158
1159    /* enable both bits, even on read */
1160    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1161           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1162}
1163
1164static void
1165bxe_disable_nvram_access(struct bxe_softc *sc)
1166{
1167    uint32_t val;
1168
1169    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1170
1171    /* disable both bits, even after read */
1172    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1173           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1174                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1175}
1176
1177static int
1178bxe_nvram_read_dword(struct bxe_softc *sc,
1179                     uint32_t         offset,
1180                     uint32_t         *ret_val,
1181                     uint32_t         cmd_flags)
1182{
1183    int count, i, rc;
1184    uint32_t val;
1185
1186    /* build the command word */
1187    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1188
1189    /* need to clear DONE bit separately */
1190    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1191
1192    /* address of the NVRAM to read from */
1193    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1194           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1195
1196    /* issue a read command */
1197    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1198
1199    /* adjust timeout for emulation/FPGA */
1200    count = NVRAM_TIMEOUT_COUNT;
1201    if (CHIP_REV_IS_SLOW(sc)) {
1202        count *= 100;
1203    }
1204
1205    /* wait for completion */
1206    *ret_val = 0;
1207    rc = -1;
1208    for (i = 0; i < count; i++) {
1209        DELAY(5);
1210        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1211
1212        if (val & MCPR_NVM_COMMAND_DONE) {
1213            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1214            /* we read nvram data in cpu order
1215             * but ethtool sees it as an array of bytes
1216             * converting to big-endian will do the work
1217             */
1218            *ret_val = htobe32(val);
1219            rc = 0;
1220            break;
1221        }
1222    }
1223
1224    if (rc == -1) {
1225        BLOGE(sc, "nvram read timeout expired "
1226            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1227            offset, cmd_flags, val);
1228    }
1229
1230    return (rc);
1231}
1232
1233static int
1234bxe_nvram_read(struct bxe_softc *sc,
1235               uint32_t         offset,
1236               uint8_t          *ret_buf,
1237               int              buf_size)
1238{
1239    uint32_t cmd_flags;
1240    uint32_t val;
1241    int rc;
1242
1243    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1244        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1245              offset, buf_size);
1246        return (-1);
1247    }
1248
1249    if ((offset + buf_size) > sc->devinfo.flash_size) {
1250        BLOGE(sc, "Invalid parameter, "
1251                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1252              offset, buf_size, sc->devinfo.flash_size);
1253        return (-1);
1254    }
1255
1256    /* request access to nvram interface */
1257    rc = bxe_acquire_nvram_lock(sc);
1258    if (rc) {
1259        return (rc);
1260    }
1261
1262    /* enable access to nvram interface */
1263    bxe_enable_nvram_access(sc);
1264
1265    /* read the first word(s) */
1266    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1267    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1268        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1269        memcpy(ret_buf, &val, 4);
1270
1271        /* advance to the next dword */
1272        offset += sizeof(uint32_t);
1273        ret_buf += sizeof(uint32_t);
1274        buf_size -= sizeof(uint32_t);
1275        cmd_flags = 0;
1276    }
1277
1278    if (rc == 0) {
1279        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1280        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1281        memcpy(ret_buf, &val, 4);
1282    }
1283
1284    /* disable access to nvram interface */
1285    bxe_disable_nvram_access(sc);
1286    bxe_release_nvram_lock(sc);
1287
1288    return (rc);
1289}
1290
1291static int
1292bxe_nvram_write_dword(struct bxe_softc *sc,
1293                      uint32_t         offset,
1294                      uint32_t         val,
1295                      uint32_t         cmd_flags)
1296{
1297    int count, i, rc;
1298
1299    /* build the command word */
1300    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1301
1302    /* need to clear DONE bit separately */
1303    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1304
1305    /* write the data */
1306    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1307
1308    /* address of the NVRAM to write to */
1309    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1310           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1311
1312    /* issue the write command */
1313    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1314
1315    /* adjust timeout for emulation/FPGA */
1316    count = NVRAM_TIMEOUT_COUNT;
1317    if (CHIP_REV_IS_SLOW(sc)) {
1318        count *= 100;
1319    }
1320
1321    /* wait for completion */
1322    rc = -1;
1323    for (i = 0; i < count; i++) {
1324        DELAY(5);
1325        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1326        if (val & MCPR_NVM_COMMAND_DONE) {
1327            rc = 0;
1328            break;
1329        }
1330    }
1331
1332    if (rc == -1) {
1333        BLOGE(sc, "nvram write timeout expired "
1334            "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1335            offset, cmd_flags, val);
1336    }
1337
1338    return (rc);
1339}
1340
1341#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1342
1343static int
1344bxe_nvram_write1(struct bxe_softc *sc,
1345                 uint32_t         offset,
1346                 uint8_t          *data_buf,
1347                 int              buf_size)
1348{
1349    uint32_t cmd_flags;
1350    uint32_t align_offset;
1351    uint32_t val;
1352    int rc;
1353
1354    if ((offset + buf_size) > sc->devinfo.flash_size) {
1355        BLOGE(sc, "Invalid parameter, "
1356                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1357              offset, buf_size, sc->devinfo.flash_size);
1358        return (-1);
1359    }
1360
1361    /* request access to nvram interface */
1362    rc = bxe_acquire_nvram_lock(sc);
1363    if (rc) {
1364        return (rc);
1365    }
1366
1367    /* enable access to nvram interface */
1368    bxe_enable_nvram_access(sc);
1369
1370    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1371    align_offset = (offset & ~0x03);
1372    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1373
1374    if (rc == 0) {
1375        val &= ~(0xff << BYTE_OFFSET(offset));
1376        val |= (*data_buf << BYTE_OFFSET(offset));
1377
1378        /* nvram data is returned as an array of bytes
1379         * convert it back to cpu order
1380         */
1381        val = be32toh(val);
1382
1383        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1384    }
1385
1386    /* disable access to nvram interface */
1387    bxe_disable_nvram_access(sc);
1388    bxe_release_nvram_lock(sc);
1389
1390    return (rc);
1391}
1392
1393static int
1394bxe_nvram_write(struct bxe_softc *sc,
1395                uint32_t         offset,
1396                uint8_t          *data_buf,
1397                int              buf_size)
1398{
1399    uint32_t cmd_flags;
1400    uint32_t val;
1401    uint32_t written_so_far;
1402    int rc;
1403
1404    if (buf_size == 1) {
1405        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1406    }
1407
1408    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1409        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1410              offset, buf_size);
1411        return (-1);
1412    }
1413
1414    if (buf_size == 0) {
1415        return (0); /* nothing to do */
1416    }
1417
1418    if ((offset + buf_size) > sc->devinfo.flash_size) {
1419        BLOGE(sc, "Invalid parameter, "
1420                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1421              offset, buf_size, sc->devinfo.flash_size);
1422        return (-1);
1423    }
1424
1425    /* request access to nvram interface */
1426    rc = bxe_acquire_nvram_lock(sc);
1427    if (rc) {
1428        return (rc);
1429    }
1430
1431    /* enable access to nvram interface */
1432    bxe_enable_nvram_access(sc);
1433
1434    written_so_far = 0;
1435    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1436    while ((written_so_far < buf_size) && (rc == 0)) {
1437        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1438            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1439        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1440            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1441        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1442            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1443        }
1444
1445        memcpy(&val, data_buf, 4);
1446
1447        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1448
1449        /* advance to the next dword */
1450        offset += sizeof(uint32_t);
1451        data_buf += sizeof(uint32_t);
1452        written_so_far += sizeof(uint32_t);
1453        cmd_flags = 0;
1454    }
1455
1456    /* disable access to nvram interface */
1457    bxe_disable_nvram_access(sc);
1458    bxe_release_nvram_lock(sc);
1459
1460    return (rc);
1461}
1462
1463/* copy command into DMAE command memory and set DMAE command Go */
1464void
1465bxe_post_dmae(struct bxe_softc    *sc,
1466              struct dmae_cmd *dmae,
1467              int                 idx)
1468{
1469    uint32_t cmd_offset;
1470    int i;
1471
1472    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1473    for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1474        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1475    }
1476
1477    REG_WR(sc, dmae_reg_go_c[idx], 1);
1478}
1479
1480uint32_t
1481bxe_dmae_opcode_add_comp(uint32_t opcode,
1482                         uint8_t  comp_type)
1483{
1484    return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1485                      DMAE_CMD_C_TYPE_ENABLE));
1486}
1487
1488uint32_t
1489bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1490{
1491    return (opcode & ~DMAE_CMD_SRC_RESET);
1492}
1493
1494uint32_t
1495bxe_dmae_opcode(struct bxe_softc *sc,
1496                uint8_t          src_type,
1497                uint8_t          dst_type,
1498                uint8_t          with_comp,
1499                uint8_t          comp_type)
1500{
1501    uint32_t opcode = 0;
1502
1503    opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1504               (dst_type << DMAE_CMD_DST_SHIFT));
1505
1506    opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1507
1508    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1509
1510    opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1511               (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1512
1513    opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1514
1515#ifdef __BIG_ENDIAN
1516    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1517#else
1518    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1519#endif
1520
1521    if (with_comp) {
1522        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1523    }
1524
1525    return (opcode);
1526}
1527
1528static void
1529bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1530                        struct dmae_cmd *dmae,
1531                        uint8_t             src_type,
1532                        uint8_t             dst_type)
1533{
1534    memset(dmae, 0, sizeof(struct dmae_cmd));
1535
1536    /* set the opcode */
1537    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1538                                   TRUE, DMAE_COMP_PCI);
1539
1540    /* fill in the completion parameters */
1541    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1542    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1543    dmae->comp_val     = DMAE_COMP_VAL;
1544}
1545
1546/* issue a DMAE command over the init channel and wait for completion */
1547static int
1548bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1549                         struct dmae_cmd *dmae)
1550{
1551    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1552    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1553
1554    BXE_DMAE_LOCK(sc);
1555
1556    /* reset completion */
1557    *wb_comp = 0;
1558
1559    /* post the command on the channel used for initializations */
1560    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1561
1562    /* wait for completion */
1563    DELAY(5);
1564
1565    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1566        if (!timeout ||
1567            (sc->recovery_state != BXE_RECOVERY_DONE &&
1568             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1569            BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1570                *wb_comp, sc->recovery_state);
1571            BXE_DMAE_UNLOCK(sc);
1572            return (DMAE_TIMEOUT);
1573        }
1574
1575        timeout--;
1576        DELAY(50);
1577    }
1578
1579    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1580        BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1581                *wb_comp, sc->recovery_state);
1582        BXE_DMAE_UNLOCK(sc);
1583        return (DMAE_PCI_ERROR);
1584    }
1585
1586    BXE_DMAE_UNLOCK(sc);
1587    return (0);
1588}
1589
1590void
1591bxe_read_dmae(struct bxe_softc *sc,
1592              uint32_t         src_addr,
1593              uint32_t         len32)
1594{
1595    struct dmae_cmd dmae;
1596    uint32_t *data;
1597    int i, rc;
1598
1599    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1600
1601    if (!sc->dmae_ready) {
1602        data = BXE_SP(sc, wb_data[0]);
1603
1604        for (i = 0; i < len32; i++) {
1605            data[i] = (CHIP_IS_E1(sc)) ?
1606                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1607                          REG_RD(sc, (src_addr + (i * 4)));
1608        }
1609
1610        return;
1611    }
1612
1613    /* set opcode and fixed command fields */
1614    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1615
1616    /* fill in addresses and len */
1617    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1618    dmae.src_addr_hi = 0;
1619    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1620    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1621    dmae.len         = len32;
1622
1623    /* issue the command and wait for completion */
1624    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1625        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1626    }
1627}
1628
1629void
1630bxe_write_dmae(struct bxe_softc *sc,
1631               bus_addr_t       dma_addr,
1632               uint32_t         dst_addr,
1633               uint32_t         len32)
1634{
1635    struct dmae_cmd dmae;
1636    int rc;
1637
1638    if (!sc->dmae_ready) {
1639        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1640
1641        if (CHIP_IS_E1(sc)) {
1642            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1643        } else {
1644            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1645        }
1646
1647        return;
1648    }
1649
1650    /* set opcode and fixed command fields */
1651    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1652
1653    /* fill in addresses and len */
1654    dmae.src_addr_lo = U64_LO(dma_addr);
1655    dmae.src_addr_hi = U64_HI(dma_addr);
1656    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1657    dmae.dst_addr_hi = 0;
1658    dmae.len         = len32;
1659
1660    /* issue the command and wait for completion */
1661    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1662        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1663    }
1664}
1665
1666void
1667bxe_write_dmae_phys_len(struct bxe_softc *sc,
1668                        bus_addr_t       phys_addr,
1669                        uint32_t         addr,
1670                        uint32_t         len)
1671{
1672    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1673    int offset = 0;
1674
1675    while (len > dmae_wr_max) {
1676        bxe_write_dmae(sc,
1677                       (phys_addr + offset), /* src DMA address */
1678                       (addr + offset),      /* dst GRC address */
1679                       dmae_wr_max);
1680        offset += (dmae_wr_max * 4);
1681        len -= dmae_wr_max;
1682    }
1683
1684    bxe_write_dmae(sc,
1685                   (phys_addr + offset), /* src DMA address */
1686                   (addr + offset),      /* dst GRC address */
1687                   len);
1688}
1689
1690void
1691bxe_set_ctx_validation(struct bxe_softc   *sc,
1692                       struct eth_context *cxt,
1693                       uint32_t           cid)
1694{
1695    /* ustorm cxt validation */
1696    cxt->ustorm_ag_context.cdu_usage =
1697        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1698            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1699    /* xcontext validation */
1700    cxt->xstorm_ag_context.cdu_reserved =
1701        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1702            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1703}
1704
1705static void
1706bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1707                            uint8_t          port,
1708                            uint8_t          fw_sb_id,
1709                            uint8_t          sb_index,
1710                            uint8_t          ticks)
1711{
1712    uint32_t addr =
1713        (BAR_CSTRORM_INTMEM +
1714         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1715
1716    REG_WR8(sc, addr, ticks);
1717
1718    BLOGD(sc, DBG_LOAD,
1719          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1720          port, fw_sb_id, sb_index, ticks);
1721}
1722
1723static void
1724bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1725                            uint8_t          port,
1726                            uint16_t         fw_sb_id,
1727                            uint8_t          sb_index,
1728                            uint8_t          disable)
1729{
1730    uint32_t enable_flag =
1731        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1732    uint32_t addr =
1733        (BAR_CSTRORM_INTMEM +
1734         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1735    uint8_t flags;
1736
1737    /* clear and set */
1738    flags = REG_RD8(sc, addr);
1739    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1740    flags |= enable_flag;
1741    REG_WR8(sc, addr, flags);
1742
1743    BLOGD(sc, DBG_LOAD,
1744          "port %d fw_sb_id %d sb_index %d disable %d\n",
1745          port, fw_sb_id, sb_index, disable);
1746}
1747
1748void
1749bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1750                             uint8_t          fw_sb_id,
1751                             uint8_t          sb_index,
1752                             uint8_t          disable,
1753                             uint16_t         usec)
1754{
1755    int port = SC_PORT(sc);
1756    uint8_t ticks = (usec / 4); /* XXX ??? */
1757
1758    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1759
1760    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1761    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1762}
1763
1764void
1765elink_cb_udelay(struct bxe_softc *sc,
1766                uint32_t         usecs)
1767{
1768    DELAY(usecs);
1769}
1770
1771uint32_t
1772elink_cb_reg_read(struct bxe_softc *sc,
1773                  uint32_t         reg_addr)
1774{
1775    return (REG_RD(sc, reg_addr));
1776}
1777
1778void
1779elink_cb_reg_write(struct bxe_softc *sc,
1780                   uint32_t         reg_addr,
1781                   uint32_t         val)
1782{
1783    REG_WR(sc, reg_addr, val);
1784}
1785
1786void
1787elink_cb_reg_wb_write(struct bxe_softc *sc,
1788                      uint32_t         offset,
1789                      uint32_t         *wb_write,
1790                      uint16_t         len)
1791{
1792    REG_WR_DMAE(sc, offset, wb_write, len);
1793}
1794
1795void
1796elink_cb_reg_wb_read(struct bxe_softc *sc,
1797                     uint32_t         offset,
1798                     uint32_t         *wb_write,
1799                     uint16_t         len)
1800{
1801    REG_RD_DMAE(sc, offset, wb_write, len);
1802}
1803
1804uint8_t
1805elink_cb_path_id(struct bxe_softc *sc)
1806{
1807    return (SC_PATH(sc));
1808}
1809
1810void
1811elink_cb_event_log(struct bxe_softc     *sc,
1812                   const elink_log_id_t elink_log_id,
1813                   ...)
1814{
1815    /* XXX */
1816    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1817}
1818
1819static int
1820bxe_set_spio(struct bxe_softc *sc,
1821             int              spio,
1822             uint32_t         mode)
1823{
1824    uint32_t spio_reg;
1825
1826    /* Only 2 SPIOs are configurable */
1827    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1828        BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1829        return (-1);
1830    }
1831
1832    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1833
1834    /* read SPIO and mask except the float bits */
1835    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1836
1837    switch (mode) {
1838    case MISC_SPIO_OUTPUT_LOW:
1839        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1840        /* clear FLOAT and set CLR */
1841        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1842        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1843        break;
1844
1845    case MISC_SPIO_OUTPUT_HIGH:
1846        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1847        /* clear FLOAT and set SET */
1848        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1849        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1850        break;
1851
1852    case MISC_SPIO_INPUT_HI_Z:
1853        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1854        /* set FLOAT */
1855        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1856        break;
1857
1858    default:
1859        break;
1860    }
1861
1862    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1863    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1864
1865    return (0);
1866}
1867
1868static int
1869bxe_gpio_read(struct bxe_softc *sc,
1870              int              gpio_num,
1871              uint8_t          port)
1872{
1873    /* The GPIO should be swapped if swap register is set and active */
1874    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1875                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1876    int gpio_shift = (gpio_num +
1877                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1878    uint32_t gpio_mask = (1 << gpio_shift);
1879    uint32_t gpio_reg;
1880
1881    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882        BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1883            " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1884            gpio_mask);
1885        return (-1);
1886    }
1887
1888    /* read GPIO value */
1889    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1890
1891    /* get the requested pin value */
1892    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1893}
1894
1895static int
1896bxe_gpio_write(struct bxe_softc *sc,
1897               int              gpio_num,
1898               uint32_t         mode,
1899               uint8_t          port)
1900{
1901    /* The GPIO should be swapped if swap register is set and active */
1902    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1903                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1904    int gpio_shift = (gpio_num +
1905                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1906    uint32_t gpio_mask = (1 << gpio_shift);
1907    uint32_t gpio_reg;
1908
1909    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1910        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1911            " gpio_shift %d gpio_mask 0x%x\n",
1912            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1913        return (-1);
1914    }
1915
1916    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1917
1918    /* read GPIO and mask except the float bits */
1919    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1920
1921    switch (mode) {
1922    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1923        BLOGD(sc, DBG_PHY,
1924              "Set GPIO %d (shift %d) -> output low\n",
1925              gpio_num, gpio_shift);
1926        /* clear FLOAT and set CLR */
1927        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1929        break;
1930
1931    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1932        BLOGD(sc, DBG_PHY,
1933              "Set GPIO %d (shift %d) -> output high\n",
1934              gpio_num, gpio_shift);
1935        /* clear FLOAT and set SET */
1936        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1937        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1938        break;
1939
1940    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1941        BLOGD(sc, DBG_PHY,
1942              "Set GPIO %d (shift %d) -> input\n",
1943              gpio_num, gpio_shift);
1944        /* set FLOAT */
1945        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946        break;
1947
1948    default:
1949        break;
1950    }
1951
1952    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1953    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1954
1955    return (0);
1956}
1957
1958static int
1959bxe_gpio_mult_write(struct bxe_softc *sc,
1960                    uint8_t          pins,
1961                    uint32_t         mode)
1962{
1963    uint32_t gpio_reg;
1964
1965    /* any port swapping should be handled by caller */
1966
1967    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1968
1969    /* read GPIO and mask except the float bits */
1970    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1971    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1972    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1973    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1974
1975    switch (mode) {
1976    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1977        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1978        /* set CLR */
1979        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1980        break;
1981
1982    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1983        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1984        /* set SET */
1985        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1986        break;
1987
1988    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1989        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1990        /* set FLOAT */
1991        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1992        break;
1993
1994    default:
1995        BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1996            " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1997        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1998        return (-1);
1999    }
2000
2001    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2002    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2003
2004    return (0);
2005}
2006
2007static int
2008bxe_gpio_int_write(struct bxe_softc *sc,
2009                   int              gpio_num,
2010                   uint32_t         mode,
2011                   uint8_t          port)
2012{
2013    /* The GPIO should be swapped if swap register is set and active */
2014    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2015                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2016    int gpio_shift = (gpio_num +
2017                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2018    uint32_t gpio_mask = (1 << gpio_shift);
2019    uint32_t gpio_reg;
2020
2021    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2022        BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2023            " gpio_shift %d gpio_mask 0x%x\n",
2024            gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2025        return (-1);
2026    }
2027
2028    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2029
2030    /* read GPIO int */
2031    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2032
2033    switch (mode) {
2034    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2035        BLOGD(sc, DBG_PHY,
2036              "Clear GPIO INT %d (shift %d) -> output low\n",
2037              gpio_num, gpio_shift);
2038        /* clear SET and set CLR */
2039        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2040        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2041        break;
2042
2043    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2044        BLOGD(sc, DBG_PHY,
2045              "Set GPIO INT %d (shift %d) -> output high\n",
2046              gpio_num, gpio_shift);
2047        /* clear CLR and set SET */
2048        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2049        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2050        break;
2051
2052    default:
2053        break;
2054    }
2055
2056    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2057    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2058
2059    return (0);
2060}
2061
2062uint32_t
2063elink_cb_gpio_read(struct bxe_softc *sc,
2064                   uint16_t         gpio_num,
2065                   uint8_t          port)
2066{
2067    return (bxe_gpio_read(sc, gpio_num, port));
2068}
2069
2070uint8_t
2071elink_cb_gpio_write(struct bxe_softc *sc,
2072                    uint16_t         gpio_num,
2073                    uint8_t          mode, /* 0=low 1=high */
2074                    uint8_t          port)
2075{
2076    return (bxe_gpio_write(sc, gpio_num, mode, port));
2077}
2078
2079uint8_t
2080elink_cb_gpio_mult_write(struct bxe_softc *sc,
2081                         uint8_t          pins,
2082                         uint8_t          mode) /* 0=low 1=high */
2083{
2084    return (bxe_gpio_mult_write(sc, pins, mode));
2085}
2086
2087uint8_t
2088elink_cb_gpio_int_write(struct bxe_softc *sc,
2089                        uint16_t         gpio_num,
2090                        uint8_t          mode, /* 0=low 1=high */
2091                        uint8_t          port)
2092{
2093    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2094}
2095
2096void
2097elink_cb_notify_link_changed(struct bxe_softc *sc)
2098{
2099    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2100                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2101}
2102
2103/* send the MCP a request, block until there is a reply */
2104uint32_t
2105elink_cb_fw_command(struct bxe_softc *sc,
2106                    uint32_t         command,
2107                    uint32_t         param)
2108{
2109    int mb_idx = SC_FW_MB_IDX(sc);
2110    uint32_t seq;
2111    uint32_t rc = 0;
2112    uint32_t cnt = 1;
2113    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2114
2115    BXE_FWMB_LOCK(sc);
2116
2117    seq = ++sc->fw_seq;
2118    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2119    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2120
2121    BLOGD(sc, DBG_PHY,
2122          "wrote command 0x%08x to FW MB param 0x%08x\n",
2123          (command | seq), param);
2124
2125    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2126    do {
2127        DELAY(delay * 1000);
2128        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2129    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2130
2131    BLOGD(sc, DBG_PHY,
2132          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2133          cnt*delay, rc, seq);
2134
2135    /* is this a reply to our command? */
2136    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2137        rc &= FW_MSG_CODE_MASK;
2138    } else {
2139        /* Ruh-roh! */
2140        BLOGE(sc, "FW failed to respond!\n");
2141        // XXX bxe_fw_dump(sc);
2142        rc = 0;
2143    }
2144
2145    BXE_FWMB_UNLOCK(sc);
2146    return (rc);
2147}
2148
2149static uint32_t
2150bxe_fw_command(struct bxe_softc *sc,
2151               uint32_t         command,
2152               uint32_t         param)
2153{
2154    return (elink_cb_fw_command(sc, command, param));
2155}
2156
2157static void
2158__storm_memset_dma_mapping(struct bxe_softc *sc,
2159                           uint32_t         addr,
2160                           bus_addr_t       mapping)
2161{
2162    REG_WR(sc, addr, U64_LO(mapping));
2163    REG_WR(sc, (addr + 4), U64_HI(mapping));
2164}
2165
2166static void
2167storm_memset_spq_addr(struct bxe_softc *sc,
2168                      bus_addr_t       mapping,
2169                      uint16_t         abs_fid)
2170{
2171    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2172                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2173    __storm_memset_dma_mapping(sc, addr, mapping);
2174}
2175
2176static void
2177storm_memset_vf_to_pf(struct bxe_softc *sc,
2178                      uint16_t         abs_fid,
2179                      uint16_t         pf_id)
2180{
2181    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2182    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2183    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2184    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2185}
2186
2187static void
2188storm_memset_func_en(struct bxe_softc *sc,
2189                     uint16_t         abs_fid,
2190                     uint8_t          enable)
2191{
2192    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2193    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2194    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2195    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2196}
2197
2198static void
2199storm_memset_eq_data(struct bxe_softc       *sc,
2200                     struct event_ring_data *eq_data,
2201                     uint16_t               pfid)
2202{
2203    uint32_t addr;
2204    size_t size;
2205
2206    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2207    size = sizeof(struct event_ring_data);
2208    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2209}
2210
2211static void
2212storm_memset_eq_prod(struct bxe_softc *sc,
2213                     uint16_t         eq_prod,
2214                     uint16_t         pfid)
2215{
2216    uint32_t addr = (BAR_CSTRORM_INTMEM +
2217                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2218    REG_WR16(sc, addr, eq_prod);
2219}
2220
2221/*
2222 * Post a slowpath command.
2223 *
2224 * A slowpath command is used to propagate a configuration change through
2225 * the controller in a controlled manner, allowing each STORM processor and
2226 * other H/W blocks to phase in the change.  The commands sent on the
2227 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2228 * completion of the ramrod will occur in different ways.  Here's a
2229 * breakdown of ramrods and how they complete:
2230 *
2231 * RAMROD_CMD_ID_ETH_PORT_SETUP
2232 *   Used to setup the leading connection on a port.  Completes on the
2233 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2234 *
2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2236 *   Used to setup an additional connection on a port.  Completes on the
2237 *   RCQ of the multi-queue/RSS connection being initialized.
2238 *
2239 * RAMROD_CMD_ID_ETH_STAT_QUERY
2240 *   Used to force the storm processors to update the statistics database
2241 *   in host memory.  This ramrod is send on the leading connection CID and
2242 *   completes as an index increment of the CSTORM on the default status
2243 *   block.
2244 *
2245 * RAMROD_CMD_ID_ETH_UPDATE
2246 *   Used to update the state of the leading connection, usually to udpate
2247 *   the RSS indirection table.  Completes on the RCQ of the leading
2248 *   connection. (Not currently used under FreeBSD until OS support becomes
2249 *   available.)
2250 *
2251 * RAMROD_CMD_ID_ETH_HALT
2252 *   Used when tearing down a connection prior to driver unload.  Completes
2253 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2254 *   use this on the leading connection.
2255 *
2256 * RAMROD_CMD_ID_ETH_SET_MAC
2257 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2258 *   the RCQ of the leading connection.
2259 *
2260 * RAMROD_CMD_ID_ETH_CFC_DEL
2261 *   Used when tearing down a conneciton prior to driver unload.  Completes
2262 *   on the RCQ of the leading connection (since the current connection
2263 *   has been completely removed from controller memory).
2264 *
2265 * RAMROD_CMD_ID_ETH_PORT_DEL
2266 *   Used to tear down the leading connection prior to driver unload,
2267 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2268 *   default status block.
2269 *
2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2271 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2272 *   RSS connection that is being offloaded.  (Not currently used under
2273 *   FreeBSD.)
2274 *
2275 * There can only be one command pending per function.
2276 *
2277 * Returns:
2278 *   0 = Success, !0 = Failure.
2279 */
2280
2281/* must be called under the spq lock */
2282static inline
2283struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2284{
2285    struct eth_spe *next_spe = sc->spq_prod_bd;
2286
2287    if (sc->spq_prod_bd == sc->spq_last_bd) {
2288        /* wrap back to the first eth_spq */
2289        sc->spq_prod_bd = sc->spq;
2290        sc->spq_prod_idx = 0;
2291    } else {
2292        sc->spq_prod_bd++;
2293        sc->spq_prod_idx++;
2294    }
2295
2296    return (next_spe);
2297}
2298
2299/* must be called under the spq lock */
2300static inline
2301void bxe_sp_prod_update(struct bxe_softc *sc)
2302{
2303    int func = SC_FUNC(sc);
2304
2305    /*
2306     * Make sure that BD data is updated before writing the producer.
2307     * BD data is written to the memory, the producer is read from the
2308     * memory, thus we need a full memory barrier to ensure the ordering.
2309     */
2310    mb();
2311
2312    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2313             sc->spq_prod_idx);
2314
2315    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2316                      BUS_SPACE_BARRIER_WRITE);
2317}
2318
2319/**
2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2321 *
2322 * @cmd:      command to check
2323 * @cmd_type: command type
2324 */
2325static inline
2326int bxe_is_contextless_ramrod(int cmd,
2327                              int cmd_type)
2328{
2329    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2330        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2331        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2332        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2333        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2334        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2335        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2336        return (TRUE);
2337    } else {
2338        return (FALSE);
2339    }
2340}
2341
2342/**
2343 * bxe_sp_post - place a single command on an SP ring
2344 *
2345 * @sc:         driver handle
2346 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2347 * @cid:        SW CID the command is related to
2348 * @data_hi:    command private data address (high 32 bits)
2349 * @data_lo:    command private data address (low 32 bits)
2350 * @cmd_type:   command type (e.g. NONE, ETH)
2351 *
2352 * SP data is handled as if it's always an address pair, thus data fields are
2353 * not swapped to little endian in upper functions. Instead this function swaps
2354 * data as if it's two uint32 fields.
2355 */
2356int
2357bxe_sp_post(struct bxe_softc *sc,
2358            int              command,
2359            int              cid,
2360            uint32_t         data_hi,
2361            uint32_t         data_lo,
2362            int              cmd_type)
2363{
2364    struct eth_spe *spe;
2365    uint16_t type;
2366    int common;
2367
2368    common = bxe_is_contextless_ramrod(command, cmd_type);
2369
2370    BXE_SP_LOCK(sc);
2371
2372    if (common) {
2373        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2374            BLOGE(sc, "EQ ring is full!\n");
2375            BXE_SP_UNLOCK(sc);
2376            return (-1);
2377        }
2378    } else {
2379        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2380            BLOGE(sc, "SPQ ring is full!\n");
2381            BXE_SP_UNLOCK(sc);
2382            return (-1);
2383        }
2384    }
2385
2386    spe = bxe_sp_get_next(sc);
2387
2388    /* CID needs port number to be encoded int it */
2389    spe->hdr.conn_and_cmd_data =
2390        htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2391
2392    type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2393
2394    /* TBD: Check if it works for VFs */
2395    type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2396             SPE_HDR_T_FUNCTION_ID);
2397
2398    spe->hdr.type = htole16(type);
2399
2400    spe->data.update_data_addr.hi = htole32(data_hi);
2401    spe->data.update_data_addr.lo = htole32(data_lo);
2402
2403    /*
2404     * It's ok if the actual decrement is issued towards the memory
2405     * somewhere between the lock and unlock. Thus no more explict
2406     * memory barrier is needed.
2407     */
2408    if (common) {
2409        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2410    } else {
2411        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2412    }
2413
2414    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2415    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2416          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2417    BLOGD(sc, DBG_SP,
2418          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2419          sc->spq_prod_idx,
2420          (uint32_t)U64_HI(sc->spq_dma.paddr),
2421          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2422          command,
2423          common,
2424          HW_CID(sc, cid),
2425          data_hi,
2426          data_lo,
2427          type,
2428          atomic_load_acq_long(&sc->cq_spq_left),
2429          atomic_load_acq_long(&sc->eq_spq_left));
2430
2431    bxe_sp_prod_update(sc);
2432
2433    BXE_SP_UNLOCK(sc);
2434    return (0);
2435}
2436
2437/**
2438 * bxe_debug_print_ind_table - prints the indirection table configuration.
2439 *
2440 * @sc: driver hanlde
2441 * @p:  pointer to rss configuration
2442 */
2443
2444/*
2445 * FreeBSD Device probe function.
2446 *
2447 * Compares the device found to the driver's list of supported devices and
2448 * reports back to the bsd loader whether this is the right driver for the device.
2449 * This is the driver entry function called from the "kldload" command.
2450 *
2451 * Returns:
2452 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2453 */
2454static int
2455bxe_probe(device_t dev)
2456{
2457    struct bxe_device_type *t;
2458    char *descbuf;
2459    uint16_t did, sdid, svid, vid;
2460
2461    /* Find our device structure */
2462    t = bxe_devs;
2463
2464    /* Get the data for the device to be probed. */
2465    vid  = pci_get_vendor(dev);
2466    did  = pci_get_device(dev);
2467    svid = pci_get_subvendor(dev);
2468    sdid = pci_get_subdevice(dev);
2469
2470    /* Look through the list of known devices for a match. */
2471    while (t->bxe_name != NULL) {
2472        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2473            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2474            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2475            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2476            if (descbuf == NULL)
2477                return (ENOMEM);
2478
2479            /* Print out the device identity. */
2480            snprintf(descbuf, BXE_DEVDESC_MAX,
2481                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2482                     (((pci_read_config(dev, PCIR_REVID, 4) &
2483                        0xf0) >> 4) + 'A'),
2484                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2485                     BXE_DRIVER_VERSION);
2486
2487            device_set_desc_copy(dev, descbuf);
2488            free(descbuf, M_TEMP);
2489            return (BUS_PROBE_DEFAULT);
2490        }
2491        t++;
2492    }
2493
2494    return (ENXIO);
2495}
2496
2497static void
2498bxe_init_mutexes(struct bxe_softc *sc)
2499{
2500#ifdef BXE_CORE_LOCK_SX
2501    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2502             "bxe%d_core_lock", sc->unit);
2503    sx_init(&sc->core_sx, sc->core_sx_name);
2504#else
2505    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2506             "bxe%d_core_lock", sc->unit);
2507    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2508#endif
2509
2510    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2511             "bxe%d_sp_lock", sc->unit);
2512    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2513
2514    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2515             "bxe%d_dmae_lock", sc->unit);
2516    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2517
2518    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2519             "bxe%d_phy_lock", sc->unit);
2520    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2521
2522    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2523             "bxe%d_fwmb_lock", sc->unit);
2524    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2525
2526    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2527             "bxe%d_print_lock", sc->unit);
2528    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2529
2530    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2531             "bxe%d_stats_lock", sc->unit);
2532    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2533
2534    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2535             "bxe%d_mcast_lock", sc->unit);
2536    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2537}
2538
2539static void
2540bxe_release_mutexes(struct bxe_softc *sc)
2541{
2542#ifdef BXE_CORE_LOCK_SX
2543    sx_destroy(&sc->core_sx);
2544#else
2545    if (mtx_initialized(&sc->core_mtx)) {
2546        mtx_destroy(&sc->core_mtx);
2547    }
2548#endif
2549
2550    if (mtx_initialized(&sc->sp_mtx)) {
2551        mtx_destroy(&sc->sp_mtx);
2552    }
2553
2554    if (mtx_initialized(&sc->dmae_mtx)) {
2555        mtx_destroy(&sc->dmae_mtx);
2556    }
2557
2558    if (mtx_initialized(&sc->port.phy_mtx)) {
2559        mtx_destroy(&sc->port.phy_mtx);
2560    }
2561
2562    if (mtx_initialized(&sc->fwmb_mtx)) {
2563        mtx_destroy(&sc->fwmb_mtx);
2564    }
2565
2566    if (mtx_initialized(&sc->print_mtx)) {
2567        mtx_destroy(&sc->print_mtx);
2568    }
2569
2570    if (mtx_initialized(&sc->stats_mtx)) {
2571        mtx_destroy(&sc->stats_mtx);
2572    }
2573
2574    if (mtx_initialized(&sc->mcast_mtx)) {
2575        mtx_destroy(&sc->mcast_mtx);
2576    }
2577}
2578
2579static void
2580bxe_tx_disable(struct bxe_softc* sc)
2581{
2582    if_t ifp = sc->ifp;
2583
2584    /* tell the stack the driver is stopped and TX queue is full */
2585    if (ifp !=  NULL) {
2586        if_setdrvflags(ifp, 0);
2587    }
2588}
2589
2590static void
2591bxe_drv_pulse(struct bxe_softc *sc)
2592{
2593    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2594             sc->fw_drv_pulse_wr_seq);
2595}
2596
2597static inline uint16_t
2598bxe_tx_avail(struct bxe_softc *sc,
2599             struct bxe_fastpath *fp)
2600{
2601    int16_t  used;
2602    uint16_t prod;
2603    uint16_t cons;
2604
2605    prod = fp->tx_bd_prod;
2606    cons = fp->tx_bd_cons;
2607
2608    used = SUB_S16(prod, cons);
2609
2610    return (int16_t)(sc->tx_ring_size) - used;
2611}
2612
2613static inline int
2614bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2615{
2616    uint16_t hw_cons;
2617
2618    mb(); /* status block fields can change */
2619    hw_cons = le16toh(*fp->tx_cons_sb);
2620    return (hw_cons != fp->tx_pkt_cons);
2621}
2622
2623static inline uint8_t
2624bxe_has_tx_work(struct bxe_fastpath *fp)
2625{
2626    /* expand this for multi-cos if ever supported */
2627    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2628}
2629
2630static inline int
2631bxe_has_rx_work(struct bxe_fastpath *fp)
2632{
2633    uint16_t rx_cq_cons_sb;
2634
2635    mb(); /* status block fields can change */
2636    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2637    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2638        rx_cq_cons_sb++;
2639    return (fp->rx_cq_cons != rx_cq_cons_sb);
2640}
2641
2642static void
2643bxe_sp_event(struct bxe_softc    *sc,
2644             struct bxe_fastpath *fp,
2645             union eth_rx_cqe    *rr_cqe)
2646{
2647    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2648    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2649    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2650    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2651
2652    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2653          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2654
2655    switch (command) {
2656    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2657        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2658        drv_cmd = ECORE_Q_CMD_UPDATE;
2659        break;
2660
2661    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2662        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2663        drv_cmd = ECORE_Q_CMD_SETUP;
2664        break;
2665
2666    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2667        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2668        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2669        break;
2670
2671    case (RAMROD_CMD_ID_ETH_HALT):
2672        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2673        drv_cmd = ECORE_Q_CMD_HALT;
2674        break;
2675
2676    case (RAMROD_CMD_ID_ETH_TERMINATE):
2677        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2678        drv_cmd = ECORE_Q_CMD_TERMINATE;
2679        break;
2680
2681    case (RAMROD_CMD_ID_ETH_EMPTY):
2682        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2683        drv_cmd = ECORE_Q_CMD_EMPTY;
2684        break;
2685
2686    default:
2687        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2688              command, fp->index);
2689        return;
2690    }
2691
2692    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2693        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2694        /*
2695         * q_obj->complete_cmd() failure means that this was
2696         * an unexpected completion.
2697         *
2698         * In this case we don't want to increase the sc->spq_left
2699         * because apparently we haven't sent this command the first
2700         * place.
2701         */
2702        // bxe_panic(sc, ("Unexpected SP completion\n"));
2703        return;
2704    }
2705
2706    atomic_add_acq_long(&sc->cq_spq_left, 1);
2707
2708    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2709          atomic_load_acq_long(&sc->cq_spq_left));
2710}
2711
2712/*
2713 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2714 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2715 * the current aggregation queue as in-progress.
2716 */
2717static void
2718bxe_tpa_start(struct bxe_softc            *sc,
2719              struct bxe_fastpath         *fp,
2720              uint16_t                    queue,
2721              uint16_t                    cons,
2722              uint16_t                    prod,
2723              struct eth_fast_path_rx_cqe *cqe)
2724{
2725    struct bxe_sw_rx_bd tmp_bd;
2726    struct bxe_sw_rx_bd *rx_buf;
2727    struct eth_rx_bd *rx_bd;
2728    int max_agg_queues;
2729    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2730    uint16_t index;
2731
2732    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2733                       "cons=%d prod=%d\n",
2734          fp->index, queue, cons, prod);
2735
2736    max_agg_queues = MAX_AGG_QS(sc);
2737
2738    KASSERT((queue < max_agg_queues),
2739            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2740             fp->index, queue, max_agg_queues));
2741
2742    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2743            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2744             fp->index, queue));
2745
2746    /* copy the existing mbuf and mapping from the TPA pool */
2747    tmp_bd = tpa_info->bd;
2748
2749    if (tmp_bd.m == NULL) {
2750        uint32_t *tmp;
2751
2752        tmp = (uint32_t *)cqe;
2753
2754        BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2755              fp->index, queue, cons, prod);
2756        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2757            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2758
2759        /* XXX Error handling? */
2760        return;
2761    }
2762
2763    /* change the TPA queue to the start state */
2764    tpa_info->state            = BXE_TPA_STATE_START;
2765    tpa_info->placement_offset = cqe->placement_offset;
2766    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2767    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2768    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2769
2770    fp->rx_tpa_queue_used |= (1 << queue);
2771
2772    /*
2773     * If all the buffer descriptors are filled with mbufs then fill in
2774     * the current consumer index with a new BD. Else if a maximum Rx
2775     * buffer limit is imposed then fill in the next producer index.
2776     */
2777    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2778                prod : cons;
2779
2780    /* move the received mbuf and mapping to TPA pool */
2781    tpa_info->bd = fp->rx_mbuf_chain[cons];
2782
2783    /* release any existing RX BD mbuf mappings */
2784    if (cons != index) {
2785        rx_buf = &fp->rx_mbuf_chain[cons];
2786
2787        if (rx_buf->m_map != NULL) {
2788            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2789                            BUS_DMASYNC_POSTREAD);
2790            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2791        }
2792
2793        /*
2794         * We get here when the maximum number of rx buffers is less than
2795         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2796         * it out here without concern of a memory leak.
2797         */
2798        fp->rx_mbuf_chain[cons].m = NULL;
2799    }
2800
2801    /* update the Rx SW BD with the mbuf info from the TPA pool */
2802    fp->rx_mbuf_chain[index] = tmp_bd;
2803
2804    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2805    rx_bd = &fp->rx_chain[index];
2806    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2807    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2808}
2809
2810/*
2811 * When a TPA aggregation is completed, loop through the individual mbufs
2812 * of the aggregation, combining them into a single mbuf which will be sent
2813 * up the stack. Refill all freed SGEs with mbufs as we go along.
2814 */
2815static int
2816bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2817                   struct bxe_fastpath       *fp,
2818                   struct bxe_sw_tpa_info    *tpa_info,
2819                   uint16_t                  queue,
2820                   uint16_t                  pages,
2821                   struct mbuf               *m,
2822			       struct eth_end_agg_rx_cqe *cqe,
2823                   uint16_t                  cqe_idx)
2824{
2825    struct mbuf *m_frag;
2826    uint32_t frag_len, frag_size, i;
2827    uint16_t sge_idx;
2828    int rc = 0;
2829    int j;
2830
2831    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2832
2833    BLOGD(sc, DBG_LRO,
2834          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2835          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2836
2837    /* make sure the aggregated frame is not too big to handle */
2838    if (pages > 8 * PAGES_PER_SGE) {
2839
2840        uint32_t *tmp = (uint32_t *)cqe;
2841
2842        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2843                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2844              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2845              tpa_info->len_on_bd, frag_size);
2846
2847        BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2848            *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2849
2850        bxe_panic(sc, ("sge page count error\n"));
2851        return (EINVAL);
2852    }
2853
2854    /*
2855     * Scan through the scatter gather list pulling individual mbufs into a
2856     * single mbuf for the host stack.
2857     */
2858    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2859        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2860
2861        /*
2862         * Firmware gives the indices of the SGE as if the ring is an array
2863         * (meaning that the "next" element will consume 2 indices).
2864         */
2865        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2866
2867        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2868                           "sge_idx=%d frag_size=%d frag_len=%d\n",
2869              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2870
2871        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2872
2873        /* allocate a new mbuf for the SGE */
2874        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2875        if (rc) {
2876            /* Leave all remaining SGEs in the ring! */
2877            return (rc);
2878        }
2879
2880        /* update the fragment length */
2881        m_frag->m_len = frag_len;
2882
2883        /* concatenate the fragment to the head mbuf */
2884        m_cat(m, m_frag);
2885        fp->eth_q_stats.mbuf_alloc_sge--;
2886
2887        /* update the TPA mbuf size and remaining fragment size */
2888        m->m_pkthdr.len += frag_len;
2889        frag_size -= frag_len;
2890    }
2891
2892    BLOGD(sc, DBG_LRO,
2893          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2894          fp->index, queue, frag_size);
2895
2896    return (rc);
2897}
2898
2899static inline void
2900bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2901{
2902    int i, j;
2903
2904    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2905        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2906
2907        for (j = 0; j < 2; j++) {
2908            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2909            idx--;
2910        }
2911    }
2912}
2913
2914static inline void
2915bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2916{
2917    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2918    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2919
2920    /*
2921     * Clear the two last indices in the page to 1. These are the indices that
2922     * correspond to the "next" element, hence will never be indicated and
2923     * should be removed from the calculations.
2924     */
2925    bxe_clear_sge_mask_next_elems(fp);
2926}
2927
2928static inline void
2929bxe_update_last_max_sge(struct bxe_fastpath *fp,
2930                        uint16_t            idx)
2931{
2932    uint16_t last_max = fp->last_max_sge;
2933
2934    if (SUB_S16(idx, last_max) > 0) {
2935        fp->last_max_sge = idx;
2936    }
2937}
2938
2939static inline void
2940bxe_update_sge_prod(struct bxe_softc          *sc,
2941                    struct bxe_fastpath       *fp,
2942                    uint16_t                  sge_len,
2943                    union eth_sgl_or_raw_data *cqe)
2944{
2945    uint16_t last_max, last_elem, first_elem;
2946    uint16_t delta = 0;
2947    uint16_t i;
2948
2949    if (!sge_len) {
2950        return;
2951    }
2952
2953    /* first mark all used pages */
2954    for (i = 0; i < sge_len; i++) {
2955        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2956                            RX_SGE(le16toh(cqe->sgl[i])));
2957    }
2958
2959    BLOGD(sc, DBG_LRO,
2960          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2961          fp->index, sge_len - 1,
2962          le16toh(cqe->sgl[sge_len - 1]));
2963
2964    /* assume that the last SGE index is the biggest */
2965    bxe_update_last_max_sge(fp,
2966                            le16toh(cqe->sgl[sge_len - 1]));
2967
2968    last_max = RX_SGE(fp->last_max_sge);
2969    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2970    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2971
2972    /* if ring is not full */
2973    if (last_elem + 1 != first_elem) {
2974        last_elem++;
2975    }
2976
2977    /* now update the prod */
2978    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2979        if (__predict_true(fp->sge_mask[i])) {
2980            break;
2981        }
2982
2983        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2984        delta += BIT_VEC64_ELEM_SZ;
2985    }
2986
2987    if (delta > 0) {
2988        fp->rx_sge_prod += delta;
2989        /* clear page-end entries */
2990        bxe_clear_sge_mask_next_elems(fp);
2991    }
2992
2993    BLOGD(sc, DBG_LRO,
2994          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
2995          fp->index, fp->last_max_sge, fp->rx_sge_prod);
2996}
2997
2998/*
2999 * The aggregation on the current TPA queue has completed. Pull the individual
3000 * mbuf fragments together into a single mbuf, perform all necessary checksum
3001 * calculations, and send the resuting mbuf to the stack.
3002 */
3003static void
3004bxe_tpa_stop(struct bxe_softc          *sc,
3005             struct bxe_fastpath       *fp,
3006             struct bxe_sw_tpa_info    *tpa_info,
3007             uint16_t                  queue,
3008             uint16_t                  pages,
3009			 struct eth_end_agg_rx_cqe *cqe,
3010             uint16_t                  cqe_idx)
3011{
3012    if_t ifp = sc->ifp;
3013    struct mbuf *m;
3014    int rc = 0;
3015
3016    BLOGD(sc, DBG_LRO,
3017          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3018          fp->index, queue, tpa_info->placement_offset,
3019          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3020
3021    m = tpa_info->bd.m;
3022
3023    /* allocate a replacement before modifying existing mbuf */
3024    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3025    if (rc) {
3026        /* drop the frame and log an error */
3027        fp->eth_q_stats.rx_soft_errors++;
3028        goto bxe_tpa_stop_exit;
3029    }
3030
3031    /* we have a replacement, fixup the current mbuf */
3032    m_adj(m, tpa_info->placement_offset);
3033    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3034
3035    /* mark the checksums valid (taken care of by the firmware) */
3036    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3037    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3038    m->m_pkthdr.csum_data = 0xffff;
3039    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3040                               CSUM_IP_VALID   |
3041                               CSUM_DATA_VALID |
3042                               CSUM_PSEUDO_HDR);
3043
3044    /* aggregate all of the SGEs into a single mbuf */
3045    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3046    if (rc) {
3047        /* drop the packet and log an error */
3048        fp->eth_q_stats.rx_soft_errors++;
3049        m_freem(m);
3050    } else {
3051        if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3052            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3053            m->m_flags |= M_VLANTAG;
3054        }
3055
3056        /* assign packet to this interface interface */
3057        if_setrcvif(m, ifp);
3058
3059#if __FreeBSD_version >= 800000
3060        /* specify what RSS queue was used for this flow */
3061        m->m_pkthdr.flowid = fp->index;
3062        BXE_SET_FLOWID(m);
3063#endif
3064
3065        if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3066        fp->eth_q_stats.rx_tpa_pkts++;
3067
3068        /* pass the frame to the stack */
3069        if_input(ifp, m);
3070    }
3071
3072    /* we passed an mbuf up the stack or dropped the frame */
3073    fp->eth_q_stats.mbuf_alloc_tpa--;
3074
3075bxe_tpa_stop_exit:
3076
3077    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3078    fp->rx_tpa_queue_used &= ~(1 << queue);
3079}
3080
3081static uint8_t
3082bxe_service_rxsgl(
3083                 struct bxe_fastpath *fp,
3084                 uint16_t len,
3085                 uint16_t lenonbd,
3086                 struct mbuf *m,
3087                 struct eth_fast_path_rx_cqe *cqe_fp)
3088{
3089    struct mbuf *m_frag;
3090    uint16_t frags, frag_len;
3091    uint16_t sge_idx = 0;
3092    uint16_t j;
3093    uint8_t i, rc = 0;
3094    uint32_t frag_size;
3095
3096    /* adjust the mbuf */
3097    m->m_len = lenonbd;
3098
3099    frag_size =  len - lenonbd;
3100    frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3101
3102    for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3103        sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3104
3105        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3106        frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3107        m_frag->m_len = frag_len;
3108
3109       /* allocate a new mbuf for the SGE */
3110        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3111        if (rc) {
3112            /* Leave all remaining SGEs in the ring! */
3113            return (rc);
3114        }
3115        fp->eth_q_stats.mbuf_alloc_sge--;
3116
3117        /* concatenate the fragment to the head mbuf */
3118        m_cat(m, m_frag);
3119
3120        frag_size -= frag_len;
3121    }
3122
3123    bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3124
3125    return rc;
3126}
3127
3128static uint8_t
3129bxe_rxeof(struct bxe_softc    *sc,
3130          struct bxe_fastpath *fp)
3131{
3132    if_t ifp = sc->ifp;
3133    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3134    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3135    int rx_pkts = 0;
3136    int rc = 0;
3137
3138    BXE_FP_RX_LOCK(fp);
3139
3140    /* CQ "next element" is of the size of the regular element */
3141    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3142    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3143        hw_cq_cons++;
3144    }
3145
3146    bd_cons = fp->rx_bd_cons;
3147    bd_prod = fp->rx_bd_prod;
3148    bd_prod_fw = bd_prod;
3149    sw_cq_cons = fp->rx_cq_cons;
3150    sw_cq_prod = fp->rx_cq_prod;
3151
3152    /*
3153     * Memory barrier necessary as speculative reads of the rx
3154     * buffer can be ahead of the index in the status block
3155     */
3156    rmb();
3157
3158    BLOGD(sc, DBG_RX,
3159          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3160          fp->index, hw_cq_cons, sw_cq_cons);
3161
3162    while (sw_cq_cons != hw_cq_cons) {
3163        struct bxe_sw_rx_bd *rx_buf = NULL;
3164        union eth_rx_cqe *cqe;
3165        struct eth_fast_path_rx_cqe *cqe_fp;
3166        uint8_t cqe_fp_flags;
3167        enum eth_rx_cqe_type cqe_fp_type;
3168        uint16_t len, lenonbd,  pad;
3169        struct mbuf *m = NULL;
3170
3171        comp_ring_cons = RCQ(sw_cq_cons);
3172        bd_prod = RX_BD(bd_prod);
3173        bd_cons = RX_BD(bd_cons);
3174
3175        cqe          = &fp->rcq_chain[comp_ring_cons];
3176        cqe_fp       = &cqe->fast_path_cqe;
3177        cqe_fp_flags = cqe_fp->type_error_flags;
3178        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3179
3180        BLOGD(sc, DBG_RX,
3181              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3182              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3183              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3184              fp->index,
3185              hw_cq_cons,
3186              sw_cq_cons,
3187              bd_prod,
3188              bd_cons,
3189              CQE_TYPE(cqe_fp_flags),
3190              cqe_fp_flags,
3191              cqe_fp->status_flags,
3192              le32toh(cqe_fp->rss_hash_result),
3193              le16toh(cqe_fp->vlan_tag),
3194              le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3195              le16toh(cqe_fp->len_on_bd));
3196
3197        /* is this a slowpath msg? */
3198        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3199            bxe_sp_event(sc, fp, cqe);
3200            goto next_cqe;
3201        }
3202
3203        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3204
3205        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3206            struct bxe_sw_tpa_info *tpa_info;
3207            uint16_t frag_size, pages;
3208            uint8_t queue;
3209
3210            if (CQE_TYPE_START(cqe_fp_type)) {
3211                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3212                              bd_cons, bd_prod, cqe_fp);
3213                m = NULL; /* packet not ready yet */
3214                goto next_rx;
3215            }
3216
3217            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3218                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3219
3220            queue = cqe->end_agg_cqe.queue_index;
3221            tpa_info = &fp->rx_tpa_info[queue];
3222
3223            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3224                  fp->index, queue);
3225
3226            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3227                         tpa_info->len_on_bd);
3228            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3229
3230            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3231                         &cqe->end_agg_cqe, comp_ring_cons);
3232
3233            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3234
3235            goto next_cqe;
3236        }
3237
3238        /* non TPA */
3239
3240        /* is this an error packet? */
3241        if (__predict_false(cqe_fp_flags &
3242                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3243            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3244            fp->eth_q_stats.rx_soft_errors++;
3245            goto next_rx;
3246        }
3247
3248        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3249        lenonbd = le16toh(cqe_fp->len_on_bd);
3250        pad = cqe_fp->placement_offset;
3251
3252        m = rx_buf->m;
3253
3254        if (__predict_false(m == NULL)) {
3255            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3256                  bd_cons, fp->index);
3257            goto next_rx;
3258        }
3259
3260        /* XXX double copy if packet length under a threshold */
3261
3262        /*
3263         * If all the buffer descriptors are filled with mbufs then fill in
3264         * the current consumer index with a new BD. Else if a maximum Rx
3265         * buffer limit is imposed then fill in the next producer index.
3266         */
3267        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3268                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3269                                      bd_prod : bd_cons);
3270        if (rc != 0) {
3271
3272            /* we simply reuse the received mbuf and don't post it to the stack */
3273            m = NULL;
3274
3275            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3276                  fp->index, rc);
3277            fp->eth_q_stats.rx_soft_errors++;
3278
3279            if (sc->max_rx_bufs != RX_BD_USABLE) {
3280                /* copy this consumer index to the producer index */
3281                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3282                       sizeof(struct bxe_sw_rx_bd));
3283                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3284            }
3285
3286            goto next_rx;
3287        }
3288
3289        /* current mbuf was detached from the bd */
3290        fp->eth_q_stats.mbuf_alloc_rx--;
3291
3292        /* we allocated a replacement mbuf, fixup the current one */
3293        m_adj(m, pad);
3294        m->m_pkthdr.len = m->m_len = len;
3295
3296        if ((len > 60) && (len > lenonbd)) {
3297            fp->eth_q_stats.rx_bxe_service_rxsgl++;
3298            rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3299            if (rc)
3300                break;
3301            fp->eth_q_stats.rx_jumbo_sge_pkts++;
3302        } else if (lenonbd < len) {
3303            fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3304        }
3305
3306        /* assign packet to this interface interface */
3307	if_setrcvif(m, ifp);
3308
3309        /* assume no hardware checksum has complated */
3310        m->m_pkthdr.csum_flags = 0;
3311
3312        /* validate checksum if offload enabled */
3313        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3314            /* check for a valid IP frame */
3315            if (!(cqe->fast_path_cqe.status_flags &
3316                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3317                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3318                if (__predict_false(cqe_fp_flags &
3319                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3320                    fp->eth_q_stats.rx_hw_csum_errors++;
3321                } else {
3322                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3323                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3324                }
3325            }
3326
3327            /* check for a valid TCP/UDP frame */
3328            if (!(cqe->fast_path_cqe.status_flags &
3329                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3330                if (__predict_false(cqe_fp_flags &
3331                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3332                    fp->eth_q_stats.rx_hw_csum_errors++;
3333                } else {
3334                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3335                    m->m_pkthdr.csum_data = 0xFFFF;
3336                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3337                                               CSUM_PSEUDO_HDR);
3338                }
3339            }
3340        }
3341
3342        /* if there is a VLAN tag then flag that info */
3343        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3344            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3345            m->m_flags |= M_VLANTAG;
3346        }
3347
3348#if __FreeBSD_version >= 800000
3349        /* specify what RSS queue was used for this flow */
3350        m->m_pkthdr.flowid = fp->index;
3351        BXE_SET_FLOWID(m);
3352#endif
3353
3354next_rx:
3355
3356        bd_cons    = RX_BD_NEXT(bd_cons);
3357        bd_prod    = RX_BD_NEXT(bd_prod);
3358        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3359
3360        /* pass the frame to the stack */
3361        if (__predict_true(m != NULL)) {
3362            if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3363            rx_pkts++;
3364            if_input(ifp, m);
3365        }
3366
3367next_cqe:
3368
3369        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3370        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3371
3372        /* limit spinning on the queue */
3373        if (rc != 0)
3374            break;
3375
3376        if (rx_pkts == sc->rx_budget) {
3377            fp->eth_q_stats.rx_budget_reached++;
3378            break;
3379        }
3380    } /* while work to do */
3381
3382    fp->rx_bd_cons = bd_cons;
3383    fp->rx_bd_prod = bd_prod_fw;
3384    fp->rx_cq_cons = sw_cq_cons;
3385    fp->rx_cq_prod = sw_cq_prod;
3386
3387    /* Update producers */
3388    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3389
3390    fp->eth_q_stats.rx_pkts += rx_pkts;
3391    fp->eth_q_stats.rx_calls++;
3392
3393    BXE_FP_RX_UNLOCK(fp);
3394
3395    return (sw_cq_cons != hw_cq_cons);
3396}
3397
3398static uint16_t
3399bxe_free_tx_pkt(struct bxe_softc    *sc,
3400                struct bxe_fastpath *fp,
3401                uint16_t            idx)
3402{
3403    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3404    struct eth_tx_start_bd *tx_start_bd;
3405    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3406    uint16_t new_cons;
3407    int nbd;
3408
3409    /* unmap the mbuf from non-paged memory */
3410    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3411
3412    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3413    nbd = le16toh(tx_start_bd->nbd) - 1;
3414
3415    new_cons = (tx_buf->first_bd + nbd);
3416
3417    /* free the mbuf */
3418    if (__predict_true(tx_buf->m != NULL)) {
3419        m_freem(tx_buf->m);
3420        fp->eth_q_stats.mbuf_alloc_tx--;
3421    } else {
3422        fp->eth_q_stats.tx_chain_lost_mbuf++;
3423    }
3424
3425    tx_buf->m = NULL;
3426    tx_buf->first_bd = 0;
3427
3428    return (new_cons);
3429}
3430
3431/* transmit timeout watchdog */
3432static int
3433bxe_watchdog(struct bxe_softc    *sc,
3434             struct bxe_fastpath *fp)
3435{
3436    BXE_FP_TX_LOCK(fp);
3437
3438    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3439        BXE_FP_TX_UNLOCK(fp);
3440        return (0);
3441    }
3442
3443    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3444    if(sc->trigger_grcdump) {
3445         /* taking grcdump */
3446         bxe_grc_dump(sc);
3447    }
3448
3449    BXE_FP_TX_UNLOCK(fp);
3450
3451    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3452    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3453
3454    return (-1);
3455}
3456
3457/* processes transmit completions */
3458static uint8_t
3459bxe_txeof(struct bxe_softc    *sc,
3460          struct bxe_fastpath *fp)
3461{
3462    if_t ifp = sc->ifp;
3463    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3464    uint16_t tx_bd_avail;
3465
3466    BXE_FP_TX_LOCK_ASSERT(fp);
3467
3468    bd_cons = fp->tx_bd_cons;
3469    hw_cons = le16toh(*fp->tx_cons_sb);
3470    sw_cons = fp->tx_pkt_cons;
3471
3472    while (sw_cons != hw_cons) {
3473        pkt_cons = TX_BD(sw_cons);
3474
3475        BLOGD(sc, DBG_TX,
3476              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3477              fp->index, hw_cons, sw_cons, pkt_cons);
3478
3479        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3480
3481        sw_cons++;
3482    }
3483
3484    fp->tx_pkt_cons = sw_cons;
3485    fp->tx_bd_cons  = bd_cons;
3486
3487    BLOGD(sc, DBG_TX,
3488          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3489          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3490
3491    mb();
3492
3493    tx_bd_avail = bxe_tx_avail(sc, fp);
3494
3495    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3496        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3497    } else {
3498        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3499    }
3500
3501    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3502        /* reset the watchdog timer if there are pending transmits */
3503        fp->watchdog_timer = BXE_TX_TIMEOUT;
3504        return (TRUE);
3505    } else {
3506        /* clear watchdog when there are no pending transmits */
3507        fp->watchdog_timer = 0;
3508        return (FALSE);
3509    }
3510}
3511
3512static void
3513bxe_drain_tx_queues(struct bxe_softc *sc)
3514{
3515    struct bxe_fastpath *fp;
3516    int i, count;
3517
3518    /* wait until all TX fastpath tasks have completed */
3519    for (i = 0; i < sc->num_queues; i++) {
3520        fp = &sc->fp[i];
3521
3522        count = 1000;
3523
3524        while (bxe_has_tx_work(fp)) {
3525
3526            BXE_FP_TX_LOCK(fp);
3527            bxe_txeof(sc, fp);
3528            BXE_FP_TX_UNLOCK(fp);
3529
3530            if (count == 0) {
3531                BLOGE(sc, "Timeout waiting for fp[%d] "
3532                          "transmits to complete!\n", i);
3533                bxe_panic(sc, ("tx drain failure\n"));
3534                return;
3535            }
3536
3537            count--;
3538            DELAY(1000);
3539            rmb();
3540        }
3541    }
3542
3543    return;
3544}
3545
3546static int
3547bxe_del_all_macs(struct bxe_softc          *sc,
3548                 struct ecore_vlan_mac_obj *mac_obj,
3549                 int                       mac_type,
3550                 uint8_t                   wait_for_comp)
3551{
3552    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3553    int rc;
3554
3555    /* wait for completion of requested */
3556    if (wait_for_comp) {
3557        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3558    }
3559
3560    /* Set the mac type of addresses we want to clear */
3561    bxe_set_bit(mac_type, &vlan_mac_flags);
3562
3563    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3564    if (rc < 0) {
3565        BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3566            rc, mac_type, wait_for_comp);
3567    }
3568
3569    return (rc);
3570}
3571
3572static int
3573bxe_fill_accept_flags(struct bxe_softc *sc,
3574                      uint32_t         rx_mode,
3575                      unsigned long    *rx_accept_flags,
3576                      unsigned long    *tx_accept_flags)
3577{
3578    /* Clear the flags first */
3579    *rx_accept_flags = 0;
3580    *tx_accept_flags = 0;
3581
3582    switch (rx_mode) {
3583    case BXE_RX_MODE_NONE:
3584        /*
3585         * 'drop all' supersedes any accept flags that may have been
3586         * passed to the function.
