bxe.c revision 284651
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 284651 2015-06-20 22:24:44Z davidcs $");
29
30#define BXE_DRIVER_VERSION "1.78.79"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301             &bxe_debug, 0, "Debug logging mode");
302
303/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304static int bxe_interrupt_mode = INTR_MODE_MSIX;
305SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307
308/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309static int bxe_queue_count = 4;
310SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311           &bxe_queue_count, 0, "Multi-Queue queue count");
312
313/* max number of buffers per queue (default RX_BD_USABLE) */
314static int bxe_max_rx_bufs = 0;
315SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317
318/* Host interrupt coalescing RX tick timer (usecs) */
319static int bxe_hc_rx_ticks = 25;
320SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322
323/* Host interrupt coalescing TX tick timer (usecs) */
324static int bxe_hc_tx_ticks = 50;
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327
328/* Maximum number of Rx packets to process at a time */
329static int bxe_rx_budget = 0xffffffff;
330SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331           &bxe_rx_budget, 0, "Rx processing budget");
332
333/* Maximum LRO aggregation size */
334static int bxe_max_aggregation_size = 0;
335SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336           &bxe_max_aggregation_size, 0, "max aggregation size");
337
338/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339static int bxe_mrrs = -1;
340SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341           &bxe_mrrs, 0, "PCIe maximum read request size");
342
343/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344static int bxe_autogreeen = 0;
345SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346           &bxe_autogreeen, 0, "AutoGrEEEn support");
347
348/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349static int bxe_udp_rss = 0;
350SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351           &bxe_udp_rss, 0, "UDP RSS support");
352
353
354#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355
356#define STATS_OFFSET32(stat_name)                   \
357    (offsetof(struct bxe_eth_stats, stat_name) / 4)
358
359#define Q_STATS_OFFSET32(stat_name)                   \
360    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361
362static const struct {
363    uint32_t offset;
364    uint32_t size;
365    uint32_t flags;
366#define STATS_FLAGS_PORT  1
367#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369    char string[STAT_NAME_LEN];
370} bxe_eth_stats_arr[] = {
371    { STATS_OFFSET32(total_bytes_received_hi),
372                8, STATS_FLAGS_BOTH, "rx_bytes" },
373    { STATS_OFFSET32(error_bytes_received_hi),
374                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375    { STATS_OFFSET32(total_unicast_packets_received_hi),
376                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377    { STATS_OFFSET32(total_multicast_packets_received_hi),
378                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379    { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                8, STATS_FLAGS_PORT, "rx_crc_errors" },
383    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                8, STATS_FLAGS_PORT, "rx_align_errors" },
385    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                8, STATS_FLAGS_PORT, "rx_fragments" },
391    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                8, STATS_FLAGS_PORT, "rx_jabbers" },
393    { STATS_OFFSET32(no_buff_discard_hi),
394                8, STATS_FLAGS_BOTH, "rx_discards" },
395    { STATS_OFFSET32(mac_filter_discard),
396                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397    { STATS_OFFSET32(mf_tag_discard),
398                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399    { STATS_OFFSET32(pfc_frames_received_hi),
400                8, STATS_FLAGS_PORT, "pfc_frames_received" },
401    { STATS_OFFSET32(pfc_frames_sent_hi),
402                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403    { STATS_OFFSET32(brb_drop_hi),
404                8, STATS_FLAGS_PORT, "rx_brb_discard" },
405    { STATS_OFFSET32(brb_truncate_hi),
406                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407    { STATS_OFFSET32(pause_frames_received_hi),
408                8, STATS_FLAGS_PORT, "rx_pause_frames" },
409    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411    { STATS_OFFSET32(nig_timer_max),
412                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413    { STATS_OFFSET32(total_bytes_transmitted_hi),
414                8, STATS_FLAGS_BOTH, "tx_bytes" },
415    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                8, STATS_FLAGS_PORT, "tx_error_bytes" },
417    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                8, STATS_FLAGS_PORT, "tx_mac_errors" },
425    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                8, STATS_FLAGS_PORT, "tx_single_collisions" },
429    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                8, STATS_FLAGS_PORT, "tx_deferred" },
433    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                8, STATS_FLAGS_PORT, "tx_late_collisions" },
437    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                8, STATS_FLAGS_PORT, "tx_total_collisions" },
439    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453    { STATS_OFFSET32(pause_frames_sent_hi),
454                8, STATS_FLAGS_PORT, "tx_pause_frames" },
455    { STATS_OFFSET32(total_tpa_aggregations_hi),
456                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459    { STATS_OFFSET32(total_tpa_bytes_hi),
460                8, STATS_FLAGS_FUNC, "tpa_bytes"},
461#if 0
462    { STATS_OFFSET32(recoverable_error),
463                4, STATS_FLAGS_FUNC, "recoverable_errors" },
464    { STATS_OFFSET32(unrecoverable_error),
465                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466#endif
467    { STATS_OFFSET32(eee_tx_lpi),
468                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469    { STATS_OFFSET32(rx_calls),
470                4, STATS_FLAGS_FUNC, "rx_calls"},
471    { STATS_OFFSET32(rx_pkts),
472                4, STATS_FLAGS_FUNC, "rx_pkts"},
473    { STATS_OFFSET32(rx_tpa_pkts),
474                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475    { STATS_OFFSET32(rx_jumbo_sge_pkts),
476                4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
477    { STATS_OFFSET32(rx_soft_errors),
478                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
479    { STATS_OFFSET32(rx_hw_csum_errors),
480                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
481    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
482                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
483    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
484                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
485    { STATS_OFFSET32(rx_budget_reached),
486                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
487    { STATS_OFFSET32(tx_pkts),
488                4, STATS_FLAGS_FUNC, "tx_pkts"},
489    { STATS_OFFSET32(tx_soft_errors),
490                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
491    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
492                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
493    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
494                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
495    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
496                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
497    { STATS_OFFSET32(tx_ofld_frames_lso),
498                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
499    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
500                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
501    { STATS_OFFSET32(tx_encap_failures),
502                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
503    { STATS_OFFSET32(tx_hw_queue_full),
504                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
505    { STATS_OFFSET32(tx_hw_max_queue_depth),
506                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
507    { STATS_OFFSET32(tx_dma_mapping_failure),
508                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
509    { STATS_OFFSET32(tx_max_drbr_queue_depth),
510                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
511    { STATS_OFFSET32(tx_window_violation_std),
512                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
513    { STATS_OFFSET32(tx_window_violation_tso),
514                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
515#if 0
516    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
517                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
518    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
519                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
520#endif
521    { STATS_OFFSET32(tx_chain_lost_mbuf),
522                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
523    { STATS_OFFSET32(tx_frames_deferred),
524                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
525    { STATS_OFFSET32(tx_queue_xoff),
526                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
527    { STATS_OFFSET32(mbuf_defrag_attempts),
528                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
529    { STATS_OFFSET32(mbuf_defrag_failures),
530                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
531    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
532                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
533    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
534                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
535    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
536                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
537    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
538                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
539    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
540                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
541    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
542                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
543    { STATS_OFFSET32(mbuf_alloc_tx),
544                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
545    { STATS_OFFSET32(mbuf_alloc_rx),
546                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
547    { STATS_OFFSET32(mbuf_alloc_sge),
548                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
549    { STATS_OFFSET32(mbuf_alloc_tpa),
550                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
551};
552
553static const struct {
554    uint32_t offset;
555    uint32_t size;
556    char string[STAT_NAME_LEN];
557} bxe_eth_q_stats_arr[] = {
558    { Q_STATS_OFFSET32(total_bytes_received_hi),
559                8, "rx_bytes" },
560    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
561                8, "rx_ucast_packets" },
562    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
563                8, "rx_mcast_packets" },
564    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
565                8, "rx_bcast_packets" },
566    { Q_STATS_OFFSET32(no_buff_discard_hi),
567                8, "rx_discards" },
568    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
569                8, "tx_bytes" },
570    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
571                8, "tx_ucast_packets" },
572    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
573                8, "tx_mcast_packets" },
574    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
575                8, "tx_bcast_packets" },
576    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
577                8, "tpa_aggregations" },
578    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
579                8, "tpa_aggregated_frames"},
580    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
581                8, "tpa_bytes"},
582    { Q_STATS_OFFSET32(rx_calls),
583                4, "rx_calls"},
584    { Q_STATS_OFFSET32(rx_pkts),
585                4, "rx_pkts"},
586    { Q_STATS_OFFSET32(rx_tpa_pkts),
587                4, "rx_tpa_pkts"},
588    { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
589                4, "rx_jumbo_sge_pkts"},
590    { Q_STATS_OFFSET32(rx_soft_errors),
591                4, "rx_soft_errors"},
592    { Q_STATS_OFFSET32(rx_hw_csum_errors),
593                4, "rx_hw_csum_errors"},
594    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
595                4, "rx_ofld_frames_csum_ip"},
596    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
597                4, "rx_ofld_frames_csum_tcp_udp"},
598    { Q_STATS_OFFSET32(rx_budget_reached),
599                4, "rx_budget_reached"},
600    { Q_STATS_OFFSET32(tx_pkts),
601                4, "tx_pkts"},
602    { Q_STATS_OFFSET32(tx_soft_errors),
603                4, "tx_soft_errors"},
604    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
605                4, "tx_ofld_frames_csum_ip"},
606    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
607                4, "tx_ofld_frames_csum_tcp"},
608    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
609                4, "tx_ofld_frames_csum_udp"},
610    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
611                4, "tx_ofld_frames_lso"},
612    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
613                4, "tx_ofld_frames_lso_hdr_splits"},
614    { Q_STATS_OFFSET32(tx_encap_failures),
615                4, "tx_encap_failures"},
616    { Q_STATS_OFFSET32(tx_hw_queue_full),
617                4, "tx_hw_queue_full"},
618    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
619                4, "tx_hw_max_queue_depth"},
620    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
621                4, "tx_dma_mapping_failure"},
622    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
623                4, "tx_max_drbr_queue_depth"},
624    { Q_STATS_OFFSET32(tx_window_violation_std),
625                4, "tx_window_violation_std"},
626    { Q_STATS_OFFSET32(tx_window_violation_tso),
627                4, "tx_window_violation_tso"},
628#if 0
629    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
630                4, "tx_unsupported_tso_request_ipv6"},
631    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
632                4, "tx_unsupported_tso_request_not_tcp"},
633#endif
634    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
635                4, "tx_chain_lost_mbuf"},
636    { Q_STATS_OFFSET32(tx_frames_deferred),
637                4, "tx_frames_deferred"},
638    { Q_STATS_OFFSET32(tx_queue_xoff),
639                4, "tx_queue_xoff"},
640    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
641                4, "mbuf_defrag_attempts"},
642    { Q_STATS_OFFSET32(mbuf_defrag_failures),
643                4, "mbuf_defrag_failures"},
644    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
645                4, "mbuf_rx_bd_alloc_failed"},
646    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
647                4, "mbuf_rx_bd_mapping_failed"},
648    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
649                4, "mbuf_rx_tpa_alloc_failed"},
650    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
651                4, "mbuf_rx_tpa_mapping_failed"},
652    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
653                4, "mbuf_rx_sge_alloc_failed"},
654    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
655                4, "mbuf_rx_sge_mapping_failed"},
656    { Q_STATS_OFFSET32(mbuf_alloc_tx),
657                4, "mbuf_alloc_tx"},
658    { Q_STATS_OFFSET32(mbuf_alloc_rx),
659                4, "mbuf_alloc_rx"},
660    { Q_STATS_OFFSET32(mbuf_alloc_sge),
661                4, "mbuf_alloc_sge"},
662    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
663                4, "mbuf_alloc_tpa"}
664};
665
666#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
667#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
668
669
670static void    bxe_cmng_fns_init(struct bxe_softc *sc,
671                                 uint8_t          read_cfg,
672                                 uint8_t          cmng_type);
673static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
674static void    storm_memset_cmng(struct bxe_softc *sc,
675                                 struct cmng_init *cmng,
676                                 uint8_t          port);
677static void    bxe_set_reset_global(struct bxe_softc *sc);
678static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
679static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
680                                 int              engine);
681static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
682static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
683                                   uint8_t          *global,
684                                   uint8_t          print);
685static void    bxe_int_disable(struct bxe_softc *sc);
686static int     bxe_release_leader_lock(struct bxe_softc *sc);
687static void    bxe_pf_disable(struct bxe_softc *sc);
688static void    bxe_free_fp_buffers(struct bxe_softc *sc);
689static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
690                                      struct bxe_fastpath *fp,
691                                      uint16_t            rx_bd_prod,
692                                      uint16_t            rx_cq_prod,
693                                      uint16_t            rx_sge_prod);
694static void    bxe_link_report_locked(struct bxe_softc *sc);
695static void    bxe_link_report(struct bxe_softc *sc);
696static void    bxe_link_status_update(struct bxe_softc *sc);
697static void    bxe_periodic_callout_func(void *xsc);
698static void    bxe_periodic_start(struct bxe_softc *sc);
699static void    bxe_periodic_stop(struct bxe_softc *sc);
700static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
701                                    uint16_t prev_index,
702                                    uint16_t index);
703static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
704                                     int                 queue);
705static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
706                                     uint16_t            index);
707static uint8_t bxe_txeof(struct bxe_softc *sc,
708                         struct bxe_fastpath *fp);
709static void    bxe_task_fp(struct bxe_fastpath *fp);
710static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
711                                     struct mbuf      *m,
712                                     uint8_t          contents);
713static int     bxe_alloc_mem(struct bxe_softc *sc);
714static void    bxe_free_mem(struct bxe_softc *sc);
715static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
716static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
717static int     bxe_interrupt_attach(struct bxe_softc *sc);
718static void    bxe_interrupt_detach(struct bxe_softc *sc);
719static void    bxe_set_rx_mode(struct bxe_softc *sc);
720static int     bxe_init_locked(struct bxe_softc *sc);
721static int     bxe_stop_locked(struct bxe_softc *sc);
722static __noinline int bxe_nic_load(struct bxe_softc *sc,
723                                   int              load_mode);
724static __noinline int bxe_nic_unload(struct bxe_softc *sc,
725                                     uint32_t         unload_mode,
726                                     uint8_t          keep_link);
727
728static void bxe_handle_sp_tq(void *context, int pending);
729static void bxe_handle_fp_tq(void *context, int pending);
730
731
732/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
733uint32_t
734calc_crc32(uint8_t  *crc32_packet,
735           uint32_t crc32_length,
736           uint32_t crc32_seed,
737           uint8_t  complement)
738{
739   uint32_t byte         = 0;
740   uint32_t bit          = 0;
741   uint8_t  msb          = 0;
742   uint32_t temp         = 0;
743   uint32_t shft         = 0;
744   uint8_t  current_byte = 0;
745   uint32_t crc32_result = crc32_seed;
746   const uint32_t CRC32_POLY = 0x1edc6f41;
747
748   if ((crc32_packet == NULL) ||
749       (crc32_length == 0) ||
750       ((crc32_length % 8) != 0))
751    {
752        return (crc32_result);
753    }
754
755    for (byte = 0; byte < crc32_length; byte = byte + 1)
756    {
757        current_byte = crc32_packet[byte];
758        for (bit = 0; bit < 8; bit = bit + 1)
759        {
760            /* msb = crc32_result[31]; */
761            msb = (uint8_t)(crc32_result >> 31);
762
763            crc32_result = crc32_result << 1;
764
765            /* it (msb != current_byte[bit]) */
766            if (msb != (0x1 & (current_byte >> bit)))
767            {
768                crc32_result = crc32_result ^ CRC32_POLY;
769                /* crc32_result[0] = 1 */
770                crc32_result |= 1;
771            }
772        }
773    }
774
775    /* Last step is to:
776     * 1. "mirror" every bit
777     * 2. swap the 4 bytes
778     * 3. complement each bit
779     */
780
781    /* Mirror */
782    temp = crc32_result;
783    shft = sizeof(crc32_result) * 8 - 1;
784
785    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
786    {
787        temp <<= 1;
788        temp |= crc32_result & 1;
789        shft-- ;
790    }
791
792    /* temp[31-bit] = crc32_result[bit] */
793    temp <<= shft;
794
795    /* Swap */
796    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
797    {
798        uint32_t t0, t1, t2, t3;
799        t0 = (0x000000ff & (temp >> 24));
800        t1 = (0x0000ff00 & (temp >> 8));
801        t2 = (0x00ff0000 & (temp << 8));
802        t3 = (0xff000000 & (temp << 24));
803        crc32_result = t0 | t1 | t2 | t3;
804    }
805
806    /* Complement */
807    if (complement)
808    {
809        crc32_result = ~crc32_result;
810    }
811
812    return (crc32_result);
813}
814
815int
816bxe_test_bit(int                    nr,
817             volatile unsigned long *addr)
818{
819    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
820}
821
822void
823bxe_set_bit(unsigned int           nr,
824            volatile unsigned long *addr)
825{
826    atomic_set_acq_long(addr, (1 << nr));
827}
828
829void
830bxe_clear_bit(int                    nr,
831              volatile unsigned long *addr)
832{
833    atomic_clear_acq_long(addr, (1 << nr));
834}
835
836int
837bxe_test_and_set_bit(int                    nr,
838                       volatile unsigned long *addr)
839{
840    unsigned long x;
841    nr = (1 << nr);
842    do {
843        x = *addr;
844    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
845    // if (x & nr) bit_was_set; else bit_was_not_set;
846    return (x & nr);
847}
848
849int
850bxe_test_and_clear_bit(int                    nr,
851                       volatile unsigned long *addr)
852{
853    unsigned long x;
854    nr = (1 << nr);
855    do {
856        x = *addr;
857    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
858    // if (x & nr) bit_was_set; else bit_was_not_set;
859    return (x & nr);
860}
861
862int
863bxe_cmpxchg(volatile int *addr,
864            int          old,
865            int          new)
866{
867    int x;
868    do {
869        x = *addr;
870    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
871    return (x);
872}
873
874/*
875 * Get DMA memory from the OS.
876 *
877 * Validates that the OS has provided DMA buffers in response to a
878 * bus_dmamap_load call and saves the physical address of those buffers.
879 * When the callback is used the OS will return 0 for the mapping function
880 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
881 * failures back to the caller.
882 *
883 * Returns:
884 *   Nothing.
885 */
886static void
887bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
888{
889    struct bxe_dma *dma = arg;
890
891    if (error) {
892        dma->paddr = 0;
893        dma->nseg  = 0;
894        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
895    } else {
896        dma->paddr = segs->ds_addr;
897        dma->nseg  = nseg;
898#if 0
899        BLOGD(dma->sc, DBG_LOAD,
900              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
901              dma->msg, dma->vaddr, (void *)dma->paddr,
902              dma->nseg, dma->size);
903#endif
904    }
905}
906
907/*
908 * Allocate a block of memory and map it for DMA. No partial completions
909 * allowed and release any resources acquired if we can't acquire all
910 * resources.
911 *
912 * Returns:
913 *   0 = Success, !0 = Failure
914 */
915int
916bxe_dma_alloc(struct bxe_softc *sc,
917              bus_size_t       size,
918              struct bxe_dma   *dma,
919              const char       *msg)
920{
921    int rc;
922
923    if (dma->size > 0) {
924        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
925              (unsigned long)dma->size);
926        return (1);
927    }
928
929    memset(dma, 0, sizeof(*dma)); /* sanity */
930    dma->sc   = sc;
931    dma->size = size;
932    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
933
934    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
935                            BCM_PAGE_SIZE,      /* alignment */
936                            0,                  /* boundary limit */
937                            BUS_SPACE_MAXADDR,  /* restricted low */
938                            BUS_SPACE_MAXADDR,  /* restricted hi */
939                            NULL,               /* addr filter() */
940                            NULL,               /* addr filter() arg */
941                            size,               /* max map size */
942                            1,                  /* num discontinuous */
943                            size,               /* max seg size */
944                            BUS_DMA_ALLOCNOW,   /* flags */
945                            NULL,               /* lock() */
946                            NULL,               /* lock() arg */
947                            &dma->tag);         /* returned dma tag */
948    if (rc != 0) {
949        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
950        memset(dma, 0, sizeof(*dma));
951        return (1);
952    }
953
954    rc = bus_dmamem_alloc(dma->tag,
955                          (void **)&dma->vaddr,
956                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
957                          &dma->map);
958    if (rc != 0) {
959        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
960        bus_dma_tag_destroy(dma->tag);
961        memset(dma, 0, sizeof(*dma));
962        return (1);
963    }
964
965    rc = bus_dmamap_load(dma->tag,
966                         dma->map,
967                         dma->vaddr,
968                         size,
969                         bxe_dma_map_addr, /* BLOGD in here */
970                         dma,
971                         BUS_DMA_NOWAIT);
972    if (rc != 0) {
973        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
974        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
975        bus_dma_tag_destroy(dma->tag);
976        memset(dma, 0, sizeof(*dma));
977        return (1);
978    }
979
980    return (0);
981}
982
983void
984bxe_dma_free(struct bxe_softc *sc,
985             struct bxe_dma   *dma)
986{
987    if (dma->size > 0) {
988#if 0
989        BLOGD(sc, DBG_LOAD,
990              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
991              dma->msg, dma->vaddr, (void *)dma->paddr,
992              dma->nseg, dma->size);
993#endif
994
995        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
996
997        bus_dmamap_sync(dma->tag, dma->map,
998                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
999        bus_dmamap_unload(dma->tag, dma->map);
1000        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1001        bus_dma_tag_destroy(dma->tag);
1002    }
1003
1004    memset(dma, 0, sizeof(*dma));
1005}
1006
1007/*
1008 * These indirect read and write routines are only during init.
1009 * The locking is handled by the MCP.
1010 */
1011
1012void
1013bxe_reg_wr_ind(struct bxe_softc *sc,
1014               uint32_t         addr,
1015               uint32_t         val)
1016{
1017    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1018    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1019    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1020}
1021
1022uint32_t
1023bxe_reg_rd_ind(struct bxe_softc *sc,
1024               uint32_t         addr)
1025{
1026    uint32_t val;
1027
1028    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1029    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1030    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1031
1032    return (val);
1033}
1034
1035#if 0
1036void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1037{
1038    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1039
1040    switch (dmae->opcode & DMAE_COMMAND_DST) {
1041    case DMAE_CMD_DST_PCI:
1042        if (src_type == DMAE_CMD_SRC_PCI)
1043            DP(msglvl, "DMAE: opcode 0x%08x\n"
1044               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1045               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1046               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1047               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1048               dmae->comp_addr_hi, dmae->comp_addr_lo,
1049               dmae->comp_val);
1050        else
1051            DP(msglvl, "DMAE: opcode 0x%08x\n"
1052               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1053               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054               dmae->opcode, dmae->src_addr_lo >> 2,
1055               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056               dmae->comp_addr_hi, dmae->comp_addr_lo,
1057               dmae->comp_val);
1058        break;
1059    case DMAE_CMD_DST_GRC:
1060        if (src_type == DMAE_CMD_SRC_PCI)
1061            DP(msglvl, "DMAE: opcode 0x%08x\n"
1062               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1063               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1064               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1065               dmae->len, dmae->dst_addr_lo >> 2,
1066               dmae->comp_addr_hi, dmae->comp_addr_lo,
1067               dmae->comp_val);
1068        else
1069            DP(msglvl, "DMAE: opcode 0x%08x\n"
1070               "src [%08x], len [%d*4], dst [%08x]\n"
1071               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072               dmae->opcode, dmae->src_addr_lo >> 2,
1073               dmae->len, dmae->dst_addr_lo >> 2,
1074               dmae->comp_addr_hi, dmae->comp_addr_lo,
1075               dmae->comp_val);
1076        break;
1077    default:
1078        if (src_type == DMAE_CMD_SRC_PCI)
1079            DP(msglvl, "DMAE: opcode 0x%08x\n"
1080               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1081               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1082               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1083               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1084               dmae->comp_val);
1085        else
1086            DP(msglvl, "DMAE: opcode 0x%08x\n"
1087               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1088               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1089               dmae->opcode, dmae->src_addr_lo >> 2,
1090               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1091               dmae->comp_val);
1092        break;
1093    }
1094
1095}
1096#endif
1097
1098static int
1099bxe_acquire_hw_lock(struct bxe_softc *sc,
1100                    uint32_t         resource)
1101{
1102    uint32_t lock_status;
1103    uint32_t resource_bit = (1 << resource);
1104    int func = SC_FUNC(sc);
1105    uint32_t hw_lock_control_reg;
1106    int cnt;
1107
1108    /* validate the resource is within range */
1109    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1110        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1111        return (-1);
1112    }
1113
1114    if (func <= 5) {
1115        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1116    } else {
1117        hw_lock_control_reg =
1118                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1119    }
1120
1121    /* validate the resource is not already taken */
1122    lock_status = REG_RD(sc, hw_lock_control_reg);
1123    if (lock_status & resource_bit) {
1124        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1125              lock_status, resource_bit);
1126        return (-1);
1127    }
1128
1129    /* try every 5ms for 5 seconds */
1130    for (cnt = 0; cnt < 1000; cnt++) {
1131        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1132        lock_status = REG_RD(sc, hw_lock_control_reg);
1133        if (lock_status & resource_bit) {
1134            return (0);
1135        }
1136        DELAY(5000);
1137    }
1138
1139    BLOGE(sc, "Resource lock timeout!\n");
1140    return (-1);
1141}
1142
1143static int
1144bxe_release_hw_lock(struct bxe_softc *sc,
1145                    uint32_t         resource)
1146{
1147    uint32_t lock_status;
1148    uint32_t resource_bit = (1 << resource);
1149    int func = SC_FUNC(sc);
1150    uint32_t hw_lock_control_reg;
1151
1152    /* validate the resource is within range */
1153    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1154        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1155        return (-1);
1156    }
1157
1158    if (func <= 5) {
1159        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1160    } else {
1161        hw_lock_control_reg =
1162                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1163    }
1164
1165    /* validate the resource is currently taken */
1166    lock_status = REG_RD(sc, hw_lock_control_reg);
1167    if (!(lock_status & resource_bit)) {
1168        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1169              lock_status, resource_bit);
1170        return (-1);
1171    }
1172
1173    REG_WR(sc, hw_lock_control_reg, resource_bit);
1174    return (0);
1175}
1176static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1177{
1178	BXE_PHY_LOCK(sc);
1179	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1180}
1181
1182static void bxe_release_phy_lock(struct bxe_softc *sc)
1183{
1184	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1185	BXE_PHY_UNLOCK(sc);
1186}
1187/*
1188 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1189 * had we done things the other way around, if two pfs from the same port
1190 * would attempt to access nvram at the same time, we could run into a
1191 * scenario such as:
1192 * pf A takes the port lock.
1193 * pf B succeeds in taking the same lock since they are from the same port.
1194 * pf A takes the per pf misc lock. Performs eeprom access.
1195 * pf A finishes. Unlocks the per pf misc lock.
1196 * Pf B takes the lock and proceeds to perform it's own access.
1197 * pf A unlocks the per port lock, while pf B is still working (!).
1198 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1199 * access corrupted by pf B).*
1200 */
1201static int
1202bxe_acquire_nvram_lock(struct bxe_softc *sc)
1203{
1204    int port = SC_PORT(sc);
1205    int count, i;
1206    uint32_t val = 0;
1207
1208    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1209    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1210
1211    /* adjust timeout for emulation/FPGA */
1212    count = NVRAM_TIMEOUT_COUNT;
1213    if (CHIP_REV_IS_SLOW(sc)) {
1214        count *= 100;
1215    }
1216
1217    /* request access to nvram interface */
1218    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1219           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1220
1221    for (i = 0; i < count*10; i++) {
1222        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1223        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1224            break;
1225        }
1226
1227        DELAY(5);
1228    }
1229
1230    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1231        BLOGE(sc, "Cannot get access to nvram interface\n");
1232        return (-1);
1233    }
1234
1235    return (0);
1236}
1237
1238static int
1239bxe_release_nvram_lock(struct bxe_softc *sc)
1240{
1241    int port = SC_PORT(sc);
1242    int count, i;
1243    uint32_t val = 0;
1244
1245    /* adjust timeout for emulation/FPGA */
1246    count = NVRAM_TIMEOUT_COUNT;
1247    if (CHIP_REV_IS_SLOW(sc)) {
1248        count *= 100;
1249    }
1250
1251    /* relinquish nvram interface */
1252    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1253           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1254
1255    for (i = 0; i < count*10; i++) {
1256        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1257        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1258            break;
1259        }
1260
1261        DELAY(5);
1262    }
1263
1264    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1265        BLOGE(sc, "Cannot free access to nvram interface\n");
1266        return (-1);
1267    }
1268
1269    /* release HW lock: protect against other PFs in PF Direct Assignment */
1270    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1271
1272    return (0);
1273}
1274
1275static void
1276bxe_enable_nvram_access(struct bxe_softc *sc)
1277{
1278    uint32_t val;
1279
1280    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1281
1282    /* enable both bits, even on read */
1283    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1284           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1285}
1286
1287static void
1288bxe_disable_nvram_access(struct bxe_softc *sc)
1289{
1290    uint32_t val;
1291
1292    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1293
1294    /* disable both bits, even after read */
1295    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1296           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1297                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1298}
1299
1300static int
1301bxe_nvram_read_dword(struct bxe_softc *sc,
1302                     uint32_t         offset,
1303                     uint32_t         *ret_val,
1304                     uint32_t         cmd_flags)
1305{
1306    int count, i, rc;
1307    uint32_t val;
1308
1309    /* build the command word */
1310    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1311
1312    /* need to clear DONE bit separately */
1313    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1314
1315    /* address of the NVRAM to read from */
1316    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1317           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1318
1319    /* issue a read command */
1320    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1321
1322    /* adjust timeout for emulation/FPGA */
1323    count = NVRAM_TIMEOUT_COUNT;
1324    if (CHIP_REV_IS_SLOW(sc)) {
1325        count *= 100;
1326    }
1327
1328    /* wait for completion */
1329    *ret_val = 0;
1330    rc = -1;
1331    for (i = 0; i < count; i++) {
1332        DELAY(5);
1333        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1334
1335        if (val & MCPR_NVM_COMMAND_DONE) {
1336            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1337            /* we read nvram data in cpu order
1338             * but ethtool sees it as an array of bytes
1339             * converting to big-endian will do the work
1340             */
1341            *ret_val = htobe32(val);
1342            rc = 0;
1343            break;
1344        }
1345    }
1346
1347    if (rc == -1) {
1348        BLOGE(sc, "nvram read timeout expired\n");
1349    }
1350
1351    return (rc);
1352}
1353
1354static int
1355bxe_nvram_read(struct bxe_softc *sc,
1356               uint32_t         offset,
1357               uint8_t          *ret_buf,
1358               int              buf_size)
1359{
1360    uint32_t cmd_flags;
1361    uint32_t val;
1362    int rc;
1363
1364    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1365        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1366              offset, buf_size);
1367        return (-1);
1368    }
1369
1370    if ((offset + buf_size) > sc->devinfo.flash_size) {
1371        BLOGE(sc, "Invalid parameter, "
1372                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1373              offset, buf_size, sc->devinfo.flash_size);
1374        return (-1);
1375    }
1376
1377    /* request access to nvram interface */
1378    rc = bxe_acquire_nvram_lock(sc);
1379    if (rc) {
1380        return (rc);
1381    }
1382
1383    /* enable access to nvram interface */
1384    bxe_enable_nvram_access(sc);
1385
1386    /* read the first word(s) */
1387    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1388    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1389        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1390        memcpy(ret_buf, &val, 4);
1391
1392        /* advance to the next dword */
1393        offset += sizeof(uint32_t);
1394        ret_buf += sizeof(uint32_t);
1395        buf_size -= sizeof(uint32_t);
1396        cmd_flags = 0;
1397    }
1398
1399    if (rc == 0) {
1400        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1401        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1402        memcpy(ret_buf, &val, 4);
1403    }
1404
1405    /* disable access to nvram interface */
1406    bxe_disable_nvram_access(sc);
1407    bxe_release_nvram_lock(sc);
1408
1409    return (rc);
1410}
1411
1412static int
1413bxe_nvram_write_dword(struct bxe_softc *sc,
1414                      uint32_t         offset,
1415                      uint32_t         val,
1416                      uint32_t         cmd_flags)
1417{
1418    int count, i, rc;
1419
1420    /* build the command word */
1421    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1422
1423    /* need to clear DONE bit separately */
1424    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1425
1426    /* write the data */
1427    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1428
1429    /* address of the NVRAM to write to */
1430    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1431           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1432
1433    /* issue the write command */
1434    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1435
1436    /* adjust timeout for emulation/FPGA */
1437    count = NVRAM_TIMEOUT_COUNT;
1438    if (CHIP_REV_IS_SLOW(sc)) {
1439        count *= 100;
1440    }
1441
1442    /* wait for completion */
1443    rc = -1;
1444    for (i = 0; i < count; i++) {
1445        DELAY(5);
1446        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1447        if (val & MCPR_NVM_COMMAND_DONE) {
1448            rc = 0;
1449            break;
1450        }
1451    }
1452
1453    if (rc == -1) {
1454        BLOGE(sc, "nvram write timeout expired\n");
1455    }
1456
1457    return (rc);
1458}
1459
1460#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1461
1462static int
1463bxe_nvram_write1(struct bxe_softc *sc,
1464                 uint32_t         offset,
1465                 uint8_t          *data_buf,
1466                 int              buf_size)
1467{
1468    uint32_t cmd_flags;
1469    uint32_t align_offset;
1470    uint32_t val;
1471    int rc;
1472
1473    if ((offset + buf_size) > sc->devinfo.flash_size) {
1474        BLOGE(sc, "Invalid parameter, "
1475                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1476              offset, buf_size, sc->devinfo.flash_size);
1477        return (-1);
1478    }
1479
1480    /* request access to nvram interface */
1481    rc = bxe_acquire_nvram_lock(sc);
1482    if (rc) {
1483        return (rc);
1484    }
1485
1486    /* enable access to nvram interface */
1487    bxe_enable_nvram_access(sc);
1488
1489    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1490    align_offset = (offset & ~0x03);
1491    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1492
1493    if (rc == 0) {
1494        val &= ~(0xff << BYTE_OFFSET(offset));
1495        val |= (*data_buf << BYTE_OFFSET(offset));
1496
1497        /* nvram data is returned as an array of bytes
1498         * convert it back to cpu order
1499         */
1500        val = be32toh(val);
1501
1502        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1503    }
1504
1505    /* disable access to nvram interface */
1506    bxe_disable_nvram_access(sc);
1507    bxe_release_nvram_lock(sc);
1508
1509    return (rc);
1510}
1511
1512static int
1513bxe_nvram_write(struct bxe_softc *sc,
1514                uint32_t         offset,
1515                uint8_t          *data_buf,
1516                int              buf_size)
1517{
1518    uint32_t cmd_flags;
1519    uint32_t val;
1520    uint32_t written_so_far;
1521    int rc;
1522
1523    if (buf_size == 1) {
1524        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1525    }
1526
1527    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1528        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1529              offset, buf_size);
1530        return (-1);
1531    }
1532
1533    if (buf_size == 0) {
1534        return (0); /* nothing to do */
1535    }
1536
1537    if ((offset + buf_size) > sc->devinfo.flash_size) {
1538        BLOGE(sc, "Invalid parameter, "
1539                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1540              offset, buf_size, sc->devinfo.flash_size);
1541        return (-1);
1542    }
1543
1544    /* request access to nvram interface */
1545    rc = bxe_acquire_nvram_lock(sc);
1546    if (rc) {
1547        return (rc);
1548    }
1549
1550    /* enable access to nvram interface */
1551    bxe_enable_nvram_access(sc);
1552
1553    written_so_far = 0;
1554    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1555    while ((written_so_far < buf_size) && (rc == 0)) {
1556        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1557            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1559            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1560        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1561            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1562        }
1563
1564        memcpy(&val, data_buf, 4);
1565
1566        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1567
1568        /* advance to the next dword */
1569        offset += sizeof(uint32_t);
1570        data_buf += sizeof(uint32_t);
1571        written_so_far += sizeof(uint32_t);
1572        cmd_flags = 0;
1573    }
1574
1575    /* disable access to nvram interface */
1576    bxe_disable_nvram_access(sc);
1577    bxe_release_nvram_lock(sc);
1578
1579    return (rc);
1580}
1581
1582/* copy command into DMAE command memory and set DMAE command Go */
1583void
1584bxe_post_dmae(struct bxe_softc    *sc,
1585              struct dmae_command *dmae,
1586              int                 idx)
1587{
1588    uint32_t cmd_offset;
1589    int i;
1590
1591    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1592    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1593        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1594    }
1595
1596    REG_WR(sc, dmae_reg_go_c[idx], 1);
1597}
1598
1599uint32_t
1600bxe_dmae_opcode_add_comp(uint32_t opcode,
1601                         uint8_t  comp_type)
1602{
1603    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1604                      DMAE_COMMAND_C_TYPE_ENABLE));
1605}
1606
1607uint32_t
1608bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1609{
1610    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1611}
1612
1613uint32_t
1614bxe_dmae_opcode(struct bxe_softc *sc,
1615                uint8_t          src_type,
1616                uint8_t          dst_type,
1617                uint8_t          with_comp,
1618                uint8_t          comp_type)
1619{
1620    uint32_t opcode = 0;
1621
1622    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1623               (dst_type << DMAE_COMMAND_DST_SHIFT));
1624
1625    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1626
1627    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1628
1629    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1630               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1631
1632    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1633
1634#ifdef __BIG_ENDIAN
1635    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1636#else
1637    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1638#endif
1639
1640    if (with_comp) {
1641        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1642    }
1643
1644    return (opcode);
1645}
1646
1647static void
1648bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1649                        struct dmae_command *dmae,
1650                        uint8_t             src_type,
1651                        uint8_t             dst_type)
1652{
1653    memset(dmae, 0, sizeof(struct dmae_command));
1654
1655    /* set the opcode */
1656    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1657                                   TRUE, DMAE_COMP_PCI);
1658
1659    /* fill in the completion parameters */
1660    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1661    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1662    dmae->comp_val     = DMAE_COMP_VAL;
1663}
1664
1665/* issue a DMAE command over the init channel and wait for completion */
1666static int
1667bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1668                         struct dmae_command *dmae)
1669{
1670    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1671    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1672
1673    BXE_DMAE_LOCK(sc);
1674
1675    /* reset completion */
1676    *wb_comp = 0;
1677
1678    /* post the command on the channel used for initializations */
1679    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1680
1681    /* wait for completion */
1682    DELAY(5);
1683
1684    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1685        if (!timeout ||
1686            (sc->recovery_state != BXE_RECOVERY_DONE &&
1687             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1688            BLOGE(sc, "DMAE timeout!\n");
1689            BXE_DMAE_UNLOCK(sc);
1690            return (DMAE_TIMEOUT);
1691        }
1692
1693        timeout--;
1694        DELAY(50);
1695    }
1696
1697    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1698        BLOGE(sc, "DMAE PCI error!\n");
1699        BXE_DMAE_UNLOCK(sc);
1700        return (DMAE_PCI_ERROR);
1701    }
1702
1703    BXE_DMAE_UNLOCK(sc);
1704    return (0);
1705}
1706
1707void
1708bxe_read_dmae(struct bxe_softc *sc,
1709              uint32_t         src_addr,
1710              uint32_t         len32)
1711{
1712    struct dmae_command dmae;
1713    uint32_t *data;
1714    int i, rc;
1715
1716    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1717
1718    if (!sc->dmae_ready) {
1719        data = BXE_SP(sc, wb_data[0]);
1720
1721        for (i = 0; i < len32; i++) {
1722            data[i] = (CHIP_IS_E1(sc)) ?
1723                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1724                          REG_RD(sc, (src_addr + (i * 4)));
1725        }
1726
1727        return;
1728    }
1729
1730    /* set opcode and fixed command fields */
1731    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1732
1733    /* fill in addresses and len */
1734    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1735    dmae.src_addr_hi = 0;
1736    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1737    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1738    dmae.len         = len32;
1739
1740    /* issue the command and wait for completion */
1741    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1742        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1743    };
1744}
1745
1746void
1747bxe_write_dmae(struct bxe_softc *sc,
1748               bus_addr_t       dma_addr,
1749               uint32_t         dst_addr,
1750               uint32_t         len32)
1751{
1752    struct dmae_command dmae;
1753    int rc;
1754
1755    if (!sc->dmae_ready) {
1756        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1757
1758        if (CHIP_IS_E1(sc)) {
1759            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760        } else {
1761            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1762        }
1763
1764        return;
1765    }
1766
1767    /* set opcode and fixed command fields */
1768    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1769
1770    /* fill in addresses and len */
1771    dmae.src_addr_lo = U64_LO(dma_addr);
1772    dmae.src_addr_hi = U64_HI(dma_addr);
1773    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1774    dmae.dst_addr_hi = 0;
1775    dmae.len         = len32;
1776
1777    /* issue the command and wait for completion */
1778    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1779        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1780    }
1781}
1782
1783void
1784bxe_write_dmae_phys_len(struct bxe_softc *sc,
1785                        bus_addr_t       phys_addr,
1786                        uint32_t         addr,
1787                        uint32_t         len)
1788{
1789    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1790    int offset = 0;
1791
1792    while (len > dmae_wr_max) {
1793        bxe_write_dmae(sc,
1794                       (phys_addr + offset), /* src DMA address */
1795                       (addr + offset),      /* dst GRC address */
1796                       dmae_wr_max);
1797        offset += (dmae_wr_max * 4);
1798        len -= dmae_wr_max;
1799    }
1800
1801    bxe_write_dmae(sc,
1802                   (phys_addr + offset), /* src DMA address */
1803                   (addr + offset),      /* dst GRC address */
1804                   len);
1805}
1806
1807void
1808bxe_set_ctx_validation(struct bxe_softc   *sc,
1809                       struct eth_context *cxt,
1810                       uint32_t           cid)
1811{
1812    /* ustorm cxt validation */
1813    cxt->ustorm_ag_context.cdu_usage =
1814        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1815            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1816    /* xcontext validation */
1817    cxt->xstorm_ag_context.cdu_reserved =
1818        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1819            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1820}
1821
1822static void
1823bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1824                            uint8_t          port,
1825                            uint8_t          fw_sb_id,
1826                            uint8_t          sb_index,
1827                            uint8_t          ticks)
1828{
1829    uint32_t addr =
1830        (BAR_CSTRORM_INTMEM +
1831         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1832
1833    REG_WR8(sc, addr, ticks);
1834
1835    BLOGD(sc, DBG_LOAD,
1836          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1837          port, fw_sb_id, sb_index, ticks);
1838}
1839
1840static void
1841bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1842                            uint8_t          port,
1843                            uint16_t         fw_sb_id,
1844                            uint8_t          sb_index,
1845                            uint8_t          disable)
1846{
1847    uint32_t enable_flag =
1848        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1849    uint32_t addr =
1850        (BAR_CSTRORM_INTMEM +
1851         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1852    uint8_t flags;
1853
1854    /* clear and set */
1855    flags = REG_RD8(sc, addr);
1856    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1857    flags |= enable_flag;
1858    REG_WR8(sc, addr, flags);
1859
1860    BLOGD(sc, DBG_LOAD,
1861          "port %d fw_sb_id %d sb_index %d disable %d\n",
1862          port, fw_sb_id, sb_index, disable);
1863}
1864
1865void
1866bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1867                             uint8_t          fw_sb_id,
1868                             uint8_t          sb_index,
1869                             uint8_t          disable,
1870                             uint16_t         usec)
1871{
1872    int port = SC_PORT(sc);
1873    uint8_t ticks = (usec / 4); /* XXX ??? */
1874
1875    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1876
1877    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1878    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1879}
1880
1881void
1882elink_cb_udelay(struct bxe_softc *sc,
1883                uint32_t         usecs)
1884{
1885    DELAY(usecs);
1886}
1887
1888uint32_t
1889elink_cb_reg_read(struct bxe_softc *sc,
1890                  uint32_t         reg_addr)
1891{
1892    return (REG_RD(sc, reg_addr));
1893}
1894
1895void
1896elink_cb_reg_write(struct bxe_softc *sc,
1897                   uint32_t         reg_addr,
1898                   uint32_t         val)
1899{
1900    REG_WR(sc, reg_addr, val);
1901}
1902
1903void
1904elink_cb_reg_wb_write(struct bxe_softc *sc,
1905                      uint32_t         offset,
1906                      uint32_t         *wb_write,
1907                      uint16_t         len)
1908{
1909    REG_WR_DMAE(sc, offset, wb_write, len);
1910}
1911
1912void
1913elink_cb_reg_wb_read(struct bxe_softc *sc,
1914                     uint32_t         offset,
1915                     uint32_t         *wb_write,
1916                     uint16_t         len)
1917{
1918    REG_RD_DMAE(sc, offset, wb_write, len);
1919}
1920
1921uint8_t
1922elink_cb_path_id(struct bxe_softc *sc)
1923{
1924    return (SC_PATH(sc));
1925}
1926
1927void
1928elink_cb_event_log(struct bxe_softc     *sc,
1929                   const elink_log_id_t elink_log_id,
1930                   ...)
1931{
1932    /* XXX */
1933#if 0
1934    //va_list ap;
1935    va_start(ap, elink_log_id);
1936    _XXX_(sc, lm_log_id, ap);
1937    va_end(ap);
1938#endif
1939    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1940}
1941
1942static int
1943bxe_set_spio(struct bxe_softc *sc,
1944             int              spio,
1945             uint32_t         mode)
1946{
1947    uint32_t spio_reg;
1948
1949    /* Only 2 SPIOs are configurable */
1950    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1951        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1952        return (-1);
1953    }
1954
1955    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1956
1957    /* read SPIO and mask except the float bits */
1958    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1959
1960    switch (mode) {
1961    case MISC_SPIO_OUTPUT_LOW:
1962        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1963        /* clear FLOAT and set CLR */
1964        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1965        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1966        break;
1967
1968    case MISC_SPIO_OUTPUT_HIGH:
1969        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1970        /* clear FLOAT and set SET */
1971        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1972        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1973        break;
1974
1975    case MISC_SPIO_INPUT_HI_Z:
1976        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1977        /* set FLOAT */
1978        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1979        break;
1980
1981    default:
1982        break;
1983    }
1984
1985    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1986    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1987
1988    return (0);
1989}
1990
1991static int
1992bxe_gpio_read(struct bxe_softc *sc,
1993              int              gpio_num,
1994              uint8_t          port)
1995{
1996    /* The GPIO should be swapped if swap register is set and active */
1997    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1998                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1999    int gpio_shift = (gpio_num +
2000                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2001    uint32_t gpio_mask = (1 << gpio_shift);
2002    uint32_t gpio_reg;
2003
2004    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2005        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2006        return (-1);
2007    }
2008
2009    /* read GPIO value */
2010    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2011
2012    /* get the requested pin value */
2013    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2014}
2015
2016static int
2017bxe_gpio_write(struct bxe_softc *sc,
2018               int              gpio_num,
2019               uint32_t         mode,
2020               uint8_t          port)
2021{
2022    /* The GPIO should be swapped if swap register is set and active */
2023    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2024                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2025    int gpio_shift = (gpio_num +
2026                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2027    uint32_t gpio_mask = (1 << gpio_shift);
2028    uint32_t gpio_reg;
2029
2030    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2031        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2032        return (-1);
2033    }
2034
2035    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2036
2037    /* read GPIO and mask except the float bits */
2038    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2039
2040    switch (mode) {
2041    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2042        BLOGD(sc, DBG_PHY,
2043              "Set GPIO %d (shift %d) -> output low\n",
2044              gpio_num, gpio_shift);
2045        /* clear FLOAT and set CLR */
2046        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2047        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2048        break;
2049
2050    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2051        BLOGD(sc, DBG_PHY,
2052              "Set GPIO %d (shift %d) -> output high\n",
2053              gpio_num, gpio_shift);
2054        /* clear FLOAT and set SET */
2055        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2057        break;
2058
2059    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2060        BLOGD(sc, DBG_PHY,
2061              "Set GPIO %d (shift %d) -> input\n",
2062              gpio_num, gpio_shift);
2063        /* set FLOAT */
2064        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065        break;
2066
2067    default:
2068        break;
2069    }
2070
2071    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2072    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2073
2074    return (0);
2075}
2076
2077static int
2078bxe_gpio_mult_write(struct bxe_softc *sc,
2079                    uint8_t          pins,
2080                    uint32_t         mode)
2081{
2082    uint32_t gpio_reg;
2083
2084    /* any port swapping should be handled by caller */
2085
2086    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2087
2088    /* read GPIO and mask except the float bits */
2089    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2090    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2091    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2092    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2093
2094    switch (mode) {
2095    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2096        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2097        /* set CLR */
2098        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2099        break;
2100
2101    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2102        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2103        /* set SET */
2104        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2105        break;
2106
2107    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2108        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2109        /* set FLOAT */
2110        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2111        break;
2112
2113    default:
2114        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2115        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2116        return (-1);
2117    }
2118
2119    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2120    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121
2122    return (0);
2123}
2124
2125static int
2126bxe_gpio_int_write(struct bxe_softc *sc,
2127                   int              gpio_num,
2128                   uint32_t         mode,
2129                   uint8_t          port)
2130{
2131    /* The GPIO should be swapped if swap register is set and active */
2132    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2133                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2134    int gpio_shift = (gpio_num +
2135                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2136    uint32_t gpio_mask = (1 << gpio_shift);
2137    uint32_t gpio_reg;
2138
2139    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2140        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2141        return (-1);
2142    }
2143
2144    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2145
2146    /* read GPIO int */
2147    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2148
2149    switch (mode) {
2150    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2151        BLOGD(sc, DBG_PHY,
2152              "Clear GPIO INT %d (shift %d) -> output low\n",
2153              gpio_num, gpio_shift);
2154        /* clear SET and set CLR */
2155        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2156        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2157        break;
2158
2159    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2160        BLOGD(sc, DBG_PHY,
2161              "Set GPIO INT %d (shift %d) -> output high\n",
2162              gpio_num, gpio_shift);
2163        /* clear CLR and set SET */
2164        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2165        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166        break;
2167
2168    default:
2169        break;
2170    }
2171
2172    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2173    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2174
2175    return (0);
2176}
2177
2178uint32_t
2179elink_cb_gpio_read(struct bxe_softc *sc,
2180                   uint16_t         gpio_num,
2181                   uint8_t          port)
2182{
2183    return (bxe_gpio_read(sc, gpio_num, port));
2184}
2185
2186uint8_t
2187elink_cb_gpio_write(struct bxe_softc *sc,
2188                    uint16_t         gpio_num,
2189                    uint8_t          mode, /* 0=low 1=high */
2190                    uint8_t          port)
2191{
2192    return (bxe_gpio_write(sc, gpio_num, mode, port));
2193}
2194
2195uint8_t
2196elink_cb_gpio_mult_write(struct bxe_softc *sc,
2197                         uint8_t          pins,
2198                         uint8_t          mode) /* 0=low 1=high */
2199{
2200    return (bxe_gpio_mult_write(sc, pins, mode));
2201}
2202
2203uint8_t
2204elink_cb_gpio_int_write(struct bxe_softc *sc,
2205                        uint16_t         gpio_num,
2206                        uint8_t          mode, /* 0=low 1=high */
2207                        uint8_t          port)
2208{
2209    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2210}
2211
2212void
2213elink_cb_notify_link_changed(struct bxe_softc *sc)
2214{
2215    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2216                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2217}
2218
2219/* send the MCP a request, block until there is a reply */
2220uint32_t
2221elink_cb_fw_command(struct bxe_softc *sc,
2222                    uint32_t         command,
2223                    uint32_t         param)
2224{
2225    int mb_idx = SC_FW_MB_IDX(sc);
2226    uint32_t seq;
2227    uint32_t rc = 0;
2228    uint32_t cnt = 1;
2229    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2230
2231    BXE_FWMB_LOCK(sc);
2232
2233    seq = ++sc->fw_seq;
2234    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2235    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2236
2237    BLOGD(sc, DBG_PHY,
2238          "wrote command 0x%08x to FW MB param 0x%08x\n",
2239          (command | seq), param);
2240
2241    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2242    do {
2243        DELAY(delay * 1000);
2244        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2245    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2246
2247    BLOGD(sc, DBG_PHY,
2248          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2249          cnt*delay, rc, seq);
2250
2251    /* is this a reply to our command? */
2252    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2253        rc &= FW_MSG_CODE_MASK;
2254    } else {
2255        /* Ruh-roh! */
2256        BLOGE(sc, "FW failed to respond!\n");
2257        // XXX bxe_fw_dump(sc);
2258        rc = 0;
2259    }
2260
2261    BXE_FWMB_UNLOCK(sc);
2262    return (rc);
2263}
2264
2265static uint32_t
2266bxe_fw_command(struct bxe_softc *sc,
2267               uint32_t         command,
2268               uint32_t         param)
2269{
2270    return (elink_cb_fw_command(sc, command, param));
2271}
2272
2273static void
2274__storm_memset_dma_mapping(struct bxe_softc *sc,
2275                           uint32_t         addr,
2276                           bus_addr_t       mapping)
2277{
2278    REG_WR(sc, addr, U64_LO(mapping));
2279    REG_WR(sc, (addr + 4), U64_HI(mapping));
2280}
2281
2282static void
2283storm_memset_spq_addr(struct bxe_softc *sc,
2284                      bus_addr_t       mapping,
2285                      uint16_t         abs_fid)
2286{
2287    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2288                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2289    __storm_memset_dma_mapping(sc, addr, mapping);
2290}
2291
2292static void
2293storm_memset_vf_to_pf(struct bxe_softc *sc,
2294                      uint16_t         abs_fid,
2295                      uint16_t         pf_id)
2296{
2297    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2300    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2301}
2302
2303static void
2304storm_memset_func_en(struct bxe_softc *sc,
2305                     uint16_t         abs_fid,
2306                     uint8_t          enable)
2307{
2308    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2311    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2312}
2313
2314static void
2315storm_memset_eq_data(struct bxe_softc       *sc,
2316                     struct event_ring_data *eq_data,
2317                     uint16_t               pfid)
2318{
2319    uint32_t addr;
2320    size_t size;
2321
2322    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2323    size = sizeof(struct event_ring_data);
2324    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2325}
2326
2327static void
2328storm_memset_eq_prod(struct bxe_softc *sc,
2329                     uint16_t         eq_prod,
2330                     uint16_t         pfid)
2331{
2332    uint32_t addr = (BAR_CSTRORM_INTMEM +
2333                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2334    REG_WR16(sc, addr, eq_prod);
2335}
2336
2337/*
2338 * Post a slowpath command.
2339 *
2340 * A slowpath command is used to propogate a configuration change through
2341 * the controller in a controlled manner, allowing each STORM processor and
2342 * other H/W blocks to phase in the change.  The commands sent on the
2343 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2344 * completion of the ramrod will occur in different ways.  Here's a
2345 * breakdown of ramrods and how they complete:
2346 *
2347 * RAMROD_CMD_ID_ETH_PORT_SETUP
2348 *   Used to setup the leading connection on a port.  Completes on the
2349 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2350 *
2351 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2352 *   Used to setup an additional connection on a port.  Completes on the
2353 *   RCQ of the multi-queue/RSS connection being initialized.
2354 *
2355 * RAMROD_CMD_ID_ETH_STAT_QUERY
2356 *   Used to force the storm processors to update the statistics database
2357 *   in host memory.  This ramrod is send on the leading connection CID and
2358 *   completes as an index increment of the CSTORM on the default status
2359 *   block.
2360 *
2361 * RAMROD_CMD_ID_ETH_UPDATE
2362 *   Used to update the state of the leading connection, usually to udpate
2363 *   the RSS indirection table.  Completes on the RCQ of the leading
2364 *   connection. (Not currently used under FreeBSD until OS support becomes
2365 *   available.)
2366 *
2367 * RAMROD_CMD_ID_ETH_HALT
2368 *   Used when tearing down a connection prior to driver unload.  Completes
2369 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2370 *   use this on the leading connection.
2371 *
2372 * RAMROD_CMD_ID_ETH_SET_MAC
2373 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2374 *   the RCQ of the leading connection.
2375 *
2376 * RAMROD_CMD_ID_ETH_CFC_DEL
2377 *   Used when tearing down a conneciton prior to driver unload.  Completes
2378 *   on the RCQ of the leading connection (since the current connection
2379 *   has been completely removed from controller memory).
2380 *
2381 * RAMROD_CMD_ID_ETH_PORT_DEL
2382 *   Used to tear down the leading connection prior to driver unload,
2383 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2384 *   default status block.
2385 *
2386 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2387 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2388 *   RSS connection that is being offloaded.  (Not currently used under
2389 *   FreeBSD.)
2390 *
2391 * There can only be one command pending per function.
2392 *
2393 * Returns:
2394 *   0 = Success, !0 = Failure.
2395 */
2396
2397/* must be called under the spq lock */
2398static inline
2399struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2400{
2401    struct eth_spe *next_spe = sc->spq_prod_bd;
2402
2403    if (sc->spq_prod_bd == sc->spq_last_bd) {
2404        /* wrap back to the first eth_spq */
2405        sc->spq_prod_bd = sc->spq;
2406        sc->spq_prod_idx = 0;
2407    } else {
2408        sc->spq_prod_bd++;
2409        sc->spq_prod_idx++;
2410    }
2411
2412    return (next_spe);
2413}
2414
2415/* must be called under the spq lock */
2416static inline
2417void bxe_sp_prod_update(struct bxe_softc *sc)
2418{
2419    int func = SC_FUNC(sc);
2420
2421    /*
2422     * Make sure that BD data is updated before writing the producer.
2423     * BD data is written to the memory, the producer is read from the
2424     * memory, thus we need a full memory barrier to ensure the ordering.
2425     */
2426    mb();
2427
2428    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2429             sc->spq_prod_idx);
2430
2431    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2432                      BUS_SPACE_BARRIER_WRITE);
2433}
2434
2435/**
2436 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2437 *
2438 * @cmd:      command to check
2439 * @cmd_type: command type
2440 */
2441static inline
2442int bxe_is_contextless_ramrod(int cmd,
2443                              int cmd_type)
2444{
2445    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2446        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2447        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2448        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2449        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2450        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2451        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2452        return (TRUE);
2453    } else {
2454        return (FALSE);
2455    }
2456}
2457
2458/**
2459 * bxe_sp_post - place a single command on an SP ring
2460 *
2461 * @sc:         driver handle
2462 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2463 * @cid:        SW CID the command is related to
2464 * @data_hi:    command private data address (high 32 bits)
2465 * @data_lo:    command private data address (low 32 bits)
2466 * @cmd_type:   command type (e.g. NONE, ETH)
2467 *
2468 * SP data is handled as if it's always an address pair, thus data fields are
2469 * not swapped to little endian in upper functions. Instead this function swaps
2470 * data as if it's two uint32 fields.
2471 */
2472int
2473bxe_sp_post(struct bxe_softc *sc,
2474            int              command,
2475            int              cid,
2476            uint32_t         data_hi,
2477            uint32_t         data_lo,
2478            int              cmd_type)
2479{
2480    struct eth_spe *spe;
2481    uint16_t type;
2482    int common;
2483
2484    common = bxe_is_contextless_ramrod(command, cmd_type);
2485
2486    BXE_SP_LOCK(sc);
2487
2488    if (common) {
2489        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2490            BLOGE(sc, "EQ ring is full!\n");
2491            BXE_SP_UNLOCK(sc);
2492            return (-1);
2493        }
2494    } else {
2495        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2496            BLOGE(sc, "SPQ ring is full!\n");
2497            BXE_SP_UNLOCK(sc);
2498            return (-1);
2499        }
2500    }
2501
2502    spe = bxe_sp_get_next(sc);
2503
2504    /* CID needs port number to be encoded int it */
2505    spe->hdr.conn_and_cmd_data =
2506        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2507
2508    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2509
2510    /* TBD: Check if it works for VFs */
2511    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2512             SPE_HDR_FUNCTION_ID);
2513
2514    spe->hdr.type = htole16(type);
2515
2516    spe->data.update_data_addr.hi = htole32(data_hi);
2517    spe->data.update_data_addr.lo = htole32(data_lo);
2518
2519    /*
2520     * It's ok if the actual decrement is issued towards the memory
2521     * somewhere between the lock and unlock. Thus no more explict
2522     * memory barrier is needed.
2523     */
2524    if (common) {
2525        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2526    } else {
2527        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2528    }
2529
2530    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2531    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2532          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2533    BLOGD(sc, DBG_SP,
2534          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2535          sc->spq_prod_idx,
2536          (uint32_t)U64_HI(sc->spq_dma.paddr),
2537          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2538          command,
2539          common,
2540          HW_CID(sc, cid),
2541          data_hi,
2542          data_lo,
2543          type,
2544          atomic_load_acq_long(&sc->cq_spq_left),
2545          atomic_load_acq_long(&sc->eq_spq_left));
2546
2547    bxe_sp_prod_update(sc);
2548
2549    BXE_SP_UNLOCK(sc);
2550    return (0);
2551}
2552
2553/**
2554 * bxe_debug_print_ind_table - prints the indirection table configuration.
2555 *
2556 * @sc: driver hanlde
2557 * @p:  pointer to rss configuration
2558 */
2559#if 0
2560static void
2561bxe_debug_print_ind_table(struct bxe_softc               *sc,
2562                          struct ecore_config_rss_params *p)
2563{
2564    int i;
2565
2566    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2567    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2568    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2569        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2570
2571        /* Print 4 bytes in a line */
2572        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2573            (((i + 1) & 0x3) == 0)) {
2574            BLOGD(sc, DBG_LOAD, "\n");
2575            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2576        }
2577    }
2578
2579    BLOGD(sc, DBG_LOAD, "\n");
2580}
2581#endif
2582
2583/*
2584 * FreeBSD Device probe function.
2585 *
2586 * Compares the device found to the driver's list of supported devices and
2587 * reports back to the bsd loader whether this is the right driver for the device.
2588 * This is the driver entry function called from the "kldload" command.
