bxe.c revision 262999
1/*-
2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3 *
4 * Eric Davis        <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano     <zambrano@broadcom.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 262999 2014-03-11 06:07:12Z edavis $");
36
37#define BXE_DRIVER_VERSION "1.78.78"
38
39#include "bxe.h"
40#include "ecore_sp.h"
41#include "ecore_init.h"
42#include "ecore_init_ops.h"
43
44#include "57710_int_offsets.h"
45#include "57711_int_offsets.h"
46#include "57712_int_offsets.h"
47
48/*
49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50 * explicitly here for older kernels that don't include this changeset.
51 */
52#ifndef CTLTYPE_U64
53#define CTLTYPE_U64      CTLTYPE_QUAD
54#define sysctl_handle_64 sysctl_handle_quad
55#endif
56
57/*
58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59 * here as zero(0) for older kernels that don't include this changeset
60 * thereby masking the functionality.
61 */
62#ifndef CSUM_TCP_IPV6
63#define CSUM_TCP_IPV6 0
64#define CSUM_UDP_IPV6 0
65#endif
66
67/*
68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69 * for older kernels that don't include this changeset.
70 */
71#if __FreeBSD_version < 900035
72#define pci_find_cap pci_find_extcap
73#endif
74
75#define BXE_DEF_SB_ATT_IDX 0x0001
76#define BXE_DEF_SB_IDX     0x0002
77
78/*
79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80 * function HW initialization.
81 */
82#define FLR_WAIT_USEC     10000 /* 10 msecs */
83#define FLR_WAIT_INTERVAL 50    /* usecs */
84#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85
86struct pbf_pN_buf_regs {
87    int pN;
88    uint32_t init_crd;
89    uint32_t crd;
90    uint32_t crd_freed;
91};
92
93struct pbf_pN_cmd_regs {
94    int pN;
95    uint32_t lines_occup;
96    uint32_t lines_freed;
97};
98
99/*
100 * PCI Device ID Table used by bxe_probe().
101 */
102#define BXE_DEVDESC_MAX 64
103static struct bxe_device_type bxe_devs[] = {
104    {
105        BRCM_VENDORID,
106        CHIP_NUM_57710,
107        PCI_ANY_ID, PCI_ANY_ID,
108        "Broadcom NetXtreme II BCM57710 10GbE"
109    },
110    {
111        BRCM_VENDORID,
112        CHIP_NUM_57711,
113        PCI_ANY_ID, PCI_ANY_ID,
114        "Broadcom NetXtreme II BCM57711 10GbE"
115    },
116    {
117        BRCM_VENDORID,
118        CHIP_NUM_57711E,
119        PCI_ANY_ID, PCI_ANY_ID,
120        "Broadcom NetXtreme II BCM57711E 10GbE"
121    },
122    {
123        BRCM_VENDORID,
124        CHIP_NUM_57712,
125        PCI_ANY_ID, PCI_ANY_ID,
126        "Broadcom NetXtreme II BCM57712 10GbE"
127    },
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_MF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "Broadcom NetXtreme II BCM57712 MF 10GbE"
133    },
134#if 0
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57712_VF,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "Broadcom NetXtreme II BCM57712 VF 10GbE"
140    },
141#endif
142    {
143        BRCM_VENDORID,
144        CHIP_NUM_57800,
145        PCI_ANY_ID, PCI_ANY_ID,
146        "Broadcom NetXtreme II BCM57800 10GbE"
147    },
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_MF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "Broadcom NetXtreme II BCM57800 MF 10GbE"
153    },
154#if 0
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57800_VF,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "Broadcom NetXtreme II BCM57800 VF 10GbE"
160    },
161#endif
162    {
163        BRCM_VENDORID,
164        CHIP_NUM_57810,
165        PCI_ANY_ID, PCI_ANY_ID,
166        "Broadcom NetXtreme II BCM57810 10GbE"
167    },
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_MF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "Broadcom NetXtreme II BCM57810 MF 10GbE"
173    },
174#if 0
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57810_VF,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "Broadcom NetXtreme II BCM57810 VF 10GbE"
180    },
181#endif
182    {
183        BRCM_VENDORID,
184        CHIP_NUM_57811,
185        PCI_ANY_ID, PCI_ANY_ID,
186        "Broadcom NetXtreme II BCM57811 10GbE"
187    },
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_MF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "Broadcom NetXtreme II BCM57811 MF 10GbE"
193    },
194#if 0
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57811_VF,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "Broadcom NetXtreme II BCM57811 VF 10GbE"
200    },
201#endif
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_4_10,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "Broadcom NetXtreme II BCM57840 4x10GbE"
207    },
208#if 0
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_2_20,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "Broadcom NetXtreme II BCM57840 2x20GbE"
214    },
215#endif
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_MF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "Broadcom NetXtreme II BCM57840 MF 10GbE"
221    },
222#if 0
223    {
224        BRCM_VENDORID,
225        CHIP_NUM_57840_VF,
226        PCI_ANY_ID, PCI_ANY_ID,
227        "Broadcom NetXtreme II BCM57840 VF 10GbE"
228    },
229#endif
230    {
231        0, 0, 0, 0, NULL
232    }
233};
234
235MALLOC_DECLARE(M_BXE_ILT);
236MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237
238/*
239 * FreeBSD device entry points.
240 */
241static int bxe_probe(device_t);
242static int bxe_attach(device_t);
243static int bxe_detach(device_t);
244static int bxe_shutdown(device_t);
245
246/*
247 * FreeBSD KLD module/device interface event handler method.
248 */
249static device_method_t bxe_methods[] = {
250    /* Device interface (device_if.h) */
251    DEVMETHOD(device_probe,     bxe_probe),
252    DEVMETHOD(device_attach,    bxe_attach),
253    DEVMETHOD(device_detach,    bxe_detach),
254    DEVMETHOD(device_shutdown,  bxe_shutdown),
255#if 0
256    DEVMETHOD(device_suspend,   bxe_suspend),
257    DEVMETHOD(device_resume,    bxe_resume),
258#endif
259    /* Bus interface (bus_if.h) */
260    DEVMETHOD(bus_print_child,  bus_generic_print_child),
261    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262    KOBJMETHOD_END
263};
264
265/*
266 * FreeBSD KLD Module data declaration
267 */
268static driver_t bxe_driver = {
269    "bxe",                   /* module name */
270    bxe_methods,             /* event handler */
271    sizeof(struct bxe_softc) /* extra data */
272};
273
274/*
275 * FreeBSD dev class is needed to manage dev instances and
276 * to associate with a bus type
277 */
278static devclass_t bxe_devclass;
279
280MODULE_DEPEND(bxe, pci, 1, 1, 1);
281MODULE_DEPEND(bxe, ether, 1, 1, 1);
282DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283
284/* resources needed for unloading a previously loaded device */
285
286#define BXE_PREV_WAIT_NEEDED 1
287struct mtx bxe_prev_mtx;
288MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289struct bxe_prev_list_node {
290    LIST_ENTRY(bxe_prev_list_node) node;
291    uint8_t bus;
292    uint8_t slot;
293    uint8_t path;
294    uint8_t aer; /* XXX automatic error recovery */
295    uint8_t undi;
296};
297static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298
299static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300
301/* Tunable device values... */
302
303SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304
305/* Debug */
306unsigned long bxe_debug = 0;
307TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309             &bxe_debug, 0, "Debug logging mode");
310
311/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312static int bxe_interrupt_mode = INTR_MODE_MSIX;
313TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316
317/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318static int bxe_queue_count = 4;
319TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321           &bxe_queue_count, 0, "Multi-Queue queue count");
322
323/* max number of buffers per queue (default RX_BD_USABLE) */
324static int bxe_max_rx_bufs = 0;
325TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328
329/* Host interrupt coalescing RX tick timer (usecs) */
330static int bxe_hc_rx_ticks = 25;
331TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334
335/* Host interrupt coalescing TX tick timer (usecs) */
336static int bxe_hc_tx_ticks = 50;
337TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340
341/* Maximum number of Rx packets to process at a time */
342static int bxe_rx_budget = 0xffffffff;
343TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345           &bxe_rx_budget, 0, "Rx processing budget");
346
347/* Maximum LRO aggregation size */
348static int bxe_max_aggregation_size = 0;
349TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351           &bxe_max_aggregation_size, 0, "max aggregation size");
352
353/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354static int bxe_mrrs = -1;
355TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357           &bxe_mrrs, 0, "PCIe maximum read request size");
358
359/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360static int bxe_autogreeen = 0;
361TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363           &bxe_autogreeen, 0, "AutoGrEEEn support");
364
365/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366static int bxe_udp_rss = 0;
367TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369           &bxe_udp_rss, 0, "UDP RSS support");
370
371
372#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373
374#define STATS_OFFSET32(stat_name)                   \
375    (offsetof(struct bxe_eth_stats, stat_name) / 4)
376
377#define Q_STATS_OFFSET32(stat_name)                   \
378    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379
380static const struct {
381    uint32_t offset;
382    uint32_t size;
383    uint32_t flags;
384#define STATS_FLAGS_PORT  1
385#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387    char string[STAT_NAME_LEN];
388} bxe_eth_stats_arr[] = {
389    { STATS_OFFSET32(total_bytes_received_hi),
390                8, STATS_FLAGS_BOTH, "rx_bytes" },
391    { STATS_OFFSET32(error_bytes_received_hi),
392                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393    { STATS_OFFSET32(total_unicast_packets_received_hi),
394                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395    { STATS_OFFSET32(total_multicast_packets_received_hi),
396                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397    { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                8, STATS_FLAGS_PORT, "rx_crc_errors" },
401    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                8, STATS_FLAGS_PORT, "rx_align_errors" },
403    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                8, STATS_FLAGS_PORT, "rx_fragments" },
409    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                8, STATS_FLAGS_PORT, "rx_jabbers" },
411    { STATS_OFFSET32(no_buff_discard_hi),
412                8, STATS_FLAGS_BOTH, "rx_discards" },
413    { STATS_OFFSET32(mac_filter_discard),
414                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415    { STATS_OFFSET32(mf_tag_discard),
416                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417    { STATS_OFFSET32(pfc_frames_received_hi),
418                8, STATS_FLAGS_PORT, "pfc_frames_received" },
419    { STATS_OFFSET32(pfc_frames_sent_hi),
420                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421    { STATS_OFFSET32(brb_drop_hi),
422                8, STATS_FLAGS_PORT, "rx_brb_discard" },
423    { STATS_OFFSET32(brb_truncate_hi),
424                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425    { STATS_OFFSET32(pause_frames_received_hi),
426                8, STATS_FLAGS_PORT, "rx_pause_frames" },
427    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429    { STATS_OFFSET32(nig_timer_max),
430                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431    { STATS_OFFSET32(total_bytes_transmitted_hi),
432                8, STATS_FLAGS_BOTH, "tx_bytes" },
433    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                8, STATS_FLAGS_PORT, "tx_error_bytes" },
435    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                8, STATS_FLAGS_PORT, "tx_mac_errors" },
443    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                8, STATS_FLAGS_PORT, "tx_single_collisions" },
447    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                8, STATS_FLAGS_PORT, "tx_deferred" },
451    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                8, STATS_FLAGS_PORT, "tx_late_collisions" },
455    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                8, STATS_FLAGS_PORT, "tx_total_collisions" },
457    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471    { STATS_OFFSET32(pause_frames_sent_hi),
472                8, STATS_FLAGS_PORT, "tx_pause_frames" },
473    { STATS_OFFSET32(total_tpa_aggregations_hi),
474                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477    { STATS_OFFSET32(total_tpa_bytes_hi),
478                8, STATS_FLAGS_FUNC, "tpa_bytes"},
479#if 0
480    { STATS_OFFSET32(recoverable_error),
481                4, STATS_FLAGS_FUNC, "recoverable_errors" },
482    { STATS_OFFSET32(unrecoverable_error),
483                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484#endif
485    { STATS_OFFSET32(eee_tx_lpi),
486                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487    { STATS_OFFSET32(rx_calls),
488                4, STATS_FLAGS_FUNC, "rx_calls"},
489    { STATS_OFFSET32(rx_pkts),
490                4, STATS_FLAGS_FUNC, "rx_pkts"},
491    { STATS_OFFSET32(rx_tpa_pkts),
492                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493    { STATS_OFFSET32(rx_soft_errors),
494                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495    { STATS_OFFSET32(rx_hw_csum_errors),
496                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501    { STATS_OFFSET32(rx_budget_reached),
502                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503    { STATS_OFFSET32(tx_pkts),
504                4, STATS_FLAGS_FUNC, "tx_pkts"},
505    { STATS_OFFSET32(tx_soft_errors),
506                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513    { STATS_OFFSET32(tx_ofld_frames_lso),
514                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517    { STATS_OFFSET32(tx_encap_failures),
518                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519    { STATS_OFFSET32(tx_hw_queue_full),
520                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521    { STATS_OFFSET32(tx_hw_max_queue_depth),
522                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523    { STATS_OFFSET32(tx_dma_mapping_failure),
524                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525    { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527    { STATS_OFFSET32(tx_window_violation_std),
528                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529    { STATS_OFFSET32(tx_window_violation_tso),
530                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531#if 0
532    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536#endif
537    { STATS_OFFSET32(tx_chain_lost_mbuf),
538                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539    { STATS_OFFSET32(tx_frames_deferred),
540                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541    { STATS_OFFSET32(tx_queue_xoff),
542                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543    { STATS_OFFSET32(mbuf_defrag_attempts),
544                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545    { STATS_OFFSET32(mbuf_defrag_failures),
546                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559    { STATS_OFFSET32(mbuf_alloc_tx),
560                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561    { STATS_OFFSET32(mbuf_alloc_rx),
562                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563    { STATS_OFFSET32(mbuf_alloc_sge),
564                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565    { STATS_OFFSET32(mbuf_alloc_tpa),
566                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567};
568
569static const struct {
570    uint32_t offset;
571    uint32_t size;
572    char string[STAT_NAME_LEN];
573} bxe_eth_q_stats_arr[] = {
574    { Q_STATS_OFFSET32(total_bytes_received_hi),
575                8, "rx_bytes" },
576    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                8, "rx_ucast_packets" },
578    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                8, "rx_mcast_packets" },
580    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                8, "rx_bcast_packets" },
582    { Q_STATS_OFFSET32(no_buff_discard_hi),
583                8, "rx_discards" },
584    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                8, "tx_bytes" },
586    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                8, "tx_ucast_packets" },
588    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                8, "tx_mcast_packets" },
590    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                8, "tx_bcast_packets" },
592    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                8, "tpa_aggregations" },
594    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                8, "tpa_aggregated_frames"},
596    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                8, "tpa_bytes"},
598    { Q_STATS_OFFSET32(rx_calls),
599                4, "rx_calls"},
600    { Q_STATS_OFFSET32(rx_pkts),
601                4, "rx_pkts"},
602    { Q_STATS_OFFSET32(rx_tpa_pkts),
603                4, "rx_tpa_pkts"},
604    { Q_STATS_OFFSET32(rx_soft_errors),
605                4, "rx_soft_errors"},
606    { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                4, "rx_hw_csum_errors"},
608    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                4, "rx_ofld_frames_csum_ip"},
610    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                4, "rx_ofld_frames_csum_tcp_udp"},
612    { Q_STATS_OFFSET32(rx_budget_reached),
613                4, "rx_budget_reached"},
614    { Q_STATS_OFFSET32(tx_pkts),
615                4, "tx_pkts"},
616    { Q_STATS_OFFSET32(tx_soft_errors),
617                4, "tx_soft_errors"},
618    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                4, "tx_ofld_frames_csum_ip"},
620    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                4, "tx_ofld_frames_csum_tcp"},
622    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                4, "tx_ofld_frames_csum_udp"},
624    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                4, "tx_ofld_frames_lso"},
626    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                4, "tx_ofld_frames_lso_hdr_splits"},
628    { Q_STATS_OFFSET32(tx_encap_failures),
629                4, "tx_encap_failures"},
630    { Q_STATS_OFFSET32(tx_hw_queue_full),
631                4, "tx_hw_queue_full"},
632    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                4, "tx_hw_max_queue_depth"},
634    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                4, "tx_dma_mapping_failure"},
636    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                4, "tx_max_drbr_queue_depth"},
638    { Q_STATS_OFFSET32(tx_window_violation_std),
639                4, "tx_window_violation_std"},
640    { Q_STATS_OFFSET32(tx_window_violation_tso),
641                4, "tx_window_violation_tso"},
642#if 0
643    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                4, "tx_unsupported_tso_request_ipv6"},
645    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                4, "tx_unsupported_tso_request_not_tcp"},
647#endif
648    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                4, "tx_chain_lost_mbuf"},
650    { Q_STATS_OFFSET32(tx_frames_deferred),
651                4, "tx_frames_deferred"},
652    { Q_STATS_OFFSET32(tx_queue_xoff),
653                4, "tx_queue_xoff"},
654    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                4, "mbuf_defrag_attempts"},
656    { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                4, "mbuf_defrag_failures"},
658    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                4, "mbuf_rx_bd_alloc_failed"},
660    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                4, "mbuf_rx_bd_mapping_failed"},
662    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                4, "mbuf_rx_tpa_alloc_failed"},
664    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                4, "mbuf_rx_tpa_mapping_failed"},
666    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                4, "mbuf_rx_sge_alloc_failed"},
668    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                4, "mbuf_rx_sge_mapping_failed"},
670    { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                4, "mbuf_alloc_tx"},
672    { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                4, "mbuf_alloc_rx"},
674    { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                4, "mbuf_alloc_sge"},
676    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                4, "mbuf_alloc_tpa"}
678};
679
680#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682
683
684static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                 uint8_t          read_cfg,
686                                 uint8_t          cmng_type);
687static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688static void    storm_memset_cmng(struct bxe_softc *sc,
689                                 struct cmng_init *cmng,
690                                 uint8_t          port);
691static void    bxe_set_reset_global(struct bxe_softc *sc);
692static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                 int              engine);
695static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                   uint8_t          *global,
698                                   uint8_t          print);
699static void    bxe_int_disable(struct bxe_softc *sc);
700static int     bxe_release_leader_lock(struct bxe_softc *sc);
701static void    bxe_pf_disable(struct bxe_softc *sc);
702static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                      struct bxe_fastpath *fp,
705                                      uint16_t            rx_bd_prod,
706                                      uint16_t            rx_cq_prod,
707                                      uint16_t            rx_sge_prod);
708static void    bxe_link_report_locked(struct bxe_softc *sc);
709static void    bxe_link_report(struct bxe_softc *sc);
710static void    bxe_link_status_update(struct bxe_softc *sc);
711static void    bxe_periodic_callout_func(void *xsc);
712static void    bxe_periodic_start(struct bxe_softc *sc);
713static void    bxe_periodic_stop(struct bxe_softc *sc);
714static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                    uint16_t prev_index,
716                                    uint16_t index);
717static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                     int                 queue);
719static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                     uint16_t            index);
721static uint8_t bxe_txeof(struct bxe_softc *sc,
722                         struct bxe_fastpath *fp);
723static void    bxe_task_fp(struct bxe_fastpath *fp);
724static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                     struct mbuf      *m,
726                                     uint8_t          contents);
727static int     bxe_alloc_mem(struct bxe_softc *sc);
728static void    bxe_free_mem(struct bxe_softc *sc);
729static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731static int     bxe_interrupt_attach(struct bxe_softc *sc);
732static void    bxe_interrupt_detach(struct bxe_softc *sc);
733static void    bxe_set_rx_mode(struct bxe_softc *sc);
734static int     bxe_init_locked(struct bxe_softc *sc);
735static int     bxe_stop_locked(struct bxe_softc *sc);
736static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                   int              load_mode);
738static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                     uint32_t         unload_mode,
740                                     uint8_t          keep_link);
741
742static void bxe_handle_sp_tq(void *context, int pending);
743static void bxe_handle_rx_mode_tq(void *context, int pending);
744static void bxe_handle_fp_tq(void *context, int pending);
745
746
747/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748uint32_t
749calc_crc32(uint8_t  *crc32_packet,
750           uint32_t crc32_length,
751           uint32_t crc32_seed,
752           uint8_t  complement)
753{
754   uint32_t byte         = 0;
755   uint32_t bit          = 0;
756   uint8_t  msb          = 0;
757   uint32_t temp         = 0;
758   uint32_t shft         = 0;
759   uint8_t  current_byte = 0;
760   uint32_t crc32_result = crc32_seed;
761   const uint32_t CRC32_POLY = 0x1edc6f41;
762
763   if ((crc32_packet == NULL) ||
764       (crc32_length == 0) ||
765       ((crc32_length % 8) != 0))
766    {
767        return (crc32_result);
768    }
769
770    for (byte = 0; byte < crc32_length; byte = byte + 1)
771    {
772        current_byte = crc32_packet[byte];
773        for (bit = 0; bit < 8; bit = bit + 1)
774        {
775            /* msb = crc32_result[31]; */
776            msb = (uint8_t)(crc32_result >> 31);
777
778            crc32_result = crc32_result << 1;
779
780            /* it (msb != current_byte[bit]) */
781            if (msb != (0x1 & (current_byte >> bit)))
782            {
783                crc32_result = crc32_result ^ CRC32_POLY;
784                /* crc32_result[0] = 1 */
785                crc32_result |= 1;
786            }
787        }
788    }
789
790    /* Last step is to:
791     * 1. "mirror" every bit
792     * 2. swap the 4 bytes
793     * 3. complement each bit
794     */
795
796    /* Mirror */
797    temp = crc32_result;
798    shft = sizeof(crc32_result) * 8 - 1;
799
800    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801    {
802        temp <<= 1;
803        temp |= crc32_result & 1;
804        shft-- ;
805    }
806
807    /* temp[31-bit] = crc32_result[bit] */
808    temp <<= shft;
809
810    /* Swap */
811    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812    {
813        uint32_t t0, t1, t2, t3;
814        t0 = (0x000000ff & (temp >> 24));
815        t1 = (0x0000ff00 & (temp >> 8));
816        t2 = (0x00ff0000 & (temp << 8));
817        t3 = (0xff000000 & (temp << 24));
818        crc32_result = t0 | t1 | t2 | t3;
819    }
820
821    /* Complement */
822    if (complement)
823    {
824        crc32_result = ~crc32_result;
825    }
826
827    return (crc32_result);
828}
829
830int
831bxe_test_bit(int                    nr,
832             volatile unsigned long *addr)
833{
834    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835}
836
837void
838bxe_set_bit(unsigned int           nr,
839            volatile unsigned long *addr)
840{
841    atomic_set_acq_long(addr, (1 << nr));
842}
843
844void
845bxe_clear_bit(int                    nr,
846              volatile unsigned long *addr)
847{
848    atomic_clear_acq_long(addr, (1 << nr));
849}
850
851int
852bxe_test_and_set_bit(int                    nr,
853                       volatile unsigned long *addr)
854{
855    unsigned long x;
856    nr = (1 << nr);
857    do {
858        x = *addr;
859    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860    // if (x & nr) bit_was_set; else bit_was_not_set;
861    return (x & nr);
862}
863
864int
865bxe_test_and_clear_bit(int                    nr,
866                       volatile unsigned long *addr)
867{
868    unsigned long x;
869    nr = (1 << nr);
870    do {
871        x = *addr;
872    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873    // if (x & nr) bit_was_set; else bit_was_not_set;
874    return (x & nr);
875}
876
877int
878bxe_cmpxchg(volatile int *addr,
879            int          old,
880            int          new)
881{
882    int x;
883    do {
884        x = *addr;
885    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886    return (x);
887}
888
889/*
890 * Get DMA memory from the OS.
891 *
892 * Validates that the OS has provided DMA buffers in response to a
893 * bus_dmamap_load call and saves the physical address of those buffers.
894 * When the callback is used the OS will return 0 for the mapping function
895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896 * failures back to the caller.
897 *
898 * Returns:
899 *   Nothing.
900 */
901static void
902bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903{
904    struct bxe_dma *dma = arg;
905
906    if (error) {
907        dma->paddr = 0;
908        dma->nseg  = 0;
909        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910    } else {
911        dma->paddr = segs->ds_addr;
912        dma->nseg  = nseg;
913#if 0
914        BLOGD(dma->sc, DBG_LOAD,
915              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916              dma->msg, dma->vaddr, (void *)dma->paddr,
917              dma->nseg, dma->size);
918#endif
919    }
920}
921
922/*
923 * Allocate a block of memory and map it for DMA. No partial completions
924 * allowed and release any resources acquired if we can't acquire all
925 * resources.
926 *
927 * Returns:
928 *   0 = Success, !0 = Failure
929 */
930int
931bxe_dma_alloc(struct bxe_softc *sc,
932              bus_size_t       size,
933              struct bxe_dma   *dma,
934              const char       *msg)
935{
936    int rc;
937
938    if (dma->size > 0) {
939        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940              (unsigned long)dma->size);
941        return (1);
942    }
943
944    memset(dma, 0, sizeof(*dma)); /* sanity */
945    dma->sc   = sc;
946    dma->size = size;
947    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948
949    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                            BCM_PAGE_SIZE,      /* alignment */
951                            0,                  /* boundary limit */
952                            BUS_SPACE_MAXADDR,  /* restricted low */
953                            BUS_SPACE_MAXADDR,  /* restricted hi */
954                            NULL,               /* addr filter() */
955                            NULL,               /* addr filter() arg */
956                            size,               /* max map size */
957                            1,                  /* num discontinuous */
958                            size,               /* max seg size */
959                            BUS_DMA_ALLOCNOW,   /* flags */
960                            NULL,               /* lock() */
961                            NULL,               /* lock() arg */
962                            &dma->tag);         /* returned dma tag */
963    if (rc != 0) {
964        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965        memset(dma, 0, sizeof(*dma));
966        return (1);
967    }
968
969    rc = bus_dmamem_alloc(dma->tag,
970                          (void **)&dma->vaddr,
971                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                          &dma->map);
973    if (rc != 0) {
974        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975        bus_dma_tag_destroy(dma->tag);
976        memset(dma, 0, sizeof(*dma));
977        return (1);
978    }
979
980    rc = bus_dmamap_load(dma->tag,
981                         dma->map,
982                         dma->vaddr,
983                         size,
984                         bxe_dma_map_addr, /* BLOGD in here */
985                         dma,
986                         BUS_DMA_NOWAIT);
987    if (rc != 0) {
988        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990        bus_dma_tag_destroy(dma->tag);
991        memset(dma, 0, sizeof(*dma));
992        return (1);
993    }
994
995    return (0);
996}
997
998void
999bxe_dma_free(struct bxe_softc *sc,
1000             struct bxe_dma   *dma)
1001{
1002    if (dma->size > 0) {
1003#if 0
1004        BLOGD(sc, DBG_LOAD,
1005              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006              dma->msg, dma->vaddr, (void *)dma->paddr,
1007              dma->nseg, dma->size);
1008#endif
1009
1010        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011
1012        bus_dmamap_sync(dma->tag, dma->map,
1013                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014        bus_dmamap_unload(dma->tag, dma->map);
1015        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016        bus_dma_tag_destroy(dma->tag);
1017    }
1018
1019    memset(dma, 0, sizeof(*dma));
1020}
1021
1022/*
1023 * These indirect read and write routines are only during init.
1024 * The locking is handled by the MCP.
1025 */
1026
1027void
1028bxe_reg_wr_ind(struct bxe_softc *sc,
1029               uint32_t         addr,
1030               uint32_t         val)
1031{
1032    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035}
1036
1037uint32_t
1038bxe_reg_rd_ind(struct bxe_softc *sc,
1039               uint32_t         addr)
1040{
1041    uint32_t val;
1042
1043    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046
1047    return (val);
1048}
1049
1050#if 0
1051void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052{
1053    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054
1055    switch (dmae->opcode & DMAE_COMMAND_DST) {
1056    case DMAE_CMD_DST_PCI:
1057        if (src_type == DMAE_CMD_SRC_PCI)
1058            DP(msglvl, "DMAE: opcode 0x%08x\n"
1059               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063               dmae->comp_addr_hi, dmae->comp_addr_lo,
1064               dmae->comp_val);
1065        else
1066            DP(msglvl, "DMAE: opcode 0x%08x\n"
1067               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069               dmae->opcode, dmae->src_addr_lo >> 2,
1070               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071               dmae->comp_addr_hi, dmae->comp_addr_lo,
1072               dmae->comp_val);
1073        break;
1074    case DMAE_CMD_DST_GRC:
1075        if (src_type == DMAE_CMD_SRC_PCI)
1076            DP(msglvl, "DMAE: opcode 0x%08x\n"
1077               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080               dmae->len, dmae->dst_addr_lo >> 2,
1081               dmae->comp_addr_hi, dmae->comp_addr_lo,
1082               dmae->comp_val);
1083        else
1084            DP(msglvl, "DMAE: opcode 0x%08x\n"
1085               "src [%08x], len [%d*4], dst [%08x]\n"
1086               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087               dmae->opcode, dmae->src_addr_lo >> 2,
1088               dmae->len, dmae->dst_addr_lo >> 2,
1089               dmae->comp_addr_hi, dmae->comp_addr_lo,
1090               dmae->comp_val);
1091        break;
1092    default:
1093        if (src_type == DMAE_CMD_SRC_PCI)
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        else
1101            DP(msglvl, "DMAE: opcode 0x%08x\n"
1102               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104               dmae->opcode, dmae->src_addr_lo >> 2,
1105               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106               dmae->comp_val);
1107        break;
1108    }
1109
1110}
1111#endif
1112
1113static int
1114bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                    uint32_t         resource)
1116{
1117    uint32_t lock_status;
1118    uint32_t resource_bit = (1 << resource);
1119    int func = SC_FUNC(sc);
1120    uint32_t hw_lock_control_reg;
1121    int cnt;
1122
1123    /* validate the resource is within range */
1124    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126        return (-1);
1127    }
1128
1129    if (func <= 5) {
1130        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131    } else {
1132        hw_lock_control_reg =
1133                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134    }
1135
1136    /* validate the resource is not already taken */
1137    lock_status = REG_RD(sc, hw_lock_control_reg);
1138    if (lock_status & resource_bit) {
1139        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140              lock_status, resource_bit);
1141        return (-1);
1142    }
1143
1144    /* try every 5ms for 5 seconds */
1145    for (cnt = 0; cnt < 1000; cnt++) {
1146        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147        lock_status = REG_RD(sc, hw_lock_control_reg);
1148        if (lock_status & resource_bit) {
1149            return (0);
1150        }
1151        DELAY(5000);
1152    }
1153
1154    BLOGE(sc, "Resource lock timeout!\n");
1155    return (-1);
1156}
1157
1158static int
1159bxe_release_hw_lock(struct bxe_softc *sc,
1160                    uint32_t         resource)
1161{
1162    uint32_t lock_status;
1163    uint32_t resource_bit = (1 << resource);
1164    int func = SC_FUNC(sc);
1165    uint32_t hw_lock_control_reg;
1166
1167    /* validate the resource is within range */
1168    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170        return (-1);
1171    }
1172
1173    if (func <= 5) {
1174        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175    } else {
1176        hw_lock_control_reg =
1177                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178    }
1179
1180    /* validate the resource is currently taken */
1181    lock_status = REG_RD(sc, hw_lock_control_reg);
1182    if (!(lock_status & resource_bit)) {
1183        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184              lock_status, resource_bit);
1185        return (-1);
1186    }
1187
1188    REG_WR(sc, hw_lock_control_reg, resource_bit);
1189    return (0);
1190}
1191
1192/*
1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194 * had we done things the other way around, if two pfs from the same port
1195 * would attempt to access nvram at the same time, we could run into a
1196 * scenario such as:
1197 * pf A takes the port lock.
1198 * pf B succeeds in taking the same lock since they are from the same port.
1199 * pf A takes the per pf misc lock. Performs eeprom access.
1200 * pf A finishes. Unlocks the per pf misc lock.
1201 * Pf B takes the lock and proceeds to perform it's own access.
1202 * pf A unlocks the per port lock, while pf B is still working (!).
1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204 * access corrupted by pf B).*
1205 */
1206static int
1207bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208{
1209    int port = SC_PORT(sc);
1210    int count, i;
1211    uint32_t val = 0;
1212
1213    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215
1216    /* adjust timeout for emulation/FPGA */
1217    count = NVRAM_TIMEOUT_COUNT;
1218    if (CHIP_REV_IS_SLOW(sc)) {
1219        count *= 100;
1220    }
1221
1222    /* request access to nvram interface */
1223    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225
1226    for (i = 0; i < count*10; i++) {
1227        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229            break;
1230        }
1231
1232        DELAY(5);
1233    }
1234
1235    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236        BLOGE(sc, "Cannot get access to nvram interface\n");
1237        return (-1);
1238    }
1239
1240    return (0);
1241}
1242
1243static int
1244bxe_release_nvram_lock(struct bxe_softc *sc)
1245{
1246    int port = SC_PORT(sc);
1247    int count, i;
1248    uint32_t val = 0;
1249
1250    /* adjust timeout for emulation/FPGA */
1251    count = NVRAM_TIMEOUT_COUNT;
1252    if (CHIP_REV_IS_SLOW(sc)) {
1253        count *= 100;
1254    }
1255
1256    /* relinquish nvram interface */
1257    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259
1260    for (i = 0; i < count*10; i++) {
1261        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263            break;
1264        }
1265
1266        DELAY(5);
1267    }
1268
1269    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270        BLOGE(sc, "Cannot free access to nvram interface\n");
1271        return (-1);
1272    }
1273
1274    /* release HW lock: protect against other PFs in PF Direct Assignment */
1275    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276
1277    return (0);
1278}
1279
1280static void
1281bxe_enable_nvram_access(struct bxe_softc *sc)
1282{
1283    uint32_t val;
1284
1285    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286
1287    /* enable both bits, even on read */
1288    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290}
1291
1292static void
1293bxe_disable_nvram_access(struct bxe_softc *sc)
1294{
1295    uint32_t val;
1296
1297    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298
1299    /* disable both bits, even after read */
1300    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303}
1304
1305static int
1306bxe_nvram_read_dword(struct bxe_softc *sc,
1307                     uint32_t         offset,
1308                     uint32_t         *ret_val,
1309                     uint32_t         cmd_flags)
1310{
1311    int count, i, rc;
1312    uint32_t val;
1313
1314    /* build the command word */
1315    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316
1317    /* need to clear DONE bit separately */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319
1320    /* address of the NVRAM to read from */
1321    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323
1324    /* issue a read command */
1325    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326
1327    /* adjust timeout for emulation/FPGA */
1328    count = NVRAM_TIMEOUT_COUNT;
1329    if (CHIP_REV_IS_SLOW(sc)) {
1330        count *= 100;
1331    }
1332
1333    /* wait for completion */
1334    *ret_val = 0;
1335    rc = -1;
1336    for (i = 0; i < count; i++) {
1337        DELAY(5);
1338        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339
1340        if (val & MCPR_NVM_COMMAND_DONE) {
1341            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342            /* we read nvram data in cpu order
1343             * but ethtool sees it as an array of bytes
1344             * converting to big-endian will do the work
1345             */
1346            *ret_val = htobe32(val);
1347            rc = 0;
1348            break;
1349        }
1350    }
1351
1352    if (rc == -1) {
1353        BLOGE(sc, "nvram read timeout expired\n");
1354    }
1355
1356    return (rc);
1357}
1358
1359static int
1360bxe_nvram_read(struct bxe_softc *sc,
1361               uint32_t         offset,
1362               uint8_t          *ret_buf,
1363               int              buf_size)
1364{
1365    uint32_t cmd_flags;
1366    uint32_t val;
1367    int rc;
1368
1369    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371              offset, buf_size);
1372        return (-1);
1373    }
1374
1375    if ((offset + buf_size) > sc->devinfo.flash_size) {
1376        BLOGE(sc, "Invalid parameter, "
1377                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378              offset, buf_size, sc->devinfo.flash_size);
1379        return (-1);
1380    }
1381
1382    /* request access to nvram interface */
1383    rc = bxe_acquire_nvram_lock(sc);
1384    if (rc) {
1385        return (rc);
1386    }
1387
1388    /* enable access to nvram interface */
1389    bxe_enable_nvram_access(sc);
1390
1391    /* read the first word(s) */
1392    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395        memcpy(ret_buf, &val, 4);
1396
1397        /* advance to the next dword */
1398        offset += sizeof(uint32_t);
1399        ret_buf += sizeof(uint32_t);
1400        buf_size -= sizeof(uint32_t);
1401        cmd_flags = 0;
1402    }
1403
1404    if (rc == 0) {
1405        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407        memcpy(ret_buf, &val, 4);
1408    }
1409
1410    /* disable access to nvram interface */
1411    bxe_disable_nvram_access(sc);
1412    bxe_release_nvram_lock(sc);
1413
1414    return (rc);
1415}
1416
1417static int
1418bxe_nvram_write_dword(struct bxe_softc *sc,
1419                      uint32_t         offset,
1420                      uint32_t         val,
1421                      uint32_t         cmd_flags)
1422{
1423    int count, i, rc;
1424
1425    /* build the command word */
1426    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427
1428    /* need to clear DONE bit separately */
1429    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430
1431    /* write the data */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433
1434    /* address of the NVRAM to write to */
1435    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437
1438    /* issue the write command */
1439    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440
1441    /* adjust timeout for emulation/FPGA */
1442    count = NVRAM_TIMEOUT_COUNT;
1443    if (CHIP_REV_IS_SLOW(sc)) {
1444        count *= 100;
1445    }
1446
1447    /* wait for completion */
1448    rc = -1;
1449    for (i = 0; i < count; i++) {
1450        DELAY(5);
1451        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452        if (val & MCPR_NVM_COMMAND_DONE) {
1453            rc = 0;
1454            break;
1455        }
1456    }
1457
1458    if (rc == -1) {
1459        BLOGE(sc, "nvram write timeout expired\n");
1460    }
1461
1462    return (rc);
1463}
1464
1465#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466
1467static int
1468bxe_nvram_write1(struct bxe_softc *sc,
1469                 uint32_t         offset,
1470                 uint8_t          *data_buf,
1471                 int              buf_size)
1472{
1473    uint32_t cmd_flags;
1474    uint32_t align_offset;
1475    uint32_t val;
1476    int rc;
1477
1478    if ((offset + buf_size) > sc->devinfo.flash_size) {
1479        BLOGE(sc, "Invalid parameter, "
1480                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481              offset, buf_size, sc->devinfo.flash_size);
1482        return (-1);
1483    }
1484
1485    /* request access to nvram interface */
1486    rc = bxe_acquire_nvram_lock(sc);
1487    if (rc) {
1488        return (rc);
1489    }
1490
1491    /* enable access to nvram interface */
1492    bxe_enable_nvram_access(sc);
1493
1494    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495    align_offset = (offset & ~0x03);
1496    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497
1498    if (rc == 0) {
1499        val &= ~(0xff << BYTE_OFFSET(offset));
1500        val |= (*data_buf << BYTE_OFFSET(offset));
1501
1502        /* nvram data is returned as an array of bytes
1503         * convert it back to cpu order
1504         */
1505        val = be32toh(val);
1506
1507        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508    }
1509
1510    /* disable access to nvram interface */
1511    bxe_disable_nvram_access(sc);
1512    bxe_release_nvram_lock(sc);
1513
1514    return (rc);
1515}
1516
1517static int
1518bxe_nvram_write(struct bxe_softc *sc,
1519                uint32_t         offset,
1520                uint8_t          *data_buf,
1521                int              buf_size)
1522{
1523    uint32_t cmd_flags;
1524    uint32_t val;
1525    uint32_t written_so_far;
1526    int rc;
1527
1528    if (buf_size == 1) {
1529        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530    }
1531
1532    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534              offset, buf_size);
1535        return (-1);
1536    }
1537
1538    if (buf_size == 0) {
1539        return (0); /* nothing to do */
1540    }
1541
1542    if ((offset + buf_size) > sc->devinfo.flash_size) {
1543        BLOGE(sc, "Invalid parameter, "
1544                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545              offset, buf_size, sc->devinfo.flash_size);
1546        return (-1);
1547    }
1548
1549    /* request access to nvram interface */
1550    rc = bxe_acquire_nvram_lock(sc);
1551    if (rc) {
1552        return (rc);
1553    }
1554
1555    /* enable access to nvram interface */
1556    bxe_enable_nvram_access(sc);
1557
1558    written_so_far = 0;
1559    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560    while ((written_so_far < buf_size) && (rc == 0)) {
1561        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567        }
1568
1569        memcpy(&val, data_buf, 4);
1570
1571        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572
1573        /* advance to the next dword */
1574        offset += sizeof(uint32_t);
1575        data_buf += sizeof(uint32_t);
1576        written_so_far += sizeof(uint32_t);
1577        cmd_flags = 0;
1578    }
1579
1580    /* disable access to nvram interface */
1581    bxe_disable_nvram_access(sc);
1582    bxe_release_nvram_lock(sc);
1583
1584    return (rc);
1585}
1586
1587/* copy command into DMAE command memory and set DMAE command Go */
1588void
1589bxe_post_dmae(struct bxe_softc    *sc,
1590              struct dmae_command *dmae,
1591              int                 idx)
1592{
1593    uint32_t cmd_offset;
1594    int i;
1595
1596    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599    }
1600
1601    REG_WR(sc, dmae_reg_go_c[idx], 1);
1602}
1603
1604uint32_t
1605bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                         uint8_t  comp_type)
1607{
1608    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                      DMAE_COMMAND_C_TYPE_ENABLE));
1610}
1611
1612uint32_t
1613bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614{
1615    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616}
1617
1618uint32_t
1619bxe_dmae_opcode(struct bxe_softc *sc,
1620                uint8_t          src_type,
1621                uint8_t          dst_type,
1622                uint8_t          with_comp,
1623                uint8_t          comp_type)
1624{
1625    uint32_t opcode = 0;
1626
1627    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628               (dst_type << DMAE_COMMAND_DST_SHIFT));
1629
1630    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631
1632    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633
1634    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636
1637    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638
1639#ifdef __BIG_ENDIAN
1640    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641#else
1642    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643#endif
1644
1645    if (with_comp) {
1646        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647    }
1648
1649    return (opcode);
1650}
1651
1652static void
1653bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                        struct dmae_command *dmae,
1655                        uint8_t             src_type,
1656                        uint8_t             dst_type)
1657{
1658    memset(dmae, 0, sizeof(struct dmae_command));
1659
1660    /* set the opcode */
1661    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                   TRUE, DMAE_COMP_PCI);
1663
1664    /* fill in the completion parameters */
1665    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667    dmae->comp_val     = DMAE_COMP_VAL;
1668}
1669
1670/* issue a DMAE command over the init channel and wait for completion */
1671static int
1672bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                         struct dmae_command *dmae)
1674{
1675    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677
1678    BXE_DMAE_LOCK(sc);
1679
1680    /* reset completion */
1681    *wb_comp = 0;
1682
1683    /* post the command on the channel used for initializations */
1684    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685
1686    /* wait for completion */
1687    DELAY(5);
1688
1689    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690        if (!timeout ||
1691            (sc->recovery_state != BXE_RECOVERY_DONE &&
1692             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693            BLOGE(sc, "DMAE timeout!\n");
1694            BXE_DMAE_UNLOCK(sc);
1695            return (DMAE_TIMEOUT);
1696        }
1697
1698        timeout--;
1699        DELAY(50);
1700    }
1701
1702    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703        BLOGE(sc, "DMAE PCI error!\n");
1704        BXE_DMAE_UNLOCK(sc);
1705        return (DMAE_PCI_ERROR);
1706    }
1707
1708    BXE_DMAE_UNLOCK(sc);
1709    return (0);
1710}
1711
1712void
1713bxe_read_dmae(struct bxe_softc *sc,
1714              uint32_t         src_addr,
1715              uint32_t         len32)
1716{
1717    struct dmae_command dmae;
1718    uint32_t *data;
1719    int i, rc;
1720
1721    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722
1723    if (!sc->dmae_ready) {
1724        data = BXE_SP(sc, wb_data[0]);
1725
1726        for (i = 0; i < len32; i++) {
1727            data[i] = (CHIP_IS_E1(sc)) ?
1728                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                          REG_RD(sc, (src_addr + (i * 4)));
1730        }
1731
1732        return;
1733    }
1734
1735    /* set opcode and fixed command fields */
1736    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737
1738    /* fill in addresses and len */
1739    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740    dmae.src_addr_hi = 0;
1741    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743    dmae.len         = len32;
1744
1745    /* issue the command and wait for completion */
1746    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748    };
1749}
1750
1751void
1752bxe_write_dmae(struct bxe_softc *sc,
1753               bus_addr_t       dma_addr,
1754               uint32_t         dst_addr,
1755               uint32_t         len32)
1756{
1757    struct dmae_command dmae;
1758    int rc;
1759
1760    if (!sc->dmae_ready) {
1761        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762
1763        if (CHIP_IS_E1(sc)) {
1764            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765        } else {
1766            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767        }
1768
1769        return;
1770    }
1771
1772    /* set opcode and fixed command fields */
1773    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774
1775    /* fill in addresses and len */
1776    dmae.src_addr_lo = U64_LO(dma_addr);
1777    dmae.src_addr_hi = U64_HI(dma_addr);
1778    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779    dmae.dst_addr_hi = 0;
1780    dmae.len         = len32;
1781
1782    /* issue the command and wait for completion */
1783    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785    }
1786}
1787
1788void
1789bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                        bus_addr_t       phys_addr,
1791                        uint32_t         addr,
1792                        uint32_t         len)
1793{
1794    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795    int offset = 0;
1796
1797    while (len > dmae_wr_max) {
1798        bxe_write_dmae(sc,
1799                       (phys_addr + offset), /* src DMA address */
1800                       (addr + offset),      /* dst GRC address */
1801                       dmae_wr_max);
1802        offset += (dmae_wr_max * 4);
1803        len -= dmae_wr_max;
1804    }
1805
1806    bxe_write_dmae(sc,
1807                   (phys_addr + offset), /* src DMA address */
1808                   (addr + offset),      /* dst GRC address */
1809                   len);
1810}
1811
1812void
1813bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                       struct eth_context *cxt,
1815                       uint32_t           cid)
1816{
1817    /* ustorm cxt validation */
1818    cxt->ustorm_ag_context.cdu_usage =
1819        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821    /* xcontext validation */
1822    cxt->xstorm_ag_context.cdu_reserved =
1823        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825}
1826
1827static void
1828bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                            uint8_t          port,
1830                            uint8_t          fw_sb_id,
1831                            uint8_t          sb_index,
1832                            uint8_t          ticks)
1833{
1834    uint32_t addr =
1835        (BAR_CSTRORM_INTMEM +
1836         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837
1838    REG_WR8(sc, addr, ticks);
1839
1840    BLOGD(sc, DBG_LOAD,
1841          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842          port, fw_sb_id, sb_index, ticks);
1843}
1844
1845static void
1846bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                            uint8_t          port,
1848                            uint16_t         fw_sb_id,
1849                            uint8_t          sb_index,
1850                            uint8_t          disable)
1851{
1852    uint32_t enable_flag =
1853        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854    uint32_t addr =
1855        (BAR_CSTRORM_INTMEM +
1856         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857    uint8_t flags;
1858
1859    /* clear and set */
1860    flags = REG_RD8(sc, addr);
1861    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862    flags |= enable_flag;
1863    REG_WR8(sc, addr, flags);
1864
1865    BLOGD(sc, DBG_LOAD,
1866          "port %d fw_sb_id %d sb_index %d disable %d\n",
1867          port, fw_sb_id, sb_index, disable);
1868}
1869
1870void
1871bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                             uint8_t          fw_sb_id,
1873                             uint8_t          sb_index,
1874                             uint8_t          disable,
1875                             uint16_t         usec)
1876{
1877    int port = SC_PORT(sc);
1878    uint8_t ticks = (usec / 4); /* XXX ??? */
1879
1880    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881
1882    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884}
1885
1886void
1887elink_cb_udelay(struct bxe_softc *sc,
1888                uint32_t         usecs)
1889{
1890    DELAY(usecs);
1891}
1892
1893uint32_t
1894elink_cb_reg_read(struct bxe_softc *sc,
1895                  uint32_t         reg_addr)
1896{
1897    return (REG_RD(sc, reg_addr));
1898}
1899
1900void
1901elink_cb_reg_write(struct bxe_softc *sc,
1902                   uint32_t         reg_addr,
1903                   uint32_t         val)
1904{
1905    REG_WR(sc, reg_addr, val);
1906}
1907
1908void
1909elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                      uint32_t         offset,
1911                      uint32_t         *wb_write,
1912                      uint16_t         len)
1913{
1914    REG_WR_DMAE(sc, offset, wb_write, len);
1915}
1916
1917void
1918elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                     uint32_t         offset,
1920                     uint32_t         *wb_write,
1921                     uint16_t         len)
1922{
1923    REG_RD_DMAE(sc, offset, wb_write, len);
1924}
1925
1926uint8_t
1927elink_cb_path_id(struct bxe_softc *sc)
1928{
1929    return (SC_PATH(sc));
1930}
1931
1932void
1933elink_cb_event_log(struct bxe_softc     *sc,
1934                   const elink_log_id_t elink_log_id,
1935                   ...)
1936{
1937    /* XXX */
1938#if 0
1939    //va_list ap;
1940    va_start(ap, elink_log_id);
1941    _XXX_(sc, lm_log_id, ap);
1942    va_end(ap);
1943#endif
1944    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945}
1946
1947static int
1948bxe_set_spio(struct bxe_softc *sc,
1949             int              spio,
1950             uint32_t         mode)
1951{
1952    uint32_t spio_reg;
1953
1954    /* Only 2 SPIOs are configurable */
1955    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957        return (-1);
1958    }
1959
1960    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961
1962    /* read SPIO and mask except the float bits */
1963    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964
1965    switch (mode) {
1966    case MISC_SPIO_OUTPUT_LOW:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968        /* clear FLOAT and set CLR */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971        break;
1972
1973    case MISC_SPIO_OUTPUT_HIGH:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975        /* clear FLOAT and set SET */
1976        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978        break;
1979
1980    case MISC_SPIO_INPUT_HI_Z:
1981        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982        /* set FLOAT */
1983        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984        break;
1985
1986    default:
1987        break;
1988    }
1989
1990    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992
1993    return (0);
1994}
1995
1996static int
1997bxe_gpio_read(struct bxe_softc *sc,
1998              int              gpio_num,
1999              uint8_t          port)
2000{
2001    /* The GPIO should be swapped if swap register is set and active */
2002    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004    int gpio_shift = (gpio_num +
2005                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006    uint32_t gpio_mask = (1 << gpio_shift);
2007    uint32_t gpio_reg;
2008
2009    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011        return (-1);
2012    }
2013
2014    /* read GPIO value */
2015    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016
2017    /* get the requested pin value */
2018    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019}
2020
2021static int
2022bxe_gpio_write(struct bxe_softc *sc,
2023               int              gpio_num,
2024               uint32_t         mode,
2025               uint8_t          port)
2026{
2027    /* The GPIO should be swapped if swap register is set and active */
2028    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030    int gpio_shift = (gpio_num +
2031                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032    uint32_t gpio_mask = (1 << gpio_shift);
2033    uint32_t gpio_reg;
2034
2035    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037        return (-1);
2038    }
2039
2040    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041
2042    /* read GPIO and mask except the float bits */
2043    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044
2045    switch (mode) {
2046    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047        BLOGD(sc, DBG_PHY,
2048              "Set GPIO %d (shift %d) -> output low\n",
2049              gpio_num, gpio_shift);
2050        /* clear FLOAT and set CLR */
2051        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053        break;
2054
2055    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056        BLOGD(sc, DBG_PHY,
2057              "Set GPIO %d (shift %d) -> output high\n",
2058              gpio_num, gpio_shift);
2059        /* clear FLOAT and set SET */
2060        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062        break;
2063
2064    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065        BLOGD(sc, DBG_PHY,
2066              "Set GPIO %d (shift %d) -> input\n",
2067              gpio_num, gpio_shift);
2068        /* set FLOAT */
2069        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070        break;
2071
2072    default:
2073        break;
2074    }
2075
2076    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078
2079    return (0);
2080}
2081
2082static int
2083bxe_gpio_mult_write(struct bxe_softc *sc,
2084                    uint8_t          pins,
2085                    uint32_t         mode)
2086{
2087    uint32_t gpio_reg;
2088
2089    /* any port swapping should be handled by caller */
2090
2091    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093    /* read GPIO and mask except the float bits */
2094    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098
2099    switch (mode) {
2100    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102        /* set CLR */
2103        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104        break;
2105
2106    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108        /* set SET */
2109        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110        break;
2111
2112    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114        /* set FLOAT */
2115        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116        break;
2117
2118    default:
2119        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121        return (-1);
2122    }
2123
2124    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126
2127    return (0);
2128}
2129
2130static int
2131bxe_gpio_int_write(struct bxe_softc *sc,
2132                   int              gpio_num,
2133                   uint32_t         mode,
2134                   uint8_t          port)
2135{
2136    /* The GPIO should be swapped if swap register is set and active */
2137    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139    int gpio_shift = (gpio_num +
2140                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141    uint32_t gpio_mask = (1 << gpio_shift);
2142    uint32_t gpio_reg;
2143
2144    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146        return (-1);
2147    }
2148
2149    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150
2151    /* read GPIO int */
2152    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153
2154    switch (mode) {
2155    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156        BLOGD(sc, DBG_PHY,
2157              "Clear GPIO INT %d (shift %d) -> output low\n",
2158              gpio_num, gpio_shift);
2159        /* clear SET and set CLR */
2160        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162        break;
2163
2164    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165        BLOGD(sc, DBG_PHY,
2166              "Set GPIO INT %d (shift %d) -> output high\n",
2167              gpio_num, gpio_shift);
2168        /* clear CLR and set SET */
2169        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171        break;
2172
2173    default:
2174        break;
2175    }
2176
2177    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179
2180    return (0);
2181}
2182
2183uint32_t
2184elink_cb_gpio_read(struct bxe_softc *sc,
2185                   uint16_t         gpio_num,
2186                   uint8_t          port)
2187{
2188    return (bxe_gpio_read(sc, gpio_num, port));
2189}
2190
2191uint8_t
2192elink_cb_gpio_write(struct bxe_softc *sc,
2193                    uint16_t         gpio_num,
2194                    uint8_t          mode, /* 0=low 1=high */
2195                    uint8_t          port)
2196{
2197    return (bxe_gpio_write(sc, gpio_num, mode, port));
2198}
2199
2200uint8_t
2201elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                         uint8_t          pins,
2203                         uint8_t          mode) /* 0=low 1=high */
2204{
2205    return (bxe_gpio_mult_write(sc, pins, mode));
2206}
2207
2208uint8_t
2209elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                        uint16_t         gpio_num,
2211                        uint8_t          mode, /* 0=low 1=high */
2212                        uint8_t          port)
2213{
2214    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215}
2216
2217void
2218elink_cb_notify_link_changed(struct bxe_softc *sc)
2219{
2220    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222}
2223
2224/* send the MCP a request, block until there is a reply */
2225uint32_t
2226elink_cb_fw_command(struct bxe_softc *sc,
2227                    uint32_t         command,
2228                    uint32_t         param)
2229{
2230    int mb_idx = SC_FW_MB_IDX(sc);
2231    uint32_t seq;
2232    uint32_t rc = 0;
2233    uint32_t cnt = 1;
2234    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235
2236    BXE_FWMB_LOCK(sc);
2237
2238    seq = ++sc->fw_seq;
2239    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241
2242    BLOGD(sc, DBG_PHY,
2243          "wrote command 0x%08x to FW MB param 0x%08x\n",
2244          (command | seq), param);
2245
2246    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247    do {
2248        DELAY(delay * 1000);
2249        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251
2252    BLOGD(sc, DBG_PHY,
2253          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254          cnt*delay, rc, seq);
2255
2256    /* is this a reply to our command? */
2257    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258        rc &= FW_MSG_CODE_MASK;
2259    } else {
2260        /* Ruh-roh! */
2261        BLOGE(sc, "FW failed to respond!\n");
2262        // XXX bxe_fw_dump(sc);
2263        rc = 0;
2264    }
2265
2266    BXE_FWMB_UNLOCK(sc);
2267    return (rc);
2268}
2269
2270static uint32_t
2271bxe_fw_command(struct bxe_softc *sc,
2272               uint32_t         command,
2273               uint32_t         param)
2274{
2275    return (elink_cb_fw_command(sc, command, param));
2276}
2277
2278static void
2279__storm_memset_dma_mapping(struct bxe_softc *sc,
2280                           uint32_t         addr,
2281                           bus_addr_t       mapping)
2282{
2283    REG_WR(sc, addr, U64_LO(mapping));
2284    REG_WR(sc, (addr + 4), U64_HI(mapping));
2285}
2286
2287static void
2288storm_memset_spq_addr(struct bxe_softc *sc,
2289                      bus_addr_t       mapping,
2290                      uint16_t         abs_fid)
2291{
2292    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294    __storm_memset_dma_mapping(sc, addr, mapping);
2295}
2296
2297static void
2298storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                      uint16_t         abs_fid,
2300                      uint16_t         pf_id)
2301{
2302    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306}
2307
2308static void
2309storm_memset_func_en(struct bxe_softc *sc,
2310                     uint16_t         abs_fid,
2311                     uint8_t          enable)
2312{
2313    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317}
2318
2319static void
2320storm_memset_eq_data(struct bxe_softc       *sc,
2321                     struct event_ring_data *eq_data,
2322                     uint16_t               pfid)
2323{
2324    uint32_t addr;
2325    size_t size;
2326
2327    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328    size = sizeof(struct event_ring_data);
2329    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330}
2331
2332static void
2333storm_memset_eq_prod(struct bxe_softc *sc,
2334                     uint16_t         eq_prod,
2335                     uint16_t         pfid)
2336{
2337    uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339    REG_WR16(sc, addr, eq_prod);
2340}
2341
2342/*
2343 * Post a slowpath command.
2344 *
2345 * A slowpath command is used to propogate a configuration change through
2346 * the controller in a controlled manner, allowing each STORM processor and
2347 * other H/W blocks to phase in the change.  The commands sent on the
2348 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349 * completion of the ramrod will occur in different ways.  Here's a
2350 * breakdown of ramrods and how they complete:
2351 *
2352 * RAMROD_CMD_ID_ETH_PORT_SETUP
2353 *   Used to setup the leading connection on a port.  Completes on the
2354 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355 *
2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357 *   Used to setup an additional connection on a port.  Completes on the
2358 *   RCQ of the multi-queue/RSS connection being initialized.
2359 *
2360 * RAMROD_CMD_ID_ETH_STAT_QUERY
2361 *   Used to force the storm processors to update the statistics database
2362 *   in host memory.  This ramrod is send on the leading connection CID and
2363 *   completes as an index increment of the CSTORM on the default status
2364 *   block.
2365 *
2366 * RAMROD_CMD_ID_ETH_UPDATE
2367 *   Used to update the state of the leading connection, usually to udpate
2368 *   the RSS indirection table.  Completes on the RCQ of the leading
2369 *   connection. (Not currently used under FreeBSD until OS support becomes
2370 *   available.)
2371 *
2372 * RAMROD_CMD_ID_ETH_HALT
2373 *   Used when tearing down a connection prior to driver unload.  Completes
2374 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375 *   use this on the leading connection.
2376 *
2377 * RAMROD_CMD_ID_ETH_SET_MAC
2378 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379 *   the RCQ of the leading connection.
2380 *
2381 * RAMROD_CMD_ID_ETH_CFC_DEL
2382 *   Used when tearing down a conneciton prior to driver unload.  Completes
2383 *   on the RCQ of the leading connection (since the current connection
2384 *   has been completely removed from controller memory).
2385 *
2386 * RAMROD_CMD_ID_ETH_PORT_DEL
2387 *   Used to tear down the leading connection prior to driver unload,
2388 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389 *   default status block.
2390 *
2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393 *   RSS connection that is being offloaded.  (Not currently used under
2394 *   FreeBSD.)
2395 *
2396 * There can only be one command pending per function.
2397 *
2398 * Returns:
2399 *   0 = Success, !0 = Failure.
2400 */
2401
2402/* must be called under the spq lock */
2403static inline
2404struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405{
2406    struct eth_spe *next_spe = sc->spq_prod_bd;
2407
2408    if (sc->spq_prod_bd == sc->spq_last_bd) {
2409        /* wrap back to the first eth_spq */
2410        sc->spq_prod_bd = sc->spq;
2411        sc->spq_prod_idx = 0;
2412    } else {
2413        sc->spq_prod_bd++;
2414        sc->spq_prod_idx++;
2415    }
2416
2417    return (next_spe);
2418}
2419
2420/* must be called under the spq lock */
2421static inline
2422void bxe_sp_prod_update(struct bxe_softc *sc)
2423{
2424    int func = SC_FUNC(sc);
2425
2426    /*
2427     * Make sure that BD data is updated before writing the producer.
2428     * BD data is written to the memory, the producer is read from the
2429     * memory, thus we need a full memory barrier to ensure the ordering.
2430     */
2431    mb();
2432
2433    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434             sc->spq_prod_idx);
2435
2436    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                      BUS_SPACE_BARRIER_WRITE);
2438}
2439
2440/**
2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442 *
2443 * @cmd:      command to check
2444 * @cmd_type: command type
2445 */
2446static inline
2447int bxe_is_contextless_ramrod(int cmd,
2448                              int cmd_type)
2449{
2450    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457        return (TRUE);
2458    } else {
2459        return (FALSE);
2460    }
2461}
2462
2463/**
2464 * bxe_sp_post - place a single command on an SP ring
2465 *
2466 * @sc:         driver handle
2467 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468 * @cid:        SW CID the command is related to
2469 * @data_hi:    command private data address (high 32 bits)
2470 * @data_lo:    command private data address (low 32 bits)
2471 * @cmd_type:   command type (e.g. NONE, ETH)
2472 *
2473 * SP data is handled as if it's always an address pair, thus data fields are
2474 * not swapped to little endian in upper functions. Instead this function swaps
2475 * data as if it's two uint32 fields.
