bxe.c revision 267992
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 267992 2014-06-28 03:56:17Z hselasky $");
29
30#define BXE_DRIVER_VERSION "1.78.78"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301             &bxe_debug, 0, "Debug logging mode");
302
303/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304static int bxe_interrupt_mode = INTR_MODE_MSIX;
305SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307
308/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309static int bxe_queue_count = 4;
310SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311           &bxe_queue_count, 0, "Multi-Queue queue count");
312
313/* max number of buffers per queue (default RX_BD_USABLE) */
314static int bxe_max_rx_bufs = 0;
315SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317
318/* Host interrupt coalescing RX tick timer (usecs) */
319static int bxe_hc_rx_ticks = 25;
320SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322
323/* Host interrupt coalescing TX tick timer (usecs) */
324static int bxe_hc_tx_ticks = 50;
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327
328/* Maximum number of Rx packets to process at a time */
329static int bxe_rx_budget = 0xffffffff;
330SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331           &bxe_rx_budget, 0, "Rx processing budget");
332
333/* Maximum LRO aggregation size */
334static int bxe_max_aggregation_size = 0;
335SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336           &bxe_max_aggregation_size, 0, "max aggregation size");
337
338/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339static int bxe_mrrs = -1;
340SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341           &bxe_mrrs, 0, "PCIe maximum read request size");
342
343/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344static int bxe_autogreeen = 0;
345SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346           &bxe_autogreeen, 0, "AutoGrEEEn support");
347
348/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349static int bxe_udp_rss = 0;
350SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351           &bxe_udp_rss, 0, "UDP RSS support");
352
353
354#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355
356#define STATS_OFFSET32(stat_name)                   \
357    (offsetof(struct bxe_eth_stats, stat_name) / 4)
358
359#define Q_STATS_OFFSET32(stat_name)                   \
360    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361
362static const struct {
363    uint32_t offset;
364    uint32_t size;
365    uint32_t flags;
366#define STATS_FLAGS_PORT  1
367#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369    char string[STAT_NAME_LEN];
370} bxe_eth_stats_arr[] = {
371    { STATS_OFFSET32(total_bytes_received_hi),
372                8, STATS_FLAGS_BOTH, "rx_bytes" },
373    { STATS_OFFSET32(error_bytes_received_hi),
374                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375    { STATS_OFFSET32(total_unicast_packets_received_hi),
376                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377    { STATS_OFFSET32(total_multicast_packets_received_hi),
378                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379    { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                8, STATS_FLAGS_PORT, "rx_crc_errors" },
383    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                8, STATS_FLAGS_PORT, "rx_align_errors" },
385    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                8, STATS_FLAGS_PORT, "rx_fragments" },
391    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                8, STATS_FLAGS_PORT, "rx_jabbers" },
393    { STATS_OFFSET32(no_buff_discard_hi),
394                8, STATS_FLAGS_BOTH, "rx_discards" },
395    { STATS_OFFSET32(mac_filter_discard),
396                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397    { STATS_OFFSET32(mf_tag_discard),
398                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399    { STATS_OFFSET32(pfc_frames_received_hi),
400                8, STATS_FLAGS_PORT, "pfc_frames_received" },
401    { STATS_OFFSET32(pfc_frames_sent_hi),
402                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403    { STATS_OFFSET32(brb_drop_hi),
404                8, STATS_FLAGS_PORT, "rx_brb_discard" },
405    { STATS_OFFSET32(brb_truncate_hi),
406                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407    { STATS_OFFSET32(pause_frames_received_hi),
408                8, STATS_FLAGS_PORT, "rx_pause_frames" },
409    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411    { STATS_OFFSET32(nig_timer_max),
412                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413    { STATS_OFFSET32(total_bytes_transmitted_hi),
414                8, STATS_FLAGS_BOTH, "tx_bytes" },
415    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                8, STATS_FLAGS_PORT, "tx_error_bytes" },
417    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                8, STATS_FLAGS_PORT, "tx_mac_errors" },
425    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                8, STATS_FLAGS_PORT, "tx_single_collisions" },
429    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                8, STATS_FLAGS_PORT, "tx_deferred" },
433    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                8, STATS_FLAGS_PORT, "tx_late_collisions" },
437    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                8, STATS_FLAGS_PORT, "tx_total_collisions" },
439    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453    { STATS_OFFSET32(pause_frames_sent_hi),
454                8, STATS_FLAGS_PORT, "tx_pause_frames" },
455    { STATS_OFFSET32(total_tpa_aggregations_hi),
456                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459    { STATS_OFFSET32(total_tpa_bytes_hi),
460                8, STATS_FLAGS_FUNC, "tpa_bytes"},
461#if 0
462    { STATS_OFFSET32(recoverable_error),
463                4, STATS_FLAGS_FUNC, "recoverable_errors" },
464    { STATS_OFFSET32(unrecoverable_error),
465                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466#endif
467    { STATS_OFFSET32(eee_tx_lpi),
468                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469    { STATS_OFFSET32(rx_calls),
470                4, STATS_FLAGS_FUNC, "rx_calls"},
471    { STATS_OFFSET32(rx_pkts),
472                4, STATS_FLAGS_FUNC, "rx_pkts"},
473    { STATS_OFFSET32(rx_tpa_pkts),
474                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475    { STATS_OFFSET32(rx_soft_errors),
476                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
477    { STATS_OFFSET32(rx_hw_csum_errors),
478                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
479    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
480                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
481    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
482                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
483    { STATS_OFFSET32(rx_budget_reached),
484                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
485    { STATS_OFFSET32(tx_pkts),
486                4, STATS_FLAGS_FUNC, "tx_pkts"},
487    { STATS_OFFSET32(tx_soft_errors),
488                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
489    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
490                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
491    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
492                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
493    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
494                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
495    { STATS_OFFSET32(tx_ofld_frames_lso),
496                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
497    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
498                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
499    { STATS_OFFSET32(tx_encap_failures),
500                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
501    { STATS_OFFSET32(tx_hw_queue_full),
502                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
503    { STATS_OFFSET32(tx_hw_max_queue_depth),
504                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
505    { STATS_OFFSET32(tx_dma_mapping_failure),
506                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
507    { STATS_OFFSET32(tx_max_drbr_queue_depth),
508                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
509    { STATS_OFFSET32(tx_window_violation_std),
510                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
511    { STATS_OFFSET32(tx_window_violation_tso),
512                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
513#if 0
514    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
515                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
516    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
517                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
518#endif
519    { STATS_OFFSET32(tx_chain_lost_mbuf),
520                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
521    { STATS_OFFSET32(tx_frames_deferred),
522                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
523    { STATS_OFFSET32(tx_queue_xoff),
524                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
525    { STATS_OFFSET32(mbuf_defrag_attempts),
526                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
527    { STATS_OFFSET32(mbuf_defrag_failures),
528                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
529    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
530                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
531    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
532                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
533    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
534                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
535    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
536                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
537    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
538                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
539    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
540                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
541    { STATS_OFFSET32(mbuf_alloc_tx),
542                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
543    { STATS_OFFSET32(mbuf_alloc_rx),
544                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
545    { STATS_OFFSET32(mbuf_alloc_sge),
546                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
547    { STATS_OFFSET32(mbuf_alloc_tpa),
548                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
549};
550
551static const struct {
552    uint32_t offset;
553    uint32_t size;
554    char string[STAT_NAME_LEN];
555} bxe_eth_q_stats_arr[] = {
556    { Q_STATS_OFFSET32(total_bytes_received_hi),
557                8, "rx_bytes" },
558    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
559                8, "rx_ucast_packets" },
560    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
561                8, "rx_mcast_packets" },
562    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
563                8, "rx_bcast_packets" },
564    { Q_STATS_OFFSET32(no_buff_discard_hi),
565                8, "rx_discards" },
566    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
567                8, "tx_bytes" },
568    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
569                8, "tx_ucast_packets" },
570    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
571                8, "tx_mcast_packets" },
572    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
573                8, "tx_bcast_packets" },
574    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
575                8, "tpa_aggregations" },
576    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
577                8, "tpa_aggregated_frames"},
578    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
579                8, "tpa_bytes"},
580    { Q_STATS_OFFSET32(rx_calls),
581                4, "rx_calls"},
582    { Q_STATS_OFFSET32(rx_pkts),
583                4, "rx_pkts"},
584    { Q_STATS_OFFSET32(rx_tpa_pkts),
585                4, "rx_tpa_pkts"},
586    { Q_STATS_OFFSET32(rx_soft_errors),
587                4, "rx_soft_errors"},
588    { Q_STATS_OFFSET32(rx_hw_csum_errors),
589                4, "rx_hw_csum_errors"},
590    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
591                4, "rx_ofld_frames_csum_ip"},
592    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
593                4, "rx_ofld_frames_csum_tcp_udp"},
594    { Q_STATS_OFFSET32(rx_budget_reached),
595                4, "rx_budget_reached"},
596    { Q_STATS_OFFSET32(tx_pkts),
597                4, "tx_pkts"},
598    { Q_STATS_OFFSET32(tx_soft_errors),
599                4, "tx_soft_errors"},
600    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
601                4, "tx_ofld_frames_csum_ip"},
602    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
603                4, "tx_ofld_frames_csum_tcp"},
604    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
605                4, "tx_ofld_frames_csum_udp"},
606    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
607                4, "tx_ofld_frames_lso"},
608    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
609                4, "tx_ofld_frames_lso_hdr_splits"},
610    { Q_STATS_OFFSET32(tx_encap_failures),
611                4, "tx_encap_failures"},
612    { Q_STATS_OFFSET32(tx_hw_queue_full),
613                4, "tx_hw_queue_full"},
614    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
615                4, "tx_hw_max_queue_depth"},
616    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
617                4, "tx_dma_mapping_failure"},
618    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
619                4, "tx_max_drbr_queue_depth"},
620    { Q_STATS_OFFSET32(tx_window_violation_std),
621                4, "tx_window_violation_std"},
622    { Q_STATS_OFFSET32(tx_window_violation_tso),
623                4, "tx_window_violation_tso"},
624#if 0
625    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
626                4, "tx_unsupported_tso_request_ipv6"},
627    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
628                4, "tx_unsupported_tso_request_not_tcp"},
629#endif
630    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
631                4, "tx_chain_lost_mbuf"},
632    { Q_STATS_OFFSET32(tx_frames_deferred),
633                4, "tx_frames_deferred"},
634    { Q_STATS_OFFSET32(tx_queue_xoff),
635                4, "tx_queue_xoff"},
636    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
637                4, "mbuf_defrag_attempts"},
638    { Q_STATS_OFFSET32(mbuf_defrag_failures),
639                4, "mbuf_defrag_failures"},
640    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
641                4, "mbuf_rx_bd_alloc_failed"},
642    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
643                4, "mbuf_rx_bd_mapping_failed"},
644    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
645                4, "mbuf_rx_tpa_alloc_failed"},
646    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
647                4, "mbuf_rx_tpa_mapping_failed"},
648    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
649                4, "mbuf_rx_sge_alloc_failed"},
650    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
651                4, "mbuf_rx_sge_mapping_failed"},
652    { Q_STATS_OFFSET32(mbuf_alloc_tx),
653                4, "mbuf_alloc_tx"},
654    { Q_STATS_OFFSET32(mbuf_alloc_rx),
655                4, "mbuf_alloc_rx"},
656    { Q_STATS_OFFSET32(mbuf_alloc_sge),
657                4, "mbuf_alloc_sge"},
658    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
659                4, "mbuf_alloc_tpa"}
660};
661
662#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
663#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
664
665
666static void    bxe_cmng_fns_init(struct bxe_softc *sc,
667                                 uint8_t          read_cfg,
668                                 uint8_t          cmng_type);
669static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
670static void    storm_memset_cmng(struct bxe_softc *sc,
671                                 struct cmng_init *cmng,
672                                 uint8_t          port);
673static void    bxe_set_reset_global(struct bxe_softc *sc);
674static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
675static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
676                                 int              engine);
677static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
678static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
679                                   uint8_t          *global,
680                                   uint8_t          print);
681static void    bxe_int_disable(struct bxe_softc *sc);
682static int     bxe_release_leader_lock(struct bxe_softc *sc);
683static void    bxe_pf_disable(struct bxe_softc *sc);
684static void    bxe_free_fp_buffers(struct bxe_softc *sc);
685static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
686                                      struct bxe_fastpath *fp,
687                                      uint16_t            rx_bd_prod,
688                                      uint16_t            rx_cq_prod,
689                                      uint16_t            rx_sge_prod);
690static void    bxe_link_report_locked(struct bxe_softc *sc);
691static void    bxe_link_report(struct bxe_softc *sc);
692static void    bxe_link_status_update(struct bxe_softc *sc);
693static void    bxe_periodic_callout_func(void *xsc);
694static void    bxe_periodic_start(struct bxe_softc *sc);
695static void    bxe_periodic_stop(struct bxe_softc *sc);
696static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
697                                    uint16_t prev_index,
698                                    uint16_t index);
699static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
700                                     int                 queue);
701static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
702                                     uint16_t            index);
703static uint8_t bxe_txeof(struct bxe_softc *sc,
704                         struct bxe_fastpath *fp);
705static void    bxe_task_fp(struct bxe_fastpath *fp);
706static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
707                                     struct mbuf      *m,
708                                     uint8_t          contents);
709static int     bxe_alloc_mem(struct bxe_softc *sc);
710static void    bxe_free_mem(struct bxe_softc *sc);
711static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
712static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
713static int     bxe_interrupt_attach(struct bxe_softc *sc);
714static void    bxe_interrupt_detach(struct bxe_softc *sc);
715static void    bxe_set_rx_mode(struct bxe_softc *sc);
716static int     bxe_init_locked(struct bxe_softc *sc);
717static int     bxe_stop_locked(struct bxe_softc *sc);
718static __noinline int bxe_nic_load(struct bxe_softc *sc,
719                                   int              load_mode);
720static __noinline int bxe_nic_unload(struct bxe_softc *sc,
721                                     uint32_t         unload_mode,
722                                     uint8_t          keep_link);
723
724static void bxe_handle_sp_tq(void *context, int pending);
725static void bxe_handle_rx_mode_tq(void *context, int pending);
726static void bxe_handle_fp_tq(void *context, int pending);
727
728
729/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
730uint32_t
731calc_crc32(uint8_t  *crc32_packet,
732           uint32_t crc32_length,
733           uint32_t crc32_seed,
734           uint8_t  complement)
735{
736   uint32_t byte         = 0;
737   uint32_t bit          = 0;
738   uint8_t  msb          = 0;
739   uint32_t temp         = 0;
740   uint32_t shft         = 0;
741   uint8_t  current_byte = 0;
742   uint32_t crc32_result = crc32_seed;
743   const uint32_t CRC32_POLY = 0x1edc6f41;
744
745   if ((crc32_packet == NULL) ||
746       (crc32_length == 0) ||
747       ((crc32_length % 8) != 0))
748    {
749        return (crc32_result);
750    }
751
752    for (byte = 0; byte < crc32_length; byte = byte + 1)
753    {
754        current_byte = crc32_packet[byte];
755        for (bit = 0; bit < 8; bit = bit + 1)
756        {
757            /* msb = crc32_result[31]; */
758            msb = (uint8_t)(crc32_result >> 31);
759
760            crc32_result = crc32_result << 1;
761
762            /* it (msb != current_byte[bit]) */
763            if (msb != (0x1 & (current_byte >> bit)))
764            {
765                crc32_result = crc32_result ^ CRC32_POLY;
766                /* crc32_result[0] = 1 */
767                crc32_result |= 1;
768            }
769        }
770    }
771
772    /* Last step is to:
773     * 1. "mirror" every bit
774     * 2. swap the 4 bytes
775     * 3. complement each bit
776     */
777
778    /* Mirror */
779    temp = crc32_result;
780    shft = sizeof(crc32_result) * 8 - 1;
781
782    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
783    {
784        temp <<= 1;
785        temp |= crc32_result & 1;
786        shft-- ;
787    }
788
789    /* temp[31-bit] = crc32_result[bit] */
790    temp <<= shft;
791
792    /* Swap */
793    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
794    {
795        uint32_t t0, t1, t2, t3;
796        t0 = (0x000000ff & (temp >> 24));
797        t1 = (0x0000ff00 & (temp >> 8));
798        t2 = (0x00ff0000 & (temp << 8));
799        t3 = (0xff000000 & (temp << 24));
800        crc32_result = t0 | t1 | t2 | t3;
801    }
802
803    /* Complement */
804    if (complement)
805    {
806        crc32_result = ~crc32_result;
807    }
808
809    return (crc32_result);
810}
811
812int
813bxe_test_bit(int                    nr,
814             volatile unsigned long *addr)
815{
816    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
817}
818
819void
820bxe_set_bit(unsigned int           nr,
821            volatile unsigned long *addr)
822{
823    atomic_set_acq_long(addr, (1 << nr));
824}
825
826void
827bxe_clear_bit(int                    nr,
828              volatile unsigned long *addr)
829{
830    atomic_clear_acq_long(addr, (1 << nr));
831}
832
833int
834bxe_test_and_set_bit(int                    nr,
835                       volatile unsigned long *addr)
836{
837    unsigned long x;
838    nr = (1 << nr);
839    do {
840        x = *addr;
841    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
842    // if (x & nr) bit_was_set; else bit_was_not_set;
843    return (x & nr);
844}
845
846int
847bxe_test_and_clear_bit(int                    nr,
848                       volatile unsigned long *addr)
849{
850    unsigned long x;
851    nr = (1 << nr);
852    do {
853        x = *addr;
854    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
855    // if (x & nr) bit_was_set; else bit_was_not_set;
856    return (x & nr);
857}
858
859int
860bxe_cmpxchg(volatile int *addr,
861            int          old,
862            int          new)
863{
864    int x;
865    do {
866        x = *addr;
867    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
868    return (x);
869}
870
871/*
872 * Get DMA memory from the OS.
873 *
874 * Validates that the OS has provided DMA buffers in response to a
875 * bus_dmamap_load call and saves the physical address of those buffers.
876 * When the callback is used the OS will return 0 for the mapping function
877 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
878 * failures back to the caller.
879 *
880 * Returns:
881 *   Nothing.
882 */
883static void
884bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
885{
886    struct bxe_dma *dma = arg;
887
888    if (error) {
889        dma->paddr = 0;
890        dma->nseg  = 0;
891        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
892    } else {
893        dma->paddr = segs->ds_addr;
894        dma->nseg  = nseg;
895#if 0
896        BLOGD(dma->sc, DBG_LOAD,
897              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
898              dma->msg, dma->vaddr, (void *)dma->paddr,
899              dma->nseg, dma->size);
900#endif
901    }
902}
903
904/*
905 * Allocate a block of memory and map it for DMA. No partial completions
906 * allowed and release any resources acquired if we can't acquire all
907 * resources.
908 *
909 * Returns:
910 *   0 = Success, !0 = Failure
911 */
912int
913bxe_dma_alloc(struct bxe_softc *sc,
914              bus_size_t       size,
915              struct bxe_dma   *dma,
916              const char       *msg)
917{
918    int rc;
919
920    if (dma->size > 0) {
921        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
922              (unsigned long)dma->size);
923        return (1);
924    }
925
926    memset(dma, 0, sizeof(*dma)); /* sanity */
927    dma->sc   = sc;
928    dma->size = size;
929    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
930
931    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
932                            BCM_PAGE_SIZE,      /* alignment */
933                            0,                  /* boundary limit */
934                            BUS_SPACE_MAXADDR,  /* restricted low */
935                            BUS_SPACE_MAXADDR,  /* restricted hi */
936                            NULL,               /* addr filter() */
937                            NULL,               /* addr filter() arg */
938                            size,               /* max map size */
939                            1,                  /* num discontinuous */
940                            size,               /* max seg size */
941                            BUS_DMA_ALLOCNOW,   /* flags */
942                            NULL,               /* lock() */
943                            NULL,               /* lock() arg */
944                            &dma->tag);         /* returned dma tag */
945    if (rc != 0) {
946        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
947        memset(dma, 0, sizeof(*dma));
948        return (1);
949    }
950
951    rc = bus_dmamem_alloc(dma->tag,
952                          (void **)&dma->vaddr,
953                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
954                          &dma->map);
955    if (rc != 0) {
956        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
957        bus_dma_tag_destroy(dma->tag);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    rc = bus_dmamap_load(dma->tag,
963                         dma->map,
964                         dma->vaddr,
965                         size,
966                         bxe_dma_map_addr, /* BLOGD in here */
967                         dma,
968                         BUS_DMA_NOWAIT);
969    if (rc != 0) {
970        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
971        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
972        bus_dma_tag_destroy(dma->tag);
973        memset(dma, 0, sizeof(*dma));
974        return (1);
975    }
976
977    return (0);
978}
979
980void
981bxe_dma_free(struct bxe_softc *sc,
982             struct bxe_dma   *dma)
983{
984    if (dma->size > 0) {
985#if 0
986        BLOGD(sc, DBG_LOAD,
987              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
988              dma->msg, dma->vaddr, (void *)dma->paddr,
989              dma->nseg, dma->size);
990#endif
991
992        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
993
994        bus_dmamap_sync(dma->tag, dma->map,
995                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
996        bus_dmamap_unload(dma->tag, dma->map);
997        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
998        bus_dma_tag_destroy(dma->tag);
999    }
1000
1001    memset(dma, 0, sizeof(*dma));
1002}
1003
1004/*
1005 * These indirect read and write routines are only during init.
1006 * The locking is handled by the MCP.
1007 */
1008
1009void
1010bxe_reg_wr_ind(struct bxe_softc *sc,
1011               uint32_t         addr,
1012               uint32_t         val)
1013{
1014    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1015    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1016    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1017}
1018
1019uint32_t
1020bxe_reg_rd_ind(struct bxe_softc *sc,
1021               uint32_t         addr)
1022{
1023    uint32_t val;
1024
1025    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1027    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028
1029    return (val);
1030}
1031
1032#if 0
1033void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1034{
1035    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1036
1037    switch (dmae->opcode & DMAE_COMMAND_DST) {
1038    case DMAE_CMD_DST_PCI:
1039        if (src_type == DMAE_CMD_SRC_PCI)
1040            DP(msglvl, "DMAE: opcode 0x%08x\n"
1041               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1042               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1043               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1044               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1045               dmae->comp_addr_hi, dmae->comp_addr_lo,
1046               dmae->comp_val);
1047        else
1048            DP(msglvl, "DMAE: opcode 0x%08x\n"
1049               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1050               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1051               dmae->opcode, dmae->src_addr_lo >> 2,
1052               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1053               dmae->comp_addr_hi, dmae->comp_addr_lo,
1054               dmae->comp_val);
1055        break;
1056    case DMAE_CMD_DST_GRC:
1057        if (src_type == DMAE_CMD_SRC_PCI)
1058            DP(msglvl, "DMAE: opcode 0x%08x\n"
1059               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1060               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062               dmae->len, dmae->dst_addr_lo >> 2,
1063               dmae->comp_addr_hi, dmae->comp_addr_lo,
1064               dmae->comp_val);
1065        else
1066            DP(msglvl, "DMAE: opcode 0x%08x\n"
1067               "src [%08x], len [%d*4], dst [%08x]\n"
1068               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069               dmae->opcode, dmae->src_addr_lo >> 2,
1070               dmae->len, dmae->dst_addr_lo >> 2,
1071               dmae->comp_addr_hi, dmae->comp_addr_lo,
1072               dmae->comp_val);
1073        break;
1074    default:
1075        if (src_type == DMAE_CMD_SRC_PCI)
1076            DP(msglvl, "DMAE: opcode 0x%08x\n"
1077               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1078               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1079               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1081               dmae->comp_val);
1082        else
1083            DP(msglvl, "DMAE: opcode 0x%08x\n"
1084               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1085               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1086               dmae->opcode, dmae->src_addr_lo >> 2,
1087               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1088               dmae->comp_val);
1089        break;
1090    }
1091
1092}
1093#endif
1094
1095static int
1096bxe_acquire_hw_lock(struct bxe_softc *sc,
1097                    uint32_t         resource)
1098{
1099    uint32_t lock_status;
1100    uint32_t resource_bit = (1 << resource);
1101    int func = SC_FUNC(sc);
1102    uint32_t hw_lock_control_reg;
1103    int cnt;
1104
1105    /* validate the resource is within range */
1106    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1107        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1108        return (-1);
1109    }
1110
1111    if (func <= 5) {
1112        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1113    } else {
1114        hw_lock_control_reg =
1115                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1116    }
1117
1118    /* validate the resource is not already taken */
1119    lock_status = REG_RD(sc, hw_lock_control_reg);
1120    if (lock_status & resource_bit) {
1121        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1122              lock_status, resource_bit);
1123        return (-1);
1124    }
1125
1126    /* try every 5ms for 5 seconds */
1127    for (cnt = 0; cnt < 1000; cnt++) {
1128        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1129        lock_status = REG_RD(sc, hw_lock_control_reg);
1130        if (lock_status & resource_bit) {
1131            return (0);
1132        }
1133        DELAY(5000);
1134    }
1135
1136    BLOGE(sc, "Resource lock timeout!\n");
1137    return (-1);
1138}
1139
1140static int
1141bxe_release_hw_lock(struct bxe_softc *sc,
1142                    uint32_t         resource)
1143{
1144    uint32_t lock_status;
1145    uint32_t resource_bit = (1 << resource);
1146    int func = SC_FUNC(sc);
1147    uint32_t hw_lock_control_reg;
1148
1149    /* validate the resource is within range */
1150    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1151        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1152        return (-1);
1153    }
1154
1155    if (func <= 5) {
1156        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1157    } else {
1158        hw_lock_control_reg =
1159                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1160    }
1161
1162    /* validate the resource is currently taken */
1163    lock_status = REG_RD(sc, hw_lock_control_reg);
1164    if (!(lock_status & resource_bit)) {
1165        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1166              lock_status, resource_bit);
1167        return (-1);
1168    }
1169
1170    REG_WR(sc, hw_lock_control_reg, resource_bit);
1171    return (0);
1172}
1173
1174/*
1175 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1176 * had we done things the other way around, if two pfs from the same port
1177 * would attempt to access nvram at the same time, we could run into a
1178 * scenario such as:
1179 * pf A takes the port lock.
1180 * pf B succeeds in taking the same lock since they are from the same port.
1181 * pf A takes the per pf misc lock. Performs eeprom access.
1182 * pf A finishes. Unlocks the per pf misc lock.
1183 * Pf B takes the lock and proceeds to perform it's own access.
1184 * pf A unlocks the per port lock, while pf B is still working (!).
1185 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1186 * access corrupted by pf B).*
1187 */
1188static int
1189bxe_acquire_nvram_lock(struct bxe_softc *sc)
1190{
1191    int port = SC_PORT(sc);
1192    int count, i;
1193    uint32_t val = 0;
1194
1195    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1196    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1197
1198    /* adjust timeout for emulation/FPGA */
1199    count = NVRAM_TIMEOUT_COUNT;
1200    if (CHIP_REV_IS_SLOW(sc)) {
1201        count *= 100;
1202    }
1203
1204    /* request access to nvram interface */
1205    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1206           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1207
1208    for (i = 0; i < count*10; i++) {
1209        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1210        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1211            break;
1212        }
1213
1214        DELAY(5);
1215    }
1216
1217    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1218        BLOGE(sc, "Cannot get access to nvram interface\n");
1219        return (-1);
1220    }
1221
1222    return (0);
1223}
1224
1225static int
1226bxe_release_nvram_lock(struct bxe_softc *sc)
1227{
1228    int port = SC_PORT(sc);
1229    int count, i;
1230    uint32_t val = 0;
1231
1232    /* adjust timeout for emulation/FPGA */
1233    count = NVRAM_TIMEOUT_COUNT;
1234    if (CHIP_REV_IS_SLOW(sc)) {
1235        count *= 100;
1236    }
1237
1238    /* relinquish nvram interface */
1239    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1240           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1241
1242    for (i = 0; i < count*10; i++) {
1243        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1244        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1245            break;
1246        }
1247
1248        DELAY(5);
1249    }
1250
1251    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1252        BLOGE(sc, "Cannot free access to nvram interface\n");
1253        return (-1);
1254    }
1255
1256    /* release HW lock: protect against other PFs in PF Direct Assignment */
1257    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1258
1259    return (0);
1260}
1261
1262static void
1263bxe_enable_nvram_access(struct bxe_softc *sc)
1264{
1265    uint32_t val;
1266
1267    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1268
1269    /* enable both bits, even on read */
1270    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1271           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1272}
1273
1274static void
1275bxe_disable_nvram_access(struct bxe_softc *sc)
1276{
1277    uint32_t val;
1278
1279    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1280
1281    /* disable both bits, even after read */
1282    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1283           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1284                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1285}
1286
1287static int
1288bxe_nvram_read_dword(struct bxe_softc *sc,
1289                     uint32_t         offset,
1290                     uint32_t         *ret_val,
1291                     uint32_t         cmd_flags)
1292{
1293    int count, i, rc;
1294    uint32_t val;
1295
1296    /* build the command word */
1297    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1298
1299    /* need to clear DONE bit separately */
1300    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1301
1302    /* address of the NVRAM to read from */
1303    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1304           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1305
1306    /* issue a read command */
1307    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1308
1309    /* adjust timeout for emulation/FPGA */
1310    count = NVRAM_TIMEOUT_COUNT;
1311    if (CHIP_REV_IS_SLOW(sc)) {
1312        count *= 100;
1313    }
1314
1315    /* wait for completion */
1316    *ret_val = 0;
1317    rc = -1;
1318    for (i = 0; i < count; i++) {
1319        DELAY(5);
1320        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1321
1322        if (val & MCPR_NVM_COMMAND_DONE) {
1323            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1324            /* we read nvram data in cpu order
1325             * but ethtool sees it as an array of bytes
1326             * converting to big-endian will do the work
1327             */
1328            *ret_val = htobe32(val);
1329            rc = 0;
1330            break;
1331        }
1332    }
1333
1334    if (rc == -1) {
1335        BLOGE(sc, "nvram read timeout expired\n");
1336    }
1337
1338    return (rc);
1339}
1340
1341static int
1342bxe_nvram_read(struct bxe_softc *sc,
1343               uint32_t         offset,
1344               uint8_t          *ret_buf,
1345               int              buf_size)
1346{
1347    uint32_t cmd_flags;
1348    uint32_t val;
1349    int rc;
1350
1351    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1352        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1353              offset, buf_size);
1354        return (-1);
1355    }
1356
1357    if ((offset + buf_size) > sc->devinfo.flash_size) {
1358        BLOGE(sc, "Invalid parameter, "
1359                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1360              offset, buf_size, sc->devinfo.flash_size);
1361        return (-1);
1362    }
1363
1364    /* request access to nvram interface */
1365    rc = bxe_acquire_nvram_lock(sc);
1366    if (rc) {
1367        return (rc);
1368    }
1369
1370    /* enable access to nvram interface */
1371    bxe_enable_nvram_access(sc);
1372
1373    /* read the first word(s) */
1374    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1375    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1376        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1377        memcpy(ret_buf, &val, 4);
1378
1379        /* advance to the next dword */
1380        offset += sizeof(uint32_t);
1381        ret_buf += sizeof(uint32_t);
1382        buf_size -= sizeof(uint32_t);
1383        cmd_flags = 0;
1384    }
1385
1386    if (rc == 0) {
1387        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1388        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1389        memcpy(ret_buf, &val, 4);
1390    }
1391
1392    /* disable access to nvram interface */
1393    bxe_disable_nvram_access(sc);
1394    bxe_release_nvram_lock(sc);
1395
1396    return (rc);
1397}
1398
1399static int
1400bxe_nvram_write_dword(struct bxe_softc *sc,
1401                      uint32_t         offset,
1402                      uint32_t         val,
1403                      uint32_t         cmd_flags)
1404{
1405    int count, i, rc;
1406
1407    /* build the command word */
1408    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1409
1410    /* need to clear DONE bit separately */
1411    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1412
1413    /* write the data */
1414    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1415
1416    /* address of the NVRAM to write to */
1417    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1418           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1419
1420    /* issue the write command */
1421    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1422
1423    /* adjust timeout for emulation/FPGA */
1424    count = NVRAM_TIMEOUT_COUNT;
1425    if (CHIP_REV_IS_SLOW(sc)) {
1426        count *= 100;
1427    }
1428
1429    /* wait for completion */
1430    rc = -1;
1431    for (i = 0; i < count; i++) {
1432        DELAY(5);
1433        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1434        if (val & MCPR_NVM_COMMAND_DONE) {
1435            rc = 0;
1436            break;
1437        }
1438    }
1439
1440    if (rc == -1) {
1441        BLOGE(sc, "nvram write timeout expired\n");
1442    }
1443
1444    return (rc);
1445}
1446
1447#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1448
1449static int
1450bxe_nvram_write1(struct bxe_softc *sc,
1451                 uint32_t         offset,
1452                 uint8_t          *data_buf,
1453                 int              buf_size)
1454{
1455    uint32_t cmd_flags;
1456    uint32_t align_offset;
1457    uint32_t val;
1458    int rc;
1459
1460    if ((offset + buf_size) > sc->devinfo.flash_size) {
1461        BLOGE(sc, "Invalid parameter, "
1462                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1463              offset, buf_size, sc->devinfo.flash_size);
1464        return (-1);
1465    }
1466
1467    /* request access to nvram interface */
1468    rc = bxe_acquire_nvram_lock(sc);
1469    if (rc) {
1470        return (rc);
1471    }
1472
1473    /* enable access to nvram interface */
1474    bxe_enable_nvram_access(sc);
1475
1476    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1477    align_offset = (offset & ~0x03);
1478    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1479
1480    if (rc == 0) {
1481        val &= ~(0xff << BYTE_OFFSET(offset));
1482        val |= (*data_buf << BYTE_OFFSET(offset));
1483
1484        /* nvram data is returned as an array of bytes
1485         * convert it back to cpu order
1486         */
1487        val = be32toh(val);
1488
1489        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1490    }
1491
1492    /* disable access to nvram interface */
1493    bxe_disable_nvram_access(sc);
1494    bxe_release_nvram_lock(sc);
1495
1496    return (rc);
1497}
1498
1499static int
1500bxe_nvram_write(struct bxe_softc *sc,
1501                uint32_t         offset,
1502                uint8_t          *data_buf,
1503                int              buf_size)
1504{
1505    uint32_t cmd_flags;
1506    uint32_t val;
1507    uint32_t written_so_far;
1508    int rc;
1509
1510    if (buf_size == 1) {
1511        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1512    }
1513
1514    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1515        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1516              offset, buf_size);
1517        return (-1);
1518    }
1519
1520    if (buf_size == 0) {
1521        return (0); /* nothing to do */
1522    }
1523
1524    if ((offset + buf_size) > sc->devinfo.flash_size) {
1525        BLOGE(sc, "Invalid parameter, "
1526                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1527              offset, buf_size, sc->devinfo.flash_size);
1528        return (-1);
1529    }
1530
1531    /* request access to nvram interface */
1532    rc = bxe_acquire_nvram_lock(sc);
1533    if (rc) {
1534        return (rc);
1535    }
1536
1537    /* enable access to nvram interface */
1538    bxe_enable_nvram_access(sc);
1539
1540    written_so_far = 0;
1541    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1542    while ((written_so_far < buf_size) && (rc == 0)) {
1543        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1544            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1545        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1546            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1547        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1548            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1549        }
1550
1551        memcpy(&val, data_buf, 4);
1552
1553        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1554
1555        /* advance to the next dword */
1556        offset += sizeof(uint32_t);
1557        data_buf += sizeof(uint32_t);
1558        written_so_far += sizeof(uint32_t);
1559        cmd_flags = 0;
1560    }
1561
1562    /* disable access to nvram interface */
1563    bxe_disable_nvram_access(sc);
1564    bxe_release_nvram_lock(sc);
1565
1566    return (rc);
1567}
1568
1569/* copy command into DMAE command memory and set DMAE command Go */
1570void
1571bxe_post_dmae(struct bxe_softc    *sc,
1572              struct dmae_command *dmae,
1573              int                 idx)
1574{
1575    uint32_t cmd_offset;
1576    int i;
1577
1578    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1579    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1580        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1581    }
1582
1583    REG_WR(sc, dmae_reg_go_c[idx], 1);
1584}
1585
1586uint32_t
1587bxe_dmae_opcode_add_comp(uint32_t opcode,
1588                         uint8_t  comp_type)
1589{
1590    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1591                      DMAE_COMMAND_C_TYPE_ENABLE));
1592}
1593
1594uint32_t
1595bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1596{
1597    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1598}
1599
1600uint32_t
1601bxe_dmae_opcode(struct bxe_softc *sc,
1602                uint8_t          src_type,
1603                uint8_t          dst_type,
1604                uint8_t          with_comp,
1605                uint8_t          comp_type)
1606{
1607    uint32_t opcode = 0;
1608
1609    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1610               (dst_type << DMAE_COMMAND_DST_SHIFT));
1611
1612    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1613
1614    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1615
1616    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1617               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1618
1619    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1620
1621#ifdef __BIG_ENDIAN
1622    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1623#else
1624    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1625#endif
1626
1627    if (with_comp) {
1628        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1629    }
1630
1631    return (opcode);
1632}
1633
1634static void
1635bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1636                        struct dmae_command *dmae,
1637                        uint8_t             src_type,
1638                        uint8_t             dst_type)
1639{
1640    memset(dmae, 0, sizeof(struct dmae_command));
1641
1642    /* set the opcode */
1643    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1644                                   TRUE, DMAE_COMP_PCI);
1645
1646    /* fill in the completion parameters */
1647    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1648    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1649    dmae->comp_val     = DMAE_COMP_VAL;
1650}
1651
1652/* issue a DMAE command over the init channel and wait for completion */
1653static int
1654bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1655                         struct dmae_command *dmae)
1656{
1657    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1658    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1659
1660    BXE_DMAE_LOCK(sc);
1661
1662    /* reset completion */
1663    *wb_comp = 0;
1664
1665    /* post the command on the channel used for initializations */
1666    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1667
1668    /* wait for completion */
1669    DELAY(5);
1670
1671    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1672        if (!timeout ||
1673            (sc->recovery_state != BXE_RECOVERY_DONE &&
1674             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1675            BLOGE(sc, "DMAE timeout!\n");
1676            BXE_DMAE_UNLOCK(sc);
1677            return (DMAE_TIMEOUT);
1678        }
1679
1680        timeout--;
1681        DELAY(50);
1682    }
1683
1684    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1685        BLOGE(sc, "DMAE PCI error!\n");
1686        BXE_DMAE_UNLOCK(sc);
1687        return (DMAE_PCI_ERROR);
1688    }
1689
1690    BXE_DMAE_UNLOCK(sc);
1691    return (0);
1692}
1693
1694void
1695bxe_read_dmae(struct bxe_softc *sc,
1696              uint32_t         src_addr,
1697              uint32_t         len32)
1698{
1699    struct dmae_command dmae;
1700    uint32_t *data;
1701    int i, rc;
1702
1703    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1704
1705    if (!sc->dmae_ready) {
1706        data = BXE_SP(sc, wb_data[0]);
1707
1708        for (i = 0; i < len32; i++) {
1709            data[i] = (CHIP_IS_E1(sc)) ?
1710                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1711                          REG_RD(sc, (src_addr + (i * 4)));
1712        }
1713
1714        return;
1715    }
1716
1717    /* set opcode and fixed command fields */
1718    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1719
1720    /* fill in addresses and len */
1721    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1722    dmae.src_addr_hi = 0;
1723    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1724    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1725    dmae.len         = len32;
1726
1727    /* issue the command and wait for completion */
1728    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1729        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1730    };
1731}
1732
1733void
1734bxe_write_dmae(struct bxe_softc *sc,
1735               bus_addr_t       dma_addr,
1736               uint32_t         dst_addr,
1737               uint32_t         len32)
1738{
1739    struct dmae_command dmae;
1740    int rc;
1741
1742    if (!sc->dmae_ready) {
1743        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1744
1745        if (CHIP_IS_E1(sc)) {
1746            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1747        } else {
1748            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1749        }
1750
1751        return;
1752    }
1753
1754    /* set opcode and fixed command fields */
1755    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1756
1757    /* fill in addresses and len */
1758    dmae.src_addr_lo = U64_LO(dma_addr);
1759    dmae.src_addr_hi = U64_HI(dma_addr);
1760    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1761    dmae.dst_addr_hi = 0;
1762    dmae.len         = len32;
1763
1764    /* issue the command and wait for completion */
1765    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1766        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1767    }
1768}
1769
1770void
1771bxe_write_dmae_phys_len(struct bxe_softc *sc,
1772                        bus_addr_t       phys_addr,
1773                        uint32_t         addr,
1774                        uint32_t         len)
1775{
1776    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1777    int offset = 0;
1778
1779    while (len > dmae_wr_max) {
1780        bxe_write_dmae(sc,
1781                       (phys_addr + offset), /* src DMA address */
1782                       (addr + offset),      /* dst GRC address */
1783                       dmae_wr_max);
1784        offset += (dmae_wr_max * 4);
1785        len -= dmae_wr_max;
1786    }
1787
1788    bxe_write_dmae(sc,
1789                   (phys_addr + offset), /* src DMA address */
1790                   (addr + offset),      /* dst GRC address */
1791                   len);
1792}
1793
1794void
1795bxe_set_ctx_validation(struct bxe_softc   *sc,
1796                       struct eth_context *cxt,
1797                       uint32_t           cid)
1798{
1799    /* ustorm cxt validation */
1800    cxt->ustorm_ag_context.cdu_usage =
1801        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1802            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1803    /* xcontext validation */
1804    cxt->xstorm_ag_context.cdu_reserved =
1805        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1806            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1807}
1808
1809static void
1810bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1811                            uint8_t          port,
1812                            uint8_t          fw_sb_id,
1813                            uint8_t          sb_index,
1814                            uint8_t          ticks)
1815{
1816    uint32_t addr =
1817        (BAR_CSTRORM_INTMEM +
1818         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1819
1820    REG_WR8(sc, addr, ticks);
1821
1822    BLOGD(sc, DBG_LOAD,
1823          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1824          port, fw_sb_id, sb_index, ticks);
1825}
1826
1827static void
1828bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1829                            uint8_t          port,
1830                            uint16_t         fw_sb_id,
1831                            uint8_t          sb_index,
1832                            uint8_t          disable)
1833{
1834    uint32_t enable_flag =
1835        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1836    uint32_t addr =
1837        (BAR_CSTRORM_INTMEM +
1838         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1839    uint8_t flags;
1840
1841    /* clear and set */
1842    flags = REG_RD8(sc, addr);
1843    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1844    flags |= enable_flag;
1845    REG_WR8(sc, addr, flags);
1846
1847    BLOGD(sc, DBG_LOAD,
1848          "port %d fw_sb_id %d sb_index %d disable %d\n",
1849          port, fw_sb_id, sb_index, disable);
1850}
1851
1852void
1853bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1854                             uint8_t          fw_sb_id,
1855                             uint8_t          sb_index,
1856                             uint8_t          disable,
1857                             uint16_t         usec)
1858{
1859    int port = SC_PORT(sc);
1860    uint8_t ticks = (usec / 4); /* XXX ??? */
1861
1862    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1863
1864    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1865    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1866}
1867
1868void
1869elink_cb_udelay(struct bxe_softc *sc,
1870                uint32_t         usecs)
1871{
1872    DELAY(usecs);
1873}
1874
1875uint32_t
1876elink_cb_reg_read(struct bxe_softc *sc,
1877                  uint32_t         reg_addr)
1878{
1879    return (REG_RD(sc, reg_addr));
1880}
1881
1882void
1883elink_cb_reg_write(struct bxe_softc *sc,
1884                   uint32_t         reg_addr,
1885                   uint32_t         val)
1886{
1887    REG_WR(sc, reg_addr, val);
1888}
1889
1890void
1891elink_cb_reg_wb_write(struct bxe_softc *sc,
1892                      uint32_t         offset,
1893                      uint32_t         *wb_write,
1894                      uint16_t         len)
1895{
1896    REG_WR_DMAE(sc, offset, wb_write, len);
1897}
1898
1899void
1900elink_cb_reg_wb_read(struct bxe_softc *sc,
1901                     uint32_t         offset,
1902                     uint32_t         *wb_write,
1903                     uint16_t         len)
1904{
1905    REG_RD_DMAE(sc, offset, wb_write, len);
1906}
1907
1908uint8_t
1909elink_cb_path_id(struct bxe_softc *sc)
1910{
1911    return (SC_PATH(sc));
1912}
1913
1914void
1915elink_cb_event_log(struct bxe_softc     *sc,
1916                   const elink_log_id_t elink_log_id,
1917                   ...)
1918{
1919    /* XXX */
1920#if 0
1921    //va_list ap;
1922    va_start(ap, elink_log_id);
1923    _XXX_(sc, lm_log_id, ap);
1924    va_end(ap);
1925#endif
1926    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1927}
1928
1929static int
1930bxe_set_spio(struct bxe_softc *sc,
1931             int              spio,
1932             uint32_t         mode)
1933{
1934    uint32_t spio_reg;
1935
1936    /* Only 2 SPIOs are configurable */
1937    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1938        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1939        return (-1);
1940    }
1941
1942    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1943
1944    /* read SPIO and mask except the float bits */
1945    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1946
1947    switch (mode) {
1948    case MISC_SPIO_OUTPUT_LOW:
1949        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1950        /* clear FLOAT and set CLR */
1951        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1952        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1953        break;
1954
1955    case MISC_SPIO_OUTPUT_HIGH:
1956        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1957        /* clear FLOAT and set SET */
1958        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1959        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1960        break;
1961
1962    case MISC_SPIO_INPUT_HI_Z:
1963        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1964        /* set FLOAT */
1965        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1966        break;
1967
1968    default:
1969        break;
1970    }
1971
1972    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1973    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1974
1975    return (0);
1976}
1977
1978static int
1979bxe_gpio_read(struct bxe_softc *sc,
1980              int              gpio_num,
1981              uint8_t          port)
1982{
1983    /* The GPIO should be swapped if swap register is set and active */
1984    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1985                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1986    int gpio_shift = (gpio_num +
1987                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1988    uint32_t gpio_mask = (1 << gpio_shift);
1989    uint32_t gpio_reg;
1990
1991    if (gpio_num > MISC_REGISTERS_GPIO_3) {
1992        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
1993        return (-1);
1994    }
1995
1996    /* read GPIO value */
1997    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1998
1999    /* get the requested pin value */
2000    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2001}
2002
2003static int
2004bxe_gpio_write(struct bxe_softc *sc,
2005               int              gpio_num,
2006               uint32_t         mode,
2007               uint8_t          port)
2008{
2009    /* The GPIO should be swapped if swap register is set and active */
2010    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2011                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2012    int gpio_shift = (gpio_num +
2013                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2014    uint32_t gpio_mask = (1 << gpio_shift);
2015    uint32_t gpio_reg;
2016
2017    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2018        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2019        return (-1);
2020    }
2021
2022    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2023
2024    /* read GPIO and mask except the float bits */
2025    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2026
2027    switch (mode) {
2028    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2029        BLOGD(sc, DBG_PHY,
2030              "Set GPIO %d (shift %d) -> output low\n",
2031              gpio_num, gpio_shift);
2032        /* clear FLOAT and set CLR */
2033        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2034        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2035        break;
2036
2037    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2038        BLOGD(sc, DBG_PHY,
2039              "Set GPIO %d (shift %d) -> output high\n",
2040              gpio_num, gpio_shift);
2041        /* clear FLOAT and set SET */
2042        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2043        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2044        break;
2045
2046    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2047        BLOGD(sc, DBG_PHY,
2048              "Set GPIO %d (shift %d) -> input\n",
2049              gpio_num, gpio_shift);
2050        /* set FLOAT */
2051        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052        break;
2053
2054    default:
2055        break;
2056    }
2057
2058    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2059    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2060
2061    return (0);
2062}
2063
2064static int
2065bxe_gpio_mult_write(struct bxe_softc *sc,
2066                    uint8_t          pins,
2067                    uint32_t         mode)
2068{
2069    uint32_t gpio_reg;
2070
2071    /* any port swapping should be handled by caller */
2072
2073    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2074
2075    /* read GPIO and mask except the float bits */
2076    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2077    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2078    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2079    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2080
2081    switch (mode) {
2082    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2083        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2084        /* set CLR */
2085        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2086        break;
2087
2088    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2089        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2090        /* set SET */
2091        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2092        break;
2093
2094    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2095        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2096        /* set FLOAT */
2097        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2098        break;
2099
2100    default:
2101        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2102        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2103        return (-1);
2104    }
2105
2106    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2107    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2108
2109    return (0);
2110}
2111
2112static int
2113bxe_gpio_int_write(struct bxe_softc *sc,
2114                   int              gpio_num,
2115                   uint32_t         mode,
2116                   uint8_t          port)
2117{
2118    /* The GPIO should be swapped if swap register is set and active */
2119    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2120                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2121    int gpio_shift = (gpio_num +
2122                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2123    uint32_t gpio_mask = (1 << gpio_shift);
2124    uint32_t gpio_reg;
2125
2126    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2127        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2128        return (-1);
2129    }
2130
2131    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2132
2133    /* read GPIO int */
2134    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2135
2136    switch (mode) {
2137    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2138        BLOGD(sc, DBG_PHY,
2139              "Clear GPIO INT %d (shift %d) -> output low\n",
2140              gpio_num, gpio_shift);
2141        /* clear SET and set CLR */
2142        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2143        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2144        break;
2145
2146    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2147        BLOGD(sc, DBG_PHY,
2148              "Set GPIO INT %d (shift %d) -> output high\n",
2149              gpio_num, gpio_shift);
2150        /* clear CLR and set SET */
2151        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2152        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2153        break;
2154
2155    default:
2156        break;
2157    }
2158
2159    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2160    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2161
2162    return (0);
2163}
2164
2165uint32_t
2166elink_cb_gpio_read(struct bxe_softc *sc,
2167                   uint16_t         gpio_num,
2168                   uint8_t          port)
2169{
2170    return (bxe_gpio_read(sc, gpio_num, port));
2171}
2172
2173uint8_t
2174elink_cb_gpio_write(struct bxe_softc *sc,
2175                    uint16_t         gpio_num,
2176                    uint8_t          mode, /* 0=low 1=high */
2177                    uint8_t          port)
2178{
2179    return (bxe_gpio_write(sc, gpio_num, mode, port));
2180}
2181
2182uint8_t
2183elink_cb_gpio_mult_write(struct bxe_softc *sc,
2184                         uint8_t          pins,
2185                         uint8_t          mode) /* 0=low 1=high */
2186{
2187    return (bxe_gpio_mult_write(sc, pins, mode));
2188}
2189
2190uint8_t
2191elink_cb_gpio_int_write(struct bxe_softc *sc,
2192                        uint16_t         gpio_num,
2193                        uint8_t          mode, /* 0=low 1=high */
2194                        uint8_t          port)
2195{
2196    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2197}
2198
2199void
2200elink_cb_notify_link_changed(struct bxe_softc *sc)
2201{
2202    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2203                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2204}
2205
2206/* send the MCP a request, block until there is a reply */
2207uint32_t
2208elink_cb_fw_command(struct bxe_softc *sc,
2209                    uint32_t         command,
2210                    uint32_t         param)
2211{
2212    int mb_idx = SC_FW_MB_IDX(sc);
2213    uint32_t seq;
2214    uint32_t rc = 0;
2215    uint32_t cnt = 1;
2216    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2217
2218    BXE_FWMB_LOCK(sc);
2219
2220    seq = ++sc->fw_seq;
2221    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2222    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2223
2224    BLOGD(sc, DBG_PHY,
2225          "wrote command 0x%08x to FW MB param 0x%08x\n",
2226          (command | seq), param);
2227
2228    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2229    do {
2230        DELAY(delay * 1000);
2231        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2232    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2233
2234    BLOGD(sc, DBG_PHY,
2235          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2236          cnt*delay, rc, seq);
2237
2238    /* is this a reply to our command? */
2239    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2240        rc &= FW_MSG_CODE_MASK;
2241    } else {
2242        /* Ruh-roh! */
2243        BLOGE(sc, "FW failed to respond!\n");
2244        // XXX bxe_fw_dump(sc);
2245        rc = 0;
2246    }
2247
2248    BXE_FWMB_UNLOCK(sc);
2249    return (rc);
2250}
2251
2252static uint32_t
2253bxe_fw_command(struct bxe_softc *sc,
2254               uint32_t         command,
2255               uint32_t         param)
2256{
2257    return (elink_cb_fw_command(sc, command, param));
2258}
2259
2260static void
2261__storm_memset_dma_mapping(struct bxe_softc *sc,
2262                           uint32_t         addr,
2263                           bus_addr_t       mapping)
2264{
2265    REG_WR(sc, addr, U64_LO(mapping));
2266    REG_WR(sc, (addr + 4), U64_HI(mapping));
2267}
2268
2269static void
2270storm_memset_spq_addr(struct bxe_softc *sc,
2271                      bus_addr_t       mapping,
2272                      uint16_t         abs_fid)
2273{
2274    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2275                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2276    __storm_memset_dma_mapping(sc, addr, mapping);
2277}
2278
2279static void
2280storm_memset_vf_to_pf(struct bxe_softc *sc,
2281                      uint16_t         abs_fid,
2282                      uint16_t         pf_id)
2283{
2284    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2285    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2286    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2287    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2288}
2289
2290static void
2291storm_memset_func_en(struct bxe_softc *sc,
2292                     uint16_t         abs_fid,
2293                     uint8_t          enable)
2294{
2295    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2296    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2297    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2298    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2299}
2300
2301static void
2302storm_memset_eq_data(struct bxe_softc       *sc,
2303                     struct event_ring_data *eq_data,
2304                     uint16_t               pfid)
2305{
2306    uint32_t addr;
2307    size_t size;
2308
2309    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2310    size = sizeof(struct event_ring_data);
2311    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2312}
2313
2314static void
2315storm_memset_eq_prod(struct bxe_softc *sc,
2316                     uint16_t         eq_prod,
2317                     uint16_t         pfid)
2318{
2319    uint32_t addr = (BAR_CSTRORM_INTMEM +
2320                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2321    REG_WR16(sc, addr, eq_prod);
2322}
2323
2324/*
2325 * Post a slowpath command.
2326 *
2327 * A slowpath command is used to propogate a configuration change through
2328 * the controller in a controlled manner, allowing each STORM processor and
2329 * other H/W blocks to phase in the change.  The commands sent on the
2330 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2331 * completion of the ramrod will occur in different ways.  Here's a
2332 * breakdown of ramrods and how they complete:
2333 *
2334 * RAMROD_CMD_ID_ETH_PORT_SETUP
2335 *   Used to setup the leading connection on a port.  Completes on the
2336 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2337 *
2338 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2339 *   Used to setup an additional connection on a port.  Completes on the
2340 *   RCQ of the multi-queue/RSS connection being initialized.
2341 *
2342 * RAMROD_CMD_ID_ETH_STAT_QUERY
2343 *   Used to force the storm processors to update the statistics database
2344 *   in host memory.  This ramrod is send on the leading connection CID and
2345 *   completes as an index increment of the CSTORM on the default status
2346 *   block.
2347 *
2348 * RAMROD_CMD_ID_ETH_UPDATE
2349 *   Used to update the state of the leading connection, usually to udpate
2350 *   the RSS indirection table.  Completes on the RCQ of the leading
2351 *   connection. (Not currently used under FreeBSD until OS support becomes
2352 *   available.)
2353 *
2354 * RAMROD_CMD_ID_ETH_HALT
2355 *   Used when tearing down a connection prior to driver unload.  Completes
2356 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2357 *   use this on the leading connection.
2358 *
2359 * RAMROD_CMD_ID_ETH_SET_MAC
2360 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2361 *   the RCQ of the leading connection.
2362 *
2363 * RAMROD_CMD_ID_ETH_CFC_DEL
2364 *   Used when tearing down a conneciton prior to driver unload.  Completes
2365 *   on the RCQ of the leading connection (since the current connection
2366 *   has been completely removed from controller memory).