2589 *
2590 * Returns:
2591 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2592 */
2593static int
2594bxe_probe(device_t dev)
2595{
2596    struct bxe_softc *sc;
2597    struct bxe_device_type *t;
2598    char *descbuf;
2599    uint16_t did, sdid, svid, vid;
2600
2601    /* Find our device structure */
2602    sc = device_get_softc(dev);
2603    sc->dev = dev;
2604    t = bxe_devs;
2605
2606    /* Get the data for the device to be probed. */
2607    vid  = pci_get_vendor(dev);
2608    did  = pci_get_device(dev);
2609    svid = pci_get_subvendor(dev);
2610    sdid = pci_get_subdevice(dev);
2611
2612    BLOGD(sc, DBG_LOAD,
2613          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2614          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2615
2616    /* Look through the list of known devices for a match. */
2617    while (t->bxe_name != NULL) {
2618        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2619            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2620            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2621            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2622            if (descbuf == NULL)
2623                return (ENOMEM);
2624
2625            /* Print out the device identity. */
2626            snprintf(descbuf, BXE_DEVDESC_MAX,
2627                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2628                     (((pci_read_config(dev, PCIR_REVID, 4) &
2629                        0xf0) >> 4) + 'A'),
2630                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2631                     BXE_DRIVER_VERSION);
2632
2633            device_set_desc_copy(dev, descbuf);
2634            free(descbuf, M_TEMP);
2635            return (BUS_PROBE_DEFAULT);
2636        }
2637        t++;
2638    }
2639
2640    return (ENXIO);
2641}
2642
2643static void
2644bxe_init_mutexes(struct bxe_softc *sc)
2645{
2646#ifdef BXE_CORE_LOCK_SX
2647    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2648             "bxe%d_core_lock", sc->unit);
2649    sx_init(&sc->core_sx, sc->core_sx_name);
2650#else
2651    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2652             "bxe%d_core_lock", sc->unit);
2653    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2654#endif
2655
2656    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2657             "bxe%d_sp_lock", sc->unit);
2658    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2659
2660    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2661             "bxe%d_dmae_lock", sc->unit);
2662    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2663
2664    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2665             "bxe%d_phy_lock", sc->unit);
2666    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2667
2668    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2669             "bxe%d_fwmb_lock", sc->unit);
2670    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2671
2672    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2673             "bxe%d_print_lock", sc->unit);
2674    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2675
2676    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2677             "bxe%d_stats_lock", sc->unit);
2678    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2679
2680    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2681             "bxe%d_mcast_lock", sc->unit);
2682    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2683}
2684
2685static void
2686bxe_release_mutexes(struct bxe_softc *sc)
2687{
2688#ifdef BXE_CORE_LOCK_SX
2689    sx_destroy(&sc->core_sx);
2690#else
2691    if (mtx_initialized(&sc->core_mtx)) {
2692        mtx_destroy(&sc->core_mtx);
2693    }
2694#endif
2695
2696    if (mtx_initialized(&sc->sp_mtx)) {
2697        mtx_destroy(&sc->sp_mtx);
2698    }
2699
2700    if (mtx_initialized(&sc->dmae_mtx)) {
2701        mtx_destroy(&sc->dmae_mtx);
2702    }
2703
2704    if (mtx_initialized(&sc->port.phy_mtx)) {
2705        mtx_destroy(&sc->port.phy_mtx);
2706    }
2707
2708    if (mtx_initialized(&sc->fwmb_mtx)) {
2709        mtx_destroy(&sc->fwmb_mtx);
2710    }
2711
2712    if (mtx_initialized(&sc->print_mtx)) {
2713        mtx_destroy(&sc->print_mtx);
2714    }
2715
2716    if (mtx_initialized(&sc->stats_mtx)) {
2717        mtx_destroy(&sc->stats_mtx);
2718    }
2719
2720    if (mtx_initialized(&sc->mcast_mtx)) {
2721        mtx_destroy(&sc->mcast_mtx);
2722    }
2723}
2724
2725static void
2726bxe_tx_disable(struct bxe_softc* sc)
2727{
2728    if_t ifp = sc->ifp;
2729
2730    /* tell the stack the driver is stopped and TX queue is full */
2731    if (ifp !=  NULL) {
2732        if_setdrvflags(ifp, 0);
2733    }
2734}
2735
2736static void
2737bxe_drv_pulse(struct bxe_softc *sc)
2738{
2739    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2740             sc->fw_drv_pulse_wr_seq);
2741}
2742
2743static inline uint16_t
2744bxe_tx_avail(struct bxe_softc *sc,
2745             struct bxe_fastpath *fp)
2746{
2747    int16_t  used;
2748    uint16_t prod;
2749    uint16_t cons;
2750
2751    prod = fp->tx_bd_prod;
2752    cons = fp->tx_bd_cons;
2753
2754    used = SUB_S16(prod, cons);
2755
2756#if 0
2757    KASSERT((used < 0), ("used tx bds < 0"));
2758    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2759    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2760            ("invalid number of tx bds used"));
2761#endif
2762
2763    return (int16_t)(sc->tx_ring_size) - used;
2764}
2765
2766static inline int
2767bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2768{
2769    uint16_t hw_cons;
2770
2771    mb(); /* status block fields can change */
2772    hw_cons = le16toh(*fp->tx_cons_sb);
2773    return (hw_cons != fp->tx_pkt_cons);
2774}
2775
2776static inline uint8_t
2777bxe_has_tx_work(struct bxe_fastpath *fp)
2778{
2779    /* expand this for multi-cos if ever supported */
2780    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2781}
2782
2783static inline int
2784bxe_has_rx_work(struct bxe_fastpath *fp)
2785{
2786    uint16_t rx_cq_cons_sb;
2787
2788    mb(); /* status block fields can change */
2789    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2790    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2791        rx_cq_cons_sb++;
2792    return (fp->rx_cq_cons != rx_cq_cons_sb);
2793}
2794
2795static void
2796bxe_sp_event(struct bxe_softc    *sc,
2797             struct bxe_fastpath *fp,
2798             union eth_rx_cqe    *rr_cqe)
2799{
2800    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2801    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2802    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2803    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2804
2805    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2806          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2807
2808#if 0
2809    /*
2810     * If cid is within VF range, replace the slowpath object with the
2811     * one corresponding to this VF
2812     */
2813    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2814        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2815    }
2816#endif
2817
2818    switch (command) {
2819    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2820        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2821        drv_cmd = ECORE_Q_CMD_UPDATE;
2822        break;
2823
2824    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2825        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2826        drv_cmd = ECORE_Q_CMD_SETUP;
2827        break;
2828
2829    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2830        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2831        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2832        break;
2833
2834    case (RAMROD_CMD_ID_ETH_HALT):
2835        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2836        drv_cmd = ECORE_Q_CMD_HALT;
2837        break;
2838
2839    case (RAMROD_CMD_ID_ETH_TERMINATE):
2840        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2841        drv_cmd = ECORE_Q_CMD_TERMINATE;
2842        break;
2843
2844    case (RAMROD_CMD_ID_ETH_EMPTY):
2845        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2846        drv_cmd = ECORE_Q_CMD_EMPTY;
2847        break;
2848
2849    default:
2850        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2851              command, fp->index);
2852        return;
2853    }
2854
2855    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2856        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2857        /*
2858         * q_obj->complete_cmd() failure means that this was
2859         * an unexpected completion.
2860         *
2861         * In this case we don't want to increase the sc->spq_left
2862         * because apparently we haven't sent this command the first
2863         * place.
2864         */
2865        // bxe_panic(sc, ("Unexpected SP completion\n"));
2866        return;
2867    }
2868
2869#if 0
2870    /* SRIOV: reschedule any 'in_progress' operations */
2871    bxe_iov_sp_event(sc, cid, TRUE);
2872#endif
2873
2874    atomic_add_acq_long(&sc->cq_spq_left, 1);
2875
2876    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2877          atomic_load_acq_long(&sc->cq_spq_left));
2878
2879#if 0
2880    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2881        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2882        /*
2883         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2884         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2885         * prevent case that both bits are cleared. At the end of load/unload
2886         * driver checks that sp_state is cleared and this order prevents
2887         * races.
2888         */
2889        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2890        wmb();
2891        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2892
2893        /* schedule the sp task as MCP ack is required */
2894        bxe_schedule_sp_task(sc);
2895    }
2896#endif
2897}
2898
2899/*
2900 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2901 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2902 * the current aggregation queue as in-progress.
2903 */
2904static void
2905bxe_tpa_start(struct bxe_softc            *sc,
2906              struct bxe_fastpath         *fp,
2907              uint16_t                    queue,
2908              uint16_t                    cons,
2909              uint16_t                    prod,
2910              struct eth_fast_path_rx_cqe *cqe)
2911{
2912    struct bxe_sw_rx_bd tmp_bd;
2913    struct bxe_sw_rx_bd *rx_buf;
2914    struct eth_rx_bd *rx_bd;
2915    int max_agg_queues;
2916    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2917    uint16_t index;
2918
2919    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2920                       "cons=%d prod=%d\n",
2921          fp->index, queue, cons, prod);
2922
2923    max_agg_queues = MAX_AGG_QS(sc);
2924
2925    KASSERT((queue < max_agg_queues),
2926            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2927             fp->index, queue, max_agg_queues));
2928
2929    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2930            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2931             fp->index, queue));
2932
2933    /* copy the existing mbuf and mapping from the TPA pool */
2934    tmp_bd = tpa_info->bd;
2935
2936    if (tmp_bd.m == NULL) {
2937        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2938              fp->index, queue);
2939        /* XXX Error handling? */
2940        return;
2941    }
2942
2943    /* change the TPA queue to the start state */
2944    tpa_info->state            = BXE_TPA_STATE_START;
2945    tpa_info->placement_offset = cqe->placement_offset;
2946    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2947    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2948    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2949
2950    fp->rx_tpa_queue_used |= (1 << queue);
2951
2952    /*
2953     * If all the buffer descriptors are filled with mbufs then fill in
2954     * the current consumer index with a new BD. Else if a maximum Rx
2955     * buffer limit is imposed then fill in the next producer index.
2956     */
2957    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2958                prod : cons;
2959
2960    /* move the received mbuf and mapping to TPA pool */
2961    tpa_info->bd = fp->rx_mbuf_chain[cons];
2962
2963    /* release any existing RX BD mbuf mappings */
2964    if (cons != index) {
2965        rx_buf = &fp->rx_mbuf_chain[cons];
2966
2967        if (rx_buf->m_map != NULL) {
2968            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2969                            BUS_DMASYNC_POSTREAD);
2970            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2971        }
2972
2973        /*
2974         * We get here when the maximum number of rx buffers is less than
2975         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2976         * it out here without concern of a memory leak.
2977         */
2978        fp->rx_mbuf_chain[cons].m = NULL;
2979    }
2980
2981    /* update the Rx SW BD with the mbuf info from the TPA pool */
2982    fp->rx_mbuf_chain[index] = tmp_bd;
2983
2984    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2985    rx_bd = &fp->rx_chain[index];
2986    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2987    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2988}
2989
2990/*
2991 * When a TPA aggregation is completed, loop through the individual mbufs
2992 * of the aggregation, combining them into a single mbuf which will be sent
2993 * up the stack. Refill all freed SGEs with mbufs as we go along.
2994 */
2995static int
2996bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2997                   struct bxe_fastpath       *fp,
2998                   struct bxe_sw_tpa_info    *tpa_info,
2999                   uint16_t                  queue,
3000                   uint16_t                  pages,
3001                   struct mbuf               *m,
3002			       struct eth_end_agg_rx_cqe *cqe,
3003                   uint16_t                  cqe_idx)
3004{
3005    struct mbuf *m_frag;
3006    uint32_t frag_len, frag_size, i;
3007    uint16_t sge_idx;
3008    int rc = 0;
3009    int j;
3010
3011    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3012
3013    BLOGD(sc, DBG_LRO,
3014          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3015          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3016
3017    /* make sure the aggregated frame is not too big to handle */
3018    if (pages > 8 * PAGES_PER_SGE) {
3019        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3020                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3021              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3022              tpa_info->len_on_bd, frag_size);
3023        bxe_panic(sc, ("sge page count error\n"));
3024        return (EINVAL);
3025    }
3026
3027    /*
3028     * Scan through the scatter gather list pulling individual mbufs into a
3029     * single mbuf for the host stack.
3030     */
3031    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3032        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3033
3034        /*
3035         * Firmware gives the indices of the SGE as if the ring is an array
3036         * (meaning that the "next" element will consume 2 indices).
3037         */
3038        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3039
3040        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3041                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3042              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3043
3044        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3045
3046        /* allocate a new mbuf for the SGE */
3047        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3048        if (rc) {
3049            /* Leave all remaining SGEs in the ring! */
3050            return (rc);
3051        }
3052
3053        /* update the fragment length */
3054        m_frag->m_len = frag_len;
3055
3056        /* concatenate the fragment to the head mbuf */
3057        m_cat(m, m_frag);
3058        fp->eth_q_stats.mbuf_alloc_sge--;
3059
3060        /* update the TPA mbuf size and remaining fragment size */
3061        m->m_pkthdr.len += frag_len;
3062        frag_size -= frag_len;
3063    }
3064
3065    BLOGD(sc, DBG_LRO,
3066          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3067          fp->index, queue, frag_size);
3068
3069    return (rc);
3070}
3071
3072static inline void
3073bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3074{
3075    int i, j;
3076
3077    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3078        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3079
3080        for (j = 0; j < 2; j++) {
3081            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3082            idx--;
3083        }
3084    }
3085}
3086
3087static inline void
3088bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3089{
3090    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3091    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3092
3093    /*
3094     * Clear the two last indices in the page to 1. These are the indices that
3095     * correspond to the "next" element, hence will never be indicated and
3096     * should be removed from the calculations.
3097     */
3098    bxe_clear_sge_mask_next_elems(fp);
3099}
3100
3101static inline void
3102bxe_update_last_max_sge(struct bxe_fastpath *fp,
3103                        uint16_t            idx)
3104{
3105    uint16_t last_max = fp->last_max_sge;
3106
3107    if (SUB_S16(idx, last_max) > 0) {
3108        fp->last_max_sge = idx;
3109    }
3110}
3111
3112static inline void
3113bxe_update_sge_prod(struct bxe_softc          *sc,
3114                    struct bxe_fastpath       *fp,
3115                    uint16_t                  sge_len,
3116                    union eth_sgl_or_raw_data *cqe)
3117{
3118    uint16_t last_max, last_elem, first_elem;
3119    uint16_t delta = 0;
3120    uint16_t i;
3121
3122    if (!sge_len) {
3123        return;
3124    }
3125
3126    /* first mark all used pages */
3127    for (i = 0; i < sge_len; i++) {
3128        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3129                            RX_SGE(le16toh(cqe->sgl[i])));
3130    }
3131
3132    BLOGD(sc, DBG_LRO,
3133          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3134          fp->index, sge_len - 1,
3135          le16toh(cqe->sgl[sge_len - 1]));
3136
3137    /* assume that the last SGE index is the biggest */
3138    bxe_update_last_max_sge(fp,
3139                            le16toh(cqe->sgl[sge_len - 1]));
3140
3141    last_max = RX_SGE(fp->last_max_sge);
3142    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3143    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3144
3145    /* if ring is not full */
3146    if (last_elem + 1 != first_elem) {
3147        last_elem++;
3148    }
3149
3150    /* now update the prod */
3151    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3152        if (__predict_true(fp->sge_mask[i])) {
3153            break;
3154        }
3155
3156        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3157        delta += BIT_VEC64_ELEM_SZ;
3158    }
3159
3160    if (delta > 0) {
3161        fp->rx_sge_prod += delta;
3162        /* clear page-end entries */
3163        bxe_clear_sge_mask_next_elems(fp);
3164    }
3165
3166    BLOGD(sc, DBG_LRO,
3167          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3168          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3169}
3170
3171/*
3172 * The aggregation on the current TPA queue has completed. Pull the individual
3173 * mbuf fragments together into a single mbuf, perform all necessary checksum
3174 * calculations, and send the resuting mbuf to the stack.
3175 */
3176static void
3177bxe_tpa_stop(struct bxe_softc          *sc,
3178             struct bxe_fastpath       *fp,
3179             struct bxe_sw_tpa_info    *tpa_info,
3180             uint16_t                  queue,
3181             uint16_t                  pages,
3182			 struct eth_end_agg_rx_cqe *cqe,
3183             uint16_t                  cqe_idx)
3184{
3185    if_t ifp = sc->ifp;
3186    struct mbuf *m;
3187    int rc = 0;
3188
3189    BLOGD(sc, DBG_LRO,
3190          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3191          fp->index, queue, tpa_info->placement_offset,
3192          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3193
3194    m = tpa_info->bd.m;
3195
3196    /* allocate a replacement before modifying existing mbuf */
3197    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3198    if (rc) {
3199        /* drop the frame and log an error */
3200        fp->eth_q_stats.rx_soft_errors++;
3201        goto bxe_tpa_stop_exit;
3202    }
3203
3204    /* we have a replacement, fixup the current mbuf */
3205    m_adj(m, tpa_info->placement_offset);
3206    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3207
3208    /* mark the checksums valid (taken care of by the firmware) */
3209    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3210    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3211    m->m_pkthdr.csum_data = 0xffff;
3212    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3213                               CSUM_IP_VALID   |
3214                               CSUM_DATA_VALID |
3215                               CSUM_PSEUDO_HDR);
3216
3217    /* aggregate all of the SGEs into a single mbuf */
3218    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3219    if (rc) {
3220        /* drop the packet and log an error */
3221        fp->eth_q_stats.rx_soft_errors++;
3222        m_freem(m);
3223    } else {
3224        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3225            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3226            m->m_flags |= M_VLANTAG;
3227        }
3228
3229        /* assign packet to this interface interface */
3230        if_setrcvif(m, ifp);
3231
3232#if __FreeBSD_version >= 800000
3233        /* specify what RSS queue was used for this flow */
3234        m->m_pkthdr.flowid = fp->index;
3235        M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3236#endif
3237
3238        if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3239        fp->eth_q_stats.rx_tpa_pkts++;
3240
3241        /* pass the frame to the stack */
3242        if_input(ifp, m);
3243    }
3244
3245    /* we passed an mbuf up the stack or dropped the frame */
3246    fp->eth_q_stats.mbuf_alloc_tpa--;
3247
3248bxe_tpa_stop_exit:
3249
3250    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3251    fp->rx_tpa_queue_used &= ~(1 << queue);
3252}
3253
3254static uint8_t
3255bxe_service_rxsgl(
3256                 struct bxe_fastpath *fp,
3257                 uint16_t len,
3258                 uint16_t lenonbd,
3259                 struct mbuf *m,
3260                 struct eth_fast_path_rx_cqe *cqe_fp)
3261{
3262    struct mbuf *m_frag;
3263    uint16_t frags, frag_len;
3264    uint16_t sge_idx = 0;
3265    uint16_t j;
3266    uint8_t i, rc = 0;
3267    uint32_t frag_size;
3268
3269    /* adjust the mbuf */
3270    m->m_len = lenonbd;
3271
3272    frag_size =  len - lenonbd;
3273    frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3274
3275    for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3276        sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3277
3278        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3279        frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3280        m_frag->m_len = frag_len;
3281
3282       /* allocate a new mbuf for the SGE */
3283        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3284        if (rc) {
3285            /* Leave all remaining SGEs in the ring! */
3286            return (rc);
3287        }
3288        fp->eth_q_stats.mbuf_alloc_sge--;
3289
3290        /* concatenate the fragment to the head mbuf */
3291        m_cat(m, m_frag);
3292
3293        frag_size -= frag_len;
3294    }
3295
3296    bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3297
3298    return rc;
3299}
3300
3301static uint8_t
3302bxe_rxeof(struct bxe_softc    *sc,
3303          struct bxe_fastpath *fp)
3304{
3305    if_t ifp = sc->ifp;
3306    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3307    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3308    int rx_pkts = 0;
3309    int rc = 0;
3310
3311    BXE_FP_RX_LOCK(fp);
3312
3313    /* CQ "next element" is of the size of the regular element */
3314    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3315    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3316        hw_cq_cons++;
3317    }
3318
3319    bd_cons = fp->rx_bd_cons;
3320    bd_prod = fp->rx_bd_prod;
3321    bd_prod_fw = bd_prod;
3322    sw_cq_cons = fp->rx_cq_cons;
3323    sw_cq_prod = fp->rx_cq_prod;
3324
3325    /*
3326     * Memory barrier necessary as speculative reads of the rx
3327     * buffer can be ahead of the index in the status block
3328     */
3329    rmb();
3330
3331    BLOGD(sc, DBG_RX,
3332          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3333          fp->index, hw_cq_cons, sw_cq_cons);
3334
3335    while (sw_cq_cons != hw_cq_cons) {
3336        struct bxe_sw_rx_bd *rx_buf = NULL;
3337        union eth_rx_cqe *cqe;
3338        struct eth_fast_path_rx_cqe *cqe_fp;
3339        uint8_t cqe_fp_flags;
3340        enum eth_rx_cqe_type cqe_fp_type;
3341        uint16_t len, lenonbd,  pad;
3342        struct mbuf *m = NULL;
3343
3344        comp_ring_cons = RCQ(sw_cq_cons);
3345        bd_prod = RX_BD(bd_prod);
3346        bd_cons = RX_BD(bd_cons);
3347
3348        cqe          = &fp->rcq_chain[comp_ring_cons];
3349        cqe_fp       = &cqe->fast_path_cqe;
3350        cqe_fp_flags = cqe_fp->type_error_flags;
3351        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3352
3353        BLOGD(sc, DBG_RX,
3354              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3355              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3356              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3357              fp->index,
3358              hw_cq_cons,
3359              sw_cq_cons,
3360              bd_prod,
3361              bd_cons,
3362              CQE_TYPE(cqe_fp_flags),
3363              cqe_fp_flags,
3364              cqe_fp->status_flags,
3365              le32toh(cqe_fp->rss_hash_result),
3366              le16toh(cqe_fp->vlan_tag),
3367              le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3368              le16toh(cqe_fp->len_on_bd));
3369
3370        /* is this a slowpath msg? */
3371        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3372            bxe_sp_event(sc, fp, cqe);
3373            goto next_cqe;
3374        }
3375
3376        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3377
3378        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3379            struct bxe_sw_tpa_info *tpa_info;
3380            uint16_t frag_size, pages;
3381            uint8_t queue;
3382
3383#if 0
3384            /* sanity check */
3385            if (!fp->tpa_enable &&
3386                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3387                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3388                      CQE_TYPE(cqe_fp_type));
3389            }
3390#endif
3391
3392            if (CQE_TYPE_START(cqe_fp_type)) {
3393                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3394                              bd_cons, bd_prod, cqe_fp);
3395                m = NULL; /* packet not ready yet */
3396                goto next_rx;
3397            }
3398
3399            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3400                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3401
3402            queue = cqe->end_agg_cqe.queue_index;
3403            tpa_info = &fp->rx_tpa_info[queue];
3404
3405            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3406                  fp->index, queue);
3407
3408            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3409                         tpa_info->len_on_bd);
3410            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3411
3412            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3413                         &cqe->end_agg_cqe, comp_ring_cons);
3414
3415            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3416
3417            goto next_cqe;
3418        }
3419
3420        /* non TPA */
3421
3422        /* is this an error packet? */
3423        if (__predict_false(cqe_fp_flags &
3424                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3425            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3426            fp->eth_q_stats.rx_soft_errors++;
3427            goto next_rx;
3428        }
3429
3430        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3431        lenonbd = le16toh(cqe_fp->len_on_bd);
3432        pad = cqe_fp->placement_offset;
3433
3434        m = rx_buf->m;
3435
3436        if (__predict_false(m == NULL)) {
3437            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3438                  bd_cons, fp->index);
3439            goto next_rx;
3440        }
3441
3442        /* XXX double copy if packet length under a threshold */
3443
3444        /*
3445         * If all the buffer descriptors are filled with mbufs then fill in
3446         * the current consumer index with a new BD. Else if a maximum Rx
3447         * buffer limit is imposed then fill in the next producer index.
3448         */
3449        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3450                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3451                                      bd_prod : bd_cons);
3452        if (rc != 0) {
3453
3454            /* we simply reuse the received mbuf and don't post it to the stack */
3455            m = NULL;
3456
3457            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3458                  fp->index, rc);
3459            fp->eth_q_stats.rx_soft_errors++;
3460
3461            if (sc->max_rx_bufs != RX_BD_USABLE) {
3462                /* copy this consumer index to the producer index */
3463                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3464                       sizeof(struct bxe_sw_rx_bd));
3465                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3466            }
3467
3468            goto next_rx;
3469        }
3470
3471        /* current mbuf was detached from the bd */
3472        fp->eth_q_stats.mbuf_alloc_rx--;
3473
3474        /* we allocated a replacement mbuf, fixup the current one */
3475        m_adj(m, pad);
3476        m->m_pkthdr.len = m->m_len = len;
3477
3478        if (len != lenonbd){
3479            rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3480            if (rc)
3481                break;
3482            fp->eth_q_stats.rx_jumbo_sge_pkts++;
3483        }
3484
3485        /* assign packet to this interface interface */
3486	if_setrcvif(m, ifp);
3487
3488        /* assume no hardware checksum has complated */
3489        m->m_pkthdr.csum_flags = 0;
3490
3491        /* validate checksum if offload enabled */
3492        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3493            /* check for a valid IP frame */
3494            if (!(cqe->fast_path_cqe.status_flags &
3495                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3496                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3497                if (__predict_false(cqe_fp_flags &
3498                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3499                    fp->eth_q_stats.rx_hw_csum_errors++;
3500                } else {
3501                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3502                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3503                }
3504            }
3505
3506            /* check for a valid TCP/UDP frame */
3507            if (!(cqe->fast_path_cqe.status_flags &
3508                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3509                if (__predict_false(cqe_fp_flags &
3510                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3511                    fp->eth_q_stats.rx_hw_csum_errors++;
3512                } else {
3513                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3514                    m->m_pkthdr.csum_data = 0xFFFF;
3515                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3516                                               CSUM_PSEUDO_HDR);
3517                }
3518            }
3519        }
3520
3521        /* if there is a VLAN tag then flag that info */
3522        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3523            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3524            m->m_flags |= M_VLANTAG;
3525        }
3526
3527#if __FreeBSD_version >= 800000
3528        /* specify what RSS queue was used for this flow */
3529        m->m_pkthdr.flowid = fp->index;
3530        M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3531#endif
3532
3533next_rx:
3534
3535        bd_cons    = RX_BD_NEXT(bd_cons);
3536        bd_prod    = RX_BD_NEXT(bd_prod);
3537        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3538
3539        /* pass the frame to the stack */
3540        if (__predict_true(m != NULL)) {
3541            if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3542            rx_pkts++;
3543            if_input(ifp, m);
3544        }
3545
3546next_cqe:
3547
3548        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3549        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3550
3551        /* limit spinning on the queue */
3552        if (rc != 0)
3553            break;
3554
3555        if (rx_pkts == sc->rx_budget) {
3556            fp->eth_q_stats.rx_budget_reached++;
3557            break;
3558        }
3559    } /* while work to do */
3560
3561    fp->rx_bd_cons = bd_cons;
3562    fp->rx_bd_prod = bd_prod_fw;
3563    fp->rx_cq_cons = sw_cq_cons;
3564    fp->rx_cq_prod = sw_cq_prod;
3565
3566    /* Update producers */
3567    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3568
3569    fp->eth_q_stats.rx_pkts += rx_pkts;
3570    fp->eth_q_stats.rx_calls++;
3571
3572    BXE_FP_RX_UNLOCK(fp);
3573
3574    return (sw_cq_cons != hw_cq_cons);
3575}
3576
3577static uint16_t
3578bxe_free_tx_pkt(struct bxe_softc    *sc,
3579                struct bxe_fastpath *fp,
3580                uint16_t            idx)
3581{
3582    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3583    struct eth_tx_start_bd *tx_start_bd;
3584    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3585    uint16_t new_cons;
3586    int nbd;
3587
3588    /* unmap the mbuf from non-paged memory */
3589    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3590
3591    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3592    nbd = le16toh(tx_start_bd->nbd) - 1;
3593
3594#if 0
3595    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3596        bxe_panic(sc, ("BAD nbd!\n"));
3597    }
3598#endif
3599
3600    new_cons = (tx_buf->first_bd + nbd);
3601
3602#if 0
3603    struct eth_tx_bd *tx_data_bd;
3604
3605    /*
3606     * The following code doesn't do anything but is left here
3607     * for clarity on what the new value of new_cons skipped.
3608     */
3609
3610    /* get the next bd */
3611    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3612
3613    /* skip the parse bd */
3614    --nbd;
3615    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3616
3617    /* skip the TSO split header bd since they have no mapping */
3618    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3619        --nbd;
3620        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3621    }
3622
3623    /* now free frags */
3624    while (nbd > 0) {
3625        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3626        if (--nbd) {
3627            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3628        }
3629    }
3630#endif
3631
3632    /* free the mbuf */
3633    if (__predict_true(tx_buf->m != NULL)) {
3634        m_freem(tx_buf->m);
3635        fp->eth_q_stats.mbuf_alloc_tx--;
3636    } else {
3637        fp->eth_q_stats.tx_chain_lost_mbuf++;
3638    }
3639
3640    tx_buf->m = NULL;
3641    tx_buf->first_bd = 0;
3642
3643    return (new_cons);
3644}
3645
3646/* transmit timeout watchdog */
3647static int
3648bxe_watchdog(struct bxe_softc    *sc,
3649             struct bxe_fastpath *fp)
3650{
3651    BXE_FP_TX_LOCK(fp);
3652
3653    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3654        BXE_FP_TX_UNLOCK(fp);
3655        return (0);
3656    }
3657
3658    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3659
3660    BXE_FP_TX_UNLOCK(fp);
3661
3662    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3663    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3664
3665    return (-1);
3666}
3667
3668/* processes transmit completions */
3669static uint8_t
3670bxe_txeof(struct bxe_softc    *sc,
3671          struct bxe_fastpath *fp)
3672{
3673    if_t ifp = sc->ifp;
3674    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3675    uint16_t tx_bd_avail;
3676
3677    BXE_FP_TX_LOCK_ASSERT(fp);
3678
3679    bd_cons = fp->tx_bd_cons;
3680    hw_cons = le16toh(*fp->tx_cons_sb);
3681    sw_cons = fp->tx_pkt_cons;
3682
3683    while (sw_cons != hw_cons) {
3684        pkt_cons = TX_BD(sw_cons);
3685
3686        BLOGD(sc, DBG_TX,
3687              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3688              fp->index, hw_cons, sw_cons, pkt_cons);
3689
3690        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3691
3692        sw_cons++;
3693    }
3694
3695    fp->tx_pkt_cons = sw_cons;
3696    fp->tx_bd_cons  = bd_cons;
3697
3698    BLOGD(sc, DBG_TX,
3699          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3700          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3701
3702    mb();
3703
3704    tx_bd_avail = bxe_tx_avail(sc, fp);
3705
3706    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3707        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3708    } else {
3709        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3710    }
3711
3712    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3713        /* reset the watchdog timer if there are pending transmits */
3714        fp->watchdog_timer = BXE_TX_TIMEOUT;
3715        return (TRUE);
3716    } else {
3717        /* clear watchdog when there are no pending transmits */
3718        fp->watchdog_timer = 0;
3719        return (FALSE);
3720    }
3721}
3722
3723static void
3724bxe_drain_tx_queues(struct bxe_softc *sc)
3725{
3726    struct bxe_fastpath *fp;
3727    int i, count;
3728
3729    /* wait until all TX fastpath tasks have completed */
3730    for (i = 0; i < sc->num_queues; i++) {
3731        fp = &sc->fp[i];
3732
3733        count = 1000;
3734
3735        while (bxe_has_tx_work(fp)) {
3736
3737            BXE_FP_TX_LOCK(fp);
3738            bxe_txeof(sc, fp);
3739            BXE_FP_TX_UNLOCK(fp);
3740
3741            if (count == 0) {
3742                BLOGE(sc, "Timeout waiting for fp[%d] "
3743                          "transmits to complete!\n", i);
3744                bxe_panic(sc, ("tx drain failure\n"));
3745                return;
3746            }
3747
3748            count--;
3749            DELAY(1000);
3750            rmb();
3751        }
3752    }
3753
3754    return;
3755}
3756
3757static int
3758bxe_del_all_macs(struct bxe_softc          *sc,
3759                 struct ecore_vlan_mac_obj *mac_obj,
3760                 int                       mac_type,
3761                 uint8_t                   wait_for_comp)
3762{
3763    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3764    int rc;
3765
3766    /* wait for completion of requested */
3767    if (wait_for_comp) {
3768        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3769    }
3770
3771    /* Set the mac type of addresses we want to clear */
3772    bxe_set_bit(mac_type, &vlan_mac_flags);
3773
3774    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3775    if (rc < 0) {
3776        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3777    }
3778
3779    return (rc);
3780}
3781
3782static int
3783bxe_fill_accept_flags(struct bxe_softc *sc,
3784                      uint32_t         rx_mode,
3785                      unsigned long    *rx_accept_flags,
3786                      unsigned long    *tx_accept_flags)
3787{
3788    /* Clear the flags first */
3789    *rx_accept_flags = 0;
3790    *tx_accept_flags = 0;
3791
3792    switch (rx_mode) {
3793    case BXE_RX_MODE_NONE:
3794        /*
3795         * 'drop all' supersedes any accept flags that may have been
3796         * passed to the function.
3797         */
3798        break;
3799
3800    case BXE_RX_MODE_NORMAL:
3801        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3802        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3803        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3804
3805        /* internal switching mode */
3806        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3807        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3808        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3809
3810        break;
3811
3812    case BXE_RX_MODE_ALLMULTI:
3813        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3814        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3815        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3816
3817        /* internal switching mode */
3818        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3819        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3820        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3821
3822        break;
3823
3824    case BXE_RX_MODE_PROMISC:
3825        /*
3826         * According to deffinition of SI mode, iface in promisc mode
3827         * should receive matched and unmatched (in resolution of port)
3828         * unicast packets.
3829         */
3830        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3831        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3832        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3833        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3834
3835        /* internal switching mode */
3836        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3837        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3838
3839        if (IS_MF_SI(sc)) {
3840            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3841        } else {
3842            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3843        }
3844
3845        break;
3846
3847    default:
3848        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3849        return (-1);
3850    }
3851
3852    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3853    if (rx_mode != BXE_RX_MODE_NONE) {
3854        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3855        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3856    }
3857
3858    return (0);
3859}
3860
3861static int
3862bxe_set_q_rx_mode(struct bxe_softc *sc,
3863                  uint8_t          cl_id,
3864                  unsigned long    rx_mode_flags,
3865                  unsigned long    rx_accept_flags,
3866                  unsigned long    tx_accept_flags,
3867                  unsigned long    ramrod_flags)
3868{
3869    struct ecore_rx_mode_ramrod_params ramrod_param;
3870    int rc;
3871
3872    memset(&ramrod_param, 0, sizeof(ramrod_param));
3873
3874    /* Prepare ramrod parameters */
3875    ramrod_param.cid = 0;
3876    ramrod_param.cl_id = cl_id;
3877    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3878    ramrod_param.func_id = SC_FUNC(sc);
3879
3880    ramrod_param.pstate = &sc->sp_state;
3881    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3882
3883    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3884    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3885
3886    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3887
3888    ramrod_param.ramrod_flags = ramrod_flags;
3889    ramrod_param.rx_mode_flags = rx_mode_flags;
3890
3891    ramrod_param.rx_accept_flags = rx_accept_flags;
3892    ramrod_param.tx_accept_flags = tx_accept_flags;
3893
3894    rc = ecore_config_rx_mode(sc, &ramrod_param);
3895    if (rc < 0) {
3896        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3897        return (rc);
3898    }
3899
3900    return (0);
3901}
3902
3903static int
3904bxe_set_storm_rx_mode(struct bxe_softc *sc)
3905{
3906    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3907    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3908    int rc;
3909
3910    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3911                               &tx_accept_flags);
3912    if (rc) {
3913        return (rc);
3914    }
3915
3916    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3917    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3918
3919    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3920    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3921                              rx_accept_flags, tx_accept_flags,
3922                              ramrod_flags));
3923}
3924
3925/* returns the "mcp load_code" according to global load_count array */
3926static int
3927bxe_nic_load_no_mcp(struct bxe_softc *sc)
3928{
3929    int path = SC_PATH(sc);
3930    int port = SC_PORT(sc);
3931
3932    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3933          path, load_count[path][0], load_count[path][1],
3934          load_count[path][2]);
3935    load_count[path][0]++;
3936    load_count[path][1 + port]++;
3937    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3938          path, load_count[path][0], load_count[path][1],
3939          load_count[path][2]);
3940    if (load_count[path][0] == 1) {
3941        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3942    } else if (load_count[path][1 + port] == 1) {
3943        return (FW_MSG_CODE_DRV_LOAD_PORT);
3944    } else {
3945        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3946    }
3947}
3948
3949/* returns the "mcp load_code" according to global load_count array */
3950static int
3951bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3952{
3953    int port = SC_PORT(sc);
3954    int path = SC_PATH(sc);
3955
3956    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3957          path, load_count[path][0], load_count[path][1],
3958          load_count[path][2]);
3959    load_count[path][0]--;
3960    load_count[path][1 + port]--;
3961    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3962          path, load_count[path][0], load_count[path][1],
3963          load_count[path][2]);
3964    if (load_count[path][0] == 0) {
3965        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3966    } else if (load_count[path][1 + port] == 0) {
3967        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3968    } else {
3969        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3970    }
3971}
3972
3973/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3974static uint32_t
3975bxe_send_unload_req(struct bxe_softc *sc,
3976                    int              unload_mode)
3977{
3978    uint32_t reset_code = 0;
3979#if 0
3980    int port = SC_PORT(sc);
3981    int path = SC_PATH(sc);
3982#endif
3983
3984    /* Select the UNLOAD request mode */
3985    if (unload_mode == UNLOAD_NORMAL) {
3986        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3987    }
3988#if 0
3989    else if (sc->flags & BXE_NO_WOL_FLAG) {
3990        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3991    } else if (sc->wol) {
3992        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3993        uint8_t *mac_addr = sc->dev->dev_addr;
3994        uint32_t val;
3995        uint16_t pmc;
3996
3997        /*
3998         * The mac address is written to entries 1-4 to
3999         * preserve entry 0 which is used by the PMF
4000         */
4001        uint8_t entry = (SC_VN(sc) + 1)*8;
4002
4003        val = (mac_addr[0] << 8) | mac_addr[1];
4004        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
4005
4006        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4007              (mac_addr[4] << 8) | mac_addr[5];
4008        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
4009
4010        /* Enable the PME and clear the status */
4011        pmc = pci_read_config(sc->dev,
4012                              (sc->devinfo.pcie_pm_cap_reg +
4013                               PCIR_POWER_STATUS),
4014                              2);
4015        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
4016        pci_write_config(sc->dev,
4017                         (sc->devinfo.pcie_pm_cap_reg +
4018                          PCIR_POWER_STATUS),
4019                         pmc, 4);
4020
4021        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
4022    }
4023#endif
4024    else {
4025        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4026    }
4027
4028    /* Send the request to the MCP */
4029    if (!BXE_NOMCP(sc)) {
4030        reset_code = bxe_fw_command(sc, reset_code, 0);
4031    } else {
4032        reset_code = bxe_nic_unload_no_mcp(sc);
4033    }
4034
4035    return (reset_code);
4036}
4037
4038/* send UNLOAD_DONE command to the MCP */
4039static void
4040bxe_send_unload_done(struct bxe_softc *sc,
4041                     uint8_t          keep_link)
4042{
4043    uint32_t reset_param =
4044        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
4045
4046    /* Report UNLOAD_DONE to MCP */
4047    if (!BXE_NOMCP(sc)) {
4048        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
4049    }
4050}
4051
4052static int
4053bxe_func_wait_started(struct bxe_softc *sc)
4054{
4055    int tout = 50;
4056
4057    if (!sc->port.pmf) {
4058        return (0);
4059    }
4060
4061    /*
4062     * (assumption: No Attention from MCP at this stage)
4063     * PMF probably in the middle of TX disable/enable transaction
4064     * 1. Sync IRS for default SB
4065     * 2. Sync SP queue - this guarantees us that attention handling started
4066     * 3. Wait, that TX disable/enable transaction completes
4067     *
4068     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4069     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4070     * received completion for the transaction the state is TX_STOPPED.
4071     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4072     * transaction.
4073     */
4074
4075    /* XXX make sure default SB ISR is done */
4076    /* need a way to synchronize an irq (intr_mtx?) */
4077
4078    /* XXX flush any work queues */
4079
4080    while (ecore_func_get_state(sc, &sc->func_obj) !=
4081           ECORE_F_STATE_STARTED && tout--) {
4082        DELAY(20000);
4083    }
4084
4085    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4086        /*
4087         * Failed to complete the transaction in a "good way"
4088         * Force both transactions with CLR bit.
4089         */
4090        struct ecore_func_state_params func_params = { NULL };
4091
4092        BLOGE(sc, "Unexpected function state! "
4093                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4094
4095        func_params.f_obj = &sc->func_obj;
4096        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4097
4098        /* STARTED-->TX_STOPPED */
4099        func_params.cmd = ECORE_F_CMD_TX_STOP;
4100        ecore_func_state_change(sc, &func_params);
4101
4102        /* TX_STOPPED-->STARTED */
4103        func_params.cmd = ECORE_F_CMD_TX_START;
4104        return (ecore_func_state_change(sc, &func_params));
4105    }
4106
4107    return (0);
4108}
4109
4110static int
4111bxe_stop_queue(struct bxe_softc *sc,
4112               int              index)
4113{
4114    struct bxe_fastpath *fp = &sc->fp[index];
4115    struct ecore_queue_state_params q_params = { NULL };
4116    int rc;
4117
4118    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4119
4120    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4121    /* We want to wait for completion in this context */
4122    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4123
4124    /* Stop the primary connection: */
4125
4126    /* ...halt the connection */
4127    q_params.cmd = ECORE_Q_CMD_HALT;
4128    rc = ecore_queue_state_change(sc, &q_params);
4129    if (rc) {
4130        return (rc);
4131    }
4132
4133    /* ...terminate the connection */
4134    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4135    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4136    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4137    rc = ecore_queue_state_change(sc, &q_params);
4138    if (rc) {
4139        return (rc);
4140    }
4141
4142    /* ...delete cfc entry */
4143    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4144    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4145    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4146    return (ecore_queue_state_change(sc, &q_params));
4147}
4148
4149/* wait for the outstanding SP commands */
4150static inline uint8_t
4151bxe_wait_sp_comp(struct bxe_softc *sc,
4152                 unsigned long    mask)
4153{
4154    unsigned long tmp;
4155    int tout = 5000; /* wait for 5 secs tops */
4156
4157    while (tout--) {
4158        mb();
4159        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4160            return (TRUE);
4161        }
4162
4163        DELAY(1000);
4164    }
4165
4166    mb();
4167
4168    tmp = atomic_load_acq_long(&sc->sp_state);
4169    if (tmp & mask) {
4170        BLOGE(sc, "Filtering completion timed out: "
4171                  "sp_state 0x%lx, mask 0x%lx\n",
4172              tmp, mask);
4173        return (FALSE);
4174    }
4175
4176    return (FALSE);
4177}
4178
4179static int
4180bxe_func_stop(struct bxe_softc *sc)
4181{
4182    struct ecore_func_state_params func_params = { NULL };
4183    int rc;
4184
4185    /* prepare parameters for function state transitions */
4186    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4187    func_params.f_obj = &sc->func_obj;
4188    func_params.cmd = ECORE_F_CMD_STOP;
4189
4190    /*
4191     * Try to stop the function the 'good way'. If it fails (in case
4192     * of a parity error during bxe_chip_cleanup()) and we are
4193     * not in a debug mode, perform a state transaction in order to
4194     * enable further HW_RESET transaction.
4195     */
4196    rc = ecore_func_state_change(sc, &func_params);
4197    if (rc) {
4198        BLOGE(sc, "FUNC_STOP ramrod failed. "
4199                  "Running a dry transaction\n");
4200        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4201        return (ecore_func_state_change(sc, &func_params));
4202    }
4203
4204    return (0);
4205}
4206
4207static int
4208bxe_reset_hw(struct bxe_softc *sc,
4209             uint32_t         load_code)
4210{
4211    struct ecore_func_state_params func_params = { NULL };
4212
4213    /* Prepare parameters for function state transitions */
4214    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4215
4216    func_params.f_obj = &sc->func_obj;
4217    func_params.cmd = ECORE_F_CMD_HW_RESET;
4218
4219    func_params.params.hw_init.load_phase = load_code;
4220
4221    return (ecore_func_state_change(sc, &func_params));
4222}
4223
4224static void
4225bxe_int_disable_sync(struct bxe_softc *sc,
4226                     int              disable_hw)
4227{
4228    if (disable_hw) {
4229        /* prevent the HW from sending interrupts */
4230        bxe_int_disable(sc);
4231    }
4232
4233    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4234    /* make sure all ISRs are done */
4235
4236    /* XXX make sure sp_task is not running */
4237    /* cancel and flush work queues */
4238}
4239
4240static void
4241bxe_chip_cleanup(struct bxe_softc *sc,
4242                 uint32_t         unload_mode,
4243                 uint8_t          keep_link)
4244{
4245    int port = SC_PORT(sc);
4246    struct ecore_mcast_ramrod_params rparam = { NULL };
4247    uint32_t reset_code;
4248    int i, rc = 0;
4249
4250    bxe_drain_tx_queues(sc);
4251
4252    /* give HW time to discard old tx messages */
4253    DELAY(1000);
4254
4255    /* Clean all ETH MACs */
4256    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4257    if (rc < 0) {
4258        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4259    }
4260
4261    /* Clean up UC list  */
4262    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4263    if (rc < 0) {
4264        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4265    }
4266
4267    /* Disable LLH */
4268    if (!CHIP_IS_E1(sc)) {
4269        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4270    }
4271
4272    /* Set "drop all" to stop Rx */
4273
4274    /*
4275     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4276     * a race between the completion code and this code.
4277     */
4278    BXE_MCAST_LOCK(sc);
4279
4280    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4281        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4282    } else {
4283        bxe_set_storm_rx_mode(sc);
4284    }
4285
4286    /* Clean up multicast configuration */
4287    rparam.mcast_obj = &sc->mcast_obj;
4288    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4289    if (rc < 0) {
4290        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4291    }
4292
4293    BXE_MCAST_UNLOCK(sc);
4294
4295    // XXX bxe_iov_chip_cleanup(sc);
4296
4297    /*
4298     * Send the UNLOAD_REQUEST to the MCP. This will return if
4299     * this function should perform FUNCTION, PORT, or COMMON HW
4300     * reset.
4301     */
4302    reset_code = bxe_send_unload_req(sc, unload_mode);
4303
4304    /*
4305     * (assumption: No Attention from MCP at this stage)
4306     * PMF probably in the middle of TX disable/enable transaction
4307     */
4308    rc = bxe_func_wait_started(sc);
4309    if (rc) {
4310        BLOGE(sc, "bxe_func_wait_started failed\n");
4311    }
4312
4313    /*
4314     * Close multi and leading connections
4315     * Completions for ramrods are collected in a synchronous way
4316     */
4317    for (i = 0; i < sc->num_queues; i++) {
4318        if (bxe_stop_queue(sc, i)) {
4319            goto unload_error;
4320        }
4321    }
4322
4323    /*
4324     * If SP settings didn't get completed so far - something
4325     * very wrong has happen.
4326     */
4327    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4328        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4329    }
4330
4331unload_error:
4332
4333    rc = bxe_func_stop(sc);
4334    if (rc) {
4335        BLOGE(sc, "Function stop failed!\n");
4336    }
4337
4338    /* disable HW interrupts */
4339    bxe_int_disable_sync(sc, TRUE);
4340
4341    /* detach interrupts */
4342    bxe_interrupt_detach(sc);
4343
4344    /* Reset the chip */
4345    rc = bxe_reset_hw(sc, reset_code);
4346    if (rc) {
4347        BLOGE(sc, "Hardware reset failed\n");
4348    }
4349
4350    /* Report UNLOAD_DONE to MCP */
4351    bxe_send_unload_done(sc, keep_link);
4352}
4353
4354static void
4355bxe_disable_close_the_gate(struct bxe_softc *sc)
4356{
4357    uint32_t val;
4358    int port = SC_PORT(sc);
4359
4360    BLOGD(sc, DBG_LOAD,
4361          "Disabling 'close the gates'\n");
4362
4363    if (CHIP_IS_E1(sc)) {
4364        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4365                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4366        val = REG_RD(sc, addr);
4367        val &= ~(0x300);
4368        REG_WR(sc, addr, val);
4369    } else {
4370        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4371        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4372                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4373        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4374    }
4375}
4376
4377/*
4378 * Cleans the object that have internal lists without sending
4379 * ramrods. Should be run when interrutps are disabled.
4380 */
4381static void
4382bxe_squeeze_objects(struct bxe_softc *sc)
4383{
4384    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4385    struct ecore_mcast_ramrod_params rparam = { NULL };
4386    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4387    int rc;
4388
4389    /* Cleanup MACs' object first... */
4390
4391    /* Wait for completion of requested */
4392    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4393    /* Perform a dry cleanup */
4394    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4395
4396    /* Clean ETH primary MAC */
4397    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4398    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4399                             &ramrod_flags);
4400    if (rc != 0) {
4401        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4402    }
4403
4404    /* Cleanup UC list */
4405    vlan_mac_flags = 0;
4406    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4407    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4408                             &ramrod_flags);
4409    if (rc != 0) {
4410        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4411    }
4412
4413    /* Now clean mcast object... */
4414
4415    rparam.mcast_obj = &sc->mcast_obj;
4416    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4417
4418    /* Add a DEL command... */
4419    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4420    if (rc < 0) {
4421        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4422    }
4423
4424    /* now wait until all pending commands are cleared */
4425
4426    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4427    while (rc != 0) {
4428        if (rc < 0) {
4429            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4430            return;
4431        }
4432
4433        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4434    }
4435}
4436
4437/* stop the controller */
4438static __noinline int
4439bxe_nic_unload(struct bxe_softc *sc,
4440               uint32_t         unload_mode,
4441               uint8_t          keep_link)
4442{
4443    uint8_t global = FALSE;
4444    uint32_t val;
4445
4446    BXE_CORE_LOCK_ASSERT(sc);
4447
4448    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4449
4450    /* mark driver as unloaded in shmem2 */
4451    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4452        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4453        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4454                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4455    }
4456
4457    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4458        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4459        /*
4460         * We can get here if the driver has been unloaded
4461         * during parity error recovery and is either waiting for a
4462         * leader to complete or for other functions to unload and
4463         * then ifconfig down has been issued. In this case we want to
4464         * unload and let other functions to complete a recovery
4465         * process.
4466         */
4467        sc->recovery_state = BXE_RECOVERY_DONE;
4468        sc->is_leader = 0;
4469        bxe_release_leader_lock(sc);
4470        mb();
4471
4472        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4473        BLOGE(sc, "Can't unload in closed or error state\n");
4474        return (-1);
4475    }
4476
4477    /*
4478     * Nothing to do during unload if previous bxe_nic_load()
4479     * did not completed succesfully - all resourses are released.
4480     */
4481    if ((sc->state == BXE_STATE_CLOSED) ||
4482        (sc->state == BXE_STATE_ERROR)) {
4483        return (0);
4484    }
4485
4486    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4487    mb();
4488
4489    /* stop tx */
4490    bxe_tx_disable(sc);
4491
4492    sc->rx_mode = BXE_RX_MODE_NONE;
4493    /* XXX set rx mode ??? */
4494
4495    if (IS_PF(sc)) {
4496        /* set ALWAYS_ALIVE bit in shmem */
4497        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4498
4499        bxe_drv_pulse(sc);
4500
4501        bxe_stats_handle(sc, STATS_EVENT_STOP);
4502        bxe_save_statistics(sc);
4503    }
4504
4505    /* wait till consumers catch up with producers in all queues */
4506    bxe_drain_tx_queues(sc);
4507
4508    /* if VF indicate to PF this function is going down (PF will delete sp
4509     * elements and clear initializations
4510     */
4511    if (IS_VF(sc)) {
4512        ; /* bxe_vfpf_close_vf(sc); */
4513    } else if (unload_mode != UNLOAD_RECOVERY) {
4514        /* if this is a normal/close unload need to clean up chip */
4515        bxe_chip_cleanup(sc, unload_mode, keep_link);
4516    } else {
4517        /* Send the UNLOAD_REQUEST to the MCP */
4518        bxe_send_unload_req(sc, unload_mode);
4519
4520        /*
4521         * Prevent transactions to host from the functions on the
4522         * engine that doesn't reset global blocks in case of global
4523         * attention once gloabl blocks are reset and gates are opened
4524         * (the engine which leader will perform the recovery
4525         * last).
4526         */
4527        if (!CHIP_IS_E1x(sc)) {
4528            bxe_pf_disable(sc);
4529        }
4530
4531        /* disable HW interrupts */
4532        bxe_int_disable_sync(sc, TRUE);
4533
4534        /* detach interrupts */
4535        bxe_interrupt_detach(sc);
4536
4537        /* Report UNLOAD_DONE to MCP */
4538        bxe_send_unload_done(sc, FALSE);
4539    }
4540
4541    /*
4542     * At this stage no more interrupts will arrive so we may safely clean
4543     * the queue'able objects here in case they failed to get cleaned so far.
4544     */
4545    if (IS_PF(sc)) {
4546        bxe_squeeze_objects(sc);
4547    }
4548
4549    /* There should be no more pending SP commands at this stage */
4550    sc->sp_state = 0;
4551
4552    sc->port.pmf = 0;
4553
4554    bxe_free_fp_buffers(sc);
4555
4556    if (IS_PF(sc)) {
4557        bxe_free_mem(sc);
4558    }
4559
4560    bxe_free_fw_stats_mem(sc);
4561
4562    sc->state = BXE_STATE_CLOSED;
4563
4564    /*
4565     * Check if there are pending parity attentions. If there are - set
4566     * RECOVERY_IN_PROGRESS.
4567     */
4568    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4569        bxe_set_reset_in_progress(sc);
4570
4571        /* Set RESET_IS_GLOBAL if needed */
4572        if (global) {
4573            bxe_set_reset_global(sc);
4574        }
4575    }
4576
4577    /*
4578     * The last driver must disable a "close the gate" if there is no
4579     * parity attention or "process kill" pending.
4580     */
4581    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4582        bxe_reset_is_done(sc, SC_PATH(sc))) {
4583        bxe_disable_close_the_gate(sc);
4584    }
4585
4586    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4587
4588    return (0);
4589}
4590
4591/*
4592 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4593 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4594 */
4595static int
4596bxe_ifmedia_update(struct ifnet  *ifp)
4597{
4598    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4599    struct ifmedia *ifm;
4600
4601    ifm = &sc->ifmedia;
4602
4603    /* We only support Ethernet media type. */
4604    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4605        return (EINVAL);
4606    }
4607
4608    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4609    case IFM_AUTO:
4610         break;
4611    case IFM_10G_CX4:
4612    case IFM_10G_SR:
4613    case IFM_10G_T:
4614    case IFM_10G_TWINAX:
4615    default:
4616        /* We don't support changing the media type. */
4617        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4618              IFM_SUBTYPE(ifm->ifm_media));
4619        return (EINVAL);
4620    }
4621
4622    return (0);
4623}
4624
4625/*
4626 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4627 */
4628static void
4629bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4630{
4631    struct bxe_softc *sc = if_getsoftc(ifp);
4632
4633    /* Report link down if the driver isn't running. */
4634    if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4635        ifmr->ifm_active |= IFM_NONE;
4636        return;
4637    }
4638
4639    /* Setup the default interface info. */
4640    ifmr->ifm_status = IFM_AVALID;
4641    ifmr->ifm_active = IFM_ETHER;
4642
4643    if (sc->link_vars.link_up) {
4644        ifmr->ifm_status |= IFM_ACTIVE;
4645    } else {
4646        ifmr->ifm_active |= IFM_NONE;
4647        return;
4648    }
4649
4650    ifmr->ifm_active |= sc->media;
4651
4652    if (sc->link_vars.duplex == DUPLEX_FULL) {
4653        ifmr->ifm_active |= IFM_FDX;
4654    } else {
4655        ifmr->ifm_active |= IFM_HDX;
4656    }
4657}
4658
4659static int
4660bxe_ioctl_nvram(struct bxe_softc *sc,
4661                uint32_t         priv_op,
4662                struct ifreq     *ifr)
4663{
4664    struct bxe_nvram_data nvdata_base;
4665    struct bxe_nvram_data *nvdata;
4666    int len;
4667    int error = 0;
4668
4669    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4670
4671    len = (sizeof(struct bxe_nvram_data) +
4672           nvdata_base.len -
4673           sizeof(uint32_t));
4674
4675    if (len > sizeof(struct bxe_nvram_data)) {
4676        if ((nvdata = (struct bxe_nvram_data *)
4677                 malloc(len, M_DEVBUF,
4678                        (M_NOWAIT | M_ZERO))) == NULL) {
4679            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4680            return (1);
4681        }
4682        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4683    } else {
4684        nvdata = &nvdata_base;
4685    }
4686
4687    if (priv_op == BXE_IOC_RD_NVRAM) {
4688        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4689              nvdata->offset, nvdata->len);
4690        error = bxe_nvram_read(sc,
4691                               nvdata->offset,
4692                               (uint8_t *)nvdata->value,
4693                               nvdata->len);
4694        copyout(nvdata, ifr->ifr_data, len);
4695    } else { /* BXE_IOC_WR_NVRAM */
4696        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4697              nvdata->offset, nvdata->len);
4698        copyin(ifr->ifr_data, nvdata, len);
4699        error = bxe_nvram_write(sc,
4700                                nvdata->offset,
4701                                (uint8_t *)nvdata->value,
4702                                nvdata->len);
4703    }
4704
4705    if (len > sizeof(struct bxe_nvram_data)) {
4706        free(nvdata, M_DEVBUF);
4707    }
4708
4709    return (error);
4710}
4711
4712static int
4713bxe_ioctl_stats_show(struct bxe_softc *sc,
4714                     uint32_t         priv_op,
4715                     struct ifreq     *ifr)
4716{
4717    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4718    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4719    caddr_t p_tmp;
4720    uint32_t *offset;
4721    int i;
4722
4723    switch (priv_op)
4724    {
4725    case BXE_IOC_STATS_SHOW_NUM:
4726        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4727        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4728            BXE_NUM_ETH_STATS;
4729        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4730            STAT_NAME_LEN;
4731        return (0);
4732
4733    case BXE_IOC_STATS_SHOW_STR:
4734        memset(ifr->ifr_data, 0, str_size);
4735        p_tmp = ifr->ifr_data;
4736        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4737            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4738            p_tmp += STAT_NAME_LEN;
4739        }
4740        return (0);
4741
4742    case BXE_IOC_STATS_SHOW_CNT:
4743        memset(ifr->ifr_data, 0, stats_size);
4744        p_tmp = ifr->ifr_data;
4745        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4746            offset = ((uint32_t *)&sc->eth_stats +
4747                      bxe_eth_stats_arr[i].offset);
4748            switch (bxe_eth_stats_arr[i].size) {
4749            case 4:
4750                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4751                break;
4752            case 8:
4753                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4754                break;
4755            default:
4756                *((uint64_t *)p_tmp) = 0;
4757            }
4758            p_tmp += sizeof(uint64_t);
4759        }
4760        return (0);
4761
4762    default:
4763        return (-1);
4764    }
4765}
4766
4767static void
4768bxe_handle_chip_tq(void *context,
4769                   int  pending)
4770{
4771    struct bxe_softc *sc = (struct bxe_softc *)context;
4772    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4773
4774    switch (work)
4775    {
4776
4777    case CHIP_TQ_REINIT:
4778        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4779            /* restart the interface */
4780            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4781            bxe_periodic_stop(sc);
4782            BXE_CORE_LOCK(sc);
4783            bxe_stop_locked(sc);
4784            bxe_init_locked(sc);
4785            BXE_CORE_UNLOCK(sc);
4786        }
4787        break;
4788
4789    default:
4790        break;
4791    }
4792}
4793
4794/*
4795 * Handles any IOCTL calls from the operating system.