3587         */
3588        break;
3589
3590    case BXE_RX_MODE_NORMAL:
3591        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3592        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3593        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3594
3595        /* internal switching mode */
3596        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3597        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3598        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3599
3600        break;
3601
3602    case BXE_RX_MODE_ALLMULTI:
3603        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3604        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3605        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3606
3607        /* internal switching mode */
3608        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3609        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3610        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3611
3612        break;
3613
3614    case BXE_RX_MODE_PROMISC:
3615        /*
3616         * According to deffinition of SI mode, iface in promisc mode
3617         * should receive matched and unmatched (in resolution of port)
3618         * unicast packets.
3619         */
3620        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3621        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3622        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3623        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3624
3625        /* internal switching mode */
3626        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628
3629        if (IS_MF_SI(sc)) {
3630            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3631        } else {
3632            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3633        }
3634
3635        break;
3636
3637    default:
3638        BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3639        return (-1);
3640    }
3641
3642    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3643    if (rx_mode != BXE_RX_MODE_NONE) {
3644        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3645        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3646    }
3647
3648    return (0);
3649}
3650
3651static int
3652bxe_set_q_rx_mode(struct bxe_softc *sc,
3653                  uint8_t          cl_id,
3654                  unsigned long    rx_mode_flags,
3655                  unsigned long    rx_accept_flags,
3656                  unsigned long    tx_accept_flags,
3657                  unsigned long    ramrod_flags)
3658{
3659    struct ecore_rx_mode_ramrod_params ramrod_param;
3660    int rc;
3661
3662    memset(&ramrod_param, 0, sizeof(ramrod_param));
3663
3664    /* Prepare ramrod parameters */
3665    ramrod_param.cid = 0;
3666    ramrod_param.cl_id = cl_id;
3667    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3668    ramrod_param.func_id = SC_FUNC(sc);
3669
3670    ramrod_param.pstate = &sc->sp_state;
3671    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3672
3673    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3674    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3675
3676    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3677
3678    ramrod_param.ramrod_flags = ramrod_flags;
3679    ramrod_param.rx_mode_flags = rx_mode_flags;
3680
3681    ramrod_param.rx_accept_flags = rx_accept_flags;
3682    ramrod_param.tx_accept_flags = tx_accept_flags;
3683
3684    rc = ecore_config_rx_mode(sc, &ramrod_param);
3685    if (rc < 0) {
3686        BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3687            "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3688            "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3689            (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3690            (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3691        return (rc);
3692    }
3693
3694    return (0);
3695}
3696
3697static int
3698bxe_set_storm_rx_mode(struct bxe_softc *sc)
3699{
3700    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3701    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3702    int rc;
3703
3704    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3705                               &tx_accept_flags);
3706    if (rc) {
3707        return (rc);
3708    }
3709
3710    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3711    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3712
3713    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3714    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3715                              rx_accept_flags, tx_accept_flags,
3716                              ramrod_flags));
3717}
3718
3719/* returns the "mcp load_code" according to global load_count array */
3720static int
3721bxe_nic_load_no_mcp(struct bxe_softc *sc)
3722{
3723    int path = SC_PATH(sc);
3724    int port = SC_PORT(sc);
3725
3726    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3727          path, load_count[path][0], load_count[path][1],
3728          load_count[path][2]);
3729    load_count[path][0]++;
3730    load_count[path][1 + port]++;
3731    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3732          path, load_count[path][0], load_count[path][1],
3733          load_count[path][2]);
3734    if (load_count[path][0] == 1) {
3735        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3736    } else if (load_count[path][1 + port] == 1) {
3737        return (FW_MSG_CODE_DRV_LOAD_PORT);
3738    } else {
3739        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3740    }
3741}
3742
3743/* returns the "mcp load_code" according to global load_count array */
3744static int
3745bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3746{
3747    int port = SC_PORT(sc);
3748    int path = SC_PATH(sc);
3749
3750    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3751          path, load_count[path][0], load_count[path][1],
3752          load_count[path][2]);
3753    load_count[path][0]--;
3754    load_count[path][1 + port]--;
3755    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3756          path, load_count[path][0], load_count[path][1],
3757          load_count[path][2]);
3758    if (load_count[path][0] == 0) {
3759        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3760    } else if (load_count[path][1 + port] == 0) {
3761        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3762    } else {
3763        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3764    }
3765}
3766
3767/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3768static uint32_t
3769bxe_send_unload_req(struct bxe_softc *sc,
3770                    int              unload_mode)
3771{
3772    uint32_t reset_code = 0;
3773
3774    /* Select the UNLOAD request mode */
3775    if (unload_mode == UNLOAD_NORMAL) {
3776        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3777    } else {
3778        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3779    }
3780
3781    /* Send the request to the MCP */
3782    if (!BXE_NOMCP(sc)) {
3783        reset_code = bxe_fw_command(sc, reset_code, 0);
3784    } else {
3785        reset_code = bxe_nic_unload_no_mcp(sc);
3786    }
3787
3788    return (reset_code);
3789}
3790
3791/* send UNLOAD_DONE command to the MCP */
3792static void
3793bxe_send_unload_done(struct bxe_softc *sc,
3794                     uint8_t          keep_link)
3795{
3796    uint32_t reset_param =
3797        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3798
3799    /* Report UNLOAD_DONE to MCP */
3800    if (!BXE_NOMCP(sc)) {
3801        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3802    }
3803}
3804
3805static int
3806bxe_func_wait_started(struct bxe_softc *sc)
3807{
3808    int tout = 50;
3809
3810    if (!sc->port.pmf) {
3811        return (0);
3812    }
3813
3814    /*
3815     * (assumption: No Attention from MCP at this stage)
3816     * PMF probably in the middle of TX disable/enable transaction
3817     * 1. Sync IRS for default SB
3818     * 2. Sync SP queue - this guarantees us that attention handling started
3819     * 3. Wait, that TX disable/enable transaction completes
3820     *
3821     * 1+2 guarantee that if DCBX attention was scheduled it already changed
3822     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3823     * received completion for the transaction the state is TX_STOPPED.
3824     * State will return to STARTED after completion of TX_STOPPED-->STARTED
3825     * transaction.
3826     */
3827
3828    /* XXX make sure default SB ISR is done */
3829    /* need a way to synchronize an irq (intr_mtx?) */
3830
3831    /* XXX flush any work queues */
3832
3833    while (ecore_func_get_state(sc, &sc->func_obj) !=
3834           ECORE_F_STATE_STARTED && tout--) {
3835        DELAY(20000);
3836    }
3837
3838    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3839        /*
3840         * Failed to complete the transaction in a "good way"
3841         * Force both transactions with CLR bit.
3842         */
3843        struct ecore_func_state_params func_params = { NULL };
3844
3845        BLOGE(sc, "Unexpected function state! "
3846                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3847
3848        func_params.f_obj = &sc->func_obj;
3849        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3850
3851        /* STARTED-->TX_STOPPED */
3852        func_params.cmd = ECORE_F_CMD_TX_STOP;
3853        ecore_func_state_change(sc, &func_params);
3854
3855        /* TX_STOPPED-->STARTED */
3856        func_params.cmd = ECORE_F_CMD_TX_START;
3857        return (ecore_func_state_change(sc, &func_params));
3858    }
3859
3860    return (0);
3861}
3862
3863static int
3864bxe_stop_queue(struct bxe_softc *sc,
3865               int              index)
3866{
3867    struct bxe_fastpath *fp = &sc->fp[index];
3868    struct ecore_queue_state_params q_params = { NULL };
3869    int rc;
3870
3871    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3872
3873    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3874    /* We want to wait for completion in this context */
3875    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3876
3877    /* Stop the primary connection: */
3878
3879    /* ...halt the connection */
3880    q_params.cmd = ECORE_Q_CMD_HALT;
3881    rc = ecore_queue_state_change(sc, &q_params);
3882    if (rc) {
3883        return (rc);
3884    }
3885
3886    /* ...terminate the connection */
3887    q_params.cmd = ECORE_Q_CMD_TERMINATE;
3888    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3889    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3890    rc = ecore_queue_state_change(sc, &q_params);
3891    if (rc) {
3892        return (rc);
3893    }
3894
3895    /* ...delete cfc entry */
3896    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3897    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3898    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3899    return (ecore_queue_state_change(sc, &q_params));
3900}
3901
3902/* wait for the outstanding SP commands */
3903static inline uint8_t
3904bxe_wait_sp_comp(struct bxe_softc *sc,
3905                 unsigned long    mask)
3906{
3907    unsigned long tmp;
3908    int tout = 5000; /* wait for 5 secs tops */
3909
3910    while (tout--) {
3911        mb();
3912        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3913            return (TRUE);
3914        }
3915
3916        DELAY(1000);
3917    }
3918
3919    mb();
3920
3921    tmp = atomic_load_acq_long(&sc->sp_state);
3922    if (tmp & mask) {
3923        BLOGE(sc, "Filtering completion timed out: "
3924                  "sp_state 0x%lx, mask 0x%lx\n",
3925              tmp, mask);
3926        return (FALSE);
3927    }
3928
3929    return (FALSE);
3930}
3931
3932static int
3933bxe_func_stop(struct bxe_softc *sc)
3934{
3935    struct ecore_func_state_params func_params = { NULL };
3936    int rc;
3937
3938    /* prepare parameters for function state transitions */
3939    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3940    func_params.f_obj = &sc->func_obj;
3941    func_params.cmd = ECORE_F_CMD_STOP;
3942
3943    /*
3944     * Try to stop the function the 'good way'. If it fails (in case
3945     * of a parity error during bxe_chip_cleanup()) and we are
3946     * not in a debug mode, perform a state transaction in order to
3947     * enable further HW_RESET transaction.
3948     */
3949    rc = ecore_func_state_change(sc, &func_params);
3950    if (rc) {
3951        BLOGE(sc, "FUNC_STOP ramrod failed. "
3952                  "Running a dry transaction (%d)\n", rc);
3953        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3954        return (ecore_func_state_change(sc, &func_params));
3955    }
3956
3957    return (0);
3958}
3959
3960static int
3961bxe_reset_hw(struct bxe_softc *sc,
3962             uint32_t         load_code)
3963{
3964    struct ecore_func_state_params func_params = { NULL };
3965
3966    /* Prepare parameters for function state transitions */
3967    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3968
3969    func_params.f_obj = &sc->func_obj;
3970    func_params.cmd = ECORE_F_CMD_HW_RESET;
3971
3972    func_params.params.hw_init.load_phase = load_code;
3973
3974    return (ecore_func_state_change(sc, &func_params));
3975}
3976
3977static void
3978bxe_int_disable_sync(struct bxe_softc *sc,
3979                     int              disable_hw)
3980{
3981    if (disable_hw) {
3982        /* prevent the HW from sending interrupts */
3983        bxe_int_disable(sc);
3984    }
3985
3986    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3987    /* make sure all ISRs are done */
3988
3989    /* XXX make sure sp_task is not running */
3990    /* cancel and flush work queues */
3991}
3992
3993static void
3994bxe_chip_cleanup(struct bxe_softc *sc,
3995                 uint32_t         unload_mode,
3996                 uint8_t          keep_link)
3997{
3998    int port = SC_PORT(sc);
3999    struct ecore_mcast_ramrod_params rparam = { NULL };
4000    uint32_t reset_code;
4001    int i, rc = 0;
4002
4003    bxe_drain_tx_queues(sc);
4004
4005    /* give HW time to discard old tx messages */
4006    DELAY(1000);
4007
4008    /* Clean all ETH MACs */
4009    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4010    if (rc < 0) {
4011        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4012    }
4013
4014    /* Clean up UC list  */
4015    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4016    if (rc < 0) {
4017        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4018    }
4019
4020    /* Disable LLH */
4021    if (!CHIP_IS_E1(sc)) {
4022        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4023    }
4024
4025    /* Set "drop all" to stop Rx */
4026
4027    /*
4028     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4029     * a race between the completion code and this code.
4030     */
4031    BXE_MCAST_LOCK(sc);
4032
4033    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4034        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4035    } else {
4036        bxe_set_storm_rx_mode(sc);
4037    }
4038
4039    /* Clean up multicast configuration */
4040    rparam.mcast_obj = &sc->mcast_obj;
4041    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4042    if (rc < 0) {
4043        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4044    }
4045
4046    BXE_MCAST_UNLOCK(sc);
4047
4048    // XXX bxe_iov_chip_cleanup(sc);
4049
4050    /*
4051     * Send the UNLOAD_REQUEST to the MCP. This will return if
4052     * this function should perform FUNCTION, PORT, or COMMON HW
4053     * reset.
4054     */
4055    reset_code = bxe_send_unload_req(sc, unload_mode);
4056
4057    /*
4058     * (assumption: No Attention from MCP at this stage)
4059     * PMF probably in the middle of TX disable/enable transaction
4060     */
4061    rc = bxe_func_wait_started(sc);
4062    if (rc) {
4063        BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4064    }
4065
4066    /*
4067     * Close multi and leading connections
4068     * Completions for ramrods are collected in a synchronous way
4069     */
4070    for (i = 0; i < sc->num_queues; i++) {
4071        if (bxe_stop_queue(sc, i)) {
4072            goto unload_error;
4073        }
4074    }
4075
4076    /*
4077     * If SP settings didn't get completed so far - something
4078     * very wrong has happen.
4079     */
4080    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4081        BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4082    }
4083
4084unload_error:
4085
4086    rc = bxe_func_stop(sc);
4087    if (rc) {
4088        BLOGE(sc, "Function stop failed!(%d)\n", rc);
4089    }
4090
4091    /* disable HW interrupts */
4092    bxe_int_disable_sync(sc, TRUE);
4093
4094    /* detach interrupts */
4095    bxe_interrupt_detach(sc);
4096
4097    /* Reset the chip */
4098    rc = bxe_reset_hw(sc, reset_code);
4099    if (rc) {
4100        BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4101    }
4102
4103    /* Report UNLOAD_DONE to MCP */
4104    bxe_send_unload_done(sc, keep_link);
4105}
4106
4107static void
4108bxe_disable_close_the_gate(struct bxe_softc *sc)
4109{
4110    uint32_t val;
4111    int port = SC_PORT(sc);
4112
4113    BLOGD(sc, DBG_LOAD,
4114          "Disabling 'close the gates'\n");
4115
4116    if (CHIP_IS_E1(sc)) {
4117        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4118                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4119        val = REG_RD(sc, addr);
4120        val &= ~(0x300);
4121        REG_WR(sc, addr, val);
4122    } else {
4123        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4124        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4125                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4126        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4127    }
4128}
4129
4130/*
4131 * Cleans the object that have internal lists without sending
4132 * ramrods. Should be run when interrutps are disabled.
4133 */
4134static void
4135bxe_squeeze_objects(struct bxe_softc *sc)
4136{
4137    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4138    struct ecore_mcast_ramrod_params rparam = { NULL };
4139    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4140    int rc;
4141
4142    /* Cleanup MACs' object first... */
4143
4144    /* Wait for completion of requested */
4145    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4146    /* Perform a dry cleanup */
4147    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4148
4149    /* Clean ETH primary MAC */
4150    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4151    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4152                             &ramrod_flags);
4153    if (rc != 0) {
4154        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4155    }
4156
4157    /* Cleanup UC list */
4158    vlan_mac_flags = 0;
4159    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4160    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4161                             &ramrod_flags);
4162    if (rc != 0) {
4163        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4164    }
4165
4166    /* Now clean mcast object... */
4167
4168    rparam.mcast_obj = &sc->mcast_obj;
4169    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4170
4171    /* Add a DEL command... */
4172    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4173    if (rc < 0) {
4174        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4175    }
4176
4177    /* now wait until all pending commands are cleared */
4178
4179    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4180    while (rc != 0) {
4181        if (rc < 0) {
4182            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4183            return;
4184        }
4185
4186        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4187    }
4188}
4189
4190/* stop the controller */
4191static __noinline int
4192bxe_nic_unload(struct bxe_softc *sc,
4193               uint32_t         unload_mode,
4194               uint8_t          keep_link)
4195{
4196    uint8_t global = FALSE;
4197    uint32_t val;
4198    int i;
4199
4200    BXE_CORE_LOCK_ASSERT(sc);
4201
4202    if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4203
4204    for (i = 0; i < sc->num_queues; i++) {
4205        struct bxe_fastpath *fp;
4206
4207        fp = &sc->fp[i];
4208        BXE_FP_TX_LOCK(fp);
4209        BXE_FP_TX_UNLOCK(fp);
4210    }
4211
4212    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4213
4214    /* mark driver as unloaded in shmem2 */
4215    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4216        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4217        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4218                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4219    }
4220
4221    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4222        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4223        /*
4224         * We can get here if the driver has been unloaded
4225         * during parity error recovery and is either waiting for a
4226         * leader to complete or for other functions to unload and
4227         * then ifconfig down has been issued. In this case we want to
4228         * unload and let other functions to complete a recovery
4229         * process.
4230         */
4231        sc->recovery_state = BXE_RECOVERY_DONE;
4232        sc->is_leader = 0;
4233        bxe_release_leader_lock(sc);
4234        mb();
4235
4236        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4237        BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4238            " state = 0x%x\n", sc->recovery_state, sc->state);
4239        return (-1);
4240    }
4241
4242    /*
4243     * Nothing to do during unload if previous bxe_nic_load()
4244     * did not completed successfully - all resourses are released.
4245     */
4246    if ((sc->state == BXE_STATE_CLOSED) ||
4247        (sc->state == BXE_STATE_ERROR)) {
4248        return (0);
4249    }
4250
4251    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4252    mb();
4253
4254    /* stop tx */
4255    bxe_tx_disable(sc);
4256
4257    sc->rx_mode = BXE_RX_MODE_NONE;
4258    /* XXX set rx mode ??? */
4259
4260    if (IS_PF(sc) && !sc->grcdump_done) {
4261        /* set ALWAYS_ALIVE bit in shmem */
4262        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4263
4264        bxe_drv_pulse(sc);
4265
4266        bxe_stats_handle(sc, STATS_EVENT_STOP);
4267        bxe_save_statistics(sc);
4268    }
4269
4270    /* wait till consumers catch up with producers in all queues */
4271    bxe_drain_tx_queues(sc);
4272
4273    /* if VF indicate to PF this function is going down (PF will delete sp
4274     * elements and clear initializations
4275     */
4276    if (IS_VF(sc)) {
4277        ; /* bxe_vfpf_close_vf(sc); */
4278    } else if (unload_mode != UNLOAD_RECOVERY) {
4279        /* if this is a normal/close unload need to clean up chip */
4280        if (!sc->grcdump_done)
4281            bxe_chip_cleanup(sc, unload_mode, keep_link);
4282    } else {
4283        /* Send the UNLOAD_REQUEST to the MCP */
4284        bxe_send_unload_req(sc, unload_mode);
4285
4286        /*
4287         * Prevent transactions to host from the functions on the
4288         * engine that doesn't reset global blocks in case of global
4289         * attention once gloabl blocks are reset and gates are opened
4290         * (the engine which leader will perform the recovery
4291         * last).
4292         */
4293        if (!CHIP_IS_E1x(sc)) {
4294            bxe_pf_disable(sc);
4295        }
4296
4297        /* disable HW interrupts */
4298        bxe_int_disable_sync(sc, TRUE);
4299
4300        /* detach interrupts */
4301        bxe_interrupt_detach(sc);
4302
4303        /* Report UNLOAD_DONE to MCP */
4304        bxe_send_unload_done(sc, FALSE);
4305    }
4306
4307    /*
4308     * At this stage no more interrupts will arrive so we may safely clean
4309     * the queue'able objects here in case they failed to get cleaned so far.
4310     */
4311    if (IS_PF(sc)) {
4312        bxe_squeeze_objects(sc);
4313    }
4314
4315    /* There should be no more pending SP commands at this stage */
4316    sc->sp_state = 0;
4317
4318    sc->port.pmf = 0;
4319
4320    bxe_free_fp_buffers(sc);
4321
4322    if (IS_PF(sc)) {
4323        bxe_free_mem(sc);
4324    }
4325
4326    bxe_free_fw_stats_mem(sc);
4327
4328    sc->state = BXE_STATE_CLOSED;
4329
4330    /*
4331     * Check if there are pending parity attentions. If there are - set
4332     * RECOVERY_IN_PROGRESS.
4333     */
4334    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4335        bxe_set_reset_in_progress(sc);
4336
4337        /* Set RESET_IS_GLOBAL if needed */
4338        if (global) {
4339            bxe_set_reset_global(sc);
4340        }
4341    }
4342
4343    /*
4344     * The last driver must disable a "close the gate" if there is no
4345     * parity attention or "process kill" pending.
4346     */
4347    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4348        bxe_reset_is_done(sc, SC_PATH(sc))) {
4349        bxe_disable_close_the_gate(sc);
4350    }
4351
4352    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4353
4354    return (0);
4355}
4356
4357/*
4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4360 */
4361static int
4362bxe_ifmedia_update(struct ifnet  *ifp)
4363{
4364    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4365    struct ifmedia *ifm;
4366
4367    ifm = &sc->ifmedia;
4368
4369    /* We only support Ethernet media type. */
4370    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4371        return (EINVAL);
4372    }
4373
4374    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4375    case IFM_AUTO:
4376         break;
4377    case IFM_10G_CX4:
4378    case IFM_10G_SR:
4379    case IFM_10G_T:
4380    case IFM_10G_TWINAX:
4381    default:
4382        /* We don't support changing the media type. */
4383        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4384              IFM_SUBTYPE(ifm->ifm_media));
4385        return (EINVAL);
4386    }
4387
4388    return (0);
4389}
4390
4391/*
4392 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4393 */
4394static void
4395bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4396{
4397    struct bxe_softc *sc = if_getsoftc(ifp);
4398
4399    /* Report link down if the driver isn't running. */
4400    if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4401        ifmr->ifm_active |= IFM_NONE;
4402        return;
4403    }
4404
4405    /* Setup the default interface info. */
4406    ifmr->ifm_status = IFM_AVALID;
4407    ifmr->ifm_active = IFM_ETHER;
4408
4409    if (sc->link_vars.link_up) {
4410        ifmr->ifm_status |= IFM_ACTIVE;
4411    } else {
4412        ifmr->ifm_active |= IFM_NONE;
4413        return;
4414    }
4415
4416    ifmr->ifm_active |= sc->media;
4417
4418    if (sc->link_vars.duplex == DUPLEX_FULL) {
4419        ifmr->ifm_active |= IFM_FDX;
4420    } else {
4421        ifmr->ifm_active |= IFM_HDX;
4422    }
4423}
4424
4425static void
4426bxe_handle_chip_tq(void *context,
4427                   int  pending)
4428{
4429    struct bxe_softc *sc = (struct bxe_softc *)context;
4430    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4431
4432    switch (work)
4433    {
4434
4435    case CHIP_TQ_REINIT:
4436        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4437            /* restart the interface */
4438            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4439            bxe_periodic_stop(sc);
4440            BXE_CORE_LOCK(sc);
4441            bxe_stop_locked(sc);
4442            bxe_init_locked(sc);
4443            BXE_CORE_UNLOCK(sc);
4444        }
4445        break;
4446
4447    default:
4448        break;
4449    }
4450}
4451
4452/*
4453 * Handles any IOCTL calls from the operating system.
4454 *
4455 * Returns:
4456 *   0 = Success, >0 Failure
4457 */
4458static int
4459bxe_ioctl(if_t ifp,
4460          u_long       command,
4461          caddr_t      data)
4462{
4463    struct bxe_softc *sc = if_getsoftc(ifp);
4464    struct ifreq *ifr = (struct ifreq *)data;
4465    int mask = 0;
4466    int reinit = 0;
4467    int error = 0;
4468
4469    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4470    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4471
4472    switch (command)
4473    {
4474    case SIOCSIFMTU:
4475        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4476              ifr->ifr_mtu);
4477
4478        if (sc->mtu == ifr->ifr_mtu) {
4479            /* nothing to change */
4480            break;
4481        }
4482
4483        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4484            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4485                  ifr->ifr_mtu, mtu_min, mtu_max);
4486            error = EINVAL;
4487            break;
4488        }
4489
4490        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4491                             (unsigned long)ifr->ifr_mtu);
4492	/*
4493        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4494                              (unsigned long)ifr->ifr_mtu);
4495	XXX - Not sure why it needs to be atomic
4496	*/
4497	if_setmtu(ifp, ifr->ifr_mtu);
4498        reinit = 1;
4499        break;
4500
4501    case SIOCSIFFLAGS:
4502        /* toggle the interface state up or down */
4503        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4504
4505	BXE_CORE_LOCK(sc);
4506        /* check if the interface is up */
4507        if (if_getflags(ifp) & IFF_UP) {
4508            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4509                /* set the receive mode flags */
4510                bxe_set_rx_mode(sc);
4511            } else if(sc->state != BXE_STATE_DISABLED) {
4512		bxe_init_locked(sc);
4513            }
4514        } else {
4515            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4516		bxe_periodic_stop(sc);
4517		bxe_stop_locked(sc);
4518            }
4519        }
4520	BXE_CORE_UNLOCK(sc);
4521
4522        break;
4523
4524    case SIOCADDMULTI:
4525    case SIOCDELMULTI:
4526        /* add/delete multicast addresses */
4527        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4528
4529        /* check if the interface is up */
4530        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4531            /* set the receive mode flags */
4532	    BXE_CORE_LOCK(sc);
4533            bxe_set_rx_mode(sc);
4534	    BXE_CORE_UNLOCK(sc);
4535        }
4536
4537        break;
4538
4539    case SIOCSIFCAP:
4540        /* find out which capabilities have changed */
4541        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4542
4543        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4544              mask);
4545
4546        /* toggle the LRO capabilites enable flag */
4547        if (mask & IFCAP_LRO) {
4548	    if_togglecapenable(ifp, IFCAP_LRO);
4549            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4550                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4551            reinit = 1;
4552        }
4553
4554        /* toggle the TXCSUM checksum capabilites enable flag */
4555        if (mask & IFCAP_TXCSUM) {
4556	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4557            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4558                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4559            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4560                if_sethwassistbits(ifp, (CSUM_IP      |
4561                                    CSUM_TCP      |
4562                                    CSUM_UDP      |
4563                                    CSUM_TSO      |
4564                                    CSUM_TCP_IPV6 |
4565                                    CSUM_UDP_IPV6), 0);
4566            } else {
4567		if_clearhwassist(ifp); /* XXX */
4568            }
4569        }
4570
4571        /* toggle the RXCSUM checksum capabilities enable flag */
4572        if (mask & IFCAP_RXCSUM) {
4573	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4574            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4575                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4576            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4577                if_sethwassistbits(ifp, (CSUM_IP      |
4578                                    CSUM_TCP      |
4579                                    CSUM_UDP      |
4580                                    CSUM_TSO      |
4581                                    CSUM_TCP_IPV6 |
4582                                    CSUM_UDP_IPV6), 0);
4583            } else {
4584		if_clearhwassist(ifp); /* XXX */
4585            }
4586        }
4587
4588        /* toggle TSO4 capabilities enabled flag */
4589        if (mask & IFCAP_TSO4) {
4590            if_togglecapenable(ifp, IFCAP_TSO4);
4591            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4592                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4593        }
4594
4595        /* toggle TSO6 capabilities enabled flag */
4596        if (mask & IFCAP_TSO6) {
4597	    if_togglecapenable(ifp, IFCAP_TSO6);
4598            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4599                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4600        }
4601
4602        /* toggle VLAN_HWTSO capabilities enabled flag */
4603        if (mask & IFCAP_VLAN_HWTSO) {
4604
4605	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4606            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4607                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4608        }
4609
4610        /* toggle VLAN_HWCSUM capabilities enabled flag */
4611        if (mask & IFCAP_VLAN_HWCSUM) {
4612            /* XXX investigate this... */
4613            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4614            error = EINVAL;
4615        }
4616
4617        /* toggle VLAN_MTU capabilities enable flag */
4618        if (mask & IFCAP_VLAN_MTU) {
4619            /* XXX investigate this... */
4620            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4621            error = EINVAL;
4622        }
4623
4624        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4625        if (mask & IFCAP_VLAN_HWTAGGING) {
4626            /* XXX investigate this... */
4627            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4628            error = EINVAL;
4629        }
4630
4631        /* toggle VLAN_HWFILTER capabilities enabled flag */
4632        if (mask & IFCAP_VLAN_HWFILTER) {
4633            /* XXX investigate this... */
4634            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4635            error = EINVAL;
4636        }
4637
4638        /* XXX not yet...
4639         * IFCAP_WOL_MAGIC
4640         */
4641
4642        break;
4643
4644    case SIOCSIFMEDIA:
4645    case SIOCGIFMEDIA:
4646        /* set/get interface media */
4647        BLOGD(sc, DBG_IOCTL,
4648              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4649              (command & 0xff));
4650        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4651        break;
4652
4653    default:
4654        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4655              (command & 0xff));
4656        error = ether_ioctl(ifp, command, data);
4657        break;
4658    }
4659
4660    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4661        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4662              "Re-initializing hardware from IOCTL change\n");
4663	bxe_periodic_stop(sc);
4664	BXE_CORE_LOCK(sc);
4665	bxe_stop_locked(sc);
4666	bxe_init_locked(sc);
4667	BXE_CORE_UNLOCK(sc);
4668    }
4669
4670    return (error);
4671}
4672
4673static __noinline void
4674bxe_dump_mbuf(struct bxe_softc *sc,
4675              struct mbuf      *m,
4676              uint8_t          contents)
4677{
4678    char * type;
4679    int i = 0;
4680
4681    if (!(sc->debug & DBG_MBUF)) {
4682        return;
4683    }
4684
4685    if (m == NULL) {
4686        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4687        return;
4688    }
4689
4690    while (m) {
4691
4692#if __FreeBSD_version >= 1000000
4693        BLOGD(sc, DBG_MBUF,
4694              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4695              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4696
4697        if (m->m_flags & M_PKTHDR) {
4698             BLOGD(sc, DBG_MBUF,
4699                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4700                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4701                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4702        }
4703#else
4704        BLOGD(sc, DBG_MBUF,
4705              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4706              i, m, m->m_len, m->m_flags,
4707              "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4708
4709        if (m->m_flags & M_PKTHDR) {
4710             BLOGD(sc, DBG_MBUF,
4711                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4712                   i, m->m_pkthdr.len, m->m_flags,
4713                   "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4714                   "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4715                   "\22M_PROMISC\23M_NOFREE",
4716                   (int)m->m_pkthdr.csum_flags,
4717                   "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4718                   "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4719                   "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4720                   "\14CSUM_PSEUDO_HDR");
4721        }
4722#endif /* #if __FreeBSD_version >= 1000000 */
4723
4724        if (m->m_flags & M_EXT) {
4725            switch (m->m_ext.ext_type) {
4726            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4727            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4728            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4729            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4730            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4731            case EXT_PACKET:     type = "EXT_PACKET";     break;
4732            case EXT_MBUF:       type = "EXT_MBUF";       break;
4733            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4734            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4735            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4736            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4737            default:             type = "UNKNOWN";        break;
4738            }
4739
4740            BLOGD(sc, DBG_MBUF,
4741                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
4742                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4743        }
4744
4745        if (contents) {
4746            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4747        }
4748
4749        m = m->m_next;
4750        i++;
4751    }
4752}
4753
4754/*
4755 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4756 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4757 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4758 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4759 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4760 */
4761static int
4762bxe_chktso_window(struct bxe_softc  *sc,
4763                  int               nsegs,
4764                  bus_dma_segment_t *segs,
4765                  struct mbuf       *m)
4766{
4767    uint32_t num_wnds, wnd_size, wnd_sum;
4768    int32_t frag_idx, wnd_idx;
4769    unsigned short lso_mss;
4770    int defrag;
4771
4772    defrag = 0;
4773    wnd_sum = 0;
4774    wnd_size = 10;
4775    num_wnds = nsegs - wnd_size;
4776    lso_mss = htole16(m->m_pkthdr.tso_segsz);
4777
4778    /*
4779     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4780     * first window sum of data while skipping the first assuming it is the
4781     * header in FreeBSD.
4782     */
4783    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4784        wnd_sum += htole16(segs[frag_idx].ds_len);
4785    }
4786
4787    /* check the first 10 bd window size */
4788    if (wnd_sum < lso_mss) {
4789        return (1);
4790    }
4791
4792    /* run through the windows */
4793    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4794        /* subtract the first mbuf->m_len of the last wndw(-header) */
4795        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4796        /* add the next mbuf len to the len of our new window */
4797        wnd_sum += htole16(segs[frag_idx].ds_len);
4798        if (wnd_sum < lso_mss) {
4799            return (1);
4800        }
4801    }
4802
4803    return (0);
4804}
4805
4806static uint8_t
4807bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4808                    struct mbuf         *m,
4809                    uint32_t            *parsing_data)
4810{
4811    struct ether_vlan_header *eh = NULL;
4812    struct ip *ip4 = NULL;
4813    struct ip6_hdr *ip6 = NULL;
4814    caddr_t ip = NULL;
4815    struct tcphdr *th = NULL;
4816    int e_hlen, ip_hlen, l4_off;
4817    uint16_t proto;
4818
4819    if (m->m_pkthdr.csum_flags == CSUM_IP) {
4820        /* no L4 checksum offload needed */
4821        return (0);
4822    }
4823
4824    /* get the Ethernet header */
4825    eh = mtod(m, struct ether_vlan_header *);
4826
4827    /* handle VLAN encapsulation if present */
4828    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4829        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4830        proto  = ntohs(eh->evl_proto);
4831    } else {
4832        e_hlen = ETHER_HDR_LEN;
4833        proto  = ntohs(eh->evl_encap_proto);
4834    }
4835
4836    switch (proto) {
4837    case ETHERTYPE_IP:
4838        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4839        ip4 = (m->m_len < sizeof(struct ip)) ?
4840                  (struct ip *)m->m_next->m_data :
4841                  (struct ip *)(m->m_data + e_hlen);
4842        /* ip_hl is number of 32-bit words */
4843        ip_hlen = (ip4->ip_hl << 2);
4844        ip = (caddr_t)ip4;
4845        break;
4846    case ETHERTYPE_IPV6:
4847        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4848        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4849                  (struct ip6_hdr *)m->m_next->m_data :
4850                  (struct ip6_hdr *)(m->m_data + e_hlen);
4851        /* XXX cannot support offload with IPv6 extensions */
4852        ip_hlen = sizeof(struct ip6_hdr);
4853        ip = (caddr_t)ip6;
4854        break;
4855    default:
4856        /* We can't offload in this case... */
4857        /* XXX error stat ??? */
4858        return (0);
4859    }
4860
4861    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4862    l4_off = (e_hlen + ip_hlen);
4863
4864    *parsing_data |=
4865        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4866         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4867
4868    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4869                                  CSUM_TSO |
4870                                  CSUM_TCP_IPV6)) {
4871        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4872        th = (struct tcphdr *)(ip + ip_hlen);
4873        /* th_off is number of 32-bit words */
4874        *parsing_data |= ((th->th_off <<
4875                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4876                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4877        return (l4_off + (th->th_off << 2)); /* entire header length */
4878    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4879                                         CSUM_UDP_IPV6)) {
4880        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4881        return (l4_off + sizeof(struct udphdr)); /* entire header length */
4882    } else {
4883        /* XXX error stat ??? */
4884        return (0);
4885    }
4886}
4887
4888static uint8_t
4889bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4890                 struct mbuf                *m,
4891                 struct eth_tx_parse_bd_e1x *pbd)
4892{
4893    struct ether_vlan_header *eh = NULL;
4894    struct ip *ip4 = NULL;
4895    struct ip6_hdr *ip6 = NULL;
4896    caddr_t ip = NULL;
4897    struct tcphdr *th = NULL;
4898    struct udphdr *uh = NULL;
4899    int e_hlen, ip_hlen;
4900    uint16_t proto;
4901    uint8_t hlen;
4902    uint16_t tmp_csum;
4903    uint32_t *tmp_uh;
4904
4905    /* get the Ethernet header */
4906    eh = mtod(m, struct ether_vlan_header *);
4907
4908    /* handle VLAN encapsulation if present */
4909    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4910        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4911        proto  = ntohs(eh->evl_proto);
4912    } else {
4913        e_hlen = ETHER_HDR_LEN;
4914        proto  = ntohs(eh->evl_encap_proto);
4915    }
4916
4917    switch (proto) {
4918    case ETHERTYPE_IP:
4919        /* get the IP header, if mbuf len < 20 then header in next mbuf */
4920        ip4 = (m->m_len < sizeof(struct ip)) ?
4921                  (struct ip *)m->m_next->m_data :
4922                  (struct ip *)(m->m_data + e_hlen);
4923        /* ip_hl is number of 32-bit words */
4924        ip_hlen = (ip4->ip_hl << 1);
4925        ip = (caddr_t)ip4;
4926        break;
4927    case ETHERTYPE_IPV6:
4928        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4929        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4930                  (struct ip6_hdr *)m->m_next->m_data :
4931                  (struct ip6_hdr *)(m->m_data + e_hlen);
4932        /* XXX cannot support offload with IPv6 extensions */
4933        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4934        ip = (caddr_t)ip6;
4935        break;
4936    default:
4937        /* We can't offload in this case... */
4938        /* XXX error stat ??? */
4939        return (0);
4940    }
4941
4942    hlen = (e_hlen >> 1);
4943
4944    /* note that rest of global_data is indirectly zeroed here */
4945    if (m->m_flags & M_VLANTAG) {
4946        pbd->global_data =
4947            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4948    } else {
4949        pbd->global_data = htole16(hlen);
4950    }
4951
4952    pbd->ip_hlen_w = ip_hlen;
4953
4954    hlen += pbd->ip_hlen_w;
4955
4956    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4957
4958    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4959                                  CSUM_TSO |
4960                                  CSUM_TCP_IPV6)) {
4961        th = (struct tcphdr *)(ip + (ip_hlen << 1));
4962        /* th_off is number of 32-bit words */
4963        hlen += (uint16_t)(th->th_off << 1);
4964    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4965                                         CSUM_UDP_IPV6)) {
4966        uh = (struct udphdr *)(ip + (ip_hlen << 1));
4967        hlen += (sizeof(struct udphdr) / 2);
4968    } else {
4969        /* valid case as only CSUM_IP was set */
4970        return (0);
4971    }
4972
4973    pbd->total_hlen_w = htole16(hlen);
4974
4975    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4976                                  CSUM_TSO |
4977                                  CSUM_TCP_IPV6)) {
4978        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4979        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4980    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4981                                         CSUM_UDP_IPV6)) {
4982        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4983
4984        /*
4985         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4986         * checksums and does not know anything about the UDP header and where
4987         * the checksum field is located. It only knows about TCP. Therefore
4988         * we "lie" to the hardware for outgoing UDP packets w/ checksum
4989         * offload. Since the checksum field offset for TCP is 16 bytes and
4990         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4991         * bytes less than the start of the UDP header. This allows the
4992         * hardware to write the checksum in the correct spot. But the
4993         * hardware will compute a checksum which includes the last 10 bytes
4994         * of the IP header. To correct this we tweak the stack computed
4995         * pseudo checksum by folding in the calculation of the inverse
4996         * checksum for those final 10 bytes of the IP header. This allows
4997         * the correct checksum to be computed by the hardware.
4998         */
4999
5000        /* set pointer 10 bytes before UDP header */
5001        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5002
5003        /* calculate a pseudo header checksum over the first 10 bytes */
5004        tmp_csum = in_pseudo(*tmp_uh,
5005                             *(tmp_uh + 1),
5006                             *(uint16_t *)(tmp_uh + 2));
5007
5008        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5009    }
5010
5011    return (hlen * 2); /* entire header length, number of bytes */
5012}
5013
5014static void
5015bxe_set_pbd_lso_e2(struct mbuf *m,
5016                   uint32_t    *parsing_data)
5017{
5018    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5019                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5020                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5021
5022    /* XXX test for IPv6 with extension header... */
5023}
5024
5025static void
5026bxe_set_pbd_lso(struct mbuf                *m,
5027                struct eth_tx_parse_bd_e1x *pbd)
5028{
5029    struct ether_vlan_header *eh = NULL;
5030    struct ip *ip = NULL;
5031    struct tcphdr *th = NULL;
5032    int e_hlen;
5033
5034    /* get the Ethernet header */
5035    eh = mtod(m, struct ether_vlan_header *);
5036
5037    /* handle VLAN encapsulation if present */
5038    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5039                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5040
5041    /* get the IP and TCP header, with LSO entire header in first mbuf */
5042    /* XXX assuming IPv4 */
5043    ip = (struct ip *)(m->m_data + e_hlen);
5044    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5045
5046    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5047    pbd->tcp_send_seq = ntohl(th->th_seq);
5048    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5049
5050#if 1
5051        /* XXX IPv4 */
5052        pbd->ip_id = ntohs(ip->ip_id);
5053        pbd->tcp_pseudo_csum =
5054            ntohs(in_pseudo(ip->ip_src.s_addr,
5055                            ip->ip_dst.s_addr,
5056                            htons(IPPROTO_TCP)));
5057#else
5058        /* XXX IPv6 */
5059        pbd->tcp_pseudo_csum =
5060            ntohs(in_pseudo(&ip6->ip6_src,
5061                            &ip6->ip6_dst,
5062                            htons(IPPROTO_TCP)));
5063#endif
5064
5065    pbd->global_data |=
5066        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5067}
5068
5069/*
5070 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5071 * visible to the controller.
5072 *
5073 * If an mbuf is submitted to this routine and cannot be given to the
5074 * controller (e.g. it has too many fragments) then the function may free
5075 * the mbuf and return to the caller.
5076 *
5077 * Returns:
5078 *   0 = Success, !0 = Failure
5079 *   Note the side effect that an mbuf may be freed if it causes a problem.
5080 */
5081static int
5082bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5083{
5084    bus_dma_segment_t segs[32];
5085    struct mbuf *m0;
5086    struct bxe_sw_tx_bd *tx_buf;
5087    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5088    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5089    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5090    struct eth_tx_bd *tx_data_bd;
5091    struct eth_tx_bd *tx_total_pkt_size_bd;
5092    struct eth_tx_start_bd *tx_start_bd;
5093    uint16_t bd_prod, pkt_prod, total_pkt_size;
5094    uint8_t mac_type;
5095    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5096    struct bxe_softc *sc;
5097    uint16_t tx_bd_avail;
5098    struct ether_vlan_header *eh;
5099    uint32_t pbd_e2_parsing_data = 0;
5100    uint8_t hlen = 0;
5101    int tmp_bd;
5102    int i;
5103
5104    sc = fp->sc;
5105
5106#if __FreeBSD_version >= 800000
5107    M_ASSERTPKTHDR(*m_head);
5108#endif /* #if __FreeBSD_version >= 800000 */
5109
5110    m0 = *m_head;
5111    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5112    tx_start_bd = NULL;
5113    tx_data_bd = NULL;
5114    tx_total_pkt_size_bd = NULL;
5115
5116    /* get the H/W pointer for packets and BDs */
5117    pkt_prod = fp->tx_pkt_prod;
5118    bd_prod = fp->tx_bd_prod;
5119
5120    mac_type = UNICAST_ADDRESS;
5121
5122    /* map the mbuf into the next open DMAable memory */
5123    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5124    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5125                                    tx_buf->m_map, m0,
5126                                    segs, &nsegs, BUS_DMA_NOWAIT);
5127
5128    /* mapping errors */
5129    if(__predict_false(error != 0)) {
5130        fp->eth_q_stats.tx_dma_mapping_failure++;
5131        if (error == ENOMEM) {
5132            /* resource issue, try again later */
5133            rc = ENOMEM;
5134        } else if (error == EFBIG) {
5135            /* possibly recoverable with defragmentation */
5136            fp->eth_q_stats.mbuf_defrag_attempts++;
5137            m0 = m_defrag(*m_head, M_NOWAIT);
5138            if (m0 == NULL) {
5139                fp->eth_q_stats.mbuf_defrag_failures++;
5140                rc = ENOBUFS;
5141            } else {
5142                /* defrag successful, try mapping again */
5143                *m_head = m0;
5144                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5145                                                tx_buf->m_map, m0,
5146                                                segs, &nsegs, BUS_DMA_NOWAIT);
5147                if (error) {
5148                    fp->eth_q_stats.tx_dma_mapping_failure++;
5149                    rc = error;
5150                }
5151            }
5152        } else {
5153            /* unknown, unrecoverable mapping error */
5154            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5155            bxe_dump_mbuf(sc, m0, FALSE);
5156            rc = error;
5157        }
5158
5159        goto bxe_tx_encap_continue;
5160    }
5161
5162    tx_bd_avail = bxe_tx_avail(sc, fp);
5163
5164    /* make sure there is enough room in the send queue */
5165    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5166        /* Recoverable, try again later. */
5167        fp->eth_q_stats.tx_hw_queue_full++;
5168        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5169        rc = ENOMEM;
5170        goto bxe_tx_encap_continue;
5171    }
5172
5173    /* capture the current H/W TX chain high watermark */
5174    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5175                        (TX_BD_USABLE - tx_bd_avail))) {
5176        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5177    }
5178
5179    /* make sure it fits in the packet window */
5180    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5181        /*
5182         * The mbuf may be to big for the controller to handle. If the frame
5183         * is a TSO frame we'll need to do an additional check.
5184         */
5185        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5186            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5187                goto bxe_tx_encap_continue; /* OK to send */
5188            } else {
5189                fp->eth_q_stats.tx_window_violation_tso++;
5190            }
5191        } else {
5192            fp->eth_q_stats.tx_window_violation_std++;
5193        }
5194
5195        /* lets try to defragment this mbuf and remap it */
5196        fp->eth_q_stats.mbuf_defrag_attempts++;
5197        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5198
5199        m0 = m_defrag(*m_head, M_NOWAIT);
5200        if (m0 == NULL) {
5201            fp->eth_q_stats.mbuf_defrag_failures++;
5202            /* Ugh, just drop the frame... :( */
5203            rc = ENOBUFS;
5204        } else {
5205            /* defrag successful, try mapping again */
5206            *m_head = m0;
5207            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5208                                            tx_buf->m_map, m0,
5209                                            segs, &nsegs, BUS_DMA_NOWAIT);
5210            if (error) {
5211                fp->eth_q_stats.tx_dma_mapping_failure++;
5212                /* No sense in trying to defrag/copy chain, drop it. :( */
5213                rc = error;
5214            }
5215            else {
5216                /* if the chain is still too long then drop it */
5217                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5218                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5219                    rc = ENODEV;
5220                }
5221            }
5222        }
5223    }
5224
5225bxe_tx_encap_continue:
5226
5227    /* Check for errors */
5228    if (rc) {
5229        if (rc == ENOMEM) {
5230            /* recoverable try again later  */
5231        } else {
5232            fp->eth_q_stats.tx_soft_errors++;
5233            fp->eth_q_stats.mbuf_alloc_tx--;
5234            m_freem(*m_head);
5235            *m_head = NULL;
5236        }
5237
5238        return (rc);
5239    }
5240
5241    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5242    if (m0->m_flags & M_BCAST) {
5243        mac_type = BROADCAST_ADDRESS;
5244    } else if (m0->m_flags & M_MCAST) {
5245        mac_type = MULTICAST_ADDRESS;
5246    }
5247
5248    /* store the mbuf into the mbuf ring */
5249    tx_buf->m        = m0;
5250    tx_buf->first_bd = fp->tx_bd_prod;
5251    tx_buf->flags    = 0;
5252
5253    /* prepare the first transmit (start) BD for the mbuf */
5254    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5255
5256    BLOGD(sc, DBG_TX,
5257          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5258          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5259
5260    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5261    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5262    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5263    total_pkt_size += tx_start_bd->nbytes;
5264    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5265
5266    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5267
5268    /* all frames have at least Start BD + Parsing BD */
5269    nbds = nsegs + 1;
5270    tx_start_bd->nbd = htole16(nbds);
5271
5272    if (m0->m_flags & M_VLANTAG) {
5273        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5274        tx_start_bd->bd_flags.as_bitfield |=
5275            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5276    } else {
5277        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5278        if (IS_VF(sc)) {
5279            /* map ethernet header to find type and header length */
5280            eh = mtod(m0, struct ether_vlan_header *);
5281            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5282        } else {
5283            /* used by FW for packet accounting */
5284            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5285        }
5286    }
5287
5288    /*
5289     * add a parsing BD from the chain. The parsing BD is always added
5290     * though it is only used for TSO and chksum
5291     */
5292    bd_prod = TX_BD_NEXT(bd_prod);
5293
5294    if (m0->m_pkthdr.csum_flags) {
5295        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5296            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5297            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5298        }
5299
5300        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5301            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5302                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5303        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5304            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5305                                                  ETH_TX_BD_FLAGS_IS_UDP |
5306                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5307        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5308                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5309            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5310        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5311            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5312                                                  ETH_TX_BD_FLAGS_IS_UDP);
5313        }
5314    }
5315
5316    if (!CHIP_IS_E1x(sc)) {
5317        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5318        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5319
5320        if (m0->m_pkthdr.csum_flags) {
5321            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5322        }
5323
5324        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5325                 mac_type);
5326    } else {
5327        uint16_t global_data = 0;
5328
5329        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5330        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5331
5332        if (m0->m_pkthdr.csum_flags) {
5333            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5334        }
5335
5336        SET_FLAG(global_data,
5337                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5338        pbd_e1x->global_data |= htole16(global_data);
5339    }
5340
5341    /* setup the parsing BD with TSO specific info */
5342    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5343        fp->eth_q_stats.tx_ofld_frames_lso++;
5344        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5345
5346        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5347            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5348
5349            /* split the first BD into header/data making the fw job easy */
5350            nbds++;
5351            tx_start_bd->nbd = htole16(nbds);
5352            tx_start_bd->nbytes = htole16(hlen);
5353
5354            bd_prod = TX_BD_NEXT(bd_prod);
5355
5356            /* new transmit BD after the tx_parse_bd */
5357            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5358            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5359            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5360            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5361            if (tx_total_pkt_size_bd == NULL) {
5362                tx_total_pkt_size_bd = tx_data_bd;
5363            }
5364
5365            BLOGD(sc, DBG_TX,
5366                  "TSO split header size is %d (%x:%x) nbds %d\n",
5367                  le16toh(tx_start_bd->nbytes),
5368                  le32toh(tx_start_bd->addr_hi),
5369                  le32toh(tx_start_bd->addr_lo),
5370                  nbds);
5371        }
5372
5373        if (!CHIP_IS_E1x(sc)) {
5374            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5375        } else {
5376            bxe_set_pbd_lso(m0, pbd_e1x);
5377        }
5378    }
5379
5380    if (pbd_e2_parsing_data) {
5381        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5382    }
5383
5384    /* prepare remaining BDs, start tx bd contains first seg/frag */
5385    for (i = 1; i < nsegs ; i++) {
5386        bd_prod = TX_BD_NEXT(bd_prod);
5387        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5388        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5389        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5390        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5391        if (tx_total_pkt_size_bd == NULL) {
5392            tx_total_pkt_size_bd = tx_data_bd;
5393        }
5394        total_pkt_size += tx_data_bd->nbytes;
5395    }
5396
5397    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5398
5399    if (tx_total_pkt_size_bd != NULL) {
5400        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5401    }
5402
5403    if (__predict_false(sc->debug & DBG_TX)) {
5404        tmp_bd = tx_buf->first_bd;
5405        for (i = 0; i < nbds; i++)
5406        {
5407            if (i == 0) {
5408                BLOGD(sc, DBG_TX,
5409                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5410                      "bd_flags=0x%x hdr_nbds=%d\n",
5411                      tx_start_bd,
5412                      tmp_bd,
5413                      le16toh(tx_start_bd->nbd),
5414                      le16toh(tx_start_bd->vlan_or_ethertype),
5415                      tx_start_bd->bd_flags.as_bitfield,
5416                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5417            } else if (i == 1) {
5418                if (pbd_e1x) {
5419                    BLOGD(sc, DBG_TX,
5420                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5421                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5422                          "tcp_seq=%u total_hlen_w=%u\n",
5423                          pbd_e1x,
5424                          tmp_bd,
5425                          pbd_e1x->global_data,
5426                          pbd_e1x->ip_hlen_w,
5427                          pbd_e1x->ip_id,
5428                          pbd_e1x->lso_mss,
5429                          pbd_e1x->tcp_flags,
5430                          pbd_e1x->tcp_pseudo_csum,
5431                          pbd_e1x->tcp_send_seq,
5432                          le16toh(pbd_e1x->total_hlen_w));
5433                } else { /* if (pbd_e2) */
5434                    BLOGD(sc, DBG_TX,
5435                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5436                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5437                          pbd_e2,
5438                          tmp_bd,
5439                          pbd_e2->data.mac_addr.dst_hi,
5440                          pbd_e2->data.mac_addr.dst_mid,
5441                          pbd_e2->data.mac_addr.dst_lo,
5442                          pbd_e2->data.mac_addr.src_hi,
5443                          pbd_e2->data.mac_addr.src_mid,
5444                          pbd_e2->data.mac_addr.src_lo,
5445                          pbd_e2->parsing_data);
5446                }
5447            }
5448
5449            if (i != 1) { /* skip parse db as it doesn't hold data */
5450                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5451                BLOGD(sc, DBG_TX,
5452                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5453                      tx_data_bd,
5454                      tmp_bd,
5455                      le16toh(tx_data_bd->nbytes),
5456                      le32toh(tx_data_bd->addr_hi),
5457                      le32toh(tx_data_bd->addr_lo));
5458            }
5459
5460            tmp_bd = TX_BD_NEXT(tmp_bd);
5461        }
5462    }
5463
5464    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5465
5466    /* update TX BD producer index value for next TX */
5467    bd_prod = TX_BD_NEXT(bd_prod);
5468
5469    /*
5470     * If the chain of tx_bd's describing this frame is adjacent to or spans
5471     * an eth_tx_next_bd element then we need to increment the nbds value.
5472     */
5473    if (TX_BD_IDX(bd_prod) < nbds) {
5474        nbds++;
5475    }
5476
5477    /* don't allow reordering of writes for nbd and packets */
5478    mb();
5479
5480    fp->tx_db.data.prod += nbds;
5481
5482    /* producer points to the next free tx_bd at this point */
5483    fp->tx_pkt_prod++;
5484    fp->tx_bd_prod = bd_prod;
5485
5486    DOORBELL(sc, fp->index, fp->tx_db.raw);
5487
5488    fp->eth_q_stats.tx_pkts++;
5489
5490    /* Prevent speculative reads from getting ahead of the status block. */
5491    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5492                      0, 0, BUS_SPACE_BARRIER_READ);
5493
5494    /* Prevent speculative reads from getting ahead of the doorbell. */
5495    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5496                      0, 0, BUS_SPACE_BARRIER_READ);
5497
5498    return (0);
5499}
5500
5501static void
5502bxe_tx_start_locked(struct bxe_softc *sc,
5503                    if_t ifp,
5504                    struct bxe_fastpath *fp)
5505{
5506    struct mbuf *m = NULL;
5507    int tx_count = 0;
5508    uint16_t tx_bd_avail;
5509
5510    BXE_FP_TX_LOCK_ASSERT(fp);
5511
5512    /* keep adding entries while there are frames to send */
5513    while (!if_sendq_empty(ifp)) {
5514
5515        /*
5516         * check for any frames to send
5517         * dequeue can still be NULL even if queue is not empty
5518         */
5519        m = if_dequeue(ifp);
5520        if (__predict_false(m == NULL)) {
5521            break;
5522        }
5523
5524        /* the mbuf now belongs to us */
5525        fp->eth_q_stats.mbuf_alloc_tx++;
5526
5527        /*
5528         * Put the frame into the transmit ring. If we don't have room,
5529         * place the mbuf back at the head of the TX queue, set the
5530         * OACTIVE flag, and wait for the NIC to drain the chain.