2367 *
2368 * RAMROD_CMD_ID_ETH_PORT_DEL
2369 *   Used to tear down the leading connection prior to driver unload,
2370 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2371 *   default status block.
2372 *
2373 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2374 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2375 *   RSS connection that is being offloaded.  (Not currently used under
2376 *   FreeBSD.)
2377 *
2378 * There can only be one command pending per function.
2379 *
2380 * Returns:
2381 *   0 = Success, !0 = Failure.
2382 */
2383
2384/* must be called under the spq lock */
2385static inline
2386struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2387{
2388    struct eth_spe *next_spe = sc->spq_prod_bd;
2389
2390    if (sc->spq_prod_bd == sc->spq_last_bd) {
2391        /* wrap back to the first eth_spq */
2392        sc->spq_prod_bd = sc->spq;
2393        sc->spq_prod_idx = 0;
2394    } else {
2395        sc->spq_prod_bd++;
2396        sc->spq_prod_idx++;
2397    }
2398
2399    return (next_spe);
2400}
2401
2402/* must be called under the spq lock */
2403static inline
2404void bxe_sp_prod_update(struct bxe_softc *sc)
2405{
2406    int func = SC_FUNC(sc);
2407
2408    /*
2409     * Make sure that BD data is updated before writing the producer.
2410     * BD data is written to the memory, the producer is read from the
2411     * memory, thus we need a full memory barrier to ensure the ordering.
2412     */
2413    mb();
2414
2415    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2416             sc->spq_prod_idx);
2417
2418    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2419                      BUS_SPACE_BARRIER_WRITE);
2420}
2421
2422/**
2423 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2424 *
2425 * @cmd:      command to check
2426 * @cmd_type: command type
2427 */
2428static inline
2429int bxe_is_contextless_ramrod(int cmd,
2430                              int cmd_type)
2431{
2432    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2433        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2434        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2435        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2436        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2437        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2438        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2439        return (TRUE);
2440    } else {
2441        return (FALSE);
2442    }
2443}
2444
2445/**
2446 * bxe_sp_post - place a single command on an SP ring
2447 *
2448 * @sc:         driver handle
2449 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2450 * @cid:        SW CID the command is related to
2451 * @data_hi:    command private data address (high 32 bits)
2452 * @data_lo:    command private data address (low 32 bits)
2453 * @cmd_type:   command type (e.g. NONE, ETH)
2454 *
2455 * SP data is handled as if it's always an address pair, thus data fields are
2456 * not swapped to little endian in upper functions. Instead this function swaps
2457 * data as if it's two uint32 fields.
2458 */
2459int
2460bxe_sp_post(struct bxe_softc *sc,
2461            int              command,
2462            int              cid,
2463            uint32_t         data_hi,
2464            uint32_t         data_lo,
2465            int              cmd_type)
2466{
2467    struct eth_spe *spe;
2468    uint16_t type;
2469    int common;
2470
2471    common = bxe_is_contextless_ramrod(command, cmd_type);
2472
2473    BXE_SP_LOCK(sc);
2474
2475    if (common) {
2476        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2477            BLOGE(sc, "EQ ring is full!\n");
2478            BXE_SP_UNLOCK(sc);
2479            return (-1);
2480        }
2481    } else {
2482        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2483            BLOGE(sc, "SPQ ring is full!\n");
2484            BXE_SP_UNLOCK(sc);
2485            return (-1);
2486        }
2487    }
2488
2489    spe = bxe_sp_get_next(sc);
2490
2491    /* CID needs port number to be encoded int it */
2492    spe->hdr.conn_and_cmd_data =
2493        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2494
2495    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2496
2497    /* TBD: Check if it works for VFs */
2498    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2499             SPE_HDR_FUNCTION_ID);
2500
2501    spe->hdr.type = htole16(type);
2502
2503    spe->data.update_data_addr.hi = htole32(data_hi);
2504    spe->data.update_data_addr.lo = htole32(data_lo);
2505
2506    /*
2507     * It's ok if the actual decrement is issued towards the memory
2508     * somewhere between the lock and unlock. Thus no more explict
2509     * memory barrier is needed.
2510     */
2511    if (common) {
2512        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2513    } else {
2514        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2515    }
2516
2517    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2518    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2519          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2520    BLOGD(sc, DBG_SP,
2521          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2522          sc->spq_prod_idx,
2523          (uint32_t)U64_HI(sc->spq_dma.paddr),
2524          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2525          command,
2526          common,
2527          HW_CID(sc, cid),
2528          data_hi,
2529          data_lo,
2530          type,
2531          atomic_load_acq_long(&sc->cq_spq_left),
2532          atomic_load_acq_long(&sc->eq_spq_left));
2533
2534    bxe_sp_prod_update(sc);
2535
2536    BXE_SP_UNLOCK(sc);
2537    return (0);
2538}
2539
2540/**
2541 * bxe_debug_print_ind_table - prints the indirection table configuration.
2542 *
2543 * @sc: driver hanlde
2544 * @p:  pointer to rss configuration
2545 */
2546#if 0
2547static void
2548bxe_debug_print_ind_table(struct bxe_softc               *sc,
2549                          struct ecore_config_rss_params *p)
2550{
2551    int i;
2552
2553    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2554    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2555    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2556        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2557
2558        /* Print 4 bytes in a line */
2559        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2560            (((i + 1) & 0x3) == 0)) {
2561            BLOGD(sc, DBG_LOAD, "\n");
2562            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2563        }
2564    }
2565
2566    BLOGD(sc, DBG_LOAD, "\n");
2567}
2568#endif
2569
2570/*
2571 * FreeBSD Device probe function.
2572 *
2573 * Compares the device found to the driver's list of supported devices and
2574 * reports back to the bsd loader whether this is the right driver for the device.
2575 * This is the driver entry function called from the "kldload" command.
2576 *
2577 * Returns:
2578 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2579 */
2580static int
2581bxe_probe(device_t dev)
2582{
2583    struct bxe_softc *sc;
2584    struct bxe_device_type *t;
2585    char *descbuf;
2586    uint16_t did, sdid, svid, vid;
2587
2588    /* Find our device structure */
2589    sc = device_get_softc(dev);
2590    sc->dev = dev;
2591    t = bxe_devs;
2592
2593    /* Get the data for the device to be probed. */
2594    vid  = pci_get_vendor(dev);
2595    did  = pci_get_device(dev);
2596    svid = pci_get_subvendor(dev);
2597    sdid = pci_get_subdevice(dev);
2598
2599    BLOGD(sc, DBG_LOAD,
2600          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2601          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2602
2603    /* Look through the list of known devices for a match. */
2604    while (t->bxe_name != NULL) {
2605        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2606            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2607            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2608            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2609            if (descbuf == NULL)
2610                return (ENOMEM);
2611
2612            /* Print out the device identity. */
2613            snprintf(descbuf, BXE_DEVDESC_MAX,
2614                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2615                     (((pci_read_config(dev, PCIR_REVID, 4) &
2616                        0xf0) >> 4) + 'A'),
2617                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2618                     BXE_DRIVER_VERSION);
2619
2620            device_set_desc_copy(dev, descbuf);
2621            free(descbuf, M_TEMP);
2622            return (BUS_PROBE_DEFAULT);
2623        }
2624        t++;
2625    }
2626
2627    return (ENXIO);
2628}
2629
2630static void
2631bxe_init_mutexes(struct bxe_softc *sc)
2632{
2633#ifdef BXE_CORE_LOCK_SX
2634    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2635             "bxe%d_core_lock", sc->unit);
2636    sx_init(&sc->core_sx, sc->core_sx_name);
2637#else
2638    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2639             "bxe%d_core_lock", sc->unit);
2640    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2641#endif
2642
2643    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2644             "bxe%d_sp_lock", sc->unit);
2645    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2646
2647    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2648             "bxe%d_dmae_lock", sc->unit);
2649    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2650
2651    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2652             "bxe%d_phy_lock", sc->unit);
2653    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2654
2655    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2656             "bxe%d_fwmb_lock", sc->unit);
2657    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2658
2659    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2660             "bxe%d_print_lock", sc->unit);
2661    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2662
2663    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2664             "bxe%d_stats_lock", sc->unit);
2665    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2666
2667    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2668             "bxe%d_mcast_lock", sc->unit);
2669    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2670}
2671
2672static void
2673bxe_release_mutexes(struct bxe_softc *sc)
2674{
2675#ifdef BXE_CORE_LOCK_SX
2676    sx_destroy(&sc->core_sx);
2677#else
2678    if (mtx_initialized(&sc->core_mtx)) {
2679        mtx_destroy(&sc->core_mtx);
2680    }
2681#endif
2682
2683    if (mtx_initialized(&sc->sp_mtx)) {
2684        mtx_destroy(&sc->sp_mtx);
2685    }
2686
2687    if (mtx_initialized(&sc->dmae_mtx)) {
2688        mtx_destroy(&sc->dmae_mtx);
2689    }
2690
2691    if (mtx_initialized(&sc->port.phy_mtx)) {
2692        mtx_destroy(&sc->port.phy_mtx);
2693    }
2694
2695    if (mtx_initialized(&sc->fwmb_mtx)) {
2696        mtx_destroy(&sc->fwmb_mtx);
2697    }
2698
2699    if (mtx_initialized(&sc->print_mtx)) {
2700        mtx_destroy(&sc->print_mtx);
2701    }
2702
2703    if (mtx_initialized(&sc->stats_mtx)) {
2704        mtx_destroy(&sc->stats_mtx);
2705    }
2706
2707    if (mtx_initialized(&sc->mcast_mtx)) {
2708        mtx_destroy(&sc->mcast_mtx);
2709    }
2710}
2711
2712static void
2713bxe_tx_disable(struct bxe_softc* sc)
2714{
2715    if_t ifp = sc->ifp;
2716
2717    /* tell the stack the driver is stopped and TX queue is full */
2718    if (ifp !=  NULL) {
2719        if_setdrvflags(ifp, 0);
2720    }
2721}
2722
2723static void
2724bxe_drv_pulse(struct bxe_softc *sc)
2725{
2726    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2727             sc->fw_drv_pulse_wr_seq);
2728}
2729
2730static inline uint16_t
2731bxe_tx_avail(struct bxe_softc *sc,
2732             struct bxe_fastpath *fp)
2733{
2734    int16_t  used;
2735    uint16_t prod;
2736    uint16_t cons;
2737
2738    prod = fp->tx_bd_prod;
2739    cons = fp->tx_bd_cons;
2740
2741    used = SUB_S16(prod, cons);
2742
2743#if 0
2744    KASSERT((used < 0), ("used tx bds < 0"));
2745    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2746    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2747            ("invalid number of tx bds used"));
2748#endif
2749
2750    return (int16_t)(sc->tx_ring_size) - used;
2751}
2752
2753static inline int
2754bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2755{
2756    uint16_t hw_cons;
2757
2758    mb(); /* status block fields can change */
2759    hw_cons = le16toh(*fp->tx_cons_sb);
2760    return (hw_cons != fp->tx_pkt_cons);
2761}
2762
2763static inline uint8_t
2764bxe_has_tx_work(struct bxe_fastpath *fp)
2765{
2766    /* expand this for multi-cos if ever supported */
2767    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2768}
2769
2770static inline int
2771bxe_has_rx_work(struct bxe_fastpath *fp)
2772{
2773    uint16_t rx_cq_cons_sb;
2774
2775    mb(); /* status block fields can change */
2776    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2777    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2778        rx_cq_cons_sb++;
2779    return (fp->rx_cq_cons != rx_cq_cons_sb);
2780}
2781
2782static void
2783bxe_sp_event(struct bxe_softc    *sc,
2784             struct bxe_fastpath *fp,
2785             union eth_rx_cqe    *rr_cqe)
2786{
2787    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2788    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2789    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2790    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2791
2792    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2793          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2794
2795#if 0
2796    /*
2797     * If cid is within VF range, replace the slowpath object with the
2798     * one corresponding to this VF
2799     */
2800    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2801        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2802    }
2803#endif
2804
2805    switch (command) {
2806    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2807        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2808        drv_cmd = ECORE_Q_CMD_UPDATE;
2809        break;
2810
2811    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2812        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2813        drv_cmd = ECORE_Q_CMD_SETUP;
2814        break;
2815
2816    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2817        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2818        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2819        break;
2820
2821    case (RAMROD_CMD_ID_ETH_HALT):
2822        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2823        drv_cmd = ECORE_Q_CMD_HALT;
2824        break;
2825
2826    case (RAMROD_CMD_ID_ETH_TERMINATE):
2827        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2828        drv_cmd = ECORE_Q_CMD_TERMINATE;
2829        break;
2830
2831    case (RAMROD_CMD_ID_ETH_EMPTY):
2832        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2833        drv_cmd = ECORE_Q_CMD_EMPTY;
2834        break;
2835
2836    default:
2837        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2838              command, fp->index);
2839        return;
2840    }
2841
2842    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2843        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2844        /*
2845         * q_obj->complete_cmd() failure means that this was
2846         * an unexpected completion.
2847         *
2848         * In this case we don't want to increase the sc->spq_left
2849         * because apparently we haven't sent this command the first
2850         * place.
2851         */
2852        // bxe_panic(sc, ("Unexpected SP completion\n"));
2853        return;
2854    }
2855
2856#if 0
2857    /* SRIOV: reschedule any 'in_progress' operations */
2858    bxe_iov_sp_event(sc, cid, TRUE);
2859#endif
2860
2861    atomic_add_acq_long(&sc->cq_spq_left, 1);
2862
2863    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2864          atomic_load_acq_long(&sc->cq_spq_left));
2865
2866#if 0
2867    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2868        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2869        /*
2870         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2871         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2872         * prevent case that both bits are cleared. At the end of load/unload
2873         * driver checks that sp_state is cleared and this order prevents
2874         * races.
2875         */
2876        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2877        wmb();
2878        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2879
2880        /* schedule the sp task as MCP ack is required */
2881        bxe_schedule_sp_task(sc);
2882    }
2883#endif
2884}
2885
2886/*
2887 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2888 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2889 * the current aggregation queue as in-progress.
2890 */
2891static void
2892bxe_tpa_start(struct bxe_softc            *sc,
2893              struct bxe_fastpath         *fp,
2894              uint16_t                    queue,
2895              uint16_t                    cons,
2896              uint16_t                    prod,
2897              struct eth_fast_path_rx_cqe *cqe)
2898{
2899    struct bxe_sw_rx_bd tmp_bd;
2900    struct bxe_sw_rx_bd *rx_buf;
2901    struct eth_rx_bd *rx_bd;
2902    int max_agg_queues;
2903    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2904    uint16_t index;
2905
2906    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2907                       "cons=%d prod=%d\n",
2908          fp->index, queue, cons, prod);
2909
2910    max_agg_queues = MAX_AGG_QS(sc);
2911
2912    KASSERT((queue < max_agg_queues),
2913            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2914             fp->index, queue, max_agg_queues));
2915
2916    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2917            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2918             fp->index, queue));
2919
2920    /* copy the existing mbuf and mapping from the TPA pool */
2921    tmp_bd = tpa_info->bd;
2922
2923    if (tmp_bd.m == NULL) {
2924        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2925              fp->index, queue);
2926        /* XXX Error handling? */
2927        return;
2928    }
2929
2930    /* change the TPA queue to the start state */
2931    tpa_info->state            = BXE_TPA_STATE_START;
2932    tpa_info->placement_offset = cqe->placement_offset;
2933    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2934    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2935    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2936
2937    fp->rx_tpa_queue_used |= (1 << queue);
2938
2939    /*
2940     * If all the buffer descriptors are filled with mbufs then fill in
2941     * the current consumer index with a new BD. Else if a maximum Rx
2942     * buffer limit is imposed then fill in the next producer index.
2943     */
2944    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2945                prod : cons;
2946
2947    /* move the received mbuf and mapping to TPA pool */
2948    tpa_info->bd = fp->rx_mbuf_chain[cons];
2949
2950    /* release any existing RX BD mbuf mappings */
2951    if (cons != index) {
2952        rx_buf = &fp->rx_mbuf_chain[cons];
2953
2954        if (rx_buf->m_map != NULL) {
2955            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2956                            BUS_DMASYNC_POSTREAD);
2957            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2958        }
2959
2960        /*
2961         * We get here when the maximum number of rx buffers is less than
2962         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2963         * it out here without concern of a memory leak.
2964         */
2965        fp->rx_mbuf_chain[cons].m = NULL;
2966    }
2967
2968    /* update the Rx SW BD with the mbuf info from the TPA pool */
2969    fp->rx_mbuf_chain[index] = tmp_bd;
2970
2971    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2972    rx_bd = &fp->rx_chain[index];
2973    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2974    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2975}
2976
2977/*
2978 * When a TPA aggregation is completed, loop through the individual mbufs
2979 * of the aggregation, combining them into a single mbuf which will be sent
2980 * up the stack. Refill all freed SGEs with mbufs as we go along.
2981 */
2982static int
2983bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2984                   struct bxe_fastpath       *fp,
2985                   struct bxe_sw_tpa_info    *tpa_info,
2986                   uint16_t                  queue,
2987                   uint16_t                  pages,
2988                   struct mbuf               *m,
2989			       struct eth_end_agg_rx_cqe *cqe,
2990                   uint16_t                  cqe_idx)
2991{
2992    struct mbuf *m_frag;
2993    uint32_t frag_len, frag_size, i;
2994    uint16_t sge_idx;
2995    int rc = 0;
2996    int j;
2997
2998    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2999
3000    BLOGD(sc, DBG_LRO,
3001          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3002          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3003
3004    /* make sure the aggregated frame is not too big to handle */
3005    if (pages > 8 * PAGES_PER_SGE) {
3006        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3007                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3008              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3009              tpa_info->len_on_bd, frag_size);
3010        bxe_panic(sc, ("sge page count error\n"));
3011        return (EINVAL);
3012    }
3013
3014    /*
3015     * Scan through the scatter gather list pulling individual mbufs into a
3016     * single mbuf for the host stack.
3017     */
3018    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3019        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3020
3021        /*
3022         * Firmware gives the indices of the SGE as if the ring is an array
3023         * (meaning that the "next" element will consume 2 indices).
3024         */
3025        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3026
3027        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3028                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3029              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3030
3031        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3032
3033        /* allocate a new mbuf for the SGE */
3034        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3035        if (rc) {
3036            /* Leave all remaining SGEs in the ring! */
3037            return (rc);
3038        }
3039
3040        /* update the fragment length */
3041        m_frag->m_len = frag_len;
3042
3043        /* concatenate the fragment to the head mbuf */
3044        m_cat(m, m_frag);
3045        fp->eth_q_stats.mbuf_alloc_sge--;
3046
3047        /* update the TPA mbuf size and remaining fragment size */
3048        m->m_pkthdr.len += frag_len;
3049        frag_size -= frag_len;
3050    }
3051
3052    BLOGD(sc, DBG_LRO,
3053          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3054          fp->index, queue, frag_size);
3055
3056    return (rc);
3057}
3058
3059static inline void
3060bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3061{
3062    int i, j;
3063
3064    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3065        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3066
3067        for (j = 0; j < 2; j++) {
3068            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3069            idx--;
3070        }
3071    }
3072}
3073
3074static inline void
3075bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3076{
3077    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3078    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3079
3080    /*
3081     * Clear the two last indices in the page to 1. These are the indices that
3082     * correspond to the "next" element, hence will never be indicated and
3083     * should be removed from the calculations.
3084     */
3085    bxe_clear_sge_mask_next_elems(fp);
3086}
3087
3088static inline void
3089bxe_update_last_max_sge(struct bxe_fastpath *fp,
3090                        uint16_t            idx)
3091{
3092    uint16_t last_max = fp->last_max_sge;
3093
3094    if (SUB_S16(idx, last_max) > 0) {
3095        fp->last_max_sge = idx;
3096    }
3097}
3098
3099static inline void
3100bxe_update_sge_prod(struct bxe_softc          *sc,
3101                    struct bxe_fastpath       *fp,
3102                    uint16_t                  sge_len,
3103                    struct eth_end_agg_rx_cqe *cqe)
3104{
3105    uint16_t last_max, last_elem, first_elem;
3106    uint16_t delta = 0;
3107    uint16_t i;
3108
3109    if (!sge_len) {
3110        return;
3111    }
3112
3113    /* first mark all used pages */
3114    for (i = 0; i < sge_len; i++) {
3115        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3116                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3117    }
3118
3119    BLOGD(sc, DBG_LRO,
3120          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3121          fp->index, sge_len - 1,
3122          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3123
3124    /* assume that the last SGE index is the biggest */
3125    bxe_update_last_max_sge(fp,
3126                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3127
3128    last_max = RX_SGE(fp->last_max_sge);
3129    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3130    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3131
3132    /* if ring is not full */
3133    if (last_elem + 1 != first_elem) {
3134        last_elem++;
3135    }
3136
3137    /* now update the prod */
3138    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3139        if (__predict_true(fp->sge_mask[i])) {
3140            break;
3141        }
3142
3143        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3144        delta += BIT_VEC64_ELEM_SZ;
3145    }
3146
3147    if (delta > 0) {
3148        fp->rx_sge_prod += delta;
3149        /* clear page-end entries */
3150        bxe_clear_sge_mask_next_elems(fp);
3151    }
3152
3153    BLOGD(sc, DBG_LRO,
3154          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3155          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3156}
3157
3158/*
3159 * The aggregation on the current TPA queue has completed. Pull the individual
3160 * mbuf fragments together into a single mbuf, perform all necessary checksum
3161 * calculations, and send the resuting mbuf to the stack.
3162 */
3163static void
3164bxe_tpa_stop(struct bxe_softc          *sc,
3165             struct bxe_fastpath       *fp,
3166             struct bxe_sw_tpa_info    *tpa_info,
3167             uint16_t                  queue,
3168             uint16_t                  pages,
3169			 struct eth_end_agg_rx_cqe *cqe,
3170             uint16_t                  cqe_idx)
3171{
3172    if_t ifp = sc->ifp;
3173    struct mbuf *m;
3174    int rc = 0;
3175
3176    BLOGD(sc, DBG_LRO,
3177          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3178          fp->index, queue, tpa_info->placement_offset,
3179          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3180
3181    m = tpa_info->bd.m;
3182
3183    /* allocate a replacement before modifying existing mbuf */
3184    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3185    if (rc) {
3186        /* drop the frame and log an error */
3187        fp->eth_q_stats.rx_soft_errors++;
3188        goto bxe_tpa_stop_exit;
3189    }
3190
3191    /* we have a replacement, fixup the current mbuf */
3192    m_adj(m, tpa_info->placement_offset);
3193    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3194
3195    /* mark the checksums valid (taken care of by the firmware) */
3196    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3197    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3198    m->m_pkthdr.csum_data = 0xffff;
3199    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3200                               CSUM_IP_VALID   |
3201                               CSUM_DATA_VALID |
3202                               CSUM_PSEUDO_HDR);
3203
3204    /* aggregate all of the SGEs into a single mbuf */
3205    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3206    if (rc) {
3207        /* drop the packet and log an error */
3208        fp->eth_q_stats.rx_soft_errors++;
3209        m_freem(m);
3210    } else {
3211        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3212            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3213            m->m_flags |= M_VLANTAG;
3214        }
3215
3216        /* assign packet to this interface interface */
3217        if_setrcvif(m, ifp);
3218
3219#if __FreeBSD_version >= 800000
3220        /* specify what RSS queue was used for this flow */
3221        m->m_pkthdr.flowid = fp->index;
3222        m->m_flags |= M_FLOWID;
3223#endif
3224
3225        if_incipackets(ifp, 1);
3226        fp->eth_q_stats.rx_tpa_pkts++;
3227
3228        /* pass the frame to the stack */
3229        if_input(ifp, m);
3230    }
3231
3232    /* we passed an mbuf up the stack or dropped the frame */
3233    fp->eth_q_stats.mbuf_alloc_tpa--;
3234
3235bxe_tpa_stop_exit:
3236
3237    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3238    fp->rx_tpa_queue_used &= ~(1 << queue);
3239}
3240
3241static uint8_t
3242bxe_rxeof(struct bxe_softc    *sc,
3243          struct bxe_fastpath *fp)
3244{
3245    if_t ifp = sc->ifp;
3246    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3247    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3248    int rx_pkts = 0;
3249    int rc;
3250
3251    BXE_FP_RX_LOCK(fp);
3252
3253    /* CQ "next element" is of the size of the regular element */
3254    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3255    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3256        hw_cq_cons++;
3257    }
3258
3259    bd_cons = fp->rx_bd_cons;
3260    bd_prod = fp->rx_bd_prod;
3261    bd_prod_fw = bd_prod;
3262    sw_cq_cons = fp->rx_cq_cons;
3263    sw_cq_prod = fp->rx_cq_prod;
3264
3265    /*
3266     * Memory barrier necessary as speculative reads of the rx
3267     * buffer can be ahead of the index in the status block
3268     */
3269    rmb();
3270
3271    BLOGD(sc, DBG_RX,
3272          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3273          fp->index, hw_cq_cons, sw_cq_cons);
3274
3275    while (sw_cq_cons != hw_cq_cons) {
3276        struct bxe_sw_rx_bd *rx_buf = NULL;
3277        union eth_rx_cqe *cqe;
3278        struct eth_fast_path_rx_cqe *cqe_fp;
3279        uint8_t cqe_fp_flags;
3280        enum eth_rx_cqe_type cqe_fp_type;
3281        uint16_t len, pad;
3282        struct mbuf *m = NULL;
3283
3284        comp_ring_cons = RCQ(sw_cq_cons);
3285        bd_prod = RX_BD(bd_prod);
3286        bd_cons = RX_BD(bd_cons);
3287
3288        cqe          = &fp->rcq_chain[comp_ring_cons];
3289        cqe_fp       = &cqe->fast_path_cqe;
3290        cqe_fp_flags = cqe_fp->type_error_flags;
3291        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3292
3293        BLOGD(sc, DBG_RX,
3294              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3295              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3296              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3297              fp->index,
3298              hw_cq_cons,
3299              sw_cq_cons,
3300              bd_prod,
3301              bd_cons,
3302              CQE_TYPE(cqe_fp_flags),
3303              cqe_fp_flags,
3304              cqe_fp->status_flags,
3305              le32toh(cqe_fp->rss_hash_result),
3306              le16toh(cqe_fp->vlan_tag),
3307              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3308
3309        /* is this a slowpath msg? */
3310        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3311            bxe_sp_event(sc, fp, cqe);
3312            goto next_cqe;
3313        }
3314
3315        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3316
3317        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3318            struct bxe_sw_tpa_info *tpa_info;
3319            uint16_t frag_size, pages;
3320            uint8_t queue;
3321
3322#if 0
3323            /* sanity check */
3324            if (!fp->tpa_enable &&
3325                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3326                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3327                      CQE_TYPE(cqe_fp_type));
3328            }
3329#endif
3330
3331            if (CQE_TYPE_START(cqe_fp_type)) {
3332                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3333                              bd_cons, bd_prod, cqe_fp);
3334                m = NULL; /* packet not ready yet */
3335                goto next_rx;
3336            }
3337
3338            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3339                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3340
3341            queue = cqe->end_agg_cqe.queue_index;
3342            tpa_info = &fp->rx_tpa_info[queue];
3343
3344            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3345                  fp->index, queue);
3346
3347            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3348                         tpa_info->len_on_bd);
3349            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3350
3351            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3352                         &cqe->end_agg_cqe, comp_ring_cons);
3353
3354            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3355
3356            goto next_cqe;
3357        }
3358
3359        /* non TPA */
3360
3361        /* is this an error packet? */
3362        if (__predict_false(cqe_fp_flags &
3363                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3364            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3365            fp->eth_q_stats.rx_soft_errors++;
3366            goto next_rx;
3367        }
3368
3369        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3370        pad = cqe_fp->placement_offset;
3371
3372        m = rx_buf->m;
3373
3374        if (__predict_false(m == NULL)) {
3375            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3376                  bd_cons, fp->index);
3377            goto next_rx;
3378        }
3379
3380        /* XXX double copy if packet length under a threshold */
3381
3382        /*
3383         * If all the buffer descriptors are filled with mbufs then fill in
3384         * the current consumer index with a new BD. Else if a maximum Rx
3385         * buffer limit is imposed then fill in the next producer index.
3386         */
3387        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3388                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3389                                      bd_prod : bd_cons);
3390        if (rc != 0) {
3391            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3392                  fp->index, rc);
3393            fp->eth_q_stats.rx_soft_errors++;
3394
3395            if (sc->max_rx_bufs != RX_BD_USABLE) {
3396                /* copy this consumer index to the producer index */
3397                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3398                       sizeof(struct bxe_sw_rx_bd));
3399                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3400            }
3401
3402            goto next_rx;
3403        }
3404
3405        /* current mbuf was detached from the bd */
3406        fp->eth_q_stats.mbuf_alloc_rx--;
3407
3408        /* we allocated a replacement mbuf, fixup the current one */
3409        m_adj(m, pad);
3410        m->m_pkthdr.len = m->m_len = len;
3411
3412        /* assign packet to this interface interface */
3413	if_setrcvif(m, ifp);
3414
3415        /* assume no hardware checksum has complated */
3416        m->m_pkthdr.csum_flags = 0;
3417
3418        /* validate checksum if offload enabled */
3419        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3420            /* check for a valid IP frame */
3421            if (!(cqe->fast_path_cqe.status_flags &
3422                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3423                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3424                if (__predict_false(cqe_fp_flags &
3425                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3426                    fp->eth_q_stats.rx_hw_csum_errors++;
3427                } else {
3428                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3429                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3430                }
3431            }
3432
3433            /* check for a valid TCP/UDP frame */
3434            if (!(cqe->fast_path_cqe.status_flags &
3435                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3436                if (__predict_false(cqe_fp_flags &
3437                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3438                    fp->eth_q_stats.rx_hw_csum_errors++;
3439                } else {
3440                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3441                    m->m_pkthdr.csum_data = 0xFFFF;
3442                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3443                                               CSUM_PSEUDO_HDR);
3444                }
3445            }
3446        }
3447
3448        /* if there is a VLAN tag then flag that info */
3449        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3450            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3451            m->m_flags |= M_VLANTAG;
3452        }
3453
3454#if __FreeBSD_version >= 800000
3455        /* specify what RSS queue was used for this flow */
3456        m->m_pkthdr.flowid = fp->index;
3457        m->m_flags |= M_FLOWID;
3458#endif
3459
3460next_rx:
3461
3462        bd_cons    = RX_BD_NEXT(bd_cons);
3463        bd_prod    = RX_BD_NEXT(bd_prod);
3464        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3465
3466        /* pass the frame to the stack */
3467        if (__predict_true(m != NULL)) {
3468            if_incipackets(ifp, 1);
3469            rx_pkts++;
3470            if_input(ifp, m);
3471        }
3472
3473next_cqe:
3474
3475        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3476        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3477
3478        /* limit spinning on the queue */
3479        if (rx_pkts == sc->rx_budget) {
3480            fp->eth_q_stats.rx_budget_reached++;
3481            break;
3482        }
3483    } /* while work to do */
3484
3485    fp->rx_bd_cons = bd_cons;
3486    fp->rx_bd_prod = bd_prod_fw;
3487    fp->rx_cq_cons = sw_cq_cons;
3488    fp->rx_cq_prod = sw_cq_prod;
3489
3490    /* Update producers */
3491    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3492
3493    fp->eth_q_stats.rx_pkts += rx_pkts;
3494    fp->eth_q_stats.rx_calls++;
3495
3496    BXE_FP_RX_UNLOCK(fp);
3497
3498    return (sw_cq_cons != hw_cq_cons);
3499}
3500
3501static uint16_t
3502bxe_free_tx_pkt(struct bxe_softc    *sc,
3503                struct bxe_fastpath *fp,
3504                uint16_t            idx)
3505{
3506    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3507    struct eth_tx_start_bd *tx_start_bd;
3508    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3509    uint16_t new_cons;
3510    int nbd;
3511
3512    /* unmap the mbuf from non-paged memory */
3513    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3514
3515    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3516    nbd = le16toh(tx_start_bd->nbd) - 1;
3517
3518#if 0
3519    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3520        bxe_panic(sc, ("BAD nbd!\n"));
3521    }
3522#endif
3523
3524    new_cons = (tx_buf->first_bd + nbd);
3525
3526#if 0
3527    struct eth_tx_bd *tx_data_bd;
3528
3529    /*
3530     * The following code doesn't do anything but is left here
3531     * for clarity on what the new value of new_cons skipped.
3532     */
3533
3534    /* get the next bd */
3535    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3536
3537    /* skip the parse bd */
3538    --nbd;
3539    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3540
3541    /* skip the TSO split header bd since they have no mapping */
3542    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3543        --nbd;
3544        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3545    }
3546
3547    /* now free frags */
3548    while (nbd > 0) {
3549        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3550        if (--nbd) {
3551            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3552        }
3553    }
3554#endif
3555
3556    /* free the mbuf */
3557    if (__predict_true(tx_buf->m != NULL)) {
3558        m_freem(tx_buf->m);
3559        fp->eth_q_stats.mbuf_alloc_tx--;
3560    } else {
3561        fp->eth_q_stats.tx_chain_lost_mbuf++;
3562    }
3563
3564    tx_buf->m = NULL;
3565    tx_buf->first_bd = 0;
3566
3567    return (new_cons);
3568}
3569
3570/* transmit timeout watchdog */
3571static int
3572bxe_watchdog(struct bxe_softc    *sc,
3573             struct bxe_fastpath *fp)
3574{
3575    BXE_FP_TX_LOCK(fp);
3576
3577    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3578        BXE_FP_TX_UNLOCK(fp);
3579        return (0);
3580    }
3581
3582    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3583
3584    BXE_FP_TX_UNLOCK(fp);
3585
3586    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3587    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3588
3589    return (-1);
3590}
3591
3592/* processes transmit completions */
3593static uint8_t
3594bxe_txeof(struct bxe_softc    *sc,
3595          struct bxe_fastpath *fp)
3596{
3597    if_t ifp = sc->ifp;
3598    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3599    uint16_t tx_bd_avail;
3600
3601    BXE_FP_TX_LOCK_ASSERT(fp);
3602
3603    bd_cons = fp->tx_bd_cons;
3604    hw_cons = le16toh(*fp->tx_cons_sb);
3605    sw_cons = fp->tx_pkt_cons;
3606
3607    while (sw_cons != hw_cons) {
3608        pkt_cons = TX_BD(sw_cons);
3609
3610        BLOGD(sc, DBG_TX,
3611              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3612              fp->index, hw_cons, sw_cons, pkt_cons);
3613
3614        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3615
3616        sw_cons++;
3617    }
3618
3619    fp->tx_pkt_cons = sw_cons;
3620    fp->tx_bd_cons  = bd_cons;
3621
3622    BLOGD(sc, DBG_TX,
3623          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3624          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3625
3626    mb();
3627
3628    tx_bd_avail = bxe_tx_avail(sc, fp);
3629
3630    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3631        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3632    } else {
3633        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3634    }
3635
3636    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3637        /* reset the watchdog timer if there are pending transmits */
3638        fp->watchdog_timer = BXE_TX_TIMEOUT;
3639        return (TRUE);
3640    } else {
3641        /* clear watchdog when there are no pending transmits */
3642        fp->watchdog_timer = 0;
3643        return (FALSE);
3644    }
3645}
3646
3647static void
3648bxe_drain_tx_queues(struct bxe_softc *sc)
3649{
3650    struct bxe_fastpath *fp;
3651    int i, count;
3652
3653    /* wait until all TX fastpath tasks have completed */
3654    for (i = 0; i < sc->num_queues; i++) {
3655        fp = &sc->fp[i];
3656
3657        count = 1000;
3658
3659        while (bxe_has_tx_work(fp)) {
3660
3661            BXE_FP_TX_LOCK(fp);
3662            bxe_txeof(sc, fp);
3663            BXE_FP_TX_UNLOCK(fp);
3664
3665            if (count == 0) {
3666                BLOGE(sc, "Timeout waiting for fp[%d] "
3667                          "transmits to complete!\n", i);
3668                bxe_panic(sc, ("tx drain failure\n"));
3669                return;
3670            }
3671
3672            count--;
3673            DELAY(1000);
3674            rmb();
3675        }
3676    }
3677
3678    return;
3679}
3680
3681static int
3682bxe_del_all_macs(struct bxe_softc          *sc,
3683                 struct ecore_vlan_mac_obj *mac_obj,
3684                 int                       mac_type,
3685                 uint8_t                   wait_for_comp)
3686{
3687    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3688    int rc;
3689
3690    /* wait for completion of requested */
3691    if (wait_for_comp) {
3692        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3693    }
3694
3695    /* Set the mac type of addresses we want to clear */
3696    bxe_set_bit(mac_type, &vlan_mac_flags);
3697
3698    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3699    if (rc < 0) {
3700        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3701    }
3702
3703    return (rc);
3704}
3705
3706static int
3707bxe_fill_accept_flags(struct bxe_softc *sc,
3708                      uint32_t         rx_mode,
3709                      unsigned long    *rx_accept_flags,
3710                      unsigned long    *tx_accept_flags)
3711{
3712    /* Clear the flags first */
3713    *rx_accept_flags = 0;
3714    *tx_accept_flags = 0;
3715
3716    switch (rx_mode) {
3717    case BXE_RX_MODE_NONE:
3718        /*
3719         * 'drop all' supersedes any accept flags that may have been
3720         * passed to the function.
3721         */
3722        break;
3723
3724    case BXE_RX_MODE_NORMAL:
3725        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3726        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3727        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3728
3729        /* internal switching mode */
3730        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3731        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3732        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3733
3734        break;
3735
3736    case BXE_RX_MODE_ALLMULTI:
3737        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3738        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3739        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3740
3741        /* internal switching mode */
3742        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3743        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3744        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3745
3746        break;
3747
3748    case BXE_RX_MODE_PROMISC:
3749        /*
3750         * According to deffinition of SI mode, iface in promisc mode
3751         * should receive matched and unmatched (in resolution of port)
3752         * unicast packets.
3753         */
3754        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758
3759        /* internal switching mode */
3760        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3761        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3762
3763        if (IS_MF_SI(sc)) {
3764            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3765        } else {
3766            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3767        }
3768
3769        break;
3770
3771    default:
3772        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3773        return (-1);
3774    }
3775
3776    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3777    if (rx_mode != BXE_RX_MODE_NONE) {
3778        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3779        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3780    }
3781
3782    return (0);
3783}
3784
3785static int
3786bxe_set_q_rx_mode(struct bxe_softc *sc,
3787                  uint8_t          cl_id,
3788                  unsigned long    rx_mode_flags,
3789                  unsigned long    rx_accept_flags,
3790                  unsigned long    tx_accept_flags,
3791                  unsigned long    ramrod_flags)
3792{
3793    struct ecore_rx_mode_ramrod_params ramrod_param;
3794    int rc;
3795
3796    memset(&ramrod_param, 0, sizeof(ramrod_param));
3797
3798    /* Prepare ramrod parameters */
3799    ramrod_param.cid = 0;
3800    ramrod_param.cl_id = cl_id;
3801    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3802    ramrod_param.func_id = SC_FUNC(sc);
3803
3804    ramrod_param.pstate = &sc->sp_state;
3805    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3806
3807    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3808    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3809
3810    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3811
3812    ramrod_param.ramrod_flags = ramrod_flags;
3813    ramrod_param.rx_mode_flags = rx_mode_flags;
3814
3815    ramrod_param.rx_accept_flags = rx_accept_flags;
3816    ramrod_param.tx_accept_flags = tx_accept_flags;
3817
3818    rc = ecore_config_rx_mode(sc, &ramrod_param);
3819    if (rc < 0) {
3820        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3821        return (rc);
3822    }
3823
3824    return (0);
3825}
3826
3827static int
3828bxe_set_storm_rx_mode(struct bxe_softc *sc)
3829{
3830    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3831    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3832    int rc;
3833
3834    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3835                               &tx_accept_flags);
3836    if (rc) {
3837        return (rc);
3838    }
3839
3840    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3841    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3842
3843    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3844    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3845                              rx_accept_flags, tx_accept_flags,
3846                              ramrod_flags));
3847}
3848
3849/* returns the "mcp load_code" according to global load_count array */
3850static int
3851bxe_nic_load_no_mcp(struct bxe_softc *sc)
3852{
3853    int path = SC_PATH(sc);
3854    int port = SC_PORT(sc);
3855
3856    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3857          path, load_count[path][0], load_count[path][1],
3858          load_count[path][2]);
3859    load_count[path][0]++;
3860    load_count[path][1 + port]++;
3861    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3862          path, load_count[path][0], load_count[path][1],
3863          load_count[path][2]);
3864    if (load_count[path][0] == 1) {
3865        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3866    } else if (load_count[path][1 + port] == 1) {
3867        return (FW_MSG_CODE_DRV_LOAD_PORT);
3868    } else {
3869        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3870    }
3871}
3872
3873/* returns the "mcp load_code" according to global load_count array */
3874static int
3875bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3876{
3877    int port = SC_PORT(sc);
3878    int path = SC_PATH(sc);
3879
3880    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3881          path, load_count[path][0], load_count[path][1],
3882          load_count[path][2]);
3883    load_count[path][0]--;
3884    load_count[path][1 + port]--;
3885    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3886          path, load_count[path][0], load_count[path][1],
3887          load_count[path][2]);
3888    if (load_count[path][0] == 0) {
3889        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3890    } else if (load_count[path][1 + port] == 0) {
3891        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3892    } else {
3893        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3894    }
3895}
3896
3897/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3898static uint32_t
3899bxe_send_unload_req(struct bxe_softc *sc,
3900                    int              unload_mode)
3901{
3902    uint32_t reset_code = 0;
3903#if 0
3904    int port = SC_PORT(sc);
3905    int path = SC_PATH(sc);
3906#endif
3907
3908    /* Select the UNLOAD request mode */
3909    if (unload_mode == UNLOAD_NORMAL) {
3910        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3911    }
3912#if 0
3913    else if (sc->flags & BXE_NO_WOL_FLAG) {
3914        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3915    } else if (sc->wol) {
3916        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3917        uint8_t *mac_addr = sc->dev->dev_addr;
3918        uint32_t val;
3919        uint16_t pmc;
3920
3921        /*
3922         * The mac address is written to entries 1-4 to
3923         * preserve entry 0 which is used by the PMF
3924         */
3925        uint8_t entry = (SC_VN(sc) + 1)*8;
3926
3927        val = (mac_addr[0] << 8) | mac_addr[1];
3928        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3929
3930        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3931              (mac_addr[4] << 8) | mac_addr[5];
3932        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3933
3934        /* Enable the PME and clear the status */
3935        pmc = pci_read_config(sc->dev,
3936                              (sc->devinfo.pcie_pm_cap_reg +
3937                               PCIR_POWER_STATUS),
3938                              2);
3939        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3940        pci_write_config(sc->dev,
3941                         (sc->devinfo.pcie_pm_cap_reg +
3942                          PCIR_POWER_STATUS),
3943                         pmc, 4);
3944
3945        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3946    }
3947#endif
3948    else {
3949        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3950    }
3951
3952    /* Send the request to the MCP */
3953    if (!BXE_NOMCP(sc)) {
3954        reset_code = bxe_fw_command(sc, reset_code, 0);
3955    } else {
3956        reset_code = bxe_nic_unload_no_mcp(sc);
3957    }
3958
3959    return (reset_code);
3960}
3961
3962/* send UNLOAD_DONE command to the MCP */
3963static void
3964bxe_send_unload_done(struct bxe_softc *sc,
3965                     uint8_t          keep_link)
3966{
3967    uint32_t reset_param =
3968        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3969
3970    /* Report UNLOAD_DONE to MCP */
3971    if (!BXE_NOMCP(sc)) {
3972        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3973    }
3974}
3975
3976static int
3977bxe_func_wait_started(struct bxe_softc *sc)
3978{
3979    int tout = 50;
3980
3981    if (!sc->port.pmf) {
3982        return (0);
3983    }
3984
3985    /*
3986     * (assumption: No Attention from MCP at this stage)
3987     * PMF probably in the middle of TX disable/enable transaction
3988     * 1. Sync IRS for default SB
3989     * 2. Sync SP queue - this guarantees us that attention handling started
3990     * 3. Wait, that TX disable/enable transaction completes
3991     *
3992     * 1+2 guarantee that if DCBX attention was scheduled it already changed
3993     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3994     * received completion for the transaction the state is TX_STOPPED.
3995     * State will return to STARTED after completion of TX_STOPPED-->STARTED
3996     * transaction.
3997     */
3998
3999    /* XXX make sure default SB ISR is done */
4000    /* need a way to synchronize an irq (intr_mtx?) */
4001
4002    /* XXX flush any work queues */
4003
4004    while (ecore_func_get_state(sc, &sc->func_obj) !=
4005           ECORE_F_STATE_STARTED && tout--) {
4006        DELAY(20000);
4007    }
4008
4009    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4010        /*
4011         * Failed to complete the transaction in a "good way"
4012         * Force both transactions with CLR bit.
4013         */
4014        struct ecore_func_state_params func_params = { NULL };
4015
4016        BLOGE(sc, "Unexpected function state! "
4017                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4018
4019        func_params.f_obj = &sc->func_obj;
4020        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4021
4022        /* STARTED-->TX_STOPPED */
4023        func_params.cmd = ECORE_F_CMD_TX_STOP;
4024        ecore_func_state_change(sc, &func_params);
4025
4026        /* TX_STOPPED-->STARTED */
4027        func_params.cmd = ECORE_F_CMD_TX_START;
4028        return (ecore_func_state_change(sc, &func_params));
4029    }
4030
4031    return (0);
4032}
4033
4034static int
4035bxe_stop_queue(struct bxe_softc *sc,
4036               int              index)
4037{
4038    struct bxe_fastpath *fp = &sc->fp[index];
4039    struct ecore_queue_state_params q_params = { NULL };
4040    int rc;
4041
4042    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4043
4044    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4045    /* We want to wait for completion in this context */
4046    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4047
4048    /* Stop the primary connection: */
4049
4050    /* ...halt the connection */
4051    q_params.cmd = ECORE_Q_CMD_HALT;
4052    rc = ecore_queue_state_change(sc, &q_params);
4053    if (rc) {
4054        return (rc);
4055    }
4056
4057    /* ...terminate the connection */
4058    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4059    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4060    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4061    rc = ecore_queue_state_change(sc, &q_params);
4062    if (rc) {
4063        return (rc);
4064    }
4065
4066    /* ...delete cfc entry */
4067    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4068    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4069    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4070    return (ecore_queue_state_change(sc, &q_params));
4071}
4072
4073/* wait for the outstanding SP commands */
4074static inline uint8_t
4075bxe_wait_sp_comp(struct bxe_softc *sc,
4076                 unsigned long    mask)
4077{
4078    unsigned long tmp;
4079    int tout = 5000; /* wait for 5 secs tops */
4080
4081    while (tout--) {
4082        mb();
4083        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4084            return (TRUE);
4085        }
4086
4087        DELAY(1000);
4088    }
4089
4090    mb();
4091
4092    tmp = atomic_load_acq_long(&sc->sp_state);
4093    if (tmp & mask) {
4094        BLOGE(sc, "Filtering completion timed out: "
4095                  "sp_state 0x%lx, mask 0x%lx\n",
4096              tmp, mask);
4097        return (FALSE);
4098    }
4099
4100    return (FALSE);
4101}
4102
4103static int
4104bxe_func_stop(struct bxe_softc *sc)
4105{
4106    struct ecore_func_state_params func_params = { NULL };
4107    int rc;
4108
4109    /* prepare parameters for function state transitions */
4110    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4111    func_params.f_obj = &sc->func_obj;
4112    func_params.cmd = ECORE_F_CMD_STOP;
4113
4114    /*
4115     * Try to stop the function the 'good way'. If it fails (in case
4116     * of a parity error during bxe_chip_cleanup()) and we are
4117     * not in a debug mode, perform a state transaction in order to
4118     * enable further HW_RESET transaction.
4119     */
4120    rc = ecore_func_state_change(sc, &func_params);
4121    if (rc) {
4122        BLOGE(sc, "FUNC_STOP ramrod failed. "
4123                  "Running a dry transaction\n");
4124        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4125        return (ecore_func_state_change(sc, &func_params));
4126    }
4127
4128    return (0);
4129}
4130
4131static int
4132bxe_reset_hw(struct bxe_softc *sc,
4133             uint32_t         load_code)
4134{
4135    struct ecore_func_state_params func_params = { NULL };
4136
4137    /* Prepare parameters for function state transitions */
4138    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4139
4140    func_params.f_obj = &sc->func_obj;
4141    func_params.cmd = ECORE_F_CMD_HW_RESET;
4142
4143    func_params.params.hw_init.load_phase = load_code;
4144
4145    return (ecore_func_state_change(sc, &func_params));
4146}
4147
4148static void
4149bxe_int_disable_sync(struct bxe_softc *sc,
4150                     int              disable_hw)
4151{
4152    if (disable_hw) {
4153        /* prevent the HW from sending interrupts */
4154        bxe_int_disable(sc);
4155    }
4156
4157    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4158    /* make sure all ISRs are done */
4159
4160    /* XXX make sure sp_task is not running */
4161    /* cancel and flush work queues */
4162}
4163
4164static void
4165bxe_chip_cleanup(struct bxe_softc *sc,
4166                 uint32_t         unload_mode,
4167                 uint8_t          keep_link)
4168{
4169    int port = SC_PORT(sc);
4170    struct ecore_mcast_ramrod_params rparam = { NULL };
4171    uint32_t reset_code;
4172    int i, rc = 0;
4173
4174    bxe_drain_tx_queues(sc);
4175
4176    /* give HW time to discard old tx messages */
4177    DELAY(1000);
4178
4179    /* Clean all ETH MACs */
4180    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4181    if (rc < 0) {
4182        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4183    }
4184
4185    /* Clean up UC list  */
4186    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4187    if (rc < 0) {
4188        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4189    }
4190
4191    /* Disable LLH */
4192    if (!CHIP_IS_E1(sc)) {
4193        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4194    }
4195
4196    /* Set "drop all" to stop Rx */
4197
4198    /*
4199     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4200     * a race between the completion code and this code.
4201     */
4202    BXE_MCAST_LOCK(sc);
4203
4204    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4205        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4206    } else {
4207        bxe_set_storm_rx_mode(sc);
4208    }
4209
4210    /* Clean up multicast configuration */
4211    rparam.mcast_obj = &sc->mcast_obj;
4212    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4213    if (rc < 0) {
4214        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4215    }
4216
4217    BXE_MCAST_UNLOCK(sc);
4218
4219    // XXX bxe_iov_chip_cleanup(sc);
4220
4221    /*
4222     * Send the UNLOAD_REQUEST to the MCP. This will return if
4223     * this function should perform FUNCTION, PORT, or COMMON HW
4224     * reset.
4225     */
4226    reset_code = bxe_send_unload_req(sc, unload_mode);
4227
4228    /*
4229     * (assumption: No Attention from MCP at this stage)
4230     * PMF probably in the middle of TX disable/enable transaction
4231     */
4232    rc = bxe_func_wait_started(sc);
4233    if (rc) {
4234        BLOGE(sc, "bxe_func_wait_started failed\n");
4235    }
4236
4237    /*
4238     * Close multi and leading connections
4239     * Completions for ramrods are collected in a synchronous way
4240     */
4241    for (i = 0; i < sc->num_queues; i++) {
4242        if (bxe_stop_queue(sc, i)) {
4243            goto unload_error;
4244        }
4245    }
4246
4247    /*
4248     * If SP settings didn't get completed so far - something
4249     * very wrong has happen.
4250     */
4251    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4252        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4253    }
4254
4255unload_error:
4256
4257    rc = bxe_func_stop(sc);
4258    if (rc) {
4259        BLOGE(sc, "Function stop failed!\n");
4260    }
4261
4262    /* disable HW interrupts */
4263    bxe_int_disable_sync(sc, TRUE);
4264
4265    /* detach interrupts */
4266    bxe_interrupt_detach(sc);
4267
4268    /* Reset the chip */
4269    rc = bxe_reset_hw(sc, reset_code);
4270    if (rc) {
4271        BLOGE(sc, "Hardware reset failed\n");
4272    }
4273
4274    /* Report UNLOAD_DONE to MCP */
4275    bxe_send_unload_done(sc, keep_link);
4276}
4277
4278static void
4279bxe_disable_close_the_gate(struct bxe_softc *sc)
4280{
4281    uint32_t val;
4282    int port = SC_PORT(sc);
4283
4284    BLOGD(sc, DBG_LOAD,
4285          "Disabling 'close the gates'\n");
4286
4287    if (CHIP_IS_E1(sc)) {
4288        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4289                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4290        val = REG_RD(sc, addr);
4291        val &= ~(0x300);
4292        REG_WR(sc, addr, val);
4293    } else {
4294        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4295        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4296                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4297        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4298    }
4299}
4300
4301/*
4302 * Cleans the object that have internal lists without sending
4303 * ramrods. Should be run when interrutps are disabled.
4304 */
4305static void
4306bxe_squeeze_objects(struct bxe_softc *sc)
4307{
4308    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4309    struct ecore_mcast_ramrod_params rparam = { NULL };
4310    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4311    int rc;
4312
4313    /* Cleanup MACs' object first... */
4314
4315    /* Wait for completion of requested */
4316    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4317    /* Perform a dry cleanup */
4318    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4319
4320    /* Clean ETH primary MAC */
4321    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4322    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4323                             &ramrod_flags);
4324    if (rc != 0) {
4325        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4326    }
4327
4328    /* Cleanup UC list */
4329    vlan_mac_flags = 0;
4330    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4331    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4332                             &ramrod_flags);
4333    if (rc != 0) {
4334        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4335    }
4336
4337    /* Now clean mcast object... */
4338
4339    rparam.mcast_obj = &sc->mcast_obj;
4340    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4341
4342    /* Add a DEL command... */
4343    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4344    if (rc < 0) {
4345        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4346    }
4347
4348    /* now wait until all pending commands are cleared */
4349
4350    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4351    while (rc != 0) {
4352        if (rc < 0) {
4353            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4354            return;
4355        }
4356
4357        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4358    }
4359}
4360
4361/* stop the controller */
4362static __noinline int
4363bxe_nic_unload(struct bxe_softc *sc,
4364               uint32_t         unload_mode,
4365               uint8_t          keep_link)
4366{
4367    uint8_t global = FALSE;
4368    uint32_t val;
4369
4370    BXE_CORE_LOCK_ASSERT(sc);
4371
4372    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4373
4374    /* mark driver as unloaded in shmem2 */
4375    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4376        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4377        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4378                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4379    }
4380
4381    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4382        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4383        /*
4384         * We can get here if the driver has been unloaded
4385         * during parity error recovery and is either waiting for a
4386         * leader to complete or for other functions to unload and
4387         * then ifconfig down has been issued. In this case we want to
4388         * unload and let other functions to complete a recovery
4389         * process.
4390         */
4391        sc->recovery_state = BXE_RECOVERY_DONE;
4392        sc->is_leader = 0;
4393        bxe_release_leader_lock(sc);
4394        mb();
4395
4396        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4397        BLOGE(sc, "Can't unload in closed or error state\n");
4398        return (-1);
4399    }
4400
4401    /*
4402     * Nothing to do during unload if previous bxe_nic_load()
4403     * did not completed succesfully - all resourses are released.