2476 */
2477int
2478bxe_sp_post(struct bxe_softc *sc,
2479            int              command,
2480            int              cid,
2481            uint32_t         data_hi,
2482            uint32_t         data_lo,
2483            int              cmd_type)
2484{
2485    struct eth_spe *spe;
2486    uint16_t type;
2487    int common;
2488
2489    common = bxe_is_contextless_ramrod(command, cmd_type);
2490
2491    BXE_SP_LOCK(sc);
2492
2493    if (common) {
2494        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495            BLOGE(sc, "EQ ring is full!\n");
2496            BXE_SP_UNLOCK(sc);
2497            return (-1);
2498        }
2499    } else {
2500        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501            BLOGE(sc, "SPQ ring is full!\n");
2502            BXE_SP_UNLOCK(sc);
2503            return (-1);
2504        }
2505    }
2506
2507    spe = bxe_sp_get_next(sc);
2508
2509    /* CID needs port number to be encoded int it */
2510    spe->hdr.conn_and_cmd_data =
2511        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512
2513    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514
2515    /* TBD: Check if it works for VFs */
2516    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517             SPE_HDR_FUNCTION_ID);
2518
2519    spe->hdr.type = htole16(type);
2520
2521    spe->data.update_data_addr.hi = htole32(data_hi);
2522    spe->data.update_data_addr.lo = htole32(data_lo);
2523
2524    /*
2525     * It's ok if the actual decrement is issued towards the memory
2526     * somewhere between the lock and unlock. Thus no more explict
2527     * memory barrier is needed.
2528     */
2529    if (common) {
2530        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531    } else {
2532        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533    }
2534
2535    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538    BLOGD(sc, DBG_SP,
2539          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540          sc->spq_prod_idx,
2541          (uint32_t)U64_HI(sc->spq_dma.paddr),
2542          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543          command,
2544          common,
2545          HW_CID(sc, cid),
2546          data_hi,
2547          data_lo,
2548          type,
2549          atomic_load_acq_long(&sc->cq_spq_left),
2550          atomic_load_acq_long(&sc->eq_spq_left));
2551
2552    bxe_sp_prod_update(sc);
2553
2554    BXE_SP_UNLOCK(sc);
2555    return (0);
2556}
2557
2558/**
2559 * bxe_debug_print_ind_table - prints the indirection table configuration.
2560 *
2561 * @sc: driver hanlde
2562 * @p:  pointer to rss configuration
2563 */
2564#if 0
2565static void
2566bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                          struct ecore_config_rss_params *p)
2568{
2569    int i;
2570
2571    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575
2576        /* Print 4 bytes in a line */
2577        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578            (((i + 1) & 0x3) == 0)) {
2579            BLOGD(sc, DBG_LOAD, "\n");
2580            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581        }
2582    }
2583
2584    BLOGD(sc, DBG_LOAD, "\n");
2585}
2586#endif
2587
2588/*
2589 * FreeBSD Device probe function.
2590 *
2591 * Compares the device found to the driver's list of supported devices and
2592 * reports back to the bsd loader whether this is the right driver for the device.
2593 * This is the driver entry function called from the "kldload" command.
2594 *
2595 * Returns:
2596 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597 */
2598static int
2599bxe_probe(device_t dev)
2600{
2601    struct bxe_softc *sc;
2602    struct bxe_device_type *t;
2603    char *descbuf;
2604    uint16_t did, sdid, svid, vid;
2605
2606    /* Find our device structure */
2607    sc = device_get_softc(dev);
2608    sc->dev = dev;
2609    t = bxe_devs;
2610
2611    /* Get the data for the device to be probed. */
2612    vid  = pci_get_vendor(dev);
2613    did  = pci_get_device(dev);
2614    svid = pci_get_subvendor(dev);
2615    sdid = pci_get_subdevice(dev);
2616
2617    BLOGD(sc, DBG_LOAD,
2618          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620
2621    /* Look through the list of known devices for a match. */
2622    while (t->bxe_name != NULL) {
2623        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627            if (descbuf == NULL)
2628                return (ENOMEM);
2629
2630            /* Print out the device identity. */
2631            snprintf(descbuf, BXE_DEVDESC_MAX,
2632                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                     (((pci_read_config(dev, PCIR_REVID, 4) &
2634                        0xf0) >> 4) + 'A'),
2635                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                     BXE_DRIVER_VERSION);
2637
2638            device_set_desc_copy(dev, descbuf);
2639            free(descbuf, M_TEMP);
2640            return (BUS_PROBE_DEFAULT);
2641        }
2642        t++;
2643    }
2644
2645    return (ENXIO);
2646}
2647
2648static void
2649bxe_init_mutexes(struct bxe_softc *sc)
2650{
2651#ifdef BXE_CORE_LOCK_SX
2652    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653             "bxe%d_core_lock", sc->unit);
2654    sx_init(&sc->core_sx, sc->core_sx_name);
2655#else
2656    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657             "bxe%d_core_lock", sc->unit);
2658    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659#endif
2660
2661    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662             "bxe%d_sp_lock", sc->unit);
2663    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664
2665    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666             "bxe%d_dmae_lock", sc->unit);
2667    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668
2669    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670             "bxe%d_phy_lock", sc->unit);
2671    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672
2673    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674             "bxe%d_fwmb_lock", sc->unit);
2675    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676
2677    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678             "bxe%d_print_lock", sc->unit);
2679    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680
2681    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682             "bxe%d_stats_lock", sc->unit);
2683    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684
2685    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686             "bxe%d_mcast_lock", sc->unit);
2687    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688}
2689
2690static void
2691bxe_release_mutexes(struct bxe_softc *sc)
2692{
2693#ifdef BXE_CORE_LOCK_SX
2694    sx_destroy(&sc->core_sx);
2695#else
2696    if (mtx_initialized(&sc->core_mtx)) {
2697        mtx_destroy(&sc->core_mtx);
2698    }
2699#endif
2700
2701    if (mtx_initialized(&sc->sp_mtx)) {
2702        mtx_destroy(&sc->sp_mtx);
2703    }
2704
2705    if (mtx_initialized(&sc->dmae_mtx)) {
2706        mtx_destroy(&sc->dmae_mtx);
2707    }
2708
2709    if (mtx_initialized(&sc->port.phy_mtx)) {
2710        mtx_destroy(&sc->port.phy_mtx);
2711    }
2712
2713    if (mtx_initialized(&sc->fwmb_mtx)) {
2714        mtx_destroy(&sc->fwmb_mtx);
2715    }
2716
2717    if (mtx_initialized(&sc->print_mtx)) {
2718        mtx_destroy(&sc->print_mtx);
2719    }
2720
2721    if (mtx_initialized(&sc->stats_mtx)) {
2722        mtx_destroy(&sc->stats_mtx);
2723    }
2724
2725    if (mtx_initialized(&sc->mcast_mtx)) {
2726        mtx_destroy(&sc->mcast_mtx);
2727    }
2728}
2729
2730static void
2731bxe_tx_disable(struct bxe_softc* sc)
2732{
2733    struct ifnet *ifp = sc->ifnet;
2734
2735    /* tell the stack the driver is stopped and TX queue is full */
2736    if (ifp != NULL) {
2737        ifp->if_drv_flags = 0;
2738    }
2739}
2740
2741static void
2742bxe_drv_pulse(struct bxe_softc *sc)
2743{
2744    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745             sc->fw_drv_pulse_wr_seq);
2746}
2747
2748static inline uint16_t
2749bxe_tx_avail(struct bxe_softc *sc,
2750             struct bxe_fastpath *fp)
2751{
2752    int16_t  used;
2753    uint16_t prod;
2754    uint16_t cons;
2755
2756    prod = fp->tx_bd_prod;
2757    cons = fp->tx_bd_cons;
2758
2759    used = SUB_S16(prod, cons);
2760
2761#if 0
2762    KASSERT((used < 0), ("used tx bds < 0"));
2763    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765            ("invalid number of tx bds used"));
2766#endif
2767
2768    return (int16_t)(sc->tx_ring_size) - used;
2769}
2770
2771static inline int
2772bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773{
2774    uint16_t hw_cons;
2775
2776    mb(); /* status block fields can change */
2777    hw_cons = le16toh(*fp->tx_cons_sb);
2778    return (hw_cons != fp->tx_pkt_cons);
2779}
2780
2781static inline uint8_t
2782bxe_has_tx_work(struct bxe_fastpath *fp)
2783{
2784    /* expand this for multi-cos if ever supported */
2785    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786}
2787
2788static inline int
2789bxe_has_rx_work(struct bxe_fastpath *fp)
2790{
2791    uint16_t rx_cq_cons_sb;
2792
2793    mb(); /* status block fields can change */
2794    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796        rx_cq_cons_sb++;
2797    return (fp->rx_cq_cons != rx_cq_cons_sb);
2798}
2799
2800static void
2801bxe_sp_event(struct bxe_softc    *sc,
2802             struct bxe_fastpath *fp,
2803             union eth_rx_cqe    *rr_cqe)
2804{
2805    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809
2810    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812
2813#if 0
2814    /*
2815     * If cid is within VF range, replace the slowpath object with the
2816     * one corresponding to this VF
2817     */
2818    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820    }
2821#endif
2822
2823    switch (command) {
2824    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826        drv_cmd = ECORE_Q_CMD_UPDATE;
2827        break;
2828
2829    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831        drv_cmd = ECORE_Q_CMD_SETUP;
2832        break;
2833
2834    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837        break;
2838
2839    case (RAMROD_CMD_ID_ETH_HALT):
2840        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841        drv_cmd = ECORE_Q_CMD_HALT;
2842        break;
2843
2844    case (RAMROD_CMD_ID_ETH_TERMINATE):
2845        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846        drv_cmd = ECORE_Q_CMD_TERMINATE;
2847        break;
2848
2849    case (RAMROD_CMD_ID_ETH_EMPTY):
2850        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851        drv_cmd = ECORE_Q_CMD_EMPTY;
2852        break;
2853
2854    default:
2855        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856              command, fp->index);
2857        return;
2858    }
2859
2860    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862        /*
2863         * q_obj->complete_cmd() failure means that this was
2864         * an unexpected completion.
2865         *
2866         * In this case we don't want to increase the sc->spq_left
2867         * because apparently we haven't sent this command the first
2868         * place.
2869         */
2870        // bxe_panic(sc, ("Unexpected SP completion\n"));
2871        return;
2872    }
2873
2874#if 0
2875    /* SRIOV: reschedule any 'in_progress' operations */
2876    bxe_iov_sp_event(sc, cid, TRUE);
2877#endif
2878
2879    atomic_add_acq_long(&sc->cq_spq_left, 1);
2880
2881    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882          atomic_load_acq_long(&sc->cq_spq_left));
2883
2884#if 0
2885    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887        /*
2888         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890         * prevent case that both bits are cleared. At the end of load/unload
2891         * driver checks that sp_state is cleared and this order prevents
2892         * races.
2893         */
2894        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895        wmb();
2896        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897
2898        /* schedule the sp task as MCP ack is required */
2899        bxe_schedule_sp_task(sc);
2900    }
2901#endif
2902}
2903
2904/*
2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907 * the current aggregation queue as in-progress.
2908 */
2909static void
2910bxe_tpa_start(struct bxe_softc            *sc,
2911              struct bxe_fastpath         *fp,
2912              uint16_t                    queue,
2913              uint16_t                    cons,
2914              uint16_t                    prod,
2915              struct eth_fast_path_rx_cqe *cqe)
2916{
2917    struct bxe_sw_rx_bd tmp_bd;
2918    struct bxe_sw_rx_bd *rx_buf;
2919    struct eth_rx_bd *rx_bd;
2920    int max_agg_queues;
2921    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922    uint16_t index;
2923
2924    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                       "cons=%d prod=%d\n",
2926          fp->index, queue, cons, prod);
2927
2928    max_agg_queues = MAX_AGG_QS(sc);
2929
2930    KASSERT((queue < max_agg_queues),
2931            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932             fp->index, queue, max_agg_queues));
2933
2934    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936             fp->index, queue));
2937
2938    /* copy the existing mbuf and mapping from the TPA pool */
2939    tmp_bd = tpa_info->bd;
2940
2941    if (tmp_bd.m == NULL) {
2942        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943              fp->index, queue);
2944        /* XXX Error handling? */
2945        return;
2946    }
2947
2948    /* change the TPA queue to the start state */
2949    tpa_info->state            = BXE_TPA_STATE_START;
2950    tpa_info->placement_offset = cqe->placement_offset;
2951    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954
2955    fp->rx_tpa_queue_used |= (1 << queue);
2956
2957    /*
2958     * If all the buffer descriptors are filled with mbufs then fill in
2959     * the current consumer index with a new BD. Else if a maximum Rx
2960     * buffer limit is imposed then fill in the next producer index.
2961     */
2962    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                prod : cons;
2964
2965    /* move the received mbuf and mapping to TPA pool */
2966    tpa_info->bd = fp->rx_mbuf_chain[cons];
2967
2968    /* release any existing RX BD mbuf mappings */
2969    if (cons != index) {
2970        rx_buf = &fp->rx_mbuf_chain[cons];
2971
2972        if (rx_buf->m_map != NULL) {
2973            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                            BUS_DMASYNC_POSTREAD);
2975            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976        }
2977
2978        /*
2979         * We get here when the maximum number of rx buffers is less than
2980         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981         * it out here without concern of a memory leak.
2982         */
2983        fp->rx_mbuf_chain[cons].m = NULL;
2984    }
2985
2986    /* update the Rx SW BD with the mbuf info from the TPA pool */
2987    fp->rx_mbuf_chain[index] = tmp_bd;
2988
2989    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990    rx_bd = &fp->rx_chain[index];
2991    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993}
2994
2995/*
2996 * When a TPA aggregation is completed, loop through the individual mbufs
2997 * of the aggregation, combining them into a single mbuf which will be sent
2998 * up the stack. Refill all freed SGEs with mbufs as we go along.
2999 */
3000static int
3001bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                   struct bxe_fastpath       *fp,
3003                   struct bxe_sw_tpa_info    *tpa_info,
3004                   uint16_t                  queue,
3005                   uint16_t                  pages,
3006                   struct mbuf               *m,
3007			       struct eth_end_agg_rx_cqe *cqe,
3008                   uint16_t                  cqe_idx)
3009{
3010    struct mbuf *m_frag;
3011    uint32_t frag_len, frag_size, i;
3012    uint16_t sge_idx;
3013    int rc = 0;
3014    int j;
3015
3016    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017
3018    BLOGD(sc, DBG_LRO,
3019          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021
3022    /* make sure the aggregated frame is not too big to handle */
3023    if (pages > 8 * PAGES_PER_SGE) {
3024        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027              tpa_info->len_on_bd, frag_size);
3028        bxe_panic(sc, ("sge page count error\n"));
3029        return (EINVAL);
3030    }
3031
3032    /*
3033     * Scan through the scatter gather list pulling individual mbufs into a
3034     * single mbuf for the host stack.
3035     */
3036    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038
3039        /*
3040         * Firmware gives the indices of the SGE as if the ring is an array
3041         * (meaning that the "next" element will consume 2 indices).
3042         */
3043        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044
3045        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3047              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048
3049        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050
3051        /* allocate a new mbuf for the SGE */
3052        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053        if (rc) {
3054            /* Leave all remaining SGEs in the ring! */
3055            return (rc);
3056        }
3057
3058        /* update the fragment length */
3059        m_frag->m_len = frag_len;
3060
3061        /* concatenate the fragment to the head mbuf */
3062        m_cat(m, m_frag);
3063        fp->eth_q_stats.mbuf_alloc_sge--;
3064
3065        /* update the TPA mbuf size and remaining fragment size */
3066        m->m_pkthdr.len += frag_len;
3067        frag_size -= frag_len;
3068    }
3069
3070    BLOGD(sc, DBG_LRO,
3071          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072          fp->index, queue, frag_size);
3073
3074    return (rc);
3075}
3076
3077static inline void
3078bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079{
3080    int i, j;
3081
3082    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084
3085        for (j = 0; j < 2; j++) {
3086            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087            idx--;
3088        }
3089    }
3090}
3091
3092static inline void
3093bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094{
3095    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097
3098    /*
3099     * Clear the two last indices in the page to 1. These are the indices that
3100     * correspond to the "next" element, hence will never be indicated and
3101     * should be removed from the calculations.
3102     */
3103    bxe_clear_sge_mask_next_elems(fp);
3104}
3105
3106static inline void
3107bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                        uint16_t            idx)
3109{
3110    uint16_t last_max = fp->last_max_sge;
3111
3112    if (SUB_S16(idx, last_max) > 0) {
3113        fp->last_max_sge = idx;
3114    }
3115}
3116
3117static inline void
3118bxe_update_sge_prod(struct bxe_softc          *sc,
3119                    struct bxe_fastpath       *fp,
3120                    uint16_t                  sge_len,
3121                    struct eth_end_agg_rx_cqe *cqe)
3122{
3123    uint16_t last_max, last_elem, first_elem;
3124    uint16_t delta = 0;
3125    uint16_t i;
3126
3127    if (!sge_len) {
3128        return;
3129    }
3130
3131    /* first mark all used pages */
3132    for (i = 0; i < sge_len; i++) {
3133        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135    }
3136
3137    BLOGD(sc, DBG_LRO,
3138          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139          fp->index, sge_len - 1,
3140          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141
3142    /* assume that the last SGE index is the biggest */
3143    bxe_update_last_max_sge(fp,
3144                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145
3146    last_max = RX_SGE(fp->last_max_sge);
3147    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149
3150    /* if ring is not full */
3151    if (last_elem + 1 != first_elem) {
3152        last_elem++;
3153    }
3154
3155    /* now update the prod */
3156    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157        if (__predict_true(fp->sge_mask[i])) {
3158            break;
3159        }
3160
3161        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162        delta += BIT_VEC64_ELEM_SZ;
3163    }
3164
3165    if (delta > 0) {
3166        fp->rx_sge_prod += delta;
3167        /* clear page-end entries */
3168        bxe_clear_sge_mask_next_elems(fp);
3169    }
3170
3171    BLOGD(sc, DBG_LRO,
3172          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174}
3175
3176/*
3177 * The aggregation on the current TPA queue has completed. Pull the individual
3178 * mbuf fragments together into a single mbuf, perform all necessary checksum
3179 * calculations, and send the resuting mbuf to the stack.
3180 */
3181static void
3182bxe_tpa_stop(struct bxe_softc          *sc,
3183             struct bxe_fastpath       *fp,
3184             struct bxe_sw_tpa_info    *tpa_info,
3185             uint16_t                  queue,
3186             uint16_t                  pages,
3187			 struct eth_end_agg_rx_cqe *cqe,
3188             uint16_t                  cqe_idx)
3189{
3190    struct ifnet *ifp = sc->ifnet;
3191    struct mbuf *m;
3192    int rc = 0;
3193
3194    BLOGD(sc, DBG_LRO,
3195          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196          fp->index, queue, tpa_info->placement_offset,
3197          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198
3199    m = tpa_info->bd.m;
3200
3201    /* allocate a replacement before modifying existing mbuf */
3202    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203    if (rc) {
3204        /* drop the frame and log an error */
3205        fp->eth_q_stats.rx_soft_errors++;
3206        goto bxe_tpa_stop_exit;
3207    }
3208
3209    /* we have a replacement, fixup the current mbuf */
3210    m_adj(m, tpa_info->placement_offset);
3211    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212
3213    /* mark the checksums valid (taken care of by the firmware) */
3214    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216    m->m_pkthdr.csum_data = 0xffff;
3217    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                               CSUM_IP_VALID   |
3219                               CSUM_DATA_VALID |
3220                               CSUM_PSEUDO_HDR);
3221
3222    /* aggregate all of the SGEs into a single mbuf */
3223    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224    if (rc) {
3225        /* drop the packet and log an error */
3226        fp->eth_q_stats.rx_soft_errors++;
3227        m_freem(m);
3228    } else {
3229        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231            m->m_flags |= M_VLANTAG;
3232        }
3233
3234        /* assign packet to this interface interface */
3235        m->m_pkthdr.rcvif = ifp;
3236
3237#if __FreeBSD_version >= 800000
3238        /* specify what RSS queue was used for this flow */
3239        m->m_pkthdr.flowid = fp->index;
3240        m->m_flags |= M_FLOWID;
3241#endif
3242
3243        ifp->if_ipackets++;
3244        fp->eth_q_stats.rx_tpa_pkts++;
3245
3246        /* pass the frame to the stack */
3247        (*ifp->if_input)(ifp, m);
3248    }
3249
3250    /* we passed an mbuf up the stack or dropped the frame */
3251    fp->eth_q_stats.mbuf_alloc_tpa--;
3252
3253bxe_tpa_stop_exit:
3254
3255    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256    fp->rx_tpa_queue_used &= ~(1 << queue);
3257}
3258
3259static uint8_t
3260bxe_rxeof(struct bxe_softc    *sc,
3261          struct bxe_fastpath *fp)
3262{
3263    struct ifnet *ifp = sc->ifnet;
3264    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266    int rx_pkts = 0;
3267    int rc;
3268
3269    BXE_FP_RX_LOCK(fp);
3270
3271    /* CQ "next element" is of the size of the regular element */
3272    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274        hw_cq_cons++;
3275    }
3276
3277    bd_cons = fp->rx_bd_cons;
3278    bd_prod = fp->rx_bd_prod;
3279    bd_prod_fw = bd_prod;
3280    sw_cq_cons = fp->rx_cq_cons;
3281    sw_cq_prod = fp->rx_cq_prod;
3282
3283    /*
3284     * Memory barrier necessary as speculative reads of the rx
3285     * buffer can be ahead of the index in the status block
3286     */
3287    rmb();
3288
3289    BLOGD(sc, DBG_RX,
3290          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291          fp->index, hw_cq_cons, sw_cq_cons);
3292
3293    while (sw_cq_cons != hw_cq_cons) {
3294        struct bxe_sw_rx_bd *rx_buf = NULL;
3295        union eth_rx_cqe *cqe;
3296        struct eth_fast_path_rx_cqe *cqe_fp;
3297        uint8_t cqe_fp_flags;
3298        enum eth_rx_cqe_type cqe_fp_type;
3299        uint16_t len, pad;
3300        struct mbuf *m = NULL;
3301
3302        comp_ring_cons = RCQ(sw_cq_cons);
3303        bd_prod = RX_BD(bd_prod);
3304        bd_cons = RX_BD(bd_cons);
3305
3306        cqe          = &fp->rcq_chain[comp_ring_cons];
3307        cqe_fp       = &cqe->fast_path_cqe;
3308        cqe_fp_flags = cqe_fp->type_error_flags;
3309        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310
3311        BLOGD(sc, DBG_RX,
3312              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315              fp->index,
3316              hw_cq_cons,
3317              sw_cq_cons,
3318              bd_prod,
3319              bd_cons,
3320              CQE_TYPE(cqe_fp_flags),
3321              cqe_fp_flags,
3322              cqe_fp->status_flags,
3323              le32toh(cqe_fp->rss_hash_result),
3324              le16toh(cqe_fp->vlan_tag),
3325              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326
3327        /* is this a slowpath msg? */
3328        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329            bxe_sp_event(sc, fp, cqe);
3330            goto next_cqe;
3331        }
3332
3333        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334
3335        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336            struct bxe_sw_tpa_info *tpa_info;
3337            uint16_t frag_size, pages;
3338            uint8_t queue;
3339
3340#if 0
3341            /* sanity check */
3342            if (!fp->tpa_enable &&
3343                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                      CQE_TYPE(cqe_fp_type));
3346            }
3347#endif
3348
3349            if (CQE_TYPE_START(cqe_fp_type)) {
3350                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                              bd_cons, bd_prod, cqe_fp);
3352                m = NULL; /* packet not ready yet */
3353                goto next_rx;
3354            }
3355
3356            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358
3359            queue = cqe->end_agg_cqe.queue_index;
3360            tpa_info = &fp->rx_tpa_info[queue];
3361
3362            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                  fp->index, queue);
3364
3365            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                         tpa_info->len_on_bd);
3367            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368
3369            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                         &cqe->end_agg_cqe, comp_ring_cons);
3371
3372            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373
3374            goto next_cqe;
3375        }
3376
3377        /* non TPA */
3378
3379        /* is this an error packet? */
3380        if (__predict_false(cqe_fp_flags &
3381                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383            fp->eth_q_stats.rx_soft_errors++;
3384            goto next_rx;
3385        }
3386
3387        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388        pad = cqe_fp->placement_offset;
3389
3390        m = rx_buf->m;
3391
3392        if (__predict_false(m == NULL)) {
3393            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                  bd_cons, fp->index);
3395            goto next_rx;
3396        }
3397
3398        /* XXX double copy if packet length under a threshold */
3399
3400        /*
3401         * If all the buffer descriptors are filled with mbufs then fill in
3402         * the current consumer index with a new BD. Else if a maximum Rx
3403         * buffer limit is imposed then fill in the next producer index.
3404         */
3405        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                      bd_prod : bd_cons);
3408        if (rc != 0) {
3409            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                  fp->index, rc);
3411            fp->eth_q_stats.rx_soft_errors++;
3412
3413            if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                /* copy this consumer index to the producer index */
3415                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                       sizeof(struct bxe_sw_rx_bd));
3417                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418            }
3419
3420            goto next_rx;
3421        }
3422
3423        /* current mbuf was detached from the bd */
3424        fp->eth_q_stats.mbuf_alloc_rx--;
3425
3426        /* we allocated a replacement mbuf, fixup the current one */
3427        m_adj(m, pad);
3428        m->m_pkthdr.len = m->m_len = len;
3429
3430        /* assign packet to this interface interface */
3431        m->m_pkthdr.rcvif = ifp;
3432
3433        /* assume no hardware checksum has complated */
3434        m->m_pkthdr.csum_flags = 0;
3435
3436        /* validate checksum if offload enabled */
3437        if (ifp->if_capenable & IFCAP_RXCSUM) {
3438            /* check for a valid IP frame */
3439            if (!(cqe->fast_path_cqe.status_flags &
3440                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                if (__predict_false(cqe_fp_flags &
3443                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                    fp->eth_q_stats.rx_hw_csum_errors++;
3445                } else {
3446                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                }
3449            }
3450
3451            /* check for a valid TCP/UDP frame */
3452            if (!(cqe->fast_path_cqe.status_flags &
3453                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                if (__predict_false(cqe_fp_flags &
3455                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                    fp->eth_q_stats.rx_hw_csum_errors++;
3457                } else {
3458                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                    m->m_pkthdr.csum_data = 0xFFFF;
3460                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                               CSUM_PSEUDO_HDR);
3462                }
3463            }
3464        }
3465
3466        /* if there is a VLAN tag then flag that info */
3467        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469            m->m_flags |= M_VLANTAG;
3470        }
3471
3472#if __FreeBSD_version >= 800000
3473        /* specify what RSS queue was used for this flow */
3474        m->m_pkthdr.flowid = fp->index;
3475        m->m_flags |= M_FLOWID;
3476#endif
3477
3478next_rx:
3479
3480        bd_cons    = RX_BD_NEXT(bd_cons);
3481        bd_prod    = RX_BD_NEXT(bd_prod);
3482        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483
3484        /* pass the frame to the stack */
3485        if (__predict_true(m != NULL)) {
3486            ifp->if_ipackets++;
3487            rx_pkts++;
3488            (*ifp->if_input)(ifp, m);
3489        }
3490
3491next_cqe:
3492
3493        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495
3496        /* limit spinning on the queue */
3497        if (rx_pkts == sc->rx_budget) {
3498            fp->eth_q_stats.rx_budget_reached++;
3499            break;
3500        }
3501    } /* while work to do */
3502
3503    fp->rx_bd_cons = bd_cons;
3504    fp->rx_bd_prod = bd_prod_fw;
3505    fp->rx_cq_cons = sw_cq_cons;
3506    fp->rx_cq_prod = sw_cq_prod;
3507
3508    /* Update producers */
3509    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510
3511    fp->eth_q_stats.rx_pkts += rx_pkts;
3512    fp->eth_q_stats.rx_calls++;
3513
3514    BXE_FP_RX_UNLOCK(fp);
3515
3516    return (sw_cq_cons != hw_cq_cons);
3517}
3518
3519static uint16_t
3520bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                struct bxe_fastpath *fp,
3522                uint16_t            idx)
3523{
3524    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525    struct eth_tx_start_bd *tx_start_bd;
3526    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527    uint16_t new_cons;
3528    int nbd;
3529
3530    /* unmap the mbuf from non-paged memory */
3531    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532
3533    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534    nbd = le16toh(tx_start_bd->nbd) - 1;
3535
3536#if 0
3537    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538        bxe_panic(sc, ("BAD nbd!\n"));
3539    }
3540#endif
3541
3542    new_cons = (tx_buf->first_bd + nbd);
3543
3544#if 0
3545    struct eth_tx_bd *tx_data_bd;
3546
3547    /*
3548     * The following code doesn't do anything but is left here
3549     * for clarity on what the new value of new_cons skipped.
3550     */
3551
3552    /* get the next bd */
3553    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554
3555    /* skip the parse bd */
3556    --nbd;
3557    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558
3559    /* skip the TSO split header bd since they have no mapping */
3560    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561        --nbd;
3562        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563    }
3564
3565    /* now free frags */
3566    while (nbd > 0) {
3567        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568        if (--nbd) {
3569            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570        }
3571    }
3572#endif
3573
3574    /* free the mbuf */
3575    if (__predict_true(tx_buf->m != NULL)) {
3576        m_freem(tx_buf->m);
3577        fp->eth_q_stats.mbuf_alloc_tx--;
3578    } else {
3579        fp->eth_q_stats.tx_chain_lost_mbuf++;
3580    }
3581
3582    tx_buf->m = NULL;
3583    tx_buf->first_bd = 0;
3584
3585    return (new_cons);
3586}
3587
3588/* transmit timeout watchdog */
3589static int
3590bxe_watchdog(struct bxe_softc    *sc,
3591             struct bxe_fastpath *fp)
3592{
3593    BXE_FP_TX_LOCK(fp);
3594
3595    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596        BXE_FP_TX_UNLOCK(fp);
3597        return (0);
3598    }
3599
3600    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601
3602    BXE_FP_TX_UNLOCK(fp);
3603
3604    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606
3607    return (-1);
3608}
3609
3610/* processes transmit completions */
3611static uint8_t
3612bxe_txeof(struct bxe_softc    *sc,
3613          struct bxe_fastpath *fp)
3614{
3615    struct ifnet *ifp = sc->ifnet;
3616    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617    uint16_t tx_bd_avail;
3618
3619    BXE_FP_TX_LOCK_ASSERT(fp);
3620
3621    bd_cons = fp->tx_bd_cons;
3622    hw_cons = le16toh(*fp->tx_cons_sb);
3623    sw_cons = fp->tx_pkt_cons;
3624
3625    while (sw_cons != hw_cons) {
3626        pkt_cons = TX_BD(sw_cons);
3627
3628        BLOGD(sc, DBG_TX,
3629              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630              fp->index, hw_cons, sw_cons, pkt_cons);
3631
3632        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633
3634        sw_cons++;
3635    }
3636
3637    fp->tx_pkt_cons = sw_cons;
3638    fp->tx_bd_cons  = bd_cons;
3639
3640    BLOGD(sc, DBG_TX,
3641          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643
3644    mb();
3645
3646    tx_bd_avail = bxe_tx_avail(sc, fp);
3647
3648    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650    } else {
3651        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652    }
3653
3654    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655        /* reset the watchdog timer if there are pending transmits */
3656        fp->watchdog_timer = BXE_TX_TIMEOUT;
3657        return (TRUE);
3658    } else {
3659        /* clear watchdog when there are no pending transmits */
3660        fp->watchdog_timer = 0;
3661        return (FALSE);
3662    }
3663}
3664
3665static void
3666bxe_drain_tx_queues(struct bxe_softc *sc)
3667{
3668    struct bxe_fastpath *fp;
3669    int i, count;
3670
3671    /* wait until all TX fastpath tasks have completed */
3672    for (i = 0; i < sc->num_queues; i++) {
3673        fp = &sc->fp[i];
3674
3675        count = 1000;
3676
3677        while (bxe_has_tx_work(fp)) {
3678
3679            BXE_FP_TX_LOCK(fp);
3680            bxe_txeof(sc, fp);
3681            BXE_FP_TX_UNLOCK(fp);
3682
3683            if (count == 0) {
3684                BLOGE(sc, "Timeout waiting for fp[%d] "
3685                          "transmits to complete!\n", i);
3686                bxe_panic(sc, ("tx drain failure\n"));
3687                return;
3688            }
3689
3690            count--;
3691            DELAY(1000);
3692            rmb();
3693        }
3694    }
3695
3696    return;
3697}
3698
3699static int
3700bxe_del_all_macs(struct bxe_softc          *sc,
3701                 struct ecore_vlan_mac_obj *mac_obj,
3702                 int                       mac_type,
3703                 uint8_t                   wait_for_comp)
3704{
3705    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706    int rc;
3707
3708    /* wait for completion of requested */
3709    if (wait_for_comp) {
3710        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711    }
3712
3713    /* Set the mac type of addresses we want to clear */
3714    bxe_set_bit(mac_type, &vlan_mac_flags);
3715
3716    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717    if (rc < 0) {
3718        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719    }
3720
3721    return (rc);
3722}
3723
3724static int
3725bxe_fill_accept_flags(struct bxe_softc *sc,
3726                      uint32_t         rx_mode,
3727                      unsigned long    *rx_accept_flags,
3728                      unsigned long    *tx_accept_flags)
3729{
3730    /* Clear the flags first */
3731    *rx_accept_flags = 0;
3732    *tx_accept_flags = 0;
3733
3734    switch (rx_mode) {
3735    case BXE_RX_MODE_NONE:
3736        /*
3737         * 'drop all' supersedes any accept flags that may have been
3738         * passed to the function.
3739         */
3740        break;
3741
3742    case BXE_RX_MODE_NORMAL:
3743        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746
3747        /* internal switching mode */
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751
3752        break;
3753
3754    case BXE_RX_MODE_ALLMULTI:
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758
3759        /* internal switching mode */
3760        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763
3764        break;
3765
3766    case BXE_RX_MODE_PROMISC:
3767        /*
3768         * According to deffinition of SI mode, iface in promisc mode
3769         * should receive matched and unmatched (in resolution of port)
3770         * unicast packets.
3771         */
3772        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776
3777        /* internal switching mode */
3778        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780
3781        if (IS_MF_SI(sc)) {
3782            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783        } else {
3784            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785        }
3786
3787        break;
3788
3789    default:
3790        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791        return (-1);
3792    }
3793
3794    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795    if (rx_mode != BXE_RX_MODE_NONE) {
3796        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798    }
3799
3800    return (0);
3801}
3802
3803static int
3804bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                  uint8_t          cl_id,
3806                  unsigned long    rx_mode_flags,
3807                  unsigned long    rx_accept_flags,
3808                  unsigned long    tx_accept_flags,
3809                  unsigned long    ramrod_flags)
3810{
3811    struct ecore_rx_mode_ramrod_params ramrod_param;
3812    int rc;
3813
3814    memset(&ramrod_param, 0, sizeof(ramrod_param));
3815
3816    /* Prepare ramrod parameters */
3817    ramrod_param.cid = 0;
3818    ramrod_param.cl_id = cl_id;
3819    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820    ramrod_param.func_id = SC_FUNC(sc);
3821
3822    ramrod_param.pstate = &sc->sp_state;
3823    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824
3825    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827
3828    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829
3830    ramrod_param.ramrod_flags = ramrod_flags;
3831    ramrod_param.rx_mode_flags = rx_mode_flags;
3832
3833    ramrod_param.rx_accept_flags = rx_accept_flags;
3834    ramrod_param.tx_accept_flags = tx_accept_flags;
3835
3836    rc = ecore_config_rx_mode(sc, &ramrod_param);
3837    if (rc < 0) {
3838        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839        return (rc);
3840    }
3841
3842    return (0);
3843}
3844
3845static int
3846bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847{
3848    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850    int rc;
3851
3852    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                               &tx_accept_flags);
3854    if (rc) {
3855        return (rc);
3856    }
3857
3858    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860
3861    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                              rx_accept_flags, tx_accept_flags,
3864                              ramrod_flags));
3865}
3866
3867/* returns the "mcp load_code" according to global load_count array */
3868static int
3869bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870{
3871    int path = SC_PATH(sc);
3872    int port = SC_PORT(sc);
3873
3874    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875          path, load_count[path][0], load_count[path][1],
3876          load_count[path][2]);
3877    load_count[path][0]++;
3878    load_count[path][1 + port]++;
3879    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880          path, load_count[path][0], load_count[path][1],
3881          load_count[path][2]);
3882    if (load_count[path][0] == 1) {
3883        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884    } else if (load_count[path][1 + port] == 1) {
3885        return (FW_MSG_CODE_DRV_LOAD_PORT);
3886    } else {
3887        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888    }
3889}
3890
3891/* returns the "mcp load_code" according to global load_count array */
3892static int
3893bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894{
3895    int port = SC_PORT(sc);
3896    int path = SC_PATH(sc);
3897
3898    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899          path, load_count[path][0], load_count[path][1],
3900          load_count[path][2]);
3901    load_count[path][0]--;
3902    load_count[path][1 + port]--;
3903    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904          path, load_count[path][0], load_count[path][1],
3905          load_count[path][2]);
3906    if (load_count[path][0] == 0) {
3907        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908    } else if (load_count[path][1 + port] == 0) {
3909        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910    } else {
3911        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912    }
3913}
3914
3915/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916static uint32_t
3917bxe_send_unload_req(struct bxe_softc *sc,
3918                    int              unload_mode)
3919{
3920    uint32_t reset_code = 0;
3921#if 0
3922    int port = SC_PORT(sc);
3923    int path = SC_PATH(sc);
3924#endif
3925
3926    /* Select the UNLOAD request mode */
3927    if (unload_mode == UNLOAD_NORMAL) {
3928        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929    }
3930#if 0
3931    else if (sc->flags & BXE_NO_WOL_FLAG) {
3932        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933    } else if (sc->wol) {
3934        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935        uint8_t *mac_addr = sc->dev->dev_addr;
3936        uint32_t val;
3937        uint16_t pmc;
3938
3939        /*
3940         * The mac address is written to entries 1-4 to
3941         * preserve entry 0 which is used by the PMF
3942         */
3943        uint8_t entry = (SC_VN(sc) + 1)*8;
3944
3945        val = (mac_addr[0] << 8) | mac_addr[1];
3946        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947
3948        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949              (mac_addr[4] << 8) | mac_addr[5];
3950        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951
3952        /* Enable the PME and clear the status */
3953        pmc = pci_read_config(sc->dev,
3954                              (sc->devinfo.pcie_pm_cap_reg +
3955                               PCIR_POWER_STATUS),
3956                              2);
3957        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958        pci_write_config(sc->dev,
3959                         (sc->devinfo.pcie_pm_cap_reg +
3960                          PCIR_POWER_STATUS),
3961                         pmc, 4);
3962
3963        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964    }
3965#endif
3966    else {
3967        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968    }
3969
3970    /* Send the request to the MCP */
3971    if (!BXE_NOMCP(sc)) {
3972        reset_code = bxe_fw_command(sc, reset_code, 0);
3973    } else {
3974        reset_code = bxe_nic_unload_no_mcp(sc);
3975    }
3976
3977    return (reset_code);
3978}
3979
3980/* send UNLOAD_DONE command to the MCP */
3981static void
3982bxe_send_unload_done(struct bxe_softc *sc,
3983                     uint8_t          keep_link)
3984{
3985    uint32_t reset_param =
3986        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987
3988    /* Report UNLOAD_DONE to MCP */
3989    if (!BXE_NOMCP(sc)) {
3990        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991    }
3992}
3993
3994static int
3995bxe_func_wait_started(struct bxe_softc *sc)
3996{
3997    int tout = 50;
3998
3999    if (!sc->port.pmf) {
4000        return (0);
4001    }
4002
4003    /*
4004     * (assumption: No Attention from MCP at this stage)
4005     * PMF probably in the middle of TX disable/enable transaction
4006     * 1. Sync IRS for default SB
4007     * 2. Sync SP queue - this guarantees us that attention handling started
4008     * 3. Wait, that TX disable/enable transaction completes
4009     *
4010     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012     * received completion for the transaction the state is TX_STOPPED.
4013     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014     * transaction.
4015     */
4016
4017    /* XXX make sure default SB ISR is done */
4018    /* need a way to synchronize an irq (intr_mtx?) */
4019
4020    /* XXX flush any work queues */
4021
4022    while (ecore_func_get_state(sc, &sc->func_obj) !=
4023           ECORE_F_STATE_STARTED && tout--) {
4024        DELAY(20000);
4025    }
4026
4027    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028        /*
4029         * Failed to complete the transaction in a "good way"
4030         * Force both transactions with CLR bit.
4031         */
4032        struct ecore_func_state_params func_params = { NULL };
4033
4034        BLOGE(sc, "Unexpected function state! "
4035                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036
4037        func_params.f_obj = &sc->func_obj;
4038        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039
4040        /* STARTED-->TX_STOPPED */
4041        func_params.cmd = ECORE_F_CMD_TX_STOP;
4042        ecore_func_state_change(sc, &func_params);
4043
4044        /* TX_STOPPED-->STARTED */
4045        func_params.cmd = ECORE_F_CMD_TX_START;
4046        return (ecore_func_state_change(sc, &func_params));
4047    }
4048
4049    return (0);
4050}
4051
4052static int
4053bxe_stop_queue(struct bxe_softc *sc,
4054               int              index)
4055{
4056    struct bxe_fastpath *fp = &sc->fp[index];
4057    struct ecore_queue_state_params q_params = { NULL };
4058    int rc;
4059
4060    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061
4062    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063    /* We want to wait for completion in this context */
4064    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065
4066    /* Stop the primary connection: */
4067
4068    /* ...halt the connection */
4069    q_params.cmd = ECORE_Q_CMD_HALT;
4070    rc = ecore_queue_state_change(sc, &q_params);
4071    if (rc) {
4072        return (rc);
4073    }
4074
4075    /* ...terminate the connection */
4076    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079    rc = ecore_queue_state_change(sc, &q_params);
4080    if (rc) {
4081        return (rc);
4082    }
4083
4084    /* ...delete cfc entry */
4085    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088    return (ecore_queue_state_change(sc, &q_params));
4089}
4090
4091/* wait for the outstanding SP commands */
4092static inline uint8_t
4093bxe_wait_sp_comp(struct bxe_softc *sc,
4094                 unsigned long    mask)
4095{
4096    unsigned long tmp;
4097    int tout = 5000; /* wait for 5 secs tops */
4098
4099    while (tout--) {
4100        mb();
4101        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102            return (TRUE);
4103        }
4104
4105        DELAY(1000);
4106    }
4107
4108    mb();
4109
4110    tmp = atomic_load_acq_long(&sc->sp_state);
4111    if (tmp & mask) {
4112        BLOGE(sc, "Filtering completion timed out: "
4113                  "sp_state 0x%lx, mask 0x%lx\n",
4114              tmp, mask);
4115        return (FALSE);
4116    }
4117
4118    return (FALSE);
4119}
4120
4121static int
4122bxe_func_stop(struct bxe_softc *sc)
4123{
4124    struct ecore_func_state_params func_params = { NULL };
4125    int rc;
4126
4127    /* prepare parameters for function state transitions */
4128    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129    func_params.f_obj = &sc->func_obj;
4130    func_params.cmd = ECORE_F_CMD_STOP;
4131
4132    /*
4133     * Try to stop the function the 'good way'. If it fails (in case
4134     * of a parity error during bxe_chip_cleanup()) and we are
4135     * not in a debug mode, perform a state transaction in order to
4136     * enable further HW_RESET transaction.
4137     */
4138    rc = ecore_func_state_change(sc, &func_params);
4139    if (rc) {
4140        BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                  "Running a dry transaction\n");
4142        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143        return (ecore_func_state_change(sc, &func_params));
4144    }
4145
4146    return (0);
4147}
4148
4149static int
4150bxe_reset_hw(struct bxe_softc *sc,
4151             uint32_t         load_code)
4152{
4153    struct ecore_func_state_params func_params = { NULL };
4154
4155    /* Prepare parameters for function state transitions */
4156    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157
4158    func_params.f_obj = &sc->func_obj;
4159    func_params.cmd = ECORE_F_CMD_HW_RESET;
4160
4161    func_params.params.hw_init.load_phase = load_code;
4162
4163    return (ecore_func_state_change(sc, &func_params));
4164}
4165
4166static void
4167bxe_int_disable_sync(struct bxe_softc *sc,
4168                     int              disable_hw)
4169{
4170    if (disable_hw) {
4171        /* prevent the HW from sending interrupts */
4172        bxe_int_disable(sc);
4173    }
4174
4175    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176    /* make sure all ISRs are done */
4177
4178    /* XXX make sure sp_task is not running */
4179    /* cancel and flush work queues */
4180}
4181
4182static void
4183bxe_chip_cleanup(struct bxe_softc *sc,
4184                 uint32_t         unload_mode,
4185                 uint8_t          keep_link)
4186{
4187    int port = SC_PORT(sc);
4188    struct ecore_mcast_ramrod_params rparam = { NULL };
4189    uint32_t reset_code;
4190    int i, rc = 0;
4191
4192    bxe_drain_tx_queues(sc);
4193
4194    /* give HW time to discard old tx messages */
4195    DELAY(1000);
4196
4197    /* Clean all ETH MACs */
4198    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199    if (rc < 0) {
4200        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201    }
4202
4203    /* Clean up UC list  */
4204    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205    if (rc < 0) {
4206        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207    }
4208
4209    /* Disable LLH */
4210    if (!CHIP_IS_E1(sc)) {
4211        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212    }
4213
4214    /* Set "drop all" to stop Rx */
4215
4216    /*
4217     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218     * a race between the completion code and this code.
4219     */
4220    BXE_MCAST_LOCK(sc);
4221
4222    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224    } else {
4225        bxe_set_storm_rx_mode(sc);
4226    }
4227
4228    /* Clean up multicast configuration */
4229    rparam.mcast_obj = &sc->mcast_obj;
4230    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231    if (rc < 0) {
4232        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233    }
4234
4235    BXE_MCAST_UNLOCK(sc);
4236
4237    // XXX bxe_iov_chip_cleanup(sc);
4238
4239    /*
4240     * Send the UNLOAD_REQUEST to the MCP. This will return if
4241     * this function should perform FUNCTION, PORT, or COMMON HW
4242     * reset.
4243     */
4244    reset_code = bxe_send_unload_req(sc, unload_mode);
4245
4246    /*
4247     * (assumption: No Attention from MCP at this stage)
4248     * PMF probably in the middle of TX disable/enable transaction
4249     */
4250    rc = bxe_func_wait_started(sc);
4251    if (rc) {
4252        BLOGE(sc, "bxe_func_wait_started failed\n");
4253    }
4254
4255    /*
4256     * Close multi and leading connections
4257     * Completions for ramrods are collected in a synchronous way
4258     */
4259    for (i = 0; i < sc->num_queues; i++) {
4260        if (bxe_stop_queue(sc, i)) {
4261            goto unload_error;
4262        }
4263    }
4264
4265    /*
4266     * If SP settings didn't get completed so far - something
4267     * very wrong has happen.
4268     */
4269    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271    }
4272
4273unload_error:
4274
4275    rc = bxe_func_stop(sc);
4276    if (rc) {
4277        BLOGE(sc, "Function stop failed!\n");
4278    }
4279
4280    /* disable HW interrupts */
4281    bxe_int_disable_sync(sc, TRUE);
4282
4283    /* detach interrupts */
4284    bxe_interrupt_detach(sc);
4285
4286    /* Reset the chip */
4287    rc = bxe_reset_hw(sc, reset_code);
4288    if (rc) {
4289        BLOGE(sc, "Hardware reset failed\n");
4290    }
4291
4292    /* Report UNLOAD_DONE to MCP */
4293    bxe_send_unload_done(sc, keep_link);
4294}
4295
4296static void
4297bxe_disable_close_the_gate(struct bxe_softc *sc)
4298{
4299    uint32_t val;
4300    int port = SC_PORT(sc);
4301
4302    BLOGD(sc, DBG_LOAD,
4303          "Disabling 'close the gates'\n");
4304
4305    if (CHIP_IS_E1(sc)) {
4306        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308        val = REG_RD(sc, addr);
4309        val &= ~(0x300);
4310        REG_WR(sc, addr, val);
4311    } else {
4312        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316    }
4317}
4318
4319/*
4320 * Cleans the object that have internal lists without sending
4321 * ramrods. Should be run when interrutps are disabled.
4322 */
4323static void
4324bxe_squeeze_objects(struct bxe_softc *sc)
4325{
4326    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327    struct ecore_mcast_ramrod_params rparam = { NULL };
4328    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329    int rc;
4330
4331    /* Cleanup MACs' object first... */
4332
4333    /* Wait for completion of requested */
4334    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335    /* Perform a dry cleanup */
4336    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337
4338    /* Clean ETH primary MAC */
4339    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                             &ramrod_flags);
4342    if (rc != 0) {
4343        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344    }
4345
4346    /* Cleanup UC list */
4347    vlan_mac_flags = 0;
4348    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                             &ramrod_flags);
4351    if (rc != 0) {
4352        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353    }
4354
4355    /* Now clean mcast object... */
4356
4357    rparam.mcast_obj = &sc->mcast_obj;
4358    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359
4360    /* Add a DEL command... */
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362    if (rc < 0) {
4363        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364    }
4365
4366    /* now wait until all pending commands are cleared */
4367
4368    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    while (rc != 0) {
4370        if (rc < 0) {
4371            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372            return;
4373        }
4374
4375        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376    }
4377}
4378
4379/* stop the controller */
4380static __noinline int
4381bxe_nic_unload(struct bxe_softc *sc,
4382               uint32_t         unload_mode,
4383               uint8_t          keep_link)
4384{
4385    uint8_t global = FALSE;
4386    uint32_t val;
4387
4388    BXE_CORE_LOCK_ASSERT(sc);
4389
4390    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391
4392    /* mark driver as unloaded in shmem2 */
4393    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397    }
4398
4399    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401        /*
4402         * We can get here if the driver has been unloaded
4403         * during parity error recovery and is either waiting for a
4404         * leader to complete or for other functions to unload and
4405         * then ifconfig down has been issued. In this case we want to
4406         * unload and let other functions to complete a recovery
4407         * process.
4408         */
4409        sc->recovery_state = BXE_RECOVERY_DONE;
4410        sc->is_leader = 0;
4411        bxe_release_leader_lock(sc);
4412        mb();
4413
4414        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415        BLOGE(sc, "Can't unload in closed or error state\n");
4416        return (-1);
4417    }
4418
4419    /*
4420     * Nothing to do during unload if previous bxe_nic_load()
4421     * did not completed succesfully - all resourses are released.
4422     */
4423    if ((sc->state == BXE_STATE_CLOSED) ||
4424        (sc->state == BXE_STATE_ERROR)) {
4425        return (0);
4426    }
4427
4428    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429    mb();
4430
4431    /* stop tx */
4432    bxe_tx_disable(sc);
4433
4434    sc->rx_mode = BXE_RX_MODE_NONE;
4435    /* XXX set rx mode ??? */
4436
4437    if (IS_PF(sc)) {
4438        /* set ALWAYS_ALIVE bit in shmem */
4439        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440
4441        bxe_drv_pulse(sc);
4442
4443        bxe_stats_handle(sc, STATS_EVENT_STOP);
4444        bxe_save_statistics(sc);
4445    }
4446
4447    /* wait till consumers catch up with producers in all queues */
4448    bxe_drain_tx_queues(sc);
4449
4450    /* if VF indicate to PF this function is going down (PF will delete sp
4451     * elements and clear initializations
4452     */
4453    if (IS_VF(sc)) {
4454        ; /* bxe_vfpf_close_vf(sc); */
4455    } else if (unload_mode != UNLOAD_RECOVERY) {
4456        /* if this is a normal/close unload need to clean up chip */
4457        bxe_chip_cleanup(sc, unload_mode, keep_link);
4458    } else {
4459        /* Send the UNLOAD_REQUEST to the MCP */
4460        bxe_send_unload_req(sc, unload_mode);
4461
4462        /*
4463         * Prevent transactions to host from the functions on the
4464         * engine that doesn't reset global blocks in case of global
4465         * attention once gloabl blocks are reset and gates are opened
4466         * (the engine which leader will perform the recovery
4467         * last).
4468         */
4469        if (!CHIP_IS_E1x(sc)) {
4470            bxe_pf_disable(sc);
4471        }
4472
4473        /* disable HW interrupts */
4474        bxe_int_disable_sync(sc, TRUE);
4475
4476        /* detach interrupts */
4477        bxe_interrupt_detach(sc);
4478
4479        /* Report UNLOAD_DONE to MCP */
4480        bxe_send_unload_done(sc, FALSE);
4481    }
4482
4483    /*
4484     * At this stage no more interrupts will arrive so we may safely clean
4485     * the queue'able objects here in case they failed to get cleaned so far.
4486     */
4487    if (IS_PF(sc)) {
4488        bxe_squeeze_objects(sc);
4489    }
4490
4491    /* There should be no more pending SP commands at this stage */
4492    sc->sp_state = 0;
4493
4494    sc->port.pmf = 0;
4495
4496    bxe_free_fp_buffers(sc);
4497
4498    if (IS_PF(sc)) {
4499        bxe_free_mem(sc);
4500    }
4501
4502    bxe_free_fw_stats_mem(sc);
4503
4504    sc->state = BXE_STATE_CLOSED;
4505
4506    /*
4507     * Check if there are pending parity attentions. If there are - set
4508     * RECOVERY_IN_PROGRESS.
4509     */
4510    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511        bxe_set_reset_in_progress(sc);
4512
4513        /* Set RESET_IS_GLOBAL if needed */
4514        if (global) {
4515            bxe_set_reset_global(sc);
4516        }
4517    }
4518
4519    /*
4520     * The last driver must disable a "close the gate" if there is no
4521     * parity attention or "process kill" pending.
4522     */
4523    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524        bxe_reset_is_done(sc, SC_PATH(sc))) {
4525        bxe_disable_close_the_gate(sc);
4526    }
4527
4528    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529
4530    return (0);
4531}
4532
4533/*
4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536 */
4537static int
4538bxe_ifmedia_update(struct ifnet *ifp)
4539{
4540    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541    struct ifmedia *ifm;
4542
4543    ifm = &sc->ifmedia;
4544
4545    /* We only support Ethernet media type. */
4546    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547        return (EINVAL);
4548    }
4549
4550    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551    case IFM_AUTO:
4552         break;
4553    case IFM_10G_CX4:
4554    case IFM_10G_SR:
4555    case IFM_10G_T:
4556    case IFM_10G_TWINAX:
4557    default:
4558        /* We don't support changing the media type. */
4559        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560              IFM_SUBTYPE(ifm->ifm_media));
4561        return (EINVAL);
4562    }
4563
4564    return (0);
4565}
4566
4567/*
4568 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569 */
4570static void
4571bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572{
4573    struct bxe_softc *sc = ifp->if_softc;
4574
4575    /* Report link down if the driver isn't running. */
4576    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577        ifmr->ifm_active |= IFM_NONE;
4578        return;
4579    }
4580
4581    /* Setup the default interface info. */
4582    ifmr->ifm_status = IFM_AVALID;
4583    ifmr->ifm_active = IFM_ETHER;
4584
4585    if (sc->link_vars.link_up) {
4586        ifmr->ifm_status |= IFM_ACTIVE;
4587    } else {
4588        ifmr->ifm_active |= IFM_NONE;
4589        return;
4590    }
4591
4592    ifmr->ifm_active |= sc->media;
4593
4594    if (sc->link_vars.duplex == DUPLEX_FULL) {
4595        ifmr->ifm_active |= IFM_FDX;
4596    } else {
4597        ifmr->ifm_active |= IFM_HDX;
4598    }
4599}
4600
4601static int
4602bxe_ioctl_nvram(struct bxe_softc *sc,
4603                uint32_t         priv_op,
4604                struct ifreq     *ifr)
4605{
4606    struct bxe_nvram_data nvdata_base;
4607    struct bxe_nvram_data *nvdata;
4608    int len;
4609    int error = 0;
4610
4611    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612
4613    len = (sizeof(struct bxe_nvram_data) +
4614           nvdata_base.len -
4615           sizeof(uint32_t));
4616
4617    if (len > sizeof(struct bxe_nvram_data)) {
4618        if ((nvdata = (struct bxe_nvram_data *)
4619                 malloc(len, M_DEVBUF,
4620                        (M_NOWAIT | M_ZERO))) == NULL) {
4621            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622            return (1);
4623        }
4624        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625    } else {
4626        nvdata = &nvdata_base;
4627    }
4628
4629    if (priv_op == BXE_IOC_RD_NVRAM) {
4630        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631              nvdata->offset, nvdata->len);
4632        error = bxe_nvram_read(sc,
4633                               nvdata->offset,
4634                               (uint8_t *)nvdata->value,
4635                               nvdata->len);
4636        copyout(nvdata, ifr->ifr_data, len);
4637    } else { /* BXE_IOC_WR_NVRAM */
4638        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639              nvdata->offset, nvdata->len);
4640        copyin(ifr->ifr_data, nvdata, len);
4641        error = bxe_nvram_write(sc,
4642                                nvdata->offset,
4643                                (uint8_t *)nvdata->value,
4644                                nvdata->len);
4645    }
4646
4647    if (len > sizeof(struct bxe_nvram_data)) {
4648        free(nvdata, M_DEVBUF);
4649    }
4650
4651    return (error);
4652}
4653
4654static int
4655bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                     uint32_t         priv_op,
4657                     struct ifreq     *ifr)
4658{
4659    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661    caddr_t p_tmp;
4662    uint32_t *offset;
4663    int i;
4664
4665    switch (priv_op)
4666    {
4667    case BXE_IOC_STATS_SHOW_NUM:
4668        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670            BXE_NUM_ETH_STATS;
4671        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672            STAT_NAME_LEN;
4673        return (0);
4674
4675    case BXE_IOC_STATS_SHOW_STR:
4676        memset(ifr->ifr_data, 0, str_size);
4677        p_tmp = ifr->ifr_data;
4678        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680            p_tmp += STAT_NAME_LEN;
4681        }
4682        return (0);
4683
4684    case BXE_IOC_STATS_SHOW_CNT:
4685        memset(ifr->ifr_data, 0, stats_size);
4686        p_tmp = ifr->ifr_data;
4687        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688            offset = ((uint32_t *)&sc->eth_stats +
4689                      bxe_eth_stats_arr[i].offset);
4690            switch (bxe_eth_stats_arr[i].size) {
4691            case 4:
4692                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                break;
4694            case 8:
4695                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                break;
4697            default:
4698                *((uint64_t *)p_tmp) = 0;
4699            }
4700            p_tmp += sizeof(uint64_t);
4701        }
4702        return (0);
4703
4704    default:
4705        return (-1);
4706    }
4707}
4708
4709static void
4710bxe_handle_chip_tq(void *context,
4711                   int  pending)
4712{
4713    struct bxe_softc *sc = (struct bxe_softc *)context;
4714    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715
4716    switch (work)
4717    {
4718    case CHIP_TQ_START:
4719        if ((sc->ifnet->if_flags & IFF_UP) &&
4720            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721            /* start the interface */
4722            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723            BXE_CORE_LOCK(sc);
4724            bxe_init_locked(sc);
4725            BXE_CORE_UNLOCK(sc);
4726        }
4727        break;
4728
4729    case CHIP_TQ_STOP:
4730        if (!(sc->ifnet->if_flags & IFF_UP) &&
4731            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732            /* bring down the interface */
4733            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734            bxe_periodic_stop(sc);
4735            BXE_CORE_LOCK(sc);
4736            bxe_stop_locked(sc);
4737            BXE_CORE_UNLOCK(sc);
4738        }
4739        break;
4740
4741    case CHIP_TQ_REINIT:
4742        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743            /* restart the interface */
4744            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745            bxe_periodic_stop(sc);
4746            BXE_CORE_LOCK(sc);
4747            bxe_stop_locked(sc);
4748            bxe_init_locked(sc);
4749            BXE_CORE_UNLOCK(sc);
4750        }
4751        break;
4752
4753    default:
4754        break;
4755    }
4756}
4757
4758/*
4759 * Handles any IOCTL calls from the operating system.