4796 *
4797 * Returns:
4798 *   0 = Success, >0 Failure
4799 */
4800static int
4801bxe_ioctl(if_t ifp,
4802          u_long       command,
4803          caddr_t      data)
4804{
4805    struct bxe_softc *sc = if_getsoftc(ifp);
4806    struct ifreq *ifr = (struct ifreq *)data;
4807    struct bxe_nvram_data *nvdata;
4808    uint32_t priv_op;
4809    int mask = 0;
4810    int reinit = 0;
4811    int error = 0;
4812
4813    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4814    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4815
4816    switch (command)
4817    {
4818    case SIOCSIFMTU:
4819        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4820              ifr->ifr_mtu);
4821
4822        if (sc->mtu == ifr->ifr_mtu) {
4823            /* nothing to change */
4824            break;
4825        }
4826
4827        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4828            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4829                  ifr->ifr_mtu, mtu_min, mtu_max);
4830            error = EINVAL;
4831            break;
4832        }
4833
4834        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4835                             (unsigned long)ifr->ifr_mtu);
4836	/*
4837        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4838                              (unsigned long)ifr->ifr_mtu);
4839	XXX - Not sure why it needs to be atomic
4840	*/
4841	if_setmtu(ifp, ifr->ifr_mtu);
4842        reinit = 1;
4843        break;
4844
4845    case SIOCSIFFLAGS:
4846        /* toggle the interface state up or down */
4847        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4848
4849	BXE_CORE_LOCK(sc);
4850        /* check if the interface is up */
4851        if (if_getflags(ifp) & IFF_UP) {
4852            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4853                /* set the receive mode flags */
4854                bxe_set_rx_mode(sc);
4855            } else {
4856		bxe_init_locked(sc);
4857            }
4858        } else {
4859            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4860		bxe_periodic_stop(sc);
4861		bxe_stop_locked(sc);
4862            }
4863        }
4864	BXE_CORE_UNLOCK(sc);
4865
4866        break;
4867
4868    case SIOCADDMULTI:
4869    case SIOCDELMULTI:
4870        /* add/delete multicast addresses */
4871        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4872
4873        /* check if the interface is up */
4874        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4875            /* set the receive mode flags */
4876	    BXE_CORE_LOCK(sc);
4877            bxe_set_rx_mode(sc);
4878	    BXE_CORE_UNLOCK(sc);
4879        }
4880
4881        break;
4882
4883    case SIOCSIFCAP:
4884        /* find out which capabilities have changed */
4885        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4886
4887        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4888              mask);
4889
4890        /* toggle the LRO capabilites enable flag */
4891        if (mask & IFCAP_LRO) {
4892	    if_togglecapenable(ifp, IFCAP_LRO);
4893            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4894                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4895            reinit = 1;
4896        }
4897
4898        /* toggle the TXCSUM checksum capabilites enable flag */
4899        if (mask & IFCAP_TXCSUM) {
4900	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4901            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4902                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4903            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4904                if_sethwassistbits(ifp, (CSUM_IP      |
4905                                    CSUM_TCP      |
4906                                    CSUM_UDP      |
4907                                    CSUM_TSO      |
4908                                    CSUM_TCP_IPV6 |
4909                                    CSUM_UDP_IPV6), 0);
4910            } else {
4911		if_clearhwassist(ifp); /* XXX */
4912            }
4913        }
4914
4915        /* toggle the RXCSUM checksum capabilities enable flag */
4916        if (mask & IFCAP_RXCSUM) {
4917	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4918            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4919                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4920            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4921                if_sethwassistbits(ifp, (CSUM_IP      |
4922                                    CSUM_TCP      |
4923                                    CSUM_UDP      |
4924                                    CSUM_TSO      |
4925                                    CSUM_TCP_IPV6 |
4926                                    CSUM_UDP_IPV6), 0);
4927            } else {
4928		if_clearhwassist(ifp); /* XXX */
4929            }
4930        }
4931
4932        /* toggle TSO4 capabilities enabled flag */
4933        if (mask & IFCAP_TSO4) {
4934            if_togglecapenable(ifp, IFCAP_TSO4);
4935            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4936                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4937        }
4938
4939        /* toggle TSO6 capabilities enabled flag */
4940        if (mask & IFCAP_TSO6) {
4941	    if_togglecapenable(ifp, IFCAP_TSO6);
4942            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4943                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4944        }
4945
4946        /* toggle VLAN_HWTSO capabilities enabled flag */
4947        if (mask & IFCAP_VLAN_HWTSO) {
4948
4949	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4950            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4951                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4952        }
4953
4954        /* toggle VLAN_HWCSUM capabilities enabled flag */
4955        if (mask & IFCAP_VLAN_HWCSUM) {
4956            /* XXX investigate this... */
4957            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4958            error = EINVAL;
4959        }
4960
4961        /* toggle VLAN_MTU capabilities enable flag */
4962        if (mask & IFCAP_VLAN_MTU) {
4963            /* XXX investigate this... */
4964            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4965            error = EINVAL;
4966        }
4967
4968        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4969        if (mask & IFCAP_VLAN_HWTAGGING) {
4970            /* XXX investigate this... */
4971            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4972            error = EINVAL;
4973        }
4974
4975        /* toggle VLAN_HWFILTER capabilities enabled flag */
4976        if (mask & IFCAP_VLAN_HWFILTER) {
4977            /* XXX investigate this... */
4978            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4979            error = EINVAL;
4980        }
4981
4982        /* XXX not yet...
4983         * IFCAP_WOL_MAGIC
4984         */
4985
4986        break;
4987
4988    case SIOCSIFMEDIA:
4989    case SIOCGIFMEDIA:
4990        /* set/get interface media */
4991        BLOGD(sc, DBG_IOCTL,
4992              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4993              (command & 0xff));
4994        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4995        break;
4996
4997    case SIOCGPRIVATE_0:
4998        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4999
5000        switch (priv_op)
5001        {
5002        case BXE_IOC_RD_NVRAM:
5003        case BXE_IOC_WR_NVRAM:
5004            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
5005            BLOGD(sc, DBG_IOCTL,
5006                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
5007                  nvdata->offset, nvdata->len);
5008            error = bxe_ioctl_nvram(sc, priv_op, ifr);
5009            break;
5010
5011        case BXE_IOC_STATS_SHOW_NUM:
5012        case BXE_IOC_STATS_SHOW_STR:
5013        case BXE_IOC_STATS_SHOW_CNT:
5014            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
5015                  priv_op);
5016            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
5017            break;
5018
5019        default:
5020            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
5021            error = EINVAL;
5022            break;
5023        }
5024
5025        break;
5026
5027    default:
5028        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
5029              (command & 0xff));
5030        error = ether_ioctl(ifp, command, data);
5031        break;
5032    }
5033
5034    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
5035        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5036              "Re-initializing hardware from IOCTL change\n");
5037	bxe_periodic_stop(sc);
5038	BXE_CORE_LOCK(sc);
5039	bxe_stop_locked(sc);
5040	bxe_init_locked(sc);
5041	BXE_CORE_UNLOCK(sc);
5042    }
5043
5044    return (error);
5045}
5046
5047static __noinline void
5048bxe_dump_mbuf(struct bxe_softc *sc,
5049              struct mbuf      *m,
5050              uint8_t          contents)
5051{
5052    char * type;
5053    int i = 0;
5054
5055    if (!(sc->debug & DBG_MBUF)) {
5056        return;
5057    }
5058
5059    if (m == NULL) {
5060        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5061        return;
5062    }
5063
5064    while (m) {
5065        BLOGD(sc, DBG_MBUF,
5066              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5067              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5068
5069        if (m->m_flags & M_PKTHDR) {
5070             BLOGD(sc, DBG_MBUF,
5071                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5072                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5073                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5074        }
5075
5076        if (m->m_flags & M_EXT) {
5077            switch (m->m_ext.ext_type) {
5078            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5079            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5080            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5081            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5082            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5083            case EXT_PACKET:     type = "EXT_PACKET";     break;
5084            case EXT_MBUF:       type = "EXT_MBUF";       break;
5085            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5086            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5087            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5088            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5089            default:             type = "UNKNOWN";        break;
5090            }
5091
5092            BLOGD(sc, DBG_MBUF,
5093                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5094                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5095        }
5096
5097        if (contents) {
5098            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5099        }
5100
5101        m = m->m_next;
5102        i++;
5103    }
5104}
5105
5106/*
5107 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5108 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5109 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5110 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5111 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5112 */
5113static int
5114bxe_chktso_window(struct bxe_softc  *sc,
5115                  int               nsegs,
5116                  bus_dma_segment_t *segs,
5117                  struct mbuf       *m)
5118{
5119    uint32_t num_wnds, wnd_size, wnd_sum;
5120    int32_t frag_idx, wnd_idx;
5121    unsigned short lso_mss;
5122    int defrag;
5123
5124    defrag = 0;
5125    wnd_sum = 0;
5126    wnd_size = 10;
5127    num_wnds = nsegs - wnd_size;
5128    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5129
5130    /*
5131     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5132     * first window sum of data while skipping the first assuming it is the
5133     * header in FreeBSD.
5134     */
5135    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5136        wnd_sum += htole16(segs[frag_idx].ds_len);
5137    }
5138
5139    /* check the first 10 bd window size */
5140    if (wnd_sum < lso_mss) {
5141        return (1);
5142    }
5143
5144    /* run through the windows */
5145    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5146        /* subtract the first mbuf->m_len of the last wndw(-header) */
5147        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5148        /* add the next mbuf len to the len of our new window */
5149        wnd_sum += htole16(segs[frag_idx].ds_len);
5150        if (wnd_sum < lso_mss) {
5151            return (1);
5152        }
5153    }
5154
5155    return (0);
5156}
5157
5158static uint8_t
5159bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5160                    struct mbuf         *m,
5161                    uint32_t            *parsing_data)
5162{
5163    struct ether_vlan_header *eh = NULL;
5164    struct ip *ip4 = NULL;
5165    struct ip6_hdr *ip6 = NULL;
5166    caddr_t ip = NULL;
5167    struct tcphdr *th = NULL;
5168    int e_hlen, ip_hlen, l4_off;
5169    uint16_t proto;
5170
5171    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5172        /* no L4 checksum offload needed */
5173        return (0);
5174    }
5175
5176    /* get the Ethernet header */
5177    eh = mtod(m, struct ether_vlan_header *);
5178
5179    /* handle VLAN encapsulation if present */
5180    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5181        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5182        proto  = ntohs(eh->evl_proto);
5183    } else {
5184        e_hlen = ETHER_HDR_LEN;
5185        proto  = ntohs(eh->evl_encap_proto);
5186    }
5187
5188    switch (proto) {
5189    case ETHERTYPE_IP:
5190        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5191        ip4 = (m->m_len < sizeof(struct ip)) ?
5192                  (struct ip *)m->m_next->m_data :
5193                  (struct ip *)(m->m_data + e_hlen);
5194        /* ip_hl is number of 32-bit words */
5195        ip_hlen = (ip4->ip_hl << 2);
5196        ip = (caddr_t)ip4;
5197        break;
5198    case ETHERTYPE_IPV6:
5199        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5200        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5201                  (struct ip6_hdr *)m->m_next->m_data :
5202                  (struct ip6_hdr *)(m->m_data + e_hlen);
5203        /* XXX cannot support offload with IPv6 extensions */
5204        ip_hlen = sizeof(struct ip6_hdr);
5205        ip = (caddr_t)ip6;
5206        break;
5207    default:
5208        /* We can't offload in this case... */
5209        /* XXX error stat ??? */
5210        return (0);
5211    }
5212
5213    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5214    l4_off = (e_hlen + ip_hlen);
5215
5216    *parsing_data |=
5217        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5218         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5219
5220    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5221                                  CSUM_TSO |
5222                                  CSUM_TCP_IPV6)) {
5223        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5224        th = (struct tcphdr *)(ip + ip_hlen);
5225        /* th_off is number of 32-bit words */
5226        *parsing_data |= ((th->th_off <<
5227                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5228                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5229        return (l4_off + (th->th_off << 2)); /* entire header length */
5230    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5231                                         CSUM_UDP_IPV6)) {
5232        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5233        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5234    } else {
5235        /* XXX error stat ??? */
5236        return (0);
5237    }
5238}
5239
5240static uint8_t
5241bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5242                 struct mbuf                *m,
5243                 struct eth_tx_parse_bd_e1x *pbd)
5244{
5245    struct ether_vlan_header *eh = NULL;
5246    struct ip *ip4 = NULL;
5247    struct ip6_hdr *ip6 = NULL;
5248    caddr_t ip = NULL;
5249    struct tcphdr *th = NULL;
5250    struct udphdr *uh = NULL;
5251    int e_hlen, ip_hlen;
5252    uint16_t proto;
5253    uint8_t hlen;
5254    uint16_t tmp_csum;
5255    uint32_t *tmp_uh;
5256
5257    /* get the Ethernet header */
5258    eh = mtod(m, struct ether_vlan_header *);
5259
5260    /* handle VLAN encapsulation if present */
5261    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5262        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5263        proto  = ntohs(eh->evl_proto);
5264    } else {
5265        e_hlen = ETHER_HDR_LEN;
5266        proto  = ntohs(eh->evl_encap_proto);
5267    }
5268
5269    switch (proto) {
5270    case ETHERTYPE_IP:
5271        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5272        ip4 = (m->m_len < sizeof(struct ip)) ?
5273                  (struct ip *)m->m_next->m_data :
5274                  (struct ip *)(m->m_data + e_hlen);
5275        /* ip_hl is number of 32-bit words */
5276        ip_hlen = (ip4->ip_hl << 1);
5277        ip = (caddr_t)ip4;
5278        break;
5279    case ETHERTYPE_IPV6:
5280        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5281        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5282                  (struct ip6_hdr *)m->m_next->m_data :
5283                  (struct ip6_hdr *)(m->m_data + e_hlen);
5284        /* XXX cannot support offload with IPv6 extensions */
5285        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5286        ip = (caddr_t)ip6;
5287        break;
5288    default:
5289        /* We can't offload in this case... */
5290        /* XXX error stat ??? */
5291        return (0);
5292    }
5293
5294    hlen = (e_hlen >> 1);
5295
5296    /* note that rest of global_data is indirectly zeroed here */
5297    if (m->m_flags & M_VLANTAG) {
5298        pbd->global_data =
5299            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5300    } else {
5301        pbd->global_data = htole16(hlen);
5302    }
5303
5304    pbd->ip_hlen_w = ip_hlen;
5305
5306    hlen += pbd->ip_hlen_w;
5307
5308    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5309
5310    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5311                                  CSUM_TSO |
5312                                  CSUM_TCP_IPV6)) {
5313        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5314        /* th_off is number of 32-bit words */
5315        hlen += (uint16_t)(th->th_off << 1);
5316    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5317                                         CSUM_UDP_IPV6)) {
5318        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5319        hlen += (sizeof(struct udphdr) / 2);
5320    } else {
5321        /* valid case as only CSUM_IP was set */
5322        return (0);
5323    }
5324
5325    pbd->total_hlen_w = htole16(hlen);
5326
5327    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5328                                  CSUM_TSO |
5329                                  CSUM_TCP_IPV6)) {
5330        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5331        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5332    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5333                                         CSUM_UDP_IPV6)) {
5334        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5335
5336        /*
5337         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5338         * checksums and does not know anything about the UDP header and where
5339         * the checksum field is located. It only knows about TCP. Therefore
5340         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5341         * offload. Since the checksum field offset for TCP is 16 bytes and
5342         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5343         * bytes less than the start of the UDP header. This allows the
5344         * hardware to write the checksum in the correct spot. But the
5345         * hardware will compute a checksum which includes the last 10 bytes
5346         * of the IP header. To correct this we tweak the stack computed
5347         * pseudo checksum by folding in the calculation of the inverse
5348         * checksum for those final 10 bytes of the IP header. This allows
5349         * the correct checksum to be computed by the hardware.
5350         */
5351
5352        /* set pointer 10 bytes before UDP header */
5353        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5354
5355        /* calculate a pseudo header checksum over the first 10 bytes */
5356        tmp_csum = in_pseudo(*tmp_uh,
5357                             *(tmp_uh + 1),
5358                             *(uint16_t *)(tmp_uh + 2));
5359
5360        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5361    }
5362
5363    return (hlen * 2); /* entire header length, number of bytes */
5364}
5365
5366static void
5367bxe_set_pbd_lso_e2(struct mbuf *m,
5368                   uint32_t    *parsing_data)
5369{
5370    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5371                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5372                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5373
5374    /* XXX test for IPv6 with extension header... */
5375#if 0
5376    struct ip6_hdr *ip6;
5377    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5378        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5379#endif
5380}
5381
5382static void
5383bxe_set_pbd_lso(struct mbuf                *m,
5384                struct eth_tx_parse_bd_e1x *pbd)
5385{
5386    struct ether_vlan_header *eh = NULL;
5387    struct ip *ip = NULL;
5388    struct tcphdr *th = NULL;
5389    int e_hlen;
5390
5391    /* get the Ethernet header */
5392    eh = mtod(m, struct ether_vlan_header *);
5393
5394    /* handle VLAN encapsulation if present */
5395    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5396                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5397
5398    /* get the IP and TCP header, with LSO entire header in first mbuf */
5399    /* XXX assuming IPv4 */
5400    ip = (struct ip *)(m->m_data + e_hlen);
5401    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5402
5403    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5404    pbd->tcp_send_seq = ntohl(th->th_seq);
5405    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5406
5407#if 1
5408        /* XXX IPv4 */
5409        pbd->ip_id = ntohs(ip->ip_id);
5410        pbd->tcp_pseudo_csum =
5411            ntohs(in_pseudo(ip->ip_src.s_addr,
5412                            ip->ip_dst.s_addr,
5413                            htons(IPPROTO_TCP)));
5414#else
5415        /* XXX IPv6 */
5416        pbd->tcp_pseudo_csum =
5417            ntohs(in_pseudo(&ip6->ip6_src,
5418                            &ip6->ip6_dst,
5419                            htons(IPPROTO_TCP)));
5420#endif
5421
5422    pbd->global_data |=
5423        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5424}
5425
5426/*
5427 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5428 * visible to the controller.
5429 *
5430 * If an mbuf is submitted to this routine and cannot be given to the
5431 * controller (e.g. it has too many fragments) then the function may free
5432 * the mbuf and return to the caller.
5433 *
5434 * Returns:
5435 *   0 = Success, !0 = Failure
5436 *   Note the side effect that an mbuf may be freed if it causes a problem.
5437 */
5438static int
5439bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5440{
5441    bus_dma_segment_t segs[32];
5442    struct mbuf *m0;
5443    struct bxe_sw_tx_bd *tx_buf;
5444    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5445    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5446    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5447    struct eth_tx_bd *tx_data_bd;
5448    struct eth_tx_bd *tx_total_pkt_size_bd;
5449    struct eth_tx_start_bd *tx_start_bd;
5450    uint16_t bd_prod, pkt_prod, total_pkt_size;
5451    uint8_t mac_type;
5452    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5453    struct bxe_softc *sc;
5454    uint16_t tx_bd_avail;
5455    struct ether_vlan_header *eh;
5456    uint32_t pbd_e2_parsing_data = 0;
5457    uint8_t hlen = 0;
5458    int tmp_bd;
5459    int i;
5460
5461    sc = fp->sc;
5462
5463    M_ASSERTPKTHDR(*m_head);
5464
5465    m0 = *m_head;
5466    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5467    tx_start_bd = NULL;
5468    tx_data_bd = NULL;
5469    tx_total_pkt_size_bd = NULL;
5470
5471    /* get the H/W pointer for packets and BDs */
5472    pkt_prod = fp->tx_pkt_prod;
5473    bd_prod = fp->tx_bd_prod;
5474
5475    mac_type = UNICAST_ADDRESS;
5476
5477    /* map the mbuf into the next open DMAable memory */
5478    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5479    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5480                                    tx_buf->m_map, m0,
5481                                    segs, &nsegs, BUS_DMA_NOWAIT);
5482
5483    /* mapping errors */
5484    if(__predict_false(error != 0)) {
5485        fp->eth_q_stats.tx_dma_mapping_failure++;
5486        if (error == ENOMEM) {
5487            /* resource issue, try again later */
5488            rc = ENOMEM;
5489        } else if (error == EFBIG) {
5490            /* possibly recoverable with defragmentation */
5491            fp->eth_q_stats.mbuf_defrag_attempts++;
5492            m0 = m_defrag(*m_head, M_NOWAIT);
5493            if (m0 == NULL) {
5494                fp->eth_q_stats.mbuf_defrag_failures++;
5495                rc = ENOBUFS;
5496            } else {
5497                /* defrag successful, try mapping again */
5498                *m_head = m0;
5499                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5500                                                tx_buf->m_map, m0,
5501                                                segs, &nsegs, BUS_DMA_NOWAIT);
5502                if (error) {
5503                    fp->eth_q_stats.tx_dma_mapping_failure++;
5504                    rc = error;
5505                }
5506            }
5507        } else {
5508            /* unknown, unrecoverable mapping error */
5509            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5510            bxe_dump_mbuf(sc, m0, FALSE);
5511            rc = error;
5512        }
5513
5514        goto bxe_tx_encap_continue;
5515    }
5516
5517    tx_bd_avail = bxe_tx_avail(sc, fp);
5518
5519    /* make sure there is enough room in the send queue */
5520    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5521        /* Recoverable, try again later. */
5522        fp->eth_q_stats.tx_hw_queue_full++;
5523        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5524        rc = ENOMEM;
5525        goto bxe_tx_encap_continue;
5526    }
5527
5528    /* capture the current H/W TX chain high watermark */
5529    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5530                        (TX_BD_USABLE - tx_bd_avail))) {
5531        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5532    }
5533
5534    /* make sure it fits in the packet window */
5535    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5536        /*
5537         * The mbuf may be to big for the controller to handle. If the frame
5538         * is a TSO frame we'll need to do an additional check.
5539         */
5540        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5541            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5542                goto bxe_tx_encap_continue; /* OK to send */
5543            } else {
5544                fp->eth_q_stats.tx_window_violation_tso++;
5545            }
5546        } else {
5547            fp->eth_q_stats.tx_window_violation_std++;
5548        }
5549
5550        /* lets try to defragment this mbuf and remap it */
5551        fp->eth_q_stats.mbuf_defrag_attempts++;
5552        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5553
5554        m0 = m_defrag(*m_head, M_NOWAIT);
5555        if (m0 == NULL) {
5556            fp->eth_q_stats.mbuf_defrag_failures++;
5557            /* Ugh, just drop the frame... :( */
5558            rc = ENOBUFS;
5559        } else {
5560            /* defrag successful, try mapping again */
5561            *m_head = m0;
5562            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5563                                            tx_buf->m_map, m0,
5564                                            segs, &nsegs, BUS_DMA_NOWAIT);
5565            if (error) {
5566                fp->eth_q_stats.tx_dma_mapping_failure++;
5567                /* No sense in trying to defrag/copy chain, drop it. :( */
5568                rc = error;
5569            }
5570            else {
5571                /* if the chain is still too long then drop it */
5572                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5573                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5574                    rc = ENODEV;
5575                }
5576            }
5577        }
5578    }
5579
5580bxe_tx_encap_continue:
5581
5582    /* Check for errors */
5583    if (rc) {
5584        if (rc == ENOMEM) {
5585            /* recoverable try again later  */
5586        } else {
5587            fp->eth_q_stats.tx_soft_errors++;
5588            fp->eth_q_stats.mbuf_alloc_tx--;
5589            m_freem(*m_head);
5590            *m_head = NULL;
5591        }
5592
5593        return (rc);
5594    }
5595
5596    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5597    if (m0->m_flags & M_BCAST) {
5598        mac_type = BROADCAST_ADDRESS;
5599    } else if (m0->m_flags & M_MCAST) {
5600        mac_type = MULTICAST_ADDRESS;
5601    }
5602
5603    /* store the mbuf into the mbuf ring */
5604    tx_buf->m        = m0;
5605    tx_buf->first_bd = fp->tx_bd_prod;
5606    tx_buf->flags    = 0;
5607
5608    /* prepare the first transmit (start) BD for the mbuf */
5609    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5610
5611    BLOGD(sc, DBG_TX,
5612          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5613          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5614
5615    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5616    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5617    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5618    total_pkt_size += tx_start_bd->nbytes;
5619    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5620
5621    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5622
5623    /* all frames have at least Start BD + Parsing BD */
5624    nbds = nsegs + 1;
5625    tx_start_bd->nbd = htole16(nbds);
5626
5627    if (m0->m_flags & M_VLANTAG) {
5628        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5629        tx_start_bd->bd_flags.as_bitfield |=
5630            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5631    } else {
5632        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5633        if (IS_VF(sc)) {
5634            /* map ethernet header to find type and header length */
5635            eh = mtod(m0, struct ether_vlan_header *);
5636            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5637        } else {
5638            /* used by FW for packet accounting */
5639            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5640#if 0
5641            /*
5642             * If NPAR-SD is active then FW should do the tagging regardless
5643             * of value of priority. Otherwise, if priority indicates this is
5644             * a control packet we need to indicate to FW to avoid tagging.
5645             */
5646            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5647                SET_FLAG(tx_start_bd->general_data,
5648                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5649            }
5650#endif
5651        }
5652    }
5653
5654    /*
5655     * add a parsing BD from the chain. The parsing BD is always added
5656     * though it is only used for TSO and chksum
5657     */
5658    bd_prod = TX_BD_NEXT(bd_prod);
5659
5660    if (m0->m_pkthdr.csum_flags) {
5661        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5662            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5663            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5664        }
5665
5666        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5667            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5668                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5669        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5670            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5671                                                  ETH_TX_BD_FLAGS_IS_UDP |
5672                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5673        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5674                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5675            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5676        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5677            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5678                                                  ETH_TX_BD_FLAGS_IS_UDP);
5679        }
5680    }
5681
5682    if (!CHIP_IS_E1x(sc)) {
5683        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5684        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5685
5686        if (m0->m_pkthdr.csum_flags) {
5687            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5688        }
5689
5690#if 0
5691        /*
5692         * Add the MACs to the parsing BD if the module param was
5693         * explicitly set, if this is a vf, or in switch independent
5694         * mode.
5695         */
5696        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5697            eh = mtod(m0, struct ether_vlan_header *);
5698            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5699                                &pbd_e2->data.mac_addr.src_mid,
5700                                &pbd_e2->data.mac_addr.src_lo,
5701                                eh->evl_shost);
5702            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5703                                &pbd_e2->data.mac_addr.dst_mid,
5704                                &pbd_e2->data.mac_addr.dst_lo,
5705                                eh->evl_dhost);
5706        }
5707#endif
5708
5709        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5710                 mac_type);
5711    } else {
5712        uint16_t global_data = 0;
5713
5714        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5715        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5716
5717        if (m0->m_pkthdr.csum_flags) {
5718            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5719        }
5720
5721        SET_FLAG(global_data,
5722                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5723        pbd_e1x->global_data |= htole16(global_data);
5724    }
5725
5726    /* setup the parsing BD with TSO specific info */
5727    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5728        fp->eth_q_stats.tx_ofld_frames_lso++;
5729        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5730
5731        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5732            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5733
5734            /* split the first BD into header/data making the fw job easy */
5735            nbds++;
5736            tx_start_bd->nbd = htole16(nbds);
5737            tx_start_bd->nbytes = htole16(hlen);
5738
5739            bd_prod = TX_BD_NEXT(bd_prod);
5740
5741            /* new transmit BD after the tx_parse_bd */
5742            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5743            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5744            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5745            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5746            if (tx_total_pkt_size_bd == NULL) {
5747                tx_total_pkt_size_bd = tx_data_bd;
5748            }
5749
5750            BLOGD(sc, DBG_TX,
5751                  "TSO split header size is %d (%x:%x) nbds %d\n",
5752                  le16toh(tx_start_bd->nbytes),
5753                  le32toh(tx_start_bd->addr_hi),
5754                  le32toh(tx_start_bd->addr_lo),
5755                  nbds);
5756        }
5757
5758        if (!CHIP_IS_E1x(sc)) {
5759            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5760        } else {
5761            bxe_set_pbd_lso(m0, pbd_e1x);
5762        }
5763    }
5764
5765    if (pbd_e2_parsing_data) {
5766        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5767    }
5768
5769    /* prepare remaining BDs, start tx bd contains first seg/frag */
5770    for (i = 1; i < nsegs ; i++) {
5771        bd_prod = TX_BD_NEXT(bd_prod);
5772        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5773        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5774        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5775        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5776        if (tx_total_pkt_size_bd == NULL) {
5777            tx_total_pkt_size_bd = tx_data_bd;
5778        }
5779        total_pkt_size += tx_data_bd->nbytes;
5780    }
5781
5782    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5783
5784    if (tx_total_pkt_size_bd != NULL) {
5785        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5786    }
5787
5788    if (__predict_false(sc->debug & DBG_TX)) {
5789        tmp_bd = tx_buf->first_bd;
5790        for (i = 0; i < nbds; i++)
5791        {
5792            if (i == 0) {
5793                BLOGD(sc, DBG_TX,
5794                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5795                      "bd_flags=0x%x hdr_nbds=%d\n",
5796                      tx_start_bd,
5797                      tmp_bd,
5798                      le16toh(tx_start_bd->nbd),
5799                      le16toh(tx_start_bd->vlan_or_ethertype),
5800                      tx_start_bd->bd_flags.as_bitfield,
5801                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5802            } else if (i == 1) {
5803                if (pbd_e1x) {
5804                    BLOGD(sc, DBG_TX,
5805                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5806                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5807                          "tcp_seq=%u total_hlen_w=%u\n",
5808                          pbd_e1x,
5809                          tmp_bd,
5810                          pbd_e1x->global_data,
5811                          pbd_e1x->ip_hlen_w,
5812                          pbd_e1x->ip_id,
5813                          pbd_e1x->lso_mss,
5814                          pbd_e1x->tcp_flags,
5815                          pbd_e1x->tcp_pseudo_csum,
5816                          pbd_e1x->tcp_send_seq,
5817                          le16toh(pbd_e1x->total_hlen_w));
5818                } else { /* if (pbd_e2) */
5819                    BLOGD(sc, DBG_TX,
5820                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5821                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5822                          pbd_e2,
5823                          tmp_bd,
5824                          pbd_e2->data.mac_addr.dst_hi,
5825                          pbd_e2->data.mac_addr.dst_mid,
5826                          pbd_e2->data.mac_addr.dst_lo,
5827                          pbd_e2->data.mac_addr.src_hi,
5828                          pbd_e2->data.mac_addr.src_mid,
5829                          pbd_e2->data.mac_addr.src_lo,
5830                          pbd_e2->parsing_data);
5831                }
5832            }
5833
5834            if (i != 1) { /* skip parse db as it doesn't hold data */
5835                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5836                BLOGD(sc, DBG_TX,
5837                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5838                      tx_data_bd,
5839                      tmp_bd,
5840                      le16toh(tx_data_bd->nbytes),
5841                      le32toh(tx_data_bd->addr_hi),
5842                      le32toh(tx_data_bd->addr_lo));
5843            }
5844
5845            tmp_bd = TX_BD_NEXT(tmp_bd);
5846        }
5847    }
5848
5849    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5850
5851    /* update TX BD producer index value for next TX */
5852    bd_prod = TX_BD_NEXT(bd_prod);
5853
5854    /*
5855     * If the chain of tx_bd's describing this frame is adjacent to or spans
5856     * an eth_tx_next_bd element then we need to increment the nbds value.
5857     */
5858    if (TX_BD_IDX(bd_prod) < nbds) {
5859        nbds++;
5860    }
5861
5862    /* don't allow reordering of writes for nbd and packets */
5863    mb();
5864
5865    fp->tx_db.data.prod += nbds;
5866
5867    /* producer points to the next free tx_bd at this point */
5868    fp->tx_pkt_prod++;
5869    fp->tx_bd_prod = bd_prod;
5870
5871    DOORBELL(sc, fp->index, fp->tx_db.raw);
5872
5873    fp->eth_q_stats.tx_pkts++;
5874
5875    /* Prevent speculative reads from getting ahead of the status block. */
5876    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5877                      0, 0, BUS_SPACE_BARRIER_READ);
5878
5879    /* Prevent speculative reads from getting ahead of the doorbell. */
5880    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5881                      0, 0, BUS_SPACE_BARRIER_READ);
5882
5883    return (0);
5884}
5885
5886static void
5887bxe_tx_start_locked(struct bxe_softc *sc,
5888                    if_t ifp,
5889                    struct bxe_fastpath *fp)
5890{
5891    struct mbuf *m = NULL;
5892    int tx_count = 0;
5893    uint16_t tx_bd_avail;
5894
5895    BXE_FP_TX_LOCK_ASSERT(fp);
5896
5897    /* keep adding entries while there are frames to send */
5898    while (!if_sendq_empty(ifp)) {
5899
5900        /*
5901         * check for any frames to send
5902         * dequeue can still be NULL even if queue is not empty
5903         */
5904        m = if_dequeue(ifp);
5905        if (__predict_false(m == NULL)) {
5906            break;
5907        }
5908
5909        /* the mbuf now belongs to us */
5910        fp->eth_q_stats.mbuf_alloc_tx++;
5911
5912        /*
5913         * Put the frame into the transmit ring. If we don't have room,
5914         * place the mbuf back at the head of the TX queue, set the
5915         * OACTIVE flag, and wait for the NIC to drain the chain.
5916         */
5917        if (__predict_false(bxe_tx_encap(fp, &m))) {
5918            fp->eth_q_stats.tx_encap_failures++;
5919            if (m != NULL) {
5920                /* mark the TX queue as full and return the frame */
5921                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5922		if_sendq_prepend(ifp, m);
5923                fp->eth_q_stats.mbuf_alloc_tx--;
5924                fp->eth_q_stats.tx_queue_xoff++;
5925            }
5926
5927            /* stop looking for more work */
5928            break;
5929        }
5930
5931        /* the frame was enqueued successfully */
5932        tx_count++;
5933
5934        /* send a copy of the frame to any BPF listeners. */
5935        if_etherbpfmtap(ifp, m);
5936
5937        tx_bd_avail = bxe_tx_avail(sc, fp);
5938
5939        /* handle any completions if we're running low */
5940        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5941            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5942            bxe_txeof(sc, fp);
5943            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5944                break;
5945            }
5946        }
5947    }
5948
5949    /* all TX packets were dequeued and/or the tx ring is full */
5950    if (tx_count > 0) {
5951        /* reset the TX watchdog timeout timer */
5952        fp->watchdog_timer = BXE_TX_TIMEOUT;
5953    }
5954}
5955
5956/* Legacy (non-RSS) dispatch routine */
5957static void
5958bxe_tx_start(if_t ifp)
5959{
5960    struct bxe_softc *sc;
5961    struct bxe_fastpath *fp;
5962
5963    sc = if_getsoftc(ifp);
5964
5965    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5966        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5967        return;
5968    }
5969
5970    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5971        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5972        return;
5973    }
5974
5975    if (!sc->link_vars.link_up) {
5976        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5977        return;
5978    }
5979
5980    fp = &sc->fp[0];
5981
5982    BXE_FP_TX_LOCK(fp);
5983    bxe_tx_start_locked(sc, ifp, fp);
5984    BXE_FP_TX_UNLOCK(fp);
5985}
5986
5987#if __FreeBSD_version >= 800000
5988
5989static int
5990bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5991                       if_t                ifp,
5992                       struct bxe_fastpath *fp,
5993                       struct mbuf         *m)
5994{
5995    struct buf_ring *tx_br = fp->tx_br;
5996    struct mbuf *next;
5997    int depth, rc, tx_count;
5998    uint16_t tx_bd_avail;
5999
6000    rc = tx_count = 0;
6001
6002    if (!tx_br) {
6003        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
6004        return (EINVAL);
6005    }
6006
6007    /* fetch the depth of the driver queue */
6008    depth = drbr_inuse_drv(ifp, tx_br);
6009    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
6010        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
6011    }
6012
6013    BXE_FP_TX_LOCK_ASSERT(fp);
6014
6015    if (m == NULL) {
6016        /* no new work, check for pending frames */
6017        next = drbr_dequeue_drv(ifp, tx_br);
6018    } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
6019        /* have both new and pending work, maintain packet order */
6020        rc = drbr_enqueue_drv(ifp, tx_br, m);
6021        if (rc != 0) {
6022            fp->eth_q_stats.tx_soft_errors++;
6023            goto bxe_tx_mq_start_locked_exit;
6024        }
6025        next = drbr_dequeue_drv(ifp, tx_br);
6026    } else {
6027        /* new work only and nothing pending */
6028        next = m;
6029    }
6030
6031    /* keep adding entries while there are frames to send */
6032    while (next != NULL) {
6033
6034        /* the mbuf now belongs to us */
6035        fp->eth_q_stats.mbuf_alloc_tx++;
6036
6037        /*
6038         * Put the frame into the transmit ring. If we don't have room,
6039         * place the mbuf back at the head of the TX queue, set the
6040         * OACTIVE flag, and wait for the NIC to drain the chain.
6041         */
6042        rc = bxe_tx_encap(fp, &next);
6043        if (__predict_false(rc != 0)) {
6044            fp->eth_q_stats.tx_encap_failures++;
6045            if (next != NULL) {
6046                /* mark the TX queue as full and save the frame */
6047                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
6048                /* XXX this may reorder the frame */
6049                rc = drbr_enqueue_drv(ifp, tx_br, next);
6050                fp->eth_q_stats.mbuf_alloc_tx--;
6051                fp->eth_q_stats.tx_frames_deferred++;
6052            }
6053
6054            /* stop looking for more work */
6055            break;
6056        }
6057
6058        /* the transmit frame was enqueued successfully */
6059        tx_count++;
6060
6061        /* send a copy of the frame to any BPF listeners */
6062	if_etherbpfmtap(ifp, next);
6063
6064        tx_bd_avail = bxe_tx_avail(sc, fp);
6065
6066        /* handle any completions if we're running low */
6067        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6068            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6069            bxe_txeof(sc, fp);
6070            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6071                break;
6072            }
6073        }
6074
6075        next = drbr_dequeue_drv(ifp, tx_br);
6076    }
6077
6078    /* all TX packets were dequeued and/or the tx ring is full */
6079    if (tx_count > 0) {
6080        /* reset the TX watchdog timeout timer */
6081        fp->watchdog_timer = BXE_TX_TIMEOUT;
6082    }
6083
6084bxe_tx_mq_start_locked_exit:
6085
6086    return (rc);
6087}
6088
6089/* Multiqueue (TSS) dispatch routine. */
6090static int
6091bxe_tx_mq_start(struct ifnet *ifp,
6092                struct mbuf  *m)
6093{
6094    struct bxe_softc *sc = if_getsoftc(ifp);
6095    struct bxe_fastpath *fp;
6096    int fp_index, rc;
6097
6098    fp_index = 0; /* default is the first queue */
6099
6100    /* check if flowid is set */
6101    if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6102        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6103
6104    fp = &sc->fp[fp_index];
6105
6106    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6107        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6108        return (ENETDOWN);
6109    }
6110
6111    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6112        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6113        return (EBUSY);
6114    }
6115
6116    if (!sc->link_vars.link_up) {
6117        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6118        return (ENETDOWN);
6119    }
6120
6121    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6122
6123    BXE_FP_TX_LOCK(fp);
6124    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6125    BXE_FP_TX_UNLOCK(fp);
6126
6127    return (rc);
6128}
6129
6130static void
6131bxe_mq_flush(struct ifnet *ifp)
6132{
6133    struct bxe_softc *sc = if_getsoftc(ifp);
6134    struct bxe_fastpath *fp;
6135    struct mbuf *m;
6136    int i;
6137
6138    for (i = 0; i < sc->num_queues; i++) {
6139        fp = &sc->fp[i];
6140
6141        if (fp->state != BXE_FP_STATE_OPEN) {
6142            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6143                  fp->index, fp->state);
6144            continue;
6145        }
6146
6147        if (fp->tx_br != NULL) {
6148            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6149            BXE_FP_TX_LOCK(fp);
6150            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6151                m_freem(m);
6152            }
6153            BXE_FP_TX_UNLOCK(fp);
6154        }
6155    }
6156
6157    if_qflush(ifp);
6158}
6159
6160#endif /* FreeBSD_version >= 800000 */
6161
6162static uint16_t
6163bxe_cid_ilt_lines(struct bxe_softc *sc)
6164{
6165    if (IS_SRIOV(sc)) {
6166        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6167    }
6168    return (L2_ILT_LINES(sc));
6169}
6170
6171static void
6172bxe_ilt_set_info(struct bxe_softc *sc)
6173{
6174    struct ilt_client_info *ilt_client;
6175    struct ecore_ilt *ilt = sc->ilt;
6176    uint16_t line = 0;
6177
6178    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6179    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6180
6181    /* CDU */
6182    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6183    ilt_client->client_num = ILT_CLIENT_CDU;
6184    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6185    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6186    ilt_client->start = line;
6187    line += bxe_cid_ilt_lines(sc);
6188
6189    if (CNIC_SUPPORT(sc)) {
6190        line += CNIC_ILT_LINES;
6191    }
6192
6193    ilt_client->end = (line - 1);
6194
6195    BLOGD(sc, DBG_LOAD,
6196          "ilt client[CDU]: start %d, end %d, "
6197          "psz 0x%x, flags 0x%x, hw psz %d\n",
6198          ilt_client->start, ilt_client->end,
6199          ilt_client->page_size,
6200          ilt_client->flags,
6201          ilog2(ilt_client->page_size >> 12));
6202
6203    /* QM */
6204    if (QM_INIT(sc->qm_cid_count)) {
6205        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6206        ilt_client->client_num = ILT_CLIENT_QM;
6207        ilt_client->page_size = QM_ILT_PAGE_SZ;
6208        ilt_client->flags = 0;
6209        ilt_client->start = line;
6210
6211        /* 4 bytes for each cid */
6212        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6213                             QM_ILT_PAGE_SZ);
6214
6215        ilt_client->end = (line - 1);
6216
6217        BLOGD(sc, DBG_LOAD,
6218              "ilt client[QM]: start %d, end %d, "
6219              "psz 0x%x, flags 0x%x, hw psz %d\n",
6220              ilt_client->start, ilt_client->end,
6221              ilt_client->page_size, ilt_client->flags,
6222              ilog2(ilt_client->page_size >> 12));
6223    }
6224
6225    if (CNIC_SUPPORT(sc)) {
6226        /* SRC */
6227        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6228        ilt_client->client_num = ILT_CLIENT_SRC;
6229        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6230        ilt_client->flags = 0;
6231        ilt_client->start = line;
6232        line += SRC_ILT_LINES;
6233        ilt_client->end = (line - 1);
6234
6235        BLOGD(sc, DBG_LOAD,
6236              "ilt client[SRC]: start %d, end %d, "
6237              "psz 0x%x, flags 0x%x, hw psz %d\n",
6238              ilt_client->start, ilt_client->end,
6239              ilt_client->page_size, ilt_client->flags,
6240              ilog2(ilt_client->page_size >> 12));
6241
6242        /* TM */
6243        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6244        ilt_client->client_num = ILT_CLIENT_TM;
6245        ilt_client->page_size = TM_ILT_PAGE_SZ;
6246        ilt_client->flags = 0;
6247        ilt_client->start = line;
6248        line += TM_ILT_LINES;
6249        ilt_client->end = (line - 1);
6250
6251        BLOGD(sc, DBG_LOAD,
6252              "ilt client[TM]: start %d, end %d, "
6253              "psz 0x%x, flags 0x%x, hw psz %d\n",
6254              ilt_client->start, ilt_client->end,
6255              ilt_client->page_size, ilt_client->flags,
6256              ilog2(ilt_client->page_size >> 12));
6257    }
6258
6259    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6260}
6261
6262static void
6263bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6264{
6265    int i;
6266    uint32_t rx_buf_size;
6267
6268    rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6269
6270    for (i = 0; i < sc->num_queues; i++) {
6271        if(rx_buf_size <= MCLBYTES){
6272            sc->fp[i].rx_buf_size = rx_buf_size;
6273            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6274        }else if (rx_buf_size <= MJUMPAGESIZE){
6275            sc->fp[i].rx_buf_size = rx_buf_size;
6276            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6277        }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6278            sc->fp[i].rx_buf_size = MCLBYTES;
6279            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6280        }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6281            sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6282            sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6283        }else {
6284            sc->fp[i].rx_buf_size = MCLBYTES;
6285            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6286        }
6287    }
6288}
6289
6290static int
6291bxe_alloc_ilt_mem(struct bxe_softc *sc)
6292{
6293    int rc = 0;
6294
6295    if ((sc->ilt =
6296         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6297                                    M_BXE_ILT,
6298                                    (M_NOWAIT | M_ZERO))) == NULL) {
6299        rc = 1;
6300    }
6301
6302    return (rc);
6303}
6304
6305static int
6306bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6307{
6308    int rc = 0;
6309
6310    if ((sc->ilt->lines =
6311         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6312                                    M_BXE_ILT,
6313                                    (M_NOWAIT | M_ZERO))) == NULL) {
6314        rc = 1;
6315    }
6316
6317    return (rc);
6318}
6319
6320static void
6321bxe_free_ilt_mem(struct bxe_softc *sc)
6322{
6323    if (sc->ilt != NULL) {
6324        free(sc->ilt, M_BXE_ILT);
6325        sc->ilt = NULL;
6326    }
6327}
6328
6329static void
6330bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6331{
6332    if (sc->ilt->lines != NULL) {
6333        free(sc->ilt->lines, M_BXE_ILT);
6334        sc->ilt->lines = NULL;
6335    }
6336}
6337
6338static void
6339bxe_free_mem(struct bxe_softc *sc)
6340{
6341    int i;
6342
6343#if 0
6344    if (!CONFIGURE_NIC_MODE(sc)) {
6345        /* free searcher T2 table */
6346        bxe_dma_free(sc, &sc->t2);
6347    }
6348#endif
6349
6350    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6351        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6352        sc->context[i].vcxt = NULL;
6353        sc->context[i].size = 0;
6354    }
6355
6356    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6357
6358    bxe_free_ilt_lines_mem(sc);
6359
6360#if 0
6361    bxe_iov_free_mem(sc);
6362#endif
6363}
6364
6365static int
6366bxe_alloc_mem(struct bxe_softc *sc)
6367{
6368    int context_size;
6369    int allocated;
6370    int i;
6371
6372#if 0
6373    if (!CONFIGURE_NIC_MODE(sc)) {
6374        /* allocate searcher T2 table */
6375        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6376                          &sc->t2, "searcher t2 table") != 0) {
6377            return (-1);
6378        }
6379    }
6380#endif
6381
6382    /*
6383     * Allocate memory for CDU context:
6384     * This memory is allocated separately and not in the generic ILT
6385     * functions because CDU differs in few aspects:
6386     * 1. There can be multiple entities allocating memory for context -
6387     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6388     * its own ILT lines.
6389     * 2. Since CDU page-size is not a single 4KB page (which is the case
6390     * for the other ILT clients), to be efficient we want to support
6391     * allocation of sub-page-size in the last entry.
6392     * 3. Context pointers are used by the driver to pass to FW / update
6393     * the context (for the other ILT clients the pointers are used just to
6394     * free the memory during unload).
6395     */
6396    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6397    for (i = 0, allocated = 0; allocated < context_size; i++) {
6398        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6399                                  (context_size - allocated));
6400
6401        if (bxe_dma_alloc(sc, sc->context[i].size,
6402                          &sc->context[i].vcxt_dma,
6403                          "cdu context") != 0) {
6404            bxe_free_mem(sc);
6405            return (-1);
6406        }
6407
6408        sc->context[i].vcxt =
6409            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6410
6411        allocated += sc->context[i].size;
6412    }
6413
6414    bxe_alloc_ilt_lines_mem(sc);
6415
6416    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6417          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6418    {
6419        for (i = 0; i < 4; i++) {
6420            BLOGD(sc, DBG_LOAD,
6421                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6422                  i,
6423                  sc->ilt->clients[i].page_size,
6424                  sc->ilt->clients[i].start,
6425                  sc->ilt->clients[i].end,
6426                  sc->ilt->clients[i].client_num,
6427                  sc->ilt->clients[i].flags);
6428        }
6429    }
6430    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6431        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6432        bxe_free_mem(sc);
6433        return (-1);
6434    }
6435
6436#if 0
6437    if (bxe_iov_alloc_mem(sc)) {
6438        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6439        bxe_free_mem(sc);
6440        return (-1);
6441    }
6442#endif
6443
6444    return (0);
6445}
6446
6447static void
6448bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6449{
6450    struct bxe_softc *sc;
6451    int i;
6452
6453    sc = fp->sc;
6454
6455    if (fp->rx_mbuf_tag == NULL) {
6456        return;
6457    }
6458
6459    /* free all mbufs and unload all maps */
6460    for (i = 0; i < RX_BD_TOTAL; i++) {
6461        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6462            bus_dmamap_sync(fp->rx_mbuf_tag,
6463                            fp->rx_mbuf_chain[i].m_map,
6464                            BUS_DMASYNC_POSTREAD);
6465            bus_dmamap_unload(fp->rx_mbuf_tag,
6466                              fp->rx_mbuf_chain[i].m_map);
6467        }
6468
6469        if (fp->rx_mbuf_chain[i].m != NULL) {
6470            m_freem(fp->rx_mbuf_chain[i].m);
6471            fp->rx_mbuf_chain[i].m = NULL;
6472            fp->eth_q_stats.mbuf_alloc_rx--;
6473        }
6474    }
6475}
6476
6477static void
6478bxe_free_tpa_pool(struct bxe_fastpath *fp)
6479{
6480    struct bxe_softc *sc;
6481    int i, max_agg_queues;
6482
6483    sc = fp->sc;
6484
6485    if (fp->rx_mbuf_tag == NULL) {
6486        return;
6487    }
6488
6489    max_agg_queues = MAX_AGG_QS(sc);
6490
6491    /* release all mbufs and unload all DMA maps in the TPA pool */
6492    for (i = 0; i < max_agg_queues; i++) {
6493        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6494            bus_dmamap_sync(fp->rx_mbuf_tag,
6495                            fp->rx_tpa_info[i].bd.m_map,
6496                            BUS_DMASYNC_POSTREAD);
6497            bus_dmamap_unload(fp->rx_mbuf_tag,
6498                              fp->rx_tpa_info[i].bd.m_map);
6499        }
6500
6501        if (fp->rx_tpa_info[i].bd.m != NULL) {
6502            m_freem(fp->rx_tpa_info[i].bd.m);
6503            fp->rx_tpa_info[i].bd.m = NULL;
6504            fp->eth_q_stats.mbuf_alloc_tpa--;
6505        }
6506    }
6507}
6508
6509static void
6510bxe_free_sge_chain(struct bxe_fastpath *fp)
6511{
6512    struct bxe_softc *sc;
6513    int i;
6514
6515    sc = fp->sc;
6516
6517    if (fp->rx_sge_mbuf_tag == NULL) {
6518        return;
6519    }
6520
6521    /* rree all mbufs and unload all maps */
6522    for (i = 0; i < RX_SGE_TOTAL; i++) {
6523        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6524            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6525                            fp->rx_sge_mbuf_chain[i].m_map,
6526                            BUS_DMASYNC_POSTREAD);
6527            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6528                              fp->rx_sge_mbuf_chain[i].m_map);
6529        }
6530
6531        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6532            m_freem(fp->rx_sge_mbuf_chain[i].m);
6533            fp->rx_sge_mbuf_chain[i].m = NULL;
6534            fp->eth_q_stats.mbuf_alloc_sge--;
6535        }
6536    }
6537}
6538
6539static void
6540bxe_free_fp_buffers(struct bxe_softc *sc)
6541{
6542    struct bxe_fastpath *fp;
6543    int i;
6544
6545    for (i = 0; i < sc->num_queues; i++) {
6546        fp = &sc->fp[i];
6547
6548#if __FreeBSD_version >= 800000
6549        if (fp->tx_br != NULL) {
6550            struct mbuf *m;
6551            /* just in case bxe_mq_flush() wasn't called */
6552            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6553                m_freem(m);
6554            }
6555            buf_ring_free(fp->tx_br, M_DEVBUF);
6556            fp->tx_br = NULL;
6557        }
6558#endif
6559
6560        /* free all RX buffers */
6561        bxe_free_rx_bd_chain(fp);
6562        bxe_free_tpa_pool(fp);
6563        bxe_free_sge_chain(fp);
6564
6565        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6566            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6567                  fp->eth_q_stats.mbuf_alloc_rx);
6568        }
6569
6570        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6571            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6572                  fp->eth_q_stats.mbuf_alloc_sge);
6573        }
6574
6575        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6576            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6577                  fp->eth_q_stats.mbuf_alloc_tpa);
6578        }
6579
6580        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6581            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6582                  fp->eth_q_stats.mbuf_alloc_tx);
6583        }
6584
6585        /* XXX verify all mbufs were reclaimed */
6586
6587        if (mtx_initialized(&fp->tx_mtx)) {
6588            mtx_destroy(&fp->tx_mtx);
6589        }
6590
6591        if (mtx_initialized(&fp->rx_mtx)) {
6592            mtx_destroy(&fp->rx_mtx);
6593        }
6594    }
6595}
6596
6597static int
6598bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6599                     uint16_t            prev_index,
6600                     uint16_t            index)
6601{
6602    struct bxe_sw_rx_bd *rx_buf;
6603    struct eth_rx_bd *rx_bd;
6604    bus_dma_segment_t segs[1];
6605    bus_dmamap_t map;
6606    struct mbuf *m;
6607    int nsegs, rc;
6608
6609    rc = 0;
6610
6611    /* allocate the new RX BD mbuf */
6612    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6613    if (__predict_false(m == NULL)) {
6614        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6615        return (ENOBUFS);
6616    }
6617
6618    fp->eth_q_stats.mbuf_alloc_rx++;
6619
6620    /* initialize the mbuf buffer length */
6621    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6622
6623    /* map the mbuf into non-paged pool */
6624    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6625                                 fp->rx_mbuf_spare_map,
6626                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6627    if (__predict_false(rc != 0)) {
6628        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6629        m_freem(m);
6630        fp->eth_q_stats.mbuf_alloc_rx--;
6631        return (rc);
6632    }
6633
6634    /* all mbufs must map to a single segment */
6635    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6636
6637    /* release any existing RX BD mbuf mappings */
6638
6639    if (prev_index != index) {
6640        rx_buf = &fp->rx_mbuf_chain[prev_index];
6641
6642        if (rx_buf->m_map != NULL) {
6643            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6644                            BUS_DMASYNC_POSTREAD);
6645            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6646        }
6647
6648        /*
6649         * We only get here from bxe_rxeof() when the maximum number
6650         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6651         * holds the mbuf in the prev_index so it's OK to NULL it out
6652         * here without concern of a memory leak.
6653         */
6654        fp->rx_mbuf_chain[prev_index].m = NULL;
6655    }
6656
6657    rx_buf = &fp->rx_mbuf_chain[index];
6658
6659    if (rx_buf->m_map != NULL) {
6660        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6661                        BUS_DMASYNC_POSTREAD);
6662        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6663    }
6664
6665    /* save the mbuf and mapping info for a future packet */
6666    map = (prev_index != index) ?
6667              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6668    rx_buf->m_map = fp->rx_mbuf_spare_map;
6669    fp->rx_mbuf_spare_map = map;
6670    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6671                    BUS_DMASYNC_PREREAD);
6672    rx_buf->m = m;
6673
6674    rx_bd = &fp->rx_chain[index];
6675    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6676    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6677
6678    return (rc);
6679}
6680
6681static int
6682bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6683                      int                 queue)
6684{
6685    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6686    bus_dma_segment_t segs[1];
6687    bus_dmamap_t map;
6688    struct mbuf *m;
6689    int nsegs;
6690    int rc = 0;
6691
6692    /* allocate the new TPA mbuf */
6693    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6694    if (__predict_false(m == NULL)) {
6695        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6696        return (ENOBUFS);
6697    }
6698
6699    fp->eth_q_stats.mbuf_alloc_tpa++;
6700
6701    /* initialize the mbuf buffer length */
6702    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6703
6704    /* map the mbuf into non-paged pool */
6705    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6706                                 fp->rx_tpa_info_mbuf_spare_map,
6707                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6708    if (__predict_false(rc != 0)) {
6709        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6710        m_free(m);
6711        fp->eth_q_stats.mbuf_alloc_tpa--;
6712        return (rc);
6713    }
6714
6715    /* all mbufs must map to a single segment */
6716    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6717
6718    /* release any existing TPA mbuf mapping */
6719    if (tpa_info->bd.m_map != NULL) {
6720        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6721                        BUS_DMASYNC_POSTREAD);
6722        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6723    }
6724
6725    /* save the mbuf and mapping info for the TPA mbuf */
6726    map = tpa_info->bd.m_map;
6727    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6728    fp->rx_tpa_info_mbuf_spare_map = map;
6729    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6730                    BUS_DMASYNC_PREREAD);
6731    tpa_info->bd.m = m;
6732    tpa_info->seg = segs[0];
6733
6734    return (rc);
6735}
6736
6737/*
6738 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6739 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6740 * chain.
6741 */
6742static int
6743bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6744                      uint16_t            index)
6745{
6746    struct bxe_sw_rx_bd *sge_buf;
6747    struct eth_rx_sge *sge;
6748    bus_dma_segment_t segs[1];
6749    bus_dmamap_t map;
6750    struct mbuf *m;
6751    int nsegs;
6752    int rc = 0;
6753
6754    /* allocate a new SGE mbuf */
6755    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6756    if (__predict_false(m == NULL)) {
6757        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6758        return (ENOMEM);
6759    }
6760
6761    fp->eth_q_stats.mbuf_alloc_sge++;
6762
6763    /* initialize the mbuf buffer length */
6764    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6765
6766    /* map the SGE mbuf into non-paged pool */
6767    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6768                                 fp->rx_sge_mbuf_spare_map,
6769                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6770    if (__predict_false(rc != 0)) {
6771        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6772        m_freem(m);
6773        fp->eth_q_stats.mbuf_alloc_sge--;
6774        return (rc);
6775    }
6776
6777    /* all mbufs must map to a single segment */
6778    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6779
6780    sge_buf = &fp->rx_sge_mbuf_chain[index];
6781
6782    /* release any existing SGE mbuf mapping */
6783    if (sge_buf->m_map != NULL) {
6784        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6785                        BUS_DMASYNC_POSTREAD);
6786        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6787    }
6788
6789    /* save the mbuf and mapping info for a future packet */
6790    map = sge_buf->m_map;
6791    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6792    fp->rx_sge_mbuf_spare_map = map;
6793    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6794                    BUS_DMASYNC_PREREAD);
6795    sge_buf->m = m;
6796
6797    sge = &fp->rx_sge_chain[index];
6798    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6799    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6800
6801    return (rc);
6802}
6803
6804static __noinline int
6805bxe_alloc_fp_buffers(struct bxe_softc *sc)
6806{
6807    struct bxe_fastpath *fp;
6808    int i, j, rc = 0;
6809    int ring_prod, cqe_ring_prod;
6810    int max_agg_queues;
6811
6812    for (i = 0; i < sc->num_queues; i++) {
6813        fp = &sc->fp[i];
6814
6815#if __FreeBSD_version >= 800000
6816        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6817                                   M_NOWAIT, &fp->tx_mtx);
6818        if (fp->tx_br == NULL) {
6819            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6820            goto bxe_alloc_fp_buffers_error;
6821        }
6822#endif
6823
6824        ring_prod = cqe_ring_prod = 0;
6825        fp->rx_bd_cons = 0;
6826        fp->rx_cq_cons = 0;
6827
6828        /* allocate buffers for the RX BDs in RX BD chain */
6829        for (j = 0; j < sc->max_rx_bufs; j++) {
6830            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6831            if (rc != 0) {
6832                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6833                      i, rc);
6834                goto bxe_alloc_fp_buffers_error;
6835            }
6836
6837            ring_prod     = RX_BD_NEXT(ring_prod);
6838            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6839        }
6840
6841        fp->rx_bd_prod = ring_prod;
6842        fp->rx_cq_prod = cqe_ring_prod;
6843        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6844
6845        max_agg_queues = MAX_AGG_QS(sc);
6846
6847        fp->tpa_enable = TRUE;
6848
6849        /* fill the TPA pool */
6850        for (j = 0; j < max_agg_queues; j++) {
6851            rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6852            if (rc != 0) {
6853                BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6854                          i, j);
6855                fp->tpa_enable = FALSE;
6856                goto bxe_alloc_fp_buffers_error;
6857            }
6858
6859            fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6860        }
6861
6862        if (fp->tpa_enable) {
6863            /* fill the RX SGE chain */
6864            ring_prod = 0;
6865            for (j = 0; j < RX_SGE_USABLE; j++) {
6866                rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6867                if (rc != 0) {
6868                    BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6869                              i, ring_prod);
6870                    fp->tpa_enable = FALSE;
6871                    ring_prod = 0;
6872                    goto bxe_alloc_fp_buffers_error;
6873                }
6874
6875                ring_prod = RX_SGE_NEXT(ring_prod);
6876            }
6877
6878            fp->rx_sge_prod = ring_prod;
6879        }
6880    }
6881
6882    return (0);
6883
6884bxe_alloc_fp_buffers_error:
6885
6886    /* unwind what was already allocated */
6887    bxe_free_rx_bd_chain(fp);
6888    bxe_free_tpa_pool(fp);
6889    bxe_free_sge_chain(fp);
6890
6891    return (ENOBUFS);
6892}
6893
6894static void
6895bxe_free_fw_stats_mem(struct bxe_softc *sc)
6896{
6897    bxe_dma_free(sc, &sc->fw_stats_dma);
6898
6899    sc->fw_stats_num = 0;
6900
6901    sc->fw_stats_req_size = 0;
6902    sc->fw_stats_req = NULL;
6903    sc->fw_stats_req_mapping = 0;
6904
6905    sc->fw_stats_data_size = 0;
6906    sc->fw_stats_data = NULL;
6907    sc->fw_stats_data_mapping = 0;
6908}
6909
6910static int
6911bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6912{
6913    uint8_t num_queue_stats;
6914    int num_groups;
6915
6916    /* number of queues for statistics is number of eth queues */
6917    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6918
6919    /*
6920     * Total number of FW statistics requests =
6921     *   1 for port stats + 1 for PF stats + num of queues
6922     */
6923    sc->fw_stats_num = (2 + num_queue_stats);
6924
6925    /*
6926     * Request is built from stats_query_header and an array of
6927     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6928     * rules. The real number or requests is configured in the
6929     * stats_query_header.
6930     */
6931    num_groups =
6932        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6933         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6934
6935    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6936          sc->fw_stats_num, num_groups);
6937
6938    sc->fw_stats_req_size =
6939        (sizeof(struct stats_query_header) +
6940         (num_groups * sizeof(struct stats_query_cmd_group)));
6941
6942    /*
6943     * Data for statistics requests + stats_counter.
6944     * stats_counter holds per-STORM counters that are incremented when
6945     * STORM has finished with the current request. Memory for FCoE
6946     * offloaded statistics are counted anyway, even if they will not be sent.
6947     * VF stats are not accounted for here as the data of VF stats is stored
6948     * in memory allocated by the VF, not here.
6949     */
6950    sc->fw_stats_data_size =
6951        (sizeof(struct stats_counter) +
6952         sizeof(struct per_port_stats) +
6953         sizeof(struct per_pf_stats) +
6954         /* sizeof(struct fcoe_statistics_params) + */
6955         (sizeof(struct per_queue_stats) * num_queue_stats));
6956
6957    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6958                      &sc->fw_stats_dma, "fw stats") != 0) {
6959        bxe_free_fw_stats_mem(sc);
6960        return (-1);
6961    }
6962
6963    /* set up the shortcuts */
6964
6965    sc->fw_stats_req =
6966        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6967    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6968
6969    sc->fw_stats_data =
6970        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6971                                     sc->fw_stats_req_size);
6972    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6973                                 sc->fw_stats_req_size);
6974
6975    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6976          (uintmax_t)sc->fw_stats_req_mapping);
6977
6978    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6979          (uintmax_t)sc->fw_stats_data_mapping);
6980
6981    return (0);
6982}
6983
6984/*
6985 * Bits map:
6986 * 0-7  - Engine0 load counter.