5531         */
5532        if (__predict_false(bxe_tx_encap(fp, &m))) {
5533            fp->eth_q_stats.tx_encap_failures++;
5534            if (m != NULL) {
5535                /* mark the TX queue as full and return the frame */
5536                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5537		if_sendq_prepend(ifp, m);
5538                fp->eth_q_stats.mbuf_alloc_tx--;
5539                fp->eth_q_stats.tx_queue_xoff++;
5540            }
5541
5542            /* stop looking for more work */
5543            break;
5544        }
5545
5546        /* the frame was enqueued successfully */
5547        tx_count++;
5548
5549        /* send a copy of the frame to any BPF listeners. */
5550        if_etherbpfmtap(ifp, m);
5551
5552        tx_bd_avail = bxe_tx_avail(sc, fp);
5553
5554        /* handle any completions if we're running low */
5555        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5556            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5557            bxe_txeof(sc, fp);
5558            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5559                break;
5560            }
5561        }
5562    }
5563
5564    /* all TX packets were dequeued and/or the tx ring is full */
5565    if (tx_count > 0) {
5566        /* reset the TX watchdog timeout timer */
5567        fp->watchdog_timer = BXE_TX_TIMEOUT;
5568    }
5569}
5570
5571/* Legacy (non-RSS) dispatch routine */
5572static void
5573bxe_tx_start(if_t ifp)
5574{
5575    struct bxe_softc *sc;
5576    struct bxe_fastpath *fp;
5577
5578    sc = if_getsoftc(ifp);
5579
5580    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5581        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5582        return;
5583    }
5584
5585    if (!sc->link_vars.link_up) {
5586        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5587        return;
5588    }
5589
5590    fp = &sc->fp[0];
5591
5592    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5593        fp->eth_q_stats.tx_queue_full_return++;
5594        return;
5595    }
5596
5597    BXE_FP_TX_LOCK(fp);
5598    bxe_tx_start_locked(sc, ifp, fp);
5599    BXE_FP_TX_UNLOCK(fp);
5600}
5601
5602#if __FreeBSD_version >= 800000
5603
5604static int
5605bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5606                       if_t                ifp,
5607                       struct bxe_fastpath *fp,
5608                       struct mbuf         *m)
5609{
5610    struct buf_ring *tx_br = fp->tx_br;
5611    struct mbuf *next;
5612    int depth, rc, tx_count;
5613    uint16_t tx_bd_avail;
5614
5615    rc = tx_count = 0;
5616
5617    BXE_FP_TX_LOCK_ASSERT(fp);
5618
5619    if (!tx_br) {
5620        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5621        return (EINVAL);
5622    }
5623
5624    if (!sc->link_vars.link_up ||
5625        (if_getdrvflags(ifp) &
5626        (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5627        if (m != NULL)
5628            rc = drbr_enqueue(ifp, tx_br, m);
5629        goto bxe_tx_mq_start_locked_exit;
5630    }
5631
5632    /* fetch the depth of the driver queue */
5633    depth = drbr_inuse_drv(ifp, tx_br);
5634    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5635        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5636    }
5637
5638    if (m == NULL) {
5639        /* no new work, check for pending frames */
5640        next = drbr_dequeue_drv(ifp, tx_br);
5641    } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5642        /* have both new and pending work, maintain packet order */
5643        rc = drbr_enqueue(ifp, tx_br, m);
5644        if (rc != 0) {
5645            fp->eth_q_stats.tx_soft_errors++;
5646            goto bxe_tx_mq_start_locked_exit;
5647        }
5648        next = drbr_dequeue_drv(ifp, tx_br);
5649    } else {
5650        /* new work only and nothing pending */
5651        next = m;
5652    }
5653
5654    /* keep adding entries while there are frames to send */
5655    while (next != NULL) {
5656
5657        /* the mbuf now belongs to us */
5658        fp->eth_q_stats.mbuf_alloc_tx++;
5659
5660        /*
5661         * Put the frame into the transmit ring. If we don't have room,
5662         * place the mbuf back at the head of the TX queue, set the
5663         * OACTIVE flag, and wait for the NIC to drain the chain.
5664         */
5665        rc = bxe_tx_encap(fp, &next);
5666        if (__predict_false(rc != 0)) {
5667            fp->eth_q_stats.tx_encap_failures++;
5668            if (next != NULL) {
5669                /* mark the TX queue as full and save the frame */
5670                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5671                /* XXX this may reorder the frame */
5672                rc = drbr_enqueue(ifp, tx_br, next);
5673                fp->eth_q_stats.mbuf_alloc_tx--;
5674                fp->eth_q_stats.tx_frames_deferred++;
5675            }
5676
5677            /* stop looking for more work */
5678            break;
5679        }
5680
5681        /* the transmit frame was enqueued successfully */
5682        tx_count++;
5683
5684        /* send a copy of the frame to any BPF listeners */
5685	if_etherbpfmtap(ifp, next);
5686
5687        tx_bd_avail = bxe_tx_avail(sc, fp);
5688
5689        /* handle any completions if we're running low */
5690        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5691            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5692            bxe_txeof(sc, fp);
5693            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5694                break;
5695            }
5696        }
5697
5698        next = drbr_dequeue_drv(ifp, tx_br);
5699    }
5700
5701    /* all TX packets were dequeued and/or the tx ring is full */
5702    if (tx_count > 0) {
5703        /* reset the TX watchdog timeout timer */
5704        fp->watchdog_timer = BXE_TX_TIMEOUT;
5705    }
5706
5707bxe_tx_mq_start_locked_exit:
5708
5709    return (rc);
5710}
5711
5712/* Multiqueue (TSS) dispatch routine. */
5713static int
5714bxe_tx_mq_start(struct ifnet *ifp,
5715                struct mbuf  *m)
5716{
5717    struct bxe_softc *sc = if_getsoftc(ifp);
5718    struct bxe_fastpath *fp;
5719    int fp_index, rc;
5720
5721    fp_index = 0; /* default is the first queue */
5722
5723    /* check if flowid is set */
5724
5725    if (BXE_VALID_FLOWID(m))
5726        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5727
5728    fp = &sc->fp[fp_index];
5729
5730    if (BXE_FP_TX_TRYLOCK(fp)) {
5731        rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5732        BXE_FP_TX_UNLOCK(fp);
5733    } else
5734        rc = drbr_enqueue(ifp, fp->tx_br, m);
5735
5736    return (rc);
5737}
5738
5739static void
5740bxe_mq_flush(struct ifnet *ifp)
5741{
5742    struct bxe_softc *sc = if_getsoftc(ifp);
5743    struct bxe_fastpath *fp;
5744    struct mbuf *m;
5745    int i;
5746
5747    for (i = 0; i < sc->num_queues; i++) {
5748        fp = &sc->fp[i];
5749
5750        if (fp->state != BXE_FP_STATE_OPEN) {
5751            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5752                  fp->index, fp->state);
5753            continue;
5754        }
5755
5756        if (fp->tx_br != NULL) {
5757            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5758            BXE_FP_TX_LOCK(fp);
5759            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5760                m_freem(m);
5761            }
5762            BXE_FP_TX_UNLOCK(fp);
5763        }
5764    }
5765
5766    if_qflush(ifp);
5767}
5768
5769#endif /* FreeBSD_version >= 800000 */
5770
5771static uint16_t
5772bxe_cid_ilt_lines(struct bxe_softc *sc)
5773{
5774    if (IS_SRIOV(sc)) {
5775        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5776    }
5777    return (L2_ILT_LINES(sc));
5778}
5779
5780static void
5781bxe_ilt_set_info(struct bxe_softc *sc)
5782{
5783    struct ilt_client_info *ilt_client;
5784    struct ecore_ilt *ilt = sc->ilt;
5785    uint16_t line = 0;
5786
5787    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5788    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5789
5790    /* CDU */
5791    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5792    ilt_client->client_num = ILT_CLIENT_CDU;
5793    ilt_client->page_size = CDU_ILT_PAGE_SZ;
5794    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5795    ilt_client->start = line;
5796    line += bxe_cid_ilt_lines(sc);
5797
5798    if (CNIC_SUPPORT(sc)) {
5799        line += CNIC_ILT_LINES;
5800    }
5801
5802    ilt_client->end = (line - 1);
5803
5804    BLOGD(sc, DBG_LOAD,
5805          "ilt client[CDU]: start %d, end %d, "
5806          "psz 0x%x, flags 0x%x, hw psz %d\n",
5807          ilt_client->start, ilt_client->end,
5808          ilt_client->page_size,
5809          ilt_client->flags,
5810          ilog2(ilt_client->page_size >> 12));
5811
5812    /* QM */
5813    if (QM_INIT(sc->qm_cid_count)) {
5814        ilt_client = &ilt->clients[ILT_CLIENT_QM];
5815        ilt_client->client_num = ILT_CLIENT_QM;
5816        ilt_client->page_size = QM_ILT_PAGE_SZ;
5817        ilt_client->flags = 0;
5818        ilt_client->start = line;
5819
5820        /* 4 bytes for each cid */
5821        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5822                             QM_ILT_PAGE_SZ);
5823
5824        ilt_client->end = (line - 1);
5825
5826        BLOGD(sc, DBG_LOAD,
5827              "ilt client[QM]: start %d, end %d, "
5828              "psz 0x%x, flags 0x%x, hw psz %d\n",
5829              ilt_client->start, ilt_client->end,
5830              ilt_client->page_size, ilt_client->flags,
5831              ilog2(ilt_client->page_size >> 12));
5832    }
5833
5834    if (CNIC_SUPPORT(sc)) {
5835        /* SRC */
5836        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5837        ilt_client->client_num = ILT_CLIENT_SRC;
5838        ilt_client->page_size = SRC_ILT_PAGE_SZ;
5839        ilt_client->flags = 0;
5840        ilt_client->start = line;
5841        line += SRC_ILT_LINES;
5842        ilt_client->end = (line - 1);
5843
5844        BLOGD(sc, DBG_LOAD,
5845              "ilt client[SRC]: start %d, end %d, "
5846              "psz 0x%x, flags 0x%x, hw psz %d\n",
5847              ilt_client->start, ilt_client->end,
5848              ilt_client->page_size, ilt_client->flags,
5849              ilog2(ilt_client->page_size >> 12));
5850
5851        /* TM */
5852        ilt_client = &ilt->clients[ILT_CLIENT_TM];
5853        ilt_client->client_num = ILT_CLIENT_TM;
5854        ilt_client->page_size = TM_ILT_PAGE_SZ;
5855        ilt_client->flags = 0;
5856        ilt_client->start = line;
5857        line += TM_ILT_LINES;
5858        ilt_client->end = (line - 1);
5859
5860        BLOGD(sc, DBG_LOAD,
5861              "ilt client[TM]: start %d, end %d, "
5862              "psz 0x%x, flags 0x%x, hw psz %d\n",
5863              ilt_client->start, ilt_client->end,
5864              ilt_client->page_size, ilt_client->flags,
5865              ilog2(ilt_client->page_size >> 12));
5866    }
5867
5868    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5869}
5870
5871static void
5872bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5873{
5874    int i;
5875    uint32_t rx_buf_size;
5876
5877    rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5878
5879    for (i = 0; i < sc->num_queues; i++) {
5880        if(rx_buf_size <= MCLBYTES){
5881            sc->fp[i].rx_buf_size = rx_buf_size;
5882            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5883        }else if (rx_buf_size <= MJUMPAGESIZE){
5884            sc->fp[i].rx_buf_size = rx_buf_size;
5885            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5886        }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5887            sc->fp[i].rx_buf_size = MCLBYTES;
5888            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5889        }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5890            sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5891            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5892        }else {
5893            sc->fp[i].rx_buf_size = MCLBYTES;
5894            sc->fp[i].mbuf_alloc_size = MCLBYTES;
5895        }
5896    }
5897}
5898
5899static int
5900bxe_alloc_ilt_mem(struct bxe_softc *sc)
5901{
5902    int rc = 0;
5903
5904    if ((sc->ilt =
5905         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5906                                    M_BXE_ILT,
5907                                    (M_NOWAIT | M_ZERO))) == NULL) {
5908        rc = 1;
5909    }
5910
5911    return (rc);
5912}
5913
5914static int
5915bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5916{
5917    int rc = 0;
5918
5919    if ((sc->ilt->lines =
5920         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5921                                    M_BXE_ILT,
5922                                    (M_NOWAIT | M_ZERO))) == NULL) {
5923        rc = 1;
5924    }
5925
5926    return (rc);
5927}
5928
5929static void
5930bxe_free_ilt_mem(struct bxe_softc *sc)
5931{
5932    if (sc->ilt != NULL) {
5933        free(sc->ilt, M_BXE_ILT);
5934        sc->ilt = NULL;
5935    }
5936}
5937
5938static void
5939bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5940{
5941    if (sc->ilt->lines != NULL) {
5942        free(sc->ilt->lines, M_BXE_ILT);
5943        sc->ilt->lines = NULL;
5944    }
5945}
5946
5947static void
5948bxe_free_mem(struct bxe_softc *sc)
5949{
5950    int i;
5951
5952    for (i = 0; i < L2_ILT_LINES(sc); i++) {
5953        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5954        sc->context[i].vcxt = NULL;
5955        sc->context[i].size = 0;
5956    }
5957
5958    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5959
5960    bxe_free_ilt_lines_mem(sc);
5961
5962}
5963
5964static int
5965bxe_alloc_mem(struct bxe_softc *sc)
5966{
5967    int context_size;
5968    int allocated;
5969    int i;
5970
5971    /*
5972     * Allocate memory for CDU context:
5973     * This memory is allocated separately and not in the generic ILT
5974     * functions because CDU differs in few aspects:
5975     * 1. There can be multiple entities allocating memory for context -
5976     * regular L2, CNIC, and SRIOV drivers. Each separately controls
5977     * its own ILT lines.
5978     * 2. Since CDU page-size is not a single 4KB page (which is the case
5979     * for the other ILT clients), to be efficient we want to support
5980     * allocation of sub-page-size in the last entry.
5981     * 3. Context pointers are used by the driver to pass to FW / update
5982     * the context (for the other ILT clients the pointers are used just to
5983     * free the memory during unload).
5984     */
5985    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
5986    for (i = 0, allocated = 0; allocated < context_size; i++) {
5987        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
5988                                  (context_size - allocated));
5989
5990        if (bxe_dma_alloc(sc, sc->context[i].size,
5991                          &sc->context[i].vcxt_dma,
5992                          "cdu context") != 0) {
5993            bxe_free_mem(sc);
5994            return (-1);
5995        }
5996
5997        sc->context[i].vcxt =
5998            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
5999
6000        allocated += sc->context[i].size;
6001    }
6002
6003    bxe_alloc_ilt_lines_mem(sc);
6004
6005    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6006          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6007    {
6008        for (i = 0; i < 4; i++) {
6009            BLOGD(sc, DBG_LOAD,
6010                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6011                  i,
6012                  sc->ilt->clients[i].page_size,
6013                  sc->ilt->clients[i].start,
6014                  sc->ilt->clients[i].end,
6015                  sc->ilt->clients[i].client_num,
6016                  sc->ilt->clients[i].flags);
6017        }
6018    }
6019    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6020        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6021        bxe_free_mem(sc);
6022        return (-1);
6023    }
6024
6025    return (0);
6026}
6027
6028static void
6029bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6030{
6031    struct bxe_softc *sc;
6032    int i;
6033
6034    sc = fp->sc;
6035
6036    if (fp->rx_mbuf_tag == NULL) {
6037        return;
6038    }
6039
6040    /* free all mbufs and unload all maps */
6041    for (i = 0; i < RX_BD_TOTAL; i++) {
6042        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6043            bus_dmamap_sync(fp->rx_mbuf_tag,
6044                            fp->rx_mbuf_chain[i].m_map,
6045                            BUS_DMASYNC_POSTREAD);
6046            bus_dmamap_unload(fp->rx_mbuf_tag,
6047                              fp->rx_mbuf_chain[i].m_map);
6048        }
6049
6050        if (fp->rx_mbuf_chain[i].m != NULL) {
6051            m_freem(fp->rx_mbuf_chain[i].m);
6052            fp->rx_mbuf_chain[i].m = NULL;
6053            fp->eth_q_stats.mbuf_alloc_rx--;
6054        }
6055    }
6056}
6057
6058static void
6059bxe_free_tpa_pool(struct bxe_fastpath *fp)
6060{
6061    struct bxe_softc *sc;
6062    int i, max_agg_queues;
6063
6064    sc = fp->sc;
6065
6066    if (fp->rx_mbuf_tag == NULL) {
6067        return;
6068    }
6069
6070    max_agg_queues = MAX_AGG_QS(sc);
6071
6072    /* release all mbufs and unload all DMA maps in the TPA pool */
6073    for (i = 0; i < max_agg_queues; i++) {
6074        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6075            bus_dmamap_sync(fp->rx_mbuf_tag,
6076                            fp->rx_tpa_info[i].bd.m_map,
6077                            BUS_DMASYNC_POSTREAD);
6078            bus_dmamap_unload(fp->rx_mbuf_tag,
6079                              fp->rx_tpa_info[i].bd.m_map);
6080        }
6081
6082        if (fp->rx_tpa_info[i].bd.m != NULL) {
6083            m_freem(fp->rx_tpa_info[i].bd.m);
6084            fp->rx_tpa_info[i].bd.m = NULL;
6085            fp->eth_q_stats.mbuf_alloc_tpa--;
6086        }
6087    }
6088}
6089
6090static void
6091bxe_free_sge_chain(struct bxe_fastpath *fp)
6092{
6093    struct bxe_softc *sc;
6094    int i;
6095
6096    sc = fp->sc;
6097
6098    if (fp->rx_sge_mbuf_tag == NULL) {
6099        return;
6100    }
6101
6102    /* rree all mbufs and unload all maps */
6103    for (i = 0; i < RX_SGE_TOTAL; i++) {
6104        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6105            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6106                            fp->rx_sge_mbuf_chain[i].m_map,
6107                            BUS_DMASYNC_POSTREAD);
6108            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6109                              fp->rx_sge_mbuf_chain[i].m_map);
6110        }
6111
6112        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6113            m_freem(fp->rx_sge_mbuf_chain[i].m);
6114            fp->rx_sge_mbuf_chain[i].m = NULL;
6115            fp->eth_q_stats.mbuf_alloc_sge--;
6116        }
6117    }
6118}
6119
6120static void
6121bxe_free_fp_buffers(struct bxe_softc *sc)
6122{
6123    struct bxe_fastpath *fp;
6124    int i;
6125
6126    for (i = 0; i < sc->num_queues; i++) {
6127        fp = &sc->fp[i];
6128
6129#if __FreeBSD_version >= 800000
6130        if (fp->tx_br != NULL) {
6131            /* just in case bxe_mq_flush() wasn't called */
6132            if (mtx_initialized(&fp->tx_mtx)) {
6133                struct mbuf *m;
6134
6135                BXE_FP_TX_LOCK(fp);
6136                while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6137                    m_freem(m);
6138                BXE_FP_TX_UNLOCK(fp);
6139            }
6140        }
6141#endif
6142
6143        /* free all RX buffers */
6144        bxe_free_rx_bd_chain(fp);
6145        bxe_free_tpa_pool(fp);
6146        bxe_free_sge_chain(fp);
6147
6148        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6149            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6150                  fp->eth_q_stats.mbuf_alloc_rx);
6151        }
6152
6153        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6154            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6155                  fp->eth_q_stats.mbuf_alloc_sge);
6156        }
6157
6158        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6159            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6160                  fp->eth_q_stats.mbuf_alloc_tpa);
6161        }
6162
6163        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6164            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6165                  fp->eth_q_stats.mbuf_alloc_tx);
6166        }
6167
6168        /* XXX verify all mbufs were reclaimed */
6169    }
6170}
6171
6172static int
6173bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6174                     uint16_t            prev_index,
6175                     uint16_t            index)
6176{
6177    struct bxe_sw_rx_bd *rx_buf;
6178    struct eth_rx_bd *rx_bd;
6179    bus_dma_segment_t segs[1];
6180    bus_dmamap_t map;
6181    struct mbuf *m;
6182    int nsegs, rc;
6183
6184    rc = 0;
6185
6186    /* allocate the new RX BD mbuf */
6187    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6188    if (__predict_false(m == NULL)) {
6189        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6190        return (ENOBUFS);
6191    }
6192
6193    fp->eth_q_stats.mbuf_alloc_rx++;
6194
6195    /* initialize the mbuf buffer length */
6196    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6197
6198    /* map the mbuf into non-paged pool */
6199    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6200                                 fp->rx_mbuf_spare_map,
6201                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6202    if (__predict_false(rc != 0)) {
6203        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6204        m_freem(m);
6205        fp->eth_q_stats.mbuf_alloc_rx--;
6206        return (rc);
6207    }
6208
6209    /* all mbufs must map to a single segment */
6210    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6211
6212    /* release any existing RX BD mbuf mappings */
6213
6214    if (prev_index != index) {
6215        rx_buf = &fp->rx_mbuf_chain[prev_index];
6216
6217        if (rx_buf->m_map != NULL) {
6218            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6219                            BUS_DMASYNC_POSTREAD);
6220            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6221        }
6222
6223        /*
6224         * We only get here from bxe_rxeof() when the maximum number
6225         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6226         * holds the mbuf in the prev_index so it's OK to NULL it out
6227         * here without concern of a memory leak.
6228         */
6229        fp->rx_mbuf_chain[prev_index].m = NULL;
6230    }
6231
6232    rx_buf = &fp->rx_mbuf_chain[index];
6233
6234    if (rx_buf->m_map != NULL) {
6235        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6236                        BUS_DMASYNC_POSTREAD);
6237        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6238    }
6239
6240    /* save the mbuf and mapping info for a future packet */
6241    map = (prev_index != index) ?
6242              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6243    rx_buf->m_map = fp->rx_mbuf_spare_map;
6244    fp->rx_mbuf_spare_map = map;
6245    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6246                    BUS_DMASYNC_PREREAD);
6247    rx_buf->m = m;
6248
6249    rx_bd = &fp->rx_chain[index];
6250    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6251    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6252
6253    return (rc);
6254}
6255
6256static int
6257bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6258                      int                 queue)
6259{
6260    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6261    bus_dma_segment_t segs[1];
6262    bus_dmamap_t map;
6263    struct mbuf *m;
6264    int nsegs;
6265    int rc = 0;
6266
6267    /* allocate the new TPA mbuf */
6268    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6269    if (__predict_false(m == NULL)) {
6270        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6271        return (ENOBUFS);
6272    }
6273
6274    fp->eth_q_stats.mbuf_alloc_tpa++;
6275
6276    /* initialize the mbuf buffer length */
6277    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6278
6279    /* map the mbuf into non-paged pool */
6280    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6281                                 fp->rx_tpa_info_mbuf_spare_map,
6282                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6283    if (__predict_false(rc != 0)) {
6284        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6285        m_free(m);
6286        fp->eth_q_stats.mbuf_alloc_tpa--;
6287        return (rc);
6288    }
6289
6290    /* all mbufs must map to a single segment */
6291    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6292
6293    /* release any existing TPA mbuf mapping */
6294    if (tpa_info->bd.m_map != NULL) {
6295        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6296                        BUS_DMASYNC_POSTREAD);
6297        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6298    }
6299
6300    /* save the mbuf and mapping info for the TPA mbuf */
6301    map = tpa_info->bd.m_map;
6302    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6303    fp->rx_tpa_info_mbuf_spare_map = map;
6304    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6305                    BUS_DMASYNC_PREREAD);
6306    tpa_info->bd.m = m;
6307    tpa_info->seg = segs[0];
6308
6309    return (rc);
6310}
6311
6312/*
6313 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6314 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6315 * chain.
6316 */
6317static int
6318bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6319                      uint16_t            index)
6320{
6321    struct bxe_sw_rx_bd *sge_buf;
6322    struct eth_rx_sge *sge;
6323    bus_dma_segment_t segs[1];
6324    bus_dmamap_t map;
6325    struct mbuf *m;
6326    int nsegs;
6327    int rc = 0;
6328
6329    /* allocate a new SGE mbuf */
6330    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6331    if (__predict_false(m == NULL)) {
6332        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6333        return (ENOMEM);
6334    }
6335
6336    fp->eth_q_stats.mbuf_alloc_sge++;
6337
6338    /* initialize the mbuf buffer length */
6339    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6340
6341    /* map the SGE mbuf into non-paged pool */
6342    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6343                                 fp->rx_sge_mbuf_spare_map,
6344                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6345    if (__predict_false(rc != 0)) {
6346        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6347        m_freem(m);
6348        fp->eth_q_stats.mbuf_alloc_sge--;
6349        return (rc);
6350    }
6351
6352    /* all mbufs must map to a single segment */
6353    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6354
6355    sge_buf = &fp->rx_sge_mbuf_chain[index];
6356
6357    /* release any existing SGE mbuf mapping */
6358    if (sge_buf->m_map != NULL) {
6359        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6360                        BUS_DMASYNC_POSTREAD);
6361        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6362    }
6363
6364    /* save the mbuf and mapping info for a future packet */
6365    map = sge_buf->m_map;
6366    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6367    fp->rx_sge_mbuf_spare_map = map;
6368    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6369                    BUS_DMASYNC_PREREAD);
6370    sge_buf->m = m;
6371
6372    sge = &fp->rx_sge_chain[index];
6373    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6374    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6375
6376    return (rc);
6377}
6378
6379static __noinline int
6380bxe_alloc_fp_buffers(struct bxe_softc *sc)
6381{
6382    struct bxe_fastpath *fp;
6383    int i, j, rc = 0;
6384    int ring_prod, cqe_ring_prod;
6385    int max_agg_queues;
6386
6387    for (i = 0; i < sc->num_queues; i++) {
6388        fp = &sc->fp[i];
6389
6390        ring_prod = cqe_ring_prod = 0;
6391        fp->rx_bd_cons = 0;
6392        fp->rx_cq_cons = 0;
6393
6394        /* allocate buffers for the RX BDs in RX BD chain */
6395        for (j = 0; j < sc->max_rx_bufs; j++) {
6396            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6397            if (rc != 0) {
6398                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6399                      i, rc);
6400                goto bxe_alloc_fp_buffers_error;
6401            }
6402
6403            ring_prod     = RX_BD_NEXT(ring_prod);
6404            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6405        }
6406
6407        fp->rx_bd_prod = ring_prod;
6408        fp->rx_cq_prod = cqe_ring_prod;
6409        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6410
6411        max_agg_queues = MAX_AGG_QS(sc);
6412
6413        fp->tpa_enable = TRUE;
6414
6415        /* fill the TPA pool */
6416        for (j = 0; j < max_agg_queues; j++) {
6417            rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6418            if (rc != 0) {
6419                BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6420                          i, j);
6421                fp->tpa_enable = FALSE;
6422                goto bxe_alloc_fp_buffers_error;
6423            }
6424
6425            fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6426        }
6427
6428        if (fp->tpa_enable) {
6429            /* fill the RX SGE chain */
6430            ring_prod = 0;
6431            for (j = 0; j < RX_SGE_USABLE; j++) {
6432                rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6433                if (rc != 0) {
6434                    BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6435                              i, ring_prod);
6436                    fp->tpa_enable = FALSE;
6437                    ring_prod = 0;
6438                    goto bxe_alloc_fp_buffers_error;
6439                }
6440
6441                ring_prod = RX_SGE_NEXT(ring_prod);
6442            }
6443
6444            fp->rx_sge_prod = ring_prod;
6445        }
6446    }
6447
6448    return (0);
6449
6450bxe_alloc_fp_buffers_error:
6451
6452    /* unwind what was already allocated */
6453    bxe_free_rx_bd_chain(fp);
6454    bxe_free_tpa_pool(fp);
6455    bxe_free_sge_chain(fp);
6456
6457    return (ENOBUFS);
6458}
6459
6460static void
6461bxe_free_fw_stats_mem(struct bxe_softc *sc)
6462{
6463    bxe_dma_free(sc, &sc->fw_stats_dma);
6464
6465    sc->fw_stats_num = 0;
6466
6467    sc->fw_stats_req_size = 0;
6468    sc->fw_stats_req = NULL;
6469    sc->fw_stats_req_mapping = 0;
6470
6471    sc->fw_stats_data_size = 0;
6472    sc->fw_stats_data = NULL;
6473    sc->fw_stats_data_mapping = 0;
6474}
6475
6476static int
6477bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6478{
6479    uint8_t num_queue_stats;
6480    int num_groups;
6481
6482    /* number of queues for statistics is number of eth queues */
6483    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6484
6485    /*
6486     * Total number of FW statistics requests =
6487     *   1 for port stats + 1 for PF stats + num of queues
6488     */
6489    sc->fw_stats_num = (2 + num_queue_stats);
6490
6491    /*
6492     * Request is built from stats_query_header and an array of
6493     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6494     * rules. The real number or requests is configured in the
6495     * stats_query_header.
6496     */
6497    num_groups =
6498        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6499         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6500
6501    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6502          sc->fw_stats_num, num_groups);
6503
6504    sc->fw_stats_req_size =
6505        (sizeof(struct stats_query_header) +
6506         (num_groups * sizeof(struct stats_query_cmd_group)));
6507
6508    /*
6509     * Data for statistics requests + stats_counter.
6510     * stats_counter holds per-STORM counters that are incremented when
6511     * STORM has finished with the current request. Memory for FCoE
6512     * offloaded statistics are counted anyway, even if they will not be sent.
6513     * VF stats are not accounted for here as the data of VF stats is stored
6514     * in memory allocated by the VF, not here.
6515     */
6516    sc->fw_stats_data_size =
6517        (sizeof(struct stats_counter) +
6518         sizeof(struct per_port_stats) +
6519         sizeof(struct per_pf_stats) +
6520         /* sizeof(struct fcoe_statistics_params) + */
6521         (sizeof(struct per_queue_stats) * num_queue_stats));
6522
6523    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6524                      &sc->fw_stats_dma, "fw stats") != 0) {
6525        bxe_free_fw_stats_mem(sc);
6526        return (-1);
6527    }
6528
6529    /* set up the shortcuts */
6530
6531    sc->fw_stats_req =
6532        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6533    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6534
6535    sc->fw_stats_data =
6536        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6537                                     sc->fw_stats_req_size);
6538    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6539                                 sc->fw_stats_req_size);
6540
6541    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6542          (uintmax_t)sc->fw_stats_req_mapping);
6543
6544    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6545          (uintmax_t)sc->fw_stats_data_mapping);
6546
6547    return (0);
6548}
6549
6550/*
6551 * Bits map:
6552 * 0-7  - Engine0 load counter.
6553 * 8-15 - Engine1 load counter.
6554 * 16   - Engine0 RESET_IN_PROGRESS bit.
6555 * 17   - Engine1 RESET_IN_PROGRESS bit.
6556 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6557 *        function on the engine
6558 * 19   - Engine1 ONE_IS_LOADED.
6559 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6560 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6561 *        for just the one belonging to its engine).
6562 */
6563#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6564#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6565#define BXE_PATH0_LOAD_CNT_SHIFT  0
6566#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6567#define BXE_PATH1_LOAD_CNT_SHIFT  8
6568#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6569#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6570#define BXE_GLOBAL_RESET_BIT      0x00040000
6571
6572/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6573static void
6574bxe_set_reset_global(struct bxe_softc *sc)
6575{
6576    uint32_t val;
6577    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6578    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6579    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6580    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6581}
6582
6583/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6584static void
6585bxe_clear_reset_global(struct bxe_softc *sc)
6586{
6587    uint32_t val;
6588    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6589    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6590    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6591    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6592}
6593
6594/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6595static uint8_t
6596bxe_reset_is_global(struct bxe_softc *sc)
6597{
6598    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6599    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6600    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6601}
6602
6603/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6604static void
6605bxe_set_reset_done(struct bxe_softc *sc)
6606{
6607    uint32_t val;
6608    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6609                                 BXE_PATH0_RST_IN_PROG_BIT;
6610
6611    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6612
6613    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6614    /* Clear the bit */
6615    val &= ~bit;
6616    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6617
6618    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6619}
6620
6621/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6622static void
6623bxe_set_reset_in_progress(struct bxe_softc *sc)
6624{
6625    uint32_t val;
6626    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6627                                 BXE_PATH0_RST_IN_PROG_BIT;
6628
6629    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6630
6631    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6632    /* Set the bit */
6633    val |= bit;
6634    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6635
6636    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6637}
6638
6639/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6640static uint8_t
6641bxe_reset_is_done(struct bxe_softc *sc,
6642                  int              engine)
6643{
6644    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6645    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6646                            BXE_PATH0_RST_IN_PROG_BIT;
6647
6648    /* return false if bit is set */
6649    return (val & bit) ? FALSE : TRUE;
6650}
6651
6652/* get the load status for an engine, should be run under rtnl lock */
6653static uint8_t
6654bxe_get_load_status(struct bxe_softc *sc,
6655                    int              engine)
6656{
6657    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6658                             BXE_PATH0_LOAD_CNT_MASK;
6659    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6660                              BXE_PATH0_LOAD_CNT_SHIFT;
6661    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6662
6663    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6664
6665    val = ((val & mask) >> shift);
6666
6667    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6668
6669    return (val != 0);
6670}
6671
6672/* set pf load mark */
6673/* XXX needs to be under rtnl lock */
6674static void
6675bxe_set_pf_load(struct bxe_softc *sc)
6676{
6677    uint32_t val;
6678    uint32_t val1;
6679    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6680                                  BXE_PATH0_LOAD_CNT_MASK;
6681    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6682                                   BXE_PATH0_LOAD_CNT_SHIFT;
6683
6684    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6685
6686    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6687    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6688
6689    /* get the current counter value */
6690    val1 = ((val & mask) >> shift);
6691
6692    /* set bit of this PF */
6693    val1 |= (1 << SC_ABS_FUNC(sc));
6694
6695    /* clear the old value */
6696    val &= ~mask;
6697
6698    /* set the new one */
6699    val |= ((val1 << shift) & mask);
6700
6701    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6702
6703    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6704}
6705
6706/* clear pf load mark */
6707/* XXX needs to be under rtnl lock */
6708static uint8_t
6709bxe_clear_pf_load(struct bxe_softc *sc)
6710{
6711    uint32_t val1, val;
6712    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6713                                  BXE_PATH0_LOAD_CNT_MASK;
6714    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6715                                   BXE_PATH0_LOAD_CNT_SHIFT;
6716
6717    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6718    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6719    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6720
6721    /* get the current counter value */
6722    val1 = (val & mask) >> shift;
6723
6724    /* clear bit of that PF */
6725    val1 &= ~(1 << SC_ABS_FUNC(sc));
6726
6727    /* clear the old value */
6728    val &= ~mask;
6729
6730    /* set the new one */
6731    val |= ((val1 << shift) & mask);
6732
6733    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6734    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6735    return (val1 != 0);
6736}
6737
6738/* send load requrest to mcp and analyze response */
6739static int
6740bxe_nic_load_request(struct bxe_softc *sc,
6741                     uint32_t         *load_code)
6742{
6743    /* init fw_seq */
6744    sc->fw_seq =
6745        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6746         DRV_MSG_SEQ_NUMBER_MASK);
6747
6748    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6749
6750    /* get the current FW pulse sequence */
6751    sc->fw_drv_pulse_wr_seq =
6752        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6753         DRV_PULSE_SEQ_MASK);
6754
6755    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6756          sc->fw_drv_pulse_wr_seq);
6757
6758    /* load request */
6759    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6760                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6761
6762    /* if the MCP fails to respond we must abort */
6763    if (!(*load_code)) {
6764        BLOGE(sc, "MCP response failure!\n");
6765        return (-1);
6766    }
6767
6768    /* if MCP refused then must abort */
6769    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6770        BLOGE(sc, "MCP refused load request\n");
6771        return (-1);
6772    }
6773
6774    return (0);
6775}
6776
6777/*
6778 * Check whether another PF has already loaded FW to chip. In virtualized
6779 * environments a pf from anoth VM may have already initialized the device
6780 * including loading FW.
6781 */
6782static int
6783bxe_nic_load_analyze_req(struct bxe_softc *sc,
6784                         uint32_t         load_code)
6785{
6786    uint32_t my_fw, loaded_fw;
6787
6788    /* is another pf loaded on this engine? */
6789    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6790        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6791        /* build my FW version dword */
6792        my_fw = (BCM_5710_FW_MAJOR_VERSION +
6793                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6794                 (BCM_5710_FW_REVISION_VERSION << 16) +
6795                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6796
6797        /* read loaded FW from chip */
6798        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6799        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6800              loaded_fw, my_fw);
6801
6802        /* abort nic load if version mismatch */
6803        if (my_fw != loaded_fw) {
6804            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6805                  loaded_fw, my_fw);
6806            return (-1);
6807        }
6808    }
6809
6810    return (0);
6811}
6812
6813/* mark PMF if applicable */
6814static void
6815bxe_nic_load_pmf(struct bxe_softc *sc,
6816                 uint32_t         load_code)
6817{
6818    uint32_t ncsi_oem_data_addr;
6819
6820    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6821        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6822        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6823        /*
6824         * Barrier here for ordering between the writing to sc->port.pmf here
6825         * and reading it from the periodic task.
6826         */
6827        sc->port.pmf = 1;
6828        mb();
6829    } else {
6830        sc->port.pmf = 0;
6831    }
6832
6833    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6834
6835    /* XXX needed? */
6836    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6837        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6838            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6839            if (ncsi_oem_data_addr) {
6840                REG_WR(sc,
6841                       (ncsi_oem_data_addr +
6842                        offsetof(struct glob_ncsi_oem_data, driver_version)),
6843                       0);
6844            }
6845        }
6846    }
6847}
6848
6849static void
6850bxe_read_mf_cfg(struct bxe_softc *sc)
6851{
6852    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6853    int abs_func;
6854    int vn;
6855
6856    if (BXE_NOMCP(sc)) {
6857        return; /* what should be the default bvalue in this case */
6858    }
6859
6860    /*
6861     * The formula for computing the absolute function number is...
6862     * For 2 port configuration (4 functions per port):
6863     *   abs_func = 2 * vn + SC_PORT + SC_PATH
6864     * For 4 port configuration (2 functions per port):
6865     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6866     */
6867    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6868        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6869        if (abs_func >= E1H_FUNC_MAX) {
6870            break;
6871        }
6872        sc->devinfo.mf_info.mf_config[vn] =
6873            MFCFG_RD(sc, func_mf_config[abs_func].config);
6874    }
6875
6876    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6877        FUNC_MF_CFG_FUNC_DISABLED) {
6878        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6879        sc->flags |= BXE_MF_FUNC_DIS;
6880    } else {
6881        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6882        sc->flags &= ~BXE_MF_FUNC_DIS;
6883    }
6884}
6885
6886/* acquire split MCP access lock register */
6887static int bxe_acquire_alr(struct bxe_softc *sc)
6888{
6889    uint32_t j, val;
6890
6891    for (j = 0; j < 1000; j++) {
6892        val = (1UL << 31);
6893        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6894        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6895        if (val & (1L << 31))
6896            break;
6897
6898        DELAY(5000);
6899    }
6900
6901    if (!(val & (1L << 31))) {
6902        BLOGE(sc, "Cannot acquire MCP access lock register\n");
6903        return (-1);
6904    }
6905
6906    return (0);
6907}
6908
6909/* release split MCP access lock register */
6910static void bxe_release_alr(struct bxe_softc *sc)
6911{
6912    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6913}
6914
6915static void
6916bxe_fan_failure(struct bxe_softc *sc)
6917{
6918    int port = SC_PORT(sc);
6919    uint32_t ext_phy_config;
6920
6921    /* mark the failure */
6922    ext_phy_config =
6923        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6924
6925    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6926    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6927    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6928             ext_phy_config);
6929
6930    /* log the failure */
6931    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6932              "the card to prevent permanent damage. "
6933              "Please contact OEM Support for assistance\n");
6934
6935    /* XXX */
6936#if 1
6937    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6938#else
6939    /*
6940     * Schedule device reset (unload)
6941     * This is due to some boards consuming sufficient power when driver is
6942     * up to overheat if fan fails.
6943     */
6944    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6945    schedule_delayed_work(&sc->sp_rtnl_task, 0);
6946#endif
6947}
6948
6949/* this function is called upon a link interrupt */
6950static void
6951bxe_link_attn(struct bxe_softc *sc)
6952{
6953    uint32_t pause_enabled = 0;
6954    struct host_port_stats *pstats;
6955    int cmng_fns;
6956
6957    /* Make sure that we are synced with the current statistics */
6958    bxe_stats_handle(sc, STATS_EVENT_STOP);
6959
6960    elink_link_update(&sc->link_params, &sc->link_vars);
6961
6962    if (sc->link_vars.link_up) {
6963
6964        /* dropless flow control */
6965        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6966            pause_enabled = 0;
6967
6968            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6969                pause_enabled = 1;
6970            }
6971
6972            REG_WR(sc,
6973                   (BAR_USTRORM_INTMEM +
6974                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
6975                   pause_enabled);
6976        }
6977
6978        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
6979            pstats = BXE_SP(sc, port_stats);
6980            /* reset old mac stats */
6981            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
6982        }
6983
6984        if (sc->state == BXE_STATE_OPEN) {
6985            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
6986        }
6987    }
6988
6989    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
6990        cmng_fns = bxe_get_cmng_fns_mode(sc);
6991
6992        if (cmng_fns != CMNG_FNS_NONE) {
6993            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
6994            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
6995        } else {
6996            /* rate shaping and fairness are disabled */
6997            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
6998        }
6999    }
7000
7001    bxe_link_report_locked(sc);
7002
7003    if (IS_MF(sc)) {
7004        ; // XXX bxe_link_sync_notify(sc);
7005    }
7006}
7007
7008static void
7009bxe_attn_int_asserted(struct bxe_softc *sc,
7010                      uint32_t         asserted)
7011{
7012    int port = SC_PORT(sc);
7013    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7014                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7015    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7016                                        NIG_REG_MASK_INTERRUPT_PORT0;
7017    uint32_t aeu_mask;
7018    uint32_t nig_mask = 0;
7019    uint32_t reg_addr;
7020    uint32_t igu_acked;
7021    uint32_t cnt;
7022
7023    if (sc->attn_state & asserted) {
7024        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7025    }
7026
7027    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7028
7029    aeu_mask = REG_RD(sc, aeu_addr);
7030
7031    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7032          aeu_mask, asserted);
7033
7034    aeu_mask &= ~(asserted & 0x3ff);
7035
7036    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7037
7038    REG_WR(sc, aeu_addr, aeu_mask);
7039
7040    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7041
7042    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7043    sc->attn_state |= asserted;
7044    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7045
7046    if (asserted & ATTN_HARD_WIRED_MASK) {
7047        if (asserted & ATTN_NIG_FOR_FUNC) {
7048
7049	    bxe_acquire_phy_lock(sc);
7050            /* save nig interrupt mask */
7051            nig_mask = REG_RD(sc, nig_int_mask_addr);
7052
7053            /* If nig_mask is not set, no need to call the update function */
7054            if (nig_mask) {
7055                REG_WR(sc, nig_int_mask_addr, 0);
7056
7057                bxe_link_attn(sc);
7058            }
7059
7060            /* handle unicore attn? */
7061        }
7062
7063        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7064            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7065        }
7066
7067        if (asserted & GPIO_2_FUNC) {
7068            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7069        }
7070
7071        if (asserted & GPIO_3_FUNC) {
7072            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7073        }
7074
7075        if (asserted & GPIO_4_FUNC) {
7076            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7077        }
7078
7079        if (port == 0) {
7080            if (asserted & ATTN_GENERAL_ATTN_1) {
7081                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7082                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7083            }
7084            if (asserted & ATTN_GENERAL_ATTN_2) {
7085                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7086                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7087            }
7088            if (asserted & ATTN_GENERAL_ATTN_3) {
7089                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7090                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7091            }
7092        } else {
7093            if (asserted & ATTN_GENERAL_ATTN_4) {
7094                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7095                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7096            }
7097            if (asserted & ATTN_GENERAL_ATTN_5) {
7098                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7099                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7100            }
7101            if (asserted & ATTN_GENERAL_ATTN_6) {
7102                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7103                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7104            }
7105        }
7106    } /* hardwired */
7107
7108    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7109        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7110    } else {
7111        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7112    }
7113
7114    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7115          asserted,
7116          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7117    REG_WR(sc, reg_addr, asserted);
7118
7119    /* now set back the mask */
7120    if (asserted & ATTN_NIG_FOR_FUNC) {
7121        /*
7122         * Verify that IGU ack through BAR was written before restoring
7123         * NIG mask. This loop should exit after 2-3 iterations max.
7124         */
7125        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7126            cnt = 0;
7127
7128            do {
7129                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7130            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7131                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7132
7133            if (!igu_acked) {
7134                BLOGE(sc, "Failed to verify IGU ack on time\n");
7135            }
7136
7137            mb();
7138        }
7139
7140        REG_WR(sc, nig_int_mask_addr, nig_mask);
7141
7142	bxe_release_phy_lock(sc);
7143    }
7144}
7145
7146static void
7147bxe_print_next_block(struct bxe_softc *sc,
7148                     int              idx,
7149                     const char       *blk)
7150{
7151    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7152}
7153
7154static int
7155bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7156                              uint32_t         sig,
7157                              int              par_num,
7158                              uint8_t          print)
7159{
7160    uint32_t cur_bit = 0;
7161    int i = 0;
7162
7163    for (i = 0; sig; i++) {
7164        cur_bit = ((uint32_t)0x1 << i);
7165        if (sig & cur_bit) {
7166            switch (cur_bit) {
7167            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7168                if (print)
7169                    bxe_print_next_block(sc, par_num++, "BRB");
7170                break;
7171            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7172                if (print)
7173                    bxe_print_next_block(sc, par_num++, "PARSER");
7174                break;
7175            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7176                if (print)
7177                    bxe_print_next_block(sc, par_num++, "TSDM");
7178                break;
7179            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7180                if (print)
7181                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7182                break;
7183            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7184                if (print)
7185                    bxe_print_next_block(sc, par_num++, "TCM");
7186                break;
7187            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7188                if (print)
7189                    bxe_print_next_block(sc, par_num++, "TSEMI");
7190                break;
7191            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7192                if (print)
7193                    bxe_print_next_block(sc, par_num++, "XPB");
7194                break;
7195            }
7196
7197            /* Clear the bit */
7198            sig &= ~cur_bit;
7199        }
7200    }
7201
7202    return (par_num);
7203}
7204
7205static int
7206bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7207                              uint32_t         sig,
7208                              int              par_num,
7209                              uint8_t          *global,
7210                              uint8_t          print)
7211{
7212    int i = 0;
7213    uint32_t cur_bit = 0;
7214    for (i = 0; sig; i++) {
7215        cur_bit = ((uint32_t)0x1 << i);
7216        if (sig & cur_bit) {
7217            switch (cur_bit) {
7218            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7219                if (print)
7220                    bxe_print_next_block(sc, par_num++, "PBF");
7221                break;
7222            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7223                if (print)
7224                    bxe_print_next_block(sc, par_num++, "QM");
7225                break;
7226            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7227                if (print)
7228                    bxe_print_next_block(sc, par_num++, "TM");
7229                break;
7230            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7231                if (print)
7232                    bxe_print_next_block(sc, par_num++, "XSDM");
7233                break;
7234            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7235                if (print)
7236                    bxe_print_next_block(sc, par_num++, "XCM");
7237                break;
7238            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7239                if (print)
7240                    bxe_print_next_block(sc, par_num++, "XSEMI");
7241                break;
7242            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7243                if (print)
7244                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7245                break;
7246            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7247                if (print)
7248                    bxe_print_next_block(sc, par_num++, "NIG");
7249                break;
7250            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7251                if (print)
7252                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7253                *global = TRUE;
7254                break;
7255            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7256                if (print)
7257                    bxe_print_next_block(sc, par_num++, "DEBUG");
7258                break;
7259            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7260                if (print)
7261                    bxe_print_next_block(sc, par_num++, "USDM");
7262                break;
7263            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7264                if (print)
7265                    bxe_print_next_block(sc, par_num++, "UCM");
7266                break;
7267            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7268                if (print)
7269                    bxe_print_next_block(sc, par_num++, "USEMI");
7270                break;
7271            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7272                if (print)
7273                    bxe_print_next_block(sc, par_num++, "UPB");
7274                break;
7275            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7276                if (print)
7277                    bxe_print_next_block(sc, par_num++, "CSDM");
7278                break;
7279            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7280                if (print)
7281                    bxe_print_next_block(sc, par_num++, "CCM");
7282                break;
7283            }
7284
7285            /* Clear the bit */
7286            sig &= ~cur_bit;
7287        }
7288    }
7289
7290    return (par_num);
7291}
7292
7293static int
7294bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7295                              uint32_t         sig,
7296                              int              par_num,
7297                              uint8_t          print)
7298{
7299    uint32_t cur_bit = 0;
7300    int i = 0;
7301
7302    for (i = 0; sig; i++) {
7303        cur_bit = ((uint32_t)0x1 << i);
7304        if (sig & cur_bit) {
7305            switch (cur_bit) {
7306            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7307                if (print)
7308                    bxe_print_next_block(sc, par_num++, "CSEMI");
7309                break;
7310            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7311                if (print)
7312                    bxe_print_next_block(sc, par_num++, "PXP");
7313                break;
7314            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7315                if (print)
7316                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7317                break;
7318            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7319                if (print)
7320                    bxe_print_next_block(sc, par_num++, "CFC");
7321                break;
7322            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7323                if (print)
7324                    bxe_print_next_block(sc, par_num++, "CDU");
7325                break;
7326            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7327                if (print)
7328                    bxe_print_next_block(sc, par_num++, "DMAE");
7329                break;
7330            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7331                if (print)
7332                    bxe_print_next_block(sc, par_num++, "IGU");
7333                break;
7334            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7335                if (print)
7336                    bxe_print_next_block(sc, par_num++, "MISC");
7337                break;
7338            }
7339
7340            /* Clear the bit */
7341            sig &= ~cur_bit;
7342        }
7343    }
7344
7345    return (par_num);
7346}
7347
7348static int
7349bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7350                              uint32_t         sig,
7351                              int              par_num,
7352                              uint8_t          *global,
7353                              uint8_t          print)
7354{
7355    uint32_t cur_bit = 0;
7356    int i = 0;
7357
7358    for (i = 0; sig; i++) {
7359        cur_bit = ((uint32_t)0x1 << i);
7360        if (sig & cur_bit) {
7361            switch (cur_bit) {
7362            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7363                if (print)
7364                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7365                *global = TRUE;
7366                break;
7367            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7368                if (print)
7369                    bxe_print_next_block(sc, par_num++,
7370                              "MCP UMP RX");
7371                *global = TRUE;
7372                break;
7373            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7374                if (print)
7375                    bxe_print_next_block(sc, par_num++,
7376                              "MCP UMP TX");
7377                *global = TRUE;
7378                break;
7379            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7380                if (print)
7381                    bxe_print_next_block(sc, par_num++,
7382                              "MCP SCPAD");
7383                *global = TRUE;
7384                break;
7385            }
7386
7387            /* Clear the bit */
7388            sig &= ~cur_bit;
7389        }
7390    }
7391
7392    return (par_num);
7393}
7394
7395static int
7396bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7397                              uint32_t         sig,
7398                              int              par_num,
7399                              uint8_t          print)
7400{
7401    uint32_t cur_bit = 0;
7402    int i = 0;
7403
7404    for (i = 0; sig; i++) {
7405        cur_bit = ((uint32_t)0x1 << i);
7406        if (sig & cur_bit) {
7407            switch (cur_bit) {
7408            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7409                if (print)
7410                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7411                break;
7412            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7413                if (print)
7414                    bxe_print_next_block(sc, par_num++, "ATC");
7415                break;
7416            }
7417
7418            /* Clear the bit */
7419            sig &= ~cur_bit;
7420        }
7421    }
7422
7423    return (par_num);
7424}
7425
7426static uint8_t
7427bxe_parity_attn(struct bxe_softc *sc,
7428                uint8_t          *global,
7429                uint8_t          print,
7430                uint32_t         *sig)
7431{
7432    int par_num = 0;
7433
7434    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7435        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7436        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7437        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7438        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7439        BLOGE(sc, "Parity error: HW block parity attention:\n"
7440                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7441              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7442              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7443              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7444              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7445              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7446
7447        if (print)
7448            BLOGI(sc, "Parity errors detected in blocks: ");
7449
7450        par_num =
7451            bxe_check_blocks_with_parity0(sc, sig[0] &
7452                                          HW_PRTY_ASSERT_SET_0,
7453                                          par_num, print);
7454        par_num =
7455            bxe_check_blocks_with_parity1(sc, sig[1] &
7456                                          HW_PRTY_ASSERT_SET_1,
7457                                          par_num, global, print);
7458        par_num =
7459            bxe_check_blocks_with_parity2(sc, sig[2] &
7460                                          HW_PRTY_ASSERT_SET_2,
7461                                          par_num, print);
7462        par_num =
7463            bxe_check_blocks_with_parity3(sc, sig[3] &
7464                                          HW_PRTY_ASSERT_SET_3,
7465                                          par_num, global, print);
7466        par_num =
7467            bxe_check_blocks_with_parity4(sc, sig[4] &
7468                                          HW_PRTY_ASSERT_SET_4,
7469                                          par_num, print);
7470
7471        if (print)
7472            BLOGI(sc, "\n");
7473
7474        return (TRUE);
7475    }
7476
7477    return (FALSE);
7478}
7479
7480static uint8_t
7481bxe_chk_parity_attn(struct bxe_softc *sc,
7482                    uint8_t          *global,
7483                    uint8_t          print)
7484{
7485    struct attn_route attn = { {0} };
7486    int port = SC_PORT(sc);
7487
7488    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7489    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7490    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7491    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7492
7493    /*
7494     * Since MCP attentions can't be disabled inside the block, we need to
7495     * read AEU registers to see whether they're currently disabled
7496     */
7497    attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7498                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7499                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7500                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7501
7502
7503    if (!CHIP_IS_E1x(sc))
7504        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7505
7506    return (bxe_parity_attn(sc, global, print, attn.sig));
7507}
7508
7509static void
7510bxe_attn_int_deasserted4(struct bxe_softc *sc,
7511                         uint32_t         attn)
7512{
7513    uint32_t val;
7514
7515    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7516        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7517        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7518        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7519            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7520        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7521            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7522        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7523            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7524        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7525            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7526        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7527            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7528        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7529            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7530        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7531            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7532        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7533            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7534        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7535            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7536    }
7537
7538    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7539        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7540        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7541        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7542            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7543        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7544            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7545        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7546            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7547        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7548            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7549        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7550            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7551        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7552            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7553    }
7554
7555    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7556                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7557        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7558              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7559                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7560    }
7561}
7562
7563static void
7564bxe_e1h_disable(struct bxe_softc *sc)
7565{
7566    int port = SC_PORT(sc);
7567
7568    bxe_tx_disable(sc);
7569
7570    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7571}
7572
7573static void
7574bxe_e1h_enable(struct bxe_softc *sc)
7575{
7576    int port = SC_PORT(sc);
7577
7578    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7579
7580    // XXX bxe_tx_enable(sc);
7581}
7582
7583/*
7584 * called due to MCP event (on pmf):
7585 *   reread new bandwidth configuration
7586 *   configure FW
7587 *   notify others function about the change
7588 */
7589static void
7590bxe_config_mf_bw(struct bxe_softc *sc)
7591{
7592    if (sc->link_vars.link_up) {
7593        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7594        // XXX bxe_link_sync_notify(sc);
7595    }
7596
7597    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7598}
7599
7600static void
7601bxe_set_mf_bw(struct bxe_softc *sc)
7602{
7603    bxe_config_mf_bw(sc);
7604    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7605}
7606
7607static void
7608bxe_handle_eee_event(struct bxe_softc *sc)
7609{
7610    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7611    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7612}
7613
7614#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7615
7616static void
7617bxe_drv_info_ether_stat(struct bxe_softc *sc)
7618{
7619    struct eth_stats_info *ether_stat =
7620        &sc->sp->drv_info_to_mcp.ether_stat;
7621
7622    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7623            ETH_STAT_INFO_VERSION_LEN);
7624
7625    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7626    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7627                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7628                                          ether_stat->mac_local + MAC_PAD,
7629                                          MAC_PAD, ETH_ALEN);
7630
7631    ether_stat->mtu_size = sc->mtu;
7632
7633    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7634    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7635        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7636    }
7637
7638    // XXX ether_stat->feature_flags |= ???;
7639
7640    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7641
7642    ether_stat->txq_size = sc->tx_ring_size;
7643    ether_stat->rxq_size = sc->rx_ring_size;
7644}
7645
7646static void
7647bxe_handle_drv_info_req(struct bxe_softc *sc)
7648{
7649    enum drv_info_opcode op_code;
7650    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7651
7652    /* if drv_info version supported by MFW doesn't match - send NACK */
7653    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7654        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7655        return;
7656    }
7657
7658    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7659               DRV_INFO_CONTROL_OP_CODE_SHIFT);
7660
7661    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7662
7663    switch (op_code) {
7664    case ETH_STATS_OPCODE:
7665        bxe_drv_info_ether_stat(sc);
7666        break;
7667    case FCOE_STATS_OPCODE:
7668    case ISCSI_STATS_OPCODE:
7669    default:
7670        /* if op code isn't supported - send NACK */
7671        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7672        return;
7673    }
7674
7675    /*
7676     * If we got drv_info attn from MFW then these fields are defined in
7677     * shmem2 for sure
7678     */
7679    SHMEM2_WR(sc, drv_info_host_addr_lo,
7680              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7681    SHMEM2_WR(sc, drv_info_host_addr_hi,
7682              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7683
7684    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7685}
7686
7687static void
7688bxe_dcc_event(struct bxe_softc *sc,
7689              uint32_t         dcc_event)
7690{
7691    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7692
7693    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7694        /*
7695         * This is the only place besides the function initialization
7696         * where the sc->flags can change so it is done without any
7697         * locks
7698         */
7699        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7700            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7701            sc->flags |= BXE_MF_FUNC_DIS;
7702            bxe_e1h_disable(sc);
7703        } else {
7704            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7705            sc->flags &= ~BXE_MF_FUNC_DIS;
7706            bxe_e1h_enable(sc);
7707        }
7708        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7709    }
7710
7711    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7712        bxe_config_mf_bw(sc);
7713        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7714    }
7715
7716    /* Report results to MCP */
7717    if (dcc_event)
7718        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7719    else
7720        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7721}
7722
7723static void
7724bxe_pmf_update(struct bxe_softc *sc)
7725{
7726    int port = SC_PORT(sc);
7727    uint32_t val;
7728
7729    sc->port.pmf = 1;
7730    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7731
7732    /*
7733     * We need the mb() to ensure the ordering between the writing to
7734     * sc->port.pmf here and reading it from the bxe_periodic_task().
7735     */
7736    mb();
7737
7738    /* queue a periodic task */
7739    // XXX schedule task...
7740
7741    // XXX bxe_dcbx_pmf_update(sc);
7742
7743    /* enable nig attention */
7744    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7745    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7746        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7747        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7748    } else if (!CHIP_IS_E1x(sc)) {
7749        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7750        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7751    }
7752
7753    bxe_stats_handle(sc, STATS_EVENT_PMF);
7754}
7755
7756static int
7757bxe_mc_assert(struct bxe_softc *sc)
7758{
7759    char last_idx;
7760    int i, rc = 0;
7761    uint32_t row0, row1, row2, row3;
7762
7763    /* XSTORM */
7764    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7765    if (last_idx)
7766        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7767
7768    /* print the asserts */
7769    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7770
7771        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7772        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7773        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7774        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7775
7776        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7777            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7778                  i, row3, row2, row1, row0);
7779            rc++;
7780        } else {
7781            break;
7782        }
7783    }
7784
7785    /* TSTORM */
7786    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7787    if (last_idx) {
7788        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7789    }
7790
7791    /* print the asserts */
7792    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7793
7794        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7795        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7796        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7797        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7798
7799        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7800            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7801                  i, row3, row2, row1, row0);
7802            rc++;
7803        } else {
7804            break;
7805        }
7806    }
7807
7808    /* CSTORM */
7809    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7810    if (last_idx) {
7811        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7812    }
7813
7814    /* print the asserts */
7815    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7816
7817        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7818        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7819        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7820        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7821
7822        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7823            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7824                  i, row3, row2, row1, row0);
7825            rc++;
7826        } else {
7827            break;
7828        }
7829    }
7830
7831    /* USTORM */
7832    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7833    if (last_idx) {
7834        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7835    }
7836
7837    /* print the asserts */
7838    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7839
7840        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7841        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7842        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7843        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7844
7845        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7846            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7847                  i, row3, row2, row1, row0);
7848            rc++;
7849        } else {
7850            break;
7851        }
7852    }
7853
7854    return (rc);
7855}
7856
7857static void
7858bxe_attn_int_deasserted3(struct bxe_softc *sc,
7859                         uint32_t         attn)
7860{
7861    int func = SC_FUNC(sc);
7862    uint32_t val;
7863
7864    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7865
7866        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7867
7868            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7869            bxe_read_mf_cfg(sc);
7870            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7871                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7872            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7873
7874            if (val & DRV_STATUS_DCC_EVENT_MASK)
7875                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7876
7877            if (val & DRV_STATUS_SET_MF_BW)
7878                bxe_set_mf_bw(sc);
7879
7880            if (val & DRV_STATUS_DRV_INFO_REQ)
7881                bxe_handle_drv_info_req(sc);
7882
7883            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7884                bxe_pmf_update(sc);
7885
7886            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7887                bxe_handle_eee_event(sc);
7888
7889            if (sc->link_vars.periodic_flags &
7890                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7891                /* sync with link */
7892		bxe_acquire_phy_lock(sc);
7893                sc->link_vars.periodic_flags &=
7894                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7895		bxe_release_phy_lock(sc);
7896                if (IS_MF(sc))
7897                    ; // XXX bxe_link_sync_notify(sc);
7898                bxe_link_report(sc);
7899            }
7900
7901            /*
7902             * Always call it here: bxe_link_report() will
7903             * prevent the link indication duplication.