4404     */
4405    if ((sc->state == BXE_STATE_CLOSED) ||
4406        (sc->state == BXE_STATE_ERROR)) {
4407        return (0);
4408    }
4409
4410    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4411    mb();
4412
4413    /* stop tx */
4414    bxe_tx_disable(sc);
4415
4416    sc->rx_mode = BXE_RX_MODE_NONE;
4417    /* XXX set rx mode ??? */
4418
4419    if (IS_PF(sc)) {
4420        /* set ALWAYS_ALIVE bit in shmem */
4421        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4422
4423        bxe_drv_pulse(sc);
4424
4425        bxe_stats_handle(sc, STATS_EVENT_STOP);
4426        bxe_save_statistics(sc);
4427    }
4428
4429    /* wait till consumers catch up with producers in all queues */
4430    bxe_drain_tx_queues(sc);
4431
4432    /* if VF indicate to PF this function is going down (PF will delete sp
4433     * elements and clear initializations
4434     */
4435    if (IS_VF(sc)) {
4436        ; /* bxe_vfpf_close_vf(sc); */
4437    } else if (unload_mode != UNLOAD_RECOVERY) {
4438        /* if this is a normal/close unload need to clean up chip */
4439        bxe_chip_cleanup(sc, unload_mode, keep_link);
4440    } else {
4441        /* Send the UNLOAD_REQUEST to the MCP */
4442        bxe_send_unload_req(sc, unload_mode);
4443
4444        /*
4445         * Prevent transactions to host from the functions on the
4446         * engine that doesn't reset global blocks in case of global
4447         * attention once gloabl blocks are reset and gates are opened
4448         * (the engine which leader will perform the recovery
4449         * last).
4450         */
4451        if (!CHIP_IS_E1x(sc)) {
4452            bxe_pf_disable(sc);
4453        }
4454
4455        /* disable HW interrupts */
4456        bxe_int_disable_sync(sc, TRUE);
4457
4458        /* detach interrupts */
4459        bxe_interrupt_detach(sc);
4460
4461        /* Report UNLOAD_DONE to MCP */
4462        bxe_send_unload_done(sc, FALSE);
4463    }
4464
4465    /*
4466     * At this stage no more interrupts will arrive so we may safely clean
4467     * the queue'able objects here in case they failed to get cleaned so far.
4468     */
4469    if (IS_PF(sc)) {
4470        bxe_squeeze_objects(sc);
4471    }
4472
4473    /* There should be no more pending SP commands at this stage */
4474    sc->sp_state = 0;
4475
4476    sc->port.pmf = 0;
4477
4478    bxe_free_fp_buffers(sc);
4479
4480    if (IS_PF(sc)) {
4481        bxe_free_mem(sc);
4482    }
4483
4484    bxe_free_fw_stats_mem(sc);
4485
4486    sc->state = BXE_STATE_CLOSED;
4487
4488    /*
4489     * Check if there are pending parity attentions. If there are - set
4490     * RECOVERY_IN_PROGRESS.
4491     */
4492    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4493        bxe_set_reset_in_progress(sc);
4494
4495        /* Set RESET_IS_GLOBAL if needed */
4496        if (global) {
4497            bxe_set_reset_global(sc);
4498        }
4499    }
4500
4501    /*
4502     * The last driver must disable a "close the gate" if there is no
4503     * parity attention or "process kill" pending.
4504     */
4505    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4506        bxe_reset_is_done(sc, SC_PATH(sc))) {
4507        bxe_disable_close_the_gate(sc);
4508    }
4509
4510    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4511
4512    return (0);
4513}
4514
4515/*
4516 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4517 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4518 */
4519static int
4520bxe_ifmedia_update(struct ifnet  *ifp)
4521{
4522    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4523    struct ifmedia *ifm;
4524
4525    ifm = &sc->ifmedia;
4526
4527    /* We only support Ethernet media type. */
4528    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4529        return (EINVAL);
4530    }
4531
4532    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4533    case IFM_AUTO:
4534         break;
4535    case IFM_10G_CX4:
4536    case IFM_10G_SR:
4537    case IFM_10G_T:
4538    case IFM_10G_TWINAX:
4539    default:
4540        /* We don't support changing the media type. */
4541        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4542              IFM_SUBTYPE(ifm->ifm_media));
4543        return (EINVAL);
4544    }
4545
4546    return (0);
4547}
4548
4549/*
4550 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4551 */
4552static void
4553bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4554{
4555    struct bxe_softc *sc = if_getsoftc(ifp);
4556
4557    /* Report link down if the driver isn't running. */
4558    if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4559        ifmr->ifm_active |= IFM_NONE;
4560        return;
4561    }
4562
4563    /* Setup the default interface info. */
4564    ifmr->ifm_status = IFM_AVALID;
4565    ifmr->ifm_active = IFM_ETHER;
4566
4567    if (sc->link_vars.link_up) {
4568        ifmr->ifm_status |= IFM_ACTIVE;
4569    } else {
4570        ifmr->ifm_active |= IFM_NONE;
4571        return;
4572    }
4573
4574    ifmr->ifm_active |= sc->media;
4575
4576    if (sc->link_vars.duplex == DUPLEX_FULL) {
4577        ifmr->ifm_active |= IFM_FDX;
4578    } else {
4579        ifmr->ifm_active |= IFM_HDX;
4580    }
4581}
4582
4583static int
4584bxe_ioctl_nvram(struct bxe_softc *sc,
4585                uint32_t         priv_op,
4586                struct ifreq     *ifr)
4587{
4588    struct bxe_nvram_data nvdata_base;
4589    struct bxe_nvram_data *nvdata;
4590    int len;
4591    int error = 0;
4592
4593    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4594
4595    len = (sizeof(struct bxe_nvram_data) +
4596           nvdata_base.len -
4597           sizeof(uint32_t));
4598
4599    if (len > sizeof(struct bxe_nvram_data)) {
4600        if ((nvdata = (struct bxe_nvram_data *)
4601                 malloc(len, M_DEVBUF,
4602                        (M_NOWAIT | M_ZERO))) == NULL) {
4603            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4604            return (1);
4605        }
4606        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4607    } else {
4608        nvdata = &nvdata_base;
4609    }
4610
4611    if (priv_op == BXE_IOC_RD_NVRAM) {
4612        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4613              nvdata->offset, nvdata->len);
4614        error = bxe_nvram_read(sc,
4615                               nvdata->offset,
4616                               (uint8_t *)nvdata->value,
4617                               nvdata->len);
4618        copyout(nvdata, ifr->ifr_data, len);
4619    } else { /* BXE_IOC_WR_NVRAM */
4620        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4621              nvdata->offset, nvdata->len);
4622        copyin(ifr->ifr_data, nvdata, len);
4623        error = bxe_nvram_write(sc,
4624                                nvdata->offset,
4625                                (uint8_t *)nvdata->value,
4626                                nvdata->len);
4627    }
4628
4629    if (len > sizeof(struct bxe_nvram_data)) {
4630        free(nvdata, M_DEVBUF);
4631    }
4632
4633    return (error);
4634}
4635
4636static int
4637bxe_ioctl_stats_show(struct bxe_softc *sc,
4638                     uint32_t         priv_op,
4639                     struct ifreq     *ifr)
4640{
4641    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4642    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4643    caddr_t p_tmp;
4644    uint32_t *offset;
4645    int i;
4646
4647    switch (priv_op)
4648    {
4649    case BXE_IOC_STATS_SHOW_NUM:
4650        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4651        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4652            BXE_NUM_ETH_STATS;
4653        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4654            STAT_NAME_LEN;
4655        return (0);
4656
4657    case BXE_IOC_STATS_SHOW_STR:
4658        memset(ifr->ifr_data, 0, str_size);
4659        p_tmp = ifr->ifr_data;
4660        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4661            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4662            p_tmp += STAT_NAME_LEN;
4663        }
4664        return (0);
4665
4666    case BXE_IOC_STATS_SHOW_CNT:
4667        memset(ifr->ifr_data, 0, stats_size);
4668        p_tmp = ifr->ifr_data;
4669        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4670            offset = ((uint32_t *)&sc->eth_stats +
4671                      bxe_eth_stats_arr[i].offset);
4672            switch (bxe_eth_stats_arr[i].size) {
4673            case 4:
4674                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4675                break;
4676            case 8:
4677                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4678                break;
4679            default:
4680                *((uint64_t *)p_tmp) = 0;
4681            }
4682            p_tmp += sizeof(uint64_t);
4683        }
4684        return (0);
4685
4686    default:
4687        return (-1);
4688    }
4689}
4690
4691static void
4692bxe_handle_chip_tq(void *context,
4693                   int  pending)
4694{
4695    struct bxe_softc *sc = (struct bxe_softc *)context;
4696    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4697
4698    switch (work)
4699    {
4700    case CHIP_TQ_START:
4701        if ((if_getflags(sc->ifp) & IFF_UP) &&
4702            !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4703            /* start the interface */
4704            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4705            BXE_CORE_LOCK(sc);
4706            bxe_init_locked(sc);
4707            BXE_CORE_UNLOCK(sc);
4708        }
4709        break;
4710
4711    case CHIP_TQ_STOP:
4712        if (!(if_getflags(sc->ifp) & IFF_UP) &&
4713            (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4714            /* bring down the interface */
4715            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4716            bxe_periodic_stop(sc);
4717            BXE_CORE_LOCK(sc);
4718            bxe_stop_locked(sc);
4719            BXE_CORE_UNLOCK(sc);
4720        }
4721        break;
4722
4723    case CHIP_TQ_REINIT:
4724        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4725            /* restart the interface */
4726            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4727            bxe_periodic_stop(sc);
4728            BXE_CORE_LOCK(sc);
4729            bxe_stop_locked(sc);
4730            bxe_init_locked(sc);
4731            BXE_CORE_UNLOCK(sc);
4732        }
4733        break;
4734
4735    default:
4736        break;
4737    }
4738}
4739
4740/*
4741 * Handles any IOCTL calls from the operating system.
4742 *
4743 * Returns:
4744 *   0 = Success, >0 Failure
4745 */
4746static int
4747bxe_ioctl(if_t ifp,
4748          u_long       command,
4749          caddr_t      data)
4750{
4751    struct bxe_softc *sc = if_getsoftc(ifp);
4752    struct ifreq *ifr = (struct ifreq *)data;
4753    struct bxe_nvram_data *nvdata;
4754    uint32_t priv_op;
4755    int mask = 0;
4756    int reinit = 0;
4757    int error = 0;
4758
4759    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4760    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4761
4762    switch (command)
4763    {
4764    case SIOCSIFMTU:
4765        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4766              ifr->ifr_mtu);
4767
4768        if (sc->mtu == ifr->ifr_mtu) {
4769            /* nothing to change */
4770            break;
4771        }
4772
4773        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4774            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4775                  ifr->ifr_mtu, mtu_min, mtu_max);
4776            error = EINVAL;
4777            break;
4778        }
4779
4780        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4781                             (unsigned long)ifr->ifr_mtu);
4782	/*
4783        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4784                              (unsigned long)ifr->ifr_mtu);
4785	XXX - Not sure why it needs to be atomic
4786	*/
4787	if_setmtu(ifp, ifr->ifr_mtu);
4788        reinit = 1;
4789        break;
4790
4791    case SIOCSIFFLAGS:
4792        /* toggle the interface state up or down */
4793        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4794
4795        /* check if the interface is up */
4796        if (if_getflags(ifp) & IFF_UP) {
4797            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4798                /* set the receive mode flags */
4799                bxe_set_rx_mode(sc);
4800            } else {
4801                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4802                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4803            }
4804        } else {
4805            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4806                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4807                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4808            }
4809        }
4810
4811        break;
4812
4813    case SIOCADDMULTI:
4814    case SIOCDELMULTI:
4815        /* add/delete multicast addresses */
4816        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4817
4818        /* check if the interface is up */
4819        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4820            /* set the receive mode flags */
4821            bxe_set_rx_mode(sc);
4822        }
4823
4824        break;
4825
4826    case SIOCSIFCAP:
4827        /* find out which capabilities have changed */
4828        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4829
4830        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4831              mask);
4832
4833        /* toggle the LRO capabilites enable flag */
4834        if (mask & IFCAP_LRO) {
4835	    if_togglecapenable(ifp, IFCAP_LRO);
4836            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4837                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4838            reinit = 1;
4839        }
4840
4841        /* toggle the TXCSUM checksum capabilites enable flag */
4842        if (mask & IFCAP_TXCSUM) {
4843	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4844            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4845                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4846            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4847                if_sethwassistbits(ifp, (CSUM_IP      |
4848                                    CSUM_TCP      |
4849                                    CSUM_UDP      |
4850                                    CSUM_TSO      |
4851                                    CSUM_TCP_IPV6 |
4852                                    CSUM_UDP_IPV6), 0);
4853            } else {
4854		if_clearhwassist(ifp); /* XXX */
4855            }
4856        }
4857
4858        /* toggle the RXCSUM checksum capabilities enable flag */
4859        if (mask & IFCAP_RXCSUM) {
4860	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4861            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4862                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4863            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4864                if_sethwassistbits(ifp, (CSUM_IP      |
4865                                    CSUM_TCP      |
4866                                    CSUM_UDP      |
4867                                    CSUM_TSO      |
4868                                    CSUM_TCP_IPV6 |
4869                                    CSUM_UDP_IPV6), 0);
4870            } else {
4871		if_clearhwassist(ifp); /* XXX */
4872            }
4873        }
4874
4875        /* toggle TSO4 capabilities enabled flag */
4876        if (mask & IFCAP_TSO4) {
4877            if_togglecapenable(ifp, IFCAP_TSO4);
4878            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4879                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4880        }
4881
4882        /* toggle TSO6 capabilities enabled flag */
4883        if (mask & IFCAP_TSO6) {
4884	    if_togglecapenable(ifp, IFCAP_TSO6);
4885            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4886                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4887        }
4888
4889        /* toggle VLAN_HWTSO capabilities enabled flag */
4890        if (mask & IFCAP_VLAN_HWTSO) {
4891
4892	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4893            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4894                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle VLAN_HWCSUM capabilities enabled flag */
4898        if (mask & IFCAP_VLAN_HWCSUM) {
4899            /* XXX investigate this... */
4900            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4901            error = EINVAL;
4902        }
4903
4904        /* toggle VLAN_MTU capabilities enable flag */
4905        if (mask & IFCAP_VLAN_MTU) {
4906            /* XXX investigate this... */
4907            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4908            error = EINVAL;
4909        }
4910
4911        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWTAGGING) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_HWFILTER capabilities enabled flag */
4919        if (mask & IFCAP_VLAN_HWFILTER) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* XXX not yet...
4926         * IFCAP_WOL_MAGIC
4927         */
4928
4929        break;
4930
4931    case SIOCSIFMEDIA:
4932    case SIOCGIFMEDIA:
4933        /* set/get interface media */
4934        BLOGD(sc, DBG_IOCTL,
4935              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4936              (command & 0xff));
4937        error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command);
4938        break;
4939
4940    case SIOCGPRIVATE_0:
4941        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4942
4943        switch (priv_op)
4944        {
4945        case BXE_IOC_RD_NVRAM:
4946        case BXE_IOC_WR_NVRAM:
4947            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4948            BLOGD(sc, DBG_IOCTL,
4949                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4950                  nvdata->offset, nvdata->len);
4951            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4952            break;
4953
4954        case BXE_IOC_STATS_SHOW_NUM:
4955        case BXE_IOC_STATS_SHOW_STR:
4956        case BXE_IOC_STATS_SHOW_CNT:
4957            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4958                  priv_op);
4959            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4960            break;
4961
4962        default:
4963            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4964            error = EINVAL;
4965            break;
4966        }
4967
4968        break;
4969
4970    default:
4971        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4972              (command & 0xff));
4973        error = ether_ioctl_drv(ifp, command, data);
4974        break;
4975    }
4976
4977    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4978        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4979              "Re-initializing hardware from IOCTL change\n");
4980        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4981        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4982    }
4983
4984    return (error);
4985}
4986
4987static __noinline void
4988bxe_dump_mbuf(struct bxe_softc *sc,
4989              struct mbuf      *m,
4990              uint8_t          contents)
4991{
4992    char * type;
4993    int i = 0;
4994
4995    if (!(sc->debug & DBG_MBUF)) {
4996        return;
4997    }
4998
4999    if (m == NULL) {
5000        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5001        return;
5002    }
5003
5004    while (m) {
5005        BLOGD(sc, DBG_MBUF,
5006              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5007              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5008
5009        if (m->m_flags & M_PKTHDR) {
5010             BLOGD(sc, DBG_MBUF,
5011                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5012                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5013                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5014        }
5015
5016        if (m->m_flags & M_EXT) {
5017            switch (m->m_ext.ext_type) {
5018            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5019            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5020            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5021            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5022            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5023            case EXT_PACKET:     type = "EXT_PACKET";     break;
5024            case EXT_MBUF:       type = "EXT_MBUF";       break;
5025            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5026            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5027            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5028            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5029            default:             type = "UNKNOWN";        break;
5030            }
5031
5032            BLOGD(sc, DBG_MBUF,
5033                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5034                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5035        }
5036
5037        if (contents) {
5038            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5039        }
5040
5041        m = m->m_next;
5042        i++;
5043    }
5044}
5045
5046/*
5047 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5048 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5049 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5050 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5051 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5052 */
5053static int
5054bxe_chktso_window(struct bxe_softc  *sc,
5055                  int               nsegs,
5056                  bus_dma_segment_t *segs,
5057                  struct mbuf       *m)
5058{
5059    uint32_t num_wnds, wnd_size, wnd_sum;
5060    int32_t frag_idx, wnd_idx;
5061    unsigned short lso_mss;
5062    int defrag;
5063
5064    defrag = 0;
5065    wnd_sum = 0;
5066    wnd_size = 10;
5067    num_wnds = nsegs - wnd_size;
5068    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5069
5070    /*
5071     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5072     * first window sum of data while skipping the first assuming it is the
5073     * header in FreeBSD.
5074     */
5075    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5076        wnd_sum += htole16(segs[frag_idx].ds_len);
5077    }
5078
5079    /* check the first 10 bd window size */
5080    if (wnd_sum < lso_mss) {
5081        return (1);
5082    }
5083
5084    /* run through the windows */
5085    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5086        /* subtract the first mbuf->m_len of the last wndw(-header) */
5087        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5088        /* add the next mbuf len to the len of our new window */
5089        wnd_sum += htole16(segs[frag_idx].ds_len);
5090        if (wnd_sum < lso_mss) {
5091            return (1);
5092        }
5093    }
5094
5095    return (0);
5096}
5097
5098static uint8_t
5099bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5100                    struct mbuf         *m,
5101                    uint32_t            *parsing_data)
5102{
5103    struct ether_vlan_header *eh = NULL;
5104    struct ip *ip4 = NULL;
5105    struct ip6_hdr *ip6 = NULL;
5106    caddr_t ip = NULL;
5107    struct tcphdr *th = NULL;
5108    int e_hlen, ip_hlen, l4_off;
5109    uint16_t proto;
5110
5111    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5112        /* no L4 checksum offload needed */
5113        return (0);
5114    }
5115
5116    /* get the Ethernet header */
5117    eh = mtod(m, struct ether_vlan_header *);
5118
5119    /* handle VLAN encapsulation if present */
5120    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5121        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5122        proto  = ntohs(eh->evl_proto);
5123    } else {
5124        e_hlen = ETHER_HDR_LEN;
5125        proto  = ntohs(eh->evl_encap_proto);
5126    }
5127
5128    switch (proto) {
5129    case ETHERTYPE_IP:
5130        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5131        ip4 = (m->m_len < sizeof(struct ip)) ?
5132                  (struct ip *)m->m_next->m_data :
5133                  (struct ip *)(m->m_data + e_hlen);
5134        /* ip_hl is number of 32-bit words */
5135        ip_hlen = (ip4->ip_hl << 2);
5136        ip = (caddr_t)ip4;
5137        break;
5138    case ETHERTYPE_IPV6:
5139        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5140        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5141                  (struct ip6_hdr *)m->m_next->m_data :
5142                  (struct ip6_hdr *)(m->m_data + e_hlen);
5143        /* XXX cannot support offload with IPv6 extensions */
5144        ip_hlen = sizeof(struct ip6_hdr);
5145        ip = (caddr_t)ip6;
5146        break;
5147    default:
5148        /* We can't offload in this case... */
5149        /* XXX error stat ??? */
5150        return (0);
5151    }
5152
5153    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5154    l4_off = (e_hlen + ip_hlen);
5155
5156    *parsing_data |=
5157        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5158         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5159
5160    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5161                                  CSUM_TSO |
5162                                  CSUM_TCP_IPV6)) {
5163        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5164        th = (struct tcphdr *)(ip + ip_hlen);
5165        /* th_off is number of 32-bit words */
5166        *parsing_data |= ((th->th_off <<
5167                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5168                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5169        return (l4_off + (th->th_off << 2)); /* entire header length */
5170    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5171                                         CSUM_UDP_IPV6)) {
5172        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5173        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5174    } else {
5175        /* XXX error stat ??? */
5176        return (0);
5177    }
5178}
5179
5180static uint8_t
5181bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5182                 struct mbuf                *m,
5183                 struct eth_tx_parse_bd_e1x *pbd)
5184{
5185    struct ether_vlan_header *eh = NULL;
5186    struct ip *ip4 = NULL;
5187    struct ip6_hdr *ip6 = NULL;
5188    caddr_t ip = NULL;
5189    struct tcphdr *th = NULL;
5190    struct udphdr *uh = NULL;
5191    int e_hlen, ip_hlen;
5192    uint16_t proto;
5193    uint8_t hlen;
5194    uint16_t tmp_csum;
5195    uint32_t *tmp_uh;
5196
5197    /* get the Ethernet header */
5198    eh = mtod(m, struct ether_vlan_header *);
5199
5200    /* handle VLAN encapsulation if present */
5201    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5202        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5203        proto  = ntohs(eh->evl_proto);
5204    } else {
5205        e_hlen = ETHER_HDR_LEN;
5206        proto  = ntohs(eh->evl_encap_proto);
5207    }
5208
5209    switch (proto) {
5210    case ETHERTYPE_IP:
5211        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5212        ip4 = (m->m_len < sizeof(struct ip)) ?
5213                  (struct ip *)m->m_next->m_data :
5214                  (struct ip *)(m->m_data + e_hlen);
5215        /* ip_hl is number of 32-bit words */
5216        ip_hlen = (ip4->ip_hl << 1);
5217        ip = (caddr_t)ip4;
5218        break;
5219    case ETHERTYPE_IPV6:
5220        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5221        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5222                  (struct ip6_hdr *)m->m_next->m_data :
5223                  (struct ip6_hdr *)(m->m_data + e_hlen);
5224        /* XXX cannot support offload with IPv6 extensions */
5225        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5226        ip = (caddr_t)ip6;
5227        break;
5228    default:
5229        /* We can't offload in this case... */
5230        /* XXX error stat ??? */
5231        return (0);
5232    }
5233
5234    hlen = (e_hlen >> 1);
5235
5236    /* note that rest of global_data is indirectly zeroed here */
5237    if (m->m_flags & M_VLANTAG) {
5238        pbd->global_data =
5239            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5240    } else {
5241        pbd->global_data = htole16(hlen);
5242    }
5243
5244    pbd->ip_hlen_w = ip_hlen;
5245
5246    hlen += pbd->ip_hlen_w;
5247
5248    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5249
5250    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5251                                  CSUM_TSO |
5252                                  CSUM_TCP_IPV6)) {
5253        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5254        /* th_off is number of 32-bit words */
5255        hlen += (uint16_t)(th->th_off << 1);
5256    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5257                                         CSUM_UDP_IPV6)) {
5258        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5259        hlen += (sizeof(struct udphdr) / 2);
5260    } else {
5261        /* valid case as only CSUM_IP was set */
5262        return (0);
5263    }
5264
5265    pbd->total_hlen_w = htole16(hlen);
5266
5267    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5268                                  CSUM_TSO |
5269                                  CSUM_TCP_IPV6)) {
5270        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5271        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5272    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5273                                         CSUM_UDP_IPV6)) {
5274        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5275
5276        /*
5277         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5278         * checksums and does not know anything about the UDP header and where
5279         * the checksum field is located. It only knows about TCP. Therefore
5280         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5281         * offload. Since the checksum field offset for TCP is 16 bytes and
5282         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5283         * bytes less than the start of the UDP header. This allows the
5284         * hardware to write the checksum in the correct spot. But the
5285         * hardware will compute a checksum which includes the last 10 bytes
5286         * of the IP header. To correct this we tweak the stack computed
5287         * pseudo checksum by folding in the calculation of the inverse
5288         * checksum for those final 10 bytes of the IP header. This allows
5289         * the correct checksum to be computed by the hardware.
5290         */
5291
5292        /* set pointer 10 bytes before UDP header */
5293        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5294
5295        /* calculate a pseudo header checksum over the first 10 bytes */
5296        tmp_csum = in_pseudo(*tmp_uh,
5297                             *(tmp_uh + 1),
5298                             *(uint16_t *)(tmp_uh + 2));
5299
5300        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5301    }
5302
5303    return (hlen * 2); /* entire header length, number of bytes */
5304}
5305
5306static void
5307bxe_set_pbd_lso_e2(struct mbuf *m,
5308                   uint32_t    *parsing_data)
5309{
5310    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5311                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5312                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5313
5314    /* XXX test for IPv6 with extension header... */
5315#if 0
5316    struct ip6_hdr *ip6;
5317    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5318        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5319#endif
5320}
5321
5322static void
5323bxe_set_pbd_lso(struct mbuf                *m,
5324                struct eth_tx_parse_bd_e1x *pbd)
5325{
5326    struct ether_vlan_header *eh = NULL;
5327    struct ip *ip = NULL;
5328    struct tcphdr *th = NULL;
5329    int e_hlen;
5330
5331    /* get the Ethernet header */
5332    eh = mtod(m, struct ether_vlan_header *);
5333
5334    /* handle VLAN encapsulation if present */
5335    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5336                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5337
5338    /* get the IP and TCP header, with LSO entire header in first mbuf */
5339    /* XXX assuming IPv4 */
5340    ip = (struct ip *)(m->m_data + e_hlen);
5341    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5342
5343    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5344    pbd->tcp_send_seq = ntohl(th->th_seq);
5345    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5346
5347#if 1
5348        /* XXX IPv4 */
5349        pbd->ip_id = ntohs(ip->ip_id);
5350        pbd->tcp_pseudo_csum =
5351            ntohs(in_pseudo(ip->ip_src.s_addr,
5352                            ip->ip_dst.s_addr,
5353                            htons(IPPROTO_TCP)));
5354#else
5355        /* XXX IPv6 */
5356        pbd->tcp_pseudo_csum =
5357            ntohs(in_pseudo(&ip6->ip6_src,
5358                            &ip6->ip6_dst,
5359                            htons(IPPROTO_TCP)));
5360#endif
5361
5362    pbd->global_data |=
5363        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5364}
5365
5366/*
5367 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5368 * visible to the controller.
5369 *
5370 * If an mbuf is submitted to this routine and cannot be given to the
5371 * controller (e.g. it has too many fragments) then the function may free
5372 * the mbuf and return to the caller.
5373 *
5374 * Returns:
5375 *   0 = Success, !0 = Failure
5376 *   Note the side effect that an mbuf may be freed if it causes a problem.
5377 */
5378static int
5379bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5380{
5381    bus_dma_segment_t segs[32];
5382    struct mbuf *m0;
5383    struct bxe_sw_tx_bd *tx_buf;
5384    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5385    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5386    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5387    struct eth_tx_bd *tx_data_bd;
5388    struct eth_tx_bd *tx_total_pkt_size_bd;
5389    struct eth_tx_start_bd *tx_start_bd;
5390    uint16_t bd_prod, pkt_prod, total_pkt_size;
5391    uint8_t mac_type;
5392    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5393    struct bxe_softc *sc;
5394    uint16_t tx_bd_avail;
5395    struct ether_vlan_header *eh;
5396    uint32_t pbd_e2_parsing_data = 0;
5397    uint8_t hlen = 0;
5398    int tmp_bd;
5399    int i;
5400
5401    sc = fp->sc;
5402
5403    M_ASSERTPKTHDR(*m_head);
5404
5405    m0 = *m_head;
5406    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5407    tx_start_bd = NULL;
5408    tx_data_bd = NULL;
5409    tx_total_pkt_size_bd = NULL;
5410
5411    /* get the H/W pointer for packets and BDs */
5412    pkt_prod = fp->tx_pkt_prod;
5413    bd_prod = fp->tx_bd_prod;
5414
5415    mac_type = UNICAST_ADDRESS;
5416
5417    /* map the mbuf into the next open DMAable memory */
5418    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5419    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5420                                    tx_buf->m_map, m0,
5421                                    segs, &nsegs, BUS_DMA_NOWAIT);
5422
5423    /* mapping errors */
5424    if(__predict_false(error != 0)) {
5425        fp->eth_q_stats.tx_dma_mapping_failure++;
5426        if (error == ENOMEM) {
5427            /* resource issue, try again later */
5428            rc = ENOMEM;
5429        } else if (error == EFBIG) {
5430            /* possibly recoverable with defragmentation */
5431            fp->eth_q_stats.mbuf_defrag_attempts++;
5432            m0 = m_defrag(*m_head, M_NOWAIT);
5433            if (m0 == NULL) {
5434                fp->eth_q_stats.mbuf_defrag_failures++;
5435                rc = ENOBUFS;
5436            } else {
5437                /* defrag successful, try mapping again */
5438                *m_head = m0;
5439                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5440                                                tx_buf->m_map, m0,
5441                                                segs, &nsegs, BUS_DMA_NOWAIT);
5442                if (error) {
5443                    fp->eth_q_stats.tx_dma_mapping_failure++;
5444                    rc = error;
5445                }
5446            }
5447        } else {
5448            /* unknown, unrecoverable mapping error */
5449            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5450            bxe_dump_mbuf(sc, m0, FALSE);
5451            rc = error;
5452        }
5453
5454        goto bxe_tx_encap_continue;
5455    }
5456
5457    tx_bd_avail = bxe_tx_avail(sc, fp);
5458
5459    /* make sure there is enough room in the send queue */
5460    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5461        /* Recoverable, try again later. */
5462        fp->eth_q_stats.tx_hw_queue_full++;
5463        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5464        rc = ENOMEM;
5465        goto bxe_tx_encap_continue;
5466    }
5467
5468    /* capture the current H/W TX chain high watermark */
5469    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5470                        (TX_BD_USABLE - tx_bd_avail))) {
5471        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5472    }
5473
5474    /* make sure it fits in the packet window */
5475    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5476        /*
5477         * The mbuf may be to big for the controller to handle. If the frame
5478         * is a TSO frame we'll need to do an additional check.
5479         */
5480        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5481            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5482                goto bxe_tx_encap_continue; /* OK to send */
5483            } else {
5484                fp->eth_q_stats.tx_window_violation_tso++;
5485            }
5486        } else {
5487            fp->eth_q_stats.tx_window_violation_std++;
5488        }
5489
5490        /* lets try to defragment this mbuf and remap it */
5491        fp->eth_q_stats.mbuf_defrag_attempts++;
5492        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5493
5494        m0 = m_defrag(*m_head, M_NOWAIT);
5495        if (m0 == NULL) {
5496            fp->eth_q_stats.mbuf_defrag_failures++;
5497            /* Ugh, just drop the frame... :( */
5498            rc = ENOBUFS;
5499        } else {
5500            /* defrag successful, try mapping again */
5501            *m_head = m0;
5502            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5503                                            tx_buf->m_map, m0,
5504                                            segs, &nsegs, BUS_DMA_NOWAIT);
5505            if (error) {
5506                fp->eth_q_stats.tx_dma_mapping_failure++;
5507                /* No sense in trying to defrag/copy chain, drop it. :( */
5508                rc = error;
5509            }
5510            else {
5511                /* if the chain is still too long then drop it */
5512                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5513                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5514                    rc = ENODEV;
5515                }
5516            }
5517        }
5518    }
5519
5520bxe_tx_encap_continue:
5521
5522    /* Check for errors */
5523    if (rc) {
5524        if (rc == ENOMEM) {
5525            /* recoverable try again later  */
5526        } else {
5527            fp->eth_q_stats.tx_soft_errors++;
5528            fp->eth_q_stats.mbuf_alloc_tx--;
5529            m_freem(*m_head);
5530            *m_head = NULL;
5531        }
5532
5533        return (rc);
5534    }
5535
5536    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5537    if (m0->m_flags & M_BCAST) {
5538        mac_type = BROADCAST_ADDRESS;
5539    } else if (m0->m_flags & M_MCAST) {
5540        mac_type = MULTICAST_ADDRESS;
5541    }
5542
5543    /* store the mbuf into the mbuf ring */
5544    tx_buf->m        = m0;
5545    tx_buf->first_bd = fp->tx_bd_prod;
5546    tx_buf->flags    = 0;
5547
5548    /* prepare the first transmit (start) BD for the mbuf */
5549    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5550
5551    BLOGD(sc, DBG_TX,
5552          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5553          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5554
5555    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5556    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5557    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5558    total_pkt_size += tx_start_bd->nbytes;
5559    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5560
5561    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5562
5563    /* all frames have at least Start BD + Parsing BD */
5564    nbds = nsegs + 1;
5565    tx_start_bd->nbd = htole16(nbds);
5566
5567    if (m0->m_flags & M_VLANTAG) {
5568        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5569        tx_start_bd->bd_flags.as_bitfield |=
5570            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5571    } else {
5572        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5573        if (IS_VF(sc)) {
5574            /* map ethernet header to find type and header length */
5575            eh = mtod(m0, struct ether_vlan_header *);
5576            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5577        } else {
5578            /* used by FW for packet accounting */
5579            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5580#if 0
5581            /*
5582             * If NPAR-SD is active then FW should do the tagging regardless
5583             * of value of priority. Otherwise, if priority indicates this is
5584             * a control packet we need to indicate to FW to avoid tagging.
5585             */
5586            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5587                SET_FLAG(tx_start_bd->general_data,
5588                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5589            }
5590#endif
5591        }
5592    }
5593
5594    /*
5595     * add a parsing BD from the chain. The parsing BD is always added
5596     * though it is only used for TSO and chksum
5597     */
5598    bd_prod = TX_BD_NEXT(bd_prod);
5599
5600    if (m0->m_pkthdr.csum_flags) {
5601        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5602            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5603            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5604        }
5605
5606        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5607            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5608                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5609        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5610            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5611                                                  ETH_TX_BD_FLAGS_IS_UDP |
5612                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5613        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5614                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5615            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5616        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5617            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5618                                                  ETH_TX_BD_FLAGS_IS_UDP);
5619        }
5620    }
5621
5622    if (!CHIP_IS_E1x(sc)) {
5623        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5624        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5625
5626        if (m0->m_pkthdr.csum_flags) {
5627            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5628        }
5629
5630#if 0
5631        /*
5632         * Add the MACs to the parsing BD if the module param was
5633         * explicitly set, if this is a vf, or in switch independent
5634         * mode.
5635         */
5636        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5637            eh = mtod(m0, struct ether_vlan_header *);
5638            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5639                                &pbd_e2->data.mac_addr.src_mid,
5640                                &pbd_e2->data.mac_addr.src_lo,
5641                                eh->evl_shost);
5642            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5643                                &pbd_e2->data.mac_addr.dst_mid,
5644                                &pbd_e2->data.mac_addr.dst_lo,
5645                                eh->evl_dhost);
5646        }
5647#endif
5648
5649        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5650                 mac_type);
5651    } else {
5652        uint16_t global_data = 0;
5653
5654        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5655        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5656
5657        if (m0->m_pkthdr.csum_flags) {
5658            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5659        }
5660
5661        SET_FLAG(global_data,
5662                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5663        pbd_e1x->global_data |= htole16(global_data);
5664    }
5665
5666    /* setup the parsing BD with TSO specific info */
5667    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5668        fp->eth_q_stats.tx_ofld_frames_lso++;
5669        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5670
5671        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5672            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5673
5674            /* split the first BD into header/data making the fw job easy */
5675            nbds++;
5676            tx_start_bd->nbd = htole16(nbds);
5677            tx_start_bd->nbytes = htole16(hlen);
5678
5679            bd_prod = TX_BD_NEXT(bd_prod);
5680
5681            /* new transmit BD after the tx_parse_bd */
5682            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5683            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5684            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5685            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5686            if (tx_total_pkt_size_bd == NULL) {
5687                tx_total_pkt_size_bd = tx_data_bd;
5688            }
5689
5690            BLOGD(sc, DBG_TX,
5691                  "TSO split header size is %d (%x:%x) nbds %d\n",
5692                  le16toh(tx_start_bd->nbytes),
5693                  le32toh(tx_start_bd->addr_hi),
5694                  le32toh(tx_start_bd->addr_lo),
5695                  nbds);
5696        }
5697
5698        if (!CHIP_IS_E1x(sc)) {
5699            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5700        } else {
5701            bxe_set_pbd_lso(m0, pbd_e1x);
5702        }
5703    }
5704
5705    if (pbd_e2_parsing_data) {
5706        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5707    }
5708
5709    /* prepare remaining BDs, start tx bd contains first seg/frag */
5710    for (i = 1; i < nsegs ; i++) {
5711        bd_prod = TX_BD_NEXT(bd_prod);
5712        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5713        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5714        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5715        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5716        if (tx_total_pkt_size_bd == NULL) {
5717            tx_total_pkt_size_bd = tx_data_bd;
5718        }
5719        total_pkt_size += tx_data_bd->nbytes;
5720    }
5721
5722    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5723
5724    if (tx_total_pkt_size_bd != NULL) {
5725        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5726    }
5727
5728    if (__predict_false(sc->debug & DBG_TX)) {
5729        tmp_bd = tx_buf->first_bd;
5730        for (i = 0; i < nbds; i++)
5731        {
5732            if (i == 0) {
5733                BLOGD(sc, DBG_TX,
5734                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5735                      "bd_flags=0x%x hdr_nbds=%d\n",
5736                      tx_start_bd,
5737                      tmp_bd,
5738                      le16toh(tx_start_bd->nbd),
5739                      le16toh(tx_start_bd->vlan_or_ethertype),
5740                      tx_start_bd->bd_flags.as_bitfield,
5741                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5742            } else if (i == 1) {
5743                if (pbd_e1x) {
5744                    BLOGD(sc, DBG_TX,
5745                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5746                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5747                          "tcp_seq=%u total_hlen_w=%u\n",
5748                          pbd_e1x,
5749                          tmp_bd,
5750                          pbd_e1x->global_data,
5751                          pbd_e1x->ip_hlen_w,
5752                          pbd_e1x->ip_id,
5753                          pbd_e1x->lso_mss,
5754                          pbd_e1x->tcp_flags,
5755                          pbd_e1x->tcp_pseudo_csum,
5756                          pbd_e1x->tcp_send_seq,
5757                          le16toh(pbd_e1x->total_hlen_w));
5758                } else { /* if (pbd_e2) */
5759                    BLOGD(sc, DBG_TX,
5760                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5761                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5762                          pbd_e2,
5763                          tmp_bd,
5764                          pbd_e2->data.mac_addr.dst_hi,
5765                          pbd_e2->data.mac_addr.dst_mid,
5766                          pbd_e2->data.mac_addr.dst_lo,
5767                          pbd_e2->data.mac_addr.src_hi,
5768                          pbd_e2->data.mac_addr.src_mid,
5769                          pbd_e2->data.mac_addr.src_lo,
5770                          pbd_e2->parsing_data);
5771                }
5772            }
5773
5774            if (i != 1) { /* skip parse db as it doesn't hold data */
5775                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5776                BLOGD(sc, DBG_TX,
5777                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5778                      tx_data_bd,
5779                      tmp_bd,
5780                      le16toh(tx_data_bd->nbytes),
5781                      le32toh(tx_data_bd->addr_hi),
5782                      le32toh(tx_data_bd->addr_lo));
5783            }
5784
5785            tmp_bd = TX_BD_NEXT(tmp_bd);
5786        }
5787    }
5788
5789    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5790
5791    /* update TX BD producer index value for next TX */
5792    bd_prod = TX_BD_NEXT(bd_prod);
5793
5794    /*
5795     * If the chain of tx_bd's describing this frame is adjacent to or spans
5796     * an eth_tx_next_bd element then we need to increment the nbds value.
5797     */
5798    if (TX_BD_IDX(bd_prod) < nbds) {
5799        nbds++;
5800    }
5801
5802    /* don't allow reordering of writes for nbd and packets */
5803    mb();
5804
5805    fp->tx_db.data.prod += nbds;
5806
5807    /* producer points to the next free tx_bd at this point */
5808    fp->tx_pkt_prod++;
5809    fp->tx_bd_prod = bd_prod;
5810
5811    DOORBELL(sc, fp->index, fp->tx_db.raw);
5812
5813    fp->eth_q_stats.tx_pkts++;
5814
5815    /* Prevent speculative reads from getting ahead of the status block. */
5816    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5817                      0, 0, BUS_SPACE_BARRIER_READ);
5818
5819    /* Prevent speculative reads from getting ahead of the doorbell. */
5820    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5821                      0, 0, BUS_SPACE_BARRIER_READ);
5822
5823    return (0);
5824}
5825
5826static void
5827bxe_tx_start_locked(struct bxe_softc *sc,
5828                    if_t ifp,
5829                    struct bxe_fastpath *fp)
5830{
5831    struct mbuf *m = NULL;
5832    int tx_count = 0;
5833    uint16_t tx_bd_avail;
5834
5835    BXE_FP_TX_LOCK_ASSERT(fp);
5836
5837    /* keep adding entries while there are frames to send */
5838    while (!if_sendq_empty(ifp)) {
5839
5840        /*
5841         * check for any frames to send
5842         * dequeue can still be NULL even if queue is not empty
5843         */
5844        m = if_dequeue(ifp);
5845        if (__predict_false(m == NULL)) {
5846            break;
5847        }
5848
5849        /* the mbuf now belongs to us */
5850        fp->eth_q_stats.mbuf_alloc_tx++;
5851
5852        /*
5853         * Put the frame into the transmit ring. If we don't have room,
5854         * place the mbuf back at the head of the TX queue, set the
5855         * OACTIVE flag, and wait for the NIC to drain the chain.
5856         */
5857        if (__predict_false(bxe_tx_encap(fp, &m))) {
5858            fp->eth_q_stats.tx_encap_failures++;
5859            if (m != NULL) {
5860                /* mark the TX queue as full and return the frame */
5861                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5862		if_sendq_prepend(ifp, m);
5863                fp->eth_q_stats.mbuf_alloc_tx--;
5864                fp->eth_q_stats.tx_queue_xoff++;
5865            }
5866
5867            /* stop looking for more work */
5868            break;
5869        }
5870
5871        /* the frame was enqueued successfully */
5872        tx_count++;
5873
5874        /* send a copy of the frame to any BPF listeners. */
5875        if_etherbpfmtap(ifp, m);
5876
5877        tx_bd_avail = bxe_tx_avail(sc, fp);
5878
5879        /* handle any completions if we're running low */
5880        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5881            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5882            bxe_txeof(sc, fp);
5883            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5884                break;
5885            }
5886        }
5887    }
5888
5889    /* all TX packets were dequeued and/or the tx ring is full */
5890    if (tx_count > 0) {
5891        /* reset the TX watchdog timeout timer */
5892        fp->watchdog_timer = BXE_TX_TIMEOUT;
5893    }
5894}
5895
5896/* Legacy (non-RSS) dispatch routine */
5897static void
5898bxe_tx_start(if_t ifp)
5899{
5900    struct bxe_softc *sc;
5901    struct bxe_fastpath *fp;
5902
5903    sc = if_getsoftc(ifp);
5904
5905    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5906        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5907        return;
5908    }
5909
5910    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5911        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5912        return;
5913    }
5914
5915    if (!sc->link_vars.link_up) {
5916        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5917        return;
5918    }
5919
5920    fp = &sc->fp[0];
5921
5922    BXE_FP_TX_LOCK(fp);
5923    bxe_tx_start_locked(sc, ifp, fp);
5924    BXE_FP_TX_UNLOCK(fp);
5925}
5926
5927#if __FreeBSD_version >= 800000
5928
5929static int
5930bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5931                       if_t                ifp,
5932                       struct bxe_fastpath *fp,
5933                       struct mbuf         *m)
5934{
5935    struct buf_ring *tx_br = fp->tx_br;
5936    struct mbuf *next;
5937    int depth, rc, tx_count;
5938    uint16_t tx_bd_avail;
5939
5940    rc = tx_count = 0;
5941
5942    if (!tx_br) {
5943        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5944        return (EINVAL);
5945    }
5946
5947    /* fetch the depth of the driver queue */
5948    depth = drbr_inuse_drv(ifp, tx_br);
5949    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5950        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5951    }
5952
5953    BXE_FP_TX_LOCK_ASSERT(fp);
5954
5955    if (m == NULL) {
5956        /* no new work, check for pending frames */
5957        next = drbr_dequeue_drv(ifp, tx_br);
5958    } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5959        /* have both new and pending work, maintain packet order */
5960        rc = drbr_enqueue_drv(ifp, tx_br, m);
5961        if (rc != 0) {
5962            fp->eth_q_stats.tx_soft_errors++;
5963            goto bxe_tx_mq_start_locked_exit;
5964        }
5965        next = drbr_dequeue_drv(ifp, tx_br);
5966    } else {
5967        /* new work only and nothing pending */
5968        next = m;
5969    }
5970
5971    /* keep adding entries while there are frames to send */
5972    while (next != NULL) {
5973
5974        /* the mbuf now belongs to us */
5975        fp->eth_q_stats.mbuf_alloc_tx++;
5976
5977        /*
5978         * Put the frame into the transmit ring. If we don't have room,
5979         * place the mbuf back at the head of the TX queue, set the
5980         * OACTIVE flag, and wait for the NIC to drain the chain.
5981         */
5982        rc = bxe_tx_encap(fp, &next);
5983        if (__predict_false(rc != 0)) {
5984            fp->eth_q_stats.tx_encap_failures++;
5985            if (next != NULL) {
5986                /* mark the TX queue as full and save the frame */
5987                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5988                /* XXX this may reorder the frame */
5989                rc = drbr_enqueue_drv(ifp, tx_br, next);
5990                fp->eth_q_stats.mbuf_alloc_tx--;
5991                fp->eth_q_stats.tx_frames_deferred++;
5992            }
5993
5994            /* stop looking for more work */
5995            break;
5996        }
5997
5998        /* the transmit frame was enqueued successfully */
5999        tx_count++;
6000
6001        /* send a copy of the frame to any BPF listeners */
6002	if_etherbpfmtap(ifp, next);
6003
6004        tx_bd_avail = bxe_tx_avail(sc, fp);
6005
6006        /* handle any completions if we're running low */
6007        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6008            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6009            bxe_txeof(sc, fp);
6010            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6011                break;
6012            }
6013        }
6014
6015        next = drbr_dequeue_drv(ifp, tx_br);
6016    }
6017
6018    /* all TX packets were dequeued and/or the tx ring is full */
6019    if (tx_count > 0) {
6020        /* reset the TX watchdog timeout timer */
6021        fp->watchdog_timer = BXE_TX_TIMEOUT;
6022    }
6023
6024bxe_tx_mq_start_locked_exit:
6025
6026    return (rc);
6027}
6028
6029/* Multiqueue (TSS) dispatch routine. */
6030static int
6031bxe_tx_mq_start(struct ifnet *ifp,
6032                struct mbuf  *m)
6033{
6034    struct bxe_softc *sc = if_getsoftc(ifp);
6035    struct bxe_fastpath *fp;
6036    int fp_index, rc;
6037
6038    fp_index = 0; /* default is the first queue */
6039
6040    /* change the queue if using flow ID */
6041    if ((m->m_flags & M_FLOWID) != 0) {
6042        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6043    }
6044
6045    fp = &sc->fp[fp_index];
6046
6047    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6048        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6049        return (ENETDOWN);
6050    }
6051
6052    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6053        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6054        return (EBUSY);
6055    }
6056
6057    if (!sc->link_vars.link_up) {
6058        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6059        return (ENETDOWN);
6060    }
6061
6062    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6063
6064    BXE_FP_TX_LOCK(fp);
6065    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6066    BXE_FP_TX_UNLOCK(fp);
6067
6068    return (rc);
6069}
6070
6071static void
6072bxe_mq_flush(struct ifnet *ifp)
6073{
6074    struct bxe_softc *sc = if_getsoftc(ifp);
6075    struct bxe_fastpath *fp;
6076    struct mbuf *m;
6077    int i;
6078
6079    for (i = 0; i < sc->num_queues; i++) {
6080        fp = &sc->fp[i];
6081
6082        if (fp->state != BXE_FP_STATE_OPEN) {
6083            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6084                  fp->index, fp->state);
6085            continue;
6086        }
6087
6088        if (fp->tx_br != NULL) {
6089            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6090            BXE_FP_TX_LOCK(fp);
6091            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6092                m_freem(m);
6093            }
6094            BXE_FP_TX_UNLOCK(fp);
6095        }
6096    }
6097
6098    if_qflush_drv(ifp);
6099}
6100
6101#endif /* FreeBSD_version >= 800000 */
6102
6103static uint16_t
6104bxe_cid_ilt_lines(struct bxe_softc *sc)
6105{
6106    if (IS_SRIOV(sc)) {
6107        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6108    }
6109    return (L2_ILT_LINES(sc));
6110}
6111
6112static void
6113bxe_ilt_set_info(struct bxe_softc *sc)
6114{
6115    struct ilt_client_info *ilt_client;
6116    struct ecore_ilt *ilt = sc->ilt;
6117    uint16_t line = 0;
6118
6119    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6120    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6121
6122    /* CDU */
6123    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6124    ilt_client->client_num = ILT_CLIENT_CDU;
6125    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6126    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6127    ilt_client->start = line;
6128    line += bxe_cid_ilt_lines(sc);
6129
6130    if (CNIC_SUPPORT(sc)) {
6131        line += CNIC_ILT_LINES;
6132    }
6133
6134    ilt_client->end = (line - 1);
6135
6136    BLOGD(sc, DBG_LOAD,
6137          "ilt client[CDU]: start %d, end %d, "
6138          "psz 0x%x, flags 0x%x, hw psz %d\n",
6139          ilt_client->start, ilt_client->end,
6140          ilt_client->page_size,
6141          ilt_client->flags,
6142          ilog2(ilt_client->page_size >> 12));
6143
6144    /* QM */
6145    if (QM_INIT(sc->qm_cid_count)) {
6146        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6147        ilt_client->client_num = ILT_CLIENT_QM;
6148        ilt_client->page_size = QM_ILT_PAGE_SZ;
6149        ilt_client->flags = 0;
6150        ilt_client->start = line;
6151
6152        /* 4 bytes for each cid */
6153        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6154                             QM_ILT_PAGE_SZ);
6155
6156        ilt_client->end = (line - 1);
6157
6158        BLOGD(sc, DBG_LOAD,
6159              "ilt client[QM]: start %d, end %d, "
6160              "psz 0x%x, flags 0x%x, hw psz %d\n",
6161              ilt_client->start, ilt_client->end,
6162              ilt_client->page_size, ilt_client->flags,
6163              ilog2(ilt_client->page_size >> 12));
6164    }
6165
6166    if (CNIC_SUPPORT(sc)) {
6167        /* SRC */
6168        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6169        ilt_client->client_num = ILT_CLIENT_SRC;
6170        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6171        ilt_client->flags = 0;
6172        ilt_client->start = line;
6173        line += SRC_ILT_LINES;
6174        ilt_client->end = (line - 1);
6175
6176        BLOGD(sc, DBG_LOAD,
6177              "ilt client[SRC]: start %d, end %d, "
6178              "psz 0x%x, flags 0x%x, hw psz %d\n",
6179              ilt_client->start, ilt_client->end,
6180              ilt_client->page_size, ilt_client->flags,
6181              ilog2(ilt_client->page_size >> 12));
6182
6183        /* TM */
6184        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6185        ilt_client->client_num = ILT_CLIENT_TM;
6186        ilt_client->page_size = TM_ILT_PAGE_SZ;
6187        ilt_client->flags = 0;
6188        ilt_client->start = line;
6189        line += TM_ILT_LINES;
6190        ilt_client->end = (line - 1);
6191
6192        BLOGD(sc, DBG_LOAD,
6193              "ilt client[TM]: start %d, end %d, "
6194              "psz 0x%x, flags 0x%x, hw psz %d\n",
6195              ilt_client->start, ilt_client->end,
6196              ilt_client->page_size, ilt_client->flags,
6197              ilog2(ilt_client->page_size >> 12));
6198    }
6199
6200    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6201}
6202
6203static void
6204bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6205{
6206    int i;
6207
6208    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6209
6210    for (i = 0; i < sc->num_queues; i++) {
6211        /* get the Rx buffer size for RX frames */
6212        sc->fp[i].rx_buf_size =
6213            (IP_HEADER_ALIGNMENT_PADDING +
6214             ETH_OVERHEAD +
6215             sc->mtu);
6216
6217        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6218              i, sc->fp[i].rx_buf_size);
6219
6220        /* get the mbuf allocation size for RX frames */
6221        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6222            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6223        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6224            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6225        } else {
6226            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6227        }
6228
6229        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6230              i, sc->fp[i].mbuf_alloc_size);
6231    }
6232}
6233
6234static int
6235bxe_alloc_ilt_mem(struct bxe_softc *sc)
6236{
6237    int rc = 0;
6238
6239    if ((sc->ilt =
6240         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6241                                    M_BXE_ILT,
6242                                    (M_NOWAIT | M_ZERO))) == NULL) {
6243        rc = 1;
6244    }
6245
6246    return (rc);
6247}
6248
6249static int
6250bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6251{
6252    int rc = 0;
6253
6254    if ((sc->ilt->lines =
6255         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6256                                    M_BXE_ILT,
6257                                    (M_NOWAIT | M_ZERO))) == NULL) {
6258        rc = 1;
6259    }
6260
6261    return (rc);
6262}
6263
6264static void
6265bxe_free_ilt_mem(struct bxe_softc *sc)
6266{
6267    if (sc->ilt != NULL) {
6268        free(sc->ilt, M_BXE_ILT);
6269        sc->ilt = NULL;
6270    }
6271}
6272
6273static void
6274bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6275{
6276    if (sc->ilt->lines != NULL) {
6277        free(sc->ilt->lines, M_BXE_ILT);
6278        sc->ilt->lines = NULL;
6279    }
6280}
6281
6282static void
6283bxe_free_mem(struct bxe_softc *sc)
6284{
6285    int i;
6286
6287#if 0
6288    if (!CONFIGURE_NIC_MODE(sc)) {
6289        /* free searcher T2 table */
6290        bxe_dma_free(sc, &sc->t2);
6291    }
6292#endif
6293
6294    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6295        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6296        sc->context[i].vcxt = NULL;
6297        sc->context[i].size = 0;
6298    }
6299
6300    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6301
6302    bxe_free_ilt_lines_mem(sc);
6303
6304#if 0
6305    bxe_iov_free_mem(sc);
6306#endif
6307}
6308
6309static int
6310bxe_alloc_mem(struct bxe_softc *sc)
6311{
6312    int context_size;
6313    int allocated;
6314    int i;
6315
6316#if 0
6317    if (!CONFIGURE_NIC_MODE(sc)) {
6318        /* allocate searcher T2 table */
6319        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6320                          &sc->t2, "searcher t2 table") != 0) {
6321            return (-1);
6322        }
6323    }
6324#endif
6325
6326    /*
6327     * Allocate memory for CDU context:
6328     * This memory is allocated separately and not in the generic ILT
6329     * functions because CDU differs in few aspects:
6330     * 1. There can be multiple entities allocating memory for context -
6331     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6332     * its own ILT lines.
6333     * 2. Since CDU page-size is not a single 4KB page (which is the case
6334     * for the other ILT clients), to be efficient we want to support
6335     * allocation of sub-page-size in the last entry.
6336     * 3. Context pointers are used by the driver to pass to FW / update
6337     * the context (for the other ILT clients the pointers are used just to
6338     * free the memory during unload).