6987 * 8-15 - Engine1 load counter.
6988 * 16   - Engine0 RESET_IN_PROGRESS bit.
6989 * 17   - Engine1 RESET_IN_PROGRESS bit.
6990 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6991 *        function on the engine
6992 * 19   - Engine1 ONE_IS_LOADED.
6993 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6994 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6995 *        for just the one belonging to its engine).
6996 */
6997#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6998#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6999#define BXE_PATH0_LOAD_CNT_SHIFT  0
7000#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
7001#define BXE_PATH1_LOAD_CNT_SHIFT  8
7002#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
7003#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
7004#define BXE_GLOBAL_RESET_BIT      0x00040000
7005
7006/* set the GLOBAL_RESET bit, should be run under rtnl lock */
7007static void
7008bxe_set_reset_global(struct bxe_softc *sc)
7009{
7010    uint32_t val;
7011    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7012    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7013    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
7014    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7015}
7016
7017/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
7018static void
7019bxe_clear_reset_global(struct bxe_softc *sc)
7020{
7021    uint32_t val;
7022    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7023    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7024    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
7025    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7026}
7027
7028/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
7029static uint8_t
7030bxe_reset_is_global(struct bxe_softc *sc)
7031{
7032    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7033    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
7034    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
7035}
7036
7037/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
7038static void
7039bxe_set_reset_done(struct bxe_softc *sc)
7040{
7041    uint32_t val;
7042    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7043                                 BXE_PATH0_RST_IN_PROG_BIT;
7044
7045    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7046
7047    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7048    /* Clear the bit */
7049    val &= ~bit;
7050    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7051
7052    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7053}
7054
7055/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7056static void
7057bxe_set_reset_in_progress(struct bxe_softc *sc)
7058{
7059    uint32_t val;
7060    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7061                                 BXE_PATH0_RST_IN_PROG_BIT;
7062
7063    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7064
7065    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7066    /* Set the bit */
7067    val |= bit;
7068    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7069
7070    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7071}
7072
7073/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7074static uint8_t
7075bxe_reset_is_done(struct bxe_softc *sc,
7076                  int              engine)
7077{
7078    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7079    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7080                            BXE_PATH0_RST_IN_PROG_BIT;
7081
7082    /* return false if bit is set */
7083    return (val & bit) ? FALSE : TRUE;
7084}
7085
7086/* get the load status for an engine, should be run under rtnl lock */
7087static uint8_t
7088bxe_get_load_status(struct bxe_softc *sc,
7089                    int              engine)
7090{
7091    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7092                             BXE_PATH0_LOAD_CNT_MASK;
7093    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7094                              BXE_PATH0_LOAD_CNT_SHIFT;
7095    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7096
7097    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7098
7099    val = ((val & mask) >> shift);
7100
7101    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7102
7103    return (val != 0);
7104}
7105
7106/* set pf load mark */
7107/* XXX needs to be under rtnl lock */
7108static void
7109bxe_set_pf_load(struct bxe_softc *sc)
7110{
7111    uint32_t val;
7112    uint32_t val1;
7113    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7114                                  BXE_PATH0_LOAD_CNT_MASK;
7115    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7116                                   BXE_PATH0_LOAD_CNT_SHIFT;
7117
7118    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7119
7120    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7121    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7122
7123    /* get the current counter value */
7124    val1 = ((val & mask) >> shift);
7125
7126    /* set bit of this PF */
7127    val1 |= (1 << SC_ABS_FUNC(sc));
7128
7129    /* clear the old value */
7130    val &= ~mask;
7131
7132    /* set the new one */
7133    val |= ((val1 << shift) & mask);
7134
7135    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7136
7137    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7138}
7139
7140/* clear pf load mark */
7141/* XXX needs to be under rtnl lock */
7142static uint8_t
7143bxe_clear_pf_load(struct bxe_softc *sc)
7144{
7145    uint32_t val1, val;
7146    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7147                                  BXE_PATH0_LOAD_CNT_MASK;
7148    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7149                                   BXE_PATH0_LOAD_CNT_SHIFT;
7150
7151    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7152    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7153    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7154
7155    /* get the current counter value */
7156    val1 = (val & mask) >> shift;
7157
7158    /* clear bit of that PF */
7159    val1 &= ~(1 << SC_ABS_FUNC(sc));
7160
7161    /* clear the old value */
7162    val &= ~mask;
7163
7164    /* set the new one */
7165    val |= ((val1 << shift) & mask);
7166
7167    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7168    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7169    return (val1 != 0);
7170}
7171
7172/* send load requrest to mcp and analyze response */
7173static int
7174bxe_nic_load_request(struct bxe_softc *sc,
7175                     uint32_t         *load_code)
7176{
7177    /* init fw_seq */
7178    sc->fw_seq =
7179        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7180         DRV_MSG_SEQ_NUMBER_MASK);
7181
7182    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7183
7184    /* get the current FW pulse sequence */
7185    sc->fw_drv_pulse_wr_seq =
7186        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7187         DRV_PULSE_SEQ_MASK);
7188
7189    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7190          sc->fw_drv_pulse_wr_seq);
7191
7192    /* load request */
7193    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7194                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7195
7196    /* if the MCP fails to respond we must abort */
7197    if (!(*load_code)) {
7198        BLOGE(sc, "MCP response failure!\n");
7199        return (-1);
7200    }
7201
7202    /* if MCP refused then must abort */
7203    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7204        BLOGE(sc, "MCP refused load request\n");
7205        return (-1);
7206    }
7207
7208    return (0);
7209}
7210
7211/*
7212 * Check whether another PF has already loaded FW to chip. In virtualized
7213 * environments a pf from anoth VM may have already initialized the device
7214 * including loading FW.
7215 */
7216static int
7217bxe_nic_load_analyze_req(struct bxe_softc *sc,
7218                         uint32_t         load_code)
7219{
7220    uint32_t my_fw, loaded_fw;
7221
7222    /* is another pf loaded on this engine? */
7223    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7224        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7225        /* build my FW version dword */
7226        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7227                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7228                 (BCM_5710_FW_REVISION_VERSION << 16) +
7229                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7230
7231        /* read loaded FW from chip */
7232        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7233        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7234              loaded_fw, my_fw);
7235
7236        /* abort nic load if version mismatch */
7237        if (my_fw != loaded_fw) {
7238            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7239                  loaded_fw, my_fw);
7240            return (-1);
7241        }
7242    }
7243
7244    return (0);
7245}
7246
7247/* mark PMF if applicable */
7248static void
7249bxe_nic_load_pmf(struct bxe_softc *sc,
7250                 uint32_t         load_code)
7251{
7252    uint32_t ncsi_oem_data_addr;
7253
7254    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7255        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7256        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7257        /*
7258         * Barrier here for ordering between the writing to sc->port.pmf here
7259         * and reading it from the periodic task.
7260         */
7261        sc->port.pmf = 1;
7262        mb();
7263    } else {
7264        sc->port.pmf = 0;
7265    }
7266
7267    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7268
7269    /* XXX needed? */
7270    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7271        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7272            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7273            if (ncsi_oem_data_addr) {
7274                REG_WR(sc,
7275                       (ncsi_oem_data_addr +
7276                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7277                       0);
7278            }
7279        }
7280    }
7281}
7282
7283static void
7284bxe_read_mf_cfg(struct bxe_softc *sc)
7285{
7286    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7287    int abs_func;
7288    int vn;
7289
7290    if (BXE_NOMCP(sc)) {
7291        return; /* what should be the default bvalue in this case */
7292    }
7293
7294    /*
7295     * The formula for computing the absolute function number is...
7296     * For 2 port configuration (4 functions per port):
7297     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7298     * For 4 port configuration (2 functions per port):
7299     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7300     */
7301    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7302        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7303        if (abs_func >= E1H_FUNC_MAX) {
7304            break;
7305        }
7306        sc->devinfo.mf_info.mf_config[vn] =
7307            MFCFG_RD(sc, func_mf_config[abs_func].config);
7308    }
7309
7310    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7311        FUNC_MF_CFG_FUNC_DISABLED) {
7312        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7313        sc->flags |= BXE_MF_FUNC_DIS;
7314    } else {
7315        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7316        sc->flags &= ~BXE_MF_FUNC_DIS;
7317    }
7318}
7319
7320/* acquire split MCP access lock register */
7321static int bxe_acquire_alr(struct bxe_softc *sc)
7322{
7323    uint32_t j, val;
7324
7325    for (j = 0; j < 1000; j++) {
7326        val = (1UL << 31);
7327        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7328        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7329        if (val & (1L << 31))
7330            break;
7331
7332        DELAY(5000);
7333    }
7334
7335    if (!(val & (1L << 31))) {
7336        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7337        return (-1);
7338    }
7339
7340    return (0);
7341}
7342
7343/* release split MCP access lock register */
7344static void bxe_release_alr(struct bxe_softc *sc)
7345{
7346    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7347}
7348
7349static void
7350bxe_fan_failure(struct bxe_softc *sc)
7351{
7352    int port = SC_PORT(sc);
7353    uint32_t ext_phy_config;
7354
7355    /* mark the failure */
7356    ext_phy_config =
7357        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7358
7359    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7360    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7361    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7362             ext_phy_config);
7363
7364    /* log the failure */
7365    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7366              "the card to prevent permanent damage. "
7367              "Please contact OEM Support for assistance\n");
7368
7369    /* XXX */
7370#if 1
7371    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7372#else
7373    /*
7374     * Schedule device reset (unload)
7375     * This is due to some boards consuming sufficient power when driver is
7376     * up to overheat if fan fails.
7377     */
7378    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7379    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7380#endif
7381}
7382
7383/* this function is called upon a link interrupt */
7384static void
7385bxe_link_attn(struct bxe_softc *sc)
7386{
7387    uint32_t pause_enabled = 0;
7388    struct host_port_stats *pstats;
7389    int cmng_fns;
7390
7391    /* Make sure that we are synced with the current statistics */
7392    bxe_stats_handle(sc, STATS_EVENT_STOP);
7393
7394    elink_link_update(&sc->link_params, &sc->link_vars);
7395
7396    if (sc->link_vars.link_up) {
7397
7398        /* dropless flow control */
7399        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7400            pause_enabled = 0;
7401
7402            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7403                pause_enabled = 1;
7404            }
7405
7406            REG_WR(sc,
7407                   (BAR_USTRORM_INTMEM +
7408                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7409                   pause_enabled);
7410        }
7411
7412        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7413            pstats = BXE_SP(sc, port_stats);
7414            /* reset old mac stats */
7415            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7416        }
7417
7418        if (sc->state == BXE_STATE_OPEN) {
7419            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7420        }
7421    }
7422
7423    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7424        cmng_fns = bxe_get_cmng_fns_mode(sc);
7425
7426        if (cmng_fns != CMNG_FNS_NONE) {
7427            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7428            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7429        } else {
7430            /* rate shaping and fairness are disabled */
7431            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7432        }
7433    }
7434
7435    bxe_link_report_locked(sc);
7436
7437    if (IS_MF(sc)) {
7438        ; // XXX bxe_link_sync_notify(sc);
7439    }
7440}
7441
7442static void
7443bxe_attn_int_asserted(struct bxe_softc *sc,
7444                      uint32_t         asserted)
7445{
7446    int port = SC_PORT(sc);
7447    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7448                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7449    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7450                                        NIG_REG_MASK_INTERRUPT_PORT0;
7451    uint32_t aeu_mask;
7452    uint32_t nig_mask = 0;
7453    uint32_t reg_addr;
7454    uint32_t igu_acked;
7455    uint32_t cnt;
7456
7457    if (sc->attn_state & asserted) {
7458        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7459    }
7460
7461    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7462
7463    aeu_mask = REG_RD(sc, aeu_addr);
7464
7465    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7466          aeu_mask, asserted);
7467
7468    aeu_mask &= ~(asserted & 0x3ff);
7469
7470    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7471
7472    REG_WR(sc, aeu_addr, aeu_mask);
7473
7474    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7475
7476    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7477    sc->attn_state |= asserted;
7478    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7479
7480    if (asserted & ATTN_HARD_WIRED_MASK) {
7481        if (asserted & ATTN_NIG_FOR_FUNC) {
7482
7483	    bxe_acquire_phy_lock(sc);
7484            /* save nig interrupt mask */
7485            nig_mask = REG_RD(sc, nig_int_mask_addr);
7486
7487            /* If nig_mask is not set, no need to call the update function */
7488            if (nig_mask) {
7489                REG_WR(sc, nig_int_mask_addr, 0);
7490
7491                bxe_link_attn(sc);
7492            }
7493
7494            /* handle unicore attn? */
7495        }
7496
7497        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7498            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7499        }
7500
7501        if (asserted & GPIO_2_FUNC) {
7502            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7503        }
7504
7505        if (asserted & GPIO_3_FUNC) {
7506            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7507        }
7508
7509        if (asserted & GPIO_4_FUNC) {
7510            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7511        }
7512
7513        if (port == 0) {
7514            if (asserted & ATTN_GENERAL_ATTN_1) {
7515                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7516                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7517            }
7518            if (asserted & ATTN_GENERAL_ATTN_2) {
7519                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7520                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7521            }
7522            if (asserted & ATTN_GENERAL_ATTN_3) {
7523                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7524                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7525            }
7526        } else {
7527            if (asserted & ATTN_GENERAL_ATTN_4) {
7528                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7529                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7530            }
7531            if (asserted & ATTN_GENERAL_ATTN_5) {
7532                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7533                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7534            }
7535            if (asserted & ATTN_GENERAL_ATTN_6) {
7536                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7537                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7538            }
7539        }
7540    } /* hardwired */
7541
7542    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7543        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7544    } else {
7545        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7546    }
7547
7548    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7549          asserted,
7550          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7551    REG_WR(sc, reg_addr, asserted);
7552
7553    /* now set back the mask */
7554    if (asserted & ATTN_NIG_FOR_FUNC) {
7555        /*
7556         * Verify that IGU ack through BAR was written before restoring
7557         * NIG mask. This loop should exit after 2-3 iterations max.
7558         */
7559        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7560            cnt = 0;
7561
7562            do {
7563                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7564            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7565                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7566
7567            if (!igu_acked) {
7568                BLOGE(sc, "Failed to verify IGU ack on time\n");
7569            }
7570
7571            mb();
7572        }
7573
7574        REG_WR(sc, nig_int_mask_addr, nig_mask);
7575
7576	bxe_release_phy_lock(sc);
7577    }
7578}
7579
7580static void
7581bxe_print_next_block(struct bxe_softc *sc,
7582                     int              idx,
7583                     const char       *blk)
7584{
7585    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7586}
7587
7588static int
7589bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7590                              uint32_t         sig,
7591                              int              par_num,
7592                              uint8_t          print)
7593{
7594    uint32_t cur_bit = 0;
7595    int i = 0;
7596
7597    for (i = 0; sig; i++) {
7598        cur_bit = ((uint32_t)0x1 << i);
7599        if (sig & cur_bit) {
7600            switch (cur_bit) {
7601            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7602                if (print)
7603                    bxe_print_next_block(sc, par_num++, "BRB");
7604                break;
7605            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7606                if (print)
7607                    bxe_print_next_block(sc, par_num++, "PARSER");
7608                break;
7609            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7610                if (print)
7611                    bxe_print_next_block(sc, par_num++, "TSDM");
7612                break;
7613            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7614                if (print)
7615                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7616                break;
7617            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7618                if (print)
7619                    bxe_print_next_block(sc, par_num++, "TCM");
7620                break;
7621            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7622                if (print)
7623                    bxe_print_next_block(sc, par_num++, "TSEMI");
7624                break;
7625            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7626                if (print)
7627                    bxe_print_next_block(sc, par_num++, "XPB");
7628                break;
7629            }
7630
7631            /* Clear the bit */
7632            sig &= ~cur_bit;
7633        }
7634    }
7635
7636    return (par_num);
7637}
7638
7639static int
7640bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7641                              uint32_t         sig,
7642                              int              par_num,
7643                              uint8_t          *global,
7644                              uint8_t          print)
7645{
7646    int i = 0;
7647    uint32_t cur_bit = 0;
7648    for (i = 0; sig; i++) {
7649        cur_bit = ((uint32_t)0x1 << i);
7650        if (sig & cur_bit) {
7651            switch (cur_bit) {
7652            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7653                if (print)
7654                    bxe_print_next_block(sc, par_num++, "PBF");
7655                break;
7656            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7657                if (print)
7658                    bxe_print_next_block(sc, par_num++, "QM");
7659                break;
7660            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7661                if (print)
7662                    bxe_print_next_block(sc, par_num++, "TM");
7663                break;
7664            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7665                if (print)
7666                    bxe_print_next_block(sc, par_num++, "XSDM");
7667                break;
7668            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7669                if (print)
7670                    bxe_print_next_block(sc, par_num++, "XCM");
7671                break;
7672            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7673                if (print)
7674                    bxe_print_next_block(sc, par_num++, "XSEMI");
7675                break;
7676            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7677                if (print)
7678                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7679                break;
7680            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7681                if (print)
7682                    bxe_print_next_block(sc, par_num++, "NIG");
7683                break;
7684            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7685                if (print)
7686                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7687                *global = TRUE;
7688                break;
7689            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7690                if (print)
7691                    bxe_print_next_block(sc, par_num++, "DEBUG");
7692                break;
7693            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7694                if (print)
7695                    bxe_print_next_block(sc, par_num++, "USDM");
7696                break;
7697            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7698                if (print)
7699                    bxe_print_next_block(sc, par_num++, "UCM");
7700                break;
7701            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7702                if (print)
7703                    bxe_print_next_block(sc, par_num++, "USEMI");
7704                break;
7705            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7706                if (print)
7707                    bxe_print_next_block(sc, par_num++, "UPB");
7708                break;
7709            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7710                if (print)
7711                    bxe_print_next_block(sc, par_num++, "CSDM");
7712                break;
7713            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7714                if (print)
7715                    bxe_print_next_block(sc, par_num++, "CCM");
7716                break;
7717            }
7718
7719            /* Clear the bit */
7720            sig &= ~cur_bit;
7721        }
7722    }
7723
7724    return (par_num);
7725}
7726
7727static int
7728bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7729                              uint32_t         sig,
7730                              int              par_num,
7731                              uint8_t          print)
7732{
7733    uint32_t cur_bit = 0;
7734    int i = 0;
7735
7736    for (i = 0; sig; i++) {
7737        cur_bit = ((uint32_t)0x1 << i);
7738        if (sig & cur_bit) {
7739            switch (cur_bit) {
7740            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7741                if (print)
7742                    bxe_print_next_block(sc, par_num++, "CSEMI");
7743                break;
7744            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7745                if (print)
7746                    bxe_print_next_block(sc, par_num++, "PXP");
7747                break;
7748            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7749                if (print)
7750                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7751                break;
7752            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7753                if (print)
7754                    bxe_print_next_block(sc, par_num++, "CFC");
7755                break;
7756            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7757                if (print)
7758                    bxe_print_next_block(sc, par_num++, "CDU");
7759                break;
7760            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7761                if (print)
7762                    bxe_print_next_block(sc, par_num++, "DMAE");
7763                break;
7764            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7765                if (print)
7766                    bxe_print_next_block(sc, par_num++, "IGU");
7767                break;
7768            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7769                if (print)
7770                    bxe_print_next_block(sc, par_num++, "MISC");
7771                break;
7772            }
7773
7774            /* Clear the bit */
7775            sig &= ~cur_bit;
7776        }
7777    }
7778
7779    return (par_num);
7780}
7781
7782static int
7783bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7784                              uint32_t         sig,
7785                              int              par_num,
7786                              uint8_t          *global,
7787                              uint8_t          print)
7788{
7789    uint32_t cur_bit = 0;
7790    int i = 0;
7791
7792    for (i = 0; sig; i++) {
7793        cur_bit = ((uint32_t)0x1 << i);
7794        if (sig & cur_bit) {
7795            switch (cur_bit) {
7796            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7797                if (print)
7798                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7799                *global = TRUE;
7800                break;
7801            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7802                if (print)
7803                    bxe_print_next_block(sc, par_num++,
7804                              "MCP UMP RX");
7805                *global = TRUE;
7806                break;
7807            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7808                if (print)
7809                    bxe_print_next_block(sc, par_num++,
7810                              "MCP UMP TX");
7811                *global = TRUE;
7812                break;
7813            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7814                if (print)
7815                    bxe_print_next_block(sc, par_num++,
7816                              "MCP SCPAD");
7817                *global = TRUE;
7818                break;
7819            }
7820
7821            /* Clear the bit */
7822            sig &= ~cur_bit;
7823        }
7824    }
7825
7826    return (par_num);
7827}
7828
7829static int
7830bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7831                              uint32_t         sig,
7832                              int              par_num,
7833                              uint8_t          print)
7834{
7835    uint32_t cur_bit = 0;
7836    int i = 0;
7837
7838    for (i = 0; sig; i++) {
7839        cur_bit = ((uint32_t)0x1 << i);
7840        if (sig & cur_bit) {
7841            switch (cur_bit) {
7842            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7843                if (print)
7844                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7845                break;
7846            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7847                if (print)
7848                    bxe_print_next_block(sc, par_num++, "ATC");
7849                break;
7850            }
7851
7852            /* Clear the bit */
7853            sig &= ~cur_bit;
7854        }
7855    }
7856
7857    return (par_num);
7858}
7859
7860static uint8_t
7861bxe_parity_attn(struct bxe_softc *sc,
7862                uint8_t          *global,
7863                uint8_t          print,
7864                uint32_t         *sig)
7865{
7866    int par_num = 0;
7867
7868    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7869        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7870        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7871        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7872        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7873        BLOGE(sc, "Parity error: HW block parity attention:\n"
7874                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7875              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7876              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7877              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7878              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7879              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7880
7881        if (print)
7882            BLOGI(sc, "Parity errors detected in blocks: ");
7883
7884        par_num =
7885            bxe_check_blocks_with_parity0(sc, sig[0] &
7886                                          HW_PRTY_ASSERT_SET_0,
7887                                          par_num, print);
7888        par_num =
7889            bxe_check_blocks_with_parity1(sc, sig[1] &
7890                                          HW_PRTY_ASSERT_SET_1,
7891                                          par_num, global, print);
7892        par_num =
7893            bxe_check_blocks_with_parity2(sc, sig[2] &
7894                                          HW_PRTY_ASSERT_SET_2,
7895                                          par_num, print);
7896        par_num =
7897            bxe_check_blocks_with_parity3(sc, sig[3] &
7898                                          HW_PRTY_ASSERT_SET_3,
7899                                          par_num, global, print);
7900        par_num =
7901            bxe_check_blocks_with_parity4(sc, sig[4] &
7902                                          HW_PRTY_ASSERT_SET_4,
7903                                          par_num, print);
7904
7905        if (print)
7906            BLOGI(sc, "\n");
7907
7908        return (TRUE);
7909    }
7910
7911    return (FALSE);
7912}
7913
7914static uint8_t
7915bxe_chk_parity_attn(struct bxe_softc *sc,
7916                    uint8_t          *global,
7917                    uint8_t          print)
7918{
7919    struct attn_route attn = { {0} };
7920    int port = SC_PORT(sc);
7921
7922    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7923    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7924    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7925    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7926
7927    if (!CHIP_IS_E1x(sc))
7928        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7929
7930    return (bxe_parity_attn(sc, global, print, attn.sig));
7931}
7932
7933static void
7934bxe_attn_int_deasserted4(struct bxe_softc *sc,
7935                         uint32_t         attn)
7936{
7937    uint32_t val;
7938
7939    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7940        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7941        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7942        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7943            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7944        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7945            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7946        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7947            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7948        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7949            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7950        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7951            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7952        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7953            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7954        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7955            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7956        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7957            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7958        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7959            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7960    }
7961
7962    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7963        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7964        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7965        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7966            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7967        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7968            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7969        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7970            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7971        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7972            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7973        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7974            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7975        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7976            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7977    }
7978
7979    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7980                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7981        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7982              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7983                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7984    }
7985}
7986
7987static void
7988bxe_e1h_disable(struct bxe_softc *sc)
7989{
7990    int port = SC_PORT(sc);
7991
7992    bxe_tx_disable(sc);
7993
7994    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7995}
7996
7997static void
7998bxe_e1h_enable(struct bxe_softc *sc)
7999{
8000    int port = SC_PORT(sc);
8001
8002    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
8003
8004    // XXX bxe_tx_enable(sc);
8005}
8006
8007/*
8008 * called due to MCP event (on pmf):
8009 *   reread new bandwidth configuration
8010 *   configure FW
8011 *   notify others function about the change
8012 */
8013static void
8014bxe_config_mf_bw(struct bxe_softc *sc)
8015{
8016    if (sc->link_vars.link_up) {
8017        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
8018        // XXX bxe_link_sync_notify(sc);
8019    }
8020
8021    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
8022}
8023
8024static void
8025bxe_set_mf_bw(struct bxe_softc *sc)
8026{
8027    bxe_config_mf_bw(sc);
8028    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
8029}
8030
8031static void
8032bxe_handle_eee_event(struct bxe_softc *sc)
8033{
8034    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
8035    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
8036}
8037
8038#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8039
8040static void
8041bxe_drv_info_ether_stat(struct bxe_softc *sc)
8042{
8043    struct eth_stats_info *ether_stat =
8044        &sc->sp->drv_info_to_mcp.ether_stat;
8045
8046    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8047            ETH_STAT_INFO_VERSION_LEN);
8048
8049    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8050    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8051                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8052                                          ether_stat->mac_local + MAC_PAD,
8053                                          MAC_PAD, ETH_ALEN);
8054
8055    ether_stat->mtu_size = sc->mtu;
8056
8057    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8058    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8059        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8060    }
8061
8062    // XXX ether_stat->feature_flags |= ???;
8063
8064    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8065
8066    ether_stat->txq_size = sc->tx_ring_size;
8067    ether_stat->rxq_size = sc->rx_ring_size;
8068}
8069
8070static void
8071bxe_handle_drv_info_req(struct bxe_softc *sc)
8072{
8073    enum drv_info_opcode op_code;
8074    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8075
8076    /* if drv_info version supported by MFW doesn't match - send NACK */
8077    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8078        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8079        return;
8080    }
8081
8082    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8083               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8084
8085    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8086
8087    switch (op_code) {
8088    case ETH_STATS_OPCODE:
8089        bxe_drv_info_ether_stat(sc);
8090        break;
8091    case FCOE_STATS_OPCODE:
8092    case ISCSI_STATS_OPCODE:
8093    default:
8094        /* if op code isn't supported - send NACK */
8095        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8096        return;
8097    }
8098
8099    /*
8100     * If we got drv_info attn from MFW then these fields are defined in
8101     * shmem2 for sure
8102     */
8103    SHMEM2_WR(sc, drv_info_host_addr_lo,
8104              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8105    SHMEM2_WR(sc, drv_info_host_addr_hi,
8106              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8107
8108    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8109}
8110
8111static void
8112bxe_dcc_event(struct bxe_softc *sc,
8113              uint32_t         dcc_event)
8114{
8115    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8116
8117    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8118        /*
8119         * This is the only place besides the function initialization
8120         * where the sc->flags can change so it is done without any
8121         * locks
8122         */
8123        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8124            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8125            sc->flags |= BXE_MF_FUNC_DIS;
8126            bxe_e1h_disable(sc);
8127        } else {
8128            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8129            sc->flags &= ~BXE_MF_FUNC_DIS;
8130            bxe_e1h_enable(sc);
8131        }
8132        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8133    }
8134
8135    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8136        bxe_config_mf_bw(sc);
8137        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8138    }
8139
8140    /* Report results to MCP */
8141    if (dcc_event)
8142        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8143    else
8144        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8145}
8146
8147static void
8148bxe_pmf_update(struct bxe_softc *sc)
8149{
8150    int port = SC_PORT(sc);
8151    uint32_t val;
8152
8153    sc->port.pmf = 1;
8154    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8155
8156    /*
8157     * We need the mb() to ensure the ordering between the writing to
8158     * sc->port.pmf here and reading it from the bxe_periodic_task().
8159     */
8160    mb();
8161
8162    /* queue a periodic task */
8163    // XXX schedule task...
8164
8165    // XXX bxe_dcbx_pmf_update(sc);
8166
8167    /* enable nig attention */
8168    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8169    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8170        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8171        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8172    } else if (!CHIP_IS_E1x(sc)) {
8173        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8174        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8175    }
8176
8177    bxe_stats_handle(sc, STATS_EVENT_PMF);
8178}
8179
8180static int
8181bxe_mc_assert(struct bxe_softc *sc)
8182{
8183    char last_idx;
8184    int i, rc = 0;
8185    uint32_t row0, row1, row2, row3;
8186
8187    /* XSTORM */
8188    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8189    if (last_idx)
8190        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8191
8192    /* print the asserts */
8193    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8194
8195        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8196        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8197        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8198        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8199
8200        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8201            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8202                  i, row3, row2, row1, row0);
8203            rc++;
8204        } else {
8205            break;
8206        }
8207    }
8208
8209    /* TSTORM */
8210    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8211    if (last_idx) {
8212        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8213    }
8214
8215    /* print the asserts */
8216    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8217
8218        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8219        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8220        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8221        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8222
8223        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8224            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8225                  i, row3, row2, row1, row0);
8226            rc++;
8227        } else {
8228            break;
8229        }
8230    }
8231
8232    /* CSTORM */
8233    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8234    if (last_idx) {
8235        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8236    }
8237
8238    /* print the asserts */
8239    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8240
8241        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8242        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8243        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8244        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8245
8246        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8247            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8248                  i, row3, row2, row1, row0);
8249            rc++;
8250        } else {
8251            break;
8252        }
8253    }
8254
8255    /* USTORM */
8256    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8257    if (last_idx) {
8258        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8259    }
8260
8261    /* print the asserts */
8262    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8263
8264        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8265        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8266        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8267        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8268
8269        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8270            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8271                  i, row3, row2, row1, row0);
8272            rc++;
8273        } else {
8274            break;
8275        }
8276    }
8277
8278    return (rc);
8279}
8280
8281static void
8282bxe_attn_int_deasserted3(struct bxe_softc *sc,
8283                         uint32_t         attn)
8284{
8285    int func = SC_FUNC(sc);
8286    uint32_t val;
8287
8288    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8289
8290        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8291
8292            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8293            bxe_read_mf_cfg(sc);
8294            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8295                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8296            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8297
8298            if (val & DRV_STATUS_DCC_EVENT_MASK)
8299                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8300
8301            if (val & DRV_STATUS_SET_MF_BW)
8302                bxe_set_mf_bw(sc);
8303
8304            if (val & DRV_STATUS_DRV_INFO_REQ)
8305                bxe_handle_drv_info_req(sc);
8306
8307#if 0
8308            if (val & DRV_STATUS_VF_DISABLED)
8309                bxe_vf_handle_flr_event(sc);
8310#endif
8311
8312            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8313                bxe_pmf_update(sc);
8314
8315#if 0
8316            if (sc->port.pmf &&
8317                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8318                (sc->dcbx_enabled > 0))
8319                /* start dcbx state machine */
8320                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8321#endif
8322
8323#if 0
8324            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8325                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8326#endif
8327
8328            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8329                bxe_handle_eee_event(sc);
8330
8331            if (sc->link_vars.periodic_flags &
8332                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8333                /* sync with link */
8334		bxe_acquire_phy_lock(sc);
8335                sc->link_vars.periodic_flags &=
8336                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8337		bxe_release_phy_lock(sc);
8338                if (IS_MF(sc))
8339                    ; // XXX bxe_link_sync_notify(sc);
8340                bxe_link_report(sc);
8341            }
8342
8343            /*
8344             * Always call it here: bxe_link_report() will
8345             * prevent the link indication duplication.
8346             */
8347            bxe_link_status_update(sc);
8348
8349        } else if (attn & BXE_MC_ASSERT_BITS) {
8350
8351            BLOGE(sc, "MC assert!\n");
8352            bxe_mc_assert(sc);
8353            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8354            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8355            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8356            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8357            bxe_panic(sc, ("MC assert!\n"));
8358
8359        } else if (attn & BXE_MCP_ASSERT) {
8360
8361            BLOGE(sc, "MCP assert!\n");
8362            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8363            // XXX bxe_fw_dump(sc);
8364
8365        } else {
8366            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8367        }
8368    }
8369
8370    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8371        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8372        if (attn & BXE_GRC_TIMEOUT) {
8373            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8374            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8375        }
8376        if (attn & BXE_GRC_RSV) {
8377            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8378            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8379        }
8380        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8381    }
8382}
8383
8384static void
8385bxe_attn_int_deasserted2(struct bxe_softc *sc,
8386                         uint32_t         attn)
8387{
8388    int port = SC_PORT(sc);
8389    int reg_offset;
8390    uint32_t val0, mask0, val1, mask1;
8391    uint32_t val;
8392
8393    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8394        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8395        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8396        /* CFC error attention */
8397        if (val & 0x2) {
8398            BLOGE(sc, "FATAL error from CFC\n");
8399        }
8400    }
8401
8402    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8403        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8404        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8405        /* RQ_USDMDP_FIFO_OVERFLOW */
8406        if (val & 0x18000) {
8407            BLOGE(sc, "FATAL error from PXP\n");
8408        }
8409
8410        if (!CHIP_IS_E1x(sc)) {
8411            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8412            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8413        }
8414    }
8415
8416#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8417#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8418
8419    if (attn & AEU_PXP2_HW_INT_BIT) {
8420        /*  CQ47854 workaround do not panic on
8421         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8422         */
8423        if (!CHIP_IS_E1x(sc)) {
8424            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8425            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8426            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8427            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8428            /*
8429             * If the olny PXP2_EOP_ERROR_BIT is set in
8430             * STS0 and STS1 - clear it
8431             *
8432             * probably we lose additional attentions between
8433             * STS0 and STS_CLR0, in this case user will not
8434             * be notified about them
8435             */
8436            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8437                !(val1 & mask1))
8438                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8439
8440            /* print the register, since no one can restore it */
8441            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8442
8443            /*
8444             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8445             * then notify
8446             */
8447            if (val0 & PXP2_EOP_ERROR_BIT) {
8448                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8449
8450                /*
8451                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8452                 * set then clear attention from PXP2 block without panic
8453                 */
8454                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8455                    ((val1 & mask1) == 0))
8456                    attn &= ~AEU_PXP2_HW_INT_BIT;
8457            }
8458        }
8459    }
8460
8461    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8462        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8463                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8464
8465        val = REG_RD(sc, reg_offset);
8466        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8467        REG_WR(sc, reg_offset, val);
8468
8469        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8470              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8471        bxe_panic(sc, ("HW block attention set2\n"));
8472    }
8473}
8474
8475static void
8476bxe_attn_int_deasserted1(struct bxe_softc *sc,
8477                         uint32_t         attn)
8478{
8479    int port = SC_PORT(sc);
8480    int reg_offset;
8481    uint32_t val;
8482
8483    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8484        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8485        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8486        /* DORQ discard attention */
8487        if (val & 0x2) {
8488            BLOGE(sc, "FATAL error from DORQ\n");
8489        }
8490    }
8491
8492    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8493        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8494                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8495
8496        val = REG_RD(sc, reg_offset);
8497        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8498        REG_WR(sc, reg_offset, val);
8499
8500        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8501              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8502        bxe_panic(sc, ("HW block attention set1\n"));
8503    }
8504}
8505
8506static void
8507bxe_attn_int_deasserted0(struct bxe_softc *sc,
8508                         uint32_t         attn)
8509{
8510    int port = SC_PORT(sc);
8511    int reg_offset;
8512    uint32_t val;
8513
8514    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8515                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8516
8517    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8518        val = REG_RD(sc, reg_offset);
8519        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8520        REG_WR(sc, reg_offset, val);
8521
8522        BLOGW(sc, "SPIO5 hw attention\n");
8523
8524        /* Fan failure attention */
8525        elink_hw_reset_phy(&sc->link_params);
8526        bxe_fan_failure(sc);
8527    }
8528
8529    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8530	bxe_acquire_phy_lock(sc);
8531        elink_handle_module_detect_int(&sc->link_params);
8532	bxe_release_phy_lock(sc);
8533    }
8534
8535    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8536        val = REG_RD(sc, reg_offset);
8537        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8538        REG_WR(sc, reg_offset, val);
8539
8540        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8541                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8542    }
8543}
8544
8545static void
8546bxe_attn_int_deasserted(struct bxe_softc *sc,
8547                        uint32_t         deasserted)
8548{
8549    struct attn_route attn;
8550    struct attn_route *group_mask;
8551    int port = SC_PORT(sc);
8552    int index;
8553    uint32_t reg_addr;
8554    uint32_t val;
8555    uint32_t aeu_mask;
8556    uint8_t global = FALSE;
8557
8558    /*
8559     * Need to take HW lock because MCP or other port might also
8560     * try to handle this event.
8561     */
8562    bxe_acquire_alr(sc);
8563
8564    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8565        /* XXX
8566         * In case of parity errors don't handle attentions so that
8567         * other function would "see" parity errors.
8568         */
8569        sc->recovery_state = BXE_RECOVERY_INIT;
8570        // XXX schedule a recovery task...
8571        /* disable HW interrupts */
8572        bxe_int_disable(sc);
8573        bxe_release_alr(sc);
8574        return;
8575    }
8576
8577    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8578    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8579    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8580    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8581    if (!CHIP_IS_E1x(sc)) {
8582        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8583    } else {
8584        attn.sig[4] = 0;
8585    }
8586
8587    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8588          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8589
8590    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8591        if (deasserted & (1 << index)) {
8592            group_mask = &sc->attn_group[index];
8593
8594            BLOGD(sc, DBG_INTR,
8595                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8596                  group_mask->sig[0], group_mask->sig[1],
8597                  group_mask->sig[2], group_mask->sig[3],
8598                  group_mask->sig[4]);
8599
8600            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8601            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8602            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8603            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8604            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8605        }
8606    }
8607
8608    bxe_release_alr(sc);
8609
8610    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8611        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8612                    COMMAND_REG_ATTN_BITS_CLR);
8613    } else {
8614        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8615    }
8616
8617    val = ~deasserted;
8618    BLOGD(sc, DBG_INTR,
8619          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8620          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8621    REG_WR(sc, reg_addr, val);
8622
8623    if (~sc->attn_state & deasserted) {
8624        BLOGE(sc, "IGU error\n");
8625    }
8626
8627    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8628                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8629
8630    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8631
8632    aeu_mask = REG_RD(sc, reg_addr);
8633
8634    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8635          aeu_mask, deasserted);
8636    aeu_mask |= (deasserted & 0x3ff);
8637    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8638
8639    REG_WR(sc, reg_addr, aeu_mask);
8640    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8641
8642    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8643    sc->attn_state &= ~deasserted;
8644    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8645}
8646
8647static void
8648bxe_attn_int(struct bxe_softc *sc)
8649{
8650    /* read local copy of bits */
8651    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8652    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8653    uint32_t attn_state = sc->attn_state;
8654
8655    /* look for changed bits */
8656    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8657    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8658
8659    BLOGD(sc, DBG_INTR,
8660          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8661          attn_bits, attn_ack, asserted, deasserted);
8662
8663    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8664        BLOGE(sc, "BAD attention state\n");
8665    }
8666
8667    /* handle bits that were raised */
8668    if (asserted) {
8669        bxe_attn_int_asserted(sc, asserted);
8670    }
8671
8672    if (deasserted) {
8673        bxe_attn_int_deasserted(sc, deasserted);
8674    }
8675}
8676
8677static uint16_t
8678bxe_update_dsb_idx(struct bxe_softc *sc)
8679{
8680    struct host_sp_status_block *def_sb = sc->def_sb;
8681    uint16_t rc = 0;
8682
8683    mb(); /* status block is written to by the chip */
8684
8685    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8686        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8687        rc |= BXE_DEF_SB_ATT_IDX;
8688    }
8689
8690    if (sc->def_idx != def_sb->sp_sb.running_index) {
8691        sc->def_idx = def_sb->sp_sb.running_index;
8692        rc |= BXE_DEF_SB_IDX;
8693    }
8694
8695    mb();
8696
8697    return (rc);
8698}
8699
8700static inline struct ecore_queue_sp_obj *
8701bxe_cid_to_q_obj(struct bxe_softc *sc,
8702                 uint32_t         cid)
8703{
8704    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8705    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8706}
8707
8708static void
8709bxe_handle_mcast_eqe(struct bxe_softc *sc)
8710{
8711    struct ecore_mcast_ramrod_params rparam;
8712    int rc;
8713
8714    memset(&rparam, 0, sizeof(rparam));
8715
8716    rparam.mcast_obj = &sc->mcast_obj;
8717
8718    BXE_MCAST_LOCK(sc);
8719
8720    /* clear pending state for the last command */
8721    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8722
8723    /* if there are pending mcast commands - send them */
8724    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8725        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8726        if (rc < 0) {
8727            BLOGD(sc, DBG_SP,
8728                  "ERROR: Failed to send pending mcast commands (%d)\n",
8729                  rc);
8730        }
8731    }
8732
8733    BXE_MCAST_UNLOCK(sc);
8734}
8735
8736static void
8737bxe_handle_classification_eqe(struct bxe_softc      *sc,
8738                              union event_ring_elem *elem)
8739{
8740    unsigned long ramrod_flags = 0;
8741    int rc = 0;
8742    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8743    struct ecore_vlan_mac_obj *vlan_mac_obj;
8744
8745    /* always push next commands out, don't wait here */
8746    bit_set(&ramrod_flags, RAMROD_CONT);
8747
8748    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8749    case ECORE_FILTER_MAC_PENDING:
8750        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8751        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8752        break;
8753
8754    case ECORE_FILTER_MCAST_PENDING:
8755        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8756        /*
8757         * This is only relevant for 57710 where multicast MACs are
8758         * configured as unicast MACs using the same ramrod.
8759         */
8760        bxe_handle_mcast_eqe(sc);
8761        return;
8762
8763    default:
8764        BLOGE(sc, "Unsupported classification command: %d\n",
8765              elem->message.data.eth_event.echo);
8766        return;
8767    }
8768
8769    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8770
8771    if (rc < 0) {
8772        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8773    } else if (rc > 0) {
8774        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8775    }
8776}
8777
8778static void
8779bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8780                       union event_ring_elem *elem)
8781{
8782    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8783
8784    /* send rx_mode command again if was requested */
8785    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8786                               &sc->sp_state)) {
8787        bxe_set_storm_rx_mode(sc);
8788    }
8789#if 0
8790    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8791                                    &sc->sp_state)) {
8792        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8793    }
8794    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8795                                    &sc->sp_state)) {
8796        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8797    }
8798#endif
8799}
8800
8801static void
8802bxe_update_eq_prod(struct bxe_softc *sc,
8803                   uint16_t         prod)
8804{
8805    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8806    wmb(); /* keep prod updates ordered */
8807}
8808
8809static void
8810bxe_eq_int(struct bxe_softc *sc)
8811{
8812    uint16_t hw_cons, sw_cons, sw_prod;
8813    union event_ring_elem *elem;
8814    uint8_t echo;
8815    uint32_t cid;
8816    uint8_t opcode;
8817    int spqe_cnt = 0;
8818    struct ecore_queue_sp_obj *q_obj;
8819    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8820    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8821
8822    hw_cons = le16toh(*sc->eq_cons_sb);
8823
8824    /*
8825     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8826     * when we get to the next-page we need to adjust so the loop
8827     * condition below will be met. The next element is the size of a
8828     * regular element and hence incrementing by 1
8829     */
8830    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8831        hw_cons++;
8832    }
8833
8834    /*
8835     * This function may never run in parallel with itself for a
8836     * specific sc and no need for a read memory barrier here.
8837     */
8838    sw_cons = sc->eq_cons;
8839    sw_prod = sc->eq_prod;
8840
8841    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8842          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8843
8844    for (;
8845         sw_cons != hw_cons;
8846         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8847
8848        elem = &sc->eq[EQ_DESC(sw_cons)];
8849
8850#if 0
8851        int rc;
8852        rc = bxe_iov_eq_sp_event(sc, elem);
8853        if (!rc) {
8854            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8855            goto next_spqe;
8856        }
8857#endif
8858
8859        /* elem CID originates from FW, actually LE */
8860        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8861        opcode = elem->message.opcode;
8862
8863        /* handle eq element */
8864        switch (opcode) {
8865#if 0
8866        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8867            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8868            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8869            continue;
8870#endif
8871
8872        case EVENT_RING_OPCODE_STAT_QUERY:
8873            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8874                  sc->stats_comp++);
8875            /* nothing to do with stats comp */
8876            goto next_spqe;
8877
8878        case EVENT_RING_OPCODE_CFC_DEL:
8879            /* handle according to cid range */
8880            /* we may want to verify here that the sc state is HALTING */
8881            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8882            q_obj = bxe_cid_to_q_obj(sc, cid);
8883            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8884                break;
8885            }
8886            goto next_spqe;
8887
8888        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8889            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8890            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8891                break;
8892            }
8893            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8894            goto next_spqe;
8895
8896        case EVENT_RING_OPCODE_START_TRAFFIC:
8897            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8898            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8899                break;
8900            }
8901            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8902            goto next_spqe;
8903
8904        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8905            echo = elem->message.data.function_update_event.echo;
8906            if (echo == SWITCH_UPDATE) {
8907                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8908                if (f_obj->complete_cmd(sc, f_obj,
8909                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8910                    break;
8911                }
8912            }
8913            else {
8914                BLOGD(sc, DBG_SP,
8915                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8916#if 0
8917                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8918                /*
8919                 * We will perform the queues update from the sp_core_task as
8920                 * all queue SP operations should run with CORE_LOCK.
8921                 */
8922                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8923                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8924#endif
8925            }
8926            goto next_spqe;
8927
8928#if 0
8929        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8930            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8931            bxe_after_afex_vif_lists(sc, elem);
8932            goto next_spqe;
8933#endif
8934
8935        case EVENT_RING_OPCODE_FORWARD_SETUP:
8936            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8937            if (q_obj->complete_cmd(sc, q_obj,
8938                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8939                break;
8940            }
8941            goto next_spqe;
8942
8943        case EVENT_RING_OPCODE_FUNCTION_START:
8944            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8945            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8946                break;
8947            }
8948            goto next_spqe;
8949
8950        case EVENT_RING_OPCODE_FUNCTION_STOP:
8951            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8952            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8953                break;
8954            }
8955            goto next_spqe;
8956        }
8957
8958        switch (opcode | sc->state) {
8959        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8960        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8961            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8962            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8963            rss_raw->clear_pending(rss_raw);
8964            break;
8965
8966        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8967        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8968        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8969        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8970        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8971        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8972            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8973            bxe_handle_classification_eqe(sc, elem);
8974            break;
8975
8976        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8977        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8978        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8979            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8980            bxe_handle_mcast_eqe(sc);
8981            break;
8982
8983        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8984        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8985        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8986            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8987            bxe_handle_rx_mode_eqe(sc, elem);
8988            break;
8989
8990        default:
8991            /* unknown event log error and continue */
8992            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8993                  elem->message.opcode, sc->state);
8994        }
8995
8996next_spqe:
8997        spqe_cnt++;
8998    } /* for */
8999
9000    mb();
9001    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
9002
9003    sc->eq_cons = sw_cons;
9004    sc->eq_prod = sw_prod;
9005
9006    /* make sure that above mem writes were issued towards the memory */
9007    wmb();
9008
9009    /* update producer */
9010    bxe_update_eq_prod(sc, sc->eq_prod);
9011}
9012
9013static void
9014bxe_handle_sp_tq(void *context,
9015                 int  pending)
9016{
9017    struct bxe_softc *sc = (struct bxe_softc *)context;
9018    uint16_t status;
9019
9020    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
9021
9022    /* what work needs to be performed? */
9023    status = bxe_update_dsb_idx(sc);
9024
9025    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
9026
9027    /* HW attentions */
9028    if (status & BXE_DEF_SB_ATT_IDX) {
9029        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
9030        bxe_attn_int(sc);
9031        status &= ~BXE_DEF_SB_ATT_IDX;
9032    }
9033
9034    /* SP events: STAT_QUERY and others */
9035    if (status & BXE_DEF_SB_IDX) {
9036        /* handle EQ completions */
9037        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9038        bxe_eq_int(sc);
9039        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9040                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
9041        status &= ~BXE_DEF_SB_IDX;
9042    }
9043
9044    /* if status is non zero then something went wrong */
9045    if (__predict_false(status)) {
9046        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9047    }
9048
9049    /* ack status block only if something was actually handled */
9050    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9051               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9052
9053    /*
9054     * Must be called after the EQ processing (since eq leads to sriov
9055     * ramrod completion flows).
9056     * This flow may have been scheduled by the arrival of a ramrod
9057     * completion, or by the sriov code rescheduling itself.
9058     */
9059    // XXX bxe_iov_sp_task(sc);
9060
9061#if 0
9062    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9063    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9064                               &sc->sp_state)) {
9065        bxe_link_report(sc);
9066        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9067    }
9068#endif
9069}
9070
9071static void
9072bxe_handle_fp_tq(void *context,
9073                 int  pending)
9074{
9075    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9076    struct bxe_softc *sc = fp->sc;
9077    uint8_t more_tx = FALSE;
9078    uint8_t more_rx = FALSE;
9079
9080    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9081
9082    /* XXX
9083     * IFF_DRV_RUNNING state can't be checked here since we process
9084     * slowpath events on a client queue during setup. Instead
9085     * we need to add a "process/continue" flag here that the driver
9086     * can use to tell the task here not to do anything.
9087     */
9088#if 0
9089    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9090        return;
9091    }
9092#endif
9093
9094    /* update the fastpath index */
9095    bxe_update_fp_sb_idx(fp);
9096
9097    /* XXX add loop here if ever support multiple tx CoS */
9098    /* fp->txdata[cos] */
9099    if (bxe_has_tx_work(fp)) {
9100        BXE_FP_TX_LOCK(fp);
9101        more_tx = bxe_txeof(sc, fp);
9102        BXE_FP_TX_UNLOCK(fp);
9103    }
9104
9105    if (bxe_has_rx_work(fp)) {
9106        more_rx = bxe_rxeof(sc, fp);
9107    }
9108
9109    if (more_rx /*|| more_tx*/) {
9110        /* still more work to do */
9111        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9112        return;
9113    }
9114
9115    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9116               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9117}
9118
9119static void
9120bxe_task_fp(struct bxe_fastpath *fp)
9121{
9122    struct bxe_softc *sc = fp->sc;
9123    uint8_t more_tx = FALSE;
9124    uint8_t more_rx = FALSE;
9125
9126    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9127
9128    /* update the fastpath index */
9129    bxe_update_fp_sb_idx(fp);
9130
9131    /* XXX add loop here if ever support multiple tx CoS */
9132    /* fp->txdata[cos] */
9133    if (bxe_has_tx_work(fp)) {
9134        BXE_FP_TX_LOCK(fp);
9135        more_tx = bxe_txeof(sc, fp);
9136        BXE_FP_TX_UNLOCK(fp);
9137    }
9138
9139    if (bxe_has_rx_work(fp)) {
9140        more_rx = bxe_rxeof(sc, fp);
9141    }
9142
9143    if (more_rx /*|| more_tx*/) {
9144        /* still more work to do, bail out if this ISR and process later */
9145        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9146        return;
9147    }
9148
9149    /*
9150     * Here we write the fastpath index taken before doing any tx or rx work.
9151     * It is very well possible other hw events occurred up to this point and
9152     * they were actually processed accordingly above. Since we're going to
9153     * write an older fastpath index, an interrupt is coming which we might
9154     * not do any work in.
9155     */
9156    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9157               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9158}
9159
9160/*
9161 * Legacy interrupt entry point.
9162 *
9163 * Verifies that the controller generated the interrupt and
9164 * then calls a separate routine to handle the various
9165 * interrupt causes: link, RX, and TX.
9166 */
9167static void
9168bxe_intr_legacy(void *xsc)
9169{
9170    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9171    struct bxe_fastpath *fp;
9172    uint16_t status, mask;
9173    int i;
9174
9175    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9176
9177#if 0
9178    /* Don't handle any interrupts if we're not ready. */
9179    if (__predict_false(sc->intr_sem != 0)) {
9180        return;
9181    }
9182#endif
9183
9184    /*
9185     * 0 for ustorm, 1 for cstorm
9186     * the bits returned from ack_int() are 0-15
9187     * bit 0 = attention status block
9188     * bit 1 = fast path status block
9189     * a mask of 0x2 or more = tx/rx event
9190     * a mask of 1 = slow path event
9191     */
9192
9193    status = bxe_ack_int(sc);
9194
9195    /* the interrupt is not for us */
9196    if (__predict_false(status == 0)) {
9197        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9198        return;
9199    }
9200
9201    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9202
9203    FOR_EACH_ETH_QUEUE(sc, i) {
9204        fp = &sc->fp[i];
9205        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9206        if (status & mask) {
9207            /* acknowledge and disable further fastpath interrupts */
9208            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9209            bxe_task_fp(fp);
9210            status &= ~mask;
9211        }
9212    }
9213
9214#if 0
9215    if (CNIC_SUPPORT(sc)) {
9216        mask = 0x2;
9217        if (status & (mask | 0x1)) {
9218            ...
9219            status &= ~mask;
9220        }
9221    }
9222#endif
9223
9224    if (__predict_false(status & 0x1)) {
9225        /* acknowledge and disable further slowpath interrupts */
9226        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9227
9228        /* schedule slowpath handler */
9229        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9230
9231        status &= ~0x1;
9232    }
9233
9234    if (__predict_false(status)) {
9235        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9236    }
9237}
9238
9239/* slowpath interrupt entry point */
9240static void
9241bxe_intr_sp(void *xsc)
9242{
9243    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9244
9245    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9246
9247    /* acknowledge and disable further slowpath interrupts */
9248    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9249
9250    /* schedule slowpath handler */
9251    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9252}
9253
9254/* fastpath interrupt entry point */
9255static void
9256bxe_intr_fp(void *xfp)
9257{
9258    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9259    struct bxe_softc *sc = fp->sc;
9260
9261    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9262
9263    BLOGD(sc, DBG_INTR,
9264          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9265          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9266
9267#if 0
9268    /* Don't handle any interrupts if we're not ready. */
9269    if (__predict_false(sc->intr_sem != 0)) {
9270        return;
9271    }
9272#endif
9273
9274    /* acknowledge and disable further fastpath interrupts */
9275    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9276
9277    bxe_task_fp(fp);
9278}
9279
9280/* Release all interrupts allocated by the driver. */
9281static void
9282bxe_interrupt_free(struct bxe_softc *sc)
9283{
9284    int i;
9285
9286    switch (sc->interrupt_mode) {
9287    case INTR_MODE_INTX:
9288        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9289        if (sc->intr[0].resource != NULL) {
9290            bus_release_resource(sc->dev,
9291                                 SYS_RES_IRQ,
9292                                 sc->intr[0].rid,
9293                                 sc->intr[0].resource);
9294        }
9295        break;
9296    case INTR_MODE_MSI:
9297        for (i = 0; i < sc->intr_count; i++) {
9298            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9299            if (sc->intr[i].resource && sc->intr[i].rid) {
9300                bus_release_resource(sc->dev,
9301                                     SYS_RES_IRQ,
9302                                     sc->intr[i].rid,
9303                                     sc->intr[i].resource);
9304            }
9305        }
9306        pci_release_msi(sc->dev);
9307        break;
9308    case INTR_MODE_MSIX:
9309        for (i = 0; i < sc->intr_count; i++) {
9310            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9311            if (sc->intr[i].resource && sc->intr[i].rid) {
9312                bus_release_resource(sc->dev,
9313                                     SYS_RES_IRQ,
9314                                     sc->intr[i].rid,
9315                                     sc->intr[i].resource);
9316            }
9317        }
9318        pci_release_msi(sc->dev);
9319        break;
9320    default:
9321        /* nothing to do as initial allocation failed */
9322        break;
9323    }
9324}
9325
9326/*
9327 * This function determines and allocates the appropriate
9328 * interrupt based on system capabilites and user request.
9329 *
9330 * The user may force a particular interrupt mode, specify
9331 * the number of receive queues, specify the method for
9332 * distribuitng received frames to receive queues, or use
9333 * the default settings which will automatically select the
9334 * best supported combination.  In addition, the OS may or
9335 * may not support certain combinations of these settings.
9336 * This routine attempts to reconcile the settings requested
9337 * by the user with the capabilites available from the system
9338 * to select the optimal combination of features.
9339 *
9340 * Returns:
9341 *   0 = Success, !0 = Failure.
9342 */
9343static int
9344bxe_interrupt_alloc(struct bxe_softc *sc)
9345{
9346    int msix_count = 0;
9347    int msi_count = 0;
9348    int num_requested = 0;
9349    int num_allocated = 0;
9350    int rid, i, j;
9351    int rc;
9352
9353    /* get the number of available MSI/MSI-X interrupts from the OS */
9354    if (sc->interrupt_mode > 0) {
9355        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9356            msix_count = pci_msix_count(sc->dev);
9357        }
9358
9359        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9360            msi_count = pci_msi_count(sc->dev);
9361        }
9362
9363        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9364              msi_count, msix_count);
9365    }
9366
9367    do { /* try allocating MSI-X interrupt resources (at least 2) */
9368        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9369            break;
9370        }
9371
9372        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9373            (msix_count < 2)) {
9374            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9375            break;
9376        }
9377
9378        /* ask for the necessary number of MSI-X vectors */
9379        num_requested = min((sc->num_queues + 1), msix_count);
9380
9381        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9382
9383        num_allocated = num_requested;
9384        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9385            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9386            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9387            break;
9388        }
9389
9390        if (num_allocated < 2) { /* possible? */
9391            BLOGE(sc, "MSI-X allocation less than 2!\n");
9392            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9393            pci_release_msi(sc->dev);
9394            break;
9395        }
9396
9397        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9398              num_requested, num_allocated);
9399
9400        /* best effort so use the number of vectors allocated to us */
9401        sc->intr_count = num_allocated;
9402        sc->num_queues = num_allocated - 1;
9403
9404        rid = 1; /* initial resource identifier */
9405
9406        /* allocate the MSI-X vectors */
9407        for (i = 0; i < num_allocated; i++) {
9408            sc->intr[i].rid = (rid + i);
9409
9410            if ((sc->intr[i].resource =
9411                 bus_alloc_resource_any(sc->dev,
9412                                        SYS_RES_IRQ,
9413                                        &sc->intr[i].rid,
9414                                        RF_ACTIVE)) == NULL) {
9415                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9416                      i, (rid + i));
9417
9418                for (j = (i - 1); j >= 0; j--) {
9419                    bus_release_resource(sc->dev,
9420                                         SYS_RES_IRQ,
9421                                         sc->intr[j].rid,
9422                                         sc->intr[j].resource);
9423                }
9424
9425                sc->intr_count = 0;
9426                sc->num_queues = 0;
9427                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9428                pci_release_msi(sc->dev);
9429                break;
9430            }
9431
9432            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9433        }
9434    } while (0);
9435
9436    do { /* try allocating MSI vector resources (at least 2) */
9437        if (sc->interrupt_mode != INTR_MODE_MSI) {
9438            break;
9439        }
9440
9441        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9442            (msi_count < 1)) {
9443            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9444            break;
9445        }
9446
9447        /* ask for a single MSI vector */
9448        num_requested = 1;
9449
9450        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9451
9452        num_allocated = num_requested;
9453        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9454            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9455            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9456            break;
9457        }
9458
9459        if (num_allocated != 1) { /* possible? */
9460            BLOGE(sc, "MSI allocation is not 1!\n");
9461            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9462            pci_release_msi(sc->dev);
9463            break;
9464        }
9465
9466        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9467              num_requested, num_allocated);
9468
9469        /* best effort so use the number of vectors allocated to us */
9470        sc->intr_count = num_allocated;
9471        sc->num_queues = num_allocated;
9472
9473        rid = 1; /* initial resource identifier */
9474
9475        sc->intr[0].rid = rid;
9476
9477        if ((sc->intr[0].resource =
9478             bus_alloc_resource_any(sc->dev,
9479                                    SYS_RES_IRQ,
9480                                    &sc->intr[0].rid,
9481                                    RF_ACTIVE)) == NULL) {
9482            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9483            sc->intr_count = 0;
9484            sc->num_queues = 0;
9485            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9486            pci_release_msi(sc->dev);
9487            break;
9488        }
9489
9490        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9491    } while (0);
9492
9493    do { /* try allocating INTx vector resources */
9494        if (sc->interrupt_mode != INTR_MODE_INTX) {
9495            break;
9496        }
9497
9498        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9499
9500        /* only one vector for INTx */
9501        sc->intr_count = 1;
9502        sc->num_queues = 1;
9503
9504        rid = 0; /* initial resource identifier */
9505
9506        sc->intr[0].rid = rid;
9507
9508        if ((sc->intr[0].resource =
9509             bus_alloc_resource_any(sc->dev,
9510                                    SYS_RES_IRQ,
9511                                    &sc->intr[0].rid,
9512                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9513            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9514            sc->intr_count = 0;
9515            sc->num_queues = 0;
9516            sc->interrupt_mode = -1; /* Failed! */
9517            break;
9518        }
9519
9520        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9521    } while (0);
9522
9523    if (sc->interrupt_mode == -1) {
9524        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9525        rc = 1;
9526    } else {
9527        BLOGD(sc, DBG_LOAD,
9528              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9529              sc->interrupt_mode, sc->num_queues);
9530        rc = 0;
9531    }
9532
9533    return (rc);
9534}
9535
9536static void
9537bxe_interrupt_detach(struct bxe_softc *sc)
9538{
9539    struct bxe_fastpath *fp;
9540    int i;
9541
9542    /* release interrupt resources */
9543    for (i = 0; i < sc->intr_count; i++) {
9544        if (sc->intr[i].resource && sc->intr[i].tag) {
9545            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9546            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9547        }
9548    }
9549
9550    for (i = 0; i < sc->num_queues; i++) {
9551        fp = &sc->fp[i];
9552        if (fp->tq) {
9553            taskqueue_drain(fp->tq, &fp->tq_task);
9554            taskqueue_free(fp->tq);
9555            fp->tq = NULL;
9556        }
9557    }
9558
9559
9560    if (sc->sp_tq) {
9561        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9562        taskqueue_free(sc->sp_tq);
9563        sc->sp_tq = NULL;
9564    }
9565}
9566
9567/*
9568 * Enables interrupts and attach to the ISR.