7904             */
7905            bxe_link_status_update(sc);
7906
7907        } else if (attn & BXE_MC_ASSERT_BITS) {
7908
7909            BLOGE(sc, "MC assert!\n");
7910            bxe_mc_assert(sc);
7911            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7912            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7913            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7914            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7915            bxe_panic(sc, ("MC assert!\n"));
7916
7917        } else if (attn & BXE_MCP_ASSERT) {
7918
7919            BLOGE(sc, "MCP assert!\n");
7920            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7921            // XXX bxe_fw_dump(sc);
7922
7923        } else {
7924            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7925        }
7926    }
7927
7928    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7929        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7930        if (attn & BXE_GRC_TIMEOUT) {
7931            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7932            BLOGE(sc, "GRC time-out 0x%08x\n", val);
7933        }
7934        if (attn & BXE_GRC_RSV) {
7935            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7936            BLOGE(sc, "GRC reserved 0x%08x\n", val);
7937        }
7938        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
7939    }
7940}
7941
7942static void
7943bxe_attn_int_deasserted2(struct bxe_softc *sc,
7944                         uint32_t         attn)
7945{
7946    int port = SC_PORT(sc);
7947    int reg_offset;
7948    uint32_t val0, mask0, val1, mask1;
7949    uint32_t val;
7950
7951    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
7952        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
7953        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
7954        /* CFC error attention */
7955        if (val & 0x2) {
7956            BLOGE(sc, "FATAL error from CFC\n");
7957        }
7958    }
7959
7960    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
7961        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
7962        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
7963        /* RQ_USDMDP_FIFO_OVERFLOW */
7964        if (val & 0x18000) {
7965            BLOGE(sc, "FATAL error from PXP\n");
7966        }
7967
7968        if (!CHIP_IS_E1x(sc)) {
7969            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
7970            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
7971        }
7972    }
7973
7974#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
7975#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
7976
7977    if (attn & AEU_PXP2_HW_INT_BIT) {
7978        /*  CQ47854 workaround do not panic on
7979         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
7980         */
7981        if (!CHIP_IS_E1x(sc)) {
7982            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
7983            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
7984            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
7985            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
7986            /*
7987             * If the only PXP2_EOP_ERROR_BIT is set in
7988             * STS0 and STS1 - clear it
7989             *
7990             * probably we lose additional attentions between
7991             * STS0 and STS_CLR0, in this case user will not
7992             * be notified about them
7993             */
7994            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
7995                !(val1 & mask1))
7996                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
7997
7998            /* print the register, since no one can restore it */
7999            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8000
8001            /*
8002             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8003             * then notify
8004             */
8005            if (val0 & PXP2_EOP_ERROR_BIT) {
8006                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8007
8008                /*
8009                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8010                 * set then clear attention from PXP2 block without panic
8011                 */
8012                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8013                    ((val1 & mask1) == 0))
8014                    attn &= ~AEU_PXP2_HW_INT_BIT;
8015            }
8016        }
8017    }
8018
8019    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8020        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8021                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8022
8023        val = REG_RD(sc, reg_offset);
8024        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8025        REG_WR(sc, reg_offset, val);
8026
8027        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8028              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8029        bxe_panic(sc, ("HW block attention set2\n"));
8030    }
8031}
8032
8033static void
8034bxe_attn_int_deasserted1(struct bxe_softc *sc,
8035                         uint32_t         attn)
8036{
8037    int port = SC_PORT(sc);
8038    int reg_offset;
8039    uint32_t val;
8040
8041    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8042        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8043        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8044        /* DORQ discard attention */
8045        if (val & 0x2) {
8046            BLOGE(sc, "FATAL error from DORQ\n");
8047        }
8048    }
8049
8050    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8051        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8052                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8053
8054        val = REG_RD(sc, reg_offset);
8055        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8056        REG_WR(sc, reg_offset, val);
8057
8058        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8059              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8060        bxe_panic(sc, ("HW block attention set1\n"));
8061    }
8062}
8063
8064static void
8065bxe_attn_int_deasserted0(struct bxe_softc *sc,
8066                         uint32_t         attn)
8067{
8068    int port = SC_PORT(sc);
8069    int reg_offset;
8070    uint32_t val;
8071
8072    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8073                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8074
8075    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8076        val = REG_RD(sc, reg_offset);
8077        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8078        REG_WR(sc, reg_offset, val);
8079
8080        BLOGW(sc, "SPIO5 hw attention\n");
8081
8082        /* Fan failure attention */
8083        elink_hw_reset_phy(&sc->link_params);
8084        bxe_fan_failure(sc);
8085    }
8086
8087    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8088	bxe_acquire_phy_lock(sc);
8089        elink_handle_module_detect_int(&sc->link_params);
8090	bxe_release_phy_lock(sc);
8091    }
8092
8093    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8094        val = REG_RD(sc, reg_offset);
8095        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8096        REG_WR(sc, reg_offset, val);
8097
8098        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8099                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8100    }
8101}
8102
8103static void
8104bxe_attn_int_deasserted(struct bxe_softc *sc,
8105                        uint32_t         deasserted)
8106{
8107    struct attn_route attn;
8108    struct attn_route *group_mask;
8109    int port = SC_PORT(sc);
8110    int index;
8111    uint32_t reg_addr;
8112    uint32_t val;
8113    uint32_t aeu_mask;
8114    uint8_t global = FALSE;
8115
8116    /*
8117     * Need to take HW lock because MCP or other port might also
8118     * try to handle this event.
8119     */
8120    bxe_acquire_alr(sc);
8121
8122    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8123        /* XXX
8124         * In case of parity errors don't handle attentions so that
8125         * other function would "see" parity errors.
8126         */
8127        sc->recovery_state = BXE_RECOVERY_INIT;
8128        // XXX schedule a recovery task...
8129        /* disable HW interrupts */
8130        bxe_int_disable(sc);
8131        bxe_release_alr(sc);
8132        return;
8133    }
8134
8135    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8136    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8137    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8138    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8139    if (!CHIP_IS_E1x(sc)) {
8140        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8141    } else {
8142        attn.sig[4] = 0;
8143    }
8144
8145    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8146          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8147
8148    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8149        if (deasserted & (1 << index)) {
8150            group_mask = &sc->attn_group[index];
8151
8152            BLOGD(sc, DBG_INTR,
8153                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8154                  group_mask->sig[0], group_mask->sig[1],
8155                  group_mask->sig[2], group_mask->sig[3],
8156                  group_mask->sig[4]);
8157
8158            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8159            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8160            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8161            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8162            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8163        }
8164    }
8165
8166    bxe_release_alr(sc);
8167
8168    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8169        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8170                    COMMAND_REG_ATTN_BITS_CLR);
8171    } else {
8172        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8173    }
8174
8175    val = ~deasserted;
8176    BLOGD(sc, DBG_INTR,
8177          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8178          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8179    REG_WR(sc, reg_addr, val);
8180
8181    if (~sc->attn_state & deasserted) {
8182        BLOGE(sc, "IGU error\n");
8183    }
8184
8185    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8186                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8187
8188    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8189
8190    aeu_mask = REG_RD(sc, reg_addr);
8191
8192    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8193          aeu_mask, deasserted);
8194    aeu_mask |= (deasserted & 0x3ff);
8195    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8196
8197    REG_WR(sc, reg_addr, aeu_mask);
8198    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8199
8200    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8201    sc->attn_state &= ~deasserted;
8202    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8203}
8204
8205static void
8206bxe_attn_int(struct bxe_softc *sc)
8207{
8208    /* read local copy of bits */
8209    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8210    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8211    uint32_t attn_state = sc->attn_state;
8212
8213    /* look for changed bits */
8214    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8215    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8216
8217    BLOGD(sc, DBG_INTR,
8218          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8219          attn_bits, attn_ack, asserted, deasserted);
8220
8221    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8222        BLOGE(sc, "BAD attention state\n");
8223    }
8224
8225    /* handle bits that were raised */
8226    if (asserted) {
8227        bxe_attn_int_asserted(sc, asserted);
8228    }
8229
8230    if (deasserted) {
8231        bxe_attn_int_deasserted(sc, deasserted);
8232    }
8233}
8234
8235static uint16_t
8236bxe_update_dsb_idx(struct bxe_softc *sc)
8237{
8238    struct host_sp_status_block *def_sb = sc->def_sb;
8239    uint16_t rc = 0;
8240
8241    mb(); /* status block is written to by the chip */
8242
8243    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8244        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8245        rc |= BXE_DEF_SB_ATT_IDX;
8246    }
8247
8248    if (sc->def_idx != def_sb->sp_sb.running_index) {
8249        sc->def_idx = def_sb->sp_sb.running_index;
8250        rc |= BXE_DEF_SB_IDX;
8251    }
8252
8253    mb();
8254
8255    return (rc);
8256}
8257
8258static inline struct ecore_queue_sp_obj *
8259bxe_cid_to_q_obj(struct bxe_softc *sc,
8260                 uint32_t         cid)
8261{
8262    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8263    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8264}
8265
8266static void
8267bxe_handle_mcast_eqe(struct bxe_softc *sc)
8268{
8269    struct ecore_mcast_ramrod_params rparam;
8270    int rc;
8271
8272    memset(&rparam, 0, sizeof(rparam));
8273
8274    rparam.mcast_obj = &sc->mcast_obj;
8275
8276    BXE_MCAST_LOCK(sc);
8277
8278    /* clear pending state for the last command */
8279    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8280
8281    /* if there are pending mcast commands - send them */
8282    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8283        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8284        if (rc < 0) {
8285            BLOGD(sc, DBG_SP,
8286                "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8287        }
8288    }
8289
8290    BXE_MCAST_UNLOCK(sc);
8291}
8292
8293static void
8294bxe_handle_classification_eqe(struct bxe_softc      *sc,
8295                              union event_ring_elem *elem)
8296{
8297    unsigned long ramrod_flags = 0;
8298    int rc = 0;
8299    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8300    struct ecore_vlan_mac_obj *vlan_mac_obj;
8301
8302    /* always push next commands out, don't wait here */
8303    bit_set(&ramrod_flags, RAMROD_CONT);
8304
8305    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8306    case ECORE_FILTER_MAC_PENDING:
8307        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8308        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8309        break;
8310
8311    case ECORE_FILTER_MCAST_PENDING:
8312        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8313        /*
8314         * This is only relevant for 57710 where multicast MACs are
8315         * configured as unicast MACs using the same ramrod.
8316         */
8317        bxe_handle_mcast_eqe(sc);
8318        return;
8319
8320    default:
8321        BLOGE(sc, "Unsupported classification command: %d\n",
8322              elem->message.data.eth_event.echo);
8323        return;
8324    }
8325
8326    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8327
8328    if (rc < 0) {
8329        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8330    } else if (rc > 0) {
8331        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8332    }
8333}
8334
8335static void
8336bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8337                       union event_ring_elem *elem)
8338{
8339    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8340
8341    /* send rx_mode command again if was requested */
8342    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8343                               &sc->sp_state)) {
8344        bxe_set_storm_rx_mode(sc);
8345    }
8346}
8347
8348static void
8349bxe_update_eq_prod(struct bxe_softc *sc,
8350                   uint16_t         prod)
8351{
8352    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8353    wmb(); /* keep prod updates ordered */
8354}
8355
8356static void
8357bxe_eq_int(struct bxe_softc *sc)
8358{
8359    uint16_t hw_cons, sw_cons, sw_prod;
8360    union event_ring_elem *elem;
8361    uint8_t echo;
8362    uint32_t cid;
8363    uint8_t opcode;
8364    int spqe_cnt = 0;
8365    struct ecore_queue_sp_obj *q_obj;
8366    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8367    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8368
8369    hw_cons = le16toh(*sc->eq_cons_sb);
8370
8371    /*
8372     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8373     * when we get to the next-page we need to adjust so the loop
8374     * condition below will be met. The next element is the size of a
8375     * regular element and hence incrementing by 1
8376     */
8377    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8378        hw_cons++;
8379    }
8380
8381    /*
8382     * This function may never run in parallel with itself for a
8383     * specific sc and no need for a read memory barrier here.
8384     */
8385    sw_cons = sc->eq_cons;
8386    sw_prod = sc->eq_prod;
8387
8388    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8389          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8390
8391    for (;
8392         sw_cons != hw_cons;
8393         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8394
8395        elem = &sc->eq[EQ_DESC(sw_cons)];
8396
8397        /* elem CID originates from FW, actually LE */
8398        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8399        opcode = elem->message.opcode;
8400
8401        /* handle eq element */
8402        switch (opcode) {
8403
8404        case EVENT_RING_OPCODE_STAT_QUERY:
8405            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8406                  sc->stats_comp++);
8407            /* nothing to do with stats comp */
8408            goto next_spqe;
8409
8410        case EVENT_RING_OPCODE_CFC_DEL:
8411            /* handle according to cid range */
8412            /* we may want to verify here that the sc state is HALTING */
8413            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8414            q_obj = bxe_cid_to_q_obj(sc, cid);
8415            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8416                break;
8417            }
8418            goto next_spqe;
8419
8420        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8421            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8422            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8423                break;
8424            }
8425            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8426            goto next_spqe;
8427
8428        case EVENT_RING_OPCODE_START_TRAFFIC:
8429            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8430            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8431                break;
8432            }
8433            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8434            goto next_spqe;
8435
8436        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8437            echo = elem->message.data.function_update_event.echo;
8438            if (echo == SWITCH_UPDATE) {
8439                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8440                if (f_obj->complete_cmd(sc, f_obj,
8441                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8442                    break;
8443                }
8444            }
8445            else {
8446                BLOGD(sc, DBG_SP,
8447                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8448            }
8449            goto next_spqe;
8450
8451        case EVENT_RING_OPCODE_FORWARD_SETUP:
8452            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8453            if (q_obj->complete_cmd(sc, q_obj,
8454                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8455                break;
8456            }
8457            goto next_spqe;
8458
8459        case EVENT_RING_OPCODE_FUNCTION_START:
8460            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8461            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8462                break;
8463            }
8464            goto next_spqe;
8465
8466        case EVENT_RING_OPCODE_FUNCTION_STOP:
8467            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8468            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8469                break;
8470            }
8471            goto next_spqe;
8472        }
8473
8474        switch (opcode | sc->state) {
8475        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8476        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8477            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8478            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8479            rss_raw->clear_pending(rss_raw);
8480            break;
8481
8482        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8483        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8484        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8485        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8486        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8487        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8488            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8489            bxe_handle_classification_eqe(sc, elem);
8490            break;
8491
8492        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8493        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8494        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8495            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8496            bxe_handle_mcast_eqe(sc);
8497            break;
8498
8499        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8500        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8501        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8502            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8503            bxe_handle_rx_mode_eqe(sc, elem);
8504            break;
8505
8506        default:
8507            /* unknown event log error and continue */
8508            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8509                  elem->message.opcode, sc->state);
8510        }
8511
8512next_spqe:
8513        spqe_cnt++;
8514    } /* for */
8515
8516    mb();
8517    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8518
8519    sc->eq_cons = sw_cons;
8520    sc->eq_prod = sw_prod;
8521
8522    /* make sure that above mem writes were issued towards the memory */
8523    wmb();
8524
8525    /* update producer */
8526    bxe_update_eq_prod(sc, sc->eq_prod);
8527}
8528
8529static void
8530bxe_handle_sp_tq(void *context,
8531                 int  pending)
8532{
8533    struct bxe_softc *sc = (struct bxe_softc *)context;
8534    uint16_t status;
8535
8536    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8537
8538    /* what work needs to be performed? */
8539    status = bxe_update_dsb_idx(sc);
8540
8541    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8542
8543    /* HW attentions */
8544    if (status & BXE_DEF_SB_ATT_IDX) {
8545        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8546        bxe_attn_int(sc);
8547        status &= ~BXE_DEF_SB_ATT_IDX;
8548    }
8549
8550    /* SP events: STAT_QUERY and others */
8551    if (status & BXE_DEF_SB_IDX) {
8552        /* handle EQ completions */
8553        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8554        bxe_eq_int(sc);
8555        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8556                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8557        status &= ~BXE_DEF_SB_IDX;
8558    }
8559
8560    /* if status is non zero then something went wrong */
8561    if (__predict_false(status)) {
8562        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8563    }
8564
8565    /* ack status block only if something was actually handled */
8566    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8567               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8568
8569    /*
8570     * Must be called after the EQ processing (since eq leads to sriov
8571     * ramrod completion flows).
8572     * This flow may have been scheduled by the arrival of a ramrod
8573     * completion, or by the sriov code rescheduling itself.
8574     */
8575    // XXX bxe_iov_sp_task(sc);
8576
8577}
8578
8579static void
8580bxe_handle_fp_tq(void *context,
8581                 int  pending)
8582{
8583    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8584    struct bxe_softc *sc = fp->sc;
8585    uint8_t more_tx = FALSE;
8586    uint8_t more_rx = FALSE;
8587
8588    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8589
8590    /* XXX
8591     * IFF_DRV_RUNNING state can't be checked here since we process
8592     * slowpath events on a client queue during setup. Instead
8593     * we need to add a "process/continue" flag here that the driver
8594     * can use to tell the task here not to do anything.
8595     */
8596#if 0
8597    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8598        return;
8599    }
8600#endif
8601
8602    /* update the fastpath index */
8603    bxe_update_fp_sb_idx(fp);
8604
8605    /* XXX add loop here if ever support multiple tx CoS */
8606    /* fp->txdata[cos] */
8607    if (bxe_has_tx_work(fp)) {
8608        BXE_FP_TX_LOCK(fp);
8609        more_tx = bxe_txeof(sc, fp);
8610        BXE_FP_TX_UNLOCK(fp);
8611    }
8612
8613    if (bxe_has_rx_work(fp)) {
8614        more_rx = bxe_rxeof(sc, fp);
8615    }
8616
8617    if (more_rx /*|| more_tx*/) {
8618        /* still more work to do */
8619        taskqueue_enqueue(fp->tq, &fp->tq_task);
8620        return;
8621    }
8622
8623    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8624               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8625}
8626
8627static void
8628bxe_task_fp(struct bxe_fastpath *fp)
8629{
8630    struct bxe_softc *sc = fp->sc;
8631    uint8_t more_tx = FALSE;
8632    uint8_t more_rx = FALSE;
8633
8634    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8635
8636    /* update the fastpath index */
8637    bxe_update_fp_sb_idx(fp);
8638
8639    /* XXX add loop here if ever support multiple tx CoS */
8640    /* fp->txdata[cos] */
8641    if (bxe_has_tx_work(fp)) {
8642        BXE_FP_TX_LOCK(fp);
8643        more_tx = bxe_txeof(sc, fp);
8644        BXE_FP_TX_UNLOCK(fp);
8645    }
8646
8647    if (bxe_has_rx_work(fp)) {
8648        more_rx = bxe_rxeof(sc, fp);
8649    }
8650
8651    if (more_rx /*|| more_tx*/) {
8652        /* still more work to do, bail out if this ISR and process later */
8653        taskqueue_enqueue(fp->tq, &fp->tq_task);
8654        return;
8655    }
8656
8657    /*
8658     * Here we write the fastpath index taken before doing any tx or rx work.
8659     * It is very well possible other hw events occurred up to this point and
8660     * they were actually processed accordingly above. Since we're going to
8661     * write an older fastpath index, an interrupt is coming which we might
8662     * not do any work in.
8663     */
8664    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8665               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8666}
8667
8668/*
8669 * Legacy interrupt entry point.
8670 *
8671 * Verifies that the controller generated the interrupt and
8672 * then calls a separate routine to handle the various
8673 * interrupt causes: link, RX, and TX.
8674 */
8675static void
8676bxe_intr_legacy(void *xsc)
8677{
8678    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8679    struct bxe_fastpath *fp;
8680    uint16_t status, mask;
8681    int i;
8682
8683    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8684
8685    /*
8686     * 0 for ustorm, 1 for cstorm
8687     * the bits returned from ack_int() are 0-15
8688     * bit 0 = attention status block
8689     * bit 1 = fast path status block
8690     * a mask of 0x2 or more = tx/rx event
8691     * a mask of 1 = slow path event
8692     */
8693
8694    status = bxe_ack_int(sc);
8695
8696    /* the interrupt is not for us */
8697    if (__predict_false(status == 0)) {
8698        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8699        return;
8700    }
8701
8702    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8703
8704    FOR_EACH_ETH_QUEUE(sc, i) {
8705        fp = &sc->fp[i];
8706        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8707        if (status & mask) {
8708            /* acknowledge and disable further fastpath interrupts */
8709            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8710            bxe_task_fp(fp);
8711            status &= ~mask;
8712        }
8713    }
8714
8715    if (__predict_false(status & 0x1)) {
8716        /* acknowledge and disable further slowpath interrupts */
8717        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8718
8719        /* schedule slowpath handler */
8720        taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8721
8722        status &= ~0x1;
8723    }
8724
8725    if (__predict_false(status)) {
8726        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8727    }
8728}
8729
8730/* slowpath interrupt entry point */
8731static void
8732bxe_intr_sp(void *xsc)
8733{
8734    struct bxe_softc *sc = (struct bxe_softc *)xsc;
8735
8736    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8737
8738    /* acknowledge and disable further slowpath interrupts */
8739    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8740
8741    /* schedule slowpath handler */
8742    taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8743}
8744
8745/* fastpath interrupt entry point */
8746static void
8747bxe_intr_fp(void *xfp)
8748{
8749    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8750    struct bxe_softc *sc = fp->sc;
8751
8752    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8753
8754    BLOGD(sc, DBG_INTR,
8755          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8756          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8757
8758    /* acknowledge and disable further fastpath interrupts */
8759    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8760
8761    bxe_task_fp(fp);
8762}
8763
8764/* Release all interrupts allocated by the driver. */
8765static void
8766bxe_interrupt_free(struct bxe_softc *sc)
8767{
8768    int i;
8769
8770    switch (sc->interrupt_mode) {
8771    case INTR_MODE_INTX:
8772        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8773        if (sc->intr[0].resource != NULL) {
8774            bus_release_resource(sc->dev,
8775                                 SYS_RES_IRQ,
8776                                 sc->intr[0].rid,
8777                                 sc->intr[0].resource);
8778        }
8779        break;
8780    case INTR_MODE_MSI:
8781        for (i = 0; i < sc->intr_count; i++) {
8782            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8783            if (sc->intr[i].resource && sc->intr[i].rid) {
8784                bus_release_resource(sc->dev,
8785                                     SYS_RES_IRQ,
8786                                     sc->intr[i].rid,
8787                                     sc->intr[i].resource);
8788            }
8789        }
8790        pci_release_msi(sc->dev);
8791        break;
8792    case INTR_MODE_MSIX:
8793        for (i = 0; i < sc->intr_count; i++) {
8794            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8795            if (sc->intr[i].resource && sc->intr[i].rid) {
8796                bus_release_resource(sc->dev,
8797                                     SYS_RES_IRQ,
8798                                     sc->intr[i].rid,
8799                                     sc->intr[i].resource);
8800            }
8801        }
8802        pci_release_msi(sc->dev);
8803        break;
8804    default:
8805        /* nothing to do as initial allocation failed */
8806        break;
8807    }
8808}
8809
8810/*
8811 * This function determines and allocates the appropriate
8812 * interrupt based on system capabilites and user request.
8813 *
8814 * The user may force a particular interrupt mode, specify
8815 * the number of receive queues, specify the method for
8816 * distribuitng received frames to receive queues, or use
8817 * the default settings which will automatically select the
8818 * best supported combination.  In addition, the OS may or
8819 * may not support certain combinations of these settings.
8820 * This routine attempts to reconcile the settings requested
8821 * by the user with the capabilites available from the system
8822 * to select the optimal combination of features.
8823 *
8824 * Returns:
8825 *   0 = Success, !0 = Failure.
8826 */
8827static int
8828bxe_interrupt_alloc(struct bxe_softc *sc)
8829{
8830    int msix_count = 0;
8831    int msi_count = 0;
8832    int num_requested = 0;
8833    int num_allocated = 0;
8834    int rid, i, j;
8835    int rc;
8836
8837    /* get the number of available MSI/MSI-X interrupts from the OS */
8838    if (sc->interrupt_mode > 0) {
8839        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8840            msix_count = pci_msix_count(sc->dev);
8841        }
8842
8843        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8844            msi_count = pci_msi_count(sc->dev);
8845        }
8846
8847        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8848              msi_count, msix_count);
8849    }
8850
8851    do { /* try allocating MSI-X interrupt resources (at least 2) */
8852        if (sc->interrupt_mode != INTR_MODE_MSIX) {
8853            break;
8854        }
8855
8856        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8857            (msix_count < 2)) {
8858            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8859            break;
8860        }
8861
8862        /* ask for the necessary number of MSI-X vectors */
8863        num_requested = min((sc->num_queues + 1), msix_count);
8864
8865        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8866
8867        num_allocated = num_requested;
8868        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8869            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8870            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8871            break;
8872        }
8873
8874        if (num_allocated < 2) { /* possible? */
8875            BLOGE(sc, "MSI-X allocation less than 2!\n");
8876            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8877            pci_release_msi(sc->dev);
8878            break;
8879        }
8880
8881        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8882              num_requested, num_allocated);
8883
8884        /* best effort so use the number of vectors allocated to us */
8885        sc->intr_count = num_allocated;
8886        sc->num_queues = num_allocated - 1;
8887
8888        rid = 1; /* initial resource identifier */
8889
8890        /* allocate the MSI-X vectors */
8891        for (i = 0; i < num_allocated; i++) {
8892            sc->intr[i].rid = (rid + i);
8893
8894            if ((sc->intr[i].resource =
8895                 bus_alloc_resource_any(sc->dev,
8896                                        SYS_RES_IRQ,
8897                                        &sc->intr[i].rid,
8898                                        RF_ACTIVE)) == NULL) {
8899                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8900                      i, (rid + i));
8901
8902                for (j = (i - 1); j >= 0; j--) {
8903                    bus_release_resource(sc->dev,
8904                                         SYS_RES_IRQ,
8905                                         sc->intr[j].rid,
8906                                         sc->intr[j].resource);
8907                }
8908
8909                sc->intr_count = 0;
8910                sc->num_queues = 0;
8911                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8912                pci_release_msi(sc->dev);
8913                break;
8914            }
8915
8916            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8917        }
8918    } while (0);
8919
8920    do { /* try allocating MSI vector resources (at least 2) */
8921        if (sc->interrupt_mode != INTR_MODE_MSI) {
8922            break;
8923        }
8924
8925        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
8926            (msi_count < 1)) {
8927            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8928            break;
8929        }
8930
8931        /* ask for a single MSI vector */
8932        num_requested = 1;
8933
8934        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
8935
8936        num_allocated = num_requested;
8937        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
8938            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
8939            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8940            break;
8941        }
8942
8943        if (num_allocated != 1) { /* possible? */
8944            BLOGE(sc, "MSI allocation is not 1!\n");
8945            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8946            pci_release_msi(sc->dev);
8947            break;
8948        }
8949
8950        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
8951              num_requested, num_allocated);
8952
8953        /* best effort so use the number of vectors allocated to us */
8954        sc->intr_count = num_allocated;
8955        sc->num_queues = num_allocated;
8956
8957        rid = 1; /* initial resource identifier */
8958
8959        sc->intr[0].rid = rid;
8960
8961        if ((sc->intr[0].resource =
8962             bus_alloc_resource_any(sc->dev,
8963                                    SYS_RES_IRQ,
8964                                    &sc->intr[0].rid,
8965                                    RF_ACTIVE)) == NULL) {
8966            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
8967            sc->intr_count = 0;
8968            sc->num_queues = 0;
8969            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8970            pci_release_msi(sc->dev);
8971            break;
8972        }
8973
8974        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
8975    } while (0);
8976
8977    do { /* try allocating INTx vector resources */
8978        if (sc->interrupt_mode != INTR_MODE_INTX) {
8979            break;
8980        }
8981
8982        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
8983
8984        /* only one vector for INTx */
8985        sc->intr_count = 1;
8986        sc->num_queues = 1;
8987
8988        rid = 0; /* initial resource identifier */
8989
8990        sc->intr[0].rid = rid;
8991
8992        if ((sc->intr[0].resource =
8993             bus_alloc_resource_any(sc->dev,
8994                                    SYS_RES_IRQ,
8995                                    &sc->intr[0].rid,
8996                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
8997            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
8998            sc->intr_count = 0;
8999            sc->num_queues = 0;
9000            sc->interrupt_mode = -1; /* Failed! */
9001            break;
9002        }
9003
9004        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9005    } while (0);
9006
9007    if (sc->interrupt_mode == -1) {
9008        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9009        rc = 1;
9010    } else {
9011        BLOGD(sc, DBG_LOAD,
9012              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9013              sc->interrupt_mode, sc->num_queues);
9014        rc = 0;
9015    }
9016
9017    return (rc);
9018}
9019
9020static void
9021bxe_interrupt_detach(struct bxe_softc *sc)
9022{
9023    struct bxe_fastpath *fp;
9024    int i;
9025
9026    /* release interrupt resources */
9027    for (i = 0; i < sc->intr_count; i++) {
9028        if (sc->intr[i].resource && sc->intr[i].tag) {
9029            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9030            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9031        }
9032    }
9033
9034    for (i = 0; i < sc->num_queues; i++) {
9035        fp = &sc->fp[i];
9036        if (fp->tq) {
9037            taskqueue_drain(fp->tq, &fp->tq_task);
9038            taskqueue_free(fp->tq);
9039            fp->tq = NULL;
9040        }
9041    }
9042
9043
9044    if (sc->sp_tq) {
9045        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9046        taskqueue_free(sc->sp_tq);
9047        sc->sp_tq = NULL;
9048    }
9049}
9050
9051/*
9052 * Enables interrupts and attach to the ISR.
9053 *
9054 * When using multiple MSI/MSI-X vectors the first vector
9055 * is used for slowpath operations while all remaining
9056 * vectors are used for fastpath operations.  If only a
9057 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9058 * ISR must look for both slowpath and fastpath completions.
9059 */
9060static int
9061bxe_interrupt_attach(struct bxe_softc *sc)
9062{
9063    struct bxe_fastpath *fp;
9064    int rc = 0;
9065    int i;
9066
9067    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9068             "bxe%d_sp_tq", sc->unit);
9069    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9070    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9071                                      taskqueue_thread_enqueue,
9072                                      &sc->sp_tq);
9073    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9074                            "%s", sc->sp_tq_name);
9075
9076
9077    for (i = 0; i < sc->num_queues; i++) {
9078        fp = &sc->fp[i];
9079        snprintf(fp->tq_name, sizeof(fp->tq_name),
9080                 "bxe%d_fp%d_tq", sc->unit, i);
9081        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9082        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9083                                       taskqueue_thread_enqueue,
9084                                       &fp->tq);
9085        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9086                                "%s", fp->tq_name);
9087    }
9088
9089    /* setup interrupt handlers */
9090    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9091        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9092
9093        /*
9094         * Setup the interrupt handler. Note that we pass the driver instance
9095         * to the interrupt handler for the slowpath.
9096         */
9097        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9098                                 (INTR_TYPE_NET | INTR_MPSAFE),
9099                                 NULL, bxe_intr_sp, sc,
9100                                 &sc->intr[0].tag)) != 0) {
9101            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9102            goto bxe_interrupt_attach_exit;
9103        }
9104
9105        bus_describe_intr(sc->dev, sc->intr[0].resource,
9106                          sc->intr[0].tag, "sp");
9107
9108        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9109
9110        /* initialize the fastpath vectors (note the first was used for sp) */
9111        for (i = 0; i < sc->num_queues; i++) {
9112            fp = &sc->fp[i];
9113            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9114
9115            /*
9116             * Setup the interrupt handler. Note that we pass the
9117             * fastpath context to the interrupt handler in this
9118             * case.
9119             */
9120            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9121                                     (INTR_TYPE_NET | INTR_MPSAFE),
9122                                     NULL, bxe_intr_fp, fp,
9123                                     &sc->intr[i + 1].tag)) != 0) {
9124                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9125                      (i + 1), rc);
9126                goto bxe_interrupt_attach_exit;
9127            }
9128
9129            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9130                              sc->intr[i + 1].tag, "fp%02d", i);
9131
9132            /* bind the fastpath instance to a cpu */
9133            if (sc->num_queues > 1) {
9134                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9135            }
9136
9137            fp->state = BXE_FP_STATE_IRQ;
9138        }
9139    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9140        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9141
9142        /*
9143         * Setup the interrupt handler. Note that we pass the
9144         * driver instance to the interrupt handler which
9145         * will handle both the slowpath and fastpath.
9146         */
9147        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9148                                 (INTR_TYPE_NET | INTR_MPSAFE),
9149                                 NULL, bxe_intr_legacy, sc,
9150                                 &sc->intr[0].tag)) != 0) {
9151            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9152            goto bxe_interrupt_attach_exit;
9153        }
9154
9155    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9156        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9157
9158        /*
9159         * Setup the interrupt handler. Note that we pass the
9160         * driver instance to the interrupt handler which
9161         * will handle both the slowpath and fastpath.
9162         */
9163        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9164                                 (INTR_TYPE_NET | INTR_MPSAFE),
9165                                 NULL, bxe_intr_legacy, sc,
9166                                 &sc->intr[0].tag)) != 0) {
9167            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9168            goto bxe_interrupt_attach_exit;
9169        }
9170    }
9171
9172bxe_interrupt_attach_exit:
9173
9174    return (rc);
9175}
9176
9177static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9178static int  bxe_init_hw_common(struct bxe_softc *sc);
9179static int  bxe_init_hw_port(struct bxe_softc *sc);
9180static int  bxe_init_hw_func(struct bxe_softc *sc);
9181static void bxe_reset_common(struct bxe_softc *sc);
9182static void bxe_reset_port(struct bxe_softc *sc);
9183static void bxe_reset_func(struct bxe_softc *sc);
9184static int  bxe_gunzip_init(struct bxe_softc *sc);
9185static void bxe_gunzip_end(struct bxe_softc *sc);
9186static int  bxe_init_firmware(struct bxe_softc *sc);
9187static void bxe_release_firmware(struct bxe_softc *sc);
9188
9189static struct
9190ecore_func_sp_drv_ops bxe_func_sp_drv = {
9191    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9192    .init_hw_cmn      = bxe_init_hw_common,
9193    .init_hw_port     = bxe_init_hw_port,
9194    .init_hw_func     = bxe_init_hw_func,
9195
9196    .reset_hw_cmn     = bxe_reset_common,
9197    .reset_hw_port    = bxe_reset_port,
9198    .reset_hw_func    = bxe_reset_func,
9199
9200    .gunzip_init      = bxe_gunzip_init,
9201    .gunzip_end       = bxe_gunzip_end,
9202
9203    .init_fw          = bxe_init_firmware,
9204    .release_fw       = bxe_release_firmware,
9205};
9206
9207static void
9208bxe_init_func_obj(struct bxe_softc *sc)
9209{
9210    sc->dmae_ready = 0;
9211
9212    ecore_init_func_obj(sc,
9213                        &sc->func_obj,
9214                        BXE_SP(sc, func_rdata),
9215                        BXE_SP_MAPPING(sc, func_rdata),
9216                        BXE_SP(sc, func_afex_rdata),
9217                        BXE_SP_MAPPING(sc, func_afex_rdata),
9218                        &bxe_func_sp_drv);
9219}
9220
9221static int
9222bxe_init_hw(struct bxe_softc *sc,
9223            uint32_t         load_code)
9224{
9225    struct ecore_func_state_params func_params = { NULL };
9226    int rc;
9227
9228    /* prepare the parameters for function state transitions */
9229    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9230
9231    func_params.f_obj = &sc->func_obj;
9232    func_params.cmd = ECORE_F_CMD_HW_INIT;
9233
9234    func_params.params.hw_init.load_phase = load_code;
9235
9236    /*
9237     * Via a plethora of function pointers, we will eventually reach
9238     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9239     */
9240    rc = ecore_func_state_change(sc, &func_params);
9241
9242    return (rc);
9243}
9244
9245static void
9246bxe_fill(struct bxe_softc *sc,
9247         uint32_t         addr,
9248         int              fill,
9249         uint32_t         len)
9250{
9251    uint32_t i;
9252
9253    if (!(len % 4) && !(addr % 4)) {
9254        for (i = 0; i < len; i += 4) {
9255            REG_WR(sc, (addr + i), fill);
9256        }
9257    } else {
9258        for (i = 0; i < len; i++) {
9259            REG_WR8(sc, (addr + i), fill);
9260        }
9261    }
9262}
9263
9264/* writes FP SP data to FW - data_size in dwords */
9265static void
9266bxe_wr_fp_sb_data(struct bxe_softc *sc,
9267                  int              fw_sb_id,
9268                  uint32_t         *sb_data_p,
9269                  uint32_t         data_size)
9270{
9271    int index;
9272
9273    for (index = 0; index < data_size; index++) {
9274        REG_WR(sc,
9275               (BAR_CSTRORM_INTMEM +
9276                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9277                (sizeof(uint32_t) * index)),
9278               *(sb_data_p + index));
9279    }
9280}
9281
9282static void
9283bxe_zero_fp_sb(struct bxe_softc *sc,
9284               int              fw_sb_id)
9285{
9286    struct hc_status_block_data_e2 sb_data_e2;
9287    struct hc_status_block_data_e1x sb_data_e1x;
9288    uint32_t *sb_data_p;
9289    uint32_t data_size = 0;
9290
9291    if (!CHIP_IS_E1x(sc)) {
9292        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9293        sb_data_e2.common.state = SB_DISABLED;
9294        sb_data_e2.common.p_func.vf_valid = FALSE;
9295        sb_data_p = (uint32_t *)&sb_data_e2;
9296        data_size = (sizeof(struct hc_status_block_data_e2) /
9297                     sizeof(uint32_t));
9298    } else {
9299        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9300        sb_data_e1x.common.state = SB_DISABLED;
9301        sb_data_e1x.common.p_func.vf_valid = FALSE;
9302        sb_data_p = (uint32_t *)&sb_data_e1x;
9303        data_size = (sizeof(struct hc_status_block_data_e1x) /
9304                     sizeof(uint32_t));
9305    }
9306
9307    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9308
9309    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9310             0, CSTORM_STATUS_BLOCK_SIZE);
9311    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9312             0, CSTORM_SYNC_BLOCK_SIZE);
9313}
9314
9315static void
9316bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9317                  struct hc_sp_status_block_data *sp_sb_data)
9318{
9319    int i;
9320
9321    for (i = 0;
9322         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9323         i++) {
9324        REG_WR(sc,
9325               (BAR_CSTRORM_INTMEM +
9326                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9327                (i * sizeof(uint32_t))),
9328               *((uint32_t *)sp_sb_data + i));
9329    }
9330}
9331
9332static void
9333bxe_zero_sp_sb(struct bxe_softc *sc)
9334{
9335    struct hc_sp_status_block_data sp_sb_data;
9336
9337    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9338
9339    sp_sb_data.state           = SB_DISABLED;
9340    sp_sb_data.p_func.vf_valid = FALSE;
9341
9342    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9343
9344    bxe_fill(sc,
9345             (BAR_CSTRORM_INTMEM +
9346              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9347              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9348    bxe_fill(sc,
9349             (BAR_CSTRORM_INTMEM +
9350              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9351              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9352}
9353
9354static void
9355bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9356                             int                       igu_sb_id,
9357                             int                       igu_seg_id)
9358{
9359    hc_sm->igu_sb_id      = igu_sb_id;
9360    hc_sm->igu_seg_id     = igu_seg_id;
9361    hc_sm->timer_value    = 0xFF;
9362    hc_sm->time_to_expire = 0xFFFFFFFF;
9363}
9364
9365static void
9366bxe_map_sb_state_machines(struct hc_index_data *index_data)
9367{
9368    /* zero out state machine indices */
9369
9370    /* rx indices */
9371    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9372
9373    /* tx indices */
9374    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9375    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9376    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9377    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9378
9379    /* map indices */
9380
9381    /* rx indices */
9382    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9383        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9384
9385    /* tx indices */
9386    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9387        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9388    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9389        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9390    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9391        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9392    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9393        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9394}
9395
9396static void
9397bxe_init_sb(struct bxe_softc *sc,
9398            bus_addr_t       busaddr,
9399            int              vfid,
9400            uint8_t          vf_valid,
9401            int              fw_sb_id,
9402            int              igu_sb_id)
9403{
9404    struct hc_status_block_data_e2  sb_data_e2;
9405    struct hc_status_block_data_e1x sb_data_e1x;
9406    struct hc_status_block_sm       *hc_sm_p;
9407    uint32_t *sb_data_p;
9408    int igu_seg_id;
9409    int data_size;
9410
9411    if (CHIP_INT_MODE_IS_BC(sc)) {
9412        igu_seg_id = HC_SEG_ACCESS_NORM;
9413    } else {
9414        igu_seg_id = IGU_SEG_ACCESS_NORM;
9415    }
9416
9417    bxe_zero_fp_sb(sc, fw_sb_id);
9418
9419    if (!CHIP_IS_E1x(sc)) {
9420        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9421        sb_data_e2.common.state = SB_ENABLED;
9422        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9423        sb_data_e2.common.p_func.vf_id = vfid;
9424        sb_data_e2.common.p_func.vf_valid = vf_valid;
9425        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9426        sb_data_e2.common.same_igu_sb_1b = TRUE;
9427        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9428        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9429        hc_sm_p = sb_data_e2.common.state_machine;
9430        sb_data_p = (uint32_t *)&sb_data_e2;
9431        data_size = (sizeof(struct hc_status_block_data_e2) /
9432                     sizeof(uint32_t));
9433        bxe_map_sb_state_machines(sb_data_e2.index_data);
9434    } else {
9435        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9436        sb_data_e1x.common.state = SB_ENABLED;
9437        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9438        sb_data_e1x.common.p_func.vf_id = 0xff;
9439        sb_data_e1x.common.p_func.vf_valid = FALSE;
9440        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9441        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9442        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9443        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9444        hc_sm_p = sb_data_e1x.common.state_machine;
9445        sb_data_p = (uint32_t *)&sb_data_e1x;
9446        data_size = (sizeof(struct hc_status_block_data_e1x) /
9447                     sizeof(uint32_t));
9448        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9449    }
9450
9451    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9452    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9453
9454    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9455
9456    /* write indices to HW - PCI guarantees endianity of regpairs */
9457    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9458}
9459
9460static inline uint8_t
9461bxe_fp_qzone_id(struct bxe_fastpath *fp)
9462{
9463    if (CHIP_IS_E1x(fp->sc)) {
9464        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9465    } else {
9466        return (fp->cl_id);
9467    }
9468}
9469
9470static inline uint32_t
9471bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9472                           struct bxe_fastpath *fp)
9473{
9474    uint32_t offset = BAR_USTRORM_INTMEM;
9475
9476    if (!CHIP_IS_E1x(sc)) {
9477        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9478    } else {
9479        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9480    }
9481
9482    return (offset);
9483}
9484
9485static void
9486bxe_init_eth_fp(struct bxe_softc *sc,
9487                int              idx)
9488{
9489    struct bxe_fastpath *fp = &sc->fp[idx];
9490    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9491    unsigned long q_type = 0;
9492    int cos;
9493
9494    fp->sc    = sc;
9495    fp->index = idx;
9496
9497    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9498    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9499
9500    fp->cl_id = (CHIP_IS_E1x(sc)) ?
9501                    (SC_L_ID(sc) + idx) :
9502                    /* want client ID same as IGU SB ID for non-E1 */
9503                    fp->igu_sb_id;
9504    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9505
9506    /* setup sb indices */
9507    if (!CHIP_IS_E1x(sc)) {
9508        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9509        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9510    } else {
9511        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9512        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9513    }
9514
9515    /* init shortcut */
9516    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9517
9518    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9519
9520    /*
9521     * XXX If multiple CoS is ever supported then each fastpath structure
9522     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9523     */
9524    for (cos = 0; cos < sc->max_cos; cos++) {
9525        cids[cos] = idx;
9526    }
9527    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9528
9529    /* nothing more for a VF to do */
9530    if (IS_VF(sc)) {
9531        return;
9532    }
9533
9534    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9535                fp->fw_sb_id, fp->igu_sb_id);
9536
9537    bxe_update_fp_sb_idx(fp);
9538
9539    /* Configure Queue State object */
9540    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9541    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9542
9543    ecore_init_queue_obj(sc,
9544                         &sc->sp_objs[idx].q_obj,
9545                         fp->cl_id,
9546                         cids,
9547                         sc->max_cos,
9548                         SC_FUNC(sc),
9549                         BXE_SP(sc, q_rdata),
9550                         BXE_SP_MAPPING(sc, q_rdata),
9551                         q_type);
9552
9553    /* configure classification DBs */
9554    ecore_init_mac_obj(sc,
9555                       &sc->sp_objs[idx].mac_obj,
9556                       fp->cl_id,
9557                       idx,
9558                       SC_FUNC(sc),
9559                       BXE_SP(sc, mac_rdata),
9560                       BXE_SP_MAPPING(sc, mac_rdata),
9561                       ECORE_FILTER_MAC_PENDING,
9562                       &sc->sp_state,
9563                       ECORE_OBJ_TYPE_RX_TX,
9564                       &sc->macs_pool);
9565
9566    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9567          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9568}
9569
9570static inline void
9571bxe_update_rx_prod(struct bxe_softc    *sc,
9572                   struct bxe_fastpath *fp,
9573                   uint16_t            rx_bd_prod,
9574                   uint16_t            rx_cq_prod,
9575                   uint16_t            rx_sge_prod)
9576{
9577    struct ustorm_eth_rx_producers rx_prods = { 0 };
9578    uint32_t i;
9579
9580    /* update producers */
9581    rx_prods.bd_prod  = rx_bd_prod;
9582    rx_prods.cqe_prod = rx_cq_prod;
9583    rx_prods.sge_prod = rx_sge_prod;
9584
9585    /*
9586     * Make sure that the BD and SGE data is updated before updating the
9587     * producers since FW might read the BD/SGE right after the producer
9588     * is updated.
9589     * This is only applicable for weak-ordered memory model archs such
9590     * as IA-64. The following barrier is also mandatory since FW will
9591     * assumes BDs must have buffers.
9592     */
9593    wmb();
9594
9595    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9596        REG_WR(sc,
9597               (fp->ustorm_rx_prods_offset + (i * 4)),
9598               ((uint32_t *)&rx_prods)[i]);
9599    }
9600
9601    wmb(); /* keep prod updates ordered */
9602
9603    BLOGD(sc, DBG_RX,
9604          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9605          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9606}
9607
9608static void
9609bxe_init_rx_rings(struct bxe_softc *sc)
9610{
9611    struct bxe_fastpath *fp;
9612    int i;
9613
9614    for (i = 0; i < sc->num_queues; i++) {
9615        fp = &sc->fp[i];
9616
9617        fp->rx_bd_cons = 0;
9618
9619        /*
9620         * Activate the BD ring...
9621         * Warning, this will generate an interrupt (to the TSTORM)
9622         * so this can only be done after the chip is initialized
9623         */
9624        bxe_update_rx_prod(sc, fp,
9625                           fp->rx_bd_prod,
9626                           fp->rx_cq_prod,
9627                           fp->rx_sge_prod);
9628
9629        if (i != 0) {
9630            continue;
9631        }
9632
9633        if (CHIP_IS_E1(sc)) {
9634            REG_WR(sc,
9635                   (BAR_USTRORM_INTMEM +
9636                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9637                   U64_LO(fp->rcq_dma.paddr));
9638            REG_WR(sc,
9639                   (BAR_USTRORM_INTMEM +
9640                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9641                   U64_HI(fp->rcq_dma.paddr));
9642        }
9643    }
9644}
9645
9646static void
9647bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9648{
9649    SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9650    fp->tx_db.data.zero_fill1 = 0;
9651    fp->tx_db.data.prod = 0;
9652
9653    fp->tx_pkt_prod = 0;
9654    fp->tx_pkt_cons = 0;
9655    fp->tx_bd_prod = 0;
9656    fp->tx_bd_cons = 0;
9657    fp->eth_q_stats.tx_pkts = 0;
9658}
9659
9660static inline void
9661bxe_init_tx_rings(struct bxe_softc *sc)
9662{
9663    int i;
9664
9665    for (i = 0; i < sc->num_queues; i++) {
9666        bxe_init_tx_ring_one(&sc->fp[i]);
9667    }
9668}
9669
9670static void
9671bxe_init_def_sb(struct bxe_softc *sc)
9672{
9673    struct host_sp_status_block *def_sb = sc->def_sb;
9674    bus_addr_t mapping = sc->def_sb_dma.paddr;
9675    int igu_sp_sb_index;
9676    int igu_seg_id;
9677    int port = SC_PORT(sc);
9678    int func = SC_FUNC(sc);
9679    int reg_offset, reg_offset_en5;
9680    uint64_t section;
9681    int index, sindex;
9682    struct hc_sp_status_block_data sp_sb_data;
9683
9684    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9685
9686    if (CHIP_INT_MODE_IS_BC(sc)) {
9687        igu_sp_sb_index = DEF_SB_IGU_ID;
9688        igu_seg_id = HC_SEG_ACCESS_DEF;
9689    } else {
9690        igu_sp_sb_index = sc->igu_dsb_id;
9691        igu_seg_id = IGU_SEG_ACCESS_DEF;
9692    }
9693
9694    /* attentions */
9695    section = ((uint64_t)mapping +
9696               offsetof(struct host_sp_status_block, atten_status_block));
9697    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9698    sc->attn_state = 0;
9699
9700    reg_offset = (port) ?
9701                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9702                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9703    reg_offset_en5 = (port) ?
9704                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9705                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9706
9707    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9708        /* take care of sig[0]..sig[4] */
9709        for (sindex = 0; sindex < 4; sindex++) {
9710            sc->attn_group[index].sig[sindex] =
9711                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9712        }
9713
9714        if (!CHIP_IS_E1x(sc)) {
9715            /*
9716             * enable5 is separate from the rest of the registers,
9717             * and the address skip is 4 and not 16 between the
9718             * different groups
9719             */
9720            sc->attn_group[index].sig[4] =
9721                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9722        } else {
9723            sc->attn_group[index].sig[4] = 0;
9724        }
9725    }
9726
9727    if (sc->devinfo.int_block == INT_BLOCK_HC) {
9728        reg_offset = (port) ?
9729                         HC_REG_ATTN_MSG1_ADDR_L :
9730                         HC_REG_ATTN_MSG0_ADDR_L;
9731        REG_WR(sc, reg_offset, U64_LO(section));
9732        REG_WR(sc, (reg_offset + 4), U64_HI(section));
9733    } else if (!CHIP_IS_E1x(sc)) {
9734        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9735        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9736    }
9737
9738    section = ((uint64_t)mapping +
9739               offsetof(struct host_sp_status_block, sp_sb));
9740
9741    bxe_zero_sp_sb(sc);
9742
9743    /* PCI guarantees endianity of regpair */
9744    sp_sb_data.state           = SB_ENABLED;
9745    sp_sb_data.host_sb_addr.lo = U64_LO(section);
9746    sp_sb_data.host_sb_addr.hi = U64_HI(section);
9747    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9748    sp_sb_data.igu_seg_id      = igu_seg_id;
9749    sp_sb_data.p_func.pf_id    = func;
9750    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9751    sp_sb_data.p_func.vf_id    = 0xff;
9752
9753    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9754
9755    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9756}
9757
9758static void
9759bxe_init_sp_ring(struct bxe_softc *sc)
9760{
9761    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9762    sc->spq_prod_idx = 0;
9763    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9764    sc->spq_prod_bd = sc->spq;
9765    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9766}
9767
9768static void
9769bxe_init_eq_ring(struct bxe_softc *sc)
9770{
9771    union event_ring_elem *elem;
9772    int i;
9773
9774    for (i = 1; i <= NUM_EQ_PAGES; i++) {
9775        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9776
9777        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9778                                                 BCM_PAGE_SIZE *
9779                                                 (i % NUM_EQ_PAGES)));
9780        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9781                                                 BCM_PAGE_SIZE *
9782                                                 (i % NUM_EQ_PAGES)));
9783    }
9784
9785    sc->eq_cons    = 0;
9786    sc->eq_prod    = NUM_EQ_DESC;
9787    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9788
9789    atomic_store_rel_long(&sc->eq_spq_left,
9790                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9791                               NUM_EQ_DESC) - 1));
9792}
9793
9794static void
9795bxe_init_internal_common(struct bxe_softc *sc)
9796{
9797    int i;
9798
9799    /*
9800     * Zero this manually as its initialization is currently missing
9801     * in the initTool.
9802     */
9803    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9804        REG_WR(sc,
9805               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9806               0);
9807    }
9808
9809    if (!CHIP_IS_E1x(sc)) {
9810        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9811                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9812    }
9813}
9814
9815static void
9816bxe_init_internal(struct bxe_softc *sc,
9817                  uint32_t         load_code)
9818{
9819    switch (load_code) {
9820    case FW_MSG_CODE_DRV_LOAD_COMMON:
9821    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9822        bxe_init_internal_common(sc);
9823        /* no break */
9824
9825    case FW_MSG_CODE_DRV_LOAD_PORT:
9826        /* nothing to do */
9827        /* no break */
9828
9829    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9830        /* internal memory per function is initialized inside bxe_pf_init */
9831        break;
9832
9833    default:
9834        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9835        break;
9836    }
9837}
9838
9839static void
9840storm_memset_func_cfg(struct bxe_softc                         *sc,
9841                      struct tstorm_eth_function_common_config *tcfg,
9842                      uint16_t                                  abs_fid)
9843{
9844    uint32_t addr;
9845    size_t size;
9846
9847    addr = (BAR_TSTRORM_INTMEM +
9848            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9849    size = sizeof(struct tstorm_eth_function_common_config);
9850    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9851}
9852
9853static void
9854bxe_func_init(struct bxe_softc            *sc,
9855              struct bxe_func_init_params *p)
9856{
9857    struct tstorm_eth_function_common_config tcfg = { 0 };
9858
9859    if (CHIP_IS_E1x(sc)) {
9860        storm_memset_func_cfg(sc, &tcfg, p->func_id);
9861    }
9862
9863    /* Enable the function in the FW */
9864    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9865    storm_memset_func_en(sc, p->func_id, 1);
9866
9867    /* spq */
9868    if (p->func_flgs & FUNC_FLG_SPQ) {
9869        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9870        REG_WR(sc,
9871               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9872               p->spq_prod);
9873    }
9874}
9875
9876/*
9877 * Calculates the sum of vn_min_rates.
9878 * It's needed for further normalizing of the min_rates.
9879 * Returns:
9880 *   sum of vn_min_rates.
9881 *     or
9882 *   0 - if all the min_rates are 0.
9883 * In the later case fainess algorithm should be deactivated.
9884 * If all min rates are not zero then those that are zeroes will be set to 1.
9885 */
9886static void
9887bxe_calc_vn_min(struct bxe_softc       *sc,
9888                struct cmng_init_input *input)
9889{
9890    uint32_t vn_cfg;
9891    uint32_t vn_min_rate;
9892    int all_zero = 1;
9893    int vn;
9894
9895    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9896        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9897        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9898                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9899
9900        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9901            /* skip hidden VNs */
9902            vn_min_rate = 0;
9903        } else if (!vn_min_rate) {
9904            /* If min rate is zero - set it to 100 */
9905            vn_min_rate = DEF_MIN_RATE;
9906        } else {
9907            all_zero = 0;
9908        }
9909
9910        input->vnic_min_rate[vn] = vn_min_rate;
9911    }
9912
9913    /* if ETS or all min rates are zeros - disable fairness */
9914    if (BXE_IS_ETS_ENABLED(sc)) {
9915        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9916        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
9917    } else if (all_zero) {
9918        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9919        BLOGD(sc, DBG_LOAD,
9920              "Fariness disabled (all MIN values are zeroes)\n");
9921    } else {
9922        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9923    }
9924}
9925
9926static inline uint16_t
9927bxe_extract_max_cfg(struct bxe_softc *sc,
9928                    uint32_t         mf_cfg)
9929{
9930    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
9931                        FUNC_MF_CFG_MAX_BW_SHIFT);
9932
9933    if (!max_cfg) {
9934        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
9935        max_cfg = 100;
9936    }
9937
9938    return (max_cfg);
9939}
9940
9941static void
9942bxe_calc_vn_max(struct bxe_softc       *sc,
9943                int                    vn,
9944                struct cmng_init_input *input)
9945{
9946    uint16_t vn_max_rate;
9947    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9948    uint32_t max_cfg;
9949
9950    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9951        vn_max_rate = 0;
9952    } else {
9953        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
9954
9955        if (IS_MF_SI(sc)) {
9956            /* max_cfg in percents of linkspeed */
9957            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
9958        } else { /* SD modes */
9959            /* max_cfg is absolute in 100Mb units */
9960            vn_max_rate = (max_cfg * 100);
9961        }
9962    }
9963
9964    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
9965
9966    input->vnic_max_rate[vn] = vn_max_rate;
9967}
9968
9969static void
9970bxe_cmng_fns_init(struct bxe_softc *sc,
9971                  uint8_t          read_cfg,
9972                  uint8_t          cmng_type)
9973{
9974    struct cmng_init_input input;
9975    int vn;
9976
9977    memset(&input, 0, sizeof(struct cmng_init_input));
9978
9979    input.port_rate = sc->link_vars.line_speed;
9980
9981    if (cmng_type == CMNG_FNS_MINMAX) {
9982        /* read mf conf from shmem */
9983        if (read_cfg) {
9984            bxe_read_mf_cfg(sc);
9985        }
9986
9987        /* get VN min rate and enable fairness if not 0 */
9988        bxe_calc_vn_min(sc, &input);
9989
9990        /* get VN max rate */
9991        if (sc->port.pmf) {
9992            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9993                bxe_calc_vn_max(sc, vn, &input);
9994            }
9995        }
9996
9997        /* always enable rate shaping and fairness */
9998        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
9999
10000        ecore_init_cmng(&input, &sc->cmng);
10001        return;
10002    }
10003
10004    /* rate shaping and fairness are disabled */
10005    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10006}
10007
10008static int
10009bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10010{
10011    if (CHIP_REV_IS_SLOW(sc)) {
10012        return (CMNG_FNS_NONE);
10013    }
10014
10015    if (IS_MF(sc)) {
10016        return (CMNG_FNS_MINMAX);
10017    }
10018
10019    return (CMNG_FNS_NONE);
10020}
10021
10022static void
10023storm_memset_cmng(struct bxe_softc *sc,
10024                  struct cmng_init *cmng,
10025                  uint8_t          port)
10026{
10027    int vn;
10028    int func;
10029    uint32_t addr;
10030    size_t size;
10031
10032    addr = (BAR_XSTRORM_INTMEM +
10033            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10034    size = sizeof(struct cmng_struct_per_port);
10035    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10036
10037    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10038        func = func_by_vn(sc, vn);
10039
10040        addr = (BAR_XSTRORM_INTMEM +
10041                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10042        size = sizeof(struct rate_shaping_vars_per_vn);
10043        ecore_storm_memset_struct(sc, addr, size,
10044                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10045
10046        addr = (BAR_XSTRORM_INTMEM +
10047                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10048        size = sizeof(struct fairness_vars_per_vn);
10049        ecore_storm_memset_struct(sc, addr, size,
10050                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10051    }
10052}
10053
10054static void
10055bxe_pf_init(struct bxe_softc *sc)
10056{
10057    struct bxe_func_init_params func_init = { 0 };
10058    struct event_ring_data eq_data = { { 0 } };
10059    uint16_t flags;
10060
10061    if (!CHIP_IS_E1x(sc)) {
10062        /* reset IGU PF statistics: MSIX + ATTN */
10063        /* PF */
10064        REG_WR(sc,
10065               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10066                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10067                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10068               0);
10069        /* ATTN */
10070        REG_WR(sc,
10071               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10072                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10073                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10074                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10075               0);
10076    }
10077
10078    /* function setup flags */
10079    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10080
10081    /*
10082     * This flag is relevant for E1x only.
10083     * E2 doesn't have a TPA configuration in a function level.
10084     */
10085    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10086
10087    func_init.func_flgs = flags;
10088    func_init.pf_id     = SC_FUNC(sc);
10089    func_init.func_id   = SC_FUNC(sc);
10090    func_init.spq_map   = sc->spq_dma.paddr;
10091    func_init.spq_prod  = sc->spq_prod_idx;
10092
10093    bxe_func_init(sc, &func_init);
10094
10095    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10096
10097    /*
10098     * Congestion management values depend on the link rate.
10099     * There is no active link so initial link rate is set to 10Gbps.