6339     */
6340    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6341    for (i = 0, allocated = 0; allocated < context_size; i++) {
6342        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6343                                  (context_size - allocated));
6344
6345        if (bxe_dma_alloc(sc, sc->context[i].size,
6346                          &sc->context[i].vcxt_dma,
6347                          "cdu context") != 0) {
6348            bxe_free_mem(sc);
6349            return (-1);
6350        }
6351
6352        sc->context[i].vcxt =
6353            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6354
6355        allocated += sc->context[i].size;
6356    }
6357
6358    bxe_alloc_ilt_lines_mem(sc);
6359
6360    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6361          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6362    {
6363        for (i = 0; i < 4; i++) {
6364            BLOGD(sc, DBG_LOAD,
6365                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6366                  i,
6367                  sc->ilt->clients[i].page_size,
6368                  sc->ilt->clients[i].start,
6369                  sc->ilt->clients[i].end,
6370                  sc->ilt->clients[i].client_num,
6371                  sc->ilt->clients[i].flags);
6372        }
6373    }
6374    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6375        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6376        bxe_free_mem(sc);
6377        return (-1);
6378    }
6379
6380#if 0
6381    if (bxe_iov_alloc_mem(sc)) {
6382        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6383        bxe_free_mem(sc);
6384        return (-1);
6385    }
6386#endif
6387
6388    return (0);
6389}
6390
6391static void
6392bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6393{
6394    struct bxe_softc *sc;
6395    int i;
6396
6397    sc = fp->sc;
6398
6399    if (fp->rx_mbuf_tag == NULL) {
6400        return;
6401    }
6402
6403    /* free all mbufs and unload all maps */
6404    for (i = 0; i < RX_BD_TOTAL; i++) {
6405        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6406            bus_dmamap_sync(fp->rx_mbuf_tag,
6407                            fp->rx_mbuf_chain[i].m_map,
6408                            BUS_DMASYNC_POSTREAD);
6409            bus_dmamap_unload(fp->rx_mbuf_tag,
6410                              fp->rx_mbuf_chain[i].m_map);
6411        }
6412
6413        if (fp->rx_mbuf_chain[i].m != NULL) {
6414            m_freem(fp->rx_mbuf_chain[i].m);
6415            fp->rx_mbuf_chain[i].m = NULL;
6416            fp->eth_q_stats.mbuf_alloc_rx--;
6417        }
6418    }
6419}
6420
6421static void
6422bxe_free_tpa_pool(struct bxe_fastpath *fp)
6423{
6424    struct bxe_softc *sc;
6425    int i, max_agg_queues;
6426
6427    sc = fp->sc;
6428
6429    if (fp->rx_mbuf_tag == NULL) {
6430        return;
6431    }
6432
6433    max_agg_queues = MAX_AGG_QS(sc);
6434
6435    /* release all mbufs and unload all DMA maps in the TPA pool */
6436    for (i = 0; i < max_agg_queues; i++) {
6437        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6438            bus_dmamap_sync(fp->rx_mbuf_tag,
6439                            fp->rx_tpa_info[i].bd.m_map,
6440                            BUS_DMASYNC_POSTREAD);
6441            bus_dmamap_unload(fp->rx_mbuf_tag,
6442                              fp->rx_tpa_info[i].bd.m_map);
6443        }
6444
6445        if (fp->rx_tpa_info[i].bd.m != NULL) {
6446            m_freem(fp->rx_tpa_info[i].bd.m);
6447            fp->rx_tpa_info[i].bd.m = NULL;
6448            fp->eth_q_stats.mbuf_alloc_tpa--;
6449        }
6450    }
6451}
6452
6453static void
6454bxe_free_sge_chain(struct bxe_fastpath *fp)
6455{
6456    struct bxe_softc *sc;
6457    int i;
6458
6459    sc = fp->sc;
6460
6461    if (fp->rx_sge_mbuf_tag == NULL) {
6462        return;
6463    }
6464
6465    /* rree all mbufs and unload all maps */
6466    for (i = 0; i < RX_SGE_TOTAL; i++) {
6467        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6468            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6469                            fp->rx_sge_mbuf_chain[i].m_map,
6470                            BUS_DMASYNC_POSTREAD);
6471            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6472                              fp->rx_sge_mbuf_chain[i].m_map);
6473        }
6474
6475        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6476            m_freem(fp->rx_sge_mbuf_chain[i].m);
6477            fp->rx_sge_mbuf_chain[i].m = NULL;
6478            fp->eth_q_stats.mbuf_alloc_sge--;
6479        }
6480    }
6481}
6482
6483static void
6484bxe_free_fp_buffers(struct bxe_softc *sc)
6485{
6486    struct bxe_fastpath *fp;
6487    int i;
6488
6489    for (i = 0; i < sc->num_queues; i++) {
6490        fp = &sc->fp[i];
6491
6492#if __FreeBSD_version >= 800000
6493        if (fp->tx_br != NULL) {
6494            struct mbuf *m;
6495            /* just in case bxe_mq_flush() wasn't called */
6496            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6497                m_freem(m);
6498            }
6499            buf_ring_free(fp->tx_br, M_DEVBUF);
6500            fp->tx_br = NULL;
6501        }
6502#endif
6503
6504        /* free all RX buffers */
6505        bxe_free_rx_bd_chain(fp);
6506        bxe_free_tpa_pool(fp);
6507        bxe_free_sge_chain(fp);
6508
6509        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6510            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6511                  fp->eth_q_stats.mbuf_alloc_rx);
6512        }
6513
6514        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6515            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6516                  fp->eth_q_stats.mbuf_alloc_sge);
6517        }
6518
6519        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6520            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6521                  fp->eth_q_stats.mbuf_alloc_tpa);
6522        }
6523
6524        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6525            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6526                  fp->eth_q_stats.mbuf_alloc_tx);
6527        }
6528
6529        /* XXX verify all mbufs were reclaimed */
6530
6531        if (mtx_initialized(&fp->tx_mtx)) {
6532            mtx_destroy(&fp->tx_mtx);
6533        }
6534
6535        if (mtx_initialized(&fp->rx_mtx)) {
6536            mtx_destroy(&fp->rx_mtx);
6537        }
6538    }
6539}
6540
6541static int
6542bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6543                     uint16_t            prev_index,
6544                     uint16_t            index)
6545{
6546    struct bxe_sw_rx_bd *rx_buf;
6547    struct eth_rx_bd *rx_bd;
6548    bus_dma_segment_t segs[1];
6549    bus_dmamap_t map;
6550    struct mbuf *m;
6551    int nsegs, rc;
6552
6553    rc = 0;
6554
6555    /* allocate the new RX BD mbuf */
6556    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6557    if (__predict_false(m == NULL)) {
6558        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6559        return (ENOBUFS);
6560    }
6561
6562    fp->eth_q_stats.mbuf_alloc_rx++;
6563
6564    /* initialize the mbuf buffer length */
6565    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6566
6567    /* map the mbuf into non-paged pool */
6568    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6569                                 fp->rx_mbuf_spare_map,
6570                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6571    if (__predict_false(rc != 0)) {
6572        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6573        m_freem(m);
6574        fp->eth_q_stats.mbuf_alloc_rx--;
6575        return (rc);
6576    }
6577
6578    /* all mbufs must map to a single segment */
6579    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6580
6581    /* release any existing RX BD mbuf mappings */
6582
6583    if (prev_index != index) {
6584        rx_buf = &fp->rx_mbuf_chain[prev_index];
6585
6586        if (rx_buf->m_map != NULL) {
6587            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6588                            BUS_DMASYNC_POSTREAD);
6589            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6590        }
6591
6592        /*
6593         * We only get here from bxe_rxeof() when the maximum number
6594         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6595         * holds the mbuf in the prev_index so it's OK to NULL it out
6596         * here without concern of a memory leak.
6597         */
6598        fp->rx_mbuf_chain[prev_index].m = NULL;
6599    }
6600
6601    rx_buf = &fp->rx_mbuf_chain[index];
6602
6603    if (rx_buf->m_map != NULL) {
6604        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6605                        BUS_DMASYNC_POSTREAD);
6606        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6607    }
6608
6609    /* save the mbuf and mapping info for a future packet */
6610    map = (prev_index != index) ?
6611              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6612    rx_buf->m_map = fp->rx_mbuf_spare_map;
6613    fp->rx_mbuf_spare_map = map;
6614    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6615                    BUS_DMASYNC_PREREAD);
6616    rx_buf->m = m;
6617
6618    rx_bd = &fp->rx_chain[index];
6619    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6620    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6621
6622    return (rc);
6623}
6624
6625static int
6626bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6627                      int                 queue)
6628{
6629    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6630    bus_dma_segment_t segs[1];
6631    bus_dmamap_t map;
6632    struct mbuf *m;
6633    int nsegs;
6634    int rc = 0;
6635
6636    /* allocate the new TPA mbuf */
6637    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6638    if (__predict_false(m == NULL)) {
6639        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6640        return (ENOBUFS);
6641    }
6642
6643    fp->eth_q_stats.mbuf_alloc_tpa++;
6644
6645    /* initialize the mbuf buffer length */
6646    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6647
6648    /* map the mbuf into non-paged pool */
6649    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6650                                 fp->rx_tpa_info_mbuf_spare_map,
6651                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6652    if (__predict_false(rc != 0)) {
6653        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6654        m_free(m);
6655        fp->eth_q_stats.mbuf_alloc_tpa--;
6656        return (rc);
6657    }
6658
6659    /* all mbufs must map to a single segment */
6660    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6661
6662    /* release any existing TPA mbuf mapping */
6663    if (tpa_info->bd.m_map != NULL) {
6664        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6665                        BUS_DMASYNC_POSTREAD);
6666        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6667    }
6668
6669    /* save the mbuf and mapping info for the TPA mbuf */
6670    map = tpa_info->bd.m_map;
6671    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6672    fp->rx_tpa_info_mbuf_spare_map = map;
6673    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6674                    BUS_DMASYNC_PREREAD);
6675    tpa_info->bd.m = m;
6676    tpa_info->seg = segs[0];
6677
6678    return (rc);
6679}
6680
6681/*
6682 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6683 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6684 * chain.
6685 */
6686static int
6687bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6688                      uint16_t            index)
6689{
6690    struct bxe_sw_rx_bd *sge_buf;
6691    struct eth_rx_sge *sge;
6692    bus_dma_segment_t segs[1];
6693    bus_dmamap_t map;
6694    struct mbuf *m;
6695    int nsegs;
6696    int rc = 0;
6697
6698    /* allocate a new SGE mbuf */
6699    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6700    if (__predict_false(m == NULL)) {
6701        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6702        return (ENOMEM);
6703    }
6704
6705    fp->eth_q_stats.mbuf_alloc_sge++;
6706
6707    /* initialize the mbuf buffer length */
6708    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6709
6710    /* map the SGE mbuf into non-paged pool */
6711    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6712                                 fp->rx_sge_mbuf_spare_map,
6713                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6714    if (__predict_false(rc != 0)) {
6715        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6716        m_freem(m);
6717        fp->eth_q_stats.mbuf_alloc_sge--;
6718        return (rc);
6719    }
6720
6721    /* all mbufs must map to a single segment */
6722    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6723
6724    sge_buf = &fp->rx_sge_mbuf_chain[index];
6725
6726    /* release any existing SGE mbuf mapping */
6727    if (sge_buf->m_map != NULL) {
6728        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6729                        BUS_DMASYNC_POSTREAD);
6730        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6731    }
6732
6733    /* save the mbuf and mapping info for a future packet */
6734    map = sge_buf->m_map;
6735    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6736    fp->rx_sge_mbuf_spare_map = map;
6737    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6738                    BUS_DMASYNC_PREREAD);
6739    sge_buf->m = m;
6740
6741    sge = &fp->rx_sge_chain[index];
6742    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6743    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6744
6745    return (rc);
6746}
6747
6748static __noinline int
6749bxe_alloc_fp_buffers(struct bxe_softc *sc)
6750{
6751    struct bxe_fastpath *fp;
6752    int i, j, rc = 0;
6753    int ring_prod, cqe_ring_prod;
6754    int max_agg_queues;
6755
6756    for (i = 0; i < sc->num_queues; i++) {
6757        fp = &sc->fp[i];
6758
6759#if __FreeBSD_version >= 800000
6760        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6761                                   M_NOWAIT, &fp->tx_mtx);
6762        if (fp->tx_br == NULL) {
6763            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6764            goto bxe_alloc_fp_buffers_error;
6765        }
6766#endif
6767
6768        ring_prod = cqe_ring_prod = 0;
6769        fp->rx_bd_cons = 0;
6770        fp->rx_cq_cons = 0;
6771
6772        /* allocate buffers for the RX BDs in RX BD chain */
6773        for (j = 0; j < sc->max_rx_bufs; j++) {
6774            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6775            if (rc != 0) {
6776                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6777                      i, rc);
6778                goto bxe_alloc_fp_buffers_error;
6779            }
6780
6781            ring_prod     = RX_BD_NEXT(ring_prod);
6782            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6783        }
6784
6785        fp->rx_bd_prod = ring_prod;
6786        fp->rx_cq_prod = cqe_ring_prod;
6787        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6788
6789        if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
6790            max_agg_queues = MAX_AGG_QS(sc);
6791
6792            fp->tpa_enable = TRUE;
6793
6794            /* fill the TPA pool */
6795            for (j = 0; j < max_agg_queues; j++) {
6796                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6797                if (rc != 0) {
6798                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6799                          i, j);
6800                    fp->tpa_enable = FALSE;
6801                    goto bxe_alloc_fp_buffers_error;
6802                }
6803
6804                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6805            }
6806
6807            if (fp->tpa_enable) {
6808                /* fill the RX SGE chain */
6809                ring_prod = 0;
6810                for (j = 0; j < RX_SGE_USABLE; j++) {
6811                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6812                    if (rc != 0) {
6813                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6814                              i, ring_prod);
6815                        fp->tpa_enable = FALSE;
6816                        ring_prod = 0;
6817                        goto bxe_alloc_fp_buffers_error;
6818                    }
6819
6820                    ring_prod = RX_SGE_NEXT(ring_prod);
6821                }
6822
6823                fp->rx_sge_prod = ring_prod;
6824            }
6825        }
6826    }
6827
6828    return (0);
6829
6830bxe_alloc_fp_buffers_error:
6831
6832    /* unwind what was already allocated */
6833    bxe_free_rx_bd_chain(fp);
6834    bxe_free_tpa_pool(fp);
6835    bxe_free_sge_chain(fp);
6836
6837    return (ENOBUFS);
6838}
6839
6840static void
6841bxe_free_fw_stats_mem(struct bxe_softc *sc)
6842{
6843    bxe_dma_free(sc, &sc->fw_stats_dma);
6844
6845    sc->fw_stats_num = 0;
6846
6847    sc->fw_stats_req_size = 0;
6848    sc->fw_stats_req = NULL;
6849    sc->fw_stats_req_mapping = 0;
6850
6851    sc->fw_stats_data_size = 0;
6852    sc->fw_stats_data = NULL;
6853    sc->fw_stats_data_mapping = 0;
6854}
6855
6856static int
6857bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6858{
6859    uint8_t num_queue_stats;
6860    int num_groups;
6861
6862    /* number of queues for statistics is number of eth queues */
6863    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6864
6865    /*
6866     * Total number of FW statistics requests =
6867     *   1 for port stats + 1 for PF stats + num of queues
6868     */
6869    sc->fw_stats_num = (2 + num_queue_stats);
6870
6871    /*
6872     * Request is built from stats_query_header and an array of
6873     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6874     * rules. The real number or requests is configured in the
6875     * stats_query_header.
6876     */
6877    num_groups =
6878        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6879         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6880
6881    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6882          sc->fw_stats_num, num_groups);
6883
6884    sc->fw_stats_req_size =
6885        (sizeof(struct stats_query_header) +
6886         (num_groups * sizeof(struct stats_query_cmd_group)));
6887
6888    /*
6889     * Data for statistics requests + stats_counter.
6890     * stats_counter holds per-STORM counters that are incremented when
6891     * STORM has finished with the current request. Memory for FCoE
6892     * offloaded statistics are counted anyway, even if they will not be sent.
6893     * VF stats are not accounted for here as the data of VF stats is stored
6894     * in memory allocated by the VF, not here.
6895     */
6896    sc->fw_stats_data_size =
6897        (sizeof(struct stats_counter) +
6898         sizeof(struct per_port_stats) +
6899         sizeof(struct per_pf_stats) +
6900         /* sizeof(struct fcoe_statistics_params) + */
6901         (sizeof(struct per_queue_stats) * num_queue_stats));
6902
6903    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6904                      &sc->fw_stats_dma, "fw stats") != 0) {
6905        bxe_free_fw_stats_mem(sc);
6906        return (-1);
6907    }
6908
6909    /* set up the shortcuts */
6910
6911    sc->fw_stats_req =
6912        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6913    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6914
6915    sc->fw_stats_data =
6916        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6917                                     sc->fw_stats_req_size);
6918    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6919                                 sc->fw_stats_req_size);
6920
6921    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6922          (uintmax_t)sc->fw_stats_req_mapping);
6923
6924    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6925          (uintmax_t)sc->fw_stats_data_mapping);
6926
6927    return (0);
6928}
6929
6930/*
6931 * Bits map:
6932 * 0-7  - Engine0 load counter.
6933 * 8-15 - Engine1 load counter.
6934 * 16   - Engine0 RESET_IN_PROGRESS bit.
6935 * 17   - Engine1 RESET_IN_PROGRESS bit.
6936 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6937 *        function on the engine
6938 * 19   - Engine1 ONE_IS_LOADED.
6939 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6940 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6941 *        for just the one belonging to its engine).
6942 */
6943#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6944#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6945#define BXE_PATH0_LOAD_CNT_SHIFT  0
6946#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6947#define BXE_PATH1_LOAD_CNT_SHIFT  8
6948#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6949#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6950#define BXE_GLOBAL_RESET_BIT      0x00040000
6951
6952/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6953static void
6954bxe_set_reset_global(struct bxe_softc *sc)
6955{
6956    uint32_t val;
6957    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6958    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6959    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6960    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6961}
6962
6963/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6964static void
6965bxe_clear_reset_global(struct bxe_softc *sc)
6966{
6967    uint32_t val;
6968    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6969    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6970    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6971    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972}
6973
6974/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6975static uint8_t
6976bxe_reset_is_global(struct bxe_softc *sc)
6977{
6978    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6979    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6980    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6981}
6982
6983/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6984static void
6985bxe_set_reset_done(struct bxe_softc *sc)
6986{
6987    uint32_t val;
6988    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6989                                 BXE_PATH0_RST_IN_PROG_BIT;
6990
6991    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6992
6993    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6994    /* Clear the bit */
6995    val &= ~bit;
6996    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6997
6998    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6999}
7000
7001/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7002static void
7003bxe_set_reset_in_progress(struct bxe_softc *sc)
7004{
7005    uint32_t val;
7006    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7007                                 BXE_PATH0_RST_IN_PROG_BIT;
7008
7009    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7010
7011    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7012    /* Set the bit */
7013    val |= bit;
7014    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7015
7016    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7017}
7018
7019/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7020static uint8_t
7021bxe_reset_is_done(struct bxe_softc *sc,
7022                  int              engine)
7023{
7024    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7025    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7026                            BXE_PATH0_RST_IN_PROG_BIT;
7027
7028    /* return false if bit is set */
7029    return (val & bit) ? FALSE : TRUE;
7030}
7031
7032/* get the load status for an engine, should be run under rtnl lock */
7033static uint8_t
7034bxe_get_load_status(struct bxe_softc *sc,
7035                    int              engine)
7036{
7037    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7038                             BXE_PATH0_LOAD_CNT_MASK;
7039    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7040                              BXE_PATH0_LOAD_CNT_SHIFT;
7041    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7042
7043    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7044
7045    val = ((val & mask) >> shift);
7046
7047    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7048
7049    return (val != 0);
7050}
7051
7052/* set pf load mark */
7053/* XXX needs to be under rtnl lock */
7054static void
7055bxe_set_pf_load(struct bxe_softc *sc)
7056{
7057    uint32_t val;
7058    uint32_t val1;
7059    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7060                                  BXE_PATH0_LOAD_CNT_MASK;
7061    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7062                                   BXE_PATH0_LOAD_CNT_SHIFT;
7063
7064    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7065
7066    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7067    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7068
7069    /* get the current counter value */
7070    val1 = ((val & mask) >> shift);
7071
7072    /* set bit of this PF */
7073    val1 |= (1 << SC_ABS_FUNC(sc));
7074
7075    /* clear the old value */
7076    val &= ~mask;
7077
7078    /* set the new one */
7079    val |= ((val1 << shift) & mask);
7080
7081    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7082
7083    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7084}
7085
7086/* clear pf load mark */
7087/* XXX needs to be under rtnl lock */
7088static uint8_t
7089bxe_clear_pf_load(struct bxe_softc *sc)
7090{
7091    uint32_t val1, val;
7092    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7093                                  BXE_PATH0_LOAD_CNT_MASK;
7094    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7095                                   BXE_PATH0_LOAD_CNT_SHIFT;
7096
7097    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7098    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7099    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7100
7101    /* get the current counter value */
7102    val1 = (val & mask) >> shift;
7103
7104    /* clear bit of that PF */
7105    val1 &= ~(1 << SC_ABS_FUNC(sc));
7106
7107    /* clear the old value */
7108    val &= ~mask;
7109
7110    /* set the new one */
7111    val |= ((val1 << shift) & mask);
7112
7113    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7114    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7115    return (val1 != 0);
7116}
7117
7118/* send load requrest to mcp and analyze response */
7119static int
7120bxe_nic_load_request(struct bxe_softc *sc,
7121                     uint32_t         *load_code)
7122{
7123    /* init fw_seq */
7124    sc->fw_seq =
7125        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7126         DRV_MSG_SEQ_NUMBER_MASK);
7127
7128    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7129
7130    /* get the current FW pulse sequence */
7131    sc->fw_drv_pulse_wr_seq =
7132        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7133         DRV_PULSE_SEQ_MASK);
7134
7135    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7136          sc->fw_drv_pulse_wr_seq);
7137
7138    /* load request */
7139    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7140                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7141
7142    /* if the MCP fails to respond we must abort */
7143    if (!(*load_code)) {
7144        BLOGE(sc, "MCP response failure!\n");
7145        return (-1);
7146    }
7147
7148    /* if MCP refused then must abort */
7149    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7150        BLOGE(sc, "MCP refused load request\n");
7151        return (-1);
7152    }
7153
7154    return (0);
7155}
7156
7157/*
7158 * Check whether another PF has already loaded FW to chip. In virtualized
7159 * environments a pf from anoth VM may have already initialized the device
7160 * including loading FW.
7161 */
7162static int
7163bxe_nic_load_analyze_req(struct bxe_softc *sc,
7164                         uint32_t         load_code)
7165{
7166    uint32_t my_fw, loaded_fw;
7167
7168    /* is another pf loaded on this engine? */
7169    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7170        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7171        /* build my FW version dword */
7172        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7173                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7174                 (BCM_5710_FW_REVISION_VERSION << 16) +
7175                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7176
7177        /* read loaded FW from chip */
7178        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7179        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7180              loaded_fw, my_fw);
7181
7182        /* abort nic load if version mismatch */
7183        if (my_fw != loaded_fw) {
7184            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7185                  loaded_fw, my_fw);
7186            return (-1);
7187        }
7188    }
7189
7190    return (0);
7191}
7192
7193/* mark PMF if applicable */
7194static void
7195bxe_nic_load_pmf(struct bxe_softc *sc,
7196                 uint32_t         load_code)
7197{
7198    uint32_t ncsi_oem_data_addr;
7199
7200    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7201        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7202        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7203        /*
7204         * Barrier here for ordering between the writing to sc->port.pmf here
7205         * and reading it from the periodic task.
7206         */
7207        sc->port.pmf = 1;
7208        mb();
7209    } else {
7210        sc->port.pmf = 0;
7211    }
7212
7213    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7214
7215    /* XXX needed? */
7216    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7217        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7218            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7219            if (ncsi_oem_data_addr) {
7220                REG_WR(sc,
7221                       (ncsi_oem_data_addr +
7222                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7223                       0);
7224            }
7225        }
7226    }
7227}
7228
7229static void
7230bxe_read_mf_cfg(struct bxe_softc *sc)
7231{
7232    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7233    int abs_func;
7234    int vn;
7235
7236    if (BXE_NOMCP(sc)) {
7237        return; /* what should be the default bvalue in this case */
7238    }
7239
7240    /*
7241     * The formula for computing the absolute function number is...
7242     * For 2 port configuration (4 functions per port):
7243     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7244     * For 4 port configuration (2 functions per port):
7245     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7246     */
7247    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7248        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7249        if (abs_func >= E1H_FUNC_MAX) {
7250            break;
7251        }
7252        sc->devinfo.mf_info.mf_config[vn] =
7253            MFCFG_RD(sc, func_mf_config[abs_func].config);
7254    }
7255
7256    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7257        FUNC_MF_CFG_FUNC_DISABLED) {
7258        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7259        sc->flags |= BXE_MF_FUNC_DIS;
7260    } else {
7261        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7262        sc->flags &= ~BXE_MF_FUNC_DIS;
7263    }
7264}
7265
7266/* acquire split MCP access lock register */
7267static int bxe_acquire_alr(struct bxe_softc *sc)
7268{
7269    uint32_t j, val;
7270
7271    for (j = 0; j < 1000; j++) {
7272        val = (1UL << 31);
7273        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7274        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7275        if (val & (1L << 31))
7276            break;
7277
7278        DELAY(5000);
7279    }
7280
7281    if (!(val & (1L << 31))) {
7282        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7283        return (-1);
7284    }
7285
7286    return (0);
7287}
7288
7289/* release split MCP access lock register */
7290static void bxe_release_alr(struct bxe_softc *sc)
7291{
7292    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7293}
7294
7295static void
7296bxe_fan_failure(struct bxe_softc *sc)
7297{
7298    int port = SC_PORT(sc);
7299    uint32_t ext_phy_config;
7300
7301    /* mark the failure */
7302    ext_phy_config =
7303        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7304
7305    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7306    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7307    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7308             ext_phy_config);
7309
7310    /* log the failure */
7311    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7312              "the card to prevent permanent damage. "
7313              "Please contact OEM Support for assistance\n");
7314
7315    /* XXX */
7316#if 1
7317    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7318#else
7319    /*
7320     * Schedule device reset (unload)
7321     * This is due to some boards consuming sufficient power when driver is
7322     * up to overheat if fan fails.
7323     */
7324    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7325    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7326#endif
7327}
7328
7329/* this function is called upon a link interrupt */
7330static void
7331bxe_link_attn(struct bxe_softc *sc)
7332{
7333    uint32_t pause_enabled = 0;
7334    struct host_port_stats *pstats;
7335    int cmng_fns;
7336
7337    /* Make sure that we are synced with the current statistics */
7338    bxe_stats_handle(sc, STATS_EVENT_STOP);
7339
7340    elink_link_update(&sc->link_params, &sc->link_vars);
7341
7342    if (sc->link_vars.link_up) {
7343
7344        /* dropless flow control */
7345        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7346            pause_enabled = 0;
7347
7348            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7349                pause_enabled = 1;
7350            }
7351
7352            REG_WR(sc,
7353                   (BAR_USTRORM_INTMEM +
7354                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7355                   pause_enabled);
7356        }
7357
7358        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7359            pstats = BXE_SP(sc, port_stats);
7360            /* reset old mac stats */
7361            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7362        }
7363
7364        if (sc->state == BXE_STATE_OPEN) {
7365            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7366        }
7367    }
7368
7369    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7370        cmng_fns = bxe_get_cmng_fns_mode(sc);
7371
7372        if (cmng_fns != CMNG_FNS_NONE) {
7373            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7374            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7375        } else {
7376            /* rate shaping and fairness are disabled */
7377            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7378        }
7379    }
7380
7381    bxe_link_report_locked(sc);
7382
7383    if (IS_MF(sc)) {
7384        ; // XXX bxe_link_sync_notify(sc);
7385    }
7386}
7387
7388static void
7389bxe_attn_int_asserted(struct bxe_softc *sc,
7390                      uint32_t         asserted)
7391{
7392    int port = SC_PORT(sc);
7393    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7394                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7395    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7396                                        NIG_REG_MASK_INTERRUPT_PORT0;
7397    uint32_t aeu_mask;
7398    uint32_t nig_mask = 0;
7399    uint32_t reg_addr;
7400    uint32_t igu_acked;
7401    uint32_t cnt;
7402
7403    if (sc->attn_state & asserted) {
7404        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7405    }
7406
7407    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7408
7409    aeu_mask = REG_RD(sc, aeu_addr);
7410
7411    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7412          aeu_mask, asserted);
7413
7414    aeu_mask &= ~(asserted & 0x3ff);
7415
7416    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7417
7418    REG_WR(sc, aeu_addr, aeu_mask);
7419
7420    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7421
7422    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7423    sc->attn_state |= asserted;
7424    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7425
7426    if (asserted & ATTN_HARD_WIRED_MASK) {
7427        if (asserted & ATTN_NIG_FOR_FUNC) {
7428
7429            BXE_PHY_LOCK(sc);
7430
7431            /* save nig interrupt mask */
7432            nig_mask = REG_RD(sc, nig_int_mask_addr);
7433
7434            /* If nig_mask is not set, no need to call the update function */
7435            if (nig_mask) {
7436                REG_WR(sc, nig_int_mask_addr, 0);
7437
7438                bxe_link_attn(sc);
7439            }
7440
7441            /* handle unicore attn? */
7442        }
7443
7444        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7445            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7446        }
7447
7448        if (asserted & GPIO_2_FUNC) {
7449            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7450        }
7451
7452        if (asserted & GPIO_3_FUNC) {
7453            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7454        }
7455
7456        if (asserted & GPIO_4_FUNC) {
7457            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7458        }
7459
7460        if (port == 0) {
7461            if (asserted & ATTN_GENERAL_ATTN_1) {
7462                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7463                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7464            }
7465            if (asserted & ATTN_GENERAL_ATTN_2) {
7466                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7467                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7468            }
7469            if (asserted & ATTN_GENERAL_ATTN_3) {
7470                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7471                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7472            }
7473        } else {
7474            if (asserted & ATTN_GENERAL_ATTN_4) {
7475                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7476                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7477            }
7478            if (asserted & ATTN_GENERAL_ATTN_5) {
7479                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7480                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7481            }
7482            if (asserted & ATTN_GENERAL_ATTN_6) {
7483                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7484                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7485            }
7486        }
7487    } /* hardwired */
7488
7489    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7490        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7491    } else {
7492        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7493    }
7494
7495    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7496          asserted,
7497          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7498    REG_WR(sc, reg_addr, asserted);
7499
7500    /* now set back the mask */
7501    if (asserted & ATTN_NIG_FOR_FUNC) {
7502        /*
7503         * Verify that IGU ack through BAR was written before restoring
7504         * NIG mask. This loop should exit after 2-3 iterations max.
7505         */
7506        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7507            cnt = 0;
7508
7509            do {
7510                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7511            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7512                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7513
7514            if (!igu_acked) {
7515                BLOGE(sc, "Failed to verify IGU ack on time\n");
7516            }
7517
7518            mb();
7519        }
7520
7521        REG_WR(sc, nig_int_mask_addr, nig_mask);
7522
7523        BXE_PHY_UNLOCK(sc);
7524    }
7525}
7526
7527static void
7528bxe_print_next_block(struct bxe_softc *sc,
7529                     int              idx,
7530                     const char       *blk)
7531{
7532    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7533}
7534
7535static int
7536bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7537                              uint32_t         sig,
7538                              int              par_num,
7539                              uint8_t          print)
7540{
7541    uint32_t cur_bit = 0;
7542    int i = 0;
7543
7544    for (i = 0; sig; i++) {
7545        cur_bit = ((uint32_t)0x1 << i);
7546        if (sig & cur_bit) {
7547            switch (cur_bit) {
7548            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7549                if (print)
7550                    bxe_print_next_block(sc, par_num++, "BRB");
7551                break;
7552            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7553                if (print)
7554                    bxe_print_next_block(sc, par_num++, "PARSER");
7555                break;
7556            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7557                if (print)
7558                    bxe_print_next_block(sc, par_num++, "TSDM");
7559                break;
7560            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7561                if (print)
7562                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7563                break;
7564            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7565                if (print)
7566                    bxe_print_next_block(sc, par_num++, "TCM");
7567                break;
7568            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7569                if (print)
7570                    bxe_print_next_block(sc, par_num++, "TSEMI");
7571                break;
7572            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7573                if (print)
7574                    bxe_print_next_block(sc, par_num++, "XPB");
7575                break;
7576            }
7577
7578            /* Clear the bit */
7579            sig &= ~cur_bit;
7580        }
7581    }
7582
7583    return (par_num);
7584}
7585
7586static int
7587bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7588                              uint32_t         sig,
7589                              int              par_num,
7590                              uint8_t          *global,
7591                              uint8_t          print)
7592{
7593    int i = 0;
7594    uint32_t cur_bit = 0;
7595    for (i = 0; sig; i++) {
7596        cur_bit = ((uint32_t)0x1 << i);
7597        if (sig & cur_bit) {
7598            switch (cur_bit) {
7599            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7600                if (print)
7601                    bxe_print_next_block(sc, par_num++, "PBF");
7602                break;
7603            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7604                if (print)
7605                    bxe_print_next_block(sc, par_num++, "QM");
7606                break;
7607            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7608                if (print)
7609                    bxe_print_next_block(sc, par_num++, "TM");
7610                break;
7611            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7612                if (print)
7613                    bxe_print_next_block(sc, par_num++, "XSDM");
7614                break;
7615            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7616                if (print)
7617                    bxe_print_next_block(sc, par_num++, "XCM");
7618                break;
7619            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7620                if (print)
7621                    bxe_print_next_block(sc, par_num++, "XSEMI");
7622                break;
7623            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7624                if (print)
7625                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7626                break;
7627            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7628                if (print)
7629                    bxe_print_next_block(sc, par_num++, "NIG");
7630                break;
7631            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7632                if (print)
7633                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7634                *global = TRUE;
7635                break;
7636            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7637                if (print)
7638                    bxe_print_next_block(sc, par_num++, "DEBUG");
7639                break;
7640            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7641                if (print)
7642                    bxe_print_next_block(sc, par_num++, "USDM");
7643                break;
7644            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7645                if (print)
7646                    bxe_print_next_block(sc, par_num++, "UCM");
7647                break;
7648            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7649                if (print)
7650                    bxe_print_next_block(sc, par_num++, "USEMI");
7651                break;
7652            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7653                if (print)
7654                    bxe_print_next_block(sc, par_num++, "UPB");
7655                break;
7656            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7657                if (print)
7658                    bxe_print_next_block(sc, par_num++, "CSDM");
7659                break;
7660            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7661                if (print)
7662                    bxe_print_next_block(sc, par_num++, "CCM");
7663                break;
7664            }
7665
7666            /* Clear the bit */
7667            sig &= ~cur_bit;
7668        }
7669    }
7670
7671    return (par_num);
7672}
7673
7674static int
7675bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7676                              uint32_t         sig,
7677                              int              par_num,
7678                              uint8_t          print)
7679{
7680    uint32_t cur_bit = 0;
7681    int i = 0;
7682
7683    for (i = 0; sig; i++) {
7684        cur_bit = ((uint32_t)0x1 << i);
7685        if (sig & cur_bit) {
7686            switch (cur_bit) {
7687            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7688                if (print)
7689                    bxe_print_next_block(sc, par_num++, "CSEMI");
7690                break;
7691            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7692                if (print)
7693                    bxe_print_next_block(sc, par_num++, "PXP");
7694                break;
7695            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7696                if (print)
7697                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7698                break;
7699            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7700                if (print)
7701                    bxe_print_next_block(sc, par_num++, "CFC");
7702                break;
7703            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7704                if (print)
7705                    bxe_print_next_block(sc, par_num++, "CDU");
7706                break;
7707            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7708                if (print)
7709                    bxe_print_next_block(sc, par_num++, "DMAE");
7710                break;
7711            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7712                if (print)
7713                    bxe_print_next_block(sc, par_num++, "IGU");
7714                break;
7715            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7716                if (print)
7717                    bxe_print_next_block(sc, par_num++, "MISC");
7718                break;
7719            }
7720
7721            /* Clear the bit */
7722            sig &= ~cur_bit;
7723        }
7724    }
7725
7726    return (par_num);
7727}
7728
7729static int
7730bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7731                              uint32_t         sig,
7732                              int              par_num,
7733                              uint8_t          *global,
7734                              uint8_t          print)
7735{
7736    uint32_t cur_bit = 0;
7737    int i = 0;
7738
7739    for (i = 0; sig; i++) {
7740        cur_bit = ((uint32_t)0x1 << i);
7741        if (sig & cur_bit) {
7742            switch (cur_bit) {
7743            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7744                if (print)
7745                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7746                *global = TRUE;
7747                break;
7748            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7749                if (print)
7750                    bxe_print_next_block(sc, par_num++,
7751                              "MCP UMP RX");
7752                *global = TRUE;
7753                break;
7754            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7755                if (print)
7756                    bxe_print_next_block(sc, par_num++,
7757                              "MCP UMP TX");
7758                *global = TRUE;
7759                break;
7760            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7761                if (print)
7762                    bxe_print_next_block(sc, par_num++,
7763                              "MCP SCPAD");
7764                *global = TRUE;
7765                break;
7766            }
7767
7768            /* Clear the bit */
7769            sig &= ~cur_bit;
7770        }
7771    }
7772
7773    return (par_num);
7774}
7775
7776static int
7777bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7778                              uint32_t         sig,
7779                              int              par_num,
7780                              uint8_t          print)
7781{
7782    uint32_t cur_bit = 0;
7783    int i = 0;
7784
7785    for (i = 0; sig; i++) {
7786        cur_bit = ((uint32_t)0x1 << i);
7787        if (sig & cur_bit) {
7788            switch (cur_bit) {
7789            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7790                if (print)
7791                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7792                break;
7793            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7794                if (print)
7795                    bxe_print_next_block(sc, par_num++, "ATC");
7796                break;
7797            }
7798
7799            /* Clear the bit */
7800            sig &= ~cur_bit;
7801        }
7802    }
7803
7804    return (par_num);
7805}
7806
7807static uint8_t
7808bxe_parity_attn(struct bxe_softc *sc,
7809                uint8_t          *global,
7810                uint8_t          print,
7811                uint32_t         *sig)
7812{
7813    int par_num = 0;
7814
7815    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7816        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7817        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7818        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7819        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7820        BLOGE(sc, "Parity error: HW block parity attention:\n"
7821                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7822              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7823              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7824              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7825              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7826              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7827
7828        if (print)
7829            BLOGI(sc, "Parity errors detected in blocks: ");
7830
7831        par_num =
7832            bxe_check_blocks_with_parity0(sc, sig[0] &
7833                                          HW_PRTY_ASSERT_SET_0,
7834                                          par_num, print);
7835        par_num =
7836            bxe_check_blocks_with_parity1(sc, sig[1] &
7837                                          HW_PRTY_ASSERT_SET_1,
7838                                          par_num, global, print);
7839        par_num =
7840            bxe_check_blocks_with_parity2(sc, sig[2] &
7841                                          HW_PRTY_ASSERT_SET_2,
7842                                          par_num, print);
7843        par_num =
7844            bxe_check_blocks_with_parity3(sc, sig[3] &
7845                                          HW_PRTY_ASSERT_SET_3,
7846                                          par_num, global, print);
7847        par_num =
7848            bxe_check_blocks_with_parity4(sc, sig[4] &
7849                                          HW_PRTY_ASSERT_SET_4,
7850                                          par_num, print);
7851
7852        if (print)
7853            BLOGI(sc, "\n");
7854
7855        return (TRUE);
7856    }
7857
7858    return (FALSE);
7859}
7860
7861static uint8_t
7862bxe_chk_parity_attn(struct bxe_softc *sc,
7863                    uint8_t          *global,
7864                    uint8_t          print)
7865{
7866    struct attn_route attn = { {0} };
7867    int port = SC_PORT(sc);
7868
7869    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7870    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7871    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7872    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7873
7874    if (!CHIP_IS_E1x(sc))
7875        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7876
7877    return (bxe_parity_attn(sc, global, print, attn.sig));
7878}
7879
7880static void
7881bxe_attn_int_deasserted4(struct bxe_softc *sc,
7882                         uint32_t         attn)
7883{
7884    uint32_t val;
7885
7886    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7887        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7888        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7889        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7890            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7891        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7892            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7893        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7894            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7895        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7896            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7897        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7898            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7899        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7900            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7901        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7902            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7903        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7904            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7905        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7906            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7907    }
7908
7909    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7910        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7911        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7912        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7913            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7914        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7915            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7916        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7917            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7918        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7919            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7920        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7921            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7922        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7923            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7924    }
7925
7926    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7927                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7928        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7929              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7930                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7931    }
7932}
7933
7934static void
7935bxe_e1h_disable(struct bxe_softc *sc)
7936{
7937    int port = SC_PORT(sc);
7938
7939    bxe_tx_disable(sc);
7940
7941    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7942}
7943
7944static void
7945bxe_e1h_enable(struct bxe_softc *sc)
7946{
7947    int port = SC_PORT(sc);
7948
7949    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7950
7951    // XXX bxe_tx_enable(sc);
7952}
7953
7954/*
7955 * called due to MCP event (on pmf):
7956 *   reread new bandwidth configuration
7957 *   configure FW
7958 *   notify others function about the change
7959 */
7960static void
7961bxe_config_mf_bw(struct bxe_softc *sc)
7962{
7963    if (sc->link_vars.link_up) {
7964        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7965        // XXX bxe_link_sync_notify(sc);
7966    }
7967
7968    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7969}
7970
7971static void
7972bxe_set_mf_bw(struct bxe_softc *sc)
7973{
7974    bxe_config_mf_bw(sc);
7975    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7976}
7977
7978static void
7979bxe_handle_eee_event(struct bxe_softc *sc)
7980{
7981    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7982    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7983}
7984
7985#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7986
7987static void
7988bxe_drv_info_ether_stat(struct bxe_softc *sc)
7989{
7990    struct eth_stats_info *ether_stat =
7991        &sc->sp->drv_info_to_mcp.ether_stat;
7992
7993    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7994            ETH_STAT_INFO_VERSION_LEN);
7995
7996    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7997    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7998                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7999                                          ether_stat->mac_local + MAC_PAD,
8000                                          MAC_PAD, ETH_ALEN);
8001
8002    ether_stat->mtu_size = sc->mtu;
8003
8004    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8005    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8006        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8007    }
8008
8009    // XXX ether_stat->feature_flags |= ???;
8010
8011    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8012
8013    ether_stat->txq_size = sc->tx_ring_size;
8014    ether_stat->rxq_size = sc->rx_ring_size;
8015}
8016
8017static void
8018bxe_handle_drv_info_req(struct bxe_softc *sc)
8019{
8020    enum drv_info_opcode op_code;
8021    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8022
8023    /* if drv_info version supported by MFW doesn't match - send NACK */
8024    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8025        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8026        return;
8027    }
8028
8029    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8030               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8031
8032    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8033
8034    switch (op_code) {
8035    case ETH_STATS_OPCODE:
8036        bxe_drv_info_ether_stat(sc);
8037        break;
8038    case FCOE_STATS_OPCODE:
8039    case ISCSI_STATS_OPCODE:
8040    default:
8041        /* if op code isn't supported - send NACK */
8042        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8043        return;
8044    }
8045
8046    /*
8047     * If we got drv_info attn from MFW then these fields are defined in
8048     * shmem2 for sure
8049     */
8050    SHMEM2_WR(sc, drv_info_host_addr_lo,
8051              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8052    SHMEM2_WR(sc, drv_info_host_addr_hi,
8053              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8054
8055    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8056}
8057
8058static void
8059bxe_dcc_event(struct bxe_softc *sc,
8060              uint32_t         dcc_event)
8061{
8062    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8063
8064    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8065        /*
8066         * This is the only place besides the function initialization
8067         * where the sc->flags can change so it is done without any
8068         * locks
8069         */
8070        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8071            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8072            sc->flags |= BXE_MF_FUNC_DIS;
8073            bxe_e1h_disable(sc);
8074        } else {
8075            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8076            sc->flags &= ~BXE_MF_FUNC_DIS;
8077            bxe_e1h_enable(sc);
8078        }
8079        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8080    }
8081
8082    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8083        bxe_config_mf_bw(sc);
8084        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8085    }
8086
8087    /* Report results to MCP */
8088    if (dcc_event)
8089        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8090    else
8091        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8092}
8093
8094static void
8095bxe_pmf_update(struct bxe_softc *sc)
8096{
8097    int port = SC_PORT(sc);
8098    uint32_t val;
8099
8100    sc->port.pmf = 1;
8101    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8102
8103    /*
8104     * We need the mb() to ensure the ordering between the writing to
8105     * sc->port.pmf here and reading it from the bxe_periodic_task().
8106     */
8107    mb();
8108
8109    /* queue a periodic task */
8110    // XXX schedule task...
8111
8112    // XXX bxe_dcbx_pmf_update(sc);
8113
8114    /* enable nig attention */
8115    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8116    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8117        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8118        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8119    } else if (!CHIP_IS_E1x(sc)) {
8120        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8121        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8122    }
8123
8124    bxe_stats_handle(sc, STATS_EVENT_PMF);
8125}
8126
8127static int
8128bxe_mc_assert(struct bxe_softc *sc)
8129{
8130    char last_idx;
8131    int i, rc = 0;
8132    uint32_t row0, row1, row2, row3;
8133
8134    /* XSTORM */
8135    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8136    if (last_idx)
8137        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8138
8139    /* print the asserts */
8140    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8141
8142        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8143        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8144        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8145        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8146
8147        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8148            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8149                  i, row3, row2, row1, row0);
8150            rc++;
8151        } else {
8152            break;
8153        }
8154    }
8155
8156    /* TSTORM */
8157    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8158    if (last_idx) {
8159        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8160    }
8161
8162    /* print the asserts */
8163    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8164
8165        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8166        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8167        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8168        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8169
8170        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8171            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8172                  i, row3, row2, row1, row0);
8173            rc++;
8174        } else {
8175            break;
8176        }
8177    }
8178
8179    /* CSTORM */
8180    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8181    if (last_idx) {
8182        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8183    }
8184
8185    /* print the asserts */
8186    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8187
8188        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8189        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8190        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8191        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8192
8193        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8194            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8195                  i, row3, row2, row1, row0);
8196            rc++;
8197        } else {
8198            break;
8199        }
8200    }
8201
8202    /* USTORM */
8203    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8204    if (last_idx) {
8205        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8206    }
8207
8208    /* print the asserts */
8209    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8210
8211        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8212        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8213        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8214        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8215
8216        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8217            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8218                  i, row3, row2, row1, row0);
8219            rc++;
8220        } else {
8221            break;
8222        }
8223    }
8224
8225    return (rc);
8226}
8227
8228static void
8229bxe_attn_int_deasserted3(struct bxe_softc *sc,
8230                         uint32_t         attn)
8231{
8232    int func = SC_FUNC(sc);
8233    uint32_t val;
8234
8235    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8236
8237        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8238
8239            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8240            bxe_read_mf_cfg(sc);
8241            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8242                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8243            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8244
8245            if (val & DRV_STATUS_DCC_EVENT_MASK)
8246                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8247
8248            if (val & DRV_STATUS_SET_MF_BW)
8249                bxe_set_mf_bw(sc);
8250
8251            if (val & DRV_STATUS_DRV_INFO_REQ)
8252                bxe_handle_drv_info_req(sc);
8253
8254#if 0
8255            if (val & DRV_STATUS_VF_DISABLED)
8256                bxe_vf_handle_flr_event(sc);
8257#endif
8258
8259            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8260                bxe_pmf_update(sc);
8261
8262#if 0
8263            if (sc->port.pmf &&
8264                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8265                (sc->dcbx_enabled > 0))
8266                /* start dcbx state machine */
8267                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8268#endif
8269
8270#if 0
8271            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8272                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8273#endif
8274
8275            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8276                bxe_handle_eee_event(sc);
8277
8278            if (sc->link_vars.periodic_flags &
8279                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8280                /* sync with link */
8281                BXE_PHY_LOCK(sc);
8282                sc->link_vars.periodic_flags &=
8283                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8284                BXE_PHY_UNLOCK(sc);
8285                if (IS_MF(sc))
8286                    ; // XXX bxe_link_sync_notify(sc);
8287                bxe_link_report(sc);
8288            }
8289
8290            /*
8291             * Always call it here: bxe_link_report() will
8292             * prevent the link indication duplication.
8293             */
8294            bxe_link_status_update(sc);
8295
8296        } else if (attn & BXE_MC_ASSERT_BITS) {
8297
8298            BLOGE(sc, "MC assert!\n");
8299            bxe_mc_assert(sc);
8300            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8301            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8302            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8303            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8304            bxe_panic(sc, ("MC assert!\n"));
8305
8306        } else if (attn & BXE_MCP_ASSERT) {
8307
8308            BLOGE(sc, "MCP assert!\n");
8309            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8310            // XXX bxe_fw_dump(sc);
8311
8312        } else {
8313            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8314        }
8315    }
8316
8317    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8318        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8319        if (attn & BXE_GRC_TIMEOUT) {
8320            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8321            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8322        }
8323        if (attn & BXE_GRC_RSV) {
8324            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8325            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8326        }
8327        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8328    }
8329}
8330
8331static void
8332bxe_attn_int_deasserted2(struct bxe_softc *sc,
8333                         uint32_t         attn)
8334{
8335    int port = SC_PORT(sc);
8336    int reg_offset;
8337    uint32_t val0, mask0, val1, mask1;
8338    uint32_t val;
8339
8340    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8341        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8342        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8343        /* CFC error attention */
8344        if (val & 0x2) {
8345            BLOGE(sc, "FATAL error from CFC\n");
8346        }
8347    }
8348
8349    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8350        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8351        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8352        /* RQ_USDMDP_FIFO_OVERFLOW */
8353        if (val & 0x18000) {
8354            BLOGE(sc, "FATAL error from PXP\n");
8355        }
8356
8357        if (!CHIP_IS_E1x(sc)) {
8358            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8359            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8360        }
8361    }
8362
8363#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8364#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8365
8366    if (attn & AEU_PXP2_HW_INT_BIT) {
8367        /*  CQ47854 workaround do not panic on
8368         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8369         */
8370        if (!CHIP_IS_E1x(sc)) {
8371            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8372            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8373            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8374            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8375            /*
8376             * If the olny PXP2_EOP_ERROR_BIT is set in
8377             * STS0 and STS1 - clear it
8378             *
8379             * probably we lose additional attentions between
8380             * STS0 and STS_CLR0, in this case user will not
8381             * be notified about them
8382             */
8383            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8384                !(val1 & mask1))
8385                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8386
8387            /* print the register, since no one can restore it */
8388            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8389
8390            /*
8391             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8392             * then notify
8393             */
8394            if (val0 & PXP2_EOP_ERROR_BIT) {
8395                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8396
8397                /*
8398                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8399                 * set then clear attention from PXP2 block without panic
8400                 */
8401                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8402                    ((val1 & mask1) == 0))
8403                    attn &= ~AEU_PXP2_HW_INT_BIT;
8404            }
8405        }
8406    }
8407
8408    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8409        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8410                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8411
8412        val = REG_RD(sc, reg_offset);
8413        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8414        REG_WR(sc, reg_offset, val);
8415
8416        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8417              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8418        bxe_panic(sc, ("HW block attention set2\n"));
8419    }
8420}
8421
8422static void
8423bxe_attn_int_deasserted1(struct bxe_softc *sc,
8424                         uint32_t         attn)
8425{
8426    int port = SC_PORT(sc);
8427    int reg_offset;
8428    uint32_t val;
8429
8430    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8431        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8432        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8433        /* DORQ discard attention */
8434        if (val & 0x2) {
8435            BLOGE(sc, "FATAL error from DORQ\n");
8436        }
8437    }
8438
8439    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8440        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8441                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8442
8443        val = REG_RD(sc, reg_offset);
8444        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8445        REG_WR(sc, reg_offset, val);
8446
8447        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8448              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8449        bxe_panic(sc, ("HW block attention set1\n"));
8450    }
8451}
8452
8453static void
8454bxe_attn_int_deasserted0(struct bxe_softc *sc,
8455                         uint32_t         attn)
8456{
8457    int port = SC_PORT(sc);
8458    int reg_offset;
8459    uint32_t val;
8460
8461    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8462                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8463
8464    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8465        val = REG_RD(sc, reg_offset);
8466        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8467        REG_WR(sc, reg_offset, val);
8468
8469        BLOGW(sc, "SPIO5 hw attention\n");
8470
8471        /* Fan failure attention */
8472        elink_hw_reset_phy(&sc->link_params);
8473        bxe_fan_failure(sc);
8474    }
8475
8476    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8477        BXE_PHY_LOCK(sc);
8478        elink_handle_module_detect_int(&sc->link_params);
8479        BXE_PHY_UNLOCK(sc);
8480    }
8481
8482    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8483        val = REG_RD(sc, reg_offset);
8484        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8485        REG_WR(sc, reg_offset, val);
8486
8487        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8488                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8489    }
8490}
8491
8492static void
8493bxe_attn_int_deasserted(struct bxe_softc *sc,
8494                        uint32_t         deasserted)
8495{
8496    struct attn_route attn;
8497    struct attn_route *group_mask;
8498    int port = SC_PORT(sc);
8499    int index;
8500    uint32_t reg_addr;
8501    uint32_t val;
8502    uint32_t aeu_mask;
8503    uint8_t global = FALSE;
8504
8505    /*
8506     * Need to take HW lock because MCP or other port might also
8507     * try to handle this event.
8508     */
8509    bxe_acquire_alr(sc);
8510
8511    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8512        /* XXX
8513         * In case of parity errors don't handle attentions so that
8514         * other function would "see" parity errors.
8515         */
8516        sc->recovery_state = BXE_RECOVERY_INIT;
8517        // XXX schedule a recovery task...