9569 *
9570 * When using multiple MSI/MSI-X vectors the first vector
9571 * is used for slowpath operations while all remaining
9572 * vectors are used for fastpath operations.  If only a
9573 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9574 * ISR must look for both slowpath and fastpath completions.
9575 */
9576static int
9577bxe_interrupt_attach(struct bxe_softc *sc)
9578{
9579    struct bxe_fastpath *fp;
9580    int rc = 0;
9581    int i;
9582
9583    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9584             "bxe%d_sp_tq", sc->unit);
9585    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9586    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9587                                      taskqueue_thread_enqueue,
9588                                      &sc->sp_tq);
9589    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9590                            "%s", sc->sp_tq_name);
9591
9592
9593    for (i = 0; i < sc->num_queues; i++) {
9594        fp = &sc->fp[i];
9595        snprintf(fp->tq_name, sizeof(fp->tq_name),
9596                 "bxe%d_fp%d_tq", sc->unit, i);
9597        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9598        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9599                                       taskqueue_thread_enqueue,
9600                                       &fp->tq);
9601        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9602                                "%s", fp->tq_name);
9603    }
9604
9605    /* setup interrupt handlers */
9606    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9607        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9608
9609        /*
9610         * Setup the interrupt handler. Note that we pass the driver instance
9611         * to the interrupt handler for the slowpath.
9612         */
9613        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9614                                 (INTR_TYPE_NET | INTR_MPSAFE),
9615                                 NULL, bxe_intr_sp, sc,
9616                                 &sc->intr[0].tag)) != 0) {
9617            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9618            goto bxe_interrupt_attach_exit;
9619        }
9620
9621        bus_describe_intr(sc->dev, sc->intr[0].resource,
9622                          sc->intr[0].tag, "sp");
9623
9624        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9625
9626        /* initialize the fastpath vectors (note the first was used for sp) */
9627        for (i = 0; i < sc->num_queues; i++) {
9628            fp = &sc->fp[i];
9629            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9630
9631            /*
9632             * Setup the interrupt handler. Note that we pass the
9633             * fastpath context to the interrupt handler in this
9634             * case.
9635             */
9636            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9637                                     (INTR_TYPE_NET | INTR_MPSAFE),
9638                                     NULL, bxe_intr_fp, fp,
9639                                     &sc->intr[i + 1].tag)) != 0) {
9640                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9641                      (i + 1), rc);
9642                goto bxe_interrupt_attach_exit;
9643            }
9644
9645            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9646                              sc->intr[i + 1].tag, "fp%02d", i);
9647
9648            /* bind the fastpath instance to a cpu */
9649            if (sc->num_queues > 1) {
9650                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9651            }
9652
9653            fp->state = BXE_FP_STATE_IRQ;
9654        }
9655    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9656        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9657
9658        /*
9659         * Setup the interrupt handler. Note that we pass the
9660         * driver instance to the interrupt handler which
9661         * will handle both the slowpath and fastpath.
9662         */
9663        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9664                                 (INTR_TYPE_NET | INTR_MPSAFE),
9665                                 NULL, bxe_intr_legacy, sc,
9666                                 &sc->intr[0].tag)) != 0) {
9667            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9668            goto bxe_interrupt_attach_exit;
9669        }
9670
9671    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9672        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9673
9674        /*
9675         * Setup the interrupt handler. Note that we pass the
9676         * driver instance to the interrupt handler which
9677         * will handle both the slowpath and fastpath.
9678         */
9679        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9680                                 (INTR_TYPE_NET | INTR_MPSAFE),
9681                                 NULL, bxe_intr_legacy, sc,
9682                                 &sc->intr[0].tag)) != 0) {
9683            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9684            goto bxe_interrupt_attach_exit;
9685        }
9686    }
9687
9688bxe_interrupt_attach_exit:
9689
9690    return (rc);
9691}
9692
9693static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9694static int  bxe_init_hw_common(struct bxe_softc *sc);
9695static int  bxe_init_hw_port(struct bxe_softc *sc);
9696static int  bxe_init_hw_func(struct bxe_softc *sc);
9697static void bxe_reset_common(struct bxe_softc *sc);
9698static void bxe_reset_port(struct bxe_softc *sc);
9699static void bxe_reset_func(struct bxe_softc *sc);
9700static int  bxe_gunzip_init(struct bxe_softc *sc);
9701static void bxe_gunzip_end(struct bxe_softc *sc);
9702static int  bxe_init_firmware(struct bxe_softc *sc);
9703static void bxe_release_firmware(struct bxe_softc *sc);
9704
9705static struct
9706ecore_func_sp_drv_ops bxe_func_sp_drv = {
9707    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9708    .init_hw_cmn      = bxe_init_hw_common,
9709    .init_hw_port     = bxe_init_hw_port,
9710    .init_hw_func     = bxe_init_hw_func,
9711
9712    .reset_hw_cmn     = bxe_reset_common,
9713    .reset_hw_port    = bxe_reset_port,
9714    .reset_hw_func    = bxe_reset_func,
9715
9716    .gunzip_init      = bxe_gunzip_init,
9717    .gunzip_end       = bxe_gunzip_end,
9718
9719    .init_fw          = bxe_init_firmware,
9720    .release_fw       = bxe_release_firmware,
9721};
9722
9723static void
9724bxe_init_func_obj(struct bxe_softc *sc)
9725{
9726    sc->dmae_ready = 0;
9727
9728    ecore_init_func_obj(sc,
9729                        &sc->func_obj,
9730                        BXE_SP(sc, func_rdata),
9731                        BXE_SP_MAPPING(sc, func_rdata),
9732                        BXE_SP(sc, func_afex_rdata),
9733                        BXE_SP_MAPPING(sc, func_afex_rdata),
9734                        &bxe_func_sp_drv);
9735}
9736
9737static int
9738bxe_init_hw(struct bxe_softc *sc,
9739            uint32_t         load_code)
9740{
9741    struct ecore_func_state_params func_params = { NULL };
9742    int rc;
9743
9744    /* prepare the parameters for function state transitions */
9745    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9746
9747    func_params.f_obj = &sc->func_obj;
9748    func_params.cmd = ECORE_F_CMD_HW_INIT;
9749
9750    func_params.params.hw_init.load_phase = load_code;
9751
9752    /*
9753     * Via a plethora of function pointers, we will eventually reach
9754     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9755     */
9756    rc = ecore_func_state_change(sc, &func_params);
9757
9758    return (rc);
9759}
9760
9761static void
9762bxe_fill(struct bxe_softc *sc,
9763         uint32_t         addr,
9764         int              fill,
9765         uint32_t         len)
9766{
9767    uint32_t i;
9768
9769    if (!(len % 4) && !(addr % 4)) {
9770        for (i = 0; i < len; i += 4) {
9771            REG_WR(sc, (addr + i), fill);
9772        }
9773    } else {
9774        for (i = 0; i < len; i++) {
9775            REG_WR8(sc, (addr + i), fill);
9776        }
9777    }
9778}
9779
9780/* writes FP SP data to FW - data_size in dwords */
9781static void
9782bxe_wr_fp_sb_data(struct bxe_softc *sc,
9783                  int              fw_sb_id,
9784                  uint32_t         *sb_data_p,
9785                  uint32_t         data_size)
9786{
9787    int index;
9788
9789    for (index = 0; index < data_size; index++) {
9790        REG_WR(sc,
9791               (BAR_CSTRORM_INTMEM +
9792                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9793                (sizeof(uint32_t) * index)),
9794               *(sb_data_p + index));
9795    }
9796}
9797
9798static void
9799bxe_zero_fp_sb(struct bxe_softc *sc,
9800               int              fw_sb_id)
9801{
9802    struct hc_status_block_data_e2 sb_data_e2;
9803    struct hc_status_block_data_e1x sb_data_e1x;
9804    uint32_t *sb_data_p;
9805    uint32_t data_size = 0;
9806
9807    if (!CHIP_IS_E1x(sc)) {
9808        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9809        sb_data_e2.common.state = SB_DISABLED;
9810        sb_data_e2.common.p_func.vf_valid = FALSE;
9811        sb_data_p = (uint32_t *)&sb_data_e2;
9812        data_size = (sizeof(struct hc_status_block_data_e2) /
9813                     sizeof(uint32_t));
9814    } else {
9815        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9816        sb_data_e1x.common.state = SB_DISABLED;
9817        sb_data_e1x.common.p_func.vf_valid = FALSE;
9818        sb_data_p = (uint32_t *)&sb_data_e1x;
9819        data_size = (sizeof(struct hc_status_block_data_e1x) /
9820                     sizeof(uint32_t));
9821    }
9822
9823    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9824
9825    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9826             0, CSTORM_STATUS_BLOCK_SIZE);
9827    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9828             0, CSTORM_SYNC_BLOCK_SIZE);
9829}
9830
9831static void
9832bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9833                  struct hc_sp_status_block_data *sp_sb_data)
9834{
9835    int i;
9836
9837    for (i = 0;
9838         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9839         i++) {
9840        REG_WR(sc,
9841               (BAR_CSTRORM_INTMEM +
9842                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9843                (i * sizeof(uint32_t))),
9844               *((uint32_t *)sp_sb_data + i));
9845    }
9846}
9847
9848static void
9849bxe_zero_sp_sb(struct bxe_softc *sc)
9850{
9851    struct hc_sp_status_block_data sp_sb_data;
9852
9853    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9854
9855    sp_sb_data.state           = SB_DISABLED;
9856    sp_sb_data.p_func.vf_valid = FALSE;
9857
9858    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9859
9860    bxe_fill(sc,
9861             (BAR_CSTRORM_INTMEM +
9862              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9863              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9864    bxe_fill(sc,
9865             (BAR_CSTRORM_INTMEM +
9866              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9867              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9868}
9869
9870static void
9871bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9872                             int                       igu_sb_id,
9873                             int                       igu_seg_id)
9874{
9875    hc_sm->igu_sb_id      = igu_sb_id;
9876    hc_sm->igu_seg_id     = igu_seg_id;
9877    hc_sm->timer_value    = 0xFF;
9878    hc_sm->time_to_expire = 0xFFFFFFFF;
9879}
9880
9881static void
9882bxe_map_sb_state_machines(struct hc_index_data *index_data)
9883{
9884    /* zero out state machine indices */
9885
9886    /* rx indices */
9887    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9888
9889    /* tx indices */
9890    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9891    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9892    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9893    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9894
9895    /* map indices */
9896
9897    /* rx indices */
9898    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9899        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9900
9901    /* tx indices */
9902    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9903        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9904    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9905        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9906    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9907        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9908    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9909        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910}
9911
9912static void
9913bxe_init_sb(struct bxe_softc *sc,
9914            bus_addr_t       busaddr,
9915            int              vfid,
9916            uint8_t          vf_valid,
9917            int              fw_sb_id,
9918            int              igu_sb_id)
9919{
9920    struct hc_status_block_data_e2  sb_data_e2;
9921    struct hc_status_block_data_e1x sb_data_e1x;
9922    struct hc_status_block_sm       *hc_sm_p;
9923    uint32_t *sb_data_p;
9924    int igu_seg_id;
9925    int data_size;
9926
9927    if (CHIP_INT_MODE_IS_BC(sc)) {
9928        igu_seg_id = HC_SEG_ACCESS_NORM;
9929    } else {
9930        igu_seg_id = IGU_SEG_ACCESS_NORM;
9931    }
9932
9933    bxe_zero_fp_sb(sc, fw_sb_id);
9934
9935    if (!CHIP_IS_E1x(sc)) {
9936        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9937        sb_data_e2.common.state = SB_ENABLED;
9938        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9939        sb_data_e2.common.p_func.vf_id = vfid;
9940        sb_data_e2.common.p_func.vf_valid = vf_valid;
9941        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9942        sb_data_e2.common.same_igu_sb_1b = TRUE;
9943        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9944        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9945        hc_sm_p = sb_data_e2.common.state_machine;
9946        sb_data_p = (uint32_t *)&sb_data_e2;
9947        data_size = (sizeof(struct hc_status_block_data_e2) /
9948                     sizeof(uint32_t));
9949        bxe_map_sb_state_machines(sb_data_e2.index_data);
9950    } else {
9951        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9952        sb_data_e1x.common.state = SB_ENABLED;
9953        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9954        sb_data_e1x.common.p_func.vf_id = 0xff;
9955        sb_data_e1x.common.p_func.vf_valid = FALSE;
9956        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9957        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9958        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9959        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9960        hc_sm_p = sb_data_e1x.common.state_machine;
9961        sb_data_p = (uint32_t *)&sb_data_e1x;
9962        data_size = (sizeof(struct hc_status_block_data_e1x) /
9963                     sizeof(uint32_t));
9964        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9965    }
9966
9967    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9968    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9969
9970    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9971
9972    /* write indices to HW - PCI guarantees endianity of regpairs */
9973    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9974}
9975
9976static inline uint8_t
9977bxe_fp_qzone_id(struct bxe_fastpath *fp)
9978{
9979    if (CHIP_IS_E1x(fp->sc)) {
9980        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9981    } else {
9982        return (fp->cl_id);
9983    }
9984}
9985
9986static inline uint32_t
9987bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9988                           struct bxe_fastpath *fp)
9989{
9990    uint32_t offset = BAR_USTRORM_INTMEM;
9991
9992#if 0
9993    if (IS_VF(sc)) {
9994        return (PXP_VF_ADDR_USDM_QUEUES_START +
9995                (sc->acquire_resp.resc.hw_qid[fp->index] *
9996                 sizeof(struct ustorm_queue_zone_data)));
9997    } else
9998#endif
9999    if (!CHIP_IS_E1x(sc)) {
10000        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10001    } else {
10002        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10003    }
10004
10005    return (offset);
10006}
10007
10008static void
10009bxe_init_eth_fp(struct bxe_softc *sc,
10010                int              idx)
10011{
10012    struct bxe_fastpath *fp = &sc->fp[idx];
10013    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10014    unsigned long q_type = 0;
10015    int cos;
10016
10017    fp->sc    = sc;
10018    fp->index = idx;
10019
10020    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10021             "bxe%d_fp%d_tx_lock", sc->unit, idx);
10022    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10023
10024    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10025             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10026    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10027
10028    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10029    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10030
10031    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10032                    (SC_L_ID(sc) + idx) :
10033                    /* want client ID same as IGU SB ID for non-E1 */
10034                    fp->igu_sb_id;
10035    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10036
10037    /* setup sb indices */
10038    if (!CHIP_IS_E1x(sc)) {
10039        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10040        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10041    } else {
10042        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10043        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10044    }
10045
10046    /* init shortcut */
10047    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10048
10049    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10050
10051    /*
10052     * XXX If multiple CoS is ever supported then each fastpath structure
10053     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10054     */
10055    for (cos = 0; cos < sc->max_cos; cos++) {
10056        cids[cos] = idx;
10057    }
10058    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10059
10060    /* nothing more for a VF to do */
10061    if (IS_VF(sc)) {
10062        return;
10063    }
10064
10065    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10066                fp->fw_sb_id, fp->igu_sb_id);
10067
10068    bxe_update_fp_sb_idx(fp);
10069
10070    /* Configure Queue State object */
10071    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10072    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10073
10074    ecore_init_queue_obj(sc,
10075                         &sc->sp_objs[idx].q_obj,
10076                         fp->cl_id,
10077                         cids,
10078                         sc->max_cos,
10079                         SC_FUNC(sc),
10080                         BXE_SP(sc, q_rdata),
10081                         BXE_SP_MAPPING(sc, q_rdata),
10082                         q_type);
10083
10084    /* configure classification DBs */
10085    ecore_init_mac_obj(sc,
10086                       &sc->sp_objs[idx].mac_obj,
10087                       fp->cl_id,
10088                       idx,
10089                       SC_FUNC(sc),
10090                       BXE_SP(sc, mac_rdata),
10091                       BXE_SP_MAPPING(sc, mac_rdata),
10092                       ECORE_FILTER_MAC_PENDING,
10093                       &sc->sp_state,
10094                       ECORE_OBJ_TYPE_RX_TX,
10095                       &sc->macs_pool);
10096
10097    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10098          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10099}
10100
10101static inline void
10102bxe_update_rx_prod(struct bxe_softc    *sc,
10103                   struct bxe_fastpath *fp,
10104                   uint16_t            rx_bd_prod,
10105                   uint16_t            rx_cq_prod,
10106                   uint16_t            rx_sge_prod)
10107{
10108    struct ustorm_eth_rx_producers rx_prods = { 0 };
10109    uint32_t i;
10110
10111    /* update producers */
10112    rx_prods.bd_prod  = rx_bd_prod;
10113    rx_prods.cqe_prod = rx_cq_prod;
10114    rx_prods.sge_prod = rx_sge_prod;
10115
10116    /*
10117     * Make sure that the BD and SGE data is updated before updating the
10118     * producers since FW might read the BD/SGE right after the producer
10119     * is updated.
10120     * This is only applicable for weak-ordered memory model archs such
10121     * as IA-64. The following barrier is also mandatory since FW will
10122     * assumes BDs must have buffers.
10123     */
10124    wmb();
10125
10126    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10127        REG_WR(sc,
10128               (fp->ustorm_rx_prods_offset + (i * 4)),
10129               ((uint32_t *)&rx_prods)[i]);
10130    }
10131
10132    wmb(); /* keep prod updates ordered */
10133
10134    BLOGD(sc, DBG_RX,
10135          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10136          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10137}
10138
10139static void
10140bxe_init_rx_rings(struct bxe_softc *sc)
10141{
10142    struct bxe_fastpath *fp;
10143    int i;
10144
10145    for (i = 0; i < sc->num_queues; i++) {
10146        fp = &sc->fp[i];
10147
10148        fp->rx_bd_cons = 0;
10149
10150        /*
10151         * Activate the BD ring...
10152         * Warning, this will generate an interrupt (to the TSTORM)
10153         * so this can only be done after the chip is initialized
10154         */
10155        bxe_update_rx_prod(sc, fp,
10156                           fp->rx_bd_prod,
10157                           fp->rx_cq_prod,
10158                           fp->rx_sge_prod);
10159
10160        if (i != 0) {
10161            continue;
10162        }
10163
10164        if (CHIP_IS_E1(sc)) {
10165            REG_WR(sc,
10166                   (BAR_USTRORM_INTMEM +
10167                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10168                   U64_LO(fp->rcq_dma.paddr));
10169            REG_WR(sc,
10170                   (BAR_USTRORM_INTMEM +
10171                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10172                   U64_HI(fp->rcq_dma.paddr));
10173        }
10174    }
10175}
10176
10177static void
10178bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10179{
10180    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10181    fp->tx_db.data.zero_fill1 = 0;
10182    fp->tx_db.data.prod = 0;
10183
10184    fp->tx_pkt_prod = 0;
10185    fp->tx_pkt_cons = 0;
10186    fp->tx_bd_prod = 0;
10187    fp->tx_bd_cons = 0;
10188    fp->eth_q_stats.tx_pkts = 0;
10189}
10190
10191static inline void
10192bxe_init_tx_rings(struct bxe_softc *sc)
10193{
10194    int i;
10195
10196    for (i = 0; i < sc->num_queues; i++) {
10197#if 0
10198        uint8_t cos;
10199        for (cos = 0; cos < sc->max_cos; cos++) {
10200            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10201        }
10202#else
10203        bxe_init_tx_ring_one(&sc->fp[i]);
10204#endif
10205    }
10206}
10207
10208static void
10209bxe_init_def_sb(struct bxe_softc *sc)
10210{
10211    struct host_sp_status_block *def_sb = sc->def_sb;
10212    bus_addr_t mapping = sc->def_sb_dma.paddr;
10213    int igu_sp_sb_index;
10214    int igu_seg_id;
10215    int port = SC_PORT(sc);
10216    int func = SC_FUNC(sc);
10217    int reg_offset, reg_offset_en5;
10218    uint64_t section;
10219    int index, sindex;
10220    struct hc_sp_status_block_data sp_sb_data;
10221
10222    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10223
10224    if (CHIP_INT_MODE_IS_BC(sc)) {
10225        igu_sp_sb_index = DEF_SB_IGU_ID;
10226        igu_seg_id = HC_SEG_ACCESS_DEF;
10227    } else {
10228        igu_sp_sb_index = sc->igu_dsb_id;
10229        igu_seg_id = IGU_SEG_ACCESS_DEF;
10230    }
10231
10232    /* attentions */
10233    section = ((uint64_t)mapping +
10234               offsetof(struct host_sp_status_block, atten_status_block));
10235    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10236    sc->attn_state = 0;
10237
10238    reg_offset = (port) ?
10239                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10240                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10241    reg_offset_en5 = (port) ?
10242                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10243                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10244
10245    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10246        /* take care of sig[0]..sig[4] */
10247        for (sindex = 0; sindex < 4; sindex++) {
10248            sc->attn_group[index].sig[sindex] =
10249                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10250        }
10251
10252        if (!CHIP_IS_E1x(sc)) {
10253            /*
10254             * enable5 is separate from the rest of the registers,
10255             * and the address skip is 4 and not 16 between the
10256             * different groups
10257             */
10258            sc->attn_group[index].sig[4] =
10259                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10260        } else {
10261            sc->attn_group[index].sig[4] = 0;
10262        }
10263    }
10264
10265    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10266        reg_offset = (port) ?
10267                         HC_REG_ATTN_MSG1_ADDR_L :
10268                         HC_REG_ATTN_MSG0_ADDR_L;
10269        REG_WR(sc, reg_offset, U64_LO(section));
10270        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10271    } else if (!CHIP_IS_E1x(sc)) {
10272        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10273        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10274    }
10275
10276    section = ((uint64_t)mapping +
10277               offsetof(struct host_sp_status_block, sp_sb));
10278
10279    bxe_zero_sp_sb(sc);
10280
10281    /* PCI guarantees endianity of regpair */
10282    sp_sb_data.state           = SB_ENABLED;
10283    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10284    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10285    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10286    sp_sb_data.igu_seg_id      = igu_seg_id;
10287    sp_sb_data.p_func.pf_id    = func;
10288    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10289    sp_sb_data.p_func.vf_id    = 0xff;
10290
10291    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10292
10293    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10294}
10295
10296static void
10297bxe_init_sp_ring(struct bxe_softc *sc)
10298{
10299    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10300    sc->spq_prod_idx = 0;
10301    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10302    sc->spq_prod_bd = sc->spq;
10303    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10304}
10305
10306static void
10307bxe_init_eq_ring(struct bxe_softc *sc)
10308{
10309    union event_ring_elem *elem;
10310    int i;
10311
10312    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10313        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10314
10315        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10316                                                 BCM_PAGE_SIZE *
10317                                                 (i % NUM_EQ_PAGES)));
10318        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10319                                                 BCM_PAGE_SIZE *
10320                                                 (i % NUM_EQ_PAGES)));
10321    }
10322
10323    sc->eq_cons    = 0;
10324    sc->eq_prod    = NUM_EQ_DESC;
10325    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10326
10327    atomic_store_rel_long(&sc->eq_spq_left,
10328                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10329                               NUM_EQ_DESC) - 1));
10330}
10331
10332static void
10333bxe_init_internal_common(struct bxe_softc *sc)
10334{
10335    int i;
10336
10337    if (IS_MF_SI(sc)) {
10338        /*
10339         * In switch independent mode, the TSTORM needs to accept
10340         * packets that failed classification, since approximate match
10341         * mac addresses aren't written to NIG LLH.
10342         */
10343        REG_WR8(sc,
10344                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10345                2);
10346    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10347        REG_WR8(sc,
10348                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10349                0);
10350    }
10351
10352    /*
10353     * Zero this manually as its initialization is currently missing
10354     * in the initTool.
10355     */
10356    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10357        REG_WR(sc,
10358               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10359               0);
10360    }
10361
10362    if (!CHIP_IS_E1x(sc)) {
10363        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10364                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10365    }
10366}
10367
10368static void
10369bxe_init_internal(struct bxe_softc *sc,
10370                  uint32_t         load_code)
10371{
10372    switch (load_code) {
10373    case FW_MSG_CODE_DRV_LOAD_COMMON:
10374    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10375        bxe_init_internal_common(sc);
10376        /* no break */
10377
10378    case FW_MSG_CODE_DRV_LOAD_PORT:
10379        /* nothing to do */
10380        /* no break */
10381
10382    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10383        /* internal memory per function is initialized inside bxe_pf_init */
10384        break;
10385
10386    default:
10387        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10388        break;
10389    }
10390}
10391
10392static void
10393storm_memset_func_cfg(struct bxe_softc                         *sc,
10394                      struct tstorm_eth_function_common_config *tcfg,
10395                      uint16_t                                  abs_fid)
10396{
10397    uint32_t addr;
10398    size_t size;
10399
10400    addr = (BAR_TSTRORM_INTMEM +
10401            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10402    size = sizeof(struct tstorm_eth_function_common_config);
10403    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10404}
10405
10406static void
10407bxe_func_init(struct bxe_softc            *sc,
10408              struct bxe_func_init_params *p)
10409{
10410    struct tstorm_eth_function_common_config tcfg = { 0 };
10411
10412    if (CHIP_IS_E1x(sc)) {
10413        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10414    }
10415
10416    /* Enable the function in the FW */
10417    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10418    storm_memset_func_en(sc, p->func_id, 1);
10419
10420    /* spq */
10421    if (p->func_flgs & FUNC_FLG_SPQ) {
10422        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10423        REG_WR(sc,
10424               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10425               p->spq_prod);
10426    }
10427}
10428
10429/*
10430 * Calculates the sum of vn_min_rates.
10431 * It's needed for further normalizing of the min_rates.
10432 * Returns:
10433 *   sum of vn_min_rates.
10434 *     or
10435 *   0 - if all the min_rates are 0.
10436 * In the later case fainess algorithm should be deactivated.
10437 * If all min rates are not zero then those that are zeroes will be set to 1.
10438 */
10439static void
10440bxe_calc_vn_min(struct bxe_softc       *sc,
10441                struct cmng_init_input *input)
10442{
10443    uint32_t vn_cfg;
10444    uint32_t vn_min_rate;
10445    int all_zero = 1;
10446    int vn;
10447
10448    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10449        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10450        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10451                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10452
10453        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10454            /* skip hidden VNs */
10455            vn_min_rate = 0;
10456        } else if (!vn_min_rate) {
10457            /* If min rate is zero - set it to 100 */
10458            vn_min_rate = DEF_MIN_RATE;
10459        } else {
10460            all_zero = 0;
10461        }
10462
10463        input->vnic_min_rate[vn] = vn_min_rate;
10464    }
10465
10466    /* if ETS or all min rates are zeros - disable fairness */
10467    if (BXE_IS_ETS_ENABLED(sc)) {
10468        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10469        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10470    } else if (all_zero) {
10471        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10472        BLOGD(sc, DBG_LOAD,
10473              "Fariness disabled (all MIN values are zeroes)\n");
10474    } else {
10475        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10476    }
10477}
10478
10479static inline uint16_t
10480bxe_extract_max_cfg(struct bxe_softc *sc,
10481                    uint32_t         mf_cfg)
10482{
10483    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10484                        FUNC_MF_CFG_MAX_BW_SHIFT);
10485
10486    if (!max_cfg) {
10487        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10488        max_cfg = 100;
10489    }
10490
10491    return (max_cfg);
10492}
10493
10494static void
10495bxe_calc_vn_max(struct bxe_softc       *sc,
10496                int                    vn,
10497                struct cmng_init_input *input)
10498{
10499    uint16_t vn_max_rate;
10500    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10501    uint32_t max_cfg;
10502
10503    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10504        vn_max_rate = 0;
10505    } else {
10506        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10507
10508        if (IS_MF_SI(sc)) {
10509            /* max_cfg in percents of linkspeed */
10510            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10511        } else { /* SD modes */
10512            /* max_cfg is absolute in 100Mb units */
10513            vn_max_rate = (max_cfg * 100);
10514        }
10515    }
10516
10517    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10518
10519    input->vnic_max_rate[vn] = vn_max_rate;
10520}
10521
10522static void
10523bxe_cmng_fns_init(struct bxe_softc *sc,
10524                  uint8_t          read_cfg,
10525                  uint8_t          cmng_type)
10526{
10527    struct cmng_init_input input;
10528    int vn;
10529
10530    memset(&input, 0, sizeof(struct cmng_init_input));
10531
10532    input.port_rate = sc->link_vars.line_speed;
10533
10534    if (cmng_type == CMNG_FNS_MINMAX) {
10535        /* read mf conf from shmem */
10536        if (read_cfg) {
10537            bxe_read_mf_cfg(sc);
10538        }
10539
10540        /* get VN min rate and enable fairness if not 0 */
10541        bxe_calc_vn_min(sc, &input);
10542
10543        /* get VN max rate */
10544        if (sc->port.pmf) {
10545            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10546                bxe_calc_vn_max(sc, vn, &input);
10547            }
10548        }
10549
10550        /* always enable rate shaping and fairness */
10551        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10552
10553        ecore_init_cmng(&input, &sc->cmng);
10554        return;
10555    }
10556
10557    /* rate shaping and fairness are disabled */
10558    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10559}
10560
10561static int
10562bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10563{
10564    if (CHIP_REV_IS_SLOW(sc)) {
10565        return (CMNG_FNS_NONE);
10566    }
10567
10568    if (IS_MF(sc)) {
10569        return (CMNG_FNS_MINMAX);
10570    }
10571
10572    return (CMNG_FNS_NONE);
10573}
10574
10575static void
10576storm_memset_cmng(struct bxe_softc *sc,
10577                  struct cmng_init *cmng,
10578                  uint8_t          port)
10579{
10580    int vn;
10581    int func;
10582    uint32_t addr;
10583    size_t size;
10584
10585    addr = (BAR_XSTRORM_INTMEM +
10586            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10587    size = sizeof(struct cmng_struct_per_port);
10588    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10589
10590    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10591        func = func_by_vn(sc, vn);
10592
10593        addr = (BAR_XSTRORM_INTMEM +
10594                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10595        size = sizeof(struct rate_shaping_vars_per_vn);
10596        ecore_storm_memset_struct(sc, addr, size,
10597                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10598
10599        addr = (BAR_XSTRORM_INTMEM +
10600                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10601        size = sizeof(struct fairness_vars_per_vn);
10602        ecore_storm_memset_struct(sc, addr, size,
10603                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10604    }
10605}
10606
10607static void
10608bxe_pf_init(struct bxe_softc *sc)
10609{
10610    struct bxe_func_init_params func_init = { 0 };
10611    struct event_ring_data eq_data = { { 0 } };
10612    uint16_t flags;
10613
10614    if (!CHIP_IS_E1x(sc)) {
10615        /* reset IGU PF statistics: MSIX + ATTN */
10616        /* PF */
10617        REG_WR(sc,
10618               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10619                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10620                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10621               0);
10622        /* ATTN */
10623        REG_WR(sc,
10624               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10625                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10626                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10627                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10628               0);
10629    }
10630
10631    /* function setup flags */
10632    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10633
10634    /*
10635     * This flag is relevant for E1x only.
10636     * E2 doesn't have a TPA configuration in a function level.
10637     */
10638    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10639
10640    func_init.func_flgs = flags;
10641    func_init.pf_id     = SC_FUNC(sc);
10642    func_init.func_id   = SC_FUNC(sc);
10643    func_init.spq_map   = sc->spq_dma.paddr;
10644    func_init.spq_prod  = sc->spq_prod_idx;
10645
10646    bxe_func_init(sc, &func_init);
10647
10648    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10649
10650    /*
10651     * Congestion management values depend on the link rate.
10652     * There is no active link so initial link rate is set to 10Gbps.
10653     * When the link comes up the congestion management values are
10654     * re-calculated according to the actual link rate.
10655     */
10656    sc->link_vars.line_speed = SPEED_10000;
10657    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10658
10659    /* Only the PMF sets the HW */
10660    if (sc->port.pmf) {
10661        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10662    }
10663
10664    /* init Event Queue - PCI bus guarantees correct endainity */
10665    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10666    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10667    eq_data.producer     = sc->eq_prod;
10668    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10669    eq_data.sb_id        = DEF_SB_ID;
10670    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10671}
10672
10673static void
10674bxe_hc_int_enable(struct bxe_softc *sc)
10675{
10676    int port = SC_PORT(sc);
10677    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10678    uint32_t val = REG_RD(sc, addr);
10679    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10680    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10681                           (sc->intr_count == 1)) ? TRUE : FALSE;
10682    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10683
10684    if (msix) {
10685        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10686                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10687        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10688                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10689        if (single_msix) {
10690            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10691        }
10692    } else if (msi) {
10693        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10694        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10695                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10696                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10697    } else {
10698        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10699                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10700                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10701                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10702
10703        if (!CHIP_IS_E1(sc)) {
10704            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10705                  val, port, addr);
10706
10707            REG_WR(sc, addr, val);
10708
10709            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10710        }
10711    }
10712
10713    if (CHIP_IS_E1(sc)) {
10714        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10715    }
10716
10717    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10718          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10719
10720    REG_WR(sc, addr, val);
10721
10722    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10723    mb();
10724
10725    if (!CHIP_IS_E1(sc)) {
10726        /* init leading/trailing edge */
10727        if (IS_MF(sc)) {
10728            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10729            if (sc->port.pmf) {
10730                /* enable nig and gpio3 attention */
10731                val |= 0x1100;
10732            }
10733        } else {
10734            val = 0xffff;
10735        }
10736
10737        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10738        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10739    }
10740
10741    /* make sure that interrupts are indeed enabled from here on */
10742    mb();
10743}
10744
10745static void
10746bxe_igu_int_enable(struct bxe_softc *sc)
10747{
10748    uint32_t val;
10749    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10750    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10751                           (sc->intr_count == 1)) ? TRUE : FALSE;
10752    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10753
10754    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10755
10756    if (msix) {
10757        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10758                 IGU_PF_CONF_SINGLE_ISR_EN);
10759        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10760                IGU_PF_CONF_ATTN_BIT_EN);
10761        if (single_msix) {
10762            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10763        }
10764    } else if (msi) {
10765        val &= ~IGU_PF_CONF_INT_LINE_EN;
10766        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10767                IGU_PF_CONF_ATTN_BIT_EN |
10768                IGU_PF_CONF_SINGLE_ISR_EN);
10769    } else {
10770        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10771        val |= (IGU_PF_CONF_INT_LINE_EN |
10772                IGU_PF_CONF_ATTN_BIT_EN |
10773                IGU_PF_CONF_SINGLE_ISR_EN);
10774    }
10775
10776    /* clean previous status - need to configure igu prior to ack*/
10777    if ((!msix) || single_msix) {
10778        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10779        bxe_ack_int(sc);
10780    }
10781
10782    val |= IGU_PF_CONF_FUNC_EN;
10783
10784    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10785          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10786
10787    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10788
10789    mb();
10790
10791    /* init leading/trailing edge */
10792    if (IS_MF(sc)) {
10793        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10794        if (sc->port.pmf) {
10795            /* enable nig and gpio3 attention */
10796            val |= 0x1100;
10797        }
10798    } else {
10799        val = 0xffff;
10800    }
10801
10802    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10803    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10804
10805    /* make sure that interrupts are indeed enabled from here on */
10806    mb();
10807}
10808
10809static void
10810bxe_int_enable(struct bxe_softc *sc)
10811{
10812    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10813        bxe_hc_int_enable(sc);
10814    } else {
10815        bxe_igu_int_enable(sc);
10816    }
10817}
10818
10819static void
10820bxe_hc_int_disable(struct bxe_softc *sc)
10821{
10822    int port = SC_PORT(sc);
10823    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10824    uint32_t val = REG_RD(sc, addr);
10825
10826    /*
10827     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10828     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10829     * block
10830     */
10831    if (CHIP_IS_E1(sc)) {
10832        /*
10833         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10834         * to prevent from HC sending interrupts after we exit the function
10835         */
10836        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10837
10838        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10839                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10840                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10841    } else {
10842        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10843                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10844                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10845                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10846    }
10847
10848    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10849
10850    /* flush all outstanding writes */
10851    mb();
10852
10853    REG_WR(sc, addr, val);
10854    if (REG_RD(sc, addr) != val) {
10855        BLOGE(sc, "proper val not read from HC IGU!\n");
10856    }
10857}
10858
10859static void
10860bxe_igu_int_disable(struct bxe_softc *sc)
10861{
10862    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10863
10864    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10865             IGU_PF_CONF_INT_LINE_EN |
10866             IGU_PF_CONF_ATTN_BIT_EN);
10867
10868    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10869
10870    /* flush all outstanding writes */
10871    mb();
10872
10873    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10874    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10875        BLOGE(sc, "proper val not read from IGU!\n");
10876    }
10877}
10878
10879static void
10880bxe_int_disable(struct bxe_softc *sc)
10881{
10882    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10883        bxe_hc_int_disable(sc);
10884    } else {
10885        bxe_igu_int_disable(sc);
10886    }
10887}
10888
10889static void
10890bxe_nic_init(struct bxe_softc *sc,
10891             int              load_code)
10892{
10893    int i;
10894
10895    for (i = 0; i < sc->num_queues; i++) {
10896        bxe_init_eth_fp(sc, i);
10897    }
10898
10899    rmb(); /* ensure status block indices were read */
10900
10901    bxe_init_rx_rings(sc);
10902    bxe_init_tx_rings(sc);
10903
10904    if (IS_VF(sc)) {
10905        return;
10906    }
10907
10908    /* initialize MOD_ABS interrupts */
10909    elink_init_mod_abs_int(sc, &sc->link_vars,
10910                           sc->devinfo.chip_id,
10911                           sc->devinfo.shmem_base,
10912                           sc->devinfo.shmem2_base,
10913                           SC_PORT(sc));
10914
10915    bxe_init_def_sb(sc);
10916    bxe_update_dsb_idx(sc);
10917    bxe_init_sp_ring(sc);
10918    bxe_init_eq_ring(sc);
10919    bxe_init_internal(sc, load_code);
10920    bxe_pf_init(sc);
10921    bxe_stats_init(sc);
10922
10923    /* flush all before enabling interrupts */
10924    mb();
10925
10926    bxe_int_enable(sc);
10927
10928    /* check for SPIO5 */
10929    bxe_attn_int_deasserted0(sc,
10930                             REG_RD(sc,
10931                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10932                                     SC_PORT(sc)*4)) &
10933                             AEU_INPUTS_ATTN_BITS_SPIO5);
10934}
10935
10936static inline void
10937bxe_init_objs(struct bxe_softc *sc)
10938{
10939    /* mcast rules must be added to tx if tx switching is enabled */
10940    ecore_obj_type o_type =
10941        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10942                                         ECORE_OBJ_TYPE_RX;
10943
10944    /* RX_MODE controlling object */
10945    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10946
10947    /* multicast configuration controlling object */
10948    ecore_init_mcast_obj(sc,
10949                         &sc->mcast_obj,
10950                         sc->fp[0].cl_id,
10951                         sc->fp[0].index,
10952                         SC_FUNC(sc),
10953                         SC_FUNC(sc),
10954                         BXE_SP(sc, mcast_rdata),
10955                         BXE_SP_MAPPING(sc, mcast_rdata),
10956                         ECORE_FILTER_MCAST_PENDING,
10957                         &sc->sp_state,
10958                         o_type);
10959
10960    /* Setup CAM credit pools */
10961    ecore_init_mac_credit_pool(sc,
10962                               &sc->macs_pool,
10963                               SC_FUNC(sc),
10964                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10965                                                 VNICS_PER_PATH(sc));
10966
10967    ecore_init_vlan_credit_pool(sc,
10968                                &sc->vlans_pool,
10969                                SC_ABS_FUNC(sc) >> 1,
10970                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10971                                                  VNICS_PER_PATH(sc));
10972
10973    /* RSS configuration object */
10974    ecore_init_rss_config_obj(sc,
10975                              &sc->rss_conf_obj,
10976                              sc->fp[0].cl_id,
10977                              sc->fp[0].index,
10978                              SC_FUNC(sc),
10979                              SC_FUNC(sc),
10980                              BXE_SP(sc, rss_rdata),
10981                              BXE_SP_MAPPING(sc, rss_rdata),
10982                              ECORE_FILTER_RSS_CONF_PENDING,
10983                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10984}
10985
10986/*
10987 * Initialize the function. This must be called before sending CLIENT_SETUP
10988 * for the first client.
10989 */
10990static inline int
10991bxe_func_start(struct bxe_softc *sc)
10992{
10993    struct ecore_func_state_params func_params = { NULL };
10994    struct ecore_func_start_params *start_params = &func_params.params.start;
10995
10996    /* Prepare parameters for function state transitions */
10997    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10998
10999    func_params.f_obj = &sc->func_obj;
11000    func_params.cmd = ECORE_F_CMD_START;
11001
11002    /* Function parameters */
11003    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11004    start_params->sd_vlan_tag = OVLAN(sc);
11005
11006    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11007        start_params->network_cos_mode = STATIC_COS;
11008    } else { /* CHIP_IS_E1X */
11009        start_params->network_cos_mode = FW_WRR;
11010    }
11011
11012    start_params->gre_tunnel_mode = 0;
11013    start_params->gre_tunnel_rss  = 0;
11014
11015    return (ecore_func_state_change(sc, &func_params));
11016}
11017
11018static int
11019bxe_set_power_state(struct bxe_softc *sc,
11020                    uint8_t          state)
11021{
11022    uint16_t pmcsr;
11023
11024    /* If there is no power capability, silently succeed */
11025    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11026        BLOGW(sc, "No power capability\n");
11027        return (0);
11028    }
11029
11030    pmcsr = pci_read_config(sc->dev,
11031                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11032                            2);
11033
11034    switch (state) {
11035    case PCI_PM_D0:
11036        pci_write_config(sc->dev,
11037                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11038                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11039
11040        if (pmcsr & PCIM_PSTAT_DMASK) {
11041            /* delay required during transition out of D3hot */
11042            DELAY(20000);
11043        }
11044
11045        break;
11046
11047    case PCI_PM_D3hot:
11048        /* XXX if there are other clients above don't shut down the power */
11049
11050        /* don't shut down the power for emulation and FPGA */
11051        if (CHIP_REV_IS_SLOW(sc)) {
11052            return (0);
11053        }
11054
11055        pmcsr &= ~PCIM_PSTAT_DMASK;
11056        pmcsr |= PCIM_PSTAT_D3;
11057
11058        if (sc->wol) {
11059            pmcsr |= PCIM_PSTAT_PMEENABLE;
11060        }
11061
11062        pci_write_config(sc->dev,
11063                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11064                         pmcsr, 4);
11065
11066        /*
11067         * No more memory access after this point until device is brought back
11068         * to D0 state.
11069         */
11070        break;
11071
11072    default:
11073        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11074        return (-1);
11075    }
11076
11077    return (0);
11078}
11079
11080
11081/* return true if succeeded to acquire the lock */
11082static uint8_t
11083bxe_trylock_hw_lock(struct bxe_softc *sc,
11084                    uint32_t         resource)
11085{
11086    uint32_t lock_status;
11087    uint32_t resource_bit = (1 << resource);
11088    int func = SC_FUNC(sc);
11089    uint32_t hw_lock_control_reg;
11090
11091    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11092
11093    /* Validating that the resource is within range */
11094    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11095        BLOGD(sc, DBG_LOAD,
11096              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11097              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11098        return (FALSE);
11099    }
11100
11101    if (func <= 5) {
11102        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11103    } else {
11104        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11105    }
11106
11107    /* try to acquire the lock */
11108    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11109    lock_status = REG_RD(sc, hw_lock_control_reg);
11110    if (lock_status & resource_bit) {
11111        return (TRUE);
11112    }
11113
11114    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11115
11116    return (FALSE);
11117}
11118
11119/*
11120 * Get the recovery leader resource id according to the engine this function
11121 * belongs to. Currently only only 2 engines is supported.
11122 */
11123static int
11124bxe_get_leader_lock_resource(struct bxe_softc *sc)
11125{
11126    if (SC_PATH(sc)) {
11127        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11128    } else {
11129        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11130    }
11131}
11132
11133/* try to acquire a leader lock for current engine */
11134static uint8_t
11135bxe_trylock_leader_lock(struct bxe_softc *sc)
11136{
11137    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11138}
11139
11140static int
11141bxe_release_leader_lock(struct bxe_softc *sc)
11142{
11143    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11144}
11145
11146/* close gates #2, #3 and #4 */
11147static void
11148bxe_set_234_gates(struct bxe_softc *sc,
11149                  uint8_t          close)
11150{
11151    uint32_t val;
11152
11153    /* gates #2 and #4a are closed/opened for "not E1" only */
11154    if (!CHIP_IS_E1(sc)) {
11155        /* #4 */
11156        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11157        /* #2 */
11158        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11159    }
11160
11161    /* #3 */
11162    if (CHIP_IS_E1x(sc)) {
11163        /* prevent interrupts from HC on both ports */
11164        val = REG_RD(sc, HC_REG_CONFIG_1);
11165        REG_WR(sc, HC_REG_CONFIG_1,
11166               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11167               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11168
11169        val = REG_RD(sc, HC_REG_CONFIG_0);
11170        REG_WR(sc, HC_REG_CONFIG_0,
11171               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11172               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11173    } else {
11174        /* Prevent incomming interrupts in IGU */
11175        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11176
11177        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11178               (!close) ?
11179               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11180               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11181    }
11182
11183    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11184          close ? "closing" : "opening");
11185
11186    wmb();
11187}
11188
11189/* poll for pending writes bit, it should get cleared in no more than 1s */
11190static int
11191bxe_er_poll_igu_vq(struct bxe_softc *sc)
11192{
11193    uint32_t cnt = 1000;
11194    uint32_t pend_bits = 0;
11195
11196    do {
11197        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11198
11199        if (pend_bits == 0) {
11200            break;
11201        }
11202
11203        DELAY(1000);
11204    } while (--cnt > 0);
11205
11206    if (cnt == 0) {
11207        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11208        return (-1);
11209    }
11210
11211    return (0);
11212}
11213
11214#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11215
11216static void
11217bxe_clp_reset_prep(struct bxe_softc *sc,
11218                   uint32_t         *magic_val)
11219{
11220    /* Do some magic... */
11221    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11222    *magic_val = val & SHARED_MF_CLP_MAGIC;
11223    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11224}
11225
11226/* restore the value of the 'magic' bit */
11227static void
11228bxe_clp_reset_done(struct bxe_softc *sc,
11229                   uint32_t         magic_val)
11230{
11231    /* Restore the 'magic' bit value... */
11232    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11233    MFCFG_WR(sc, shared_mf_config.clp_mb,
11234              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11235}
11236
11237/* prepare for MCP reset, takes care of CLP configurations */
11238static void
11239bxe_reset_mcp_prep(struct bxe_softc *sc,
11240                   uint32_t         *magic_val)
11241{
11242    uint32_t shmem;
11243    uint32_t validity_offset;
11244
11245    /* set `magic' bit in order to save MF config */
11246    if (!CHIP_IS_E1(sc)) {
11247        bxe_clp_reset_prep(sc, magic_val);
11248    }
11249
11250    /* get shmem offset */
11251    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11252    validity_offset =
11253        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11254
11255    /* Clear validity map flags */
11256    if (shmem > 0) {
11257        REG_WR(sc, shmem + validity_offset, 0);
11258    }
11259}
11260
11261#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11262#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11263
11264static void
11265bxe_mcp_wait_one(struct bxe_softc *sc)
11266{
11267    /* special handling for emulation and FPGA (10 times longer) */
11268    if (CHIP_REV_IS_SLOW(sc)) {
11269        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11270    } else {
11271        DELAY((MCP_ONE_TIMEOUT) * 1000);
11272    }
11273}
11274
11275/* initialize shmem_base and waits for validity signature to appear */
11276static int
11277bxe_init_shmem(struct bxe_softc *sc)
11278{
11279    int cnt = 0;
11280    uint32_t val = 0;
11281
11282    do {
11283        sc->devinfo.shmem_base     =
11284        sc->link_params.shmem_base =
11285            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11286
11287        if (sc->devinfo.shmem_base) {
11288            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11289            if (val & SHR_MEM_VALIDITY_MB)
11290                return (0);
11291        }
11292
11293        bxe_mcp_wait_one(sc);
11294
11295    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11296
11297    BLOGE(sc, "BAD MCP validity signature\n");
11298
11299    return (-1);
11300}
11301
11302static int
11303bxe_reset_mcp_comp(struct bxe_softc *sc,
11304                   uint32_t         magic_val)
11305{
11306    int rc = bxe_init_shmem(sc);
11307
11308    /* Restore the `magic' bit value */
11309    if (!CHIP_IS_E1(sc)) {
11310        bxe_clp_reset_done(sc, magic_val);
11311    }
11312
11313    return (rc);
11314}
11315
11316static void
11317bxe_pxp_prep(struct bxe_softc *sc)
11318{
11319    if (!CHIP_IS_E1(sc)) {
11320        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11321        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11322        wmb();
11323    }
11324}
11325
11326/*
11327 * Reset the whole chip except for:
11328 *      - PCIE core
11329 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11330 *      - IGU
11331 *      - MISC (including AEU)
11332 *      - GRC
11333 *      - RBCN, RBCP
11334 */
11335static void
11336bxe_process_kill_chip_reset(struct bxe_softc *sc,
11337                            uint8_t          global)
11338{
11339    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11340    uint32_t global_bits2, stay_reset2;
11341
11342    /*
11343     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11344     * (per chip) blocks.
11345     */
11346    global_bits2 =
11347        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11348        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11349
11350    /*
11351     * Don't reset the following blocks.
11352     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11353     *            reset, as in 4 port device they might still be owned
11354     *            by the MCP (there is only one leader per path).
11355     */
11356    not_reset_mask1 =
11357        MISC_REGISTERS_RESET_REG_1_RST_HC |
11358        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11359        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11360
11361    not_reset_mask2 =
11362        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11363        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11364        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11365        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11366        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11367        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11368        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11369        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11370        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11371        MISC_REGISTERS_RESET_REG_2_PGLC |
11372        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11373        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11374        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11375        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11376        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11377        MISC_REGISTERS_RESET_REG_2_UMAC1;
11378
11379    /*
11380     * Keep the following blocks in reset:
11381     *  - all xxMACs are handled by the elink code.
11382     */
11383    stay_reset2 =
11384        MISC_REGISTERS_RESET_REG_2_XMAC |
11385        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11386
11387    /* Full reset masks according to the chip */
11388    reset_mask1 = 0xffffffff;
11389
11390    if (CHIP_IS_E1(sc))
11391        reset_mask2 = 0xffff;
11392    else if (CHIP_IS_E1H(sc))
11393        reset_mask2 = 0x1ffff;
11394    else if (CHIP_IS_E2(sc))
11395        reset_mask2 = 0xfffff;
11396    else /* CHIP_IS_E3 */
11397        reset_mask2 = 0x3ffffff;
11398
11399    /* Don't reset global blocks unless we need to */
11400    if (!global)
11401        reset_mask2 &= ~global_bits2;
11402
11403    /*
11404     * In case of attention in the QM, we need to reset PXP
11405     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11406     * because otherwise QM reset would release 'close the gates' shortly
11407     * before resetting the PXP, then the PSWRQ would send a write
11408     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11409     * read the payload data from PSWWR, but PSWWR would not
11410     * respond. The write queue in PGLUE would stuck, dmae commands
11411     * would not return. Therefore it's important to reset the second
11412     * reset register (containing the
11413     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11414     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11415     * bit).
11416     */
11417    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11418           reset_mask2 & (~not_reset_mask2));
11419
11420    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11421           reset_mask1 & (~not_reset_mask1));
11422
11423    mb();
11424    wmb();
11425
11426    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11427           reset_mask2 & (~stay_reset2));
11428
11429    mb();
11430    wmb();
11431
11432    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11433    wmb();
11434}
11435
11436static int
11437bxe_process_kill(struct bxe_softc *sc,
11438                 uint8_t          global)
11439{
11440    int cnt = 1000;
11441    uint32_t val = 0;
11442    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11443    uint32_t tags_63_32 = 0;
11444
11445    /* Empty the Tetris buffer, wait for 1s */
11446    do {
11447        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11448        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11449        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11450        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11451        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11452        if (CHIP_IS_E3(sc)) {
11453            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11454        }
11455
11456        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11457            ((port_is_idle_0 & 0x1) == 0x1) &&
11458            ((port_is_idle_1 & 0x1) == 0x1) &&
11459            (pgl_exp_rom2 == 0xffffffff) &&
11460            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11461            break;
11462        DELAY(1000);
11463    } while (cnt-- > 0);
11464
11465    if (cnt <= 0) {
11466        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11467                  "are still outstanding read requests after 1s! "
11468                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11469                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11470              sr_cnt, blk_cnt, port_is_idle_0,
11471              port_is_idle_1, pgl_exp_rom2);
11472        return (-1);
11473    }
11474
11475    mb();
11476
11477    /* Close gates #2, #3 and #4 */
11478    bxe_set_234_gates(sc, TRUE);
11479
11480    /* Poll for IGU VQs for 57712 and newer chips */
11481    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11482        return (-1);
11483    }
11484
11485    /* XXX indicate that "process kill" is in progress to MCP */
11486
11487    /* clear "unprepared" bit */
11488    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11489    mb();
11490
11491    /* Make sure all is written to the chip before the reset */
11492    wmb();
11493
11494    /*
11495     * Wait for 1ms to empty GLUE and PCI-E core queues,
11496     * PSWHST, GRC and PSWRD Tetris buffer.
11497     */
11498    DELAY(1000);
11499
11500    /* Prepare to chip reset: */
11501    /* MCP */
11502    if (global) {
11503        bxe_reset_mcp_prep(sc, &val);
11504    }
11505
11506    /* PXP */
11507    bxe_pxp_prep(sc);
11508    mb();
11509
11510    /* reset the chip */
11511    bxe_process_kill_chip_reset(sc, global);
11512    mb();
11513
11514    /* clear errors in PGB */
11515    if (!CHIP_IS_E1(sc))
11516        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11517
11518    /* Recover after reset: */
11519    /* MCP */
11520    if (global && bxe_reset_mcp_comp(sc, val)) {
11521        return (-1);
11522    }
11523
11524    /* XXX add resetting the NO_MCP mode DB here */
11525
11526    /* Open the gates #2, #3 and #4 */
11527    bxe_set_234_gates(sc, FALSE);
11528
11529    /* XXX
11530     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11531     * re-enable attentions
11532     */
11533
11534    return (0);
11535}
11536
11537static int
11538bxe_leader_reset(struct bxe_softc *sc)
11539{
11540    int rc = 0;
11541    uint8_t global = bxe_reset_is_global(sc);
11542    uint32_t load_code;
11543
11544    /*
11545     * If not going to reset MCP, load "fake" driver to reset HW while
11546     * driver is owner of the HW.
11547     */
11548    if (!global && !BXE_NOMCP(sc)) {
11549        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11550                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11551        if (!load_code) {
11552            BLOGE(sc, "MCP response failure, aborting\n");
11553            rc = -1;
11554            goto exit_leader_reset;
11555        }
11556
11557        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11558            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11559            BLOGE(sc, "MCP unexpected response, aborting\n");
11560            rc = -1;
11561            goto exit_leader_reset2;
11562        }
11563
11564        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11565        if (!load_code) {
11566            BLOGE(sc, "MCP response failure, aborting\n");
11567            rc = -1;
11568            goto exit_leader_reset2;
11569        }
11570    }
11571
11572    /* try to recover after the failure */
11573    if (bxe_process_kill(sc, global)) {
11574        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11575        rc = -1;
11576        goto exit_leader_reset2;
11577    }
11578
11579    /*
11580     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11581     * state.
11582     */
11583    bxe_set_reset_done(sc);
11584    if (global) {
11585        bxe_clear_reset_global(sc);
11586    }
11587
11588exit_leader_reset2:
11589
11590    /* unload "fake driver" if it was loaded */
11591    if (!global && !BXE_NOMCP(sc)) {
11592        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11593        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11594    }
11595
11596exit_leader_reset:
11597
11598    sc->is_leader = 0;
11599    bxe_release_leader_lock(sc);
11600
11601    mb();
11602    return (rc);
11603}
11604
11605/*
11606 * prepare INIT transition, parameters configured:
11607 *   - HC configuration
11608 *   - Queue's CDU context
11609 */
11610static void
11611bxe_pf_q_prep_init(struct bxe_softc               *sc,
11612                   struct bxe_fastpath            *fp,
11613                   struct ecore_queue_init_params *init_params)
11614{
11615    uint8_t cos;
11616    int cxt_index, cxt_offset;
11617
11618    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11619    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11620
11621    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11622    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11623
11624    /* HC rate */
11625    init_params->rx.hc_rate =
11626        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11627    init_params->tx.hc_rate =
11628        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11629
11630    /* FW SB ID */
11631    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11632
11633    /* CQ index among the SB indices */
11634    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11635    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11636
11637    /* set maximum number of COSs supported by this queue */
11638    init_params->max_cos = sc->max_cos;
11639
11640    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11641          fp->index, init_params->max_cos);
11642
11643    /* set the context pointers queue object */
11644    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11645        /* XXX change index/cid here if ever support multiple tx CoS */
11646        /* fp->txdata[cos]->cid */
11647        cxt_index = fp->index / ILT_PAGE_CIDS;
11648        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11649        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11650    }
11651}
11652
11653/* set flags that are common for the Tx-only and not normal connections */
11654static unsigned long
11655bxe_get_common_flags(struct bxe_softc    *sc,
11656                     struct bxe_fastpath *fp,
11657                     uint8_t             zero_stats)
11658{
11659    unsigned long flags = 0;
11660
11661    /* PF driver will always initialize the Queue to an ACTIVE state */
11662    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11663
11664    /*
11665     * tx only connections collect statistics (on the same index as the
11666     * parent connection). The statistics are zeroed when the parent
11667     * connection is initialized.
11668     */
11669
11670    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11671    if (zero_stats) {
11672        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11673    }
11674
11675    /*
11676     * tx only connections can support tx-switching, though their
11677     * CoS-ness doesn't survive the loopback
11678     */
11679    if (sc->flags & BXE_TX_SWITCHING) {
11680        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11681    }
11682
11683    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11684
11685    return (flags);
11686}
11687
11688static unsigned long
11689bxe_get_q_flags(struct bxe_softc    *sc,
11690                struct bxe_fastpath *fp,
11691                uint8_t             leading)
11692{
11693    unsigned long flags = 0;
11694
11695    if (IS_MF_SD(sc)) {
11696        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11697    }
11698
11699    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11700        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11701        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11702#if 0
11703        if (fp->mode == TPA_MODE_GRO)
11704            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11705#endif
11706    }
11707
11708    if (leading) {
11709        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11710        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11711    }
11712
11713    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11714
11715#if 0
11716    /* configure silent vlan removal */
11717    if (IS_MF_AFEX(sc)) {
11718        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11719    }
11720#endif
11721
11722    /* merge with common flags */
11723    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11724}
11725
11726static void
11727bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11728                      struct bxe_fastpath               *fp,
11729                      struct ecore_general_setup_params *gen_init,
11730                      uint8_t                           cos)
11731{
11732    gen_init->stat_id = bxe_stats_id(fp);
11733    gen_init->spcl_id = fp->cl_id;
11734    gen_init->mtu = sc->mtu;
11735    gen_init->cos = cos;
11736}
11737
11738static void
11739bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11740                 struct bxe_fastpath           *fp,
11741                 struct rxq_pause_params       *pause,
11742                 struct ecore_rxq_setup_params *rxq_init)
11743{
11744    uint8_t max_sge = 0;
11745    uint16_t sge_sz = 0;
11746    uint16_t tpa_agg_size = 0;
11747
11748    pause->sge_th_lo = SGE_TH_LO(sc);
11749    pause->sge_th_hi = SGE_TH_HI(sc);
11750
11751    /* validate SGE ring has enough to cross high threshold */
11752    if (sc->dropless_fc &&
11753            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11754            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11755        BLOGW(sc, "sge ring threshold limit\n");
11756    }
11757
11758    /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11759    tpa_agg_size = (2 * sc->mtu);
11760    if (tpa_agg_size < sc->max_aggregation_size) {
11761        tpa_agg_size = sc->max_aggregation_size;
11762    }
11763
11764    max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11765    max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11766                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11767    sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11768
11769    /* pause - not for e1 */
11770    if (!CHIP_IS_E1(sc)) {
11771        pause->bd_th_lo = BD_TH_LO(sc);
11772        pause->bd_th_hi = BD_TH_HI(sc);
11773
11774        pause->rcq_th_lo = RCQ_TH_LO(sc);
11775        pause->rcq_th_hi = RCQ_TH_HI(sc);
11776
11777        /* validate rings have enough entries to cross high thresholds */
11778        if (sc->dropless_fc &&
11779            pause->bd_th_hi + FW_PREFETCH_CNT >
11780            sc->rx_ring_size) {
11781            BLOGW(sc, "rx bd ring threshold limit\n");
11782        }
11783
11784        if (sc->dropless_fc &&
11785            pause->rcq_th_hi + FW_PREFETCH_CNT >
11786            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11787            BLOGW(sc, "rcq ring threshold limit\n");
11788        }
11789
11790        pause->pri_map = 1;
11791    }
11792
11793    /* rxq setup */
11794    rxq_init->dscr_map   = fp->rx_dma.paddr;
11795    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11796    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11797    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11798
11799    /*
11800     * This should be a maximum number of data bytes that may be
11801     * placed on the BD (not including paddings).
11802     */
11803    rxq_init->buf_sz = (fp->rx_buf_size -
11804                        IP_HEADER_ALIGNMENT_PADDING);
11805
11806    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11807    rxq_init->tpa_agg_sz      = tpa_agg_size;
11808    rxq_init->sge_buf_sz      = sge_sz;
11809    rxq_init->max_sges_pkt    = max_sge;
11810    rxq_init->rss_engine_id   = SC_FUNC(sc);
11811    rxq_init->mcast_engine_id = SC_FUNC(sc);
11812
11813    /*
11814     * Maximum number or simultaneous TPA aggregation for this Queue.
11815     * For PF Clients it should be the maximum available number.
11816     * VF driver(s) may want to define it to a smaller value.