10100     * When the link comes up the congestion management values are
10101     * re-calculated according to the actual link rate.
10102     */
10103    sc->link_vars.line_speed = SPEED_10000;
10104    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10105
10106    /* Only the PMF sets the HW */
10107    if (sc->port.pmf) {
10108        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10109    }
10110
10111    /* init Event Queue - PCI bus guarantees correct endainity */
10112    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10113    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10114    eq_data.producer     = sc->eq_prod;
10115    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10116    eq_data.sb_id        = DEF_SB_ID;
10117    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10118}
10119
10120static void
10121bxe_hc_int_enable(struct bxe_softc *sc)
10122{
10123    int port = SC_PORT(sc);
10124    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10125    uint32_t val = REG_RD(sc, addr);
10126    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10127    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10128                           (sc->intr_count == 1)) ? TRUE : FALSE;
10129    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10130
10131    if (msix) {
10132        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10133                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10134        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10135                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10136        if (single_msix) {
10137            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10138        }
10139    } else if (msi) {
10140        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10141        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10142                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10143                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10144    } else {
10145        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10146                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10147                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10148                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10149
10150        if (!CHIP_IS_E1(sc)) {
10151            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10152                  val, port, addr);
10153
10154            REG_WR(sc, addr, val);
10155
10156            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10157        }
10158    }
10159
10160    if (CHIP_IS_E1(sc)) {
10161        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10162    }
10163
10164    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10165          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10166
10167    REG_WR(sc, addr, val);
10168
10169    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10170    mb();
10171
10172    if (!CHIP_IS_E1(sc)) {
10173        /* init leading/trailing edge */
10174        if (IS_MF(sc)) {
10175            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10176            if (sc->port.pmf) {
10177                /* enable nig and gpio3 attention */
10178                val |= 0x1100;
10179            }
10180        } else {
10181            val = 0xffff;
10182        }
10183
10184        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10185        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10186    }
10187
10188    /* make sure that interrupts are indeed enabled from here on */
10189    mb();
10190}
10191
10192static void
10193bxe_igu_int_enable(struct bxe_softc *sc)
10194{
10195    uint32_t val;
10196    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10197    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10198                           (sc->intr_count == 1)) ? TRUE : FALSE;
10199    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10200
10201    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10202
10203    if (msix) {
10204        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10205                 IGU_PF_CONF_SINGLE_ISR_EN);
10206        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10207                IGU_PF_CONF_ATTN_BIT_EN);
10208        if (single_msix) {
10209            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10210        }
10211    } else if (msi) {
10212        val &= ~IGU_PF_CONF_INT_LINE_EN;
10213        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10214                IGU_PF_CONF_ATTN_BIT_EN |
10215                IGU_PF_CONF_SINGLE_ISR_EN);
10216    } else {
10217        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10218        val |= (IGU_PF_CONF_INT_LINE_EN |
10219                IGU_PF_CONF_ATTN_BIT_EN |
10220                IGU_PF_CONF_SINGLE_ISR_EN);
10221    }
10222
10223    /* clean previous status - need to configure igu prior to ack*/
10224    if ((!msix) || single_msix) {
10225        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10226        bxe_ack_int(sc);
10227    }
10228
10229    val |= IGU_PF_CONF_FUNC_EN;
10230
10231    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10232          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10233
10234    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10235
10236    mb();
10237
10238    /* init leading/trailing edge */
10239    if (IS_MF(sc)) {
10240        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10241        if (sc->port.pmf) {
10242            /* enable nig and gpio3 attention */
10243            val |= 0x1100;
10244        }
10245    } else {
10246        val = 0xffff;
10247    }
10248
10249    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10250    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10251
10252    /* make sure that interrupts are indeed enabled from here on */
10253    mb();
10254}
10255
10256static void
10257bxe_int_enable(struct bxe_softc *sc)
10258{
10259    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10260        bxe_hc_int_enable(sc);
10261    } else {
10262        bxe_igu_int_enable(sc);
10263    }
10264}
10265
10266static void
10267bxe_hc_int_disable(struct bxe_softc *sc)
10268{
10269    int port = SC_PORT(sc);
10270    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10271    uint32_t val = REG_RD(sc, addr);
10272
10273    /*
10274     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10275     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10276     * block
10277     */
10278    if (CHIP_IS_E1(sc)) {
10279        /*
10280         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10281         * to prevent from HC sending interrupts after we exit the function
10282         */
10283        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10284
10285        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10286                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10287                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10288    } else {
10289        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10290                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10291                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10292                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10293    }
10294
10295    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10296
10297    /* flush all outstanding writes */
10298    mb();
10299
10300    REG_WR(sc, addr, val);
10301    if (REG_RD(sc, addr) != val) {
10302        BLOGE(sc, "proper val not read from HC IGU!\n");
10303    }
10304}
10305
10306static void
10307bxe_igu_int_disable(struct bxe_softc *sc)
10308{
10309    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10310
10311    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10312             IGU_PF_CONF_INT_LINE_EN |
10313             IGU_PF_CONF_ATTN_BIT_EN);
10314
10315    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10316
10317    /* flush all outstanding writes */
10318    mb();
10319
10320    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10321    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10322        BLOGE(sc, "proper val not read from IGU!\n");
10323    }
10324}
10325
10326static void
10327bxe_int_disable(struct bxe_softc *sc)
10328{
10329    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10330        bxe_hc_int_disable(sc);
10331    } else {
10332        bxe_igu_int_disable(sc);
10333    }
10334}
10335
10336static void
10337bxe_nic_init(struct bxe_softc *sc,
10338             int              load_code)
10339{
10340    int i;
10341
10342    for (i = 0; i < sc->num_queues; i++) {
10343        bxe_init_eth_fp(sc, i);
10344    }
10345
10346    rmb(); /* ensure status block indices were read */
10347
10348    bxe_init_rx_rings(sc);
10349    bxe_init_tx_rings(sc);
10350
10351    if (IS_VF(sc)) {
10352        return;
10353    }
10354
10355    /* initialize MOD_ABS interrupts */
10356    elink_init_mod_abs_int(sc, &sc->link_vars,
10357                           sc->devinfo.chip_id,
10358                           sc->devinfo.shmem_base,
10359                           sc->devinfo.shmem2_base,
10360                           SC_PORT(sc));
10361
10362    bxe_init_def_sb(sc);
10363    bxe_update_dsb_idx(sc);
10364    bxe_init_sp_ring(sc);
10365    bxe_init_eq_ring(sc);
10366    bxe_init_internal(sc, load_code);
10367    bxe_pf_init(sc);
10368    bxe_stats_init(sc);
10369
10370    /* flush all before enabling interrupts */
10371    mb();
10372
10373    bxe_int_enable(sc);
10374
10375    /* check for SPIO5 */
10376    bxe_attn_int_deasserted0(sc,
10377                             REG_RD(sc,
10378                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10379                                     SC_PORT(sc)*4)) &
10380                             AEU_INPUTS_ATTN_BITS_SPIO5);
10381}
10382
10383static inline void
10384bxe_init_objs(struct bxe_softc *sc)
10385{
10386    /* mcast rules must be added to tx if tx switching is enabled */
10387    ecore_obj_type o_type =
10388        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10389                                         ECORE_OBJ_TYPE_RX;
10390
10391    /* RX_MODE controlling object */
10392    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10393
10394    /* multicast configuration controlling object */
10395    ecore_init_mcast_obj(sc,
10396                         &sc->mcast_obj,
10397                         sc->fp[0].cl_id,
10398                         sc->fp[0].index,
10399                         SC_FUNC(sc),
10400                         SC_FUNC(sc),
10401                         BXE_SP(sc, mcast_rdata),
10402                         BXE_SP_MAPPING(sc, mcast_rdata),
10403                         ECORE_FILTER_MCAST_PENDING,
10404                         &sc->sp_state,
10405                         o_type);
10406
10407    /* Setup CAM credit pools */
10408    ecore_init_mac_credit_pool(sc,
10409                               &sc->macs_pool,
10410                               SC_FUNC(sc),
10411                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10412                                                 VNICS_PER_PATH(sc));
10413
10414    ecore_init_vlan_credit_pool(sc,
10415                                &sc->vlans_pool,
10416                                SC_ABS_FUNC(sc) >> 1,
10417                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10418                                                  VNICS_PER_PATH(sc));
10419
10420    /* RSS configuration object */
10421    ecore_init_rss_config_obj(sc,
10422                              &sc->rss_conf_obj,
10423                              sc->fp[0].cl_id,
10424                              sc->fp[0].index,
10425                              SC_FUNC(sc),
10426                              SC_FUNC(sc),
10427                              BXE_SP(sc, rss_rdata),
10428                              BXE_SP_MAPPING(sc, rss_rdata),
10429                              ECORE_FILTER_RSS_CONF_PENDING,
10430                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10431}
10432
10433/*
10434 * Initialize the function. This must be called before sending CLIENT_SETUP
10435 * for the first client.
10436 */
10437static inline int
10438bxe_func_start(struct bxe_softc *sc)
10439{
10440    struct ecore_func_state_params func_params = { NULL };
10441    struct ecore_func_start_params *start_params = &func_params.params.start;
10442
10443    /* Prepare parameters for function state transitions */
10444    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10445
10446    func_params.f_obj = &sc->func_obj;
10447    func_params.cmd = ECORE_F_CMD_START;
10448
10449    /* Function parameters */
10450    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10451    start_params->sd_vlan_tag = OVLAN(sc);
10452
10453    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10454        start_params->network_cos_mode = STATIC_COS;
10455    } else { /* CHIP_IS_E1X */
10456        start_params->network_cos_mode = FW_WRR;
10457    }
10458
10459    //start_params->gre_tunnel_mode = 0;
10460    //start_params->gre_tunnel_rss  = 0;
10461
10462    return (ecore_func_state_change(sc, &func_params));
10463}
10464
10465static int
10466bxe_set_power_state(struct bxe_softc *sc,
10467                    uint8_t          state)
10468{
10469    uint16_t pmcsr;
10470
10471    /* If there is no power capability, silently succeed */
10472    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10473        BLOGW(sc, "No power capability\n");
10474        return (0);
10475    }
10476
10477    pmcsr = pci_read_config(sc->dev,
10478                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10479                            2);
10480
10481    switch (state) {
10482    case PCI_PM_D0:
10483        pci_write_config(sc->dev,
10484                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10485                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10486
10487        if (pmcsr & PCIM_PSTAT_DMASK) {
10488            /* delay required during transition out of D3hot */
10489            DELAY(20000);
10490        }
10491
10492        break;
10493
10494    case PCI_PM_D3hot:
10495        /* XXX if there are other clients above don't shut down the power */
10496
10497        /* don't shut down the power for emulation and FPGA */
10498        if (CHIP_REV_IS_SLOW(sc)) {
10499            return (0);
10500        }
10501
10502        pmcsr &= ~PCIM_PSTAT_DMASK;
10503        pmcsr |= PCIM_PSTAT_D3;
10504
10505        if (sc->wol) {
10506            pmcsr |= PCIM_PSTAT_PMEENABLE;
10507        }
10508
10509        pci_write_config(sc->dev,
10510                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10511                         pmcsr, 4);
10512
10513        /*
10514         * No more memory access after this point until device is brought back
10515         * to D0 state.
10516         */
10517        break;
10518
10519    default:
10520        BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10521            state, pmcsr);
10522        return (-1);
10523    }
10524
10525    return (0);
10526}
10527
10528
10529/* return true if succeeded to acquire the lock */
10530static uint8_t
10531bxe_trylock_hw_lock(struct bxe_softc *sc,
10532                    uint32_t         resource)
10533{
10534    uint32_t lock_status;
10535    uint32_t resource_bit = (1 << resource);
10536    int func = SC_FUNC(sc);
10537    uint32_t hw_lock_control_reg;
10538
10539    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10540
10541    /* Validating that the resource is within range */
10542    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10543        BLOGD(sc, DBG_LOAD,
10544              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10545              resource, HW_LOCK_MAX_RESOURCE_VALUE);
10546        return (FALSE);
10547    }
10548
10549    if (func <= 5) {
10550        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10551    } else {
10552        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10553    }
10554
10555    /* try to acquire the lock */
10556    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10557    lock_status = REG_RD(sc, hw_lock_control_reg);
10558    if (lock_status & resource_bit) {
10559        return (TRUE);
10560    }
10561
10562    BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10563        "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10564        lock_status, resource_bit);
10565
10566    return (FALSE);
10567}
10568
10569/*
10570 * Get the recovery leader resource id according to the engine this function
10571 * belongs to. Currently only only 2 engines is supported.
10572 */
10573static int
10574bxe_get_leader_lock_resource(struct bxe_softc *sc)
10575{
10576    if (SC_PATH(sc)) {
10577        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10578    } else {
10579        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10580    }
10581}
10582
10583/* try to acquire a leader lock for current engine */
10584static uint8_t
10585bxe_trylock_leader_lock(struct bxe_softc *sc)
10586{
10587    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10588}
10589
10590static int
10591bxe_release_leader_lock(struct bxe_softc *sc)
10592{
10593    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10594}
10595
10596/* close gates #2, #3 and #4 */
10597static void
10598bxe_set_234_gates(struct bxe_softc *sc,
10599                  uint8_t          close)
10600{
10601    uint32_t val;
10602
10603    /* gates #2 and #4a are closed/opened for "not E1" only */
10604    if (!CHIP_IS_E1(sc)) {
10605        /* #4 */
10606        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10607        /* #2 */
10608        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10609    }
10610
10611    /* #3 */
10612    if (CHIP_IS_E1x(sc)) {
10613        /* prevent interrupts from HC on both ports */
10614        val = REG_RD(sc, HC_REG_CONFIG_1);
10615        REG_WR(sc, HC_REG_CONFIG_1,
10616               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10617               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10618
10619        val = REG_RD(sc, HC_REG_CONFIG_0);
10620        REG_WR(sc, HC_REG_CONFIG_0,
10621               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10622               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10623    } else {
10624        /* Prevent incoming interrupts in IGU */
10625        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10626
10627        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10628               (!close) ?
10629               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10630               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10631    }
10632
10633    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10634          close ? "closing" : "opening");
10635
10636    wmb();
10637}
10638
10639/* poll for pending writes bit, it should get cleared in no more than 1s */
10640static int
10641bxe_er_poll_igu_vq(struct bxe_softc *sc)
10642{
10643    uint32_t cnt = 1000;
10644    uint32_t pend_bits = 0;
10645
10646    do {
10647        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10648
10649        if (pend_bits == 0) {
10650            break;
10651        }
10652
10653        DELAY(1000);
10654    } while (--cnt > 0);
10655
10656    if (cnt == 0) {
10657        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10658        return (-1);
10659    }
10660
10661    return (0);
10662}
10663
10664#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10665
10666static void
10667bxe_clp_reset_prep(struct bxe_softc *sc,
10668                   uint32_t         *magic_val)
10669{
10670    /* Do some magic... */
10671    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10672    *magic_val = val & SHARED_MF_CLP_MAGIC;
10673    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10674}
10675
10676/* restore the value of the 'magic' bit */
10677static void
10678bxe_clp_reset_done(struct bxe_softc *sc,
10679                   uint32_t         magic_val)
10680{
10681    /* Restore the 'magic' bit value... */
10682    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10683    MFCFG_WR(sc, shared_mf_config.clp_mb,
10684              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10685}
10686
10687/* prepare for MCP reset, takes care of CLP configurations */
10688static void
10689bxe_reset_mcp_prep(struct bxe_softc *sc,
10690                   uint32_t         *magic_val)
10691{
10692    uint32_t shmem;
10693    uint32_t validity_offset;
10694
10695    /* set `magic' bit in order to save MF config */
10696    if (!CHIP_IS_E1(sc)) {
10697        bxe_clp_reset_prep(sc, magic_val);
10698    }
10699
10700    /* get shmem offset */
10701    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10702    validity_offset =
10703        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10704
10705    /* Clear validity map flags */
10706    if (shmem > 0) {
10707        REG_WR(sc, shmem + validity_offset, 0);
10708    }
10709}
10710
10711#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10712#define MCP_ONE_TIMEOUT  100    /* 100 ms */
10713
10714static void
10715bxe_mcp_wait_one(struct bxe_softc *sc)
10716{
10717    /* special handling for emulation and FPGA (10 times longer) */
10718    if (CHIP_REV_IS_SLOW(sc)) {
10719        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10720    } else {
10721        DELAY((MCP_ONE_TIMEOUT) * 1000);
10722    }
10723}
10724
10725/* initialize shmem_base and waits for validity signature to appear */
10726static int
10727bxe_init_shmem(struct bxe_softc *sc)
10728{
10729    int cnt = 0;
10730    uint32_t val = 0;
10731
10732    do {
10733        sc->devinfo.shmem_base     =
10734        sc->link_params.shmem_base =
10735            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10736
10737        if (sc->devinfo.shmem_base) {
10738            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10739            if (val & SHR_MEM_VALIDITY_MB)
10740                return (0);
10741        }
10742
10743        bxe_mcp_wait_one(sc);
10744
10745    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10746
10747    BLOGE(sc, "BAD MCP validity signature\n");
10748
10749    return (-1);
10750}
10751
10752static int
10753bxe_reset_mcp_comp(struct bxe_softc *sc,
10754                   uint32_t         magic_val)
10755{
10756    int rc = bxe_init_shmem(sc);
10757
10758    /* Restore the `magic' bit value */
10759    if (!CHIP_IS_E1(sc)) {
10760        bxe_clp_reset_done(sc, magic_val);
10761    }
10762
10763    return (rc);
10764}
10765
10766static void
10767bxe_pxp_prep(struct bxe_softc *sc)
10768{
10769    if (!CHIP_IS_E1(sc)) {
10770        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10771        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10772        wmb();
10773    }
10774}
10775
10776/*
10777 * Reset the whole chip except for:
10778 *      - PCIE core
10779 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10780 *      - IGU
10781 *      - MISC (including AEU)
10782 *      - GRC
10783 *      - RBCN, RBCP
10784 */
10785static void
10786bxe_process_kill_chip_reset(struct bxe_softc *sc,
10787                            uint8_t          global)
10788{
10789    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10790    uint32_t global_bits2, stay_reset2;
10791
10792    /*
10793     * Bits that have to be set in reset_mask2 if we want to reset 'global'
10794     * (per chip) blocks.
10795     */
10796    global_bits2 =
10797        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10798        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10799
10800    /*
10801     * Don't reset the following blocks.
10802     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10803     *            reset, as in 4 port device they might still be owned
10804     *            by the MCP (there is only one leader per path).
10805     */
10806    not_reset_mask1 =
10807        MISC_REGISTERS_RESET_REG_1_RST_HC |
10808        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10809        MISC_REGISTERS_RESET_REG_1_RST_PXP;
10810
10811    not_reset_mask2 =
10812        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10813        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10814        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10815        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10816        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10817        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10818        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10819        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10820        MISC_REGISTERS_RESET_REG_2_RST_ATC |
10821        MISC_REGISTERS_RESET_REG_2_PGLC |
10822        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10823        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10824        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10825        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10826        MISC_REGISTERS_RESET_REG_2_UMAC0 |
10827        MISC_REGISTERS_RESET_REG_2_UMAC1;
10828
10829    /*
10830     * Keep the following blocks in reset:
10831     *  - all xxMACs are handled by the elink code.
10832     */
10833    stay_reset2 =
10834        MISC_REGISTERS_RESET_REG_2_XMAC |
10835        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10836
10837    /* Full reset masks according to the chip */
10838    reset_mask1 = 0xffffffff;
10839
10840    if (CHIP_IS_E1(sc))
10841        reset_mask2 = 0xffff;
10842    else if (CHIP_IS_E1H(sc))
10843        reset_mask2 = 0x1ffff;
10844    else if (CHIP_IS_E2(sc))
10845        reset_mask2 = 0xfffff;
10846    else /* CHIP_IS_E3 */
10847        reset_mask2 = 0x3ffffff;
10848
10849    /* Don't reset global blocks unless we need to */
10850    if (!global)
10851        reset_mask2 &= ~global_bits2;
10852
10853    /*
10854     * In case of attention in the QM, we need to reset PXP
10855     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10856     * because otherwise QM reset would release 'close the gates' shortly
10857     * before resetting the PXP, then the PSWRQ would send a write
10858     * request to PGLUE. Then when PXP is reset, PGLUE would try to
10859     * read the payload data from PSWWR, but PSWWR would not
10860     * respond. The write queue in PGLUE would stuck, dmae commands
10861     * would not return. Therefore it's important to reset the second
10862     * reset register (containing the
10863     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10864     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10865     * bit).
10866     */
10867    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10868           reset_mask2 & (~not_reset_mask2));
10869
10870    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10871           reset_mask1 & (~not_reset_mask1));
10872
10873    mb();
10874    wmb();
10875
10876    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10877           reset_mask2 & (~stay_reset2));
10878
10879    mb();
10880    wmb();
10881
10882    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10883    wmb();
10884}
10885
10886static int
10887bxe_process_kill(struct bxe_softc *sc,
10888                 uint8_t          global)
10889{
10890    int cnt = 1000;
10891    uint32_t val = 0;
10892    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10893    uint32_t tags_63_32 = 0;
10894
10895    /* Empty the Tetris buffer, wait for 1s */
10896    do {
10897        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10898        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10899        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10900        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10901        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10902        if (CHIP_IS_E3(sc)) {
10903            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10904        }
10905
10906        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10907            ((port_is_idle_0 & 0x1) == 0x1) &&
10908            ((port_is_idle_1 & 0x1) == 0x1) &&
10909            (pgl_exp_rom2 == 0xffffffff) &&
10910            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10911            break;
10912        DELAY(1000);
10913    } while (cnt-- > 0);
10914
10915    if (cnt <= 0) {
10916        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
10917                  "are still outstanding read requests after 1s! "
10918                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
10919                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
10920              sr_cnt, blk_cnt, port_is_idle_0,
10921              port_is_idle_1, pgl_exp_rom2);
10922        return (-1);
10923    }
10924
10925    mb();
10926
10927    /* Close gates #2, #3 and #4 */
10928    bxe_set_234_gates(sc, TRUE);
10929
10930    /* Poll for IGU VQs for 57712 and newer chips */
10931    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
10932        return (-1);
10933    }
10934
10935    /* XXX indicate that "process kill" is in progress to MCP */
10936
10937    /* clear "unprepared" bit */
10938    REG_WR(sc, MISC_REG_UNPREPARED, 0);
10939    mb();
10940
10941    /* Make sure all is written to the chip before the reset */
10942    wmb();
10943
10944    /*
10945     * Wait for 1ms to empty GLUE and PCI-E core queues,
10946     * PSWHST, GRC and PSWRD Tetris buffer.
10947     */
10948    DELAY(1000);
10949
10950    /* Prepare to chip reset: */
10951    /* MCP */
10952    if (global) {
10953        bxe_reset_mcp_prep(sc, &val);
10954    }
10955
10956    /* PXP */
10957    bxe_pxp_prep(sc);
10958    mb();
10959
10960    /* reset the chip */
10961    bxe_process_kill_chip_reset(sc, global);
10962    mb();
10963
10964    /* clear errors in PGB */
10965    if (!CHIP_IS_E1(sc))
10966        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
10967
10968    /* Recover after reset: */
10969    /* MCP */
10970    if (global && bxe_reset_mcp_comp(sc, val)) {
10971        return (-1);
10972    }
10973
10974    /* XXX add resetting the NO_MCP mode DB here */
10975
10976    /* Open the gates #2, #3 and #4 */
10977    bxe_set_234_gates(sc, FALSE);
10978
10979    /* XXX
10980     * IGU/AEU preparation bring back the AEU/IGU to a reset state
10981     * re-enable attentions
10982     */
10983
10984    return (0);
10985}
10986
10987static int
10988bxe_leader_reset(struct bxe_softc *sc)
10989{
10990    int rc = 0;
10991    uint8_t global = bxe_reset_is_global(sc);
10992    uint32_t load_code;
10993
10994    /*
10995     * If not going to reset MCP, load "fake" driver to reset HW while
10996     * driver is owner of the HW.
10997     */
10998    if (!global && !BXE_NOMCP(sc)) {
10999        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11000                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11001        if (!load_code) {
11002            BLOGE(sc, "MCP response failure, aborting\n");
11003            rc = -1;
11004            goto exit_leader_reset;
11005        }
11006
11007        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11008            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11009            BLOGE(sc, "MCP unexpected response, aborting\n");
11010            rc = -1;
11011            goto exit_leader_reset2;
11012        }
11013
11014        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11015        if (!load_code) {
11016            BLOGE(sc, "MCP response failure, aborting\n");
11017            rc = -1;
11018            goto exit_leader_reset2;
11019        }
11020    }
11021
11022    /* try to recover after the failure */
11023    if (bxe_process_kill(sc, global)) {
11024        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11025        rc = -1;
11026        goto exit_leader_reset2;
11027    }
11028
11029    /*
11030     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11031     * state.
11032     */
11033    bxe_set_reset_done(sc);
11034    if (global) {
11035        bxe_clear_reset_global(sc);
11036    }
11037
11038exit_leader_reset2:
11039
11040    /* unload "fake driver" if it was loaded */
11041    if (!global && !BXE_NOMCP(sc)) {
11042        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11043        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11044    }
11045
11046exit_leader_reset:
11047
11048    sc->is_leader = 0;
11049    bxe_release_leader_lock(sc);
11050
11051    mb();
11052    return (rc);
11053}
11054
11055/*
11056 * prepare INIT transition, parameters configured:
11057 *   - HC configuration
11058 *   - Queue's CDU context
11059 */
11060static void
11061bxe_pf_q_prep_init(struct bxe_softc               *sc,
11062                   struct bxe_fastpath            *fp,
11063                   struct ecore_queue_init_params *init_params)
11064{
11065    uint8_t cos;
11066    int cxt_index, cxt_offset;
11067
11068    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11069    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11070
11071    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11072    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11073
11074    /* HC rate */
11075    init_params->rx.hc_rate =
11076        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11077    init_params->tx.hc_rate =
11078        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11079
11080    /* FW SB ID */
11081    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11082
11083    /* CQ index among the SB indices */
11084    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11085    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11086
11087    /* set maximum number of COSs supported by this queue */
11088    init_params->max_cos = sc->max_cos;
11089
11090    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11091          fp->index, init_params->max_cos);
11092
11093    /* set the context pointers queue object */
11094    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11095        /* XXX change index/cid here if ever support multiple tx CoS */
11096        /* fp->txdata[cos]->cid */
11097        cxt_index = fp->index / ILT_PAGE_CIDS;
11098        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11099        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11100    }
11101}
11102
11103/* set flags that are common for the Tx-only and not normal connections */
11104static unsigned long
11105bxe_get_common_flags(struct bxe_softc    *sc,
11106                     struct bxe_fastpath *fp,
11107                     uint8_t             zero_stats)
11108{
11109    unsigned long flags = 0;
11110
11111    /* PF driver will always initialize the Queue to an ACTIVE state */
11112    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11113
11114    /*
11115     * tx only connections collect statistics (on the same index as the
11116     * parent connection). The statistics are zeroed when the parent
11117     * connection is initialized.
11118     */
11119
11120    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11121    if (zero_stats) {
11122        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11123    }
11124
11125    /*
11126     * tx only connections can support tx-switching, though their
11127     * CoS-ness doesn't survive the loopback
11128     */
11129    if (sc->flags & BXE_TX_SWITCHING) {
11130        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11131    }
11132
11133    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11134
11135    return (flags);
11136}
11137
11138static unsigned long
11139bxe_get_q_flags(struct bxe_softc    *sc,
11140                struct bxe_fastpath *fp,
11141                uint8_t             leading)
11142{
11143    unsigned long flags = 0;
11144
11145    if (IS_MF_SD(sc)) {
11146        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11147    }
11148
11149    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11150        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11151        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11152    }
11153
11154    if (leading) {
11155        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11156        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11157    }
11158
11159    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11160
11161    /* merge with common flags */
11162    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11163}
11164
11165static void
11166bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11167                      struct bxe_fastpath               *fp,
11168                      struct ecore_general_setup_params *gen_init,
11169                      uint8_t                           cos)
11170{
11171    gen_init->stat_id = bxe_stats_id(fp);
11172    gen_init->spcl_id = fp->cl_id;
11173    gen_init->mtu = sc->mtu;
11174    gen_init->cos = cos;
11175}
11176
11177static void
11178bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11179                 struct bxe_fastpath           *fp,
11180                 struct rxq_pause_params       *pause,
11181                 struct ecore_rxq_setup_params *rxq_init)
11182{
11183    uint8_t max_sge = 0;
11184    uint16_t sge_sz = 0;
11185    uint16_t tpa_agg_size = 0;
11186
11187    pause->sge_th_lo = SGE_TH_LO(sc);
11188    pause->sge_th_hi = SGE_TH_HI(sc);
11189
11190    /* validate SGE ring has enough to cross high threshold */
11191    if (sc->dropless_fc &&
11192            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11193            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11194        BLOGW(sc, "sge ring threshold limit\n");
11195    }
11196
11197    /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11198    tpa_agg_size = (2 * sc->mtu);
11199    if (tpa_agg_size < sc->max_aggregation_size) {
11200        tpa_agg_size = sc->max_aggregation_size;
11201    }
11202
11203    max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11204    max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11205                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11206    sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11207
11208    /* pause - not for e1 */
11209    if (!CHIP_IS_E1(sc)) {
11210        pause->bd_th_lo = BD_TH_LO(sc);
11211        pause->bd_th_hi = BD_TH_HI(sc);
11212
11213        pause->rcq_th_lo = RCQ_TH_LO(sc);
11214        pause->rcq_th_hi = RCQ_TH_HI(sc);
11215
11216        /* validate rings have enough entries to cross high thresholds */
11217        if (sc->dropless_fc &&
11218            pause->bd_th_hi + FW_PREFETCH_CNT >
11219            sc->rx_ring_size) {
11220            BLOGW(sc, "rx bd ring threshold limit\n");
11221        }
11222
11223        if (sc->dropless_fc &&
11224            pause->rcq_th_hi + FW_PREFETCH_CNT >
11225            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11226            BLOGW(sc, "rcq ring threshold limit\n");
11227        }
11228
11229        pause->pri_map = 1;
11230    }
11231
11232    /* rxq setup */
11233    rxq_init->dscr_map   = fp->rx_dma.paddr;
11234    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11235    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11236    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11237
11238    /*
11239     * This should be a maximum number of data bytes that may be
11240     * placed on the BD (not including paddings).
11241     */
11242    rxq_init->buf_sz = (fp->rx_buf_size -
11243                        IP_HEADER_ALIGNMENT_PADDING);
11244
11245    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11246    rxq_init->tpa_agg_sz      = tpa_agg_size;
11247    rxq_init->sge_buf_sz      = sge_sz;
11248    rxq_init->max_sges_pkt    = max_sge;
11249    rxq_init->rss_engine_id   = SC_FUNC(sc);
11250    rxq_init->mcast_engine_id = SC_FUNC(sc);
11251
11252    /*
11253     * Maximum number or simultaneous TPA aggregation for this Queue.
11254     * For PF Clients it should be the maximum available number.
11255     * VF driver(s) may want to define it to a smaller value.
11256     */
11257    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11258
11259    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11260    rxq_init->fw_sb_id = fp->fw_sb_id;
11261
11262    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11263
11264    /*
11265     * configure silent vlan removal
11266     * if multi function mode is afex, then mask default vlan
11267     */
11268    if (IS_MF_AFEX(sc)) {
11269        rxq_init->silent_removal_value =
11270            sc->devinfo.mf_info.afex_def_vlan_tag;
11271        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11272    }
11273}
11274
11275static void
11276bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11277                 struct bxe_fastpath           *fp,
11278                 struct ecore_txq_setup_params *txq_init,
11279                 uint8_t                       cos)
11280{
11281    /*
11282     * XXX If multiple CoS is ever supported then each fastpath structure
11283     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11284     * fp->txdata[cos]->tx_dma.paddr;
11285     */
11286    txq_init->dscr_map     = fp->tx_dma.paddr;
11287    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11288    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11289    txq_init->fw_sb_id     = fp->fw_sb_id;
11290
11291    /*
11292     * set the TSS leading client id for TX classfication to the
11293     * leading RSS client id
11294     */
11295    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11296}
11297
11298/*
11299 * This function performs 2 steps in a queue state machine:
11300 *   1) RESET->INIT
11301 *   2) INIT->SETUP
11302 */
11303static int
11304bxe_setup_queue(struct bxe_softc    *sc,
11305                struct bxe_fastpath *fp,
11306                uint8_t             leading)
11307{
11308    struct ecore_queue_state_params q_params = { NULL };
11309    struct ecore_queue_setup_params *setup_params =
11310                        &q_params.params.setup;
11311    int rc;
11312
11313    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11314
11315    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11316
11317    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11318
11319    /* we want to wait for completion in this context */
11320    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11321
11322    /* prepare the INIT parameters */
11323    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11324
11325    /* Set the command */
11326    q_params.cmd = ECORE_Q_CMD_INIT;
11327
11328    /* Change the state to INIT */
11329    rc = ecore_queue_state_change(sc, &q_params);
11330    if (rc) {
11331        BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11332        return (rc);
11333    }
11334
11335    BLOGD(sc, DBG_LOAD, "init complete\n");
11336
11337    /* now move the Queue to the SETUP state */
11338    memset(setup_params, 0, sizeof(*setup_params));
11339
11340    /* set Queue flags */
11341    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11342
11343    /* set general SETUP parameters */
11344    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11345                          FIRST_TX_COS_INDEX);
11346
11347    bxe_pf_rx_q_prep(sc, fp,
11348                     &setup_params->pause_params,
11349                     &setup_params->rxq_params);
11350
11351    bxe_pf_tx_q_prep(sc, fp,
11352                     &setup_params->txq_params,
11353                     FIRST_TX_COS_INDEX);
11354
11355    /* Set the command */
11356    q_params.cmd = ECORE_Q_CMD_SETUP;
11357
11358    /* change the state to SETUP */
11359    rc = ecore_queue_state_change(sc, &q_params);
11360    if (rc) {
11361        BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11362        return (rc);
11363    }
11364
11365    return (rc);
11366}
11367
11368static int
11369bxe_setup_leading(struct bxe_softc *sc)
11370{
11371    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11372}
11373
11374static int
11375bxe_config_rss_pf(struct bxe_softc            *sc,
11376                  struct ecore_rss_config_obj *rss_obj,
11377                  uint8_t                     config_hash)
11378{
11379    struct ecore_config_rss_params params = { NULL };
11380    int i;
11381
11382    /*
11383     * Although RSS is meaningless when there is a single HW queue we
11384     * still need it enabled in order to have HW Rx hash generated.
11385     */
11386
11387    params.rss_obj = rss_obj;
11388
11389    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11390
11391    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11392
11393    /* RSS configuration */
11394    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11395    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11396    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11397    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11398    if (rss_obj->udp_rss_v4) {
11399        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11400    }
11401    if (rss_obj->udp_rss_v6) {
11402        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11403    }
11404
11405    /* Hash bits */
11406    params.rss_result_mask = MULTI_MASK;
11407
11408    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11409
11410    if (config_hash) {
11411        /* RSS keys */
11412        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11413            params.rss_key[i] = arc4random();
11414        }
11415
11416        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11417    }
11418
11419    return (ecore_config_rss(sc, &params));
11420}
11421
11422static int
11423bxe_config_rss_eth(struct bxe_softc *sc,
11424                   uint8_t          config_hash)
11425{
11426    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11427}
11428
11429static int
11430bxe_init_rss_pf(struct bxe_softc *sc)
11431{
11432    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11433    int i;
11434
11435    /*
11436     * Prepare the initial contents of the indirection table if
11437     * RSS is enabled
11438     */
11439    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11440        sc->rss_conf_obj.ind_table[i] =
11441            (sc->fp->cl_id + (i % num_eth_queues));
11442    }
11443
11444    if (sc->udp_rss) {
11445        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11446    }
11447
11448    /*
11449     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11450     * per-port, so if explicit configuration is needed, do it only
11451     * for a PMF.
11452     *
11453     * For 57712 and newer it's a per-function configuration.
11454     */
11455    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11456}
11457
11458static int
11459bxe_set_mac_one(struct bxe_softc          *sc,
11460                uint8_t                   *mac,
11461                struct ecore_vlan_mac_obj *obj,
11462                uint8_t                   set,
11463                int                       mac_type,
11464                unsigned long             *ramrod_flags)
11465{
11466    struct ecore_vlan_mac_ramrod_params ramrod_param;
11467    int rc;
11468
11469    memset(&ramrod_param, 0, sizeof(ramrod_param));
11470
11471    /* fill in general parameters */
11472    ramrod_param.vlan_mac_obj = obj;
11473    ramrod_param.ramrod_flags = *ramrod_flags;
11474
11475    /* fill a user request section if needed */
11476    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11477        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11478
11479        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11480
11481        /* Set the command: ADD or DEL */
11482        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11483                                            ECORE_VLAN_MAC_DEL;
11484    }
11485
11486    rc = ecore_config_vlan_mac(sc, &ramrod_param);
11487
11488    if (rc == ECORE_EXISTS) {
11489        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11490        /* do not treat adding same MAC as error */
11491        rc = 0;
11492    } else if (rc < 0) {
11493        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11494    }
11495
11496    return (rc);
11497}
11498
11499static int
11500bxe_set_eth_mac(struct bxe_softc *sc,
11501                uint8_t          set)
11502{
11503    unsigned long ramrod_flags = 0;
11504
11505    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11506
11507    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11508
11509    /* Eth MAC is set on RSS leading client (fp[0]) */
11510    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11511                            &sc->sp_objs->mac_obj,
11512                            set, ECORE_ETH_MAC, &ramrod_flags));
11513}
11514
11515static int
11516bxe_get_cur_phy_idx(struct bxe_softc *sc)
11517{
11518    uint32_t sel_phy_idx = 0;
11519
11520    if (sc->link_params.num_phys <= 1) {
11521        return (ELINK_INT_PHY);
11522    }
11523
11524    if (sc->link_vars.link_up) {
11525        sel_phy_idx = ELINK_EXT_PHY1;
11526        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11527        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11528            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11529             ELINK_SUPPORTED_FIBRE))
11530            sel_phy_idx = ELINK_EXT_PHY2;
11531    } else {
11532        switch (elink_phy_selection(&sc->link_params)) {
11533        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11534        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11535        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11536               sel_phy_idx = ELINK_EXT_PHY1;
11537               break;
11538        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11539        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11540               sel_phy_idx = ELINK_EXT_PHY2;
11541               break;
11542        }
11543    }
11544
11545    return (sel_phy_idx);
11546}
11547
11548static int
11549bxe_get_link_cfg_idx(struct bxe_softc *sc)
11550{
11551    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11552
11553    /*
11554     * The selected activated PHY is always after swapping (in case PHY
11555     * swapping is enabled). So when swapping is enabled, we need to reverse
11556     * the configuration
11557     */
11558
11559    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11560        if (sel_phy_idx == ELINK_EXT_PHY1)
11561            sel_phy_idx = ELINK_EXT_PHY2;
11562        else if (sel_phy_idx == ELINK_EXT_PHY2)
11563            sel_phy_idx = ELINK_EXT_PHY1;
11564    }
11565
11566    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11567}
11568
11569static void
11570bxe_set_requested_fc(struct bxe_softc *sc)
11571{
11572    /*
11573     * Initialize link parameters structure variables
11574     * It is recommended to turn off RX FC for jumbo frames
11575     * for better performance
11576     */
11577    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11578        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11579    } else {
11580        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11581    }
11582}
11583
11584static void
11585bxe_calc_fc_adv(struct bxe_softc *sc)
11586{
11587    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11588    switch (sc->link_vars.ieee_fc &
11589            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11590    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11591    default:
11592        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11593                                           ADVERTISED_Pause);
11594        break;
11595
11596    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11597        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11598                                          ADVERTISED_Pause);
11599        break;
11600
11601    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11602        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11603        break;
11604    }
11605}
11606
11607static uint16_t
11608bxe_get_mf_speed(struct bxe_softc *sc)
11609{
11610    uint16_t line_speed = sc->link_vars.line_speed;
11611    if (IS_MF(sc)) {
11612        uint16_t maxCfg =
11613            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11614
11615        /* calculate the current MAX line speed limit for the MF devices */
11616        if (IS_MF_SI(sc)) {
11617            line_speed = (line_speed * maxCfg) / 100;
11618        } else { /* SD mode */
11619            uint16_t vn_max_rate = maxCfg * 100;
11620
11621            if (vn_max_rate < line_speed) {
11622                line_speed = vn_max_rate;
11623            }
11624        }
11625    }
11626
11627    return (line_speed);
11628}
11629
11630static void
11631bxe_fill_report_data(struct bxe_softc            *sc,
11632                     struct bxe_link_report_data *data)
11633{
11634    uint16_t line_speed = bxe_get_mf_speed(sc);
11635
11636    memset(data, 0, sizeof(*data));
11637
11638    /* fill the report data with the effective line speed */
11639    data->line_speed = line_speed;
11640
11641    /* Link is down */
11642    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11643        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11644    }
11645
11646    /* Full DUPLEX */
11647    if (sc->link_vars.duplex == DUPLEX_FULL) {
11648        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11649    }
11650
11651    /* Rx Flow Control is ON */
11652    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11653        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11654    }
11655
11656    /* Tx Flow Control is ON */
11657    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11658        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11659    }
11660}
11661
11662/* report link status to OS, should be called under phy_lock */
11663static void
11664bxe_link_report_locked(struct bxe_softc *sc)
11665{
11666    struct bxe_link_report_data cur_data;
11667
11668    /* reread mf_cfg */
11669    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11670        bxe_read_mf_cfg(sc);
11671    }
11672
11673    /* Read the current link report info */
11674    bxe_fill_report_data(sc, &cur_data);
11675
11676    /* Don't report link down or exactly the same link status twice */
11677    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11678        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11679                      &sc->last_reported_link.link_report_flags) &&
11680         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11681                      &cur_data.link_report_flags))) {
11682        return;
11683    }
11684
11685    sc->link_cnt++;
11686
11687    /* report new link params and remember the state for the next time */
11688    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11689
11690    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11691                     &cur_data.link_report_flags)) {
11692        if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11693        BLOGI(sc, "NIC Link is Down\n");
11694    } else {
11695        const char *duplex;
11696        const char *flow;
11697
11698        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11699                                   &cur_data.link_report_flags)) {
11700            duplex = "full";
11701        } else {
11702            duplex = "half";
11703        }
11704
11705        /*
11706         * Handle the FC at the end so that only these flags would be
11707         * possibly set. This way we may easily check if there is no FC
11708         * enabled.
11709         */
11710        if (cur_data.link_report_flags) {
11711            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11712                             &cur_data.link_report_flags) &&
11713                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11714                             &cur_data.link_report_flags)) {
11715                flow = "ON - receive & transmit";
11716            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11717                                    &cur_data.link_report_flags) &&
11718                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11719                                     &cur_data.link_report_flags)) {
11720                flow = "ON - receive";
11721            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11722                                     &cur_data.link_report_flags) &&
11723                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11724                                    &cur_data.link_report_flags)) {
11725                flow = "ON - transmit";
11726            } else {
11727                flow = "none"; /* possible? */
11728            }
11729        } else {
11730            flow = "none";
11731        }
11732
11733        if_link_state_change(sc->ifp, LINK_STATE_UP);
11734        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11735              cur_data.line_speed, duplex, flow);
11736    }
11737}
11738
11739static void
11740bxe_link_report(struct bxe_softc *sc)
11741{
11742    bxe_acquire_phy_lock(sc);
11743    bxe_link_report_locked(sc);
11744    bxe_release_phy_lock(sc);
11745}
11746
11747static void
11748bxe_link_status_update(struct bxe_softc *sc)
11749{
11750    if (sc->state != BXE_STATE_OPEN) {
11751        return;
11752    }
11753
11754    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11755        elink_link_status_update(&sc->link_params, &sc->link_vars);
11756    } else {
11757        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11758                                  ELINK_SUPPORTED_10baseT_Full |
11759                                  ELINK_SUPPORTED_100baseT_Half |
11760                                  ELINK_SUPPORTED_100baseT_Full |
11761                                  ELINK_SUPPORTED_1000baseT_Full |
11762                                  ELINK_SUPPORTED_2500baseX_Full |
11763                                  ELINK_SUPPORTED_10000baseT_Full |
11764                                  ELINK_SUPPORTED_TP |
11765                                  ELINK_SUPPORTED_FIBRE |
11766                                  ELINK_SUPPORTED_Autoneg |
11767                                  ELINK_SUPPORTED_Pause |
11768                                  ELINK_SUPPORTED_Asym_Pause);
11769        sc->port.advertising[0] = sc->port.supported[0];
11770
11771        sc->link_params.sc                = sc;
11772        sc->link_params.port              = SC_PORT(sc);
11773        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11774        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11775        sc->link_params.req_line_speed[0] = SPEED_10000;
11776        sc->link_params.speed_cap_mask[0] = 0x7f0000;
11777        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11778
11779        if (CHIP_REV_IS_FPGA(sc)) {
11780            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11781            sc->link_vars.line_speed  = ELINK_SPEED_1000;
11782            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11783                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11784        } else {
11785            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11786            sc->link_vars.line_speed  = ELINK_SPEED_10000;
11787            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11788                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11789        }
11790
11791        sc->link_vars.link_up = 1;
11792
11793        sc->link_vars.duplex    = DUPLEX_FULL;
11794        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11795
11796        if (IS_PF(sc)) {
11797            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11798            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11799            bxe_link_report(sc);
11800        }
11801    }
11802
11803    if (IS_PF(sc)) {
11804        if (sc->link_vars.link_up) {
11805            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11806        } else {
11807            bxe_stats_handle(sc, STATS_EVENT_STOP);
11808        }
11809        bxe_link_report(sc);
11810    } else {
11811        bxe_link_report(sc);
11812        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11813    }
11814}
11815
11816static int
11817bxe_initial_phy_init(struct bxe_softc *sc,
11818                     int              load_mode)
11819{
11820    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11821    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11822    struct elink_params *lp = &sc->link_params;
11823
11824    bxe_set_requested_fc(sc);
11825
11826    if (CHIP_REV_IS_SLOW(sc)) {
11827        uint32_t bond = CHIP_BOND_ID(sc);
11828        uint32_t feat = 0;
11829
11830        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11831            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11832        } else if (bond & 0x4) {
11833            if (CHIP_IS_E3(sc)) {
11834                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11835            } else {
11836                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11837            }
11838        } else if (bond & 0x8) {
11839            if (CHIP_IS_E3(sc)) {
11840                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11841            } else {
11842                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11843            }
11844        }
11845
11846        /* disable EMAC for E3 and above */
11847        if (bond & 0x2) {
11848            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11849        }
11850
11851        sc->link_params.feature_config_flags |= feat;
11852    }
11853
11854    bxe_acquire_phy_lock(sc);
11855
11856    if (load_mode == LOAD_DIAG) {
11857        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11858        /* Prefer doing PHY loopback at 10G speed, if possible */
11859        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11860            if (lp->speed_cap_mask[cfg_idx] &
11861                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11862                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11863            } else {
11864                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11865            }
11866        }
11867    }
11868
11869    if (load_mode == LOAD_LOOPBACK_EXT) {
11870        lp->loopback_mode = ELINK_LOOPBACK_EXT;
11871    }
11872
11873    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11874
11875    bxe_release_phy_lock(sc);
11876
11877    bxe_calc_fc_adv(sc);
11878
11879    if (sc->link_vars.link_up) {
11880        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11881        bxe_link_report(sc);
11882    }
11883
11884    if (!CHIP_REV_IS_SLOW(sc)) {
11885        bxe_periodic_start(sc);
11886    }
11887
11888    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11889    return (rc);
11890}
11891
11892/* must be called under IF_ADDR_LOCK */
11893
11894static int
11895bxe_set_mc_list(struct bxe_softc *sc)
11896{
11897    struct ecore_mcast_ramrod_params rparam = { NULL };
11898    int rc = 0;
11899    int mc_count = 0;
11900    int mcnt, i;
11901    struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11902    unsigned char *mta;
11903    if_t ifp = sc->ifp;
11904
11905    mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
11906    if (!mc_count)
11907        return (0);
11908
11909    mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
11910            mc_count, M_DEVBUF, M_NOWAIT);
11911
11912    if(mta == NULL) {
11913        BLOGE(sc, "Failed to allocate temp mcast list\n");
11914        return (-1);
11915    }
11916    bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
11917
11918    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
11919    mc_mac_start = mc_mac;
11920
11921    if (!mc_mac) {
11922        free(mta, M_DEVBUF);
11923        BLOGE(sc, "Failed to allocate temp mcast list\n");
11924        return (-1);
11925    }
11926    bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
11927
11928    /* mta and mcnt not expected to be  different */
11929    if_multiaddr_array(ifp, mta, &mcnt, mc_count);
11930
11931
11932    rparam.mcast_obj = &sc->mcast_obj;
11933    ECORE_LIST_INIT(&rparam.mcast_list);
11934
11935    for(i=0; i< mcnt; i++) {
11936
11937        mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
11938        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
11939
11940        BLOGD(sc, DBG_LOAD,
11941              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
11942              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
11943              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
11944
11945        mc_mac++;
11946    }
11947    rparam.mcast_list_len = mc_count;
11948
11949    BXE_MCAST_LOCK(sc);
11950
11951    /* first, clear all configured multicast MACs */
11952    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
11953    if (rc < 0) {
11954        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
11955        BXE_MCAST_UNLOCK(sc);
11956    	free(mc_mac_start, M_DEVBUF);
11957        free(mta, M_DEVBUF);
11958        return (rc);
11959    }
11960
11961    /* Now add the new MACs */
11962    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
11963    if (rc < 0) {
11964        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
11965    }
11966
11967    BXE_MCAST_UNLOCK(sc);
11968
11969    free(mc_mac_start, M_DEVBUF);
11970    free(mta, M_DEVBUF);
11971
11972    return (rc);
11973}
11974
11975static int
11976bxe_set_uc_list(struct bxe_softc *sc)
11977{
11978    if_t ifp = sc->ifp;
11979    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
11980    struct ifaddr *ifa;
11981    unsigned long ramrod_flags = 0;
11982    int rc;
11983
11984#if __FreeBSD_version < 800000
11985    IF_ADDR_LOCK(ifp);
11986#else
11987    if_addr_rlock(ifp);
11988#endif
11989
11990    /* first schedule a cleanup up of old configuration */
11991    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
11992    if (rc < 0) {
11993        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
11994#if __FreeBSD_version < 800000
11995        IF_ADDR_UNLOCK(ifp);
11996#else
11997        if_addr_runlock(ifp);
11998#endif
11999        return (rc);
12000    }
12001
12002    ifa = if_getifaddr(ifp); /* XXX Is this structure */
12003    while (ifa) {
12004        if (ifa->ifa_addr->sa_family != AF_LINK) {
12005            ifa = TAILQ_NEXT(ifa, ifa_link);
12006            continue;
12007        }
12008
12009        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12010                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12011        if (rc == -EEXIST) {
12012            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12013            /* do not treat adding same MAC as an error */
12014            rc = 0;
12015        } else if (rc < 0) {
12016            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12017#if __FreeBSD_version < 800000
12018            IF_ADDR_UNLOCK(ifp);
12019#else
12020            if_addr_runlock(ifp);
12021#endif
12022            return (rc);
12023        }
12024
12025        ifa = TAILQ_NEXT(ifa, ifa_link);
12026    }
12027
12028#if __FreeBSD_version < 800000
12029    IF_ADDR_UNLOCK(ifp);
12030#else
12031    if_addr_runlock(ifp);
12032#endif
12033
12034    /* Execute the pending commands */
12035    bit_set(&ramrod_flags, RAMROD_CONT);
12036    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12037                            ECORE_UC_LIST_MAC, &ramrod_flags));
12038}
12039
12040static void
12041bxe_set_rx_mode(struct bxe_softc *sc)
12042{
12043    if_t ifp = sc->ifp;
12044    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12045
12046    if (sc->state != BXE_STATE_OPEN) {
12047        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12048        return;
12049    }
12050
12051    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12052
12053    if (if_getflags(ifp) & IFF_PROMISC) {
12054        rx_mode = BXE_RX_MODE_PROMISC;
12055    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12056               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12057                CHIP_IS_E1(sc))) {
12058        rx_mode = BXE_RX_MODE_ALLMULTI;
12059    } else {
12060        if (IS_PF(sc)) {
12061            /* some multicasts */
12062            if (bxe_set_mc_list(sc) < 0) {
12063                rx_mode = BXE_RX_MODE_ALLMULTI;
12064            }
12065            if (bxe_set_uc_list(sc) < 0) {
12066                rx_mode = BXE_RX_MODE_PROMISC;
12067            }
12068        }
12069    }
12070
12071    sc->rx_mode = rx_mode;
12072
12073    /* schedule the rx_mode command */
12074    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12075        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12076        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12077        return;
12078    }
12079
12080    if (IS_PF(sc)) {
12081        bxe_set_storm_rx_mode(sc);
12082    }
12083}
12084
12085
12086/* update flags in shmem */
12087static void
12088bxe_update_drv_flags(struct bxe_softc *sc,
12089                     uint32_t         flags,
12090                     uint32_t         set)
12091{
12092    uint32_t drv_flags;
12093
12094    if (SHMEM2_HAS(sc, drv_flags)) {
12095        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12096        drv_flags = SHMEM2_RD(sc, drv_flags);
12097
12098        if (set) {
12099            SET_FLAGS(drv_flags, flags);
12100        } else {
12101            RESET_FLAGS(drv_flags, flags);
12102        }
12103
12104        SHMEM2_WR(sc, drv_flags, drv_flags);
12105        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12106
12107        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12108    }
12109}
12110
12111/* periodic timer callout routine, only runs when the interface is up */
12112
12113static void
12114bxe_periodic_callout_func(void *xsc)
12115{
12116    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12117    struct bxe_fastpath *fp;
12118    uint16_t tx_bd_avail;
12119    int i;
12120
12121    if (!BXE_CORE_TRYLOCK(sc)) {
12122        /* just bail and try again next time */
12123
12124        if ((sc->state == BXE_STATE_OPEN) &&
12125            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12126            /* schedule the next periodic callout */
12127            callout_reset(&sc->periodic_callout, hz,
12128                          bxe_periodic_callout_func, sc);
12129        }
12130
12131        return;
12132    }
12133
12134    if ((sc->state != BXE_STATE_OPEN) ||
12135        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12136        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12137        BXE_CORE_UNLOCK(sc);
12138        return;
12139    }
12140
12141#if __FreeBSD_version >= 800000
12142
12143    FOR_EACH_QUEUE(sc, i) {
12144        fp = &sc->fp[i];
12145
12146        if (BXE_FP_TX_TRYLOCK(fp)) {
12147            if_t ifp = sc->ifp;
12148            /*
12149             * If interface was stopped due to unavailable
12150             * bds, try to process some tx completions
12151             */
12152            (void) bxe_txeof(sc, fp);
12153
12154            tx_bd_avail = bxe_tx_avail(sc, fp);
12155            if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12156                bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
12157            }
12158            BXE_FP_TX_UNLOCK(fp);
12159        }
12160    }
12161
12162#else
12163
12164    fp = &sc->fp[0];
12165    if (BXE_FP_TX_TRYLOCK(fp)) {
12166        struct ifnet *ifp = sc->ifnet;
12167        /*
12168         * If interface was stopped due to unavailable
12169         * bds, try to process some tx completions
12170         */
12171        (void) bxe_txeof(sc, fp);
12172
12173        tx_bd_avail = bxe_tx_avail(sc, fp);
12174        if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
12175            bxe_tx_start_locked(sc, ifp, fp);
12176        }
12177
12178        BXE_FP_TX_UNLOCK(fp);
12179    }
12180
12181#endif /* #if __FreeBSD_version >= 800000 */
12182
12183    /* Check for TX timeouts on any fastpath. */
12184    FOR_EACH_QUEUE(sc, i) {
12185        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12186            /* Ruh-Roh, chip was reset! */
12187            break;
12188        }
12189    }
12190
12191    if (!CHIP_REV_IS_SLOW(sc)) {
12192        /*
12193         * This barrier is needed to ensure the ordering between the writing
12194         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12195         * the reading here.
12196         */
12197        mb();
12198        if (sc->port.pmf) {
12199	    bxe_acquire_phy_lock(sc);
12200            elink_period_func(&sc->link_params, &sc->link_vars);
12201	    bxe_release_phy_lock(sc);
12202        }
12203    }
12204
12205    if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12206        int mb_idx = SC_FW_MB_IDX(sc);
12207        uint32_t drv_pulse;
12208        uint32_t mcp_pulse;
12209
12210        ++sc->fw_drv_pulse_wr_seq;
12211        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12212
12213        drv_pulse = sc->fw_drv_pulse_wr_seq;
12214        bxe_drv_pulse(sc);
12215
12216        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12217                     MCP_PULSE_SEQ_MASK);
12218
12219        /*
12220         * The delta between driver pulse and mcp response should
12221         * be 1 (before mcp response) or 0 (after mcp response).