8518        /* disable HW interrupts */
8519        bxe_int_disable(sc);
8520        bxe_release_alr(sc);
8521        return;
8522    }
8523
8524    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8525    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8526    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8527    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8528    if (!CHIP_IS_E1x(sc)) {
8529        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8530    } else {
8531        attn.sig[4] = 0;
8532    }
8533
8534    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8535          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8536
8537    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8538        if (deasserted & (1 << index)) {
8539            group_mask = &sc->attn_group[index];
8540
8541            BLOGD(sc, DBG_INTR,
8542                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8543                  group_mask->sig[0], group_mask->sig[1],
8544                  group_mask->sig[2], group_mask->sig[3],
8545                  group_mask->sig[4]);
8546
8547            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8548            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8549            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8550            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8551            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8552        }
8553    }
8554
8555    bxe_release_alr(sc);
8556
8557    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8558        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8559                    COMMAND_REG_ATTN_BITS_CLR);
8560    } else {
8561        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8562    }
8563
8564    val = ~deasserted;
8565    BLOGD(sc, DBG_INTR,
8566          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8567          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8568    REG_WR(sc, reg_addr, val);
8569
8570    if (~sc->attn_state & deasserted) {
8571        BLOGE(sc, "IGU error\n");
8572    }
8573
8574    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8575                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8576
8577    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8578
8579    aeu_mask = REG_RD(sc, reg_addr);
8580
8581    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8582          aeu_mask, deasserted);
8583    aeu_mask |= (deasserted & 0x3ff);
8584    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8585
8586    REG_WR(sc, reg_addr, aeu_mask);
8587    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8588
8589    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8590    sc->attn_state &= ~deasserted;
8591    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8592}
8593
8594static void
8595bxe_attn_int(struct bxe_softc *sc)
8596{
8597    /* read local copy of bits */
8598    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8599    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8600    uint32_t attn_state = sc->attn_state;
8601
8602    /* look for changed bits */
8603    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8604    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8605
8606    BLOGD(sc, DBG_INTR,
8607          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8608          attn_bits, attn_ack, asserted, deasserted);
8609
8610    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8611        BLOGE(sc, "BAD attention state\n");
8612    }
8613
8614    /* handle bits that were raised */
8615    if (asserted) {
8616        bxe_attn_int_asserted(sc, asserted);
8617    }
8618
8619    if (deasserted) {
8620        bxe_attn_int_deasserted(sc, deasserted);
8621    }
8622}
8623
8624static uint16_t
8625bxe_update_dsb_idx(struct bxe_softc *sc)
8626{
8627    struct host_sp_status_block *def_sb = sc->def_sb;
8628    uint16_t rc = 0;
8629
8630    mb(); /* status block is written to by the chip */
8631
8632    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8633        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8634        rc |= BXE_DEF_SB_ATT_IDX;
8635    }
8636
8637    if (sc->def_idx != def_sb->sp_sb.running_index) {
8638        sc->def_idx = def_sb->sp_sb.running_index;
8639        rc |= BXE_DEF_SB_IDX;
8640    }
8641
8642    mb();
8643
8644    return (rc);
8645}
8646
8647static inline struct ecore_queue_sp_obj *
8648bxe_cid_to_q_obj(struct bxe_softc *sc,
8649                 uint32_t         cid)
8650{
8651    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8652    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8653}
8654
8655static void
8656bxe_handle_mcast_eqe(struct bxe_softc *sc)
8657{
8658    struct ecore_mcast_ramrod_params rparam;
8659    int rc;
8660
8661    memset(&rparam, 0, sizeof(rparam));
8662
8663    rparam.mcast_obj = &sc->mcast_obj;
8664
8665    BXE_MCAST_LOCK(sc);
8666
8667    /* clear pending state for the last command */
8668    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8669
8670    /* if there are pending mcast commands - send them */
8671    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8672        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8673        if (rc < 0) {
8674            BLOGD(sc, DBG_SP,
8675                  "ERROR: Failed to send pending mcast commands (%d)\n",
8676                  rc);
8677        }
8678    }
8679
8680    BXE_MCAST_UNLOCK(sc);
8681}
8682
8683static void
8684bxe_handle_classification_eqe(struct bxe_softc      *sc,
8685                              union event_ring_elem *elem)
8686{
8687    unsigned long ramrod_flags = 0;
8688    int rc = 0;
8689    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8690    struct ecore_vlan_mac_obj *vlan_mac_obj;
8691
8692    /* always push next commands out, don't wait here */
8693    bit_set(&ramrod_flags, RAMROD_CONT);
8694
8695    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8696    case ECORE_FILTER_MAC_PENDING:
8697        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8698        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8699        break;
8700
8701    case ECORE_FILTER_MCAST_PENDING:
8702        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8703        /*
8704         * This is only relevant for 57710 where multicast MACs are
8705         * configured as unicast MACs using the same ramrod.
8706         */
8707        bxe_handle_mcast_eqe(sc);
8708        return;
8709
8710    default:
8711        BLOGE(sc, "Unsupported classification command: %d\n",
8712              elem->message.data.eth_event.echo);
8713        return;
8714    }
8715
8716    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8717
8718    if (rc < 0) {
8719        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8720    } else if (rc > 0) {
8721        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8722    }
8723}
8724
8725static void
8726bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8727                       union event_ring_elem *elem)
8728{
8729    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8730
8731    /* send rx_mode command again if was requested */
8732    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8733                               &sc->sp_state)) {
8734        bxe_set_storm_rx_mode(sc);
8735    }
8736#if 0
8737    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8738                                    &sc->sp_state)) {
8739        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8740    }
8741    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8742                                    &sc->sp_state)) {
8743        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8744    }
8745#endif
8746}
8747
8748static void
8749bxe_update_eq_prod(struct bxe_softc *sc,
8750                   uint16_t         prod)
8751{
8752    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8753    wmb(); /* keep prod updates ordered */
8754}
8755
8756static void
8757bxe_eq_int(struct bxe_softc *sc)
8758{
8759    uint16_t hw_cons, sw_cons, sw_prod;
8760    union event_ring_elem *elem;
8761    uint8_t echo;
8762    uint32_t cid;
8763    uint8_t opcode;
8764    int spqe_cnt = 0;
8765    struct ecore_queue_sp_obj *q_obj;
8766    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8767    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8768
8769    hw_cons = le16toh(*sc->eq_cons_sb);
8770
8771    /*
8772     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8773     * when we get to the next-page we need to adjust so the loop
8774     * condition below will be met. The next element is the size of a
8775     * regular element and hence incrementing by 1
8776     */
8777    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8778        hw_cons++;
8779    }
8780
8781    /*
8782     * This function may never run in parallel with itself for a
8783     * specific sc and no need for a read memory barrier here.
8784     */
8785    sw_cons = sc->eq_cons;
8786    sw_prod = sc->eq_prod;
8787
8788    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8789          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8790
8791    for (;
8792         sw_cons != hw_cons;
8793         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8794
8795        elem = &sc->eq[EQ_DESC(sw_cons)];
8796
8797#if 0
8798        int rc;
8799        rc = bxe_iov_eq_sp_event(sc, elem);
8800        if (!rc) {
8801            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8802            goto next_spqe;
8803        }
8804#endif
8805
8806        /* elem CID originates from FW, actually LE */
8807        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8808        opcode = elem->message.opcode;
8809
8810        /* handle eq element */
8811        switch (opcode) {
8812#if 0
8813        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8814            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8815            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8816            continue;
8817#endif
8818
8819        case EVENT_RING_OPCODE_STAT_QUERY:
8820            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8821                  sc->stats_comp++);
8822            /* nothing to do with stats comp */
8823            goto next_spqe;
8824
8825        case EVENT_RING_OPCODE_CFC_DEL:
8826            /* handle according to cid range */
8827            /* we may want to verify here that the sc state is HALTING */
8828            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8829            q_obj = bxe_cid_to_q_obj(sc, cid);
8830            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8831                break;
8832            }
8833            goto next_spqe;
8834
8835        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8836            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8837            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8838                break;
8839            }
8840            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8841            goto next_spqe;
8842
8843        case EVENT_RING_OPCODE_START_TRAFFIC:
8844            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8845            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8846                break;
8847            }
8848            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8849            goto next_spqe;
8850
8851        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8852            echo = elem->message.data.function_update_event.echo;
8853            if (echo == SWITCH_UPDATE) {
8854                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8855                if (f_obj->complete_cmd(sc, f_obj,
8856                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8857                    break;
8858                }
8859            }
8860            else {
8861                BLOGD(sc, DBG_SP,
8862                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8863#if 0
8864                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8865                /*
8866                 * We will perform the queues update from the sp_core_task as
8867                 * all queue SP operations should run with CORE_LOCK.
8868                 */
8869                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8870                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8871#endif
8872            }
8873            goto next_spqe;
8874
8875#if 0
8876        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8877            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8878            bxe_after_afex_vif_lists(sc, elem);
8879            goto next_spqe;
8880#endif
8881
8882        case EVENT_RING_OPCODE_FORWARD_SETUP:
8883            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8884            if (q_obj->complete_cmd(sc, q_obj,
8885                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8886                break;
8887            }
8888            goto next_spqe;
8889
8890        case EVENT_RING_OPCODE_FUNCTION_START:
8891            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8892            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8893                break;
8894            }
8895            goto next_spqe;
8896
8897        case EVENT_RING_OPCODE_FUNCTION_STOP:
8898            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8899            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8900                break;
8901            }
8902            goto next_spqe;
8903        }
8904
8905        switch (opcode | sc->state) {
8906        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8907        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8908            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8909            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8910            rss_raw->clear_pending(rss_raw);
8911            break;
8912
8913        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8914        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8915        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8916        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8917        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8918        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8919            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8920            bxe_handle_classification_eqe(sc, elem);
8921            break;
8922
8923        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8924        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8925        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8926            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8927            bxe_handle_mcast_eqe(sc);
8928            break;
8929
8930        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8931        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8932        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8933            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8934            bxe_handle_rx_mode_eqe(sc, elem);
8935            break;
8936
8937        default:
8938            /* unknown event log error and continue */
8939            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8940                  elem->message.opcode, sc->state);
8941        }
8942
8943next_spqe:
8944        spqe_cnt++;
8945    } /* for */
8946
8947    mb();
8948    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8949
8950    sc->eq_cons = sw_cons;
8951    sc->eq_prod = sw_prod;
8952
8953    /* make sure that above mem writes were issued towards the memory */
8954    wmb();
8955
8956    /* update producer */
8957    bxe_update_eq_prod(sc, sc->eq_prod);
8958}
8959
8960static void
8961bxe_handle_sp_tq(void *context,
8962                 int  pending)
8963{
8964    struct bxe_softc *sc = (struct bxe_softc *)context;
8965    uint16_t status;
8966
8967    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8968
8969    /* what work needs to be performed? */
8970    status = bxe_update_dsb_idx(sc);
8971
8972    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8973
8974    /* HW attentions */
8975    if (status & BXE_DEF_SB_ATT_IDX) {
8976        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8977        bxe_attn_int(sc);
8978        status &= ~BXE_DEF_SB_ATT_IDX;
8979    }
8980
8981    /* SP events: STAT_QUERY and others */
8982    if (status & BXE_DEF_SB_IDX) {
8983        /* handle EQ completions */
8984        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8985        bxe_eq_int(sc);
8986        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8987                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8988        status &= ~BXE_DEF_SB_IDX;
8989    }
8990
8991    /* if status is non zero then something went wrong */
8992    if (__predict_false(status)) {
8993        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8994    }
8995
8996    /* ack status block only if something was actually handled */
8997    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8998               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8999
9000    /*
9001     * Must be called after the EQ processing (since eq leads to sriov
9002     * ramrod completion flows).
9003     * This flow may have been scheduled by the arrival of a ramrod
9004     * completion, or by the sriov code rescheduling itself.
9005     */
9006    // XXX bxe_iov_sp_task(sc);
9007
9008#if 0
9009    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9010    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9011                               &sc->sp_state)) {
9012        bxe_link_report(sc);
9013        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9014    }
9015#endif
9016}
9017
9018static void
9019bxe_handle_fp_tq(void *context,
9020                 int  pending)
9021{
9022    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9023    struct bxe_softc *sc = fp->sc;
9024    uint8_t more_tx = FALSE;
9025    uint8_t more_rx = FALSE;
9026
9027    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9028
9029    /* XXX
9030     * IFF_DRV_RUNNING state can't be checked here since we process
9031     * slowpath events on a client queue during setup. Instead
9032     * we need to add a "process/continue" flag here that the driver
9033     * can use to tell the task here not to do anything.
9034     */
9035#if 0
9036    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9037        return;
9038    }
9039#endif
9040
9041    /* update the fastpath index */
9042    bxe_update_fp_sb_idx(fp);
9043
9044    /* XXX add loop here if ever support multiple tx CoS */
9045    /* fp->txdata[cos] */
9046    if (bxe_has_tx_work(fp)) {
9047        BXE_FP_TX_LOCK(fp);
9048        more_tx = bxe_txeof(sc, fp);
9049        BXE_FP_TX_UNLOCK(fp);
9050    }
9051
9052    if (bxe_has_rx_work(fp)) {
9053        more_rx = bxe_rxeof(sc, fp);
9054    }
9055
9056    if (more_rx /*|| more_tx*/) {
9057        /* still more work to do */
9058        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9059        return;
9060    }
9061
9062    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9063               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9064}
9065
9066static void
9067bxe_task_fp(struct bxe_fastpath *fp)
9068{
9069    struct bxe_softc *sc = fp->sc;
9070    uint8_t more_tx = FALSE;
9071    uint8_t more_rx = FALSE;
9072
9073    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9074
9075    /* update the fastpath index */
9076    bxe_update_fp_sb_idx(fp);
9077
9078    /* XXX add loop here if ever support multiple tx CoS */
9079    /* fp->txdata[cos] */
9080    if (bxe_has_tx_work(fp)) {
9081        BXE_FP_TX_LOCK(fp);
9082        more_tx = bxe_txeof(sc, fp);
9083        BXE_FP_TX_UNLOCK(fp);
9084    }
9085
9086    if (bxe_has_rx_work(fp)) {
9087        more_rx = bxe_rxeof(sc, fp);
9088    }
9089
9090    if (more_rx /*|| more_tx*/) {
9091        /* still more work to do, bail out if this ISR and process later */
9092        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9093        return;
9094    }
9095
9096    /*
9097     * Here we write the fastpath index taken before doing any tx or rx work.
9098     * It is very well possible other hw events occurred up to this point and
9099     * they were actually processed accordingly above. Since we're going to
9100     * write an older fastpath index, an interrupt is coming which we might
9101     * not do any work in.
9102     */
9103    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9104               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9105}
9106
9107/*
9108 * Legacy interrupt entry point.
9109 *
9110 * Verifies that the controller generated the interrupt and
9111 * then calls a separate routine to handle the various
9112 * interrupt causes: link, RX, and TX.
9113 */
9114static void
9115bxe_intr_legacy(void *xsc)
9116{
9117    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9118    struct bxe_fastpath *fp;
9119    uint16_t status, mask;
9120    int i;
9121
9122    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9123
9124#if 0
9125    /* Don't handle any interrupts if we're not ready. */
9126    if (__predict_false(sc->intr_sem != 0)) {
9127        return;
9128    }
9129#endif
9130
9131    /*
9132     * 0 for ustorm, 1 for cstorm
9133     * the bits returned from ack_int() are 0-15
9134     * bit 0 = attention status block
9135     * bit 1 = fast path status block
9136     * a mask of 0x2 or more = tx/rx event
9137     * a mask of 1 = slow path event
9138     */
9139
9140    status = bxe_ack_int(sc);
9141
9142    /* the interrupt is not for us */
9143    if (__predict_false(status == 0)) {
9144        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9145        return;
9146    }
9147
9148    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9149
9150    FOR_EACH_ETH_QUEUE(sc, i) {
9151        fp = &sc->fp[i];
9152        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9153        if (status & mask) {
9154            /* acknowledge and disable further fastpath interrupts */
9155            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9156            bxe_task_fp(fp);
9157            status &= ~mask;
9158        }
9159    }
9160
9161#if 0
9162    if (CNIC_SUPPORT(sc)) {
9163        mask = 0x2;
9164        if (status & (mask | 0x1)) {
9165            ...
9166            status &= ~mask;
9167        }
9168    }
9169#endif
9170
9171    if (__predict_false(status & 0x1)) {
9172        /* acknowledge and disable further slowpath interrupts */
9173        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9174
9175        /* schedule slowpath handler */
9176        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9177
9178        status &= ~0x1;
9179    }
9180
9181    if (__predict_false(status)) {
9182        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9183    }
9184}
9185
9186/* slowpath interrupt entry point */
9187static void
9188bxe_intr_sp(void *xsc)
9189{
9190    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9191
9192    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9193
9194    /* acknowledge and disable further slowpath interrupts */
9195    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9196
9197    /* schedule slowpath handler */
9198    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9199}
9200
9201/* fastpath interrupt entry point */
9202static void
9203bxe_intr_fp(void *xfp)
9204{
9205    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9206    struct bxe_softc *sc = fp->sc;
9207
9208    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9209
9210    BLOGD(sc, DBG_INTR,
9211          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9212          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9213
9214#if 0
9215    /* Don't handle any interrupts if we're not ready. */
9216    if (__predict_false(sc->intr_sem != 0)) {
9217        return;
9218    }
9219#endif
9220
9221    /* acknowledge and disable further fastpath interrupts */
9222    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9223
9224    bxe_task_fp(fp);
9225}
9226
9227/* Release all interrupts allocated by the driver. */
9228static void
9229bxe_interrupt_free(struct bxe_softc *sc)
9230{
9231    int i;
9232
9233    switch (sc->interrupt_mode) {
9234    case INTR_MODE_INTX:
9235        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9236        if (sc->intr[0].resource != NULL) {
9237            bus_release_resource(sc->dev,
9238                                 SYS_RES_IRQ,
9239                                 sc->intr[0].rid,
9240                                 sc->intr[0].resource);
9241        }
9242        break;
9243    case INTR_MODE_MSI:
9244        for (i = 0; i < sc->intr_count; i++) {
9245            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9246            if (sc->intr[i].resource && sc->intr[i].rid) {
9247                bus_release_resource(sc->dev,
9248                                     SYS_RES_IRQ,
9249                                     sc->intr[i].rid,
9250                                     sc->intr[i].resource);
9251            }
9252        }
9253        pci_release_msi(sc->dev);
9254        break;
9255    case INTR_MODE_MSIX:
9256        for (i = 0; i < sc->intr_count; i++) {
9257            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9258            if (sc->intr[i].resource && sc->intr[i].rid) {
9259                bus_release_resource(sc->dev,
9260                                     SYS_RES_IRQ,
9261                                     sc->intr[i].rid,
9262                                     sc->intr[i].resource);
9263            }
9264        }
9265        pci_release_msi(sc->dev);
9266        break;
9267    default:
9268        /* nothing to do as initial allocation failed */
9269        break;
9270    }
9271}
9272
9273/*
9274 * This function determines and allocates the appropriate
9275 * interrupt based on system capabilites and user request.
9276 *
9277 * The user may force a particular interrupt mode, specify
9278 * the number of receive queues, specify the method for
9279 * distribuitng received frames to receive queues, or use
9280 * the default settings which will automatically select the
9281 * best supported combination.  In addition, the OS may or
9282 * may not support certain combinations of these settings.
9283 * This routine attempts to reconcile the settings requested
9284 * by the user with the capabilites available from the system
9285 * to select the optimal combination of features.
9286 *
9287 * Returns:
9288 *   0 = Success, !0 = Failure.
9289 */
9290static int
9291bxe_interrupt_alloc(struct bxe_softc *sc)
9292{
9293    int msix_count = 0;
9294    int msi_count = 0;
9295    int num_requested = 0;
9296    int num_allocated = 0;
9297    int rid, i, j;
9298    int rc;
9299
9300    /* get the number of available MSI/MSI-X interrupts from the OS */
9301    if (sc->interrupt_mode > 0) {
9302        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9303            msix_count = pci_msix_count(sc->dev);
9304        }
9305
9306        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9307            msi_count = pci_msi_count(sc->dev);
9308        }
9309
9310        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9311              msi_count, msix_count);
9312    }
9313
9314    do { /* try allocating MSI-X interrupt resources (at least 2) */
9315        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9316            break;
9317        }
9318
9319        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9320            (msix_count < 2)) {
9321            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9322            break;
9323        }
9324
9325        /* ask for the necessary number of MSI-X vectors */
9326        num_requested = min((sc->num_queues + 1), msix_count);
9327
9328        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9329
9330        num_allocated = num_requested;
9331        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9332            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9333            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9334            break;
9335        }
9336
9337        if (num_allocated < 2) { /* possible? */
9338            BLOGE(sc, "MSI-X allocation less than 2!\n");
9339            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9340            pci_release_msi(sc->dev);
9341            break;
9342        }
9343
9344        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9345              num_requested, num_allocated);
9346
9347        /* best effort so use the number of vectors allocated to us */
9348        sc->intr_count = num_allocated;
9349        sc->num_queues = num_allocated - 1;
9350
9351        rid = 1; /* initial resource identifier */
9352
9353        /* allocate the MSI-X vectors */
9354        for (i = 0; i < num_allocated; i++) {
9355            sc->intr[i].rid = (rid + i);
9356
9357            if ((sc->intr[i].resource =
9358                 bus_alloc_resource_any(sc->dev,
9359                                        SYS_RES_IRQ,
9360                                        &sc->intr[i].rid,
9361                                        RF_ACTIVE)) == NULL) {
9362                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9363                      i, (rid + i));
9364
9365                for (j = (i - 1); j >= 0; j--) {
9366                    bus_release_resource(sc->dev,
9367                                         SYS_RES_IRQ,
9368                                         sc->intr[j].rid,
9369                                         sc->intr[j].resource);
9370                }
9371
9372                sc->intr_count = 0;
9373                sc->num_queues = 0;
9374                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9375                pci_release_msi(sc->dev);
9376                break;
9377            }
9378
9379            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9380        }
9381    } while (0);
9382
9383    do { /* try allocating MSI vector resources (at least 2) */
9384        if (sc->interrupt_mode != INTR_MODE_MSI) {
9385            break;
9386        }
9387
9388        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9389            (msi_count < 1)) {
9390            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9391            break;
9392        }
9393
9394        /* ask for a single MSI vector */
9395        num_requested = 1;
9396
9397        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9398
9399        num_allocated = num_requested;
9400        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9401            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9402            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9403            break;
9404        }
9405
9406        if (num_allocated != 1) { /* possible? */
9407            BLOGE(sc, "MSI allocation is not 1!\n");
9408            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9409            pci_release_msi(sc->dev);
9410            break;
9411        }
9412
9413        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9414              num_requested, num_allocated);
9415
9416        /* best effort so use the number of vectors allocated to us */
9417        sc->intr_count = num_allocated;
9418        sc->num_queues = num_allocated;
9419
9420        rid = 1; /* initial resource identifier */
9421
9422        sc->intr[0].rid = rid;
9423
9424        if ((sc->intr[0].resource =
9425             bus_alloc_resource_any(sc->dev,
9426                                    SYS_RES_IRQ,
9427                                    &sc->intr[0].rid,
9428                                    RF_ACTIVE)) == NULL) {
9429            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9430            sc->intr_count = 0;
9431            sc->num_queues = 0;
9432            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9433            pci_release_msi(sc->dev);
9434            break;
9435        }
9436
9437        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9438    } while (0);
9439
9440    do { /* try allocating INTx vector resources */
9441        if (sc->interrupt_mode != INTR_MODE_INTX) {
9442            break;
9443        }
9444
9445        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9446
9447        /* only one vector for INTx */
9448        sc->intr_count = 1;
9449        sc->num_queues = 1;
9450
9451        rid = 0; /* initial resource identifier */
9452
9453        sc->intr[0].rid = rid;
9454
9455        if ((sc->intr[0].resource =
9456             bus_alloc_resource_any(sc->dev,
9457                                    SYS_RES_IRQ,
9458                                    &sc->intr[0].rid,
9459                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9460            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9461            sc->intr_count = 0;
9462            sc->num_queues = 0;
9463            sc->interrupt_mode = -1; /* Failed! */
9464            break;
9465        }
9466
9467        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9468    } while (0);
9469
9470    if (sc->interrupt_mode == -1) {
9471        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9472        rc = 1;
9473    } else {
9474        BLOGD(sc, DBG_LOAD,
9475              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9476              sc->interrupt_mode, sc->num_queues);
9477        rc = 0;
9478    }
9479
9480    return (rc);
9481}
9482
9483static void
9484bxe_interrupt_detach(struct bxe_softc *sc)
9485{
9486    struct bxe_fastpath *fp;
9487    int i;
9488
9489    /* release interrupt resources */
9490    for (i = 0; i < sc->intr_count; i++) {
9491        if (sc->intr[i].resource && sc->intr[i].tag) {
9492            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9493            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9494        }
9495    }
9496
9497    for (i = 0; i < sc->num_queues; i++) {
9498        fp = &sc->fp[i];
9499        if (fp->tq) {
9500            taskqueue_drain(fp->tq, &fp->tq_task);
9501            taskqueue_free(fp->tq);
9502            fp->tq = NULL;
9503        }
9504    }
9505
9506    if (sc->rx_mode_tq) {
9507        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9508        taskqueue_free(sc->rx_mode_tq);
9509        sc->rx_mode_tq = NULL;
9510    }
9511
9512    if (sc->sp_tq) {
9513        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9514        taskqueue_free(sc->sp_tq);
9515        sc->sp_tq = NULL;
9516    }
9517}
9518
9519/*
9520 * Enables interrupts and attach to the ISR.
9521 *
9522 * When using multiple MSI/MSI-X vectors the first vector
9523 * is used for slowpath operations while all remaining
9524 * vectors are used for fastpath operations.  If only a
9525 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9526 * ISR must look for both slowpath and fastpath completions.
9527 */
9528static int
9529bxe_interrupt_attach(struct bxe_softc *sc)
9530{
9531    struct bxe_fastpath *fp;
9532    int rc = 0;
9533    int i;
9534
9535    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9536             "bxe%d_sp_tq", sc->unit);
9537    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9538    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9539                                      taskqueue_thread_enqueue,
9540                                      &sc->sp_tq);
9541    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9542                            "%s", sc->sp_tq_name);
9543
9544    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9545             "bxe%d_rx_mode_tq", sc->unit);
9546    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9547    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9548                                           taskqueue_thread_enqueue,
9549                                           &sc->rx_mode_tq);
9550    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9551                            "%s", sc->rx_mode_tq_name);
9552
9553    for (i = 0; i < sc->num_queues; i++) {
9554        fp = &sc->fp[i];
9555        snprintf(fp->tq_name, sizeof(fp->tq_name),
9556                 "bxe%d_fp%d_tq", sc->unit, i);
9557        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9558        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9559                                       taskqueue_thread_enqueue,
9560                                       &fp->tq);
9561        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9562                                "%s", fp->tq_name);
9563    }
9564
9565    /* setup interrupt handlers */
9566    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9567        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9568
9569        /*
9570         * Setup the interrupt handler. Note that we pass the driver instance
9571         * to the interrupt handler for the slowpath.
9572         */
9573        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9574                                 (INTR_TYPE_NET | INTR_MPSAFE),
9575                                 NULL, bxe_intr_sp, sc,
9576                                 &sc->intr[0].tag)) != 0) {
9577            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9578            goto bxe_interrupt_attach_exit;
9579        }
9580
9581        bus_describe_intr(sc->dev, sc->intr[0].resource,
9582                          sc->intr[0].tag, "sp");
9583
9584        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9585
9586        /* initialize the fastpath vectors (note the first was used for sp) */
9587        for (i = 0; i < sc->num_queues; i++) {
9588            fp = &sc->fp[i];
9589            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9590
9591            /*
9592             * Setup the interrupt handler. Note that we pass the
9593             * fastpath context to the interrupt handler in this
9594             * case.
9595             */
9596            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9597                                     (INTR_TYPE_NET | INTR_MPSAFE),
9598                                     NULL, bxe_intr_fp, fp,
9599                                     &sc->intr[i + 1].tag)) != 0) {
9600                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9601                      (i + 1), rc);
9602                goto bxe_interrupt_attach_exit;
9603            }
9604
9605            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9606                              sc->intr[i + 1].tag, "fp%02d", i);
9607
9608            /* bind the fastpath instance to a cpu */
9609            if (sc->num_queues > 1) {
9610                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9611            }
9612
9613            fp->state = BXE_FP_STATE_IRQ;
9614        }
9615    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9616        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9617
9618        /*
9619         * Setup the interrupt handler. Note that we pass the
9620         * driver instance to the interrupt handler which
9621         * will handle both the slowpath and fastpath.
9622         */
9623        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9624                                 (INTR_TYPE_NET | INTR_MPSAFE),
9625                                 NULL, bxe_intr_legacy, sc,
9626                                 &sc->intr[0].tag)) != 0) {
9627            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9628            goto bxe_interrupt_attach_exit;
9629        }
9630
9631    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9632        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9633
9634        /*
9635         * Setup the interrupt handler. Note that we pass the
9636         * driver instance to the interrupt handler which
9637         * will handle both the slowpath and fastpath.
9638         */
9639        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9640                                 (INTR_TYPE_NET | INTR_MPSAFE),
9641                                 NULL, bxe_intr_legacy, sc,
9642                                 &sc->intr[0].tag)) != 0) {
9643            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9644            goto bxe_interrupt_attach_exit;
9645        }
9646    }
9647
9648bxe_interrupt_attach_exit:
9649
9650    return (rc);
9651}
9652
9653static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9654static int  bxe_init_hw_common(struct bxe_softc *sc);
9655static int  bxe_init_hw_port(struct bxe_softc *sc);
9656static int  bxe_init_hw_func(struct bxe_softc *sc);
9657static void bxe_reset_common(struct bxe_softc *sc);
9658static void bxe_reset_port(struct bxe_softc *sc);
9659static void bxe_reset_func(struct bxe_softc *sc);
9660static int  bxe_gunzip_init(struct bxe_softc *sc);
9661static void bxe_gunzip_end(struct bxe_softc *sc);
9662static int  bxe_init_firmware(struct bxe_softc *sc);
9663static void bxe_release_firmware(struct bxe_softc *sc);
9664
9665static struct
9666ecore_func_sp_drv_ops bxe_func_sp_drv = {
9667    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9668    .init_hw_cmn      = bxe_init_hw_common,
9669    .init_hw_port     = bxe_init_hw_port,
9670    .init_hw_func     = bxe_init_hw_func,
9671
9672    .reset_hw_cmn     = bxe_reset_common,
9673    .reset_hw_port    = bxe_reset_port,
9674    .reset_hw_func    = bxe_reset_func,
9675
9676    .gunzip_init      = bxe_gunzip_init,
9677    .gunzip_end       = bxe_gunzip_end,
9678
9679    .init_fw          = bxe_init_firmware,
9680    .release_fw       = bxe_release_firmware,
9681};
9682
9683static void
9684bxe_init_func_obj(struct bxe_softc *sc)
9685{
9686    sc->dmae_ready = 0;
9687
9688    ecore_init_func_obj(sc,
9689                        &sc->func_obj,
9690                        BXE_SP(sc, func_rdata),
9691                        BXE_SP_MAPPING(sc, func_rdata),
9692                        BXE_SP(sc, func_afex_rdata),
9693                        BXE_SP_MAPPING(sc, func_afex_rdata),
9694                        &bxe_func_sp_drv);
9695}
9696
9697static int
9698bxe_init_hw(struct bxe_softc *sc,
9699            uint32_t         load_code)
9700{
9701    struct ecore_func_state_params func_params = { NULL };
9702    int rc;
9703
9704    /* prepare the parameters for function state transitions */
9705    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9706
9707    func_params.f_obj = &sc->func_obj;
9708    func_params.cmd = ECORE_F_CMD_HW_INIT;
9709
9710    func_params.params.hw_init.load_phase = load_code;
9711
9712    /*
9713     * Via a plethora of function pointers, we will eventually reach
9714     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9715     */
9716    rc = ecore_func_state_change(sc, &func_params);
9717
9718    return (rc);
9719}
9720
9721static void
9722bxe_fill(struct bxe_softc *sc,
9723         uint32_t         addr,
9724         int              fill,
9725         uint32_t         len)
9726{
9727    uint32_t i;
9728
9729    if (!(len % 4) && !(addr % 4)) {
9730        for (i = 0; i < len; i += 4) {
9731            REG_WR(sc, (addr + i), fill);
9732        }
9733    } else {
9734        for (i = 0; i < len; i++) {
9735            REG_WR8(sc, (addr + i), fill);
9736        }
9737    }
9738}
9739
9740/* writes FP SP data to FW - data_size in dwords */
9741static void
9742bxe_wr_fp_sb_data(struct bxe_softc *sc,
9743                  int              fw_sb_id,
9744                  uint32_t         *sb_data_p,
9745                  uint32_t         data_size)
9746{
9747    int index;
9748
9749    for (index = 0; index < data_size; index++) {
9750        REG_WR(sc,
9751               (BAR_CSTRORM_INTMEM +
9752                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9753                (sizeof(uint32_t) * index)),
9754               *(sb_data_p + index));
9755    }
9756}
9757
9758static void
9759bxe_zero_fp_sb(struct bxe_softc *sc,
9760               int              fw_sb_id)
9761{
9762    struct hc_status_block_data_e2 sb_data_e2;
9763    struct hc_status_block_data_e1x sb_data_e1x;
9764    uint32_t *sb_data_p;
9765    uint32_t data_size = 0;
9766
9767    if (!CHIP_IS_E1x(sc)) {
9768        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9769        sb_data_e2.common.state = SB_DISABLED;
9770        sb_data_e2.common.p_func.vf_valid = FALSE;
9771        sb_data_p = (uint32_t *)&sb_data_e2;
9772        data_size = (sizeof(struct hc_status_block_data_e2) /
9773                     sizeof(uint32_t));
9774    } else {
9775        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9776        sb_data_e1x.common.state = SB_DISABLED;
9777        sb_data_e1x.common.p_func.vf_valid = FALSE;
9778        sb_data_p = (uint32_t *)&sb_data_e1x;
9779        data_size = (sizeof(struct hc_status_block_data_e1x) /
9780                     sizeof(uint32_t));
9781    }
9782
9783    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9784
9785    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9786             0, CSTORM_STATUS_BLOCK_SIZE);
9787    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9788             0, CSTORM_SYNC_BLOCK_SIZE);
9789}
9790
9791static void
9792bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9793                  struct hc_sp_status_block_data *sp_sb_data)
9794{
9795    int i;
9796
9797    for (i = 0;
9798         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9799         i++) {
9800        REG_WR(sc,
9801               (BAR_CSTRORM_INTMEM +
9802                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9803                (i * sizeof(uint32_t))),
9804               *((uint32_t *)sp_sb_data + i));
9805    }
9806}
9807
9808static void
9809bxe_zero_sp_sb(struct bxe_softc *sc)
9810{
9811    struct hc_sp_status_block_data sp_sb_data;
9812
9813    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9814
9815    sp_sb_data.state           = SB_DISABLED;
9816    sp_sb_data.p_func.vf_valid = FALSE;
9817
9818    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9819
9820    bxe_fill(sc,
9821             (BAR_CSTRORM_INTMEM +
9822              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9823              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9824    bxe_fill(sc,
9825             (BAR_CSTRORM_INTMEM +
9826              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9827              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9828}
9829
9830static void
9831bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9832                             int                       igu_sb_id,
9833                             int                       igu_seg_id)
9834{
9835    hc_sm->igu_sb_id      = igu_sb_id;
9836    hc_sm->igu_seg_id     = igu_seg_id;
9837    hc_sm->timer_value    = 0xFF;
9838    hc_sm->time_to_expire = 0xFFFFFFFF;
9839}
9840
9841static void
9842bxe_map_sb_state_machines(struct hc_index_data *index_data)
9843{
9844    /* zero out state machine indices */
9845
9846    /* rx indices */
9847    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9848
9849    /* tx indices */
9850    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9851    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9852    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9853    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9854
9855    /* map indices */
9856
9857    /* rx indices */
9858    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9859        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9860
9861    /* tx indices */
9862    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9863        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9864    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9865        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9866    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9867        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9868    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9869        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9870}
9871
9872static void
9873bxe_init_sb(struct bxe_softc *sc,
9874            bus_addr_t       busaddr,
9875            int              vfid,
9876            uint8_t          vf_valid,
9877            int              fw_sb_id,
9878            int              igu_sb_id)
9879{
9880    struct hc_status_block_data_e2  sb_data_e2;
9881    struct hc_status_block_data_e1x sb_data_e1x;
9882    struct hc_status_block_sm       *hc_sm_p;
9883    uint32_t *sb_data_p;
9884    int igu_seg_id;
9885    int data_size;
9886
9887    if (CHIP_INT_MODE_IS_BC(sc)) {
9888        igu_seg_id = HC_SEG_ACCESS_NORM;
9889    } else {
9890        igu_seg_id = IGU_SEG_ACCESS_NORM;
9891    }
9892
9893    bxe_zero_fp_sb(sc, fw_sb_id);
9894
9895    if (!CHIP_IS_E1x(sc)) {
9896        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9897        sb_data_e2.common.state = SB_ENABLED;
9898        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9899        sb_data_e2.common.p_func.vf_id = vfid;
9900        sb_data_e2.common.p_func.vf_valid = vf_valid;
9901        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9902        sb_data_e2.common.same_igu_sb_1b = TRUE;
9903        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9904        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9905        hc_sm_p = sb_data_e2.common.state_machine;
9906        sb_data_p = (uint32_t *)&sb_data_e2;
9907        data_size = (sizeof(struct hc_status_block_data_e2) /
9908                     sizeof(uint32_t));
9909        bxe_map_sb_state_machines(sb_data_e2.index_data);
9910    } else {
9911        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9912        sb_data_e1x.common.state = SB_ENABLED;
9913        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9914        sb_data_e1x.common.p_func.vf_id = 0xff;
9915        sb_data_e1x.common.p_func.vf_valid = FALSE;
9916        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9917        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9918        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9919        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9920        hc_sm_p = sb_data_e1x.common.state_machine;
9921        sb_data_p = (uint32_t *)&sb_data_e1x;
9922        data_size = (sizeof(struct hc_status_block_data_e1x) /
9923                     sizeof(uint32_t));
9924        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9925    }
9926
9927    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9928    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9929
9930    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9931
9932    /* write indices to HW - PCI guarantees endianity of regpairs */
9933    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9934}
9935
9936static inline uint8_t
9937bxe_fp_qzone_id(struct bxe_fastpath *fp)
9938{
9939    if (CHIP_IS_E1x(fp->sc)) {
9940        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9941    } else {
9942        return (fp->cl_id);
9943    }
9944}
9945
9946static inline uint32_t
9947bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9948                           struct bxe_fastpath *fp)
9949{
9950    uint32_t offset = BAR_USTRORM_INTMEM;
9951
9952#if 0
9953    if (IS_VF(sc)) {
9954        return (PXP_VF_ADDR_USDM_QUEUES_START +
9955                (sc->acquire_resp.resc.hw_qid[fp->index] *
9956                 sizeof(struct ustorm_queue_zone_data)));
9957    } else
9958#endif
9959    if (!CHIP_IS_E1x(sc)) {
9960        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9961    } else {
9962        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9963    }
9964
9965    return (offset);
9966}
9967
9968static void
9969bxe_init_eth_fp(struct bxe_softc *sc,
9970                int              idx)
9971{
9972    struct bxe_fastpath *fp = &sc->fp[idx];
9973    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9974    unsigned long q_type = 0;
9975    int cos;
9976
9977    fp->sc    = sc;
9978    fp->index = idx;
9979
9980    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9981             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9982    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9983
9984    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9985             "bxe%d_fp%d_rx_lock", sc->unit, idx);
9986    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
9987
9988    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9989    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9990
9991    fp->cl_id = (CHIP_IS_E1x(sc)) ?
9992                    (SC_L_ID(sc) + idx) :
9993                    /* want client ID same as IGU SB ID for non-E1 */
9994                    fp->igu_sb_id;
9995    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9996
9997    /* setup sb indices */
9998    if (!CHIP_IS_E1x(sc)) {
9999        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10000        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10001    } else {
10002        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10003        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10004    }
10005
10006    /* init shortcut */
10007    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10008
10009    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10010
10011    /*
10012     * XXX If multiple CoS is ever supported then each fastpath structure
10013     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10014     */
10015    for (cos = 0; cos < sc->max_cos; cos++) {
10016        cids[cos] = idx;
10017    }
10018    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10019
10020    /* nothing more for a VF to do */
10021    if (IS_VF(sc)) {
10022        return;
10023    }
10024
10025    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10026                fp->fw_sb_id, fp->igu_sb_id);
10027
10028    bxe_update_fp_sb_idx(fp);
10029
10030    /* Configure Queue State object */
10031    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10032    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10033
10034    ecore_init_queue_obj(sc,
10035                         &sc->sp_objs[idx].q_obj,
10036                         fp->cl_id,
10037                         cids,
10038                         sc->max_cos,
10039                         SC_FUNC(sc),
10040                         BXE_SP(sc, q_rdata),
10041                         BXE_SP_MAPPING(sc, q_rdata),
10042                         q_type);
10043
10044    /* configure classification DBs */
10045    ecore_init_mac_obj(sc,
10046                       &sc->sp_objs[idx].mac_obj,
10047                       fp->cl_id,
10048                       idx,
10049                       SC_FUNC(sc),
10050                       BXE_SP(sc, mac_rdata),
10051                       BXE_SP_MAPPING(sc, mac_rdata),
10052                       ECORE_FILTER_MAC_PENDING,
10053                       &sc->sp_state,
10054                       ECORE_OBJ_TYPE_RX_TX,
10055                       &sc->macs_pool);
10056
10057    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10058          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10059}
10060
10061static inline void
10062bxe_update_rx_prod(struct bxe_softc    *sc,
10063                   struct bxe_fastpath *fp,
10064                   uint16_t            rx_bd_prod,
10065                   uint16_t            rx_cq_prod,
10066                   uint16_t            rx_sge_prod)
10067{
10068    struct ustorm_eth_rx_producers rx_prods = { 0 };
10069    uint32_t i;
10070
10071    /* update producers */
10072    rx_prods.bd_prod  = rx_bd_prod;
10073    rx_prods.cqe_prod = rx_cq_prod;
10074    rx_prods.sge_prod = rx_sge_prod;
10075
10076    /*
10077     * Make sure that the BD and SGE data is updated before updating the
10078     * producers since FW might read the BD/SGE right after the producer
10079     * is updated.
10080     * This is only applicable for weak-ordered memory model archs such
10081     * as IA-64. The following barrier is also mandatory since FW will
10082     * assumes BDs must have buffers.
10083     */
10084    wmb();
10085
10086    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10087        REG_WR(sc,
10088               (fp->ustorm_rx_prods_offset + (i * 4)),
10089               ((uint32_t *)&rx_prods)[i]);
10090    }
10091
10092    wmb(); /* keep prod updates ordered */
10093
10094    BLOGD(sc, DBG_RX,
10095          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10096          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10097}
10098
10099static void
10100bxe_init_rx_rings(struct bxe_softc *sc)
10101{
10102    struct bxe_fastpath *fp;
10103    int i;
10104
10105    for (i = 0; i < sc->num_queues; i++) {
10106        fp = &sc->fp[i];
10107
10108        fp->rx_bd_cons = 0;
10109
10110        /*
10111         * Activate the BD ring...
10112         * Warning, this will generate an interrupt (to the TSTORM)
10113         * so this can only be done after the chip is initialized
10114         */
10115        bxe_update_rx_prod(sc, fp,
10116                           fp->rx_bd_prod,
10117                           fp->rx_cq_prod,
10118                           fp->rx_sge_prod);
10119
10120        if (i != 0) {
10121            continue;
10122        }
10123
10124        if (CHIP_IS_E1(sc)) {
10125            REG_WR(sc,
10126                   (BAR_USTRORM_INTMEM +
10127                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10128                   U64_LO(fp->rcq_dma.paddr));
10129            REG_WR(sc,
10130                   (BAR_USTRORM_INTMEM +
10131                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10132                   U64_HI(fp->rcq_dma.paddr));
10133        }
10134    }
10135}
10136
10137static void
10138bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10139{
10140    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10141    fp->tx_db.data.zero_fill1 = 0;
10142    fp->tx_db.data.prod = 0;
10143
10144    fp->tx_pkt_prod = 0;
10145    fp->tx_pkt_cons = 0;
10146    fp->tx_bd_prod = 0;
10147    fp->tx_bd_cons = 0;
10148    fp->eth_q_stats.tx_pkts = 0;
10149}
10150
10151static inline void
10152bxe_init_tx_rings(struct bxe_softc *sc)
10153{
10154    int i;
10155
10156    for (i = 0; i < sc->num_queues; i++) {
10157#if 0
10158        uint8_t cos;
10159        for (cos = 0; cos < sc->max_cos; cos++) {
10160            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10161        }
10162#else
10163        bxe_init_tx_ring_one(&sc->fp[i]);
10164#endif
10165    }
10166}
10167
10168static void
10169bxe_init_def_sb(struct bxe_softc *sc)
10170{
10171    struct host_sp_status_block *def_sb = sc->def_sb;
10172    bus_addr_t mapping = sc->def_sb_dma.paddr;
10173    int igu_sp_sb_index;
10174    int igu_seg_id;
10175    int port = SC_PORT(sc);
10176    int func = SC_FUNC(sc);
10177    int reg_offset, reg_offset_en5;
10178    uint64_t section;
10179    int index, sindex;
10180    struct hc_sp_status_block_data sp_sb_data;
10181
10182    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10183
10184    if (CHIP_INT_MODE_IS_BC(sc)) {
10185        igu_sp_sb_index = DEF_SB_IGU_ID;
10186        igu_seg_id = HC_SEG_ACCESS_DEF;
10187    } else {
10188        igu_sp_sb_index = sc->igu_dsb_id;
10189        igu_seg_id = IGU_SEG_ACCESS_DEF;
10190    }
10191
10192    /* attentions */
10193    section = ((uint64_t)mapping +
10194               offsetof(struct host_sp_status_block, atten_status_block));
10195    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10196    sc->attn_state = 0;
10197
10198    reg_offset = (port) ?
10199                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10200                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10201    reg_offset_en5 = (port) ?
10202                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10203                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10204
10205    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10206        /* take care of sig[0]..sig[4] */
10207        for (sindex = 0; sindex < 4; sindex++) {
10208            sc->attn_group[index].sig[sindex] =
10209                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10210        }
10211
10212        if (!CHIP_IS_E1x(sc)) {
10213            /*
10214             * enable5 is separate from the rest of the registers,
10215             * and the address skip is 4 and not 16 between the
10216             * different groups
10217             */
10218            sc->attn_group[index].sig[4] =
10219                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10220        } else {
10221            sc->attn_group[index].sig[4] = 0;
10222        }
10223    }
10224
10225    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10226        reg_offset = (port) ?
10227                         HC_REG_ATTN_MSG1_ADDR_L :
10228                         HC_REG_ATTN_MSG0_ADDR_L;
10229        REG_WR(sc, reg_offset, U64_LO(section));
10230        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10231    } else if (!CHIP_IS_E1x(sc)) {
10232        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10233        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10234    }
10235
10236    section = ((uint64_t)mapping +
10237               offsetof(struct host_sp_status_block, sp_sb));
10238
10239    bxe_zero_sp_sb(sc);
10240
10241    /* PCI guarantees endianity of regpair */
10242    sp_sb_data.state           = SB_ENABLED;
10243    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10244    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10245    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10246    sp_sb_data.igu_seg_id      = igu_seg_id;
10247    sp_sb_data.p_func.pf_id    = func;
10248    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10249    sp_sb_data.p_func.vf_id    = 0xff;
10250
10251    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10252
10253    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10254}
10255
10256static void
10257bxe_init_sp_ring(struct bxe_softc *sc)
10258{
10259    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10260    sc->spq_prod_idx = 0;
10261    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10262    sc->spq_prod_bd = sc->spq;
10263    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10264}
10265
10266static void
10267bxe_init_eq_ring(struct bxe_softc *sc)
10268{
10269    union event_ring_elem *elem;
10270    int i;
10271
10272    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10273        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10274
10275        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10276                                                 BCM_PAGE_SIZE *
10277                                                 (i % NUM_EQ_PAGES)));
10278        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10279                                                 BCM_PAGE_SIZE *
10280                                                 (i % NUM_EQ_PAGES)));
10281    }
10282
10283    sc->eq_cons    = 0;
10284    sc->eq_prod    = NUM_EQ_DESC;
10285    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10286
10287    atomic_store_rel_long(&sc->eq_spq_left,
10288                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10289                               NUM_EQ_DESC) - 1));
10290}
10291
10292static void
10293bxe_init_internal_common(struct bxe_softc *sc)
10294{
10295    int i;
10296
10297    if (IS_MF_SI(sc)) {
10298        /*
10299         * In switch independent mode, the TSTORM needs to accept
10300         * packets that failed classification, since approximate match
10301         * mac addresses aren't written to NIG LLH.
10302         */
10303        REG_WR8(sc,
10304                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10305                2);
10306    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10307        REG_WR8(sc,
10308                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10309                0);
10310    }
10311
10312    /*
10313     * Zero this manually as its initialization is currently missing
10314     * in the initTool.
10315     */
10316    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10317        REG_WR(sc,
10318               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10319               0);
10320    }
10321
10322    if (!CHIP_IS_E1x(sc)) {
10323        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10324                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10325    }
10326}
10327
10328static void
10329bxe_init_internal(struct bxe_softc *sc,
10330                  uint32_t         load_code)
10331{
10332    switch (load_code) {
10333    case FW_MSG_CODE_DRV_LOAD_COMMON:
10334    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10335        bxe_init_internal_common(sc);
10336        /* no break */
10337
10338    case FW_MSG_CODE_DRV_LOAD_PORT:
10339        /* nothing to do */
10340        /* no break */
10341
10342    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10343        /* internal memory per function is initialized inside bxe_pf_init */
10344        break;
10345
10346    default:
10347        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10348        break;
10349    }
10350}
10351
10352static void
10353storm_memset_func_cfg(struct bxe_softc                         *sc,
10354                      struct tstorm_eth_function_common_config *tcfg,
10355                      uint16_t                                  abs_fid)
10356{
10357    uint32_t addr;
10358    size_t size;
10359
10360    addr = (BAR_TSTRORM_INTMEM +
10361            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10362    size = sizeof(struct tstorm_eth_function_common_config);
10363    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10364}
10365
10366static void
10367bxe_func_init(struct bxe_softc            *sc,
10368              struct bxe_func_init_params *p)
10369{
10370    struct tstorm_eth_function_common_config tcfg = { 0 };
10371
10372    if (CHIP_IS_E1x(sc)) {
10373        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10374    }
10375
10376    /* Enable the function in the FW */
10377    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10378    storm_memset_func_en(sc, p->func_id, 1);
10379
10380    /* spq */
10381    if (p->func_flgs & FUNC_FLG_SPQ) {
10382        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10383        REG_WR(sc,
10384               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10385               p->spq_prod);
10386    }
10387}
10388
10389/*
10390 * Calculates the sum of vn_min_rates.
10391 * It's needed for further normalizing of the min_rates.
10392 * Returns:
10393 *   sum of vn_min_rates.
10394 *     or
10395 *   0 - if all the min_rates are 0.
10396 * In the later case fainess algorithm should be deactivated.
10397 * If all min rates are not zero then those that are zeroes will be set to 1.
10398 */
10399static void
10400bxe_calc_vn_min(struct bxe_softc       *sc,
10401                struct cmng_init_input *input)
10402{
10403    uint32_t vn_cfg;
10404    uint32_t vn_min_rate;
10405    int all_zero = 1;
10406    int vn;
10407
10408    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10409        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10410        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10411                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10412
10413        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10414            /* skip hidden VNs */
10415            vn_min_rate = 0;
10416        } else if (!vn_min_rate) {
10417            /* If min rate is zero - set it to 100 */
10418            vn_min_rate = DEF_MIN_RATE;
10419        } else {
10420            all_zero = 0;
10421        }
10422
10423        input->vnic_min_rate[vn] = vn_min_rate;
10424    }
10425
10426    /* if ETS or all min rates are zeros - disable fairness */
10427    if (BXE_IS_ETS_ENABLED(sc)) {
10428        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10429        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10430    } else if (all_zero) {
10431        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10432        BLOGD(sc, DBG_LOAD,
10433              "Fariness disabled (all MIN values are zeroes)\n");
10434    } else {
10435        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10436    }
10437}
10438
10439static inline uint16_t
10440bxe_extract_max_cfg(struct bxe_softc *sc,
10441                    uint32_t         mf_cfg)
10442{
10443    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10444                        FUNC_MF_CFG_MAX_BW_SHIFT);
10445
10446    if (!max_cfg) {
10447        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10448        max_cfg = 100;
10449    }
10450
10451    return (max_cfg);
10452}
10453
10454static void
10455bxe_calc_vn_max(struct bxe_softc       *sc,
10456                int                    vn,
10457                struct cmng_init_input *input)
10458{
10459    uint16_t vn_max_rate;
10460    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10461    uint32_t max_cfg;
10462
10463    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10464        vn_max_rate = 0;
10465    } else {
10466        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10467
10468        if (IS_MF_SI(sc)) {
10469            /* max_cfg in percents of linkspeed */
10470            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10471        } else { /* SD modes */
10472            /* max_cfg is absolute in 100Mb units */
10473            vn_max_rate = (max_cfg * 100);
10474        }
10475    }
10476
10477    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10478
10479    input->vnic_max_rate[vn] = vn_max_rate;
10480}
10481
10482static void
10483bxe_cmng_fns_init(struct bxe_softc *sc,
10484                  uint8_t          read_cfg,
10485                  uint8_t          cmng_type)
10486{
10487    struct cmng_init_input input;
10488    int vn;
10489
10490    memset(&input, 0, sizeof(struct cmng_init_input));
10491
10492    input.port_rate = sc->link_vars.line_speed;
10493
10494    if (cmng_type == CMNG_FNS_MINMAX) {
10495        /* read mf conf from shmem */
10496        if (read_cfg) {
10497            bxe_read_mf_cfg(sc);
10498        }
10499
10500        /* get VN min rate and enable fairness if not 0 */
10501        bxe_calc_vn_min(sc, &input);
10502
10503        /* get VN max rate */
10504        if (sc->port.pmf) {
10505            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10506                bxe_calc_vn_max(sc, vn, &input);
10507            }
10508        }
10509
10510        /* always enable rate shaping and fairness */
10511        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10512
10513        ecore_init_cmng(&input, &sc->cmng);
10514        return;
10515    }
10516
10517    /* rate shaping and fairness are disabled */
10518    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10519}
10520
10521static int
10522bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10523{
10524    if (CHIP_REV_IS_SLOW(sc)) {
10525        return (CMNG_FNS_NONE);
10526    }
10527
10528    if (IS_MF(sc)) {
10529        return (CMNG_FNS_MINMAX);
10530    }
10531
10532    return (CMNG_FNS_NONE);
10533}
10534
10535static void
10536storm_memset_cmng(struct bxe_softc *sc,
10537                  struct cmng_init *cmng,
10538                  uint8_t          port)
10539{
10540    int vn;
10541    int func;
10542    uint32_t addr;
10543    size_t size;
10544
10545    addr = (BAR_XSTRORM_INTMEM +
10546            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10547    size = sizeof(struct cmng_struct_per_port);
10548    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10549
10550    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10551        func = func_by_vn(sc, vn);
10552
10553        addr = (BAR_XSTRORM_INTMEM +
10554                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10555        size = sizeof(struct rate_shaping_vars_per_vn);
10556        ecore_storm_memset_struct(sc, addr, size,
10557                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10558
10559        addr = (BAR_XSTRORM_INTMEM +
10560                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10561        size = sizeof(struct fairness_vars_per_vn);
10562        ecore_storm_memset_struct(sc, addr, size,
10563                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10564    }
10565}
10566
10567static void
10568bxe_pf_init(struct bxe_softc *sc)
10569{
10570    struct bxe_func_init_params func_init = { 0 };
10571    struct event_ring_data eq_data = { { 0 } };
10572    uint16_t flags;
10573
10574    if (!CHIP_IS_E1x(sc)) {
10575        /* reset IGU PF statistics: MSIX + ATTN */
10576        /* PF */
10577        REG_WR(sc,
10578               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10579                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10580                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10581               0);
10582        /* ATTN */
10583        REG_WR(sc,
10584               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10585                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10586                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10587                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10588               0);
10589    }
10590
10591    /* function setup flags */
10592    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10593
10594    /*
10595     * This flag is relevant for E1x only.
10596     * E2 doesn't have a TPA configuration in a function level.
10597     */
10598    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10599
10600    func_init.func_flgs = flags;
10601    func_init.pf_id     = SC_FUNC(sc);
10602    func_init.func_id   = SC_FUNC(sc);
10603    func_init.spq_map   = sc->spq_dma.paddr;
10604    func_init.spq_prod  = sc->spq_prod_idx;
10605
10606    bxe_func_init(sc, &func_init);
10607
10608    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10609
10610    /*
10611     * Congestion management values depend on the link rate.
10612     * There is no active link so initial link rate is set to 10Gbps.
10613     * When the link comes up the congestion management values are
10614     * re-calculated according to the actual link rate.