4760 *
4761 * Returns:
4762 *   0 = Success, >0 Failure
4763 */
4764static int
4765bxe_ioctl(struct ifnet *ifp,
4766          u_long       command,
4767          caddr_t      data)
4768{
4769    struct bxe_softc *sc = ifp->if_softc;
4770    struct ifreq *ifr = (struct ifreq *)data;
4771    struct bxe_nvram_data *nvdata;
4772    uint32_t priv_op;
4773    int mask = 0;
4774    int reinit = 0;
4775    int error = 0;
4776
4777    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779
4780    switch (command)
4781    {
4782    case SIOCSIFMTU:
4783        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784              ifr->ifr_mtu);
4785
4786        if (sc->mtu == ifr->ifr_mtu) {
4787            /* nothing to change */
4788            break;
4789        }
4790
4791        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                  ifr->ifr_mtu, mtu_min, mtu_max);
4794            error = EINVAL;
4795            break;
4796        }
4797
4798        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                             (unsigned long)ifr->ifr_mtu);
4800        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                              (unsigned long)ifr->ifr_mtu);
4802
4803        reinit = 1;
4804        break;
4805
4806    case SIOCSIFFLAGS:
4807        /* toggle the interface state up or down */
4808        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809
4810        /* check if the interface is up */
4811        if (ifp->if_flags & IFF_UP) {
4812            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                /* set the receive mode flags */
4814                bxe_set_rx_mode(sc);
4815            } else {
4816                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818            }
4819        } else {
4820            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823            }
4824        }
4825
4826        break;
4827
4828    case SIOCADDMULTI:
4829    case SIOCDELMULTI:
4830        /* add/delete multicast addresses */
4831        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832
4833        /* check if the interface is up */
4834        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835            /* set the receive mode flags */
4836            bxe_set_rx_mode(sc);
4837        }
4838
4839        break;
4840
4841    case SIOCSIFCAP:
4842        /* find out which capabilities have changed */
4843        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844
4845        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846              mask);
4847
4848        /* toggle the LRO capabilites enable flag */
4849        if (mask & IFCAP_LRO) {
4850            ifp->if_capenable ^= IFCAP_LRO;
4851            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853            reinit = 1;
4854        }
4855
4856        /* toggle the TXCSUM checksum capabilites enable flag */
4857        if (mask & IFCAP_TXCSUM) {
4858            ifp->if_capenable ^= IFCAP_TXCSUM;
4859            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861            if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                ifp->if_hwassist = (CSUM_IP       |
4863                                    CSUM_TCP      |
4864                                    CSUM_UDP      |
4865                                    CSUM_TSO      |
4866                                    CSUM_TCP_IPV6 |
4867                                    CSUM_UDP_IPV6);
4868            } else {
4869                ifp->if_hwassist = 0;
4870            }
4871        }
4872
4873        /* toggle the RXCSUM checksum capabilities enable flag */
4874        if (mask & IFCAP_RXCSUM) {
4875            ifp->if_capenable ^= IFCAP_RXCSUM;
4876            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878            if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                ifp->if_hwassist = (CSUM_IP       |
4880                                    CSUM_TCP      |
4881                                    CSUM_UDP      |
4882                                    CSUM_TSO      |
4883                                    CSUM_TCP_IPV6 |
4884                                    CSUM_UDP_IPV6);
4885            } else {
4886                ifp->if_hwassist = 0;
4887            }
4888        }
4889
4890        /* toggle TSO4 capabilities enabled flag */
4891        if (mask & IFCAP_TSO4) {
4892            ifp->if_capenable ^= IFCAP_TSO4;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle TSO6 capabilities enabled flag */
4898        if (mask & IFCAP_TSO6) {
4899            ifp->if_capenable ^= IFCAP_TSO6;
4900            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWTSO capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWTSO) {
4906            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909        }
4910
4911        /* toggle VLAN_HWCSUM capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWCSUM) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_MTU capabilities enable flag */
4919        if (mask & IFCAP_VLAN_MTU) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWTAGGING) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* toggle VLAN_HWFILTER capabilities enabled flag */
4933        if (mask & IFCAP_VLAN_HWFILTER) {
4934            /* XXX investigate this... */
4935            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936            error = EINVAL;
4937        }
4938
4939        /* XXX not yet...
4940         * IFCAP_WOL_MAGIC
4941         */
4942
4943        break;
4944
4945    case SIOCSIFMEDIA:
4946    case SIOCGIFMEDIA:
4947        /* set/get interface media */
4948        BLOGD(sc, DBG_IOCTL,
4949              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950              (command & 0xff));
4951        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952        break;
4953
4954    case SIOCGPRIVATE_0:
4955        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956
4957        switch (priv_op)
4958        {
4959        case BXE_IOC_RD_NVRAM:
4960        case BXE_IOC_WR_NVRAM:
4961            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962            BLOGD(sc, DBG_IOCTL,
4963                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                  nvdata->offset, nvdata->len);
4965            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966            break;
4967
4968        case BXE_IOC_STATS_SHOW_NUM:
4969        case BXE_IOC_STATS_SHOW_STR:
4970        case BXE_IOC_STATS_SHOW_CNT:
4971            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                  priv_op);
4973            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974            break;
4975
4976        default:
4977            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978            error = EINVAL;
4979            break;
4980        }
4981
4982        break;
4983
4984    default:
4985        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986              (command & 0xff));
4987        error = ether_ioctl(ifp, command, data);
4988        break;
4989    }
4990
4991    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993              "Re-initializing hardware from IOCTL change\n");
4994        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996    }
4997
4998    return (error);
4999}
5000
5001static __noinline void
5002bxe_dump_mbuf(struct bxe_softc *sc,
5003              struct mbuf      *m,
5004              uint8_t          contents)
5005{
5006    char * type;
5007    int i = 0;
5008
5009    if (!(sc->debug & DBG_MBUF)) {
5010        return;
5011    }
5012
5013    if (m == NULL) {
5014        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015        return;
5016    }
5017
5018    while (m) {
5019        BLOGD(sc, DBG_MBUF,
5020              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022
5023        if (m->m_flags & M_PKTHDR) {
5024             BLOGD(sc, DBG_MBUF,
5025                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028        }
5029
5030        if (m->m_flags & M_EXT) {
5031            switch (m->m_ext.ext_type) {
5032            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037            case EXT_PACKET:     type = "EXT_PACKET";     break;
5038            case EXT_MBUF:       type = "EXT_MBUF";       break;
5039            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043            default:             type = "UNKNOWN";        break;
5044            }
5045
5046            BLOGD(sc, DBG_MBUF,
5047                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049        }
5050
5051        if (contents) {
5052            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053        }
5054
5055        m = m->m_next;
5056        i++;
5057    }
5058}
5059
5060/*
5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066 */
5067static int
5068bxe_chktso_window(struct bxe_softc  *sc,
5069                  int               nsegs,
5070                  bus_dma_segment_t *segs,
5071                  struct mbuf       *m)
5072{
5073    uint32_t num_wnds, wnd_size, wnd_sum;
5074    int32_t frag_idx, wnd_idx;
5075    unsigned short lso_mss;
5076    int defrag;
5077
5078    defrag = 0;
5079    wnd_sum = 0;
5080    wnd_size = 10;
5081    num_wnds = nsegs - wnd_size;
5082    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083
5084    /*
5085     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086     * first window sum of data while skipping the first assuming it is the
5087     * header in FreeBSD.
5088     */
5089    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090        wnd_sum += htole16(segs[frag_idx].ds_len);
5091    }
5092
5093    /* check the first 10 bd window size */
5094    if (wnd_sum < lso_mss) {
5095        return (1);
5096    }
5097
5098    /* run through the windows */
5099    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100        /* subtract the first mbuf->m_len of the last wndw(-header) */
5101        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102        /* add the next mbuf len to the len of our new window */
5103        wnd_sum += htole16(segs[frag_idx].ds_len);
5104        if (wnd_sum < lso_mss) {
5105            return (1);
5106        }
5107    }
5108
5109    return (0);
5110}
5111
5112static uint8_t
5113bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                    struct mbuf         *m,
5115                    uint32_t            *parsing_data)
5116{
5117    struct ether_vlan_header *eh = NULL;
5118    struct ip *ip4 = NULL;
5119    struct ip6_hdr *ip6 = NULL;
5120    caddr_t ip = NULL;
5121    struct tcphdr *th = NULL;
5122    int e_hlen, ip_hlen, l4_off;
5123    uint16_t proto;
5124
5125    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126        /* no L4 checksum offload needed */
5127        return (0);
5128    }
5129
5130    /* get the Ethernet header */
5131    eh = mtod(m, struct ether_vlan_header *);
5132
5133    /* handle VLAN encapsulation if present */
5134    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136        proto  = ntohs(eh->evl_proto);
5137    } else {
5138        e_hlen = ETHER_HDR_LEN;
5139        proto  = ntohs(eh->evl_encap_proto);
5140    }
5141
5142    switch (proto) {
5143    case ETHERTYPE_IP:
5144        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145        ip4 = (m->m_len < sizeof(struct ip)) ?
5146                  (struct ip *)m->m_next->m_data :
5147                  (struct ip *)(m->m_data + e_hlen);
5148        /* ip_hl is number of 32-bit words */
5149        ip_hlen = (ip4->ip_hl << 2);
5150        ip = (caddr_t)ip4;
5151        break;
5152    case ETHERTYPE_IPV6:
5153        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                  (struct ip6_hdr *)m->m_next->m_data :
5156                  (struct ip6_hdr *)(m->m_data + e_hlen);
5157        /* XXX cannot support offload with IPv6 extensions */
5158        ip_hlen = sizeof(struct ip6_hdr);
5159        ip = (caddr_t)ip6;
5160        break;
5161    default:
5162        /* We can't offload in this case... */
5163        /* XXX error stat ??? */
5164        return (0);
5165    }
5166
5167    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168    l4_off = (e_hlen + ip_hlen);
5169
5170    *parsing_data |=
5171        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173
5174    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                  CSUM_TSO |
5176                                  CSUM_TCP_IPV6)) {
5177        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178        th = (struct tcphdr *)(ip + ip_hlen);
5179        /* th_off is number of 32-bit words */
5180        *parsing_data |= ((th->th_off <<
5181                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183        return (l4_off + (th->th_off << 2)); /* entire header length */
5184    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                         CSUM_UDP_IPV6)) {
5186        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188    } else {
5189        /* XXX error stat ??? */
5190        return (0);
5191    }
5192}
5193
5194static uint8_t
5195bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                 struct mbuf                *m,
5197                 struct eth_tx_parse_bd_e1x *pbd)
5198{
5199    struct ether_vlan_header *eh = NULL;
5200    struct ip *ip4 = NULL;
5201    struct ip6_hdr *ip6 = NULL;
5202    caddr_t ip = NULL;
5203    struct tcphdr *th = NULL;
5204    struct udphdr *uh = NULL;
5205    int e_hlen, ip_hlen;
5206    uint16_t proto;
5207    uint8_t hlen;
5208    uint16_t tmp_csum;
5209    uint32_t *tmp_uh;
5210
5211    /* get the Ethernet header */
5212    eh = mtod(m, struct ether_vlan_header *);
5213
5214    /* handle VLAN encapsulation if present */
5215    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217        proto  = ntohs(eh->evl_proto);
5218    } else {
5219        e_hlen = ETHER_HDR_LEN;
5220        proto  = ntohs(eh->evl_encap_proto);
5221    }
5222
5223    switch (proto) {
5224    case ETHERTYPE_IP:
5225        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226        ip4 = (m->m_len < sizeof(struct ip)) ?
5227                  (struct ip *)m->m_next->m_data :
5228                  (struct ip *)(m->m_data + e_hlen);
5229        /* ip_hl is number of 32-bit words */
5230        ip_hlen = (ip4->ip_hl << 1);
5231        ip = (caddr_t)ip4;
5232        break;
5233    case ETHERTYPE_IPV6:
5234        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                  (struct ip6_hdr *)m->m_next->m_data :
5237                  (struct ip6_hdr *)(m->m_data + e_hlen);
5238        /* XXX cannot support offload with IPv6 extensions */
5239        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240        ip = (caddr_t)ip6;
5241        break;
5242    default:
5243        /* We can't offload in this case... */
5244        /* XXX error stat ??? */
5245        return (0);
5246    }
5247
5248    hlen = (e_hlen >> 1);
5249
5250    /* note that rest of global_data is indirectly zeroed here */
5251    if (m->m_flags & M_VLANTAG) {
5252        pbd->global_data =
5253            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254    } else {
5255        pbd->global_data = htole16(hlen);
5256    }
5257
5258    pbd->ip_hlen_w = ip_hlen;
5259
5260    hlen += pbd->ip_hlen_w;
5261
5262    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263
5264    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                  CSUM_TSO |
5266                                  CSUM_TCP_IPV6)) {
5267        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268        /* th_off is number of 32-bit words */
5269        hlen += (uint16_t)(th->th_off << 1);
5270    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                         CSUM_UDP_IPV6)) {
5272        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273        hlen += (sizeof(struct udphdr) / 2);
5274    } else {
5275        /* valid case as only CSUM_IP was set */
5276        return (0);
5277    }
5278
5279    pbd->total_hlen_w = htole16(hlen);
5280
5281    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                  CSUM_TSO |
5283                                  CSUM_TCP_IPV6)) {
5284        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                         CSUM_UDP_IPV6)) {
5288        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289
5290        /*
5291         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292         * checksums and does not know anything about the UDP header and where
5293         * the checksum field is located. It only knows about TCP. Therefore
5294         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295         * offload. Since the checksum field offset for TCP is 16 bytes and
5296         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297         * bytes less than the start of the UDP header. This allows the
5298         * hardware to write the checksum in the correct spot. But the
5299         * hardware will compute a checksum which includes the last 10 bytes
5300         * of the IP header. To correct this we tweak the stack computed
5301         * pseudo checksum by folding in the calculation of the inverse
5302         * checksum for those final 10 bytes of the IP header. This allows
5303         * the correct checksum to be computed by the hardware.
5304         */
5305
5306        /* set pointer 10 bytes before UDP header */
5307        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308
5309        /* calculate a pseudo header checksum over the first 10 bytes */
5310        tmp_csum = in_pseudo(*tmp_uh,
5311                             *(tmp_uh + 1),
5312                             *(uint16_t *)(tmp_uh + 2));
5313
5314        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315    }
5316
5317    return (hlen * 2); /* entire header length, number of bytes */
5318}
5319
5320static void
5321bxe_set_pbd_lso_e2(struct mbuf *m,
5322                   uint32_t    *parsing_data)
5323{
5324    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5327
5328    /* XXX test for IPv6 with extension header... */
5329#if 0
5330    struct ip6_hdr *ip6;
5331    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333#endif
5334}
5335
5336static void
5337bxe_set_pbd_lso(struct mbuf                *m,
5338                struct eth_tx_parse_bd_e1x *pbd)
5339{
5340    struct ether_vlan_header *eh = NULL;
5341    struct ip *ip = NULL;
5342    struct tcphdr *th = NULL;
5343    int e_hlen;
5344
5345    /* get the Ethernet header */
5346    eh = mtod(m, struct ether_vlan_header *);
5347
5348    /* handle VLAN encapsulation if present */
5349    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351
5352    /* get the IP and TCP header, with LSO entire header in first mbuf */
5353    /* XXX assuming IPv4 */
5354    ip = (struct ip *)(m->m_data + e_hlen);
5355    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356
5357    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358    pbd->tcp_send_seq = ntohl(th->th_seq);
5359    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360
5361#if 1
5362        /* XXX IPv4 */
5363        pbd->ip_id = ntohs(ip->ip_id);
5364        pbd->tcp_pseudo_csum =
5365            ntohs(in_pseudo(ip->ip_src.s_addr,
5366                            ip->ip_dst.s_addr,
5367                            htons(IPPROTO_TCP)));
5368#else
5369        /* XXX IPv6 */
5370        pbd->tcp_pseudo_csum =
5371            ntohs(in_pseudo(&ip6->ip6_src,
5372                            &ip6->ip6_dst,
5373                            htons(IPPROTO_TCP)));
5374#endif
5375
5376    pbd->global_data |=
5377        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378}
5379
5380/*
5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382 * visible to the controller.
5383 *
5384 * If an mbuf is submitted to this routine and cannot be given to the
5385 * controller (e.g. it has too many fragments) then the function may free
5386 * the mbuf and return to the caller.
5387 *
5388 * Returns:
5389 *   0 = Success, !0 = Failure
5390 *   Note the side effect that an mbuf may be freed if it causes a problem.
5391 */
5392static int
5393bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394{
5395    bus_dma_segment_t segs[32];
5396    struct mbuf *m0;
5397    struct bxe_sw_tx_bd *tx_buf;
5398    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401    struct eth_tx_bd *tx_data_bd;
5402    struct eth_tx_bd *tx_total_pkt_size_bd;
5403    struct eth_tx_start_bd *tx_start_bd;
5404    uint16_t bd_prod, pkt_prod, total_pkt_size;
5405    uint8_t mac_type;
5406    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407    struct bxe_softc *sc;
5408    uint16_t tx_bd_avail;
5409    struct ether_vlan_header *eh;
5410    uint32_t pbd_e2_parsing_data = 0;
5411    uint8_t hlen = 0;
5412    int tmp_bd;
5413    int i;
5414
5415    sc = fp->sc;
5416
5417    M_ASSERTPKTHDR(*m_head);
5418
5419    m0 = *m_head;
5420    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421    tx_start_bd = NULL;
5422    tx_data_bd = NULL;
5423    tx_total_pkt_size_bd = NULL;
5424
5425    /* get the H/W pointer for packets and BDs */
5426    pkt_prod = fp->tx_pkt_prod;
5427    bd_prod = fp->tx_bd_prod;
5428
5429    mac_type = UNICAST_ADDRESS;
5430
5431    /* map the mbuf into the next open DMAable memory */
5432    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                    tx_buf->m_map, m0,
5435                                    segs, &nsegs, BUS_DMA_NOWAIT);
5436
5437    /* mapping errors */
5438    if(__predict_false(error != 0)) {
5439        fp->eth_q_stats.tx_dma_mapping_failure++;
5440        if (error == ENOMEM) {
5441            /* resource issue, try again later */
5442            rc = ENOMEM;
5443        } else if (error == EFBIG) {
5444            /* possibly recoverable with defragmentation */
5445            fp->eth_q_stats.mbuf_defrag_attempts++;
5446            m0 = m_defrag(*m_head, M_NOWAIT);
5447            if (m0 == NULL) {
5448                fp->eth_q_stats.mbuf_defrag_failures++;
5449                rc = ENOBUFS;
5450            } else {
5451                /* defrag successful, try mapping again */
5452                *m_head = m0;
5453                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                tx_buf->m_map, m0,
5455                                                segs, &nsegs, BUS_DMA_NOWAIT);
5456                if (error) {
5457                    fp->eth_q_stats.tx_dma_mapping_failure++;
5458                    rc = error;
5459                }
5460            }
5461        } else {
5462            /* unknown, unrecoverable mapping error */
5463            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464            bxe_dump_mbuf(sc, m0, FALSE);
5465            rc = error;
5466        }
5467
5468        goto bxe_tx_encap_continue;
5469    }
5470
5471    tx_bd_avail = bxe_tx_avail(sc, fp);
5472
5473    /* make sure there is enough room in the send queue */
5474    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475        /* Recoverable, try again later. */
5476        fp->eth_q_stats.tx_hw_queue_full++;
5477        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478        rc = ENOMEM;
5479        goto bxe_tx_encap_continue;
5480    }
5481
5482    /* capture the current H/W TX chain high watermark */
5483    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                        (TX_BD_USABLE - tx_bd_avail))) {
5485        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486    }
5487
5488    /* make sure it fits in the packet window */
5489    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5490        /*
5491         * The mbuf may be to big for the controller to handle. If the frame
5492         * is a TSO frame we'll need to do an additional check.
5493         */
5494        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                goto bxe_tx_encap_continue; /* OK to send */
5497            } else {
5498                fp->eth_q_stats.tx_window_violation_tso++;
5499            }
5500        } else {
5501            fp->eth_q_stats.tx_window_violation_std++;
5502        }
5503
5504        /* lets try to defragment this mbuf and remap it */
5505        fp->eth_q_stats.mbuf_defrag_attempts++;
5506        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5507
5508        m0 = m_defrag(*m_head, M_NOWAIT);
5509        if (m0 == NULL) {
5510            fp->eth_q_stats.mbuf_defrag_failures++;
5511            /* Ugh, just drop the frame... :( */
5512            rc = ENOBUFS;
5513        } else {
5514            /* defrag successful, try mapping again */
5515            *m_head = m0;
5516            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5517                                            tx_buf->m_map, m0,
5518                                            segs, &nsegs, BUS_DMA_NOWAIT);
5519            if (error) {
5520                fp->eth_q_stats.tx_dma_mapping_failure++;
5521                /* No sense in trying to defrag/copy chain, drop it. :( */
5522                rc = error;
5523            }
5524            else {
5525                /* if the chain is still too long then drop it */
5526                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5527                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5528                    rc = ENODEV;
5529                }
5530            }
5531        }
5532    }
5533
5534bxe_tx_encap_continue:
5535
5536    /* Check for errors */
5537    if (rc) {
5538        if (rc == ENOMEM) {
5539            /* recoverable try again later  */
5540        } else {
5541            fp->eth_q_stats.tx_soft_errors++;
5542            fp->eth_q_stats.mbuf_alloc_tx--;
5543            m_freem(*m_head);
5544            *m_head = NULL;
5545        }
5546
5547        return (rc);
5548    }
5549
5550    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5551    if (m0->m_flags & M_BCAST) {
5552        mac_type = BROADCAST_ADDRESS;
5553    } else if (m0->m_flags & M_MCAST) {
5554        mac_type = MULTICAST_ADDRESS;
5555    }
5556
5557    /* store the mbuf into the mbuf ring */
5558    tx_buf->m        = m0;
5559    tx_buf->first_bd = fp->tx_bd_prod;
5560    tx_buf->flags    = 0;
5561
5562    /* prepare the first transmit (start) BD for the mbuf */
5563    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5564
5565    BLOGD(sc, DBG_TX,
5566          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5567          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5568
5569    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5570    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5571    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5572    total_pkt_size += tx_start_bd->nbytes;
5573    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5574
5575    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5576
5577    /* all frames have at least Start BD + Parsing BD */
5578    nbds = nsegs + 1;
5579    tx_start_bd->nbd = htole16(nbds);
5580
5581    if (m0->m_flags & M_VLANTAG) {
5582        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5583        tx_start_bd->bd_flags.as_bitfield |=
5584            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5585    } else {
5586        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5587        if (IS_VF(sc)) {
5588            /* map ethernet header to find type and header length */
5589            eh = mtod(m0, struct ether_vlan_header *);
5590            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5591        } else {
5592            /* used by FW for packet accounting */
5593            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5594#if 0
5595            /*
5596             * If NPAR-SD is active then FW should do the tagging regardless
5597             * of value of priority. Otherwise, if priority indicates this is
5598             * a control packet we need to indicate to FW to avoid tagging.
5599             */
5600            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5601                SET_FLAG(tx_start_bd->general_data,
5602                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5603            }
5604#endif
5605        }
5606    }
5607
5608    /*
5609     * add a parsing BD from the chain. The parsing BD is always added
5610     * though it is only used for TSO and chksum
5611     */
5612    bd_prod = TX_BD_NEXT(bd_prod);
5613
5614    if (m0->m_pkthdr.csum_flags) {
5615        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5616            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5617            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5618        }
5619
5620        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5621            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5622                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5623        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5624            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5625                                                  ETH_TX_BD_FLAGS_IS_UDP |
5626                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5627        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5628                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5629            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5630        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5631            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5632                                                  ETH_TX_BD_FLAGS_IS_UDP);
5633        }
5634    }
5635
5636    if (!CHIP_IS_E1x(sc)) {
5637        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5638        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5639
5640        if (m0->m_pkthdr.csum_flags) {
5641            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5642        }
5643
5644#if 0
5645        /*
5646         * Add the MACs to the parsing BD if the module param was
5647         * explicitly set, if this is a vf, or in switch independent
5648         * mode.
5649         */
5650        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5651            eh = mtod(m0, struct ether_vlan_header *);
5652            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5653                                &pbd_e2->data.mac_addr.src_mid,
5654                                &pbd_e2->data.mac_addr.src_lo,
5655                                eh->evl_shost);
5656            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5657                                &pbd_e2->data.mac_addr.dst_mid,
5658                                &pbd_e2->data.mac_addr.dst_lo,
5659                                eh->evl_dhost);
5660        }
5661#endif
5662
5663        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5664                 mac_type);
5665    } else {
5666        uint16_t global_data = 0;
5667
5668        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5669        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5670
5671        if (m0->m_pkthdr.csum_flags) {
5672            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5673        }
5674
5675        SET_FLAG(global_data,
5676                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5677        pbd_e1x->global_data |= htole16(global_data);
5678    }
5679
5680    /* setup the parsing BD with TSO specific info */
5681    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5682        fp->eth_q_stats.tx_ofld_frames_lso++;
5683        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5684
5685        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5686            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5687
5688            /* split the first BD into header/data making the fw job easy */
5689            nbds++;
5690            tx_start_bd->nbd = htole16(nbds);
5691            tx_start_bd->nbytes = htole16(hlen);
5692
5693            bd_prod = TX_BD_NEXT(bd_prod);
5694
5695            /* new transmit BD after the tx_parse_bd */
5696            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5697            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5698            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5699            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5700            if (tx_total_pkt_size_bd == NULL) {
5701                tx_total_pkt_size_bd = tx_data_bd;
5702            }
5703
5704            BLOGD(sc, DBG_TX,
5705                  "TSO split header size is %d (%x:%x) nbds %d\n",
5706                  le16toh(tx_start_bd->nbytes),
5707                  le32toh(tx_start_bd->addr_hi),
5708                  le32toh(tx_start_bd->addr_lo),
5709                  nbds);
5710        }
5711
5712        if (!CHIP_IS_E1x(sc)) {
5713            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5714        } else {
5715            bxe_set_pbd_lso(m0, pbd_e1x);
5716        }
5717    }
5718
5719    if (pbd_e2_parsing_data) {
5720        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5721    }
5722
5723    /* prepare remaining BDs, start tx bd contains first seg/frag */
5724    for (i = 1; i < nsegs ; i++) {
5725        bd_prod = TX_BD_NEXT(bd_prod);
5726        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5727        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5728        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5729        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5730        if (tx_total_pkt_size_bd == NULL) {
5731            tx_total_pkt_size_bd = tx_data_bd;
5732        }
5733        total_pkt_size += tx_data_bd->nbytes;
5734    }
5735
5736    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5737
5738    if (tx_total_pkt_size_bd != NULL) {
5739        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5740    }
5741
5742    if (__predict_false(sc->debug & DBG_TX)) {
5743        tmp_bd = tx_buf->first_bd;
5744        for (i = 0; i < nbds; i++)
5745        {
5746            if (i == 0) {
5747                BLOGD(sc, DBG_TX,
5748                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5749                      "bd_flags=0x%x hdr_nbds=%d\n",
5750                      tx_start_bd,
5751                      tmp_bd,
5752                      le16toh(tx_start_bd->nbd),
5753                      le16toh(tx_start_bd->vlan_or_ethertype),
5754                      tx_start_bd->bd_flags.as_bitfield,
5755                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5756            } else if (i == 1) {
5757                if (pbd_e1x) {
5758                    BLOGD(sc, DBG_TX,
5759                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5760                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5761                          "tcp_seq=%u total_hlen_w=%u\n",
5762                          pbd_e1x,
5763                          tmp_bd,
5764                          pbd_e1x->global_data,
5765                          pbd_e1x->ip_hlen_w,
5766                          pbd_e1x->ip_id,
5767                          pbd_e1x->lso_mss,
5768                          pbd_e1x->tcp_flags,
5769                          pbd_e1x->tcp_pseudo_csum,
5770                          pbd_e1x->tcp_send_seq,
5771                          le16toh(pbd_e1x->total_hlen_w));
5772                } else { /* if (pbd_e2) */
5773                    BLOGD(sc, DBG_TX,
5774                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5775                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5776                          pbd_e2,
5777                          tmp_bd,
5778                          pbd_e2->data.mac_addr.dst_hi,
5779                          pbd_e2->data.mac_addr.dst_mid,
5780                          pbd_e2->data.mac_addr.dst_lo,
5781                          pbd_e2->data.mac_addr.src_hi,
5782                          pbd_e2->data.mac_addr.src_mid,
5783                          pbd_e2->data.mac_addr.src_lo,
5784                          pbd_e2->parsing_data);
5785                }
5786            }
5787
5788            if (i != 1) { /* skip parse db as it doesn't hold data */
5789                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5790                BLOGD(sc, DBG_TX,
5791                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5792                      tx_data_bd,
5793                      tmp_bd,
5794                      le16toh(tx_data_bd->nbytes),
5795                      le32toh(tx_data_bd->addr_hi),
5796                      le32toh(tx_data_bd->addr_lo));
5797            }
5798
5799            tmp_bd = TX_BD_NEXT(tmp_bd);
5800        }
5801    }
5802
5803    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5804
5805    /* update TX BD producer index value for next TX */
5806    bd_prod = TX_BD_NEXT(bd_prod);
5807
5808    /*
5809     * If the chain of tx_bd's describing this frame is adjacent to or spans
5810     * an eth_tx_next_bd element then we need to increment the nbds value.
5811     */
5812    if (TX_BD_IDX(bd_prod) < nbds) {
5813        nbds++;
5814    }
5815
5816    /* don't allow reordering of writes for nbd and packets */
5817    mb();
5818
5819    fp->tx_db.data.prod += nbds;
5820
5821    /* producer points to the next free tx_bd at this point */
5822    fp->tx_pkt_prod++;
5823    fp->tx_bd_prod = bd_prod;
5824
5825    DOORBELL(sc, fp->index, fp->tx_db.raw);
5826
5827    fp->eth_q_stats.tx_pkts++;
5828
5829    /* Prevent speculative reads from getting ahead of the status block. */
5830    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5831                      0, 0, BUS_SPACE_BARRIER_READ);
5832
5833    /* Prevent speculative reads from getting ahead of the doorbell. */
5834    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5835                      0, 0, BUS_SPACE_BARRIER_READ);
5836
5837    return (0);
5838}
5839
5840static void
5841bxe_tx_start_locked(struct bxe_softc    *sc,
5842                    struct ifnet        *ifp,
5843                    struct bxe_fastpath *fp)
5844{
5845    struct mbuf *m = NULL;
5846    int tx_count = 0;
5847    uint16_t tx_bd_avail;
5848
5849    BXE_FP_TX_LOCK_ASSERT(fp);
5850
5851    /* keep adding entries while there are frames to send */
5852    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5853
5854        /*
5855         * check for any frames to send
5856         * dequeue can still be NULL even if queue is not empty
5857         */
5858        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5859        if (__predict_false(m == NULL)) {
5860            break;
5861        }
5862
5863        /* the mbuf now belongs to us */
5864        fp->eth_q_stats.mbuf_alloc_tx++;
5865
5866        /*
5867         * Put the frame into the transmit ring. If we don't have room,
5868         * place the mbuf back at the head of the TX queue, set the
5869         * OACTIVE flag, and wait for the NIC to drain the chain.
5870         */
5871        if (__predict_false(bxe_tx_encap(fp, &m))) {
5872            fp->eth_q_stats.tx_encap_failures++;
5873            if (m != NULL) {
5874                /* mark the TX queue as full and return the frame */
5875                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5876                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5877                fp->eth_q_stats.mbuf_alloc_tx--;
5878                fp->eth_q_stats.tx_queue_xoff++;
5879            }
5880
5881            /* stop looking for more work */
5882            break;
5883        }
5884
5885        /* the frame was enqueued successfully */
5886        tx_count++;
5887
5888        /* send a copy of the frame to any BPF listeners. */
5889        BPF_MTAP(ifp, m);
5890
5891        tx_bd_avail = bxe_tx_avail(sc, fp);
5892
5893        /* handle any completions if we're running low */
5894        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5895            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5896            bxe_txeof(sc, fp);
5897            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5898                break;
5899            }
5900        }
5901    }
5902
5903    /* all TX packets were dequeued and/or the tx ring is full */
5904    if (tx_count > 0) {
5905        /* reset the TX watchdog timeout timer */
5906        fp->watchdog_timer = BXE_TX_TIMEOUT;
5907    }
5908}
5909
5910/* Legacy (non-RSS) dispatch routine */
5911static void
5912bxe_tx_start(struct ifnet *ifp)
5913{
5914    struct bxe_softc *sc;
5915    struct bxe_fastpath *fp;
5916
5917    sc = ifp->if_softc;
5918
5919    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5920        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5921        return;
5922    }
5923
5924    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5925        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5926        return;
5927    }
5928
5929    if (!sc->link_vars.link_up) {
5930        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5931        return;
5932    }
5933
5934    fp = &sc->fp[0];
5935
5936    BXE_FP_TX_LOCK(fp);
5937    bxe_tx_start_locked(sc, ifp, fp);
5938    BXE_FP_TX_UNLOCK(fp);
5939}
5940
5941#if __FreeBSD_version >= 800000
5942
5943static int
5944bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5945                       struct ifnet        *ifp,
5946                       struct bxe_fastpath *fp,
5947                       struct mbuf         *m)
5948{
5949    struct buf_ring *tx_br = fp->tx_br;
5950    struct mbuf *next;
5951    int depth, rc, tx_count;
5952    uint16_t tx_bd_avail;
5953
5954    rc = tx_count = 0;
5955
5956    if (!tx_br) {
5957        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5958        return (EINVAL);
5959    }
5960
5961    /* fetch the depth of the driver queue */
5962    depth = drbr_inuse(ifp, tx_br);
5963    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5964        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5965    }
5966
5967    BXE_FP_TX_LOCK_ASSERT(fp);
5968
5969    if (m == NULL) {
5970        /* no new work, check for pending frames */
5971        next = drbr_dequeue(ifp, tx_br);
5972    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5973        /* have both new and pending work, maintain packet order */
5974        rc = drbr_enqueue(ifp, tx_br, m);
5975        if (rc != 0) {
5976            fp->eth_q_stats.tx_soft_errors++;
5977            goto bxe_tx_mq_start_locked_exit;
5978        }
5979        next = drbr_dequeue(ifp, tx_br);
5980    } else {
5981        /* new work only and nothing pending */
5982        next = m;
5983    }
5984
5985    /* keep adding entries while there are frames to send */
5986    while (next != NULL) {
5987
5988        /* the mbuf now belongs to us */
5989        fp->eth_q_stats.mbuf_alloc_tx++;
5990
5991        /*
5992         * Put the frame into the transmit ring. If we don't have room,
5993         * place the mbuf back at the head of the TX queue, set the
5994         * OACTIVE flag, and wait for the NIC to drain the chain.
5995         */
5996        rc = bxe_tx_encap(fp, &next);
5997        if (__predict_false(rc != 0)) {
5998            fp->eth_q_stats.tx_encap_failures++;
5999            if (next != NULL) {
6000                /* mark the TX queue as full and save the frame */
6001                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6002                /* XXX this may reorder the frame */
6003                rc = drbr_enqueue(ifp, tx_br, next);
6004                fp->eth_q_stats.mbuf_alloc_tx--;
6005                fp->eth_q_stats.tx_frames_deferred++;
6006            }
6007
6008            /* stop looking for more work */
6009            break;
6010        }
6011
6012        /* the transmit frame was enqueued successfully */
6013        tx_count++;
6014
6015        /* send a copy of the frame to any BPF listeners */
6016        BPF_MTAP(ifp, next);
6017
6018        tx_bd_avail = bxe_tx_avail(sc, fp);
6019
6020        /* handle any completions if we're running low */
6021        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6022            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6023            bxe_txeof(sc, fp);
6024            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6025                break;
6026            }
6027        }
6028
6029        next = drbr_dequeue(ifp, tx_br);
6030    }
6031
6032    /* all TX packets were dequeued and/or the tx ring is full */
6033    if (tx_count > 0) {
6034        /* reset the TX watchdog timeout timer */
6035        fp->watchdog_timer = BXE_TX_TIMEOUT;
6036    }
6037
6038bxe_tx_mq_start_locked_exit:
6039
6040    return (rc);
6041}
6042
6043/* Multiqueue (TSS) dispatch routine. */
6044static int
6045bxe_tx_mq_start(struct ifnet *ifp,
6046                struct mbuf  *m)
6047{
6048    struct bxe_softc *sc = ifp->if_softc;
6049    struct bxe_fastpath *fp;
6050    int fp_index, rc;
6051
6052    fp_index = 0; /* default is the first queue */
6053
6054    /* change the queue if using flow ID */
6055    if ((m->m_flags & M_FLOWID) != 0) {
6056        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6057    }
6058
6059    fp = &sc->fp[fp_index];
6060
6061    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6062        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6063        return (ENETDOWN);
6064    }
6065
6066    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6067        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6068        return (EBUSY);
6069    }
6070
6071    if (!sc->link_vars.link_up) {
6072        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6073        return (ENETDOWN);
6074    }
6075
6076    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6077
6078    BXE_FP_TX_LOCK(fp);
6079    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6080    BXE_FP_TX_UNLOCK(fp);
6081
6082    return (rc);
6083}
6084
6085static void
6086bxe_mq_flush(struct ifnet *ifp)
6087{
6088    struct bxe_softc *sc = ifp->if_softc;
6089    struct bxe_fastpath *fp;
6090    struct mbuf *m;
6091    int i;
6092
6093    for (i = 0; i < sc->num_queues; i++) {
6094        fp = &sc->fp[i];
6095
6096        if (fp->state != BXE_FP_STATE_OPEN) {
6097            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6098                  fp->index, fp->state);
6099            continue;
6100        }
6101
6102        if (fp->tx_br != NULL) {
6103            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6104            BXE_FP_TX_LOCK(fp);
6105            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6106                m_freem(m);
6107            }
6108            BXE_FP_TX_UNLOCK(fp);
6109        }
6110    }
6111
6112    if_qflush(ifp);
6113}
6114
6115#endif /* FreeBSD_version >= 800000 */
6116
6117static uint16_t
6118bxe_cid_ilt_lines(struct bxe_softc *sc)
6119{
6120    if (IS_SRIOV(sc)) {
6121        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6122    }
6123    return (L2_ILT_LINES(sc));
6124}
6125
6126static void
6127bxe_ilt_set_info(struct bxe_softc *sc)
6128{
6129    struct ilt_client_info *ilt_client;
6130    struct ecore_ilt *ilt = sc->ilt;
6131    uint16_t line = 0;
6132
6133    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6134    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6135
6136    /* CDU */
6137    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6138    ilt_client->client_num = ILT_CLIENT_CDU;
6139    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6140    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6141    ilt_client->start = line;
6142    line += bxe_cid_ilt_lines(sc);
6143
6144    if (CNIC_SUPPORT(sc)) {
6145        line += CNIC_ILT_LINES;
6146    }
6147
6148    ilt_client->end = (line - 1);
6149
6150    BLOGD(sc, DBG_LOAD,
6151          "ilt client[CDU]: start %d, end %d, "
6152          "psz 0x%x, flags 0x%x, hw psz %d\n",
6153          ilt_client->start, ilt_client->end,
6154          ilt_client->page_size,
6155          ilt_client->flags,
6156          ilog2(ilt_client->page_size >> 12));
6157
6158    /* QM */
6159    if (QM_INIT(sc->qm_cid_count)) {
6160        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6161        ilt_client->client_num = ILT_CLIENT_QM;
6162        ilt_client->page_size = QM_ILT_PAGE_SZ;
6163        ilt_client->flags = 0;
6164        ilt_client->start = line;
6165
6166        /* 4 bytes for each cid */
6167        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6168                             QM_ILT_PAGE_SZ);
6169
6170        ilt_client->end = (line - 1);
6171
6172        BLOGD(sc, DBG_LOAD,
6173              "ilt client[QM]: start %d, end %d, "
6174              "psz 0x%x, flags 0x%x, hw psz %d\n",
6175              ilt_client->start, ilt_client->end,
6176              ilt_client->page_size, ilt_client->flags,
6177              ilog2(ilt_client->page_size >> 12));
6178    }
6179
6180    if (CNIC_SUPPORT(sc)) {
6181        /* SRC */
6182        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6183        ilt_client->client_num = ILT_CLIENT_SRC;
6184        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6185        ilt_client->flags = 0;
6186        ilt_client->start = line;
6187        line += SRC_ILT_LINES;
6188        ilt_client->end = (line - 1);
6189
6190        BLOGD(sc, DBG_LOAD,
6191              "ilt client[SRC]: start %d, end %d, "
6192              "psz 0x%x, flags 0x%x, hw psz %d\n",
6193              ilt_client->start, ilt_client->end,
6194              ilt_client->page_size, ilt_client->flags,
6195              ilog2(ilt_client->page_size >> 12));
6196
6197        /* TM */
6198        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6199        ilt_client->client_num = ILT_CLIENT_TM;
6200        ilt_client->page_size = TM_ILT_PAGE_SZ;
6201        ilt_client->flags = 0;
6202        ilt_client->start = line;
6203        line += TM_ILT_LINES;
6204        ilt_client->end = (line - 1);
6205
6206        BLOGD(sc, DBG_LOAD,
6207              "ilt client[TM]: start %d, end %d, "
6208              "psz 0x%x, flags 0x%x, hw psz %d\n",
6209              ilt_client->start, ilt_client->end,
6210              ilt_client->page_size, ilt_client->flags,
6211              ilog2(ilt_client->page_size >> 12));
6212    }
6213
6214    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6215}
6216
6217static void
6218bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6219{
6220    int i;
6221
6222    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6223
6224    for (i = 0; i < sc->num_queues; i++) {
6225        /* get the Rx buffer size for RX frames */
6226        sc->fp[i].rx_buf_size =
6227            (IP_HEADER_ALIGNMENT_PADDING +
6228             ETH_OVERHEAD +
6229             sc->mtu);
6230
6231        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6232              i, sc->fp[i].rx_buf_size);
6233
6234        /* get the mbuf allocation size for RX frames */
6235        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6236            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6237        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6238            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6239        } else {
6240            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6241        }
6242
6243        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6244              i, sc->fp[i].mbuf_alloc_size);
6245    }
6246}
6247
6248static int
6249bxe_alloc_ilt_mem(struct bxe_softc *sc)
6250{
6251    int rc = 0;
6252
6253    if ((sc->ilt =
6254         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6255                                    M_BXE_ILT,
6256                                    (M_NOWAIT | M_ZERO))) == NULL) {
6257        rc = 1;
6258    }
6259
6260    return (rc);
6261}
6262
6263static int
6264bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6265{
6266    int rc = 0;
6267
6268    if ((sc->ilt->lines =
6269         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6270                                    M_BXE_ILT,
6271                                    (M_NOWAIT | M_ZERO))) == NULL) {
6272        rc = 1;
6273    }
6274
6275    return (rc);
6276}
6277
6278static void
6279bxe_free_ilt_mem(struct bxe_softc *sc)
6280{
6281    if (sc->ilt != NULL) {
6282        free(sc->ilt, M_BXE_ILT);
6283        sc->ilt = NULL;
6284    }
6285}
6286
6287static void
6288bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6289{
6290    if (sc->ilt->lines != NULL) {
6291        free(sc->ilt->lines, M_BXE_ILT);
6292        sc->ilt->lines = NULL;
6293    }
6294}
6295
6296static void
6297bxe_free_mem(struct bxe_softc *sc)
6298{
6299    int i;
6300
6301#if 0
6302    if (!CONFIGURE_NIC_MODE(sc)) {
6303        /* free searcher T2 table */
6304        bxe_dma_free(sc, &sc->t2);
6305    }
6306#endif
6307
6308    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6309        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6310        sc->context[i].vcxt = NULL;
6311        sc->context[i].size = 0;
6312    }
6313
6314    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6315
6316    bxe_free_ilt_lines_mem(sc);
6317
6318#if 0
6319    bxe_iov_free_mem(sc);
6320#endif
6321}
6322
6323static int
6324bxe_alloc_mem(struct bxe_softc *sc)
6325{
6326    int context_size;
6327    int allocated;
6328    int i;
6329
6330#if 0
6331    if (!CONFIGURE_NIC_MODE(sc)) {
6332        /* allocate searcher T2 table */
6333        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6334                          &sc->t2, "searcher t2 table") != 0) {
6335            return (-1);
6336        }
6337    }
6338#endif
6339
6340    /*
6341     * Allocate memory for CDU context:
6342     * This memory is allocated separately and not in the generic ILT
6343     * functions because CDU differs in few aspects:
6344     * 1. There can be multiple entities allocating memory for context -
6345     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6346     * its own ILT lines.
6347     * 2. Since CDU page-size is not a single 4KB page (which is the case
6348     * for the other ILT clients), to be efficient we want to support
6349     * allocation of sub-page-size in the last entry.
6350     * 3. Context pointers are used by the driver to pass to FW / update
6351     * the context (for the other ILT clients the pointers are used just to
6352     * free the memory during unload).
6353     */
6354    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6355    for (i = 0, allocated = 0; allocated < context_size; i++) {
6356        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6357                                  (context_size - allocated));
6358
6359        if (bxe_dma_alloc(sc, sc->context[i].size,
6360                          &sc->context[i].vcxt_dma,
6361                          "cdu context") != 0) {
6362            bxe_free_mem(sc);
6363            return (-1);
6364        }
6365
6366        sc->context[i].vcxt =
6367            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6368
6369        allocated += sc->context[i].size;
6370    }
6371
6372    bxe_alloc_ilt_lines_mem(sc);
6373
6374    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6375          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6376    {
6377        for (i = 0; i < 4; i++) {
6378            BLOGD(sc, DBG_LOAD,
6379                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6380                  i,
6381                  sc->ilt->clients[i].page_size,
6382                  sc->ilt->clients[i].start,
6383                  sc->ilt->clients[i].end,
6384                  sc->ilt->clients[i].client_num,
6385                  sc->ilt->clients[i].flags);
6386        }
6387    }
6388    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6389        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6390        bxe_free_mem(sc);
6391        return (-1);
6392    }
6393
6394#if 0
6395    if (bxe_iov_alloc_mem(sc)) {
6396        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6397        bxe_free_mem(sc);
6398        return (-1);
6399    }
6400#endif
6401
6402    return (0);
6403}
6404
6405static void
6406bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6407{
6408    struct bxe_softc *sc;
6409    int i;
6410
6411    sc = fp->sc;
6412
6413    if (fp->rx_mbuf_tag == NULL) {
6414        return;
6415    }
6416
6417    /* free all mbufs and unload all maps */
6418    for (i = 0; i < RX_BD_TOTAL; i++) {
6419        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6420            bus_dmamap_sync(fp->rx_mbuf_tag,
6421                            fp->rx_mbuf_chain[i].m_map,
6422                            BUS_DMASYNC_POSTREAD);
6423            bus_dmamap_unload(fp->rx_mbuf_tag,
6424                              fp->rx_mbuf_chain[i].m_map);
6425        }
6426
6427        if (fp->rx_mbuf_chain[i].m != NULL) {
6428            m_freem(fp->rx_mbuf_chain[i].m);
6429            fp->rx_mbuf_chain[i].m = NULL;
6430            fp->eth_q_stats.mbuf_alloc_rx--;
6431        }
6432    }
6433}
6434
6435static void
6436bxe_free_tpa_pool(struct bxe_fastpath *fp)
6437{
6438    struct bxe_softc *sc;
6439    int i, max_agg_queues;
6440
6441    sc = fp->sc;
6442
6443    if (fp->rx_mbuf_tag == NULL) {
6444        return;
6445    }
6446
6447    max_agg_queues = MAX_AGG_QS(sc);
6448
6449    /* release all mbufs and unload all DMA maps in the TPA pool */
6450    for (i = 0; i < max_agg_queues; i++) {
6451        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6452            bus_dmamap_sync(fp->rx_mbuf_tag,
6453                            fp->rx_tpa_info[i].bd.m_map,
6454                            BUS_DMASYNC_POSTREAD);
6455            bus_dmamap_unload(fp->rx_mbuf_tag,
6456                              fp->rx_tpa_info[i].bd.m_map);
6457        }
6458
6459        if (fp->rx_tpa_info[i].bd.m != NULL) {
6460            m_freem(fp->rx_tpa_info[i].bd.m);
6461            fp->rx_tpa_info[i].bd.m = NULL;
6462            fp->eth_q_stats.mbuf_alloc_tpa--;
6463        }
6464    }
6465}
6466
6467static void
6468bxe_free_sge_chain(struct bxe_fastpath *fp)
6469{
6470    struct bxe_softc *sc;
6471    int i;
6472
6473    sc = fp->sc;
6474
6475    if (fp->rx_sge_mbuf_tag == NULL) {
6476        return;
6477    }
6478
6479    /* rree all mbufs and unload all maps */
6480    for (i = 0; i < RX_SGE_TOTAL; i++) {
6481        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6482            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6483                            fp->rx_sge_mbuf_chain[i].m_map,
6484                            BUS_DMASYNC_POSTREAD);
6485            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6486                              fp->rx_sge_mbuf_chain[i].m_map);
6487        }
6488
6489        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6490            m_freem(fp->rx_sge_mbuf_chain[i].m);
6491            fp->rx_sge_mbuf_chain[i].m = NULL;
6492            fp->eth_q_stats.mbuf_alloc_sge--;
6493        }
6494    }
6495}
6496
6497static void
6498bxe_free_fp_buffers(struct bxe_softc *sc)
6499{
6500    struct bxe_fastpath *fp;
6501    int i;
6502
6503    for (i = 0; i < sc->num_queues; i++) {
6504        fp = &sc->fp[i];
6505
6506#if __FreeBSD_version >= 800000
6507        if (fp->tx_br != NULL) {
6508            struct mbuf *m;
6509            /* just in case bxe_mq_flush() wasn't called */
6510            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6511                m_freem(m);
6512            }
6513            buf_ring_free(fp->tx_br, M_DEVBUF);
6514            fp->tx_br = NULL;
6515        }
6516#endif
6517
6518        /* free all RX buffers */
6519        bxe_free_rx_bd_chain(fp);
6520        bxe_free_tpa_pool(fp);
6521        bxe_free_sge_chain(fp);
6522
6523        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6524            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6525                  fp->eth_q_stats.mbuf_alloc_rx);
6526        }
6527
6528        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6529            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6530                  fp->eth_q_stats.mbuf_alloc_sge);
6531        }
6532
6533        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6534            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6535                  fp->eth_q_stats.mbuf_alloc_tpa);
6536        }
6537
6538        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6539            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6540                  fp->eth_q_stats.mbuf_alloc_tx);
6541        }
6542
6543        /* XXX verify all mbufs were reclaimed */
6544
6545        if (mtx_initialized(&fp->tx_mtx)) {
6546            mtx_destroy(&fp->tx_mtx);
6547        }
6548
6549        if (mtx_initialized(&fp->rx_mtx)) {
6550            mtx_destroy(&fp->rx_mtx);
6551        }
6552    }
6553}
6554
6555static int
6556bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6557                     uint16_t            prev_index,
6558                     uint16_t            index)
6559{
6560    struct bxe_sw_rx_bd *rx_buf;
6561    struct eth_rx_bd *rx_bd;
6562    bus_dma_segment_t segs[1];
6563    bus_dmamap_t map;
6564    struct mbuf *m;
6565    int nsegs, rc;
6566
6567    rc = 0;
6568
6569    /* allocate the new RX BD mbuf */
6570    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6571    if (__predict_false(m == NULL)) {
6572        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6573        return (ENOBUFS);
6574    }
6575
6576    fp->eth_q_stats.mbuf_alloc_rx++;
6577
6578    /* initialize the mbuf buffer length */
6579    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6580
6581    /* map the mbuf into non-paged pool */
6582    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6583                                 fp->rx_mbuf_spare_map,
6584                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6585    if (__predict_false(rc != 0)) {
6586        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6587        m_freem(m);
6588        fp->eth_q_stats.mbuf_alloc_rx--;
6589        return (rc);
6590    }
6591
6592    /* all mbufs must map to a single segment */
6593    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6594
6595    /* release any existing RX BD mbuf mappings */
6596
6597    if (prev_index != index) {
6598        rx_buf = &fp->rx_mbuf_chain[prev_index];
6599
6600        if (rx_buf->m_map != NULL) {
6601            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6602                            BUS_DMASYNC_POSTREAD);
6603            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6604        }
6605
6606        /*
6607         * We only get here from bxe_rxeof() when the maximum number
6608         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6609         * holds the mbuf in the prev_index so it's OK to NULL it out
6610         * here without concern of a memory leak.
6611         */
6612        fp->rx_mbuf_chain[prev_index].m = NULL;
6613    }
6614
6615    rx_buf = &fp->rx_mbuf_chain[index];
6616
6617    if (rx_buf->m_map != NULL) {
6618        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6619                        BUS_DMASYNC_POSTREAD);
6620        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6621    }
6622
6623    /* save the mbuf and mapping info for a future packet */
6624    map = (prev_index != index) ?
6625              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6626    rx_buf->m_map = fp->rx_mbuf_spare_map;
6627    fp->rx_mbuf_spare_map = map;
6628    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6629                    BUS_DMASYNC_PREREAD);
6630    rx_buf->m = m;
6631
6632    rx_bd = &fp->rx_chain[index];
6633    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6634    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6635
6636    return (rc);
6637}
6638
6639static int
6640bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6641                      int                 queue)
6642{
6643    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6644    bus_dma_segment_t segs[1];
6645    bus_dmamap_t map;
6646    struct mbuf *m;
6647    int nsegs;
6648    int rc = 0;
6649
6650    /* allocate the new TPA mbuf */
6651    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6652    if (__predict_false(m == NULL)) {
6653        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6654        return (ENOBUFS);
6655    }
6656
6657    fp->eth_q_stats.mbuf_alloc_tpa++;
6658
6659    /* initialize the mbuf buffer length */
6660    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6661
6662    /* map the mbuf into non-paged pool */
6663    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6664                                 fp->rx_tpa_info_mbuf_spare_map,
6665                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6666    if (__predict_false(rc != 0)) {
6667        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6668        m_free(m);
6669        fp->eth_q_stats.mbuf_alloc_tpa--;
6670        return (rc);
6671    }
6672
6673    /* all mbufs must map to a single segment */
6674    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6675
6676    /* release any existing TPA mbuf mapping */
6677    if (tpa_info->bd.m_map != NULL) {
6678        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6679                        BUS_DMASYNC_POSTREAD);
6680        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6681    }
6682
6683    /* save the mbuf and mapping info for the TPA mbuf */
6684    map = tpa_info->bd.m_map;
6685    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6686    fp->rx_tpa_info_mbuf_spare_map = map;
6687    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6688                    BUS_DMASYNC_PREREAD);
6689    tpa_info->bd.m = m;
6690    tpa_info->seg = segs[0];
6691
6692    return (rc);
6693}
6694
6695/*
6696 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6697 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6698 * chain.
6699 */
6700static int
6701bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6702                      uint16_t            index)
6703{
6704    struct bxe_sw_rx_bd *sge_buf;
6705    struct eth_rx_sge *sge;
6706    bus_dma_segment_t segs[1];
6707    bus_dmamap_t map;
6708    struct mbuf *m;
6709    int nsegs;
6710    int rc = 0;
6711
6712    /* allocate a new SGE mbuf */
6713    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6714    if (__predict_false(m == NULL)) {
6715        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6716        return (ENOMEM);
6717    }
6718
6719    fp->eth_q_stats.mbuf_alloc_sge++;
6720
6721    /* initialize the mbuf buffer length */
6722    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6723
6724    /* map the SGE mbuf into non-paged pool */
6725    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6726                                 fp->rx_sge_mbuf_spare_map,
6727                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6728    if (__predict_false(rc != 0)) {
6729        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6730        m_freem(m);
6731        fp->eth_q_stats.mbuf_alloc_sge--;
6732        return (rc);
6733    }
6734
6735    /* all mbufs must map to a single segment */
6736    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6737
6738    sge_buf = &fp->rx_sge_mbuf_chain[index];
6739
6740    /* release any existing SGE mbuf mapping */
6741    if (sge_buf->m_map != NULL) {
6742        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6743                        BUS_DMASYNC_POSTREAD);
6744        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6745    }
6746
6747    /* save the mbuf and mapping info for a future packet */
6748    map = sge_buf->m_map;
6749    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6750    fp->rx_sge_mbuf_spare_map = map;
6751    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6752                    BUS_DMASYNC_PREREAD);
6753    sge_buf->m = m;
6754
6755    sge = &fp->rx_sge_chain[index];
6756    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6757    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6758
6759    return (rc);
6760}
6761
6762static __noinline int
6763bxe_alloc_fp_buffers(struct bxe_softc *sc)
6764{
6765    struct bxe_fastpath *fp;
6766    int i, j, rc = 0;
6767    int ring_prod, cqe_ring_prod;
6768    int max_agg_queues;
6769
6770    for (i = 0; i < sc->num_queues; i++) {
6771        fp = &sc->fp[i];
6772
6773#if __FreeBSD_version >= 800000
6774        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6775                                   M_NOWAIT, &fp->tx_mtx);
6776        if (fp->tx_br == NULL) {
6777            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6778            goto bxe_alloc_fp_buffers_error;
6779        }
6780#endif
6781
6782        ring_prod = cqe_ring_prod = 0;
6783        fp->rx_bd_cons = 0;
6784        fp->rx_cq_cons = 0;
6785
6786        /* allocate buffers for the RX BDs in RX BD chain */
6787        for (j = 0; j < sc->max_rx_bufs; j++) {
6788            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6789            if (rc != 0) {
6790                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6791                      i, rc);
6792                goto bxe_alloc_fp_buffers_error;
6793            }
6794
6795            ring_prod     = RX_BD_NEXT(ring_prod);
6796            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6797        }
6798
6799        fp->rx_bd_prod = ring_prod;
6800        fp->rx_cq_prod = cqe_ring_prod;
6801        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6802
6803        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6804            max_agg_queues = MAX_AGG_QS(sc);
6805
6806            fp->tpa_enable = TRUE;
6807
6808            /* fill the TPA pool */
6809            for (j = 0; j < max_agg_queues; j++) {
6810                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6811                if (rc != 0) {
6812                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6813                          i, j);
6814                    fp->tpa_enable = FALSE;
6815                    goto bxe_alloc_fp_buffers_error;
6816                }
6817
6818                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6819            }
6820
6821            if (fp->tpa_enable) {
6822                /* fill the RX SGE chain */
6823                ring_prod = 0;
6824                for (j = 0; j < RX_SGE_USABLE; j++) {
6825                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6826                    if (rc != 0) {
6827                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6828                              i, ring_prod);
6829                        fp->tpa_enable = FALSE;
6830                        ring_prod = 0;
6831                        goto bxe_alloc_fp_buffers_error;
6832                    }
6833
6834                    ring_prod = RX_SGE_NEXT(ring_prod);
6835                }
6836
6837                fp->rx_sge_prod = ring_prod;
6838            }
6839        }
6840    }
6841
6842    return (0);
6843
6844bxe_alloc_fp_buffers_error:
6845
6846    /* unwind what was already allocated */
6847    bxe_free_rx_bd_chain(fp);
6848    bxe_free_tpa_pool(fp);
6849    bxe_free_sge_chain(fp);
6850
6851    return (ENOBUFS);
6852}
6853
6854static void
6855bxe_free_fw_stats_mem(struct bxe_softc *sc)
6856{
6857    bxe_dma_free(sc, &sc->fw_stats_dma);
6858
6859    sc->fw_stats_num = 0;
6860
6861    sc->fw_stats_req_size = 0;
6862    sc->fw_stats_req = NULL;
6863    sc->fw_stats_req_mapping = 0;
6864
6865    sc->fw_stats_data_size = 0;
6866    sc->fw_stats_data = NULL;
6867    sc->fw_stats_data_mapping = 0;
6868}
6869
6870static int
6871bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6872{
6873    uint8_t num_queue_stats;
6874    int num_groups;
6875
6876    /* number of queues for statistics is number of eth queues */
6877    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6878
6879    /*
6880     * Total number of FW statistics requests =
6881     *   1 for port stats + 1 for PF stats + num of queues
6882     */
6883    sc->fw_stats_num = (2 + num_queue_stats);
6884
6885    /*
6886     * Request is built from stats_query_header and an array of
6887     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6888     * rules. The real number or requests is configured in the
6889     * stats_query_header.
6890     */
6891    num_groups =
6892        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6893         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6894
6895    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6896          sc->fw_stats_num, num_groups);
6897
6898    sc->fw_stats_req_size =
6899        (sizeof(struct stats_query_header) +
6900         (num_groups * sizeof(struct stats_query_cmd_group)));
6901
6902    /*
6903     * Data for statistics requests + stats_counter.
6904     * stats_counter holds per-STORM counters that are incremented when
6905     * STORM has finished with the current request. Memory for FCoE
6906     * offloaded statistics are counted anyway, even if they will not be sent.
6907     * VF stats are not accounted for here as the data of VF stats is stored
6908     * in memory allocated by the VF, not here.
6909     */
6910    sc->fw_stats_data_size =
6911        (sizeof(struct stats_counter) +
6912         sizeof(struct per_port_stats) +
6913         sizeof(struct per_pf_stats) +
6914         /* sizeof(struct fcoe_statistics_params) + */
6915         (sizeof(struct per_queue_stats) * num_queue_stats));
6916
6917    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6918                      &sc->fw_stats_dma, "fw stats") != 0) {
6919        bxe_free_fw_stats_mem(sc);
6920        return (-1);
6921    }
6922
6923    /* set up the shortcuts */
6924
6925    sc->fw_stats_req =
6926        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6927    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6928
6929    sc->fw_stats_data =
6930        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6931                                     sc->fw_stats_req_size);
6932    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6933                                 sc->fw_stats_req_size);
6934
6935    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6936          (uintmax_t)sc->fw_stats_req_mapping);
6937
6938    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6939          (uintmax_t)sc->fw_stats_data_mapping);
6940
6941    return (0);
6942}
6943
6944/*
6945 * Bits map:
6946 * 0-7  - Engine0 load counter.
6947 * 8-15 - Engine1 load counter.
6948 * 16   - Engine0 RESET_IN_PROGRESS bit.
6949 * 17   - Engine1 RESET_IN_PROGRESS bit.
6950 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6951 *        function on the engine
6952 * 19   - Engine1 ONE_IS_LOADED.
6953 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6954 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6955 *        for just the one belonging to its engine).