12222         */
12223        if ((drv_pulse != mcp_pulse) &&
12224            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12225            /* someone lost a heartbeat... */
12226            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12227                  drv_pulse, mcp_pulse);
12228        }
12229    }
12230
12231    /* state is BXE_STATE_OPEN */
12232    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12233
12234    BXE_CORE_UNLOCK(sc);
12235
12236    if ((sc->state == BXE_STATE_OPEN) &&
12237        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12238        /* schedule the next periodic callout */
12239        callout_reset(&sc->periodic_callout, hz,
12240                      bxe_periodic_callout_func, sc);
12241    }
12242}
12243
12244static void
12245bxe_periodic_start(struct bxe_softc *sc)
12246{
12247    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12248    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12249}
12250
12251static void
12252bxe_periodic_stop(struct bxe_softc *sc)
12253{
12254    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12255    callout_drain(&sc->periodic_callout);
12256}
12257
12258/* start the controller */
12259static __noinline int
12260bxe_nic_load(struct bxe_softc *sc,
12261             int              load_mode)
12262{
12263    uint32_t val;
12264    int load_code = 0;
12265    int i, rc = 0;
12266
12267    BXE_CORE_LOCK_ASSERT(sc);
12268
12269    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12270
12271    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12272
12273    if (IS_PF(sc)) {
12274        /* must be called before memory allocation and HW init */
12275        bxe_ilt_set_info(sc);
12276    }
12277
12278    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12279
12280    bxe_set_fp_rx_buf_size(sc);
12281
12282    if (bxe_alloc_fp_buffers(sc) != 0) {
12283        BLOGE(sc, "Failed to allocate fastpath memory\n");
12284        sc->state = BXE_STATE_CLOSED;
12285        rc = ENOMEM;
12286        goto bxe_nic_load_error0;
12287    }
12288
12289    if (bxe_alloc_mem(sc) != 0) {
12290        sc->state = BXE_STATE_CLOSED;
12291        rc = ENOMEM;
12292        goto bxe_nic_load_error0;
12293    }
12294
12295    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12296        sc->state = BXE_STATE_CLOSED;
12297        rc = ENOMEM;
12298        goto bxe_nic_load_error0;
12299    }
12300
12301    if (IS_PF(sc)) {
12302        /* set pf load just before approaching the MCP */
12303        bxe_set_pf_load(sc);
12304
12305        /* if MCP exists send load request and analyze response */
12306        if (!BXE_NOMCP(sc)) {
12307            /* attempt to load pf */
12308            if (bxe_nic_load_request(sc, &load_code) != 0) {
12309                sc->state = BXE_STATE_CLOSED;
12310                rc = ENXIO;
12311                goto bxe_nic_load_error1;
12312            }
12313
12314            /* what did the MCP say? */
12315            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12316                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12317                sc->state = BXE_STATE_CLOSED;
12318                rc = ENXIO;
12319                goto bxe_nic_load_error2;
12320            }
12321        } else {
12322            BLOGI(sc, "Device has no MCP!\n");
12323            load_code = bxe_nic_load_no_mcp(sc);
12324        }
12325
12326        /* mark PMF if applicable */
12327        bxe_nic_load_pmf(sc, load_code);
12328
12329        /* Init Function state controlling object */
12330        bxe_init_func_obj(sc);
12331
12332        /* Initialize HW */
12333        if (bxe_init_hw(sc, load_code) != 0) {
12334            BLOGE(sc, "HW init failed\n");
12335            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12336            sc->state = BXE_STATE_CLOSED;
12337            rc = ENXIO;
12338            goto bxe_nic_load_error2;
12339        }
12340    }
12341
12342    /* set ALWAYS_ALIVE bit in shmem */
12343    sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12344    bxe_drv_pulse(sc);
12345    sc->flags |= BXE_NO_PULSE;
12346
12347    /* attach interrupts */
12348    if (bxe_interrupt_attach(sc) != 0) {
12349        sc->state = BXE_STATE_CLOSED;
12350        rc = ENXIO;
12351        goto bxe_nic_load_error2;
12352    }
12353
12354    bxe_nic_init(sc, load_code);
12355
12356    /* Init per-function objects */
12357    if (IS_PF(sc)) {
12358        bxe_init_objs(sc);
12359        // XXX bxe_iov_nic_init(sc);
12360
12361        /* set AFEX default VLAN tag to an invalid value */
12362        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12363        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12364
12365        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12366        rc = bxe_func_start(sc);
12367        if (rc) {
12368            BLOGE(sc, "Function start failed! rc = %d\n", rc);
12369            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12370            sc->state = BXE_STATE_ERROR;
12371            goto bxe_nic_load_error3;
12372        }
12373
12374        /* send LOAD_DONE command to MCP */
12375        if (!BXE_NOMCP(sc)) {
12376            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12377            if (!load_code) {
12378                BLOGE(sc, "MCP response failure, aborting\n");
12379                sc->state = BXE_STATE_ERROR;
12380                rc = ENXIO;
12381                goto bxe_nic_load_error3;
12382            }
12383        }
12384
12385        rc = bxe_setup_leading(sc);
12386        if (rc) {
12387            BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12388            sc->state = BXE_STATE_ERROR;
12389            goto bxe_nic_load_error3;
12390        }
12391
12392        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12393            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12394            if (rc) {
12395                BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12396                sc->state = BXE_STATE_ERROR;
12397                goto bxe_nic_load_error3;
12398            }
12399        }
12400
12401        rc = bxe_init_rss_pf(sc);
12402        if (rc) {
12403            BLOGE(sc, "PF RSS init failed\n");
12404            sc->state = BXE_STATE_ERROR;
12405            goto bxe_nic_load_error3;
12406        }
12407    }
12408    /* XXX VF */
12409
12410    /* now when Clients are configured we are ready to work */
12411    sc->state = BXE_STATE_OPEN;
12412
12413    /* Configure a ucast MAC */
12414    if (IS_PF(sc)) {
12415        rc = bxe_set_eth_mac(sc, TRUE);
12416    }
12417    if (rc) {
12418        BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12419        sc->state = BXE_STATE_ERROR;
12420        goto bxe_nic_load_error3;
12421    }
12422
12423    if (sc->port.pmf) {
12424        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12425        if (rc) {
12426            sc->state = BXE_STATE_ERROR;
12427            goto bxe_nic_load_error3;
12428        }
12429    }
12430
12431    sc->link_params.feature_config_flags &=
12432        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12433
12434    /* start fast path */
12435
12436    /* Initialize Rx filter */
12437    bxe_set_rx_mode(sc);
12438
12439    /* start the Tx */
12440    switch (/* XXX load_mode */LOAD_OPEN) {
12441    case LOAD_NORMAL:
12442    case LOAD_OPEN:
12443        break;
12444
12445    case LOAD_DIAG:
12446    case LOAD_LOOPBACK_EXT:
12447        sc->state = BXE_STATE_DIAG;
12448        break;
12449
12450    default:
12451        break;
12452    }
12453
12454    if (sc->port.pmf) {
12455        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12456    } else {
12457        bxe_link_status_update(sc);
12458    }
12459
12460    /* start the periodic timer callout */
12461    bxe_periodic_start(sc);
12462
12463    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12464        /* mark driver is loaded in shmem2 */
12465        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12466        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12467                  (val |
12468                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12469                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
12470    }
12471
12472    /* wait for all pending SP commands to complete */
12473    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12474        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12475        bxe_periodic_stop(sc);
12476        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12477        return (ENXIO);
12478    }
12479
12480    /* Tell the stack the driver is running! */
12481    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12482
12483    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12484
12485    return (0);
12486
12487bxe_nic_load_error3:
12488
12489    if (IS_PF(sc)) {
12490        bxe_int_disable_sync(sc, 1);
12491
12492        /* clean out queued objects */
12493        bxe_squeeze_objects(sc);
12494    }
12495
12496    bxe_interrupt_detach(sc);
12497
12498bxe_nic_load_error2:
12499
12500    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12501        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12502        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12503    }
12504
12505    sc->port.pmf = 0;
12506
12507bxe_nic_load_error1:
12508
12509    /* clear pf_load status, as it was already set */
12510    if (IS_PF(sc)) {
12511        bxe_clear_pf_load(sc);
12512    }
12513
12514bxe_nic_load_error0:
12515
12516    bxe_free_fw_stats_mem(sc);
12517    bxe_free_fp_buffers(sc);
12518    bxe_free_mem(sc);
12519
12520    return (rc);
12521}
12522
12523static int
12524bxe_init_locked(struct bxe_softc *sc)
12525{
12526    int other_engine = SC_PATH(sc) ? 0 : 1;
12527    uint8_t other_load_status, load_status;
12528    uint8_t global = FALSE;
12529    int rc;
12530
12531    BXE_CORE_LOCK_ASSERT(sc);
12532
12533    /* check if the driver is already running */
12534    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12535        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12536        return (0);
12537    }
12538
12539    bxe_set_power_state(sc, PCI_PM_D0);
12540
12541    /*
12542     * If parity occurred during the unload, then attentions and/or
12543     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12544     * loaded on the current engine to complete the recovery. Parity recovery
12545     * is only relevant for PF driver.
12546     */
12547    if (IS_PF(sc)) {
12548        other_load_status = bxe_get_load_status(sc, other_engine);
12549        load_status = bxe_get_load_status(sc, SC_PATH(sc));
12550
12551        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12552            bxe_chk_parity_attn(sc, &global, TRUE)) {
12553            do {
12554                /*
12555                 * If there are attentions and they are in global blocks, set
12556                 * the GLOBAL_RESET bit regardless whether it will be this
12557                 * function that will complete the recovery or not.
12558                 */
12559                if (global) {
12560                    bxe_set_reset_global(sc);
12561                }
12562
12563                /*
12564                 * Only the first function on the current engine should try
12565                 * to recover in open. In case of attentions in global blocks
12566                 * only the first in the chip should try to recover.
12567                 */
12568                if ((!load_status && (!global || !other_load_status)) &&
12569                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12570                    BLOGI(sc, "Recovered during init\n");
12571                    break;
12572                }
12573
12574                /* recovery has failed... */
12575                bxe_set_power_state(sc, PCI_PM_D3hot);
12576                sc->recovery_state = BXE_RECOVERY_FAILED;
12577
12578                BLOGE(sc, "Recovery flow hasn't properly "
12579                          "completed yet, try again later. "
12580                          "If you still see this message after a "
12581                          "few retries then power cycle is required.\n");
12582
12583                rc = ENXIO;
12584                goto bxe_init_locked_done;
12585            } while (0);
12586        }
12587    }
12588
12589    sc->recovery_state = BXE_RECOVERY_DONE;
12590
12591    rc = bxe_nic_load(sc, LOAD_OPEN);
12592
12593bxe_init_locked_done:
12594
12595    if (rc) {
12596        /* Tell the stack the driver is NOT running! */
12597        BLOGE(sc, "Initialization failed, "
12598                  "stack notified driver is NOT running!\n");
12599	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12600    }
12601
12602    return (rc);
12603}
12604
12605static int
12606bxe_stop_locked(struct bxe_softc *sc)
12607{
12608    BXE_CORE_LOCK_ASSERT(sc);
12609    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12610}
12611
12612/*
12613 * Handles controller initialization when called from an unlocked routine.
12614 * ifconfig calls this function.
12615 *
12616 * Returns:
12617 *   void
12618 */
12619static void
12620bxe_init(void *xsc)
12621{
12622    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12623
12624    BXE_CORE_LOCK(sc);
12625    bxe_init_locked(sc);
12626    BXE_CORE_UNLOCK(sc);
12627}
12628
12629static int
12630bxe_init_ifnet(struct bxe_softc *sc)
12631{
12632    if_t ifp;
12633    int capabilities;
12634
12635    /* ifconfig entrypoint for media type/status reporting */
12636    ifmedia_init(&sc->ifmedia, IFM_IMASK,
12637                 bxe_ifmedia_update,
12638                 bxe_ifmedia_status);
12639
12640    /* set the default interface values */
12641    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12642    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12643    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12644
12645    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12646
12647    /* allocate the ifnet structure */
12648    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12649        BLOGE(sc, "Interface allocation failed!\n");
12650        return (ENXIO);
12651    }
12652
12653    if_setsoftc(ifp, sc);
12654    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12655    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12656    if_setioctlfn(ifp, bxe_ioctl);
12657    if_setstartfn(ifp, bxe_tx_start);
12658    if_setgetcounterfn(ifp, bxe_get_counter);
12659#if __FreeBSD_version >= 800000
12660    if_settransmitfn(ifp, bxe_tx_mq_start);
12661    if_setqflushfn(ifp, bxe_mq_flush);
12662#endif
12663#ifdef FreeBSD8_0
12664    if_settimer(ifp, 0);
12665#endif
12666    if_setinitfn(ifp, bxe_init);
12667    if_setmtu(ifp, sc->mtu);
12668    if_sethwassist(ifp, (CSUM_IP      |
12669                        CSUM_TCP      |
12670                        CSUM_UDP      |
12671                        CSUM_TSO      |
12672                        CSUM_TCP_IPV6 |
12673                        CSUM_UDP_IPV6));
12674
12675    capabilities =
12676#if __FreeBSD_version < 700000
12677        (IFCAP_VLAN_MTU       |
12678         IFCAP_VLAN_HWTAGGING |
12679         IFCAP_HWCSUM         |
12680         IFCAP_JUMBO_MTU      |
12681         IFCAP_LRO);
12682#else
12683        (IFCAP_VLAN_MTU       |
12684         IFCAP_VLAN_HWTAGGING |
12685         IFCAP_VLAN_HWTSO     |
12686         IFCAP_VLAN_HWFILTER  |
12687         IFCAP_VLAN_HWCSUM    |
12688         IFCAP_HWCSUM         |
12689         IFCAP_JUMBO_MTU      |
12690         IFCAP_LRO            |
12691         IFCAP_TSO4           |
12692         IFCAP_TSO6           |
12693         IFCAP_WOL_MAGIC);
12694#endif
12695    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12696    if_setbaudrate(ifp, IF_Gbps(10));
12697/* XXX */
12698    if_setsendqlen(ifp, sc->tx_ring_size);
12699    if_setsendqready(ifp);
12700/* XXX */
12701
12702    sc->ifp = ifp;
12703
12704    /* attach to the Ethernet interface list */
12705    ether_ifattach(ifp, sc->link_params.mac_addr);
12706
12707    return (0);
12708}
12709
12710static void
12711bxe_deallocate_bars(struct bxe_softc *sc)
12712{
12713    int i;
12714
12715    for (i = 0; i < MAX_BARS; i++) {
12716        if (sc->bar[i].resource != NULL) {
12717            bus_release_resource(sc->dev,
12718                                 SYS_RES_MEMORY,
12719                                 sc->bar[i].rid,
12720                                 sc->bar[i].resource);
12721            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12722                  i, PCIR_BAR(i));
12723        }
12724    }
12725}
12726
12727static int
12728bxe_allocate_bars(struct bxe_softc *sc)
12729{
12730    u_int flags;
12731    int i;
12732
12733    memset(sc->bar, 0, sizeof(sc->bar));
12734
12735    for (i = 0; i < MAX_BARS; i++) {
12736
12737        /* memory resources reside at BARs 0, 2, 4 */
12738        /* Run `pciconf -lb` to see mappings */
12739        if ((i != 0) && (i != 2) && (i != 4)) {
12740            continue;
12741        }
12742
12743        sc->bar[i].rid = PCIR_BAR(i);
12744
12745        flags = RF_ACTIVE;
12746        if (i == 0) {
12747            flags |= RF_SHAREABLE;
12748        }
12749
12750        if ((sc->bar[i].resource =
12751             bus_alloc_resource_any(sc->dev,
12752                                    SYS_RES_MEMORY,
12753                                    &sc->bar[i].rid,
12754                                    flags)) == NULL) {
12755            return (0);
12756        }
12757
12758        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12759        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12760        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12761
12762        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12763              i, PCIR_BAR(i),
12764              (void *)rman_get_start(sc->bar[i].resource),
12765              (void *)rman_get_end(sc->bar[i].resource),
12766              rman_get_size(sc->bar[i].resource),
12767              (void *)sc->bar[i].kva);
12768    }
12769
12770    return (0);
12771}
12772
12773static void
12774bxe_get_function_num(struct bxe_softc *sc)
12775{
12776    uint32_t val = 0;
12777
12778    /*
12779     * Read the ME register to get the function number. The ME register
12780     * holds the relative-function number and absolute-function number. The
12781     * absolute-function number appears only in E2 and above. Before that
12782     * these bits always contained zero, therefore we cannot blindly use them.
12783     */
12784
12785    val = REG_RD(sc, BAR_ME_REGISTER);
12786
12787    sc->pfunc_rel =
12788        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12789    sc->path_id =
12790        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12791
12792    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12793        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12794    } else {
12795        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12796    }
12797
12798    BLOGD(sc, DBG_LOAD,
12799          "Relative function %d, Absolute function %d, Path %d\n",
12800          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12801}
12802
12803static uint32_t
12804bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12805{
12806    uint32_t shmem2_size;
12807    uint32_t offset;
12808    uint32_t mf_cfg_offset_value;
12809
12810    /* Non 57712 */
12811    offset = (SHMEM_RD(sc, func_mb) +
12812              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12813
12814    /* 57712 plus */
12815    if (sc->devinfo.shmem2_base != 0) {
12816        shmem2_size = SHMEM2_RD(sc, size);
12817        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12818            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12819            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12820                offset = mf_cfg_offset_value;
12821            }
12822        }
12823    }
12824
12825    return (offset);
12826}
12827
12828static uint32_t
12829bxe_pcie_capability_read(struct bxe_softc *sc,
12830                         int    reg,
12831                         int    width)
12832{
12833    int pcie_reg;
12834
12835    /* ensure PCIe capability is enabled */
12836    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12837        if (pcie_reg != 0) {
12838            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12839            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12840        }
12841    }
12842
12843    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12844
12845    return (0);
12846}
12847
12848static uint8_t
12849bxe_is_pcie_pending(struct bxe_softc *sc)
12850{
12851    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12852            PCIM_EXP_STA_TRANSACTION_PND);
12853}
12854
12855/*
12856 * Walk the PCI capabiites list for the device to find what features are
12857 * supported. These capabilites may be enabled/disabled by firmware so it's
12858 * best to walk the list rather than make assumptions.
12859 */
12860static void
12861bxe_probe_pci_caps(struct bxe_softc *sc)
12862{
12863    uint16_t link_status;
12864    int reg;
12865
12866    /* check if PCI Power Management is enabled */
12867    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12868        if (reg != 0) {
12869            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12870
12871            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12872            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12873        }
12874    }
12875
12876    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12877
12878    /* handle PCIe 2.0 workarounds for 57710 */
12879    if (CHIP_IS_E1(sc)) {
12880        /* workaround for 57710 errata E4_57710_27462 */
12881        sc->devinfo.pcie_link_speed =
12882            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12883
12884        /* workaround for 57710 errata E4_57710_27488 */
12885        sc->devinfo.pcie_link_width =
12886            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12887        if (sc->devinfo.pcie_link_speed > 1) {
12888            sc->devinfo.pcie_link_width =
12889                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12890        }
12891    } else {
12892        sc->devinfo.pcie_link_speed =
12893            (link_status & PCIM_LINK_STA_SPEED);
12894        sc->devinfo.pcie_link_width =
12895            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12896    }
12897
12898    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12899          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12900
12901    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12902    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12903
12904    /* check if MSI capability is enabled */
12905    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12906        if (reg != 0) {
12907            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12908
12909            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12910            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12911        }
12912    }
12913
12914    /* check if MSI-X capability is enabled */
12915    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12916        if (reg != 0) {
12917            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12918
12919            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12920            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12921        }
12922    }
12923}
12924
12925static int
12926bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12927{
12928    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12929    uint32_t val;
12930
12931    /* get the outer vlan if we're in switch-dependent mode */
12932
12933    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12934    mf_info->ext_id = (uint16_t)val;
12935
12936    mf_info->multi_vnics_mode = 1;
12937
12938    if (!VALID_OVLAN(mf_info->ext_id)) {
12939        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12940        return (1);
12941    }
12942
12943    /* get the capabilities */
12944    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12945        FUNC_MF_CFG_PROTOCOL_ISCSI) {
12946        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
12947    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12948               FUNC_MF_CFG_PROTOCOL_FCOE) {
12949        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
12950    } else {
12951        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
12952    }
12953
12954    mf_info->vnics_per_port =
12955        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
12956
12957    return (0);
12958}
12959
12960static uint32_t
12961bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
12962{
12963    uint32_t retval = 0;
12964    uint32_t val;
12965
12966    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12967
12968    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
12969        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
12970            retval |= MF_PROTO_SUPPORT_ETHERNET;
12971        }
12972        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
12973            retval |= MF_PROTO_SUPPORT_ISCSI;
12974        }
12975        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
12976            retval |= MF_PROTO_SUPPORT_FCOE;
12977        }
12978    }
12979
12980    return (retval);
12981}
12982
12983static int
12984bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
12985{
12986    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12987    uint32_t val;
12988
12989    /*
12990     * There is no outer vlan if we're in switch-independent mode.
12991     * If the mac is valid then assume multi-function.
12992     */
12993
12994    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12995
12996    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
12997
12998    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
12999
13000    mf_info->vnics_per_port =
13001        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13002
13003    return (0);
13004}
13005
13006static int
13007bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13008{
13009    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13010    uint32_t e1hov_tag;
13011    uint32_t func_config;
13012    uint32_t niv_config;
13013
13014    mf_info->multi_vnics_mode = 1;
13015
13016    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13017    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13018    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13019
13020    mf_info->ext_id =
13021        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13022                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13023
13024    mf_info->default_vlan =
13025        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13026                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13027
13028    mf_info->niv_allowed_priorities =
13029        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13030                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13031
13032    mf_info->niv_default_cos =
13033        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13034                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13035
13036    mf_info->afex_vlan_mode =
13037        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13038         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13039
13040    mf_info->niv_mba_enabled =
13041        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13042         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13043
13044    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13045
13046    mf_info->vnics_per_port =
13047        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13048
13049    return (0);
13050}
13051
13052static int
13053bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13054{
13055    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13056    uint32_t mf_cfg1;
13057    uint32_t mf_cfg2;
13058    uint32_t ovlan1;
13059    uint32_t ovlan2;
13060    uint8_t i, j;
13061
13062    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13063          SC_PORT(sc));
13064    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13065          mf_info->mf_config[SC_VN(sc)]);
13066    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13067          mf_info->multi_vnics_mode);
13068    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13069          mf_info->vnics_per_port);
13070    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13071          mf_info->ext_id);
13072    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13073          mf_info->min_bw[0], mf_info->min_bw[1],
13074          mf_info->min_bw[2], mf_info->min_bw[3]);
13075    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13076          mf_info->max_bw[0], mf_info->max_bw[1],
13077          mf_info->max_bw[2], mf_info->max_bw[3]);
13078    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13079          sc->mac_addr_str);
13080
13081    /* various MF mode sanity checks... */
13082
13083    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13084        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13085              SC_PORT(sc));
13086        return (1);
13087    }
13088
13089    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13090        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13091              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13092        return (1);
13093    }
13094
13095    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13096        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13097        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13098            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13099                  SC_VN(sc), OVLAN(sc));
13100            return (1);
13101        }
13102
13103        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13104            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13105                  mf_info->multi_vnics_mode, OVLAN(sc));
13106            return (1);
13107        }
13108
13109        /*
13110         * Verify all functions are either MF or SF mode. If MF, make sure
13111         * sure that all non-hidden functions have a valid ovlan. If SF,
13112         * make sure that all non-hidden functions have an invalid ovlan.
13113         */
13114        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13115            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13116            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13117            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13118                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13119                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13120                BLOGE(sc, "mf_mode=SD function %d MF config "
13121                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13122                      i, mf_info->multi_vnics_mode, ovlan1);
13123                return (1);
13124            }
13125        }
13126
13127        /* Verify all funcs on the same port each have a different ovlan. */
13128        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13129            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13130            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13131            /* iterate from the next function on the port to the max func */
13132            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13133                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13134                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13135                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13136                    VALID_OVLAN(ovlan1) &&
13137                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13138                    VALID_OVLAN(ovlan2) &&
13139                    (ovlan1 == ovlan2)) {
13140                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13141                              "have the same ovlan (%d)\n",
13142                          i, j, ovlan1);
13143                    return (1);
13144                }
13145            }
13146        }
13147    } /* MULTI_FUNCTION_SD */
13148
13149    return (0);
13150}
13151
13152static int
13153bxe_get_mf_cfg_info(struct bxe_softc *sc)
13154{
13155    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13156    uint32_t val, mac_upper;
13157    uint8_t i, vnic;
13158
13159    /* initialize mf_info defaults */
13160    mf_info->vnics_per_port   = 1;
13161    mf_info->multi_vnics_mode = FALSE;
13162    mf_info->path_has_ovlan   = FALSE;
13163    mf_info->mf_mode          = SINGLE_FUNCTION;
13164
13165    if (!CHIP_IS_MF_CAP(sc)) {
13166        return (0);
13167    }
13168
13169    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13170        BLOGE(sc, "Invalid mf_cfg_base!\n");
13171        return (1);
13172    }
13173
13174    /* get the MF mode (switch dependent / independent / single-function) */
13175
13176    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13177
13178    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13179    {
13180    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13181
13182        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13183
13184        /* check for legal upper mac bytes */
13185        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13186            mf_info->mf_mode = MULTI_FUNCTION_SI;
13187        } else {
13188            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13189        }
13190
13191        break;
13192
13193    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13194    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13195
13196        /* get outer vlan configuration */
13197        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13198
13199        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13200            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13201            mf_info->mf_mode = MULTI_FUNCTION_SD;
13202        } else {
13203            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13204        }
13205
13206        break;
13207
13208    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13209
13210        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13211        return (0);
13212
13213    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13214
13215        /*
13216         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13217         * and the MAC address is valid.
13218         */
13219        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13220
13221        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13222            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13223            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13224        } else {
13225            BLOGE(sc, "Invalid config for AFEX mode\n");
13226        }
13227
13228        break;
13229
13230    default:
13231
13232        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13233              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13234
13235        return (1);
13236    }
13237
13238    /* set path mf_mode (which could be different than function mf_mode) */
13239    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13240        mf_info->path_has_ovlan = TRUE;
13241    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13242        /*
13243         * Decide on path multi vnics mode. If we're not in MF mode and in
13244         * 4-port mode, this is good enough to check vnic-0 of the other port
13245         * on the same path
13246         */
13247        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13248            uint8_t other_port = !(PORT_ID(sc) & 1);
13249            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13250
13251            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13252
13253            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13254        }
13255    }
13256
13257    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13258        /* invalid MF config */
13259        if (SC_VN(sc) >= 1) {
13260            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13261            return (1);
13262        }
13263
13264        return (0);
13265    }
13266
13267    /* get the MF configuration */
13268    mf_info->mf_config[SC_VN(sc)] =
13269        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13270
13271    switch(mf_info->mf_mode)
13272    {
13273    case MULTI_FUNCTION_SD:
13274
13275        bxe_get_shmem_mf_cfg_info_sd(sc);
13276        break;
13277
13278    case MULTI_FUNCTION_SI:
13279
13280        bxe_get_shmem_mf_cfg_info_si(sc);
13281        break;
13282
13283    case MULTI_FUNCTION_AFEX:
13284
13285        bxe_get_shmem_mf_cfg_info_niv(sc);
13286        break;
13287
13288    default:
13289
13290        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13291              mf_info->mf_mode);
13292        return (1);
13293    }
13294
13295    /* get the congestion management parameters */
13296
13297    vnic = 0;
13298    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13299        /* get min/max bw */
13300        val = MFCFG_RD(sc, func_mf_config[i].config);
13301        mf_info->min_bw[vnic] =
13302            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13303        mf_info->max_bw[vnic] =
13304            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13305        vnic++;
13306    }
13307
13308    return (bxe_check_valid_mf_cfg(sc));
13309}
13310
13311static int
13312bxe_get_shmem_info(struct bxe_softc *sc)
13313{
13314    int port;
13315    uint32_t mac_hi, mac_lo, val;
13316
13317    port = SC_PORT(sc);
13318    mac_hi = mac_lo = 0;
13319
13320    sc->link_params.sc   = sc;
13321    sc->link_params.port = port;
13322
13323    /* get the hardware config info */
13324    sc->devinfo.hw_config =
13325        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13326    sc->devinfo.hw_config2 =
13327        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13328
13329    sc->link_params.hw_led_mode =
13330        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13331         SHARED_HW_CFG_LED_MODE_SHIFT);
13332
13333    /* get the port feature config */
13334    sc->port.config =
13335        SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13336
13337    /* get the link params */
13338    sc->link_params.speed_cap_mask[0] =
13339        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13340    sc->link_params.speed_cap_mask[1] =
13341        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13342
13343    /* get the lane config */
13344    sc->link_params.lane_config =
13345        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13346
13347    /* get the link config */
13348    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13349    sc->port.link_config[ELINK_INT_PHY] = val;
13350    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13351    sc->port.link_config[ELINK_EXT_PHY1] =
13352        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13353
13354    /* get the override preemphasis flag and enable it or turn it off */
13355    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13356    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13357        sc->link_params.feature_config_flags |=
13358            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13359    } else {
13360        sc->link_params.feature_config_flags &=
13361            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13362    }
13363
13364    /* get the initial value of the link params */
13365    sc->link_params.multi_phy_config =
13366        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13367
13368    /* get external phy info */
13369    sc->port.ext_phy_config =
13370        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13371
13372    /* get the multifunction configuration */
13373    bxe_get_mf_cfg_info(sc);
13374
13375    /* get the mac address */
13376    if (IS_MF(sc)) {
13377        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13378        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13379    } else {
13380        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13381        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13382    }
13383
13384    if ((mac_lo == 0) && (mac_hi == 0)) {
13385        *sc->mac_addr_str = 0;
13386        BLOGE(sc, "No Ethernet address programmed!\n");
13387    } else {
13388        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13389        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13390        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13391        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13392        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13393        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13394        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13395                 "%02x:%02x:%02x:%02x:%02x:%02x",
13396                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13397                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13398                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13399        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13400    }
13401
13402    return (0);
13403}
13404
13405static void
13406bxe_get_tunable_params(struct bxe_softc *sc)
13407{
13408    /* sanity checks */
13409
13410    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13411        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13412        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13413        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13414        bxe_interrupt_mode = INTR_MODE_MSIX;
13415    }
13416
13417    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13418        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13419        bxe_queue_count = 0;
13420    }
13421
13422    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13423        if (bxe_max_rx_bufs == 0) {
13424            bxe_max_rx_bufs = RX_BD_USABLE;
13425        } else {
13426            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13427            bxe_max_rx_bufs = 2048;
13428        }
13429    }
13430
13431    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13432        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13433        bxe_hc_rx_ticks = 25;
13434    }
13435
13436    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13437        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13438        bxe_hc_tx_ticks = 50;
13439    }
13440
13441    if (bxe_max_aggregation_size == 0) {
13442        bxe_max_aggregation_size = TPA_AGG_SIZE;
13443    }
13444
13445    if (bxe_max_aggregation_size > 0xffff) {
13446        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13447              bxe_max_aggregation_size);
13448        bxe_max_aggregation_size = TPA_AGG_SIZE;
13449    }
13450
13451    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13452        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13453        bxe_mrrs = -1;
13454    }
13455
13456    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13457        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13458        bxe_autogreeen = 0;
13459    }
13460
13461    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13462        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13463        bxe_udp_rss = 0;
13464    }
13465
13466    /* pull in user settings */
13467
13468    sc->interrupt_mode       = bxe_interrupt_mode;
13469    sc->max_rx_bufs          = bxe_max_rx_bufs;
13470    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13471    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13472    sc->max_aggregation_size = bxe_max_aggregation_size;
13473    sc->mrrs                 = bxe_mrrs;
13474    sc->autogreeen           = bxe_autogreeen;
13475    sc->udp_rss              = bxe_udp_rss;
13476
13477    if (bxe_interrupt_mode == INTR_MODE_INTX) {
13478        sc->num_queues = 1;
13479    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13480        sc->num_queues =
13481            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13482                MAX_RSS_CHAINS);
13483        if (sc->num_queues > mp_ncpus) {
13484            sc->num_queues = mp_ncpus;
13485        }
13486    }
13487
13488    BLOGD(sc, DBG_LOAD,
13489          "User Config: "
13490          "debug=0x%lx "
13491          "interrupt_mode=%d "
13492          "queue_count=%d "
13493          "hc_rx_ticks=%d "
13494          "hc_tx_ticks=%d "
13495          "rx_budget=%d "
13496          "max_aggregation_size=%d "
13497          "mrrs=%d "
13498          "autogreeen=%d "
13499          "udp_rss=%d\n",
13500          bxe_debug,
13501          sc->interrupt_mode,
13502          sc->num_queues,
13503          sc->hc_rx_ticks,
13504          sc->hc_tx_ticks,
13505          bxe_rx_budget,
13506          sc->max_aggregation_size,
13507          sc->mrrs,
13508          sc->autogreeen,
13509          sc->udp_rss);
13510}
13511
13512static int
13513bxe_media_detect(struct bxe_softc *sc)
13514{
13515    int port_type;
13516    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13517
13518    switch (sc->link_params.phy[phy_idx].media_type) {
13519    case ELINK_ETH_PHY_SFPP_10G_FIBER:
13520    case ELINK_ETH_PHY_XFP_FIBER:
13521        BLOGI(sc, "Found 10Gb Fiber media.\n");
13522        sc->media = IFM_10G_SR;
13523        port_type = PORT_FIBRE;
13524        break;
13525    case ELINK_ETH_PHY_SFP_1G_FIBER:
13526        BLOGI(sc, "Found 1Gb Fiber media.\n");
13527        sc->media = IFM_1000_SX;
13528        port_type = PORT_FIBRE;
13529        break;
13530    case ELINK_ETH_PHY_KR:
13531    case ELINK_ETH_PHY_CX4:
13532        BLOGI(sc, "Found 10GBase-CX4 media.\n");
13533        sc->media = IFM_10G_CX4;
13534        port_type = PORT_FIBRE;
13535        break;
13536    case ELINK_ETH_PHY_DA_TWINAX:
13537        BLOGI(sc, "Found 10Gb Twinax media.\n");
13538        sc->media = IFM_10G_TWINAX;
13539        port_type = PORT_DA;
13540        break;
13541    case ELINK_ETH_PHY_BASE_T:
13542        if (sc->link_params.speed_cap_mask[0] &
13543            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13544            BLOGI(sc, "Found 10GBase-T media.\n");
13545            sc->media = IFM_10G_T;
13546            port_type = PORT_TP;
13547        } else {
13548            BLOGI(sc, "Found 1000Base-T media.\n");
13549            sc->media = IFM_1000_T;
13550            port_type = PORT_TP;
13551        }
13552        break;
13553    case ELINK_ETH_PHY_NOT_PRESENT:
13554        BLOGI(sc, "Media not present.\n");
13555        sc->media = 0;
13556        port_type = PORT_OTHER;
13557        break;
13558    case ELINK_ETH_PHY_UNSPECIFIED:
13559    default:
13560        BLOGI(sc, "Unknown media!\n");
13561        sc->media = 0;
13562        port_type = PORT_OTHER;
13563        break;
13564    }
13565    return port_type;
13566}
13567
13568#define GET_FIELD(value, fname)                     \
13569    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13570#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13571#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13572
13573static int
13574bxe_get_igu_cam_info(struct bxe_softc *sc)
13575{
13576    int pfid = SC_FUNC(sc);
13577    int igu_sb_id;
13578    uint32_t val;
13579    uint8_t fid, igu_sb_cnt = 0;
13580
13581    sc->igu_base_sb = 0xff;
13582
13583    if (CHIP_INT_MODE_IS_BC(sc)) {
13584        int vn = SC_VN(sc);
13585        igu_sb_cnt = sc->igu_sb_cnt;
13586        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13587                           FP_SB_MAX_E1x);
13588        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13589                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13590        return (0);
13591    }
13592
13593    /* IGU in normal mode - read CAM */
13594    for (igu_sb_id = 0;
13595         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13596         igu_sb_id++) {
13597        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13598        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13599            continue;
13600        }
13601        fid = IGU_FID(val);
13602        if ((fid & IGU_FID_ENCODE_IS_PF)) {
13603            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13604                continue;
13605            }
13606            if (IGU_VEC(val) == 0) {
13607                /* default status block */
13608                sc->igu_dsb_id = igu_sb_id;
13609            } else {
13610                if (sc->igu_base_sb == 0xff) {
13611                    sc->igu_base_sb = igu_sb_id;
13612                }
13613                igu_sb_cnt++;
13614            }
13615        }
13616    }
13617
13618    /*
13619     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13620     * that number of CAM entries will not be equal to the value advertised in
13621     * PCI. Driver should use the minimal value of both as the actual status
13622     * block count
13623     */
13624    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13625
13626    if (igu_sb_cnt == 0) {
13627        BLOGE(sc, "CAM configuration error\n");
13628        return (-1);
13629    }
13630
13631    return (0);
13632}
13633
13634/*
13635 * Gather various information from the device config space, the device itself,
13636 * shmem, and the user input.
13637 */
13638static int
13639bxe_get_device_info(struct bxe_softc *sc)
13640{
13641    uint32_t val;
13642    int rc;
13643
13644    /* Get the data for the device */
13645    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13646    sc->devinfo.device_id    = pci_get_device(sc->dev);
13647    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13648    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13649
13650    /* get the chip revision (chip metal comes from pci config space) */
13651    sc->devinfo.chip_id     =
13652    sc->link_params.chip_id =
13653        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13654         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13655         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13656         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13657
13658    /* force 57811 according to MISC register */
13659    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13660        if (CHIP_IS_57810(sc)) {
13661            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13662                                   (sc->devinfo.chip_id & 0x0000ffff));
13663        } else if (CHIP_IS_57810_MF(sc)) {
13664            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13665                                   (sc->devinfo.chip_id & 0x0000ffff));
13666        }
13667        sc->devinfo.chip_id |= 0x1;
13668    }
13669
13670    BLOGD(sc, DBG_LOAD,
13671          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13672          sc->devinfo.chip_id,
13673          ((sc->devinfo.chip_id >> 16) & 0xffff),
13674          ((sc->devinfo.chip_id >> 12) & 0xf),
13675          ((sc->devinfo.chip_id >>  4) & 0xff),
13676          ((sc->devinfo.chip_id >>  0) & 0xf));
13677
13678    val = (REG_RD(sc, 0x2874) & 0x55);
13679    if ((sc->devinfo.chip_id & 0x1) ||
13680        (CHIP_IS_E1(sc) && val) ||
13681        (CHIP_IS_E1H(sc) && (val == 0x55))) {
13682        sc->flags |= BXE_ONE_PORT_FLAG;
13683        BLOGD(sc, DBG_LOAD, "single port device\n");
13684    }
13685
13686    /* set the doorbell size */
13687    sc->doorbell_size = (1 << BXE_DB_SHIFT);
13688
13689    /* determine whether the device is in 2 port or 4 port mode */
13690    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13691    if (CHIP_IS_E2E3(sc)) {
13692        /*
13693         * Read port4mode_en_ovwr[0]:
13694         *   If 1, four port mode is in port4mode_en_ovwr[1].
13695         *   If 0, four port mode is in port4mode_en[0].
13696         */
13697        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13698        if (val & 1) {
13699            val = ((val >> 1) & 1);
13700        } else {
13701            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13702        }
13703
13704        sc->devinfo.chip_port_mode =
13705            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13706
13707        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13708    }
13709
13710    /* get the function and path info for the device */
13711    bxe_get_function_num(sc);
13712
13713    /* get the shared memory base address */
13714    sc->devinfo.shmem_base     =
13715    sc->link_params.shmem_base =
13716        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13717    sc->devinfo.shmem2_base =
13718        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13719                                  MISC_REG_GENERIC_CR_0));
13720
13721    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13722          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13723
13724    if (!sc->devinfo.shmem_base) {
13725        /* this should ONLY prevent upcoming shmem reads */
13726        BLOGI(sc, "MCP not active\n");
13727        sc->flags |= BXE_NO_MCP_FLAG;
13728        return (0);
13729    }
13730
13731    /* make sure the shared memory contents are valid */
13732    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13733    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13734        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13735        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13736        return (0);
13737    }
13738    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13739
13740    /* get the bootcode version */
13741    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13742    snprintf(sc->devinfo.bc_ver_str,
13743             sizeof(sc->devinfo.bc_ver_str),
13744             "%d.%d.%d",
13745             ((sc->devinfo.bc_ver >> 24) & 0xff),
13746             ((sc->devinfo.bc_ver >> 16) & 0xff),
13747             ((sc->devinfo.bc_ver >>  8) & 0xff));
13748    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13749
13750    /* get the bootcode shmem address */
13751    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13752    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13753
13754    /* clean indirect addresses as they're not used */
13755    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13756    if (IS_PF(sc)) {
13757        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13758        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13759        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13760        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13761        if (CHIP_IS_E1x(sc)) {
13762            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13763            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13764            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13765            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13766        }
13767
13768        /*
13769         * Enable internal target-read (in case we are probed after PF
13770         * FLR). Must be done prior to any BAR read access. Only for
13771         * 57712 and up
13772         */
13773        if (!CHIP_IS_E1x(sc)) {
13774            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13775        }
13776    }
13777
13778    /* get the nvram size */
13779    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13780    sc->devinfo.flash_size =
13781        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13782    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13783
13784    /* get PCI capabilites */
13785    bxe_probe_pci_caps(sc);
13786
13787    bxe_set_power_state(sc, PCI_PM_D0);
13788
13789    /* get various configuration parameters from shmem */
13790    bxe_get_shmem_info(sc);
13791
13792    if (sc->devinfo.pcie_msix_cap_reg != 0) {
13793        val = pci_read_config(sc->dev,
13794                              (sc->devinfo.pcie_msix_cap_reg +
13795                               PCIR_MSIX_CTRL),
13796                              2);
13797        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13798    } else {
13799        sc->igu_sb_cnt = 1;
13800    }
13801
13802    sc->igu_base_addr = BAR_IGU_INTMEM;
13803
13804    /* initialize IGU parameters */
13805    if (CHIP_IS_E1x(sc)) {
13806        sc->devinfo.int_block = INT_BLOCK_HC;
13807        sc->igu_dsb_id = DEF_SB_IGU_ID;
13808        sc->igu_base_sb = 0;
13809    } else {
13810        sc->devinfo.int_block = INT_BLOCK_IGU;
13811
13812        /* do not allow device reset during IGU info preocessing */
13813        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13814
13815        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13816
13817        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13818            int tout = 5000;
13819
13820            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13821
13822            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13823            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13824            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13825
13826            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13827                tout--;
13828                DELAY(1000);
13829            }
13830
13831            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13832                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13833                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13834                return (-1);
13835            }
13836        }
13837
13838        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13839            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13840            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13841        } else {
13842            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13843        }
13844
13845        rc = bxe_get_igu_cam_info(sc);
13846
13847        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13848
13849        if (rc) {
13850            return (rc);
13851        }
13852    }
13853
13854    /*
13855     * Get base FW non-default (fast path) status block ID. This value is
13856     * used to initialize the fw_sb_id saved on the fp/queue structure to
13857     * determine the id used by the FW.
13858     */
13859    if (CHIP_IS_E1x(sc)) {
13860        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13861    } else {
13862        /*
13863         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13864         * the same queue are indicated on the same IGU SB). So we prefer
13865         * FW and IGU SBs to be the same value.
13866         */
13867        sc->base_fw_ndsb = sc->igu_base_sb;
13868    }
13869
13870    BLOGD(sc, DBG_LOAD,
13871          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13872          sc->igu_dsb_id, sc->igu_base_sb,
13873          sc->igu_sb_cnt, sc->base_fw_ndsb);
13874
13875    elink_phy_probe(&sc->link_params);
13876
13877    return (0);
13878}
13879
13880static void
13881bxe_link_settings_supported(struct bxe_softc *sc,
13882                            uint32_t         switch_cfg)
13883{
13884    uint32_t cfg_size = 0;
13885    uint32_t idx;
13886    uint8_t port = SC_PORT(sc);
13887
13888    /* aggregation of supported attributes of all external phys */
13889    sc->port.supported[0] = 0;
13890    sc->port.supported[1] = 0;
13891
13892    switch (sc->link_params.num_phys) {
13893    case 1:
13894        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13895        cfg_size = 1;
13896        break;
13897    case 2:
13898        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13899        cfg_size = 1;
13900        break;
13901    case 3:
13902        if (sc->link_params.multi_phy_config &
13903            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13904            sc->port.supported[1] =
13905                sc->link_params.phy[ELINK_EXT_PHY1].supported;
13906            sc->port.supported[0] =
13907                sc->link_params.phy[ELINK_EXT_PHY2].supported;
13908        } else {
13909            sc->port.supported[0] =
13910                sc->link_params.phy[ELINK_EXT_PHY1].supported;
13911            sc->port.supported[1] =
13912                sc->link_params.phy[ELINK_EXT_PHY2].supported;
13913        }
13914        cfg_size = 2;
13915        break;
13916    }
13917
13918    if (!(sc->port.supported[0] || sc->port.supported[1])) {
13919        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13920              SHMEM_RD(sc,
13921                       dev_info.port_hw_config[port].external_phy_config),
13922              SHMEM_RD(sc,
13923                       dev_info.port_hw_config[port].external_phy_config2));
13924        return;
13925    }
13926
13927    if (CHIP_IS_E3(sc))
13928        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13929    else {
13930        switch (switch_cfg) {
13931        case ELINK_SWITCH_CFG_1G:
13932            sc->port.phy_addr =
13933                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13934            break;
13935        case ELINK_SWITCH_CFG_10G:
13936            sc->port.phy_addr =
13937                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13938            break;
13939        default:
13940            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13941                  sc->port.link_config[0]);
13942            return;
13943        }
13944    }
13945
13946    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
13947
13948    /* mask what we support according to speed_cap_mask per configuration */
13949    for (idx = 0; idx < cfg_size; idx++) {
13950        if (!(sc->link_params.speed_cap_mask[idx] &
13951              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
13952            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
13953        }
13954
13955        if (!(sc->link_params.speed_cap_mask[idx] &
13956              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
13957            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
13958        }
13959
13960        if (!(sc->link_params.speed_cap_mask[idx] &
13961              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
13962            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
13963        }
13964
13965        if (!(sc->link_params.speed_cap_mask[idx] &
13966              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
13967            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
13968        }
13969
13970        if (!(sc->link_params.speed_cap_mask[idx] &
13971              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
13972            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
13973        }
13974
13975        if (!(sc->link_params.speed_cap_mask[idx] &
13976              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
13977            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
13978        }
13979
13980        if (!(sc->link_params.speed_cap_mask[idx] &
13981              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
13982            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
13983        }
13984
13985        if (!(sc->link_params.speed_cap_mask[idx] &
13986              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
13987            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
13988        }
13989    }
13990
13991    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
13992          sc->port.supported[0], sc->port.supported[1]);
13993}
13994
13995static void
13996bxe_link_settings_requested(struct bxe_softc *sc)
13997{
13998    uint32_t link_config;
13999    uint32_t idx;
14000    uint32_t cfg_size = 0;
14001
14002    sc->port.advertising[0] = 0;
14003    sc->port.advertising[1] = 0;
14004
14005    switch (sc->link_params.num_phys) {
14006    case 1:
14007    case 2:
14008        cfg_size = 1;
14009        break;
14010    case 3:
14011        cfg_size = 2;
14012        break;
14013    }
14014
14015    for (idx = 0; idx < cfg_size; idx++) {
14016        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14017        link_config = sc->port.link_config[idx];
14018
14019        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14020        case PORT_FEATURE_LINK_SPEED_AUTO:
14021            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14022                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14023                sc->port.advertising[idx] |= sc->port.supported[idx];
14024                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14025                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14026                    sc->port.advertising[idx] |=
14027                        (ELINK_SUPPORTED_100baseT_Half |
14028                         ELINK_SUPPORTED_100baseT_Full);
14029            } else {
14030                /* force 10G, no AN */
14031                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14032                sc->port.advertising[idx] |=
14033                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14034                continue;
14035            }
14036            break;
14037
14038        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14039            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14040                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14041                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14042                                              ADVERTISED_TP);
14043            } else {
14044                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14045                          "speed_cap_mask=0x%08x\n",
14046                      link_config, sc->link_params.speed_cap_mask[idx]);
14047                return;
14048            }
14049            break;
14050
14051        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14052            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14053                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14054                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14055                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14056                                              ADVERTISED_TP);
14057            } else {
14058                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14059                          "speed_cap_mask=0x%08x\n",
14060                      link_config, sc->link_params.speed_cap_mask[idx]);
14061                return;
14062            }
14063            break;
14064
14065        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14066            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14067                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14068                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14069                                              ADVERTISED_TP);
14070            } else {
14071                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14072                          "speed_cap_mask=0x%08x\n",
14073                      link_config, sc->link_params.speed_cap_mask[idx]);
14074                return;
14075            }
14076            break;
14077
14078        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14079            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14080                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14081                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14082                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14083                                              ADVERTISED_TP);
14084            } else {
14085                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14086                          "speed_cap_mask=0x%08x\n",
14087                      link_config, sc->link_params.speed_cap_mask[idx]);
14088                return;
14089            }
14090            break;
14091
14092        case PORT_FEATURE_LINK_SPEED_1G:
14093            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14094                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14095                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14096                                              ADVERTISED_TP);
14097            } else {
14098                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14099                          "speed_cap_mask=0x%08x\n",
14100                      link_config, sc->link_params.speed_cap_mask[idx]);
14101                return;
14102            }
14103            break;
14104
14105        case PORT_FEATURE_LINK_SPEED_2_5G:
14106            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14107                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14108                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14109                                              ADVERTISED_TP);
14110            } else {
14111                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14112                          "speed_cap_mask=0x%08x\n",
14113                      link_config, sc->link_params.speed_cap_mask[idx]);
14114                return;
14115            }
14116            break;
14117
14118        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14119            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14120                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14121                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14122                                              ADVERTISED_FIBRE);
14123            } else {
14124                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14125                          "speed_cap_mask=0x%08x\n",
14126                      link_config, sc->link_params.speed_cap_mask[idx]);
14127                return;
14128            }
14129            break;
14130
14131        case PORT_FEATURE_LINK_SPEED_20G:
14132            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14133            break;
14134
14135        default:
14136            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14137                      "speed_cap_mask=0x%08x\n",
14138                  link_config, sc->link_params.speed_cap_mask[idx]);
14139            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14140            sc->port.advertising[idx] = sc->port.supported[idx];
14141            break;
14142        }
14143
14144        sc->link_params.req_flow_ctrl[idx] =
14145            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14146
14147        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14148            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14149                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14150            } else {
14151                bxe_set_requested_fc(sc);
14152            }
14153        }
14154
14155        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14156                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14157              sc->link_params.req_line_speed[idx],
14158              sc->link_params.req_duplex[idx],
14159              sc->link_params.req_flow_ctrl[idx],
14160              sc->port.advertising[idx]);
14161    }
14162}
14163
14164static void
14165bxe_get_phy_info(struct bxe_softc *sc)
14166{
14167    uint8_t port = SC_PORT(sc);
14168    uint32_t config = sc->port.config;
14169    uint32_t eee_mode;
14170
14171    /* shmem data already read in bxe_get_shmem_info() */
14172
14173    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14174                        "link_config0=0x%08x\n",
14175               sc->link_params.lane_config,
14176               sc->link_params.speed_cap_mask[0],
14177               sc->port.link_config[0]);
14178
14179    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14180    bxe_link_settings_requested(sc);
14181
14182    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14183        sc->link_params.feature_config_flags |=
14184            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14185    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14186        sc->link_params.feature_config_flags &=
14187            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14188    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14189        sc->link_params.feature_config_flags |=
14190            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14191    }
14192
14193    /* configure link feature according to nvram value */
14194    eee_mode =
14195        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14196          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14197         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14198    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14199        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14200                                    ELINK_EEE_MODE_ENABLE_LPI |
14201                                    ELINK_EEE_MODE_OUTPUT_TIME);
14202    } else {
14203        sc->link_params.eee_mode = 0;
14204    }
14205
14206    /* get the media type */
14207    bxe_media_detect(sc);
14208}
14209
14210static void
14211bxe_get_params(struct bxe_softc *sc)
14212{
14213    /* get user tunable params */
14214    bxe_get_tunable_params(sc);
14215
14216    /* select the RX and TX ring sizes */
14217    sc->tx_ring_size = TX_BD_USABLE;
14218    sc->rx_ring_size = RX_BD_USABLE;
14219
14220    /* XXX disable WoL */
14221    sc->wol = 0;
14222}
14223
14224static void
14225bxe_set_modes_bitmap(struct bxe_softc *sc)
14226{
14227    uint32_t flags = 0;
14228
14229    if (CHIP_REV_IS_FPGA(sc)) {
14230        SET_FLAGS(flags, MODE_FPGA);
14231    } else if (CHIP_REV_IS_EMUL(sc)) {
14232        SET_FLAGS(flags, MODE_EMUL);
14233    } else {
14234        SET_FLAGS(flags, MODE_ASIC);
14235    }
14236
14237    if (CHIP_IS_MODE_4_PORT(sc)) {
14238        SET_FLAGS(flags, MODE_PORT4);
14239    } else {
14240        SET_FLAGS(flags, MODE_PORT2);
14241    }
14242
14243    if (CHIP_IS_E2(sc)) {
14244        SET_FLAGS(flags, MODE_E2);
14245    } else if (CHIP_IS_E3(sc)) {
14246        SET_FLAGS(flags, MODE_E3);
14247        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14248            SET_FLAGS(flags, MODE_E3_A0);
14249        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14250            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14251        }
14252    }
14253
14254    if (IS_MF(sc)) {
14255        SET_FLAGS(flags, MODE_MF);
14256        switch (sc->devinfo.mf_info.mf_mode) {
14257        case MULTI_FUNCTION_SD:
14258            SET_FLAGS(flags, MODE_MF_SD);
14259            break;
14260        case MULTI_FUNCTION_SI:
14261            SET_FLAGS(flags, MODE_MF_SI);
14262            break;
14263        case MULTI_FUNCTION_AFEX:
14264            SET_FLAGS(flags, MODE_MF_AFEX);
14265            break;
14266        }
14267    } else {
14268        SET_FLAGS(flags, MODE_SF);
14269    }
14270
14271#if defined(__LITTLE_ENDIAN)
14272    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14273#else /* __BIG_ENDIAN */
14274    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14275#endif
14276
14277    INIT_MODE_FLAGS(sc) = flags;
14278}
14279
14280static int
14281bxe_alloc_hsi_mem(struct bxe_softc *sc)
14282{
14283    struct bxe_fastpath *fp;
14284    bus_addr_t busaddr;
14285    int max_agg_queues;
14286    int max_segments;
14287    bus_size_t max_size;
14288    bus_size_t max_seg_size;
14289    char buf[32];
14290    int rc;
14291    int i, j;
14292
14293    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14294
14295    /* allocate the parent bus DMA tag */
14296    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14297                            1,                        /* alignment */
14298                            0,                        /* boundary limit */
14299                            BUS_SPACE_MAXADDR,        /* restricted low */
14300                            BUS_SPACE_MAXADDR,        /* restricted hi */
14301                            NULL,                     /* addr filter() */
14302                            NULL,                     /* addr filter() arg */
14303                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14304                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14305                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14306                            0,                        /* flags */
14307                            NULL,                     /* lock() */
14308                            NULL,                     /* lock() arg */
14309                            &sc->parent_dma_tag);     /* returned dma tag */
14310    if (rc != 0) {
14311        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14312        return (1);
14313    }
14314
14315    /************************/
14316    /* DEFAULT STATUS BLOCK */
14317    /************************/
14318
14319    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14320                      &sc->def_sb_dma, "default status block") != 0) {
14321        /* XXX */
14322        bus_dma_tag_destroy(sc->parent_dma_tag);
14323        return (1);
14324    }
14325
14326    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14327
14328    /***************/
14329    /* EVENT QUEUE */
14330    /***************/
14331
14332    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14333                      &sc->eq_dma, "event queue") != 0) {
14334        /* XXX */
14335        bxe_dma_free(sc, &sc->def_sb_dma);
14336        sc->def_sb = NULL;
14337        bus_dma_tag_destroy(sc->parent_dma_tag);
14338        return (1);
14339    }
14340
14341    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14342
14343    /*************/
14344    /* SLOW PATH */
14345    /*************/
14346
14347    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14348                      &sc->sp_dma, "slow path") != 0) {
14349        /* XXX */
14350        bxe_dma_free(sc, &sc->eq_dma);
14351        sc->eq = NULL;
14352        bxe_dma_free(sc, &sc->def_sb_dma);
14353        sc->def_sb = NULL;
14354        bus_dma_tag_destroy(sc->parent_dma_tag);
14355        return (1);
14356    }
14357
14358    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14359
14360    /*******************/
14361    /* SLOW PATH QUEUE */
14362    /*******************/
14363
14364    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14365                      &sc->spq_dma, "slow path queue") != 0) {
14366        /* XXX */
14367        bxe_dma_free(sc, &sc->sp_dma);
14368        sc->sp = NULL;
14369        bxe_dma_free(sc, &sc->eq_dma);
14370        sc->eq = NULL;
14371        bxe_dma_free(sc, &sc->def_sb_dma);
14372        sc->def_sb = NULL;
14373        bus_dma_tag_destroy(sc->parent_dma_tag);
14374        return (1);
14375    }
14376
14377    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14378
14379    /***************************/
14380    /* FW DECOMPRESSION BUFFER */
14381    /***************************/
14382
14383    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14384                      "fw decompression buffer") != 0) {
14385        /* XXX */
14386        bxe_dma_free(sc, &sc->spq_dma);
14387        sc->spq = NULL;
14388        bxe_dma_free(sc, &sc->sp_dma);
14389        sc->sp = NULL;
14390        bxe_dma_free(sc, &sc->eq_dma);
14391        sc->eq = NULL;
14392        bxe_dma_free(sc, &sc->def_sb_dma);
14393        sc->def_sb = NULL;
14394        bus_dma_tag_destroy(sc->parent_dma_tag);
14395        return (1);
14396    }
14397
14398    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14399
14400    if ((sc->gz_strm =
14401         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14402        /* XXX */
14403        bxe_dma_free(sc, &sc->gz_buf_dma);
14404        sc->gz_buf = NULL;
14405        bxe_dma_free(sc, &sc->spq_dma);
14406        sc->spq = NULL;
14407        bxe_dma_free(sc, &sc->sp_dma);
14408        sc->sp = NULL;
14409        bxe_dma_free(sc, &sc->eq_dma);
14410        sc->eq = NULL;
14411        bxe_dma_free(sc, &sc->def_sb_dma);
14412        sc->def_sb = NULL;
14413        bus_dma_tag_destroy(sc->parent_dma_tag);
14414        return (1);
14415    }
14416
14417    /*************/
14418    /* FASTPATHS */
14419    /*************/
14420
14421    /* allocate DMA memory for each fastpath structure */
14422    for (i = 0; i < sc->num_queues; i++) {
14423        fp = &sc->fp[i];
14424        fp->sc    = sc;
14425        fp->index = i;
14426
14427        /*******************/
14428        /* FP STATUS BLOCK */
14429        /*******************/
14430
14431        snprintf(buf, sizeof(buf), "fp %d status block", i);
14432        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14433                          &fp->sb_dma, buf) != 0) {
14434            /* XXX unwind and free previous fastpath allocations */
14435            BLOGE(sc, "Failed to alloc %s\n", buf);
14436            return (1);
14437        } else {
14438            if (CHIP_IS_E2E3(sc)) {
14439                fp->status_block.e2_sb =
14440                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14441            } else {
14442                fp->status_block.e1x_sb =
14443                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14444            }
14445        }
14446
14447        /******************/
14448        /* FP TX BD CHAIN */
14449        /******************/
14450
14451        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14452        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14453                          &fp->tx_dma, buf) != 0) {
14454            /* XXX unwind and free previous fastpath allocations */
14455            BLOGE(sc, "Failed to alloc %s\n", buf);
14456            return (1);
14457        } else {
14458            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14459        }
14460
14461        /* link together the tx bd chain pages */
14462        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14463            /* index into the tx bd chain array to last entry per page */
14464            struct eth_tx_next_bd *tx_next_bd =
14465                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14466            /* point to the next page and wrap from last page */
14467            busaddr = (fp->tx_dma.paddr +
14468                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14469            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14470            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14471        }
14472
14473        /******************/
14474        /* FP RX BD CHAIN */
14475        /******************/
14476
14477        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14478        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14479                          &fp->rx_dma, buf) != 0) {
14480            /* XXX unwind and free previous fastpath allocations */
14481            BLOGE(sc, "Failed to alloc %s\n", buf);
14482            return (1);
14483        } else {
14484            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14485        }
14486
14487        /* link together the rx bd chain pages */
14488        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14489            /* index into the rx bd chain array to last entry per page */
14490            struct eth_rx_bd *rx_bd =
14491                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14492            /* point to the next page and wrap from last page */
14493            busaddr = (fp->rx_dma.paddr +
14494                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14495            rx_bd->addr_hi = htole32(U64_HI(busaddr));
14496            rx_bd->addr_lo = htole32(U64_LO(busaddr));
14497        }
14498
14499        /*******************/
14500        /* FP RX RCQ CHAIN */
14501        /*******************/
14502
14503        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14504        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14505                          &fp->rcq_dma, buf) != 0) {
14506            /* XXX unwind and free previous fastpath allocations */
14507            BLOGE(sc, "Failed to alloc %s\n", buf);
14508            return (1);
14509        } else {
14510            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14511        }
14512
14513        /* link together the rcq chain pages */
14514        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14515            /* index into the rcq chain array to last entry per page */
14516            struct eth_rx_cqe_next_page *rx_cqe_next =
14517                (struct eth_rx_cqe_next_page *)
14518                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14519            /* point to the next page and wrap from last page */
14520            busaddr = (fp->rcq_dma.paddr +
14521                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14522            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14523            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14524        }
14525
14526        /*******************/
14527        /* FP RX SGE CHAIN */
14528        /*******************/
14529
14530        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14531        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14532                          &fp->rx_sge_dma, buf) != 0) {
14533            /* XXX unwind and free previous fastpath allocations */
14534            BLOGE(sc, "Failed to alloc %s\n", buf);
14535            return (1);
14536        } else {
14537            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14538        }
14539
14540        /* link together the sge chain pages */
14541        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14542            /* index into the rcq chain array to last entry per page */
14543            struct eth_rx_sge *rx_sge =
14544                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14545            /* point to the next page and wrap from last page */
14546            busaddr = (fp->rx_sge_dma.paddr +
14547                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14548            rx_sge->addr_hi = htole32(U64_HI(busaddr));
14549            rx_sge->addr_lo = htole32(U64_LO(busaddr));
14550        }
14551
14552        /***********************/
14553        /* FP TX MBUF DMA MAPS */
14554        /***********************/
14555
14556        /* set required sizes before mapping to conserve resources */
14557        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14558            max_size     = BXE_TSO_MAX_SIZE;
14559            max_segments = BXE_TSO_MAX_SEGMENTS;
14560            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14561        } else {
14562            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14563            max_segments = BXE_MAX_SEGMENTS;
14564            max_seg_size = MCLBYTES;
14565        }
14566
14567        /* create a dma tag for the tx mbufs */
14568        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14569                                1,                  /* alignment */
14570                                0,                  /* boundary limit */
14571                                BUS_SPACE_MAXADDR,  /* restricted low */
14572                                BUS_SPACE_MAXADDR,  /* restricted hi */
14573                                NULL,               /* addr filter() */
14574                                NULL,               /* addr filter() arg */
14575                                max_size,           /* max map size */
14576                                max_segments,       /* num discontinuous */
14577                                max_seg_size,       /* max seg size */
14578                                0,                  /* flags */
14579                                NULL,               /* lock() */
14580                                NULL,               /* lock() arg */
14581                                &fp->tx_mbuf_tag);  /* returned dma tag */
14582        if (rc != 0) {
14583            /* XXX unwind and free previous fastpath allocations */
14584            BLOGE(sc, "Failed to create dma tag for "
14585                      "'fp %d tx mbufs' (%d)\n", i, rc);
14586            return (1);
14587        }
14588
14589        /* create dma maps for each of the tx mbuf clusters */
14590        for (j = 0; j < TX_BD_TOTAL; j++) {
14591            if (bus_dmamap_create(fp->tx_mbuf_tag,
14592                                  BUS_DMA_NOWAIT,
14593                                  &fp->tx_mbuf_chain[j].m_map)) {
14594                /* XXX unwind and free previous fastpath allocations */
14595                BLOGE(sc, "Failed to create dma map for "
14596                          "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14597                return (1);
14598            }
14599        }
14600
14601        /***********************/
14602        /* FP RX MBUF DMA MAPS */
14603        /***********************/
14604
14605        /* create a dma tag for the rx mbufs */
14606        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14607                                1,                  /* alignment */
14608                                0,                  /* boundary limit */
14609                                BUS_SPACE_MAXADDR,  /* restricted low */
14610                                BUS_SPACE_MAXADDR,  /* restricted hi */
14611                                NULL,               /* addr filter() */
14612                                NULL,               /* addr filter() arg */
14613                                MJUM9BYTES,         /* max map size */
14614                                1,                  /* num discontinuous */
14615                                MJUM9BYTES,         /* max seg size */
14616                                0,                  /* flags */
14617                                NULL,               /* lock() */
14618                                NULL,               /* lock() arg */
14619                                &fp->rx_mbuf_tag);  /* returned dma tag */
14620        if (rc != 0) {
14621            /* XXX unwind and free previous fastpath allocations */
14622            BLOGE(sc, "Failed to create dma tag for "
14623                      "'fp %d rx mbufs' (%d)\n", i, rc);
14624            return (1);
14625        }
14626
14627        /* create dma maps for each of the rx mbuf clusters */
14628        for (j = 0; j < RX_BD_TOTAL; j++) {
14629            if (bus_dmamap_create(fp->rx_mbuf_tag,
14630                                  BUS_DMA_NOWAIT,
14631                                  &fp->rx_mbuf_chain[j].m_map)) {
14632                /* XXX unwind and free previous fastpath allocations */
14633                BLOGE(sc, "Failed to create dma map for "
14634                          "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14635                return (1);
14636            }
14637        }
14638
14639        /* create dma map for the spare rx mbuf cluster */
14640        if (bus_dmamap_create(fp->rx_mbuf_tag,
14641                              BUS_DMA_NOWAIT,
14642                              &fp->rx_mbuf_spare_map)) {
14643            /* XXX unwind and free previous fastpath allocations */
14644            BLOGE(sc, "Failed to create dma map for "
14645                      "'fp %d spare rx mbuf' (%d)\n", i, rc);
14646            return (1);
14647        }
14648
14649        /***************************/
14650        /* FP RX SGE MBUF DMA MAPS */
14651        /***************************/
14652
14653        /* create a dma tag for the rx sge mbufs */
14654        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14655                                1,                  /* alignment */
14656                                0,                  /* boundary limit */
14657                                BUS_SPACE_MAXADDR,  /* restricted low */
14658                                BUS_SPACE_MAXADDR,  /* restricted hi */
14659                                NULL,               /* addr filter() */
14660                                NULL,               /* addr filter() arg */
14661                                BCM_PAGE_SIZE,      /* max map size */
14662                                1,                  /* num discontinuous */
14663                                BCM_PAGE_SIZE,      /* max seg size */
14664                                0,                  /* flags */
14665                                NULL,               /* lock() */
14666                                NULL,               /* lock() arg */
14667                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
14668        if (rc != 0) {
14669            /* XXX unwind and free previous fastpath allocations */
14670            BLOGE(sc, "Failed to create dma tag for "
14671                      "'fp %d rx sge mbufs' (%d)\n", i, rc);
14672            return (1);
14673        }
14674
14675        /* create dma maps for the rx sge mbuf clusters */
14676        for (j = 0; j < RX_SGE_TOTAL; j++) {
14677            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14678                                  BUS_DMA_NOWAIT,
14679                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
14680                /* XXX unwind and free previous fastpath allocations */
14681                BLOGE(sc, "Failed to create dma map for "
14682                          "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14683                return (1);
14684            }
14685        }
14686
14687        /* create dma map for the spare rx sge mbuf cluster */
14688        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14689                              BUS_DMA_NOWAIT,
14690                              &fp->rx_sge_mbuf_spare_map)) {
14691            /* XXX unwind and free previous fastpath allocations */
14692            BLOGE(sc, "Failed to create dma map for "
14693                      "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14694            return (1);
14695        }
14696
14697        /***************************/
14698        /* FP RX TPA MBUF DMA MAPS */
14699        /***************************/
14700
14701        /* create dma maps for the rx tpa mbuf clusters */
14702        max_agg_queues = MAX_AGG_QS(sc);
14703
14704        for (j = 0; j < max_agg_queues; j++) {
14705            if (bus_dmamap_create(fp->rx_mbuf_tag,
14706                                  BUS_DMA_NOWAIT,
14707                                  &fp->rx_tpa_info[j].bd.m_map)) {
14708                /* XXX unwind and free previous fastpath allocations */
14709                BLOGE(sc, "Failed to create dma map for "
14710                          "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14711                return (1);
14712            }
14713        }
14714
14715        /* create dma map for the spare rx tpa mbuf cluster */
14716        if (bus_dmamap_create(fp->rx_mbuf_tag,
14717                              BUS_DMA_NOWAIT,
14718                              &fp->rx_tpa_info_mbuf_spare_map)) {
14719            /* XXX unwind and free previous fastpath allocations */
14720            BLOGE(sc, "Failed to create dma map for "
14721                      "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14722            return (1);
14723        }
14724
14725        bxe_init_sge_ring_bit_mask(fp);
14726    }
14727
14728    return (0);
14729}
14730
14731static void
14732bxe_free_hsi_mem(struct bxe_softc *sc)
14733{
14734    struct bxe_fastpath *fp;
14735    int max_agg_queues;
14736    int i, j;
14737
14738    if (sc->parent_dma_tag == NULL) {
14739        return; /* assume nothing was allocated */
14740    }
14741
14742    for (i = 0; i < sc->num_queues; i++) {
14743        fp = &sc->fp[i];
14744
14745        /*******************/
14746        /* FP STATUS BLOCK */
14747        /*******************/
14748
14749        bxe_dma_free(sc, &fp->sb_dma);
14750        memset(&fp->status_block, 0, sizeof(fp->status_block));
14751
14752        /******************/
14753        /* FP TX BD CHAIN */
14754        /******************/
14755
14756        bxe_dma_free(sc, &fp->tx_dma);
14757        fp->tx_chain = NULL;
14758
14759        /******************/
14760        /* FP RX BD CHAIN */
14761        /******************/
14762
14763        bxe_dma_free(sc, &fp->rx_dma);
14764        fp->rx_chain = NULL;
14765
14766        /*******************/
14767        /* FP RX RCQ CHAIN */
14768        /*******************/
14769
14770        bxe_dma_free(sc, &fp->rcq_dma);
14771        fp->rcq_chain = NULL;
14772
14773        /*******************/
14774        /* FP RX SGE CHAIN */
14775        /*******************/
14776
14777        bxe_dma_free(sc, &fp->rx_sge_dma);
14778        fp->rx_sge_chain = NULL;
14779
14780        /***********************/
14781        /* FP TX MBUF DMA MAPS */
14782        /***********************/
14783
14784        if (fp->tx_mbuf_tag != NULL) {
14785            for (j = 0; j < TX_BD_TOTAL; j++) {
14786                if (fp->tx_mbuf_chain[j].m_map != NULL) {
14787                    bus_dmamap_unload(fp->tx_mbuf_tag,
14788                                      fp->tx_mbuf_chain[j].m_map);
14789                    bus_dmamap_destroy(fp->tx_mbuf_tag,
14790                                       fp->tx_mbuf_chain[j].m_map);
14791                }
14792            }
14793
14794            bus_dma_tag_destroy(fp->tx_mbuf_tag);
14795            fp->tx_mbuf_tag = NULL;
14796        }
14797
14798        /***********************/
14799        /* FP RX MBUF DMA MAPS */
14800        /***********************/
14801
14802        if (fp->rx_mbuf_tag != NULL) {
14803            for (j = 0; j < RX_BD_TOTAL; j++) {
14804                if (fp->rx_mbuf_chain[j].m_map != NULL) {
14805                    bus_dmamap_unload(fp->rx_mbuf_tag,
14806                                      fp->rx_mbuf_chain[j].m_map);
14807                    bus_dmamap_destroy(fp->rx_mbuf_tag,
14808                                       fp->rx_mbuf_chain[j].m_map);
14809                }
14810            }
14811
14812            if (fp->rx_mbuf_spare_map != NULL) {
14813                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14814                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14815            }
14816
14817            /***************************/
14818            /* FP RX TPA MBUF DMA MAPS */
14819            /***************************/
14820
14821            max_agg_queues = MAX_AGG_QS(sc);
14822
14823            for (j = 0; j < max_agg_queues; j++) {
14824                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14825                    bus_dmamap_unload(fp->rx_mbuf_tag,
14826                                      fp->rx_tpa_info[j].bd.m_map);
14827                    bus_dmamap_destroy(fp->rx_mbuf_tag,
14828                                       fp->rx_tpa_info[j].bd.m_map);
14829                }
14830            }
14831
14832            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14833                bus_dmamap_unload(fp->rx_mbuf_tag,
14834                                  fp->rx_tpa_info_mbuf_spare_map);
14835                bus_dmamap_destroy(fp->rx_mbuf_tag,
14836                                   fp->rx_tpa_info_mbuf_spare_map);
14837            }
14838
14839            bus_dma_tag_destroy(fp->rx_mbuf_tag);
14840            fp->rx_mbuf_tag = NULL;
14841        }
14842
14843        /***************************/
14844        /* FP RX SGE MBUF DMA MAPS */
14845        /***************************/
14846
14847        if (fp->rx_sge_mbuf_tag != NULL) {
14848            for (j = 0; j < RX_SGE_TOTAL; j++) {
14849                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14850                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14851                                      fp->rx_sge_mbuf_chain[j].m_map);
14852                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14853                                       fp->rx_sge_mbuf_chain[j].m_map);
14854                }
14855            }
14856
14857            if (fp->rx_sge_mbuf_spare_map != NULL) {
14858                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14859                                  fp->rx_sge_mbuf_spare_map);
14860                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14861                                   fp->rx_sge_mbuf_spare_map);
14862            }
14863
14864            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14865            fp->rx_sge_mbuf_tag = NULL;
14866        }
14867    }
14868
14869    /***************************/
14870    /* FW DECOMPRESSION BUFFER */
14871    /***************************/
14872
14873    bxe_dma_free(sc, &sc->gz_buf_dma);
14874    sc->gz_buf = NULL;
14875    free(sc->gz_strm, M_DEVBUF);
14876    sc->gz_strm = NULL;
14877
14878    /*******************/
14879    /* SLOW PATH QUEUE */
14880    /*******************/
14881
14882    bxe_dma_free(sc, &sc->spq_dma);
14883    sc->spq = NULL;
14884
14885    /*************/
14886    /* SLOW PATH */
14887    /*************/
14888
14889    bxe_dma_free(sc, &sc->sp_dma);
14890    sc->sp = NULL;
14891
14892    /***************/
14893    /* EVENT QUEUE */
14894    /***************/
14895
14896    bxe_dma_free(sc, &sc->eq_dma);
14897    sc->eq = NULL;
14898
14899    /************************/
14900    /* DEFAULT STATUS BLOCK */
14901    /************************/
14902
14903    bxe_dma_free(sc, &sc->def_sb_dma);
14904    sc->def_sb = NULL;
14905
14906    bus_dma_tag_destroy(sc->parent_dma_tag);
14907    sc->parent_dma_tag = NULL;
14908}
14909
14910/*
14911 * Previous driver DMAE transaction may have occurred when pre-boot stage
14912 * ended and boot began. This would invalidate the addresses of the
14913 * transaction, resulting in was-error bit set in the PCI causing all
14914 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14915 * the interrupt which detected this from the pglueb and the was-done bit
14916 */
14917static void
14918bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14919{
14920    uint32_t val;
14921
14922    if (!CHIP_IS_E1x(sc)) {
14923        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14924        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14925            BLOGD(sc, DBG_LOAD,
14926                  "Clearing 'was-error' bit that was set in pglueb");
14927            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14928        }
14929    }
14930}
14931
14932static int
14933bxe_prev_mcp_done(struct bxe_softc *sc)
14934{
14935    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
14936                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
14937    if (!rc) {
14938        BLOGE(sc, "MCP response failure, aborting\n");
14939        return (-1);
14940    }
14941
14942    return (0);
14943}
14944
14945static struct bxe_prev_list_node *
14946bxe_prev_path_get_entry(struct bxe_softc *sc)
14947{
14948    struct bxe_prev_list_node *tmp;
14949
14950    LIST_FOREACH(tmp, &bxe_prev_list, node) {
14951        if ((sc->pcie_bus == tmp->bus) &&
14952            (sc->pcie_device == tmp->slot) &&
14953            (SC_PATH(sc) == tmp->path)) {
14954            return (tmp);
14955        }
14956    }
14957
14958    return (NULL);
14959}
14960
14961static uint8_t
14962bxe_prev_is_path_marked(struct bxe_softc *sc)
14963{
14964    struct bxe_prev_list_node *tmp;
14965    int rc = FALSE;
14966
14967    mtx_lock(&bxe_prev_mtx);
14968
14969    tmp = bxe_prev_path_get_entry(sc);
14970    if (tmp) {
14971        if (tmp->aer) {
14972            BLOGD(sc, DBG_LOAD,
14973                  "Path %d/%d/%d was marked by AER\n",
14974                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14975        } else {
14976            rc = TRUE;
14977            BLOGD(sc, DBG_LOAD,
14978                  "Path %d/%d/%d was already cleaned from previous drivers\n",
14979                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14980        }
14981    }
14982
14983    mtx_unlock(&bxe_prev_mtx);
14984
14985    return (rc);
14986}
14987
14988static int
14989bxe_prev_mark_path(struct bxe_softc *sc,
14990                   uint8_t          after_undi)
14991{
14992    struct bxe_prev_list_node *tmp;
14993
14994    mtx_lock(&bxe_prev_mtx);
14995
14996    /* Check whether the entry for this path already exists */
14997    tmp = bxe_prev_path_get_entry(sc);
14998    if (tmp) {
14999        if (!tmp->aer) {
15000            BLOGD(sc, DBG_LOAD,
15001                  "Re-marking AER in path %d/%d/%d\n",
15002                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15003        } else {
15004            BLOGD(sc, DBG_LOAD,
15005                  "Removing AER indication from path %d/%d/%d\n",
15006                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15007            tmp->aer = 0;
15008        }
15009
15010        mtx_unlock(&bxe_prev_mtx);
15011        return (0);
15012    }
15013
15014    mtx_unlock(&bxe_prev_mtx);
15015
15016    /* Create an entry for this path and add it */
15017    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15018                 (M_NOWAIT | M_ZERO));
15019    if (!tmp) {
15020        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15021        return (-1);
15022    }
15023
15024    tmp->bus  = sc->pcie_bus;
15025    tmp->slot = sc->pcie_device;
15026    tmp->path = SC_PATH(sc);
15027    tmp->aer  = 0;
15028    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15029
15030    mtx_lock(&bxe_prev_mtx);
15031
15032    BLOGD(sc, DBG_LOAD,
15033          "Marked path %d/%d/%d - finished previous unload\n",
15034          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15035    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15036
15037    mtx_unlock(&bxe_prev_mtx);
15038
15039    return (0);
15040}
15041
15042static int
15043bxe_do_flr(struct bxe_softc *sc)
15044{
15045    int i;
15046
15047    /* only E2 and onwards support FLR */
15048    if (CHIP_IS_E1x(sc)) {
15049        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15050        return (-1);
15051    }
15052
15053    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15054    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15055        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15056              sc->devinfo.bc_ver);
15057        return (-1);
15058    }
15059
15060    /* Wait for Transaction Pending bit clean */
15061    for (i = 0; i < 4; i++) {
15062        if (i) {
15063            DELAY(((1 << (i - 1)) * 100) * 1000);
15064        }
15065
15066        if (!bxe_is_pcie_pending(sc)) {
15067            goto clear;
15068        }
15069    }
15070
15071    BLOGE(sc, "PCIE transaction is not cleared, "
15072              "proceeding with reset anyway\n");
15073
15074clear:
15075
15076    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15077    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15078
15079    return (0);
15080}
15081
15082struct bxe_mac_vals {
15083    uint32_t xmac_addr;
15084    uint32_t xmac_val;
15085    uint32_t emac_addr;
15086    uint32_t emac_val;
15087    uint32_t umac_addr;
15088    uint32_t umac_val;
15089    uint32_t bmac_addr;
15090    uint32_t bmac_val[2];
15091};
15092
15093static void
15094bxe_prev_unload_close_mac(struct bxe_softc *sc,
15095                          struct bxe_mac_vals *vals)
15096{
15097    uint32_t val, base_addr, offset, mask, reset_reg;
15098    uint8_t mac_stopped = FALSE;
15099    uint8_t port = SC_PORT(sc);
15100    uint32_t wb_data[2];
15101
15102    /* reset addresses as they also mark which values were changed */
15103    vals->bmac_addr = 0;
15104    vals->umac_addr = 0;
15105    vals->xmac_addr = 0;
15106    vals->emac_addr = 0;
15107
15108    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15109
15110    if (!CHIP_IS_E3(sc)) {
15111        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15112        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15113        if ((mask & reset_reg) && val) {
15114            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15115            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15116                                    : NIG_REG_INGRESS_BMAC0_MEM;
15117            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15118                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15119
15120            /*
15121             * use rd/wr since we cannot use dmae. This is safe
15122             * since MCP won't access the bus due to the request
15123             * to unload, and no function on the path can be
15124             * loaded at this time.