10615     */
10616    sc->link_vars.line_speed = SPEED_10000;
10617    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10618
10619    /* Only the PMF sets the HW */
10620    if (sc->port.pmf) {
10621        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10622    }
10623
10624    /* init Event Queue - PCI bus guarantees correct endainity */
10625    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10626    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10627    eq_data.producer     = sc->eq_prod;
10628    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10629    eq_data.sb_id        = DEF_SB_ID;
10630    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10631}
10632
10633static void
10634bxe_hc_int_enable(struct bxe_softc *sc)
10635{
10636    int port = SC_PORT(sc);
10637    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10638    uint32_t val = REG_RD(sc, addr);
10639    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10640    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10641                           (sc->intr_count == 1)) ? TRUE : FALSE;
10642    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10643
10644    if (msix) {
10645        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10646                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10647        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10648                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10649        if (single_msix) {
10650            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10651        }
10652    } else if (msi) {
10653        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10654        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10655                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10656                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10657    } else {
10658        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10659                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10660                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10661                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10662
10663        if (!CHIP_IS_E1(sc)) {
10664            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10665                  val, port, addr);
10666
10667            REG_WR(sc, addr, val);
10668
10669            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10670        }
10671    }
10672
10673    if (CHIP_IS_E1(sc)) {
10674        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10675    }
10676
10677    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10678          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10679
10680    REG_WR(sc, addr, val);
10681
10682    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10683    mb();
10684
10685    if (!CHIP_IS_E1(sc)) {
10686        /* init leading/trailing edge */
10687        if (IS_MF(sc)) {
10688            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10689            if (sc->port.pmf) {
10690                /* enable nig and gpio3 attention */
10691                val |= 0x1100;
10692            }
10693        } else {
10694            val = 0xffff;
10695        }
10696
10697        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10698        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10699    }
10700
10701    /* make sure that interrupts are indeed enabled from here on */
10702    mb();
10703}
10704
10705static void
10706bxe_igu_int_enable(struct bxe_softc *sc)
10707{
10708    uint32_t val;
10709    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10710    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10711                           (sc->intr_count == 1)) ? TRUE : FALSE;
10712    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10713
10714    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10715
10716    if (msix) {
10717        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10718                 IGU_PF_CONF_SINGLE_ISR_EN);
10719        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10720                IGU_PF_CONF_ATTN_BIT_EN);
10721        if (single_msix) {
10722            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10723        }
10724    } else if (msi) {
10725        val &= ~IGU_PF_CONF_INT_LINE_EN;
10726        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10727                IGU_PF_CONF_ATTN_BIT_EN |
10728                IGU_PF_CONF_SINGLE_ISR_EN);
10729    } else {
10730        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10731        val |= (IGU_PF_CONF_INT_LINE_EN |
10732                IGU_PF_CONF_ATTN_BIT_EN |
10733                IGU_PF_CONF_SINGLE_ISR_EN);
10734    }
10735
10736    /* clean previous status - need to configure igu prior to ack*/
10737    if ((!msix) || single_msix) {
10738        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10739        bxe_ack_int(sc);
10740    }
10741
10742    val |= IGU_PF_CONF_FUNC_EN;
10743
10744    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10745          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10746
10747    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10748
10749    mb();
10750
10751    /* init leading/trailing edge */
10752    if (IS_MF(sc)) {
10753        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10754        if (sc->port.pmf) {
10755            /* enable nig and gpio3 attention */
10756            val |= 0x1100;
10757        }
10758    } else {
10759        val = 0xffff;
10760    }
10761
10762    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10763    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10764
10765    /* make sure that interrupts are indeed enabled from here on */
10766    mb();
10767}
10768
10769static void
10770bxe_int_enable(struct bxe_softc *sc)
10771{
10772    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10773        bxe_hc_int_enable(sc);
10774    } else {
10775        bxe_igu_int_enable(sc);
10776    }
10777}
10778
10779static void
10780bxe_hc_int_disable(struct bxe_softc *sc)
10781{
10782    int port = SC_PORT(sc);
10783    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10784    uint32_t val = REG_RD(sc, addr);
10785
10786    /*
10787     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10788     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10789     * block
10790     */
10791    if (CHIP_IS_E1(sc)) {
10792        /*
10793         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10794         * to prevent from HC sending interrupts after we exit the function
10795         */
10796        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10797
10798        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10799                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10800                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10801    } else {
10802        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10803                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10804                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10805                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10806    }
10807
10808    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10809
10810    /* flush all outstanding writes */
10811    mb();
10812
10813    REG_WR(sc, addr, val);
10814    if (REG_RD(sc, addr) != val) {
10815        BLOGE(sc, "proper val not read from HC IGU!\n");
10816    }
10817}
10818
10819static void
10820bxe_igu_int_disable(struct bxe_softc *sc)
10821{
10822    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10823
10824    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10825             IGU_PF_CONF_INT_LINE_EN |
10826             IGU_PF_CONF_ATTN_BIT_EN);
10827
10828    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10829
10830    /* flush all outstanding writes */
10831    mb();
10832
10833    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10834    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10835        BLOGE(sc, "proper val not read from IGU!\n");
10836    }
10837}
10838
10839static void
10840bxe_int_disable(struct bxe_softc *sc)
10841{
10842    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10843        bxe_hc_int_disable(sc);
10844    } else {
10845        bxe_igu_int_disable(sc);
10846    }
10847}
10848
10849static void
10850bxe_nic_init(struct bxe_softc *sc,
10851             int              load_code)
10852{
10853    int i;
10854
10855    for (i = 0; i < sc->num_queues; i++) {
10856        bxe_init_eth_fp(sc, i);
10857    }
10858
10859    rmb(); /* ensure status block indices were read */
10860
10861    bxe_init_rx_rings(sc);
10862    bxe_init_tx_rings(sc);
10863
10864    if (IS_VF(sc)) {
10865        return;
10866    }
10867
10868    /* initialize MOD_ABS interrupts */
10869    elink_init_mod_abs_int(sc, &sc->link_vars,
10870                           sc->devinfo.chip_id,
10871                           sc->devinfo.shmem_base,
10872                           sc->devinfo.shmem2_base,
10873                           SC_PORT(sc));
10874
10875    bxe_init_def_sb(sc);
10876    bxe_update_dsb_idx(sc);
10877    bxe_init_sp_ring(sc);
10878    bxe_init_eq_ring(sc);
10879    bxe_init_internal(sc, load_code);
10880    bxe_pf_init(sc);
10881    bxe_stats_init(sc);
10882
10883    /* flush all before enabling interrupts */
10884    mb();
10885
10886    bxe_int_enable(sc);
10887
10888    /* check for SPIO5 */
10889    bxe_attn_int_deasserted0(sc,
10890                             REG_RD(sc,
10891                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10892                                     SC_PORT(sc)*4)) &
10893                             AEU_INPUTS_ATTN_BITS_SPIO5);
10894}
10895
10896static inline void
10897bxe_init_objs(struct bxe_softc *sc)
10898{
10899    /* mcast rules must be added to tx if tx switching is enabled */
10900    ecore_obj_type o_type =
10901        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10902                                         ECORE_OBJ_TYPE_RX;
10903
10904    /* RX_MODE controlling object */
10905    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10906
10907    /* multicast configuration controlling object */
10908    ecore_init_mcast_obj(sc,
10909                         &sc->mcast_obj,
10910                         sc->fp[0].cl_id,
10911                         sc->fp[0].index,
10912                         SC_FUNC(sc),
10913                         SC_FUNC(sc),
10914                         BXE_SP(sc, mcast_rdata),
10915                         BXE_SP_MAPPING(sc, mcast_rdata),
10916                         ECORE_FILTER_MCAST_PENDING,
10917                         &sc->sp_state,
10918                         o_type);
10919
10920    /* Setup CAM credit pools */
10921    ecore_init_mac_credit_pool(sc,
10922                               &sc->macs_pool,
10923                               SC_FUNC(sc),
10924                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10925                                                 VNICS_PER_PATH(sc));
10926
10927    ecore_init_vlan_credit_pool(sc,
10928                                &sc->vlans_pool,
10929                                SC_ABS_FUNC(sc) >> 1,
10930                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10931                                                  VNICS_PER_PATH(sc));
10932
10933    /* RSS configuration object */
10934    ecore_init_rss_config_obj(sc,
10935                              &sc->rss_conf_obj,
10936                              sc->fp[0].cl_id,
10937                              sc->fp[0].index,
10938                              SC_FUNC(sc),
10939                              SC_FUNC(sc),
10940                              BXE_SP(sc, rss_rdata),
10941                              BXE_SP_MAPPING(sc, rss_rdata),
10942                              ECORE_FILTER_RSS_CONF_PENDING,
10943                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10944}
10945
10946/*
10947 * Initialize the function. This must be called before sending CLIENT_SETUP
10948 * for the first client.
10949 */
10950static inline int
10951bxe_func_start(struct bxe_softc *sc)
10952{
10953    struct ecore_func_state_params func_params = { NULL };
10954    struct ecore_func_start_params *start_params = &func_params.params.start;
10955
10956    /* Prepare parameters for function state transitions */
10957    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10958
10959    func_params.f_obj = &sc->func_obj;
10960    func_params.cmd = ECORE_F_CMD_START;
10961
10962    /* Function parameters */
10963    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10964    start_params->sd_vlan_tag = OVLAN(sc);
10965
10966    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10967        start_params->network_cos_mode = STATIC_COS;
10968    } else { /* CHIP_IS_E1X */
10969        start_params->network_cos_mode = FW_WRR;
10970    }
10971
10972    start_params->gre_tunnel_mode = 0;
10973    start_params->gre_tunnel_rss  = 0;
10974
10975    return (ecore_func_state_change(sc, &func_params));
10976}
10977
10978static int
10979bxe_set_power_state(struct bxe_softc *sc,
10980                    uint8_t          state)
10981{
10982    uint16_t pmcsr;
10983
10984    /* If there is no power capability, silently succeed */
10985    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10986        BLOGW(sc, "No power capability\n");
10987        return (0);
10988    }
10989
10990    pmcsr = pci_read_config(sc->dev,
10991                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10992                            2);
10993
10994    switch (state) {
10995    case PCI_PM_D0:
10996        pci_write_config(sc->dev,
10997                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10998                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10999
11000        if (pmcsr & PCIM_PSTAT_DMASK) {
11001            /* delay required during transition out of D3hot */
11002            DELAY(20000);
11003        }
11004
11005        break;
11006
11007    case PCI_PM_D3hot:
11008        /* XXX if there are other clients above don't shut down the power */
11009
11010        /* don't shut down the power for emulation and FPGA */
11011        if (CHIP_REV_IS_SLOW(sc)) {
11012            return (0);
11013        }
11014
11015        pmcsr &= ~PCIM_PSTAT_DMASK;
11016        pmcsr |= PCIM_PSTAT_D3;
11017
11018        if (sc->wol) {
11019            pmcsr |= PCIM_PSTAT_PMEENABLE;
11020        }
11021
11022        pci_write_config(sc->dev,
11023                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11024                         pmcsr, 4);
11025
11026        /*
11027         * No more memory access after this point until device is brought back
11028         * to D0 state.
11029         */
11030        break;
11031
11032    default:
11033        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11034        return (-1);
11035    }
11036
11037    return (0);
11038}
11039
11040
11041/* return true if succeeded to acquire the lock */
11042static uint8_t
11043bxe_trylock_hw_lock(struct bxe_softc *sc,
11044                    uint32_t         resource)
11045{
11046    uint32_t lock_status;
11047    uint32_t resource_bit = (1 << resource);
11048    int func = SC_FUNC(sc);
11049    uint32_t hw_lock_control_reg;
11050
11051    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11052
11053    /* Validating that the resource is within range */
11054    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11055        BLOGD(sc, DBG_LOAD,
11056              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11057              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11058        return (FALSE);
11059    }
11060
11061    if (func <= 5) {
11062        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11063    } else {
11064        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11065    }
11066
11067    /* try to acquire the lock */
11068    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11069    lock_status = REG_RD(sc, hw_lock_control_reg);
11070    if (lock_status & resource_bit) {
11071        return (TRUE);
11072    }
11073
11074    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11075
11076    return (FALSE);
11077}
11078
11079/*
11080 * Get the recovery leader resource id according to the engine this function
11081 * belongs to. Currently only only 2 engines is supported.
11082 */
11083static int
11084bxe_get_leader_lock_resource(struct bxe_softc *sc)
11085{
11086    if (SC_PATH(sc)) {
11087        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11088    } else {
11089        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11090    }
11091}
11092
11093/* try to acquire a leader lock for current engine */
11094static uint8_t
11095bxe_trylock_leader_lock(struct bxe_softc *sc)
11096{
11097    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11098}
11099
11100static int
11101bxe_release_leader_lock(struct bxe_softc *sc)
11102{
11103    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11104}
11105
11106/* close gates #2, #3 and #4 */
11107static void
11108bxe_set_234_gates(struct bxe_softc *sc,
11109                  uint8_t          close)
11110{
11111    uint32_t val;
11112
11113    /* gates #2 and #4a are closed/opened for "not E1" only */
11114    if (!CHIP_IS_E1(sc)) {
11115        /* #4 */
11116        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11117        /* #2 */
11118        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11119    }
11120
11121    /* #3 */
11122    if (CHIP_IS_E1x(sc)) {
11123        /* prevent interrupts from HC on both ports */
11124        val = REG_RD(sc, HC_REG_CONFIG_1);
11125        REG_WR(sc, HC_REG_CONFIG_1,
11126               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11127               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11128
11129        val = REG_RD(sc, HC_REG_CONFIG_0);
11130        REG_WR(sc, HC_REG_CONFIG_0,
11131               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11132               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11133    } else {
11134        /* Prevent incomming interrupts in IGU */
11135        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11136
11137        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11138               (!close) ?
11139               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11140               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11141    }
11142
11143    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11144          close ? "closing" : "opening");
11145
11146    wmb();
11147}
11148
11149/* poll for pending writes bit, it should get cleared in no more than 1s */
11150static int
11151bxe_er_poll_igu_vq(struct bxe_softc *sc)
11152{
11153    uint32_t cnt = 1000;
11154    uint32_t pend_bits = 0;
11155
11156    do {
11157        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11158
11159        if (pend_bits == 0) {
11160            break;
11161        }
11162
11163        DELAY(1000);
11164    } while (--cnt > 0);
11165
11166    if (cnt == 0) {
11167        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11168        return (-1);
11169    }
11170
11171    return (0);
11172}
11173
11174#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11175
11176static void
11177bxe_clp_reset_prep(struct bxe_softc *sc,
11178                   uint32_t         *magic_val)
11179{
11180    /* Do some magic... */
11181    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11182    *magic_val = val & SHARED_MF_CLP_MAGIC;
11183    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11184}
11185
11186/* restore the value of the 'magic' bit */
11187static void
11188bxe_clp_reset_done(struct bxe_softc *sc,
11189                   uint32_t         magic_val)
11190{
11191    /* Restore the 'magic' bit value... */
11192    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11193    MFCFG_WR(sc, shared_mf_config.clp_mb,
11194              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11195}
11196
11197/* prepare for MCP reset, takes care of CLP configurations */
11198static void
11199bxe_reset_mcp_prep(struct bxe_softc *sc,
11200                   uint32_t         *magic_val)
11201{
11202    uint32_t shmem;
11203    uint32_t validity_offset;
11204
11205    /* set `magic' bit in order to save MF config */
11206    if (!CHIP_IS_E1(sc)) {
11207        bxe_clp_reset_prep(sc, magic_val);
11208    }
11209
11210    /* get shmem offset */
11211    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11212    validity_offset =
11213        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11214
11215    /* Clear validity map flags */
11216    if (shmem > 0) {
11217        REG_WR(sc, shmem + validity_offset, 0);
11218    }
11219}
11220
11221#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11222#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11223
11224static void
11225bxe_mcp_wait_one(struct bxe_softc *sc)
11226{
11227    /* special handling for emulation and FPGA (10 times longer) */
11228    if (CHIP_REV_IS_SLOW(sc)) {
11229        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11230    } else {
11231        DELAY((MCP_ONE_TIMEOUT) * 1000);
11232    }
11233}
11234
11235/* initialize shmem_base and waits for validity signature to appear */
11236static int
11237bxe_init_shmem(struct bxe_softc *sc)
11238{
11239    int cnt = 0;
11240    uint32_t val = 0;
11241
11242    do {
11243        sc->devinfo.shmem_base     =
11244        sc->link_params.shmem_base =
11245            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11246
11247        if (sc->devinfo.shmem_base) {
11248            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11249            if (val & SHR_MEM_VALIDITY_MB)
11250                return (0);
11251        }
11252
11253        bxe_mcp_wait_one(sc);
11254
11255    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11256
11257    BLOGE(sc, "BAD MCP validity signature\n");
11258
11259    return (-1);
11260}
11261
11262static int
11263bxe_reset_mcp_comp(struct bxe_softc *sc,
11264                   uint32_t         magic_val)
11265{
11266    int rc = bxe_init_shmem(sc);
11267
11268    /* Restore the `magic' bit value */
11269    if (!CHIP_IS_E1(sc)) {
11270        bxe_clp_reset_done(sc, magic_val);
11271    }
11272
11273    return (rc);
11274}
11275
11276static void
11277bxe_pxp_prep(struct bxe_softc *sc)
11278{
11279    if (!CHIP_IS_E1(sc)) {
11280        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11281        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11282        wmb();
11283    }
11284}
11285
11286/*
11287 * Reset the whole chip except for:
11288 *      - PCIE core
11289 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11290 *      - IGU
11291 *      - MISC (including AEU)
11292 *      - GRC
11293 *      - RBCN, RBCP
11294 */
11295static void
11296bxe_process_kill_chip_reset(struct bxe_softc *sc,
11297                            uint8_t          global)
11298{
11299    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11300    uint32_t global_bits2, stay_reset2;
11301
11302    /*
11303     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11304     * (per chip) blocks.
11305     */
11306    global_bits2 =
11307        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11308        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11309
11310    /*
11311     * Don't reset the following blocks.
11312     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11313     *            reset, as in 4 port device they might still be owned
11314     *            by the MCP (there is only one leader per path).
11315     */
11316    not_reset_mask1 =
11317        MISC_REGISTERS_RESET_REG_1_RST_HC |
11318        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11319        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11320
11321    not_reset_mask2 =
11322        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11323        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11324        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11325        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11326        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11327        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11328        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11329        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11330        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11331        MISC_REGISTERS_RESET_REG_2_PGLC |
11332        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11333        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11334        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11335        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11336        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11337        MISC_REGISTERS_RESET_REG_2_UMAC1;
11338
11339    /*
11340     * Keep the following blocks in reset:
11341     *  - all xxMACs are handled by the elink code.
11342     */
11343    stay_reset2 =
11344        MISC_REGISTERS_RESET_REG_2_XMAC |
11345        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11346
11347    /* Full reset masks according to the chip */
11348    reset_mask1 = 0xffffffff;
11349
11350    if (CHIP_IS_E1(sc))
11351        reset_mask2 = 0xffff;
11352    else if (CHIP_IS_E1H(sc))
11353        reset_mask2 = 0x1ffff;
11354    else if (CHIP_IS_E2(sc))
11355        reset_mask2 = 0xfffff;
11356    else /* CHIP_IS_E3 */
11357        reset_mask2 = 0x3ffffff;
11358
11359    /* Don't reset global blocks unless we need to */
11360    if (!global)
11361        reset_mask2 &= ~global_bits2;
11362
11363    /*
11364     * In case of attention in the QM, we need to reset PXP
11365     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11366     * because otherwise QM reset would release 'close the gates' shortly
11367     * before resetting the PXP, then the PSWRQ would send a write
11368     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11369     * read the payload data from PSWWR, but PSWWR would not
11370     * respond. The write queue in PGLUE would stuck, dmae commands
11371     * would not return. Therefore it's important to reset the second
11372     * reset register (containing the
11373     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11374     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11375     * bit).
11376     */
11377    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11378           reset_mask2 & (~not_reset_mask2));
11379
11380    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11381           reset_mask1 & (~not_reset_mask1));
11382
11383    mb();
11384    wmb();
11385
11386    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11387           reset_mask2 & (~stay_reset2));
11388
11389    mb();
11390    wmb();
11391
11392    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11393    wmb();
11394}
11395
11396static int
11397bxe_process_kill(struct bxe_softc *sc,
11398                 uint8_t          global)
11399{
11400    int cnt = 1000;
11401    uint32_t val = 0;
11402    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11403    uint32_t tags_63_32 = 0;
11404
11405    /* Empty the Tetris buffer, wait for 1s */
11406    do {
11407        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11408        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11409        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11410        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11411        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11412        if (CHIP_IS_E3(sc)) {
11413            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11414        }
11415
11416        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11417            ((port_is_idle_0 & 0x1) == 0x1) &&
11418            ((port_is_idle_1 & 0x1) == 0x1) &&
11419            (pgl_exp_rom2 == 0xffffffff) &&
11420            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11421            break;
11422        DELAY(1000);
11423    } while (cnt-- > 0);
11424
11425    if (cnt <= 0) {
11426        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11427                  "are still outstanding read requests after 1s! "
11428                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11429                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11430              sr_cnt, blk_cnt, port_is_idle_0,
11431              port_is_idle_1, pgl_exp_rom2);
11432        return (-1);
11433    }
11434
11435    mb();
11436
11437    /* Close gates #2, #3 and #4 */
11438    bxe_set_234_gates(sc, TRUE);
11439
11440    /* Poll for IGU VQs for 57712 and newer chips */
11441    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11442        return (-1);
11443    }
11444
11445    /* XXX indicate that "process kill" is in progress to MCP */
11446
11447    /* clear "unprepared" bit */
11448    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11449    mb();
11450
11451    /* Make sure all is written to the chip before the reset */
11452    wmb();
11453
11454    /*
11455     * Wait for 1ms to empty GLUE and PCI-E core queues,
11456     * PSWHST, GRC and PSWRD Tetris buffer.
11457     */
11458    DELAY(1000);
11459
11460    /* Prepare to chip reset: */
11461    /* MCP */
11462    if (global) {
11463        bxe_reset_mcp_prep(sc, &val);
11464    }
11465
11466    /* PXP */
11467    bxe_pxp_prep(sc);
11468    mb();
11469
11470    /* reset the chip */
11471    bxe_process_kill_chip_reset(sc, global);
11472    mb();
11473
11474    /* Recover after reset: */
11475    /* MCP */
11476    if (global && bxe_reset_mcp_comp(sc, val)) {
11477        return (-1);
11478    }
11479
11480    /* XXX add resetting the NO_MCP mode DB here */
11481
11482    /* Open the gates #2, #3 and #4 */
11483    bxe_set_234_gates(sc, FALSE);
11484
11485    /* XXX
11486     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11487     * re-enable attentions
11488     */
11489
11490    return (0);
11491}
11492
11493static int
11494bxe_leader_reset(struct bxe_softc *sc)
11495{
11496    int rc = 0;
11497    uint8_t global = bxe_reset_is_global(sc);
11498    uint32_t load_code;
11499
11500    /*
11501     * If not going to reset MCP, load "fake" driver to reset HW while
11502     * driver is owner of the HW.
11503     */
11504    if (!global && !BXE_NOMCP(sc)) {
11505        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11506                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11507        if (!load_code) {
11508            BLOGE(sc, "MCP response failure, aborting\n");
11509            rc = -1;
11510            goto exit_leader_reset;
11511        }
11512
11513        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11514            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11515            BLOGE(sc, "MCP unexpected response, aborting\n");
11516            rc = -1;
11517            goto exit_leader_reset2;
11518        }
11519
11520        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11521        if (!load_code) {
11522            BLOGE(sc, "MCP response failure, aborting\n");
11523            rc = -1;
11524            goto exit_leader_reset2;
11525        }
11526    }
11527
11528    /* try to recover after the failure */
11529    if (bxe_process_kill(sc, global)) {
11530        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11531        rc = -1;
11532        goto exit_leader_reset2;
11533    }
11534
11535    /*
11536     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11537     * state.
11538     */
11539    bxe_set_reset_done(sc);
11540    if (global) {
11541        bxe_clear_reset_global(sc);
11542    }
11543
11544exit_leader_reset2:
11545
11546    /* unload "fake driver" if it was loaded */
11547    if (!global && !BXE_NOMCP(sc)) {
11548        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11549        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11550    }
11551
11552exit_leader_reset:
11553
11554    sc->is_leader = 0;
11555    bxe_release_leader_lock(sc);
11556
11557    mb();
11558    return (rc);
11559}
11560
11561/*
11562 * prepare INIT transition, parameters configured:
11563 *   - HC configuration
11564 *   - Queue's CDU context
11565 */
11566static void
11567bxe_pf_q_prep_init(struct bxe_softc               *sc,
11568                   struct bxe_fastpath            *fp,
11569                   struct ecore_queue_init_params *init_params)
11570{
11571    uint8_t cos;
11572    int cxt_index, cxt_offset;
11573
11574    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11575    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11576
11577    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11578    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11579
11580    /* HC rate */
11581    init_params->rx.hc_rate =
11582        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11583    init_params->tx.hc_rate =
11584        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11585
11586    /* FW SB ID */
11587    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11588
11589    /* CQ index among the SB indices */
11590    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11591    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11592
11593    /* set maximum number of COSs supported by this queue */
11594    init_params->max_cos = sc->max_cos;
11595
11596    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11597          fp->index, init_params->max_cos);
11598
11599    /* set the context pointers queue object */
11600    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11601        /* XXX change index/cid here if ever support multiple tx CoS */
11602        /* fp->txdata[cos]->cid */
11603        cxt_index = fp->index / ILT_PAGE_CIDS;
11604        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11605        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11606    }
11607}
11608
11609/* set flags that are common for the Tx-only and not normal connections */
11610static unsigned long
11611bxe_get_common_flags(struct bxe_softc    *sc,
11612                     struct bxe_fastpath *fp,
11613                     uint8_t             zero_stats)
11614{
11615    unsigned long flags = 0;
11616
11617    /* PF driver will always initialize the Queue to an ACTIVE state */
11618    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11619
11620    /*
11621     * tx only connections collect statistics (on the same index as the
11622     * parent connection). The statistics are zeroed when the parent
11623     * connection is initialized.
11624     */
11625
11626    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11627    if (zero_stats) {
11628        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11629    }
11630
11631    /*
11632     * tx only connections can support tx-switching, though their
11633     * CoS-ness doesn't survive the loopback
11634     */
11635    if (sc->flags & BXE_TX_SWITCHING) {
11636        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11637    }
11638
11639    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11640
11641    return (flags);
11642}
11643
11644static unsigned long
11645bxe_get_q_flags(struct bxe_softc    *sc,
11646                struct bxe_fastpath *fp,
11647                uint8_t             leading)
11648{
11649    unsigned long flags = 0;
11650
11651    if (IS_MF_SD(sc)) {
11652        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11653    }
11654
11655    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11656        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11657        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11658#if 0
11659        if (fp->mode == TPA_MODE_GRO)
11660            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11661#endif
11662    }
11663
11664    if (leading) {
11665        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11666        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11667    }
11668
11669    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11670
11671#if 0
11672    /* configure silent vlan removal */
11673    if (IS_MF_AFEX(sc)) {
11674        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11675    }
11676#endif
11677
11678    /* merge with common flags */
11679    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11680}
11681
11682static void
11683bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11684                      struct bxe_fastpath               *fp,
11685                      struct ecore_general_setup_params *gen_init,
11686                      uint8_t                           cos)
11687{
11688    gen_init->stat_id = bxe_stats_id(fp);
11689    gen_init->spcl_id = fp->cl_id;
11690    gen_init->mtu = sc->mtu;
11691    gen_init->cos = cos;
11692}
11693
11694static void
11695bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11696                 struct bxe_fastpath           *fp,
11697                 struct rxq_pause_params       *pause,
11698                 struct ecore_rxq_setup_params *rxq_init)
11699{
11700    uint8_t max_sge = 0;
11701    uint16_t sge_sz = 0;
11702    uint16_t tpa_agg_size = 0;
11703
11704    if (if_getcapenable(sc->ifp)  & IFCAP_LRO) {
11705        pause->sge_th_lo = SGE_TH_LO(sc);
11706        pause->sge_th_hi = SGE_TH_HI(sc);
11707
11708        /* validate SGE ring has enough to cross high threshold */
11709        if (sc->dropless_fc &&
11710            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11711            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11712            BLOGW(sc, "sge ring threshold limit\n");
11713        }
11714
11715        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11716        tpa_agg_size = (2 * sc->mtu);
11717        if (tpa_agg_size < sc->max_aggregation_size) {
11718            tpa_agg_size = sc->max_aggregation_size;
11719        }
11720
11721        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11722        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11723                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11724        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11725    }
11726
11727    /* pause - not for e1 */
11728    if (!CHIP_IS_E1(sc)) {
11729        pause->bd_th_lo = BD_TH_LO(sc);
11730        pause->bd_th_hi = BD_TH_HI(sc);
11731
11732        pause->rcq_th_lo = RCQ_TH_LO(sc);
11733        pause->rcq_th_hi = RCQ_TH_HI(sc);
11734
11735        /* validate rings have enough entries to cross high thresholds */
11736        if (sc->dropless_fc &&
11737            pause->bd_th_hi + FW_PREFETCH_CNT >
11738            sc->rx_ring_size) {
11739            BLOGW(sc, "rx bd ring threshold limit\n");
11740        }
11741
11742        if (sc->dropless_fc &&
11743            pause->rcq_th_hi + FW_PREFETCH_CNT >
11744            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11745            BLOGW(sc, "rcq ring threshold limit\n");
11746        }
11747
11748        pause->pri_map = 1;
11749    }
11750
11751    /* rxq setup */
11752    rxq_init->dscr_map   = fp->rx_dma.paddr;
11753    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11754    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11755    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11756
11757    /*
11758     * This should be a maximum number of data bytes that may be
11759     * placed on the BD (not including paddings).
11760     */
11761    rxq_init->buf_sz = (fp->rx_buf_size -
11762                        IP_HEADER_ALIGNMENT_PADDING);
11763
11764    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11765    rxq_init->tpa_agg_sz      = tpa_agg_size;
11766    rxq_init->sge_buf_sz      = sge_sz;
11767    rxq_init->max_sges_pkt    = max_sge;
11768    rxq_init->rss_engine_id   = SC_FUNC(sc);
11769    rxq_init->mcast_engine_id = SC_FUNC(sc);
11770
11771    /*
11772     * Maximum number or simultaneous TPA aggregation for this Queue.
11773     * For PF Clients it should be the maximum available number.
11774     * VF driver(s) may want to define it to a smaller value.
11775     */
11776    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11777
11778    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11779    rxq_init->fw_sb_id = fp->fw_sb_id;
11780
11781    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11782
11783    /*
11784     * configure silent vlan removal
11785     * if multi function mode is afex, then mask default vlan
11786     */
11787    if (IS_MF_AFEX(sc)) {
11788        rxq_init->silent_removal_value =
11789            sc->devinfo.mf_info.afex_def_vlan_tag;
11790        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11791    }
11792}
11793
11794static void
11795bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11796                 struct bxe_fastpath           *fp,
11797                 struct ecore_txq_setup_params *txq_init,
11798                 uint8_t                       cos)
11799{
11800    /*
11801     * XXX If multiple CoS is ever supported then each fastpath structure
11802     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11803     * fp->txdata[cos]->tx_dma.paddr;
11804     */
11805    txq_init->dscr_map     = fp->tx_dma.paddr;
11806    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11807    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11808    txq_init->fw_sb_id     = fp->fw_sb_id;
11809
11810    /*
11811     * set the TSS leading client id for TX classfication to the
11812     * leading RSS client id
11813     */
11814    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11815}
11816
11817/*
11818 * This function performs 2 steps in a queue state machine:
11819 *   1) RESET->INIT
11820 *   2) INIT->SETUP
11821 */
11822static int
11823bxe_setup_queue(struct bxe_softc    *sc,
11824                struct bxe_fastpath *fp,
11825                uint8_t             leading)
11826{
11827    struct ecore_queue_state_params q_params = { NULL };
11828    struct ecore_queue_setup_params *setup_params =
11829                        &q_params.params.setup;
11830#if 0
11831    struct ecore_queue_setup_tx_only_params *tx_only_params =
11832                        &q_params.params.tx_only;
11833    uint8_t tx_index;
11834#endif
11835    int rc;
11836
11837    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11838
11839    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11840
11841    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11842
11843    /* we want to wait for completion in this context */
11844    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11845
11846    /* prepare the INIT parameters */
11847    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11848
11849    /* Set the command */
11850    q_params.cmd = ECORE_Q_CMD_INIT;
11851
11852    /* Change the state to INIT */
11853    rc = ecore_queue_state_change(sc, &q_params);
11854    if (rc) {
11855        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11856        return (rc);
11857    }
11858
11859    BLOGD(sc, DBG_LOAD, "init complete\n");
11860
11861    /* now move the Queue to the SETUP state */
11862    memset(setup_params, 0, sizeof(*setup_params));
11863
11864    /* set Queue flags */
11865    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11866
11867    /* set general SETUP parameters */
11868    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11869                          FIRST_TX_COS_INDEX);
11870
11871    bxe_pf_rx_q_prep(sc, fp,
11872                     &setup_params->pause_params,
11873                     &setup_params->rxq_params);
11874
11875    bxe_pf_tx_q_prep(sc, fp,
11876                     &setup_params->txq_params,
11877                     FIRST_TX_COS_INDEX);
11878
11879    /* Set the command */
11880    q_params.cmd = ECORE_Q_CMD_SETUP;
11881
11882    /* change the state to SETUP */
11883    rc = ecore_queue_state_change(sc, &q_params);
11884    if (rc) {
11885        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11886        return (rc);
11887    }
11888
11889#if 0
11890    /* loop through the relevant tx-only indices */
11891    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11892         tx_index < sc->max_cos;
11893         tx_index++) {
11894        /* prepare and send tx-only ramrod*/
11895        rc = bxe_setup_tx_only(sc, fp, &q_params,
11896                               tx_only_params, tx_index, leading);
11897        if (rc) {
11898            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11899                  fp->index, tx_index);
11900            return (rc);
11901        }
11902    }
11903#endif
11904
11905    return (rc);
11906}
11907
11908static int
11909bxe_setup_leading(struct bxe_softc *sc)
11910{
11911    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11912}
11913
11914static int
11915bxe_config_rss_pf(struct bxe_softc            *sc,
11916                  struct ecore_rss_config_obj *rss_obj,
11917                  uint8_t                     config_hash)
11918{
11919    struct ecore_config_rss_params params = { NULL };
11920    int i;
11921
11922    /*
11923     * Although RSS is meaningless when there is a single HW queue we
11924     * still need it enabled in order to have HW Rx hash generated.
11925     */
11926
11927    params.rss_obj = rss_obj;
11928
11929    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11930
11931    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11932
11933    /* RSS configuration */
11934    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11935    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11936    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11937    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11938    if (rss_obj->udp_rss_v4) {
11939        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11940    }
11941    if (rss_obj->udp_rss_v6) {
11942        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11943    }
11944
11945    /* Hash bits */
11946    params.rss_result_mask = MULTI_MASK;
11947
11948    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11949
11950    if (config_hash) {
11951        /* RSS keys */
11952        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11953            params.rss_key[i] = arc4random();
11954        }
11955
11956        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11957    }
11958
11959    return (ecore_config_rss(sc, &params));
11960}
11961
11962static int
11963bxe_config_rss_eth(struct bxe_softc *sc,
11964                   uint8_t          config_hash)
11965{
11966    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11967}
11968
11969static int
11970bxe_init_rss_pf(struct bxe_softc *sc)
11971{
11972    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11973    int i;
11974
11975    /*
11976     * Prepare the initial contents of the indirection table if
11977     * RSS is enabled
11978     */
11979    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11980        sc->rss_conf_obj.ind_table[i] =
11981            (sc->fp->cl_id + (i % num_eth_queues));
11982    }
11983
11984    if (sc->udp_rss) {
11985        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11986    }
11987
11988    /*
11989     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11990     * per-port, so if explicit configuration is needed, do it only
11991     * for a PMF.
11992     *
11993     * For 57712 and newer it's a per-function configuration.
11994     */
11995    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11996}
11997
11998static int
11999bxe_set_mac_one(struct bxe_softc          *sc,
12000                uint8_t                   *mac,
12001                struct ecore_vlan_mac_obj *obj,
12002                uint8_t                   set,
12003                int                       mac_type,
12004                unsigned long             *ramrod_flags)
12005{
12006    struct ecore_vlan_mac_ramrod_params ramrod_param;
12007    int rc;
12008
12009    memset(&ramrod_param, 0, sizeof(ramrod_param));
12010
12011    /* fill in general parameters */
12012    ramrod_param.vlan_mac_obj = obj;
12013    ramrod_param.ramrod_flags = *ramrod_flags;
12014
12015    /* fill a user request section if needed */
12016    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12017        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12018
12019        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12020
12021        /* Set the command: ADD or DEL */
12022        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12023                                            ECORE_VLAN_MAC_DEL;
12024    }
12025
12026    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12027
12028    if (rc == ECORE_EXISTS) {
12029        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12030        /* do not treat adding same MAC as error */
12031        rc = 0;
12032    } else if (rc < 0) {
12033        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12034    }
12035
12036    return (rc);
12037}
12038
12039static int
12040bxe_set_eth_mac(struct bxe_softc *sc,
12041                uint8_t          set)
12042{
12043    unsigned long ramrod_flags = 0;
12044
12045    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12046
12047    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12048
12049    /* Eth MAC is set on RSS leading client (fp[0]) */
12050    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12051                            &sc->sp_objs->mac_obj,
12052                            set, ECORE_ETH_MAC, &ramrod_flags));
12053}
12054
12055#if 0
12056static void
12057bxe_update_max_mf_config(struct bxe_softc *sc,
12058                         uint32_t         value)
12059{
12060    /* load old values */
12061    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12062
12063    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12064        /* leave all but MAX value */
12065        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12066
12067        /* set new MAX value */
12068        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12069                   FUNC_MF_CFG_MAX_BW_MASK);
12070
12071        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12072    }
12073}
12074#endif
12075
12076static int
12077bxe_get_cur_phy_idx(struct bxe_softc *sc)
12078{
12079    uint32_t sel_phy_idx = 0;
12080
12081    if (sc->link_params.num_phys <= 1) {
12082        return (ELINK_INT_PHY);
12083    }
12084
12085    if (sc->link_vars.link_up) {
12086        sel_phy_idx = ELINK_EXT_PHY1;
12087        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12088        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12089            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12090             ELINK_SUPPORTED_FIBRE))
12091            sel_phy_idx = ELINK_EXT_PHY2;
12092    } else {
12093        switch (elink_phy_selection(&sc->link_params)) {
12094        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12095        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12096        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12097               sel_phy_idx = ELINK_EXT_PHY1;
12098               break;
12099        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12100        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12101               sel_phy_idx = ELINK_EXT_PHY2;
12102               break;
12103        }
12104    }
12105
12106    return (sel_phy_idx);
12107}
12108
12109static int
12110bxe_get_link_cfg_idx(struct bxe_softc *sc)
12111{
12112    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12113
12114    /*
12115     * The selected activated PHY is always after swapping (in case PHY
12116     * swapping is enabled). So when swapping is enabled, we need to reverse
12117     * the configuration
12118     */
12119
12120    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12121        if (sel_phy_idx == ELINK_EXT_PHY1)
12122            sel_phy_idx = ELINK_EXT_PHY2;
12123        else if (sel_phy_idx == ELINK_EXT_PHY2)
12124            sel_phy_idx = ELINK_EXT_PHY1;
12125    }
12126
12127    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12128}
12129
12130static void
12131bxe_set_requested_fc(struct bxe_softc *sc)
12132{
12133    /*
12134     * Initialize link parameters structure variables
12135     * It is recommended to turn off RX FC for jumbo frames
12136     * for better performance
12137     */
12138    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12139        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12140    } else {
12141        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12142    }
12143}
12144
12145static void
12146bxe_calc_fc_adv(struct bxe_softc *sc)
12147{
12148    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12149    switch (sc->link_vars.ieee_fc &
12150            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12151    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12152    default:
12153        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12154                                           ADVERTISED_Pause);
12155        break;
12156
12157    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12158        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12159                                          ADVERTISED_Pause);
12160        break;
12161
12162    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12163        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12164        break;
12165    }
12166}
12167
12168static uint16_t
12169bxe_get_mf_speed(struct bxe_softc *sc)
12170{
12171    uint16_t line_speed = sc->link_vars.line_speed;
12172    if (IS_MF(sc)) {
12173        uint16_t maxCfg =
12174            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12175
12176        /* calculate the current MAX line speed limit for the MF devices */
12177        if (IS_MF_SI(sc)) {
12178            line_speed = (line_speed * maxCfg) / 100;
12179        } else { /* SD mode */
12180            uint16_t vn_max_rate = maxCfg * 100;
12181
12182            if (vn_max_rate < line_speed) {
12183                line_speed = vn_max_rate;
12184            }
12185        }
12186    }
12187
12188    return (line_speed);
12189}
12190
12191static void
12192bxe_fill_report_data(struct bxe_softc            *sc,
12193                     struct bxe_link_report_data *data)
12194{
12195    uint16_t line_speed = bxe_get_mf_speed(sc);
12196
12197    memset(data, 0, sizeof(*data));
12198
12199    /* fill the report data with the effective line speed */
12200    data->line_speed = line_speed;
12201
12202    /* Link is down */
12203    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12204        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12205    }
12206
12207    /* Full DUPLEX */
12208    if (sc->link_vars.duplex == DUPLEX_FULL) {
12209        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12210    }
12211
12212    /* Rx Flow Control is ON */
12213    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12214        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12215    }
12216
12217    /* Tx Flow Control is ON */
12218    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12219        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12220    }
12221}
12222
12223/* report link status to OS, should be called under phy_lock */
12224static void
12225bxe_link_report_locked(struct bxe_softc *sc)
12226{
12227    struct bxe_link_report_data cur_data;
12228
12229    /* reread mf_cfg */
12230    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12231        bxe_read_mf_cfg(sc);
12232    }
12233
12234    /* Read the current link report info */
12235    bxe_fill_report_data(sc, &cur_data);
12236
12237    /* Don't report link down or exactly the same link status twice */
12238    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12239        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12240                      &sc->last_reported_link.link_report_flags) &&
12241         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12242                      &cur_data.link_report_flags))) {
12243        return;
12244    }
12245
12246    sc->link_cnt++;
12247
12248    /* report new link params and remember the state for the next time */
12249    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12250
12251    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12252                     &cur_data.link_report_flags)) {
12253        if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN);
12254        BLOGI(sc, "NIC Link is Down\n");
12255    } else {
12256        const char *duplex;
12257        const char *flow;
12258
12259        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12260                                   &cur_data.link_report_flags)) {
12261            duplex = "full";
12262        } else {
12263            duplex = "half";
12264        }
12265
12266        /*
12267         * Handle the FC at the end so that only these flags would be
12268         * possibly set. This way we may easily check if there is no FC
12269         * enabled.
12270         */
12271        if (cur_data.link_report_flags) {
12272            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12273                             &cur_data.link_report_flags) &&
12274                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12275                             &cur_data.link_report_flags)) {
12276                flow = "ON - receive & transmit";
12277            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12278                                    &cur_data.link_report_flags) &&
12279                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12280                                     &cur_data.link_report_flags)) {
12281                flow = "ON - receive";
12282            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12283                                     &cur_data.link_report_flags) &&
12284                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12285                                    &cur_data.link_report_flags)) {
12286                flow = "ON - transmit";
12287            } else {
12288                flow = "none"; /* possible? */
12289            }
12290        } else {
12291            flow = "none";
12292        }
12293
12294        if_linkstate_change_drv(sc->ifp, LINK_STATE_UP);
12295        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12296              cur_data.line_speed, duplex, flow);
12297    }
12298}
12299
12300static void
12301bxe_link_report(struct bxe_softc *sc)
12302{
12303    BXE_PHY_LOCK(sc);
12304    bxe_link_report_locked(sc);
12305    BXE_PHY_UNLOCK(sc);
12306}
12307
12308static void
12309bxe_link_status_update(struct bxe_softc *sc)
12310{
12311    if (sc->state != BXE_STATE_OPEN) {
12312        return;
12313    }
12314
12315#if 0
12316    /* read updated dcb configuration */
12317    if (IS_PF(sc))
12318        bxe_dcbx_pmf_update(sc);
12319#endif
12320
12321    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12322        elink_link_status_update(&sc->link_params, &sc->link_vars);
12323    } else {
12324        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12325                                  ELINK_SUPPORTED_10baseT_Full |
12326                                  ELINK_SUPPORTED_100baseT_Half |
12327                                  ELINK_SUPPORTED_100baseT_Full |
12328                                  ELINK_SUPPORTED_1000baseT_Full |
12329                                  ELINK_SUPPORTED_2500baseX_Full |
12330                                  ELINK_SUPPORTED_10000baseT_Full |
12331                                  ELINK_SUPPORTED_TP |
12332                                  ELINK_SUPPORTED_FIBRE |
12333                                  ELINK_SUPPORTED_Autoneg |
12334                                  ELINK_SUPPORTED_Pause |
12335                                  ELINK_SUPPORTED_Asym_Pause);
12336        sc->port.advertising[0] = sc->port.supported[0];
12337
12338        sc->link_params.sc                = sc;
12339        sc->link_params.port              = SC_PORT(sc);
12340        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12341        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12342        sc->link_params.req_line_speed[0] = SPEED_10000;
12343        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12344        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12345
12346        if (CHIP_REV_IS_FPGA(sc)) {
12347            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12348            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12349            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12350                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12351        } else {
12352            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12353            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12354            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12355                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12356        }
12357
12358        sc->link_vars.link_up = 1;
12359
12360        sc->link_vars.duplex    = DUPLEX_FULL;
12361        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12362
12363        if (IS_PF(sc)) {
12364            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12365            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12366            bxe_link_report(sc);
12367        }
12368    }
12369
12370    if (IS_PF(sc)) {
12371        if (sc->link_vars.link_up) {
12372            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12373        } else {
12374            bxe_stats_handle(sc, STATS_EVENT_STOP);
12375        }
12376        bxe_link_report(sc);
12377    } else {
12378        bxe_link_report(sc);
12379        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12380    }
12381}
12382
12383static int
12384bxe_initial_phy_init(struct bxe_softc *sc,
12385                     int              load_mode)
12386{
12387    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12388    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12389    struct elink_params *lp = &sc->link_params;
12390
12391    bxe_set_requested_fc(sc);
12392
12393    if (CHIP_REV_IS_SLOW(sc)) {
12394        uint32_t bond = CHIP_BOND_ID(sc);
12395        uint32_t feat = 0;
12396
12397        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12398            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12399        } else if (bond & 0x4) {
12400            if (CHIP_IS_E3(sc)) {
12401                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12402            } else {
12403                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12404            }
12405        } else if (bond & 0x8) {
12406            if (CHIP_IS_E3(sc)) {
12407                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12408            } else {
12409                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12410            }
12411        }
12412
12413        /* disable EMAC for E3 and above */
12414        if (bond & 0x2) {
12415            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12416        }
12417
12418        sc->link_params.feature_config_flags |= feat;
12419    }
12420
12421    BXE_PHY_LOCK(sc);
12422
12423    if (load_mode == LOAD_DIAG) {
12424        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12425        /* Prefer doing PHY loopback at 10G speed, if possible */
12426        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12427            if (lp->speed_cap_mask[cfg_idx] &
12428                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12429                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12430            } else {
12431                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12432            }
12433        }
12434    }
12435
12436    if (load_mode == LOAD_LOOPBACK_EXT) {
12437        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12438    }
12439
12440    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12441
12442    BXE_PHY_UNLOCK(sc);
12443
12444    bxe_calc_fc_adv(sc);
12445
12446    if (sc->link_vars.link_up) {
12447        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12448        bxe_link_report(sc);
12449    }
12450
12451    if (!CHIP_REV_IS_SLOW(sc)) {
12452        bxe_periodic_start(sc);
12453    }
12454
12455    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12456    return (rc);
12457}
12458
12459/* must be called under IF_ADDR_LOCK */
12460static int
12461bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12462                         struct ecore_mcast_ramrod_params *p)
12463{
12464    if_t ifp = sc->ifp;
12465    int mc_count = 0;
12466    int mcnt, i;
12467    struct ecore_mcast_list_elem *mc_mac;
12468    unsigned char *mta;
12469
12470    mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12471                                           /* should we enforce one? */
12472    ECORE_LIST_INIT(&p->mcast_list);
12473    p->mcast_list_len = 0;
12474
12475    if (!mc_count) {
12476        return (0);
12477    }
12478
12479    mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12480            mc_count, M_DEVBUF, M_NOWAIT);
12481
12482    if(mta == NULL) {
12483        BLOGE(sc, "Failed to allocate temp mcast list\n");
12484        return (-1);
12485    }
12486
12487    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12488                    (M_NOWAIT | M_ZERO));
12489    if (!mc_mac) {
12490        free(mta, M_DEVBUF);
12491        BLOGE(sc, "Failed to allocate temp mcast list\n");
12492        return (-1);
12493    }
12494
12495    if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected
12496                                                      to be  different */
12497    for(i=0; i< mcnt; i++) {
12498
12499        bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN);
12500        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12501
12502        BLOGD(sc, DBG_LOAD,
12503              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12504              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12505              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12506
12507        mc_mac++;
12508    }
12509
12510    p->mcast_list_len = mc_count;
12511    free(mta, M_DEVBUF);
12512
12513    return (0);
12514}
12515
12516static void
12517bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12518{
12519    struct ecore_mcast_list_elem *mc_mac =
12520        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12521                               struct ecore_mcast_list_elem,
12522                               link);
12523
12524    if (mc_mac) {
12525        /* only a single free as all mc_macs are in the same heap array */
12526        free(mc_mac, M_DEVBUF);
12527    }
12528}
12529
12530static int
12531bxe_set_mc_list(struct bxe_softc *sc)
12532{
12533    struct ecore_mcast_ramrod_params rparam = { NULL };
12534    int rc = 0;
12535
12536    rparam.mcast_obj = &sc->mcast_obj;
12537
12538    BXE_MCAST_LOCK(sc);
12539
12540    /* first, clear all configured multicast MACs */
12541    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12542    if (rc < 0) {
12543        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12544        return (rc);
12545    }
12546
12547    /* configure a new MACs list */
12548    rc = bxe_init_mcast_macs_list(sc, &rparam);
12549    if (rc) {
12550        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12551        BXE_MCAST_UNLOCK(sc);
12552        return (rc);
12553    }
12554
12555    /* Now add the new MACs */
12556    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12557    if (rc < 0) {
12558        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12559    }
12560
12561    bxe_free_mcast_macs_list(&rparam);
12562
12563    BXE_MCAST_UNLOCK(sc);
12564
12565    return (rc);
12566}
12567
12568static int
12569bxe_set_uc_list(struct bxe_softc *sc)
12570{
12571    if_t ifp = sc->ifp;
12572    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12573    struct ifaddr *ifa;
12574    unsigned long ramrod_flags = 0;
12575    int rc;
12576
12577#if __FreeBSD_version < 800000
12578    IF_ADDR_LOCK(ifp);
12579#else
12580    if_addr_rlock_drv(ifp);
12581#endif
12582
12583    /* first schedule a cleanup up of old configuration */
12584    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12585    if (rc < 0) {
12586        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12587#if __FreeBSD_version < 800000
12588        IF_ADDR_UNLOCK(ifp);
12589#else
12590        if_addr_runlock_drv(ifp);
12591#endif
12592        return (rc);
12593    }
12594
12595    ifa = if_getifaddr(ifp); /* XXX Is this structure */
12596    while (ifa) {
12597        if (ifa->ifa_addr->sa_family != AF_LINK) {
12598            ifa = TAILQ_NEXT(ifa, ifa_link);
12599            continue;
12600        }
12601
12602        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12603                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12604        if (rc == -EEXIST) {
12605            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12606            /* do not treat adding same MAC as an error */
12607            rc = 0;
12608        } else if (rc < 0) {
12609            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12610#if __FreeBSD_version < 800000
12611            IF_ADDR_UNLOCK(ifp);
12612#else
12613            if_addr_runlock_drv(ifp);
12614#endif
12615            return (rc);
12616        }
12617
12618        ifa = TAILQ_NEXT(ifa, ifa_link);
12619    }
12620
12621#if __FreeBSD_version < 800000
12622    IF_ADDR_UNLOCK(ifp);
12623#else
12624    if_addr_runlock_drv(ifp);
12625#endif
12626
12627    /* Execute the pending commands */
12628    bit_set(&ramrod_flags, RAMROD_CONT);
12629    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12630                            ECORE_UC_LIST_MAC, &ramrod_flags));
12631}
12632
12633static void
12634bxe_handle_rx_mode_tq(void *context,
12635                      int  pending)
12636{
12637    struct bxe_softc *sc = (struct bxe_softc *)context;
12638    if_t ifp = sc->ifp;
12639    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12640
12641    BXE_CORE_LOCK(sc);
12642
12643    if (sc->state != BXE_STATE_OPEN) {
12644        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12645        BXE_CORE_UNLOCK(sc);
12646        return;
12647    }
12648
12649    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12650
12651    if (if_getflags(ifp) & IFF_PROMISC) {
12652        rx_mode = BXE_RX_MODE_PROMISC;
12653    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12654               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12655                CHIP_IS_E1(sc))) {
12656        rx_mode = BXE_RX_MODE_ALLMULTI;
12657    } else {
12658        if (IS_PF(sc)) {
12659            /* some multicasts */
12660            if (bxe_set_mc_list(sc) < 0) {
12661                rx_mode = BXE_RX_MODE_ALLMULTI;
12662            }
12663            if (bxe_set_uc_list(sc) < 0) {
12664                rx_mode = BXE_RX_MODE_PROMISC;
12665            }
12666        }
12667#if 0
12668        else {
12669            /*
12670             * Configuring mcast to a VF involves sleeping (when we
12671             * wait for the PF's response). Since this function is
12672             * called from a non sleepable context we must schedule
12673             * a work item for this purpose
12674             */
12675            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12676            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12677        }
12678#endif
12679    }
12680
12681    sc->rx_mode = rx_mode;
12682
12683    /* schedule the rx_mode command */
12684    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12685        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12686        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12687        BXE_CORE_UNLOCK(sc);
12688        return;
12689    }
12690
12691    if (IS_PF(sc)) {
12692        bxe_set_storm_rx_mode(sc);
12693    }
12694#if 0
12695    else {
12696        /*
12697         * Configuring mcast to a VF involves sleeping (when we
12698         * wait for the PF's response). Since this function is
12699         * called from a non sleepable context we must schedule
12700         * a work item for this purpose
12701         */
12702        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12703        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12704    }
12705#endif
12706
12707    BXE_CORE_UNLOCK(sc);
12708}
12709
12710static void
12711bxe_set_rx_mode(struct bxe_softc *sc)
12712{
12713    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12714}
12715
12716/* update flags in shmem */
12717static void
12718bxe_update_drv_flags(struct bxe_softc *sc,
12719                     uint32_t         flags,
12720                     uint32_t         set)
12721{
12722    uint32_t drv_flags;
12723
12724    if (SHMEM2_HAS(sc, drv_flags)) {
12725        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12726        drv_flags = SHMEM2_RD(sc, drv_flags);
12727
12728        if (set) {
12729            SET_FLAGS(drv_flags, flags);
12730        } else {
12731            RESET_FLAGS(drv_flags, flags);
12732        }
12733
12734        SHMEM2_WR(sc, drv_flags, drv_flags);
12735        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12736
12737        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12738    }
12739}
12740
12741/* periodic timer callout routine, only runs when the interface is up */
12742
12743static void
12744bxe_periodic_callout_func(void *xsc)
12745{
12746    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12747    int i;
12748
12749    if (!BXE_CORE_TRYLOCK(sc)) {
12750        /* just bail and try again next time */
12751
12752        if ((sc->state == BXE_STATE_OPEN) &&
12753            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12754            /* schedule the next periodic callout */
12755            callout_reset(&sc->periodic_callout, hz,
12756                          bxe_periodic_callout_func, sc);
12757        }
12758
12759        return;
12760    }
12761
12762    if ((sc->state != BXE_STATE_OPEN) ||
12763        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12764        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12765        BXE_CORE_UNLOCK(sc);
12766        return;
12767    }
12768
12769    /* Check for TX timeouts on any fastpath. */
12770    FOR_EACH_QUEUE(sc, i) {
12771        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12772            /* Ruh-Roh, chip was reset! */
12773            break;
12774        }
12775    }
12776
12777    if (!CHIP_REV_IS_SLOW(sc)) {
12778        /*
12779         * This barrier is needed to ensure the ordering between the writing
12780         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12781         * the reading here.