6956 */
6957#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6958#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6959#define BXE_PATH0_LOAD_CNT_SHIFT  0
6960#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6961#define BXE_PATH1_LOAD_CNT_SHIFT  8
6962#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6963#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6964#define BXE_GLOBAL_RESET_BIT      0x00040000
6965
6966/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6967static void
6968bxe_set_reset_global(struct bxe_softc *sc)
6969{
6970    uint32_t val;
6971    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6973    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6974    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6975}
6976
6977/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6978static void
6979bxe_clear_reset_global(struct bxe_softc *sc)
6980{
6981    uint32_t val;
6982    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6983    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6984    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6985    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6986}
6987
6988/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6989static uint8_t
6990bxe_reset_is_global(struct bxe_softc *sc)
6991{
6992    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6993    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6994    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6995}
6996
6997/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6998static void
6999bxe_set_reset_done(struct bxe_softc *sc)
7000{
7001    uint32_t val;
7002    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7003                                 BXE_PATH0_RST_IN_PROG_BIT;
7004
7005    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7006
7007    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7008    /* Clear the bit */
7009    val &= ~bit;
7010    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7011
7012    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7013}
7014
7015/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7016static void
7017bxe_set_reset_in_progress(struct bxe_softc *sc)
7018{
7019    uint32_t val;
7020    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7021                                 BXE_PATH0_RST_IN_PROG_BIT;
7022
7023    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7024
7025    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7026    /* Set the bit */
7027    val |= bit;
7028    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7029
7030    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7031}
7032
7033/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7034static uint8_t
7035bxe_reset_is_done(struct bxe_softc *sc,
7036                  int              engine)
7037{
7038    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7039    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7040                            BXE_PATH0_RST_IN_PROG_BIT;
7041
7042    /* return false if bit is set */
7043    return (val & bit) ? FALSE : TRUE;
7044}
7045
7046/* get the load status for an engine, should be run under rtnl lock */
7047static uint8_t
7048bxe_get_load_status(struct bxe_softc *sc,
7049                    int              engine)
7050{
7051    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7052                             BXE_PATH0_LOAD_CNT_MASK;
7053    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7054                              BXE_PATH0_LOAD_CNT_SHIFT;
7055    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7056
7057    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7058
7059    val = ((val & mask) >> shift);
7060
7061    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7062
7063    return (val != 0);
7064}
7065
7066/* set pf load mark */
7067/* XXX needs to be under rtnl lock */
7068static void
7069bxe_set_pf_load(struct bxe_softc *sc)
7070{
7071    uint32_t val;
7072    uint32_t val1;
7073    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7074                                  BXE_PATH0_LOAD_CNT_MASK;
7075    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7076                                   BXE_PATH0_LOAD_CNT_SHIFT;
7077
7078    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7079
7080    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7081    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7082
7083    /* get the current counter value */
7084    val1 = ((val & mask) >> shift);
7085
7086    /* set bit of this PF */
7087    val1 |= (1 << SC_ABS_FUNC(sc));
7088
7089    /* clear the old value */
7090    val &= ~mask;
7091
7092    /* set the new one */
7093    val |= ((val1 << shift) & mask);
7094
7095    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7096
7097    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7098}
7099
7100/* clear pf load mark */
7101/* XXX needs to be under rtnl lock */
7102static uint8_t
7103bxe_clear_pf_load(struct bxe_softc *sc)
7104{
7105    uint32_t val1, val;
7106    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7107                                  BXE_PATH0_LOAD_CNT_MASK;
7108    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7109                                   BXE_PATH0_LOAD_CNT_SHIFT;
7110
7111    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7112    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7113    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7114
7115    /* get the current counter value */
7116    val1 = (val & mask) >> shift;
7117
7118    /* clear bit of that PF */
7119    val1 &= ~(1 << SC_ABS_FUNC(sc));
7120
7121    /* clear the old value */
7122    val &= ~mask;
7123
7124    /* set the new one */
7125    val |= ((val1 << shift) & mask);
7126
7127    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7128    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7129    return (val1 != 0);
7130}
7131
7132/* send load requrest to mcp and analyze response */
7133static int
7134bxe_nic_load_request(struct bxe_softc *sc,
7135                     uint32_t         *load_code)
7136{
7137    /* init fw_seq */
7138    sc->fw_seq =
7139        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7140         DRV_MSG_SEQ_NUMBER_MASK);
7141
7142    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7143
7144    /* get the current FW pulse sequence */
7145    sc->fw_drv_pulse_wr_seq =
7146        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7147         DRV_PULSE_SEQ_MASK);
7148
7149    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7150          sc->fw_drv_pulse_wr_seq);
7151
7152    /* load request */
7153    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7154                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7155
7156    /* if the MCP fails to respond we must abort */
7157    if (!(*load_code)) {
7158        BLOGE(sc, "MCP response failure!\n");
7159        return (-1);
7160    }
7161
7162    /* if MCP refused then must abort */
7163    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7164        BLOGE(sc, "MCP refused load request\n");
7165        return (-1);
7166    }
7167
7168    return (0);
7169}
7170
7171/*
7172 * Check whether another PF has already loaded FW to chip. In virtualized
7173 * environments a pf from anoth VM may have already initialized the device
7174 * including loading FW.
7175 */
7176static int
7177bxe_nic_load_analyze_req(struct bxe_softc *sc,
7178                         uint32_t         load_code)
7179{
7180    uint32_t my_fw, loaded_fw;
7181
7182    /* is another pf loaded on this engine? */
7183    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7184        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7185        /* build my FW version dword */
7186        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7187                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7188                 (BCM_5710_FW_REVISION_VERSION << 16) +
7189                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7190
7191        /* read loaded FW from chip */
7192        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7193        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7194              loaded_fw, my_fw);
7195
7196        /* abort nic load if version mismatch */
7197        if (my_fw != loaded_fw) {
7198            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7199                  loaded_fw, my_fw);
7200            return (-1);
7201        }
7202    }
7203
7204    return (0);
7205}
7206
7207/* mark PMF if applicable */
7208static void
7209bxe_nic_load_pmf(struct bxe_softc *sc,
7210                 uint32_t         load_code)
7211{
7212    uint32_t ncsi_oem_data_addr;
7213
7214    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7215        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7216        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7217        /*
7218         * Barrier here for ordering between the writing to sc->port.pmf here
7219         * and reading it from the periodic task.
7220         */
7221        sc->port.pmf = 1;
7222        mb();
7223    } else {
7224        sc->port.pmf = 0;
7225    }
7226
7227    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7228
7229    /* XXX needed? */
7230    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7231        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7232            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7233            if (ncsi_oem_data_addr) {
7234                REG_WR(sc,
7235                       (ncsi_oem_data_addr +
7236                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7237                       0);
7238            }
7239        }
7240    }
7241}
7242
7243static void
7244bxe_read_mf_cfg(struct bxe_softc *sc)
7245{
7246    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7247    int abs_func;
7248    int vn;
7249
7250    if (BXE_NOMCP(sc)) {
7251        return; /* what should be the default bvalue in this case */
7252    }
7253
7254    /*
7255     * The formula for computing the absolute function number is...
7256     * For 2 port configuration (4 functions per port):
7257     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7258     * For 4 port configuration (2 functions per port):
7259     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7260     */
7261    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7262        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7263        if (abs_func >= E1H_FUNC_MAX) {
7264            break;
7265        }
7266        sc->devinfo.mf_info.mf_config[vn] =
7267            MFCFG_RD(sc, func_mf_config[abs_func].config);
7268    }
7269
7270    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7271        FUNC_MF_CFG_FUNC_DISABLED) {
7272        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7273        sc->flags |= BXE_MF_FUNC_DIS;
7274    } else {
7275        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7276        sc->flags &= ~BXE_MF_FUNC_DIS;
7277    }
7278}
7279
7280/* acquire split MCP access lock register */
7281static int bxe_acquire_alr(struct bxe_softc *sc)
7282{
7283    uint32_t j, val;
7284
7285    for (j = 0; j < 1000; j++) {
7286        val = (1UL << 31);
7287        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7288        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7289        if (val & (1L << 31))
7290            break;
7291
7292        DELAY(5000);
7293    }
7294
7295    if (!(val & (1L << 31))) {
7296        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7297        return (-1);
7298    }
7299
7300    return (0);
7301}
7302
7303/* release split MCP access lock register */
7304static void bxe_release_alr(struct bxe_softc *sc)
7305{
7306    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7307}
7308
7309static void
7310bxe_fan_failure(struct bxe_softc *sc)
7311{
7312    int port = SC_PORT(sc);
7313    uint32_t ext_phy_config;
7314
7315    /* mark the failure */
7316    ext_phy_config =
7317        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7318
7319    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7320    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7321    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7322             ext_phy_config);
7323
7324    /* log the failure */
7325    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7326              "the card to prevent permanent damage. "
7327              "Please contact OEM Support for assistance\n");
7328
7329    /* XXX */
7330#if 1
7331    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7332#else
7333    /*
7334     * Schedule device reset (unload)
7335     * This is due to some boards consuming sufficient power when driver is
7336     * up to overheat if fan fails.
7337     */
7338    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7339    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7340#endif
7341}
7342
7343/* this function is called upon a link interrupt */
7344static void
7345bxe_link_attn(struct bxe_softc *sc)
7346{
7347    uint32_t pause_enabled = 0;
7348    struct host_port_stats *pstats;
7349    int cmng_fns;
7350
7351    /* Make sure that we are synced with the current statistics */
7352    bxe_stats_handle(sc, STATS_EVENT_STOP);
7353
7354    elink_link_update(&sc->link_params, &sc->link_vars);
7355
7356    if (sc->link_vars.link_up) {
7357
7358        /* dropless flow control */
7359        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7360            pause_enabled = 0;
7361
7362            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7363                pause_enabled = 1;
7364            }
7365
7366            REG_WR(sc,
7367                   (BAR_USTRORM_INTMEM +
7368                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7369                   pause_enabled);
7370        }
7371
7372        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7373            pstats = BXE_SP(sc, port_stats);
7374            /* reset old mac stats */
7375            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7376        }
7377
7378        if (sc->state == BXE_STATE_OPEN) {
7379            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7380        }
7381    }
7382
7383    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7384        cmng_fns = bxe_get_cmng_fns_mode(sc);
7385
7386        if (cmng_fns != CMNG_FNS_NONE) {
7387            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7388            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7389        } else {
7390            /* rate shaping and fairness are disabled */
7391            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7392        }
7393    }
7394
7395    bxe_link_report_locked(sc);
7396
7397    if (IS_MF(sc)) {
7398        ; // XXX bxe_link_sync_notify(sc);
7399    }
7400}
7401
7402static void
7403bxe_attn_int_asserted(struct bxe_softc *sc,
7404                      uint32_t         asserted)
7405{
7406    int port = SC_PORT(sc);
7407    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7408                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7409    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7410                                        NIG_REG_MASK_INTERRUPT_PORT0;
7411    uint32_t aeu_mask;
7412    uint32_t nig_mask = 0;
7413    uint32_t reg_addr;
7414    uint32_t igu_acked;
7415    uint32_t cnt;
7416
7417    if (sc->attn_state & asserted) {
7418        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7419    }
7420
7421    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7422
7423    aeu_mask = REG_RD(sc, aeu_addr);
7424
7425    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7426          aeu_mask, asserted);
7427
7428    aeu_mask &= ~(asserted & 0x3ff);
7429
7430    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7431
7432    REG_WR(sc, aeu_addr, aeu_mask);
7433
7434    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7435
7436    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7437    sc->attn_state |= asserted;
7438    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7439
7440    if (asserted & ATTN_HARD_WIRED_MASK) {
7441        if (asserted & ATTN_NIG_FOR_FUNC) {
7442
7443            BXE_PHY_LOCK(sc);
7444
7445            /* save nig interrupt mask */
7446            nig_mask = REG_RD(sc, nig_int_mask_addr);
7447
7448            /* If nig_mask is not set, no need to call the update function */
7449            if (nig_mask) {
7450                REG_WR(sc, nig_int_mask_addr, 0);
7451
7452                bxe_link_attn(sc);
7453            }
7454
7455            /* handle unicore attn? */
7456        }
7457
7458        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7459            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7460        }
7461
7462        if (asserted & GPIO_2_FUNC) {
7463            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7464        }
7465
7466        if (asserted & GPIO_3_FUNC) {
7467            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7468        }
7469
7470        if (asserted & GPIO_4_FUNC) {
7471            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7472        }
7473
7474        if (port == 0) {
7475            if (asserted & ATTN_GENERAL_ATTN_1) {
7476                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7477                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7478            }
7479            if (asserted & ATTN_GENERAL_ATTN_2) {
7480                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7481                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7482            }
7483            if (asserted & ATTN_GENERAL_ATTN_3) {
7484                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7485                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7486            }
7487        } else {
7488            if (asserted & ATTN_GENERAL_ATTN_4) {
7489                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7490                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7491            }
7492            if (asserted & ATTN_GENERAL_ATTN_5) {
7493                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7494                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7495            }
7496            if (asserted & ATTN_GENERAL_ATTN_6) {
7497                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7498                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7499            }
7500        }
7501    } /* hardwired */
7502
7503    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7504        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7505    } else {
7506        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7507    }
7508
7509    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7510          asserted,
7511          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7512    REG_WR(sc, reg_addr, asserted);
7513
7514    /* now set back the mask */
7515    if (asserted & ATTN_NIG_FOR_FUNC) {
7516        /*
7517         * Verify that IGU ack through BAR was written before restoring
7518         * NIG mask. This loop should exit after 2-3 iterations max.
7519         */
7520        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7521            cnt = 0;
7522
7523            do {
7524                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7525            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7526                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7527
7528            if (!igu_acked) {
7529                BLOGE(sc, "Failed to verify IGU ack on time\n");
7530            }
7531
7532            mb();
7533        }
7534
7535        REG_WR(sc, nig_int_mask_addr, nig_mask);
7536
7537        BXE_PHY_UNLOCK(sc);
7538    }
7539}
7540
7541static void
7542bxe_print_next_block(struct bxe_softc *sc,
7543                     int              idx,
7544                     const char       *blk)
7545{
7546    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7547}
7548
7549static int
7550bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7551                              uint32_t         sig,
7552                              int              par_num,
7553                              uint8_t          print)
7554{
7555    uint32_t cur_bit = 0;
7556    int i = 0;
7557
7558    for (i = 0; sig; i++) {
7559        cur_bit = ((uint32_t)0x1 << i);
7560        if (sig & cur_bit) {
7561            switch (cur_bit) {
7562            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7563                if (print)
7564                    bxe_print_next_block(sc, par_num++, "BRB");
7565                break;
7566            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7567                if (print)
7568                    bxe_print_next_block(sc, par_num++, "PARSER");
7569                break;
7570            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7571                if (print)
7572                    bxe_print_next_block(sc, par_num++, "TSDM");
7573                break;
7574            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7575                if (print)
7576                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7577                break;
7578            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7579                if (print)
7580                    bxe_print_next_block(sc, par_num++, "TCM");
7581                break;
7582            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7583                if (print)
7584                    bxe_print_next_block(sc, par_num++, "TSEMI");
7585                break;
7586            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7587                if (print)
7588                    bxe_print_next_block(sc, par_num++, "XPB");
7589                break;
7590            }
7591
7592            /* Clear the bit */
7593            sig &= ~cur_bit;
7594        }
7595    }
7596
7597    return (par_num);
7598}
7599
7600static int
7601bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7602                              uint32_t         sig,
7603                              int              par_num,
7604                              uint8_t          *global,
7605                              uint8_t          print)
7606{
7607    int i = 0;
7608    uint32_t cur_bit = 0;
7609    for (i = 0; sig; i++) {
7610        cur_bit = ((uint32_t)0x1 << i);
7611        if (sig & cur_bit) {
7612            switch (cur_bit) {
7613            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7614                if (print)
7615                    bxe_print_next_block(sc, par_num++, "PBF");
7616                break;
7617            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7618                if (print)
7619                    bxe_print_next_block(sc, par_num++, "QM");
7620                break;
7621            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7622                if (print)
7623                    bxe_print_next_block(sc, par_num++, "TM");
7624                break;
7625            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7626                if (print)
7627                    bxe_print_next_block(sc, par_num++, "XSDM");
7628                break;
7629            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7630                if (print)
7631                    bxe_print_next_block(sc, par_num++, "XCM");
7632                break;
7633            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7634                if (print)
7635                    bxe_print_next_block(sc, par_num++, "XSEMI");
7636                break;
7637            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7638                if (print)
7639                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7640                break;
7641            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7642                if (print)
7643                    bxe_print_next_block(sc, par_num++, "NIG");
7644                break;
7645            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7646                if (print)
7647                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7648                *global = TRUE;
7649                break;
7650            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7651                if (print)
7652                    bxe_print_next_block(sc, par_num++, "DEBUG");
7653                break;
7654            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7655                if (print)
7656                    bxe_print_next_block(sc, par_num++, "USDM");
7657                break;
7658            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7659                if (print)
7660                    bxe_print_next_block(sc, par_num++, "UCM");
7661                break;
7662            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7663                if (print)
7664                    bxe_print_next_block(sc, par_num++, "USEMI");
7665                break;
7666            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7667                if (print)
7668                    bxe_print_next_block(sc, par_num++, "UPB");
7669                break;
7670            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7671                if (print)
7672                    bxe_print_next_block(sc, par_num++, "CSDM");
7673                break;
7674            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7675                if (print)
7676                    bxe_print_next_block(sc, par_num++, "CCM");
7677                break;
7678            }
7679
7680            /* Clear the bit */
7681            sig &= ~cur_bit;
7682        }
7683    }
7684
7685    return (par_num);
7686}
7687
7688static int
7689bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7690                              uint32_t         sig,
7691                              int              par_num,
7692                              uint8_t          print)
7693{
7694    uint32_t cur_bit = 0;
7695    int i = 0;
7696
7697    for (i = 0; sig; i++) {
7698        cur_bit = ((uint32_t)0x1 << i);
7699        if (sig & cur_bit) {
7700            switch (cur_bit) {
7701            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7702                if (print)
7703                    bxe_print_next_block(sc, par_num++, "CSEMI");
7704                break;
7705            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7706                if (print)
7707                    bxe_print_next_block(sc, par_num++, "PXP");
7708                break;
7709            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7710                if (print)
7711                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7712                break;
7713            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7714                if (print)
7715                    bxe_print_next_block(sc, par_num++, "CFC");
7716                break;
7717            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7718                if (print)
7719                    bxe_print_next_block(sc, par_num++, "CDU");
7720                break;
7721            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7722                if (print)
7723                    bxe_print_next_block(sc, par_num++, "DMAE");
7724                break;
7725            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7726                if (print)
7727                    bxe_print_next_block(sc, par_num++, "IGU");
7728                break;
7729            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7730                if (print)
7731                    bxe_print_next_block(sc, par_num++, "MISC");
7732                break;
7733            }
7734
7735            /* Clear the bit */
7736            sig &= ~cur_bit;
7737        }
7738    }
7739
7740    return (par_num);
7741}
7742
7743static int
7744bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7745                              uint32_t         sig,
7746                              int              par_num,
7747                              uint8_t          *global,
7748                              uint8_t          print)
7749{
7750    uint32_t cur_bit = 0;
7751    int i = 0;
7752
7753    for (i = 0; sig; i++) {
7754        cur_bit = ((uint32_t)0x1 << i);
7755        if (sig & cur_bit) {
7756            switch (cur_bit) {
7757            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7758                if (print)
7759                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7760                *global = TRUE;
7761                break;
7762            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7763                if (print)
7764                    bxe_print_next_block(sc, par_num++,
7765                              "MCP UMP RX");
7766                *global = TRUE;
7767                break;
7768            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7769                if (print)
7770                    bxe_print_next_block(sc, par_num++,
7771                              "MCP UMP TX");
7772                *global = TRUE;
7773                break;
7774            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7775                if (print)
7776                    bxe_print_next_block(sc, par_num++,
7777                              "MCP SCPAD");
7778                *global = TRUE;
7779                break;
7780            }
7781
7782            /* Clear the bit */
7783            sig &= ~cur_bit;
7784        }
7785    }
7786
7787    return (par_num);
7788}
7789
7790static int
7791bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7792                              uint32_t         sig,
7793                              int              par_num,
7794                              uint8_t          print)
7795{
7796    uint32_t cur_bit = 0;
7797    int i = 0;
7798
7799    for (i = 0; sig; i++) {
7800        cur_bit = ((uint32_t)0x1 << i);
7801        if (sig & cur_bit) {
7802            switch (cur_bit) {
7803            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7804                if (print)
7805                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7806                break;
7807            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7808                if (print)
7809                    bxe_print_next_block(sc, par_num++, "ATC");
7810                break;
7811            }
7812
7813            /* Clear the bit */
7814            sig &= ~cur_bit;
7815        }
7816    }
7817
7818    return (par_num);
7819}
7820
7821static uint8_t
7822bxe_parity_attn(struct bxe_softc *sc,
7823                uint8_t          *global,
7824                uint8_t          print,
7825                uint32_t         *sig)
7826{
7827    int par_num = 0;
7828
7829    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7830        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7831        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7832        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7833        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7834        BLOGE(sc, "Parity error: HW block parity attention:\n"
7835                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7836              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7837              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7838              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7839              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7840              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7841
7842        if (print)
7843            BLOGI(sc, "Parity errors detected in blocks: ");
7844
7845        par_num =
7846            bxe_check_blocks_with_parity0(sc, sig[0] &
7847                                          HW_PRTY_ASSERT_SET_0,
7848                                          par_num, print);
7849        par_num =
7850            bxe_check_blocks_with_parity1(sc, sig[1] &
7851                                          HW_PRTY_ASSERT_SET_1,
7852                                          par_num, global, print);
7853        par_num =
7854            bxe_check_blocks_with_parity2(sc, sig[2] &
7855                                          HW_PRTY_ASSERT_SET_2,
7856                                          par_num, print);
7857        par_num =
7858            bxe_check_blocks_with_parity3(sc, sig[3] &
7859                                          HW_PRTY_ASSERT_SET_3,
7860                                          par_num, global, print);
7861        par_num =
7862            bxe_check_blocks_with_parity4(sc, sig[4] &
7863                                          HW_PRTY_ASSERT_SET_4,
7864                                          par_num, print);
7865
7866        if (print)
7867            BLOGI(sc, "\n");
7868
7869        return (TRUE);
7870    }
7871
7872    return (FALSE);
7873}
7874
7875static uint8_t
7876bxe_chk_parity_attn(struct bxe_softc *sc,
7877                    uint8_t          *global,
7878                    uint8_t          print)
7879{
7880    struct attn_route attn = { {0} };
7881    int port = SC_PORT(sc);
7882
7883    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7884    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7885    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7886    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7887
7888    if (!CHIP_IS_E1x(sc))
7889        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7890
7891    return (bxe_parity_attn(sc, global, print, attn.sig));
7892}
7893
7894static void
7895bxe_attn_int_deasserted4(struct bxe_softc *sc,
7896                         uint32_t         attn)
7897{
7898    uint32_t val;
7899
7900    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7901        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7902        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7903        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7904            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7905        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7906            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7907        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7908            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7909        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7910            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7911        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7912            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7913        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7914            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7915        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7916            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7917        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7918            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7919        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7920            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7921    }
7922
7923    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7924        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7925        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7926        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7927            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7928        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7929            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7930        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7931            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7932        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7933            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7934        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7935            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7936        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7937            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7938    }
7939
7940    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7941                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7942        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7943              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7944                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7945    }
7946}
7947
7948static void
7949bxe_e1h_disable(struct bxe_softc *sc)
7950{
7951    int port = SC_PORT(sc);
7952
7953    bxe_tx_disable(sc);
7954
7955    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7956}
7957
7958static void
7959bxe_e1h_enable(struct bxe_softc *sc)
7960{
7961    int port = SC_PORT(sc);
7962
7963    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7964
7965    // XXX bxe_tx_enable(sc);
7966}
7967
7968/*
7969 * called due to MCP event (on pmf):
7970 *   reread new bandwidth configuration
7971 *   configure FW
7972 *   notify others function about the change
7973 */
7974static void
7975bxe_config_mf_bw(struct bxe_softc *sc)
7976{
7977    if (sc->link_vars.link_up) {
7978        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7979        // XXX bxe_link_sync_notify(sc);
7980    }
7981
7982    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7983}
7984
7985static void
7986bxe_set_mf_bw(struct bxe_softc *sc)
7987{
7988    bxe_config_mf_bw(sc);
7989    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7990}
7991
7992static void
7993bxe_handle_eee_event(struct bxe_softc *sc)
7994{
7995    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7996    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7997}
7998
7999#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8000
8001static void
8002bxe_drv_info_ether_stat(struct bxe_softc *sc)
8003{
8004    struct eth_stats_info *ether_stat =
8005        &sc->sp->drv_info_to_mcp.ether_stat;
8006
8007    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8008            ETH_STAT_INFO_VERSION_LEN);
8009
8010    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8011    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8012                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8013                                          ether_stat->mac_local + MAC_PAD,
8014                                          MAC_PAD, ETH_ALEN);
8015
8016    ether_stat->mtu_size = sc->mtu;
8017
8018    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8019    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8020        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8021    }
8022
8023    // XXX ether_stat->feature_flags |= ???;
8024
8025    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8026
8027    ether_stat->txq_size = sc->tx_ring_size;
8028    ether_stat->rxq_size = sc->rx_ring_size;
8029}
8030
8031static void
8032bxe_handle_drv_info_req(struct bxe_softc *sc)
8033{
8034    enum drv_info_opcode op_code;
8035    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8036
8037    /* if drv_info version supported by MFW doesn't match - send NACK */
8038    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8039        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8040        return;
8041    }
8042
8043    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8044               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8045
8046    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8047
8048    switch (op_code) {
8049    case ETH_STATS_OPCODE:
8050        bxe_drv_info_ether_stat(sc);
8051        break;
8052    case FCOE_STATS_OPCODE:
8053    case ISCSI_STATS_OPCODE:
8054    default:
8055        /* if op code isn't supported - send NACK */
8056        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8057        return;
8058    }
8059
8060    /*
8061     * If we got drv_info attn from MFW then these fields are defined in
8062     * shmem2 for sure
8063     */
8064    SHMEM2_WR(sc, drv_info_host_addr_lo,
8065              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8066    SHMEM2_WR(sc, drv_info_host_addr_hi,
8067              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8068
8069    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8070}
8071
8072static void
8073bxe_dcc_event(struct bxe_softc *sc,
8074              uint32_t         dcc_event)
8075{
8076    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8077
8078    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8079        /*
8080         * This is the only place besides the function initialization
8081         * where the sc->flags can change so it is done without any
8082         * locks
8083         */
8084        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8085            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8086            sc->flags |= BXE_MF_FUNC_DIS;
8087            bxe_e1h_disable(sc);
8088        } else {
8089            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8090            sc->flags &= ~BXE_MF_FUNC_DIS;
8091            bxe_e1h_enable(sc);
8092        }
8093        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8094    }
8095
8096    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8097        bxe_config_mf_bw(sc);
8098        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8099    }
8100
8101    /* Report results to MCP */
8102    if (dcc_event)
8103        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8104    else
8105        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8106}
8107
8108static void
8109bxe_pmf_update(struct bxe_softc *sc)
8110{
8111    int port = SC_PORT(sc);
8112    uint32_t val;
8113
8114    sc->port.pmf = 1;
8115    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8116
8117    /*
8118     * We need the mb() to ensure the ordering between the writing to
8119     * sc->port.pmf here and reading it from the bxe_periodic_task().
8120     */
8121    mb();
8122
8123    /* queue a periodic task */
8124    // XXX schedule task...
8125
8126    // XXX bxe_dcbx_pmf_update(sc);
8127
8128    /* enable nig attention */
8129    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8130    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8131        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8132        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8133    } else if (!CHIP_IS_E1x(sc)) {
8134        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8135        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8136    }
8137
8138    bxe_stats_handle(sc, STATS_EVENT_PMF);
8139}
8140
8141static int
8142bxe_mc_assert(struct bxe_softc *sc)
8143{
8144    char last_idx;
8145    int i, rc = 0;
8146    uint32_t row0, row1, row2, row3;
8147
8148    /* XSTORM */
8149    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8150    if (last_idx)
8151        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8152
8153    /* print the asserts */
8154    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8155
8156        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8157        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8158        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8159        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8160
8161        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8162            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8163                  i, row3, row2, row1, row0);
8164            rc++;
8165        } else {
8166            break;
8167        }
8168    }
8169
8170    /* TSTORM */
8171    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8172    if (last_idx) {
8173        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8174    }
8175
8176    /* print the asserts */
8177    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8178
8179        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8180        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8181        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8182        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8183
8184        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8185            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8186                  i, row3, row2, row1, row0);
8187            rc++;
8188        } else {
8189            break;
8190        }
8191    }
8192
8193    /* CSTORM */
8194    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8195    if (last_idx) {
8196        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8197    }
8198
8199    /* print the asserts */
8200    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8201
8202        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8203        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8204        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8205        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8206
8207        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8208            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8209                  i, row3, row2, row1, row0);
8210            rc++;
8211        } else {
8212            break;
8213        }
8214    }
8215
8216    /* USTORM */
8217    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8218    if (last_idx) {
8219        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8220    }
8221
8222    /* print the asserts */
8223    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8224
8225        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8226        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8227        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8228        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8229
8230        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8231            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8232                  i, row3, row2, row1, row0);
8233            rc++;
8234        } else {
8235            break;
8236        }
8237    }
8238
8239    return (rc);
8240}
8241
8242static void
8243bxe_attn_int_deasserted3(struct bxe_softc *sc,
8244                         uint32_t         attn)
8245{
8246    int func = SC_FUNC(sc);
8247    uint32_t val;
8248
8249    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8250
8251        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8252
8253            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8254            bxe_read_mf_cfg(sc);
8255            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8256                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8257            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8258
8259            if (val & DRV_STATUS_DCC_EVENT_MASK)
8260                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8261
8262            if (val & DRV_STATUS_SET_MF_BW)
8263                bxe_set_mf_bw(sc);
8264
8265            if (val & DRV_STATUS_DRV_INFO_REQ)
8266                bxe_handle_drv_info_req(sc);
8267
8268#if 0
8269            if (val & DRV_STATUS_VF_DISABLED)
8270                bxe_vf_handle_flr_event(sc);
8271#endif
8272
8273            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8274                bxe_pmf_update(sc);
8275
8276#if 0
8277            if (sc->port.pmf &&
8278                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8279                (sc->dcbx_enabled > 0))
8280                /* start dcbx state machine */
8281                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8282#endif
8283
8284#if 0
8285            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8286                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8287#endif
8288
8289            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8290                bxe_handle_eee_event(sc);
8291
8292            if (sc->link_vars.periodic_flags &
8293                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8294                /* sync with link */
8295                BXE_PHY_LOCK(sc);
8296                sc->link_vars.periodic_flags &=
8297                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8298                BXE_PHY_UNLOCK(sc);
8299                if (IS_MF(sc))
8300                    ; // XXX bxe_link_sync_notify(sc);
8301                bxe_link_report(sc);
8302            }
8303
8304            /*
8305             * Always call it here: bxe_link_report() will
8306             * prevent the link indication duplication.
8307             */
8308            bxe_link_status_update(sc);
8309
8310        } else if (attn & BXE_MC_ASSERT_BITS) {
8311
8312            BLOGE(sc, "MC assert!\n");
8313            bxe_mc_assert(sc);
8314            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8315            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8316            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8317            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8318            bxe_panic(sc, ("MC assert!\n"));
8319
8320        } else if (attn & BXE_MCP_ASSERT) {
8321
8322            BLOGE(sc, "MCP assert!\n");
8323            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8324            // XXX bxe_fw_dump(sc);
8325
8326        } else {
8327            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8328        }
8329    }
8330
8331    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8332        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8333        if (attn & BXE_GRC_TIMEOUT) {
8334            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8335            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8336        }
8337        if (attn & BXE_GRC_RSV) {
8338            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8339            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8340        }
8341        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8342    }
8343}
8344
8345static void
8346bxe_attn_int_deasserted2(struct bxe_softc *sc,
8347                         uint32_t         attn)
8348{
8349    int port = SC_PORT(sc);
8350    int reg_offset;
8351    uint32_t val0, mask0, val1, mask1;
8352    uint32_t val;
8353
8354    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8355        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8356        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8357        /* CFC error attention */
8358        if (val & 0x2) {
8359            BLOGE(sc, "FATAL error from CFC\n");
8360        }
8361    }
8362
8363    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8364        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8365        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8366        /* RQ_USDMDP_FIFO_OVERFLOW */
8367        if (val & 0x18000) {
8368            BLOGE(sc, "FATAL error from PXP\n");
8369        }
8370
8371        if (!CHIP_IS_E1x(sc)) {
8372            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8373            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8374        }
8375    }
8376
8377#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8378#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8379
8380    if (attn & AEU_PXP2_HW_INT_BIT) {
8381        /*  CQ47854 workaround do not panic on
8382         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8383         */
8384        if (!CHIP_IS_E1x(sc)) {
8385            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8386            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8387            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8388            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8389            /*
8390             * If the olny PXP2_EOP_ERROR_BIT is set in
8391             * STS0 and STS1 - clear it
8392             *
8393             * probably we lose additional attentions between
8394             * STS0 and STS_CLR0, in this case user will not
8395             * be notified about them
8396             */
8397            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8398                !(val1 & mask1))
8399                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8400
8401            /* print the register, since no one can restore it */
8402            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8403
8404            /*
8405             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8406             * then notify
8407             */
8408            if (val0 & PXP2_EOP_ERROR_BIT) {
8409                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8410
8411                /*
8412                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8413                 * set then clear attention from PXP2 block without panic
8414                 */
8415                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8416                    ((val1 & mask1) == 0))
8417                    attn &= ~AEU_PXP2_HW_INT_BIT;
8418            }
8419        }
8420    }
8421
8422    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8423        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8424                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8425
8426        val = REG_RD(sc, reg_offset);
8427        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8428        REG_WR(sc, reg_offset, val);
8429
8430        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8431              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8432        bxe_panic(sc, ("HW block attention set2\n"));
8433    }
8434}
8435
8436static void
8437bxe_attn_int_deasserted1(struct bxe_softc *sc,
8438                         uint32_t         attn)
8439{
8440    int port = SC_PORT(sc);
8441    int reg_offset;
8442    uint32_t val;
8443
8444    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8445        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8446        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8447        /* DORQ discard attention */
8448        if (val & 0x2) {
8449            BLOGE(sc, "FATAL error from DORQ\n");
8450        }
8451    }
8452
8453    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8454        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8455                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8456
8457        val = REG_RD(sc, reg_offset);
8458        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8459        REG_WR(sc, reg_offset, val);
8460
8461        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8462              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8463        bxe_panic(sc, ("HW block attention set1\n"));
8464    }
8465}
8466
8467static void
8468bxe_attn_int_deasserted0(struct bxe_softc *sc,
8469                         uint32_t         attn)
8470{
8471    int port = SC_PORT(sc);
8472    int reg_offset;
8473    uint32_t val;
8474
8475    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8476                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8477
8478    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8479        val = REG_RD(sc, reg_offset);
8480        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8481        REG_WR(sc, reg_offset, val);
8482
8483        BLOGW(sc, "SPIO5 hw attention\n");
8484
8485        /* Fan failure attention */
8486        elink_hw_reset_phy(&sc->link_params);
8487        bxe_fan_failure(sc);
8488    }
8489
8490    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8491        BXE_PHY_LOCK(sc);
8492        elink_handle_module_detect_int(&sc->link_params);
8493        BXE_PHY_UNLOCK(sc);
8494    }
8495
8496    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8497        val = REG_RD(sc, reg_offset);
8498        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8499        REG_WR(sc, reg_offset, val);
8500
8501        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8502                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8503    }
8504}
8505
8506static void
8507bxe_attn_int_deasserted(struct bxe_softc *sc,
8508                        uint32_t         deasserted)
8509{
8510    struct attn_route attn;
8511    struct attn_route *group_mask;
8512    int port = SC_PORT(sc);
8513    int index;
8514    uint32_t reg_addr;
8515    uint32_t val;
8516    uint32_t aeu_mask;
8517    uint8_t global = FALSE;
8518
8519    /*
8520     * Need to take HW lock because MCP or other port might also
8521     * try to handle this event.
8522     */
8523    bxe_acquire_alr(sc);
8524
8525    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8526        /* XXX
8527         * In case of parity errors don't handle attentions so that
8528         * other function would "see" parity errors.
8529         */
8530        sc->recovery_state = BXE_RECOVERY_INIT;
8531        // XXX schedule a recovery task...
8532        /* disable HW interrupts */
8533        bxe_int_disable(sc);
8534        bxe_release_alr(sc);
8535        return;
8536    }
8537
8538    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8539    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8540    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8541    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8542    if (!CHIP_IS_E1x(sc)) {
8543        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8544    } else {
8545        attn.sig[4] = 0;
8546    }
8547
8548    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8549          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8550
8551    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8552        if (deasserted & (1 << index)) {
8553            group_mask = &sc->attn_group[index];
8554
8555            BLOGD(sc, DBG_INTR,
8556                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8557                  group_mask->sig[0], group_mask->sig[1],
8558                  group_mask->sig[2], group_mask->sig[3],
8559                  group_mask->sig[4]);
8560
8561            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8562            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8563            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8564            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8565            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8566        }
8567    }
8568
8569    bxe_release_alr(sc);
8570
8571    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8572        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8573                    COMMAND_REG_ATTN_BITS_CLR);
8574    } else {
8575        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8576    }
8577
8578    val = ~deasserted;
8579    BLOGD(sc, DBG_INTR,
8580          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8581          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8582    REG_WR(sc, reg_addr, val);
8583
8584    if (~sc->attn_state & deasserted) {
8585        BLOGE(sc, "IGU error\n");
8586    }
8587
8588    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8589                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8590
8591    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8592
8593    aeu_mask = REG_RD(sc, reg_addr);
8594
8595    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8596          aeu_mask, deasserted);
8597    aeu_mask |= (deasserted & 0x3ff);
8598    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8599
8600    REG_WR(sc, reg_addr, aeu_mask);
8601    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8602
8603    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8604    sc->attn_state &= ~deasserted;
8605    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8606}
8607
8608static void
8609bxe_attn_int(struct bxe_softc *sc)
8610{
8611    /* read local copy of bits */
8612    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8613    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8614    uint32_t attn_state = sc->attn_state;
8615
8616    /* look for changed bits */
8617    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8618    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8619
8620    BLOGD(sc, DBG_INTR,
8621          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8622          attn_bits, attn_ack, asserted, deasserted);
8623
8624    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8625        BLOGE(sc, "BAD attention state\n");
8626    }
8627
8628    /* handle bits that were raised */
8629    if (asserted) {
8630        bxe_attn_int_asserted(sc, asserted);
8631    }
8632
8633    if (deasserted) {
8634        bxe_attn_int_deasserted(sc, deasserted);
8635    }
8636}
8637
8638static uint16_t
8639bxe_update_dsb_idx(struct bxe_softc *sc)
8640{
8641    struct host_sp_status_block *def_sb = sc->def_sb;
8642    uint16_t rc = 0;
8643
8644    mb(); /* status block is written to by the chip */
8645
8646    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8647        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8648        rc |= BXE_DEF_SB_ATT_IDX;
8649    }
8650
8651    if (sc->def_idx != def_sb->sp_sb.running_index) {
8652        sc->def_idx = def_sb->sp_sb.running_index;
8653        rc |= BXE_DEF_SB_IDX;
8654    }
8655
8656    mb();
8657
8658    return (rc);
8659}
8660
8661static inline struct ecore_queue_sp_obj *
8662bxe_cid_to_q_obj(struct bxe_softc *sc,
8663                 uint32_t         cid)
8664{
8665    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8666    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8667}
8668
8669static void
8670bxe_handle_mcast_eqe(struct bxe_softc *sc)
8671{
8672    struct ecore_mcast_ramrod_params rparam;
8673    int rc;
8674
8675    memset(&rparam, 0, sizeof(rparam));
8676
8677    rparam.mcast_obj = &sc->mcast_obj;
8678
8679    BXE_MCAST_LOCK(sc);
8680
8681    /* clear pending state for the last command */
8682    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8683
8684    /* if there are pending mcast commands - send them */
8685    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8686        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8687        if (rc < 0) {
8688            BLOGD(sc, DBG_SP,
8689                  "ERROR: Failed to send pending mcast commands (%d)\n",
8690                  rc);
8691        }
8692    }
8693
8694    BXE_MCAST_UNLOCK(sc);
8695}
8696
8697static void
8698bxe_handle_classification_eqe(struct bxe_softc      *sc,
8699                              union event_ring_elem *elem)
8700{
8701    unsigned long ramrod_flags = 0;
8702    int rc = 0;
8703    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8704    struct ecore_vlan_mac_obj *vlan_mac_obj;
8705
8706    /* always push next commands out, don't wait here */
8707    bit_set(&ramrod_flags, RAMROD_CONT);
8708
8709    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8710    case ECORE_FILTER_MAC_PENDING:
8711        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8712        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8713        break;
8714
8715    case ECORE_FILTER_MCAST_PENDING:
8716        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8717        /*
8718         * This is only relevant for 57710 where multicast MACs are
8719         * configured as unicast MACs using the same ramrod.
8720         */
8721        bxe_handle_mcast_eqe(sc);
8722        return;
8723
8724    default:
8725        BLOGE(sc, "Unsupported classification command: %d\n",
8726              elem->message.data.eth_event.echo);
8727        return;
8728    }
8729
8730    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8731
8732    if (rc < 0) {
8733        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8734    } else if (rc > 0) {
8735        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8736    }
8737}
8738
8739static void
8740bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8741                       union event_ring_elem *elem)
8742{
8743    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8744
8745    /* send rx_mode command again if was requested */
8746    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8747                               &sc->sp_state)) {
8748        bxe_set_storm_rx_mode(sc);
8749    }
8750#if 0
8751    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8752                                    &sc->sp_state)) {
8753        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8754    }
8755    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8756                                    &sc->sp_state)) {
8757        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8758    }
8759#endif
8760}
8761
8762static void
8763bxe_update_eq_prod(struct bxe_softc *sc,
8764                   uint16_t         prod)
8765{
8766    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8767    wmb(); /* keep prod updates ordered */
8768}
8769
8770static void
8771bxe_eq_int(struct bxe_softc *sc)
8772{
8773    uint16_t hw_cons, sw_cons, sw_prod;
8774    union event_ring_elem *elem;
8775    uint8_t echo;
8776    uint32_t cid;
8777    uint8_t opcode;
8778    int spqe_cnt = 0;
8779    struct ecore_queue_sp_obj *q_obj;
8780    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8781    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8782
8783    hw_cons = le16toh(*sc->eq_cons_sb);
8784
8785    /*
8786     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8787     * when we get to the next-page we need to adjust so the loop
8788     * condition below will be met. The next element is the size of a
8789     * regular element and hence incrementing by 1
8790     */
8791    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8792        hw_cons++;
8793    }
8794
8795    /*
8796     * This function may never run in parallel with itself for a
8797     * specific sc and no need for a read memory barrier here.
8798     */
8799    sw_cons = sc->eq_cons;
8800    sw_prod = sc->eq_prod;
8801
8802    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8803          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8804
8805    for (;
8806         sw_cons != hw_cons;
8807         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8808
8809        elem = &sc->eq[EQ_DESC(sw_cons)];
8810
8811#if 0
8812        int rc;
8813        rc = bxe_iov_eq_sp_event(sc, elem);
8814        if (!rc) {
8815            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8816            goto next_spqe;
8817        }
8818#endif
8819
8820        /* elem CID originates from FW, actually LE */
8821        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8822        opcode = elem->message.opcode;
8823
8824        /* handle eq element */
8825        switch (opcode) {
8826#if 0
8827        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8828            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8829            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8830            continue;
8831#endif
8832
8833        case EVENT_RING_OPCODE_STAT_QUERY:
8834            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8835                  sc->stats_comp++);
8836            /* nothing to do with stats comp */
8837            goto next_spqe;
8838
8839        case EVENT_RING_OPCODE_CFC_DEL:
8840            /* handle according to cid range */
8841            /* we may want to verify here that the sc state is HALTING */
8842            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8843            q_obj = bxe_cid_to_q_obj(sc, cid);
8844            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8845                break;
8846            }
8847            goto next_spqe;
8848
8849        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8850            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8851            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8852                break;
8853            }
8854            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8855            goto next_spqe;
8856
8857        case EVENT_RING_OPCODE_START_TRAFFIC:
8858            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8859            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8860                break;
8861            }
8862            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8863            goto next_spqe;
8864
8865        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8866            echo = elem->message.data.function_update_event.echo;
8867            if (echo == SWITCH_UPDATE) {
8868                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8869                if (f_obj->complete_cmd(sc, f_obj,
8870                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8871                    break;
8872                }
8873            }
8874            else {
8875                BLOGD(sc, DBG_SP,
8876                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8877#if 0
8878                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8879                /*
8880                 * We will perform the queues update from the sp_core_task as
8881                 * all queue SP operations should run with CORE_LOCK.
8882                 */
8883                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8884                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8885#endif
8886            }
8887            goto next_spqe;
8888
8889#if 0
8890        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8891            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8892            bxe_after_afex_vif_lists(sc, elem);
8893            goto next_spqe;
8894#endif
8895
8896        case EVENT_RING_OPCODE_FORWARD_SETUP:
8897            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8898            if (q_obj->complete_cmd(sc, q_obj,
8899                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8900                break;
8901            }
8902            goto next_spqe;
8903
8904        case EVENT_RING_OPCODE_FUNCTION_START:
8905            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8906            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8907                break;
8908            }
8909            goto next_spqe;
8910
8911        case EVENT_RING_OPCODE_FUNCTION_STOP:
8912            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8913            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8914                break;
8915            }
8916            goto next_spqe;
8917        }
8918
8919        switch (opcode | sc->state) {
8920        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8921        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8922            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8923            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8924            rss_raw->clear_pending(rss_raw);
8925            break;
8926
8927        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8928        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8929        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8930        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8931        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8932        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8933            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8934            bxe_handle_classification_eqe(sc, elem);
8935            break;
8936
8937        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8938        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8939        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8940            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8941            bxe_handle_mcast_eqe(sc);
8942            break;
8943
8944        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8945        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8946        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8947            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8948            bxe_handle_rx_mode_eqe(sc, elem);
8949            break;
8950
8951        default:
8952            /* unknown event log error and continue */
8953            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8954                  elem->message.opcode, sc->state);
8955        }
8956
8957next_spqe:
8958        spqe_cnt++;
8959    } /* for */
8960
8961    mb();
8962    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8963
8964    sc->eq_cons = sw_cons;
8965    sc->eq_prod = sw_prod;
8966
8967    /* make sure that above mem writes were issued towards the memory */
8968    wmb();
8969
8970    /* update producer */
8971    bxe_update_eq_prod(sc, sc->eq_prod);
8972}
8973
8974static void
8975bxe_handle_sp_tq(void *context,
8976                 int  pending)
8977{
8978    struct bxe_softc *sc = (struct bxe_softc *)context;
8979    uint16_t status;
8980
8981    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8982
8983    /* what work needs to be performed? */
8984    status = bxe_update_dsb_idx(sc);
8985
8986    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8987
8988    /* HW attentions */
8989    if (status & BXE_DEF_SB_ATT_IDX) {
8990        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8991        bxe_attn_int(sc);
8992        status &= ~BXE_DEF_SB_ATT_IDX;
8993    }
8994
8995    /* SP events: STAT_QUERY and others */
8996    if (status & BXE_DEF_SB_IDX) {
8997        /* handle EQ completions */
8998        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8999        bxe_eq_int(sc);
9000        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9001                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
9002        status &= ~BXE_DEF_SB_IDX;
9003    }
9004
9005    /* if status is non zero then something went wrong */
9006    if (__predict_false(status)) {
9007        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9008    }
9009
9010    /* ack status block only if something was actually handled */
9011    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9012               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9013
9014    /*
9015     * Must be called after the EQ processing (since eq leads to sriov
9016     * ramrod completion flows).
9017     * This flow may have been scheduled by the arrival of a ramrod
9018     * completion, or by the sriov code rescheduling itself.
9019     */
9020    // XXX bxe_iov_sp_task(sc);
9021
9022#if 0
9023    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9024    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9025                               &sc->sp_state)) {
9026        bxe_link_report(sc);
9027        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9028    }
9029#endif
9030}
9031
9032static void
9033bxe_handle_fp_tq(void *context,
9034                 int  pending)
9035{
9036    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9037    struct bxe_softc *sc = fp->sc;
9038    uint8_t more_tx = FALSE;
9039    uint8_t more_rx = FALSE;
9040
9041    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9042
9043    /* XXX
9044     * IFF_DRV_RUNNING state can't be checked here since we process
9045     * slowpath events on a client queue during setup. Instead
9046     * we need to add a "process/continue" flag here that the driver
9047     * can use to tell the task here not to do anything.
9048     */
9049#if 0
9050    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9051        return;
9052    }
9053#endif
9054
9055    /* update the fastpath index */
9056    bxe_update_fp_sb_idx(fp);
9057
9058    /* XXX add loop here if ever support multiple tx CoS */
9059    /* fp->txdata[cos] */
9060    if (bxe_has_tx_work(fp)) {
9061        BXE_FP_TX_LOCK(fp);
9062        more_tx = bxe_txeof(sc, fp);
9063        BXE_FP_TX_UNLOCK(fp);
9064    }
9065
9066    if (bxe_has_rx_work(fp)) {
9067        more_rx = bxe_rxeof(sc, fp);
9068    }
9069
9070    if (more_rx /*|| more_tx*/) {
9071        /* still more work to do */
9072        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9073        return;
9074    }
9075
9076    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9077               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9078}
9079
9080static void
9081bxe_task_fp(struct bxe_fastpath *fp)
9082{
9083    struct bxe_softc *sc = fp->sc;
9084    uint8_t more_tx = FALSE;
9085    uint8_t more_rx = FALSE;
9086
9087    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9088
9089    /* update the fastpath index */
9090    bxe_update_fp_sb_idx(fp);
9091
9092    /* XXX add loop here if ever support multiple tx CoS */
9093    /* fp->txdata[cos] */
9094    if (bxe_has_tx_work(fp)) {
9095        BXE_FP_TX_LOCK(fp);
9096        more_tx = bxe_txeof(sc, fp);
9097        BXE_FP_TX_UNLOCK(fp);
9098    }
9099
9100    if (bxe_has_rx_work(fp)) {
9101        more_rx = bxe_rxeof(sc, fp);
9102    }
9103
9104    if (more_rx /*|| more_tx*/) {
9105        /* still more work to do, bail out if this ISR and process later */
9106        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9107        return;
9108    }
9109
9110    /*
9111     * Here we write the fastpath index taken before doing any tx or rx work.
9112     * It is very well possible other hw events occurred up to this point and
9113     * they were actually processed accordingly above. Since we're going to
9114     * write an older fastpath index, an interrupt is coming which we might
9115     * not do any work in.
9116     */
9117    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9118               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9119}
9120
9121/*
9122 * Legacy interrupt entry point.
9123 *
9124 * Verifies that the controller generated the interrupt and
9125 * then calls a separate routine to handle the various
9126 * interrupt causes: link, RX, and TX.
9127 */
9128static void
9129bxe_intr_legacy(void *xsc)
9130{
9131    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9132    struct bxe_fastpath *fp;
9133    uint16_t status, mask;
9134    int i;
9135
9136    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9137
9138#if 0
9139    /* Don't handle any interrupts if we're not ready. */
9140    if (__predict_false(sc->intr_sem != 0)) {
9141        return;
9142    }
9143#endif
9144
9145    /*
9146     * 0 for ustorm, 1 for cstorm
9147     * the bits returned from ack_int() are 0-15
9148     * bit 0 = attention status block
9149     * bit 1 = fast path status block
9150     * a mask of 0x2 or more = tx/rx event
9151     * a mask of 1 = slow path event
9152     */
9153
9154    status = bxe_ack_int(sc);
9155
9156    /* the interrupt is not for us */
9157    if (__predict_false(status == 0)) {
9158        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9159        return;
9160    }
9161
9162    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9163
9164    FOR_EACH_ETH_QUEUE(sc, i) {
9165        fp = &sc->fp[i];
9166        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9167        if (status & mask) {
9168            /* acknowledge and disable further fastpath interrupts */
9169            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9170            bxe_task_fp(fp);
9171            status &= ~mask;
9172        }
9173    }
9174
9175#if 0
9176    if (CNIC_SUPPORT(sc)) {
9177        mask = 0x2;
9178        if (status & (mask | 0x1)) {
9179            ...
9180            status &= ~mask;
9181        }
9182    }
9183#endif
9184
9185    if (__predict_false(status & 0x1)) {
9186        /* acknowledge and disable further slowpath interrupts */
9187        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9188
9189        /* schedule slowpath handler */
9190        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9191
9192        status &= ~0x1;
9193    }
9194
9195    if (__predict_false(status)) {
9196        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9197    }
9198}
9199
9200/* slowpath interrupt entry point */
9201static void
9202bxe_intr_sp(void *xsc)
9203{
9204    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9205
9206    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9207
9208    /* acknowledge and disable further slowpath interrupts */
9209    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9210
9211    /* schedule slowpath handler */
9212    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9213}
9214
9215/* fastpath interrupt entry point */
9216static void
9217bxe_intr_fp(void *xfp)
9218{
9219    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9220    struct bxe_softc *sc = fp->sc;
9221
9222    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9223
9224    BLOGD(sc, DBG_INTR,
9225          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9226          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9227
9228#if 0
9229    /* Don't handle any interrupts if we're not ready. */
9230    if (__predict_false(sc->intr_sem != 0)) {
9231        return;
9232    }
9233#endif
9234
9235    /* acknowledge and disable further fastpath interrupts */
9236    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9237
9238    bxe_task_fp(fp);
9239}
9240
9241/* Release all interrupts allocated by the driver. */
9242static void
9243bxe_interrupt_free(struct bxe_softc *sc)
9244{
9245    int i;
9246
9247    switch (sc->interrupt_mode) {
9248    case INTR_MODE_INTX:
9249        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9250        if (sc->intr[0].resource != NULL) {
9251            bus_release_resource(sc->dev,
9252                                 SYS_RES_IRQ,
9253                                 sc->intr[0].rid,
9254                                 sc->intr[0].resource);
9255        }
9256        break;
9257    case INTR_MODE_MSI:
9258        for (i = 0; i < sc->intr_count; i++) {
9259            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9260            if (sc->intr[i].resource && sc->intr[i].rid) {
9261                bus_release_resource(sc->dev,
9262                                     SYS_RES_IRQ,
9263                                     sc->intr[i].rid,
9264                                     sc->intr[i].resource);
9265            }
9266        }
9267        pci_release_msi(sc->dev);
9268        break;
9269    case INTR_MODE_MSIX:
9270        for (i = 0; i < sc->intr_count; i++) {
9271            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9272            if (sc->intr[i].resource && sc->intr[i].rid) {
9273                bus_release_resource(sc->dev,
9274                                     SYS_RES_IRQ,
9275                                     sc->intr[i].rid,
9276                                     sc->intr[i].resource);
9277            }
9278        }
9279        pci_release_msi(sc->dev);
9280        break;
9281    default:
9282        /* nothing to do as initial allocation failed */
9283        break;
9284    }
9285}
9286
9287/*
9288 * This function determines and allocates the appropriate
9289 * interrupt based on system capabilites and user request.
9290 *
9291 * The user may force a particular interrupt mode, specify
9292 * the number of receive queues, specify the method for
9293 * distribuitng received frames to receive queues, or use
9294 * the default settings which will automatically select the
9295 * best supported combination.  In addition, the OS may or
9296 * may not support certain combinations of these settings.
9297 * This routine attempts to reconcile the settings requested
9298 * by the user with the capabilites available from the system
9299 * to select the optimal combination of features.
9300 *
9301 * Returns:
9302 *   0 = Success, !0 = Failure.
9303 */
9304static int
9305bxe_interrupt_alloc(struct bxe_softc *sc)
9306{
9307    int msix_count = 0;
9308    int msi_count = 0;
9309    int num_requested = 0;
9310    int num_allocated = 0;
9311    int rid, i, j;
9312    int rc;
9313
9314    /* get the number of available MSI/MSI-X interrupts from the OS */
9315    if (sc->interrupt_mode > 0) {
9316        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9317            msix_count = pci_msix_count(sc->dev);
9318        }
9319
9320        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9321            msi_count = pci_msi_count(sc->dev);
9322        }
9323
9324        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9325              msi_count, msix_count);
9326    }
9327
9328    do { /* try allocating MSI-X interrupt resources (at least 2) */
9329        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9330            break;
9331        }
9332
9333        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9334            (msix_count < 2)) {
9335            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9336            break;
9337        }
9338
9339        /* ask for the necessary number of MSI-X vectors */
9340        num_requested = min((sc->num_queues + 1), msix_count);
9341
9342        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9343
9344        num_allocated = num_requested;
9345        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9346            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9347            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9348            break;
9349        }
9350
9351        if (num_allocated < 2) { /* possible? */
9352            BLOGE(sc, "MSI-X allocation less than 2!\n");
9353            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9354            pci_release_msi(sc->dev);
9355            break;
9356        }
9357
9358        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9359              num_requested, num_allocated);
9360
9361        /* best effort so use the number of vectors allocated to us */
9362        sc->intr_count = num_allocated;
9363        sc->num_queues = num_allocated - 1;
9364
9365        rid = 1; /* initial resource identifier */
9366
9367        /* allocate the MSI-X vectors */
9368        for (i = 0; i < num_allocated; i++) {
9369            sc->intr[i].rid = (rid + i);
9370
9371            if ((sc->intr[i].resource =
9372                 bus_alloc_resource_any(sc->dev,
9373                                        SYS_RES_IRQ,
9374                                        &sc->intr[i].rid,
9375                                        RF_ACTIVE)) == NULL) {
9376                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9377                      i, (rid + i));
9378
9379                for (j = (i - 1); j >= 0; j--) {
9380                    bus_release_resource(sc->dev,
9381                                         SYS_RES_IRQ,
9382                                         sc->intr[j].rid,
9383                                         sc->intr[j].resource);
9384                }
9385
9386                sc->intr_count = 0;
9387                sc->num_queues = 0;
9388                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9389                pci_release_msi(sc->dev);
9390                break;
9391            }
9392
9393            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9394        }
9395    } while (0);
9396
9397    do { /* try allocating MSI vector resources (at least 2) */
9398        if (sc->interrupt_mode != INTR_MODE_MSI) {
9399            break;
9400        }
9401
9402        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9403            (msi_count < 1)) {
9404            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9405            break;
9406        }
9407
9408        /* ask for a single MSI vector */
9409        num_requested = 1;
9410
9411        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9412
9413        num_allocated = num_requested;
9414        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9415            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9416            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9417            break;
9418        }
9419
9420        if (num_allocated != 1) { /* possible? */
9421            BLOGE(sc, "MSI allocation is not 1!\n");
9422            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9423            pci_release_msi(sc->dev);
9424            break;
9425        }
9426
9427        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9428              num_requested, num_allocated);
9429
9430        /* best effort so use the number of vectors allocated to us */
9431        sc->intr_count = num_allocated;
9432        sc->num_queues = num_allocated;
9433
9434        rid = 1; /* initial resource identifier */
9435
9436        sc->intr[0].rid = rid;
9437
9438        if ((sc->intr[0].resource =
9439             bus_alloc_resource_any(sc->dev,
9440                                    SYS_RES_IRQ,
9441                                    &sc->intr[0].rid,
9442                                    RF_ACTIVE)) == NULL) {
9443            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9444            sc->intr_count = 0;
9445            sc->num_queues = 0;
9446            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9447            pci_release_msi(sc->dev);
9448            break;
9449        }
9450
9451        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9452    } while (0);
9453
9454    do { /* try allocating INTx vector resources */
9455        if (sc->interrupt_mode != INTR_MODE_INTX) {
9456            break;
9457        }
9458
9459        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9460
9461        /* only one vector for INTx */
9462        sc->intr_count = 1;
9463        sc->num_queues = 1;
9464
9465        rid = 0; /* initial resource identifier */
9466
9467        sc->intr[0].rid = rid;
9468
9469        if ((sc->intr[0].resource =
9470             bus_alloc_resource_any(sc->dev,
9471                                    SYS_RES_IRQ,
9472                                    &sc->intr[0].rid,
9473                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9474            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9475            sc->intr_count = 0;
9476            sc->num_queues = 0;
9477            sc->interrupt_mode = -1; /* Failed! */
9478            break;
9479        }
9480
9481        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9482    } while (0);
9483
9484    if (sc->interrupt_mode == -1) {
9485        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9486        rc = 1;
9487    } else {
9488        BLOGD(sc, DBG_LOAD,
9489              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9490              sc->interrupt_mode, sc->num_queues);
9491        rc = 0;
9492    }
9493
9494    return (rc);
9495}
9496
9497static void
9498bxe_interrupt_detach(struct bxe_softc *sc)
9499{
9500    struct bxe_fastpath *fp;
9501    int i;
9502
9503    /* release interrupt resources */
9504    for (i = 0; i < sc->intr_count; i++) {
9505        if (sc->intr[i].resource && sc->intr[i].tag) {
9506            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9507            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9508        }
9509    }
9510
9511    for (i = 0; i < sc->num_queues; i++) {
9512        fp = &sc->fp[i];
9513        if (fp->tq) {
9514            taskqueue_drain(fp->tq, &fp->tq_task);
9515            taskqueue_free(fp->tq);
9516            fp->tq = NULL;
9517        }
9518    }
9519
9520    if (sc->rx_mode_tq) {
9521        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9522        taskqueue_free(sc->rx_mode_tq);
9523        sc->rx_mode_tq = NULL;
9524    }
9525
9526    if (sc->sp_tq) {
9527        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9528        taskqueue_free(sc->sp_tq);
9529        sc->sp_tq = NULL;
9530    }
9531}
9532
9533/*
9534 * Enables interrupts and attach to the ISR.
9535 *
9536 * When using multiple MSI/MSI-X vectors the first vector
9537 * is used for slowpath operations while all remaining
9538 * vectors are used for fastpath operations.  If only a
9539 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9540 * ISR must look for both slowpath and fastpath completions.
9541 */
9542static int
9543bxe_interrupt_attach(struct bxe_softc *sc)
9544{
9545    struct bxe_fastpath *fp;
9546    int rc = 0;
9547    int i;
9548
9549    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9550             "bxe%d_sp_tq", sc->unit);
9551    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9552    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9553                                      taskqueue_thread_enqueue,
9554                                      &sc->sp_tq);
9555    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9556                            "%s", sc->sp_tq_name);
9557
9558    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9559             "bxe%d_rx_mode_tq", sc->unit);
9560    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9561    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9562                                           taskqueue_thread_enqueue,
9563                                           &sc->rx_mode_tq);
9564    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9565                            "%s", sc->rx_mode_tq_name);
9566
9567    for (i = 0; i < sc->num_queues; i++) {
9568        fp = &sc->fp[i];
9569        snprintf(fp->tq_name, sizeof(fp->tq_name),
9570                 "bxe%d_fp%d_tq", sc->unit, i);
9571        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9572        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9573                                       taskqueue_thread_enqueue,
9574                                       &fp->tq);
9575        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9576                                "%s", fp->tq_name);
9577    }
9578
9579    /* setup interrupt handlers */
9580    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9581        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9582
9583        /*
9584         * Setup the interrupt handler. Note that we pass the driver instance
9585         * to the interrupt handler for the slowpath.