15125             */
15126            wb_data[0] = REG_RD(sc, base_addr + offset);
15127            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15128            vals->bmac_addr = base_addr + offset;
15129            vals->bmac_val[0] = wb_data[0];
15130            vals->bmac_val[1] = wb_data[1];
15131            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15132            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15133            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15134        }
15135
15136        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15137        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15138        vals->emac_val = REG_RD(sc, vals->emac_addr);
15139        REG_WR(sc, vals->emac_addr, 0);
15140        mac_stopped = TRUE;
15141    } else {
15142        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15143            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15144            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15145            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15146            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15147            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15148            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15149            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15150            REG_WR(sc, vals->xmac_addr, 0);
15151            mac_stopped = TRUE;
15152        }
15153
15154        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15155        if (mask & reset_reg) {
15156            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15157            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15158            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15159            vals->umac_val = REG_RD(sc, vals->umac_addr);
15160            REG_WR(sc, vals->umac_addr, 0);
15161            mac_stopped = TRUE;
15162        }
15163    }
15164
15165    if (mac_stopped) {
15166        DELAY(20000);
15167    }
15168}
15169
15170#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15171#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15172#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15173#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15174
15175static void
15176bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15177                         uint8_t          port,
15178                         uint8_t          inc)
15179{
15180    uint16_t rcq, bd;
15181    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15182
15183    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15184    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15185
15186    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15187    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15188
15189    BLOGD(sc, DBG_LOAD,
15190          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15191          port, bd, rcq);
15192}
15193
15194static int
15195bxe_prev_unload_common(struct bxe_softc *sc)
15196{
15197    uint32_t reset_reg, tmp_reg = 0, rc;
15198    uint8_t prev_undi = FALSE;
15199    struct bxe_mac_vals mac_vals;
15200    uint32_t timer_count = 1000;
15201    uint32_t prev_brb;
15202
15203    /*
15204     * It is possible a previous function received 'common' answer,
15205     * but hasn't loaded yet, therefore creating a scenario of
15206     * multiple functions receiving 'common' on the same path.
15207     */
15208    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15209
15210    memset(&mac_vals, 0, sizeof(mac_vals));
15211
15212    if (bxe_prev_is_path_marked(sc)) {
15213        return (bxe_prev_mcp_done(sc));
15214    }
15215
15216    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15217
15218    /* Reset should be performed after BRB is emptied */
15219    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15220        /* Close the MAC Rx to prevent BRB from filling up */
15221        bxe_prev_unload_close_mac(sc, &mac_vals);
15222
15223        /* close LLH filters towards the BRB */
15224        elink_set_rx_filter(&sc->link_params, 0);
15225
15226        /*
15227         * Check if the UNDI driver was previously loaded.
15228         * UNDI driver initializes CID offset for normal bell to 0x7
15229         */
15230        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15231            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15232            if (tmp_reg == 0x7) {
15233                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15234                prev_undi = TRUE;
15235                /* clear the UNDI indication */
15236                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15237                /* clear possible idle check errors */
15238                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15239            }
15240        }
15241
15242        /* wait until BRB is empty */
15243        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15244        while (timer_count) {
15245            prev_brb = tmp_reg;
15246
15247            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15248            if (!tmp_reg) {
15249                break;
15250            }
15251
15252            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15253
15254            /* reset timer as long as BRB actually gets emptied */
15255            if (prev_brb > tmp_reg) {
15256                timer_count = 1000;
15257            } else {
15258                timer_count--;
15259            }
15260
15261            /* If UNDI resides in memory, manually increment it */
15262            if (prev_undi) {
15263                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15264            }
15265
15266            DELAY(10);
15267        }
15268
15269        if (!timer_count) {
15270            BLOGE(sc, "Failed to empty BRB\n");
15271        }
15272    }
15273
15274    /* No packets are in the pipeline, path is ready for reset */
15275    bxe_reset_common(sc);
15276
15277    if (mac_vals.xmac_addr) {
15278        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15279    }
15280    if (mac_vals.umac_addr) {
15281        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15282    }
15283    if (mac_vals.emac_addr) {
15284        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15285    }
15286    if (mac_vals.bmac_addr) {
15287        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15288        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15289    }
15290
15291    rc = bxe_prev_mark_path(sc, prev_undi);
15292    if (rc) {
15293        bxe_prev_mcp_done(sc);
15294        return (rc);
15295    }
15296
15297    return (bxe_prev_mcp_done(sc));
15298}
15299
15300static int
15301bxe_prev_unload_uncommon(struct bxe_softc *sc)
15302{
15303    int rc;
15304
15305    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15306
15307    /* Test if previous unload process was already finished for this path */
15308    if (bxe_prev_is_path_marked(sc)) {
15309        return (bxe_prev_mcp_done(sc));
15310    }
15311
15312    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15313
15314    /*
15315     * If function has FLR capabilities, and existing FW version matches
15316     * the one required, then FLR will be sufficient to clean any residue
15317     * left by previous driver
15318     */
15319    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15320    if (!rc) {
15321        /* fw version is good */
15322        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15323        rc = bxe_do_flr(sc);
15324    }
15325
15326    if (!rc) {
15327        /* FLR was performed */
15328        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15329        return (0);
15330    }
15331
15332    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15333
15334    /* Close the MCP request, return failure*/
15335    rc = bxe_prev_mcp_done(sc);
15336    if (!rc) {
15337        rc = BXE_PREV_WAIT_NEEDED;
15338    }
15339
15340    return (rc);
15341}
15342
15343static int
15344bxe_prev_unload(struct bxe_softc *sc)
15345{
15346    int time_counter = 10;
15347    uint32_t fw, hw_lock_reg, hw_lock_val;
15348    uint32_t rc = 0;
15349
15350    /*
15351     * Clear HW from errors which may have resulted from an interrupted
15352     * DMAE transaction.
15353     */
15354    bxe_prev_interrupted_dmae(sc);
15355
15356    /* Release previously held locks */
15357    hw_lock_reg =
15358        (SC_FUNC(sc) <= 5) ?
15359            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15360            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15361
15362    hw_lock_val = (REG_RD(sc, hw_lock_reg));
15363    if (hw_lock_val) {
15364        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15365            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15366            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15367                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15368        }
15369        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15370        REG_WR(sc, hw_lock_reg, 0xffffffff);
15371    } else {
15372        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15373    }
15374
15375    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15376        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15377        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15378    }
15379
15380    do {
15381        /* Lock MCP using an unload request */
15382        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15383        if (!fw) {
15384            BLOGE(sc, "MCP response failure, aborting\n");
15385            rc = -1;
15386            break;
15387        }
15388
15389        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15390            rc = bxe_prev_unload_common(sc);
15391            break;
15392        }
15393
15394        /* non-common reply from MCP night require looping */
15395        rc = bxe_prev_unload_uncommon(sc);
15396        if (rc != BXE_PREV_WAIT_NEEDED) {
15397            break;
15398        }
15399
15400        DELAY(20000);
15401    } while (--time_counter);
15402
15403    if (!time_counter || rc) {
15404        BLOGE(sc, "Failed to unload previous driver!"
15405            " time_counter %d rc %d\n", time_counter, rc);
15406        rc = -1;
15407    }
15408
15409    return (rc);
15410}
15411
15412void
15413bxe_dcbx_set_state(struct bxe_softc *sc,
15414                   uint8_t          dcb_on,
15415                   uint32_t         dcbx_enabled)
15416{
15417    if (!CHIP_IS_E1x(sc)) {
15418        sc->dcb_state = dcb_on;
15419        sc->dcbx_enabled = dcbx_enabled;
15420    } else {
15421        sc->dcb_state = FALSE;
15422        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15423    }
15424    BLOGD(sc, DBG_LOAD,
15425          "DCB state [%s:%s]\n",
15426          dcb_on ? "ON" : "OFF",
15427          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15428          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15429          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15430          "on-chip with negotiation" : "invalid");
15431}
15432
15433/* must be called after sriov-enable */
15434static int
15435bxe_set_qm_cid_count(struct bxe_softc *sc)
15436{
15437    int cid_count = BXE_L2_MAX_CID(sc);
15438
15439    if (IS_SRIOV(sc)) {
15440        cid_count += BXE_VF_CIDS;
15441    }
15442
15443    if (CNIC_SUPPORT(sc)) {
15444        cid_count += CNIC_CID_MAX;
15445    }
15446
15447    return (roundup(cid_count, QM_CID_ROUND));
15448}
15449
15450static void
15451bxe_init_multi_cos(struct bxe_softc *sc)
15452{
15453    int pri, cos;
15454
15455    uint32_t pri_map = 0; /* XXX change to user config */
15456
15457    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15458        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15459        if (cos < sc->max_cos) {
15460            sc->prio_to_cos[pri] = cos;
15461        } else {
15462            BLOGW(sc, "Invalid COS %d for priority %d "
15463                      "(max COS is %d), setting to 0\n",
15464                  cos, pri, (sc->max_cos - 1));
15465            sc->prio_to_cos[pri] = 0;
15466        }
15467    }
15468}
15469
15470static int
15471bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15472{
15473    struct bxe_softc *sc;
15474    int error, result;
15475
15476    result = 0;
15477    error = sysctl_handle_int(oidp, &result, 0, req);
15478
15479    if (error || !req->newptr) {
15480        return (error);
15481    }
15482
15483    if (result == 1) {
15484        uint32_t  temp;
15485        sc = (struct bxe_softc *)arg1;
15486
15487        BLOGI(sc, "... dumping driver state ...\n");
15488        temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15489        BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15490    }
15491
15492    return (error);
15493}
15494
15495static int
15496bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15497{
15498    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15499    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15500    uint32_t *offset;
15501    uint64_t value = 0;
15502    int index = (int)arg2;
15503
15504    if (index >= BXE_NUM_ETH_STATS) {
15505        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15506        return (-1);
15507    }
15508
15509    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15510
15511    switch (bxe_eth_stats_arr[index].size) {
15512    case 4:
15513        value = (uint64_t)*offset;
15514        break;
15515    case 8:
15516        value = HILO_U64(*offset, *(offset + 1));
15517        break;
15518    default:
15519        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15520              index, bxe_eth_stats_arr[index].size);
15521        return (-1);
15522    }
15523
15524    return (sysctl_handle_64(oidp, &value, 0, req));
15525}
15526
15527static int
15528bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15529{
15530    struct bxe_softc *sc = (struct bxe_softc *)arg1;
15531    uint32_t *eth_stats;
15532    uint32_t *offset;
15533    uint64_t value = 0;
15534    uint32_t q_stat = (uint32_t)arg2;
15535    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15536    uint32_t index = (q_stat & 0xffff);
15537
15538    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15539
15540    if (index >= BXE_NUM_ETH_Q_STATS) {
15541        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15542        return (-1);
15543    }
15544
15545    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15546
15547    switch (bxe_eth_q_stats_arr[index].size) {
15548    case 4:
15549        value = (uint64_t)*offset;
15550        break;
15551    case 8:
15552        value = HILO_U64(*offset, *(offset + 1));
15553        break;
15554    default:
15555        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15556              index, bxe_eth_q_stats_arr[index].size);
15557        return (-1);
15558    }
15559
15560    return (sysctl_handle_64(oidp, &value, 0, req));
15561}
15562
15563static void
15564bxe_add_sysctls(struct bxe_softc *sc)
15565{
15566    struct sysctl_ctx_list *ctx;
15567    struct sysctl_oid_list *children;
15568    struct sysctl_oid *queue_top, *queue;
15569    struct sysctl_oid_list *queue_top_children, *queue_children;
15570    char queue_num_buf[32];
15571    uint32_t q_stat;
15572    int i, j;
15573
15574    ctx = device_get_sysctl_ctx(sc->dev);
15575    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15576
15577    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15578                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15579                      "version");
15580
15581    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15582             BCM_5710_FW_MAJOR_VERSION,
15583             BCM_5710_FW_MINOR_VERSION,
15584             BCM_5710_FW_REVISION_VERSION,
15585             BCM_5710_FW_ENGINEERING_VERSION);
15586
15587    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15588        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15589         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15590         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15591         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15592                                                                "Unknown"));
15593    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15594                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15595                    "multifunction vnics per port");
15596
15597    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15598        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15599         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15600         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15601                                              "???GT/s"),
15602        sc->devinfo.pcie_link_width);
15603
15604    sc->debug = bxe_debug;
15605
15606#if __FreeBSD_version >= 900000
15607    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15608                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15609                      "bootcode version");
15610    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15611                      CTLFLAG_RD, sc->fw_ver_str, 0,
15612                      "firmware version");
15613    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15614                      CTLFLAG_RD, sc->mf_mode_str, 0,
15615                      "multifunction mode");
15616    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15617                      CTLFLAG_RD, sc->mac_addr_str, 0,
15618                      "mac address");
15619    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15620                      CTLFLAG_RD, sc->pci_link_str, 0,
15621                      "pci link status");
15622    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15623                    CTLFLAG_RW, &sc->debug,
15624                    "debug logging mode");
15625#else
15626    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15627                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15628                      "bootcode version");
15629    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15630                      CTLFLAG_RD, &sc->fw_ver_str, 0,
15631                      "firmware version");
15632    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15633                      CTLFLAG_RD, &sc->mf_mode_str, 0,
15634                      "multifunction mode");
15635    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15636                      CTLFLAG_RD, &sc->mac_addr_str, 0,
15637                      "mac address");
15638    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15639                      CTLFLAG_RD, &sc->pci_link_str, 0,
15640                      "pci link status");
15641    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15642                    CTLFLAG_RW, &sc->debug, 0,
15643                    "debug logging mode");
15644#endif /* #if __FreeBSD_version >= 900000 */
15645
15646    sc->trigger_grcdump = 0;
15647    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15648                   CTLFLAG_RW, &sc->trigger_grcdump, 0,
15649                   "trigger grcdump should be invoked"
15650                   "  before collecting grcdump");
15651
15652    sc->grcdump_started = 0;
15653    sc->grcdump_done = 0;
15654    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15655                   CTLFLAG_RD, &sc->grcdump_done, 0,
15656                   "set by driver when grcdump is done");
15657
15658    sc->rx_budget = bxe_rx_budget;
15659    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15660                    CTLFLAG_RW, &sc->rx_budget, 0,
15661                    "rx processing budget");
15662
15663    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15664                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15665                    bxe_sysctl_state, "IU", "dump driver state");
15666
15667    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15668        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15669                        bxe_eth_stats_arr[i].string,
15670                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15671                        bxe_sysctl_eth_stat, "LU",
15672                        bxe_eth_stats_arr[i].string);
15673    }
15674
15675    /* add a new parent node for all queues "dev.bxe.#.queue" */
15676    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15677                                CTLFLAG_RD, NULL, "queue");
15678    queue_top_children = SYSCTL_CHILDREN(queue_top);
15679
15680    for (i = 0; i < sc->num_queues; i++) {
15681        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15682        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15683        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15684                                queue_num_buf, CTLFLAG_RD, NULL,
15685                                "single queue");
15686        queue_children = SYSCTL_CHILDREN(queue);
15687
15688        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15689            q_stat = ((i << 16) | j);
15690            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15691                            bxe_eth_q_stats_arr[j].string,
15692                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15693                            bxe_sysctl_eth_q_stat, "LU",
15694                            bxe_eth_q_stats_arr[j].string);
15695        }
15696    }
15697}
15698
15699static int
15700bxe_alloc_buf_rings(struct bxe_softc *sc)
15701{
15702#if __FreeBSD_version >= 800000
15703
15704    int i;
15705    struct bxe_fastpath *fp;
15706
15707    for (i = 0; i < sc->num_queues; i++) {
15708
15709        fp = &sc->fp[i];
15710
15711        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15712                                   M_NOWAIT, &fp->tx_mtx);
15713        if (fp->tx_br == NULL)
15714            return (-1);
15715    }
15716#endif
15717    return (0);
15718}
15719
15720static void
15721bxe_free_buf_rings(struct bxe_softc *sc)
15722{
15723#if __FreeBSD_version >= 800000
15724
15725    int i;
15726    struct bxe_fastpath *fp;
15727
15728    for (i = 0; i < sc->num_queues; i++) {
15729
15730        fp = &sc->fp[i];
15731
15732        if (fp->tx_br) {
15733            buf_ring_free(fp->tx_br, M_DEVBUF);
15734            fp->tx_br = NULL;
15735        }
15736    }
15737
15738#endif
15739}
15740
15741static void
15742bxe_init_fp_mutexs(struct bxe_softc *sc)
15743{
15744    int i;
15745    struct bxe_fastpath *fp;
15746
15747    for (i = 0; i < sc->num_queues; i++) {
15748
15749        fp = &sc->fp[i];
15750
15751        snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15752            "bxe%d_fp%d_tx_lock", sc->unit, i);
15753        mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15754
15755        snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15756            "bxe%d_fp%d_rx_lock", sc->unit, i);
15757        mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15758    }
15759}
15760
15761static void
15762bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15763{
15764    int i;
15765    struct bxe_fastpath *fp;
15766
15767    for (i = 0; i < sc->num_queues; i++) {
15768
15769        fp = &sc->fp[i];
15770
15771        if (mtx_initialized(&fp->tx_mtx)) {
15772            mtx_destroy(&fp->tx_mtx);
15773        }
15774
15775        if (mtx_initialized(&fp->rx_mtx)) {
15776            mtx_destroy(&fp->rx_mtx);
15777        }
15778    }
15779}
15780
15781
15782/*
15783 * Device attach function.
15784 *
15785 * Allocates device resources, performs secondary chip identification, and
15786 * initializes driver instance variables. This function is called from driver
15787 * load after a successful probe.
15788 *
15789 * Returns:
15790 *   0 = Success, >0 = Failure
15791 */
15792static int
15793bxe_attach(device_t dev)
15794{
15795    struct bxe_softc *sc;
15796
15797    sc = device_get_softc(dev);
15798
15799    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15800
15801    sc->state = BXE_STATE_CLOSED;
15802
15803    sc->dev  = dev;
15804    sc->unit = device_get_unit(dev);
15805
15806    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15807
15808    sc->pcie_bus    = pci_get_bus(dev);
15809    sc->pcie_device = pci_get_slot(dev);
15810    sc->pcie_func   = pci_get_function(dev);
15811
15812    /* enable bus master capability */
15813    pci_enable_busmaster(dev);
15814
15815    /* get the BARs */
15816    if (bxe_allocate_bars(sc) != 0) {
15817        return (ENXIO);
15818    }
15819
15820    /* initialize the mutexes */
15821    bxe_init_mutexes(sc);
15822
15823    /* prepare the periodic callout */
15824    callout_init(&sc->periodic_callout, 0);
15825
15826    /* prepare the chip taskqueue */
15827    sc->chip_tq_flags = CHIP_TQ_NONE;
15828    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15829             "bxe%d_chip_tq", sc->unit);
15830    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15831    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15832                                   taskqueue_thread_enqueue,
15833                                   &sc->chip_tq);
15834    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15835                            "%s", sc->chip_tq_name);
15836
15837    /* get device info and set params */
15838    if (bxe_get_device_info(sc) != 0) {
15839        BLOGE(sc, "getting device info\n");
15840        bxe_deallocate_bars(sc);
15841        pci_disable_busmaster(dev);
15842        return (ENXIO);
15843    }
15844
15845    /* get final misc params */
15846    bxe_get_params(sc);
15847
15848    /* set the default MTU (changed via ifconfig) */
15849    sc->mtu = ETHERMTU;
15850
15851    bxe_set_modes_bitmap(sc);
15852
15853    /* XXX
15854     * If in AFEX mode and the function is configured for FCoE
15855     * then bail... no L2 allowed.
15856     */
15857
15858    /* get phy settings from shmem and 'and' against admin settings */
15859    bxe_get_phy_info(sc);
15860
15861    /* initialize the FreeBSD ifnet interface */
15862    if (bxe_init_ifnet(sc) != 0) {
15863        bxe_release_mutexes(sc);
15864        bxe_deallocate_bars(sc);
15865        pci_disable_busmaster(dev);
15866        return (ENXIO);
15867    }
15868
15869    if (bxe_add_cdev(sc) != 0) {
15870        if (sc->ifp != NULL) {
15871            ether_ifdetach(sc->ifp);
15872        }
15873        ifmedia_removeall(&sc->ifmedia);
15874        bxe_release_mutexes(sc);
15875        bxe_deallocate_bars(sc);
15876        pci_disable_busmaster(dev);
15877        return (ENXIO);
15878    }
15879
15880    /* allocate device interrupts */
15881    if (bxe_interrupt_alloc(sc) != 0) {
15882        bxe_del_cdev(sc);
15883        if (sc->ifp != NULL) {
15884            ether_ifdetach(sc->ifp);
15885        }
15886        ifmedia_removeall(&sc->ifmedia);
15887        bxe_release_mutexes(sc);
15888        bxe_deallocate_bars(sc);
15889        pci_disable_busmaster(dev);
15890        return (ENXIO);
15891    }
15892
15893    bxe_init_fp_mutexs(sc);
15894
15895    if (bxe_alloc_buf_rings(sc) != 0) {
15896	bxe_free_buf_rings(sc);
15897        bxe_interrupt_free(sc);
15898        bxe_del_cdev(sc);
15899        if (sc->ifp != NULL) {
15900            ether_ifdetach(sc->ifp);
15901        }
15902        ifmedia_removeall(&sc->ifmedia);
15903        bxe_release_mutexes(sc);
15904        bxe_deallocate_bars(sc);
15905        pci_disable_busmaster(dev);
15906        return (ENXIO);
15907    }
15908
15909    /* allocate ilt */
15910    if (bxe_alloc_ilt_mem(sc) != 0) {
15911	bxe_free_buf_rings(sc);
15912        bxe_interrupt_free(sc);
15913        bxe_del_cdev(sc);
15914        if (sc->ifp != NULL) {
15915            ether_ifdetach(sc->ifp);
15916        }
15917        ifmedia_removeall(&sc->ifmedia);
15918        bxe_release_mutexes(sc);
15919        bxe_deallocate_bars(sc);
15920        pci_disable_busmaster(dev);
15921        return (ENXIO);
15922    }
15923
15924    /* allocate the host hardware/software hsi structures */
15925    if (bxe_alloc_hsi_mem(sc) != 0) {
15926        bxe_free_ilt_mem(sc);
15927	bxe_free_buf_rings(sc);
15928        bxe_interrupt_free(sc);
15929        bxe_del_cdev(sc);
15930        if (sc->ifp != NULL) {
15931            ether_ifdetach(sc->ifp);
15932        }
15933        ifmedia_removeall(&sc->ifmedia);
15934        bxe_release_mutexes(sc);
15935        bxe_deallocate_bars(sc);
15936        pci_disable_busmaster(dev);
15937        return (ENXIO);
15938    }
15939
15940    /* need to reset chip if UNDI was active */
15941    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15942        /* init fw_seq */
15943        sc->fw_seq =
15944            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15945             DRV_MSG_SEQ_NUMBER_MASK);
15946        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15947        bxe_prev_unload(sc);
15948    }
15949
15950#if 1
15951    /* XXX */
15952    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15953#else
15954    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15955        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15956        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15957        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15958        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15959        bxe_dcbx_init_params(sc);
15960    } else {
15961        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15962    }
15963#endif
15964
15965    /* calculate qm_cid_count */
15966    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15967    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15968
15969    sc->max_cos = 1;
15970    bxe_init_multi_cos(sc);
15971
15972    bxe_add_sysctls(sc);
15973
15974    return (0);
15975}
15976
15977/*
15978 * Device detach function.
15979 *
15980 * Stops the controller, resets the controller, and releases resources.
15981 *
15982 * Returns:
15983 *   0 = Success, >0 = Failure
15984 */
15985static int
15986bxe_detach(device_t dev)
15987{
15988    struct bxe_softc *sc;
15989    if_t ifp;
15990
15991    sc = device_get_softc(dev);
15992
15993    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
15994
15995    ifp = sc->ifp;
15996    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
15997        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
15998        return(EBUSY);
15999    }
16000
16001    bxe_del_cdev(sc);
16002
16003    /* stop the periodic callout */
16004    bxe_periodic_stop(sc);
16005
16006    /* stop the chip taskqueue */
16007    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16008    if (sc->chip_tq) {
16009        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16010        taskqueue_free(sc->chip_tq);
16011        sc->chip_tq = NULL;
16012    }
16013
16014    /* stop and reset the controller if it was open */
16015    if (sc->state != BXE_STATE_CLOSED) {
16016        BXE_CORE_LOCK(sc);
16017        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16018        sc->state = BXE_STATE_DISABLED;
16019        BXE_CORE_UNLOCK(sc);
16020    }
16021
16022    /* release the network interface */
16023    if (ifp != NULL) {
16024        ether_ifdetach(ifp);
16025    }
16026    ifmedia_removeall(&sc->ifmedia);
16027
16028    /* XXX do the following based on driver state... */
16029
16030    /* free the host hardware/software hsi structures */
16031    bxe_free_hsi_mem(sc);
16032
16033    /* free ilt */
16034    bxe_free_ilt_mem(sc);
16035
16036    bxe_free_buf_rings(sc);
16037
16038    /* release the interrupts */
16039    bxe_interrupt_free(sc);
16040
16041    /* Release the mutexes*/
16042    bxe_destroy_fp_mutexs(sc);
16043    bxe_release_mutexes(sc);
16044
16045
16046    /* Release the PCIe BAR mapped memory */
16047    bxe_deallocate_bars(sc);
16048
16049    /* Release the FreeBSD interface. */
16050    if (sc->ifp != NULL) {
16051        if_free(sc->ifp);
16052    }
16053
16054    pci_disable_busmaster(dev);
16055
16056    return (0);
16057}
16058
16059/*
16060 * Device shutdown function.
16061 *
16062 * Stops and resets the controller.
16063 *
16064 * Returns:
16065 *   Nothing
16066 */
16067static int
16068bxe_shutdown(device_t dev)
16069{
16070    struct bxe_softc *sc;
16071
16072    sc = device_get_softc(dev);
16073
16074    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16075
16076    /* stop the periodic callout */
16077    bxe_periodic_stop(sc);
16078
16079    BXE_CORE_LOCK(sc);
16080    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16081    BXE_CORE_UNLOCK(sc);
16082
16083    return (0);
16084}
16085
16086void
16087bxe_igu_ack_sb(struct bxe_softc *sc,
16088               uint8_t          igu_sb_id,
16089               uint8_t          segment,
16090               uint16_t         index,
16091               uint8_t          op,
16092               uint8_t          update)
16093{
16094    uint32_t igu_addr = sc->igu_base_addr;
16095    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16096    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16097}
16098
16099static void
16100bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16101                     uint8_t          func,
16102                     uint8_t          idu_sb_id,
16103                     uint8_t          is_pf)
16104{
16105    uint32_t data, ctl, cnt = 100;
16106    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16107    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16108    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16109    uint32_t sb_bit =  1 << (idu_sb_id%32);
16110    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16111    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16112
16113    /* Not supported in BC mode */
16114    if (CHIP_INT_MODE_IS_BC(sc)) {
16115        return;
16116    }
16117
16118    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16119             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16120            IGU_REGULAR_CLEANUP_SET |
16121            IGU_REGULAR_BCLEANUP);
16122
16123    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16124           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16125           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16126
16127    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16128            data, igu_addr_data);
16129    REG_WR(sc, igu_addr_data, data);
16130
16131    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16132                      BUS_SPACE_BARRIER_WRITE);
16133    mb();
16134
16135    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16136            ctl, igu_addr_ctl);
16137    REG_WR(sc, igu_addr_ctl, ctl);
16138
16139    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16140                      BUS_SPACE_BARRIER_WRITE);
16141    mb();
16142
16143    /* wait for clean up to finish */
16144    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16145        DELAY(20000);
16146    }
16147
16148    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16149        BLOGD(sc, DBG_LOAD,
16150              "Unable to finish IGU cleanup: "
16151              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16152              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16153    }
16154}
16155
16156static void
16157bxe_igu_clear_sb(struct bxe_softc *sc,
16158                 uint8_t          idu_sb_id)
16159{
16160    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16161}
16162
16163
16164
16165
16166
16167
16168
16169/*******************/
16170/* ECORE CALLBACKS */
16171/*******************/
16172
16173static void
16174bxe_reset_common(struct bxe_softc *sc)
16175{
16176    uint32_t val = 0x1400;
16177
16178    /* reset_common */
16179    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16180
16181    if (CHIP_IS_E3(sc)) {
16182        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16183        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16184    }
16185
16186    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16187}
16188
16189static void
16190bxe_common_init_phy(struct bxe_softc *sc)
16191{
16192    uint32_t shmem_base[2];
16193    uint32_t shmem2_base[2];
16194
16195    /* Avoid common init in case MFW supports LFA */
16196    if (SHMEM2_RD(sc, size) >
16197        (uint32_t)offsetof(struct shmem2_region,
16198                           lfa_host_addr[SC_PORT(sc)])) {
16199        return;
16200    }
16201
16202    shmem_base[0]  = sc->devinfo.shmem_base;
16203    shmem2_base[0] = sc->devinfo.shmem2_base;
16204
16205    if (!CHIP_IS_E1x(sc)) {
16206        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16207        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16208    }
16209
16210    bxe_acquire_phy_lock(sc);
16211    elink_common_init_phy(sc, shmem_base, shmem2_base,
16212                          sc->devinfo.chip_id, 0);
16213    bxe_release_phy_lock(sc);
16214}
16215
16216static void
16217bxe_pf_disable(struct bxe_softc *sc)
16218{
16219    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16220
16221    val &= ~IGU_PF_CONF_FUNC_EN;
16222
16223    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16224    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16225    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16226}
16227
16228static void
16229bxe_init_pxp(struct bxe_softc *sc)
16230{
16231    uint16_t devctl;
16232    int r_order, w_order;
16233
16234    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16235
16236    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16237
16238    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16239
16240    if (sc->mrrs == -1) {
16241        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16242    } else {
16243        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16244        r_order = sc->mrrs;
16245    }
16246
16247    ecore_init_pxp_arb(sc, r_order, w_order);
16248}
16249
16250static uint32_t
16251bxe_get_pretend_reg(struct bxe_softc *sc)
16252{
16253    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16254    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16255    return (base + (SC_ABS_FUNC(sc)) * stride);
16256}
16257
16258/*
16259 * Called only on E1H or E2.
16260 * When pretending to be PF, the pretend value is the function number 0..7.
16261 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16262 * combination.
16263 */
16264static int
16265bxe_pretend_func(struct bxe_softc *sc,
16266                 uint16_t         pretend_func_val)
16267{
16268    uint32_t pretend_reg;
16269
16270    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16271        return (-1);
16272    }
16273
16274    /* get my own pretend register */
16275    pretend_reg = bxe_get_pretend_reg(sc);
16276    REG_WR(sc, pretend_reg, pretend_func_val);
16277    REG_RD(sc, pretend_reg);
16278    return (0);
16279}
16280
16281static void
16282bxe_iov_init_dmae(struct bxe_softc *sc)
16283{
16284    return;
16285}
16286
16287static void
16288bxe_iov_init_dq(struct bxe_softc *sc)
16289{
16290    return;
16291}
16292
16293/* send a NIG loopback debug packet */
16294static void
16295bxe_lb_pckt(struct bxe_softc *sc)
16296{
16297    uint32_t wb_write[3];
16298
16299    /* Ethernet source and destination addresses */
16300    wb_write[0] = 0x55555555;
16301    wb_write[1] = 0x55555555;
16302    wb_write[2] = 0x20;     /* SOP */
16303    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16304
16305    /* NON-IP protocol */
16306    wb_write[0] = 0x09000000;
16307    wb_write[1] = 0x55555555;
16308    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16309    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16310}
16311
16312/*
16313 * Some of the internal memories are not directly readable from the driver.
16314 * To test them we send debug packets.
16315 */
16316static int
16317bxe_int_mem_test(struct bxe_softc *sc)
16318{
16319    int factor;
16320    int count, i;
16321    uint32_t val = 0;
16322
16323    if (CHIP_REV_IS_FPGA(sc)) {
16324        factor = 120;
16325    } else if (CHIP_REV_IS_EMUL(sc)) {
16326        factor = 200;
16327    } else {
16328        factor = 1;
16329    }
16330
16331    /* disable inputs of parser neighbor blocks */
16332    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16333    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16334    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16335    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16336
16337    /*  write 0 to parser credits for CFC search request */
16338    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16339
16340    /* send Ethernet packet */
16341    bxe_lb_pckt(sc);
16342
16343    /* TODO do i reset NIG statistic? */
16344    /* Wait until NIG register shows 1 packet of size 0x10 */
16345    count = 1000 * factor;
16346    while (count) {
16347        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16348        val = *BXE_SP(sc, wb_data[0]);
16349        if (val == 0x10) {
16350            break;
16351        }
16352
16353        DELAY(10000);
16354        count--;
16355    }
16356
16357    if (val != 0x10) {
16358        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16359        return (-1);
16360    }
16361
16362    /* wait until PRS register shows 1 packet */
16363    count = (1000 * factor);
16364    while (count) {
16365        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16366        if (val == 1) {
16367            break;
16368        }
16369
16370        DELAY(10000);
16371        count--;
16372    }
16373
16374    if (val != 0x1) {
16375        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16376        return (-2);
16377    }
16378
16379    /* Reset and init BRB, PRS */
16380    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16381    DELAY(50000);
16382    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16383    DELAY(50000);
16384    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16385    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16386
16387    /* Disable inputs of parser neighbor blocks */
16388    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16389    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16390    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16391    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16392
16393    /* Write 0 to parser credits for CFC search request */
16394    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16395
16396    /* send 10 Ethernet packets */
16397    for (i = 0; i < 10; i++) {
16398        bxe_lb_pckt(sc);
16399    }
16400
16401    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16402    count = (1000 * factor);
16403    while (count) {
16404        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16405        val = *BXE_SP(sc, wb_data[0]);
16406        if (val == 0xb0) {
16407            break;
16408        }
16409
16410        DELAY(10000);
16411        count--;
16412    }
16413
16414    if (val != 0xb0) {
16415        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16416        return (-3);
16417    }
16418
16419    /* Wait until PRS register shows 2 packets */
16420    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16421    if (val != 2) {
16422        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16423    }
16424
16425    /* Write 1 to parser credits for CFC search request */
16426    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16427
16428    /* Wait until PRS register shows 3 packets */
16429    DELAY(10000 * factor);
16430
16431    /* Wait until NIG register shows 1 packet of size 0x10 */
16432    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16433    if (val != 3) {
16434        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16435    }
16436
16437    /* clear NIG EOP FIFO */
16438    for (i = 0; i < 11; i++) {
16439        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16440    }
16441
16442    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16443    if (val != 1) {
16444        BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16445        return (-4);
16446    }
16447
16448    /* Reset and init BRB, PRS, NIG */
16449    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16450    DELAY(50000);
16451    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16452    DELAY(50000);
16453    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16454    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16455    if (!CNIC_SUPPORT(sc)) {
16456        /* set NIC mode */
16457        REG_WR(sc, PRS_REG_NIC_MODE, 1);
16458    }
16459
16460    /* Enable inputs of parser neighbor blocks */
16461    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16462    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16463    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16464    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16465
16466    return (0);
16467}
16468
16469static void
16470bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16471{
16472    int is_required;
16473    uint32_t val;
16474    int port;
16475
16476    is_required = 0;
16477    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16478           SHARED_HW_CFG_FAN_FAILURE_MASK);
16479
16480    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16481        is_required = 1;
16482    }
16483    /*
16484     * The fan failure mechanism is usually related to the PHY type since
16485     * the power consumption of the board is affected by the PHY. Currently,
16486     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16487     */
16488    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16489        for (port = PORT_0; port < PORT_MAX; port++) {
16490            is_required |= elink_fan_failure_det_req(sc,
16491                                                     sc->devinfo.shmem_base,
16492                                                     sc->devinfo.shmem2_base,
16493                                                     port);
16494        }
16495    }
16496
16497    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16498
16499    if (is_required == 0) {
16500        return;
16501    }
16502
16503    /* Fan failure is indicated by SPIO 5 */
16504    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16505
16506    /* set to active low mode */
16507    val = REG_RD(sc, MISC_REG_SPIO_INT);
16508    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16509    REG_WR(sc, MISC_REG_SPIO_INT, val);
16510
16511    /* enable interrupt to signal the IGU */
16512    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16513    val |= MISC_SPIO_SPIO5;
16514    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16515}
16516
16517static void
16518bxe_enable_blocks_attention(struct bxe_softc *sc)
16519{
16520    uint32_t val;
16521
16522    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16523    if (!CHIP_IS_E1x(sc)) {
16524        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16525    } else {
16526        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16527    }
16528    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16529    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16530    /*
16531     * mask read length error interrupts in brb for parser
16532     * (parsing unit and 'checksum and crc' unit)
16533     * these errors are legal (PU reads fixed length and CAC can cause
16534     * read length error on truncated packets)
16535     */
16536    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16537    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16538    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16539    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16540    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16541    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16542/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16543/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16544    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16545    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16546    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16547/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16548/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16549    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16550    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16551    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16552    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16553/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16554/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16555
16556    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16557           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16558           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16559    if (!CHIP_IS_E1x(sc)) {
16560        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16561                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16562    }
16563    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16564
16565    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16566    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16567    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16568/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16569
16570    if (!CHIP_IS_E1x(sc)) {
16571        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16572        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16573    }
16574
16575    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16576    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16577/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16578    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16579}
16580
16581/**
16582 * bxe_init_hw_common - initialize the HW at the COMMON phase.
16583 *
16584 * @sc:     driver handle
16585 */
16586static int
16587bxe_init_hw_common(struct bxe_softc *sc)
16588{
16589    uint8_t abs_func_id;
16590    uint32_t val;
16591
16592    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16593          SC_ABS_FUNC(sc));
16594
16595    /*
16596     * take the RESET lock to protect undi_unload flow from accessing
16597     * registers while we are resetting the chip
16598     */
16599    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16600
16601    bxe_reset_common(sc);
16602
16603    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16604
16605    val = 0xfffc;
16606    if (CHIP_IS_E3(sc)) {
16607        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16608        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16609    }
16610
16611    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16612
16613    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16614
16615    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16616    BLOGD(sc, DBG_LOAD, "after misc block init\n");
16617
16618    if (!CHIP_IS_E1x(sc)) {
16619        /*
16620         * 4-port mode or 2-port mode we need to turn off master-enable for
16621         * everyone. After that we turn it back on for self. So, we disregard
16622         * multi-function, and always disable all functions on the given path,
16623         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16624         */
16625        for (abs_func_id = SC_PATH(sc);
16626             abs_func_id < (E2_FUNC_MAX * 2);
16627             abs_func_id += 2) {
16628            if (abs_func_id == SC_ABS_FUNC(sc)) {
16629                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16630                continue;
16631            }
16632
16633            bxe_pretend_func(sc, abs_func_id);
16634
16635            /* clear pf enable */
16636            bxe_pf_disable(sc);
16637
16638            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16639        }
16640    }
16641
16642    BLOGD(sc, DBG_LOAD, "after pf disable\n");
16643
16644    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16645
16646    if (CHIP_IS_E1(sc)) {
16647        /*
16648         * enable HW interrupt from PXP on USDM overflow
16649         * bit 16 on INT_MASK_0
16650         */
16651        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16652    }
16653
16654    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16655    bxe_init_pxp(sc);
16656
16657#ifdef __BIG_ENDIAN
16658    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16659    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16660    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16661    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16662    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16663    /* make sure this value is 0 */
16664    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16665
16666    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16667    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16668    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16669    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16670    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16671#endif
16672
16673    ecore_ilt_init_page_size(sc, INITOP_SET);
16674
16675    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16676        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16677    }
16678
16679    /* let the HW do it's magic... */
16680    DELAY(100000);
16681
16682    /* finish PXP init */
16683    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16684    if (val != 1) {
16685        BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16686            val);
16687        return (-1);
16688    }
16689    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16690    if (val != 1) {
16691        BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16692        return (-1);
16693    }
16694
16695    BLOGD(sc, DBG_LOAD, "after pxp init\n");
16696
16697    /*
16698     * Timer bug workaround for E2 only. We need to set the entire ILT to have
16699     * entries with value "0" and valid bit on. This needs to be done by the
16700     * first PF that is loaded in a path (i.e. common phase)
16701     */
16702    if (!CHIP_IS_E1x(sc)) {
16703/*
16704 * In E2 there is a bug in the timers block that can cause function 6 / 7
16705 * (i.e. vnic3) to start even if it is marked as "scan-off".
16706 * This occurs when a different function (func2,3) is being marked
16707 * as "scan-off". Real-life scenario for example: if a driver is being
16708 * load-unloaded while func6,7 are down. This will cause the timer to access
16709 * the ilt, translate to a logical address and send a request to read/write.
16710 * Since the ilt for the function that is down is not valid, this will cause
16711 * a translation error which is unrecoverable.
16712 * The Workaround is intended to make sure that when this happens nothing
16713 * fatal will occur. The workaround:
16714 *  1.  First PF driver which loads on a path will:
16715 *      a.  After taking the chip out of reset, by using pretend,
16716 *          it will write "0" to the following registers of
16717 *          the other vnics.
16718 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16719 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16720 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16721 *          And for itself it will write '1' to
16722 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16723 *          dmae-operations (writing to pram for example.)
16724 *          note: can be done for only function 6,7 but cleaner this
16725 *            way.
16726 *      b.  Write zero+valid to the entire ILT.
16727 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16728 *          VNIC3 (of that port). The range allocated will be the
16729 *          entire ILT. This is needed to prevent  ILT range error.
16730 *  2.  Any PF driver load flow:
16731 *      a.  ILT update with the physical addresses of the allocated
16732 *          logical pages.
16733 *      b.  Wait 20msec. - note that this timeout is needed to make
16734 *          sure there are no requests in one of the PXP internal
16735 *          queues with "old" ILT addresses.
16736 *      c.  PF enable in the PGLC.
16737 *      d.  Clear the was_error of the PF in the PGLC. (could have
16738 *          occurred while driver was down)
16739 *      e.  PF enable in the CFC (WEAK + STRONG)
16740 *      f.  Timers scan enable
16741 *  3.  PF driver unload flow:
16742 *      a.  Clear the Timers scan_en.
16743 *      b.  Polling for scan_on=0 for that PF.
16744 *      c.  Clear the PF enable bit in the PXP.
16745 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16746 *      e.  Write zero+valid to all ILT entries (The valid bit must
16747 *          stay set)
16748 *      f.  If this is VNIC 3 of a port then also init
16749 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16750 *          to the last enrty in the ILT.
16751 *
16752 *      Notes:
16753 *      Currently the PF error in the PGLC is non recoverable.
16754 *      In the future the there will be a recovery routine for this error.
16755 *      Currently attention is masked.
16756 *      Having an MCP lock on the load/unload process does not guarantee that
16757 *      there is no Timer disable during Func6/7 enable. This is because the
16758 *      Timers scan is currently being cleared by the MCP on FLR.
16759 *      Step 2.d can be done only for PF6/7 and the driver can also check if
16760 *      there is error before clearing it. But the flow above is simpler and
16761 *      more general.
16762 *      All ILT entries are written by zero+valid and not just PF6/7
16763 *      ILT entries since in the future the ILT entries allocation for
16764 *      PF-s might be dynamic.