11817     */
11818    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11819
11820    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11821    rxq_init->fw_sb_id = fp->fw_sb_id;
11822
11823    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11824
11825    /*
11826     * configure silent vlan removal
11827     * if multi function mode is afex, then mask default vlan
11828     */
11829    if (IS_MF_AFEX(sc)) {
11830        rxq_init->silent_removal_value =
11831            sc->devinfo.mf_info.afex_def_vlan_tag;
11832        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11833    }
11834}
11835
11836static void
11837bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11838                 struct bxe_fastpath           *fp,
11839                 struct ecore_txq_setup_params *txq_init,
11840                 uint8_t                       cos)
11841{
11842    /*
11843     * XXX If multiple CoS is ever supported then each fastpath structure
11844     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11845     * fp->txdata[cos]->tx_dma.paddr;
11846     */
11847    txq_init->dscr_map     = fp->tx_dma.paddr;
11848    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11849    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11850    txq_init->fw_sb_id     = fp->fw_sb_id;
11851
11852    /*
11853     * set the TSS leading client id for TX classfication to the
11854     * leading RSS client id
11855     */
11856    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11857}
11858
11859/*
11860 * This function performs 2 steps in a queue state machine:
11861 *   1) RESET->INIT
11862 *   2) INIT->SETUP
11863 */
11864static int
11865bxe_setup_queue(struct bxe_softc    *sc,
11866                struct bxe_fastpath *fp,
11867                uint8_t             leading)
11868{
11869    struct ecore_queue_state_params q_params = { NULL };
11870    struct ecore_queue_setup_params *setup_params =
11871                        &q_params.params.setup;
11872#if 0
11873    struct ecore_queue_setup_tx_only_params *tx_only_params =
11874                        &q_params.params.tx_only;
11875    uint8_t tx_index;
11876#endif
11877    int rc;
11878
11879    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11880
11881    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11882
11883    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11884
11885    /* we want to wait for completion in this context */
11886    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11887
11888    /* prepare the INIT parameters */
11889    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11890
11891    /* Set the command */
11892    q_params.cmd = ECORE_Q_CMD_INIT;
11893
11894    /* Change the state to INIT */
11895    rc = ecore_queue_state_change(sc, &q_params);
11896    if (rc) {
11897        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11898        return (rc);
11899    }
11900
11901    BLOGD(sc, DBG_LOAD, "init complete\n");
11902
11903    /* now move the Queue to the SETUP state */
11904    memset(setup_params, 0, sizeof(*setup_params));
11905
11906    /* set Queue flags */
11907    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11908
11909    /* set general SETUP parameters */
11910    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11911                          FIRST_TX_COS_INDEX);
11912
11913    bxe_pf_rx_q_prep(sc, fp,
11914                     &setup_params->pause_params,
11915                     &setup_params->rxq_params);
11916
11917    bxe_pf_tx_q_prep(sc, fp,
11918                     &setup_params->txq_params,
11919                     FIRST_TX_COS_INDEX);
11920
11921    /* Set the command */
11922    q_params.cmd = ECORE_Q_CMD_SETUP;
11923
11924    /* change the state to SETUP */
11925    rc = ecore_queue_state_change(sc, &q_params);
11926    if (rc) {
11927        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11928        return (rc);
11929    }
11930
11931#if 0
11932    /* loop through the relevant tx-only indices */
11933    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11934         tx_index < sc->max_cos;
11935         tx_index++) {
11936        /* prepare and send tx-only ramrod*/
11937        rc = bxe_setup_tx_only(sc, fp, &q_params,
11938                               tx_only_params, tx_index, leading);
11939        if (rc) {
11940            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11941                  fp->index, tx_index);
11942            return (rc);
11943        }
11944    }
11945#endif
11946
11947    return (rc);
11948}
11949
11950static int
11951bxe_setup_leading(struct bxe_softc *sc)
11952{
11953    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11954}
11955
11956static int
11957bxe_config_rss_pf(struct bxe_softc            *sc,
11958                  struct ecore_rss_config_obj *rss_obj,
11959                  uint8_t                     config_hash)
11960{
11961    struct ecore_config_rss_params params = { NULL };
11962    int i;
11963
11964    /*
11965     * Although RSS is meaningless when there is a single HW queue we
11966     * still need it enabled in order to have HW Rx hash generated.
11967     */
11968
11969    params.rss_obj = rss_obj;
11970
11971    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11972
11973    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11974
11975    /* RSS configuration */
11976    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11977    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11978    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11979    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11980    if (rss_obj->udp_rss_v4) {
11981        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11982    }
11983    if (rss_obj->udp_rss_v6) {
11984        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11985    }
11986
11987    /* Hash bits */
11988    params.rss_result_mask = MULTI_MASK;
11989
11990    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11991
11992    if (config_hash) {
11993        /* RSS keys */
11994        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11995            params.rss_key[i] = arc4random();
11996        }
11997
11998        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11999    }
12000
12001    return (ecore_config_rss(sc, &params));
12002}
12003
12004static int
12005bxe_config_rss_eth(struct bxe_softc *sc,
12006                   uint8_t          config_hash)
12007{
12008    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12009}
12010
12011static int
12012bxe_init_rss_pf(struct bxe_softc *sc)
12013{
12014    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12015    int i;
12016
12017    /*
12018     * Prepare the initial contents of the indirection table if
12019     * RSS is enabled
12020     */
12021    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12022        sc->rss_conf_obj.ind_table[i] =
12023            (sc->fp->cl_id + (i % num_eth_queues));
12024    }
12025
12026    if (sc->udp_rss) {
12027        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12028    }
12029
12030    /*
12031     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12032     * per-port, so if explicit configuration is needed, do it only
12033     * for a PMF.
12034     *
12035     * For 57712 and newer it's a per-function configuration.
12036     */
12037    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12038}
12039
12040static int
12041bxe_set_mac_one(struct bxe_softc          *sc,
12042                uint8_t                   *mac,
12043                struct ecore_vlan_mac_obj *obj,
12044                uint8_t                   set,
12045                int                       mac_type,
12046                unsigned long             *ramrod_flags)
12047{
12048    struct ecore_vlan_mac_ramrod_params ramrod_param;
12049    int rc;
12050
12051    memset(&ramrod_param, 0, sizeof(ramrod_param));
12052
12053    /* fill in general parameters */
12054    ramrod_param.vlan_mac_obj = obj;
12055    ramrod_param.ramrod_flags = *ramrod_flags;
12056
12057    /* fill a user request section if needed */
12058    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12059        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12060
12061        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12062
12063        /* Set the command: ADD or DEL */
12064        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12065                                            ECORE_VLAN_MAC_DEL;
12066    }
12067
12068    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12069
12070    if (rc == ECORE_EXISTS) {
12071        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12072        /* do not treat adding same MAC as error */
12073        rc = 0;
12074    } else if (rc < 0) {
12075        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12076    }
12077
12078    return (rc);
12079}
12080
12081static int
12082bxe_set_eth_mac(struct bxe_softc *sc,
12083                uint8_t          set)
12084{
12085    unsigned long ramrod_flags = 0;
12086
12087    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12088
12089    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12090
12091    /* Eth MAC is set on RSS leading client (fp[0]) */
12092    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12093                            &sc->sp_objs->mac_obj,
12094                            set, ECORE_ETH_MAC, &ramrod_flags));
12095}
12096
12097#if 0
12098static void
12099bxe_update_max_mf_config(struct bxe_softc *sc,
12100                         uint32_t         value)
12101{
12102    /* load old values */
12103    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12104
12105    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12106        /* leave all but MAX value */
12107        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12108
12109        /* set new MAX value */
12110        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12111                   FUNC_MF_CFG_MAX_BW_MASK);
12112
12113        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12114    }
12115}
12116#endif
12117
12118static int
12119bxe_get_cur_phy_idx(struct bxe_softc *sc)
12120{
12121    uint32_t sel_phy_idx = 0;
12122
12123    if (sc->link_params.num_phys <= 1) {
12124        return (ELINK_INT_PHY);
12125    }
12126
12127    if (sc->link_vars.link_up) {
12128        sel_phy_idx = ELINK_EXT_PHY1;
12129        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12130        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12131            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12132             ELINK_SUPPORTED_FIBRE))
12133            sel_phy_idx = ELINK_EXT_PHY2;
12134    } else {
12135        switch (elink_phy_selection(&sc->link_params)) {
12136        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12137        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12138        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12139               sel_phy_idx = ELINK_EXT_PHY1;
12140               break;
12141        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12142        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12143               sel_phy_idx = ELINK_EXT_PHY2;
12144               break;
12145        }
12146    }
12147
12148    return (sel_phy_idx);
12149}
12150
12151static int
12152bxe_get_link_cfg_idx(struct bxe_softc *sc)
12153{
12154    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12155
12156    /*
12157     * The selected activated PHY is always after swapping (in case PHY
12158     * swapping is enabled). So when swapping is enabled, we need to reverse
12159     * the configuration
12160     */
12161
12162    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12163        if (sel_phy_idx == ELINK_EXT_PHY1)
12164            sel_phy_idx = ELINK_EXT_PHY2;
12165        else if (sel_phy_idx == ELINK_EXT_PHY2)
12166            sel_phy_idx = ELINK_EXT_PHY1;
12167    }
12168
12169    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12170}
12171
12172static void
12173bxe_set_requested_fc(struct bxe_softc *sc)
12174{
12175    /*
12176     * Initialize link parameters structure variables
12177     * It is recommended to turn off RX FC for jumbo frames
12178     * for better performance
12179     */
12180    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12181        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12182    } else {
12183        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12184    }
12185}
12186
12187static void
12188bxe_calc_fc_adv(struct bxe_softc *sc)
12189{
12190    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12191    switch (sc->link_vars.ieee_fc &
12192            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12193    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12194    default:
12195        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12196                                           ADVERTISED_Pause);
12197        break;
12198
12199    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12200        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12201                                          ADVERTISED_Pause);
12202        break;
12203
12204    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12205        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12206        break;
12207    }
12208}
12209
12210static uint16_t
12211bxe_get_mf_speed(struct bxe_softc *sc)
12212{
12213    uint16_t line_speed = sc->link_vars.line_speed;
12214    if (IS_MF(sc)) {
12215        uint16_t maxCfg =
12216            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12217
12218        /* calculate the current MAX line speed limit for the MF devices */
12219        if (IS_MF_SI(sc)) {
12220            line_speed = (line_speed * maxCfg) / 100;
12221        } else { /* SD mode */
12222            uint16_t vn_max_rate = maxCfg * 100;
12223
12224            if (vn_max_rate < line_speed) {
12225                line_speed = vn_max_rate;
12226            }
12227        }
12228    }
12229
12230    return (line_speed);
12231}
12232
12233static void
12234bxe_fill_report_data(struct bxe_softc            *sc,
12235                     struct bxe_link_report_data *data)
12236{
12237    uint16_t line_speed = bxe_get_mf_speed(sc);
12238
12239    memset(data, 0, sizeof(*data));
12240
12241    /* fill the report data with the effective line speed */
12242    data->line_speed = line_speed;
12243
12244    /* Link is down */
12245    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12246        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12247    }
12248
12249    /* Full DUPLEX */
12250    if (sc->link_vars.duplex == DUPLEX_FULL) {
12251        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12252    }
12253
12254    /* Rx Flow Control is ON */
12255    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12256        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12257    }
12258
12259    /* Tx Flow Control is ON */
12260    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12261        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12262    }
12263}
12264
12265/* report link status to OS, should be called under phy_lock */
12266static void
12267bxe_link_report_locked(struct bxe_softc *sc)
12268{
12269    struct bxe_link_report_data cur_data;
12270
12271    /* reread mf_cfg */
12272    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12273        bxe_read_mf_cfg(sc);
12274    }
12275
12276    /* Read the current link report info */
12277    bxe_fill_report_data(sc, &cur_data);
12278
12279    /* Don't report link down or exactly the same link status twice */
12280    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12281        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12282                      &sc->last_reported_link.link_report_flags) &&
12283         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12284                      &cur_data.link_report_flags))) {
12285        return;
12286    }
12287
12288    sc->link_cnt++;
12289
12290    /* report new link params and remember the state for the next time */
12291    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12292
12293    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12294                     &cur_data.link_report_flags)) {
12295        if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12296        BLOGI(sc, "NIC Link is Down\n");
12297    } else {
12298        const char *duplex;
12299        const char *flow;
12300
12301        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12302                                   &cur_data.link_report_flags)) {
12303            duplex = "full";
12304        } else {
12305            duplex = "half";
12306        }
12307
12308        /*
12309         * Handle the FC at the end so that only these flags would be
12310         * possibly set. This way we may easily check if there is no FC
12311         * enabled.
12312         */
12313        if (cur_data.link_report_flags) {
12314            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12315                             &cur_data.link_report_flags) &&
12316                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12317                             &cur_data.link_report_flags)) {
12318                flow = "ON - receive & transmit";
12319            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12320                                    &cur_data.link_report_flags) &&
12321                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12322                                     &cur_data.link_report_flags)) {
12323                flow = "ON - receive";
12324            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12325                                     &cur_data.link_report_flags) &&
12326                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12327                                    &cur_data.link_report_flags)) {
12328                flow = "ON - transmit";
12329            } else {
12330                flow = "none"; /* possible? */
12331            }
12332        } else {
12333            flow = "none";
12334        }
12335
12336        if_link_state_change(sc->ifp, LINK_STATE_UP);
12337        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12338              cur_data.line_speed, duplex, flow);
12339    }
12340}
12341
12342static void
12343bxe_link_report(struct bxe_softc *sc)
12344{
12345    bxe_acquire_phy_lock(sc);
12346    bxe_link_report_locked(sc);
12347    bxe_release_phy_lock(sc);
12348}
12349
12350static void
12351bxe_link_status_update(struct bxe_softc *sc)
12352{
12353    if (sc->state != BXE_STATE_OPEN) {
12354        return;
12355    }
12356
12357#if 0
12358    /* read updated dcb configuration */
12359    if (IS_PF(sc))
12360        bxe_dcbx_pmf_update(sc);
12361#endif
12362
12363    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12364        elink_link_status_update(&sc->link_params, &sc->link_vars);
12365    } else {
12366        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12367                                  ELINK_SUPPORTED_10baseT_Full |
12368                                  ELINK_SUPPORTED_100baseT_Half |
12369                                  ELINK_SUPPORTED_100baseT_Full |
12370                                  ELINK_SUPPORTED_1000baseT_Full |
12371                                  ELINK_SUPPORTED_2500baseX_Full |
12372                                  ELINK_SUPPORTED_10000baseT_Full |
12373                                  ELINK_SUPPORTED_TP |
12374                                  ELINK_SUPPORTED_FIBRE |
12375                                  ELINK_SUPPORTED_Autoneg |
12376                                  ELINK_SUPPORTED_Pause |
12377                                  ELINK_SUPPORTED_Asym_Pause);
12378        sc->port.advertising[0] = sc->port.supported[0];
12379
12380        sc->link_params.sc                = sc;
12381        sc->link_params.port              = SC_PORT(sc);
12382        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12383        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12384        sc->link_params.req_line_speed[0] = SPEED_10000;
12385        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12386        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12387
12388        if (CHIP_REV_IS_FPGA(sc)) {
12389            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12390            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12391            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12392                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12393        } else {
12394            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12395            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12396            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12397                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12398        }
12399
12400        sc->link_vars.link_up = 1;
12401
12402        sc->link_vars.duplex    = DUPLEX_FULL;
12403        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12404
12405        if (IS_PF(sc)) {
12406            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12407            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12408            bxe_link_report(sc);
12409        }
12410    }
12411
12412    if (IS_PF(sc)) {
12413        if (sc->link_vars.link_up) {
12414            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12415        } else {
12416            bxe_stats_handle(sc, STATS_EVENT_STOP);
12417        }
12418        bxe_link_report(sc);
12419    } else {
12420        bxe_link_report(sc);
12421        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12422    }
12423}
12424
12425static int
12426bxe_initial_phy_init(struct bxe_softc *sc,
12427                     int              load_mode)
12428{
12429    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12430    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12431    struct elink_params *lp = &sc->link_params;
12432
12433    bxe_set_requested_fc(sc);
12434
12435    if (CHIP_REV_IS_SLOW(sc)) {
12436        uint32_t bond = CHIP_BOND_ID(sc);
12437        uint32_t feat = 0;
12438
12439        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12440            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12441        } else if (bond & 0x4) {
12442            if (CHIP_IS_E3(sc)) {
12443                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12444            } else {
12445                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12446            }
12447        } else if (bond & 0x8) {
12448            if (CHIP_IS_E3(sc)) {
12449                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12450            } else {
12451                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12452            }
12453        }
12454
12455        /* disable EMAC for E3 and above */
12456        if (bond & 0x2) {
12457            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12458        }
12459
12460        sc->link_params.feature_config_flags |= feat;
12461    }
12462
12463    bxe_acquire_phy_lock(sc);
12464
12465    if (load_mode == LOAD_DIAG) {
12466        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12467        /* Prefer doing PHY loopback at 10G speed, if possible */
12468        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12469            if (lp->speed_cap_mask[cfg_idx] &
12470                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12471                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12472            } else {
12473                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12474            }
12475        }
12476    }
12477
12478    if (load_mode == LOAD_LOOPBACK_EXT) {
12479        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12480    }
12481
12482    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12483
12484    bxe_release_phy_lock(sc);
12485
12486    bxe_calc_fc_adv(sc);
12487
12488    if (sc->link_vars.link_up) {
12489        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12490        bxe_link_report(sc);
12491    }
12492
12493    if (!CHIP_REV_IS_SLOW(sc)) {
12494        bxe_periodic_start(sc);
12495    }
12496
12497    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12498    return (rc);
12499}
12500
12501/* must be called under IF_ADDR_LOCK */
12502
12503static int
12504bxe_set_mc_list(struct bxe_softc *sc)
12505{
12506    struct ecore_mcast_ramrod_params rparam = { NULL };
12507    int rc = 0;
12508    int mc_count = 0;
12509    int mcnt, i;
12510    struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12511    unsigned char *mta;
12512    if_t ifp = sc->ifp;
12513
12514    mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12515    if (!mc_count)
12516        return (0);
12517
12518    mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12519            mc_count, M_DEVBUF, M_NOWAIT);
12520
12521    if(mta == NULL) {
12522        BLOGE(sc, "Failed to allocate temp mcast list\n");
12523        return (-1);
12524    }
12525    bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12526
12527    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12528    mc_mac_start = mc_mac;
12529
12530    if (!mc_mac) {
12531        free(mta, M_DEVBUF);
12532        BLOGE(sc, "Failed to allocate temp mcast list\n");
12533        return (-1);
12534    }
12535    bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12536
12537    /* mta and mcnt not expected to be  different */
12538    if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12539
12540
12541    rparam.mcast_obj = &sc->mcast_obj;
12542    ECORE_LIST_INIT(&rparam.mcast_list);
12543
12544    for(i=0; i< mcnt; i++) {
12545
12546        mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12547        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12548
12549        BLOGD(sc, DBG_LOAD,
12550              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12551              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12552              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12553
12554        mc_mac++;
12555    }
12556    rparam.mcast_list_len = mc_count;
12557
12558    BXE_MCAST_LOCK(sc);
12559
12560    /* first, clear all configured multicast MACs */
12561    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12562    if (rc < 0) {
12563        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12564        BXE_MCAST_UNLOCK(sc);
12565    	free(mc_mac_start, M_DEVBUF);
12566        free(mta, M_DEVBUF);
12567        return (rc);
12568    }
12569
12570    /* Now add the new MACs */
12571    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12572    if (rc < 0) {
12573        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12574    }
12575
12576    BXE_MCAST_UNLOCK(sc);
12577
12578    free(mc_mac_start, M_DEVBUF);
12579    free(mta, M_DEVBUF);
12580
12581    return (rc);
12582}
12583
12584static int
12585bxe_set_uc_list(struct bxe_softc *sc)
12586{
12587    if_t ifp = sc->ifp;
12588    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12589    struct ifaddr *ifa;
12590    unsigned long ramrod_flags = 0;
12591    int rc;
12592
12593#if __FreeBSD_version < 800000
12594    IF_ADDR_LOCK(ifp);
12595#else
12596    if_addr_rlock(ifp);
12597#endif
12598
12599    /* first schedule a cleanup up of old configuration */
12600    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12601    if (rc < 0) {
12602        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12603#if __FreeBSD_version < 800000
12604        IF_ADDR_UNLOCK(ifp);
12605#else
12606        if_addr_runlock(ifp);
12607#endif
12608        return (rc);
12609    }
12610
12611    ifa = if_getifaddr(ifp); /* XXX Is this structure */
12612    while (ifa) {
12613        if (ifa->ifa_addr->sa_family != AF_LINK) {
12614            ifa = TAILQ_NEXT(ifa, ifa_link);
12615            continue;
12616        }
12617
12618        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12619                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12620        if (rc == -EEXIST) {
12621            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12622            /* do not treat adding same MAC as an error */
12623            rc = 0;
12624        } else if (rc < 0) {
12625            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12626#if __FreeBSD_version < 800000
12627            IF_ADDR_UNLOCK(ifp);
12628#else
12629            if_addr_runlock(ifp);
12630#endif
12631            return (rc);
12632        }
12633
12634        ifa = TAILQ_NEXT(ifa, ifa_link);
12635    }
12636
12637#if __FreeBSD_version < 800000
12638    IF_ADDR_UNLOCK(ifp);
12639#else
12640    if_addr_runlock(ifp);
12641#endif
12642
12643    /* Execute the pending commands */
12644    bit_set(&ramrod_flags, RAMROD_CONT);
12645    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12646                            ECORE_UC_LIST_MAC, &ramrod_flags));
12647}
12648
12649static void
12650bxe_set_rx_mode(struct bxe_softc *sc)
12651{
12652    if_t ifp = sc->ifp;
12653    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12654
12655    if (sc->state != BXE_STATE_OPEN) {
12656        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12657        return;
12658    }
12659
12660    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12661
12662    if (if_getflags(ifp) & IFF_PROMISC) {
12663        rx_mode = BXE_RX_MODE_PROMISC;
12664    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12665               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12666                CHIP_IS_E1(sc))) {
12667        rx_mode = BXE_RX_MODE_ALLMULTI;
12668    } else {
12669        if (IS_PF(sc)) {
12670            /* some multicasts */
12671            if (bxe_set_mc_list(sc) < 0) {
12672                rx_mode = BXE_RX_MODE_ALLMULTI;
12673            }
12674            if (bxe_set_uc_list(sc) < 0) {
12675                rx_mode = BXE_RX_MODE_PROMISC;
12676            }
12677        }
12678#if 0
12679        else {
12680            /*
12681             * Configuring mcast to a VF involves sleeping (when we
12682             * wait for the PF's response). Since this function is
12683             * called from a non sleepable context we must schedule
12684             * a work item for this purpose
12685             */
12686            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12687            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12688        }
12689#endif
12690    }
12691
12692    sc->rx_mode = rx_mode;
12693
12694    /* schedule the rx_mode command */
12695    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12696        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12697        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12698        return;
12699    }
12700
12701    if (IS_PF(sc)) {
12702        bxe_set_storm_rx_mode(sc);
12703    }
12704#if 0
12705    else {
12706        /*
12707         * Configuring mcast to a VF involves sleeping (when we
12708         * wait for the PF's response). Since this function is
12709         * called from a non sleepable context we must schedule
12710         * a work item for this purpose
12711         */
12712        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12713        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12714    }
12715#endif
12716
12717}
12718
12719
12720/* update flags in shmem */
12721static void
12722bxe_update_drv_flags(struct bxe_softc *sc,
12723                     uint32_t         flags,
12724                     uint32_t         set)
12725{
12726    uint32_t drv_flags;
12727
12728    if (SHMEM2_HAS(sc, drv_flags)) {
12729        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12730        drv_flags = SHMEM2_RD(sc, drv_flags);
12731
12732        if (set) {
12733            SET_FLAGS(drv_flags, flags);
12734        } else {
12735            RESET_FLAGS(drv_flags, flags);
12736        }
12737
12738        SHMEM2_WR(sc, drv_flags, drv_flags);
12739        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12740
12741        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12742    }
12743}
12744
12745/* periodic timer callout routine, only runs when the interface is up */
12746
12747static void
12748bxe_periodic_callout_func(void *xsc)
12749{
12750    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12751    int i;
12752
12753    if (!BXE_CORE_TRYLOCK(sc)) {
12754        /* just bail and try again next time */
12755
12756        if ((sc->state == BXE_STATE_OPEN) &&
12757            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12758            /* schedule the next periodic callout */
12759            callout_reset(&sc->periodic_callout, hz,
12760                          bxe_periodic_callout_func, sc);
12761        }
12762
12763        return;
12764    }
12765
12766    if ((sc->state != BXE_STATE_OPEN) ||
12767        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12768        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12769        BXE_CORE_UNLOCK(sc);
12770        return;
12771    }
12772
12773    /* Check for TX timeouts on any fastpath. */
12774    FOR_EACH_QUEUE(sc, i) {
12775        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12776            /* Ruh-Roh, chip was reset! */
12777            break;
12778        }
12779    }
12780
12781    if (!CHIP_REV_IS_SLOW(sc)) {
12782        /*
12783         * This barrier is needed to ensure the ordering between the writing
12784         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12785         * the reading here.
12786         */
12787        mb();
12788        if (sc->port.pmf) {
12789	    bxe_acquire_phy_lock(sc);
12790            elink_period_func(&sc->link_params, &sc->link_vars);
12791	    bxe_release_phy_lock(sc);
12792        }
12793    }
12794
12795    if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12796        int mb_idx = SC_FW_MB_IDX(sc);
12797        uint32_t drv_pulse;
12798        uint32_t mcp_pulse;
12799
12800        ++sc->fw_drv_pulse_wr_seq;
12801        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12802
12803        drv_pulse = sc->fw_drv_pulse_wr_seq;
12804        bxe_drv_pulse(sc);
12805
12806        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12807                     MCP_PULSE_SEQ_MASK);
12808
12809        /*
12810         * The delta between driver pulse and mcp response should
12811         * be 1 (before mcp response) or 0 (after mcp response).
12812         */
12813        if ((drv_pulse != mcp_pulse) &&
12814            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12815            /* someone lost a heartbeat... */
12816            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12817                  drv_pulse, mcp_pulse);
12818        }
12819    }
12820
12821    /* state is BXE_STATE_OPEN */
12822    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12823
12824#if 0
12825    /* sample VF bulletin board for new posts from PF */
12826    if (IS_VF(sc)) {
12827        bxe_sample_bulletin(sc);
12828    }
12829#endif
12830
12831    BXE_CORE_UNLOCK(sc);
12832
12833    if ((sc->state == BXE_STATE_OPEN) &&
12834        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12835        /* schedule the next periodic callout */
12836        callout_reset(&sc->periodic_callout, hz,
12837                      bxe_periodic_callout_func, sc);
12838    }
12839}
12840
12841static void
12842bxe_periodic_start(struct bxe_softc *sc)
12843{
12844    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12845    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12846}
12847
12848static void
12849bxe_periodic_stop(struct bxe_softc *sc)
12850{
12851    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12852    callout_drain(&sc->periodic_callout);
12853}
12854
12855/* start the controller */
12856static __noinline int
12857bxe_nic_load(struct bxe_softc *sc,
12858             int              load_mode)
12859{
12860    uint32_t val;
12861    int load_code = 0;
12862    int i, rc = 0;
12863
12864    BXE_CORE_LOCK_ASSERT(sc);
12865
12866    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12867
12868    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12869
12870    if (IS_PF(sc)) {
12871        /* must be called before memory allocation and HW init */
12872        bxe_ilt_set_info(sc);
12873    }
12874
12875    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12876
12877    bxe_set_fp_rx_buf_size(sc);
12878
12879    if (bxe_alloc_fp_buffers(sc) != 0) {
12880        BLOGE(sc, "Failed to allocate fastpath memory\n");
12881        sc->state = BXE_STATE_CLOSED;
12882        rc = ENOMEM;
12883        goto bxe_nic_load_error0;
12884    }
12885
12886    if (bxe_alloc_mem(sc) != 0) {
12887        sc->state = BXE_STATE_CLOSED;
12888        rc = ENOMEM;
12889        goto bxe_nic_load_error0;
12890    }
12891
12892    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12893        sc->state = BXE_STATE_CLOSED;
12894        rc = ENOMEM;
12895        goto bxe_nic_load_error0;
12896    }
12897
12898    if (IS_PF(sc)) {
12899        /* set pf load just before approaching the MCP */
12900        bxe_set_pf_load(sc);
12901
12902        /* if MCP exists send load request and analyze response */
12903        if (!BXE_NOMCP(sc)) {
12904            /* attempt to load pf */
12905            if (bxe_nic_load_request(sc, &load_code) != 0) {
12906                sc->state = BXE_STATE_CLOSED;
12907                rc = ENXIO;
12908                goto bxe_nic_load_error1;
12909            }
12910
12911            /* what did the MCP say? */
12912            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12913                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12914                sc->state = BXE_STATE_CLOSED;
12915                rc = ENXIO;
12916                goto bxe_nic_load_error2;
12917            }
12918        } else {
12919            BLOGI(sc, "Device has no MCP!\n");
12920            load_code = bxe_nic_load_no_mcp(sc);
12921        }
12922
12923        /* mark PMF if applicable */
12924        bxe_nic_load_pmf(sc, load_code);
12925
12926        /* Init Function state controlling object */
12927        bxe_init_func_obj(sc);
12928
12929        /* Initialize HW */
12930        if (bxe_init_hw(sc, load_code) != 0) {
12931            BLOGE(sc, "HW init failed\n");
12932            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12933            sc->state = BXE_STATE_CLOSED;
12934            rc = ENXIO;
12935            goto bxe_nic_load_error2;
12936        }
12937    }
12938
12939    /* set ALWAYS_ALIVE bit in shmem */
12940    sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12941    bxe_drv_pulse(sc);
12942    sc->flags |= BXE_NO_PULSE;
12943
12944    /* attach interrupts */
12945    if (bxe_interrupt_attach(sc) != 0) {
12946        sc->state = BXE_STATE_CLOSED;
12947        rc = ENXIO;
12948        goto bxe_nic_load_error2;
12949    }
12950
12951    bxe_nic_init(sc, load_code);
12952
12953    /* Init per-function objects */
12954    if (IS_PF(sc)) {
12955        bxe_init_objs(sc);
12956        // XXX bxe_iov_nic_init(sc);
12957
12958        /* set AFEX default VLAN tag to an invalid value */
12959        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12960        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12961
12962        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12963        rc = bxe_func_start(sc);
12964        if (rc) {
12965            BLOGE(sc, "Function start failed!\n");
12966            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12967            sc->state = BXE_STATE_ERROR;
12968            goto bxe_nic_load_error3;
12969        }
12970
12971        /* send LOAD_DONE command to MCP */
12972        if (!BXE_NOMCP(sc)) {
12973            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12974            if (!load_code) {
12975                BLOGE(sc, "MCP response failure, aborting\n");
12976                sc->state = BXE_STATE_ERROR;
12977                rc = ENXIO;
12978                goto bxe_nic_load_error3;
12979            }
12980        }
12981
12982        rc = bxe_setup_leading(sc);
12983        if (rc) {
12984            BLOGE(sc, "Setup leading failed!\n");
12985            sc->state = BXE_STATE_ERROR;
12986            goto bxe_nic_load_error3;
12987        }
12988
12989        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12990            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12991            if (rc) {
12992                BLOGE(sc, "Queue(%d) setup failed\n", i);
12993                sc->state = BXE_STATE_ERROR;
12994                goto bxe_nic_load_error3;
12995            }
12996        }
12997
12998        rc = bxe_init_rss_pf(sc);
12999        if (rc) {
13000            BLOGE(sc, "PF RSS init failed\n");
13001            sc->state = BXE_STATE_ERROR;
13002            goto bxe_nic_load_error3;
13003        }
13004    }
13005    /* XXX VF */
13006#if 0
13007    else { /* VF */
13008        FOR_EACH_ETH_QUEUE(sc, i) {
13009            rc = bxe_vfpf_setup_q(sc, i);
13010            if (rc) {
13011                BLOGE(sc, "Queue(%d) setup failed\n", i);
13012                sc->state = BXE_STATE_ERROR;
13013                goto bxe_nic_load_error3;
13014            }
13015        }
13016    }
13017#endif
13018
13019    /* now when Clients are configured we are ready to work */
13020    sc->state = BXE_STATE_OPEN;
13021
13022    /* Configure a ucast MAC */
13023    if (IS_PF(sc)) {
13024        rc = bxe_set_eth_mac(sc, TRUE);
13025    }
13026#if 0
13027    else { /* IS_VF(sc) */
13028        rc = bxe_vfpf_set_mac(sc);
13029    }
13030#endif
13031    if (rc) {
13032        BLOGE(sc, "Setting Ethernet MAC failed\n");
13033        sc->state = BXE_STATE_ERROR;
13034        goto bxe_nic_load_error3;
13035    }
13036
13037#if 0
13038    if (IS_PF(sc) && sc->pending_max) {
13039        /* for AFEX */
13040        bxe_update_max_mf_config(sc, sc->pending_max);
13041        sc->pending_max = 0;
13042    }
13043#endif
13044
13045    if (sc->port.pmf) {
13046        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13047        if (rc) {
13048            sc->state = BXE_STATE_ERROR;
13049            goto bxe_nic_load_error3;
13050        }
13051    }
13052
13053    sc->link_params.feature_config_flags &=
13054        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13055
13056    /* start fast path */
13057
13058    /* Initialize Rx filter */
13059    bxe_set_rx_mode(sc);
13060
13061    /* start the Tx */
13062    switch (/* XXX load_mode */LOAD_OPEN) {
13063    case LOAD_NORMAL:
13064    case LOAD_OPEN:
13065        break;
13066
13067    case LOAD_DIAG:
13068    case LOAD_LOOPBACK_EXT:
13069        sc->state = BXE_STATE_DIAG;
13070        break;
13071
13072    default:
13073        break;
13074    }
13075
13076    if (sc->port.pmf) {
13077        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13078    } else {
13079        bxe_link_status_update(sc);
13080    }
13081
13082    /* start the periodic timer callout */
13083    bxe_periodic_start(sc);
13084
13085    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13086        /* mark driver is loaded in shmem2 */
13087        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13088        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13089                  (val |
13090                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13091                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13092    }
13093
13094    /* wait for all pending SP commands to complete */
13095    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13096        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13097        bxe_periodic_stop(sc);
13098        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13099        return (ENXIO);
13100    }
13101
13102#if 0
13103    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13104    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13105        bxe_dcbx_init(sc, FALSE);
13106    }
13107#endif
13108
13109    /* Tell the stack the driver is running! */
13110    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13111
13112    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13113
13114    return (0);
13115
13116bxe_nic_load_error3:
13117
13118    if (IS_PF(sc)) {
13119        bxe_int_disable_sync(sc, 1);
13120
13121        /* clean out queued objects */
13122        bxe_squeeze_objects(sc);
13123    }
13124
13125    bxe_interrupt_detach(sc);
13126
13127bxe_nic_load_error2:
13128
13129    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13130        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13131        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13132    }
13133
13134    sc->port.pmf = 0;
13135
13136bxe_nic_load_error1:
13137
13138    /* clear pf_load status, as it was already set */
13139    if (IS_PF(sc)) {
13140        bxe_clear_pf_load(sc);
13141    }
13142
13143bxe_nic_load_error0:
13144
13145    bxe_free_fw_stats_mem(sc);
13146    bxe_free_fp_buffers(sc);
13147    bxe_free_mem(sc);
13148
13149    return (rc);
13150}
13151
13152static int
13153bxe_init_locked(struct bxe_softc *sc)
13154{
13155    int other_engine = SC_PATH(sc) ? 0 : 1;
13156    uint8_t other_load_status, load_status;
13157    uint8_t global = FALSE;
13158    int rc;
13159
13160    BXE_CORE_LOCK_ASSERT(sc);
13161
13162    /* check if the driver is already running */
13163    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13164        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13165        return (0);
13166    }
13167
13168    bxe_set_power_state(sc, PCI_PM_D0);
13169
13170    /*
13171     * If parity occurred during the unload, then attentions and/or
13172     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13173     * loaded on the current engine to complete the recovery. Parity recovery
13174     * is only relevant for PF driver.
13175     */
13176    if (IS_PF(sc)) {
13177        other_load_status = bxe_get_load_status(sc, other_engine);
13178        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13179
13180        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13181            bxe_chk_parity_attn(sc, &global, TRUE)) {
13182            do {
13183                /*
13184                 * If there are attentions and they are in global blocks, set
13185                 * the GLOBAL_RESET bit regardless whether it will be this
13186                 * function that will complete the recovery or not.
13187                 */
13188                if (global) {
13189                    bxe_set_reset_global(sc);
13190                }
13191
13192                /*
13193                 * Only the first function on the current engine should try
13194                 * to recover in open. In case of attentions in global blocks
13195                 * only the first in the chip should try to recover.
13196                 */
13197                if ((!load_status && (!global || !other_load_status)) &&
13198                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13199                    BLOGI(sc, "Recovered during init\n");
13200                    break;
13201                }
13202
13203                /* recovery has failed... */
13204                bxe_set_power_state(sc, PCI_PM_D3hot);
13205                sc->recovery_state = BXE_RECOVERY_FAILED;
13206
13207                BLOGE(sc, "Recovery flow hasn't properly "
13208                          "completed yet, try again later. "
13209                          "If you still see this message after a "
13210                          "few retries then power cycle is required.\n");
13211
13212                rc = ENXIO;
13213                goto bxe_init_locked_done;
13214            } while (0);
13215        }
13216    }
13217
13218    sc->recovery_state = BXE_RECOVERY_DONE;
13219
13220    rc = bxe_nic_load(sc, LOAD_OPEN);
13221
13222bxe_init_locked_done:
13223
13224    if (rc) {
13225        /* Tell the stack the driver is NOT running! */
13226        BLOGE(sc, "Initialization failed, "
13227                  "stack notified driver is NOT running!\n");
13228	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13229    }
13230
13231    return (rc);
13232}
13233
13234static int
13235bxe_stop_locked(struct bxe_softc *sc)
13236{
13237    BXE_CORE_LOCK_ASSERT(sc);
13238    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13239}
13240
13241/*
13242 * Handles controller initialization when called from an unlocked routine.
13243 * ifconfig calls this function.
13244 *
13245 * Returns:
13246 *   void
13247 */
13248static void
13249bxe_init(void *xsc)
13250{
13251    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13252
13253    BXE_CORE_LOCK(sc);
13254    bxe_init_locked(sc);
13255    BXE_CORE_UNLOCK(sc);
13256}
13257
13258static int
13259bxe_init_ifnet(struct bxe_softc *sc)
13260{
13261    if_t ifp;
13262    int capabilities;
13263
13264    /* ifconfig entrypoint for media type/status reporting */
13265    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13266                 bxe_ifmedia_update,
13267                 bxe_ifmedia_status);
13268
13269    /* set the default interface values */
13270    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13271    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13272    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13273
13274    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13275
13276    /* allocate the ifnet structure */
13277    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13278        BLOGE(sc, "Interface allocation failed!\n");
13279        return (ENXIO);
13280    }
13281
13282    if_setsoftc(ifp, sc);
13283    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13284    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13285    if_setioctlfn(ifp, bxe_ioctl);
13286    if_setstartfn(ifp, bxe_tx_start);
13287    if_setgetcounterfn(ifp, bxe_get_counter);
13288#if __FreeBSD_version >= 800000
13289    if_settransmitfn(ifp, bxe_tx_mq_start);
13290    if_setqflushfn(ifp, bxe_mq_flush);
13291#endif
13292#ifdef FreeBSD8_0
13293    if_settimer(ifp, 0);
13294#endif
13295    if_setinitfn(ifp, bxe_init);
13296    if_setmtu(ifp, sc->mtu);
13297    if_sethwassist(ifp, (CSUM_IP      |
13298                        CSUM_TCP      |
13299                        CSUM_UDP      |
13300                        CSUM_TSO      |
13301                        CSUM_TCP_IPV6 |
13302                        CSUM_UDP_IPV6));
13303
13304    capabilities =
13305#if __FreeBSD_version < 700000
13306        (IFCAP_VLAN_MTU       |
13307         IFCAP_VLAN_HWTAGGING |
13308         IFCAP_HWCSUM         |
13309         IFCAP_JUMBO_MTU      |
13310         IFCAP_LRO);
13311#else
13312        (IFCAP_VLAN_MTU       |
13313         IFCAP_VLAN_HWTAGGING |
13314         IFCAP_VLAN_HWTSO     |
13315         IFCAP_VLAN_HWFILTER  |
13316         IFCAP_VLAN_HWCSUM    |
13317         IFCAP_HWCSUM         |
13318         IFCAP_JUMBO_MTU      |
13319         IFCAP_LRO            |
13320         IFCAP_TSO4           |
13321         IFCAP_TSO6           |
13322         IFCAP_WOL_MAGIC);
13323#endif
13324    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13325    if_setbaudrate(ifp, IF_Gbps(10));
13326/* XXX */
13327    if_setsendqlen(ifp, sc->tx_ring_size);
13328    if_setsendqready(ifp);
13329/* XXX */
13330
13331    sc->ifp = ifp;
13332
13333    /* attach to the Ethernet interface list */
13334    ether_ifattach(ifp, sc->link_params.mac_addr);
13335
13336    return (0);
13337}
13338
13339static void
13340bxe_deallocate_bars(struct bxe_softc *sc)
13341{
13342    int i;
13343
13344    for (i = 0; i < MAX_BARS; i++) {
13345        if (sc->bar[i].resource != NULL) {
13346            bus_release_resource(sc->dev,
13347                                 SYS_RES_MEMORY,
13348                                 sc->bar[i].rid,
13349                                 sc->bar[i].resource);
13350            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13351                  i, PCIR_BAR(i));
13352        }
13353    }
13354}
13355
13356static int
13357bxe_allocate_bars(struct bxe_softc *sc)
13358{
13359    u_int flags;
13360    int i;
13361
13362    memset(sc->bar, 0, sizeof(sc->bar));
13363
13364    for (i = 0; i < MAX_BARS; i++) {
13365
13366        /* memory resources reside at BARs 0, 2, 4 */
13367        /* Run `pciconf -lb` to see mappings */
13368        if ((i != 0) && (i != 2) && (i != 4)) {
13369            continue;
13370        }
13371
13372        sc->bar[i].rid = PCIR_BAR(i);
13373
13374        flags = RF_ACTIVE;
13375        if (i == 0) {
13376            flags |= RF_SHAREABLE;
13377        }
13378
13379        if ((sc->bar[i].resource =
13380             bus_alloc_resource_any(sc->dev,
13381                                    SYS_RES_MEMORY,
13382                                    &sc->bar[i].rid,
13383                                    flags)) == NULL) {
13384#if 0
13385            /* BAR4 doesn't exist for E1 */
13386            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13387                  i, PCIR_BAR(i));
13388#endif
13389            return (0);
13390        }
13391
13392        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13393        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13394        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13395
13396        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13397              i, PCIR_BAR(i),
13398              (void *)rman_get_start(sc->bar[i].resource),
13399              (void *)rman_get_end(sc->bar[i].resource),
13400              rman_get_size(sc->bar[i].resource),
13401              (void *)sc->bar[i].kva);
13402    }
13403
13404    return (0);
13405}
13406
13407static void
13408bxe_get_function_num(struct bxe_softc *sc)
13409{
13410    uint32_t val = 0;
13411
13412    /*
13413     * Read the ME register to get the function number. The ME register
13414     * holds the relative-function number and absolute-function number. The
13415     * absolute-function number appears only in E2 and above. Before that
13416     * these bits always contained zero, therefore we cannot blindly use them.
13417     */
13418
13419    val = REG_RD(sc, BAR_ME_REGISTER);
13420
13421    sc->pfunc_rel =
13422        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13423    sc->path_id =
13424        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13425
13426    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13427        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13428    } else {
13429        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13430    }
13431
13432    BLOGD(sc, DBG_LOAD,
13433          "Relative function %d, Absolute function %d, Path %d\n",
13434          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13435}
13436
13437static uint32_t
13438bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13439{
13440    uint32_t shmem2_size;
13441    uint32_t offset;
13442    uint32_t mf_cfg_offset_value;
13443
13444    /* Non 57712 */
13445    offset = (SHMEM_RD(sc, func_mb) +
13446              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13447
13448    /* 57712 plus */
13449    if (sc->devinfo.shmem2_base != 0) {
13450        shmem2_size = SHMEM2_RD(sc, size);
13451        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13452            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13453            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13454                offset = mf_cfg_offset_value;
13455            }
13456        }
13457    }
13458
13459    return (offset);
13460}
13461
13462static uint32_t
13463bxe_pcie_capability_read(struct bxe_softc *sc,
13464                         int    reg,
13465                         int    width)
13466{
13467    int pcie_reg;
13468
13469    /* ensure PCIe capability is enabled */
13470    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13471        if (pcie_reg != 0) {
13472            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13473            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13474        }
13475    }
13476
13477    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13478
13479    return (0);
13480}
13481
13482static uint8_t
13483bxe_is_pcie_pending(struct bxe_softc *sc)
13484{
13485    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13486            PCIM_EXP_STA_TRANSACTION_PND);
13487}
13488
13489/*
13490 * Walk the PCI capabiites list for the device to find what features are
13491 * supported. These capabilites may be enabled/disabled by firmware so it's
13492 * best to walk the list rather than make assumptions.
13493 */
13494static void
13495bxe_probe_pci_caps(struct bxe_softc *sc)
13496{
13497    uint16_t link_status;
13498    int reg;
13499
13500    /* check if PCI Power Management is enabled */
13501    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13502        if (reg != 0) {
13503            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13504
13505            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13506            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13507        }
13508    }
13509
13510    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13511
13512    /* handle PCIe 2.0 workarounds for 57710 */
13513    if (CHIP_IS_E1(sc)) {
13514        /* workaround for 57710 errata E4_57710_27462 */
13515        sc->devinfo.pcie_link_speed =
13516            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13517
13518        /* workaround for 57710 errata E4_57710_27488 */
13519        sc->devinfo.pcie_link_width =
13520            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13521        if (sc->devinfo.pcie_link_speed > 1) {
13522            sc->devinfo.pcie_link_width =
13523                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13524        }
13525    } else {
13526        sc->devinfo.pcie_link_speed =
13527            (link_status & PCIM_LINK_STA_SPEED);
13528        sc->devinfo.pcie_link_width =
13529            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13530    }
13531
13532    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13533          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13534
13535    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13536    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13537
13538    /* check if MSI capability is enabled */
13539    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13540        if (reg != 0) {
13541            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13542
13543            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13544            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13545        }
13546    }
13547
13548    /* check if MSI-X capability is enabled */
13549    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13550        if (reg != 0) {
13551            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13552
13553            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13554            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13555        }
13556    }
13557}
13558
13559static int
13560bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13561{
13562    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13563    uint32_t val;
13564
13565    /* get the outer vlan if we're in switch-dependent mode */
13566
13567    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13568    mf_info->ext_id = (uint16_t)val;
13569
13570    mf_info->multi_vnics_mode = 1;
13571
13572    if (!VALID_OVLAN(mf_info->ext_id)) {
13573        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13574        return (1);
13575    }
13576
13577    /* get the capabilities */
13578    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13579        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13580        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13581    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13582               FUNC_MF_CFG_PROTOCOL_FCOE) {
13583        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13584    } else {
13585        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13586    }
13587
13588    mf_info->vnics_per_port =
13589        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13590
13591    return (0);
13592}
13593
13594static uint32_t
13595bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13596{
13597    uint32_t retval = 0;
13598    uint32_t val;
13599
13600    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13601
13602    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13603        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13604            retval |= MF_PROTO_SUPPORT_ETHERNET;
13605        }
13606        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13607            retval |= MF_PROTO_SUPPORT_ISCSI;
13608        }
13609        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13610            retval |= MF_PROTO_SUPPORT_FCOE;
13611        }
13612    }
13613
13614    return (retval);
13615}
13616
13617static int
13618bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13619{
13620    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13621    uint32_t val;
13622
13623    /*
13624     * There is no outer vlan if we're in switch-independent mode.
13625     * If the mac is valid then assume multi-function.
13626     */
13627
13628    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13629
13630    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13631
13632    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13633
13634    mf_info->vnics_per_port =
13635        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13636
13637    return (0);
13638}
13639
13640static int
13641bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13642{
13643    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13644    uint32_t e1hov_tag;
13645    uint32_t func_config;
13646    uint32_t niv_config;
13647
13648    mf_info->multi_vnics_mode = 1;
13649
13650    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13651    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13652    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13653
13654    mf_info->ext_id =
13655        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13656                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13657
13658    mf_info->default_vlan =
13659        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13660                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13661
13662    mf_info->niv_allowed_priorities =
13663        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13664                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13665
13666    mf_info->niv_default_cos =
13667        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13668                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13669
13670    mf_info->afex_vlan_mode =
13671        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13672         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13673
13674    mf_info->niv_mba_enabled =
13675        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13676         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13677
13678    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13679
13680    mf_info->vnics_per_port =
13681        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13682
13683    return (0);
13684}
13685
13686static int
13687bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13688{
13689    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13690    uint32_t mf_cfg1;
13691    uint32_t mf_cfg2;
13692    uint32_t ovlan1;
13693    uint32_t ovlan2;
13694    uint8_t i, j;
13695
13696    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13697          SC_PORT(sc));
13698    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13699          mf_info->mf_config[SC_VN(sc)]);
13700    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13701          mf_info->multi_vnics_mode);
13702    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13703          mf_info->vnics_per_port);
13704    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13705          mf_info->ext_id);
13706    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13707          mf_info->min_bw[0], mf_info->min_bw[1],
13708          mf_info->min_bw[2], mf_info->min_bw[3]);
13709    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13710          mf_info->max_bw[0], mf_info->max_bw[1],
13711          mf_info->max_bw[2], mf_info->max_bw[3]);
13712    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13713          sc->mac_addr_str);
13714
13715    /* various MF mode sanity checks... */
13716
13717    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13718        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13719              SC_PORT(sc));
13720        return (1);
13721    }
13722
13723    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13724        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13725              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13726        return (1);
13727    }
13728
13729    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13730        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13731        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13732            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13733                  SC_VN(sc), OVLAN(sc));
13734            return (1);
13735        }
13736
13737        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13738            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13739                  mf_info->multi_vnics_mode, OVLAN(sc));
13740            return (1);
13741        }
13742
13743        /*
13744         * Verify all functions are either MF or SF mode. If MF, make sure
13745         * sure that all non-hidden functions have a valid ovlan. If SF,
13746         * make sure that all non-hidden functions have an invalid ovlan.
13747         */
13748        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13749            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13750            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13751            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13752                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13753                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13754                BLOGE(sc, "mf_mode=SD function %d MF config "
13755                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13756                      i, mf_info->multi_vnics_mode, ovlan1);
13757                return (1);
13758            }
13759        }
13760
13761        /* Verify all funcs on the same port each have a different ovlan. */
13762        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13763            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13764            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13765            /* iterate from the next function on the port to the max func */
13766            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13767                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13768                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13769                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13770                    VALID_OVLAN(ovlan1) &&
13771                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13772                    VALID_OVLAN(ovlan2) &&
13773                    (ovlan1 == ovlan2)) {
13774                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13775                              "have the same ovlan (%d)\n",
13776                          i, j, ovlan1);
13777                    return (1);
13778                }
13779            }
13780        }
13781    } /* MULTI_FUNCTION_SD */
13782
13783    return (0);
13784}
13785
13786static int
13787bxe_get_mf_cfg_info(struct bxe_softc *sc)
13788{
13789    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13790    uint32_t val, mac_upper;
13791    uint8_t i, vnic;
13792
13793    /* initialize mf_info defaults */
13794    mf_info->vnics_per_port   = 1;
13795    mf_info->multi_vnics_mode = FALSE;
13796    mf_info->path_has_ovlan   = FALSE;
13797    mf_info->mf_mode          = SINGLE_FUNCTION;
13798
13799    if (!CHIP_IS_MF_CAP(sc)) {
13800        return (0);
13801    }
13802
13803    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13804        BLOGE(sc, "Invalid mf_cfg_base!\n");
13805        return (1);
13806    }
13807
13808    /* get the MF mode (switch dependent / independent / single-function) */
13809
13810    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13811
13812    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13813    {
13814    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13815
13816        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13817
13818        /* check for legal upper mac bytes */
13819        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13820            mf_info->mf_mode = MULTI_FUNCTION_SI;
13821        } else {
13822            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13823        }
13824
13825        break;
13826
13827    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13828    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13829
13830        /* get outer vlan configuration */
13831        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13832
13833        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13834            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13835            mf_info->mf_mode = MULTI_FUNCTION_SD;
13836        } else {
13837            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13838        }
13839
13840        break;
13841
13842    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13843
13844        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13845        return (0);
13846
13847    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13848
13849        /*
13850         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13851         * and the MAC address is valid.
13852         */
13853        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13854
13855        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13856            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13857            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13858        } else {
13859            BLOGE(sc, "Invalid config for AFEX mode\n");
13860        }
13861
13862        break;
13863
13864    default:
13865
13866        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13867              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13868
13869        return (1);
13870    }
13871
13872    /* set path mf_mode (which could be different than function mf_mode) */
13873    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13874        mf_info->path_has_ovlan = TRUE;
13875    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13876        /*
13877         * Decide on path multi vnics mode. If we're not in MF mode and in
13878         * 4-port mode, this is good enough to check vnic-0 of the other port
13879         * on the same path
13880         */
13881        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13882            uint8_t other_port = !(PORT_ID(sc) & 1);
13883            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13884
13885            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13886
13887            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13888        }
13889    }
13890
13891    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13892        /* invalid MF config */
13893        if (SC_VN(sc) >= 1) {
13894            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13895            return (1);
13896        }
13897
13898        return (0);
13899    }
13900
13901    /* get the MF configuration */
13902    mf_info->mf_config[SC_VN(sc)] =
13903        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13904
13905    switch(mf_info->mf_mode)
13906    {
13907    case MULTI_FUNCTION_SD:
13908
13909        bxe_get_shmem_mf_cfg_info_sd(sc);
13910        break;
13911
13912    case MULTI_FUNCTION_SI:
13913
13914        bxe_get_shmem_mf_cfg_info_si(sc);
13915        break;
13916
13917    case MULTI_FUNCTION_AFEX:
13918
13919        bxe_get_shmem_mf_cfg_info_niv(sc);
13920        break;
13921
13922    default:
13923
13924        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13925              mf_info->mf_mode);
13926        return (1);
13927    }
13928
13929    /* get the congestion management parameters */
13930
13931    vnic = 0;
13932    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13933        /* get min/max bw */
13934        val = MFCFG_RD(sc, func_mf_config[i].config);
13935        mf_info->min_bw[vnic] =
13936            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13937        mf_info->max_bw[vnic] =
13938            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13939        vnic++;
13940    }
13941
13942    return (bxe_check_valid_mf_cfg(sc));
13943}
13944
13945static int
13946bxe_get_shmem_info(struct bxe_softc *sc)
13947{
13948    int port;
13949    uint32_t mac_hi, mac_lo, val;
13950
13951    port = SC_PORT(sc);
13952    mac_hi = mac_lo = 0;
13953
13954    sc->link_params.sc   = sc;
13955    sc->link_params.port = port;
13956
13957    /* get the hardware config info */
13958    sc->devinfo.hw_config =
13959        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13960    sc->devinfo.hw_config2 =
13961        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13962
13963    sc->link_params.hw_led_mode =
13964        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13965         SHARED_HW_CFG_LED_MODE_SHIFT);
13966
13967    /* get the port feature config */
13968    sc->port.config =
13969        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13970
13971    /* get the link params */
13972    sc->link_params.speed_cap_mask[0] =
13973        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13974    sc->link_params.speed_cap_mask[1] =
13975        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13976
13977    /* get the lane config */
13978    sc->link_params.lane_config =
13979        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13980
13981    /* get the link config */
13982    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13983    sc->port.link_config[ELINK_INT_PHY] = val;
13984    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13985    sc->port.link_config[ELINK_EXT_PHY1] =
13986        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13987
13988    /* get the override preemphasis flag and enable it or turn it off */
13989    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13990    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13991        sc->link_params.feature_config_flags |=
13992            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13993    } else {
13994        sc->link_params.feature_config_flags &=
13995            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13996    }
13997
13998    /* get the initial value of the link params */
13999    sc->link_params.multi_phy_config =
14000        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14001
14002    /* get external phy info */
14003    sc->port.ext_phy_config =
14004        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14005
14006    /* get the multifunction configuration */
14007    bxe_get_mf_cfg_info(sc);
14008
14009    /* get the mac address */
14010    if (IS_MF(sc)) {
14011        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14012        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14013    } else {
14014        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14015        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14016    }
14017
14018    if ((mac_lo == 0) && (mac_hi == 0)) {
14019        *sc->mac_addr_str = 0;
14020        BLOGE(sc, "No Ethernet address programmed!\n");
14021    } else {
14022        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14023        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14024        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14025        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14026        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14027        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14028        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14029                 "%02x:%02x:%02x:%02x:%02x:%02x",
14030                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14031                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14032                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14033        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14034    }
14035
14036#if 0
14037    if (!IS_MF(sc) &&
14038        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14039         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14040        sc->flags |= BXE_NO_ISCSI;
14041    }
14042    if (!IS_MF(sc) &&
14043        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14044         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14045        sc->flags |= BXE_NO_FCOE_FLAG;
14046    }
14047#endif
14048
14049    return (0);
14050}
14051
14052static void
14053bxe_get_tunable_params(struct bxe_softc *sc)
14054{
14055    /* sanity checks */
14056
14057    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14058        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14059        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14060        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14061        bxe_interrupt_mode = INTR_MODE_MSIX;
14062    }
14063
14064    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14065        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14066        bxe_queue_count = 0;
14067    }
14068
14069    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14070        if (bxe_max_rx_bufs == 0) {
14071            bxe_max_rx_bufs = RX_BD_USABLE;
14072        } else {
14073            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14074            bxe_max_rx_bufs = 2048;
14075        }
14076    }
14077
14078    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14079        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14080        bxe_hc_rx_ticks = 25;
14081    }
14082
14083    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14084        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14085        bxe_hc_tx_ticks = 50;
14086    }
14087
14088    if (bxe_max_aggregation_size == 0) {
14089        bxe_max_aggregation_size = TPA_AGG_SIZE;
14090    }
14091
14092    if (bxe_max_aggregation_size > 0xffff) {
14093        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14094              bxe_max_aggregation_size);
14095        bxe_max_aggregation_size = TPA_AGG_SIZE;
14096    }
14097
14098    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14099        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14100        bxe_mrrs = -1;
14101    }
14102
14103    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14104        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14105        bxe_autogreeen = 0;
14106    }
14107
14108    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14109        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14110        bxe_udp_rss = 0;
14111    }
14112
14113    /* pull in user settings */
14114
14115    sc->interrupt_mode       = bxe_interrupt_mode;
14116    sc->max_rx_bufs          = bxe_max_rx_bufs;
14117    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14118    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14119    sc->max_aggregation_size = bxe_max_aggregation_size;
14120    sc->mrrs                 = bxe_mrrs;
14121    sc->autogreeen           = bxe_autogreeen;
14122    sc->udp_rss              = bxe_udp_rss;
14123
14124    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14125        sc->num_queues = 1;
14126    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14127        sc->num_queues =
14128            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14129                MAX_RSS_CHAINS);
14130        if (sc->num_queues > mp_ncpus) {
14131            sc->num_queues = mp_ncpus;
14132        }
14133    }
14134
14135    BLOGD(sc, DBG_LOAD,
14136          "User Config: "
14137          "debug=0x%lx "
14138          "interrupt_mode=%d "
14139          "queue_count=%d "
14140          "hc_rx_ticks=%d "
14141          "hc_tx_ticks=%d "
14142          "rx_budget=%d "
14143          "max_aggregation_size=%d "
14144          "mrrs=%d "
14145          "autogreeen=%d "
14146          "udp_rss=%d\n",
14147          bxe_debug,
14148          sc->interrupt_mode,
14149          sc->num_queues,
14150          sc->hc_rx_ticks,
14151          sc->hc_tx_ticks,
14152          bxe_rx_budget,
14153          sc->max_aggregation_size,
14154          sc->mrrs,
14155          sc->autogreeen,
14156          sc->udp_rss);
14157}
14158
14159static void
14160bxe_media_detect(struct bxe_softc *sc)
14161{
14162    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14163    switch (sc->link_params.phy[phy_idx].media_type) {
14164    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14165    case ELINK_ETH_PHY_XFP_FIBER:
14166        BLOGI(sc, "Found 10Gb Fiber media.\n");
14167        sc->media = IFM_10G_SR;
14168        break;
14169    case ELINK_ETH_PHY_SFP_1G_FIBER:
14170        BLOGI(sc, "Found 1Gb Fiber media.\n");
14171        sc->media = IFM_1000_SX;
14172        break;
14173    case ELINK_ETH_PHY_KR:
14174    case ELINK_ETH_PHY_CX4:
14175        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14176        sc->media = IFM_10G_CX4;
14177        break;
14178    case ELINK_ETH_PHY_DA_TWINAX:
14179        BLOGI(sc, "Found 10Gb Twinax media.\n");
14180        sc->media = IFM_10G_TWINAX;
14181        break;
14182    case ELINK_ETH_PHY_BASE_T:
14183        if (sc->link_params.speed_cap_mask[0] &
14184            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14185            BLOGI(sc, "Found 10GBase-T media.\n");
14186            sc->media = IFM_10G_T;
14187        } else {
14188            BLOGI(sc, "Found 1000Base-T media.\n");
14189            sc->media = IFM_1000_T;
14190        }
14191        break;
14192    case ELINK_ETH_PHY_NOT_PRESENT:
14193        BLOGI(sc, "Media not present.\n");
14194        sc->media = 0;
14195        break;
14196    case ELINK_ETH_PHY_UNSPECIFIED:
14197    default:
14198        BLOGI(sc, "Unknown media!\n");
14199        sc->media = 0;
14200        break;
14201    }
14202}
14203
14204#define GET_FIELD(value, fname)                     \
14205    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14206#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14207#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14208
14209static int
14210bxe_get_igu_cam_info(struct bxe_softc *sc)
14211{
14212    int pfid = SC_FUNC(sc);
14213    int igu_sb_id;
14214    uint32_t val;
14215    uint8_t fid, igu_sb_cnt = 0;
14216
14217    sc->igu_base_sb = 0xff;
14218
14219    if (CHIP_INT_MODE_IS_BC(sc)) {
14220        int vn = SC_VN(sc);
14221        igu_sb_cnt = sc->igu_sb_cnt;
14222        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14223                           FP_SB_MAX_E1x);
14224        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14225                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14226        return (0);
14227    }
14228
14229    /* IGU in normal mode - read CAM */
14230    for (igu_sb_id = 0;
14231         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14232         igu_sb_id++) {
14233        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14234        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14235            continue;
14236        }
14237        fid = IGU_FID(val);
14238        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14239            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14240                continue;
14241            }
14242            if (IGU_VEC(val) == 0) {
14243                /* default status block */
14244                sc->igu_dsb_id = igu_sb_id;
14245            } else {
14246                if (sc->igu_base_sb == 0xff) {
14247                    sc->igu_base_sb = igu_sb_id;
14248                }
14249                igu_sb_cnt++;
14250            }
14251        }
14252    }
14253
14254    /*
14255     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14256     * that number of CAM entries will not be equal to the value advertised in
14257     * PCI. Driver should use the minimal value of both as the actual status
14258     * block count
14259     */
14260    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14261
14262    if (igu_sb_cnt == 0) {
14263        BLOGE(sc, "CAM configuration error\n");
14264        return (-1);
14265    }
14266
14267    return (0);
14268}
14269
14270/*
14271 * Gather various information from the device config space, the device itself,
14272 * shmem, and the user input.