9586         */
9587        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9588                                 (INTR_TYPE_NET | INTR_MPSAFE),
9589                                 NULL, bxe_intr_sp, sc,
9590                                 &sc->intr[0].tag)) != 0) {
9591            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9592            goto bxe_interrupt_attach_exit;
9593        }
9594
9595        bus_describe_intr(sc->dev, sc->intr[0].resource,
9596                          sc->intr[0].tag, "sp");
9597
9598        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9599
9600        /* initialize the fastpath vectors (note the first was used for sp) */
9601        for (i = 0; i < sc->num_queues; i++) {
9602            fp = &sc->fp[i];
9603            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9604
9605            /*
9606             * Setup the interrupt handler. Note that we pass the
9607             * fastpath context to the interrupt handler in this
9608             * case.
9609             */
9610            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9611                                     (INTR_TYPE_NET | INTR_MPSAFE),
9612                                     NULL, bxe_intr_fp, fp,
9613                                     &sc->intr[i + 1].tag)) != 0) {
9614                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9615                      (i + 1), rc);
9616                goto bxe_interrupt_attach_exit;
9617            }
9618
9619            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9620                              sc->intr[i + 1].tag, "fp%02d", i);
9621
9622            /* bind the fastpath instance to a cpu */
9623            if (sc->num_queues > 1) {
9624                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9625            }
9626
9627            fp->state = BXE_FP_STATE_IRQ;
9628        }
9629    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9630        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9631
9632        /*
9633         * Setup the interrupt handler. Note that we pass the
9634         * driver instance to the interrupt handler which
9635         * will handle both the slowpath and fastpath.
9636         */
9637        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9638                                 (INTR_TYPE_NET | INTR_MPSAFE),
9639                                 NULL, bxe_intr_legacy, sc,
9640                                 &sc->intr[0].tag)) != 0) {
9641            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9642            goto bxe_interrupt_attach_exit;
9643        }
9644
9645    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9646        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9647
9648        /*
9649         * Setup the interrupt handler. Note that we pass the
9650         * driver instance to the interrupt handler which
9651         * will handle both the slowpath and fastpath.
9652         */
9653        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9654                                 (INTR_TYPE_NET | INTR_MPSAFE),
9655                                 NULL, bxe_intr_legacy, sc,
9656                                 &sc->intr[0].tag)) != 0) {
9657            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9658            goto bxe_interrupt_attach_exit;
9659        }
9660    }
9661
9662bxe_interrupt_attach_exit:
9663
9664    return (rc);
9665}
9666
9667static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9668static int  bxe_init_hw_common(struct bxe_softc *sc);
9669static int  bxe_init_hw_port(struct bxe_softc *sc);
9670static int  bxe_init_hw_func(struct bxe_softc *sc);
9671static void bxe_reset_common(struct bxe_softc *sc);
9672static void bxe_reset_port(struct bxe_softc *sc);
9673static void bxe_reset_func(struct bxe_softc *sc);
9674static int  bxe_gunzip_init(struct bxe_softc *sc);
9675static void bxe_gunzip_end(struct bxe_softc *sc);
9676static int  bxe_init_firmware(struct bxe_softc *sc);
9677static void bxe_release_firmware(struct bxe_softc *sc);
9678
9679static struct
9680ecore_func_sp_drv_ops bxe_func_sp_drv = {
9681    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9682    .init_hw_cmn      = bxe_init_hw_common,
9683    .init_hw_port     = bxe_init_hw_port,
9684    .init_hw_func     = bxe_init_hw_func,
9685
9686    .reset_hw_cmn     = bxe_reset_common,
9687    .reset_hw_port    = bxe_reset_port,
9688    .reset_hw_func    = bxe_reset_func,
9689
9690    .gunzip_init      = bxe_gunzip_init,
9691    .gunzip_end       = bxe_gunzip_end,
9692
9693    .init_fw          = bxe_init_firmware,
9694    .release_fw       = bxe_release_firmware,
9695};
9696
9697static void
9698bxe_init_func_obj(struct bxe_softc *sc)
9699{
9700    sc->dmae_ready = 0;
9701
9702    ecore_init_func_obj(sc,
9703                        &sc->func_obj,
9704                        BXE_SP(sc, func_rdata),
9705                        BXE_SP_MAPPING(sc, func_rdata),
9706                        BXE_SP(sc, func_afex_rdata),
9707                        BXE_SP_MAPPING(sc, func_afex_rdata),
9708                        &bxe_func_sp_drv);
9709}
9710
9711static int
9712bxe_init_hw(struct bxe_softc *sc,
9713            uint32_t         load_code)
9714{
9715    struct ecore_func_state_params func_params = { NULL };
9716    int rc;
9717
9718    /* prepare the parameters for function state transitions */
9719    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9720
9721    func_params.f_obj = &sc->func_obj;
9722    func_params.cmd = ECORE_F_CMD_HW_INIT;
9723
9724    func_params.params.hw_init.load_phase = load_code;
9725
9726    /*
9727     * Via a plethora of function pointers, we will eventually reach
9728     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9729     */
9730    rc = ecore_func_state_change(sc, &func_params);
9731
9732    return (rc);
9733}
9734
9735static void
9736bxe_fill(struct bxe_softc *sc,
9737         uint32_t         addr,
9738         int              fill,
9739         uint32_t         len)
9740{
9741    uint32_t i;
9742
9743    if (!(len % 4) && !(addr % 4)) {
9744        for (i = 0; i < len; i += 4) {
9745            REG_WR(sc, (addr + i), fill);
9746        }
9747    } else {
9748        for (i = 0; i < len; i++) {
9749            REG_WR8(sc, (addr + i), fill);
9750        }
9751    }
9752}
9753
9754/* writes FP SP data to FW - data_size in dwords */
9755static void
9756bxe_wr_fp_sb_data(struct bxe_softc *sc,
9757                  int              fw_sb_id,
9758                  uint32_t         *sb_data_p,
9759                  uint32_t         data_size)
9760{
9761    int index;
9762
9763    for (index = 0; index < data_size; index++) {
9764        REG_WR(sc,
9765               (BAR_CSTRORM_INTMEM +
9766                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9767                (sizeof(uint32_t) * index)),
9768               *(sb_data_p + index));
9769    }
9770}
9771
9772static void
9773bxe_zero_fp_sb(struct bxe_softc *sc,
9774               int              fw_sb_id)
9775{
9776    struct hc_status_block_data_e2 sb_data_e2;
9777    struct hc_status_block_data_e1x sb_data_e1x;
9778    uint32_t *sb_data_p;
9779    uint32_t data_size = 0;
9780
9781    if (!CHIP_IS_E1x(sc)) {
9782        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9783        sb_data_e2.common.state = SB_DISABLED;
9784        sb_data_e2.common.p_func.vf_valid = FALSE;
9785        sb_data_p = (uint32_t *)&sb_data_e2;
9786        data_size = (sizeof(struct hc_status_block_data_e2) /
9787                     sizeof(uint32_t));
9788    } else {
9789        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9790        sb_data_e1x.common.state = SB_DISABLED;
9791        sb_data_e1x.common.p_func.vf_valid = FALSE;
9792        sb_data_p = (uint32_t *)&sb_data_e1x;
9793        data_size = (sizeof(struct hc_status_block_data_e1x) /
9794                     sizeof(uint32_t));
9795    }
9796
9797    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9798
9799    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9800             0, CSTORM_STATUS_BLOCK_SIZE);
9801    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9802             0, CSTORM_SYNC_BLOCK_SIZE);
9803}
9804
9805static void
9806bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9807                  struct hc_sp_status_block_data *sp_sb_data)
9808{
9809    int i;
9810
9811    for (i = 0;
9812         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9813         i++) {
9814        REG_WR(sc,
9815               (BAR_CSTRORM_INTMEM +
9816                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9817                (i * sizeof(uint32_t))),
9818               *((uint32_t *)sp_sb_data + i));
9819    }
9820}
9821
9822static void
9823bxe_zero_sp_sb(struct bxe_softc *sc)
9824{
9825    struct hc_sp_status_block_data sp_sb_data;
9826
9827    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9828
9829    sp_sb_data.state           = SB_DISABLED;
9830    sp_sb_data.p_func.vf_valid = FALSE;
9831
9832    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9833
9834    bxe_fill(sc,
9835             (BAR_CSTRORM_INTMEM +
9836              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9837              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9838    bxe_fill(sc,
9839             (BAR_CSTRORM_INTMEM +
9840              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9841              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9842}
9843
9844static void
9845bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9846                             int                       igu_sb_id,
9847                             int                       igu_seg_id)
9848{
9849    hc_sm->igu_sb_id      = igu_sb_id;
9850    hc_sm->igu_seg_id     = igu_seg_id;
9851    hc_sm->timer_value    = 0xFF;
9852    hc_sm->time_to_expire = 0xFFFFFFFF;
9853}
9854
9855static void
9856bxe_map_sb_state_machines(struct hc_index_data *index_data)
9857{
9858    /* zero out state machine indices */
9859
9860    /* rx indices */
9861    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9862
9863    /* tx indices */
9864    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9865    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9866    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9867    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9868
9869    /* map indices */
9870
9871    /* rx indices */
9872    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9873        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9874
9875    /* tx indices */
9876    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9877        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9878    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9879        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9880    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9881        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9882    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9883        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9884}
9885
9886static void
9887bxe_init_sb(struct bxe_softc *sc,
9888            bus_addr_t       busaddr,
9889            int              vfid,
9890            uint8_t          vf_valid,
9891            int              fw_sb_id,
9892            int              igu_sb_id)
9893{
9894    struct hc_status_block_data_e2  sb_data_e2;
9895    struct hc_status_block_data_e1x sb_data_e1x;
9896    struct hc_status_block_sm       *hc_sm_p;
9897    uint32_t *sb_data_p;
9898    int igu_seg_id;
9899    int data_size;
9900
9901    if (CHIP_INT_MODE_IS_BC(sc)) {
9902        igu_seg_id = HC_SEG_ACCESS_NORM;
9903    } else {
9904        igu_seg_id = IGU_SEG_ACCESS_NORM;
9905    }
9906
9907    bxe_zero_fp_sb(sc, fw_sb_id);
9908
9909    if (!CHIP_IS_E1x(sc)) {
9910        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9911        sb_data_e2.common.state = SB_ENABLED;
9912        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9913        sb_data_e2.common.p_func.vf_id = vfid;
9914        sb_data_e2.common.p_func.vf_valid = vf_valid;
9915        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9916        sb_data_e2.common.same_igu_sb_1b = TRUE;
9917        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9918        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9919        hc_sm_p = sb_data_e2.common.state_machine;
9920        sb_data_p = (uint32_t *)&sb_data_e2;
9921        data_size = (sizeof(struct hc_status_block_data_e2) /
9922                     sizeof(uint32_t));
9923        bxe_map_sb_state_machines(sb_data_e2.index_data);
9924    } else {
9925        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9926        sb_data_e1x.common.state = SB_ENABLED;
9927        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9928        sb_data_e1x.common.p_func.vf_id = 0xff;
9929        sb_data_e1x.common.p_func.vf_valid = FALSE;
9930        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9931        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9932        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9933        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9934        hc_sm_p = sb_data_e1x.common.state_machine;
9935        sb_data_p = (uint32_t *)&sb_data_e1x;
9936        data_size = (sizeof(struct hc_status_block_data_e1x) /
9937                     sizeof(uint32_t));
9938        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9939    }
9940
9941    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9942    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9943
9944    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9945
9946    /* write indices to HW - PCI guarantees endianity of regpairs */
9947    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9948}
9949
9950static inline uint8_t
9951bxe_fp_qzone_id(struct bxe_fastpath *fp)
9952{
9953    if (CHIP_IS_E1x(fp->sc)) {
9954        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9955    } else {
9956        return (fp->cl_id);
9957    }
9958}
9959
9960static inline uint32_t
9961bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9962                           struct bxe_fastpath *fp)
9963{
9964    uint32_t offset = BAR_USTRORM_INTMEM;
9965
9966#if 0
9967    if (IS_VF(sc)) {
9968        return (PXP_VF_ADDR_USDM_QUEUES_START +
9969                (sc->acquire_resp.resc.hw_qid[fp->index] *
9970                 sizeof(struct ustorm_queue_zone_data)));
9971    } else
9972#endif
9973    if (!CHIP_IS_E1x(sc)) {
9974        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9975    } else {
9976        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9977    }
9978
9979    return (offset);
9980}
9981
9982static void
9983bxe_init_eth_fp(struct bxe_softc *sc,
9984                int              idx)
9985{
9986    struct bxe_fastpath *fp = &sc->fp[idx];
9987    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9988    unsigned long q_type = 0;
9989    int cos;
9990
9991    fp->sc    = sc;
9992    fp->index = idx;
9993
9994    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9995             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9996    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9997
9998    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9999             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10000    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10001
10002    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10003    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10004
10005    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10006                    (SC_L_ID(sc) + idx) :
10007                    /* want client ID same as IGU SB ID for non-E1 */
10008                    fp->igu_sb_id;
10009    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10010
10011    /* setup sb indices */
10012    if (!CHIP_IS_E1x(sc)) {
10013        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10014        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10015    } else {
10016        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10017        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10018    }
10019
10020    /* init shortcut */
10021    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10022
10023    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10024
10025    /*
10026     * XXX If multiple CoS is ever supported then each fastpath structure
10027     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10028     */
10029    for (cos = 0; cos < sc->max_cos; cos++) {
10030        cids[cos] = idx;
10031    }
10032    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10033
10034    /* nothing more for a VF to do */
10035    if (IS_VF(sc)) {
10036        return;
10037    }
10038
10039    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10040                fp->fw_sb_id, fp->igu_sb_id);
10041
10042    bxe_update_fp_sb_idx(fp);
10043
10044    /* Configure Queue State object */
10045    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10046    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10047
10048    ecore_init_queue_obj(sc,
10049                         &sc->sp_objs[idx].q_obj,
10050                         fp->cl_id,
10051                         cids,
10052                         sc->max_cos,
10053                         SC_FUNC(sc),
10054                         BXE_SP(sc, q_rdata),
10055                         BXE_SP_MAPPING(sc, q_rdata),
10056                         q_type);
10057
10058    /* configure classification DBs */
10059    ecore_init_mac_obj(sc,
10060                       &sc->sp_objs[idx].mac_obj,
10061                       fp->cl_id,
10062                       idx,
10063                       SC_FUNC(sc),
10064                       BXE_SP(sc, mac_rdata),
10065                       BXE_SP_MAPPING(sc, mac_rdata),
10066                       ECORE_FILTER_MAC_PENDING,
10067                       &sc->sp_state,
10068                       ECORE_OBJ_TYPE_RX_TX,
10069                       &sc->macs_pool);
10070
10071    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10072          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10073}
10074
10075static inline void
10076bxe_update_rx_prod(struct bxe_softc    *sc,
10077                   struct bxe_fastpath *fp,
10078                   uint16_t            rx_bd_prod,
10079                   uint16_t            rx_cq_prod,
10080                   uint16_t            rx_sge_prod)
10081{
10082    struct ustorm_eth_rx_producers rx_prods = { 0 };
10083    uint32_t i;
10084
10085    /* update producers */
10086    rx_prods.bd_prod  = rx_bd_prod;
10087    rx_prods.cqe_prod = rx_cq_prod;
10088    rx_prods.sge_prod = rx_sge_prod;
10089
10090    /*
10091     * Make sure that the BD and SGE data is updated before updating the
10092     * producers since FW might read the BD/SGE right after the producer
10093     * is updated.
10094     * This is only applicable for weak-ordered memory model archs such
10095     * as IA-64. The following barrier is also mandatory since FW will
10096     * assumes BDs must have buffers.
10097     */
10098    wmb();
10099
10100    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10101        REG_WR(sc,
10102               (fp->ustorm_rx_prods_offset + (i * 4)),
10103               ((uint32_t *)&rx_prods)[i]);
10104    }
10105
10106    wmb(); /* keep prod updates ordered */
10107
10108    BLOGD(sc, DBG_RX,
10109          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10110          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10111}
10112
10113static void
10114bxe_init_rx_rings(struct bxe_softc *sc)
10115{
10116    struct bxe_fastpath *fp;
10117    int i;
10118
10119    for (i = 0; i < sc->num_queues; i++) {
10120        fp = &sc->fp[i];
10121
10122        fp->rx_bd_cons = 0;
10123
10124        /*
10125         * Activate the BD ring...
10126         * Warning, this will generate an interrupt (to the TSTORM)
10127         * so this can only be done after the chip is initialized
10128         */
10129        bxe_update_rx_prod(sc, fp,
10130                           fp->rx_bd_prod,
10131                           fp->rx_cq_prod,
10132                           fp->rx_sge_prod);
10133
10134        if (i != 0) {
10135            continue;
10136        }
10137
10138        if (CHIP_IS_E1(sc)) {
10139            REG_WR(sc,
10140                   (BAR_USTRORM_INTMEM +
10141                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10142                   U64_LO(fp->rcq_dma.paddr));
10143            REG_WR(sc,
10144                   (BAR_USTRORM_INTMEM +
10145                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10146                   U64_HI(fp->rcq_dma.paddr));
10147        }
10148    }
10149}
10150
10151static void
10152bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10153{
10154    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10155    fp->tx_db.data.zero_fill1 = 0;
10156    fp->tx_db.data.prod = 0;
10157
10158    fp->tx_pkt_prod = 0;
10159    fp->tx_pkt_cons = 0;
10160    fp->tx_bd_prod = 0;
10161    fp->tx_bd_cons = 0;
10162    fp->eth_q_stats.tx_pkts = 0;
10163}
10164
10165static inline void
10166bxe_init_tx_rings(struct bxe_softc *sc)
10167{
10168    int i;
10169
10170    for (i = 0; i < sc->num_queues; i++) {
10171#if 0
10172        uint8_t cos;
10173        for (cos = 0; cos < sc->max_cos; cos++) {
10174            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10175        }
10176#else
10177        bxe_init_tx_ring_one(&sc->fp[i]);
10178#endif
10179    }
10180}
10181
10182static void
10183bxe_init_def_sb(struct bxe_softc *sc)
10184{
10185    struct host_sp_status_block *def_sb = sc->def_sb;
10186    bus_addr_t mapping = sc->def_sb_dma.paddr;
10187    int igu_sp_sb_index;
10188    int igu_seg_id;
10189    int port = SC_PORT(sc);
10190    int func = SC_FUNC(sc);
10191    int reg_offset, reg_offset_en5;
10192    uint64_t section;
10193    int index, sindex;
10194    struct hc_sp_status_block_data sp_sb_data;
10195
10196    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10197
10198    if (CHIP_INT_MODE_IS_BC(sc)) {
10199        igu_sp_sb_index = DEF_SB_IGU_ID;
10200        igu_seg_id = HC_SEG_ACCESS_DEF;
10201    } else {
10202        igu_sp_sb_index = sc->igu_dsb_id;
10203        igu_seg_id = IGU_SEG_ACCESS_DEF;
10204    }
10205
10206    /* attentions */
10207    section = ((uint64_t)mapping +
10208               offsetof(struct host_sp_status_block, atten_status_block));
10209    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10210    sc->attn_state = 0;
10211
10212    reg_offset = (port) ?
10213                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10214                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10215    reg_offset_en5 = (port) ?
10216                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10217                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10218
10219    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10220        /* take care of sig[0]..sig[4] */
10221        for (sindex = 0; sindex < 4; sindex++) {
10222            sc->attn_group[index].sig[sindex] =
10223                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10224        }
10225
10226        if (!CHIP_IS_E1x(sc)) {
10227            /*
10228             * enable5 is separate from the rest of the registers,
10229             * and the address skip is 4 and not 16 between the
10230             * different groups
10231             */
10232            sc->attn_group[index].sig[4] =
10233                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10234        } else {
10235            sc->attn_group[index].sig[4] = 0;
10236        }
10237    }
10238
10239    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10240        reg_offset = (port) ?
10241                         HC_REG_ATTN_MSG1_ADDR_L :
10242                         HC_REG_ATTN_MSG0_ADDR_L;
10243        REG_WR(sc, reg_offset, U64_LO(section));
10244        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10245    } else if (!CHIP_IS_E1x(sc)) {
10246        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10247        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10248    }
10249
10250    section = ((uint64_t)mapping +
10251               offsetof(struct host_sp_status_block, sp_sb));
10252
10253    bxe_zero_sp_sb(sc);
10254
10255    /* PCI guarantees endianity of regpair */
10256    sp_sb_data.state           = SB_ENABLED;
10257    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10258    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10259    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10260    sp_sb_data.igu_seg_id      = igu_seg_id;
10261    sp_sb_data.p_func.pf_id    = func;
10262    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10263    sp_sb_data.p_func.vf_id    = 0xff;
10264
10265    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10266
10267    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10268}
10269
10270static void
10271bxe_init_sp_ring(struct bxe_softc *sc)
10272{
10273    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10274    sc->spq_prod_idx = 0;
10275    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10276    sc->spq_prod_bd = sc->spq;
10277    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10278}
10279
10280static void
10281bxe_init_eq_ring(struct bxe_softc *sc)
10282{
10283    union event_ring_elem *elem;
10284    int i;
10285
10286    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10287        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10288
10289        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10290                                                 BCM_PAGE_SIZE *
10291                                                 (i % NUM_EQ_PAGES)));
10292        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10293                                                 BCM_PAGE_SIZE *
10294                                                 (i % NUM_EQ_PAGES)));
10295    }
10296
10297    sc->eq_cons    = 0;
10298    sc->eq_prod    = NUM_EQ_DESC;
10299    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10300
10301    atomic_store_rel_long(&sc->eq_spq_left,
10302                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10303                               NUM_EQ_DESC) - 1));
10304}
10305
10306static void
10307bxe_init_internal_common(struct bxe_softc *sc)
10308{
10309    int i;
10310
10311    if (IS_MF_SI(sc)) {
10312        /*
10313         * In switch independent mode, the TSTORM needs to accept
10314         * packets that failed classification, since approximate match
10315         * mac addresses aren't written to NIG LLH.
10316         */
10317        REG_WR8(sc,
10318                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10319                2);
10320    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10321        REG_WR8(sc,
10322                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10323                0);
10324    }
10325
10326    /*
10327     * Zero this manually as its initialization is currently missing
10328     * in the initTool.
10329     */
10330    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10331        REG_WR(sc,
10332               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10333               0);
10334    }
10335
10336    if (!CHIP_IS_E1x(sc)) {
10337        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10338                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10339    }
10340}
10341
10342static void
10343bxe_init_internal(struct bxe_softc *sc,
10344                  uint32_t         load_code)
10345{
10346    switch (load_code) {
10347    case FW_MSG_CODE_DRV_LOAD_COMMON:
10348    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10349        bxe_init_internal_common(sc);
10350        /* no break */
10351
10352    case FW_MSG_CODE_DRV_LOAD_PORT:
10353        /* nothing to do */
10354        /* no break */
10355
10356    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10357        /* internal memory per function is initialized inside bxe_pf_init */
10358        break;
10359
10360    default:
10361        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10362        break;
10363    }
10364}
10365
10366static void
10367storm_memset_func_cfg(struct bxe_softc                         *sc,
10368                      struct tstorm_eth_function_common_config *tcfg,
10369                      uint16_t                                  abs_fid)
10370{
10371    uint32_t addr;
10372    size_t size;
10373
10374    addr = (BAR_TSTRORM_INTMEM +
10375            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10376    size = sizeof(struct tstorm_eth_function_common_config);
10377    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10378}
10379
10380static void
10381bxe_func_init(struct bxe_softc            *sc,
10382              struct bxe_func_init_params *p)
10383{
10384    struct tstorm_eth_function_common_config tcfg = { 0 };
10385
10386    if (CHIP_IS_E1x(sc)) {
10387        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10388    }
10389
10390    /* Enable the function in the FW */
10391    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10392    storm_memset_func_en(sc, p->func_id, 1);
10393
10394    /* spq */
10395    if (p->func_flgs & FUNC_FLG_SPQ) {
10396        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10397        REG_WR(sc,
10398               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10399               p->spq_prod);
10400    }
10401}
10402
10403/*
10404 * Calculates the sum of vn_min_rates.
10405 * It's needed for further normalizing of the min_rates.
10406 * Returns:
10407 *   sum of vn_min_rates.
10408 *     or
10409 *   0 - if all the min_rates are 0.
10410 * In the later case fainess algorithm should be deactivated.
10411 * If all min rates are not zero then those that are zeroes will be set to 1.
10412 */
10413static void
10414bxe_calc_vn_min(struct bxe_softc       *sc,
10415                struct cmng_init_input *input)
10416{
10417    uint32_t vn_cfg;
10418    uint32_t vn_min_rate;
10419    int all_zero = 1;
10420    int vn;
10421
10422    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10423        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10424        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10425                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10426
10427        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10428            /* skip hidden VNs */
10429            vn_min_rate = 0;
10430        } else if (!vn_min_rate) {
10431            /* If min rate is zero - set it to 100 */
10432            vn_min_rate = DEF_MIN_RATE;
10433        } else {
10434            all_zero = 0;
10435        }
10436
10437        input->vnic_min_rate[vn] = vn_min_rate;
10438    }
10439
10440    /* if ETS or all min rates are zeros - disable fairness */
10441    if (BXE_IS_ETS_ENABLED(sc)) {
10442        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10443        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10444    } else if (all_zero) {
10445        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10446        BLOGD(sc, DBG_LOAD,
10447              "Fariness disabled (all MIN values are zeroes)\n");
10448    } else {
10449        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10450    }
10451}
10452
10453static inline uint16_t
10454bxe_extract_max_cfg(struct bxe_softc *sc,
10455                    uint32_t         mf_cfg)
10456{
10457    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10458                        FUNC_MF_CFG_MAX_BW_SHIFT);
10459
10460    if (!max_cfg) {
10461        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10462        max_cfg = 100;
10463    }
10464
10465    return (max_cfg);
10466}
10467
10468static void
10469bxe_calc_vn_max(struct bxe_softc       *sc,
10470                int                    vn,
10471                struct cmng_init_input *input)
10472{
10473    uint16_t vn_max_rate;
10474    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10475    uint32_t max_cfg;
10476
10477    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10478        vn_max_rate = 0;
10479    } else {
10480        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10481
10482        if (IS_MF_SI(sc)) {
10483            /* max_cfg in percents of linkspeed */
10484            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10485        } else { /* SD modes */
10486            /* max_cfg is absolute in 100Mb units */
10487            vn_max_rate = (max_cfg * 100);
10488        }
10489    }
10490
10491    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10492
10493    input->vnic_max_rate[vn] = vn_max_rate;
10494}
10495
10496static void
10497bxe_cmng_fns_init(struct bxe_softc *sc,
10498                  uint8_t          read_cfg,
10499                  uint8_t          cmng_type)
10500{
10501    struct cmng_init_input input;
10502    int vn;
10503
10504    memset(&input, 0, sizeof(struct cmng_init_input));
10505
10506    input.port_rate = sc->link_vars.line_speed;
10507
10508    if (cmng_type == CMNG_FNS_MINMAX) {
10509        /* read mf conf from shmem */
10510        if (read_cfg) {
10511            bxe_read_mf_cfg(sc);
10512        }
10513
10514        /* get VN min rate and enable fairness if not 0 */
10515        bxe_calc_vn_min(sc, &input);
10516
10517        /* get VN max rate */
10518        if (sc->port.pmf) {
10519            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10520                bxe_calc_vn_max(sc, vn, &input);
10521            }
10522        }
10523
10524        /* always enable rate shaping and fairness */
10525        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10526
10527        ecore_init_cmng(&input, &sc->cmng);
10528        return;
10529    }
10530
10531    /* rate shaping and fairness are disabled */
10532    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10533}
10534
10535static int
10536bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10537{
10538    if (CHIP_REV_IS_SLOW(sc)) {
10539        return (CMNG_FNS_NONE);
10540    }
10541
10542    if (IS_MF(sc)) {
10543        return (CMNG_FNS_MINMAX);
10544    }
10545
10546    return (CMNG_FNS_NONE);
10547}
10548
10549static void
10550storm_memset_cmng(struct bxe_softc *sc,
10551                  struct cmng_init *cmng,
10552                  uint8_t          port)
10553{
10554    int vn;
10555    int func;
10556    uint32_t addr;
10557    size_t size;
10558
10559    addr = (BAR_XSTRORM_INTMEM +
10560            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10561    size = sizeof(struct cmng_struct_per_port);
10562    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10563
10564    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10565        func = func_by_vn(sc, vn);
10566
10567        addr = (BAR_XSTRORM_INTMEM +
10568                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10569        size = sizeof(struct rate_shaping_vars_per_vn);
10570        ecore_storm_memset_struct(sc, addr, size,
10571                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10572
10573        addr = (BAR_XSTRORM_INTMEM +
10574                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10575        size = sizeof(struct fairness_vars_per_vn);
10576        ecore_storm_memset_struct(sc, addr, size,
10577                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10578    }
10579}
10580
10581static void
10582bxe_pf_init(struct bxe_softc *sc)
10583{
10584    struct bxe_func_init_params func_init = { 0 };
10585    struct event_ring_data eq_data = { { 0 } };
10586    uint16_t flags;
10587
10588    if (!CHIP_IS_E1x(sc)) {
10589        /* reset IGU PF statistics: MSIX + ATTN */
10590        /* PF */
10591        REG_WR(sc,
10592               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10593                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10594                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10595               0);
10596        /* ATTN */
10597        REG_WR(sc,
10598               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10599                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10600                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10601                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10602               0);
10603    }
10604
10605    /* function setup flags */
10606    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10607
10608    /*
10609     * This flag is relevant for E1x only.
10610     * E2 doesn't have a TPA configuration in a function level.
10611     */
10612    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10613
10614    func_init.func_flgs = flags;
10615    func_init.pf_id     = SC_FUNC(sc);
10616    func_init.func_id   = SC_FUNC(sc);
10617    func_init.spq_map   = sc->spq_dma.paddr;
10618    func_init.spq_prod  = sc->spq_prod_idx;
10619
10620    bxe_func_init(sc, &func_init);
10621
10622    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10623
10624    /*
10625     * Congestion management values depend on the link rate.
10626     * There is no active link so initial link rate is set to 10Gbps.
10627     * When the link comes up the congestion management values are
10628     * re-calculated according to the actual link rate.
10629     */
10630    sc->link_vars.line_speed = SPEED_10000;
10631    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10632
10633    /* Only the PMF sets the HW */
10634    if (sc->port.pmf) {
10635        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10636    }
10637
10638    /* init Event Queue - PCI bus guarantees correct endainity */
10639    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10640    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10641    eq_data.producer     = sc->eq_prod;
10642    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10643    eq_data.sb_id        = DEF_SB_ID;
10644    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10645}
10646
10647static void
10648bxe_hc_int_enable(struct bxe_softc *sc)
10649{
10650    int port = SC_PORT(sc);
10651    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10652    uint32_t val = REG_RD(sc, addr);
10653    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10654    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10655                           (sc->intr_count == 1)) ? TRUE : FALSE;
10656    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10657
10658    if (msix) {
10659        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10660                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10661        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10662                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10663        if (single_msix) {
10664            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10665        }
10666    } else if (msi) {
10667        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10668        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10669                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10670                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10671    } else {
10672        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10673                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10674                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10675                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10676
10677        if (!CHIP_IS_E1(sc)) {
10678            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10679                  val, port, addr);
10680
10681            REG_WR(sc, addr, val);
10682
10683            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10684        }
10685    }
10686
10687    if (CHIP_IS_E1(sc)) {
10688        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10689    }
10690
10691    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10692          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10693
10694    REG_WR(sc, addr, val);
10695
10696    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10697    mb();
10698
10699    if (!CHIP_IS_E1(sc)) {
10700        /* init leading/trailing edge */
10701        if (IS_MF(sc)) {
10702            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10703            if (sc->port.pmf) {
10704                /* enable nig and gpio3 attention */
10705                val |= 0x1100;
10706            }
10707        } else {
10708            val = 0xffff;
10709        }
10710
10711        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10712        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10713    }
10714
10715    /* make sure that interrupts are indeed enabled from here on */
10716    mb();
10717}
10718
10719static void
10720bxe_igu_int_enable(struct bxe_softc *sc)
10721{
10722    uint32_t val;
10723    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10724    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10725                           (sc->intr_count == 1)) ? TRUE : FALSE;
10726    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10727
10728    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10729
10730    if (msix) {
10731        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10732                 IGU_PF_CONF_SINGLE_ISR_EN);
10733        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10734                IGU_PF_CONF_ATTN_BIT_EN);
10735        if (single_msix) {
10736            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10737        }
10738    } else if (msi) {
10739        val &= ~IGU_PF_CONF_INT_LINE_EN;
10740        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10741                IGU_PF_CONF_ATTN_BIT_EN |
10742                IGU_PF_CONF_SINGLE_ISR_EN);
10743    } else {
10744        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10745        val |= (IGU_PF_CONF_INT_LINE_EN |
10746                IGU_PF_CONF_ATTN_BIT_EN |
10747                IGU_PF_CONF_SINGLE_ISR_EN);
10748    }
10749
10750    /* clean previous status - need to configure igu prior to ack*/
10751    if ((!msix) || single_msix) {
10752        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10753        bxe_ack_int(sc);
10754    }
10755
10756    val |= IGU_PF_CONF_FUNC_EN;
10757
10758    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10759          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10760
10761    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10762
10763    mb();
10764
10765    /* init leading/trailing edge */
10766    if (IS_MF(sc)) {
10767        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10768        if (sc->port.pmf) {
10769            /* enable nig and gpio3 attention */
10770            val |= 0x1100;
10771        }
10772    } else {
10773        val = 0xffff;
10774    }
10775
10776    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10777    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10778
10779    /* make sure that interrupts are indeed enabled from here on */
10780    mb();
10781}
10782
10783static void
10784bxe_int_enable(struct bxe_softc *sc)
10785{
10786    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10787        bxe_hc_int_enable(sc);
10788    } else {
10789        bxe_igu_int_enable(sc);
10790    }
10791}
10792
10793static void
10794bxe_hc_int_disable(struct bxe_softc *sc)
10795{
10796    int port = SC_PORT(sc);
10797    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10798    uint32_t val = REG_RD(sc, addr);
10799
10800    /*
10801     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10802     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10803     * block
10804     */
10805    if (CHIP_IS_E1(sc)) {
10806        /*
10807         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10808         * to prevent from HC sending interrupts after we exit the function
10809         */
10810        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10811
10812        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10813                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10814                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10815    } else {
10816        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10817                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10818                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10819                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10820    }
10821
10822    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10823
10824    /* flush all outstanding writes */
10825    mb();
10826
10827    REG_WR(sc, addr, val);
10828    if (REG_RD(sc, addr) != val) {
10829        BLOGE(sc, "proper val not read from HC IGU!\n");
10830    }
10831}
10832
10833static void
10834bxe_igu_int_disable(struct bxe_softc *sc)
10835{
10836    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10837
10838    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10839             IGU_PF_CONF_INT_LINE_EN |
10840             IGU_PF_CONF_ATTN_BIT_EN);
10841
10842    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10843
10844    /* flush all outstanding writes */
10845    mb();
10846
10847    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10848    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10849        BLOGE(sc, "proper val not read from IGU!\n");
10850    }
10851}
10852
10853static void
10854bxe_int_disable(struct bxe_softc *sc)
10855{
10856    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10857        bxe_hc_int_disable(sc);
10858    } else {
10859        bxe_igu_int_disable(sc);
10860    }
10861}
10862
10863static void
10864bxe_nic_init(struct bxe_softc *sc,
10865             int              load_code)
10866{
10867    int i;
10868
10869    for (i = 0; i < sc->num_queues; i++) {
10870        bxe_init_eth_fp(sc, i);
10871    }
10872
10873    rmb(); /* ensure status block indices were read */
10874
10875    bxe_init_rx_rings(sc);
10876    bxe_init_tx_rings(sc);
10877
10878    if (IS_VF(sc)) {
10879        return;
10880    }
10881
10882    /* initialize MOD_ABS interrupts */
10883    elink_init_mod_abs_int(sc, &sc->link_vars,
10884                           sc->devinfo.chip_id,
10885                           sc->devinfo.shmem_base,
10886                           sc->devinfo.shmem2_base,
10887                           SC_PORT(sc));
10888
10889    bxe_init_def_sb(sc);
10890    bxe_update_dsb_idx(sc);
10891    bxe_init_sp_ring(sc);
10892    bxe_init_eq_ring(sc);
10893    bxe_init_internal(sc, load_code);
10894    bxe_pf_init(sc);
10895    bxe_stats_init(sc);
10896
10897    /* flush all before enabling interrupts */
10898    mb();
10899
10900    bxe_int_enable(sc);
10901
10902    /* check for SPIO5 */
10903    bxe_attn_int_deasserted0(sc,
10904                             REG_RD(sc,
10905                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10906                                     SC_PORT(sc)*4)) &
10907                             AEU_INPUTS_ATTN_BITS_SPIO5);
10908}
10909
10910static inline void
10911bxe_init_objs(struct bxe_softc *sc)
10912{
10913    /* mcast rules must be added to tx if tx switching is enabled */
10914    ecore_obj_type o_type =
10915        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10916                                         ECORE_OBJ_TYPE_RX;
10917
10918    /* RX_MODE controlling object */
10919    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10920
10921    /* multicast configuration controlling object */
10922    ecore_init_mcast_obj(sc,
10923                         &sc->mcast_obj,
10924                         sc->fp[0].cl_id,
10925                         sc->fp[0].index,
10926                         SC_FUNC(sc),
10927                         SC_FUNC(sc),
10928                         BXE_SP(sc, mcast_rdata),
10929                         BXE_SP_MAPPING(sc, mcast_rdata),
10930                         ECORE_FILTER_MCAST_PENDING,
10931                         &sc->sp_state,
10932                         o_type);
10933
10934    /* Setup CAM credit pools */
10935    ecore_init_mac_credit_pool(sc,
10936                               &sc->macs_pool,
10937                               SC_FUNC(sc),
10938                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10939                                                 VNICS_PER_PATH(sc));
10940
10941    ecore_init_vlan_credit_pool(sc,
10942                                &sc->vlans_pool,
10943                                SC_ABS_FUNC(sc) >> 1,
10944                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10945                                                  VNICS_PER_PATH(sc));
10946
10947    /* RSS configuration object */
10948    ecore_init_rss_config_obj(sc,
10949                              &sc->rss_conf_obj,
10950                              sc->fp[0].cl_id,
10951                              sc->fp[0].index,
10952                              SC_FUNC(sc),
10953                              SC_FUNC(sc),
10954                              BXE_SP(sc, rss_rdata),
10955                              BXE_SP_MAPPING(sc, rss_rdata),
10956                              ECORE_FILTER_RSS_CONF_PENDING,
10957                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10958}
10959
10960/*
10961 * Initialize the function. This must be called before sending CLIENT_SETUP
10962 * for the first client.
10963 */
10964static inline int
10965bxe_func_start(struct bxe_softc *sc)
10966{
10967    struct ecore_func_state_params func_params = { NULL };
10968    struct ecore_func_start_params *start_params = &func_params.params.start;
10969
10970    /* Prepare parameters for function state transitions */
10971    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10972
10973    func_params.f_obj = &sc->func_obj;
10974    func_params.cmd = ECORE_F_CMD_START;
10975
10976    /* Function parameters */
10977    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10978    start_params->sd_vlan_tag = OVLAN(sc);
10979
10980    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10981        start_params->network_cos_mode = STATIC_COS;
10982    } else { /* CHIP_IS_E1X */
10983        start_params->network_cos_mode = FW_WRR;
10984    }
10985
10986    start_params->gre_tunnel_mode = 0;
10987    start_params->gre_tunnel_rss  = 0;
10988
10989    return (ecore_func_state_change(sc, &func_params));
10990}
10991
10992static int
10993bxe_set_power_state(struct bxe_softc *sc,
10994                    uint8_t          state)
10995{
10996    uint16_t pmcsr;
10997
10998    /* If there is no power capability, silently succeed */
10999    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11000        BLOGW(sc, "No power capability\n");
11001        return (0);
11002    }
11003
11004    pmcsr = pci_read_config(sc->dev,
11005                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11006                            2);
11007
11008    switch (state) {
11009    case PCI_PM_D0:
11010        pci_write_config(sc->dev,
11011                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11012                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11013
11014        if (pmcsr & PCIM_PSTAT_DMASK) {
11015            /* delay required during transition out of D3hot */
11016            DELAY(20000);
11017        }
11018
11019        break;
11020
11021    case PCI_PM_D3hot:
11022        /* XXX if there are other clients above don't shut down the power */
11023
11024        /* don't shut down the power for emulation and FPGA */
11025        if (CHIP_REV_IS_SLOW(sc)) {
11026            return (0);
11027        }
11028
11029        pmcsr &= ~PCIM_PSTAT_DMASK;
11030        pmcsr |= PCIM_PSTAT_D3;
11031
11032        if (sc->wol) {
11033            pmcsr |= PCIM_PSTAT_PMEENABLE;
11034        }
11035
11036        pci_write_config(sc->dev,
11037                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11038                         pmcsr, 4);
11039
11040        /*
11041         * No more memory access after this point until device is brought back
11042         * to D0 state.
11043         */
11044        break;
11045
11046    default:
11047        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11048        return (-1);
11049    }
11050
11051    return (0);
11052}
11053
11054
11055/* return true if succeeded to acquire the lock */
11056static uint8_t
11057bxe_trylock_hw_lock(struct bxe_softc *sc,
11058                    uint32_t         resource)
11059{
11060    uint32_t lock_status;
11061    uint32_t resource_bit = (1 << resource);
11062    int func = SC_FUNC(sc);
11063    uint32_t hw_lock_control_reg;
11064
11065    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11066
11067    /* Validating that the resource is within range */
11068    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11069        BLOGD(sc, DBG_LOAD,
11070              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11071              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11072        return (FALSE);
11073    }
11074
11075    if (func <= 5) {
11076        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11077    } else {
11078        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11079    }
11080
11081    /* try to acquire the lock */
11082    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11083    lock_status = REG_RD(sc, hw_lock_control_reg);
11084    if (lock_status & resource_bit) {
11085        return (TRUE);
11086    }
11087
11088    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11089
11090    return (FALSE);
11091}
11092
11093/*
11094 * Get the recovery leader resource id according to the engine this function
11095 * belongs to. Currently only only 2 engines is supported.
11096 */
11097static int
11098bxe_get_leader_lock_resource(struct bxe_softc *sc)
11099{
11100    if (SC_PATH(sc)) {
11101        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11102    } else {
11103        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11104    }
11105}
11106
11107/* try to acquire a leader lock for current engine */
11108static uint8_t
11109bxe_trylock_leader_lock(struct bxe_softc *sc)
11110{
11111    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11112}
11113
11114static int
11115bxe_release_leader_lock(struct bxe_softc *sc)
11116{
11117    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11118}
11119
11120/* close gates #2, #3 and #4 */
11121static void
11122bxe_set_234_gates(struct bxe_softc *sc,
11123                  uint8_t          close)
11124{
11125    uint32_t val;
11126
11127    /* gates #2 and #4a are closed/opened for "not E1" only */
11128    if (!CHIP_IS_E1(sc)) {
11129        /* #4 */
11130        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11131        /* #2 */
11132        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11133    }
11134
11135    /* #3 */
11136    if (CHIP_IS_E1x(sc)) {
11137        /* prevent interrupts from HC on both ports */
11138        val = REG_RD(sc, HC_REG_CONFIG_1);
11139        REG_WR(sc, HC_REG_CONFIG_1,
11140               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11141               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11142
11143        val = REG_RD(sc, HC_REG_CONFIG_0);
11144        REG_WR(sc, HC_REG_CONFIG_0,
11145               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11146               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11147    } else {
11148        /* Prevent incomming interrupts in IGU */
11149        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11150
11151        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11152               (!close) ?
11153               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11154               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11155    }
11156
11157    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11158          close ? "closing" : "opening");
11159
11160    wmb();
11161}
11162
11163/* poll for pending writes bit, it should get cleared in no more than 1s */
11164static int
11165bxe_er_poll_igu_vq(struct bxe_softc *sc)
11166{
11167    uint32_t cnt = 1000;
11168    uint32_t pend_bits = 0;
11169
11170    do {
11171        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11172
11173        if (pend_bits == 0) {
11174            break;
11175        }
11176
11177        DELAY(1000);
11178    } while (--cnt > 0);
11179
11180    if (cnt == 0) {
11181        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11182        return (-1);
11183    }
11184
11185    return (0);
11186}
11187
11188#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11189
11190static void
11191bxe_clp_reset_prep(struct bxe_softc *sc,
11192                   uint32_t         *magic_val)
11193{
11194    /* Do some magic... */
11195    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11196    *magic_val = val & SHARED_MF_CLP_MAGIC;
11197    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11198}
11199
11200/* restore the value of the 'magic' bit */
11201static void
11202bxe_clp_reset_done(struct bxe_softc *sc,
11203                   uint32_t         magic_val)
11204{
11205    /* Restore the 'magic' bit value... */
11206    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11207    MFCFG_WR(sc, shared_mf_config.clp_mb,
11208              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11209}
11210
11211/* prepare for MCP reset, takes care of CLP configurations */
11212static void
11213bxe_reset_mcp_prep(struct bxe_softc *sc,
11214                   uint32_t         *magic_val)
11215{
11216    uint32_t shmem;
11217    uint32_t validity_offset;
11218
11219    /* set `magic' bit in order to save MF config */
11220    if (!CHIP_IS_E1(sc)) {
11221        bxe_clp_reset_prep(sc, magic_val);
11222    }
11223
11224    /* get shmem offset */
11225    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11226    validity_offset =
11227        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11228
11229    /* Clear validity map flags */
11230    if (shmem > 0) {
11231        REG_WR(sc, shmem + validity_offset, 0);
11232    }
11233}
11234
11235#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11236#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11237
11238static void
11239bxe_mcp_wait_one(struct bxe_softc *sc)
11240{
11241    /* special handling for emulation and FPGA (10 times longer) */
11242    if (CHIP_REV_IS_SLOW(sc)) {
11243        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11244    } else {
11245        DELAY((MCP_ONE_TIMEOUT) * 1000);
11246    }
11247}
11248
11249/* initialize shmem_base and waits for validity signature to appear */
11250static int
11251bxe_init_shmem(struct bxe_softc *sc)
11252{
11253    int cnt = 0;
11254    uint32_t val = 0;
11255
11256    do {
11257        sc->devinfo.shmem_base     =
11258        sc->link_params.shmem_base =
11259            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11260
11261        if (sc->devinfo.shmem_base) {
11262            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11263            if (val & SHR_MEM_VALIDITY_MB)
11264                return (0);
11265        }
11266
11267        bxe_mcp_wait_one(sc);
11268
11269    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11270
11271    BLOGE(sc, "BAD MCP validity signature\n");
11272
11273    return (-1);
11274}
11275
11276static int
11277bxe_reset_mcp_comp(struct bxe_softc *sc,
11278                   uint32_t         magic_val)
11279{
11280    int rc = bxe_init_shmem(sc);
11281
11282    /* Restore the `magic' bit value */
11283    if (!CHIP_IS_E1(sc)) {
11284        bxe_clp_reset_done(sc, magic_val);
11285    }
11286
11287    return (rc);
11288}
11289
11290static void
11291bxe_pxp_prep(struct bxe_softc *sc)
11292{
11293    if (!CHIP_IS_E1(sc)) {
11294        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11295        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11296        wmb();
11297    }
11298}
11299
11300/*
11301 * Reset the whole chip except for:
11302 *      - PCIE core
11303 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11304 *      - IGU
11305 *      - MISC (including AEU)
11306 *      - GRC
11307 *      - RBCN, RBCP
11308 */
11309static void
11310bxe_process_kill_chip_reset(struct bxe_softc *sc,
11311                            uint8_t          global)
11312{
11313    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11314    uint32_t global_bits2, stay_reset2;
11315
11316    /*
11317     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11318     * (per chip) blocks.
11319     */
11320    global_bits2 =
11321        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11322        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11323
11324    /*
11325     * Don't reset the following blocks.
11326     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11327     *            reset, as in 4 port device they might still be owned
11328     *            by the MCP (there is only one leader per path).
11329     */
11330    not_reset_mask1 =
11331        MISC_REGISTERS_RESET_REG_1_RST_HC |
11332        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11333        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11334
11335    not_reset_mask2 =
11336        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11337        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11338        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11339        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11340        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11341        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11342        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11343        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11344        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11345        MISC_REGISTERS_RESET_REG_2_PGLC |
11346        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11347        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11348        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11349        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11350        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11351        MISC_REGISTERS_RESET_REG_2_UMAC1;
11352
11353    /*
11354     * Keep the following blocks in reset:
11355     *  - all xxMACs are handled by the elink code.
11356     */
11357    stay_reset2 =
11358        MISC_REGISTERS_RESET_REG_2_XMAC |
11359        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11360
11361    /* Full reset masks according to the chip */
11362    reset_mask1 = 0xffffffff;
11363
11364    if (CHIP_IS_E1(sc))
11365        reset_mask2 = 0xffff;
11366    else if (CHIP_IS_E1H(sc))
11367        reset_mask2 = 0x1ffff;
11368    else if (CHIP_IS_E2(sc))
11369        reset_mask2 = 0xfffff;
11370    else /* CHIP_IS_E3 */
11371        reset_mask2 = 0x3ffffff;
11372
11373    /* Don't reset global blocks unless we need to */
11374    if (!global)
11375        reset_mask2 &= ~global_bits2;
11376
11377    /*
11378     * In case of attention in the QM, we need to reset PXP
11379     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11380     * because otherwise QM reset would release 'close the gates' shortly
11381     * before resetting the PXP, then the PSWRQ would send a write
11382     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11383     * read the payload data from PSWWR, but PSWWR would not
11384     * respond. The write queue in PGLUE would stuck, dmae commands
11385     * would not return. Therefore it's important to reset the second
11386     * reset register (containing the
11387     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11388     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11389     * bit).
11390     */
11391    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11392           reset_mask2 & (~not_reset_mask2));
11393
11394    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11395           reset_mask1 & (~not_reset_mask1));
11396
11397    mb();
11398    wmb();
11399
11400    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11401           reset_mask2 & (~stay_reset2));
11402
11403    mb();
11404    wmb();
11405
11406    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11407    wmb();
11408}
11409
11410static int
11411bxe_process_kill(struct bxe_softc *sc,
11412                 uint8_t          global)
11413{
11414    int cnt = 1000;
11415    uint32_t val = 0;
11416    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11417    uint32_t tags_63_32 = 0;
11418
11419    /* Empty the Tetris buffer, wait for 1s */
11420    do {
11421        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11422        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11423        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11424        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11425        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11426        if (CHIP_IS_E3(sc)) {
11427            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11428        }
11429
11430        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11431            ((port_is_idle_0 & 0x1) == 0x1) &&
11432            ((port_is_idle_1 & 0x1) == 0x1) &&
11433            (pgl_exp_rom2 == 0xffffffff) &&
11434            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11435            break;
11436        DELAY(1000);
11437    } while (cnt-- > 0);
11438
11439    if (cnt <= 0) {
11440        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11441                  "are still outstanding read requests after 1s! "
11442                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11443                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11444              sr_cnt, blk_cnt, port_is_idle_0,
11445              port_is_idle_1, pgl_exp_rom2);
11446        return (-1);
11447    }
11448
11449    mb();
11450
11451    /* Close gates #2, #3 and #4 */
11452    bxe_set_234_gates(sc, TRUE);
11453
11454    /* Poll for IGU VQs for 57712 and newer chips */
11455    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11456        return (-1);
11457    }
11458
11459    /* XXX indicate that "process kill" is in progress to MCP */
11460
11461    /* clear "unprepared" bit */
11462    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11463    mb();
11464
11465    /* Make sure all is written to the chip before the reset */
11466    wmb();
11467
11468    /*
11469     * Wait for 1ms to empty GLUE and PCI-E core queues,
11470     * PSWHST, GRC and PSWRD Tetris buffer.
11471     */
11472    DELAY(1000);
11473
11474    /* Prepare to chip reset: */
11475    /* MCP */
11476    if (global) {
11477        bxe_reset_mcp_prep(sc, &val);
11478    }
11479
11480    /* PXP */
11481    bxe_pxp_prep(sc);
11482    mb();
11483
11484    /* reset the chip */
11485    bxe_process_kill_chip_reset(sc, global);
11486    mb();
11487
11488    /* Recover after reset: */
11489    /* MCP */
11490    if (global && bxe_reset_mcp_comp(sc, val)) {
11491        return (-1);
11492    }
11493
11494    /* XXX add resetting the NO_MCP mode DB here */
11495
11496    /* Open the gates #2, #3 and #4 */
11497    bxe_set_234_gates(sc, FALSE);
11498
11499    /* XXX
11500     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11501     * re-enable attentions
11502     */
11503
11504    return (0);
11505}
11506
11507static int
11508bxe_leader_reset(struct bxe_softc *sc)
11509{
11510    int rc = 0;
11511    uint8_t global = bxe_reset_is_global(sc);
11512    uint32_t load_code;
11513
11514    /*
11515     * If not going to reset MCP, load "fake" driver to reset HW while
11516     * driver is owner of the HW.
11517     */
11518    if (!global && !BXE_NOMCP(sc)) {
11519        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11520                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11521        if (!load_code) {
11522            BLOGE(sc, "MCP response failure, aborting\n");
11523            rc = -1;
11524            goto exit_leader_reset;
11525        }
11526
11527        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11528            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11529            BLOGE(sc, "MCP unexpected response, aborting\n");
11530            rc = -1;
11531            goto exit_leader_reset2;
11532        }
11533
11534        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11535        if (!load_code) {
11536            BLOGE(sc, "MCP response failure, aborting\n");
11537            rc = -1;
11538            goto exit_leader_reset2;
11539        }
11540    }
11541
11542    /* try to recover after the failure */
11543    if (bxe_process_kill(sc, global)) {
11544        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11545        rc = -1;
11546        goto exit_leader_reset2;
11547    }
11548
11549    /*
11550     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11551     * state.
11552     */
11553    bxe_set_reset_done(sc);
11554    if (global) {
11555        bxe_clear_reset_global(sc);
11556    }
11557
11558exit_leader_reset2:
11559
11560    /* unload "fake driver" if it was loaded */
11561    if (!global && !BXE_NOMCP(sc)) {
11562        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11563        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11564    }
11565
11566exit_leader_reset:
11567
11568    sc->is_leader = 0;
11569    bxe_release_leader_lock(sc);
11570
11571    mb();
11572    return (rc);
11573}
11574
11575/*
11576 * prepare INIT transition, parameters configured:
11577 *   - HC configuration
11578 *   - Queue's CDU context
11579 */
11580static void
11581bxe_pf_q_prep_init(struct bxe_softc               *sc,
11582                   struct bxe_fastpath            *fp,
11583                   struct ecore_queue_init_params *init_params)
11584{
11585    uint8_t cos;
11586    int cxt_index, cxt_offset;
11587
11588    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11589    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11590
11591    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11592    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11593
11594    /* HC rate */
11595    init_params->rx.hc_rate =
11596        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11597    init_params->tx.hc_rate =
11598        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11599
11600    /* FW SB ID */
11601    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11602
11603    /* CQ index among the SB indices */
11604    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11605    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11606
11607    /* set maximum number of COSs supported by this queue */
11608    init_params->max_cos = sc->max_cos;
11609
11610    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11611          fp->index, init_params->max_cos);
11612
11613    /* set the context pointers queue object */
11614    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11615        /* XXX change index/cid here if ever support multiple tx CoS */
11616        /* fp->txdata[cos]->cid */
11617        cxt_index = fp->index / ILT_PAGE_CIDS;
11618        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11619        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11620    }
11621}
11622
11623/* set flags that are common for the Tx-only and not normal connections */
11624static unsigned long
11625bxe_get_common_flags(struct bxe_softc    *sc,
11626                     struct bxe_fastpath *fp,
11627                     uint8_t             zero_stats)
11628{
11629    unsigned long flags = 0;
11630
11631    /* PF driver will always initialize the Queue to an ACTIVE state */
11632    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11633
11634    /*
11635     * tx only connections collect statistics (on the same index as the
11636     * parent connection). The statistics are zeroed when the parent
11637     * connection is initialized.
11638     */
11639
11640    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11641    if (zero_stats) {
11642        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11643    }
11644
11645    /*
11646     * tx only connections can support tx-switching, though their
11647     * CoS-ness doesn't survive the loopback
11648     */
11649    if (sc->flags & BXE_TX_SWITCHING) {
11650        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11651    }
11652
11653    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11654
11655    return (flags);
11656}
11657
11658static unsigned long
11659bxe_get_q_flags(struct bxe_softc    *sc,
11660                struct bxe_fastpath *fp,
11661                uint8_t             leading)
11662{
11663    unsigned long flags = 0;
11664
11665    if (IS_MF_SD(sc)) {
11666        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11667    }
11668
11669    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11670        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11671        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11672#if 0
11673        if (fp->mode == TPA_MODE_GRO)
11674            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11675#endif
11676    }
11677
11678    if (leading) {
11679        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11680        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11681    }
11682
11683    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11684
11685#if 0
11686    /* configure silent vlan removal */
11687    if (IS_MF_AFEX(sc)) {
11688        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11689    }
11690#endif
11691
11692    /* merge with common flags */
11693    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11694}
11695
11696static void
11697bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11698                      struct bxe_fastpath               *fp,
11699                      struct ecore_general_setup_params *gen_init,
11700                      uint8_t                           cos)
11701{
11702    gen_init->stat_id = bxe_stats_id(fp);
11703    gen_init->spcl_id = fp->cl_id;
11704    gen_init->mtu = sc->mtu;
11705    gen_init->cos = cos;
11706}
11707
11708static void
11709bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11710                 struct bxe_fastpath           *fp,
11711                 struct rxq_pause_params       *pause,
11712                 struct ecore_rxq_setup_params *rxq_init)
11713{
11714    uint8_t max_sge = 0;
11715    uint16_t sge_sz = 0;
11716    uint16_t tpa_agg_size = 0;
11717
11718    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11719        pause->sge_th_lo = SGE_TH_LO(sc);
11720        pause->sge_th_hi = SGE_TH_HI(sc);
11721
11722        /* validate SGE ring has enough to cross high threshold */
11723        if (sc->dropless_fc &&
11724            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11725            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11726            BLOGW(sc, "sge ring threshold limit\n");
11727        }
11728
11729        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11730        tpa_agg_size = (2 * sc->mtu);
11731        if (tpa_agg_size < sc->max_aggregation_size) {
11732            tpa_agg_size = sc->max_aggregation_size;
11733        }
11734
11735        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11736        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11737                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11738        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11739    }
11740
11741    /* pause - not for e1 */
11742    if (!CHIP_IS_E1(sc)) {
11743        pause->bd_th_lo = BD_TH_LO(sc);
11744        pause->bd_th_hi = BD_TH_HI(sc);
11745
11746        pause->rcq_th_lo = RCQ_TH_LO(sc);
11747        pause->rcq_th_hi = RCQ_TH_HI(sc);
11748
11749        /* validate rings have enough entries to cross high thresholds */
11750        if (sc->dropless_fc &&
11751            pause->bd_th_hi + FW_PREFETCH_CNT >
11752            sc->rx_ring_size) {
11753            BLOGW(sc, "rx bd ring threshold limit\n");
11754        }
11755
11756        if (sc->dropless_fc &&
11757            pause->rcq_th_hi + FW_PREFETCH_CNT >
11758            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11759            BLOGW(sc, "rcq ring threshold limit\n");
11760        }
11761
11762        pause->pri_map = 1;
11763    }
11764
11765    /* rxq setup */
11766    rxq_init->dscr_map   = fp->rx_dma.paddr;
11767    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11768    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11769    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11770
11771    /*
11772     * This should be a maximum number of data bytes that may be
11773     * placed on the BD (not including paddings).
11774     */
11775    rxq_init->buf_sz = (fp->rx_buf_size -
11776                        IP_HEADER_ALIGNMENT_PADDING);
11777
11778    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11779    rxq_init->tpa_agg_sz      = tpa_agg_size;
11780    rxq_init->sge_buf_sz      = sge_sz;
11781    rxq_init->max_sges_pkt    = max_sge;
11782    rxq_init->rss_engine_id   = SC_FUNC(sc);
11783    rxq_init->mcast_engine_id = SC_FUNC(sc);
11784
11785    /*
11786     * Maximum number or simultaneous TPA aggregation for this Queue.
11787     * For PF Clients it should be the maximum available number.
11788     * VF driver(s) may want to define it to a smaller value.