16765 */
16766        struct ilt_client_info ilt_cli;
16767        struct ecore_ilt ilt;
16768
16769        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16770        memset(&ilt, 0, sizeof(struct ecore_ilt));
16771
16772        /* initialize dummy TM client */
16773        ilt_cli.start      = 0;
16774        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16775        ilt_cli.client_num = ILT_CLIENT_TM;
16776
16777        /*
16778         * Step 1: set zeroes to all ilt page entries with valid bit on
16779         * Step 2: set the timers first/last ilt entry to point
16780         * to the entire range to prevent ILT range error for 3rd/4th
16781         * vnic (this code assumes existence of the vnic)
16782         *
16783         * both steps performed by call to ecore_ilt_client_init_op()
16784         * with dummy TM client
16785         *
16786         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16787         * and his brother are split registers
16788         */
16789
16790        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16791        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16792        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16793
16794        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16795        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16796        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16797    }
16798
16799    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16800    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16801
16802    if (!CHIP_IS_E1x(sc)) {
16803        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16804                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16805
16806        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16807        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16808
16809        /* let the HW do it's magic... */
16810        do {
16811            DELAY(200000);
16812            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16813        } while (factor-- && (val != 1));
16814
16815        if (val != 1) {
16816            BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16817            return (-1);
16818        }
16819    }
16820
16821    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16822
16823    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16824
16825    bxe_iov_init_dmae(sc);
16826
16827    /* clean the DMAE memory */
16828    sc->dmae_ready = 1;
16829    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16830
16831    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16832
16833    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16834
16835    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16836
16837    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16838
16839    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16840    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16841    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16842    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16843
16844    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16845
16846    /* QM queues pointers table */
16847    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16848
16849    /* soft reset pulse */
16850    REG_WR(sc, QM_REG_SOFT_RESET, 1);
16851    REG_WR(sc, QM_REG_SOFT_RESET, 0);
16852
16853    if (CNIC_SUPPORT(sc))
16854        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16855
16856    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16857    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16858    if (!CHIP_REV_IS_SLOW(sc)) {
16859        /* enable hw interrupt from doorbell Q */
16860        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16861    }
16862
16863    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16864
16865    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16866    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16867
16868    if (!CHIP_IS_E1(sc)) {
16869        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16870    }
16871
16872    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16873        if (IS_MF_AFEX(sc)) {
16874            /*
16875             * configure that AFEX and VLAN headers must be
16876             * received in AFEX mode
16877             */
16878            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16879            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16880            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16881            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16882            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16883        } else {
16884            /*
16885             * Bit-map indicating which L2 hdrs may appear
16886             * after the basic Ethernet header
16887             */
16888            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16889                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16890        }
16891    }
16892
16893    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16894    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16895    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16896    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16897
16898    if (!CHIP_IS_E1x(sc)) {
16899        /* reset VFC memories */
16900        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16901               VFC_MEMORIES_RST_REG_CAM_RST |
16902               VFC_MEMORIES_RST_REG_RAM_RST);
16903        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16904               VFC_MEMORIES_RST_REG_CAM_RST |
16905               VFC_MEMORIES_RST_REG_RAM_RST);
16906
16907        DELAY(20000);
16908    }
16909
16910    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16911    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16912    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16913    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16914
16915    /* sync semi rtc */
16916    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16917           0x80000000);
16918    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16919           0x80000000);
16920
16921    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16922    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16923    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16924
16925    if (!CHIP_IS_E1x(sc)) {
16926        if (IS_MF_AFEX(sc)) {
16927            /*
16928             * configure that AFEX and VLAN headers must be
16929             * sent in AFEX mode
16930             */
16931            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16932            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16933            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16934            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16935            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16936        } else {
16937            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16938                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16939        }
16940    }
16941
16942    REG_WR(sc, SRC_REG_SOFT_RST, 1);
16943
16944    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16945
16946    if (CNIC_SUPPORT(sc)) {
16947        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16948        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16949        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16950        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16951        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16952        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16953        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16954        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16955        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16956        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16957    }
16958    REG_WR(sc, SRC_REG_SOFT_RST, 0);
16959
16960    if (sizeof(union cdu_context) != 1024) {
16961        /* we currently assume that a context is 1024 bytes */
16962        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16963              (long)sizeof(union cdu_context));
16964    }
16965
16966    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16967    val = (4 << 24) + (0 << 12) + 1024;
16968    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16969
16970    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16971
16972    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16973    /* enable context validation interrupt from CFC */
16974    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16975
16976    /* set the thresholds to prevent CFC/CDU race */
16977    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16978    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16979
16980    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16981        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16982    }
16983
16984    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16985    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16986
16987    /* Reset PCIE errors for debug */
16988    REG_WR(sc, 0x2814, 0xffffffff);
16989    REG_WR(sc, 0x3820, 0xffffffff);
16990
16991    if (!CHIP_IS_E1x(sc)) {
16992        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16993               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
16994                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
16995        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
16996               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
16997                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
16998                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
16999        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17000               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17001                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17002                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17003    }
17004
17005    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17006
17007    if (!CHIP_IS_E1(sc)) {
17008        /* in E3 this done in per-port section */
17009        if (!CHIP_IS_E3(sc))
17010            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17011    }
17012
17013    if (CHIP_IS_E1H(sc)) {
17014        /* not applicable for E2 (and above ...) */
17015        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17016    }
17017
17018    if (CHIP_REV_IS_SLOW(sc)) {
17019        DELAY(200000);
17020    }
17021
17022    /* finish CFC init */
17023    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17024    if (val != 1) {
17025        BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17026        return (-1);
17027    }
17028    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17029    if (val != 1) {
17030        BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17031        return (-1);
17032    }
17033    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17034    if (val != 1) {
17035        BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17036        return (-1);
17037    }
17038    REG_WR(sc, CFC_REG_DEBUG0, 0);
17039
17040    if (CHIP_IS_E1(sc)) {
17041        /* read NIG statistic to see if this is our first up since powerup */
17042        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17043        val = *BXE_SP(sc, wb_data[0]);
17044
17045        /* do internal memory self test */
17046        if ((val == 0) && bxe_int_mem_test(sc)) {
17047            BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17048            return (-1);
17049        }
17050    }
17051
17052    bxe_setup_fan_failure_detection(sc);
17053
17054    /* clear PXP2 attentions */
17055    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17056
17057    bxe_enable_blocks_attention(sc);
17058
17059    if (!CHIP_REV_IS_SLOW(sc)) {
17060        ecore_enable_blocks_parity(sc);
17061    }
17062
17063    if (!BXE_NOMCP(sc)) {
17064        if (CHIP_IS_E1x(sc)) {
17065            bxe_common_init_phy(sc);
17066        }
17067    }
17068
17069    return (0);
17070}
17071
17072/**
17073 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17074 *
17075 * @sc:     driver handle
17076 */
17077static int
17078bxe_init_hw_common_chip(struct bxe_softc *sc)
17079{
17080    int rc = bxe_init_hw_common(sc);
17081
17082    if (rc) {
17083        BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17084        return (rc);
17085    }
17086
17087    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17088    if (!BXE_NOMCP(sc)) {
17089        bxe_common_init_phy(sc);
17090    }
17091
17092    return (0);
17093}
17094
17095static int
17096bxe_init_hw_port(struct bxe_softc *sc)
17097{
17098    int port = SC_PORT(sc);
17099    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17100    uint32_t low, high;
17101    uint32_t val;
17102
17103    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17104
17105    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17106
17107    ecore_init_block(sc, BLOCK_MISC, init_phase);
17108    ecore_init_block(sc, BLOCK_PXP, init_phase);
17109    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17110
17111    /*
17112     * Timers bug workaround: disables the pf_master bit in pglue at
17113     * common phase, we need to enable it here before any dmae access are
17114     * attempted. Therefore we manually added the enable-master to the
17115     * port phase (it also happens in the function phase)
17116     */
17117    if (!CHIP_IS_E1x(sc)) {
17118        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17119    }
17120
17121    ecore_init_block(sc, BLOCK_ATC, init_phase);
17122    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17123    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17124    ecore_init_block(sc, BLOCK_QM, init_phase);
17125
17126    ecore_init_block(sc, BLOCK_TCM, init_phase);
17127    ecore_init_block(sc, BLOCK_UCM, init_phase);
17128    ecore_init_block(sc, BLOCK_CCM, init_phase);
17129    ecore_init_block(sc, BLOCK_XCM, init_phase);
17130
17131    /* QM cid (connection) count */
17132    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17133
17134    if (CNIC_SUPPORT(sc)) {
17135        ecore_init_block(sc, BLOCK_TM, init_phase);
17136        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17137        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17138    }
17139
17140    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17141
17142    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17143
17144    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17145        if (IS_MF(sc)) {
17146            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17147        } else if (sc->mtu > 4096) {
17148            if (BXE_ONE_PORT(sc)) {
17149                low = 160;
17150            } else {
17151                val = sc->mtu;
17152                /* (24*1024 + val*4)/256 */
17153                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17154            }
17155        } else {
17156            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17157        }
17158        high = (low + 56); /* 14*1024/256 */
17159        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17160        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17161    }
17162
17163    if (CHIP_IS_MODE_4_PORT(sc)) {
17164        REG_WR(sc, SC_PORT(sc) ?
17165               BRB1_REG_MAC_GUARANTIED_1 :
17166               BRB1_REG_MAC_GUARANTIED_0, 40);
17167    }
17168
17169    ecore_init_block(sc, BLOCK_PRS, init_phase);
17170    if (CHIP_IS_E3B0(sc)) {
17171        if (IS_MF_AFEX(sc)) {
17172            /* configure headers for AFEX mode */
17173            REG_WR(sc, SC_PORT(sc) ?
17174                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17175                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17176            REG_WR(sc, SC_PORT(sc) ?
17177                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17178                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17179            REG_WR(sc, SC_PORT(sc) ?
17180                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17181                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17182        } else {
17183            /* Ovlan exists only if we are in multi-function +
17184             * switch-dependent mode, in switch-independent there
17185             * is no ovlan headers
17186             */
17187            REG_WR(sc, SC_PORT(sc) ?
17188                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17189                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17190                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17191        }
17192    }
17193
17194    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17195    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17196    ecore_init_block(sc, BLOCK_USDM, init_phase);
17197    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17198
17199    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17200    ecore_init_block(sc, BLOCK_USEM, init_phase);
17201    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17202    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17203
17204    ecore_init_block(sc, BLOCK_UPB, init_phase);
17205    ecore_init_block(sc, BLOCK_XPB, init_phase);
17206
17207    ecore_init_block(sc, BLOCK_PBF, init_phase);
17208
17209    if (CHIP_IS_E1x(sc)) {
17210        /* configure PBF to work without PAUSE mtu 9000 */
17211        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17212
17213        /* update threshold */
17214        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17215        /* update init credit */
17216        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17217
17218        /* probe changes */
17219        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17220        DELAY(50);
17221        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17222    }
17223
17224    if (CNIC_SUPPORT(sc)) {
17225        ecore_init_block(sc, BLOCK_SRC, init_phase);
17226    }
17227
17228    ecore_init_block(sc, BLOCK_CDU, init_phase);
17229    ecore_init_block(sc, BLOCK_CFC, init_phase);
17230
17231    if (CHIP_IS_E1(sc)) {
17232        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17233        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17234    }
17235    ecore_init_block(sc, BLOCK_HC, init_phase);
17236
17237    ecore_init_block(sc, BLOCK_IGU, init_phase);
17238
17239    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17240    /* init aeu_mask_attn_func_0/1:
17241     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17242     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17243     *             bits 4-7 are used for "per vn group attention" */
17244    val = IS_MF(sc) ? 0xF7 : 0x7;
17245    /* Enable DCBX attention for all but E1 */
17246    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17247    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17248
17249    ecore_init_block(sc, BLOCK_NIG, init_phase);
17250
17251    if (!CHIP_IS_E1x(sc)) {
17252        /* Bit-map indicating which L2 hdrs may appear after the
17253         * basic Ethernet header
17254         */
17255        if (IS_MF_AFEX(sc)) {
17256            REG_WR(sc, SC_PORT(sc) ?
17257                   NIG_REG_P1_HDRS_AFTER_BASIC :
17258                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17259        } else {
17260            REG_WR(sc, SC_PORT(sc) ?
17261                   NIG_REG_P1_HDRS_AFTER_BASIC :
17262                   NIG_REG_P0_HDRS_AFTER_BASIC,
17263                   IS_MF_SD(sc) ? 7 : 6);
17264        }
17265
17266        if (CHIP_IS_E3(sc)) {
17267            REG_WR(sc, SC_PORT(sc) ?
17268                   NIG_REG_LLH1_MF_MODE :
17269                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17270        }
17271    }
17272    if (!CHIP_IS_E3(sc)) {
17273        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17274    }
17275
17276    if (!CHIP_IS_E1(sc)) {
17277        /* 0x2 disable mf_ov, 0x1 enable */
17278        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17279               (IS_MF_SD(sc) ? 0x1 : 0x2));
17280
17281        if (!CHIP_IS_E1x(sc)) {
17282            val = 0;
17283            switch (sc->devinfo.mf_info.mf_mode) {
17284            case MULTI_FUNCTION_SD:
17285                val = 1;
17286                break;
17287            case MULTI_FUNCTION_SI:
17288            case MULTI_FUNCTION_AFEX:
17289                val = 2;
17290                break;
17291            }
17292
17293            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17294                        NIG_REG_LLH0_CLS_TYPE), val);
17295        }
17296        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17297        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17298        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17299    }
17300
17301    /* If SPIO5 is set to generate interrupts, enable it for this port */
17302    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17303    if (val & MISC_SPIO_SPIO5) {
17304        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17305                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17306        val = REG_RD(sc, reg_addr);
17307        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17308        REG_WR(sc, reg_addr, val);
17309    }
17310
17311    return (0);
17312}
17313
17314static uint32_t
17315bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17316                       uint32_t         reg,
17317                       uint32_t         expected,
17318                       uint32_t         poll_count)
17319{
17320    uint32_t cur_cnt = poll_count;
17321    uint32_t val;
17322
17323    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17324        DELAY(FLR_WAIT_INTERVAL);
17325    }
17326
17327    return (val);
17328}
17329
17330static int
17331bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17332                              uint32_t         reg,
17333                              char             *msg,
17334                              uint32_t         poll_cnt)
17335{
17336    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17337
17338    if (val != 0) {
17339        BLOGE(sc, "%s usage count=%d\n", msg, val);
17340        return (1);
17341    }
17342
17343    return (0);
17344}
17345
17346/* Common routines with VF FLR cleanup */
17347static uint32_t
17348bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17349{
17350    /* adjust polling timeout */
17351    if (CHIP_REV_IS_EMUL(sc)) {
17352        return (FLR_POLL_CNT * 2000);
17353    }
17354
17355    if (CHIP_REV_IS_FPGA(sc)) {
17356        return (FLR_POLL_CNT * 120);
17357    }
17358
17359    return (FLR_POLL_CNT);
17360}
17361
17362static int
17363bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17364                           uint32_t         poll_cnt)
17365{
17366    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17367    if (bxe_flr_clnup_poll_hw_counter(sc,
17368                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17369                                      "CFC PF usage counter timed out",
17370                                      poll_cnt)) {
17371        return (1);
17372    }
17373
17374    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17375    if (bxe_flr_clnup_poll_hw_counter(sc,
17376                                      DORQ_REG_PF_USAGE_CNT,
17377                                      "DQ PF usage counter timed out",
17378                                      poll_cnt)) {
17379        return (1);
17380    }
17381
17382    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17383    if (bxe_flr_clnup_poll_hw_counter(sc,
17384                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17385                                      "QM PF usage counter timed out",
17386                                      poll_cnt)) {
17387        return (1);
17388    }
17389
17390    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17391    if (bxe_flr_clnup_poll_hw_counter(sc,
17392                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17393                                      "Timers VNIC usage counter timed out",
17394                                      poll_cnt)) {
17395        return (1);
17396    }
17397
17398    if (bxe_flr_clnup_poll_hw_counter(sc,
17399                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17400                                      "Timers NUM_SCANS usage counter timed out",
17401                                      poll_cnt)) {
17402        return (1);
17403    }
17404
17405    /* Wait DMAE PF usage counter to zero */
17406    if (bxe_flr_clnup_poll_hw_counter(sc,
17407                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17408                                      "DMAE dommand register timed out",
17409                                      poll_cnt)) {
17410        return (1);
17411    }
17412
17413    return (0);
17414}
17415
17416#define OP_GEN_PARAM(param)                                            \
17417    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17418#define OP_GEN_TYPE(type)                                           \
17419    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17420#define OP_GEN_AGG_VECT(index)                                             \
17421    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17422
17423static int
17424bxe_send_final_clnup(struct bxe_softc *sc,
17425                     uint8_t          clnup_func,
17426                     uint32_t         poll_cnt)
17427{
17428    uint32_t op_gen_command = 0;
17429    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17430                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17431    int ret = 0;
17432
17433    if (REG_RD(sc, comp_addr)) {
17434        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17435        return (1);
17436    }
17437
17438    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17439    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17440    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17441    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17442
17443    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17444    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17445
17446    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17447        BLOGE(sc, "FW final cleanup did not succeed\n");
17448        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17449              (REG_RD(sc, comp_addr)));
17450        bxe_panic(sc, ("FLR cleanup failed\n"));
17451        return (1);
17452    }
17453
17454    /* Zero completion for nxt FLR */
17455    REG_WR(sc, comp_addr, 0);
17456
17457    return (ret);
17458}
17459
17460static void
17461bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17462                       struct pbf_pN_buf_regs *regs,
17463                       uint32_t               poll_count)
17464{
17465    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17466    uint32_t cur_cnt = poll_count;
17467
17468    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17469    crd = crd_start = REG_RD(sc, regs->crd);
17470    init_crd = REG_RD(sc, regs->init_crd);
17471
17472    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17473    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17474    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17475
17476    while ((crd != init_crd) &&
17477           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17478            (init_crd - crd_start))) {
17479        if (cur_cnt--) {
17480            DELAY(FLR_WAIT_INTERVAL);
17481            crd = REG_RD(sc, regs->crd);
17482            crd_freed = REG_RD(sc, regs->crd_freed);
17483        } else {
17484            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17485            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17486            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17487            break;
17488        }
17489    }
17490
17491    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17492          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17493}
17494
17495static void
17496bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17497                       struct pbf_pN_cmd_regs *regs,
17498                       uint32_t               poll_count)
17499{
17500    uint32_t occup, to_free, freed, freed_start;
17501    uint32_t cur_cnt = poll_count;
17502
17503    occup = to_free = REG_RD(sc, regs->lines_occup);
17504    freed = freed_start = REG_RD(sc, regs->lines_freed);
17505
17506    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17507    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17508
17509    while (occup &&
17510           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17511        if (cur_cnt--) {
17512            DELAY(FLR_WAIT_INTERVAL);
17513            occup = REG_RD(sc, regs->lines_occup);
17514            freed = REG_RD(sc, regs->lines_freed);
17515        } else {
17516            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17517            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17518            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17519            break;
17520        }
17521    }
17522
17523    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17524          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17525}
17526
17527static void
17528bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17529{
17530    struct pbf_pN_cmd_regs cmd_regs[] = {
17531        {0, (CHIP_IS_E3B0(sc)) ?
17532            PBF_REG_TQ_OCCUPANCY_Q0 :
17533            PBF_REG_P0_TQ_OCCUPANCY,
17534            (CHIP_IS_E3B0(sc)) ?
17535            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17536            PBF_REG_P0_TQ_LINES_FREED_CNT},
17537        {1, (CHIP_IS_E3B0(sc)) ?
17538            PBF_REG_TQ_OCCUPANCY_Q1 :
17539            PBF_REG_P1_TQ_OCCUPANCY,
17540            (CHIP_IS_E3B0(sc)) ?
17541            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17542            PBF_REG_P1_TQ_LINES_FREED_CNT},
17543        {4, (CHIP_IS_E3B0(sc)) ?
17544            PBF_REG_TQ_OCCUPANCY_LB_Q :
17545            PBF_REG_P4_TQ_OCCUPANCY,
17546            (CHIP_IS_E3B0(sc)) ?
17547            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17548            PBF_REG_P4_TQ_LINES_FREED_CNT}
17549    };
17550
17551    struct pbf_pN_buf_regs buf_regs[] = {
17552        {0, (CHIP_IS_E3B0(sc)) ?
17553            PBF_REG_INIT_CRD_Q0 :
17554            PBF_REG_P0_INIT_CRD ,
17555            (CHIP_IS_E3B0(sc)) ?
17556            PBF_REG_CREDIT_Q0 :
17557            PBF_REG_P0_CREDIT,
17558            (CHIP_IS_E3B0(sc)) ?
17559            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17560            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17561        {1, (CHIP_IS_E3B0(sc)) ?
17562            PBF_REG_INIT_CRD_Q1 :
17563            PBF_REG_P1_INIT_CRD,
17564            (CHIP_IS_E3B0(sc)) ?
17565            PBF_REG_CREDIT_Q1 :
17566            PBF_REG_P1_CREDIT,
17567            (CHIP_IS_E3B0(sc)) ?
17568            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17569            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17570        {4, (CHIP_IS_E3B0(sc)) ?
17571            PBF_REG_INIT_CRD_LB_Q :
17572            PBF_REG_P4_INIT_CRD,
17573            (CHIP_IS_E3B0(sc)) ?
17574            PBF_REG_CREDIT_LB_Q :
17575            PBF_REG_P4_CREDIT,
17576            (CHIP_IS_E3B0(sc)) ?
17577            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17578            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17579    };
17580
17581    int i;
17582
17583    /* Verify the command queues are flushed P0, P1, P4 */
17584    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17585        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17586    }
17587
17588    /* Verify the transmission buffers are flushed P0, P1, P4 */
17589    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17590        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17591    }
17592}
17593
17594static void
17595bxe_hw_enable_status(struct bxe_softc *sc)
17596{
17597    uint32_t val;
17598
17599    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17600    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17601
17602    val = REG_RD(sc, PBF_REG_DISABLE_PF);
17603    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17604
17605    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17606    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17607
17608    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17609    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17610
17611    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17612    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17613
17614    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17615    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17616
17617    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17618    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17619
17620    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17621    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17622}
17623
17624static int
17625bxe_pf_flr_clnup(struct bxe_softc *sc)
17626{
17627    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17628
17629    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17630
17631    /* Re-enable PF target read access */
17632    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17633
17634    /* Poll HW usage counters */
17635    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17636    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17637        return (-1);
17638    }
17639
17640    /* Zero the igu 'trailing edge' and 'leading edge' */
17641
17642    /* Send the FW cleanup command */
17643    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17644        return (-1);
17645    }
17646
17647    /* ATC cleanup */
17648
17649    /* Verify TX hw is flushed */
17650    bxe_tx_hw_flushed(sc, poll_cnt);
17651
17652    /* Wait 100ms (not adjusted according to platform) */
17653    DELAY(100000);
17654
17655    /* Verify no pending pci transactions */
17656    if (bxe_is_pcie_pending(sc)) {
17657        BLOGE(sc, "PCIE Transactions still pending\n");
17658    }
17659
17660    /* Debug */
17661    bxe_hw_enable_status(sc);
17662
17663    /*
17664     * Master enable - Due to WB DMAE writes performed before this
17665     * register is re-initialized as part of the regular function init
17666     */
17667    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17668
17669    return (0);
17670}
17671
17672static int
17673bxe_init_hw_func(struct bxe_softc *sc)
17674{
17675    int port = SC_PORT(sc);
17676    int func = SC_FUNC(sc);
17677    int init_phase = PHASE_PF0 + func;
17678    struct ecore_ilt *ilt = sc->ilt;
17679    uint16_t cdu_ilt_start;
17680    uint32_t addr, val;
17681    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17682    int i, main_mem_width, rc;
17683
17684    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17685
17686    /* FLR cleanup */
17687    if (!CHIP_IS_E1x(sc)) {
17688        rc = bxe_pf_flr_clnup(sc);
17689        if (rc) {
17690            BLOGE(sc, "FLR cleanup failed!\n");
17691            // XXX bxe_fw_dump(sc);
17692            // XXX bxe_idle_chk(sc);
17693            return (rc);
17694        }
17695    }
17696
17697    /* set MSI reconfigure capability */
17698    if (sc->devinfo.int_block == INT_BLOCK_HC) {
17699        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17700        val = REG_RD(sc, addr);
17701        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17702        REG_WR(sc, addr, val);
17703    }
17704
17705    ecore_init_block(sc, BLOCK_PXP, init_phase);
17706    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17707
17708    ilt = sc->ilt;
17709    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17710
17711    for (i = 0; i < L2_ILT_LINES(sc); i++) {
17712        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17713        ilt->lines[cdu_ilt_start + i].page_mapping =
17714            sc->context[i].vcxt_dma.paddr;
17715        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17716    }
17717    ecore_ilt_init_op(sc, INITOP_SET);
17718
17719    /* Set NIC mode */
17720    REG_WR(sc, PRS_REG_NIC_MODE, 1);
17721    BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17722
17723    if (!CHIP_IS_E1x(sc)) {
17724        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17725
17726        /* Turn on a single ISR mode in IGU if driver is going to use
17727         * INT#x or MSI
17728         */
17729        if (sc->interrupt_mode != INTR_MODE_MSIX) {
17730            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17731        }
17732
17733        /*
17734         * Timers workaround bug: function init part.
17735         * Need to wait 20msec after initializing ILT,
17736         * needed to make sure there are no requests in
17737         * one of the PXP internal queues with "old" ILT addresses
17738         */
17739        DELAY(20000);
17740
17741        /*
17742         * Master enable - Due to WB DMAE writes performed before this
17743         * register is re-initialized as part of the regular function
17744         * init
17745         */
17746        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17747        /* Enable the function in IGU */
17748        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17749    }
17750
17751    sc->dmae_ready = 1;
17752
17753    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17754
17755    if (!CHIP_IS_E1x(sc))
17756        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17757
17758    ecore_init_block(sc, BLOCK_ATC, init_phase);
17759    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17760    ecore_init_block(sc, BLOCK_NIG, init_phase);
17761    ecore_init_block(sc, BLOCK_SRC, init_phase);
17762    ecore_init_block(sc, BLOCK_MISC, init_phase);
17763    ecore_init_block(sc, BLOCK_TCM, init_phase);
17764    ecore_init_block(sc, BLOCK_UCM, init_phase);
17765    ecore_init_block(sc, BLOCK_CCM, init_phase);
17766    ecore_init_block(sc, BLOCK_XCM, init_phase);
17767    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17768    ecore_init_block(sc, BLOCK_USEM, init_phase);
17769    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17770    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17771
17772    if (!CHIP_IS_E1x(sc))
17773        REG_WR(sc, QM_REG_PF_EN, 1);
17774
17775    if (!CHIP_IS_E1x(sc)) {
17776        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17777        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17778        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17779        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17780    }
17781    ecore_init_block(sc, BLOCK_QM, init_phase);
17782
17783    ecore_init_block(sc, BLOCK_TM, init_phase);
17784    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17785
17786    bxe_iov_init_dq(sc);
17787
17788    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17789    ecore_init_block(sc, BLOCK_PRS, init_phase);
17790    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17791    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17792    ecore_init_block(sc, BLOCK_USDM, init_phase);
17793    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17794    ecore_init_block(sc, BLOCK_UPB, init_phase);
17795    ecore_init_block(sc, BLOCK_XPB, init_phase);
17796    ecore_init_block(sc, BLOCK_PBF, init_phase);
17797    if (!CHIP_IS_E1x(sc))
17798        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17799
17800    ecore_init_block(sc, BLOCK_CDU, init_phase);
17801
17802    ecore_init_block(sc, BLOCK_CFC, init_phase);
17803
17804    if (!CHIP_IS_E1x(sc))
17805        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17806
17807    if (IS_MF(sc)) {
17808        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17809        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17810    }
17811
17812    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17813
17814    /* HC init per function */
17815    if (sc->devinfo.int_block == INT_BLOCK_HC) {
17816        if (CHIP_IS_E1H(sc)) {
17817            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17818
17819            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17820            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17821        }
17822        ecore_init_block(sc, BLOCK_HC, init_phase);
17823
17824    } else {
17825        int num_segs, sb_idx, prod_offset;
17826
17827        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17828
17829        if (!CHIP_IS_E1x(sc)) {
17830            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17831            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17832        }
17833
17834        ecore_init_block(sc, BLOCK_IGU, init_phase);
17835
17836        if (!CHIP_IS_E1x(sc)) {
17837            int dsb_idx = 0;
17838            /**
17839             * Producer memory:
17840             * E2 mode: address 0-135 match to the mapping memory;
17841             * 136 - PF0 default prod; 137 - PF1 default prod;
17842             * 138 - PF2 default prod; 139 - PF3 default prod;
17843             * 140 - PF0 attn prod;    141 - PF1 attn prod;
17844             * 142 - PF2 attn prod;    143 - PF3 attn prod;
17845             * 144-147 reserved.
17846             *
17847             * E1.5 mode - In backward compatible mode;
17848             * for non default SB; each even line in the memory
17849             * holds the U producer and each odd line hold
17850             * the C producer. The first 128 producers are for
17851             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17852             * producers are for the DSB for each PF.
17853             * Each PF has five segments: (the order inside each
17854             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17855             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17856             * 144-147 attn prods;
17857             */
17858            /* non-default-status-blocks */
17859            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17860                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17861            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17862                prod_offset = (sc->igu_base_sb + sb_idx) *
17863                    num_segs;
17864
17865                for (i = 0; i < num_segs; i++) {
17866                    addr = IGU_REG_PROD_CONS_MEMORY +
17867                            (prod_offset + i) * 4;
17868                    REG_WR(sc, addr, 0);
17869                }
17870                /* send consumer update with value 0 */
17871                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17872                           USTORM_ID, 0, IGU_INT_NOP, 1);
17873                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17874            }
17875
17876            /* default-status-blocks */
17877            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17878                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17879
17880            if (CHIP_IS_MODE_4_PORT(sc))
17881                dsb_idx = SC_FUNC(sc);
17882            else
17883                dsb_idx = SC_VN(sc);
17884
17885            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17886                       IGU_BC_BASE_DSB_PROD + dsb_idx :
17887                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
17888
17889            /*
17890             * igu prods come in chunks of E1HVN_MAX (4) -
17891             * does not matters what is the current chip mode
17892             */
17893            for (i = 0; i < (num_segs * E1HVN_MAX);
17894                 i += E1HVN_MAX) {
17895                addr = IGU_REG_PROD_CONS_MEMORY +
17896                            (prod_offset + i)*4;
17897                REG_WR(sc, addr, 0);
17898            }
17899            /* send consumer update with 0 */
17900            if (CHIP_INT_MODE_IS_BC(sc)) {
17901                bxe_ack_sb(sc, sc->igu_dsb_id,
17902                           USTORM_ID, 0, IGU_INT_NOP, 1);
17903                bxe_ack_sb(sc, sc->igu_dsb_id,
17904                           CSTORM_ID, 0, IGU_INT_NOP, 1);
17905                bxe_ack_sb(sc, sc->igu_dsb_id,
17906                           XSTORM_ID, 0, IGU_INT_NOP, 1);
17907                bxe_ack_sb(sc, sc->igu_dsb_id,
17908                           TSTORM_ID, 0, IGU_INT_NOP, 1);
17909                bxe_ack_sb(sc, sc->igu_dsb_id,
17910                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
17911            } else {
17912                bxe_ack_sb(sc, sc->igu_dsb_id,
17913                           USTORM_ID, 0, IGU_INT_NOP, 1);
17914                bxe_ack_sb(sc, sc->igu_dsb_id,
17915                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
17916            }
17917            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17918
17919            /* !!! these should become driver const once
17920               rf-tool supports split-68 const */
17921            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17922            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17923            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17924            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17925            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17926            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17927        }
17928    }
17929
17930    /* Reset PCIE errors for debug */
17931    REG_WR(sc, 0x2114, 0xffffffff);
17932    REG_WR(sc, 0x2120, 0xffffffff);
17933
17934    if (CHIP_IS_E1x(sc)) {
17935        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17936        main_mem_base = HC_REG_MAIN_MEMORY +
17937                SC_PORT(sc) * (main_mem_size * 4);
17938        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17939        main_mem_width = 8;
17940
17941        val = REG_RD(sc, main_mem_prty_clr);
17942        if (val) {
17943            BLOGD(sc, DBG_LOAD,
17944                  "Parity errors in HC block during function init (0x%x)!\n",
17945                  val);
17946        }
17947
17948        /* Clear "false" parity errors in MSI-X table */
17949        for (i = main_mem_base;
17950             i < main_mem_base + main_mem_size * 4;
17951             i += main_mem_width) {
17952            bxe_read_dmae(sc, i, main_mem_width / 4);
17953            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17954                           i, main_mem_width / 4);
17955        }
17956        /* Clear HC parity attention */
17957        REG_RD(sc, main_mem_prty_clr);
17958    }
17959
17960#if 1
17961    /* Enable STORMs SP logging */
17962    REG_WR8(sc, BAR_USTRORM_INTMEM +
17963           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17964    REG_WR8(sc, BAR_TSTRORM_INTMEM +
17965           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17966    REG_WR8(sc, BAR_CSTRORM_INTMEM +
17967           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17968    REG_WR8(sc, BAR_XSTRORM_INTMEM +
17969           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17970#endif
17971
17972    elink_phy_probe(&sc->link_params);
17973
17974    return (0);
17975}
17976
17977static void
17978bxe_link_reset(struct bxe_softc *sc)
17979{
17980    if (!BXE_NOMCP(sc)) {
17981	bxe_acquire_phy_lock(sc);
17982        elink_lfa_reset(&sc->link_params, &sc->link_vars);
17983	bxe_release_phy_lock(sc);
17984    } else {
17985        if (!CHIP_REV_IS_SLOW(sc)) {
17986            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17987        }
17988    }
17989}
17990
17991static void
17992bxe_reset_port(struct bxe_softc *sc)
17993{
17994    int port = SC_PORT(sc);
17995    uint32_t val;
17996
17997    /* reset physical Link */
17998    bxe_link_reset(sc);
17999
18000    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18001
18002    /* Do not rcv packets to BRB */
18003    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18004    /* Do not direct rcv packets that are not for MCP to the BRB */
18005    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18006               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18007
18008    /* Configure AEU */
18009    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18010
18011    DELAY(100000);
18012
18013    /* Check for BRB port occupancy */
18014    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18015    if (val) {
18016        BLOGD(sc, DBG_LOAD,
18017              "BRB1 is not empty, %d blocks are occupied\n", val);
18018    }
18019
18020    /* TODO: Close Doorbell port? */
18021}
18022
18023static void
18024bxe_ilt_wr(struct bxe_softc *sc,
18025           uint32_t         index,
18026           bus_addr_t       addr)
18027{
18028    int reg;
18029    uint32_t wb_write[2];
18030
18031    if (CHIP_IS_E1(sc)) {
18032        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18033    } else {
18034        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18035    }
18036
18037    wb_write[0] = ONCHIP_ADDR1(addr);
18038    wb_write[1] = ONCHIP_ADDR2(addr);
18039    REG_WR_DMAE(sc, reg, wb_write, 2);
18040}
18041
18042static void
18043bxe_clear_func_ilt(struct bxe_softc *sc,
18044                   uint32_t         func)
18045{
18046    uint32_t i, base = FUNC_ILT_BASE(func);
18047    for (i = base; i < base + ILT_PER_FUNC; i++) {
18048        bxe_ilt_wr(sc, i, 0);
18049    }
18050}
18051
18052static void
18053bxe_reset_func(struct bxe_softc *sc)
18054{
18055    struct bxe_fastpath *fp;
18056    int port = SC_PORT(sc);
18057    int func = SC_FUNC(sc);
18058    int i;
18059
18060    /* Disable the function in the FW */
18061    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18062    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18063    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18064    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18065
18066    /* FP SBs */
18067    FOR_EACH_ETH_QUEUE(sc, i) {
18068        fp = &sc->fp[i];
18069        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18070                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18071                SB_DISABLED);
18072    }
18073
18074    /* SP SB */
18075    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18076            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18077            SB_DISABLED);
18078
18079    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18080        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18081    }
18082
18083    /* Configure IGU */
18084    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18085        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18086        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18087    } else {
18088        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18089        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18090    }
18091
18092    if (CNIC_LOADED(sc)) {
18093        /* Disable Timer scan */
18094        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18095        /*
18096         * Wait for at least 10ms and up to 2 second for the timers
18097         * scan to complete
18098         */
18099        for (i = 0; i < 200; i++) {
18100            DELAY(10000);
18101            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18102                break;
18103        }
18104    }
18105
18106    /* Clear ILT */
18107    bxe_clear_func_ilt(sc, func);
18108
18109    /*
18110     * Timers workaround bug for E2: if this is vnic-3,
18111     * we need to set the entire ilt range for this timers.
18112     */
18113    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18114        struct ilt_client_info ilt_cli;
18115        /* use dummy TM client */
18116        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18117        ilt_cli.start = 0;
18118        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18119        ilt_cli.client_num = ILT_CLIENT_TM;
18120
18121        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18122    }
18123
18124    /* this assumes that reset_port() called before reset_func()*/
18125    if (!CHIP_IS_E1x(sc)) {
18126        bxe_pf_disable(sc);
18127    }
18128
18129    sc->dmae_ready = 0;
18130}
18131
18132static int
18133bxe_gunzip_init(struct bxe_softc *sc)
18134{
18135    return (0);
18136}
18137
18138static void
18139bxe_gunzip_end(struct bxe_softc *sc)
18140{
18141    return;
18142}
18143
18144static int
18145bxe_init_firmware(struct bxe_softc *sc)
18146{
18147    if (CHIP_IS_E1(sc)) {
18148        ecore_init_e1_firmware(sc);
18149        sc->iro_array = e1_iro_arr;
18150    } else if (CHIP_IS_E1H(sc)) {
18151        ecore_init_e1h_firmware(sc);
18152        sc->iro_array = e1h_iro_arr;
18153    } else if (!CHIP_IS_E1x(sc)) {
18154        ecore_init_e2_firmware(sc);
18155        sc->iro_array = e2_iro_arr;
18156    } else {
18157        BLOGE(sc, "Unsupported chip revision\n");
18158        return (-1);
18159    }
18160
18161    return (0);
18162}
18163
18164static void
18165bxe_release_firmware(struct bxe_softc *sc)
18166{
18167    /* Do nothing */
18168    return;
18169}
18170
18171static int
18172ecore_gunzip(struct bxe_softc *sc,
18173             const uint8_t    *zbuf,
18174             int              len)
18175{
18176    /* XXX : Implement... */
18177    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18178    return (FALSE);
18179}
18180
18181static void
18182ecore_reg_wr_ind(struct bxe_softc *sc,
18183                 uint32_t         addr,
18184                 uint32_t         val)
18185{
18186    bxe_reg_wr_ind(sc, addr, val);
18187}
18188
18189static void
18190ecore_write_dmae_phys_len(struct bxe_softc *sc,
18191                          bus_addr_t       phys_addr,
18192                          uint32_t         addr,
18193                          uint32_t         len)
18194{
18195    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18196}
18197
18198void
18199ecore_storm_memset_struct(struct bxe_softc *sc,
18200                          uint32_t         addr,
18201                          size_t           size,
18202                          uint32_t         *data)
18203{
18204    uint8_t i;
18205    for (i = 0; i < size/4; i++) {
18206        REG_WR(sc, addr + (i * 4), data[i]);
18207    }
18208}
18209
18210
18211/*
18212 * character device - ioctl interface definitions
18213 */
18214
18215
18216#include "bxe_dump.h"
18217#include "bxe_ioctl.h"
18218#include <sys/conf.h>
18219
18220static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18221                struct thread *td);
18222
18223static struct cdevsw bxe_cdevsw = {
18224    .d_version = D_VERSION,
18225    .d_ioctl = bxe_eioctl,
18226    .d_name = "bxecnic",
18227};
18228
18229#define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18230
18231
18232#define DUMP_ALL_PRESETS        0x1FFF
18233#define DUMP_MAX_PRESETS        13
18234#define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18235#define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18236#define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18237#define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18238#define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18239
18240#define IS_REG_IN_PRESET(presets, idx)  \
18241                ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18242
18243
18244static int
18245bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18246{
18247    if (CHIP_IS_E1(sc))
18248        return dump_num_registers[0][preset-1];
18249    else if (CHIP_IS_E1H(sc))
18250        return dump_num_registers[1][preset-1];
18251    else if (CHIP_IS_E2(sc))
18252        return dump_num_registers[2][preset-1];
18253    else if (CHIP_IS_E3A0(sc))
18254        return dump_num_registers[3][preset-1];
18255    else if (CHIP_IS_E3B0(sc))
18256        return dump_num_registers[4][preset-1];
18257    else
18258        return 0;
18259}
18260
18261static int
18262bxe_get_total_regs_len32(struct bxe_softc *sc)
18263{
18264    uint32_t preset_idx;
18265    int regdump_len32 = 0;
18266
18267
18268    /* Calculate the total preset regs length */
18269    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18270        regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18271    }
18272
18273    return regdump_len32;
18274}
18275
18276static const uint32_t *
18277__bxe_get_page_addr_ar(struct bxe_softc *sc)
18278{
18279    if (CHIP_IS_E2(sc))
18280        return page_vals_e2;
18281    else if (CHIP_IS_E3(sc))
18282        return page_vals_e3;
18283    else
18284        return NULL;
18285}
18286
18287static uint32_t
18288__bxe_get_page_reg_num(struct bxe_softc *sc)
18289{
18290    if (CHIP_IS_E2(sc))
18291        return PAGE_MODE_VALUES_E2;
18292    else if (CHIP_IS_E3(sc))
18293        return PAGE_MODE_VALUES_E3;
18294    else
18295        return 0;
18296}
18297
18298static const uint32_t *
18299__bxe_get_page_write_ar(struct bxe_softc *sc)
18300{
18301    if (CHIP_IS_E2(sc))
18302        return page_write_regs_e2;
18303    else if (CHIP_IS_E3(sc))
18304        return page_write_regs_e3;
18305    else
18306        return NULL;
18307}
18308
18309static uint32_t
18310__bxe_get_page_write_num(struct bxe_softc *sc)
18311{
18312    if (CHIP_IS_E2(sc))
18313        return PAGE_WRITE_REGS_E2;
18314    else if (CHIP_IS_E3(sc))
18315        return PAGE_WRITE_REGS_E3;
18316    else
18317        return 0;
18318}
18319
18320static const struct reg_addr *
18321__bxe_get_page_read_ar(struct bxe_softc *sc)
18322{
18323    if (CHIP_IS_E2(sc))
18324        return page_read_regs_e2;
18325    else if (CHIP_IS_E3(sc))
18326        return page_read_regs_e3;
18327    else
18328        return NULL;
18329}
18330
18331static uint32_t
18332__bxe_get_page_read_num(struct bxe_softc *sc)
18333{
18334    if (CHIP_IS_E2(sc))
18335        return PAGE_READ_REGS_E2;
18336    else if (CHIP_IS_E3(sc))
18337        return PAGE_READ_REGS_E3;
18338    else
18339        return 0;
18340}
18341
18342static bool
18343bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18344{
18345    if (CHIP_IS_E1(sc))
18346        return IS_E1_REG(reg_info->chips);
18347    else if (CHIP_IS_E1H(sc))
18348        return IS_E1H_REG(reg_info->chips);
18349    else if (CHIP_IS_E2(sc))
18350        return IS_E2_REG(reg_info->chips);
18351    else if (CHIP_IS_E3A0(sc))
18352        return IS_E3A0_REG(reg_info->chips);
18353    else if (CHIP_IS_E3B0(sc))
18354        return IS_E3B0_REG(reg_info->chips);
18355    else
18356        return 0;
18357}
18358
18359static bool
18360bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18361{
18362    if (CHIP_IS_E1(sc))
18363        return IS_E1_REG(wreg_info->chips);
18364    else if (CHIP_IS_E1H(sc))
18365        return IS_E1H_REG(wreg_info->chips);
18366    else if (CHIP_IS_E2(sc))
18367        return IS_E2_REG(wreg_info->chips);
18368    else if (CHIP_IS_E3A0(sc))
18369        return IS_E3A0_REG(wreg_info->chips);
18370    else if (CHIP_IS_E3B0(sc))
18371        return IS_E3B0_REG(wreg_info->chips);
18372    else
18373        return 0;
18374}
18375
18376/**
18377 * bxe_read_pages_regs - read "paged" registers
18378 *
18379 * @bp          device handle
18380 * @p           output buffer
18381 *
18382 * Reads "paged" memories: memories that may only be read by first writing to a
18383 * specific address ("write address") and then reading from a specific address
18384 * ("read address"). There may be more than one write address per "page" and
18385 * more than one read address per write address.
18386 */
18387static void
18388bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18389{
18390    uint32_t i, j, k, n;
18391
18392    /* addresses of the paged registers */
18393    const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18394    /* number of paged registers */
18395    int num_pages = __bxe_get_page_reg_num(sc);
18396    /* write addresses */
18397    const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18398    /* number of write addresses */
18399    int write_num = __bxe_get_page_write_num(sc);
18400    /* read addresses info */
18401    const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18402    /* number of read addresses */
18403    int read_num = __bxe_get_page_read_num(sc);
18404    uint32_t addr, size;
18405
18406    for (i = 0; i < num_pages; i++) {
18407        for (j = 0; j < write_num; j++) {
18408            REG_WR(sc, write_addr[j], page_addr[i]);
18409
18410            for (k = 0; k < read_num; k++) {
18411                if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18412                    size = read_addr[k].size;
18413                    for (n = 0; n < size; n++) {
18414                        addr = read_addr[k].addr + n*4;
18415                        *p++ = REG_RD(sc, addr);
18416                    }
18417                }
18418            }
18419        }
18420    }
18421    return;
18422}
18423
18424
18425static int
18426bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18427{
18428    uint32_t i, j, addr;
18429    const struct wreg_addr *wreg_addr_p = NULL;
18430
18431    if (CHIP_IS_E1(sc))
18432        wreg_addr_p = &wreg_addr_e1;
18433    else if (CHIP_IS_E1H(sc))
18434        wreg_addr_p = &wreg_addr_e1h;
18435    else if (CHIP_IS_E2(sc))
18436        wreg_addr_p = &wreg_addr_e2;
18437    else if (CHIP_IS_E3A0(sc))
18438        wreg_addr_p = &wreg_addr_e3;
18439    else if (CHIP_IS_E3B0(sc))
18440        wreg_addr_p = &wreg_addr_e3b0;
18441    else
18442        return (-1);
18443
18444    /* Read the idle_chk registers */
18445    for (i = 0; i < IDLE_REGS_COUNT; i++) {
18446        if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18447            IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18448            for (j = 0; j < idle_reg_addrs[i].size; j++)
18449                *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18450        }
18451    }
18452
18453    /* Read the regular registers */
18454    for (i = 0; i < REGS_COUNT; i++) {
18455        if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18456            IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18457            for (j = 0; j < reg_addrs[i].size; j++)
18458                *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18459        }
18460    }
18461
18462    /* Read the CAM registers */
18463    if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18464        IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18465        for (i = 0; i < wreg_addr_p->size; i++) {
18466            *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18467
18468            /* In case of wreg_addr register, read additional
18469               registers from read_regs array
18470             */
18471            for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18472                addr = *(wreg_addr_p->read_regs);
18473                *p++ = REG_RD(sc, addr + j*4);
18474            }
18475        }
18476    }
18477
18478    /* Paged registers are supported in E2 & E3 only */
18479    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18480        /* Read "paged" registers */
18481        bxe_read_pages_regs(sc, p, preset);
18482    }
18483
18484    return 0;
18485}
18486
18487int
18488bxe_grc_dump(struct bxe_softc *sc)
18489{
18490    int rval = 0;
18491    uint32_t preset_idx;
18492    uint8_t *buf;
18493    uint32_t size;
18494    struct  dump_header *d_hdr;
18495    uint32_t i;
18496    uint32_t reg_val;
18497    uint32_t reg_addr;
18498    uint32_t cmd_offset;
18499    int context_size;
18500    int allocated;
18501    struct ecore_ilt *ilt = SC_ILT(sc);
18502    struct bxe_fastpath *fp;
18503    struct ilt_client_info *ilt_cli;
18504    int grc_dump_size;
18505
18506
18507    if (sc->grcdump_done || sc->grcdump_started)
18508	return (rval);
18509
18510    sc->grcdump_started = 1;
18511    BLOGI(sc, "Started collecting grcdump\n");
18512
18513    grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18514                sizeof(struct  dump_header);
18515
18516    sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18517
18518    if (sc->grc_dump == NULL) {
18519        BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18520        return(ENOMEM);
18521    }
18522
18523
18524
18525    /* Disable parity attentions as long as following dump may
18526     * cause false alarms by reading never written registers. We
18527     * will re-enable parity attentions right after the dump.
18528     */
18529
18530    /* Disable parity on path 0 */
18531    bxe_pretend_func(sc, 0);
18532
18533    ecore_disable_blocks_parity(sc);
18534
18535    /* Disable parity on path 1 */
18536    bxe_pretend_func(sc, 1);
18537    ecore_disable_blocks_parity(sc);
18538
18539    /* Return to current function */
18540    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18541
18542    buf = sc->grc_dump;
18543    d_hdr = sc->grc_dump;
18544
18545    d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18546    d_hdr->version = BNX2X_DUMP_VERSION;
18547    d_hdr->preset = DUMP_ALL_PRESETS;
18548
18549    if (CHIP_IS_E1(sc)) {
18550        d_hdr->dump_meta_data = DUMP_CHIP_E1;
18551    } else if (CHIP_IS_E1H(sc)) {
18552        d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18553    } else if (CHIP_IS_E2(sc)) {
18554        d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18555                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18556    } else if (CHIP_IS_E3A0(sc)) {
18557        d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18558                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18559    } else if (CHIP_IS_E3B0(sc)) {
18560        d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18561                (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18562    }
18563
18564    buf += sizeof(struct  dump_header);
18565
18566    for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18567
18568        /* Skip presets with IOR */
18569        if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18570            (preset_idx == 11))
18571            continue;
18572
18573        rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18574
18575	if (rval)
18576            break;
18577
18578        size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18579
18580        buf += size;
18581    }
18582
18583    bxe_pretend_func(sc, 0);
18584    ecore_clear_blocks_parity(sc);
18585    ecore_enable_blocks_parity(sc);
18586
18587    bxe_pretend_func(sc, 1);
18588    ecore_clear_blocks_parity(sc);
18589    ecore_enable_blocks_parity(sc);
18590
18591    /* Return to current function */
18592    bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18593
18594
18595    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
18596    for (i = 0, allocated = 0; allocated < context_size; i++) {
18597
18598        BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i,
18599            (uintmax_t)sc->context[i].vcxt_dma.paddr,
18600            sc->context[i].vcxt_dma.vaddr,
18601            sc->context[i].size);
18602        allocated += sc->context[i].size;
18603    }
18604    BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18605        (uintmax_t)sc->fw_stats_req_mapping,
18606        (uintmax_t)sc->fw_stats_data_mapping,
18607        sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18608    BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18609        (void *)sc->def_sb_dma.paddr, sc->def_sb,
18610        sizeof(struct host_sp_status_block));
18611    BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18612        (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18613    BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18614        (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18615        sizeof(struct bxe_slowpath));
18616    BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18617        (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18618    BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18619        (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18620        FW_BUF_SIZE);
18621    for (i = 0; i < sc->num_queues; i++) {
18622        fp = &sc->fp[i];
18623        BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18624            (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18625            sizeof(union bxe_host_hc_status_block));
18626        BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18627            (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18628            (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18629        BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18630            (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18631            (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18632        BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18633            (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18634            (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18635        BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18636            (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18637            (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18638    }
18639
18640    ilt_cli = &ilt->clients[1];
18641    for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18642        BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18643            (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18644            ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18645    }
18646
18647
18648    cmd_offset = DMAE_REG_CMD_MEM;
18649    for (i = 0; i < 224; i++) {
18650        reg_addr = (cmd_offset +(i * 4));
18651        reg_val = REG_RD(sc, reg_addr);
18652        BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18653            reg_addr, reg_val);
18654    }
18655
18656
18657    BLOGI(sc, "Collection of grcdump done\n");
18658    sc->grcdump_done = 1;
18659    return(rval);
18660}
18661
18662static int
18663bxe_add_cdev(struct bxe_softc *sc)
18664{
18665    sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18666
18667    if (sc->eeprom == NULL) {
18668        BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18669        return (-1);
18670    }
18671
18672    sc->ioctl_dev = make_dev(&bxe_cdevsw,
18673                            sc->ifp->if_dunit,
18674                            UID_ROOT,
18675                            GID_WHEEL,
18676                            0600,
18677                            "%s",
18678                            if_name(sc->ifp));
18679
18680    if (sc->ioctl_dev == NULL) {
18681        free(sc->eeprom, M_DEVBUF);
18682        sc->eeprom = NULL;
18683        return (-1);
18684    }
18685
18686    sc->ioctl_dev->si_drv1 = sc;
18687
18688    return (0);
18689}
18690
18691static void
18692bxe_del_cdev(struct bxe_softc *sc)
18693{
18694    if (sc->ioctl_dev != NULL)
18695        destroy_dev(sc->ioctl_dev);
18696
18697    if (sc->eeprom != NULL) {
18698        free(sc->eeprom, M_DEVBUF);
18699        sc->eeprom = NULL;
18700    }
18701    sc->ioctl_dev = NULL;
18702
18703    return;
18704}
18705
18706static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18707{
18708
18709    if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18710        return FALSE;
18711
18712    return TRUE;
18713}
18714
18715
18716static int
18717bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18718{
18719    int rval = 0;
18720
18721    if(!bxe_is_nvram_accessible(sc)) {
18722        BLOGW(sc, "Cannot access eeprom when interface is down\n");
18723        return (-EAGAIN);
18724    }
18725    rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18726
18727
18728   return (rval);
18729}
18730
18731static int
18732bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18733{
18734    int rval = 0;
18735
18736    if(!bxe_is_nvram_accessible(sc)) {
18737        BLOGW(sc, "Cannot access eeprom when interface is down\n");
18738        return (-EAGAIN);
18739    }
18740    rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18741
18742   return (rval);
18743}
18744
18745static int
18746bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18747{
18748    int rval = 0;
18749
18750    switch (eeprom->eeprom_cmd) {
18751
18752    case BXE_EEPROM_CMD_SET_EEPROM:
18753
18754        rval = copyin(eeprom->eeprom_data, sc->eeprom,
18755                       eeprom->eeprom_data_len);
18756
18757        if (rval)
18758            break;
18759
18760        rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18761                       eeprom->eeprom_data_len);
18762        break;
18763
18764    case BXE_EEPROM_CMD_GET_EEPROM:
18765
18766        rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18767                       eeprom->eeprom_data_len);
18768
18769        if (rval) {
18770            break;
18771        }
18772
18773        rval = copyout(sc->eeprom, eeprom->eeprom_data,
18774                       eeprom->eeprom_data_len);
18775        break;
18776
18777    default:
18778            rval = EINVAL;
18779            break;
18780    }
18781
18782    if (rval) {
18783        BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18784    }
18785
18786    return (rval);
18787}
18788
18789static int
18790bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18791{
18792    uint32_t ext_phy_config;
18793    int port = SC_PORT(sc);
18794    int cfg_idx = bxe_get_link_cfg_idx(sc);
18795
18796    dev_p->supported = sc->port.supported[cfg_idx] |
18797            (sc->port.supported[cfg_idx ^ 1] &
18798            (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18799    dev_p->advertising = sc->port.advertising[cfg_idx];
18800    if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18801        ELINK_ETH_PHY_SFP_1G_FIBER) {
18802        dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18803        dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18804    }
18805    if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18806        !(sc->flags & BXE_MF_FUNC_DIS)) {
18807        dev_p->duplex = sc->link_vars.duplex;
18808        if (IS_MF(sc) && !BXE_NOMCP(sc))
18809            dev_p->speed = bxe_get_mf_speed(sc);
18810        else
18811            dev_p->speed = sc->link_vars.line_speed;
18812    } else {
18813        dev_p->duplex = DUPLEX_UNKNOWN;
18814        dev_p->speed = SPEED_UNKNOWN;
18815    }
18816
18817    dev_p->port = bxe_media_detect(sc);
18818
18819    ext_phy_config = SHMEM_RD(sc,
18820                         dev_info.port_hw_config[port].external_phy_config);
18821    if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18822        PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18823        dev_p->phy_address =  sc->port.phy_addr;
18824    else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18825            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18826        ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18827            PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18828        dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18829    else
18830        dev_p->phy_address = 0;
18831
18832    if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18833        dev_p->autoneg = AUTONEG_ENABLE;
18834    else
18835       dev_p->autoneg = AUTONEG_DISABLE;
18836
18837
18838    return 0;
18839}
18840
18841static int
18842bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18843        struct thread *td)
18844{
18845    struct bxe_softc    *sc;
18846    int                 rval = 0;
18847    device_t            pci_dev;
18848    bxe_grcdump_t       *dump = NULL;
18849    int grc_dump_size;
18850    bxe_drvinfo_t   *drv_infop = NULL;
18851    bxe_dev_setting_t  *dev_p;
18852    bxe_dev_setting_t  dev_set;
18853    bxe_get_regs_t  *reg_p;
18854    bxe_reg_rdw_t *reg_rdw_p;
18855    bxe_pcicfg_rdw_t *cfg_rdw_p;
18856    bxe_perm_mac_addr_t *mac_addr_p;
18857
18858
18859    if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18860        return ENXIO;
18861
18862    pci_dev= sc->dev;
18863
18864    dump = (bxe_grcdump_t *)data;
18865
18866    switch(cmd) {
18867
18868        case BXE_GRC_DUMP_SIZE:
18869            dump->pci_func = sc->pcie_func;
18870            dump->grcdump_size =
18871                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18872                     sizeof(struct  dump_header);
18873            break;
18874
18875        case BXE_GRC_DUMP:
18876
18877            grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18878                                sizeof(struct  dump_header);
18879            if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
18880                (dump->grcdump_size < grc_dump_size)) {
18881                rval = EINVAL;
18882                break;
18883            }
18884
18885            if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
18886                (!sc->grcdump_started)) {
18887                rval =  bxe_grc_dump(sc);
18888            }
18889
18890            if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
18891                (sc->grc_dump != NULL))  {
18892                dump->grcdump_dwords = grc_dump_size >> 2;
18893                rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18894                free(sc->grc_dump, M_DEVBUF);
18895                sc->grc_dump = NULL;
18896                sc->grcdump_started = 0;
18897                sc->grcdump_done = 0;
18898            }
18899
18900            break;
18901
18902        case BXE_DRV_INFO:
18903            drv_infop = (bxe_drvinfo_t *)data;
18904            snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
18905            snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
18906                BXE_DRIVER_VERSION);
18907            snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
18908                sc->devinfo.bc_ver_str);
18909            snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
18910                "%s", sc->fw_ver_str);
18911            drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
18912            drv_infop->reg_dump_len =
18913                (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
18914                    + sizeof(struct  dump_header);
18915            snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
18916                sc->pcie_bus, sc->pcie_device, sc->pcie_func);
18917            break;
18918
18919        case BXE_DEV_SETTING:
18920            dev_p = (bxe_dev_setting_t *)data;
18921            bxe_get_settings(sc, &dev_set);
18922            dev_p->supported = dev_set.supported;
18923            dev_p->advertising = dev_set.advertising;
18924            dev_p->speed = dev_set.speed;
18925            dev_p->duplex = dev_set.duplex;
18926            dev_p->port = dev_set.port;
18927            dev_p->phy_address = dev_set.phy_address;
18928            dev_p->autoneg = dev_set.autoneg;
18929
18930            break;
18931
18932        case BXE_GET_REGS:
18933
18934            reg_p = (bxe_get_regs_t *)data;
18935            grc_dump_size = reg_p->reg_buf_len;
18936
18937            if((!sc->grcdump_done) && (!sc->grcdump_started)) {
18938                bxe_grc_dump(sc);
18939            }
18940            if((sc->grcdump_done) && (sc->grcdump_started) &&
18941                (sc->grc_dump != NULL))  {
18942                rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
18943                free(sc->grc_dump, M_DEVBUF);
18944                sc->grc_dump = NULL;
18945                sc->grcdump_started = 0;
18946                sc->grcdump_done = 0;
18947            }
18948
18949            break;
18950
18951        case BXE_RDW_REG:
18952            reg_rdw_p = (bxe_reg_rdw_t *)data;
18953            if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
18954                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18955                reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
18956
18957            if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
18958                (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18959                REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
18960
18961            break;
18962
18963        case BXE_RDW_PCICFG:
18964            cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
18965            if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
18966
18967                cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
18968                                         cfg_rdw_p->cfg_width);
18969
18970            } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
18971                pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
18972                            cfg_rdw_p->cfg_width);
18973            } else {
18974                BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
18975            }
18976            break;
18977
18978        case BXE_MAC_ADDR:
18979            mac_addr_p = (bxe_perm_mac_addr_t *)data;
18980            snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
18981                sc->mac_addr_str);
18982            break;
18983
18984        case BXE_EEPROM:
18985            rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
18986            break;
18987
18988
18989        default:
18990            break;
18991    }
18992
18993    return (rval);
18994}
18995