12782         */
12783        mb();
12784        if (sc->port.pmf) {
12785            BXE_PHY_LOCK(sc);
12786            elink_period_func(&sc->link_params, &sc->link_vars);
12787            BXE_PHY_UNLOCK(sc);
12788        }
12789    }
12790
12791    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12792        int mb_idx = SC_FW_MB_IDX(sc);
12793        uint32_t drv_pulse;
12794        uint32_t mcp_pulse;
12795
12796        ++sc->fw_drv_pulse_wr_seq;
12797        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12798
12799        drv_pulse = sc->fw_drv_pulse_wr_seq;
12800        bxe_drv_pulse(sc);
12801
12802        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12803                     MCP_PULSE_SEQ_MASK);
12804
12805        /*
12806         * The delta between driver pulse and mcp response should
12807         * be 1 (before mcp response) or 0 (after mcp response).
12808         */
12809        if ((drv_pulse != mcp_pulse) &&
12810            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12811            /* someone lost a heartbeat... */
12812            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12813                  drv_pulse, mcp_pulse);
12814        }
12815    }
12816
12817    /* state is BXE_STATE_OPEN */
12818    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12819
12820#if 0
12821    /* sample VF bulletin board for new posts from PF */
12822    if (IS_VF(sc)) {
12823        bxe_sample_bulletin(sc);
12824    }
12825#endif
12826
12827    BXE_CORE_UNLOCK(sc);
12828
12829    if ((sc->state == BXE_STATE_OPEN) &&
12830        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12831        /* schedule the next periodic callout */
12832        callout_reset(&sc->periodic_callout, hz,
12833                      bxe_periodic_callout_func, sc);
12834    }
12835}
12836
12837static void
12838bxe_periodic_start(struct bxe_softc *sc)
12839{
12840    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12841    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12842}
12843
12844static void
12845bxe_periodic_stop(struct bxe_softc *sc)
12846{
12847    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12848    callout_drain(&sc->periodic_callout);
12849}
12850
12851/* start the controller */
12852static __noinline int
12853bxe_nic_load(struct bxe_softc *sc,
12854             int              load_mode)
12855{
12856    uint32_t val;
12857    int load_code = 0;
12858    int i, rc = 0;
12859
12860    BXE_CORE_LOCK_ASSERT(sc);
12861
12862    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12863
12864    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12865
12866    if (IS_PF(sc)) {
12867        /* must be called before memory allocation and HW init */
12868        bxe_ilt_set_info(sc);
12869    }
12870
12871    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12872
12873    bxe_set_fp_rx_buf_size(sc);
12874
12875    if (bxe_alloc_fp_buffers(sc) != 0) {
12876        BLOGE(sc, "Failed to allocate fastpath memory\n");
12877        sc->state = BXE_STATE_CLOSED;
12878        rc = ENOMEM;
12879        goto bxe_nic_load_error0;
12880    }
12881
12882    if (bxe_alloc_mem(sc) != 0) {
12883        sc->state = BXE_STATE_CLOSED;
12884        rc = ENOMEM;
12885        goto bxe_nic_load_error0;
12886    }
12887
12888    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12889        sc->state = BXE_STATE_CLOSED;
12890        rc = ENOMEM;
12891        goto bxe_nic_load_error0;
12892    }
12893
12894    if (IS_PF(sc)) {
12895        /* set pf load just before approaching the MCP */
12896        bxe_set_pf_load(sc);
12897
12898        /* if MCP exists send load request and analyze response */
12899        if (!BXE_NOMCP(sc)) {
12900            /* attempt to load pf */
12901            if (bxe_nic_load_request(sc, &load_code) != 0) {
12902                sc->state = BXE_STATE_CLOSED;
12903                rc = ENXIO;
12904                goto bxe_nic_load_error1;
12905            }
12906
12907            /* what did the MCP say? */
12908            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12909                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12910                sc->state = BXE_STATE_CLOSED;
12911                rc = ENXIO;
12912                goto bxe_nic_load_error2;
12913            }
12914        } else {
12915            BLOGI(sc, "Device has no MCP!\n");
12916            load_code = bxe_nic_load_no_mcp(sc);
12917        }
12918
12919        /* mark PMF if applicable */
12920        bxe_nic_load_pmf(sc, load_code);
12921
12922        /* Init Function state controlling object */
12923        bxe_init_func_obj(sc);
12924
12925        /* Initialize HW */
12926        if (bxe_init_hw(sc, load_code) != 0) {
12927            BLOGE(sc, "HW init failed\n");
12928            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12929            sc->state = BXE_STATE_CLOSED;
12930            rc = ENXIO;
12931            goto bxe_nic_load_error2;
12932        }
12933    }
12934
12935    /* attach interrupts */
12936    if (bxe_interrupt_attach(sc) != 0) {
12937        sc->state = BXE_STATE_CLOSED;
12938        rc = ENXIO;
12939        goto bxe_nic_load_error2;
12940    }
12941
12942    bxe_nic_init(sc, load_code);
12943
12944    /* Init per-function objects */
12945    if (IS_PF(sc)) {
12946        bxe_init_objs(sc);
12947        // XXX bxe_iov_nic_init(sc);
12948
12949        /* set AFEX default VLAN tag to an invalid value */
12950        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12951        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12952
12953        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12954        rc = bxe_func_start(sc);
12955        if (rc) {
12956            BLOGE(sc, "Function start failed!\n");
12957            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12958            sc->state = BXE_STATE_ERROR;
12959            goto bxe_nic_load_error3;
12960        }
12961
12962        /* send LOAD_DONE command to MCP */
12963        if (!BXE_NOMCP(sc)) {
12964            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12965            if (!load_code) {
12966                BLOGE(sc, "MCP response failure, aborting\n");
12967                sc->state = BXE_STATE_ERROR;
12968                rc = ENXIO;
12969                goto bxe_nic_load_error3;
12970            }
12971        }
12972
12973        rc = bxe_setup_leading(sc);
12974        if (rc) {
12975            BLOGE(sc, "Setup leading failed!\n");
12976            sc->state = BXE_STATE_ERROR;
12977            goto bxe_nic_load_error3;
12978        }
12979
12980        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12981            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12982            if (rc) {
12983                BLOGE(sc, "Queue(%d) setup failed\n", i);
12984                sc->state = BXE_STATE_ERROR;
12985                goto bxe_nic_load_error3;
12986            }
12987        }
12988
12989        rc = bxe_init_rss_pf(sc);
12990        if (rc) {
12991            BLOGE(sc, "PF RSS init failed\n");
12992            sc->state = BXE_STATE_ERROR;
12993            goto bxe_nic_load_error3;
12994        }
12995    }
12996    /* XXX VF */
12997#if 0
12998    else { /* VF */
12999        FOR_EACH_ETH_QUEUE(sc, i) {
13000            rc = bxe_vfpf_setup_q(sc, i);
13001            if (rc) {
13002                BLOGE(sc, "Queue(%d) setup failed\n", i);
13003                sc->state = BXE_STATE_ERROR;
13004                goto bxe_nic_load_error3;
13005            }
13006        }
13007    }
13008#endif
13009
13010    /* now when Clients are configured we are ready to work */
13011    sc->state = BXE_STATE_OPEN;
13012
13013    /* Configure a ucast MAC */
13014    if (IS_PF(sc)) {
13015        rc = bxe_set_eth_mac(sc, TRUE);
13016    }
13017#if 0
13018    else { /* IS_VF(sc) */
13019        rc = bxe_vfpf_set_mac(sc);
13020    }
13021#endif
13022    if (rc) {
13023        BLOGE(sc, "Setting Ethernet MAC failed\n");
13024        sc->state = BXE_STATE_ERROR;
13025        goto bxe_nic_load_error3;
13026    }
13027
13028#if 0
13029    if (IS_PF(sc) && sc->pending_max) {
13030        /* for AFEX */
13031        bxe_update_max_mf_config(sc, sc->pending_max);
13032        sc->pending_max = 0;
13033    }
13034#endif
13035
13036    if (sc->port.pmf) {
13037        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13038        if (rc) {
13039            sc->state = BXE_STATE_ERROR;
13040            goto bxe_nic_load_error3;
13041        }
13042    }
13043
13044    sc->link_params.feature_config_flags &=
13045        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13046
13047    /* start fast path */
13048
13049    /* Initialize Rx filter */
13050    bxe_set_rx_mode(sc);
13051
13052    /* start the Tx */
13053    switch (/* XXX load_mode */LOAD_OPEN) {
13054    case LOAD_NORMAL:
13055    case LOAD_OPEN:
13056        break;
13057
13058    case LOAD_DIAG:
13059    case LOAD_LOOPBACK_EXT:
13060        sc->state = BXE_STATE_DIAG;
13061        break;
13062
13063    default:
13064        break;
13065    }
13066
13067    if (sc->port.pmf) {
13068        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13069    } else {
13070        bxe_link_status_update(sc);
13071    }
13072
13073    /* start the periodic timer callout */
13074    bxe_periodic_start(sc);
13075
13076    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13077        /* mark driver is loaded in shmem2 */
13078        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13079        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13080                  (val |
13081                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13082                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13083    }
13084
13085    /* wait for all pending SP commands to complete */
13086    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13087        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13088        bxe_periodic_stop(sc);
13089        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13090        return (ENXIO);
13091    }
13092
13093#if 0
13094    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13095    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13096        bxe_dcbx_init(sc, FALSE);
13097    }
13098#endif
13099
13100    /* Tell the stack the driver is running! */
13101    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13102
13103    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13104
13105    return (0);
13106
13107bxe_nic_load_error3:
13108
13109    if (IS_PF(sc)) {
13110        bxe_int_disable_sync(sc, 1);
13111
13112        /* clean out queued objects */
13113        bxe_squeeze_objects(sc);
13114    }
13115
13116    bxe_interrupt_detach(sc);
13117
13118bxe_nic_load_error2:
13119
13120    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13121        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13122        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13123    }
13124
13125    sc->port.pmf = 0;
13126
13127bxe_nic_load_error1:
13128
13129    /* clear pf_load status, as it was already set */
13130    if (IS_PF(sc)) {
13131        bxe_clear_pf_load(sc);
13132    }
13133
13134bxe_nic_load_error0:
13135
13136    bxe_free_fw_stats_mem(sc);
13137    bxe_free_fp_buffers(sc);
13138    bxe_free_mem(sc);
13139
13140    return (rc);
13141}
13142
13143static int
13144bxe_init_locked(struct bxe_softc *sc)
13145{
13146    int other_engine = SC_PATH(sc) ? 0 : 1;
13147    uint8_t other_load_status, load_status;
13148    uint8_t global = FALSE;
13149    int rc;
13150
13151    BXE_CORE_LOCK_ASSERT(sc);
13152
13153    /* check if the driver is already running */
13154    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13155        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13156        return (0);
13157    }
13158
13159    bxe_set_power_state(sc, PCI_PM_D0);
13160
13161    /*
13162     * If parity occurred during the unload, then attentions and/or
13163     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13164     * loaded on the current engine to complete the recovery. Parity recovery
13165     * is only relevant for PF driver.
13166     */
13167    if (IS_PF(sc)) {
13168        other_load_status = bxe_get_load_status(sc, other_engine);
13169        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13170
13171        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13172            bxe_chk_parity_attn(sc, &global, TRUE)) {
13173            do {
13174                /*
13175                 * If there are attentions and they are in global blocks, set
13176                 * the GLOBAL_RESET bit regardless whether it will be this
13177                 * function that will complete the recovery or not.
13178                 */
13179                if (global) {
13180                    bxe_set_reset_global(sc);
13181                }
13182
13183                /*
13184                 * Only the first function on the current engine should try
13185                 * to recover in open. In case of attentions in global blocks
13186                 * only the first in the chip should try to recover.
13187                 */
13188                if ((!load_status && (!global || !other_load_status)) &&
13189                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13190                    BLOGI(sc, "Recovered during init\n");
13191                    break;
13192                }
13193
13194                /* recovery has failed... */
13195                bxe_set_power_state(sc, PCI_PM_D3hot);
13196                sc->recovery_state = BXE_RECOVERY_FAILED;
13197
13198                BLOGE(sc, "Recovery flow hasn't properly "
13199                          "completed yet, try again later. "
13200                          "If you still see this message after a "
13201                          "few retries then power cycle is required.\n");
13202
13203                rc = ENXIO;
13204                goto bxe_init_locked_done;
13205            } while (0);
13206        }
13207    }
13208
13209    sc->recovery_state = BXE_RECOVERY_DONE;
13210
13211    rc = bxe_nic_load(sc, LOAD_OPEN);
13212
13213bxe_init_locked_done:
13214
13215    if (rc) {
13216        /* Tell the stack the driver is NOT running! */
13217        BLOGE(sc, "Initialization failed, "
13218                  "stack notified driver is NOT running!\n");
13219	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13220    }
13221
13222    return (rc);
13223}
13224
13225static int
13226bxe_stop_locked(struct bxe_softc *sc)
13227{
13228    BXE_CORE_LOCK_ASSERT(sc);
13229    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13230}
13231
13232/*
13233 * Handles controller initialization when called from an unlocked routine.
13234 * ifconfig calls this function.
13235 *
13236 * Returns:
13237 *   void
13238 */
13239static void
13240bxe_init(void *xsc)
13241{
13242    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13243
13244    BXE_CORE_LOCK(sc);
13245    bxe_init_locked(sc);
13246    BXE_CORE_UNLOCK(sc);
13247}
13248
13249static int
13250bxe_init_ifnet(struct bxe_softc *sc)
13251{
13252    if_t ifp;
13253    int capabilities;
13254
13255    /* ifconfig entrypoint for media type/status reporting */
13256    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13257                 bxe_ifmedia_update,
13258                 bxe_ifmedia_status);
13259
13260    /* set the default interface values */
13261    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13262    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13263    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13264
13265    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13266
13267    /* allocate the ifnet structure */
13268    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13269        BLOGE(sc, "Interface allocation failed!\n");
13270        return (ENXIO);
13271    }
13272
13273    if_setsoftc(ifp, sc);
13274    if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13275    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13276    if_setioctlfn(ifp, bxe_ioctl);
13277    if_setstartfn(ifp, bxe_tx_start);
13278#if __FreeBSD_version >= 800000
13279    if_settransmitfn(ifp, bxe_tx_mq_start);
13280    if_setqflushfn(ifp, bxe_mq_flush);
13281#endif
13282#ifdef FreeBSD8_0
13283    if_settimer(ifp, 0);
13284#endif
13285    if_setinitfn(ifp, bxe_init);
13286    if_setmtu(ifp, sc->mtu);
13287    if_sethwassist(ifp, (CSUM_IP      |
13288                        CSUM_TCP      |
13289                        CSUM_UDP      |
13290                        CSUM_TSO      |
13291                        CSUM_TCP_IPV6 |
13292                        CSUM_UDP_IPV6));
13293
13294    capabilities =
13295#if __FreeBSD_version < 700000
13296        (IFCAP_VLAN_MTU       |
13297         IFCAP_VLAN_HWTAGGING |
13298         IFCAP_HWCSUM         |
13299         IFCAP_JUMBO_MTU      |
13300         IFCAP_LRO);
13301#else
13302        (IFCAP_VLAN_MTU       |
13303         IFCAP_VLAN_HWTAGGING |
13304         IFCAP_VLAN_HWTSO     |
13305         IFCAP_VLAN_HWFILTER  |
13306         IFCAP_VLAN_HWCSUM    |
13307         IFCAP_HWCSUM         |
13308         IFCAP_JUMBO_MTU      |
13309         IFCAP_LRO            |
13310         IFCAP_TSO4           |
13311         IFCAP_TSO6           |
13312         IFCAP_WOL_MAGIC);
13313#endif
13314    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13315    if_setbaudrate(ifp, IF_Gbps(10));
13316/* XXX */
13317    if_setsendqlen(ifp, sc->tx_ring_size);
13318    if_setsendqready(ifp);
13319/* XXX */
13320
13321    sc->ifp = ifp;
13322
13323    /* attach to the Ethernet interface list */
13324    ether_ifattach_drv(ifp, sc->link_params.mac_addr);
13325
13326    return (0);
13327}
13328
13329static void
13330bxe_deallocate_bars(struct bxe_softc *sc)
13331{
13332    int i;
13333
13334    for (i = 0; i < MAX_BARS; i++) {
13335        if (sc->bar[i].resource != NULL) {
13336            bus_release_resource(sc->dev,
13337                                 SYS_RES_MEMORY,
13338                                 sc->bar[i].rid,
13339                                 sc->bar[i].resource);
13340            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13341                  i, PCIR_BAR(i));
13342        }
13343    }
13344}
13345
13346static int
13347bxe_allocate_bars(struct bxe_softc *sc)
13348{
13349    u_int flags;
13350    int i;
13351
13352    memset(sc->bar, 0, sizeof(sc->bar));
13353
13354    for (i = 0; i < MAX_BARS; i++) {
13355
13356        /* memory resources reside at BARs 0, 2, 4 */
13357        /* Run `pciconf -lb` to see mappings */
13358        if ((i != 0) && (i != 2) && (i != 4)) {
13359            continue;
13360        }
13361
13362        sc->bar[i].rid = PCIR_BAR(i);
13363
13364        flags = RF_ACTIVE;
13365        if (i == 0) {
13366            flags |= RF_SHAREABLE;
13367        }
13368
13369        if ((sc->bar[i].resource =
13370             bus_alloc_resource_any(sc->dev,
13371                                    SYS_RES_MEMORY,
13372                                    &sc->bar[i].rid,
13373                                    flags)) == NULL) {
13374#if 0
13375            /* BAR4 doesn't exist for E1 */
13376            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13377                  i, PCIR_BAR(i));
13378#endif
13379            return (0);
13380        }
13381
13382        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13383        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13384        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13385
13386        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13387              i, PCIR_BAR(i),
13388              (void *)rman_get_start(sc->bar[i].resource),
13389              (void *)rman_get_end(sc->bar[i].resource),
13390              rman_get_size(sc->bar[i].resource),
13391              (void *)sc->bar[i].kva);
13392    }
13393
13394    return (0);
13395}
13396
13397static void
13398bxe_get_function_num(struct bxe_softc *sc)
13399{
13400    uint32_t val = 0;
13401
13402    /*
13403     * Read the ME register to get the function number. The ME register
13404     * holds the relative-function number and absolute-function number. The
13405     * absolute-function number appears only in E2 and above. Before that
13406     * these bits always contained zero, therefore we cannot blindly use them.
13407     */
13408
13409    val = REG_RD(sc, BAR_ME_REGISTER);
13410
13411    sc->pfunc_rel =
13412        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13413    sc->path_id =
13414        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13415
13416    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13417        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13418    } else {
13419        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13420    }
13421
13422    BLOGD(sc, DBG_LOAD,
13423          "Relative function %d, Absolute function %d, Path %d\n",
13424          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13425}
13426
13427static uint32_t
13428bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13429{
13430    uint32_t shmem2_size;
13431    uint32_t offset;
13432    uint32_t mf_cfg_offset_value;
13433
13434    /* Non 57712 */
13435    offset = (SHMEM_RD(sc, func_mb) +
13436              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13437
13438    /* 57712 plus */
13439    if (sc->devinfo.shmem2_base != 0) {
13440        shmem2_size = SHMEM2_RD(sc, size);
13441        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13442            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13443            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13444                offset = mf_cfg_offset_value;
13445            }
13446        }
13447    }
13448
13449    return (offset);
13450}
13451
13452static uint32_t
13453bxe_pcie_capability_read(struct bxe_softc *sc,
13454                         int    reg,
13455                         int    width)
13456{
13457    int pcie_reg;
13458
13459    /* ensure PCIe capability is enabled */
13460    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13461        if (pcie_reg != 0) {
13462            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13463            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13464        }
13465    }
13466
13467    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13468
13469    return (0);
13470}
13471
13472static uint8_t
13473bxe_is_pcie_pending(struct bxe_softc *sc)
13474{
13475    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13476            PCIM_EXP_STA_TRANSACTION_PND);
13477}
13478
13479/*
13480 * Walk the PCI capabiites list for the device to find what features are
13481 * supported. These capabilites may be enabled/disabled by firmware so it's
13482 * best to walk the list rather than make assumptions.
13483 */
13484static void
13485bxe_probe_pci_caps(struct bxe_softc *sc)
13486{
13487    uint16_t link_status;
13488    int reg;
13489
13490    /* check if PCI Power Management is enabled */
13491    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13492        if (reg != 0) {
13493            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13494
13495            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13496            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13497        }
13498    }
13499
13500    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13501
13502    /* handle PCIe 2.0 workarounds for 57710 */
13503    if (CHIP_IS_E1(sc)) {
13504        /* workaround for 57710 errata E4_57710_27462 */
13505        sc->devinfo.pcie_link_speed =
13506            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13507
13508        /* workaround for 57710 errata E4_57710_27488 */
13509        sc->devinfo.pcie_link_width =
13510            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13511        if (sc->devinfo.pcie_link_speed > 1) {
13512            sc->devinfo.pcie_link_width =
13513                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13514        }
13515    } else {
13516        sc->devinfo.pcie_link_speed =
13517            (link_status & PCIM_LINK_STA_SPEED);
13518        sc->devinfo.pcie_link_width =
13519            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13520    }
13521
13522    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13523          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13524
13525    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13526    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13527
13528    /* check if MSI capability is enabled */
13529    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13530        if (reg != 0) {
13531            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13532
13533            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13534            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13535        }
13536    }
13537
13538    /* check if MSI-X capability is enabled */
13539    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13540        if (reg != 0) {
13541            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13542
13543            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13544            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13545        }
13546    }
13547}
13548
13549static int
13550bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13551{
13552    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13553    uint32_t val;
13554
13555    /* get the outer vlan if we're in switch-dependent mode */
13556
13557    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13558    mf_info->ext_id = (uint16_t)val;
13559
13560    mf_info->multi_vnics_mode = 1;
13561
13562    if (!VALID_OVLAN(mf_info->ext_id)) {
13563        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13564        return (1);
13565    }
13566
13567    /* get the capabilities */
13568    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13569        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13570        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13571    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13572               FUNC_MF_CFG_PROTOCOL_FCOE) {
13573        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13574    } else {
13575        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13576    }
13577
13578    mf_info->vnics_per_port =
13579        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13580
13581    return (0);
13582}
13583
13584static uint32_t
13585bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13586{
13587    uint32_t retval = 0;
13588    uint32_t val;
13589
13590    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13591
13592    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13593        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13594            retval |= MF_PROTO_SUPPORT_ETHERNET;
13595        }
13596        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13597            retval |= MF_PROTO_SUPPORT_ISCSI;
13598        }
13599        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13600            retval |= MF_PROTO_SUPPORT_FCOE;
13601        }
13602    }
13603
13604    return (retval);
13605}
13606
13607static int
13608bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13609{
13610    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13611    uint32_t val;
13612
13613    /*
13614     * There is no outer vlan if we're in switch-independent mode.
13615     * If the mac is valid then assume multi-function.
13616     */
13617
13618    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13619
13620    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13621
13622    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13623
13624    mf_info->vnics_per_port =
13625        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13626
13627    return (0);
13628}
13629
13630static int
13631bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13632{
13633    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13634    uint32_t e1hov_tag;
13635    uint32_t func_config;
13636    uint32_t niv_config;
13637
13638    mf_info->multi_vnics_mode = 1;
13639
13640    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13641    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13642    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13643
13644    mf_info->ext_id =
13645        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13646                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13647
13648    mf_info->default_vlan =
13649        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13650                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13651
13652    mf_info->niv_allowed_priorities =
13653        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13654                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13655
13656    mf_info->niv_default_cos =
13657        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13658                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13659
13660    mf_info->afex_vlan_mode =
13661        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13662         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13663
13664    mf_info->niv_mba_enabled =
13665        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13666         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13667
13668    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13669
13670    mf_info->vnics_per_port =
13671        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13672
13673    return (0);
13674}
13675
13676static int
13677bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13678{
13679    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13680    uint32_t mf_cfg1;
13681    uint32_t mf_cfg2;
13682    uint32_t ovlan1;
13683    uint32_t ovlan2;
13684    uint8_t i, j;
13685
13686    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13687          SC_PORT(sc));
13688    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13689          mf_info->mf_config[SC_VN(sc)]);
13690    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13691          mf_info->multi_vnics_mode);
13692    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13693          mf_info->vnics_per_port);
13694    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13695          mf_info->ext_id);
13696    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13697          mf_info->min_bw[0], mf_info->min_bw[1],
13698          mf_info->min_bw[2], mf_info->min_bw[3]);
13699    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13700          mf_info->max_bw[0], mf_info->max_bw[1],
13701          mf_info->max_bw[2], mf_info->max_bw[3]);
13702    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13703          sc->mac_addr_str);
13704
13705    /* various MF mode sanity checks... */
13706
13707    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13708        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13709              SC_PORT(sc));
13710        return (1);
13711    }
13712
13713    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13714        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13715              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13716        return (1);
13717    }
13718
13719    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13720        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13721        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13722            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13723                  SC_VN(sc), OVLAN(sc));
13724            return (1);
13725        }
13726
13727        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13728            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13729                  mf_info->multi_vnics_mode, OVLAN(sc));
13730            return (1);
13731        }
13732
13733        /*
13734         * Verify all functions are either MF or SF mode. If MF, make sure
13735         * sure that all non-hidden functions have a valid ovlan. If SF,
13736         * make sure that all non-hidden functions have an invalid ovlan.
13737         */
13738        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13739            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13740            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13741            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13742                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13743                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13744                BLOGE(sc, "mf_mode=SD function %d MF config "
13745                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13746                      i, mf_info->multi_vnics_mode, ovlan1);
13747                return (1);
13748            }
13749        }
13750
13751        /* Verify all funcs on the same port each have a different ovlan. */
13752        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13753            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13754            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13755            /* iterate from the next function on the port to the max func */
13756            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13757                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13758                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13759                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13760                    VALID_OVLAN(ovlan1) &&
13761                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13762                    VALID_OVLAN(ovlan2) &&
13763                    (ovlan1 == ovlan2)) {
13764                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13765                              "have the same ovlan (%d)\n",
13766                          i, j, ovlan1);
13767                    return (1);
13768                }
13769            }
13770        }
13771    } /* MULTI_FUNCTION_SD */
13772
13773    return (0);
13774}
13775
13776static int
13777bxe_get_mf_cfg_info(struct bxe_softc *sc)
13778{
13779    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13780    uint32_t val, mac_upper;
13781    uint8_t i, vnic;
13782
13783    /* initialize mf_info defaults */
13784    mf_info->vnics_per_port   = 1;
13785    mf_info->multi_vnics_mode = FALSE;
13786    mf_info->path_has_ovlan   = FALSE;
13787    mf_info->mf_mode          = SINGLE_FUNCTION;
13788
13789    if (!CHIP_IS_MF_CAP(sc)) {
13790        return (0);
13791    }
13792
13793    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13794        BLOGE(sc, "Invalid mf_cfg_base!\n");
13795        return (1);
13796    }
13797
13798    /* get the MF mode (switch dependent / independent / single-function) */
13799
13800    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13801
13802    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13803    {
13804    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13805
13806        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13807
13808        /* check for legal upper mac bytes */
13809        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13810            mf_info->mf_mode = MULTI_FUNCTION_SI;
13811        } else {
13812            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13813        }
13814
13815        break;
13816
13817    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13818    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13819
13820        /* get outer vlan configuration */
13821        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13822
13823        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13824            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13825            mf_info->mf_mode = MULTI_FUNCTION_SD;
13826        } else {
13827            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13828        }
13829
13830        break;
13831
13832    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13833
13834        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13835        return (0);
13836
13837    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13838
13839        /*
13840         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13841         * and the MAC address is valid.
13842         */
13843        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13844
13845        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13846            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13847            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13848        } else {
13849            BLOGE(sc, "Invalid config for AFEX mode\n");
13850        }
13851
13852        break;
13853
13854    default:
13855
13856        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13857              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13858
13859        return (1);
13860    }
13861
13862    /* set path mf_mode (which could be different than function mf_mode) */
13863    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13864        mf_info->path_has_ovlan = TRUE;
13865    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13866        /*
13867         * Decide on path multi vnics mode. If we're not in MF mode and in
13868         * 4-port mode, this is good enough to check vnic-0 of the other port
13869         * on the same path
13870         */
13871        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13872            uint8_t other_port = !(PORT_ID(sc) & 1);
13873            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13874
13875            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13876
13877            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13878        }
13879    }
13880
13881    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13882        /* invalid MF config */
13883        if (SC_VN(sc) >= 1) {
13884            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13885            return (1);
13886        }
13887
13888        return (0);
13889    }
13890
13891    /* get the MF configuration */
13892    mf_info->mf_config[SC_VN(sc)] =
13893        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13894
13895    switch(mf_info->mf_mode)
13896    {
13897    case MULTI_FUNCTION_SD:
13898
13899        bxe_get_shmem_mf_cfg_info_sd(sc);
13900        break;
13901
13902    case MULTI_FUNCTION_SI:
13903
13904        bxe_get_shmem_mf_cfg_info_si(sc);
13905        break;
13906
13907    case MULTI_FUNCTION_AFEX:
13908
13909        bxe_get_shmem_mf_cfg_info_niv(sc);
13910        break;
13911
13912    default:
13913
13914        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13915              mf_info->mf_mode);
13916        return (1);
13917    }
13918
13919    /* get the congestion management parameters */
13920
13921    vnic = 0;
13922    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13923        /* get min/max bw */
13924        val = MFCFG_RD(sc, func_mf_config[i].config);
13925        mf_info->min_bw[vnic] =
13926            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13927        mf_info->max_bw[vnic] =
13928            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13929        vnic++;
13930    }
13931
13932    return (bxe_check_valid_mf_cfg(sc));
13933}
13934
13935static int
13936bxe_get_shmem_info(struct bxe_softc *sc)
13937{
13938    int port;
13939    uint32_t mac_hi, mac_lo, val;
13940
13941    port = SC_PORT(sc);
13942    mac_hi = mac_lo = 0;
13943
13944    sc->link_params.sc   = sc;
13945    sc->link_params.port = port;
13946
13947    /* get the hardware config info */
13948    sc->devinfo.hw_config =
13949        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13950    sc->devinfo.hw_config2 =
13951        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13952
13953    sc->link_params.hw_led_mode =
13954        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13955         SHARED_HW_CFG_LED_MODE_SHIFT);
13956
13957    /* get the port feature config */
13958    sc->port.config =
13959        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13960
13961    /* get the link params */
13962    sc->link_params.speed_cap_mask[0] =
13963        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13964    sc->link_params.speed_cap_mask[1] =
13965        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13966
13967    /* get the lane config */
13968    sc->link_params.lane_config =
13969        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13970
13971    /* get the link config */
13972    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13973    sc->port.link_config[ELINK_INT_PHY] = val;
13974    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13975    sc->port.link_config[ELINK_EXT_PHY1] =
13976        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13977
13978    /* get the override preemphasis flag and enable it or turn it off */
13979    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13980    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13981        sc->link_params.feature_config_flags |=
13982            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13983    } else {
13984        sc->link_params.feature_config_flags &=
13985            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13986    }
13987
13988    /* get the initial value of the link params */
13989    sc->link_params.multi_phy_config =
13990        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13991
13992    /* get external phy info */
13993    sc->port.ext_phy_config =
13994        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13995
13996    /* get the multifunction configuration */
13997    bxe_get_mf_cfg_info(sc);
13998
13999    /* get the mac address */
14000    if (IS_MF(sc)) {
14001        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14002        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14003    } else {
14004        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14005        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14006    }
14007
14008    if ((mac_lo == 0) && (mac_hi == 0)) {
14009        *sc->mac_addr_str = 0;
14010        BLOGE(sc, "No Ethernet address programmed!\n");
14011    } else {
14012        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14013        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14014        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14015        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14016        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14017        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14018        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14019                 "%02x:%02x:%02x:%02x:%02x:%02x",
14020                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14021                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14022                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14023        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14024    }
14025
14026#if 0
14027    if (!IS_MF(sc) &&
14028        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14029         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14030        sc->flags |= BXE_NO_ISCSI;
14031    }
14032    if (!IS_MF(sc) &&
14033        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14034         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14035        sc->flags |= BXE_NO_FCOE_FLAG;
14036    }
14037#endif
14038
14039    return (0);
14040}
14041
14042static void
14043bxe_get_tunable_params(struct bxe_softc *sc)
14044{
14045    /* sanity checks */
14046
14047    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14048        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14049        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14050        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14051        bxe_interrupt_mode = INTR_MODE_MSIX;
14052    }
14053
14054    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14055        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14056        bxe_queue_count = 0;
14057    }
14058
14059    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14060        if (bxe_max_rx_bufs == 0) {
14061            bxe_max_rx_bufs = RX_BD_USABLE;
14062        } else {
14063            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14064            bxe_max_rx_bufs = 2048;
14065        }
14066    }
14067
14068    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14069        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14070        bxe_hc_rx_ticks = 25;
14071    }
14072
14073    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14074        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14075        bxe_hc_tx_ticks = 50;
14076    }
14077
14078    if (bxe_max_aggregation_size == 0) {
14079        bxe_max_aggregation_size = TPA_AGG_SIZE;
14080    }
14081
14082    if (bxe_max_aggregation_size > 0xffff) {
14083        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14084              bxe_max_aggregation_size);
14085        bxe_max_aggregation_size = TPA_AGG_SIZE;
14086    }
14087
14088    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14089        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14090        bxe_mrrs = -1;
14091    }
14092
14093    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14094        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14095        bxe_autogreeen = 0;
14096    }
14097
14098    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14099        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14100        bxe_udp_rss = 0;
14101    }
14102
14103    /* pull in user settings */
14104
14105    sc->interrupt_mode       = bxe_interrupt_mode;
14106    sc->max_rx_bufs          = bxe_max_rx_bufs;
14107    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14108    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14109    sc->max_aggregation_size = bxe_max_aggregation_size;
14110    sc->mrrs                 = bxe_mrrs;
14111    sc->autogreeen           = bxe_autogreeen;
14112    sc->udp_rss              = bxe_udp_rss;
14113
14114    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14115        sc->num_queues = 1;
14116    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14117        sc->num_queues =
14118            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14119                MAX_RSS_CHAINS);
14120        if (sc->num_queues > mp_ncpus) {
14121            sc->num_queues = mp_ncpus;
14122        }
14123    }
14124
14125    BLOGD(sc, DBG_LOAD,
14126          "User Config: "
14127          "debug=0x%lx "
14128          "interrupt_mode=%d "
14129          "queue_count=%d "
14130          "hc_rx_ticks=%d "
14131          "hc_tx_ticks=%d "
14132          "rx_budget=%d "
14133          "max_aggregation_size=%d "
14134          "mrrs=%d "
14135          "autogreeen=%d "
14136          "udp_rss=%d\n",
14137          bxe_debug,
14138          sc->interrupt_mode,
14139          sc->num_queues,
14140          sc->hc_rx_ticks,
14141          sc->hc_tx_ticks,
14142          bxe_rx_budget,
14143          sc->max_aggregation_size,
14144          sc->mrrs,
14145          sc->autogreeen,
14146          sc->udp_rss);
14147}
14148
14149static void
14150bxe_media_detect(struct bxe_softc *sc)
14151{
14152    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14153    switch (sc->link_params.phy[phy_idx].media_type) {
14154    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14155    case ELINK_ETH_PHY_XFP_FIBER:
14156        BLOGI(sc, "Found 10Gb Fiber media.\n");
14157        sc->media = IFM_10G_SR;
14158        break;
14159    case ELINK_ETH_PHY_SFP_1G_FIBER:
14160        BLOGI(sc, "Found 1Gb Fiber media.\n");
14161        sc->media = IFM_1000_SX;
14162        break;
14163    case ELINK_ETH_PHY_KR:
14164    case ELINK_ETH_PHY_CX4:
14165        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14166        sc->media = IFM_10G_CX4;
14167        break;
14168    case ELINK_ETH_PHY_DA_TWINAX:
14169        BLOGI(sc, "Found 10Gb Twinax media.\n");
14170        sc->media = IFM_10G_TWINAX;
14171        break;
14172    case ELINK_ETH_PHY_BASE_T:
14173        if (sc->link_params.speed_cap_mask[0] &
14174            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14175            BLOGI(sc, "Found 10GBase-T media.\n");
14176            sc->media = IFM_10G_T;
14177        } else {
14178            BLOGI(sc, "Found 1000Base-T media.\n");
14179            sc->media = IFM_1000_T;
14180        }
14181        break;
14182    case ELINK_ETH_PHY_NOT_PRESENT:
14183        BLOGI(sc, "Media not present.\n");
14184        sc->media = 0;
14185        break;
14186    case ELINK_ETH_PHY_UNSPECIFIED:
14187    default:
14188        BLOGI(sc, "Unknown media!\n");
14189        sc->media = 0;
14190        break;
14191    }
14192}
14193
14194#define GET_FIELD(value, fname)                     \
14195    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14196#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14197#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14198
14199static int
14200bxe_get_igu_cam_info(struct bxe_softc *sc)
14201{
14202    int pfid = SC_FUNC(sc);
14203    int igu_sb_id;
14204    uint32_t val;
14205    uint8_t fid, igu_sb_cnt = 0;
14206
14207    sc->igu_base_sb = 0xff;
14208
14209    if (CHIP_INT_MODE_IS_BC(sc)) {
14210        int vn = SC_VN(sc);
14211        igu_sb_cnt = sc->igu_sb_cnt;
14212        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14213                           FP_SB_MAX_E1x);
14214        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14215                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14216        return (0);
14217    }
14218
14219    /* IGU in normal mode - read CAM */
14220    for (igu_sb_id = 0;
14221         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14222         igu_sb_id++) {
14223        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14224        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14225            continue;
14226        }
14227        fid = IGU_FID(val);
14228        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14229            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14230                continue;
14231            }
14232            if (IGU_VEC(val) == 0) {
14233                /* default status block */
14234                sc->igu_dsb_id = igu_sb_id;
14235            } else {
14236                if (sc->igu_base_sb == 0xff) {
14237                    sc->igu_base_sb = igu_sb_id;
14238                }
14239                igu_sb_cnt++;
14240            }
14241        }
14242    }
14243
14244    /*
14245     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14246     * that number of CAM entries will not be equal to the value advertised in
14247     * PCI. Driver should use the minimal value of both as the actual status
14248     * block count
14249     */
14250    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14251
14252    if (igu_sb_cnt == 0) {
14253        BLOGE(sc, "CAM configuration error\n");
14254        return (-1);
14255    }
14256
14257    return (0);
14258}
14259
14260/*
14261 * Gather various information from the device config space, the device itself,
14262 * shmem, and the user input.
14263 */
14264static int
14265bxe_get_device_info(struct bxe_softc *sc)
14266{
14267    uint32_t val;
14268    int rc;
14269
14270    /* Get the data for the device */
14271    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14272    sc->devinfo.device_id    = pci_get_device(sc->dev);
14273    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14274    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14275
14276    /* get the chip revision (chip metal comes from pci config space) */
14277    sc->devinfo.chip_id     =
14278    sc->link_params.chip_id =
14279        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14280         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14281         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14282         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14283
14284    /* force 57811 according to MISC register */
14285    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14286        if (CHIP_IS_57810(sc)) {
14287            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14288                                   (sc->devinfo.chip_id & 0x0000ffff));
14289        } else if (CHIP_IS_57810_MF(sc)) {
14290            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14291                                   (sc->devinfo.chip_id & 0x0000ffff));
14292        }
14293        sc->devinfo.chip_id |= 0x1;
14294    }
14295
14296    BLOGD(sc, DBG_LOAD,
14297          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14298          sc->devinfo.chip_id,
14299          ((sc->devinfo.chip_id >> 16) & 0xffff),
14300          ((sc->devinfo.chip_id >> 12) & 0xf),
14301          ((sc->devinfo.chip_id >>  4) & 0xff),
14302          ((sc->devinfo.chip_id >>  0) & 0xf));
14303
14304    val = (REG_RD(sc, 0x2874) & 0x55);
14305    if ((sc->devinfo.chip_id & 0x1) ||
14306        (CHIP_IS_E1(sc) && val) ||
14307        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14308        sc->flags |= BXE_ONE_PORT_FLAG;
14309        BLOGD(sc, DBG_LOAD, "single port device\n");
14310    }
14311
14312    /* set the doorbell size */
14313    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14314
14315    /* determine whether the device is in 2 port or 4 port mode */
14316    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14317    if (CHIP_IS_E2E3(sc)) {
14318        /*
14319         * Read port4mode_en_ovwr[0]:
14320         *   If 1, four port mode is in port4mode_en_ovwr[1].
14321         *   If 0, four port mode is in port4mode_en[0].
14322         */
14323        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14324        if (val & 1) {
14325            val = ((val >> 1) & 1);
14326        } else {
14327            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14328        }
14329
14330        sc->devinfo.chip_port_mode =
14331            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14332
14333        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14334    }
14335
14336    /* get the function and path info for the device */
14337    bxe_get_function_num(sc);
14338
14339    /* get the shared memory base address */
14340    sc->devinfo.shmem_base     =
14341    sc->link_params.shmem_base =
14342        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14343    sc->devinfo.shmem2_base =
14344        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14345                                  MISC_REG_GENERIC_CR_0));
14346
14347    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14348          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14349
14350    if (!sc->devinfo.shmem_base) {
14351        /* this should ONLY prevent upcoming shmem reads */
14352        BLOGI(sc, "MCP not active\n");
14353        sc->flags |= BXE_NO_MCP_FLAG;
14354        return (0);
14355    }
14356
14357    /* make sure the shared memory contents are valid */
14358    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14359    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14360        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14361        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14362        return (0);
14363    }
14364    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14365
14366    /* get the bootcode version */
14367    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14368    snprintf(sc->devinfo.bc_ver_str,
14369             sizeof(sc->devinfo.bc_ver_str),
14370             "%d.%d.%d",
14371             ((sc->devinfo.bc_ver >> 24) & 0xff),
14372             ((sc->devinfo.bc_ver >> 16) & 0xff),
14373             ((sc->devinfo.bc_ver >>  8) & 0xff));
14374    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14375
14376    /* get the bootcode shmem address */
14377    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14378    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14379
14380    /* clean indirect addresses as they're not used */
14381    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14382    if (IS_PF(sc)) {
14383        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14384        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14385        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14386        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14387        if (CHIP_IS_E1x(sc)) {
14388            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14389            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14390            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14391            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14392        }
14393
14394        /*
14395         * Enable internal target-read (in case we are probed after PF
14396         * FLR). Must be done prior to any BAR read access. Only for
14397         * 57712 and up
14398         */
14399        if (!CHIP_IS_E1x(sc)) {
14400            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14401        }
14402    }
14403
14404    /* get the nvram size */
14405    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14406    sc->devinfo.flash_size =
14407        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14408    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14409
14410    /* get PCI capabilites */
14411    bxe_probe_pci_caps(sc);
14412
14413    bxe_set_power_state(sc, PCI_PM_D0);
14414
14415    /* get various configuration parameters from shmem */
14416    bxe_get_shmem_info(sc);
14417
14418    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14419        val = pci_read_config(sc->dev,
14420                              (sc->devinfo.pcie_msix_cap_reg +
14421                               PCIR_MSIX_CTRL),
14422                              2);
14423        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14424    } else {
14425        sc->igu_sb_cnt = 1;
14426    }
14427
14428    sc->igu_base_addr = BAR_IGU_INTMEM;
14429
14430    /* initialize IGU parameters */
14431    if (CHIP_IS_E1x(sc)) {
14432        sc->devinfo.int_block = INT_BLOCK_HC;
14433        sc->igu_dsb_id = DEF_SB_IGU_ID;
14434        sc->igu_base_sb = 0;
14435    } else {
14436        sc->devinfo.int_block = INT_BLOCK_IGU;
14437
14438        /* do not allow device reset during IGU info preocessing */
14439        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14440
14441        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14442
14443        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14444            int tout = 5000;
14445
14446            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14447
14448            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14449            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14450            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14451
14452            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14453                tout--;
14454                DELAY(1000);
14455            }
14456
14457            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14458                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14459                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14460                return (-1);
14461            }
14462        }
14463
14464        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14465            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14466            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14467        } else {
14468            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14469        }
14470
14471        rc = bxe_get_igu_cam_info(sc);
14472
14473        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474
14475        if (rc) {
14476            return (rc);
14477        }
14478    }
14479
14480    /*
14481     * Get base FW non-default (fast path) status block ID. This value is
14482     * used to initialize the fw_sb_id saved on the fp/queue structure to
14483     * determine the id used by the FW.
14484     */
14485    if (CHIP_IS_E1x(sc)) {
14486        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14487    } else {
14488        /*
14489         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14490         * the same queue are indicated on the same IGU SB). So we prefer
14491         * FW and IGU SBs to be the same value.