11789     */
11790    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11791
11792    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11793    rxq_init->fw_sb_id = fp->fw_sb_id;
11794
11795    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11796
11797    /*
11798     * configure silent vlan removal
11799     * if multi function mode is afex, then mask default vlan
11800     */
11801    if (IS_MF_AFEX(sc)) {
11802        rxq_init->silent_removal_value =
11803            sc->devinfo.mf_info.afex_def_vlan_tag;
11804        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11805    }
11806}
11807
11808static void
11809bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11810                 struct bxe_fastpath           *fp,
11811                 struct ecore_txq_setup_params *txq_init,
11812                 uint8_t                       cos)
11813{
11814    /*
11815     * XXX If multiple CoS is ever supported then each fastpath structure
11816     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11817     * fp->txdata[cos]->tx_dma.paddr;
11818     */
11819    txq_init->dscr_map     = fp->tx_dma.paddr;
11820    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11821    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11822    txq_init->fw_sb_id     = fp->fw_sb_id;
11823
11824    /*
11825     * set the TSS leading client id for TX classfication to the
11826     * leading RSS client id
11827     */
11828    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11829}
11830
11831/*
11832 * This function performs 2 steps in a queue state machine:
11833 *   1) RESET->INIT
11834 *   2) INIT->SETUP
11835 */
11836static int
11837bxe_setup_queue(struct bxe_softc    *sc,
11838                struct bxe_fastpath *fp,
11839                uint8_t             leading)
11840{
11841    struct ecore_queue_state_params q_params = { NULL };
11842    struct ecore_queue_setup_params *setup_params =
11843                        &q_params.params.setup;
11844#if 0
11845    struct ecore_queue_setup_tx_only_params *tx_only_params =
11846                        &q_params.params.tx_only;
11847    uint8_t tx_index;
11848#endif
11849    int rc;
11850
11851    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11852
11853    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11854
11855    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11856
11857    /* we want to wait for completion in this context */
11858    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11859
11860    /* prepare the INIT parameters */
11861    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11862
11863    /* Set the command */
11864    q_params.cmd = ECORE_Q_CMD_INIT;
11865
11866    /* Change the state to INIT */
11867    rc = ecore_queue_state_change(sc, &q_params);
11868    if (rc) {
11869        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11870        return (rc);
11871    }
11872
11873    BLOGD(sc, DBG_LOAD, "init complete\n");
11874
11875    /* now move the Queue to the SETUP state */
11876    memset(setup_params, 0, sizeof(*setup_params));
11877
11878    /* set Queue flags */
11879    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11880
11881    /* set general SETUP parameters */
11882    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11883                          FIRST_TX_COS_INDEX);
11884
11885    bxe_pf_rx_q_prep(sc, fp,
11886                     &setup_params->pause_params,
11887                     &setup_params->rxq_params);
11888
11889    bxe_pf_tx_q_prep(sc, fp,
11890                     &setup_params->txq_params,
11891                     FIRST_TX_COS_INDEX);
11892
11893    /* Set the command */
11894    q_params.cmd = ECORE_Q_CMD_SETUP;
11895
11896    /* change the state to SETUP */
11897    rc = ecore_queue_state_change(sc, &q_params);
11898    if (rc) {
11899        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11900        return (rc);
11901    }
11902
11903#if 0
11904    /* loop through the relevant tx-only indices */
11905    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11906         tx_index < sc->max_cos;
11907         tx_index++) {
11908        /* prepare and send tx-only ramrod*/
11909        rc = bxe_setup_tx_only(sc, fp, &q_params,
11910                               tx_only_params, tx_index, leading);
11911        if (rc) {
11912            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11913                  fp->index, tx_index);
11914            return (rc);
11915        }
11916    }
11917#endif
11918
11919    return (rc);
11920}
11921
11922static int
11923bxe_setup_leading(struct bxe_softc *sc)
11924{
11925    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11926}
11927
11928static int
11929bxe_config_rss_pf(struct bxe_softc            *sc,
11930                  struct ecore_rss_config_obj *rss_obj,
11931                  uint8_t                     config_hash)
11932{
11933    struct ecore_config_rss_params params = { NULL };
11934    int i;
11935
11936    /*
11937     * Although RSS is meaningless when there is a single HW queue we
11938     * still need it enabled in order to have HW Rx hash generated.
11939     */
11940
11941    params.rss_obj = rss_obj;
11942
11943    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11944
11945    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11946
11947    /* RSS configuration */
11948    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11949    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11950    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11951    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11952    if (rss_obj->udp_rss_v4) {
11953        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11954    }
11955    if (rss_obj->udp_rss_v6) {
11956        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11957    }
11958
11959    /* Hash bits */
11960    params.rss_result_mask = MULTI_MASK;
11961
11962    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11963
11964    if (config_hash) {
11965        /* RSS keys */
11966        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11967            params.rss_key[i] = arc4random();
11968        }
11969
11970        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11971    }
11972
11973    return (ecore_config_rss(sc, &params));
11974}
11975
11976static int
11977bxe_config_rss_eth(struct bxe_softc *sc,
11978                   uint8_t          config_hash)
11979{
11980    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11981}
11982
11983static int
11984bxe_init_rss_pf(struct bxe_softc *sc)
11985{
11986    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11987    int i;
11988
11989    /*
11990     * Prepare the initial contents of the indirection table if
11991     * RSS is enabled
11992     */
11993    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11994        sc->rss_conf_obj.ind_table[i] =
11995            (sc->fp->cl_id + (i % num_eth_queues));
11996    }
11997
11998    if (sc->udp_rss) {
11999        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12000    }
12001
12002    /*
12003     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12004     * per-port, so if explicit configuration is needed, do it only
12005     * for a PMF.
12006     *
12007     * For 57712 and newer it's a per-function configuration.
12008     */
12009    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12010}
12011
12012static int
12013bxe_set_mac_one(struct bxe_softc          *sc,
12014                uint8_t                   *mac,
12015                struct ecore_vlan_mac_obj *obj,
12016                uint8_t                   set,
12017                int                       mac_type,
12018                unsigned long             *ramrod_flags)
12019{
12020    struct ecore_vlan_mac_ramrod_params ramrod_param;
12021    int rc;
12022
12023    memset(&ramrod_param, 0, sizeof(ramrod_param));
12024
12025    /* fill in general parameters */
12026    ramrod_param.vlan_mac_obj = obj;
12027    ramrod_param.ramrod_flags = *ramrod_flags;
12028
12029    /* fill a user request section if needed */
12030    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12031        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12032
12033        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12034
12035        /* Set the command: ADD or DEL */
12036        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12037                                            ECORE_VLAN_MAC_DEL;
12038    }
12039
12040    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12041
12042    if (rc == ECORE_EXISTS) {
12043        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12044        /* do not treat adding same MAC as error */
12045        rc = 0;
12046    } else if (rc < 0) {
12047        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12048    }
12049
12050    return (rc);
12051}
12052
12053static int
12054bxe_set_eth_mac(struct bxe_softc *sc,
12055                uint8_t          set)
12056{
12057    unsigned long ramrod_flags = 0;
12058
12059    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12060
12061    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12062
12063    /* Eth MAC is set on RSS leading client (fp[0]) */
12064    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12065                            &sc->sp_objs->mac_obj,
12066                            set, ECORE_ETH_MAC, &ramrod_flags));
12067}
12068
12069#if 0
12070static void
12071bxe_update_max_mf_config(struct bxe_softc *sc,
12072                         uint32_t         value)
12073{
12074    /* load old values */
12075    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12076
12077    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12078        /* leave all but MAX value */
12079        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12080
12081        /* set new MAX value */
12082        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12083                   FUNC_MF_CFG_MAX_BW_MASK);
12084
12085        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12086    }
12087}
12088#endif
12089
12090static int
12091bxe_get_cur_phy_idx(struct bxe_softc *sc)
12092{
12093    uint32_t sel_phy_idx = 0;
12094
12095    if (sc->link_params.num_phys <= 1) {
12096        return (ELINK_INT_PHY);
12097    }
12098
12099    if (sc->link_vars.link_up) {
12100        sel_phy_idx = ELINK_EXT_PHY1;
12101        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12102        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12103            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12104             ELINK_SUPPORTED_FIBRE))
12105            sel_phy_idx = ELINK_EXT_PHY2;
12106    } else {
12107        switch (elink_phy_selection(&sc->link_params)) {
12108        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12109        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12110        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12111               sel_phy_idx = ELINK_EXT_PHY1;
12112               break;
12113        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12114        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12115               sel_phy_idx = ELINK_EXT_PHY2;
12116               break;
12117        }
12118    }
12119
12120    return (sel_phy_idx);
12121}
12122
12123static int
12124bxe_get_link_cfg_idx(struct bxe_softc *sc)
12125{
12126    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12127
12128    /*
12129     * The selected activated PHY is always after swapping (in case PHY
12130     * swapping is enabled). So when swapping is enabled, we need to reverse
12131     * the configuration
12132     */
12133
12134    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12135        if (sel_phy_idx == ELINK_EXT_PHY1)
12136            sel_phy_idx = ELINK_EXT_PHY2;
12137        else if (sel_phy_idx == ELINK_EXT_PHY2)
12138            sel_phy_idx = ELINK_EXT_PHY1;
12139    }
12140
12141    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12142}
12143
12144static void
12145bxe_set_requested_fc(struct bxe_softc *sc)
12146{
12147    /*
12148     * Initialize link parameters structure variables
12149     * It is recommended to turn off RX FC for jumbo frames
12150     * for better performance
12151     */
12152    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12153        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12154    } else {
12155        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12156    }
12157}
12158
12159static void
12160bxe_calc_fc_adv(struct bxe_softc *sc)
12161{
12162    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12163    switch (sc->link_vars.ieee_fc &
12164            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12165    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12166    default:
12167        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12168                                           ADVERTISED_Pause);
12169        break;
12170
12171    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12172        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12173                                          ADVERTISED_Pause);
12174        break;
12175
12176    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12177        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12178        break;
12179    }
12180}
12181
12182static uint16_t
12183bxe_get_mf_speed(struct bxe_softc *sc)
12184{
12185    uint16_t line_speed = sc->link_vars.line_speed;
12186    if (IS_MF(sc)) {
12187        uint16_t maxCfg =
12188            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12189
12190        /* calculate the current MAX line speed limit for the MF devices */
12191        if (IS_MF_SI(sc)) {
12192            line_speed = (line_speed * maxCfg) / 100;
12193        } else { /* SD mode */
12194            uint16_t vn_max_rate = maxCfg * 100;
12195
12196            if (vn_max_rate < line_speed) {
12197                line_speed = vn_max_rate;
12198            }
12199        }
12200    }
12201
12202    return (line_speed);
12203}
12204
12205static void
12206bxe_fill_report_data(struct bxe_softc            *sc,
12207                     struct bxe_link_report_data *data)
12208{
12209    uint16_t line_speed = bxe_get_mf_speed(sc);
12210
12211    memset(data, 0, sizeof(*data));
12212
12213    /* fill the report data with the effective line speed */
12214    data->line_speed = line_speed;
12215
12216    /* Link is down */
12217    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12218        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12219    }
12220
12221    /* Full DUPLEX */
12222    if (sc->link_vars.duplex == DUPLEX_FULL) {
12223        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12224    }
12225
12226    /* Rx Flow Control is ON */
12227    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12228        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12229    }
12230
12231    /* Tx Flow Control is ON */
12232    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12233        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12234    }
12235}
12236
12237/* report link status to OS, should be called under phy_lock */
12238static void
12239bxe_link_report_locked(struct bxe_softc *sc)
12240{
12241    struct bxe_link_report_data cur_data;
12242
12243    /* reread mf_cfg */
12244    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12245        bxe_read_mf_cfg(sc);
12246    }
12247
12248    /* Read the current link report info */
12249    bxe_fill_report_data(sc, &cur_data);
12250
12251    /* Don't report link down or exactly the same link status twice */
12252    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12253        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12254                      &sc->last_reported_link.link_report_flags) &&
12255         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12256                      &cur_data.link_report_flags))) {
12257        return;
12258    }
12259
12260    sc->link_cnt++;
12261
12262    /* report new link params and remember the state for the next time */
12263    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12264
12265    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12266                     &cur_data.link_report_flags)) {
12267        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12268        BLOGI(sc, "NIC Link is Down\n");
12269    } else {
12270        const char *duplex;
12271        const char *flow;
12272
12273        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12274                                   &cur_data.link_report_flags)) {
12275            duplex = "full";
12276        } else {
12277            duplex = "half";
12278        }
12279
12280        /*
12281         * Handle the FC at the end so that only these flags would be
12282         * possibly set. This way we may easily check if there is no FC
12283         * enabled.
12284         */
12285        if (cur_data.link_report_flags) {
12286            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12287                             &cur_data.link_report_flags) &&
12288                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12289                             &cur_data.link_report_flags)) {
12290                flow = "ON - receive & transmit";
12291            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12292                                    &cur_data.link_report_flags) &&
12293                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12294                                     &cur_data.link_report_flags)) {
12295                flow = "ON - receive";
12296            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12297                                     &cur_data.link_report_flags) &&
12298                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12299                                    &cur_data.link_report_flags)) {
12300                flow = "ON - transmit";
12301            } else {
12302                flow = "none"; /* possible? */
12303            }
12304        } else {
12305            flow = "none";
12306        }
12307
12308        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12309        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12310              cur_data.line_speed, duplex, flow);
12311    }
12312}
12313
12314static void
12315bxe_link_report(struct bxe_softc *sc)
12316{
12317    BXE_PHY_LOCK(sc);
12318    bxe_link_report_locked(sc);
12319    BXE_PHY_UNLOCK(sc);
12320}
12321
12322static void
12323bxe_link_status_update(struct bxe_softc *sc)
12324{
12325    if (sc->state != BXE_STATE_OPEN) {
12326        return;
12327    }
12328
12329#if 0
12330    /* read updated dcb configuration */
12331    if (IS_PF(sc))
12332        bxe_dcbx_pmf_update(sc);
12333#endif
12334
12335    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12336        elink_link_status_update(&sc->link_params, &sc->link_vars);
12337    } else {
12338        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12339                                  ELINK_SUPPORTED_10baseT_Full |
12340                                  ELINK_SUPPORTED_100baseT_Half |
12341                                  ELINK_SUPPORTED_100baseT_Full |
12342                                  ELINK_SUPPORTED_1000baseT_Full |
12343                                  ELINK_SUPPORTED_2500baseX_Full |
12344                                  ELINK_SUPPORTED_10000baseT_Full |
12345                                  ELINK_SUPPORTED_TP |
12346                                  ELINK_SUPPORTED_FIBRE |
12347                                  ELINK_SUPPORTED_Autoneg |
12348                                  ELINK_SUPPORTED_Pause |
12349                                  ELINK_SUPPORTED_Asym_Pause);
12350        sc->port.advertising[0] = sc->port.supported[0];
12351
12352        sc->link_params.sc                = sc;
12353        sc->link_params.port              = SC_PORT(sc);
12354        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12355        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12356        sc->link_params.req_line_speed[0] = SPEED_10000;
12357        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12358        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12359
12360        if (CHIP_REV_IS_FPGA(sc)) {
12361            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12362            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12363            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12364                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12365        } else {
12366            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12367            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12368            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12369                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12370        }
12371
12372        sc->link_vars.link_up = 1;
12373
12374        sc->link_vars.duplex    = DUPLEX_FULL;
12375        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12376
12377        if (IS_PF(sc)) {
12378            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12379            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12380            bxe_link_report(sc);
12381        }
12382    }
12383
12384    if (IS_PF(sc)) {
12385        if (sc->link_vars.link_up) {
12386            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12387        } else {
12388            bxe_stats_handle(sc, STATS_EVENT_STOP);
12389        }
12390        bxe_link_report(sc);
12391    } else {
12392        bxe_link_report(sc);
12393        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12394    }
12395}
12396
12397static int
12398bxe_initial_phy_init(struct bxe_softc *sc,
12399                     int              load_mode)
12400{
12401    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12402    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12403    struct elink_params *lp = &sc->link_params;
12404
12405    bxe_set_requested_fc(sc);
12406
12407    if (CHIP_REV_IS_SLOW(sc)) {
12408        uint32_t bond = CHIP_BOND_ID(sc);
12409        uint32_t feat = 0;
12410
12411        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12412            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12413        } else if (bond & 0x4) {
12414            if (CHIP_IS_E3(sc)) {
12415                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12416            } else {
12417                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12418            }
12419        } else if (bond & 0x8) {
12420            if (CHIP_IS_E3(sc)) {
12421                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12422            } else {
12423                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12424            }
12425        }
12426
12427        /* disable EMAC for E3 and above */
12428        if (bond & 0x2) {
12429            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12430        }
12431
12432        sc->link_params.feature_config_flags |= feat;
12433    }
12434
12435    BXE_PHY_LOCK(sc);
12436
12437    if (load_mode == LOAD_DIAG) {
12438        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12439        /* Prefer doing PHY loopback at 10G speed, if possible */
12440        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12441            if (lp->speed_cap_mask[cfg_idx] &
12442                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12443                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12444            } else {
12445                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12446            }
12447        }
12448    }
12449
12450    if (load_mode == LOAD_LOOPBACK_EXT) {
12451        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12452    }
12453
12454    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12455
12456    BXE_PHY_UNLOCK(sc);
12457
12458    bxe_calc_fc_adv(sc);
12459
12460    if (sc->link_vars.link_up) {
12461        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12462        bxe_link_report(sc);
12463    }
12464
12465    if (!CHIP_REV_IS_SLOW(sc)) {
12466        bxe_periodic_start(sc);
12467    }
12468
12469    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12470    return (rc);
12471}
12472
12473/* must be called under IF_ADDR_LOCK */
12474static int
12475bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12476                         struct ecore_mcast_ramrod_params *p)
12477{
12478    struct ifnet *ifp = sc->ifnet;
12479    int mc_count = 0;
12480    struct ifmultiaddr *ifma;
12481    struct ecore_mcast_list_elem *mc_mac;
12482
12483    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12484        if (ifma->ifma_addr->sa_family != AF_LINK) {
12485            continue;
12486        }
12487
12488        mc_count++;
12489    }
12490
12491    ECORE_LIST_INIT(&p->mcast_list);
12492    p->mcast_list_len = 0;
12493
12494    if (!mc_count) {
12495        return (0);
12496    }
12497
12498    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12499                    (M_NOWAIT | M_ZERO));
12500    if (!mc_mac) {
12501        BLOGE(sc, "Failed to allocate temp mcast list\n");
12502        return (-1);
12503    }
12504
12505    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12506        if (ifma->ifma_addr->sa_family != AF_LINK) {
12507            continue;
12508        }
12509
12510        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12511        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12512
12513        BLOGD(sc, DBG_LOAD,
12514              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12515              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12516              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12517
12518        mc_mac++;
12519    }
12520
12521    p->mcast_list_len = mc_count;
12522
12523    return (0);
12524}
12525
12526static void
12527bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12528{
12529    struct ecore_mcast_list_elem *mc_mac =
12530        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12531                               struct ecore_mcast_list_elem,
12532                               link);
12533
12534    if (mc_mac) {
12535        /* only a single free as all mc_macs are in the same heap array */
12536        free(mc_mac, M_DEVBUF);
12537    }
12538}
12539
12540static int
12541bxe_set_mc_list(struct bxe_softc *sc)
12542{
12543    struct ecore_mcast_ramrod_params rparam = { NULL };
12544    int rc = 0;
12545
12546    rparam.mcast_obj = &sc->mcast_obj;
12547
12548    BXE_MCAST_LOCK(sc);
12549
12550    /* first, clear all configured multicast MACs */
12551    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12552    if (rc < 0) {
12553        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12554        return (rc);
12555    }
12556
12557    /* configure a new MACs list */
12558    rc = bxe_init_mcast_macs_list(sc, &rparam);
12559    if (rc) {
12560        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12561        BXE_MCAST_UNLOCK(sc);
12562        return (rc);
12563    }
12564
12565    /* Now add the new MACs */
12566    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12567    if (rc < 0) {
12568        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12569    }
12570
12571    bxe_free_mcast_macs_list(&rparam);
12572
12573    BXE_MCAST_UNLOCK(sc);
12574
12575    return (rc);
12576}
12577
12578static int
12579bxe_set_uc_list(struct bxe_softc *sc)
12580{
12581    struct ifnet *ifp = sc->ifnet;
12582    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12583    struct ifaddr *ifa;
12584    unsigned long ramrod_flags = 0;
12585    int rc;
12586
12587#if __FreeBSD_version < 800000
12588    IF_ADDR_LOCK(ifp);
12589#else
12590    if_addr_rlock(ifp);
12591#endif
12592
12593    /* first schedule a cleanup up of old configuration */
12594    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12595    if (rc < 0) {
12596        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12597#if __FreeBSD_version < 800000
12598        IF_ADDR_UNLOCK(ifp);
12599#else
12600        if_addr_runlock(ifp);
12601#endif
12602        return (rc);
12603    }
12604
12605    ifa = ifp->if_addr;
12606    while (ifa) {
12607        if (ifa->ifa_addr->sa_family != AF_LINK) {
12608            ifa = TAILQ_NEXT(ifa, ifa_link);
12609            continue;
12610        }
12611
12612        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12613                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12614        if (rc == -EEXIST) {
12615            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12616            /* do not treat adding same MAC as an error */
12617            rc = 0;
12618        } else if (rc < 0) {
12619            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12620#if __FreeBSD_version < 800000
12621            IF_ADDR_UNLOCK(ifp);
12622#else
12623            if_addr_runlock(ifp);
12624#endif
12625            return (rc);
12626        }
12627
12628        ifa = TAILQ_NEXT(ifa, ifa_link);
12629    }
12630
12631#if __FreeBSD_version < 800000
12632    IF_ADDR_UNLOCK(ifp);
12633#else
12634    if_addr_runlock(ifp);
12635#endif
12636
12637    /* Execute the pending commands */
12638    bit_set(&ramrod_flags, RAMROD_CONT);
12639    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12640                            ECORE_UC_LIST_MAC, &ramrod_flags));
12641}
12642
12643static void
12644bxe_handle_rx_mode_tq(void *context,
12645                      int  pending)
12646{
12647    struct bxe_softc *sc = (struct bxe_softc *)context;
12648    struct ifnet *ifp = sc->ifnet;
12649    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12650
12651    BXE_CORE_LOCK(sc);
12652
12653    if (sc->state != BXE_STATE_OPEN) {
12654        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12655        BXE_CORE_UNLOCK(sc);
12656        return;
12657    }
12658
12659    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12660
12661    if (ifp->if_flags & IFF_PROMISC) {
12662        rx_mode = BXE_RX_MODE_PROMISC;
12663    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12664               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12665                CHIP_IS_E1(sc))) {
12666        rx_mode = BXE_RX_MODE_ALLMULTI;
12667    } else {
12668        if (IS_PF(sc)) {
12669            /* some multicasts */
12670            if (bxe_set_mc_list(sc) < 0) {
12671                rx_mode = BXE_RX_MODE_ALLMULTI;
12672            }
12673            if (bxe_set_uc_list(sc) < 0) {
12674                rx_mode = BXE_RX_MODE_PROMISC;
12675            }
12676        }
12677#if 0
12678        else {
12679            /*
12680             * Configuring mcast to a VF involves sleeping (when we
12681             * wait for the PF's response). Since this function is
12682             * called from a non sleepable context we must schedule
12683             * a work item for this purpose
12684             */
12685            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12686            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12687        }
12688#endif
12689    }
12690
12691    sc->rx_mode = rx_mode;
12692
12693    /* schedule the rx_mode command */
12694    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12695        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12696        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12697        BXE_CORE_UNLOCK(sc);
12698        return;
12699    }
12700
12701    if (IS_PF(sc)) {
12702        bxe_set_storm_rx_mode(sc);
12703    }
12704#if 0
12705    else {
12706        /*
12707         * Configuring mcast to a VF involves sleeping (when we
12708         * wait for the PF's response). Since this function is
12709         * called from a non sleepable context we must schedule
12710         * a work item for this purpose
12711         */
12712        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12713        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12714    }
12715#endif
12716
12717    BXE_CORE_UNLOCK(sc);
12718}
12719
12720static void
12721bxe_set_rx_mode(struct bxe_softc *sc)
12722{
12723    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12724}
12725
12726/* update flags in shmem */
12727static void
12728bxe_update_drv_flags(struct bxe_softc *sc,
12729                     uint32_t         flags,
12730                     uint32_t         set)
12731{
12732    uint32_t drv_flags;
12733
12734    if (SHMEM2_HAS(sc, drv_flags)) {
12735        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12736        drv_flags = SHMEM2_RD(sc, drv_flags);
12737
12738        if (set) {
12739            SET_FLAGS(drv_flags, flags);
12740        } else {
12741            RESET_FLAGS(drv_flags, flags);
12742        }
12743
12744        SHMEM2_WR(sc, drv_flags, drv_flags);
12745        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12746
12747        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12748    }
12749}
12750
12751/* periodic timer callout routine, only runs when the interface is up */
12752
12753static void
12754bxe_periodic_callout_func(void *xsc)
12755{
12756    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12757    int i;
12758
12759    if (!BXE_CORE_TRYLOCK(sc)) {
12760        /* just bail and try again next time */
12761
12762        if ((sc->state == BXE_STATE_OPEN) &&
12763            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12764            /* schedule the next periodic callout */
12765            callout_reset(&sc->periodic_callout, hz,
12766                          bxe_periodic_callout_func, sc);
12767        }
12768
12769        return;
12770    }
12771
12772    if ((sc->state != BXE_STATE_OPEN) ||
12773        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12774        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12775        BXE_CORE_UNLOCK(sc);
12776        return;
12777    }
12778
12779    /* Check for TX timeouts on any fastpath. */
12780    FOR_EACH_QUEUE(sc, i) {
12781        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12782            /* Ruh-Roh, chip was reset! */
12783            break;
12784        }
12785    }
12786
12787    if (!CHIP_REV_IS_SLOW(sc)) {
12788        /*
12789         * This barrier is needed to ensure the ordering between the writing
12790         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12791         * the reading here.
12792         */
12793        mb();
12794        if (sc->port.pmf) {
12795            BXE_PHY_LOCK(sc);
12796            elink_period_func(&sc->link_params, &sc->link_vars);
12797            BXE_PHY_UNLOCK(sc);
12798        }
12799    }
12800
12801    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12802        int mb_idx = SC_FW_MB_IDX(sc);
12803        uint32_t drv_pulse;
12804        uint32_t mcp_pulse;
12805
12806        ++sc->fw_drv_pulse_wr_seq;
12807        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12808
12809        drv_pulse = sc->fw_drv_pulse_wr_seq;
12810        bxe_drv_pulse(sc);
12811
12812        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12813                     MCP_PULSE_SEQ_MASK);
12814
12815        /*
12816         * The delta between driver pulse and mcp response should
12817         * be 1 (before mcp response) or 0 (after mcp response).
12818         */
12819        if ((drv_pulse != mcp_pulse) &&
12820            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12821            /* someone lost a heartbeat... */
12822            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12823                  drv_pulse, mcp_pulse);
12824        }
12825    }
12826
12827    /* state is BXE_STATE_OPEN */
12828    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12829
12830#if 0
12831    /* sample VF bulletin board for new posts from PF */
12832    if (IS_VF(sc)) {
12833        bxe_sample_bulletin(sc);
12834    }
12835#endif
12836
12837    BXE_CORE_UNLOCK(sc);
12838
12839    if ((sc->state == BXE_STATE_OPEN) &&
12840        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12841        /* schedule the next periodic callout */
12842        callout_reset(&sc->periodic_callout, hz,
12843                      bxe_periodic_callout_func, sc);
12844    }
12845}
12846
12847static void
12848bxe_periodic_start(struct bxe_softc *sc)
12849{
12850    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12851    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12852}
12853
12854static void
12855bxe_periodic_stop(struct bxe_softc *sc)
12856{
12857    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12858    callout_drain(&sc->periodic_callout);
12859}
12860
12861/* start the controller */
12862static __noinline int
12863bxe_nic_load(struct bxe_softc *sc,
12864             int              load_mode)
12865{
12866    uint32_t val;
12867    int load_code = 0;
12868    int i, rc = 0;
12869
12870    BXE_CORE_LOCK_ASSERT(sc);
12871
12872    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12873
12874    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12875
12876    if (IS_PF(sc)) {
12877        /* must be called before memory allocation and HW init */
12878        bxe_ilt_set_info(sc);
12879    }
12880
12881    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12882
12883    bxe_set_fp_rx_buf_size(sc);
12884
12885    if (bxe_alloc_fp_buffers(sc) != 0) {
12886        BLOGE(sc, "Failed to allocate fastpath memory\n");
12887        sc->state = BXE_STATE_CLOSED;
12888        rc = ENOMEM;
12889        goto bxe_nic_load_error0;
12890    }
12891
12892    if (bxe_alloc_mem(sc) != 0) {
12893        sc->state = BXE_STATE_CLOSED;
12894        rc = ENOMEM;
12895        goto bxe_nic_load_error0;
12896    }
12897
12898    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12899        sc->state = BXE_STATE_CLOSED;
12900        rc = ENOMEM;
12901        goto bxe_nic_load_error0;
12902    }
12903
12904    if (IS_PF(sc)) {
12905        /* set pf load just before approaching the MCP */
12906        bxe_set_pf_load(sc);
12907
12908        /* if MCP exists send load request and analyze response */
12909        if (!BXE_NOMCP(sc)) {
12910            /* attempt to load pf */
12911            if (bxe_nic_load_request(sc, &load_code) != 0) {
12912                sc->state = BXE_STATE_CLOSED;
12913                rc = ENXIO;
12914                goto bxe_nic_load_error1;
12915            }
12916
12917            /* what did the MCP say? */
12918            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12919                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12920                sc->state = BXE_STATE_CLOSED;
12921                rc = ENXIO;
12922                goto bxe_nic_load_error2;
12923            }
12924        } else {
12925            BLOGI(sc, "Device has no MCP!\n");
12926            load_code = bxe_nic_load_no_mcp(sc);
12927        }
12928
12929        /* mark PMF if applicable */
12930        bxe_nic_load_pmf(sc, load_code);
12931
12932        /* Init Function state controlling object */
12933        bxe_init_func_obj(sc);
12934
12935        /* Initialize HW */
12936        if (bxe_init_hw(sc, load_code) != 0) {
12937            BLOGE(sc, "HW init failed\n");
12938            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12939            sc->state = BXE_STATE_CLOSED;
12940            rc = ENXIO;
12941            goto bxe_nic_load_error2;
12942        }
12943    }
12944
12945    /* attach interrupts */
12946    if (bxe_interrupt_attach(sc) != 0) {
12947        sc->state = BXE_STATE_CLOSED;
12948        rc = ENXIO;
12949        goto bxe_nic_load_error2;
12950    }
12951
12952    bxe_nic_init(sc, load_code);
12953
12954    /* Init per-function objects */
12955    if (IS_PF(sc)) {
12956        bxe_init_objs(sc);
12957        // XXX bxe_iov_nic_init(sc);
12958
12959        /* set AFEX default VLAN tag to an invalid value */
12960        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12961        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12962
12963        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12964        rc = bxe_func_start(sc);
12965        if (rc) {
12966            BLOGE(sc, "Function start failed!\n");
12967            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12968            sc->state = BXE_STATE_ERROR;
12969            goto bxe_nic_load_error3;
12970        }
12971
12972        /* send LOAD_DONE command to MCP */
12973        if (!BXE_NOMCP(sc)) {
12974            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12975            if (!load_code) {
12976                BLOGE(sc, "MCP response failure, aborting\n");
12977                sc->state = BXE_STATE_ERROR;
12978                rc = ENXIO;
12979                goto bxe_nic_load_error3;
12980            }
12981        }
12982
12983        rc = bxe_setup_leading(sc);
12984        if (rc) {
12985            BLOGE(sc, "Setup leading failed!\n");
12986            sc->state = BXE_STATE_ERROR;
12987            goto bxe_nic_load_error3;
12988        }
12989
12990        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12991            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12992            if (rc) {
12993                BLOGE(sc, "Queue(%d) setup failed\n", i);
12994                sc->state = BXE_STATE_ERROR;
12995                goto bxe_nic_load_error3;
12996            }
12997        }
12998
12999        rc = bxe_init_rss_pf(sc);
13000        if (rc) {
13001            BLOGE(sc, "PF RSS init failed\n");
13002            sc->state = BXE_STATE_ERROR;
13003            goto bxe_nic_load_error3;
13004        }
13005    }
13006    /* XXX VF */
13007#if 0
13008    else { /* VF */
13009        FOR_EACH_ETH_QUEUE(sc, i) {
13010            rc = bxe_vfpf_setup_q(sc, i);
13011            if (rc) {
13012                BLOGE(sc, "Queue(%d) setup failed\n", i);
13013                sc->state = BXE_STATE_ERROR;
13014                goto bxe_nic_load_error3;
13015            }
13016        }
13017    }
13018#endif
13019
13020    /* now when Clients are configured we are ready to work */
13021    sc->state = BXE_STATE_OPEN;
13022
13023    /* Configure a ucast MAC */
13024    if (IS_PF(sc)) {
13025        rc = bxe_set_eth_mac(sc, TRUE);
13026    }
13027#if 0
13028    else { /* IS_VF(sc) */
13029        rc = bxe_vfpf_set_mac(sc);
13030    }
13031#endif
13032    if (rc) {
13033        BLOGE(sc, "Setting Ethernet MAC failed\n");
13034        sc->state = BXE_STATE_ERROR;
13035        goto bxe_nic_load_error3;
13036    }
13037
13038#if 0
13039    if (IS_PF(sc) && sc->pending_max) {
13040        /* for AFEX */
13041        bxe_update_max_mf_config(sc, sc->pending_max);
13042        sc->pending_max = 0;
13043    }
13044#endif
13045
13046    if (sc->port.pmf) {
13047        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13048        if (rc) {
13049            sc->state = BXE_STATE_ERROR;
13050            goto bxe_nic_load_error3;
13051        }
13052    }
13053
13054    sc->link_params.feature_config_flags &=
13055        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13056
13057    /* start fast path */
13058
13059    /* Initialize Rx filter */
13060    bxe_set_rx_mode(sc);
13061
13062    /* start the Tx */
13063    switch (/* XXX load_mode */LOAD_OPEN) {
13064    case LOAD_NORMAL:
13065    case LOAD_OPEN:
13066        break;
13067
13068    case LOAD_DIAG:
13069    case LOAD_LOOPBACK_EXT:
13070        sc->state = BXE_STATE_DIAG;
13071        break;
13072
13073    default:
13074        break;
13075    }
13076
13077    if (sc->port.pmf) {
13078        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13079    } else {
13080        bxe_link_status_update(sc);
13081    }
13082
13083    /* start the periodic timer callout */
13084    bxe_periodic_start(sc);
13085
13086    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13087        /* mark driver is loaded in shmem2 */
13088        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13089        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13090                  (val |
13091                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13092                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13093    }
13094
13095    /* wait for all pending SP commands to complete */
13096    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13097        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13098        bxe_periodic_stop(sc);
13099        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13100        return (ENXIO);
13101    }
13102
13103#if 0
13104    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13105    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13106        bxe_dcbx_init(sc, FALSE);
13107    }
13108#endif
13109
13110    /* Tell the stack the driver is running! */
13111    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13112
13113    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13114
13115    return (0);
13116
13117bxe_nic_load_error3:
13118
13119    if (IS_PF(sc)) {
13120        bxe_int_disable_sync(sc, 1);
13121
13122        /* clean out queued objects */
13123        bxe_squeeze_objects(sc);
13124    }
13125
13126    bxe_interrupt_detach(sc);
13127
13128bxe_nic_load_error2:
13129
13130    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13131        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13132        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13133    }
13134
13135    sc->port.pmf = 0;
13136
13137bxe_nic_load_error1:
13138
13139    /* clear pf_load status, as it was already set */
13140    if (IS_PF(sc)) {
13141        bxe_clear_pf_load(sc);
13142    }
13143
13144bxe_nic_load_error0:
13145
13146    bxe_free_fw_stats_mem(sc);
13147    bxe_free_fp_buffers(sc);
13148    bxe_free_mem(sc);
13149
13150    return (rc);
13151}
13152
13153static int
13154bxe_init_locked(struct bxe_softc *sc)
13155{
13156    int other_engine = SC_PATH(sc) ? 0 : 1;
13157    uint8_t other_load_status, load_status;
13158    uint8_t global = FALSE;
13159    int rc;
13160
13161    BXE_CORE_LOCK_ASSERT(sc);
13162
13163    /* check if the driver is already running */
13164    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13165        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13166        return (0);
13167    }
13168
13169    bxe_set_power_state(sc, PCI_PM_D0);
13170
13171    /*
13172     * If parity occurred during the unload, then attentions and/or
13173     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13174     * loaded on the current engine to complete the recovery. Parity recovery
13175     * is only relevant for PF driver.
13176     */
13177    if (IS_PF(sc)) {
13178        other_load_status = bxe_get_load_status(sc, other_engine);
13179        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13180
13181        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13182            bxe_chk_parity_attn(sc, &global, TRUE)) {
13183            do {
13184                /*
13185                 * If there are attentions and they are in global blocks, set
13186                 * the GLOBAL_RESET bit regardless whether it will be this
13187                 * function that will complete the recovery or not.
13188                 */
13189                if (global) {
13190                    bxe_set_reset_global(sc);
13191                }
13192
13193                /*
13194                 * Only the first function on the current engine should try
13195                 * to recover in open. In case of attentions in global blocks
13196                 * only the first in the chip should try to recover.
13197                 */
13198                if ((!load_status && (!global || !other_load_status)) &&
13199                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13200                    BLOGI(sc, "Recovered during init\n");
13201                    break;
13202                }
13203
13204                /* recovery has failed... */
13205                bxe_set_power_state(sc, PCI_PM_D3hot);
13206                sc->recovery_state = BXE_RECOVERY_FAILED;
13207
13208                BLOGE(sc, "Recovery flow hasn't properly "
13209                          "completed yet, try again later. "
13210                          "If you still see this message after a "
13211                          "few retries then power cycle is required.\n");
13212
13213                rc = ENXIO;
13214                goto bxe_init_locked_done;
13215            } while (0);
13216        }
13217    }
13218
13219    sc->recovery_state = BXE_RECOVERY_DONE;
13220
13221    rc = bxe_nic_load(sc, LOAD_OPEN);
13222
13223bxe_init_locked_done:
13224
13225    if (rc) {
13226        /* Tell the stack the driver is NOT running! */
13227        BLOGE(sc, "Initialization failed, "
13228                  "stack notified driver is NOT running!\n");
13229        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13230    }
13231
13232    return (rc);
13233}
13234
13235static int
13236bxe_stop_locked(struct bxe_softc *sc)
13237{
13238    BXE_CORE_LOCK_ASSERT(sc);
13239    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13240}
13241
13242/*
13243 * Handles controller initialization when called from an unlocked routine.
13244 * ifconfig calls this function.
13245 *
13246 * Returns:
13247 *   void
13248 */
13249static void
13250bxe_init(void *xsc)
13251{
13252    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13253
13254    BXE_CORE_LOCK(sc);
13255    bxe_init_locked(sc);
13256    BXE_CORE_UNLOCK(sc);
13257}
13258
13259static int
13260bxe_init_ifnet(struct bxe_softc *sc)
13261{
13262    struct ifnet *ifp;
13263
13264    /* ifconfig entrypoint for media type/status reporting */
13265    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13266                 bxe_ifmedia_update,
13267                 bxe_ifmedia_status);
13268
13269    /* set the default interface values */
13270    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13271    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13272    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13273
13274    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13275
13276    /* allocate the ifnet structure */
13277    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13278        BLOGE(sc, "Interface allocation failed!\n");
13279        return (ENXIO);
13280    }
13281
13282    ifp->if_softc = sc;
13283    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13284    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13285    ifp->if_ioctl = bxe_ioctl;
13286    ifp->if_start = bxe_tx_start;
13287#if __FreeBSD_version >= 800000
13288    ifp->if_transmit = bxe_tx_mq_start;
13289    ifp->if_qflush = bxe_mq_flush;
13290#endif
13291#ifdef FreeBSD8_0
13292    ifp->if_timer = 0;
13293#endif
13294    ifp->if_init = bxe_init;
13295    ifp->if_mtu = sc->mtu;
13296    ifp->if_hwassist = (CSUM_IP       |
13297                        CSUM_TCP      |
13298                        CSUM_UDP      |
13299                        CSUM_TSO      |
13300                        CSUM_TCP_IPV6 |
13301                        CSUM_UDP_IPV6);
13302    ifp->if_capabilities =
13303#if __FreeBSD_version < 700000
13304        (IFCAP_VLAN_MTU       |
13305         IFCAP_VLAN_HWTAGGING |
13306         IFCAP_HWCSUM         |
13307         IFCAP_JUMBO_MTU      |
13308         IFCAP_LRO);
13309#else
13310        (IFCAP_VLAN_MTU       |
13311         IFCAP_VLAN_HWTAGGING |
13312         IFCAP_VLAN_HWTSO     |
13313         IFCAP_VLAN_HWFILTER  |
13314         IFCAP_VLAN_HWCSUM    |
13315         IFCAP_HWCSUM         |
13316         IFCAP_JUMBO_MTU      |
13317         IFCAP_LRO            |
13318         IFCAP_TSO4           |
13319         IFCAP_TSO6           |
13320         IFCAP_WOL_MAGIC);
13321#endif
13322    ifp->if_capenable = ifp->if_capabilities;
13323    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13324#if __FreeBSD_version < 1000025
13325    ifp->if_baudrate = 1000000000;
13326#else
13327    if_initbaudrate(ifp, IF_Gbps(10));
13328#endif
13329    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13330
13331    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13332    IFQ_SET_READY(&ifp->if_snd);
13333
13334    sc->ifnet = ifp;
13335
13336    /* attach to the Ethernet interface list */
13337    ether_ifattach(ifp, sc->link_params.mac_addr);
13338
13339    return (0);
13340}
13341
13342static void
13343bxe_deallocate_bars(struct bxe_softc *sc)
13344{
13345    int i;
13346
13347    for (i = 0; i < MAX_BARS; i++) {
13348        if (sc->bar[i].resource != NULL) {
13349            bus_release_resource(sc->dev,
13350                                 SYS_RES_MEMORY,
13351                                 sc->bar[i].rid,
13352                                 sc->bar[i].resource);
13353            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13354                  i, PCIR_BAR(i));
13355        }
13356    }
13357}
13358
13359static int
13360bxe_allocate_bars(struct bxe_softc *sc)
13361{
13362    u_int flags;
13363    int i;
13364
13365    memset(sc->bar, 0, sizeof(sc->bar));
13366
13367    for (i = 0; i < MAX_BARS; i++) {
13368
13369        /* memory resources reside at BARs 0, 2, 4 */
13370        /* Run `pciconf -lb` to see mappings */
13371        if ((i != 0) && (i != 2) && (i != 4)) {
13372            continue;
13373        }
13374
13375        sc->bar[i].rid = PCIR_BAR(i);
13376
13377        flags = RF_ACTIVE;
13378        if (i == 0) {
13379            flags |= RF_SHAREABLE;
13380        }
13381
13382        if ((sc->bar[i].resource =
13383             bus_alloc_resource_any(sc->dev,
13384                                    SYS_RES_MEMORY,
13385                                    &sc->bar[i].rid,
13386                                    flags)) == NULL) {
13387#if 0
13388            /* BAR4 doesn't exist for E1 */
13389            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13390                  i, PCIR_BAR(i));
13391#endif
13392            return (0);
13393        }
13394
13395        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13396        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13397        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13398
13399        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13400              i, PCIR_BAR(i),
13401              (void *)rman_get_start(sc->bar[i].resource),
13402              (void *)rman_get_end(sc->bar[i].resource),
13403              rman_get_size(sc->bar[i].resource),
13404              (void *)sc->bar[i].kva);
13405    }
13406
13407    return (0);
13408}
13409
13410static void
13411bxe_get_function_num(struct bxe_softc *sc)
13412{
13413    uint32_t val = 0;
13414
13415    /*
13416     * Read the ME register to get the function number. The ME register
13417     * holds the relative-function number and absolute-function number. The
13418     * absolute-function number appears only in E2 and above. Before that
13419     * these bits always contained zero, therefore we cannot blindly use them.
13420     */
13421
13422    val = REG_RD(sc, BAR_ME_REGISTER);
13423
13424    sc->pfunc_rel =
13425        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13426    sc->path_id =
13427        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13428
13429    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13430        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13431    } else {
13432        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13433    }
13434
13435    BLOGD(sc, DBG_LOAD,
13436          "Relative function %d, Absolute function %d, Path %d\n",
13437          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13438}
13439
13440static uint32_t
13441bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13442{
13443    uint32_t shmem2_size;
13444    uint32_t offset;
13445    uint32_t mf_cfg_offset_value;
13446
13447    /* Non 57712 */
13448    offset = (SHMEM_RD(sc, func_mb) +
13449              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13450
13451    /* 57712 plus */
13452    if (sc->devinfo.shmem2_base != 0) {
13453        shmem2_size = SHMEM2_RD(sc, size);
13454        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13455            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13456            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13457                offset = mf_cfg_offset_value;
13458            }
13459        }
13460    }
13461
13462    return (offset);
13463}
13464
13465static uint32_t
13466bxe_pcie_capability_read(struct bxe_softc *sc,
13467                         int    reg,
13468                         int    width)
13469{
13470    int pcie_reg;
13471
13472    /* ensure PCIe capability is enabled */
13473    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13474        if (pcie_reg != 0) {
13475            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13476            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13477        }
13478    }
13479
13480    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13481
13482    return (0);
13483}
13484
13485static uint8_t
13486bxe_is_pcie_pending(struct bxe_softc *sc)
13487{
13488    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13489            PCIM_EXP_STA_TRANSACTION_PND);
13490}
13491
13492/*
13493 * Walk the PCI capabiites list for the device to find what features are
13494 * supported. These capabilites may be enabled/disabled by firmware so it's
13495 * best to walk the list rather than make assumptions.
13496 */
13497static void
13498bxe_probe_pci_caps(struct bxe_softc *sc)
13499{
13500    uint16_t link_status;
13501    int reg;
13502
13503    /* check if PCI Power Management is enabled */
13504    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13505        if (reg != 0) {
13506            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13507
13508            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13509            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13510        }
13511    }
13512
13513    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13514
13515    /* handle PCIe 2.0 workarounds for 57710 */
13516    if (CHIP_IS_E1(sc)) {
13517        /* workaround for 57710 errata E4_57710_27462 */
13518        sc->devinfo.pcie_link_speed =
13519            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13520
13521        /* workaround for 57710 errata E4_57710_27488 */
13522        sc->devinfo.pcie_link_width =
13523            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13524        if (sc->devinfo.pcie_link_speed > 1) {
13525            sc->devinfo.pcie_link_width =
13526                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13527        }
13528    } else {
13529        sc->devinfo.pcie_link_speed =
13530            (link_status & PCIM_LINK_STA_SPEED);
13531        sc->devinfo.pcie_link_width =
13532            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13533    }
13534
13535    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13536          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13537
13538    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13539    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13540
13541    /* check if MSI capability is enabled */
13542    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13543        if (reg != 0) {
13544            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13545
13546            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13547            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13548        }
13549    }
13550
13551    /* check if MSI-X capability is enabled */
13552    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13553        if (reg != 0) {
13554            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13555
13556            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13557            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13558        }
13559    }
13560}
13561
13562static int
13563bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13564{
13565    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13566    uint32_t val;
13567
13568    /* get the outer vlan if we're in switch-dependent mode */
13569
13570    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13571    mf_info->ext_id = (uint16_t)val;
13572
13573    mf_info->multi_vnics_mode = 1;
13574
13575    if (!VALID_OVLAN(mf_info->ext_id)) {
13576        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13577        return (1);
13578    }
13579
13580    /* get the capabilities */
13581    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13582        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13583        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13584    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13585               FUNC_MF_CFG_PROTOCOL_FCOE) {
13586        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13587    } else {
13588        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13589    }
13590
13591    mf_info->vnics_per_port =
13592        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13593
13594    return (0);
13595}
13596
13597static uint32_t
13598bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13599{
13600    uint32_t retval = 0;
13601    uint32_t val;
13602
13603    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13604
13605    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13606        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13607            retval |= MF_PROTO_SUPPORT_ETHERNET;
13608        }
13609        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13610            retval |= MF_PROTO_SUPPORT_ISCSI;
13611        }
13612        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13613            retval |= MF_PROTO_SUPPORT_FCOE;
13614        }
13615    }
13616
13617    return (retval);
13618}
13619
13620static int
13621bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13622{
13623    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13624    uint32_t val;
13625
13626    /*
13627     * There is no outer vlan if we're in switch-independent mode.
13628     * If the mac is valid then assume multi-function.
13629     */
13630
13631    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13632
13633    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13634
13635    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13636
13637    mf_info->vnics_per_port =
13638        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13639
13640    return (0);
13641}
13642
13643static int
13644bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13645{
13646    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13647    uint32_t e1hov_tag;
13648    uint32_t func_config;
13649    uint32_t niv_config;
13650
13651    mf_info->multi_vnics_mode = 1;
13652
13653    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13654    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13655    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13656
13657    mf_info->ext_id =
13658        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13659                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13660
13661    mf_info->default_vlan =
13662        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13663                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13664
13665    mf_info->niv_allowed_priorities =
13666        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13667                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13668
13669    mf_info->niv_default_cos =
13670        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13671                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13672
13673    mf_info->afex_vlan_mode =
13674        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13675         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13676
13677    mf_info->niv_mba_enabled =
13678        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13679         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13680
13681    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13682
13683    mf_info->vnics_per_port =
13684        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13685
13686    return (0);
13687}
13688
13689static int
13690bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13691{
13692    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13693    uint32_t mf_cfg1;
13694    uint32_t mf_cfg2;
13695    uint32_t ovlan1;
13696    uint32_t ovlan2;
13697    uint8_t i, j;
13698
13699    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13700          SC_PORT(sc));
13701    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13702          mf_info->mf_config[SC_VN(sc)]);
13703    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13704          mf_info->multi_vnics_mode);
13705    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13706          mf_info->vnics_per_port);
13707    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13708          mf_info->ext_id);
13709    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13710          mf_info->min_bw[0], mf_info->min_bw[1],
13711          mf_info->min_bw[2], mf_info->min_bw[3]);
13712    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13713          mf_info->max_bw[0], mf_info->max_bw[1],
13714          mf_info->max_bw[2], mf_info->max_bw[3]);
13715    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13716          sc->mac_addr_str);
13717
13718    /* various MF mode sanity checks... */
13719
13720    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13721        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13722              SC_PORT(sc));
13723        return (1);
13724    }
13725
13726    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13727        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13728              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13729        return (1);
13730    }
13731
13732    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13733        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13734        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13735            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13736                  SC_VN(sc), OVLAN(sc));
13737            return (1);
13738        }
13739
13740        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13741            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13742                  mf_info->multi_vnics_mode, OVLAN(sc));
13743            return (1);
13744        }
13745
13746        /*
13747         * Verify all functions are either MF or SF mode. If MF, make sure
13748         * sure that all non-hidden functions have a valid ovlan. If SF,
13749         * make sure that all non-hidden functions have an invalid ovlan.
13750         */
13751        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13752            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13753            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13754            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13755                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13756                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13757                BLOGE(sc, "mf_mode=SD function %d MF config "
13758                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13759                      i, mf_info->multi_vnics_mode, ovlan1);
13760                return (1);
13761            }
13762        }
13763
13764        /* Verify all funcs on the same port each have a different ovlan. */
13765        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13766            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13767            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13768            /* iterate from the next function on the port to the max func */
13769            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13770                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13771                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13772                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13773                    VALID_OVLAN(ovlan1) &&
13774                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13775                    VALID_OVLAN(ovlan2) &&
13776                    (ovlan1 == ovlan2)) {
13777                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13778                              "have the same ovlan (%d)\n",
13779                          i, j, ovlan1);
13780                    return (1);
13781                }
13782            }
13783        }
13784    } /* MULTI_FUNCTION_SD */
13785
13786    return (0);
13787}
13788
13789static int
13790bxe_get_mf_cfg_info(struct bxe_softc *sc)
13791{
13792    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13793    uint32_t val, mac_upper;
13794    uint8_t i, vnic;
13795
13796    /* initialize mf_info defaults */
13797    mf_info->vnics_per_port   = 1;
13798    mf_info->multi_vnics_mode = FALSE;
13799    mf_info->path_has_ovlan   = FALSE;
13800    mf_info->mf_mode          = SINGLE_FUNCTION;
13801
13802    if (!CHIP_IS_MF_CAP(sc)) {
13803        return (0);
13804    }
13805
13806    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13807        BLOGE(sc, "Invalid mf_cfg_base!\n");
13808        return (1);
13809    }
13810
13811    /* get the MF mode (switch dependent / independent / single-function) */
13812
13813    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13814
13815    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13816    {
13817    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13818
13819        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13820
13821        /* check for legal upper mac bytes */
13822        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13823            mf_info->mf_mode = MULTI_FUNCTION_SI;
13824        } else {
13825            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13826        }
13827
13828        break;
13829
13830    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13831    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13832
13833        /* get outer vlan configuration */
13834        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13835
13836        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13837            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13838            mf_info->mf_mode = MULTI_FUNCTION_SD;
13839        } else {
13840            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13841        }
13842
13843        break;
13844
13845    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13846
13847        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13848        return (0);
13849
13850    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13851
13852        /*
13853         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13854         * and the MAC address is valid.
13855         */
13856        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13857
13858        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13859            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13860            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13861        } else {
13862            BLOGE(sc, "Invalid config for AFEX mode\n");
13863        }
13864
13865        break;
13866
13867    default:
13868
13869        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13870              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13871
13872        return (1);
13873    }
13874
13875    /* set path mf_mode (which could be different than function mf_mode) */
13876    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13877        mf_info->path_has_ovlan = TRUE;
13878    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13879        /*
13880         * Decide on path multi vnics mode. If we're not in MF mode and in
13881         * 4-port mode, this is good enough to check vnic-0 of the other port
13882         * on the same path
13883         */
13884        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13885            uint8_t other_port = !(PORT_ID(sc) & 1);
13886            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13887
13888            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13889
13890            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13891        }
13892    }
13893
13894    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13895        /* invalid MF config */
13896        if (SC_VN(sc) >= 1) {
13897            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13898            return (1);
13899        }
13900
13901        return (0);
13902    }
13903
13904    /* get the MF configuration */
13905    mf_info->mf_config[SC_VN(sc)] =
13906        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13907
13908    switch(mf_info->mf_mode)
13909    {
13910    case MULTI_FUNCTION_SD:
13911
13912        bxe_get_shmem_mf_cfg_info_sd(sc);
13913        break;
13914
13915    case MULTI_FUNCTION_SI:
13916
13917        bxe_get_shmem_mf_cfg_info_si(sc);
13918        break;
13919
13920    case MULTI_FUNCTION_AFEX:
13921
13922        bxe_get_shmem_mf_cfg_info_niv(sc);
13923        break;
13924
13925    default:
13926
13927        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13928              mf_info->mf_mode);
13929        return (1);
13930    }
13931
13932    /* get the congestion management parameters */
13933
13934    vnic = 0;
13935    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13936        /* get min/max bw */
13937        val = MFCFG_RD(sc, func_mf_config[i].config);
13938        mf_info->min_bw[vnic] =
13939            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13940        mf_info->max_bw[vnic] =
13941            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13942        vnic++;
13943    }
13944
13945    return (bxe_check_valid_mf_cfg(sc));
13946}
13947
13948static int
13949bxe_get_shmem_info(struct bxe_softc *sc)
13950{
13951    int port;
13952    uint32_t mac_hi, mac_lo, val;
13953
13954    port = SC_PORT(sc);
13955    mac_hi = mac_lo = 0;
13956
13957    sc->link_params.sc   = sc;
13958    sc->link_params.port = port;
13959
13960    /* get the hardware config info */
13961    sc->devinfo.hw_config =
13962        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13963    sc->devinfo.hw_config2 =
13964        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13965
13966    sc->link_params.hw_led_mode =
13967        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13968         SHARED_HW_CFG_LED_MODE_SHIFT);
13969
13970    /* get the port feature config */
13971    sc->port.config =
13972        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13973
13974    /* get the link params */
13975    sc->link_params.speed_cap_mask[0] =
13976        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13977    sc->link_params.speed_cap_mask[1] =
13978        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13979
13980    /* get the lane config */
13981    sc->link_params.lane_config =
13982        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13983
13984    /* get the link config */
13985    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13986    sc->port.link_config[ELINK_INT_PHY] = val;
13987    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13988    sc->port.link_config[ELINK_EXT_PHY1] =
13989        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13990
13991    /* get the override preemphasis flag and enable it or turn it off */
13992    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13993    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13994        sc->link_params.feature_config_flags |=
13995            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13996    } else {
13997        sc->link_params.feature_config_flags &=
13998            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13999    }
14000
14001    /* get the initial value of the link params */
14002    sc->link_params.multi_phy_config =
14003        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14004
14005    /* get external phy info */
14006    sc->port.ext_phy_config =
14007        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14008
14009    /* get the multifunction configuration */
14010    bxe_get_mf_cfg_info(sc);
14011
14012    /* get the mac address */
14013    if (IS_MF(sc)) {
14014        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14015        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14016    } else {
14017        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14018        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14019    }
14020
14021    if ((mac_lo == 0) && (mac_hi == 0)) {
14022        *sc->mac_addr_str = 0;
14023        BLOGE(sc, "No Ethernet address programmed!\n");
14024    } else {
14025        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14026        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14027        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14028        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14029        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14030        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14031        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14032                 "%02x:%02x:%02x:%02x:%02x:%02x",
14033                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14034                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14035                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14036        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14037    }
14038
14039#if 0
14040    if (!IS_MF(sc) &&
14041        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14042         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14043        sc->flags |= BXE_NO_ISCSI;
14044    }
14045    if (!IS_MF(sc) &&
14046        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14047         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14048        sc->flags |= BXE_NO_FCOE_FLAG;
14049    }
14050#endif
14051
14052    return (0);
14053}
14054
14055static void
14056bxe_get_tunable_params(struct bxe_softc *sc)
14057{
14058    /* sanity checks */
14059
14060    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14061        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14062        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14063        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14064        bxe_interrupt_mode = INTR_MODE_MSIX;
14065    }
14066
14067    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14068        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14069        bxe_queue_count = 0;
14070    }
14071
14072    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14073        if (bxe_max_rx_bufs == 0) {
14074            bxe_max_rx_bufs = RX_BD_USABLE;
14075        } else {
14076            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14077            bxe_max_rx_bufs = 2048;
14078        }
14079    }
14080
14081    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14082        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14083        bxe_hc_rx_ticks = 25;
14084    }
14085
14086    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14087        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14088        bxe_hc_tx_ticks = 50;
14089    }
14090
14091    if (bxe_max_aggregation_size == 0) {
14092        bxe_max_aggregation_size = TPA_AGG_SIZE;
14093    }
14094
14095    if (bxe_max_aggregation_size > 0xffff) {
14096        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14097              bxe_max_aggregation_size);
14098        bxe_max_aggregation_size = TPA_AGG_SIZE;
14099    }
14100
14101    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14102        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14103        bxe_mrrs = -1;
14104    }
14105
14106    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14107        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14108        bxe_autogreeen = 0;
14109    }
14110
14111    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14112        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14113        bxe_udp_rss = 0;
14114    }
14115
14116    /* pull in user settings */
14117
14118    sc->interrupt_mode       = bxe_interrupt_mode;
14119    sc->max_rx_bufs          = bxe_max_rx_bufs;
14120    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14121    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14122    sc->max_aggregation_size = bxe_max_aggregation_size;
14123    sc->mrrs                 = bxe_mrrs;
14124    sc->autogreeen           = bxe_autogreeen;
14125    sc->udp_rss              = bxe_udp_rss;
14126
14127    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14128        sc->num_queues = 1;
14129    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14130        sc->num_queues =
14131            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14132                MAX_RSS_CHAINS);
14133        if (sc->num_queues > mp_ncpus) {
14134            sc->num_queues = mp_ncpus;
14135        }
14136    }
14137
14138    BLOGD(sc, DBG_LOAD,
14139          "User Config: "
14140          "debug=0x%lx "
14141          "interrupt_mode=%d "
14142          "queue_count=%d "
14143          "hc_rx_ticks=%d "
14144          "hc_tx_ticks=%d "
14145          "rx_budget=%d "
14146          "max_aggregation_size=%d "
14147          "mrrs=%d "
14148          "autogreeen=%d "
14149          "udp_rss=%d\n",
14150          bxe_debug,
14151          sc->interrupt_mode,
14152          sc->num_queues,
14153          sc->hc_rx_ticks,
14154          sc->hc_tx_ticks,
14155          bxe_rx_budget,
14156          sc->max_aggregation_size,
14157          sc->mrrs,
14158          sc->autogreeen,
14159          sc->udp_rss);
14160}
14161
14162static void
14163bxe_media_detect(struct bxe_softc *sc)
14164{
14165    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14166    switch (sc->link_params.phy[phy_idx].media_type) {
14167    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14168    case ELINK_ETH_PHY_XFP_FIBER:
14169        BLOGI(sc, "Found 10Gb Fiber media.\n");
14170        sc->media = IFM_10G_SR;
14171        break;
14172    case ELINK_ETH_PHY_SFP_1G_FIBER:
14173        BLOGI(sc, "Found 1Gb Fiber media.\n");
14174        sc->media = IFM_1000_SX;
14175        break;
14176    case ELINK_ETH_PHY_KR:
14177    case ELINK_ETH_PHY_CX4:
14178        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14179        sc->media = IFM_10G_CX4;
14180        break;
14181    case ELINK_ETH_PHY_DA_TWINAX:
14182        BLOGI(sc, "Found 10Gb Twinax media.\n");
14183        sc->media = IFM_10G_TWINAX;
14184        break;
14185    case ELINK_ETH_PHY_BASE_T:
14186        if (sc->link_params.speed_cap_mask[0] &
14187            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14188            BLOGI(sc, "Found 10GBase-T media.\n");
14189            sc->media = IFM_10G_T;
14190        } else {
14191            BLOGI(sc, "Found 1000Base-T media.\n");
14192            sc->media = IFM_1000_T;
14193        }
14194        break;
14195    case ELINK_ETH_PHY_NOT_PRESENT:
14196        BLOGI(sc, "Media not present.\n");
14197        sc->media = 0;
14198        break;
14199    case ELINK_ETH_PHY_UNSPECIFIED:
14200    default:
14201        BLOGI(sc, "Unknown media!\n");
14202        sc->media = 0;
14203        break;
14204    }
14205}
14206
14207#define GET_FIELD(value, fname)                     \
14208    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14209#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14210#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14211
14212static int
14213bxe_get_igu_cam_info(struct bxe_softc *sc)
14214{
14215    int pfid = SC_FUNC(sc);
14216    int igu_sb_id;
14217    uint32_t val;
14218    uint8_t fid, igu_sb_cnt = 0;
14219
14220    sc->igu_base_sb = 0xff;
14221
14222    if (CHIP_INT_MODE_IS_BC(sc)) {
14223        int vn = SC_VN(sc);
14224        igu_sb_cnt = sc->igu_sb_cnt;
14225        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14226                           FP_SB_MAX_E1x);
14227        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14228                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14229        return (0);
14230    }
14231
14232    /* IGU in normal mode - read CAM */
14233    for (igu_sb_id = 0;
14234         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14235         igu_sb_id++) {
14236        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14237        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14238            continue;
14239        }
14240        fid = IGU_FID(val);
14241        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14242            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14243                continue;
14244            }
14245            if (IGU_VEC(val) == 0) {
14246                /* default status block */
14247                sc->igu_dsb_id = igu_sb_id;
14248            } else {
14249                if (sc->igu_base_sb == 0xff) {
14250                    sc->igu_base_sb = igu_sb_id;
14251                }
14252                igu_sb_cnt++;
14253            }
14254        }
14255    }
14256
14257    /*
14258     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14259     * that number of CAM entries will not be equal to the value advertised in
14260     * PCI. Driver should use the minimal value of both as the actual status
14261     * block count
14262     */
14263    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14264
14265    if (igu_sb_cnt == 0) {
14266        BLOGE(sc, "CAM configuration error\n");
14267        return (-1);
14268    }
14269
14270    return (0);
14271}
14272
14273/*
14274 * Gather various information from the device config space, the device itself,
14275 * shmem, and the user input.