14273 */
14274static int
14275bxe_get_device_info(struct bxe_softc *sc)
14276{
14277    uint32_t val;
14278    int rc;
14279
14280    /* Get the data for the device */
14281    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14282    sc->devinfo.device_id    = pci_get_device(sc->dev);
14283    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14284    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14285
14286    /* get the chip revision (chip metal comes from pci config space) */
14287    sc->devinfo.chip_id     =
14288    sc->link_params.chip_id =
14289        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14290         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14291         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14292         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14293
14294    /* force 57811 according to MISC register */
14295    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14296        if (CHIP_IS_57810(sc)) {
14297            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14298                                   (sc->devinfo.chip_id & 0x0000ffff));
14299        } else if (CHIP_IS_57810_MF(sc)) {
14300            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14301                                   (sc->devinfo.chip_id & 0x0000ffff));
14302        }
14303        sc->devinfo.chip_id |= 0x1;
14304    }
14305
14306    BLOGD(sc, DBG_LOAD,
14307          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14308          sc->devinfo.chip_id,
14309          ((sc->devinfo.chip_id >> 16) & 0xffff),
14310          ((sc->devinfo.chip_id >> 12) & 0xf),
14311          ((sc->devinfo.chip_id >>  4) & 0xff),
14312          ((sc->devinfo.chip_id >>  0) & 0xf));
14313
14314    val = (REG_RD(sc, 0x2874) & 0x55);
14315    if ((sc->devinfo.chip_id & 0x1) ||
14316        (CHIP_IS_E1(sc) && val) ||
14317        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14318        sc->flags |= BXE_ONE_PORT_FLAG;
14319        BLOGD(sc, DBG_LOAD, "single port device\n");
14320    }
14321
14322    /* set the doorbell size */
14323    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14324
14325    /* determine whether the device is in 2 port or 4 port mode */
14326    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14327    if (CHIP_IS_E2E3(sc)) {
14328        /*
14329         * Read port4mode_en_ovwr[0]:
14330         *   If 1, four port mode is in port4mode_en_ovwr[1].
14331         *   If 0, four port mode is in port4mode_en[0].
14332         */
14333        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14334        if (val & 1) {
14335            val = ((val >> 1) & 1);
14336        } else {
14337            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14338        }
14339
14340        sc->devinfo.chip_port_mode =
14341            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14342
14343        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14344    }
14345
14346    /* get the function and path info for the device */
14347    bxe_get_function_num(sc);
14348
14349    /* get the shared memory base address */
14350    sc->devinfo.shmem_base     =
14351    sc->link_params.shmem_base =
14352        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14353    sc->devinfo.shmem2_base =
14354        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14355                                  MISC_REG_GENERIC_CR_0));
14356
14357    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14358          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14359
14360    if (!sc->devinfo.shmem_base) {
14361        /* this should ONLY prevent upcoming shmem reads */
14362        BLOGI(sc, "MCP not active\n");
14363        sc->flags |= BXE_NO_MCP_FLAG;
14364        return (0);
14365    }
14366
14367    /* make sure the shared memory contents are valid */
14368    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14369    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14370        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14371        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14372        return (0);
14373    }
14374    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14375
14376    /* get the bootcode version */
14377    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14378    snprintf(sc->devinfo.bc_ver_str,
14379             sizeof(sc->devinfo.bc_ver_str),
14380             "%d.%d.%d",
14381             ((sc->devinfo.bc_ver >> 24) & 0xff),
14382             ((sc->devinfo.bc_ver >> 16) & 0xff),
14383             ((sc->devinfo.bc_ver >>  8) & 0xff));
14384    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14385
14386    /* get the bootcode shmem address */
14387    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14388    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14389
14390    /* clean indirect addresses as they're not used */
14391    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14392    if (IS_PF(sc)) {
14393        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14394        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14395        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14396        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14397        if (CHIP_IS_E1x(sc)) {
14398            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14399            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14400            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14401            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14402        }
14403
14404        /*
14405         * Enable internal target-read (in case we are probed after PF
14406         * FLR). Must be done prior to any BAR read access. Only for
14407         * 57712 and up
14408         */
14409        if (!CHIP_IS_E1x(sc)) {
14410            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14411        }
14412    }
14413
14414    /* get the nvram size */
14415    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14416    sc->devinfo.flash_size =
14417        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14418    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14419
14420    /* get PCI capabilites */
14421    bxe_probe_pci_caps(sc);
14422
14423    bxe_set_power_state(sc, PCI_PM_D0);
14424
14425    /* get various configuration parameters from shmem */
14426    bxe_get_shmem_info(sc);
14427
14428    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14429        val = pci_read_config(sc->dev,
14430                              (sc->devinfo.pcie_msix_cap_reg +
14431                               PCIR_MSIX_CTRL),
14432                              2);
14433        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14434    } else {
14435        sc->igu_sb_cnt = 1;
14436    }
14437
14438    sc->igu_base_addr = BAR_IGU_INTMEM;
14439
14440    /* initialize IGU parameters */
14441    if (CHIP_IS_E1x(sc)) {
14442        sc->devinfo.int_block = INT_BLOCK_HC;
14443        sc->igu_dsb_id = DEF_SB_IGU_ID;
14444        sc->igu_base_sb = 0;
14445    } else {
14446        sc->devinfo.int_block = INT_BLOCK_IGU;
14447
14448        /* do not allow device reset during IGU info preocessing */
14449        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14450
14451        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14452
14453        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14454            int tout = 5000;
14455
14456            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14457
14458            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14459            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14460            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14461
14462            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14463                tout--;
14464                DELAY(1000);
14465            }
14466
14467            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14468                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14469                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14470                return (-1);
14471            }
14472        }
14473
14474        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14475            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14476            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14477        } else {
14478            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14479        }
14480
14481        rc = bxe_get_igu_cam_info(sc);
14482
14483        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14484
14485        if (rc) {
14486            return (rc);
14487        }
14488    }
14489
14490    /*
14491     * Get base FW non-default (fast path) status block ID. This value is
14492     * used to initialize the fw_sb_id saved on the fp/queue structure to
14493     * determine the id used by the FW.
14494     */
14495    if (CHIP_IS_E1x(sc)) {
14496        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14497    } else {
14498        /*
14499         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14500         * the same queue are indicated on the same IGU SB). So we prefer
14501         * FW and IGU SBs to be the same value.
14502         */
14503        sc->base_fw_ndsb = sc->igu_base_sb;
14504    }
14505
14506    BLOGD(sc, DBG_LOAD,
14507          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14508          sc->igu_dsb_id, sc->igu_base_sb,
14509          sc->igu_sb_cnt, sc->base_fw_ndsb);
14510
14511    elink_phy_probe(&sc->link_params);
14512
14513    return (0);
14514}
14515
14516static void
14517bxe_link_settings_supported(struct bxe_softc *sc,
14518                            uint32_t         switch_cfg)
14519{
14520    uint32_t cfg_size = 0;
14521    uint32_t idx;
14522    uint8_t port = SC_PORT(sc);
14523
14524    /* aggregation of supported attributes of all external phys */
14525    sc->port.supported[0] = 0;
14526    sc->port.supported[1] = 0;
14527
14528    switch (sc->link_params.num_phys) {
14529    case 1:
14530        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14531        cfg_size = 1;
14532        break;
14533    case 2:
14534        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14535        cfg_size = 1;
14536        break;
14537    case 3:
14538        if (sc->link_params.multi_phy_config &
14539            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14540            sc->port.supported[1] =
14541                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14542            sc->port.supported[0] =
14543                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14544        } else {
14545            sc->port.supported[0] =
14546                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14547            sc->port.supported[1] =
14548                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14549        }
14550        cfg_size = 2;
14551        break;
14552    }
14553
14554    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14555        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14556              SHMEM_RD(sc,
14557                       dev_info.port_hw_config[port].external_phy_config),
14558              SHMEM_RD(sc,
14559                       dev_info.port_hw_config[port].external_phy_config2));
14560        return;
14561    }
14562
14563    if (CHIP_IS_E3(sc))
14564        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14565    else {
14566        switch (switch_cfg) {
14567        case ELINK_SWITCH_CFG_1G:
14568            sc->port.phy_addr =
14569                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14570            break;
14571        case ELINK_SWITCH_CFG_10G:
14572            sc->port.phy_addr =
14573                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14574            break;
14575        default:
14576            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14577                  sc->port.link_config[0]);
14578            return;
14579        }
14580    }
14581
14582    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14583
14584    /* mask what we support according to speed_cap_mask per configuration */
14585    for (idx = 0; idx < cfg_size; idx++) {
14586        if (!(sc->link_params.speed_cap_mask[idx] &
14587              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14588            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14589        }
14590
14591        if (!(sc->link_params.speed_cap_mask[idx] &
14592              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14593            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14594        }
14595
14596        if (!(sc->link_params.speed_cap_mask[idx] &
14597              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14598            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14599        }
14600
14601        if (!(sc->link_params.speed_cap_mask[idx] &
14602              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14603            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14604        }
14605
14606        if (!(sc->link_params.speed_cap_mask[idx] &
14607              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14608            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14609        }
14610
14611        if (!(sc->link_params.speed_cap_mask[idx] &
14612              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14613            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14614        }
14615
14616        if (!(sc->link_params.speed_cap_mask[idx] &
14617              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14618            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14619        }
14620
14621        if (!(sc->link_params.speed_cap_mask[idx] &
14622              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14623            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14624        }
14625    }
14626
14627    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14628          sc->port.supported[0], sc->port.supported[1]);
14629}
14630
14631static void
14632bxe_link_settings_requested(struct bxe_softc *sc)
14633{
14634    uint32_t link_config;
14635    uint32_t idx;
14636    uint32_t cfg_size = 0;
14637
14638    sc->port.advertising[0] = 0;
14639    sc->port.advertising[1] = 0;
14640
14641    switch (sc->link_params.num_phys) {
14642    case 1:
14643    case 2:
14644        cfg_size = 1;
14645        break;
14646    case 3:
14647        cfg_size = 2;
14648        break;
14649    }
14650
14651    for (idx = 0; idx < cfg_size; idx++) {
14652        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14653        link_config = sc->port.link_config[idx];
14654
14655        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14656        case PORT_FEATURE_LINK_SPEED_AUTO:
14657            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14658                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14659                sc->port.advertising[idx] |= sc->port.supported[idx];
14660                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14661                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14662                    sc->port.advertising[idx] |=
14663                        (ELINK_SUPPORTED_100baseT_Half |
14664                         ELINK_SUPPORTED_100baseT_Full);
14665            } else {
14666                /* force 10G, no AN */
14667                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14668                sc->port.advertising[idx] |=
14669                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14670                continue;
14671            }
14672            break;
14673
14674        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14675            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14676                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14677                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14678                                              ADVERTISED_TP);
14679            } else {
14680                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14681                          "speed_cap_mask=0x%08x\n",
14682                      link_config, sc->link_params.speed_cap_mask[idx]);
14683                return;
14684            }
14685            break;
14686
14687        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14688            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14689                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14690                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14691                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14692                                              ADVERTISED_TP);
14693            } else {
14694                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14695                          "speed_cap_mask=0x%08x\n",
14696                      link_config, sc->link_params.speed_cap_mask[idx]);
14697                return;
14698            }
14699            break;
14700
14701        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14702            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14703                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14704                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14705                                              ADVERTISED_TP);
14706            } else {
14707                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14708                          "speed_cap_mask=0x%08x\n",
14709                      link_config, sc->link_params.speed_cap_mask[idx]);
14710                return;
14711            }
14712            break;
14713
14714        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14715            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14716                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14717                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14718                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14719                                              ADVERTISED_TP);
14720            } else {
14721                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14722                          "speed_cap_mask=0x%08x\n",
14723                      link_config, sc->link_params.speed_cap_mask[idx]);
14724                return;
14725            }
14726            break;
14727
14728        case PORT_FEATURE_LINK_SPEED_1G:
14729            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14730                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14731                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14732                                              ADVERTISED_TP);
14733            } else {
14734                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14735                          "speed_cap_mask=0x%08x\n",
14736                      link_config, sc->link_params.speed_cap_mask[idx]);
14737                return;
14738            }
14739            break;
14740
14741        case PORT_FEATURE_LINK_SPEED_2_5G:
14742            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14743                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14744                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14745                                              ADVERTISED_TP);
14746            } else {
14747                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14748                          "speed_cap_mask=0x%08x\n",
14749                      link_config, sc->link_params.speed_cap_mask[idx]);
14750                return;
14751            }
14752            break;
14753
14754        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14755            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14756                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14757                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14758                                              ADVERTISED_FIBRE);
14759            } else {
14760                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14761                          "speed_cap_mask=0x%08x\n",
14762                      link_config, sc->link_params.speed_cap_mask[idx]);
14763                return;
14764            }
14765            break;
14766
14767        case PORT_FEATURE_LINK_SPEED_20G:
14768            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14769            break;
14770
14771        default:
14772            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14773                      "speed_cap_mask=0x%08x\n",
14774                  link_config, sc->link_params.speed_cap_mask[idx]);
14775            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14776            sc->port.advertising[idx] = sc->port.supported[idx];
14777            break;
14778        }
14779
14780        sc->link_params.req_flow_ctrl[idx] =
14781            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14782
14783        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14784            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14785                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14786            } else {
14787                bxe_set_requested_fc(sc);
14788            }
14789        }
14790
14791        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14792                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14793              sc->link_params.req_line_speed[idx],
14794              sc->link_params.req_duplex[idx],
14795              sc->link_params.req_flow_ctrl[idx],
14796              sc->port.advertising[idx]);
14797    }
14798}
14799
14800static void
14801bxe_get_phy_info(struct bxe_softc *sc)
14802{
14803    uint8_t port = SC_PORT(sc);
14804    uint32_t config = sc->port.config;
14805    uint32_t eee_mode;
14806
14807    /* shmem data already read in bxe_get_shmem_info() */
14808
14809    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14810                        "link_config0=0x%08x\n",
14811               sc->link_params.lane_config,
14812               sc->link_params.speed_cap_mask[0],
14813               sc->port.link_config[0]);
14814
14815    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14816    bxe_link_settings_requested(sc);
14817
14818    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14819        sc->link_params.feature_config_flags |=
14820            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14821    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14822        sc->link_params.feature_config_flags &=
14823            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14824    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14825        sc->link_params.feature_config_flags |=
14826            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14827    }
14828
14829    /* configure link feature according to nvram value */
14830    eee_mode =
14831        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14832          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14833         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14834    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14835        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14836                                    ELINK_EEE_MODE_ENABLE_LPI |
14837                                    ELINK_EEE_MODE_OUTPUT_TIME);
14838    } else {
14839        sc->link_params.eee_mode = 0;
14840    }
14841
14842    /* get the media type */
14843    bxe_media_detect(sc);
14844}
14845
14846static void
14847bxe_get_params(struct bxe_softc *sc)
14848{
14849    /* get user tunable params */
14850    bxe_get_tunable_params(sc);
14851
14852    /* select the RX and TX ring sizes */
14853    sc->tx_ring_size = TX_BD_USABLE;
14854    sc->rx_ring_size = RX_BD_USABLE;
14855
14856    /* XXX disable WoL */
14857    sc->wol = 0;
14858}
14859
14860static void
14861bxe_set_modes_bitmap(struct bxe_softc *sc)
14862{
14863    uint32_t flags = 0;
14864
14865    if (CHIP_REV_IS_FPGA(sc)) {
14866        SET_FLAGS(flags, MODE_FPGA);
14867    } else if (CHIP_REV_IS_EMUL(sc)) {
14868        SET_FLAGS(flags, MODE_EMUL);
14869    } else {
14870        SET_FLAGS(flags, MODE_ASIC);
14871    }
14872
14873    if (CHIP_IS_MODE_4_PORT(sc)) {
14874        SET_FLAGS(flags, MODE_PORT4);
14875    } else {
14876        SET_FLAGS(flags, MODE_PORT2);
14877    }
14878
14879    if (CHIP_IS_E2(sc)) {
14880        SET_FLAGS(flags, MODE_E2);
14881    } else if (CHIP_IS_E3(sc)) {
14882        SET_FLAGS(flags, MODE_E3);
14883        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14884            SET_FLAGS(flags, MODE_E3_A0);
14885        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14886            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14887        }
14888    }
14889
14890    if (IS_MF(sc)) {
14891        SET_FLAGS(flags, MODE_MF);
14892        switch (sc->devinfo.mf_info.mf_mode) {
14893        case MULTI_FUNCTION_SD:
14894            SET_FLAGS(flags, MODE_MF_SD);
14895            break;
14896        case MULTI_FUNCTION_SI:
14897            SET_FLAGS(flags, MODE_MF_SI);
14898            break;
14899        case MULTI_FUNCTION_AFEX:
14900            SET_FLAGS(flags, MODE_MF_AFEX);
14901            break;
14902        }
14903    } else {
14904        SET_FLAGS(flags, MODE_SF);
14905    }
14906
14907#if defined(__LITTLE_ENDIAN)
14908    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14909#else /* __BIG_ENDIAN */
14910    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14911#endif
14912
14913    INIT_MODE_FLAGS(sc) = flags;
14914}
14915
14916static int
14917bxe_alloc_hsi_mem(struct bxe_softc *sc)
14918{
14919    struct bxe_fastpath *fp;
14920    bus_addr_t busaddr;
14921    int max_agg_queues;
14922    int max_segments;
14923    bus_size_t max_size;
14924    bus_size_t max_seg_size;
14925    char buf[32];
14926    int rc;
14927    int i, j;
14928
14929    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14930
14931    /* allocate the parent bus DMA tag */
14932    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14933                            1,                        /* alignment */
14934                            0,                        /* boundary limit */
14935                            BUS_SPACE_MAXADDR,        /* restricted low */
14936                            BUS_SPACE_MAXADDR,        /* restricted hi */
14937                            NULL,                     /* addr filter() */
14938                            NULL,                     /* addr filter() arg */
14939                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14940                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14941                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14942                            0,                        /* flags */
14943                            NULL,                     /* lock() */
14944                            NULL,                     /* lock() arg */
14945                            &sc->parent_dma_tag);     /* returned dma tag */
14946    if (rc != 0) {
14947        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14948        return (1);
14949    }
14950
14951    /************************/
14952    /* DEFAULT STATUS BLOCK */
14953    /************************/
14954
14955    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14956                      &sc->def_sb_dma, "default status block") != 0) {
14957        /* XXX */
14958        bus_dma_tag_destroy(sc->parent_dma_tag);
14959        return (1);
14960    }
14961
14962    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14963
14964    /***************/
14965    /* EVENT QUEUE */
14966    /***************/
14967
14968    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14969                      &sc->eq_dma, "event queue") != 0) {
14970        /* XXX */
14971        bxe_dma_free(sc, &sc->def_sb_dma);
14972        sc->def_sb = NULL;
14973        bus_dma_tag_destroy(sc->parent_dma_tag);
14974        return (1);
14975    }
14976
14977    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14978
14979    /*************/
14980    /* SLOW PATH */
14981    /*************/
14982
14983    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14984                      &sc->sp_dma, "slow path") != 0) {
14985        /* XXX */
14986        bxe_dma_free(sc, &sc->eq_dma);
14987        sc->eq = NULL;
14988        bxe_dma_free(sc, &sc->def_sb_dma);
14989        sc->def_sb = NULL;
14990        bus_dma_tag_destroy(sc->parent_dma_tag);
14991        return (1);
14992    }
14993
14994    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14995
14996    /*******************/
14997    /* SLOW PATH QUEUE */
14998    /*******************/
14999
15000    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15001                      &sc->spq_dma, "slow path queue") != 0) {
15002        /* XXX */
15003        bxe_dma_free(sc, &sc->sp_dma);
15004        sc->sp = NULL;
15005        bxe_dma_free(sc, &sc->eq_dma);
15006        sc->eq = NULL;
15007        bxe_dma_free(sc, &sc->def_sb_dma);
15008        sc->def_sb = NULL;
15009        bus_dma_tag_destroy(sc->parent_dma_tag);
15010        return (1);
15011    }
15012
15013    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15014
15015    /***************************/
15016    /* FW DECOMPRESSION BUFFER */
15017    /***************************/
15018
15019    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15020                      "fw decompression buffer") != 0) {
15021        /* XXX */
15022        bxe_dma_free(sc, &sc->spq_dma);
15023        sc->spq = NULL;
15024        bxe_dma_free(sc, &sc->sp_dma);
15025        sc->sp = NULL;
15026        bxe_dma_free(sc, &sc->eq_dma);
15027        sc->eq = NULL;
15028        bxe_dma_free(sc, &sc->def_sb_dma);
15029        sc->def_sb = NULL;
15030        bus_dma_tag_destroy(sc->parent_dma_tag);
15031        return (1);
15032    }
15033
15034    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15035
15036    if ((sc->gz_strm =
15037         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15038        /* XXX */
15039        bxe_dma_free(sc, &sc->gz_buf_dma);
15040        sc->gz_buf = NULL;
15041        bxe_dma_free(sc, &sc->spq_dma);
15042        sc->spq = NULL;
15043        bxe_dma_free(sc, &sc->sp_dma);
15044        sc->sp = NULL;
15045        bxe_dma_free(sc, &sc->eq_dma);
15046        sc->eq = NULL;
15047        bxe_dma_free(sc, &sc->def_sb_dma);
15048        sc->def_sb = NULL;
15049        bus_dma_tag_destroy(sc->parent_dma_tag);
15050        return (1);
15051    }
15052
15053    /*************/
15054    /* FASTPATHS */
15055    /*************/
15056
15057    /* allocate DMA memory for each fastpath structure */
15058    for (i = 0; i < sc->num_queues; i++) {
15059        fp = &sc->fp[i];
15060        fp->sc    = sc;
15061        fp->index = i;
15062
15063        /*******************/
15064        /* FP STATUS BLOCK */
15065        /*******************/
15066
15067        snprintf(buf, sizeof(buf), "fp %d status block", i);
15068        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15069                          &fp->sb_dma, buf) != 0) {
15070            /* XXX unwind and free previous fastpath allocations */
15071            BLOGE(sc, "Failed to alloc %s\n", buf);
15072            return (1);
15073        } else {
15074            if (CHIP_IS_E2E3(sc)) {
15075                fp->status_block.e2_sb =
15076                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15077            } else {
15078                fp->status_block.e1x_sb =
15079                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15080            }
15081        }
15082
15083        /******************/
15084        /* FP TX BD CHAIN */
15085        /******************/
15086
15087        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15088        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15089                          &fp->tx_dma, buf) != 0) {
15090            /* XXX unwind and free previous fastpath allocations */
15091            BLOGE(sc, "Failed to alloc %s\n", buf);
15092            return (1);
15093        } else {
15094            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15095        }
15096
15097        /* link together the tx bd chain pages */
15098        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15099            /* index into the tx bd chain array to last entry per page */
15100            struct eth_tx_next_bd *tx_next_bd =
15101                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15102            /* point to the next page and wrap from last page */
15103            busaddr = (fp->tx_dma.paddr +
15104                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15105            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15106            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15107        }
15108
15109        /******************/
15110        /* FP RX BD CHAIN */
15111        /******************/
15112
15113        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15114        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15115                          &fp->rx_dma, buf) != 0) {
15116            /* XXX unwind and free previous fastpath allocations */
15117            BLOGE(sc, "Failed to alloc %s\n", buf);
15118            return (1);
15119        } else {
15120            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15121        }
15122
15123        /* link together the rx bd chain pages */
15124        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15125            /* index into the rx bd chain array to last entry per page */
15126            struct eth_rx_bd *rx_bd =
15127                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15128            /* point to the next page and wrap from last page */
15129            busaddr = (fp->rx_dma.paddr +
15130                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15131            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15132            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15133        }
15134
15135        /*******************/
15136        /* FP RX RCQ CHAIN */
15137        /*******************/
15138
15139        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15140        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15141                          &fp->rcq_dma, buf) != 0) {
15142            /* XXX unwind and free previous fastpath allocations */
15143            BLOGE(sc, "Failed to alloc %s\n", buf);
15144            return (1);
15145        } else {
15146            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15147        }
15148
15149        /* link together the rcq chain pages */
15150        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15151            /* index into the rcq chain array to last entry per page */
15152            struct eth_rx_cqe_next_page *rx_cqe_next =
15153                (struct eth_rx_cqe_next_page *)
15154                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15155            /* point to the next page and wrap from last page */
15156            busaddr = (fp->rcq_dma.paddr +
15157                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15158            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15159            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15160        }
15161
15162        /*******************/
15163        /* FP RX SGE CHAIN */
15164        /*******************/
15165
15166        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15167        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15168                          &fp->rx_sge_dma, buf) != 0) {
15169            /* XXX unwind and free previous fastpath allocations */
15170            BLOGE(sc, "Failed to alloc %s\n", buf);
15171            return (1);
15172        } else {
15173            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15174        }
15175
15176        /* link together the sge chain pages */
15177        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15178            /* index into the rcq chain array to last entry per page */
15179            struct eth_rx_sge *rx_sge =
15180                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15181            /* point to the next page and wrap from last page */
15182            busaddr = (fp->rx_sge_dma.paddr +
15183                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15184            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15185            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15186        }
15187
15188        /***********************/
15189        /* FP TX MBUF DMA MAPS */
15190        /***********************/
15191
15192        /* set required sizes before mapping to conserve resources */
15193        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15194            max_size     = BXE_TSO_MAX_SIZE;
15195            max_segments = BXE_TSO_MAX_SEGMENTS;
15196            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15197        } else {
15198            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15199            max_segments = BXE_MAX_SEGMENTS;
15200            max_seg_size = MCLBYTES;
15201        }
15202
15203        /* create a dma tag for the tx mbufs */
15204        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15205                                1,                  /* alignment */
15206                                0,                  /* boundary limit */
15207                                BUS_SPACE_MAXADDR,  /* restricted low */
15208                                BUS_SPACE_MAXADDR,  /* restricted hi */
15209                                NULL,               /* addr filter() */
15210                                NULL,               /* addr filter() arg */
15211                                max_size,           /* max map size */
15212                                max_segments,       /* num discontinuous */
15213                                max_seg_size,       /* max seg size */
15214                                0,                  /* flags */
15215                                NULL,               /* lock() */
15216                                NULL,               /* lock() arg */
15217                                &fp->tx_mbuf_tag);  /* returned dma tag */
15218        if (rc != 0) {
15219            /* XXX unwind and free previous fastpath allocations */
15220            BLOGE(sc, "Failed to create dma tag for "
15221                      "'fp %d tx mbufs' (%d)\n",
15222                  i, rc);
15223            return (1);
15224        }
15225
15226        /* create dma maps for each of the tx mbuf clusters */
15227        for (j = 0; j < TX_BD_TOTAL; j++) {
15228            if (bus_dmamap_create(fp->tx_mbuf_tag,
15229                                  BUS_DMA_NOWAIT,
15230                                  &fp->tx_mbuf_chain[j].m_map)) {
15231                /* XXX unwind and free previous fastpath allocations */
15232                BLOGE(sc, "Failed to create dma map for "
15233                          "'fp %d tx mbuf %d' (%d)\n",
15234                      i, j, rc);
15235                return (1);
15236            }
15237        }
15238
15239        /***********************/
15240        /* FP RX MBUF DMA MAPS */
15241        /***********************/
15242
15243        /* create a dma tag for the rx mbufs */
15244        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15245                                1,                  /* alignment */
15246                                0,                  /* boundary limit */
15247                                BUS_SPACE_MAXADDR,  /* restricted low */
15248                                BUS_SPACE_MAXADDR,  /* restricted hi */
15249                                NULL,               /* addr filter() */
15250                                NULL,               /* addr filter() arg */
15251                                MJUM9BYTES,         /* max map size */
15252                                1,                  /* num discontinuous */
15253                                MJUM9BYTES,         /* max seg size */
15254                                0,                  /* flags */
15255                                NULL,               /* lock() */
15256                                NULL,               /* lock() arg */
15257                                &fp->rx_mbuf_tag);  /* returned dma tag */
15258        if (rc != 0) {
15259            /* XXX unwind and free previous fastpath allocations */
15260            BLOGE(sc, "Failed to create dma tag for "
15261                      "'fp %d rx mbufs' (%d)\n",
15262                  i, rc);
15263            return (1);
15264        }
15265
15266        /* create dma maps for each of the rx mbuf clusters */
15267        for (j = 0; j < RX_BD_TOTAL; j++) {
15268            if (bus_dmamap_create(fp->rx_mbuf_tag,
15269                                  BUS_DMA_NOWAIT,
15270                                  &fp->rx_mbuf_chain[j].m_map)) {
15271                /* XXX unwind and free previous fastpath allocations */
15272                BLOGE(sc, "Failed to create dma map for "
15273                          "'fp %d rx mbuf %d' (%d)\n",
15274                      i, j, rc);
15275                return (1);
15276            }
15277        }
15278
15279        /* create dma map for the spare rx mbuf cluster */
15280        if (bus_dmamap_create(fp->rx_mbuf_tag,
15281                              BUS_DMA_NOWAIT,
15282                              &fp->rx_mbuf_spare_map)) {
15283            /* XXX unwind and free previous fastpath allocations */
15284            BLOGE(sc, "Failed to create dma map for "
15285                      "'fp %d spare rx mbuf' (%d)\n",
15286                  i, rc);
15287            return (1);
15288        }
15289
15290        /***************************/
15291        /* FP RX SGE MBUF DMA MAPS */
15292        /***************************/
15293
15294        /* create a dma tag for the rx sge mbufs */
15295        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15296                                1,                  /* alignment */
15297                                0,                  /* boundary limit */
15298                                BUS_SPACE_MAXADDR,  /* restricted low */
15299                                BUS_SPACE_MAXADDR,  /* restricted hi */
15300                                NULL,               /* addr filter() */
15301                                NULL,               /* addr filter() arg */
15302                                BCM_PAGE_SIZE,      /* max map size */
15303                                1,                  /* num discontinuous */
15304                                BCM_PAGE_SIZE,      /* max seg size */
15305                                0,                  /* flags */
15306                                NULL,               /* lock() */
15307                                NULL,               /* lock() arg */
15308                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15309        if (rc != 0) {
15310            /* XXX unwind and free previous fastpath allocations */
15311            BLOGE(sc, "Failed to create dma tag for "
15312                      "'fp %d rx sge mbufs' (%d)\n",
15313                  i, rc);
15314            return (1);
15315        }
15316
15317        /* create dma maps for the rx sge mbuf clusters */
15318        for (j = 0; j < RX_SGE_TOTAL; j++) {
15319            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15320                                  BUS_DMA_NOWAIT,
15321                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15322                /* XXX unwind and free previous fastpath allocations */
15323                BLOGE(sc, "Failed to create dma map for "
15324                          "'fp %d rx sge mbuf %d' (%d)\n",
15325                      i, j, rc);
15326                return (1);
15327            }
15328        }
15329
15330        /* create dma map for the spare rx sge mbuf cluster */
15331        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15332                              BUS_DMA_NOWAIT,
15333                              &fp->rx_sge_mbuf_spare_map)) {
15334            /* XXX unwind and free previous fastpath allocations */
15335            BLOGE(sc, "Failed to create dma map for "
15336                      "'fp %d spare rx sge mbuf' (%d)\n",
15337                  i, rc);
15338            return (1);
15339        }
15340
15341        /***************************/
15342        /* FP RX TPA MBUF DMA MAPS */
15343        /***************************/
15344
15345        /* create dma maps for the rx tpa mbuf clusters */
15346        max_agg_queues = MAX_AGG_QS(sc);
15347
15348        for (j = 0; j < max_agg_queues; j++) {
15349            if (bus_dmamap_create(fp->rx_mbuf_tag,
15350                                  BUS_DMA_NOWAIT,
15351                                  &fp->rx_tpa_info[j].bd.m_map)) {
15352                /* XXX unwind and free previous fastpath allocations */
15353                BLOGE(sc, "Failed to create dma map for "
15354                          "'fp %d rx tpa mbuf %d' (%d)\n",
15355                      i, j, rc);
15356                return (1);
15357            }
15358        }
15359
15360        /* create dma map for the spare rx tpa mbuf cluster */
15361        if (bus_dmamap_create(fp->rx_mbuf_tag,
15362                              BUS_DMA_NOWAIT,
15363                              &fp->rx_tpa_info_mbuf_spare_map)) {
15364            /* XXX unwind and free previous fastpath allocations */
15365            BLOGE(sc, "Failed to create dma map for "
15366                      "'fp %d spare rx tpa mbuf' (%d)\n",
15367                  i, rc);
15368            return (1);
15369        }
15370
15371        bxe_init_sge_ring_bit_mask(fp);
15372    }
15373
15374    return (0);
15375}
15376
15377static void
15378bxe_free_hsi_mem(struct bxe_softc *sc)
15379{
15380    struct bxe_fastpath *fp;
15381    int max_agg_queues;
15382    int i, j;
15383
15384    if (sc->parent_dma_tag == NULL) {
15385        return; /* assume nothing was allocated */
15386    }
15387
15388    for (i = 0; i < sc->num_queues; i++) {
15389        fp = &sc->fp[i];
15390
15391        /*******************/
15392        /* FP STATUS BLOCK */
15393        /*******************/
15394
15395        bxe_dma_free(sc, &fp->sb_dma);
15396        memset(&fp->status_block, 0, sizeof(fp->status_block));
15397
15398        /******************/
15399        /* FP TX BD CHAIN */
15400        /******************/
15401
15402        bxe_dma_free(sc, &fp->tx_dma);
15403        fp->tx_chain = NULL;
15404
15405        /******************/
15406        /* FP RX BD CHAIN */
15407        /******************/
15408
15409        bxe_dma_free(sc, &fp->rx_dma);
15410        fp->rx_chain = NULL;
15411
15412        /*******************/
15413        /* FP RX RCQ CHAIN */
15414        /*******************/
15415
15416        bxe_dma_free(sc, &fp->rcq_dma);
15417        fp->rcq_chain = NULL;
15418
15419        /*******************/
15420        /* FP RX SGE CHAIN */
15421        /*******************/
15422
15423        bxe_dma_free(sc, &fp->rx_sge_dma);
15424        fp->rx_sge_chain = NULL;
15425
15426        /***********************/
15427        /* FP TX MBUF DMA MAPS */
15428        /***********************/
15429
15430        if (fp->tx_mbuf_tag != NULL) {
15431            for (j = 0; j < TX_BD_TOTAL; j++) {
15432                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15433                    bus_dmamap_unload(fp->tx_mbuf_tag,
15434                                      fp->tx_mbuf_chain[j].m_map);
15435                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15436                                       fp->tx_mbuf_chain[j].m_map);
15437                }
15438            }
15439
15440            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15441            fp->tx_mbuf_tag = NULL;
15442        }
15443
15444        /***********************/
15445        /* FP RX MBUF DMA MAPS */
15446        /***********************/
15447
15448        if (fp->rx_mbuf_tag != NULL) {
15449            for (j = 0; j < RX_BD_TOTAL; j++) {
15450                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15451                    bus_dmamap_unload(fp->rx_mbuf_tag,
15452                                      fp->rx_mbuf_chain[j].m_map);
15453                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15454                                       fp->rx_mbuf_chain[j].m_map);
15455                }
15456            }
15457
15458            if (fp->rx_mbuf_spare_map != NULL) {
15459                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15460                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15461            }
15462
15463            /***************************/
15464            /* FP RX TPA MBUF DMA MAPS */
15465            /***************************/
15466
15467            max_agg_queues = MAX_AGG_QS(sc);
15468
15469            for (j = 0; j < max_agg_queues; j++) {
15470                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15471                    bus_dmamap_unload(fp->rx_mbuf_tag,
15472                                      fp->rx_tpa_info[j].bd.m_map);
15473                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15474                                       fp->rx_tpa_info[j].bd.m_map);
15475                }
15476            }
15477
15478            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15479                bus_dmamap_unload(fp->rx_mbuf_tag,
15480                                  fp->rx_tpa_info_mbuf_spare_map);
15481                bus_dmamap_destroy(fp->rx_mbuf_tag,
15482                                   fp->rx_tpa_info_mbuf_spare_map);
15483            }
15484
15485            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15486            fp->rx_mbuf_tag = NULL;
15487        }
15488
15489        /***************************/
15490        /* FP RX SGE MBUF DMA MAPS */
15491        /***************************/
15492
15493        if (fp->rx_sge_mbuf_tag != NULL) {
15494            for (j = 0; j < RX_SGE_TOTAL; j++) {
15495                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15496                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15497                                      fp->rx_sge_mbuf_chain[j].m_map);
15498                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15499                                       fp->rx_sge_mbuf_chain[j].m_map);
15500                }
15501            }
15502
15503            if (fp->rx_sge_mbuf_spare_map != NULL) {
15504                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15505                                  fp->rx_sge_mbuf_spare_map);
15506                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15507                                   fp->rx_sge_mbuf_spare_map);
15508            }
15509
15510            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15511            fp->rx_sge_mbuf_tag = NULL;
15512        }
15513    }
15514
15515    /***************************/
15516    /* FW DECOMPRESSION BUFFER */
15517    /***************************/
15518
15519    bxe_dma_free(sc, &sc->gz_buf_dma);
15520    sc->gz_buf = NULL;
15521    free(sc->gz_strm, M_DEVBUF);
15522    sc->gz_strm = NULL;
15523
15524    /*******************/
15525    /* SLOW PATH QUEUE */
15526    /*******************/
15527
15528    bxe_dma_free(sc, &sc->spq_dma);
15529    sc->spq = NULL;
15530
15531    /*************/
15532    /* SLOW PATH */
15533    /*************/
15534
15535    bxe_dma_free(sc, &sc->sp_dma);
15536    sc->sp = NULL;
15537
15538    /***************/
15539    /* EVENT QUEUE */
15540    /***************/
15541
15542    bxe_dma_free(sc, &sc->eq_dma);
15543    sc->eq = NULL;
15544
15545    /************************/
15546    /* DEFAULT STATUS BLOCK */
15547    /************************/
15548
15549    bxe_dma_free(sc, &sc->def_sb_dma);
15550    sc->def_sb = NULL;
15551
15552    bus_dma_tag_destroy(sc->parent_dma_tag);
15553    sc->parent_dma_tag = NULL;
15554}
15555
15556/*
15557 * Previous driver DMAE transaction may have occurred when pre-boot stage
15558 * ended and boot began. This would invalidate the addresses of the
15559 * transaction, resulting in was-error bit set in the PCI causing all
15560 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15561 * the interrupt which detected this from the pglueb and the was-done bit
15562 */
15563static void
15564bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15565{
15566    uint32_t val;
15567
15568    if (!CHIP_IS_E1x(sc)) {
15569        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15570        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15571            BLOGD(sc, DBG_LOAD,
15572                  "Clearing 'was-error' bit that was set in pglueb");
15573            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15574        }
15575    }
15576}
15577
15578static int
15579bxe_prev_mcp_done(struct bxe_softc *sc)
15580{
15581    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15582                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15583    if (!rc) {
15584        BLOGE(sc, "MCP response failure, aborting\n");
15585        return (-1);
15586    }
15587
15588    return (0);
15589}
15590
15591static struct bxe_prev_list_node *
15592bxe_prev_path_get_entry(struct bxe_softc *sc)
15593{
15594    struct bxe_prev_list_node *tmp;
15595
15596    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15597        if ((sc->pcie_bus == tmp->bus) &&
15598            (sc->pcie_device == tmp->slot) &&
15599            (SC_PATH(sc) == tmp->path)) {
15600            return (tmp);
15601        }
15602    }
15603
15604    return (NULL);
15605}
15606
15607static uint8_t
15608bxe_prev_is_path_marked(struct bxe_softc *sc)
15609{
15610    struct bxe_prev_list_node *tmp;
15611    int rc = FALSE;
15612
15613    mtx_lock(&bxe_prev_mtx);
15614
15615    tmp = bxe_prev_path_get_entry(sc);
15616    if (tmp) {
15617        if (tmp->aer) {
15618            BLOGD(sc, DBG_LOAD,
15619                  "Path %d/%d/%d was marked by AER\n",
15620                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15621        } else {
15622            rc = TRUE;
15623            BLOGD(sc, DBG_LOAD,
15624                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15625                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15626        }
15627    }
15628
15629    mtx_unlock(&bxe_prev_mtx);
15630
15631    return (rc);
15632}
15633
15634static int
15635bxe_prev_mark_path(struct bxe_softc *sc,
15636                   uint8_t          after_undi)
15637{
15638    struct bxe_prev_list_node *tmp;
15639
15640    mtx_lock(&bxe_prev_mtx);
15641
15642    /* Check whether the entry for this path already exists */
15643    tmp = bxe_prev_path_get_entry(sc);
15644    if (tmp) {
15645        if (!tmp->aer) {
15646            BLOGD(sc, DBG_LOAD,
15647                  "Re-marking AER in path %d/%d/%d\n",
15648                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15649        } else {
15650            BLOGD(sc, DBG_LOAD,
15651                  "Removing AER indication from path %d/%d/%d\n",
15652                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15653            tmp->aer = 0;
15654        }
15655
15656        mtx_unlock(&bxe_prev_mtx);
15657        return (0);
15658    }
15659
15660    mtx_unlock(&bxe_prev_mtx);
15661
15662    /* Create an entry for this path and add it */
15663    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15664                 (M_NOWAIT | M_ZERO));
15665    if (!tmp) {
15666        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15667        return (-1);
15668    }
15669
15670    tmp->bus  = sc->pcie_bus;
15671    tmp->slot = sc->pcie_device;
15672    tmp->path = SC_PATH(sc);
15673    tmp->aer  = 0;
15674    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15675
15676    mtx_lock(&bxe_prev_mtx);
15677
15678    BLOGD(sc, DBG_LOAD,
15679          "Marked path %d/%d/%d - finished previous unload\n",
15680          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15681    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15682
15683    mtx_unlock(&bxe_prev_mtx);
15684
15685    return (0);
15686}
15687
15688static int
15689bxe_do_flr(struct bxe_softc *sc)
15690{
15691    int i;
15692
15693    /* only E2 and onwards support FLR */
15694    if (CHIP_IS_E1x(sc)) {
15695        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15696        return (-1);
15697    }
15698
15699    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15700    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15701        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15702              sc->devinfo.bc_ver);
15703        return (-1);
15704    }
15705
15706    /* Wait for Transaction Pending bit clean */
15707    for (i = 0; i < 4; i++) {
15708        if (i) {
15709            DELAY(((1 << (i - 1)) * 100) * 1000);
15710        }
15711
15712        if (!bxe_is_pcie_pending(sc)) {
15713            goto clear;
15714        }
15715    }
15716
15717    BLOGE(sc, "PCIE transaction is not cleared, "
15718              "proceeding with reset anyway\n");
15719
15720clear:
15721
15722    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15723    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15724
15725    return (0);
15726}
15727
15728struct bxe_mac_vals {
15729    uint32_t xmac_addr;
15730    uint32_t xmac_val;
15731    uint32_t emac_addr;
15732    uint32_t emac_val;
15733    uint32_t umac_addr;
15734    uint32_t umac_val;
15735    uint32_t bmac_addr;
15736    uint32_t bmac_val[2];
15737};
15738
15739static void
15740bxe_prev_unload_close_mac(struct bxe_softc *sc,
15741                          struct bxe_mac_vals *vals)
15742{
15743    uint32_t val, base_addr, offset, mask, reset_reg;
15744    uint8_t mac_stopped = FALSE;
15745    uint8_t port = SC_PORT(sc);
15746    uint32_t wb_data[2];
15747
15748    /* reset addresses as they also mark which values were changed */
15749    vals->bmac_addr = 0;
15750    vals->umac_addr = 0;
15751    vals->xmac_addr = 0;
15752    vals->emac_addr = 0;
15753
15754    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15755
15756    if (!CHIP_IS_E3(sc)) {
15757        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15758        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15759        if ((mask & reset_reg) && val) {
15760            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15761            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15762                                    : NIG_REG_INGRESS_BMAC0_MEM;
15763            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15764                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15765
15766            /*
15767             * use rd/wr since we cannot use dmae. This is safe
15768             * since MCP won't access the bus due to the request
15769             * to unload, and no function on the path can be
15770             * loaded at this time.
15771             */
15772            wb_data[0] = REG_RD(sc, base_addr + offset);
15773            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15774            vals->bmac_addr = base_addr + offset;
15775            vals->bmac_val[0] = wb_data[0];
15776            vals->bmac_val[1] = wb_data[1];
15777            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15778            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15779            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15780        }
15781
15782        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15783        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15784        vals->emac_val = REG_RD(sc, vals->emac_addr);
15785        REG_WR(sc, vals->emac_addr, 0);
15786        mac_stopped = TRUE;
15787    } else {
15788        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15789            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15790            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15791            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15792            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15793            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15794            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15795            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15796            REG_WR(sc, vals->xmac_addr, 0);
15797            mac_stopped = TRUE;
15798        }
15799
15800        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15801        if (mask & reset_reg) {
15802            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15803            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15804            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15805            vals->umac_val = REG_RD(sc, vals->umac_addr);
15806            REG_WR(sc, vals->umac_addr, 0);
15807            mac_stopped = TRUE;
15808        }
15809    }
15810
15811    if (mac_stopped) {
15812        DELAY(20000);
15813    }
15814}
15815
15816#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15817#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15818#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15819#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15820
15821static void
15822bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15823                         uint8_t          port,
15824                         uint8_t          inc)
15825{
15826    uint16_t rcq, bd;
15827    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15828
15829    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15830    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15831
15832    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15833    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15834
15835    BLOGD(sc, DBG_LOAD,
15836          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15837          port, bd, rcq);
15838}
15839
15840static int
15841bxe_prev_unload_common(struct bxe_softc *sc)
15842{
15843    uint32_t reset_reg, tmp_reg = 0, rc;
15844    uint8_t prev_undi = FALSE;
15845    struct bxe_mac_vals mac_vals;
15846    uint32_t timer_count = 1000;
15847    uint32_t prev_brb;
15848
15849    /*
15850     * It is possible a previous function received 'common' answer,
15851     * but hasn't loaded yet, therefore creating a scenario of
15852     * multiple functions receiving 'common' on the same path.
15853     */
15854    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15855
15856    memset(&mac_vals, 0, sizeof(mac_vals));
15857
15858    if (bxe_prev_is_path_marked(sc)) {
15859        return (bxe_prev_mcp_done(sc));
15860    }
15861
15862    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15863
15864    /* Reset should be performed after BRB is emptied */
15865    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15866        /* Close the MAC Rx to prevent BRB from filling up */
15867        bxe_prev_unload_close_mac(sc, &mac_vals);
15868
15869        /* close LLH filters towards the BRB */
15870        elink_set_rx_filter(&sc->link_params, 0);
15871
15872        /*
15873         * Check if the UNDI driver was previously loaded.
15874         * UNDI driver initializes CID offset for normal bell to 0x7
15875         */
15876        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15877            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15878            if (tmp_reg == 0x7) {
15879                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15880                prev_undi = TRUE;
15881                /* clear the UNDI indication */
15882                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15883                /* clear possible idle check errors */
15884                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15885            }
15886        }
15887
15888        /* wait until BRB is empty */
15889        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15890        while (timer_count) {
15891            prev_brb = tmp_reg;
15892
15893            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15894            if (!tmp_reg) {
15895                break;
15896            }
15897
15898            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15899
15900            /* reset timer as long as BRB actually gets emptied */
15901            if (prev_brb > tmp_reg) {
15902                timer_count = 1000;
15903            } else {
15904                timer_count--;
15905            }
15906
15907            /* If UNDI resides in memory, manually increment it */
15908            if (prev_undi) {
15909                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15910            }
15911
15912            DELAY(10);
15913        }
15914
15915        if (!timer_count) {
15916            BLOGE(sc, "Failed to empty BRB\n");
15917        }
15918    }
15919
15920    /* No packets are in the pipeline, path is ready for reset */
15921    bxe_reset_common(sc);
15922
15923    if (mac_vals.xmac_addr) {
15924        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15925    }
15926    if (mac_vals.umac_addr) {
15927        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15928    }
15929    if (mac_vals.emac_addr) {
15930        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15931    }
15932    if (mac_vals.bmac_addr) {
15933        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15934        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15935    }
15936
15937    rc = bxe_prev_mark_path(sc, prev_undi);
15938    if (rc) {
15939        bxe_prev_mcp_done(sc);
15940        return (rc);
15941    }
15942
15943    return (bxe_prev_mcp_done(sc));
15944}
15945
15946static int
15947bxe_prev_unload_uncommon(struct bxe_softc *sc)
15948{
15949    int rc;
15950
15951    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15952
15953    /* Test if previous unload process was already finished for this path */
15954    if (bxe_prev_is_path_marked(sc)) {
15955        return (bxe_prev_mcp_done(sc));
15956    }
15957
15958    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15959
15960    /*
15961     * If function has FLR capabilities, and existing FW version matches
15962     * the one required, then FLR will be sufficient to clean any residue
15963     * left by previous driver
15964     */
15965    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15966    if (!rc) {
15967        /* fw version is good */
15968        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15969        rc = bxe_do_flr(sc);
15970    }
15971
15972    if (!rc) {
15973        /* FLR was performed */
15974        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15975        return (0);
15976    }
15977
15978    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15979
15980    /* Close the MCP request, return failure*/
15981    rc = bxe_prev_mcp_done(sc);
15982    if (!rc) {
15983        rc = BXE_PREV_WAIT_NEEDED;
15984    }
15985
15986    return (rc);
15987}
15988
15989static int
15990bxe_prev_unload(struct bxe_softc *sc)
15991{
15992    int time_counter = 10;
15993    uint32_t fw, hw_lock_reg, hw_lock_val;
15994    uint32_t rc = 0;
15995
15996    /*
15997     * Clear HW from errors which may have resulted from an interrupted
15998     * DMAE transaction.
15999     */
16000    bxe_prev_interrupted_dmae(sc);
16001
16002    /* Release previously held locks */
16003    hw_lock_reg =
16004        (SC_FUNC(sc) <= 5) ?
16005            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16006            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16007
16008    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16009    if (hw_lock_val) {
16010        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16011            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16012            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16013                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16014        }
16015        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16016        REG_WR(sc, hw_lock_reg, 0xffffffff);
16017    } else {
16018        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16019    }
16020
16021    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16022        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16023        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16024    }
16025
16026    do {
16027        /* Lock MCP using an unload request */
16028        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16029        if (!fw) {
16030            BLOGE(sc, "MCP response failure, aborting\n");
16031            rc = -1;
16032            break;
16033        }
16034
16035        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16036            rc = bxe_prev_unload_common(sc);
16037            break;
16038        }
16039
16040        /* non-common reply from MCP night require looping */
16041        rc = bxe_prev_unload_uncommon(sc);
16042        if (rc != BXE_PREV_WAIT_NEEDED) {
16043            break;
16044        }
16045
16046        DELAY(20000);
16047    } while (--time_counter);
16048
16049    if (!time_counter || rc) {
16050        BLOGE(sc, "Failed to unload previous driver!\n");
16051        rc = -1;
16052    }
16053
16054    return (rc);
16055}
16056
16057void
16058bxe_dcbx_set_state(struct bxe_softc *sc,
16059                   uint8_t          dcb_on,
16060                   uint32_t         dcbx_enabled)
16061{
16062    if (!CHIP_IS_E1x(sc)) {
16063        sc->dcb_state = dcb_on;
16064        sc->dcbx_enabled = dcbx_enabled;
16065    } else {
16066        sc->dcb_state = FALSE;
16067        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16068    }
16069    BLOGD(sc, DBG_LOAD,
16070          "DCB state [%s:%s]\n",
16071          dcb_on ? "ON" : "OFF",
16072          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16073          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16074          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16075          "on-chip with negotiation" : "invalid");
16076}
16077
16078/* must be called after sriov-enable */
16079static int
16080bxe_set_qm_cid_count(struct bxe_softc *sc)
16081{
16082    int cid_count = BXE_L2_MAX_CID(sc);
16083
16084    if (IS_SRIOV(sc)) {
16085        cid_count += BXE_VF_CIDS;
16086    }
16087
16088    if (CNIC_SUPPORT(sc)) {
16089        cid_count += CNIC_CID_MAX;
16090    }
16091
16092    return (roundup(cid_count, QM_CID_ROUND));
16093}
16094
16095static void
16096bxe_init_multi_cos(struct bxe_softc *sc)
16097{
16098    int pri, cos;
16099
16100    uint32_t pri_map = 0; /* XXX change to user config */
16101
16102    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16103        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16104        if (cos < sc->max_cos) {
16105            sc->prio_to_cos[pri] = cos;
16106        } else {
16107            BLOGW(sc, "Invalid COS %d for priority %d "
16108                      "(max COS is %d), setting to 0\n",
16109                  cos, pri, (sc->max_cos - 1));
16110            sc->prio_to_cos[pri] = 0;
16111        }
16112    }
16113}
16114
16115static int
16116bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16117{
16118    struct bxe_softc *sc;
16119    int error, result;
16120
16121    result = 0;
16122    error = sysctl_handle_int(oidp, &result, 0, req);
16123
16124    if (error || !req->newptr) {
16125        return (error);
16126    }
16127
16128    if (result == 1) {
16129        sc = (struct bxe_softc *)arg1;
16130        BLOGI(sc, "... dumping driver state ...\n");
16131        /* XXX */
16132    }
16133
16134    return (error);
16135}
16136
16137static int
16138bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16139{
16140    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16141    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16142    uint32_t *offset;
16143    uint64_t value = 0;
16144    int index = (int)arg2;
16145
16146    if (index >= BXE_NUM_ETH_STATS) {
16147        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16148        return (-1);
16149    }
16150
16151    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16152
16153    switch (bxe_eth_stats_arr[index].size) {
16154    case 4:
16155        value = (uint64_t)*offset;
16156        break;
16157    case 8:
16158        value = HILO_U64(*offset, *(offset + 1));
16159        break;
16160    default:
16161        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16162              index, bxe_eth_stats_arr[index].size);
16163        return (-1);
16164    }
16165
16166    return (sysctl_handle_64(oidp, &value, 0, req));
16167}
16168
16169static int
16170bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16171{
16172    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16173    uint32_t *eth_stats;
16174    uint32_t *offset;
16175    uint64_t value = 0;
16176    uint32_t q_stat = (uint32_t)arg2;
16177    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16178    uint32_t index = (q_stat & 0xffff);
16179
16180    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16181
16182    if (index >= BXE_NUM_ETH_Q_STATS) {
16183        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16184        return (-1);
16185    }
16186
16187    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16188
16189    switch (bxe_eth_q_stats_arr[index].size) {
16190    case 4:
16191        value = (uint64_t)*offset;
16192        break;
16193    case 8:
16194        value = HILO_U64(*offset, *(offset + 1));
16195        break;
16196    default:
16197        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16198              index, bxe_eth_q_stats_arr[index].size);
16199        return (-1);
16200    }
16201
16202    return (sysctl_handle_64(oidp, &value, 0, req));
16203}
16204
16205static void
16206bxe_add_sysctls(struct bxe_softc *sc)
16207{
16208    struct sysctl_ctx_list *ctx;
16209    struct sysctl_oid_list *children;
16210    struct sysctl_oid *queue_top, *queue;
16211    struct sysctl_oid_list *queue_top_children, *queue_children;
16212    char queue_num_buf[32];
16213    uint32_t q_stat;
16214    int i, j;
16215
16216    ctx = device_get_sysctl_ctx(sc->dev);
16217    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16218
16219    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16220                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16221                      "version");
16222
16223    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16224                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16225                      "bootcode version");
16226
16227    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16228             BCM_5710_FW_MAJOR_VERSION,
16229             BCM_5710_FW_MINOR_VERSION,
16230             BCM_5710_FW_REVISION_VERSION,
16231             BCM_5710_FW_ENGINEERING_VERSION);
16232    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16233                      CTLFLAG_RD, sc->fw_ver_str, 0,
16234                      "firmware version");
16235
16236    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16237        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16238         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16239         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16240         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16241                                                                "Unknown"));
16242    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16243                      CTLFLAG_RD, sc->mf_mode_str, 0,
16244                      "multifunction mode");
16245
16246    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16247                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16248                    "multifunction vnics per port");
16249
16250    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16251                      CTLFLAG_RD, sc->mac_addr_str, 0,
16252                      "mac address");
16253
16254    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16255        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16256         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16257         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16258                                              "???GT/s"),
16259        sc->devinfo.pcie_link_width);
16260    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16261                      CTLFLAG_RD, sc->pci_link_str, 0,
16262                      "pci link status");
16263
16264    sc->debug = bxe_debug;
16265    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16266                    CTLFLAG_RW, &sc->debug,
16267                    "debug logging mode");
16268
16269    sc->rx_budget = bxe_rx_budget;
16270    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16271                    CTLFLAG_RW, &sc->rx_budget, 0,
16272                    "rx processing budget");
16273
16274    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16275                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16276                    bxe_sysctl_state, "IU", "dump driver state");
16277
16278    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16279        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16280                        bxe_eth_stats_arr[i].string,
16281                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16282                        bxe_sysctl_eth_stat, "LU",
16283                        bxe_eth_stats_arr[i].string);
16284    }
16285
16286    /* add a new parent node for all queues "dev.bxe.#.queue" */
16287    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16288                                CTLFLAG_RD, NULL, "queue");
16289    queue_top_children = SYSCTL_CHILDREN(queue_top);
16290
16291    for (i = 0; i < sc->num_queues; i++) {
16292        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16293        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16294        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16295                                queue_num_buf, CTLFLAG_RD, NULL,
16296                                "single queue");
16297        queue_children = SYSCTL_CHILDREN(queue);
16298
16299        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16300            q_stat = ((i << 16) | j);
16301            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16302                            bxe_eth_q_stats_arr[j].string,
16303                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16304                            bxe_sysctl_eth_q_stat, "LU",
16305                            bxe_eth_q_stats_arr[j].string);
16306        }
16307    }
16308}
16309
16310/*
16311 * Device attach function.
16312 *
16313 * Allocates device resources, performs secondary chip identification, and
16314 * initializes driver instance variables. This function is called from driver
16315 * load after a successful probe.
16316 *
16317 * Returns:
16318 *   0 = Success, >0 = Failure
16319 */
16320static int
16321bxe_attach(device_t dev)
16322{
16323    struct bxe_softc *sc;
16324
16325    sc = device_get_softc(dev);
16326
16327    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16328
16329    sc->state = BXE_STATE_CLOSED;
16330
16331    sc->dev  = dev;
16332    sc->unit = device_get_unit(dev);
16333
16334    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16335
16336    sc->pcie_bus    = pci_get_bus(dev);
16337    sc->pcie_device = pci_get_slot(dev);
16338    sc->pcie_func   = pci_get_function(dev);
16339
16340    /* enable bus master capability */
16341    pci_enable_busmaster(dev);
16342
16343    /* get the BARs */
16344    if (bxe_allocate_bars(sc) != 0) {
16345        return (ENXIO);
16346    }
16347
16348    /* initialize the mutexes */
16349    bxe_init_mutexes(sc);
16350
16351    /* prepare the periodic callout */
16352    callout_init(&sc->periodic_callout, 0);
16353
16354    /* prepare the chip taskqueue */
16355    sc->chip_tq_flags = CHIP_TQ_NONE;
16356    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16357             "bxe%d_chip_tq", sc->unit);
16358    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16359    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16360                                   taskqueue_thread_enqueue,
16361                                   &sc->chip_tq);
16362    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16363                            "%s", sc->chip_tq_name);
16364
16365    /* get device info and set params */
16366    if (bxe_get_device_info(sc) != 0) {
16367        BLOGE(sc, "getting device info\n");
16368        bxe_deallocate_bars(sc);
16369        pci_disable_busmaster(dev);
16370        return (ENXIO);
16371    }
16372
16373    /* get final misc params */
16374    bxe_get_params(sc);
16375
16376    /* set the default MTU (changed via ifconfig) */
16377    sc->mtu = ETHERMTU;
16378
16379    bxe_set_modes_bitmap(sc);
16380
16381    /* XXX
16382     * If in AFEX mode and the function is configured for FCoE
16383     * then bail... no L2 allowed.