14276 */
14277static int
14278bxe_get_device_info(struct bxe_softc *sc)
14279{
14280    uint32_t val;
14281    int rc;
14282
14283    /* Get the data for the device */
14284    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14285    sc->devinfo.device_id    = pci_get_device(sc->dev);
14286    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14287    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14288
14289    /* get the chip revision (chip metal comes from pci config space) */
14290    sc->devinfo.chip_id     =
14291    sc->link_params.chip_id =
14292        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14293         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14294         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14295         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14296
14297    /* force 57811 according to MISC register */
14298    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14299        if (CHIP_IS_57810(sc)) {
14300            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14301                                   (sc->devinfo.chip_id & 0x0000ffff));
14302        } else if (CHIP_IS_57810_MF(sc)) {
14303            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14304                                   (sc->devinfo.chip_id & 0x0000ffff));
14305        }
14306        sc->devinfo.chip_id |= 0x1;
14307    }
14308
14309    BLOGD(sc, DBG_LOAD,
14310          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14311          sc->devinfo.chip_id,
14312          ((sc->devinfo.chip_id >> 16) & 0xffff),
14313          ((sc->devinfo.chip_id >> 12) & 0xf),
14314          ((sc->devinfo.chip_id >>  4) & 0xff),
14315          ((sc->devinfo.chip_id >>  0) & 0xf));
14316
14317    val = (REG_RD(sc, 0x2874) & 0x55);
14318    if ((sc->devinfo.chip_id & 0x1) ||
14319        (CHIP_IS_E1(sc) && val) ||
14320        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14321        sc->flags |= BXE_ONE_PORT_FLAG;
14322        BLOGD(sc, DBG_LOAD, "single port device\n");
14323    }
14324
14325    /* set the doorbell size */
14326    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14327
14328    /* determine whether the device is in 2 port or 4 port mode */
14329    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14330    if (CHIP_IS_E2E3(sc)) {
14331        /*
14332         * Read port4mode_en_ovwr[0]:
14333         *   If 1, four port mode is in port4mode_en_ovwr[1].
14334         *   If 0, four port mode is in port4mode_en[0].
14335         */
14336        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14337        if (val & 1) {
14338            val = ((val >> 1) & 1);
14339        } else {
14340            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14341        }
14342
14343        sc->devinfo.chip_port_mode =
14344            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14345
14346        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14347    }
14348
14349    /* get the function and path info for the device */
14350    bxe_get_function_num(sc);
14351
14352    /* get the shared memory base address */
14353    sc->devinfo.shmem_base     =
14354    sc->link_params.shmem_base =
14355        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14356    sc->devinfo.shmem2_base =
14357        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14358                                  MISC_REG_GENERIC_CR_0));
14359
14360    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14361          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14362
14363    if (!sc->devinfo.shmem_base) {
14364        /* this should ONLY prevent upcoming shmem reads */
14365        BLOGI(sc, "MCP not active\n");
14366        sc->flags |= BXE_NO_MCP_FLAG;
14367        return (0);
14368    }
14369
14370    /* make sure the shared memory contents are valid */
14371    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14372    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14373        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14374        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14375        return (0);
14376    }
14377    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14378
14379    /* get the bootcode version */
14380    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14381    snprintf(sc->devinfo.bc_ver_str,
14382             sizeof(sc->devinfo.bc_ver_str),
14383             "%d.%d.%d",
14384             ((sc->devinfo.bc_ver >> 24) & 0xff),
14385             ((sc->devinfo.bc_ver >> 16) & 0xff),
14386             ((sc->devinfo.bc_ver >>  8) & 0xff));
14387    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14388
14389    /* get the bootcode shmem address */
14390    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14391    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14392
14393    /* clean indirect addresses as they're not used */
14394    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14395    if (IS_PF(sc)) {
14396        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14397        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14398        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14399        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14400        if (CHIP_IS_E1x(sc)) {
14401            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14402            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14403            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14404            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14405        }
14406
14407        /*
14408         * Enable internal target-read (in case we are probed after PF
14409         * FLR). Must be done prior to any BAR read access. Only for
14410         * 57712 and up
14411         */
14412        if (!CHIP_IS_E1x(sc)) {
14413            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14414        }
14415    }
14416
14417    /* get the nvram size */
14418    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14419    sc->devinfo.flash_size =
14420        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14421    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14422
14423    /* get PCI capabilites */
14424    bxe_probe_pci_caps(sc);
14425
14426    bxe_set_power_state(sc, PCI_PM_D0);
14427
14428    /* get various configuration parameters from shmem */
14429    bxe_get_shmem_info(sc);
14430
14431    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14432        val = pci_read_config(sc->dev,
14433                              (sc->devinfo.pcie_msix_cap_reg +
14434                               PCIR_MSIX_CTRL),
14435                              2);
14436        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14437    } else {
14438        sc->igu_sb_cnt = 1;
14439    }
14440
14441    sc->igu_base_addr = BAR_IGU_INTMEM;
14442
14443    /* initialize IGU parameters */
14444    if (CHIP_IS_E1x(sc)) {
14445        sc->devinfo.int_block = INT_BLOCK_HC;
14446        sc->igu_dsb_id = DEF_SB_IGU_ID;
14447        sc->igu_base_sb = 0;
14448    } else {
14449        sc->devinfo.int_block = INT_BLOCK_IGU;
14450
14451        /* do not allow device reset during IGU info preocessing */
14452        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14453
14454        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14455
14456        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14457            int tout = 5000;
14458
14459            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14460
14461            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14462            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14463            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14464
14465            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14466                tout--;
14467                DELAY(1000);
14468            }
14469
14470            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14471                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14472                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14473                return (-1);
14474            }
14475        }
14476
14477        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14478            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14479            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14480        } else {
14481            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14482        }
14483
14484        rc = bxe_get_igu_cam_info(sc);
14485
14486        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14487
14488        if (rc) {
14489            return (rc);
14490        }
14491    }
14492
14493    /*
14494     * Get base FW non-default (fast path) status block ID. This value is
14495     * used to initialize the fw_sb_id saved on the fp/queue structure to
14496     * determine the id used by the FW.
14497     */
14498    if (CHIP_IS_E1x(sc)) {
14499        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14500    } else {
14501        /*
14502         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14503         * the same queue are indicated on the same IGU SB). So we prefer
14504         * FW and IGU SBs to be the same value.
14505         */
14506        sc->base_fw_ndsb = sc->igu_base_sb;
14507    }
14508
14509    BLOGD(sc, DBG_LOAD,
14510          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14511          sc->igu_dsb_id, sc->igu_base_sb,
14512          sc->igu_sb_cnt, sc->base_fw_ndsb);
14513
14514    elink_phy_probe(&sc->link_params);
14515
14516    return (0);
14517}
14518
14519static void
14520bxe_link_settings_supported(struct bxe_softc *sc,
14521                            uint32_t         switch_cfg)
14522{
14523    uint32_t cfg_size = 0;
14524    uint32_t idx;
14525    uint8_t port = SC_PORT(sc);
14526
14527    /* aggregation of supported attributes of all external phys */
14528    sc->port.supported[0] = 0;
14529    sc->port.supported[1] = 0;
14530
14531    switch (sc->link_params.num_phys) {
14532    case 1:
14533        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14534        cfg_size = 1;
14535        break;
14536    case 2:
14537        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14538        cfg_size = 1;
14539        break;
14540    case 3:
14541        if (sc->link_params.multi_phy_config &
14542            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14543            sc->port.supported[1] =
14544                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14545            sc->port.supported[0] =
14546                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14547        } else {
14548            sc->port.supported[0] =
14549                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14550            sc->port.supported[1] =
14551                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14552        }
14553        cfg_size = 2;
14554        break;
14555    }
14556
14557    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14558        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14559              SHMEM_RD(sc,
14560                       dev_info.port_hw_config[port].external_phy_config),
14561              SHMEM_RD(sc,
14562                       dev_info.port_hw_config[port].external_phy_config2));
14563        return;
14564    }
14565
14566    if (CHIP_IS_E3(sc))
14567        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14568    else {
14569        switch (switch_cfg) {
14570        case ELINK_SWITCH_CFG_1G:
14571            sc->port.phy_addr =
14572                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14573            break;
14574        case ELINK_SWITCH_CFG_10G:
14575            sc->port.phy_addr =
14576                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14577            break;
14578        default:
14579            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14580                  sc->port.link_config[0]);
14581            return;
14582        }
14583    }
14584
14585    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14586
14587    /* mask what we support according to speed_cap_mask per configuration */
14588    for (idx = 0; idx < cfg_size; idx++) {
14589        if (!(sc->link_params.speed_cap_mask[idx] &
14590              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14591            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14592        }
14593
14594        if (!(sc->link_params.speed_cap_mask[idx] &
14595              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14596            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14597        }
14598
14599        if (!(sc->link_params.speed_cap_mask[idx] &
14600              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14601            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14602        }
14603
14604        if (!(sc->link_params.speed_cap_mask[idx] &
14605              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14606            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14607        }
14608
14609        if (!(sc->link_params.speed_cap_mask[idx] &
14610              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14611            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14612        }
14613
14614        if (!(sc->link_params.speed_cap_mask[idx] &
14615              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14616            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14617        }
14618
14619        if (!(sc->link_params.speed_cap_mask[idx] &
14620              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14621            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14622        }
14623
14624        if (!(sc->link_params.speed_cap_mask[idx] &
14625              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14626            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14627        }
14628    }
14629
14630    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14631          sc->port.supported[0], sc->port.supported[1]);
14632}
14633
14634static void
14635bxe_link_settings_requested(struct bxe_softc *sc)
14636{
14637    uint32_t link_config;
14638    uint32_t idx;
14639    uint32_t cfg_size = 0;
14640
14641    sc->port.advertising[0] = 0;
14642    sc->port.advertising[1] = 0;
14643
14644    switch (sc->link_params.num_phys) {
14645    case 1:
14646    case 2:
14647        cfg_size = 1;
14648        break;
14649    case 3:
14650        cfg_size = 2;
14651        break;
14652    }
14653
14654    for (idx = 0; idx < cfg_size; idx++) {
14655        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14656        link_config = sc->port.link_config[idx];
14657
14658        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14659        case PORT_FEATURE_LINK_SPEED_AUTO:
14660            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14661                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14662                sc->port.advertising[idx] |= sc->port.supported[idx];
14663                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14664                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14665                    sc->port.advertising[idx] |=
14666                        (ELINK_SUPPORTED_100baseT_Half |
14667                         ELINK_SUPPORTED_100baseT_Full);
14668            } else {
14669                /* force 10G, no AN */
14670                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14671                sc->port.advertising[idx] |=
14672                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14673                continue;
14674            }
14675            break;
14676
14677        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14678            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14679                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14680                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14681                                              ADVERTISED_TP);
14682            } else {
14683                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14684                          "speed_cap_mask=0x%08x\n",
14685                      link_config, sc->link_params.speed_cap_mask[idx]);
14686                return;
14687            }
14688            break;
14689
14690        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14691            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14692                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14693                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14694                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14695                                              ADVERTISED_TP);
14696            } else {
14697                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14698                          "speed_cap_mask=0x%08x\n",
14699                      link_config, sc->link_params.speed_cap_mask[idx]);
14700                return;
14701            }
14702            break;
14703
14704        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14705            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14706                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14707                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14708                                              ADVERTISED_TP);
14709            } else {
14710                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14711                          "speed_cap_mask=0x%08x\n",
14712                      link_config, sc->link_params.speed_cap_mask[idx]);
14713                return;
14714            }
14715            break;
14716
14717        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14718            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14719                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14720                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14721                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14722                                              ADVERTISED_TP);
14723            } else {
14724                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14725                          "speed_cap_mask=0x%08x\n",
14726                      link_config, sc->link_params.speed_cap_mask[idx]);
14727                return;
14728            }
14729            break;
14730
14731        case PORT_FEATURE_LINK_SPEED_1G:
14732            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14733                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14734                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14735                                              ADVERTISED_TP);
14736            } else {
14737                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14738                          "speed_cap_mask=0x%08x\n",
14739                      link_config, sc->link_params.speed_cap_mask[idx]);
14740                return;
14741            }
14742            break;
14743
14744        case PORT_FEATURE_LINK_SPEED_2_5G:
14745            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14746                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14747                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14748                                              ADVERTISED_TP);
14749            } else {
14750                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14751                          "speed_cap_mask=0x%08x\n",
14752                      link_config, sc->link_params.speed_cap_mask[idx]);
14753                return;
14754            }
14755            break;
14756
14757        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14758            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14759                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14760                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14761                                              ADVERTISED_FIBRE);
14762            } else {
14763                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14764                          "speed_cap_mask=0x%08x\n",
14765                      link_config, sc->link_params.speed_cap_mask[idx]);
14766                return;
14767            }
14768            break;
14769
14770        case PORT_FEATURE_LINK_SPEED_20G:
14771            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14772            break;
14773
14774        default:
14775            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14776                      "speed_cap_mask=0x%08x\n",
14777                  link_config, sc->link_params.speed_cap_mask[idx]);
14778            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14779            sc->port.advertising[idx] = sc->port.supported[idx];
14780            break;
14781        }
14782
14783        sc->link_params.req_flow_ctrl[idx] =
14784            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14785
14786        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14787            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14788                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14789            } else {
14790                bxe_set_requested_fc(sc);
14791            }
14792        }
14793
14794        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14795                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14796              sc->link_params.req_line_speed[idx],
14797              sc->link_params.req_duplex[idx],
14798              sc->link_params.req_flow_ctrl[idx],
14799              sc->port.advertising[idx]);
14800    }
14801}
14802
14803static void
14804bxe_get_phy_info(struct bxe_softc *sc)
14805{
14806    uint8_t port = SC_PORT(sc);
14807    uint32_t config = sc->port.config;
14808    uint32_t eee_mode;
14809
14810    /* shmem data already read in bxe_get_shmem_info() */
14811
14812    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14813                        "link_config0=0x%08x\n",
14814               sc->link_params.lane_config,
14815               sc->link_params.speed_cap_mask[0],
14816               sc->port.link_config[0]);
14817
14818    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14819    bxe_link_settings_requested(sc);
14820
14821    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14822        sc->link_params.feature_config_flags |=
14823            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14824    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14825        sc->link_params.feature_config_flags &=
14826            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14827    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14828        sc->link_params.feature_config_flags |=
14829            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14830    }
14831
14832    /* configure link feature according to nvram value */
14833    eee_mode =
14834        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14835          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14836         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14837    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14838        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14839                                    ELINK_EEE_MODE_ENABLE_LPI |
14840                                    ELINK_EEE_MODE_OUTPUT_TIME);
14841    } else {
14842        sc->link_params.eee_mode = 0;
14843    }
14844
14845    /* get the media type */
14846    bxe_media_detect(sc);
14847}
14848
14849static void
14850bxe_get_params(struct bxe_softc *sc)
14851{
14852    /* get user tunable params */
14853    bxe_get_tunable_params(sc);
14854
14855    /* select the RX and TX ring sizes */
14856    sc->tx_ring_size = TX_BD_USABLE;
14857    sc->rx_ring_size = RX_BD_USABLE;
14858
14859    /* XXX disable WoL */
14860    sc->wol = 0;
14861}
14862
14863static void
14864bxe_set_modes_bitmap(struct bxe_softc *sc)
14865{
14866    uint32_t flags = 0;
14867
14868    if (CHIP_REV_IS_FPGA(sc)) {
14869        SET_FLAGS(flags, MODE_FPGA);
14870    } else if (CHIP_REV_IS_EMUL(sc)) {
14871        SET_FLAGS(flags, MODE_EMUL);
14872    } else {
14873        SET_FLAGS(flags, MODE_ASIC);
14874    }
14875
14876    if (CHIP_IS_MODE_4_PORT(sc)) {
14877        SET_FLAGS(flags, MODE_PORT4);
14878    } else {
14879        SET_FLAGS(flags, MODE_PORT2);
14880    }
14881
14882    if (CHIP_IS_E2(sc)) {
14883        SET_FLAGS(flags, MODE_E2);
14884    } else if (CHIP_IS_E3(sc)) {
14885        SET_FLAGS(flags, MODE_E3);
14886        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14887            SET_FLAGS(flags, MODE_E3_A0);
14888        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14889            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14890        }
14891    }
14892
14893    if (IS_MF(sc)) {
14894        SET_FLAGS(flags, MODE_MF);
14895        switch (sc->devinfo.mf_info.mf_mode) {
14896        case MULTI_FUNCTION_SD:
14897            SET_FLAGS(flags, MODE_MF_SD);
14898            break;
14899        case MULTI_FUNCTION_SI:
14900            SET_FLAGS(flags, MODE_MF_SI);
14901            break;
14902        case MULTI_FUNCTION_AFEX:
14903            SET_FLAGS(flags, MODE_MF_AFEX);
14904            break;
14905        }
14906    } else {
14907        SET_FLAGS(flags, MODE_SF);
14908    }
14909
14910#if defined(__LITTLE_ENDIAN)
14911    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14912#else /* __BIG_ENDIAN */
14913    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14914#endif
14915
14916    INIT_MODE_FLAGS(sc) = flags;
14917}
14918
14919static int
14920bxe_alloc_hsi_mem(struct bxe_softc *sc)
14921{
14922    struct bxe_fastpath *fp;
14923    bus_addr_t busaddr;
14924    int max_agg_queues;
14925    int max_segments;
14926    bus_size_t max_size;
14927    bus_size_t max_seg_size;
14928    char buf[32];
14929    int rc;
14930    int i, j;
14931
14932    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14933
14934    /* allocate the parent bus DMA tag */
14935    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14936                            1,                        /* alignment */
14937                            0,                        /* boundary limit */
14938                            BUS_SPACE_MAXADDR,        /* restricted low */
14939                            BUS_SPACE_MAXADDR,        /* restricted hi */
14940                            NULL,                     /* addr filter() */
14941                            NULL,                     /* addr filter() arg */
14942                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14943                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14944                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14945                            0,                        /* flags */
14946                            NULL,                     /* lock() */
14947                            NULL,                     /* lock() arg */
14948                            &sc->parent_dma_tag);     /* returned dma tag */
14949    if (rc != 0) {
14950        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14951        return (1);
14952    }
14953
14954    /************************/
14955    /* DEFAULT STATUS BLOCK */
14956    /************************/
14957
14958    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14959                      &sc->def_sb_dma, "default status block") != 0) {
14960        /* XXX */
14961        bus_dma_tag_destroy(sc->parent_dma_tag);
14962        return (1);
14963    }
14964
14965    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14966
14967    /***************/
14968    /* EVENT QUEUE */
14969    /***************/
14970
14971    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14972                      &sc->eq_dma, "event queue") != 0) {
14973        /* XXX */
14974        bxe_dma_free(sc, &sc->def_sb_dma);
14975        sc->def_sb = NULL;
14976        bus_dma_tag_destroy(sc->parent_dma_tag);
14977        return (1);
14978    }
14979
14980    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14981
14982    /*************/
14983    /* SLOW PATH */
14984    /*************/
14985
14986    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14987                      &sc->sp_dma, "slow path") != 0) {
14988        /* XXX */
14989        bxe_dma_free(sc, &sc->eq_dma);
14990        sc->eq = NULL;
14991        bxe_dma_free(sc, &sc->def_sb_dma);
14992        sc->def_sb = NULL;
14993        bus_dma_tag_destroy(sc->parent_dma_tag);
14994        return (1);
14995    }
14996
14997    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14998
14999    /*******************/
15000    /* SLOW PATH QUEUE */
15001    /*******************/
15002
15003    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15004                      &sc->spq_dma, "slow path queue") != 0) {
15005        /* XXX */
15006        bxe_dma_free(sc, &sc->sp_dma);
15007        sc->sp = NULL;
15008        bxe_dma_free(sc, &sc->eq_dma);
15009        sc->eq = NULL;
15010        bxe_dma_free(sc, &sc->def_sb_dma);
15011        sc->def_sb = NULL;
15012        bus_dma_tag_destroy(sc->parent_dma_tag);
15013        return (1);
15014    }
15015
15016    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15017
15018    /***************************/
15019    /* FW DECOMPRESSION BUFFER */
15020    /***************************/
15021
15022    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15023                      "fw decompression buffer") != 0) {
15024        /* XXX */
15025        bxe_dma_free(sc, &sc->spq_dma);
15026        sc->spq = NULL;
15027        bxe_dma_free(sc, &sc->sp_dma);
15028        sc->sp = NULL;
15029        bxe_dma_free(sc, &sc->eq_dma);
15030        sc->eq = NULL;
15031        bxe_dma_free(sc, &sc->def_sb_dma);
15032        sc->def_sb = NULL;
15033        bus_dma_tag_destroy(sc->parent_dma_tag);
15034        return (1);
15035    }
15036
15037    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15038
15039    if ((sc->gz_strm =
15040         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15041        /* XXX */
15042        bxe_dma_free(sc, &sc->gz_buf_dma);
15043        sc->gz_buf = NULL;
15044        bxe_dma_free(sc, &sc->spq_dma);
15045        sc->spq = NULL;
15046        bxe_dma_free(sc, &sc->sp_dma);
15047        sc->sp = NULL;
15048        bxe_dma_free(sc, &sc->eq_dma);
15049        sc->eq = NULL;
15050        bxe_dma_free(sc, &sc->def_sb_dma);
15051        sc->def_sb = NULL;
15052        bus_dma_tag_destroy(sc->parent_dma_tag);
15053        return (1);
15054    }
15055
15056    /*************/
15057    /* FASTPATHS */
15058    /*************/
15059
15060    /* allocate DMA memory for each fastpath structure */
15061    for (i = 0; i < sc->num_queues; i++) {
15062        fp = &sc->fp[i];
15063        fp->sc    = sc;
15064        fp->index = i;
15065
15066        /*******************/
15067        /* FP STATUS BLOCK */
15068        /*******************/
15069
15070        snprintf(buf, sizeof(buf), "fp %d status block", i);
15071        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15072                          &fp->sb_dma, buf) != 0) {
15073            /* XXX unwind and free previous fastpath allocations */
15074            BLOGE(sc, "Failed to alloc %s\n", buf);
15075            return (1);
15076        } else {
15077            if (CHIP_IS_E2E3(sc)) {
15078                fp->status_block.e2_sb =
15079                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15080            } else {
15081                fp->status_block.e1x_sb =
15082                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15083            }
15084        }
15085
15086        /******************/
15087        /* FP TX BD CHAIN */
15088        /******************/
15089
15090        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15091        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15092                          &fp->tx_dma, buf) != 0) {
15093            /* XXX unwind and free previous fastpath allocations */
15094            BLOGE(sc, "Failed to alloc %s\n", buf);
15095            return (1);
15096        } else {
15097            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15098        }
15099
15100        /* link together the tx bd chain pages */
15101        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15102            /* index into the tx bd chain array to last entry per page */
15103            struct eth_tx_next_bd *tx_next_bd =
15104                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15105            /* point to the next page and wrap from last page */
15106            busaddr = (fp->tx_dma.paddr +
15107                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15108            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15109            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15110        }
15111
15112        /******************/
15113        /* FP RX BD CHAIN */
15114        /******************/
15115
15116        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15117        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15118                          &fp->rx_dma, buf) != 0) {
15119            /* XXX unwind and free previous fastpath allocations */
15120            BLOGE(sc, "Failed to alloc %s\n", buf);
15121            return (1);
15122        } else {
15123            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15124        }
15125
15126        /* link together the rx bd chain pages */
15127        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15128            /* index into the rx bd chain array to last entry per page */
15129            struct eth_rx_bd *rx_bd =
15130                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15131            /* point to the next page and wrap from last page */
15132            busaddr = (fp->rx_dma.paddr +
15133                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15134            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15135            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15136        }
15137
15138        /*******************/
15139        /* FP RX RCQ CHAIN */
15140        /*******************/
15141
15142        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15143        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15144                          &fp->rcq_dma, buf) != 0) {
15145            /* XXX unwind and free previous fastpath allocations */
15146            BLOGE(sc, "Failed to alloc %s\n", buf);
15147            return (1);
15148        } else {
15149            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15150        }
15151
15152        /* link together the rcq chain pages */
15153        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15154            /* index into the rcq chain array to last entry per page */
15155            struct eth_rx_cqe_next_page *rx_cqe_next =
15156                (struct eth_rx_cqe_next_page *)
15157                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15158            /* point to the next page and wrap from last page */
15159            busaddr = (fp->rcq_dma.paddr +
15160                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15161            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15162            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15163        }
15164
15165        /*******************/
15166        /* FP RX SGE CHAIN */
15167        /*******************/
15168
15169        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15170        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15171                          &fp->rx_sge_dma, buf) != 0) {
15172            /* XXX unwind and free previous fastpath allocations */
15173            BLOGE(sc, "Failed to alloc %s\n", buf);
15174            return (1);
15175        } else {
15176            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15177        }
15178
15179        /* link together the sge chain pages */
15180        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15181            /* index into the rcq chain array to last entry per page */
15182            struct eth_rx_sge *rx_sge =
15183                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15184            /* point to the next page and wrap from last page */
15185            busaddr = (fp->rx_sge_dma.paddr +
15186                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15187            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15188            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15189        }
15190
15191        /***********************/
15192        /* FP TX MBUF DMA MAPS */
15193        /***********************/
15194
15195        /* set required sizes before mapping to conserve resources */
15196        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15197            max_size     = BXE_TSO_MAX_SIZE;
15198            max_segments = BXE_TSO_MAX_SEGMENTS;
15199            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15200        } else {
15201            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15202            max_segments = BXE_MAX_SEGMENTS;
15203            max_seg_size = MCLBYTES;
15204        }
15205
15206        /* create a dma tag for the tx mbufs */
15207        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15208                                1,                  /* alignment */
15209                                0,                  /* boundary limit */
15210                                BUS_SPACE_MAXADDR,  /* restricted low */
15211                                BUS_SPACE_MAXADDR,  /* restricted hi */
15212                                NULL,               /* addr filter() */
15213                                NULL,               /* addr filter() arg */
15214                                max_size,           /* max map size */
15215                                max_segments,       /* num discontinuous */
15216                                max_seg_size,       /* max seg size */
15217                                0,                  /* flags */
15218                                NULL,               /* lock() */
15219                                NULL,               /* lock() arg */
15220                                &fp->tx_mbuf_tag);  /* returned dma tag */
15221        if (rc != 0) {
15222            /* XXX unwind and free previous fastpath allocations */
15223            BLOGE(sc, "Failed to create dma tag for "
15224                      "'fp %d tx mbufs' (%d)\n",
15225                  i, rc);
15226            return (1);
15227        }
15228
15229        /* create dma maps for each of the tx mbuf clusters */
15230        for (j = 0; j < TX_BD_TOTAL; j++) {
15231            if (bus_dmamap_create(fp->tx_mbuf_tag,
15232                                  BUS_DMA_NOWAIT,
15233                                  &fp->tx_mbuf_chain[j].m_map)) {
15234                /* XXX unwind and free previous fastpath allocations */
15235                BLOGE(sc, "Failed to create dma map for "
15236                          "'fp %d tx mbuf %d' (%d)\n",
15237                      i, j, rc);
15238                return (1);
15239            }
15240        }
15241
15242        /***********************/
15243        /* FP RX MBUF DMA MAPS */
15244        /***********************/
15245
15246        /* create a dma tag for the rx mbufs */
15247        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15248                                1,                  /* alignment */
15249                                0,                  /* boundary limit */
15250                                BUS_SPACE_MAXADDR,  /* restricted low */
15251                                BUS_SPACE_MAXADDR,  /* restricted hi */
15252                                NULL,               /* addr filter() */
15253                                NULL,               /* addr filter() arg */
15254                                MJUM9BYTES,         /* max map size */
15255                                1,                  /* num discontinuous */
15256                                MJUM9BYTES,         /* max seg size */
15257                                0,                  /* flags */
15258                                NULL,               /* lock() */
15259                                NULL,               /* lock() arg */
15260                                &fp->rx_mbuf_tag);  /* returned dma tag */
15261        if (rc != 0) {
15262            /* XXX unwind and free previous fastpath allocations */
15263            BLOGE(sc, "Failed to create dma tag for "
15264                      "'fp %d rx mbufs' (%d)\n",
15265                  i, rc);
15266            return (1);
15267        }
15268
15269        /* create dma maps for each of the rx mbuf clusters */
15270        for (j = 0; j < RX_BD_TOTAL; j++) {
15271            if (bus_dmamap_create(fp->rx_mbuf_tag,
15272                                  BUS_DMA_NOWAIT,
15273                                  &fp->rx_mbuf_chain[j].m_map)) {
15274                /* XXX unwind and free previous fastpath allocations */
15275                BLOGE(sc, "Failed to create dma map for "
15276                          "'fp %d rx mbuf %d' (%d)\n",
15277                      i, j, rc);
15278                return (1);
15279            }
15280        }
15281
15282        /* create dma map for the spare rx mbuf cluster */
15283        if (bus_dmamap_create(fp->rx_mbuf_tag,
15284                              BUS_DMA_NOWAIT,
15285                              &fp->rx_mbuf_spare_map)) {
15286            /* XXX unwind and free previous fastpath allocations */
15287            BLOGE(sc, "Failed to create dma map for "
15288                      "'fp %d spare rx mbuf' (%d)\n",
15289                  i, rc);
15290            return (1);
15291        }
15292
15293        /***************************/
15294        /* FP RX SGE MBUF DMA MAPS */
15295        /***************************/
15296
15297        /* create a dma tag for the rx sge mbufs */
15298        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15299                                1,                  /* alignment */
15300                                0,                  /* boundary limit */
15301                                BUS_SPACE_MAXADDR,  /* restricted low */
15302                                BUS_SPACE_MAXADDR,  /* restricted hi */
15303                                NULL,               /* addr filter() */
15304                                NULL,               /* addr filter() arg */
15305                                BCM_PAGE_SIZE,      /* max map size */
15306                                1,                  /* num discontinuous */
15307                                BCM_PAGE_SIZE,      /* max seg size */
15308                                0,                  /* flags */
15309                                NULL,               /* lock() */
15310                                NULL,               /* lock() arg */
15311                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15312        if (rc != 0) {
15313            /* XXX unwind and free previous fastpath allocations */
15314            BLOGE(sc, "Failed to create dma tag for "
15315                      "'fp %d rx sge mbufs' (%d)\n",
15316                  i, rc);
15317            return (1);
15318        }
15319
15320        /* create dma maps for the rx sge mbuf clusters */
15321        for (j = 0; j < RX_SGE_TOTAL; j++) {
15322            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15323                                  BUS_DMA_NOWAIT,
15324                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15325                /* XXX unwind and free previous fastpath allocations */
15326                BLOGE(sc, "Failed to create dma map for "
15327                          "'fp %d rx sge mbuf %d' (%d)\n",
15328                      i, j, rc);
15329                return (1);
15330            }
15331        }
15332
15333        /* create dma map for the spare rx sge mbuf cluster */
15334        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15335                              BUS_DMA_NOWAIT,
15336                              &fp->rx_sge_mbuf_spare_map)) {
15337            /* XXX unwind and free previous fastpath allocations */
15338            BLOGE(sc, "Failed to create dma map for "
15339                      "'fp %d spare rx sge mbuf' (%d)\n",
15340                  i, rc);
15341            return (1);
15342        }
15343
15344        /***************************/
15345        /* FP RX TPA MBUF DMA MAPS */
15346        /***************************/
15347
15348        /* create dma maps for the rx tpa mbuf clusters */
15349        max_agg_queues = MAX_AGG_QS(sc);
15350
15351        for (j = 0; j < max_agg_queues; j++) {
15352            if (bus_dmamap_create(fp->rx_mbuf_tag,
15353                                  BUS_DMA_NOWAIT,
15354                                  &fp->rx_tpa_info[j].bd.m_map)) {
15355                /* XXX unwind and free previous fastpath allocations */
15356                BLOGE(sc, "Failed to create dma map for "
15357                          "'fp %d rx tpa mbuf %d' (%d)\n",
15358                      i, j, rc);
15359                return (1);
15360            }
15361        }
15362
15363        /* create dma map for the spare rx tpa mbuf cluster */
15364        if (bus_dmamap_create(fp->rx_mbuf_tag,
15365                              BUS_DMA_NOWAIT,
15366                              &fp->rx_tpa_info_mbuf_spare_map)) {
15367            /* XXX unwind and free previous fastpath allocations */
15368            BLOGE(sc, "Failed to create dma map for "
15369                      "'fp %d spare rx tpa mbuf' (%d)\n",
15370                  i, rc);
15371            return (1);
15372        }
15373
15374        bxe_init_sge_ring_bit_mask(fp);
15375    }
15376
15377    return (0);
15378}
15379
15380static void
15381bxe_free_hsi_mem(struct bxe_softc *sc)
15382{
15383    struct bxe_fastpath *fp;
15384    int max_agg_queues;
15385    int i, j;
15386
15387    if (sc->parent_dma_tag == NULL) {
15388        return; /* assume nothing was allocated */
15389    }
15390
15391    for (i = 0; i < sc->num_queues; i++) {
15392        fp = &sc->fp[i];
15393
15394        /*******************/
15395        /* FP STATUS BLOCK */
15396        /*******************/
15397
15398        bxe_dma_free(sc, &fp->sb_dma);
15399        memset(&fp->status_block, 0, sizeof(fp->status_block));
15400
15401        /******************/
15402        /* FP TX BD CHAIN */
15403        /******************/
15404
15405        bxe_dma_free(sc, &fp->tx_dma);
15406        fp->tx_chain = NULL;
15407
15408        /******************/
15409        /* FP RX BD CHAIN */
15410        /******************/
15411
15412        bxe_dma_free(sc, &fp->rx_dma);
15413        fp->rx_chain = NULL;
15414
15415        /*******************/
15416        /* FP RX RCQ CHAIN */
15417        /*******************/
15418
15419        bxe_dma_free(sc, &fp->rcq_dma);
15420        fp->rcq_chain = NULL;
15421
15422        /*******************/
15423        /* FP RX SGE CHAIN */
15424        /*******************/
15425
15426        bxe_dma_free(sc, &fp->rx_sge_dma);
15427        fp->rx_sge_chain = NULL;
15428
15429        /***********************/
15430        /* FP TX MBUF DMA MAPS */
15431        /***********************/
15432
15433        if (fp->tx_mbuf_tag != NULL) {
15434            for (j = 0; j < TX_BD_TOTAL; j++) {
15435                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15436                    bus_dmamap_unload(fp->tx_mbuf_tag,
15437                                      fp->tx_mbuf_chain[j].m_map);
15438                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15439                                       fp->tx_mbuf_chain[j].m_map);
15440                }
15441            }
15442
15443            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15444            fp->tx_mbuf_tag = NULL;
15445        }
15446
15447        /***********************/
15448        /* FP RX MBUF DMA MAPS */
15449        /***********************/
15450
15451        if (fp->rx_mbuf_tag != NULL) {
15452            for (j = 0; j < RX_BD_TOTAL; j++) {
15453                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15454                    bus_dmamap_unload(fp->rx_mbuf_tag,
15455                                      fp->rx_mbuf_chain[j].m_map);
15456                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15457                                       fp->rx_mbuf_chain[j].m_map);
15458                }
15459            }
15460
15461            if (fp->rx_mbuf_spare_map != NULL) {
15462                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15463                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15464            }
15465
15466            /***************************/
15467            /* FP RX TPA MBUF DMA MAPS */
15468            /***************************/
15469
15470            max_agg_queues = MAX_AGG_QS(sc);
15471
15472            for (j = 0; j < max_agg_queues; j++) {
15473                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15474                    bus_dmamap_unload(fp->rx_mbuf_tag,
15475                                      fp->rx_tpa_info[j].bd.m_map);
15476                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15477                                       fp->rx_tpa_info[j].bd.m_map);
15478                }
15479            }
15480
15481            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15482                bus_dmamap_unload(fp->rx_mbuf_tag,
15483                                  fp->rx_tpa_info_mbuf_spare_map);
15484                bus_dmamap_destroy(fp->rx_mbuf_tag,
15485                                   fp->rx_tpa_info_mbuf_spare_map);
15486            }
15487
15488            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15489            fp->rx_mbuf_tag = NULL;
15490        }
15491
15492        /***************************/
15493        /* FP RX SGE MBUF DMA MAPS */
15494        /***************************/
15495
15496        if (fp->rx_sge_mbuf_tag != NULL) {
15497            for (j = 0; j < RX_SGE_TOTAL; j++) {
15498                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15499                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15500                                      fp->rx_sge_mbuf_chain[j].m_map);
15501                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15502                                       fp->rx_sge_mbuf_chain[j].m_map);
15503                }
15504            }
15505
15506            if (fp->rx_sge_mbuf_spare_map != NULL) {
15507                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15508                                  fp->rx_sge_mbuf_spare_map);
15509                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15510                                   fp->rx_sge_mbuf_spare_map);
15511            }
15512
15513            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15514            fp->rx_sge_mbuf_tag = NULL;
15515        }
15516    }
15517
15518    /***************************/
15519    /* FW DECOMPRESSION BUFFER */
15520    /***************************/
15521
15522    bxe_dma_free(sc, &sc->gz_buf_dma);
15523    sc->gz_buf = NULL;
15524    free(sc->gz_strm, M_DEVBUF);
15525    sc->gz_strm = NULL;
15526
15527    /*******************/
15528    /* SLOW PATH QUEUE */
15529    /*******************/
15530
15531    bxe_dma_free(sc, &sc->spq_dma);
15532    sc->spq = NULL;
15533
15534    /*************/
15535    /* SLOW PATH */
15536    /*************/
15537
15538    bxe_dma_free(sc, &sc->sp_dma);
15539    sc->sp = NULL;
15540
15541    /***************/
15542    /* EVENT QUEUE */
15543    /***************/
15544
15545    bxe_dma_free(sc, &sc->eq_dma);
15546    sc->eq = NULL;
15547
15548    /************************/
15549    /* DEFAULT STATUS BLOCK */
15550    /************************/
15551
15552    bxe_dma_free(sc, &sc->def_sb_dma);
15553    sc->def_sb = NULL;
15554
15555    bus_dma_tag_destroy(sc->parent_dma_tag);
15556    sc->parent_dma_tag = NULL;
15557}
15558
15559/*
15560 * Previous driver DMAE transaction may have occurred when pre-boot stage
15561 * ended and boot began. This would invalidate the addresses of the
15562 * transaction, resulting in was-error bit set in the PCI causing all
15563 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15564 * the interrupt which detected this from the pglueb and the was-done bit
15565 */
15566static void
15567bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15568{
15569    uint32_t val;
15570
15571    if (!CHIP_IS_E1x(sc)) {
15572        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15573        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15574            BLOGD(sc, DBG_LOAD,
15575                  "Clearing 'was-error' bit that was set in pglueb");
15576            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15577        }
15578    }
15579}
15580
15581static int
15582bxe_prev_mcp_done(struct bxe_softc *sc)
15583{
15584    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15585                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15586    if (!rc) {
15587        BLOGE(sc, "MCP response failure, aborting\n");
15588        return (-1);
15589    }
15590
15591    return (0);
15592}
15593
15594static struct bxe_prev_list_node *
15595bxe_prev_path_get_entry(struct bxe_softc *sc)
15596{
15597    struct bxe_prev_list_node *tmp;
15598
15599    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15600        if ((sc->pcie_bus == tmp->bus) &&
15601            (sc->pcie_device == tmp->slot) &&
15602            (SC_PATH(sc) == tmp->path)) {
15603            return (tmp);
15604        }
15605    }
15606
15607    return (NULL);
15608}
15609
15610static uint8_t
15611bxe_prev_is_path_marked(struct bxe_softc *sc)
15612{
15613    struct bxe_prev_list_node *tmp;
15614    int rc = FALSE;
15615
15616    mtx_lock(&bxe_prev_mtx);
15617
15618    tmp = bxe_prev_path_get_entry(sc);
15619    if (tmp) {
15620        if (tmp->aer) {
15621            BLOGD(sc, DBG_LOAD,
15622                  "Path %d/%d/%d was marked by AER\n",
15623                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15624        } else {
15625            rc = TRUE;
15626            BLOGD(sc, DBG_LOAD,
15627                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15628                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15629        }
15630    }
15631
15632    mtx_unlock(&bxe_prev_mtx);
15633
15634    return (rc);
15635}
15636
15637static int
15638bxe_prev_mark_path(struct bxe_softc *sc,
15639                   uint8_t          after_undi)
15640{
15641    struct bxe_prev_list_node *tmp;
15642
15643    mtx_lock(&bxe_prev_mtx);
15644
15645    /* Check whether the entry for this path already exists */
15646    tmp = bxe_prev_path_get_entry(sc);
15647    if (tmp) {
15648        if (!tmp->aer) {
15649            BLOGD(sc, DBG_LOAD,
15650                  "Re-marking AER in path %d/%d/%d\n",
15651                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15652        } else {
15653            BLOGD(sc, DBG_LOAD,
15654                  "Removing AER indication from path %d/%d/%d\n",
15655                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15656            tmp->aer = 0;
15657        }
15658
15659        mtx_unlock(&bxe_prev_mtx);
15660        return (0);
15661    }
15662
15663    mtx_unlock(&bxe_prev_mtx);
15664
15665    /* Create an entry for this path and add it */
15666    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15667                 (M_NOWAIT | M_ZERO));
15668    if (!tmp) {
15669        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15670        return (-1);
15671    }
15672
15673    tmp->bus  = sc->pcie_bus;
15674    tmp->slot = sc->pcie_device;
15675    tmp->path = SC_PATH(sc);
15676    tmp->aer  = 0;
15677    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15678
15679    mtx_lock(&bxe_prev_mtx);
15680
15681    BLOGD(sc, DBG_LOAD,
15682          "Marked path %d/%d/%d - finished previous unload\n",
15683          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15684    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15685
15686    mtx_unlock(&bxe_prev_mtx);
15687
15688    return (0);
15689}
15690
15691static int
15692bxe_do_flr(struct bxe_softc *sc)
15693{
15694    int i;
15695
15696    /* only E2 and onwards support FLR */
15697    if (CHIP_IS_E1x(sc)) {
15698        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15699        return (-1);
15700    }
15701
15702    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15703    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15704        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15705              sc->devinfo.bc_ver);
15706        return (-1);
15707    }
15708
15709    /* Wait for Transaction Pending bit clean */
15710    for (i = 0; i < 4; i++) {
15711        if (i) {
15712            DELAY(((1 << (i - 1)) * 100) * 1000);
15713        }
15714
15715        if (!bxe_is_pcie_pending(sc)) {
15716            goto clear;
15717        }
15718    }
15719
15720    BLOGE(sc, "PCIE transaction is not cleared, "
15721              "proceeding with reset anyway\n");
15722
15723clear:
15724
15725    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15726    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15727
15728    return (0);
15729}
15730
15731struct bxe_mac_vals {
15732    uint32_t xmac_addr;
15733    uint32_t xmac_val;
15734    uint32_t emac_addr;
15735    uint32_t emac_val;
15736    uint32_t umac_addr;
15737    uint32_t umac_val;
15738    uint32_t bmac_addr;
15739    uint32_t bmac_val[2];
15740};
15741
15742static void
15743bxe_prev_unload_close_mac(struct bxe_softc *sc,
15744                          struct bxe_mac_vals *vals)
15745{
15746    uint32_t val, base_addr, offset, mask, reset_reg;
15747    uint8_t mac_stopped = FALSE;
15748    uint8_t port = SC_PORT(sc);
15749    uint32_t wb_data[2];
15750
15751    /* reset addresses as they also mark which values were changed */
15752    vals->bmac_addr = 0;
15753    vals->umac_addr = 0;
15754    vals->xmac_addr = 0;
15755    vals->emac_addr = 0;
15756
15757    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15758
15759    if (!CHIP_IS_E3(sc)) {
15760        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15761        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15762        if ((mask & reset_reg) && val) {
15763            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15764            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15765                                    : NIG_REG_INGRESS_BMAC0_MEM;
15766            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15767                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15768
15769            /*
15770             * use rd/wr since we cannot use dmae. This is safe
15771             * since MCP won't access the bus due to the request
15772             * to unload, and no function on the path can be
15773             * loaded at this time.
15774             */
15775            wb_data[0] = REG_RD(sc, base_addr + offset);
15776            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15777            vals->bmac_addr = base_addr + offset;
15778            vals->bmac_val[0] = wb_data[0];
15779            vals->bmac_val[1] = wb_data[1];
15780            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15781            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15782            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15783        }
15784
15785        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15786        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15787        vals->emac_val = REG_RD(sc, vals->emac_addr);
15788        REG_WR(sc, vals->emac_addr, 0);
15789        mac_stopped = TRUE;
15790    } else {
15791        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15792            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15793            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15794            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15795            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15796            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15797            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15798            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15799            REG_WR(sc, vals->xmac_addr, 0);
15800            mac_stopped = TRUE;
15801        }
15802
15803        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15804        if (mask & reset_reg) {
15805            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15806            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15807            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15808            vals->umac_val = REG_RD(sc, vals->umac_addr);
15809            REG_WR(sc, vals->umac_addr, 0);
15810            mac_stopped = TRUE;
15811        }
15812    }
15813
15814    if (mac_stopped) {
15815        DELAY(20000);
15816    }
15817}
15818
15819#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15820#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15821#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15822#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15823
15824static void
15825bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15826                         uint8_t          port,
15827                         uint8_t          inc)
15828{
15829    uint16_t rcq, bd;
15830    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15831
15832    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15833    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15834
15835    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15836    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15837
15838    BLOGD(sc, DBG_LOAD,
15839          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15840          port, bd, rcq);
15841}
15842
15843static int
15844bxe_prev_unload_common(struct bxe_softc *sc)
15845{
15846    uint32_t reset_reg, tmp_reg = 0, rc;
15847    uint8_t prev_undi = FALSE;
15848    struct bxe_mac_vals mac_vals;
15849    uint32_t timer_count = 1000;
15850    uint32_t prev_brb;
15851
15852    /*
15853     * It is possible a previous function received 'common' answer,
15854     * but hasn't loaded yet, therefore creating a scenario of
15855     * multiple functions receiving 'common' on the same path.
15856     */
15857    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15858
15859    memset(&mac_vals, 0, sizeof(mac_vals));
15860
15861    if (bxe_prev_is_path_marked(sc)) {
15862        return (bxe_prev_mcp_done(sc));
15863    }
15864
15865    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15866
15867    /* Reset should be performed after BRB is emptied */
15868    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15869        /* Close the MAC Rx to prevent BRB from filling up */
15870        bxe_prev_unload_close_mac(sc, &mac_vals);
15871
15872        /* close LLH filters towards the BRB */
15873        elink_set_rx_filter(&sc->link_params, 0);
15874
15875        /*
15876         * Check if the UNDI driver was previously loaded.
15877         * UNDI driver initializes CID offset for normal bell to 0x7
15878         */
15879        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15880            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15881            if (tmp_reg == 0x7) {
15882                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15883                prev_undi = TRUE;
15884                /* clear the UNDI indication */
15885                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15886                /* clear possible idle check errors */
15887                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15888            }
15889        }
15890
15891        /* wait until BRB is empty */
15892        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15893        while (timer_count) {
15894            prev_brb = tmp_reg;
15895
15896            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15897            if (!tmp_reg) {
15898                break;
15899            }
15900
15901            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15902
15903            /* reset timer as long as BRB actually gets emptied */
15904            if (prev_brb > tmp_reg) {
15905                timer_count = 1000;
15906            } else {
15907                timer_count--;
15908            }
15909
15910            /* If UNDI resides in memory, manually increment it */
15911            if (prev_undi) {
15912                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15913            }
15914
15915            DELAY(10);
15916        }
15917
15918        if (!timer_count) {
15919            BLOGE(sc, "Failed to empty BRB\n");
15920        }
15921    }
15922
15923    /* No packets are in the pipeline, path is ready for reset */
15924    bxe_reset_common(sc);
15925
15926    if (mac_vals.xmac_addr) {
15927        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15928    }
15929    if (mac_vals.umac_addr) {
15930        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15931    }
15932    if (mac_vals.emac_addr) {
15933        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15934    }
15935    if (mac_vals.bmac_addr) {
15936        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15937        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15938    }
15939
15940    rc = bxe_prev_mark_path(sc, prev_undi);
15941    if (rc) {
15942        bxe_prev_mcp_done(sc);
15943        return (rc);
15944    }
15945
15946    return (bxe_prev_mcp_done(sc));
15947}
15948
15949static int
15950bxe_prev_unload_uncommon(struct bxe_softc *sc)
15951{
15952    int rc;
15953
15954    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15955
15956    /* Test if previous unload process was already finished for this path */
15957    if (bxe_prev_is_path_marked(sc)) {
15958        return (bxe_prev_mcp_done(sc));
15959    }
15960
15961    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15962
15963    /*
15964     * If function has FLR capabilities, and existing FW version matches
15965     * the one required, then FLR will be sufficient to clean any residue
15966     * left by previous driver
15967     */
15968    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15969    if (!rc) {
15970        /* fw version is good */
15971        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15972        rc = bxe_do_flr(sc);
15973    }
15974
15975    if (!rc) {
15976        /* FLR was performed */
15977        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15978        return (0);
15979    }
15980
15981    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15982
15983    /* Close the MCP request, return failure*/
15984    rc = bxe_prev_mcp_done(sc);
15985    if (!rc) {
15986        rc = BXE_PREV_WAIT_NEEDED;
15987    }
15988
15989    return (rc);
15990}
15991
15992static int
15993bxe_prev_unload(struct bxe_softc *sc)
15994{
15995    int time_counter = 10;
15996    uint32_t fw, hw_lock_reg, hw_lock_val;
15997    uint32_t rc = 0;
15998
15999    /*
16000     * Clear HW from errors which may have resulted from an interrupted
16001     * DMAE transaction.
16002     */
16003    bxe_prev_interrupted_dmae(sc);
16004
16005    /* Release previously held locks */
16006    hw_lock_reg =
16007        (SC_FUNC(sc) <= 5) ?
16008            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16009            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16010
16011    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16012    if (hw_lock_val) {
16013        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16014            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16015            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16016                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16017        }
16018        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16019        REG_WR(sc, hw_lock_reg, 0xffffffff);
16020    } else {
16021        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16022    }
16023
16024    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16025        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16026        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16027    }
16028
16029    do {
16030        /* Lock MCP using an unload request */
16031        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16032        if (!fw) {
16033            BLOGE(sc, "MCP response failure, aborting\n");
16034            rc = -1;
16035            break;
16036        }
16037
16038        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16039            rc = bxe_prev_unload_common(sc);
16040            break;
16041        }
16042
16043        /* non-common reply from MCP night require looping */
16044        rc = bxe_prev_unload_uncommon(sc);
16045        if (rc != BXE_PREV_WAIT_NEEDED) {
16046            break;
16047        }
16048
16049        DELAY(20000);
16050    } while (--time_counter);
16051
16052    if (!time_counter || rc) {
16053        BLOGE(sc, "Failed to unload previous driver!\n");
16054        rc = -1;
16055    }
16056
16057    return (rc);
16058}
16059
16060void
16061bxe_dcbx_set_state(struct bxe_softc *sc,
16062                   uint8_t          dcb_on,
16063                   uint32_t         dcbx_enabled)
16064{
16065    if (!CHIP_IS_E1x(sc)) {
16066        sc->dcb_state = dcb_on;
16067        sc->dcbx_enabled = dcbx_enabled;
16068    } else {
16069        sc->dcb_state = FALSE;
16070        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16071    }
16072    BLOGD(sc, DBG_LOAD,
16073          "DCB state [%s:%s]\n",
16074          dcb_on ? "ON" : "OFF",
16075          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16076          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16077          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16078          "on-chip with negotiation" : "invalid");
16079}
16080
16081/* must be called after sriov-enable */
16082static int
16083bxe_set_qm_cid_count(struct bxe_softc *sc)
16084{
16085    int cid_count = BXE_L2_MAX_CID(sc);
16086
16087    if (IS_SRIOV(sc)) {
16088        cid_count += BXE_VF_CIDS;
16089    }
16090
16091    if (CNIC_SUPPORT(sc)) {
16092        cid_count += CNIC_CID_MAX;
16093    }
16094
16095    return (roundup(cid_count, QM_CID_ROUND));
16096}
16097
16098static void
16099bxe_init_multi_cos(struct bxe_softc *sc)
16100{
16101    int pri, cos;
16102
16103    uint32_t pri_map = 0; /* XXX change to user config */
16104
16105    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16106        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16107        if (cos < sc->max_cos) {
16108            sc->prio_to_cos[pri] = cos;
16109        } else {
16110            BLOGW(sc, "Invalid COS %d for priority %d "
16111                      "(max COS is %d), setting to 0\n",
16112                  cos, pri, (sc->max_cos - 1));
16113            sc->prio_to_cos[pri] = 0;
16114        }
16115    }
16116}
16117
16118static int
16119bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16120{
16121    struct bxe_softc *sc;
16122    int error, result;
16123
16124    result = 0;
16125    error = sysctl_handle_int(oidp, &result, 0, req);
16126
16127    if (error || !req->newptr) {
16128        return (error);
16129    }
16130
16131    if (result == 1) {
16132        sc = (struct bxe_softc *)arg1;
16133        BLOGI(sc, "... dumping driver state ...\n");
16134        /* XXX */
16135    }
16136
16137    return (error);
16138}
16139
16140static int
16141bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16142{
16143    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16144    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16145    uint32_t *offset;
16146    uint64_t value = 0;
16147    int index = (int)arg2;
16148
16149    if (index >= BXE_NUM_ETH_STATS) {
16150        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16151        return (-1);
16152    }
16153
16154    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16155
16156    switch (bxe_eth_stats_arr[index].size) {
16157    case 4:
16158        value = (uint64_t)*offset;
16159        break;
16160    case 8:
16161        value = HILO_U64(*offset, *(offset + 1));
16162        break;
16163    default:
16164        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16165              index, bxe_eth_stats_arr[index].size);
16166        return (-1);
16167    }
16168
16169    return (sysctl_handle_64(oidp, &value, 0, req));
16170}
16171
16172static int
16173bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16174{
16175    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16176    uint32_t *eth_stats;
16177    uint32_t *offset;
16178    uint64_t value = 0;
16179    uint32_t q_stat = (uint32_t)arg2;
16180    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16181    uint32_t index = (q_stat & 0xffff);
16182
16183    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16184
16185    if (index >= BXE_NUM_ETH_Q_STATS) {
16186        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16187        return (-1);
16188    }
16189
16190    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16191
16192    switch (bxe_eth_q_stats_arr[index].size) {
16193    case 4:
16194        value = (uint64_t)*offset;
16195        break;
16196    case 8:
16197        value = HILO_U64(*offset, *(offset + 1));
16198        break;
16199    default:
16200        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16201              index, bxe_eth_q_stats_arr[index].size);
16202        return (-1);
16203    }
16204
16205    return (sysctl_handle_64(oidp, &value, 0, req));
16206}
16207
16208static void
16209bxe_add_sysctls(struct bxe_softc *sc)
16210{
16211    struct sysctl_ctx_list *ctx;
16212    struct sysctl_oid_list *children;
16213    struct sysctl_oid *queue_top, *queue;
16214    struct sysctl_oid_list *queue_top_children, *queue_children;
16215    char queue_num_buf[32];
16216    uint32_t q_stat;
16217    int i, j;
16218
16219    ctx = device_get_sysctl_ctx(sc->dev);
16220    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16221
16222    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16223                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16224                      "version");
16225
16226    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16227                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16228                      "bootcode version");
16229
16230    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16231             BCM_5710_FW_MAJOR_VERSION,
16232             BCM_5710_FW_MINOR_VERSION,
16233             BCM_5710_FW_REVISION_VERSION,
16234             BCM_5710_FW_ENGINEERING_VERSION);
16235    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16236                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16237                      "firmware version");
16238
16239    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16240        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16241         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16242         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16243         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16244                                                                "Unknown"));
16245    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16246                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16247                      "multifunction mode");
16248
16249    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16250                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16251                    "multifunction vnics per port");
16252
16253    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16254                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16255                      "mac address");
16256
16257    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16258        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16259         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16260         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16261                                              "???GT/s"),
16262        sc->devinfo.pcie_link_width);
16263    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16264                      CTLFLAG_RD, &sc->pci_link_str, 0,
16265                      "pci link status");
16266
16267    sc->debug = bxe_debug;
16268    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16269                    CTLFLAG_RW, &sc->debug, 0,
16270                    "debug logging mode");
16271
16272    sc->rx_budget = bxe_rx_budget;
16273    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16274                    CTLFLAG_RW, &sc->rx_budget, 0,
16275                    "rx processing budget");
16276
16277    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16278                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16279                    bxe_sysctl_state, "IU", "dump driver state");
16280
16281    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16282        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16283                        bxe_eth_stats_arr[i].string,
16284                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16285                        bxe_sysctl_eth_stat, "LU",
16286                        bxe_eth_stats_arr[i].string);
16287    }
16288
16289    /* add a new parent node for all queues "dev.bxe.#.queue" */
16290    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16291                                CTLFLAG_RD, NULL, "queue");
16292    queue_top_children = SYSCTL_CHILDREN(queue_top);
16293
16294    for (i = 0; i < sc->num_queues; i++) {
16295        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16296        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16297        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16298                                queue_num_buf, CTLFLAG_RD, NULL,
16299                                "single queue");
16300        queue_children = SYSCTL_CHILDREN(queue);
16301
16302        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16303            q_stat = ((i << 16) | j);
16304            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16305                            bxe_eth_q_stats_arr[j].string,
16306                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16307                            bxe_sysctl_eth_q_stat, "LU",
16308                            bxe_eth_q_stats_arr[j].string);
16309        }
16310    }
16311}
16312
16313/*
16314 * Device attach function.
16315 *
16316 * Allocates device resources, performs secondary chip identification, and
16317 * initializes driver instance variables. This function is called from driver
16318 * load after a successful probe.
16319 *
16320 * Returns:
16321 *   0 = Success, >0 = Failure
16322 */
16323static int
16324bxe_attach(device_t dev)
16325{
16326    struct bxe_softc *sc;
16327
16328    sc = device_get_softc(dev);
16329
16330    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16331
16332    sc->state = BXE_STATE_CLOSED;
16333
16334    sc->dev  = dev;
16335    sc->unit = device_get_unit(dev);
16336
16337    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16338
16339    sc->pcie_bus    = pci_get_bus(dev);
16340    sc->pcie_device = pci_get_slot(dev);
16341    sc->pcie_func   = pci_get_function(dev);
16342
16343    /* enable bus master capability */
16344    pci_enable_busmaster(dev);
16345
16346    /* get the BARs */
16347    if (bxe_allocate_bars(sc) != 0) {
16348        return (ENXIO);
16349    }
16350
16351    /* initialize the mutexes */
16352    bxe_init_mutexes(sc);
16353
16354    /* prepare the periodic callout */
16355    callout_init(&sc->periodic_callout, 0);
16356
16357    /* prepare the chip taskqueue */
16358    sc->chip_tq_flags = CHIP_TQ_NONE;
16359    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16360             "bxe%d_chip_tq", sc->unit);
16361    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16362    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16363                                   taskqueue_thread_enqueue,
16364                                   &sc->chip_tq);
16365    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16366                            "%s", sc->chip_tq_name);
16367
16368    /* get device info and set params */
16369    if (bxe_get_device_info(sc) != 0) {
16370        BLOGE(sc, "getting device info\n");
16371        bxe_deallocate_bars(sc);
16372        pci_disable_busmaster(dev);
16373        return (ENXIO);
16374    }
16375
16376    /* get final misc params */
16377    bxe_get_params(sc);
16378
16379    /* set the default MTU (changed via ifconfig) */
16380    sc->mtu = ETHERMTU;
16381
16382    bxe_set_modes_bitmap(sc);
16383
16384    /* XXX
16385     * If in AFEX mode and the function is configured for FCoE
16386     * then bail... no L2 allowed.
16387     */
16388
16389    /* get phy settings from shmem and 'and' against admin settings */
16390    bxe_get_phy_info(sc);
16391
16392    /* initialize the FreeBSD ifnet interface */
16393    if (bxe_init_ifnet(sc) != 0) {
16394        bxe_release_mutexes(sc);
16395        bxe_deallocate_bars(sc);
16396        pci_disable_busmaster(dev);
16397        return (ENXIO);
16398    }
16399
16400    /* allocate device interrupts */
16401    if (bxe_interrupt_alloc(sc) != 0) {
16402        if (sc->ifnet != NULL) {
16403            ether_ifdetach(sc->ifnet);
16404        }
16405        ifmedia_removeall(&sc->ifmedia);
16406        bxe_release_mutexes(sc);
16407        bxe_deallocate_bars(sc);
16408        pci_disable_busmaster(dev);
16409        return (ENXIO);
16410    }
16411
16412    /* allocate ilt */
16413    if (bxe_alloc_ilt_mem(sc) != 0) {
16414        bxe_interrupt_free(sc);
16415        if (sc->ifnet != NULL) {
16416            ether_ifdetach(sc->ifnet);
16417        }
16418        ifmedia_removeall(&sc->ifmedia);
16419        bxe_release_mutexes(sc);
16420        bxe_deallocate_bars(sc);
16421        pci_disable_busmaster(dev);
16422        return (ENXIO);
16423    }
16424
16425    /* allocate the host hardware/software hsi structures */
16426    if (bxe_alloc_hsi_mem(sc) != 0) {
16427        bxe_free_ilt_mem(sc);
16428        bxe_interrupt_free(sc);
16429        if (sc->ifnet != NULL) {
16430            ether_ifdetach(sc->ifnet);
16431        }
16432        ifmedia_removeall(&sc->ifmedia);
16433        bxe_release_mutexes(sc);
16434        bxe_deallocate_bars(sc);
16435        pci_disable_busmaster(dev);
16436        return (ENXIO);
16437    }
16438
16439    /* need to reset chip if UNDI was active */
16440    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16441        /* init fw_seq */
16442        sc->fw_seq =
16443            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16444             DRV_MSG_SEQ_NUMBER_MASK);
16445        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16446        bxe_prev_unload(sc);
16447    }
16448
16449#if 1
16450    /* XXX */
16451    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16452#else
16453    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16454        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16455        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16456        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16457        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16458        bxe_dcbx_init_params(sc);
16459    } else {
16460        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16461    }
16462#endif
16463
16464    /* calculate qm_cid_count */
16465    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16466    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16467
16468    sc->max_cos = 1;
16469    bxe_init_multi_cos(sc);
16470
16471    bxe_add_sysctls(sc);
16472
16473    return (0);
16474}
16475
16476/*
16477 * Device detach function.
16478 *
16479 * Stops the controller, resets the controller, and releases resources.
16480 *
16481 * Returns:
16482 *   0 = Success, >0 = Failure
16483 */
16484static int
16485bxe_detach(device_t dev)
16486{
16487    struct bxe_softc *sc;
16488    struct ifnet *ifp;
16489
16490    sc = device_get_softc(dev);
16491
16492    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16493
16494    ifp = sc->ifnet;
16495    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16496        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16497        return(EBUSY);
16498    }
16499
16500    /* stop the periodic callout */
16501    bxe_periodic_stop(sc);
16502
16503    /* stop the chip taskqueue */
16504    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16505    if (sc->chip_tq) {
16506        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16507        taskqueue_free(sc->chip_tq);
16508        sc->chip_tq = NULL;
16509    }
16510
16511    /* stop and reset the controller if it was open */
16512    if (sc->state != BXE_STATE_CLOSED) {
16513        BXE_CORE_LOCK(sc);
16514        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16515        BXE_CORE_UNLOCK(sc);
16516    }
16517
16518    /* release the network interface */
16519    if (ifp != NULL) {
16520        ether_ifdetach(ifp);
16521    }
16522    ifmedia_removeall(&sc->ifmedia);
16523
16524    /* XXX do the following based on driver state... */
16525
16526    /* free the host hardware/software hsi structures */
16527    bxe_free_hsi_mem(sc);
16528
16529    /* free ilt */
16530    bxe_free_ilt_mem(sc);
16531
16532    /* release the interrupts */
16533    bxe_interrupt_free(sc);
16534
16535    /* Release the mutexes*/
16536    bxe_release_mutexes(sc);
16537
16538    /* Release the PCIe BAR mapped memory */
16539    bxe_deallocate_bars(sc);
16540
16541    /* Release the FreeBSD interface. */
16542    if (sc->ifnet != NULL) {
16543        if_free(sc->ifnet);
16544    }
16545
16546    pci_disable_busmaster(dev);
16547
16548    return (0);
16549}
16550
16551/*
16552 * Device shutdown function.
16553 *
16554 * Stops and resets the controller.
16555 *
16556 * Returns:
16557 *   Nothing
16558 */
16559static int
16560bxe_shutdown(device_t dev)
16561{
16562    struct bxe_softc *sc;
16563
16564    sc = device_get_softc(dev);
16565
16566    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16567
16568    /* stop the periodic callout */
16569    bxe_periodic_stop(sc);
16570
16571    BXE_CORE_LOCK(sc);
16572    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16573    BXE_CORE_UNLOCK(sc);
16574
16575    return (0);
16576}
16577
16578void
16579bxe_igu_ack_sb(struct bxe_softc *sc,
16580               uint8_t          igu_sb_id,
16581               uint8_t          segment,
16582               uint16_t         index,
16583               uint8_t          op,
16584               uint8_t          update)
16585{
16586    uint32_t igu_addr = sc->igu_base_addr;
16587    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16588    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16589}
16590
16591static void
16592bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16593                     uint8_t          func,
16594                     uint8_t          idu_sb_id,
16595                     uint8_t          is_pf)
16596{
16597    uint32_t data, ctl, cnt = 100;
16598    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16599    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16600    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16601    uint32_t sb_bit =  1 << (idu_sb_id%32);
16602    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16603    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16604
16605    /* Not supported in BC mode */
16606    if (CHIP_INT_MODE_IS_BC(sc)) {
16607        return;
16608    }
16609
16610    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16611             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16612            IGU_REGULAR_CLEANUP_SET |
16613            IGU_REGULAR_BCLEANUP);
16614
16615    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16616           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16617           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16618
16619    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16620            data, igu_addr_data);
16621    REG_WR(sc, igu_addr_data, data);
16622
16623    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16624                      BUS_SPACE_BARRIER_WRITE);
16625    mb();
16626
16627    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16628            ctl, igu_addr_ctl);
16629    REG_WR(sc, igu_addr_ctl, ctl);
16630
16631    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16632                      BUS_SPACE_BARRIER_WRITE);
16633    mb();
16634
16635    /* wait for clean up to finish */
16636    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16637        DELAY(20000);
16638    }
16639
16640    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16641        BLOGD(sc, DBG_LOAD,
16642              "Unable to finish IGU cleanup: "
16643              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16644              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16645    }
16646}
16647
16648static void
16649bxe_igu_clear_sb(struct bxe_softc *sc,
16650                 uint8_t          idu_sb_id)
16651{
16652    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16653}
16654
16655
16656
16657
16658
16659
16660
16661/*******************/
16662/* ECORE CALLBACKS */
16663/*******************/
16664
16665static void
16666bxe_reset_common(struct bxe_softc *sc)
16667{
16668    uint32_t val = 0x1400;
16669
16670    /* reset_common */
16671    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16672
16673    if (CHIP_IS_E3(sc)) {
16674        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16675        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16676    }
16677
16678    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16679}
16680
16681static void
16682bxe_common_init_phy(struct bxe_softc *sc)
16683{
16684    uint32_t shmem_base[2];
16685    uint32_t shmem2_base[2];
16686
16687    /* Avoid common init in case MFW supports LFA */
16688    if (SHMEM2_RD(sc, size) >
16689        (uint32_t)offsetof(struct shmem2_region,
16690                           lfa_host_addr[SC_PORT(sc)])) {
16691        return;
16692    }
16693
16694    shmem_base[0]  = sc->devinfo.shmem_base;
16695    shmem2_base[0] = sc->devinfo.shmem2_base;
16696
16697    if (!CHIP_IS_E1x(sc)) {
16698        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16699        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16700    }
16701
16702    BXE_PHY_LOCK(sc);
16703    elink_common_init_phy(sc, shmem_base, shmem2_base,
16704                          sc->devinfo.chip_id, 0);
16705    BXE_PHY_UNLOCK(sc);
16706}
16707
16708static void
16709bxe_pf_disable(struct bxe_softc *sc)
16710{
16711    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16712
16713    val &= ~IGU_PF_CONF_FUNC_EN;
16714
16715    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16716    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16717    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16718}
16719
16720static void
16721bxe_init_pxp(struct bxe_softc *sc)
16722{
16723    uint16_t devctl;
16724    int r_order, w_order;
16725
16726    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16727
16728    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16729
16730    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16731
16732    if (sc->mrrs == -1) {
16733        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16734    } else {
16735        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16736        r_order = sc->mrrs;
16737    }
16738
16739    ecore_init_pxp_arb(sc, r_order, w_order);
16740}
16741
16742static uint32_t
16743bxe_get_pretend_reg(struct bxe_softc *sc)
16744{
16745    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16746    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16747    return (base + (SC_ABS_FUNC(sc)) * stride);
16748}
16749
16750/*
16751 * Called only on E1H or E2.
16752 * When pretending to be PF, the pretend value is the function number 0..7.
16753 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16754 * combination.
16755 */
16756static int
16757bxe_pretend_func(struct bxe_softc *sc,
16758                 uint16_t         pretend_func_val)
16759{
16760    uint32_t pretend_reg;
16761
16762    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16763        return (-1);
16764    }
16765
16766    /* get my own pretend register */
16767    pretend_reg = bxe_get_pretend_reg(sc);
16768    REG_WR(sc, pretend_reg, pretend_func_val);
16769    REG_RD(sc, pretend_reg);
16770    return (0);
16771}
16772
16773static void
16774bxe_iov_init_dmae(struct bxe_softc *sc)
16775{
16776    return;
16777#if 0
16778    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16779
16780    if (!IS_SRIOV(sc)) {
16781        return;
16782    }
16783
16784    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16785#endif
16786}
16787
16788#if 0
16789static int
16790bxe_iov_init_ilt(struct bxe_softc *sc,
16791                 uint16_t         line)
16792{
16793    return (line);
16794#if 0
16795    int i;
16796    struct ecore_ilt* ilt = sc->ilt;
16797
16798    if (!IS_SRIOV(sc)) {
16799        return (line);
16800    }
16801
16802    /* set vfs ilt lines */
16803    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16804        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16805        ilt->lines[line+i].page = hw_cxt->addr;
16806        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16807        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16808    }
16809    return (line+i);
16810#endif
16811}
16812#endif
16813
16814static void
16815bxe_iov_init_dq(struct bxe_softc *sc)
16816{
16817    return;
16818#if 0
16819    if (!IS_SRIOV(sc)) {
16820        return;
16821    }
16822
16823    /* Set the DQ such that the CID reflect the abs_vfid */
16824    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16825    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16826
16827    /*
16828     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16829     * the PF L2 queues
16830     */
16831    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16832
16833    /* The VF window size is the log2 of the max number of CIDs per VF */
16834    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16835
16836    /*
16837     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16838     * the Pf doorbell size although the 2 are independent.
16839     */
16840    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16841           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16842
16843    /*
16844     * No security checks for now -
16845     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16846     * CID range 0 - 0x1ffff
16847     */
16848    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16849    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16850    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16851    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16852
16853    /* set the number of VF alllowed doorbells to the full DQ range */
16854    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16855
16856    /* set the VF doorbell threshold */
16857    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16858#endif
16859}
16860
16861/* send a NIG loopback debug packet */
16862static void
16863bxe_lb_pckt(struct bxe_softc *sc)
16864{
16865    uint32_t wb_write[3];
16866
16867    /* Ethernet source and destination addresses */
16868    wb_write[0] = 0x55555555;
16869    wb_write[1] = 0x55555555;
16870    wb_write[2] = 0x20;     /* SOP */
16871    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16872
16873    /* NON-IP protocol */
16874    wb_write[0] = 0x09000000;
16875    wb_write[1] = 0x55555555;
16876    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16877    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16878}
16879
16880/*
16881 * Some of the internal memories are not directly readable from the driver.
16882 * To test them we send debug packets.
16883 */
16884static int
16885bxe_int_mem_test(struct bxe_softc *sc)
16886{
16887    int factor;
16888    int count, i;
16889    uint32_t val = 0;
16890
16891    if (CHIP_REV_IS_FPGA(sc)) {
16892        factor = 120;
16893    } else if (CHIP_REV_IS_EMUL(sc)) {
16894        factor = 200;
16895    } else {
16896        factor = 1;
16897    }
16898
16899    /* disable inputs of parser neighbor blocks */
16900    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16901    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16902    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16903    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16904
16905    /*  write 0 to parser credits for CFC search request */
16906    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16907
16908    /* send Ethernet packet */
16909    bxe_lb_pckt(sc);
16910
16911    /* TODO do i reset NIG statistic? */
16912    /* Wait until NIG register shows 1 packet of size 0x10 */
16913    count = 1000 * factor;
16914    while (count) {
16915        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16916        val = *BXE_SP(sc, wb_data[0]);
16917        if (val == 0x10) {
16918            break;
16919        }
16920
16921        DELAY(10000);
16922        count--;
16923    }
16924
16925    if (val != 0x10) {
16926        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16927        return (-1);
16928    }
16929
16930    /* wait until PRS register shows 1 packet */
16931    count = (1000 * factor);
16932    while (count) {
16933        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16934        if (val == 1) {
16935            break;
16936        }
16937
16938        DELAY(10000);
16939        count--;
16940    }
16941
16942    if (val != 0x1) {
16943        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16944        return (-2);
16945    }
16946
16947    /* Reset and init BRB, PRS */
16948    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16949    DELAY(50000);
16950    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16951    DELAY(50000);
16952    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16953    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16954
16955    /* Disable inputs of parser neighbor blocks */
16956    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16957    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16958    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16959    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16960
16961    /* Write 0 to parser credits for CFC search request */
16962    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16963
16964    /* send 10 Ethernet packets */
16965    for (i = 0; i < 10; i++) {
16966        bxe_lb_pckt(sc);
16967    }
16968
16969    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16970    count = (1000 * factor);
16971    while (count) {
16972        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16973        val = *BXE_SP(sc, wb_data[0]);
16974        if (val == 0xb0) {
16975            break;
16976        }
16977
16978        DELAY(10000);
16979        count--;
16980    }
16981
16982    if (val != 0xb0) {
16983        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16984        return (-3);
16985    }
16986
16987    /* Wait until PRS register shows 2 packets */
16988    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16989    if (val != 2) {
16990        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16991    }
16992
16993    /* Write 1 to parser credits for CFC search request */
16994    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16995
16996    /* Wait until PRS register shows 3 packets */
16997    DELAY(10000 * factor);
16998
16999    /* Wait until NIG register shows 1 packet of size 0x10 */
17000    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17001    if (val != 3) {
17002        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17003    }
17004
17005    /* clear NIG EOP FIFO */
17006    for (i = 0; i < 11; i++) {
17007        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17008    }
17009
17010    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17011    if (val != 1) {
17012        BLOGE(sc, "clear of NIG failed\n");
17013        return (-4);
17014    }
17015
17016    /* Reset and init BRB, PRS, NIG */
17017    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17018    DELAY(50000);
17019    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17020    DELAY(50000);
17021    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17022    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17023    if (!CNIC_SUPPORT(sc)) {
17024        /* set NIC mode */
17025        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17026    }
17027
17028    /* Enable inputs of parser neighbor blocks */
17029    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17030    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17031    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17032    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17033
17034    return (0);
17035}
17036
17037static void
17038bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17039{
17040    int is_required;
17041    uint32_t val;
17042    int port;
17043
17044    is_required = 0;
17045    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17046           SHARED_HW_CFG_FAN_FAILURE_MASK);
17047
17048    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17049        is_required = 1;
17050    }
17051    /*
17052     * The fan failure mechanism is usually related to the PHY type since
17053     * the power consumption of the board is affected by the PHY. Currently,
17054     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17055     */
17056    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17057        for (port = PORT_0; port < PORT_MAX; port++) {
17058            is_required |= elink_fan_failure_det_req(sc,
17059                                                     sc->devinfo.shmem_base,
17060                                                     sc->devinfo.shmem2_base,
17061                                                     port);
17062        }
17063    }
17064
17065    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17066
17067    if (is_required == 0) {
17068        return;
17069    }
17070
17071    /* Fan failure is indicated by SPIO 5 */
17072    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17073
17074    /* set to active low mode */
17075    val = REG_RD(sc, MISC_REG_SPIO_INT);
17076    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17077    REG_WR(sc, MISC_REG_SPIO_INT, val);
17078
17079    /* enable interrupt to signal the IGU */
17080    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17081    val |= MISC_SPIO_SPIO5;
17082    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17083}
17084
17085static void
17086bxe_enable_blocks_attention(struct bxe_softc *sc)
17087{
17088    uint32_t val;
17089
17090    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17091    if (!CHIP_IS_E1x(sc)) {
17092        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17093    } else {
17094        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17095    }
17096    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17097    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17098    /*
17099     * mask read length error interrupts in brb for parser
17100     * (parsing unit and 'checksum and crc' unit)
17101     * these errors are legal (PU reads fixed length and CAC can cause
17102     * read length error on truncated packets)
17103     */
17104    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17105    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17106    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17107    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17108    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17109    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17110/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17111/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17112    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17113    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17114    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17115/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17116/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17117    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17118    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17119    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17120    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17121/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17122/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17123
17124    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17125           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17126           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17127    if (!CHIP_IS_E1x(sc)) {
17128        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17129                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17130    }
17131    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17132
17133    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17134    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17135    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17136/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17137
17138    if (!CHIP_IS_E1x(sc)) {
17139        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17140        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17141    }
17142
17143    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17144    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17145/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17146    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17147}
17148
17149/**
17150 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17151 *
17152 * @sc:     driver handle
17153 */
17154static int
17155bxe_init_hw_common(struct bxe_softc *sc)
17156{
17157    uint8_t abs_func_id;
17158    uint32_t val;
17159
17160    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17161          SC_ABS_FUNC(sc));
17162
17163    /*
17164     * take the RESET lock to protect undi_unload flow from accessing
17165     * registers while we are resetting the chip
17166     */
17167    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17168
17169    bxe_reset_common(sc);
17170
17171    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17172
17173    val = 0xfffc;
17174    if (CHIP_IS_E3(sc)) {
17175        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17176        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17177    }
17178
17179    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17180
17181    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17182
17183    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17184    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17185
17186    if (!CHIP_IS_E1x(sc)) {
17187        /*
17188         * 4-port mode or 2-port mode we need to turn off master-enable for
17189         * everyone. After that we turn it back on for self. So, we disregard
17190         * multi-function, and always disable all functions on the given path,
17191         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17192         */
17193        for (abs_func_id = SC_PATH(sc);
17194             abs_func_id < (E2_FUNC_MAX * 2);
17195             abs_func_id += 2) {
17196            if (abs_func_id == SC_ABS_FUNC(sc)) {
17197                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17198                continue;
17199            }
17200
17201            bxe_pretend_func(sc, abs_func_id);
17202
17203            /* clear pf enable */
17204            bxe_pf_disable(sc);
17205
17206            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17207        }
17208    }
17209
17210    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17211
17212    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17213
17214    if (CHIP_IS_E1(sc)) {
17215        /*
17216         * enable HW interrupt from PXP on USDM overflow
17217         * bit 16 on INT_MASK_0
17218         */
17219        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17220    }
17221
17222    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17223    bxe_init_pxp(sc);
17224
17225#ifdef __BIG_ENDIAN
17226    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17227    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17228    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17229    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17230    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17231    /* make sure this value is 0 */
17232    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17233
17234    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17235    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17236    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17237    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17238    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17239#endif
17240
17241    ecore_ilt_init_page_size(sc, INITOP_SET);
17242
17243    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17244        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17245    }
17246
17247    /* let the HW do it's magic... */
17248    DELAY(100000);
17249
17250    /* finish PXP init */
17251    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17252    if (val != 1) {
17253        BLOGE(sc, "PXP2 CFG failed\n");
17254        return (-1);
17255    }
17256    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17257    if (val != 1) {
17258        BLOGE(sc, "PXP2 RD_INIT failed\n");
17259        return (-1);
17260    }
17261
17262    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17263
17264    /*
17265     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17266     * entries with value "0" and valid bit on. This needs to be done by the
17267     * first PF that is loaded in a path (i.e. common phase)
17268     */
17269    if (!CHIP_IS_E1x(sc)) {
17270/*
17271 * In E2 there is a bug in the timers block that can cause function 6 / 7
17272 * (i.e. vnic3) to start even if it is marked as "scan-off".
17273 * This occurs when a different function (func2,3) is being marked
17274 * as "scan-off". Real-life scenario for example: if a driver is being
17275 * load-unloaded while func6,7 are down. This will cause the timer to access
17276 * the ilt, translate to a logical address and send a request to read/write.
17277 * Since the ilt for the function that is down is not valid, this will cause
17278 * a translation error which is unrecoverable.
17279 * The Workaround is intended to make sure that when this happens nothing
17280 * fatal will occur. The workaround:
17281 *  1.  First PF driver which loads on a path will:
17282 *      a.  After taking the chip out of reset, by using pretend,
17283 *          it will write "0" to the following registers of
17284 *          the other vnics.
17285 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17286 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17287 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17288 *          And for itself it will write '1' to
17289 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17290 *          dmae-operations (writing to pram for example.)
17291 *          note: can be done for only function 6,7 but cleaner this
17292 *            way.
17293 *      b.  Write zero+valid to the entire ILT.
17294 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17295 *          VNIC3 (of that port). The range allocated will be the
17296 *          entire ILT. This is needed to prevent  ILT range error.
17297 *  2.  Any PF driver load flow:
17298 *      a.  ILT update with the physical addresses of the allocated
17299 *          logical pages.
17300 *      b.  Wait 20msec. - note that this timeout is needed to make
17301 *          sure there are no requests in one of the PXP internal
17302 *          queues with "old" ILT addresses.
17303 *      c.  PF enable in the PGLC.
17304 *      d.  Clear the was_error of the PF in the PGLC. (could have
17305 *          occurred while driver was down)
17306 *      e.  PF enable in the CFC (WEAK + STRONG)
17307 *      f.  Timers scan enable
17308 *  3.  PF driver unload flow:
17309 *      a.  Clear the Timers scan_en.
17310 *      b.  Polling for scan_on=0 for that PF.
17311 *      c.  Clear the PF enable bit in the PXP.
17312 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17313 *      e.  Write zero+valid to all ILT entries (The valid bit must
17314 *          stay set)
17315 *      f.  If this is VNIC 3 of a port then also init
17316 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17317 *          to the last enrty in the ILT.
17318 *
17319 *      Notes:
17320 *      Currently the PF error in the PGLC is non recoverable.
17321 *      In the future the there will be a recovery routine for this error.
17322 *      Currently attention is masked.
17323 *      Having an MCP lock on the load/unload process does not guarantee that
17324 *      there is no Timer disable during Func6/7 enable. This is because the
17325 *      Timers scan is currently being cleared by the MCP on FLR.
17326 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17327 *      there is error before clearing it. But the flow above is simpler and
17328 *      more general.
17329 *      All ILT entries are written by zero+valid and not just PF6/7
17330 *      ILT entries since in the future the ILT entries allocation for
17331 *      PF-s might be dynamic.
17332 */
17333        struct ilt_client_info ilt_cli;
17334        struct ecore_ilt ilt;
17335
17336        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17337        memset(&ilt, 0, sizeof(struct ecore_ilt));
17338
17339        /* initialize dummy TM client */
17340        ilt_cli.start      = 0;
17341        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17342        ilt_cli.client_num = ILT_CLIENT_TM;
17343
17344        /*
17345         * Step 1: set zeroes to all ilt page entries with valid bit on
17346         * Step 2: set the timers first/last ilt entry to point
17347         * to the entire range to prevent ILT range error for 3rd/4th
17348         * vnic (this code assumes existence of the vnic)
17349         *
17350         * both steps performed by call to ecore_ilt_client_init_op()
17351         * with dummy TM client
17352         *
17353         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17354         * and his brother are split registers
17355         */
17356
17357        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17358        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17359        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17360
17361        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17362        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17363        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17364    }
17365
17366    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17367    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17368
17369    if (!CHIP_IS_E1x(sc)) {
17370        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17371                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17372
17373        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17374        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17375
17376        /* let the HW do it's magic... */
17377        do {
17378            DELAY(200000);
17379            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17380        } while (factor-- && (val != 1));
17381
17382        if (val != 1) {
17383            BLOGE(sc, "ATC_INIT failed\n");
17384            return (-1);
17385        }
17386    }
17387
17388    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17389
17390    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17391
17392    bxe_iov_init_dmae(sc);
17393
17394    /* clean the DMAE memory */
17395    sc->dmae_ready = 1;
17396    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17397
17398    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17399
17400    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17401
17402    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17403
17404    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17405
17406    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17407    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17408    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17409    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17410
17411    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17412
17413    /* QM queues pointers table */
17414    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17415
17416    /* soft reset pulse */
17417    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17418    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17419
17420    if (CNIC_SUPPORT(sc))
17421        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17422
17423    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17424    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17425    if (!CHIP_REV_IS_SLOW(sc)) {
17426        /* enable hw interrupt from doorbell Q */
17427        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17428    }
17429
17430    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17431
17432    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17433    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17434
17435    if (!CHIP_IS_E1(sc)) {
17436        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17437    }
17438
17439    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17440        if (IS_MF_AFEX(sc)) {
17441            /*
17442             * configure that AFEX and VLAN headers must be
17443             * received in AFEX mode
17444             */
17445            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17446            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17447            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17448            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17449            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17450        } else {
17451            /*
17452             * Bit-map indicating which L2 hdrs may appear
17453             * after the basic Ethernet header
17454             */
17455            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17456                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17457        }
17458    }
17459
17460    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17461    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17462    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17463    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17464
17465    if (!CHIP_IS_E1x(sc)) {
17466        /* reset VFC memories */
17467        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17468               VFC_MEMORIES_RST_REG_CAM_RST |
17469               VFC_MEMORIES_RST_REG_RAM_RST);
17470        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17471               VFC_MEMORIES_RST_REG_CAM_RST |
17472               VFC_MEMORIES_RST_REG_RAM_RST);
17473
17474        DELAY(20000);
17475    }
17476
17477    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17478    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17479    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17480    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17481
17482    /* sync semi rtc */
17483    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17484           0x80000000);
17485    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17486           0x80000000);
17487
17488    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17489    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17490    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17491
17492    if (!CHIP_IS_E1x(sc)) {
17493        if (IS_MF_AFEX(sc)) {
17494            /*
17495             * configure that AFEX and VLAN headers must be
17496             * sent in AFEX mode
17497             */
17498            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17499            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17500            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17501            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17502            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17503        } else {
17504            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17505                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17506        }
17507    }
17508
17509    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17510
17511    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17512
17513    if (CNIC_SUPPORT(sc)) {
17514        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17515        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17516        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17517        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17521        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17522        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17523        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17524    }
17525    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17526
17527    if (sizeof(union cdu_context) != 1024) {
17528        /* we currently assume that a context is 1024 bytes */
17529        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17530              (long)sizeof(union cdu_context));
17531    }
17532
17533    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17534    val = (4 << 24) + (0 << 12) + 1024;
17535    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17536
17537    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17538
17539    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17540    /* enable context validation interrupt from CFC */
17541    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17542
17543    /* set the thresholds to prevent CFC/CDU race */
17544    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17545    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17546
17547    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17548        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17549    }
17550
17551    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17552    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17553
17554    /* Reset PCIE errors for debug */
17555    REG_WR(sc, 0x2814, 0xffffffff);
17556    REG_WR(sc, 0x3820, 0xffffffff);
17557
17558    if (!CHIP_IS_E1x(sc)) {
17559        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17560               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17561                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17562        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17563               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17564                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17565                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17566        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17567               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17568                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17569                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17570    }
17571
17572    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17573
17574    if (!CHIP_IS_E1(sc)) {
17575        /* in E3 this done in per-port section */
17576        if (!CHIP_IS_E3(sc))
17577            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17578    }
17579
17580    if (CHIP_IS_E1H(sc)) {
17581        /* not applicable for E2 (and above ...) */
17582        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17583    }
17584
17585    if (CHIP_REV_IS_SLOW(sc)) {
17586        DELAY(200000);
17587    }
17588
17589    /* finish CFC init */
17590    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17591    if (val != 1) {
17592        BLOGE(sc, "CFC LL_INIT failed\n");
17593        return (-1);
17594    }
17595    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17596    if (val != 1) {
17597        BLOGE(sc, "CFC AC_INIT failed\n");
17598        return (-1);
17599    }
17600    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17601    if (val != 1) {
17602        BLOGE(sc, "CFC CAM_INIT failed\n");
17603        return (-1);
17604    }
17605    REG_WR(sc, CFC_REG_DEBUG0, 0);
17606
17607    if (CHIP_IS_E1(sc)) {
17608        /* read NIG statistic to see if this is our first up since powerup */
17609        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17610        val = *BXE_SP(sc, wb_data[0]);
17611
17612        /* do internal memory self test */
17613        if ((val == 0) && bxe_int_mem_test(sc)) {
17614            BLOGE(sc, "internal mem self test failed\n");
17615            return (-1);
17616        }
17617    }
17618
17619    bxe_setup_fan_failure_detection(sc);
17620
17621    /* clear PXP2 attentions */
17622    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17623
17624    bxe_enable_blocks_attention(sc);
17625
17626    if (!CHIP_REV_IS_SLOW(sc)) {
17627        ecore_enable_blocks_parity(sc);
17628    }
17629
17630    if (!BXE_NOMCP(sc)) {
17631        if (CHIP_IS_E1x(sc)) {
17632            bxe_common_init_phy(sc);
17633        }
17634    }
17635
17636    return (0);
17637}
17638
17639/**
17640 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17641 *
17642 * @sc:     driver handle
17643 */
17644static int
17645bxe_init_hw_common_chip(struct bxe_softc *sc)
17646{
17647    int rc = bxe_init_hw_common(sc);
17648
17649    if (rc) {
17650        return (rc);
17651    }
17652
17653    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17654    if (!BXE_NOMCP(sc)) {
17655        bxe_common_init_phy(sc);
17656    }
17657
17658    return (0);
17659}
17660
17661static int
17662bxe_init_hw_port(struct bxe_softc *sc)
17663{
17664    int port = SC_PORT(sc);
17665    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17666    uint32_t low, high;
17667    uint32_t val;
17668
17669    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17670
17671    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17672
17673    ecore_init_block(sc, BLOCK_MISC, init_phase);
17674    ecore_init_block(sc, BLOCK_PXP, init_phase);
17675    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17676
17677    /*
17678     * Timers bug workaround: disables the pf_master bit in pglue at
17679     * common phase, we need to enable it here before any dmae access are
17680     * attempted. Therefore we manually added the enable-master to the
17681     * port phase (it also happens in the function phase)
17682     */
17683    if (!CHIP_IS_E1x(sc)) {
17684        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17685    }
17686
17687    ecore_init_block(sc, BLOCK_ATC, init_phase);
17688    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17689    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17690    ecore_init_block(sc, BLOCK_QM, init_phase);
17691
17692    ecore_init_block(sc, BLOCK_TCM, init_phase);
17693    ecore_init_block(sc, BLOCK_UCM, init_phase);
17694    ecore_init_block(sc, BLOCK_CCM, init_phase);
17695    ecore_init_block(sc, BLOCK_XCM, init_phase);
17696
17697    /* QM cid (connection) count */
17698    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17699
17700    if (CNIC_SUPPORT(sc)) {
17701        ecore_init_block(sc, BLOCK_TM, init_phase);
17702        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17703        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17704    }
17705
17706    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17707
17708    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17709
17710    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17711        if (IS_MF(sc)) {
17712            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17713        } else if (sc->mtu > 4096) {
17714            if (BXE_ONE_PORT(sc)) {
17715                low = 160;
17716            } else {
17717                val = sc->mtu;
17718                /* (24*1024 + val*4)/256 */
17719                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17720            }
17721        } else {
17722            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17723        }
17724        high = (low + 56); /* 14*1024/256 */
17725        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17726        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17727    }
17728
17729    if (CHIP_IS_MODE_4_PORT(sc)) {
17730        REG_WR(sc, SC_PORT(sc) ?
17731               BRB1_REG_MAC_GUARANTIED_1 :
17732               BRB1_REG_MAC_GUARANTIED_0, 40);
17733    }
17734
17735    ecore_init_block(sc, BLOCK_PRS, init_phase);
17736    if (CHIP_IS_E3B0(sc)) {
17737        if (IS_MF_AFEX(sc)) {
17738            /* configure headers for AFEX mode */
17739            REG_WR(sc, SC_PORT(sc) ?
17740                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17741                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17742            REG_WR(sc, SC_PORT(sc) ?
17743                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17744                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17745            REG_WR(sc, SC_PORT(sc) ?
17746                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17747                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17748        } else {
17749            /* Ovlan exists only if we are in multi-function +
17750             * switch-dependent mode, in switch-independent there
17751             * is no ovlan headers
17752             */
17753            REG_WR(sc, SC_PORT(sc) ?
17754                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17755                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17756                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17757        }
17758    }
17759
17760    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17761    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17762    ecore_init_block(sc, BLOCK_USDM, init_phase);
17763    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17764
17765    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17766    ecore_init_block(sc, BLOCK_USEM, init_phase);
17767    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17768    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17769
17770    ecore_init_block(sc, BLOCK_UPB, init_phase);
17771    ecore_init_block(sc, BLOCK_XPB, init_phase);
17772
17773    ecore_init_block(sc, BLOCK_PBF, init_phase);
17774
17775    if (CHIP_IS_E1x(sc)) {
17776        /* configure PBF to work without PAUSE mtu 9000 */
17777        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17778
17779        /* update threshold */
17780        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17781        /* update init credit */
17782        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17783
17784        /* probe changes */
17785        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17786        DELAY(50);
17787        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17788    }
17789
17790    if (CNIC_SUPPORT(sc)) {
17791        ecore_init_block(sc, BLOCK_SRC, init_phase);
17792    }
17793
17794    ecore_init_block(sc, BLOCK_CDU, init_phase);
17795    ecore_init_block(sc, BLOCK_CFC, init_phase);
17796
17797    if (CHIP_IS_E1(sc)) {
17798        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17799        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17800    }
17801    ecore_init_block(sc, BLOCK_HC, init_phase);
17802
17803    ecore_init_block(sc, BLOCK_IGU, init_phase);
17804
17805    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17806    /* init aeu_mask_attn_func_0/1:
17807     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17808     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17809     *             bits 4-7 are used for "per vn group attention" */
17810    val = IS_MF(sc) ? 0xF7 : 0x7;
17811    /* Enable DCBX attention for all but E1 */
17812    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17813    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17814
17815    ecore_init_block(sc, BLOCK_NIG, init_phase);
17816
17817    if (!CHIP_IS_E1x(sc)) {
17818        /* Bit-map indicating which L2 hdrs may appear after the
17819         * basic Ethernet header
17820         */
17821        if (IS_MF_AFEX(sc)) {
17822            REG_WR(sc, SC_PORT(sc) ?
17823                   NIG_REG_P1_HDRS_AFTER_BASIC :
17824                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17825        } else {
17826            REG_WR(sc, SC_PORT(sc) ?
17827                   NIG_REG_P1_HDRS_AFTER_BASIC :
17828                   NIG_REG_P0_HDRS_AFTER_BASIC,
17829                   IS_MF_SD(sc) ? 7 : 6);
17830        }
17831
17832        if (CHIP_IS_E3(sc)) {
17833            REG_WR(sc, SC_PORT(sc) ?
17834                   NIG_REG_LLH1_MF_MODE :
17835                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17836        }
17837    }
17838    if (!CHIP_IS_E3(sc)) {
17839        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17840    }
17841
17842    if (!CHIP_IS_E1(sc)) {
17843        /* 0x2 disable mf_ov, 0x1 enable */
17844        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17845               (IS_MF_SD(sc) ? 0x1 : 0x2));
17846
17847        if (!CHIP_IS_E1x(sc)) {
17848            val = 0;
17849            switch (sc->devinfo.mf_info.mf_mode) {
17850            case MULTI_FUNCTION_SD:
17851                val = 1;
17852                break;
17853            case MULTI_FUNCTION_SI:
17854            case MULTI_FUNCTION_AFEX:
17855                val = 2;
17856                break;
17857            }
17858
17859            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17860                        NIG_REG_LLH0_CLS_TYPE), val);
17861        }
17862        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17863        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17864        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17865    }
17866
17867    /* If SPIO5 is set to generate interrupts, enable it for this port */
17868    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17869    if (val & MISC_SPIO_SPIO5) {
17870        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17871                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17872        val = REG_RD(sc, reg_addr);
17873        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17874        REG_WR(sc, reg_addr, val);
17875    }
17876
17877    return (0);
17878}
17879
17880static uint32_t
17881bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17882                       uint32_t         reg,
17883                       uint32_t         expected,
17884                       uint32_t         poll_count)
17885{
17886    uint32_t cur_cnt = poll_count;
17887    uint32_t val;
17888
17889    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17890        DELAY(FLR_WAIT_INTERVAL);
17891    }
17892
17893    return (val);
17894}
17895
17896static int
17897bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17898                              uint32_t         reg,
17899                              char             *msg,
17900                              uint32_t         poll_cnt)
17901{
17902    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17903
17904    if (val != 0) {
17905        BLOGE(sc, "%s usage count=%d\n", msg, val);
17906        return (1);
17907    }
17908
17909    return (0);
17910}
17911
17912/* Common routines with VF FLR cleanup */
17913static uint32_t
17914bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17915{
17916    /* adjust polling timeout */
17917    if (CHIP_REV_IS_EMUL(sc)) {
17918        return (FLR_POLL_CNT * 2000);
17919    }
17920
17921    if (CHIP_REV_IS_FPGA(sc)) {
17922        return (FLR_POLL_CNT * 120);
17923    }
17924
17925    return (FLR_POLL_CNT);
17926}
17927
17928static int
17929bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17930                           uint32_t         poll_cnt)
17931{
17932    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17933    if (bxe_flr_clnup_poll_hw_counter(sc,
17934                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17935                                      "CFC PF usage counter timed out",
17936                                      poll_cnt)) {
17937        return (1);
17938    }
17939
17940    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17941    if (bxe_flr_clnup_poll_hw_counter(sc,
17942                                      DORQ_REG_PF_USAGE_CNT,
17943                                      "DQ PF usage counter timed out",
17944                                      poll_cnt)) {
17945        return (1);
17946    }
17947
17948    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17949    if (bxe_flr_clnup_poll_hw_counter(sc,
17950                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17951                                      "QM PF usage counter timed out",
17952                                      poll_cnt)) {
17953        return (1);
17954    }
17955
17956    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17957    if (bxe_flr_clnup_poll_hw_counter(sc,
17958                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17959                                      "Timers VNIC usage counter timed out",
17960                                      poll_cnt)) {
17961        return (1);
17962    }
17963
17964    if (bxe_flr_clnup_poll_hw_counter(sc,
17965                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17966                                      "Timers NUM_SCANS usage counter timed out",
17967                                      poll_cnt)) {
17968        return (1);
17969    }
17970
17971    /* Wait DMAE PF usage counter to zero */
17972    if (bxe_flr_clnup_poll_hw_counter(sc,
17973                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17974                                      "DMAE dommand register timed out",
17975                                      poll_cnt)) {
17976        return (1);
17977    }
17978
17979    return (0);
17980}
17981
17982#define OP_GEN_PARAM(param)                                            \
17983    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17984#define OP_GEN_TYPE(type)                                           \
17985    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17986#define OP_GEN_AGG_VECT(index)                                             \
17987    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17988
17989static int
17990bxe_send_final_clnup(struct bxe_softc *sc,
17991                     uint8_t          clnup_func,
17992                     uint32_t         poll_cnt)
17993{
17994    uint32_t op_gen_command = 0;
17995    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17996                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17997    int ret = 0;
17998
17999    if (REG_RD(sc, comp_addr)) {
18000        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18001        return (1);
18002    }
18003
18004    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18005    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18006    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18007    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18008
18009    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18010    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18011
18012    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18013        BLOGE(sc, "FW final cleanup did not succeed\n");
18014        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18015              (REG_RD(sc, comp_addr)));
18016        bxe_panic(sc, ("FLR cleanup failed\n"));
18017        return (1);
18018    }
18019
18020    /* Zero completion for nxt FLR */
18021    REG_WR(sc, comp_addr, 0);
18022
18023    return (ret);
18024}
18025
18026static void
18027bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18028                       struct pbf_pN_buf_regs *regs,
18029                       uint32_t               poll_count)
18030{
18031    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18032    uint32_t cur_cnt = poll_count;
18033
18034    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18035    crd = crd_start = REG_RD(sc, regs->crd);
18036    init_crd = REG_RD(sc, regs->init_crd);
18037
18038    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18039    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18040    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18041
18042    while ((crd != init_crd) &&
18043           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18044            (init_crd - crd_start))) {
18045        if (cur_cnt--) {
18046            DELAY(FLR_WAIT_INTERVAL);
18047            crd = REG_RD(sc, regs->crd);
18048            crd_freed = REG_RD(sc, regs->crd_freed);
18049        } else {
18050            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18051            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18052            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18053            break;
18054        }
18055    }
18056
18057    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18058          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18059}
18060
18061static void
18062bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18063                       struct pbf_pN_cmd_regs *regs,
18064                       uint32_t               poll_count)
18065{
18066    uint32_t occup, to_free, freed, freed_start;
18067    uint32_t cur_cnt = poll_count;
18068
18069    occup = to_free = REG_RD(sc, regs->lines_occup);
18070    freed = freed_start = REG_RD(sc, regs->lines_freed);
18071
18072    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18073    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18074
18075    while (occup &&
18076           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18077        if (cur_cnt--) {
18078            DELAY(FLR_WAIT_INTERVAL);
18079            occup = REG_RD(sc, regs->lines_occup);
18080            freed = REG_RD(sc, regs->lines_freed);
18081        } else {
18082            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18083            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18084            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18085            break;
18086        }
18087    }
18088
18089    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18090          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18091}
18092
18093static void
18094bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18095{
18096    struct pbf_pN_cmd_regs cmd_regs[] = {
18097        {0, (CHIP_IS_E3B0(sc)) ?
18098            PBF_REG_TQ_OCCUPANCY_Q0 :
18099            PBF_REG_P0_TQ_OCCUPANCY,
18100            (CHIP_IS_E3B0(sc)) ?
18101            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18102            PBF_REG_P0_TQ_LINES_FREED_CNT},
18103        {1, (CHIP_IS_E3B0(sc)) ?
18104            PBF_REG_TQ_OCCUPANCY_Q1 :
18105            PBF_REG_P1_TQ_OCCUPANCY,
18106            (CHIP_IS_E3B0(sc)) ?
18107            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18108            PBF_REG_P1_TQ_LINES_FREED_CNT},
18109        {4, (CHIP_IS_E3B0(sc)) ?
18110            PBF_REG_TQ_OCCUPANCY_LB_Q :
18111            PBF_REG_P4_TQ_OCCUPANCY,
18112            (CHIP_IS_E3B0(sc)) ?
18113            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18114            PBF_REG_P4_TQ_LINES_FREED_CNT}
18115    };
18116
18117    struct pbf_pN_buf_regs buf_regs[] = {
18118        {0, (CHIP_IS_E3B0(sc)) ?
18119            PBF_REG_INIT_CRD_Q0 :
18120            PBF_REG_P0_INIT_CRD ,
18121            (CHIP_IS_E3B0(sc)) ?
18122            PBF_REG_CREDIT_Q0 :
18123            PBF_REG_P0_CREDIT,
18124            (CHIP_IS_E3B0(sc)) ?
18125            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18126            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18127        {1, (CHIP_IS_E3B0(sc)) ?
18128            PBF_REG_INIT_CRD_Q1 :
18129            PBF_REG_P1_INIT_CRD,
18130            (CHIP_IS_E3B0(sc)) ?
18131            PBF_REG_CREDIT_Q1 :
18132            PBF_REG_P1_CREDIT,
18133            (CHIP_IS_E3B0(sc)) ?
18134            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18135            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18136        {4, (CHIP_IS_E3B0(sc)) ?
18137            PBF_REG_INIT_CRD_LB_Q :
18138            PBF_REG_P4_INIT_CRD,
18139            (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_CREDIT_LB_Q :
18141            PBF_REG_P4_CREDIT,
18142            (CHIP_IS_E3B0(sc)) ?
18143            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18144            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18145    };
18146
18147    int i;
18148
18149    /* Verify the command queues are flushed P0, P1, P4 */
18150    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18151        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18152    }
18153
18154    /* Verify the transmission buffers are flushed P0, P1, P4 */
18155    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18156        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18157    }
18158}
18159
18160static void
18161bxe_hw_enable_status(struct bxe_softc *sc)
18162{
18163    uint32_t val;
18164
18165    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18166    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18167
18168    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18169    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18170
18171    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18172    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18173
18174    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18175    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18176
18177    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18178    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18179
18180    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18181    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18182
18183    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18184    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18185
18186    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18187    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18188}
18189
18190static int
18191bxe_pf_flr_clnup(struct bxe_softc *sc)
18192{
18193    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18194
18195    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18196
18197    /* Re-enable PF target read access */
18198    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18199
18200    /* Poll HW usage counters */
18201    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18202    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18203        return (-1);
18204    }
18205
18206    /* Zero the igu 'trailing edge' and 'leading edge' */
18207
18208    /* Send the FW cleanup command */
18209    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18210        return (-1);
18211    }
18212
18213    /* ATC cleanup */
18214
18215    /* Verify TX hw is flushed */
18216    bxe_tx_hw_flushed(sc, poll_cnt);
18217
18218    /* Wait 100ms (not adjusted according to platform) */
18219    DELAY(100000);
18220
18221    /* Verify no pending pci transactions */
18222    if (bxe_is_pcie_pending(sc)) {
18223        BLOGE(sc, "PCIE Transactions still pending\n");
18224    }
18225
18226    /* Debug */
18227    bxe_hw_enable_status(sc);
18228
18229    /*
18230     * Master enable - Due to WB DMAE writes performed before this
18231     * register is re-initialized as part of the regular function init
18232     */
18233    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18234
18235    return (0);
18236}
18237
18238#if 0
18239static void
18240bxe_init_searcher(struct bxe_softc *sc)
18241{
18242    int port = SC_PORT(sc);
18243    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18244    /* T1 hash bits value determines the T1 number of entries */
18245    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18246}
18247#endif
18248
18249static int
18250bxe_init_hw_func(struct bxe_softc *sc)
18251{
18252    int port = SC_PORT(sc);
18253    int func = SC_FUNC(sc);
18254    int init_phase = PHASE_PF0 + func;
18255    struct ecore_ilt *ilt = sc->ilt;
18256    uint16_t cdu_ilt_start;
18257    uint32_t addr, val;
18258    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18259    int i, main_mem_width, rc;
18260
18261    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18262
18263    /* FLR cleanup */
18264    if (!CHIP_IS_E1x(sc)) {
18265        rc = bxe_pf_flr_clnup(sc);
18266        if (rc) {
18267            BLOGE(sc, "FLR cleanup failed!\n");
18268            // XXX bxe_fw_dump(sc);
18269            // XXX bxe_idle_chk(sc);
18270            return (rc);
18271        }
18272    }
18273
18274    /* set MSI reconfigure capability */
18275    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18276        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18277        val = REG_RD(sc, addr);
18278        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18279        REG_WR(sc, addr, val);
18280    }
18281
18282    ecore_init_block(sc, BLOCK_PXP, init_phase);
18283    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18284
18285    ilt = sc->ilt;
18286    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18287
18288#if 0
18289    if (IS_SRIOV(sc)) {
18290        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18291    }
18292    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18293
18294#if (BXE_FIRST_VF_CID > 0)
18295    /*
18296     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18297     * those of the VFs, so start line should be reset
18298     */
18299    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18300#endif
18301#endif
18302
18303    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18304        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18305        ilt->lines[cdu_ilt_start + i].page_mapping =
18306            sc->context[i].vcxt_dma.paddr;
18307        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18308    }
18309    ecore_ilt_init_op(sc, INITOP_SET);
18310
18311#if 0
18312    if (!CONFIGURE_NIC_MODE(sc)) {
18313        bxe_init_searcher(sc);
18314        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18315        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18316    } else
18317#endif
18318    {
18319        /* Set NIC mode */
18320        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18321        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18322    }
18323
18324    if (!CHIP_IS_E1x(sc)) {
18325        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18326
18327        /* Turn on a single ISR mode in IGU if driver is going to use
18328         * INT#x or MSI
18329         */
18330        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18331            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18332        }
18333
18334        /*
18335         * Timers workaround bug: function init part.
18336         * Need to wait 20msec after initializing ILT,
18337         * needed to make sure there are no requests in
18338         * one of the PXP internal queues with "old" ILT addresses
18339         */
18340        DELAY(20000);
18341
18342        /*
18343         * Master enable - Due to WB DMAE writes performed before this
18344         * register is re-initialized as part of the regular function
18345         * init
18346         */
18347        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18348        /* Enable the function in IGU */
18349        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18350    }
18351
18352    sc->dmae_ready = 1;
18353
18354    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18355
18356    if (!CHIP_IS_E1x(sc))
18357        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18358
18359    ecore_init_block(sc, BLOCK_ATC, init_phase);
18360    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18361    ecore_init_block(sc, BLOCK_NIG, init_phase);
18362    ecore_init_block(sc, BLOCK_SRC, init_phase);
18363    ecore_init_block(sc, BLOCK_MISC, init_phase);
18364    ecore_init_block(sc, BLOCK_TCM, init_phase);
18365    ecore_init_block(sc, BLOCK_UCM, init_phase);
18366    ecore_init_block(sc, BLOCK_CCM, init_phase);
18367    ecore_init_block(sc, BLOCK_XCM, init_phase);
18368    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18369    ecore_init_block(sc, BLOCK_USEM, init_phase);
18370    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18371    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18372
18373    if (!CHIP_IS_E1x(sc))
18374        REG_WR(sc, QM_REG_PF_EN, 1);
18375
18376    if (!CHIP_IS_E1x(sc)) {
18377        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18378        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18379        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18380        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18381    }
18382    ecore_init_block(sc, BLOCK_QM, init_phase);
18383
18384    ecore_init_block(sc, BLOCK_TM, init_phase);
18385    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18386
18387    bxe_iov_init_dq(sc);
18388
18389    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18390    ecore_init_block(sc, BLOCK_PRS, init_phase);
18391    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18392    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18393    ecore_init_block(sc, BLOCK_USDM, init_phase);
18394    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18395    ecore_init_block(sc, BLOCK_UPB, init_phase);
18396    ecore_init_block(sc, BLOCK_XPB, init_phase);
18397    ecore_init_block(sc, BLOCK_PBF, init_phase);
18398    if (!CHIP_IS_E1x(sc))
18399        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18400
18401    ecore_init_block(sc, BLOCK_CDU, init_phase);
18402
18403    ecore_init_block(sc, BLOCK_CFC, init_phase);
18404
18405    if (!CHIP_IS_E1x(sc))
18406        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18407
18408    if (IS_MF(sc)) {
18409        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18410        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18411    }
18412
18413    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18414
18415    /* HC init per function */
18416    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18417        if (CHIP_IS_E1H(sc)) {
18418            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18419
18420            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18421            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18422        }
18423        ecore_init_block(sc, BLOCK_HC, init_phase);
18424
18425    } else {
18426        int num_segs, sb_idx, prod_offset;
18427
18428        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18429
18430        if (!CHIP_IS_E1x(sc)) {
18431            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18432            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18433        }
18434
18435        ecore_init_block(sc, BLOCK_IGU, init_phase);
18436
18437        if (!CHIP_IS_E1x(sc)) {
18438            int dsb_idx = 0;
18439            /**
18440             * Producer memory:
18441             * E2 mode: address 0-135 match to the mapping memory;
18442             * 136 - PF0 default prod; 137 - PF1 default prod;
18443             * 138 - PF2 default prod; 139 - PF3 default prod;
18444             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18445             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18446             * 144-147 reserved.
18447             *
18448             * E1.5 mode - In backward compatible mode;
18449             * for non default SB; each even line in the memory
18450             * holds the U producer and each odd line hold
18451             * the C producer. The first 128 producers are for
18452             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18453             * producers are for the DSB for each PF.
18454             * Each PF has five segments: (the order inside each
18455             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18456             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18457             * 144-147 attn prods;
18458             */
18459            /* non-default-status-blocks */
18460            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18461                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18462            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18463                prod_offset = (sc->igu_base_sb + sb_idx) *
18464                    num_segs;
18465
18466                for (i = 0; i < num_segs; i++) {
18467                    addr = IGU_REG_PROD_CONS_MEMORY +
18468                            (prod_offset + i) * 4;
18469                    REG_WR(sc, addr, 0);
18470                }
18471                /* send consumer update with value 0 */
18472                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18473                           USTORM_ID, 0, IGU_INT_NOP, 1);
18474                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18475            }
18476
18477            /* default-status-blocks */
18478            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18479                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18480
18481            if (CHIP_IS_MODE_4_PORT(sc))
18482                dsb_idx = SC_FUNC(sc);
18483            else
18484                dsb_idx = SC_VN(sc);
18485
18486            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18487                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18488                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18489
18490            /*
18491             * igu prods come in chunks of E1HVN_MAX (4) -
18492             * does not matters what is the current chip mode
18493             */
18494            for (i = 0; i < (num_segs * E1HVN_MAX);
18495                 i += E1HVN_MAX) {
18496                addr = IGU_REG_PROD_CONS_MEMORY +
18497                            (prod_offset + i)*4;
18498                REG_WR(sc, addr, 0);
18499            }
18500            /* send consumer update with 0 */
18501            if (CHIP_INT_MODE_IS_BC(sc)) {
18502                bxe_ack_sb(sc, sc->igu_dsb_id,
18503                           USTORM_ID, 0, IGU_INT_NOP, 1);
18504                bxe_ack_sb(sc, sc->igu_dsb_id,
18505                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18506                bxe_ack_sb(sc, sc->igu_dsb_id,
18507                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18508                bxe_ack_sb(sc, sc->igu_dsb_id,
18509                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18510                bxe_ack_sb(sc, sc->igu_dsb_id,
18511                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18512            } else {
18513                bxe_ack_sb(sc, sc->igu_dsb_id,
18514                           USTORM_ID, 0, IGU_INT_NOP, 1);
18515                bxe_ack_sb(sc, sc->igu_dsb_id,
18516                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18517            }
18518            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18519
18520            /* !!! these should become driver const once
18521               rf-tool supports split-68 const */
18522            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18523            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18524            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18525            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18526            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18527            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18528        }
18529    }
18530
18531    /* Reset PCIE errors for debug */
18532    REG_WR(sc, 0x2114, 0xffffffff);
18533    REG_WR(sc, 0x2120, 0xffffffff);
18534
18535    if (CHIP_IS_E1x(sc)) {
18536        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18537        main_mem_base = HC_REG_MAIN_MEMORY +
18538                SC_PORT(sc) * (main_mem_size * 4);
18539        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18540        main_mem_width = 8;
18541
18542        val = REG_RD(sc, main_mem_prty_clr);
18543        if (val) {
18544            BLOGD(sc, DBG_LOAD,
18545                  "Parity errors in HC block during function init (0x%x)!\n",
18546                  val);
18547        }
18548
18549        /* Clear "false" parity errors in MSI-X table */
18550        for (i = main_mem_base;
18551             i < main_mem_base + main_mem_size * 4;
18552             i += main_mem_width) {
18553            bxe_read_dmae(sc, i, main_mem_width / 4);
18554            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18555                           i, main_mem_width / 4);
18556        }
18557        /* Clear HC parity attention */
18558        REG_RD(sc, main_mem_prty_clr);
18559    }
18560
18561#if 1
18562    /* Enable STORMs SP logging */
18563    REG_WR8(sc, BAR_USTRORM_INTMEM +
18564           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18565    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18566           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18567    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18568           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18569    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18570           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18571#endif
18572
18573    elink_phy_probe(&sc->link_params);
18574
18575    return (0);
18576}
18577
18578static void
18579bxe_link_reset(struct bxe_softc *sc)
18580{
18581    if (!BXE_NOMCP(sc)) {
18582        BXE_PHY_LOCK(sc);
18583        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18584        BXE_PHY_UNLOCK(sc);
18585    } else {
18586        if (!CHIP_REV_IS_SLOW(sc)) {
18587            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18588        }
18589    }
18590}
18591
18592static void
18593bxe_reset_port(struct bxe_softc *sc)
18594{
18595    int port = SC_PORT(sc);
18596    uint32_t val;
18597
18598    /* reset physical Link */
18599    bxe_link_reset(sc);
18600
18601    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18602
18603    /* Do not rcv packets to BRB */
18604    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18605    /* Do not direct rcv packets that are not for MCP to the BRB */
18606    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18607               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18608
18609    /* Configure AEU */
18610    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18611
18612    DELAY(100000);
18613
18614    /* Check for BRB port occupancy */
18615    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18616    if (val) {
18617        BLOGD(sc, DBG_LOAD,
18618              "BRB1 is not empty, %d blocks are occupied\n", val);
18619    }
18620
18621    /* TODO: Close Doorbell port? */
18622}
18623
18624static void
18625bxe_ilt_wr(struct bxe_softc *sc,
18626           uint32_t         index,
18627           bus_addr_t       addr)
18628{
18629    int reg;
18630    uint32_t wb_write[2];
18631
18632    if (CHIP_IS_E1(sc)) {
18633        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18634    } else {
18635        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18636    }
18637
18638    wb_write[0] = ONCHIP_ADDR1(addr);
18639    wb_write[1] = ONCHIP_ADDR2(addr);
18640    REG_WR_DMAE(sc, reg, wb_write, 2);
18641}
18642
18643static void
18644bxe_clear_func_ilt(struct bxe_softc *sc,
18645                   uint32_t         func)
18646{
18647    uint32_t i, base = FUNC_ILT_BASE(func);
18648    for (i = base; i < base + ILT_PER_FUNC; i++) {
18649        bxe_ilt_wr(sc, i, 0);
18650    }
18651}
18652
18653static void
18654bxe_reset_func(struct bxe_softc *sc)
18655{
18656    struct bxe_fastpath *fp;
18657    int port = SC_PORT(sc);
18658    int func = SC_FUNC(sc);
18659    int i;
18660
18661    /* Disable the function in the FW */
18662    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18663    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18664    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18665    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18666
18667    /* FP SBs */
18668    FOR_EACH_ETH_QUEUE(sc, i) {
18669        fp = &sc->fp[i];
18670        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18671                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18672                SB_DISABLED);
18673    }
18674
18675#if 0
18676    if (CNIC_LOADED(sc)) {
18677        /* CNIC SB */
18678        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18679                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18680                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18681    }
18682#endif
18683
18684    /* SP SB */
18685    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18686            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18687            SB_DISABLED);
18688
18689    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18690        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18691    }
18692
18693    /* Configure IGU */
18694    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18695        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18696        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18697    } else {
18698        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18699        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18700    }
18701
18702    if (CNIC_LOADED(sc)) {
18703        /* Disable Timer scan */
18704        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18705        /*
18706         * Wait for at least 10ms and up to 2 second for the timers
18707         * scan to complete
18708         */
18709        for (i = 0; i < 200; i++) {
18710            DELAY(10000);
18711            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18712                break;
18713        }
18714    }
18715
18716    /* Clear ILT */
18717    bxe_clear_func_ilt(sc, func);
18718
18719    /*
18720     * Timers workaround bug for E2: if this is vnic-3,
18721     * we need to set the entire ilt range for this timers.
18722     */
18723    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18724        struct ilt_client_info ilt_cli;
18725        /* use dummy TM client */
18726        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18727        ilt_cli.start = 0;
18728        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18729        ilt_cli.client_num = ILT_CLIENT_TM;
18730
18731        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18732    }
18733
18734    /* this assumes that reset_port() called before reset_func()*/
18735    if (!CHIP_IS_E1x(sc)) {
18736        bxe_pf_disable(sc);
18737    }
18738
18739    sc->dmae_ready = 0;
18740}
18741
18742static int
18743bxe_gunzip_init(struct bxe_softc *sc)
18744{
18745    return (0);
18746}
18747
18748static void
18749bxe_gunzip_end(struct bxe_softc *sc)
18750{
18751    return;
18752}
18753
18754static int
18755bxe_init_firmware(struct bxe_softc *sc)
18756{
18757    if (CHIP_IS_E1(sc)) {
18758        ecore_init_e1_firmware(sc);
18759        sc->iro_array = e1_iro_arr;
18760    } else if (CHIP_IS_E1H(sc)) {
18761        ecore_init_e1h_firmware(sc);
18762        sc->iro_array = e1h_iro_arr;
18763    } else if (!CHIP_IS_E1x(sc)) {
18764        ecore_init_e2_firmware(sc);
18765        sc->iro_array = e2_iro_arr;
18766    } else {
18767        BLOGE(sc, "Unsupported chip revision\n");
18768        return (-1);
18769    }
18770
18771    return (0);
18772}
18773
18774static void
18775bxe_release_firmware(struct bxe_softc *sc)
18776{
18777    /* Do nothing */
18778    return;
18779}
18780
18781static int
18782ecore_gunzip(struct bxe_softc *sc,
18783             const uint8_t    *zbuf,
18784             int              len)
18785{
18786    /* XXX : Implement... */
18787    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18788    return (FALSE);
18789}
18790
18791static void
18792ecore_reg_wr_ind(struct bxe_softc *sc,
18793                 uint32_t         addr,
18794                 uint32_t         val)
18795{
18796    bxe_reg_wr_ind(sc, addr, val);
18797}
18798
18799static void
18800ecore_write_dmae_phys_len(struct bxe_softc *sc,
18801                          bus_addr_t       phys_addr,
18802                          uint32_t         addr,
18803                          uint32_t         len)
18804{
18805    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18806}
18807
18808void
18809ecore_storm_memset_struct(struct bxe_softc *sc,
18810                          uint32_t         addr,
18811                          size_t           size,
18812                          uint32_t         *data)
18813{
18814    uint8_t i;
18815    for (i = 0; i < size/4; i++) {
18816        REG_WR(sc, addr + (i * 4), data[i]);
18817    }
18818}
18819
18820