16384     */
16385
16386    /* get phy settings from shmem and 'and' against admin settings */
16387    bxe_get_phy_info(sc);
16388
16389    /* initialize the FreeBSD ifnet interface */
16390    if (bxe_init_ifnet(sc) != 0) {
16391        bxe_release_mutexes(sc);
16392        bxe_deallocate_bars(sc);
16393        pci_disable_busmaster(dev);
16394        return (ENXIO);
16395    }
16396
16397    /* allocate device interrupts */
16398    if (bxe_interrupt_alloc(sc) != 0) {
16399        if (sc->ifp != NULL) {
16400            ether_ifdetach(sc->ifp);
16401        }
16402        ifmedia_removeall(&sc->ifmedia);
16403        bxe_release_mutexes(sc);
16404        bxe_deallocate_bars(sc);
16405        pci_disable_busmaster(dev);
16406        return (ENXIO);
16407    }
16408
16409    /* allocate ilt */
16410    if (bxe_alloc_ilt_mem(sc) != 0) {
16411        bxe_interrupt_free(sc);
16412        if (sc->ifp != NULL) {
16413            ether_ifdetach(sc->ifp);
16414        }
16415        ifmedia_removeall(&sc->ifmedia);
16416        bxe_release_mutexes(sc);
16417        bxe_deallocate_bars(sc);
16418        pci_disable_busmaster(dev);
16419        return (ENXIO);
16420    }
16421
16422    /* allocate the host hardware/software hsi structures */
16423    if (bxe_alloc_hsi_mem(sc) != 0) {
16424        bxe_free_ilt_mem(sc);
16425        bxe_interrupt_free(sc);
16426        if (sc->ifp != NULL) {
16427            ether_ifdetach(sc->ifp);
16428        }
16429        ifmedia_removeall(&sc->ifmedia);
16430        bxe_release_mutexes(sc);
16431        bxe_deallocate_bars(sc);
16432        pci_disable_busmaster(dev);
16433        return (ENXIO);
16434    }
16435
16436    /* need to reset chip if UNDI was active */
16437    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16438        /* init fw_seq */
16439        sc->fw_seq =
16440            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16441             DRV_MSG_SEQ_NUMBER_MASK);
16442        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16443        bxe_prev_unload(sc);
16444    }
16445
16446#if 1
16447    /* XXX */
16448    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16449#else
16450    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16451        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16452        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16453        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16454        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16455        bxe_dcbx_init_params(sc);
16456    } else {
16457        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16458    }
16459#endif
16460
16461    /* calculate qm_cid_count */
16462    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16463    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16464
16465    sc->max_cos = 1;
16466    bxe_init_multi_cos(sc);
16467
16468    bxe_add_sysctls(sc);
16469
16470    return (0);
16471}
16472
16473/*
16474 * Device detach function.
16475 *
16476 * Stops the controller, resets the controller, and releases resources.
16477 *
16478 * Returns:
16479 *   0 = Success, >0 = Failure
16480 */
16481static int
16482bxe_detach(device_t dev)
16483{
16484    struct bxe_softc *sc;
16485    if_t ifp;
16486
16487    sc = device_get_softc(dev);
16488
16489    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16490
16491    ifp = sc->ifp;
16492    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16493        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16494        return(EBUSY);
16495    }
16496
16497    /* stop the periodic callout */
16498    bxe_periodic_stop(sc);
16499
16500    /* stop the chip taskqueue */
16501    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16502    if (sc->chip_tq) {
16503        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16504        taskqueue_free(sc->chip_tq);
16505        sc->chip_tq = NULL;
16506    }
16507
16508    /* stop and reset the controller if it was open */
16509    if (sc->state != BXE_STATE_CLOSED) {
16510        BXE_CORE_LOCK(sc);
16511        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16512        BXE_CORE_UNLOCK(sc);
16513    }
16514
16515    /* release the network interface */
16516    if (ifp != NULL) {
16517        ether_ifdetach(ifp);
16518    }
16519    ifmedia_removeall(&sc->ifmedia);
16520
16521    /* XXX do the following based on driver state... */
16522
16523    /* free the host hardware/software hsi structures */
16524    bxe_free_hsi_mem(sc);
16525
16526    /* free ilt */
16527    bxe_free_ilt_mem(sc);
16528
16529    /* release the interrupts */
16530    bxe_interrupt_free(sc);
16531
16532    /* Release the mutexes*/
16533    bxe_release_mutexes(sc);
16534
16535    /* Release the PCIe BAR mapped memory */
16536    bxe_deallocate_bars(sc);
16537
16538    /* Release the FreeBSD interface. */
16539    if (sc->ifp != NULL) {
16540        if_free(sc->ifp);
16541    }
16542
16543    pci_disable_busmaster(dev);
16544
16545    return (0);
16546}
16547
16548/*
16549 * Device shutdown function.
16550 *
16551 * Stops and resets the controller.
16552 *
16553 * Returns:
16554 *   Nothing
16555 */
16556static int
16557bxe_shutdown(device_t dev)
16558{
16559    struct bxe_softc *sc;
16560
16561    sc = device_get_softc(dev);
16562
16563    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16564
16565    /* stop the periodic callout */
16566    bxe_periodic_stop(sc);
16567
16568    BXE_CORE_LOCK(sc);
16569    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16570    BXE_CORE_UNLOCK(sc);
16571
16572    return (0);
16573}
16574
16575void
16576bxe_igu_ack_sb(struct bxe_softc *sc,
16577               uint8_t          igu_sb_id,
16578               uint8_t          segment,
16579               uint16_t         index,
16580               uint8_t          op,
16581               uint8_t          update)
16582{
16583    uint32_t igu_addr = sc->igu_base_addr;
16584    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16585    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16586}
16587
16588static void
16589bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16590                     uint8_t          func,
16591                     uint8_t          idu_sb_id,
16592                     uint8_t          is_pf)
16593{
16594    uint32_t data, ctl, cnt = 100;
16595    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16596    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16597    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16598    uint32_t sb_bit =  1 << (idu_sb_id%32);
16599    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16600    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16601
16602    /* Not supported in BC mode */
16603    if (CHIP_INT_MODE_IS_BC(sc)) {
16604        return;
16605    }
16606
16607    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16608             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16609            IGU_REGULAR_CLEANUP_SET |
16610            IGU_REGULAR_BCLEANUP);
16611
16612    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16613           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16614           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16615
16616    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16617            data, igu_addr_data);
16618    REG_WR(sc, igu_addr_data, data);
16619
16620    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16621                      BUS_SPACE_BARRIER_WRITE);
16622    mb();
16623
16624    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16625            ctl, igu_addr_ctl);
16626    REG_WR(sc, igu_addr_ctl, ctl);
16627
16628    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16629                      BUS_SPACE_BARRIER_WRITE);
16630    mb();
16631
16632    /* wait for clean up to finish */
16633    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16634        DELAY(20000);
16635    }
16636
16637    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16638        BLOGD(sc, DBG_LOAD,
16639              "Unable to finish IGU cleanup: "
16640              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16641              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16642    }
16643}
16644
16645static void
16646bxe_igu_clear_sb(struct bxe_softc *sc,
16647                 uint8_t          idu_sb_id)
16648{
16649    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16650}
16651
16652
16653
16654
16655
16656
16657
16658/*******************/
16659/* ECORE CALLBACKS */
16660/*******************/
16661
16662static void
16663bxe_reset_common(struct bxe_softc *sc)
16664{
16665    uint32_t val = 0x1400;
16666
16667    /* reset_common */
16668    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16669
16670    if (CHIP_IS_E3(sc)) {
16671        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16672        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16673    }
16674
16675    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16676}
16677
16678static void
16679bxe_common_init_phy(struct bxe_softc *sc)
16680{
16681    uint32_t shmem_base[2];
16682    uint32_t shmem2_base[2];
16683
16684    /* Avoid common init in case MFW supports LFA */
16685    if (SHMEM2_RD(sc, size) >
16686        (uint32_t)offsetof(struct shmem2_region,
16687                           lfa_host_addr[SC_PORT(sc)])) {
16688        return;
16689    }
16690
16691    shmem_base[0]  = sc->devinfo.shmem_base;
16692    shmem2_base[0] = sc->devinfo.shmem2_base;
16693
16694    if (!CHIP_IS_E1x(sc)) {
16695        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16696        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16697    }
16698
16699    bxe_acquire_phy_lock(sc);
16700    elink_common_init_phy(sc, shmem_base, shmem2_base,
16701                          sc->devinfo.chip_id, 0);
16702    bxe_release_phy_lock(sc);
16703}
16704
16705static void
16706bxe_pf_disable(struct bxe_softc *sc)
16707{
16708    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16709
16710    val &= ~IGU_PF_CONF_FUNC_EN;
16711
16712    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16713    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16714    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16715}
16716
16717static void
16718bxe_init_pxp(struct bxe_softc *sc)
16719{
16720    uint16_t devctl;
16721    int r_order, w_order;
16722
16723    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16724
16725    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16726
16727    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16728
16729    if (sc->mrrs == -1) {
16730        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16731    } else {
16732        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16733        r_order = sc->mrrs;
16734    }
16735
16736    ecore_init_pxp_arb(sc, r_order, w_order);
16737}
16738
16739static uint32_t
16740bxe_get_pretend_reg(struct bxe_softc *sc)
16741{
16742    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16743    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16744    return (base + (SC_ABS_FUNC(sc)) * stride);
16745}
16746
16747/*
16748 * Called only on E1H or E2.
16749 * When pretending to be PF, the pretend value is the function number 0..7.
16750 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16751 * combination.
16752 */
16753static int
16754bxe_pretend_func(struct bxe_softc *sc,
16755                 uint16_t         pretend_func_val)
16756{
16757    uint32_t pretend_reg;
16758
16759    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16760        return (-1);
16761    }
16762
16763    /* get my own pretend register */
16764    pretend_reg = bxe_get_pretend_reg(sc);
16765    REG_WR(sc, pretend_reg, pretend_func_val);
16766    REG_RD(sc, pretend_reg);
16767    return (0);
16768}
16769
16770static void
16771bxe_iov_init_dmae(struct bxe_softc *sc)
16772{
16773    return;
16774#if 0
16775    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16776
16777    if (!IS_SRIOV(sc)) {
16778        return;
16779    }
16780
16781    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16782#endif
16783}
16784
16785#if 0
16786static int
16787bxe_iov_init_ilt(struct bxe_softc *sc,
16788                 uint16_t         line)
16789{
16790    return (line);
16791#if 0
16792    int i;
16793    struct ecore_ilt* ilt = sc->ilt;
16794
16795    if (!IS_SRIOV(sc)) {
16796        return (line);
16797    }
16798
16799    /* set vfs ilt lines */
16800    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16801        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16802        ilt->lines[line+i].page = hw_cxt->addr;
16803        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16804        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16805    }
16806    return (line+i);
16807#endif
16808}
16809#endif
16810
16811static void
16812bxe_iov_init_dq(struct bxe_softc *sc)
16813{
16814    return;
16815#if 0
16816    if (!IS_SRIOV(sc)) {
16817        return;
16818    }
16819
16820    /* Set the DQ such that the CID reflect the abs_vfid */
16821    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16822    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16823
16824    /*
16825     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16826     * the PF L2 queues
16827     */
16828    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16829
16830    /* The VF window size is the log2 of the max number of CIDs per VF */
16831    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16832
16833    /*
16834     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16835     * the Pf doorbell size although the 2 are independent.
16836     */
16837    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16838           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16839
16840    /*
16841     * No security checks for now -
16842     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16843     * CID range 0 - 0x1ffff
16844     */
16845    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16846    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16847    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16848    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16849
16850    /* set the number of VF alllowed doorbells to the full DQ range */
16851    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16852
16853    /* set the VF doorbell threshold */
16854    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16855#endif
16856}
16857
16858/* send a NIG loopback debug packet */
16859static void
16860bxe_lb_pckt(struct bxe_softc *sc)
16861{
16862    uint32_t wb_write[3];
16863
16864    /* Ethernet source and destination addresses */
16865    wb_write[0] = 0x55555555;
16866    wb_write[1] = 0x55555555;
16867    wb_write[2] = 0x20;     /* SOP */
16868    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16869
16870    /* NON-IP protocol */
16871    wb_write[0] = 0x09000000;
16872    wb_write[1] = 0x55555555;
16873    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16874    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16875}
16876
16877/*
16878 * Some of the internal memories are not directly readable from the driver.
16879 * To test them we send debug packets.
16880 */
16881static int
16882bxe_int_mem_test(struct bxe_softc *sc)
16883{
16884    int factor;
16885    int count, i;
16886    uint32_t val = 0;
16887
16888    if (CHIP_REV_IS_FPGA(sc)) {
16889        factor = 120;
16890    } else if (CHIP_REV_IS_EMUL(sc)) {
16891        factor = 200;
16892    } else {
16893        factor = 1;
16894    }
16895
16896    /* disable inputs of parser neighbor blocks */
16897    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16898    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16899    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16900    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16901
16902    /*  write 0 to parser credits for CFC search request */
16903    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16904
16905    /* send Ethernet packet */
16906    bxe_lb_pckt(sc);
16907
16908    /* TODO do i reset NIG statistic? */
16909    /* Wait until NIG register shows 1 packet of size 0x10 */
16910    count = 1000 * factor;
16911    while (count) {
16912        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16913        val = *BXE_SP(sc, wb_data[0]);
16914        if (val == 0x10) {
16915            break;
16916        }
16917
16918        DELAY(10000);
16919        count--;
16920    }
16921
16922    if (val != 0x10) {
16923        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16924        return (-1);
16925    }
16926
16927    /* wait until PRS register shows 1 packet */
16928    count = (1000 * factor);
16929    while (count) {
16930        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16931        if (val == 1) {
16932            break;
16933        }
16934
16935        DELAY(10000);
16936        count--;
16937    }
16938
16939    if (val != 0x1) {
16940        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16941        return (-2);
16942    }
16943
16944    /* Reset and init BRB, PRS */
16945    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16946    DELAY(50000);
16947    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16948    DELAY(50000);
16949    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16950    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16951
16952    /* Disable inputs of parser neighbor blocks */
16953    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16954    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16955    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16956    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16957
16958    /* Write 0 to parser credits for CFC search request */
16959    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16960
16961    /* send 10 Ethernet packets */
16962    for (i = 0; i < 10; i++) {
16963        bxe_lb_pckt(sc);
16964    }
16965
16966    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16967    count = (1000 * factor);
16968    while (count) {
16969        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16970        val = *BXE_SP(sc, wb_data[0]);
16971        if (val == 0xb0) {
16972            break;
16973        }
16974
16975        DELAY(10000);
16976        count--;
16977    }
16978
16979    if (val != 0xb0) {
16980        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16981        return (-3);
16982    }
16983
16984    /* Wait until PRS register shows 2 packets */
16985    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16986    if (val != 2) {
16987        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16988    }
16989
16990    /* Write 1 to parser credits for CFC search request */
16991    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16992
16993    /* Wait until PRS register shows 3 packets */
16994    DELAY(10000 * factor);
16995
16996    /* Wait until NIG register shows 1 packet of size 0x10 */
16997    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16998    if (val != 3) {
16999        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17000    }
17001
17002    /* clear NIG EOP FIFO */
17003    for (i = 0; i < 11; i++) {
17004        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17005    }
17006
17007    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17008    if (val != 1) {
17009        BLOGE(sc, "clear of NIG failed\n");
17010        return (-4);
17011    }
17012
17013    /* Reset and init BRB, PRS, NIG */
17014    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17015    DELAY(50000);
17016    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17017    DELAY(50000);
17018    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17019    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17020    if (!CNIC_SUPPORT(sc)) {
17021        /* set NIC mode */
17022        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17023    }
17024
17025    /* Enable inputs of parser neighbor blocks */
17026    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17027    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17028    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17029    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17030
17031    return (0);
17032}
17033
17034static void
17035bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17036{
17037    int is_required;
17038    uint32_t val;
17039    int port;
17040
17041    is_required = 0;
17042    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17043           SHARED_HW_CFG_FAN_FAILURE_MASK);
17044
17045    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17046        is_required = 1;
17047    }
17048    /*
17049     * The fan failure mechanism is usually related to the PHY type since
17050     * the power consumption of the board is affected by the PHY. Currently,
17051     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17052     */
17053    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17054        for (port = PORT_0; port < PORT_MAX; port++) {
17055            is_required |= elink_fan_failure_det_req(sc,
17056                                                     sc->devinfo.shmem_base,
17057                                                     sc->devinfo.shmem2_base,
17058                                                     port);
17059        }
17060    }
17061
17062    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17063
17064    if (is_required == 0) {
17065        return;
17066    }
17067
17068    /* Fan failure is indicated by SPIO 5 */
17069    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17070
17071    /* set to active low mode */
17072    val = REG_RD(sc, MISC_REG_SPIO_INT);
17073    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17074    REG_WR(sc, MISC_REG_SPIO_INT, val);
17075
17076    /* enable interrupt to signal the IGU */
17077    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17078    val |= MISC_SPIO_SPIO5;
17079    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17080}
17081
17082static void
17083bxe_enable_blocks_attention(struct bxe_softc *sc)
17084{
17085    uint32_t val;
17086
17087    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17088    if (!CHIP_IS_E1x(sc)) {
17089        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17090    } else {
17091        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17092    }
17093    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17094    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17095    /*
17096     * mask read length error interrupts in brb for parser
17097     * (parsing unit and 'checksum and crc' unit)
17098     * these errors are legal (PU reads fixed length and CAC can cause
17099     * read length error on truncated packets)
17100     */
17101    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17102    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17103    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17104    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17105    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17106    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17107/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17108/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17109    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17110    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17111    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17112/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17113/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17114    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17115    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17116    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17117    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17118/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17119/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17120
17121    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17122           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17123           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17124    if (!CHIP_IS_E1x(sc)) {
17125        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17126                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17127    }
17128    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17129
17130    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17131    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17132    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17133/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17134
17135    if (!CHIP_IS_E1x(sc)) {
17136        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17137        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17138    }
17139
17140    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17141    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17142/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17143    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17144}
17145
17146/**
17147 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17148 *
17149 * @sc:     driver handle
17150 */
17151static int
17152bxe_init_hw_common(struct bxe_softc *sc)
17153{
17154    uint8_t abs_func_id;
17155    uint32_t val;
17156
17157    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17158          SC_ABS_FUNC(sc));
17159
17160    /*
17161     * take the RESET lock to protect undi_unload flow from accessing
17162     * registers while we are resetting the chip
17163     */
17164    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17165
17166    bxe_reset_common(sc);
17167
17168    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17169
17170    val = 0xfffc;
17171    if (CHIP_IS_E3(sc)) {
17172        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17173        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17174    }
17175
17176    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17177
17178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17179
17180    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17181    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17182
17183    if (!CHIP_IS_E1x(sc)) {
17184        /*
17185         * 4-port mode or 2-port mode we need to turn off master-enable for
17186         * everyone. After that we turn it back on for self. So, we disregard
17187         * multi-function, and always disable all functions on the given path,
17188         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17189         */
17190        for (abs_func_id = SC_PATH(sc);
17191             abs_func_id < (E2_FUNC_MAX * 2);
17192             abs_func_id += 2) {
17193            if (abs_func_id == SC_ABS_FUNC(sc)) {
17194                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17195                continue;
17196            }
17197
17198            bxe_pretend_func(sc, abs_func_id);
17199
17200            /* clear pf enable */
17201            bxe_pf_disable(sc);
17202
17203            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17204        }
17205    }
17206
17207    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17208
17209    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17210
17211    if (CHIP_IS_E1(sc)) {
17212        /*
17213         * enable HW interrupt from PXP on USDM overflow
17214         * bit 16 on INT_MASK_0
17215         */
17216        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17217    }
17218
17219    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17220    bxe_init_pxp(sc);
17221
17222#ifdef __BIG_ENDIAN
17223    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17224    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17225    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17226    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17227    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17228    /* make sure this value is 0 */
17229    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17230
17231    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17232    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17233    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17234    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17235    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17236#endif
17237
17238    ecore_ilt_init_page_size(sc, INITOP_SET);
17239
17240    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17241        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17242    }
17243
17244    /* let the HW do it's magic... */
17245    DELAY(100000);
17246
17247    /* finish PXP init */
17248    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17249    if (val != 1) {
17250        BLOGE(sc, "PXP2 CFG failed\n");
17251        return (-1);
17252    }
17253    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17254    if (val != 1) {
17255        BLOGE(sc, "PXP2 RD_INIT failed\n");
17256        return (-1);
17257    }
17258
17259    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17260
17261    /*
17262     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17263     * entries with value "0" and valid bit on. This needs to be done by the
17264     * first PF that is loaded in a path (i.e. common phase)
17265     */
17266    if (!CHIP_IS_E1x(sc)) {
17267/*
17268 * In E2 there is a bug in the timers block that can cause function 6 / 7
17269 * (i.e. vnic3) to start even if it is marked as "scan-off".
17270 * This occurs when a different function (func2,3) is being marked
17271 * as "scan-off". Real-life scenario for example: if a driver is being
17272 * load-unloaded while func6,7 are down. This will cause the timer to access
17273 * the ilt, translate to a logical address and send a request to read/write.
17274 * Since the ilt for the function that is down is not valid, this will cause
17275 * a translation error which is unrecoverable.
17276 * The Workaround is intended to make sure that when this happens nothing
17277 * fatal will occur. The workaround:
17278 *  1.  First PF driver which loads on a path will:
17279 *      a.  After taking the chip out of reset, by using pretend,
17280 *          it will write "0" to the following registers of
17281 *          the other vnics.
17282 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17283 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17284 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17285 *          And for itself it will write '1' to
17286 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17287 *          dmae-operations (writing to pram for example.)
17288 *          note: can be done for only function 6,7 but cleaner this
17289 *            way.
17290 *      b.  Write zero+valid to the entire ILT.
17291 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17292 *          VNIC3 (of that port). The range allocated will be the
17293 *          entire ILT. This is needed to prevent  ILT range error.
17294 *  2.  Any PF driver load flow:
17295 *      a.  ILT update with the physical addresses of the allocated
17296 *          logical pages.
17297 *      b.  Wait 20msec. - note that this timeout is needed to make
17298 *          sure there are no requests in one of the PXP internal
17299 *          queues with "old" ILT addresses.
17300 *      c.  PF enable in the PGLC.
17301 *      d.  Clear the was_error of the PF in the PGLC. (could have
17302 *          occurred while driver was down)
17303 *      e.  PF enable in the CFC (WEAK + STRONG)
17304 *      f.  Timers scan enable
17305 *  3.  PF driver unload flow:
17306 *      a.  Clear the Timers scan_en.
17307 *      b.  Polling for scan_on=0 for that PF.
17308 *      c.  Clear the PF enable bit in the PXP.
17309 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17310 *      e.  Write zero+valid to all ILT entries (The valid bit must
17311 *          stay set)
17312 *      f.  If this is VNIC 3 of a port then also init
17313 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17314 *          to the last enrty in the ILT.
17315 *
17316 *      Notes:
17317 *      Currently the PF error in the PGLC is non recoverable.
17318 *      In the future the there will be a recovery routine for this error.
17319 *      Currently attention is masked.
17320 *      Having an MCP lock on the load/unload process does not guarantee that
17321 *      there is no Timer disable during Func6/7 enable. This is because the
17322 *      Timers scan is currently being cleared by the MCP on FLR.
17323 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17324 *      there is error before clearing it. But the flow above is simpler and
17325 *      more general.
17326 *      All ILT entries are written by zero+valid and not just PF6/7
17327 *      ILT entries since in the future the ILT entries allocation for
17328 *      PF-s might be dynamic.
17329 */
17330        struct ilt_client_info ilt_cli;
17331        struct ecore_ilt ilt;
17332
17333        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17334        memset(&ilt, 0, sizeof(struct ecore_ilt));
17335
17336        /* initialize dummy TM client */
17337        ilt_cli.start      = 0;
17338        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17339        ilt_cli.client_num = ILT_CLIENT_TM;
17340
17341        /*
17342         * Step 1: set zeroes to all ilt page entries with valid bit on
17343         * Step 2: set the timers first/last ilt entry to point
17344         * to the entire range to prevent ILT range error for 3rd/4th
17345         * vnic (this code assumes existence of the vnic)
17346         *
17347         * both steps performed by call to ecore_ilt_client_init_op()
17348         * with dummy TM client
17349         *
17350         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17351         * and his brother are split registers
17352         */
17353
17354        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17355        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17356        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17357
17358        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17359        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17360        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17361    }
17362
17363    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17364    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17365
17366    if (!CHIP_IS_E1x(sc)) {
17367        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17368                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17369
17370        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17371        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17372
17373        /* let the HW do it's magic... */
17374        do {
17375            DELAY(200000);
17376            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17377        } while (factor-- && (val != 1));
17378
17379        if (val != 1) {
17380            BLOGE(sc, "ATC_INIT failed\n");
17381            return (-1);
17382        }
17383    }
17384
17385    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17386
17387    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17388
17389    bxe_iov_init_dmae(sc);
17390
17391    /* clean the DMAE memory */
17392    sc->dmae_ready = 1;
17393    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17394
17395    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17396
17397    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17398
17399    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17400
17401    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17402
17403    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17404    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17405    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17406    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17407
17408    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17409
17410    /* QM queues pointers table */
17411    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17412
17413    /* soft reset pulse */
17414    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17415    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17416
17417    if (CNIC_SUPPORT(sc))
17418        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17419
17420    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17421    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17422    if (!CHIP_REV_IS_SLOW(sc)) {
17423        /* enable hw interrupt from doorbell Q */
17424        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17425    }
17426
17427    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17428
17429    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17430    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17431
17432    if (!CHIP_IS_E1(sc)) {
17433        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17434    }
17435
17436    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17437        if (IS_MF_AFEX(sc)) {
17438            /*
17439             * configure that AFEX and VLAN headers must be
17440             * received in AFEX mode
17441             */
17442            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17443            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17444            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17445            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17446            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17447        } else {
17448            /*
17449             * Bit-map indicating which L2 hdrs may appear
17450             * after the basic Ethernet header
17451             */
17452            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17453                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17454        }
17455    }
17456
17457    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17458    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17459    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17460    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17461
17462    if (!CHIP_IS_E1x(sc)) {
17463        /* reset VFC memories */
17464        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17465               VFC_MEMORIES_RST_REG_CAM_RST |
17466               VFC_MEMORIES_RST_REG_RAM_RST);
17467        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17468               VFC_MEMORIES_RST_REG_CAM_RST |
17469               VFC_MEMORIES_RST_REG_RAM_RST);
17470
17471        DELAY(20000);
17472    }
17473
17474    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17475    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17476    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17477    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17478
17479    /* sync semi rtc */
17480    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17481           0x80000000);
17482    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17483           0x80000000);
17484
17485    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17486    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17487    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17488
17489    if (!CHIP_IS_E1x(sc)) {
17490        if (IS_MF_AFEX(sc)) {
17491            /*
17492             * configure that AFEX and VLAN headers must be
17493             * sent in AFEX mode
17494             */
17495            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17496            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17497            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17498            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17499            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17500        } else {
17501            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17502                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17503        }
17504    }
17505
17506    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17507
17508    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17509
17510    if (CNIC_SUPPORT(sc)) {
17511        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17512        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17513        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17514        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17515        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17516        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17517        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17521    }
17522    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17523
17524    if (sizeof(union cdu_context) != 1024) {
17525        /* we currently assume that a context is 1024 bytes */
17526        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17527              (long)sizeof(union cdu_context));
17528    }
17529
17530    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17531    val = (4 << 24) + (0 << 12) + 1024;
17532    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17533
17534    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17535
17536    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17537    /* enable context validation interrupt from CFC */
17538    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17539
17540    /* set the thresholds to prevent CFC/CDU race */
17541    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17542    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17543
17544    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17545        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17546    }
17547
17548    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17549    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17550
17551    /* Reset PCIE errors for debug */
17552    REG_WR(sc, 0x2814, 0xffffffff);
17553    REG_WR(sc, 0x3820, 0xffffffff);
17554
17555    if (!CHIP_IS_E1x(sc)) {
17556        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17557               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17558                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17559        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17560               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17561                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17562                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17563        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17564               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17565                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17566                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17567    }
17568
17569    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17570
17571    if (!CHIP_IS_E1(sc)) {
17572        /* in E3 this done in per-port section */
17573        if (!CHIP_IS_E3(sc))
17574            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17575    }
17576
17577    if (CHIP_IS_E1H(sc)) {
17578        /* not applicable for E2 (and above ...) */
17579        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17580    }
17581
17582    if (CHIP_REV_IS_SLOW(sc)) {
17583        DELAY(200000);
17584    }
17585
17586    /* finish CFC init */
17587    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17588    if (val != 1) {
17589        BLOGE(sc, "CFC LL_INIT failed\n");
17590        return (-1);
17591    }
17592    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17593    if (val != 1) {
17594        BLOGE(sc, "CFC AC_INIT failed\n");
17595        return (-1);
17596    }
17597    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17598    if (val != 1) {
17599        BLOGE(sc, "CFC CAM_INIT failed\n");
17600        return (-1);
17601    }
17602    REG_WR(sc, CFC_REG_DEBUG0, 0);
17603
17604    if (CHIP_IS_E1(sc)) {
17605        /* read NIG statistic to see if this is our first up since powerup */
17606        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17607        val = *BXE_SP(sc, wb_data[0]);
17608
17609        /* do internal memory self test */
17610        if ((val == 0) && bxe_int_mem_test(sc)) {
17611            BLOGE(sc, "internal mem self test failed\n");
17612            return (-1);
17613        }
17614    }
17615
17616    bxe_setup_fan_failure_detection(sc);
17617
17618    /* clear PXP2 attentions */
17619    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17620
17621    bxe_enable_blocks_attention(sc);
17622
17623    if (!CHIP_REV_IS_SLOW(sc)) {
17624        ecore_enable_blocks_parity(sc);
17625    }
17626
17627    if (!BXE_NOMCP(sc)) {
17628        if (CHIP_IS_E1x(sc)) {
17629            bxe_common_init_phy(sc);
17630        }
17631    }
17632
17633    return (0);
17634}
17635
17636/**
17637 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17638 *
17639 * @sc:     driver handle
17640 */
17641static int
17642bxe_init_hw_common_chip(struct bxe_softc *sc)
17643{
17644    int rc = bxe_init_hw_common(sc);
17645
17646    if (rc) {
17647        return (rc);
17648    }
17649
17650    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17651    if (!BXE_NOMCP(sc)) {
17652        bxe_common_init_phy(sc);
17653    }
17654
17655    return (0);
17656}
17657
17658static int
17659bxe_init_hw_port(struct bxe_softc *sc)
17660{
17661    int port = SC_PORT(sc);
17662    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17663    uint32_t low, high;
17664    uint32_t val;
17665
17666    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17667
17668    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17669
17670    ecore_init_block(sc, BLOCK_MISC, init_phase);
17671    ecore_init_block(sc, BLOCK_PXP, init_phase);
17672    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17673
17674    /*
17675     * Timers bug workaround: disables the pf_master bit in pglue at
17676     * common phase, we need to enable it here before any dmae access are
17677     * attempted. Therefore we manually added the enable-master to the
17678     * port phase (it also happens in the function phase)
17679     */
17680    if (!CHIP_IS_E1x(sc)) {
17681        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17682    }
17683
17684    ecore_init_block(sc, BLOCK_ATC, init_phase);
17685    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17686    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17687    ecore_init_block(sc, BLOCK_QM, init_phase);
17688
17689    ecore_init_block(sc, BLOCK_TCM, init_phase);
17690    ecore_init_block(sc, BLOCK_UCM, init_phase);
17691    ecore_init_block(sc, BLOCK_CCM, init_phase);
17692    ecore_init_block(sc, BLOCK_XCM, init_phase);
17693
17694    /* QM cid (connection) count */
17695    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17696
17697    if (CNIC_SUPPORT(sc)) {
17698        ecore_init_block(sc, BLOCK_TM, init_phase);
17699        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17700        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17701    }
17702
17703    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17704
17705    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17706
17707    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17708        if (IS_MF(sc)) {
17709            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17710        } else if (sc->mtu > 4096) {
17711            if (BXE_ONE_PORT(sc)) {
17712                low = 160;
17713            } else {
17714                val = sc->mtu;
17715                /* (24*1024 + val*4)/256 */
17716                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17717            }
17718        } else {
17719            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17720        }
17721        high = (low + 56); /* 14*1024/256 */
17722        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17723        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17724    }
17725
17726    if (CHIP_IS_MODE_4_PORT(sc)) {
17727        REG_WR(sc, SC_PORT(sc) ?
17728               BRB1_REG_MAC_GUARANTIED_1 :
17729               BRB1_REG_MAC_GUARANTIED_0, 40);
17730    }
17731
17732    ecore_init_block(sc, BLOCK_PRS, init_phase);
17733    if (CHIP_IS_E3B0(sc)) {
17734        if (IS_MF_AFEX(sc)) {
17735            /* configure headers for AFEX mode */
17736            REG_WR(sc, SC_PORT(sc) ?
17737                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17738                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17739            REG_WR(sc, SC_PORT(sc) ?
17740                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17741                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17742            REG_WR(sc, SC_PORT(sc) ?
17743                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17744                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17745        } else {
17746            /* Ovlan exists only if we are in multi-function +
17747             * switch-dependent mode, in switch-independent there
17748             * is no ovlan headers
17749             */
17750            REG_WR(sc, SC_PORT(sc) ?
17751                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17752                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17753                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17754        }
17755    }
17756
17757    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17758    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17759    ecore_init_block(sc, BLOCK_USDM, init_phase);
17760    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17761
17762    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17763    ecore_init_block(sc, BLOCK_USEM, init_phase);
17764    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17765    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17766
17767    ecore_init_block(sc, BLOCK_UPB, init_phase);
17768    ecore_init_block(sc, BLOCK_XPB, init_phase);
17769
17770    ecore_init_block(sc, BLOCK_PBF, init_phase);
17771
17772    if (CHIP_IS_E1x(sc)) {
17773        /* configure PBF to work without PAUSE mtu 9000 */
17774        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17775
17776        /* update threshold */
17777        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17778        /* update init credit */
17779        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17780
17781        /* probe changes */
17782        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17783        DELAY(50);
17784        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17785    }
17786
17787    if (CNIC_SUPPORT(sc)) {
17788        ecore_init_block(sc, BLOCK_SRC, init_phase);
17789    }
17790
17791    ecore_init_block(sc, BLOCK_CDU, init_phase);
17792    ecore_init_block(sc, BLOCK_CFC, init_phase);
17793
17794    if (CHIP_IS_E1(sc)) {
17795        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17796        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17797    }
17798    ecore_init_block(sc, BLOCK_HC, init_phase);
17799
17800    ecore_init_block(sc, BLOCK_IGU, init_phase);
17801
17802    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17803    /* init aeu_mask_attn_func_0/1:
17804     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17805     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17806     *             bits 4-7 are used for "per vn group attention" */
17807    val = IS_MF(sc) ? 0xF7 : 0x7;
17808    /* Enable DCBX attention for all but E1 */
17809    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17810    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17811
17812    ecore_init_block(sc, BLOCK_NIG, init_phase);
17813
17814    if (!CHIP_IS_E1x(sc)) {
17815        /* Bit-map indicating which L2 hdrs may appear after the
17816         * basic Ethernet header
17817         */
17818        if (IS_MF_AFEX(sc)) {
17819            REG_WR(sc, SC_PORT(sc) ?
17820                   NIG_REG_P1_HDRS_AFTER_BASIC :
17821                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17822        } else {
17823            REG_WR(sc, SC_PORT(sc) ?
17824                   NIG_REG_P1_HDRS_AFTER_BASIC :
17825                   NIG_REG_P0_HDRS_AFTER_BASIC,
17826                   IS_MF_SD(sc) ? 7 : 6);
17827        }
17828
17829        if (CHIP_IS_E3(sc)) {
17830            REG_WR(sc, SC_PORT(sc) ?
17831                   NIG_REG_LLH1_MF_MODE :
17832                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17833        }
17834    }
17835    if (!CHIP_IS_E3(sc)) {
17836        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17837    }
17838
17839    if (!CHIP_IS_E1(sc)) {
17840        /* 0x2 disable mf_ov, 0x1 enable */
17841        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17842               (IS_MF_SD(sc) ? 0x1 : 0x2));
17843
17844        if (!CHIP_IS_E1x(sc)) {
17845            val = 0;
17846            switch (sc->devinfo.mf_info.mf_mode) {
17847            case MULTI_FUNCTION_SD:
17848                val = 1;
17849                break;
17850            case MULTI_FUNCTION_SI:
17851            case MULTI_FUNCTION_AFEX:
17852                val = 2;
17853                break;
17854            }
17855
17856            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17857                        NIG_REG_LLH0_CLS_TYPE), val);
17858        }
17859        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17860        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17861        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17862    }
17863
17864    /* If SPIO5 is set to generate interrupts, enable it for this port */
17865    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17866    if (val & MISC_SPIO_SPIO5) {
17867        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17868                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17869        val = REG_RD(sc, reg_addr);
17870        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17871        REG_WR(sc, reg_addr, val);
17872    }
17873
17874    return (0);
17875}
17876
17877static uint32_t
17878bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17879                       uint32_t         reg,
17880                       uint32_t         expected,
17881                       uint32_t         poll_count)
17882{
17883    uint32_t cur_cnt = poll_count;
17884    uint32_t val;
17885
17886    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17887        DELAY(FLR_WAIT_INTERVAL);
17888    }
17889
17890    return (val);
17891}
17892
17893static int
17894bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17895                              uint32_t         reg,
17896                              char             *msg,
17897                              uint32_t         poll_cnt)
17898{
17899    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17900
17901    if (val != 0) {
17902        BLOGE(sc, "%s usage count=%d\n", msg, val);
17903        return (1);
17904    }
17905
17906    return (0);
17907}
17908
17909/* Common routines with VF FLR cleanup */
17910static uint32_t
17911bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17912{
17913    /* adjust polling timeout */
17914    if (CHIP_REV_IS_EMUL(sc)) {
17915        return (FLR_POLL_CNT * 2000);
17916    }
17917
17918    if (CHIP_REV_IS_FPGA(sc)) {
17919        return (FLR_POLL_CNT * 120);
17920    }
17921
17922    return (FLR_POLL_CNT);
17923}
17924
17925static int
17926bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17927                           uint32_t         poll_cnt)
17928{
17929    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17930    if (bxe_flr_clnup_poll_hw_counter(sc,
17931                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17932                                      "CFC PF usage counter timed out",
17933                                      poll_cnt)) {
17934        return (1);
17935    }
17936
17937    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17938    if (bxe_flr_clnup_poll_hw_counter(sc,
17939                                      DORQ_REG_PF_USAGE_CNT,
17940                                      "DQ PF usage counter timed out",
17941                                      poll_cnt)) {
17942        return (1);
17943    }
17944
17945    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17946    if (bxe_flr_clnup_poll_hw_counter(sc,
17947                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17948                                      "QM PF usage counter timed out",
17949                                      poll_cnt)) {
17950        return (1);
17951    }
17952
17953    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17954    if (bxe_flr_clnup_poll_hw_counter(sc,
17955                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17956                                      "Timers VNIC usage counter timed out",
17957                                      poll_cnt)) {
17958        return (1);
17959    }
17960
17961    if (bxe_flr_clnup_poll_hw_counter(sc,
17962                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17963                                      "Timers NUM_SCANS usage counter timed out",
17964                                      poll_cnt)) {
17965        return (1);
17966    }
17967
17968    /* Wait DMAE PF usage counter to zero */
17969    if (bxe_flr_clnup_poll_hw_counter(sc,
17970                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17971                                      "DMAE dommand register timed out",
17972                                      poll_cnt)) {
17973        return (1);
17974    }
17975
17976    return (0);
17977}
17978
17979#define OP_GEN_PARAM(param)                                            \
17980    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17981#define OP_GEN_TYPE(type)                                           \
17982    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17983#define OP_GEN_AGG_VECT(index)                                             \
17984    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17985
17986static int
17987bxe_send_final_clnup(struct bxe_softc *sc,
17988                     uint8_t          clnup_func,
17989                     uint32_t         poll_cnt)
17990{
17991    uint32_t op_gen_command = 0;
17992    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17993                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17994    int ret = 0;
17995
17996    if (REG_RD(sc, comp_addr)) {
17997        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17998        return (1);
17999    }
18000
18001    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18002    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18003    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18004    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18005
18006    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18007    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18008
18009    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18010        BLOGE(sc, "FW final cleanup did not succeed\n");
18011        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18012              (REG_RD(sc, comp_addr)));
18013        bxe_panic(sc, ("FLR cleanup failed\n"));
18014        return (1);
18015    }
18016
18017    /* Zero completion for nxt FLR */
18018    REG_WR(sc, comp_addr, 0);
18019
18020    return (ret);
18021}
18022
18023static void
18024bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18025                       struct pbf_pN_buf_regs *regs,
18026                       uint32_t               poll_count)
18027{
18028    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18029    uint32_t cur_cnt = poll_count;
18030
18031    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18032    crd = crd_start = REG_RD(sc, regs->crd);
18033    init_crd = REG_RD(sc, regs->init_crd);
18034
18035    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18036    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18037    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18038
18039    while ((crd != init_crd) &&
18040           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18041            (init_crd - crd_start))) {
18042        if (cur_cnt--) {
18043            DELAY(FLR_WAIT_INTERVAL);
18044            crd = REG_RD(sc, regs->crd);
18045            crd_freed = REG_RD(sc, regs->crd_freed);
18046        } else {
18047            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18048            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18049            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18050            break;
18051        }
18052    }
18053
18054    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18055          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18056}
18057
18058static void
18059bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18060                       struct pbf_pN_cmd_regs *regs,
18061                       uint32_t               poll_count)
18062{
18063    uint32_t occup, to_free, freed, freed_start;
18064    uint32_t cur_cnt = poll_count;
18065
18066    occup = to_free = REG_RD(sc, regs->lines_occup);
18067    freed = freed_start = REG_RD(sc, regs->lines_freed);
18068
18069    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18070    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18071
18072    while (occup &&
18073           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18074        if (cur_cnt--) {
18075            DELAY(FLR_WAIT_INTERVAL);
18076            occup = REG_RD(sc, regs->lines_occup);
18077            freed = REG_RD(sc, regs->lines_freed);
18078        } else {
18079            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18080            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18081            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18082            break;
18083        }
18084    }
18085
18086    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18087          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18088}
18089
18090static void
18091bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18092{
18093    struct pbf_pN_cmd_regs cmd_regs[] = {
18094        {0, (CHIP_IS_E3B0(sc)) ?
18095            PBF_REG_TQ_OCCUPANCY_Q0 :
18096            PBF_REG_P0_TQ_OCCUPANCY,
18097            (CHIP_IS_E3B0(sc)) ?
18098            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18099            PBF_REG_P0_TQ_LINES_FREED_CNT},
18100        {1, (CHIP_IS_E3B0(sc)) ?
18101            PBF_REG_TQ_OCCUPANCY_Q1 :
18102            PBF_REG_P1_TQ_OCCUPANCY,
18103            (CHIP_IS_E3B0(sc)) ?
18104            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18105            PBF_REG_P1_TQ_LINES_FREED_CNT},
18106        {4, (CHIP_IS_E3B0(sc)) ?
18107            PBF_REG_TQ_OCCUPANCY_LB_Q :
18108            PBF_REG_P4_TQ_OCCUPANCY,
18109            (CHIP_IS_E3B0(sc)) ?
18110            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18111            PBF_REG_P4_TQ_LINES_FREED_CNT}
18112    };
18113
18114    struct pbf_pN_buf_regs buf_regs[] = {
18115        {0, (CHIP_IS_E3B0(sc)) ?
18116            PBF_REG_INIT_CRD_Q0 :
18117            PBF_REG_P0_INIT_CRD ,
18118            (CHIP_IS_E3B0(sc)) ?
18119            PBF_REG_CREDIT_Q0 :
18120            PBF_REG_P0_CREDIT,
18121            (CHIP_IS_E3B0(sc)) ?
18122            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18123            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18124        {1, (CHIP_IS_E3B0(sc)) ?
18125            PBF_REG_INIT_CRD_Q1 :
18126            PBF_REG_P1_INIT_CRD,
18127            (CHIP_IS_E3B0(sc)) ?
18128            PBF_REG_CREDIT_Q1 :
18129            PBF_REG_P1_CREDIT,
18130            (CHIP_IS_E3B0(sc)) ?
18131            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18132            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18133        {4, (CHIP_IS_E3B0(sc)) ?
18134            PBF_REG_INIT_CRD_LB_Q :
18135            PBF_REG_P4_INIT_CRD,
18136            (CHIP_IS_E3B0(sc)) ?
18137            PBF_REG_CREDIT_LB_Q :
18138            PBF_REG_P4_CREDIT,
18139            (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18141            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18142    };
18143
18144    int i;
18145
18146    /* Verify the command queues are flushed P0, P1, P4 */
18147    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18148        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18149    }
18150
18151    /* Verify the transmission buffers are flushed P0, P1, P4 */
18152    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18153        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18154    }
18155}
18156
18157static void
18158bxe_hw_enable_status(struct bxe_softc *sc)
18159{
18160    uint32_t val;
18161
18162    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18163    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18164
18165    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18166    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18167
18168    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18169    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18170
18171    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18172    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18173
18174    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18175    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18176
18177    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18178    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18179
18180    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18181    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18182
18183    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18184    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18185}
18186
18187static int
18188bxe_pf_flr_clnup(struct bxe_softc *sc)
18189{
18190    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18191
18192    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18193
18194    /* Re-enable PF target read access */
18195    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18196
18197    /* Poll HW usage counters */
18198    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18199    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18200        return (-1);
18201    }
18202
18203    /* Zero the igu 'trailing edge' and 'leading edge' */
18204
18205    /* Send the FW cleanup command */
18206    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18207        return (-1);
18208    }
18209
18210    /* ATC cleanup */
18211
18212    /* Verify TX hw is flushed */
18213    bxe_tx_hw_flushed(sc, poll_cnt);
18214
18215    /* Wait 100ms (not adjusted according to platform) */
18216    DELAY(100000);
18217
18218    /* Verify no pending pci transactions */
18219    if (bxe_is_pcie_pending(sc)) {
18220        BLOGE(sc, "PCIE Transactions still pending\n");
18221    }
18222
18223    /* Debug */
18224    bxe_hw_enable_status(sc);
18225
18226    /*
18227     * Master enable - Due to WB DMAE writes performed before this
18228     * register is re-initialized as part of the regular function init
18229     */
18230    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18231
18232    return (0);
18233}
18234
18235#if 0
18236static void
18237bxe_init_searcher(struct bxe_softc *sc)
18238{
18239    int port = SC_PORT(sc);
18240    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18241    /* T1 hash bits value determines the T1 number of entries */
18242    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18243}
18244#endif
18245
18246static int
18247bxe_init_hw_func(struct bxe_softc *sc)
18248{
18249    int port = SC_PORT(sc);
18250    int func = SC_FUNC(sc);
18251    int init_phase = PHASE_PF0 + func;
18252    struct ecore_ilt *ilt = sc->ilt;
18253    uint16_t cdu_ilt_start;
18254    uint32_t addr, val;
18255    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18256    int i, main_mem_width, rc;
18257
18258    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18259
18260    /* FLR cleanup */
18261    if (!CHIP_IS_E1x(sc)) {
18262        rc = bxe_pf_flr_clnup(sc);
18263        if (rc) {
18264            BLOGE(sc, "FLR cleanup failed!\n");
18265            // XXX bxe_fw_dump(sc);
18266            // XXX bxe_idle_chk(sc);
18267            return (rc);
18268        }
18269    }
18270
18271    /* set MSI reconfigure capability */
18272    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18273        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18274        val = REG_RD(sc, addr);
18275        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18276        REG_WR(sc, addr, val);
18277    }
18278
18279    ecore_init_block(sc, BLOCK_PXP, init_phase);
18280    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18281
18282    ilt = sc->ilt;
18283    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18284
18285#if 0
18286    if (IS_SRIOV(sc)) {
18287        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18288    }
18289    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18290
18291#if (BXE_FIRST_VF_CID > 0)
18292    /*
18293     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18294     * those of the VFs, so start line should be reset
18295     */
18296    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18297#endif
18298#endif
18299
18300    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18301        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18302        ilt->lines[cdu_ilt_start + i].page_mapping =
18303            sc->context[i].vcxt_dma.paddr;
18304        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18305    }
18306    ecore_ilt_init_op(sc, INITOP_SET);
18307
18308#if 0
18309    if (!CONFIGURE_NIC_MODE(sc)) {
18310        bxe_init_searcher(sc);
18311        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18312        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18313    } else
18314#endif
18315    {
18316        /* Set NIC mode */
18317        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18318        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18319    }
18320
18321    if (!CHIP_IS_E1x(sc)) {
18322        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18323
18324        /* Turn on a single ISR mode in IGU if driver is going to use
18325         * INT#x or MSI
18326         */
18327        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18328            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18329        }
18330
18331        /*
18332         * Timers workaround bug: function init part.
18333         * Need to wait 20msec after initializing ILT,
18334         * needed to make sure there are no requests in
18335         * one of the PXP internal queues with "old" ILT addresses
18336         */
18337        DELAY(20000);
18338
18339        /*
18340         * Master enable - Due to WB DMAE writes performed before this
18341         * register is re-initialized as part of the regular function
18342         * init
18343         */
18344        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18345        /* Enable the function in IGU */
18346        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18347    }
18348
18349    sc->dmae_ready = 1;
18350
18351    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18352
18353    if (!CHIP_IS_E1x(sc))
18354        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18355
18356    ecore_init_block(sc, BLOCK_ATC, init_phase);
18357    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18358    ecore_init_block(sc, BLOCK_NIG, init_phase);
18359    ecore_init_block(sc, BLOCK_SRC, init_phase);
18360    ecore_init_block(sc, BLOCK_MISC, init_phase);
18361    ecore_init_block(sc, BLOCK_TCM, init_phase);
18362    ecore_init_block(sc, BLOCK_UCM, init_phase);
18363    ecore_init_block(sc, BLOCK_CCM, init_phase);
18364    ecore_init_block(sc, BLOCK_XCM, init_phase);
18365    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18366    ecore_init_block(sc, BLOCK_USEM, init_phase);
18367    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18368    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18369
18370    if (!CHIP_IS_E1x(sc))
18371        REG_WR(sc, QM_REG_PF_EN, 1);
18372
18373    if (!CHIP_IS_E1x(sc)) {
18374        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18375        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18376        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18377        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18378    }
18379    ecore_init_block(sc, BLOCK_QM, init_phase);
18380
18381    ecore_init_block(sc, BLOCK_TM, init_phase);
18382    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18383
18384    bxe_iov_init_dq(sc);
18385
18386    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18387    ecore_init_block(sc, BLOCK_PRS, init_phase);
18388    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18389    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18390    ecore_init_block(sc, BLOCK_USDM, init_phase);
18391    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18392    ecore_init_block(sc, BLOCK_UPB, init_phase);
18393    ecore_init_block(sc, BLOCK_XPB, init_phase);
18394    ecore_init_block(sc, BLOCK_PBF, init_phase);
18395    if (!CHIP_IS_E1x(sc))
18396        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18397
18398    ecore_init_block(sc, BLOCK_CDU, init_phase);
18399
18400    ecore_init_block(sc, BLOCK_CFC, init_phase);
18401
18402    if (!CHIP_IS_E1x(sc))
18403        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18404
18405    if (IS_MF(sc)) {
18406        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18407        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18408    }
18409
18410    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18411
18412    /* HC init per function */
18413    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18414        if (CHIP_IS_E1H(sc)) {
18415            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18416
18417            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18418            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18419        }
18420        ecore_init_block(sc, BLOCK_HC, init_phase);
18421
18422    } else {
18423        int num_segs, sb_idx, prod_offset;
18424
18425        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18426
18427        if (!CHIP_IS_E1x(sc)) {
18428            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18429            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18430        }
18431
18432        ecore_init_block(sc, BLOCK_IGU, init_phase);
18433
18434        if (!CHIP_IS_E1x(sc)) {
18435            int dsb_idx = 0;
18436            /**
18437             * Producer memory:
18438             * E2 mode: address 0-135 match to the mapping memory;
18439             * 136 - PF0 default prod; 137 - PF1 default prod;
18440             * 138 - PF2 default prod; 139 - PF3 default prod;
18441             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18442             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18443             * 144-147 reserved.
18444             *
18445             * E1.5 mode - In backward compatible mode;
18446             * for non default SB; each even line in the memory
18447             * holds the U producer and each odd line hold
18448             * the C producer. The first 128 producers are for
18449             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18450             * producers are for the DSB for each PF.
18451             * Each PF has five segments: (the order inside each
18452             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18453             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18454             * 144-147 attn prods;
18455             */
18456            /* non-default-status-blocks */
18457            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18458                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18459            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18460                prod_offset = (sc->igu_base_sb + sb_idx) *
18461                    num_segs;
18462
18463                for (i = 0; i < num_segs; i++) {
18464                    addr = IGU_REG_PROD_CONS_MEMORY +
18465                            (prod_offset + i) * 4;
18466                    REG_WR(sc, addr, 0);
18467                }
18468                /* send consumer update with value 0 */
18469                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18470                           USTORM_ID, 0, IGU_INT_NOP, 1);
18471                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18472            }
18473
18474            /* default-status-blocks */
18475            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18476                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18477
18478            if (CHIP_IS_MODE_4_PORT(sc))
18479                dsb_idx = SC_FUNC(sc);
18480            else
18481                dsb_idx = SC_VN(sc);
18482
18483            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18484                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18485                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18486
18487            /*
18488             * igu prods come in chunks of E1HVN_MAX (4) -
18489             * does not matters what is the current chip mode
18490             */
18491            for (i = 0; i < (num_segs * E1HVN_MAX);
18492                 i += E1HVN_MAX) {
18493                addr = IGU_REG_PROD_CONS_MEMORY +
18494                            (prod_offset + i)*4;
18495                REG_WR(sc, addr, 0);
18496            }
18497            /* send consumer update with 0 */
18498            if (CHIP_INT_MODE_IS_BC(sc)) {
18499                bxe_ack_sb(sc, sc->igu_dsb_id,
18500                           USTORM_ID, 0, IGU_INT_NOP, 1);
18501                bxe_ack_sb(sc, sc->igu_dsb_id,
18502                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18503                bxe_ack_sb(sc, sc->igu_dsb_id,
18504                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18505                bxe_ack_sb(sc, sc->igu_dsb_id,
18506                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18507                bxe_ack_sb(sc, sc->igu_dsb_id,
18508                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18509            } else {
18510                bxe_ack_sb(sc, sc->igu_dsb_id,
18511                           USTORM_ID, 0, IGU_INT_NOP, 1);
18512                bxe_ack_sb(sc, sc->igu_dsb_id,
18513                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18514            }
18515            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18516
18517            /* !!! these should become driver const once
18518               rf-tool supports split-68 const */
18519            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18520            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18521            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18522            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18523            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18524            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18525        }
18526    }
18527
18528    /* Reset PCIE errors for debug */
18529    REG_WR(sc, 0x2114, 0xffffffff);
18530    REG_WR(sc, 0x2120, 0xffffffff);
18531
18532    if (CHIP_IS_E1x(sc)) {
18533        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18534        main_mem_base = HC_REG_MAIN_MEMORY +
18535                SC_PORT(sc) * (main_mem_size * 4);
18536        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18537        main_mem_width = 8;
18538
18539        val = REG_RD(sc, main_mem_prty_clr);
18540        if (val) {
18541            BLOGD(sc, DBG_LOAD,
18542                  "Parity errors in HC block during function init (0x%x)!\n",
18543                  val);
18544        }
18545
18546        /* Clear "false" parity errors in MSI-X table */
18547        for (i = main_mem_base;
18548             i < main_mem_base + main_mem_size * 4;
18549             i += main_mem_width) {
18550            bxe_read_dmae(sc, i, main_mem_width / 4);
18551            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18552                           i, main_mem_width / 4);
18553        }
18554        /* Clear HC parity attention */
18555        REG_RD(sc, main_mem_prty_clr);
18556    }
18557
18558#if 1
18559    /* Enable STORMs SP logging */
18560    REG_WR8(sc, BAR_USTRORM_INTMEM +
18561           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18562    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18563           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18564    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18565           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18566    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18567           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568#endif
18569
18570    elink_phy_probe(&sc->link_params);
18571
18572    return (0);
18573}
18574
18575static void
18576bxe_link_reset(struct bxe_softc *sc)
18577{
18578    if (!BXE_NOMCP(sc)) {
18579	bxe_acquire_phy_lock(sc);
18580        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18581	bxe_release_phy_lock(sc);
18582    } else {
18583        if (!CHIP_REV_IS_SLOW(sc)) {
18584            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18585        }
18586    }
18587}
18588
18589static void
18590bxe_reset_port(struct bxe_softc *sc)
18591{
18592    int port = SC_PORT(sc);
18593    uint32_t val;
18594
18595    /* reset physical Link */
18596    bxe_link_reset(sc);
18597
18598    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18599
18600    /* Do not rcv packets to BRB */
18601    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18602    /* Do not direct rcv packets that are not for MCP to the BRB */
18603    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18604               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18605
18606    /* Configure AEU */
18607    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18608
18609    DELAY(100000);
18610
18611    /* Check for BRB port occupancy */
18612    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18613    if (val) {
18614        BLOGD(sc, DBG_LOAD,
18615              "BRB1 is not empty, %d blocks are occupied\n", val);
18616    }
18617
18618    /* TODO: Close Doorbell port? */
18619}
18620
18621static void
18622bxe_ilt_wr(struct bxe_softc *sc,
18623           uint32_t         index,
18624           bus_addr_t       addr)
18625{
18626    int reg;
18627    uint32_t wb_write[2];
18628
18629    if (CHIP_IS_E1(sc)) {
18630        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18631    } else {
18632        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18633    }
18634
18635    wb_write[0] = ONCHIP_ADDR1(addr);
18636    wb_write[1] = ONCHIP_ADDR2(addr);
18637    REG_WR_DMAE(sc, reg, wb_write, 2);
18638}
18639
18640static void
18641bxe_clear_func_ilt(struct bxe_softc *sc,
18642                   uint32_t         func)
18643{
18644    uint32_t i, base = FUNC_ILT_BASE(func);
18645    for (i = base; i < base + ILT_PER_FUNC; i++) {
18646        bxe_ilt_wr(sc, i, 0);
18647    }
18648}
18649
18650static void
18651bxe_reset_func(struct bxe_softc *sc)
18652{
18653    struct bxe_fastpath *fp;
18654    int port = SC_PORT(sc);
18655    int func = SC_FUNC(sc);
18656    int i;
18657
18658    /* Disable the function in the FW */
18659    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18660    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18661    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18662    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18663
18664    /* FP SBs */
18665    FOR_EACH_ETH_QUEUE(sc, i) {
18666        fp = &sc->fp[i];
18667        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18668                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18669                SB_DISABLED);
18670    }
18671
18672#if 0
18673    if (CNIC_LOADED(sc)) {
18674        /* CNIC SB */
18675        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18676                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18677                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18678    }
18679#endif
18680
18681    /* SP SB */
18682    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18683            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18684            SB_DISABLED);
18685
18686    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18687        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18688    }
18689
18690    /* Configure IGU */
18691    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18692        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18693        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18694    } else {
18695        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18696        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18697    }
18698
18699    if (CNIC_LOADED(sc)) {
18700        /* Disable Timer scan */
18701        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18702        /*
18703         * Wait for at least 10ms and up to 2 second for the timers
18704         * scan to complete
18705         */
18706        for (i = 0; i < 200; i++) {
18707            DELAY(10000);
18708            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18709                break;
18710        }
18711    }
18712
18713    /* Clear ILT */
18714    bxe_clear_func_ilt(sc, func);
18715
18716    /*
18717     * Timers workaround bug for E2: if this is vnic-3,
18718     * we need to set the entire ilt range for this timers.
18719     */
18720    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18721        struct ilt_client_info ilt_cli;
18722        /* use dummy TM client */
18723        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18724        ilt_cli.start = 0;
18725        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18726        ilt_cli.client_num = ILT_CLIENT_TM;
18727
18728        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18729    }
18730
18731    /* this assumes that reset_port() called before reset_func()*/
18732    if (!CHIP_IS_E1x(sc)) {
18733        bxe_pf_disable(sc);
18734    }
18735
18736    sc->dmae_ready = 0;
18737}
18738
18739static int
18740bxe_gunzip_init(struct bxe_softc *sc)
18741{
18742    return (0);
18743}
18744
18745static void
18746bxe_gunzip_end(struct bxe_softc *sc)
18747{
18748    return;
18749}
18750
18751static int
18752bxe_init_firmware(struct bxe_softc *sc)
18753{
18754    if (CHIP_IS_E1(sc)) {
18755        ecore_init_e1_firmware(sc);
18756        sc->iro_array = e1_iro_arr;
18757    } else if (CHIP_IS_E1H(sc)) {
18758        ecore_init_e1h_firmware(sc);
18759        sc->iro_array = e1h_iro_arr;
18760    } else if (!CHIP_IS_E1x(sc)) {
18761        ecore_init_e2_firmware(sc);
18762        sc->iro_array = e2_iro_arr;
18763    } else {
18764        BLOGE(sc, "Unsupported chip revision\n");
18765        return (-1);
18766    }
18767
18768    return (0);
18769}
18770
18771static void
18772bxe_release_firmware(struct bxe_softc *sc)
18773{
18774    /* Do nothing */
18775    return;
18776}
18777
18778static int
18779ecore_gunzip(struct bxe_softc *sc,
18780             const uint8_t    *zbuf,
18781             int              len)
18782{
18783    /* XXX : Implement... */
18784    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18785    return (FALSE);
18786}
18787
18788static void
18789ecore_reg_wr_ind(struct bxe_softc *sc,
18790                 uint32_t         addr,
18791                 uint32_t         val)
18792{
18793    bxe_reg_wr_ind(sc, addr, val);
18794}
18795
18796static void
18797ecore_write_dmae_phys_len(struct bxe_softc *sc,
18798                          bus_addr_t       phys_addr,
18799                          uint32_t         addr,
18800                          uint32_t         len)
18801{
18802    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18803}
18804
18805void
18806ecore_storm_memset_struct(struct bxe_softc *sc,
18807                          uint32_t         addr,
18808                          size_t           size,
18809                          uint32_t         *data)
18810{
18811    uint8_t i;
18812    for (i = 0; i < size/4; i++) {
18813        REG_WR(sc, addr + (i * 4), data[i]);
18814    }
18815}
18816
18817