14492         */
14493        sc->base_fw_ndsb = sc->igu_base_sb;
14494    }
14495
14496    BLOGD(sc, DBG_LOAD,
14497          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14498          sc->igu_dsb_id, sc->igu_base_sb,
14499          sc->igu_sb_cnt, sc->base_fw_ndsb);
14500
14501    elink_phy_probe(&sc->link_params);
14502
14503    return (0);
14504}
14505
14506static void
14507bxe_link_settings_supported(struct bxe_softc *sc,
14508                            uint32_t         switch_cfg)
14509{
14510    uint32_t cfg_size = 0;
14511    uint32_t idx;
14512    uint8_t port = SC_PORT(sc);
14513
14514    /* aggregation of supported attributes of all external phys */
14515    sc->port.supported[0] = 0;
14516    sc->port.supported[1] = 0;
14517
14518    switch (sc->link_params.num_phys) {
14519    case 1:
14520        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14521        cfg_size = 1;
14522        break;
14523    case 2:
14524        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14525        cfg_size = 1;
14526        break;
14527    case 3:
14528        if (sc->link_params.multi_phy_config &
14529            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14530            sc->port.supported[1] =
14531                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14532            sc->port.supported[0] =
14533                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14534        } else {
14535            sc->port.supported[0] =
14536                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14537            sc->port.supported[1] =
14538                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14539        }
14540        cfg_size = 2;
14541        break;
14542    }
14543
14544    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14545        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14546              SHMEM_RD(sc,
14547                       dev_info.port_hw_config[port].external_phy_config),
14548              SHMEM_RD(sc,
14549                       dev_info.port_hw_config[port].external_phy_config2));
14550        return;
14551    }
14552
14553    if (CHIP_IS_E3(sc))
14554        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14555    else {
14556        switch (switch_cfg) {
14557        case ELINK_SWITCH_CFG_1G:
14558            sc->port.phy_addr =
14559                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14560            break;
14561        case ELINK_SWITCH_CFG_10G:
14562            sc->port.phy_addr =
14563                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14564            break;
14565        default:
14566            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14567                  sc->port.link_config[0]);
14568            return;
14569        }
14570    }
14571
14572    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14573
14574    /* mask what we support according to speed_cap_mask per configuration */
14575    for (idx = 0; idx < cfg_size; idx++) {
14576        if (!(sc->link_params.speed_cap_mask[idx] &
14577              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14578            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14579        }
14580
14581        if (!(sc->link_params.speed_cap_mask[idx] &
14582              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14583            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14584        }
14585
14586        if (!(sc->link_params.speed_cap_mask[idx] &
14587              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14588            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14589        }
14590
14591        if (!(sc->link_params.speed_cap_mask[idx] &
14592              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14593            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14594        }
14595
14596        if (!(sc->link_params.speed_cap_mask[idx] &
14597              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14598            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14599        }
14600
14601        if (!(sc->link_params.speed_cap_mask[idx] &
14602              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14603            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14604        }
14605
14606        if (!(sc->link_params.speed_cap_mask[idx] &
14607              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14608            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14609        }
14610
14611        if (!(sc->link_params.speed_cap_mask[idx] &
14612              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14613            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14614        }
14615    }
14616
14617    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14618          sc->port.supported[0], sc->port.supported[1]);
14619}
14620
14621static void
14622bxe_link_settings_requested(struct bxe_softc *sc)
14623{
14624    uint32_t link_config;
14625    uint32_t idx;
14626    uint32_t cfg_size = 0;
14627
14628    sc->port.advertising[0] = 0;
14629    sc->port.advertising[1] = 0;
14630
14631    switch (sc->link_params.num_phys) {
14632    case 1:
14633    case 2:
14634        cfg_size = 1;
14635        break;
14636    case 3:
14637        cfg_size = 2;
14638        break;
14639    }
14640
14641    for (idx = 0; idx < cfg_size; idx++) {
14642        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14643        link_config = sc->port.link_config[idx];
14644
14645        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14646        case PORT_FEATURE_LINK_SPEED_AUTO:
14647            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14648                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14649                sc->port.advertising[idx] |= sc->port.supported[idx];
14650                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14651                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14652                    sc->port.advertising[idx] |=
14653                        (ELINK_SUPPORTED_100baseT_Half |
14654                         ELINK_SUPPORTED_100baseT_Full);
14655            } else {
14656                /* force 10G, no AN */
14657                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14658                sc->port.advertising[idx] |=
14659                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14660                continue;
14661            }
14662            break;
14663
14664        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14665            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14666                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14667                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14668                                              ADVERTISED_TP);
14669            } else {
14670                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14671                          "speed_cap_mask=0x%08x\n",
14672                      link_config, sc->link_params.speed_cap_mask[idx]);
14673                return;
14674            }
14675            break;
14676
14677        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14678            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14679                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14680                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14681                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14682                                              ADVERTISED_TP);
14683            } else {
14684                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14685                          "speed_cap_mask=0x%08x\n",
14686                      link_config, sc->link_params.speed_cap_mask[idx]);
14687                return;
14688            }
14689            break;
14690
14691        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14692            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14693                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14694                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14695                                              ADVERTISED_TP);
14696            } else {
14697                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14698                          "speed_cap_mask=0x%08x\n",
14699                      link_config, sc->link_params.speed_cap_mask[idx]);
14700                return;
14701            }
14702            break;
14703
14704        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14705            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14706                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14707                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14708                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14709                                              ADVERTISED_TP);
14710            } else {
14711                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14712                          "speed_cap_mask=0x%08x\n",
14713                      link_config, sc->link_params.speed_cap_mask[idx]);
14714                return;
14715            }
14716            break;
14717
14718        case PORT_FEATURE_LINK_SPEED_1G:
14719            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14720                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14721                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14722                                              ADVERTISED_TP);
14723            } else {
14724                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14725                          "speed_cap_mask=0x%08x\n",
14726                      link_config, sc->link_params.speed_cap_mask[idx]);
14727                return;
14728            }
14729            break;
14730
14731        case PORT_FEATURE_LINK_SPEED_2_5G:
14732            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14733                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14734                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14735                                              ADVERTISED_TP);
14736            } else {
14737                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14738                          "speed_cap_mask=0x%08x\n",
14739                      link_config, sc->link_params.speed_cap_mask[idx]);
14740                return;
14741            }
14742            break;
14743
14744        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14745            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14746                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14747                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14748                                              ADVERTISED_FIBRE);
14749            } else {
14750                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14751                          "speed_cap_mask=0x%08x\n",
14752                      link_config, sc->link_params.speed_cap_mask[idx]);
14753                return;
14754            }
14755            break;
14756
14757        case PORT_FEATURE_LINK_SPEED_20G:
14758            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14759            break;
14760
14761        default:
14762            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14763                      "speed_cap_mask=0x%08x\n",
14764                  link_config, sc->link_params.speed_cap_mask[idx]);
14765            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14766            sc->port.advertising[idx] = sc->port.supported[idx];
14767            break;
14768        }
14769
14770        sc->link_params.req_flow_ctrl[idx] =
14771            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14772
14773        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14774            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14775                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14776            } else {
14777                bxe_set_requested_fc(sc);
14778            }
14779        }
14780
14781        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14782                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14783              sc->link_params.req_line_speed[idx],
14784              sc->link_params.req_duplex[idx],
14785              sc->link_params.req_flow_ctrl[idx],
14786              sc->port.advertising[idx]);
14787    }
14788}
14789
14790static void
14791bxe_get_phy_info(struct bxe_softc *sc)
14792{
14793    uint8_t port = SC_PORT(sc);
14794    uint32_t config = sc->port.config;
14795    uint32_t eee_mode;
14796
14797    /* shmem data already read in bxe_get_shmem_info() */
14798
14799    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14800                        "link_config0=0x%08x\n",
14801               sc->link_params.lane_config,
14802               sc->link_params.speed_cap_mask[0],
14803               sc->port.link_config[0]);
14804
14805    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14806    bxe_link_settings_requested(sc);
14807
14808    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14809        sc->link_params.feature_config_flags |=
14810            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14811    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14812        sc->link_params.feature_config_flags &=
14813            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14814    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14815        sc->link_params.feature_config_flags |=
14816            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14817    }
14818
14819    /* configure link feature according to nvram value */
14820    eee_mode =
14821        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14822          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14823         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14824    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14825        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14826                                    ELINK_EEE_MODE_ENABLE_LPI |
14827                                    ELINK_EEE_MODE_OUTPUT_TIME);
14828    } else {
14829        sc->link_params.eee_mode = 0;
14830    }
14831
14832    /* get the media type */
14833    bxe_media_detect(sc);
14834}
14835
14836static void
14837bxe_get_params(struct bxe_softc *sc)
14838{
14839    /* get user tunable params */
14840    bxe_get_tunable_params(sc);
14841
14842    /* select the RX and TX ring sizes */
14843    sc->tx_ring_size = TX_BD_USABLE;
14844    sc->rx_ring_size = RX_BD_USABLE;
14845
14846    /* XXX disable WoL */
14847    sc->wol = 0;
14848}
14849
14850static void
14851bxe_set_modes_bitmap(struct bxe_softc *sc)
14852{
14853    uint32_t flags = 0;
14854
14855    if (CHIP_REV_IS_FPGA(sc)) {
14856        SET_FLAGS(flags, MODE_FPGA);
14857    } else if (CHIP_REV_IS_EMUL(sc)) {
14858        SET_FLAGS(flags, MODE_EMUL);
14859    } else {
14860        SET_FLAGS(flags, MODE_ASIC);
14861    }
14862
14863    if (CHIP_IS_MODE_4_PORT(sc)) {
14864        SET_FLAGS(flags, MODE_PORT4);
14865    } else {
14866        SET_FLAGS(flags, MODE_PORT2);
14867    }
14868
14869    if (CHIP_IS_E2(sc)) {
14870        SET_FLAGS(flags, MODE_E2);
14871    } else if (CHIP_IS_E3(sc)) {
14872        SET_FLAGS(flags, MODE_E3);
14873        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14874            SET_FLAGS(flags, MODE_E3_A0);
14875        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14876            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14877        }
14878    }
14879
14880    if (IS_MF(sc)) {
14881        SET_FLAGS(flags, MODE_MF);
14882        switch (sc->devinfo.mf_info.mf_mode) {
14883        case MULTI_FUNCTION_SD:
14884            SET_FLAGS(flags, MODE_MF_SD);
14885            break;
14886        case MULTI_FUNCTION_SI:
14887            SET_FLAGS(flags, MODE_MF_SI);
14888            break;
14889        case MULTI_FUNCTION_AFEX:
14890            SET_FLAGS(flags, MODE_MF_AFEX);
14891            break;
14892        }
14893    } else {
14894        SET_FLAGS(flags, MODE_SF);
14895    }
14896
14897#if defined(__LITTLE_ENDIAN)
14898    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14899#else /* __BIG_ENDIAN */
14900    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14901#endif
14902
14903    INIT_MODE_FLAGS(sc) = flags;
14904}
14905
14906static int
14907bxe_alloc_hsi_mem(struct bxe_softc *sc)
14908{
14909    struct bxe_fastpath *fp;
14910    bus_addr_t busaddr;
14911    int max_agg_queues;
14912    int max_segments;
14913    bus_size_t max_size;
14914    bus_size_t max_seg_size;
14915    char buf[32];
14916    int rc;
14917    int i, j;
14918
14919    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14920
14921    /* allocate the parent bus DMA tag */
14922    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14923                            1,                        /* alignment */
14924                            0,                        /* boundary limit */
14925                            BUS_SPACE_MAXADDR,        /* restricted low */
14926                            BUS_SPACE_MAXADDR,        /* restricted hi */
14927                            NULL,                     /* addr filter() */
14928                            NULL,                     /* addr filter() arg */
14929                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14930                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14931                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14932                            0,                        /* flags */
14933                            NULL,                     /* lock() */
14934                            NULL,                     /* lock() arg */
14935                            &sc->parent_dma_tag);     /* returned dma tag */
14936    if (rc != 0) {
14937        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14938        return (1);
14939    }
14940
14941    /************************/
14942    /* DEFAULT STATUS BLOCK */
14943    /************************/
14944
14945    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14946                      &sc->def_sb_dma, "default status block") != 0) {
14947        /* XXX */
14948        bus_dma_tag_destroy(sc->parent_dma_tag);
14949        return (1);
14950    }
14951
14952    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14953
14954    /***************/
14955    /* EVENT QUEUE */
14956    /***************/
14957
14958    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14959                      &sc->eq_dma, "event queue") != 0) {
14960        /* XXX */
14961        bxe_dma_free(sc, &sc->def_sb_dma);
14962        sc->def_sb = NULL;
14963        bus_dma_tag_destroy(sc->parent_dma_tag);
14964        return (1);
14965    }
14966
14967    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14968
14969    /*************/
14970    /* SLOW PATH */
14971    /*************/
14972
14973    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14974                      &sc->sp_dma, "slow path") != 0) {
14975        /* XXX */
14976        bxe_dma_free(sc, &sc->eq_dma);
14977        sc->eq = NULL;
14978        bxe_dma_free(sc, &sc->def_sb_dma);
14979        sc->def_sb = NULL;
14980        bus_dma_tag_destroy(sc->parent_dma_tag);
14981        return (1);
14982    }
14983
14984    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14985
14986    /*******************/
14987    /* SLOW PATH QUEUE */
14988    /*******************/
14989
14990    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14991                      &sc->spq_dma, "slow path queue") != 0) {
14992        /* XXX */
14993        bxe_dma_free(sc, &sc->sp_dma);
14994        sc->sp = NULL;
14995        bxe_dma_free(sc, &sc->eq_dma);
14996        sc->eq = NULL;
14997        bxe_dma_free(sc, &sc->def_sb_dma);
14998        sc->def_sb = NULL;
14999        bus_dma_tag_destroy(sc->parent_dma_tag);
15000        return (1);
15001    }
15002
15003    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15004
15005    /***************************/
15006    /* FW DECOMPRESSION BUFFER */
15007    /***************************/
15008
15009    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15010                      "fw decompression buffer") != 0) {
15011        /* XXX */
15012        bxe_dma_free(sc, &sc->spq_dma);
15013        sc->spq = NULL;
15014        bxe_dma_free(sc, &sc->sp_dma);
15015        sc->sp = NULL;
15016        bxe_dma_free(sc, &sc->eq_dma);
15017        sc->eq = NULL;
15018        bxe_dma_free(sc, &sc->def_sb_dma);
15019        sc->def_sb = NULL;
15020        bus_dma_tag_destroy(sc->parent_dma_tag);
15021        return (1);
15022    }
15023
15024    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15025
15026    if ((sc->gz_strm =
15027         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15028        /* XXX */
15029        bxe_dma_free(sc, &sc->gz_buf_dma);
15030        sc->gz_buf = NULL;
15031        bxe_dma_free(sc, &sc->spq_dma);
15032        sc->spq = NULL;
15033        bxe_dma_free(sc, &sc->sp_dma);
15034        sc->sp = NULL;
15035        bxe_dma_free(sc, &sc->eq_dma);
15036        sc->eq = NULL;
15037        bxe_dma_free(sc, &sc->def_sb_dma);
15038        sc->def_sb = NULL;
15039        bus_dma_tag_destroy(sc->parent_dma_tag);
15040        return (1);
15041    }
15042
15043    /*************/
15044    /* FASTPATHS */
15045    /*************/
15046
15047    /* allocate DMA memory for each fastpath structure */
15048    for (i = 0; i < sc->num_queues; i++) {
15049        fp = &sc->fp[i];
15050        fp->sc    = sc;
15051        fp->index = i;
15052
15053        /*******************/
15054        /* FP STATUS BLOCK */
15055        /*******************/
15056
15057        snprintf(buf, sizeof(buf), "fp %d status block", i);
15058        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15059                          &fp->sb_dma, buf) != 0) {
15060            /* XXX unwind and free previous fastpath allocations */
15061            BLOGE(sc, "Failed to alloc %s\n", buf);
15062            return (1);
15063        } else {
15064            if (CHIP_IS_E2E3(sc)) {
15065                fp->status_block.e2_sb =
15066                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15067            } else {
15068                fp->status_block.e1x_sb =
15069                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15070            }
15071        }
15072
15073        /******************/
15074        /* FP TX BD CHAIN */
15075        /******************/
15076
15077        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15078        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15079                          &fp->tx_dma, buf) != 0) {
15080            /* XXX unwind and free previous fastpath allocations */
15081            BLOGE(sc, "Failed to alloc %s\n", buf);
15082            return (1);
15083        } else {
15084            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15085        }
15086
15087        /* link together the tx bd chain pages */
15088        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15089            /* index into the tx bd chain array to last entry per page */
15090            struct eth_tx_next_bd *tx_next_bd =
15091                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15092            /* point to the next page and wrap from last page */
15093            busaddr = (fp->tx_dma.paddr +
15094                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15095            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15096            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15097        }
15098
15099        /******************/
15100        /* FP RX BD CHAIN */
15101        /******************/
15102
15103        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15104        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15105                          &fp->rx_dma, buf) != 0) {
15106            /* XXX unwind and free previous fastpath allocations */
15107            BLOGE(sc, "Failed to alloc %s\n", buf);
15108            return (1);
15109        } else {
15110            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15111        }
15112
15113        /* link together the rx bd chain pages */
15114        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15115            /* index into the rx bd chain array to last entry per page */
15116            struct eth_rx_bd *rx_bd =
15117                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15118            /* point to the next page and wrap from last page */
15119            busaddr = (fp->rx_dma.paddr +
15120                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15121            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15122            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15123        }
15124
15125        /*******************/
15126        /* FP RX RCQ CHAIN */
15127        /*******************/
15128
15129        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15130        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15131                          &fp->rcq_dma, buf) != 0) {
15132            /* XXX unwind and free previous fastpath allocations */
15133            BLOGE(sc, "Failed to alloc %s\n", buf);
15134            return (1);
15135        } else {
15136            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15137        }
15138
15139        /* link together the rcq chain pages */
15140        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15141            /* index into the rcq chain array to last entry per page */
15142            struct eth_rx_cqe_next_page *rx_cqe_next =
15143                (struct eth_rx_cqe_next_page *)
15144                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15145            /* point to the next page and wrap from last page */
15146            busaddr = (fp->rcq_dma.paddr +
15147                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15148            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15149            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15150        }
15151
15152        /*******************/
15153        /* FP RX SGE CHAIN */
15154        /*******************/
15155
15156        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15157        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15158                          &fp->rx_sge_dma, buf) != 0) {
15159            /* XXX unwind and free previous fastpath allocations */
15160            BLOGE(sc, "Failed to alloc %s\n", buf);
15161            return (1);
15162        } else {
15163            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15164        }
15165
15166        /* link together the sge chain pages */
15167        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15168            /* index into the rcq chain array to last entry per page */
15169            struct eth_rx_sge *rx_sge =
15170                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15171            /* point to the next page and wrap from last page */
15172            busaddr = (fp->rx_sge_dma.paddr +
15173                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15174            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15175            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15176        }
15177
15178        /***********************/
15179        /* FP TX MBUF DMA MAPS */
15180        /***********************/
15181
15182        /* set required sizes before mapping to conserve resources */
15183        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15184            max_size     = BXE_TSO_MAX_SIZE;
15185            max_segments = BXE_TSO_MAX_SEGMENTS;
15186            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15187        } else {
15188            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15189            max_segments = BXE_MAX_SEGMENTS;
15190            max_seg_size = MCLBYTES;
15191        }
15192
15193        /* create a dma tag for the tx mbufs */
15194        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15195                                1,                  /* alignment */
15196                                0,                  /* boundary limit */
15197                                BUS_SPACE_MAXADDR,  /* restricted low */
15198                                BUS_SPACE_MAXADDR,  /* restricted hi */
15199                                NULL,               /* addr filter() */
15200                                NULL,               /* addr filter() arg */
15201                                max_size,           /* max map size */
15202                                max_segments,       /* num discontinuous */
15203                                max_seg_size,       /* max seg size */
15204                                0,                  /* flags */
15205                                NULL,               /* lock() */
15206                                NULL,               /* lock() arg */
15207                                &fp->tx_mbuf_tag);  /* returned dma tag */
15208        if (rc != 0) {
15209            /* XXX unwind and free previous fastpath allocations */
15210            BLOGE(sc, "Failed to create dma tag for "
15211                      "'fp %d tx mbufs' (%d)\n",
15212                  i, rc);
15213            return (1);
15214        }
15215
15216        /* create dma maps for each of the tx mbuf clusters */
15217        for (j = 0; j < TX_BD_TOTAL; j++) {
15218            if (bus_dmamap_create(fp->tx_mbuf_tag,
15219                                  BUS_DMA_NOWAIT,
15220                                  &fp->tx_mbuf_chain[j].m_map)) {
15221                /* XXX unwind and free previous fastpath allocations */
15222                BLOGE(sc, "Failed to create dma map for "
15223                          "'fp %d tx mbuf %d' (%d)\n",
15224                      i, j, rc);
15225                return (1);
15226            }
15227        }
15228
15229        /***********************/
15230        /* FP RX MBUF DMA MAPS */
15231        /***********************/
15232
15233        /* create a dma tag for the rx mbufs */
15234        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15235                                1,                  /* alignment */
15236                                0,                  /* boundary limit */
15237                                BUS_SPACE_MAXADDR,  /* restricted low */
15238                                BUS_SPACE_MAXADDR,  /* restricted hi */
15239                                NULL,               /* addr filter() */
15240                                NULL,               /* addr filter() arg */
15241                                MJUM9BYTES,         /* max map size */
15242                                1,                  /* num discontinuous */
15243                                MJUM9BYTES,         /* max seg size */
15244                                0,                  /* flags */
15245                                NULL,               /* lock() */
15246                                NULL,               /* lock() arg */
15247                                &fp->rx_mbuf_tag);  /* returned dma tag */
15248        if (rc != 0) {
15249            /* XXX unwind and free previous fastpath allocations */
15250            BLOGE(sc, "Failed to create dma tag for "
15251                      "'fp %d rx mbufs' (%d)\n",
15252                  i, rc);
15253            return (1);
15254        }
15255
15256        /* create dma maps for each of the rx mbuf clusters */
15257        for (j = 0; j < RX_BD_TOTAL; j++) {
15258            if (bus_dmamap_create(fp->rx_mbuf_tag,
15259                                  BUS_DMA_NOWAIT,
15260                                  &fp->rx_mbuf_chain[j].m_map)) {
15261                /* XXX unwind and free previous fastpath allocations */
15262                BLOGE(sc, "Failed to create dma map for "
15263                          "'fp %d rx mbuf %d' (%d)\n",
15264                      i, j, rc);
15265                return (1);
15266            }
15267        }
15268
15269        /* create dma map for the spare rx mbuf cluster */
15270        if (bus_dmamap_create(fp->rx_mbuf_tag,
15271                              BUS_DMA_NOWAIT,
15272                              &fp->rx_mbuf_spare_map)) {
15273            /* XXX unwind and free previous fastpath allocations */
15274            BLOGE(sc, "Failed to create dma map for "
15275                      "'fp %d spare rx mbuf' (%d)\n",
15276                  i, rc);
15277            return (1);
15278        }
15279
15280        /***************************/
15281        /* FP RX SGE MBUF DMA MAPS */
15282        /***************************/
15283
15284        /* create a dma tag for the rx sge mbufs */
15285        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15286                                1,                  /* alignment */
15287                                0,                  /* boundary limit */
15288                                BUS_SPACE_MAXADDR,  /* restricted low */
15289                                BUS_SPACE_MAXADDR,  /* restricted hi */
15290                                NULL,               /* addr filter() */
15291                                NULL,               /* addr filter() arg */
15292                                BCM_PAGE_SIZE,      /* max map size */
15293                                1,                  /* num discontinuous */
15294                                BCM_PAGE_SIZE,      /* max seg size */
15295                                0,                  /* flags */
15296                                NULL,               /* lock() */
15297                                NULL,               /* lock() arg */
15298                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15299        if (rc != 0) {
15300            /* XXX unwind and free previous fastpath allocations */
15301            BLOGE(sc, "Failed to create dma tag for "
15302                      "'fp %d rx sge mbufs' (%d)\n",
15303                  i, rc);
15304            return (1);
15305        }
15306
15307        /* create dma maps for the rx sge mbuf clusters */
15308        for (j = 0; j < RX_SGE_TOTAL; j++) {
15309            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15310                                  BUS_DMA_NOWAIT,
15311                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15312                /* XXX unwind and free previous fastpath allocations */
15313                BLOGE(sc, "Failed to create dma map for "
15314                          "'fp %d rx sge mbuf %d' (%d)\n",
15315                      i, j, rc);
15316                return (1);
15317            }
15318        }
15319
15320        /* create dma map for the spare rx sge mbuf cluster */
15321        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15322                              BUS_DMA_NOWAIT,
15323                              &fp->rx_sge_mbuf_spare_map)) {
15324            /* XXX unwind and free previous fastpath allocations */
15325            BLOGE(sc, "Failed to create dma map for "
15326                      "'fp %d spare rx sge mbuf' (%d)\n",
15327                  i, rc);
15328            return (1);
15329        }
15330
15331        /***************************/
15332        /* FP RX TPA MBUF DMA MAPS */
15333        /***************************/
15334
15335        /* create dma maps for the rx tpa mbuf clusters */
15336        max_agg_queues = MAX_AGG_QS(sc);
15337
15338        for (j = 0; j < max_agg_queues; j++) {
15339            if (bus_dmamap_create(fp->rx_mbuf_tag,
15340                                  BUS_DMA_NOWAIT,
15341                                  &fp->rx_tpa_info[j].bd.m_map)) {
15342                /* XXX unwind and free previous fastpath allocations */
15343                BLOGE(sc, "Failed to create dma map for "
15344                          "'fp %d rx tpa mbuf %d' (%d)\n",
15345                      i, j, rc);
15346                return (1);
15347            }
15348        }
15349
15350        /* create dma map for the spare rx tpa mbuf cluster */
15351        if (bus_dmamap_create(fp->rx_mbuf_tag,
15352                              BUS_DMA_NOWAIT,
15353                              &fp->rx_tpa_info_mbuf_spare_map)) {
15354            /* XXX unwind and free previous fastpath allocations */
15355            BLOGE(sc, "Failed to create dma map for "
15356                      "'fp %d spare rx tpa mbuf' (%d)\n",
15357                  i, rc);
15358            return (1);
15359        }
15360
15361        bxe_init_sge_ring_bit_mask(fp);
15362    }
15363
15364    return (0);
15365}
15366
15367static void
15368bxe_free_hsi_mem(struct bxe_softc *sc)
15369{
15370    struct bxe_fastpath *fp;
15371    int max_agg_queues;
15372    int i, j;
15373
15374    if (sc->parent_dma_tag == NULL) {
15375        return; /* assume nothing was allocated */
15376    }
15377
15378    for (i = 0; i < sc->num_queues; i++) {
15379        fp = &sc->fp[i];
15380
15381        /*******************/
15382        /* FP STATUS BLOCK */
15383        /*******************/
15384
15385        bxe_dma_free(sc, &fp->sb_dma);
15386        memset(&fp->status_block, 0, sizeof(fp->status_block));
15387
15388        /******************/
15389        /* FP TX BD CHAIN */
15390        /******************/
15391
15392        bxe_dma_free(sc, &fp->tx_dma);
15393        fp->tx_chain = NULL;
15394
15395        /******************/
15396        /* FP RX BD CHAIN */
15397        /******************/
15398
15399        bxe_dma_free(sc, &fp->rx_dma);
15400        fp->rx_chain = NULL;
15401
15402        /*******************/
15403        /* FP RX RCQ CHAIN */
15404        /*******************/
15405
15406        bxe_dma_free(sc, &fp->rcq_dma);
15407        fp->rcq_chain = NULL;
15408
15409        /*******************/
15410        /* FP RX SGE CHAIN */
15411        /*******************/
15412
15413        bxe_dma_free(sc, &fp->rx_sge_dma);
15414        fp->rx_sge_chain = NULL;
15415
15416        /***********************/
15417        /* FP TX MBUF DMA MAPS */
15418        /***********************/
15419
15420        if (fp->tx_mbuf_tag != NULL) {
15421            for (j = 0; j < TX_BD_TOTAL; j++) {
15422                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15423                    bus_dmamap_unload(fp->tx_mbuf_tag,
15424                                      fp->tx_mbuf_chain[j].m_map);
15425                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15426                                       fp->tx_mbuf_chain[j].m_map);
15427                }
15428            }
15429
15430            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15431            fp->tx_mbuf_tag = NULL;
15432        }
15433
15434        /***********************/
15435        /* FP RX MBUF DMA MAPS */
15436        /***********************/
15437
15438        if (fp->rx_mbuf_tag != NULL) {
15439            for (j = 0; j < RX_BD_TOTAL; j++) {
15440                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15441                    bus_dmamap_unload(fp->rx_mbuf_tag,
15442                                      fp->rx_mbuf_chain[j].m_map);
15443                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15444                                       fp->rx_mbuf_chain[j].m_map);
15445                }
15446            }
15447
15448            if (fp->rx_mbuf_spare_map != NULL) {
15449                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15450                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15451            }
15452
15453            /***************************/
15454            /* FP RX TPA MBUF DMA MAPS */
15455            /***************************/
15456
15457            max_agg_queues = MAX_AGG_QS(sc);
15458
15459            for (j = 0; j < max_agg_queues; j++) {
15460                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15461                    bus_dmamap_unload(fp->rx_mbuf_tag,
15462                                      fp->rx_tpa_info[j].bd.m_map);
15463                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15464                                       fp->rx_tpa_info[j].bd.m_map);
15465                }
15466            }
15467
15468            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15469                bus_dmamap_unload(fp->rx_mbuf_tag,
15470                                  fp->rx_tpa_info_mbuf_spare_map);
15471                bus_dmamap_destroy(fp->rx_mbuf_tag,
15472                                   fp->rx_tpa_info_mbuf_spare_map);
15473            }
15474
15475            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15476            fp->rx_mbuf_tag = NULL;
15477        }
15478
15479        /***************************/
15480        /* FP RX SGE MBUF DMA MAPS */
15481        /***************************/
15482
15483        if (fp->rx_sge_mbuf_tag != NULL) {
15484            for (j = 0; j < RX_SGE_TOTAL; j++) {
15485                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15486                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15487                                      fp->rx_sge_mbuf_chain[j].m_map);
15488                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15489                                       fp->rx_sge_mbuf_chain[j].m_map);
15490                }
15491            }
15492
15493            if (fp->rx_sge_mbuf_spare_map != NULL) {
15494                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15495                                  fp->rx_sge_mbuf_spare_map);
15496                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15497                                   fp->rx_sge_mbuf_spare_map);
15498            }
15499
15500            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15501            fp->rx_sge_mbuf_tag = NULL;
15502        }
15503    }
15504
15505    /***************************/
15506    /* FW DECOMPRESSION BUFFER */
15507    /***************************/
15508
15509    bxe_dma_free(sc, &sc->gz_buf_dma);
15510    sc->gz_buf = NULL;
15511    free(sc->gz_strm, M_DEVBUF);
15512    sc->gz_strm = NULL;
15513
15514    /*******************/
15515    /* SLOW PATH QUEUE */
15516    /*******************/
15517
15518    bxe_dma_free(sc, &sc->spq_dma);
15519    sc->spq = NULL;
15520
15521    /*************/
15522    /* SLOW PATH */
15523    /*************/
15524
15525    bxe_dma_free(sc, &sc->sp_dma);
15526    sc->sp = NULL;
15527
15528    /***************/
15529    /* EVENT QUEUE */
15530    /***************/
15531
15532    bxe_dma_free(sc, &sc->eq_dma);
15533    sc->eq = NULL;
15534
15535    /************************/
15536    /* DEFAULT STATUS BLOCK */
15537    /************************/
15538
15539    bxe_dma_free(sc, &sc->def_sb_dma);
15540    sc->def_sb = NULL;
15541
15542    bus_dma_tag_destroy(sc->parent_dma_tag);
15543    sc->parent_dma_tag = NULL;
15544}
15545
15546/*
15547 * Previous driver DMAE transaction may have occurred when pre-boot stage
15548 * ended and boot began. This would invalidate the addresses of the
15549 * transaction, resulting in was-error bit set in the PCI causing all
15550 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15551 * the interrupt which detected this from the pglueb and the was-done bit
15552 */
15553static void
15554bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15555{
15556    uint32_t val;
15557
15558    if (!CHIP_IS_E1x(sc)) {
15559        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15560        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15561            BLOGD(sc, DBG_LOAD,
15562                  "Clearing 'was-error' bit that was set in pglueb");
15563            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15564        }
15565    }
15566}
15567
15568static int
15569bxe_prev_mcp_done(struct bxe_softc *sc)
15570{
15571    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15572                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15573    if (!rc) {
15574        BLOGE(sc, "MCP response failure, aborting\n");
15575        return (-1);
15576    }
15577
15578    return (0);
15579}
15580
15581static struct bxe_prev_list_node *
15582bxe_prev_path_get_entry(struct bxe_softc *sc)
15583{
15584    struct bxe_prev_list_node *tmp;
15585
15586    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15587        if ((sc->pcie_bus == tmp->bus) &&
15588            (sc->pcie_device == tmp->slot) &&
15589            (SC_PATH(sc) == tmp->path)) {
15590            return (tmp);
15591        }
15592    }
15593
15594    return (NULL);
15595}
15596
15597static uint8_t
15598bxe_prev_is_path_marked(struct bxe_softc *sc)
15599{
15600    struct bxe_prev_list_node *tmp;
15601    int rc = FALSE;
15602
15603    mtx_lock(&bxe_prev_mtx);
15604
15605    tmp = bxe_prev_path_get_entry(sc);
15606    if (tmp) {
15607        if (tmp->aer) {
15608            BLOGD(sc, DBG_LOAD,
15609                  "Path %d/%d/%d was marked by AER\n",
15610                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15611        } else {
15612            rc = TRUE;
15613            BLOGD(sc, DBG_LOAD,
15614                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15615                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15616        }
15617    }
15618
15619    mtx_unlock(&bxe_prev_mtx);
15620
15621    return (rc);
15622}
15623
15624static int
15625bxe_prev_mark_path(struct bxe_softc *sc,
15626                   uint8_t          after_undi)
15627{
15628    struct bxe_prev_list_node *tmp;
15629
15630    mtx_lock(&bxe_prev_mtx);
15631
15632    /* Check whether the entry for this path already exists */
15633    tmp = bxe_prev_path_get_entry(sc);
15634    if (tmp) {
15635        if (!tmp->aer) {
15636            BLOGD(sc, DBG_LOAD,
15637                  "Re-marking AER in path %d/%d/%d\n",
15638                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15639        } else {
15640            BLOGD(sc, DBG_LOAD,
15641                  "Removing AER indication from path %d/%d/%d\n",
15642                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15643            tmp->aer = 0;
15644        }
15645
15646        mtx_unlock(&bxe_prev_mtx);
15647        return (0);
15648    }
15649
15650    mtx_unlock(&bxe_prev_mtx);
15651
15652    /* Create an entry for this path and add it */
15653    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15654                 (M_NOWAIT | M_ZERO));
15655    if (!tmp) {
15656        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15657        return (-1);
15658    }
15659
15660    tmp->bus  = sc->pcie_bus;
15661    tmp->slot = sc->pcie_device;
15662    tmp->path = SC_PATH(sc);
15663    tmp->aer  = 0;
15664    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15665
15666    mtx_lock(&bxe_prev_mtx);
15667
15668    BLOGD(sc, DBG_LOAD,
15669          "Marked path %d/%d/%d - finished previous unload\n",
15670          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15671    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15672
15673    mtx_unlock(&bxe_prev_mtx);
15674
15675    return (0);
15676}
15677
15678static int
15679bxe_do_flr(struct bxe_softc *sc)
15680{
15681    int i;
15682
15683    /* only E2 and onwards support FLR */
15684    if (CHIP_IS_E1x(sc)) {
15685        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15686        return (-1);
15687    }
15688
15689    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15690    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15691        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15692              sc->devinfo.bc_ver);
15693        return (-1);
15694    }
15695
15696    /* Wait for Transaction Pending bit clean */
15697    for (i = 0; i < 4; i++) {
15698        if (i) {
15699            DELAY(((1 << (i - 1)) * 100) * 1000);
15700        }
15701
15702        if (!bxe_is_pcie_pending(sc)) {
15703            goto clear;
15704        }
15705    }
15706
15707    BLOGE(sc, "PCIE transaction is not cleared, "
15708              "proceeding with reset anyway\n");
15709
15710clear:
15711
15712    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15713    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15714
15715    return (0);
15716}
15717
15718struct bxe_mac_vals {
15719    uint32_t xmac_addr;
15720    uint32_t xmac_val;
15721    uint32_t emac_addr;
15722    uint32_t emac_val;
15723    uint32_t umac_addr;
15724    uint32_t umac_val;
15725    uint32_t bmac_addr;
15726    uint32_t bmac_val[2];
15727};
15728
15729static void
15730bxe_prev_unload_close_mac(struct bxe_softc *sc,
15731                          struct bxe_mac_vals *vals)
15732{
15733    uint32_t val, base_addr, offset, mask, reset_reg;
15734    uint8_t mac_stopped = FALSE;
15735    uint8_t port = SC_PORT(sc);
15736    uint32_t wb_data[2];
15737
15738    /* reset addresses as they also mark which values were changed */
15739    vals->bmac_addr = 0;
15740    vals->umac_addr = 0;
15741    vals->xmac_addr = 0;
15742    vals->emac_addr = 0;
15743
15744    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15745
15746    if (!CHIP_IS_E3(sc)) {
15747        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15748        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15749        if ((mask & reset_reg) && val) {
15750            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15751            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15752                                    : NIG_REG_INGRESS_BMAC0_MEM;
15753            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15754                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15755
15756            /*
15757             * use rd/wr since we cannot use dmae. This is safe
15758             * since MCP won't access the bus due to the request
15759             * to unload, and no function on the path can be
15760             * loaded at this time.
15761             */
15762            wb_data[0] = REG_RD(sc, base_addr + offset);
15763            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15764            vals->bmac_addr = base_addr + offset;
15765            vals->bmac_val[0] = wb_data[0];
15766            vals->bmac_val[1] = wb_data[1];
15767            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15768            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15769            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15770        }
15771
15772        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15773        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15774        vals->emac_val = REG_RD(sc, vals->emac_addr);
15775        REG_WR(sc, vals->emac_addr, 0);
15776        mac_stopped = TRUE;
15777    } else {
15778        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15779            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15780            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15781            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15782            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15783            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15784            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15785            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15786            REG_WR(sc, vals->xmac_addr, 0);
15787            mac_stopped = TRUE;
15788        }
15789
15790        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15791        if (mask & reset_reg) {
15792            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15793            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15794            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15795            vals->umac_val = REG_RD(sc, vals->umac_addr);
15796            REG_WR(sc, vals->umac_addr, 0);
15797            mac_stopped = TRUE;
15798        }
15799    }
15800
15801    if (mac_stopped) {
15802        DELAY(20000);
15803    }
15804}
15805
15806#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15807#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15808#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15809#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15810
15811static void
15812bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15813                         uint8_t          port,
15814                         uint8_t          inc)
15815{
15816    uint16_t rcq, bd;
15817    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15818
15819    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15820    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15821
15822    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15823    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15824
15825    BLOGD(sc, DBG_LOAD,
15826          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15827          port, bd, rcq);
15828}
15829
15830static int
15831bxe_prev_unload_common(struct bxe_softc *sc)
15832{
15833    uint32_t reset_reg, tmp_reg = 0, rc;
15834    uint8_t prev_undi = FALSE;
15835    struct bxe_mac_vals mac_vals;
15836    uint32_t timer_count = 1000;
15837    uint32_t prev_brb;
15838
15839    /*
15840     * It is possible a previous function received 'common' answer,
15841     * but hasn't loaded yet, therefore creating a scenario of
15842     * multiple functions receiving 'common' on the same path.
15843     */
15844    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15845
15846    memset(&mac_vals, 0, sizeof(mac_vals));
15847
15848    if (bxe_prev_is_path_marked(sc)) {
15849        return (bxe_prev_mcp_done(sc));
15850    }
15851
15852    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15853
15854    /* Reset should be performed after BRB is emptied */
15855    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15856        /* Close the MAC Rx to prevent BRB from filling up */
15857        bxe_prev_unload_close_mac(sc, &mac_vals);
15858
15859        /* close LLH filters towards the BRB */
15860        elink_set_rx_filter(&sc->link_params, 0);
15861
15862        /*
15863         * Check if the UNDI driver was previously loaded.
15864         * UNDI driver initializes CID offset for normal bell to 0x7
15865         */
15866        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15867            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15868            if (tmp_reg == 0x7) {
15869                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15870                prev_undi = TRUE;
15871                /* clear the UNDI indication */
15872                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15873                /* clear possible idle check errors */
15874                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15875            }
15876        }
15877
15878        /* wait until BRB is empty */
15879        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15880        while (timer_count) {
15881            prev_brb = tmp_reg;
15882
15883            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15884            if (!tmp_reg) {
15885                break;
15886            }
15887
15888            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15889
15890            /* reset timer as long as BRB actually gets emptied */
15891            if (prev_brb > tmp_reg) {
15892                timer_count = 1000;
15893            } else {
15894                timer_count--;
15895            }
15896
15897            /* If UNDI resides in memory, manually increment it */
15898            if (prev_undi) {
15899                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15900            }
15901
15902            DELAY(10);
15903        }
15904
15905        if (!timer_count) {
15906            BLOGE(sc, "Failed to empty BRB\n");
15907        }
15908    }
15909
15910    /* No packets are in the pipeline, path is ready for reset */
15911    bxe_reset_common(sc);
15912
15913    if (mac_vals.xmac_addr) {
15914        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15915    }
15916    if (mac_vals.umac_addr) {
15917        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15918    }
15919    if (mac_vals.emac_addr) {
15920        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15921    }
15922    if (mac_vals.bmac_addr) {
15923        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15924        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15925    }
15926
15927    rc = bxe_prev_mark_path(sc, prev_undi);
15928    if (rc) {
15929        bxe_prev_mcp_done(sc);
15930        return (rc);
15931    }
15932
15933    return (bxe_prev_mcp_done(sc));
15934}
15935
15936static int
15937bxe_prev_unload_uncommon(struct bxe_softc *sc)
15938{
15939    int rc;
15940
15941    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15942
15943    /* Test if previous unload process was already finished for this path */
15944    if (bxe_prev_is_path_marked(sc)) {
15945        return (bxe_prev_mcp_done(sc));
15946    }
15947
15948    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15949
15950    /*
15951     * If function has FLR capabilities, and existing FW version matches
15952     * the one required, then FLR will be sufficient to clean any residue
15953     * left by previous driver
15954     */
15955    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15956    if (!rc) {
15957        /* fw version is good */
15958        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15959        rc = bxe_do_flr(sc);
15960    }
15961
15962    if (!rc) {
15963        /* FLR was performed */
15964        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15965        return (0);
15966    }
15967
15968    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15969
15970    /* Close the MCP request, return failure*/
15971    rc = bxe_prev_mcp_done(sc);
15972    if (!rc) {
15973        rc = BXE_PREV_WAIT_NEEDED;
15974    }
15975
15976    return (rc);
15977}
15978
15979static int
15980bxe_prev_unload(struct bxe_softc *sc)
15981{
15982    int time_counter = 10;
15983    uint32_t fw, hw_lock_reg, hw_lock_val;
15984    uint32_t rc = 0;
15985
15986    /*
15987     * Clear HW from errors which may have resulted from an interrupted
15988     * DMAE transaction.
15989     */
15990    bxe_prev_interrupted_dmae(sc);
15991
15992    /* Release previously held locks */
15993    hw_lock_reg =
15994        (SC_FUNC(sc) <= 5) ?
15995            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15996            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15997
15998    hw_lock_val = (REG_RD(sc, hw_lock_reg));
15999    if (hw_lock_val) {
16000        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16001            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16002            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16003                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16004        }
16005        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16006        REG_WR(sc, hw_lock_reg, 0xffffffff);
16007    } else {
16008        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16009    }
16010
16011    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16012        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16013        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16014    }
16015
16016    do {
16017        /* Lock MCP using an unload request */
16018        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16019        if (!fw) {
16020            BLOGE(sc, "MCP response failure, aborting\n");
16021            rc = -1;
16022            break;
16023        }
16024
16025        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16026            rc = bxe_prev_unload_common(sc);
16027            break;
16028        }
16029
16030        /* non-common reply from MCP night require looping */
16031        rc = bxe_prev_unload_uncommon(sc);
16032        if (rc != BXE_PREV_WAIT_NEEDED) {
16033            break;
16034        }
16035
16036        DELAY(20000);
16037    } while (--time_counter);
16038
16039    if (!time_counter || rc) {
16040        BLOGE(sc, "Failed to unload previous driver!\n");
16041        rc = -1;
16042    }
16043
16044    return (rc);
16045}
16046
16047void
16048bxe_dcbx_set_state(struct bxe_softc *sc,
16049                   uint8_t          dcb_on,
16050                   uint32_t         dcbx_enabled)
16051{
16052    if (!CHIP_IS_E1x(sc)) {
16053        sc->dcb_state = dcb_on;
16054        sc->dcbx_enabled = dcbx_enabled;
16055    } else {
16056        sc->dcb_state = FALSE;
16057        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16058    }
16059    BLOGD(sc, DBG_LOAD,
16060          "DCB state [%s:%s]\n",
16061          dcb_on ? "ON" : "OFF",
16062          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16063          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16064          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16065          "on-chip with negotiation" : "invalid");
16066}
16067
16068/* must be called after sriov-enable */
16069static int
16070bxe_set_qm_cid_count(struct bxe_softc *sc)
16071{
16072    int cid_count = BXE_L2_MAX_CID(sc);
16073
16074    if (IS_SRIOV(sc)) {
16075        cid_count += BXE_VF_CIDS;
16076    }
16077
16078    if (CNIC_SUPPORT(sc)) {
16079        cid_count += CNIC_CID_MAX;
16080    }
16081
16082    return (roundup(cid_count, QM_CID_ROUND));
16083}
16084
16085static void
16086bxe_init_multi_cos(struct bxe_softc *sc)
16087{
16088    int pri, cos;
16089
16090    uint32_t pri_map = 0; /* XXX change to user config */
16091
16092    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16093        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16094        if (cos < sc->max_cos) {
16095            sc->prio_to_cos[pri] = cos;
16096        } else {
16097            BLOGW(sc, "Invalid COS %d for priority %d "
16098                      "(max COS is %d), setting to 0\n",
16099                  cos, pri, (sc->max_cos - 1));
16100            sc->prio_to_cos[pri] = 0;
16101        }
16102    }
16103}
16104
16105static int
16106bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16107{
16108    struct bxe_softc *sc;
16109    int error, result;
16110
16111    result = 0;
16112    error = sysctl_handle_int(oidp, &result, 0, req);
16113
16114    if (error || !req->newptr) {
16115        return (error);
16116    }
16117
16118    if (result == 1) {
16119        sc = (struct bxe_softc *)arg1;
16120        BLOGI(sc, "... dumping driver state ...\n");
16121        /* XXX */
16122    }
16123
16124    return (error);
16125}
16126
16127static int
16128bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16129{
16130    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16131    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16132    uint32_t *offset;
16133    uint64_t value = 0;
16134    int index = (int)arg2;
16135
16136    if (index >= BXE_NUM_ETH_STATS) {
16137        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16138        return (-1);
16139    }
16140
16141    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16142
16143    switch (bxe_eth_stats_arr[index].size) {
16144    case 4:
16145        value = (uint64_t)*offset;
16146        break;
16147    case 8:
16148        value = HILO_U64(*offset, *(offset + 1));
16149        break;
16150    default:
16151        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16152              index, bxe_eth_stats_arr[index].size);
16153        return (-1);
16154    }
16155
16156    return (sysctl_handle_64(oidp, &value, 0, req));
16157}
16158
16159static int
16160bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16161{
16162    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16163    uint32_t *eth_stats;
16164    uint32_t *offset;
16165    uint64_t value = 0;
16166    uint32_t q_stat = (uint32_t)arg2;
16167    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16168    uint32_t index = (q_stat & 0xffff);
16169
16170    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16171
16172    if (index >= BXE_NUM_ETH_Q_STATS) {
16173        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16174        return (-1);
16175    }
16176
16177    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16178
16179    switch (bxe_eth_q_stats_arr[index].size) {
16180    case 4:
16181        value = (uint64_t)*offset;
16182        break;
16183    case 8:
16184        value = HILO_U64(*offset, *(offset + 1));
16185        break;
16186    default:
16187        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16188              index, bxe_eth_q_stats_arr[index].size);
16189        return (-1);
16190    }
16191
16192    return (sysctl_handle_64(oidp, &value, 0, req));
16193}
16194
16195static void
16196bxe_add_sysctls(struct bxe_softc *sc)
16197{
16198    struct sysctl_ctx_list *ctx;
16199    struct sysctl_oid_list *children;
16200    struct sysctl_oid *queue_top, *queue;
16201    struct sysctl_oid_list *queue_top_children, *queue_children;
16202    char queue_num_buf[32];
16203    uint32_t q_stat;
16204    int i, j;
16205
16206    ctx = device_get_sysctl_ctx(sc->dev);
16207    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16208
16209    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16210                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16211                      "version");
16212
16213    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16214                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16215                      "bootcode version");
16216
16217    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16218             BCM_5710_FW_MAJOR_VERSION,
16219             BCM_5710_FW_MINOR_VERSION,
16220             BCM_5710_FW_REVISION_VERSION,
16221             BCM_5710_FW_ENGINEERING_VERSION);
16222    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16223                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16224                      "firmware version");
16225
16226    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16227        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16228         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16229         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16230         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16231                                                                "Unknown"));
16232    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16233                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16234                      "multifunction mode");
16235
16236    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16237                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16238                    "multifunction vnics per port");
16239
16240    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16241                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16242                      "mac address");
16243
16244    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16245        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16246         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16247         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16248                                              "???GT/s"),
16249        sc->devinfo.pcie_link_width);
16250    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16251                      CTLFLAG_RD, &sc->pci_link_str, 0,
16252                      "pci link status");
16253
16254    sc->debug = bxe_debug;
16255    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16256                    CTLFLAG_RW, &sc->debug, 0,
16257                    "debug logging mode");
16258
16259    sc->rx_budget = bxe_rx_budget;
16260    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16261                    CTLFLAG_RW, &sc->rx_budget, 0,
16262                    "rx processing budget");
16263
16264    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16265                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16266                    bxe_sysctl_state, "IU", "dump driver state");
16267
16268    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16269        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16270                        bxe_eth_stats_arr[i].string,
16271                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16272                        bxe_sysctl_eth_stat, "LU",
16273                        bxe_eth_stats_arr[i].string);
16274    }
16275
16276    /* add a new parent node for all queues "dev.bxe.#.queue" */
16277    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16278                                CTLFLAG_RD, NULL, "queue");
16279    queue_top_children = SYSCTL_CHILDREN(queue_top);
16280
16281    for (i = 0; i < sc->num_queues; i++) {
16282        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16283        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16284        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16285                                queue_num_buf, CTLFLAG_RD, NULL,
16286                                "single queue");
16287        queue_children = SYSCTL_CHILDREN(queue);
16288
16289        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16290            q_stat = ((i << 16) | j);
16291            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16292                            bxe_eth_q_stats_arr[j].string,
16293                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16294                            bxe_sysctl_eth_q_stat, "LU",
16295                            bxe_eth_q_stats_arr[j].string);
16296        }
16297    }
16298}
16299
16300/*
16301 * Device attach function.
16302 *
16303 * Allocates device resources, performs secondary chip identification, and
16304 * initializes driver instance variables. This function is called from driver
16305 * load after a successful probe.
16306 *
16307 * Returns:
16308 *   0 = Success, >0 = Failure
16309 */
16310static int
16311bxe_attach(device_t dev)
16312{
16313    struct bxe_softc *sc;
16314
16315    sc = device_get_softc(dev);
16316
16317    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16318
16319    sc->state = BXE_STATE_CLOSED;
16320
16321    sc->dev  = dev;
16322    sc->unit = device_get_unit(dev);
16323
16324    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16325
16326    sc->pcie_bus    = pci_get_bus(dev);
16327    sc->pcie_device = pci_get_slot(dev);
16328    sc->pcie_func   = pci_get_function(dev);
16329
16330    /* enable bus master capability */
16331    pci_enable_busmaster(dev);
16332
16333    /* get the BARs */
16334    if (bxe_allocate_bars(sc) != 0) {
16335        return (ENXIO);
16336    }
16337
16338    /* initialize the mutexes */
16339    bxe_init_mutexes(sc);
16340
16341    /* prepare the periodic callout */
16342    callout_init(&sc->periodic_callout, 0);
16343
16344    /* prepare the chip taskqueue */
16345    sc->chip_tq_flags = CHIP_TQ_NONE;
16346    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16347             "bxe%d_chip_tq", sc->unit);
16348    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16349    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16350                                   taskqueue_thread_enqueue,
16351                                   &sc->chip_tq);
16352    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16353                            "%s", sc->chip_tq_name);
16354
16355    /* get device info and set params */
16356    if (bxe_get_device_info(sc) != 0) {
16357        BLOGE(sc, "getting device info\n");
16358        bxe_deallocate_bars(sc);
16359        pci_disable_busmaster(dev);
16360        return (ENXIO);
16361    }
16362
16363    /* get final misc params */
16364    bxe_get_params(sc);
16365
16366    /* set the default MTU (changed via ifconfig) */
16367    sc->mtu = ETHERMTU;
16368
16369    bxe_set_modes_bitmap(sc);
16370
16371    /* XXX
16372     * If in AFEX mode and the function is configured for FCoE
16373     * then bail... no L2 allowed.
16374     */
16375
16376    /* get phy settings from shmem and 'and' against admin settings */
16377    bxe_get_phy_info(sc);
16378
16379    /* initialize the FreeBSD ifnet interface */
16380    if (bxe_init_ifnet(sc) != 0) {
16381        bxe_release_mutexes(sc);
16382        bxe_deallocate_bars(sc);
16383        pci_disable_busmaster(dev);
16384        return (ENXIO);
16385    }
16386
16387    /* allocate device interrupts */
16388    if (bxe_interrupt_alloc(sc) != 0) {
16389        if (sc->ifp != NULL) {
16390            ether_ifdetach_drv(sc->ifp);
16391        }
16392        ifmedia_removeall(&sc->ifmedia);
16393        bxe_release_mutexes(sc);
16394        bxe_deallocate_bars(sc);
16395        pci_disable_busmaster(dev);
16396        return (ENXIO);
16397    }
16398
16399    /* allocate ilt */
16400    if (bxe_alloc_ilt_mem(sc) != 0) {
16401        bxe_interrupt_free(sc);
16402        if (sc->ifp != NULL) {
16403            ether_ifdetach_drv(sc->ifp);
16404        }
16405        ifmedia_removeall(&sc->ifmedia);
16406        bxe_release_mutexes(sc);
16407        bxe_deallocate_bars(sc);
16408        pci_disable_busmaster(dev);
16409        return (ENXIO);
16410    }
16411
16412    /* allocate the host hardware/software hsi structures */
16413    if (bxe_alloc_hsi_mem(sc) != 0) {
16414        bxe_free_ilt_mem(sc);
16415        bxe_interrupt_free(sc);
16416        if (sc->ifp != NULL) {
16417            ether_ifdetach_drv(sc->ifp);
16418        }
16419        ifmedia_removeall(&sc->ifmedia);
16420        bxe_release_mutexes(sc);
16421        bxe_deallocate_bars(sc);
16422        pci_disable_busmaster(dev);
16423        return (ENXIO);
16424    }
16425
16426    /* need to reset chip if UNDI was active */
16427    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16428        /* init fw_seq */
16429        sc->fw_seq =
16430            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16431             DRV_MSG_SEQ_NUMBER_MASK);
16432        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16433        bxe_prev_unload(sc);
16434    }
16435
16436#if 1
16437    /* XXX */
16438    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16439#else
16440    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16441        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16442        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16443        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16444        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16445        bxe_dcbx_init_params(sc);
16446    } else {
16447        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16448    }
16449#endif
16450
16451    /* calculate qm_cid_count */
16452    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16453    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16454
16455    sc->max_cos = 1;
16456    bxe_init_multi_cos(sc);
16457
16458    bxe_add_sysctls(sc);
16459
16460    return (0);
16461}
16462
16463/*
16464 * Device detach function.
16465 *
16466 * Stops the controller, resets the controller, and releases resources.
16467 *
16468 * Returns:
16469 *   0 = Success, >0 = Failure
16470 */
16471static int
16472bxe_detach(device_t dev)
16473{
16474    struct bxe_softc *sc;
16475    if_t ifp;
16476
16477    sc = device_get_softc(dev);
16478
16479    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16480
16481    ifp = sc->ifp;
16482    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16483        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16484        return(EBUSY);
16485    }
16486
16487    /* stop the periodic callout */
16488    bxe_periodic_stop(sc);
16489
16490    /* stop the chip taskqueue */
16491    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16492    if (sc->chip_tq) {
16493        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16494        taskqueue_free(sc->chip_tq);
16495        sc->chip_tq = NULL;
16496    }
16497
16498    /* stop and reset the controller if it was open */
16499    if (sc->state != BXE_STATE_CLOSED) {
16500        BXE_CORE_LOCK(sc);
16501        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16502        BXE_CORE_UNLOCK(sc);
16503    }
16504
16505    /* release the network interface */
16506    if (ifp != NULL) {
16507        ether_ifdetach_drv(ifp);
16508    }
16509    ifmedia_removeall(&sc->ifmedia);
16510
16511    /* XXX do the following based on driver state... */
16512
16513    /* free the host hardware/software hsi structures */
16514    bxe_free_hsi_mem(sc);
16515
16516    /* free ilt */
16517    bxe_free_ilt_mem(sc);
16518
16519    /* release the interrupts */
16520    bxe_interrupt_free(sc);
16521
16522    /* Release the mutexes*/
16523    bxe_release_mutexes(sc);
16524
16525    /* Release the PCIe BAR mapped memory */
16526    bxe_deallocate_bars(sc);
16527
16528    /* Release the FreeBSD interface. */
16529    if (sc->ifp != NULL) {
16530        if_free_drv(sc->ifp);
16531    }
16532
16533    pci_disable_busmaster(dev);
16534
16535    return (0);
16536}
16537
16538/*
16539 * Device shutdown function.
16540 *
16541 * Stops and resets the controller.
16542 *
16543 * Returns:
16544 *   Nothing
16545 */
16546static int
16547bxe_shutdown(device_t dev)
16548{
16549    struct bxe_softc *sc;
16550
16551    sc = device_get_softc(dev);
16552
16553    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16554
16555    /* stop the periodic callout */
16556    bxe_periodic_stop(sc);
16557
16558    BXE_CORE_LOCK(sc);
16559    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16560    BXE_CORE_UNLOCK(sc);
16561
16562    return (0);
16563}
16564
16565void
16566bxe_igu_ack_sb(struct bxe_softc *sc,
16567               uint8_t          igu_sb_id,
16568               uint8_t          segment,
16569               uint16_t         index,
16570               uint8_t          op,
16571               uint8_t          update)
16572{
16573    uint32_t igu_addr = sc->igu_base_addr;
16574    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16575    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16576}
16577
16578static void
16579bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16580                     uint8_t          func,
16581                     uint8_t          idu_sb_id,
16582                     uint8_t          is_pf)
16583{
16584    uint32_t data, ctl, cnt = 100;
16585    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16586    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16587    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16588    uint32_t sb_bit =  1 << (idu_sb_id%32);
16589    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16590    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16591
16592    /* Not supported in BC mode */
16593    if (CHIP_INT_MODE_IS_BC(sc)) {
16594        return;
16595    }
16596
16597    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16598             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16599            IGU_REGULAR_CLEANUP_SET |
16600            IGU_REGULAR_BCLEANUP);
16601
16602    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16603           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16604           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16605
16606    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16607            data, igu_addr_data);
16608    REG_WR(sc, igu_addr_data, data);
16609
16610    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16611                      BUS_SPACE_BARRIER_WRITE);
16612    mb();
16613
16614    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16615            ctl, igu_addr_ctl);
16616    REG_WR(sc, igu_addr_ctl, ctl);
16617
16618    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16619                      BUS_SPACE_BARRIER_WRITE);
16620    mb();
16621
16622    /* wait for clean up to finish */
16623    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16624        DELAY(20000);
16625    }
16626
16627    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16628        BLOGD(sc, DBG_LOAD,
16629              "Unable to finish IGU cleanup: "
16630              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16631              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16632    }
16633}
16634
16635static void
16636bxe_igu_clear_sb(struct bxe_softc *sc,
16637                 uint8_t          idu_sb_id)
16638{
16639    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16640}
16641
16642
16643
16644
16645
16646
16647
16648/*******************/
16649/* ECORE CALLBACKS */
16650/*******************/
16651
16652static void
16653bxe_reset_common(struct bxe_softc *sc)
16654{
16655    uint32_t val = 0x1400;
16656
16657    /* reset_common */
16658    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16659
16660    if (CHIP_IS_E3(sc)) {
16661        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16662        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16663    }
16664
16665    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16666}
16667
16668static void
16669bxe_common_init_phy(struct bxe_softc *sc)
16670{
16671    uint32_t shmem_base[2];
16672    uint32_t shmem2_base[2];
16673
16674    /* Avoid common init in case MFW supports LFA */
16675    if (SHMEM2_RD(sc, size) >
16676        (uint32_t)offsetof(struct shmem2_region,
16677                           lfa_host_addr[SC_PORT(sc)])) {
16678        return;
16679    }
16680
16681    shmem_base[0]  = sc->devinfo.shmem_base;
16682    shmem2_base[0] = sc->devinfo.shmem2_base;
16683
16684    if (!CHIP_IS_E1x(sc)) {
16685        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16686        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16687    }
16688
16689    BXE_PHY_LOCK(sc);
16690    elink_common_init_phy(sc, shmem_base, shmem2_base,
16691                          sc->devinfo.chip_id, 0);
16692    BXE_PHY_UNLOCK(sc);
16693}
16694
16695static void
16696bxe_pf_disable(struct bxe_softc *sc)
16697{
16698    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16699
16700    val &= ~IGU_PF_CONF_FUNC_EN;
16701
16702    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16703    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16704    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16705}
16706
16707static void
16708bxe_init_pxp(struct bxe_softc *sc)
16709{
16710    uint16_t devctl;
16711    int r_order, w_order;
16712
16713    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16714
16715    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16716
16717    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16718
16719    if (sc->mrrs == -1) {
16720        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16721    } else {
16722        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16723        r_order = sc->mrrs;
16724    }
16725
16726    ecore_init_pxp_arb(sc, r_order, w_order);
16727}
16728
16729static uint32_t
16730bxe_get_pretend_reg(struct bxe_softc *sc)
16731{
16732    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16733    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16734    return (base + (SC_ABS_FUNC(sc)) * stride);
16735}
16736
16737/*
16738 * Called only on E1H or E2.
16739 * When pretending to be PF, the pretend value is the function number 0..7.
16740 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16741 * combination.
16742 */
16743static int
16744bxe_pretend_func(struct bxe_softc *sc,
16745                 uint16_t         pretend_func_val)
16746{
16747    uint32_t pretend_reg;
16748
16749    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16750        return (-1);
16751    }
16752
16753    /* get my own pretend register */
16754    pretend_reg = bxe_get_pretend_reg(sc);
16755    REG_WR(sc, pretend_reg, pretend_func_val);
16756    REG_RD(sc, pretend_reg);
16757    return (0);
16758}
16759
16760static void
16761bxe_iov_init_dmae(struct bxe_softc *sc)
16762{
16763    return;
16764#if 0
16765    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16766
16767    if (!IS_SRIOV(sc)) {
16768        return;
16769    }
16770
16771    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16772#endif
16773}
16774
16775#if 0
16776static int
16777bxe_iov_init_ilt(struct bxe_softc *sc,
16778                 uint16_t         line)
16779{
16780    return (line);
16781#if 0
16782    int i;
16783    struct ecore_ilt* ilt = sc->ilt;
16784
16785    if (!IS_SRIOV(sc)) {
16786        return (line);
16787    }
16788
16789    /* set vfs ilt lines */
16790    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16791        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16792        ilt->lines[line+i].page = hw_cxt->addr;
16793        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16794        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16795    }
16796    return (line+i);
16797#endif
16798}
16799#endif
16800
16801static void
16802bxe_iov_init_dq(struct bxe_softc *sc)
16803{
16804    return;
16805#if 0
16806    if (!IS_SRIOV(sc)) {
16807        return;
16808    }
16809
16810    /* Set the DQ such that the CID reflect the abs_vfid */
16811    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16812    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16813
16814    /*
16815     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16816     * the PF L2 queues
16817     */
16818    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16819
16820    /* The VF window size is the log2 of the max number of CIDs per VF */
16821    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16822
16823    /*
16824     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16825     * the Pf doorbell size although the 2 are independent.
16826     */
16827    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16828           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16829
16830    /*
16831     * No security checks for now -
16832     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16833     * CID range 0 - 0x1ffff
16834     */
16835    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16836    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16837    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16838    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16839
16840    /* set the number of VF alllowed doorbells to the full DQ range */
16841    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16842
16843    /* set the VF doorbell threshold */
16844    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16845#endif
16846}
16847
16848/* send a NIG loopback debug packet */
16849static void
16850bxe_lb_pckt(struct bxe_softc *sc)
16851{
16852    uint32_t wb_write[3];
16853
16854    /* Ethernet source and destination addresses */
16855    wb_write[0] = 0x55555555;
16856    wb_write[1] = 0x55555555;
16857    wb_write[2] = 0x20;     /* SOP */
16858    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16859
16860    /* NON-IP protocol */
16861    wb_write[0] = 0x09000000;
16862    wb_write[1] = 0x55555555;
16863    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16864    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16865}
16866
16867/*
16868 * Some of the internal memories are not directly readable from the driver.
16869 * To test them we send debug packets.
16870 */
16871static int
16872bxe_int_mem_test(struct bxe_softc *sc)
16873{
16874    int factor;
16875    int count, i;
16876    uint32_t val = 0;
16877
16878    if (CHIP_REV_IS_FPGA(sc)) {
16879        factor = 120;
16880    } else if (CHIP_REV_IS_EMUL(sc)) {
16881        factor = 200;
16882    } else {
16883        factor = 1;
16884    }
16885
16886    /* disable inputs of parser neighbor blocks */
16887    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16888    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16889    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16890    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16891
16892    /*  write 0 to parser credits for CFC search request */
16893    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16894
16895    /* send Ethernet packet */
16896    bxe_lb_pckt(sc);
16897
16898    /* TODO do i reset NIG statistic? */
16899    /* Wait until NIG register shows 1 packet of size 0x10 */
16900    count = 1000 * factor;
16901    while (count) {
16902        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16903        val = *BXE_SP(sc, wb_data[0]);
16904        if (val == 0x10) {
16905            break;
16906        }
16907
16908        DELAY(10000);
16909        count--;
16910    }
16911
16912    if (val != 0x10) {
16913        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16914        return (-1);
16915    }
16916
16917    /* wait until PRS register shows 1 packet */
16918    count = (1000 * factor);
16919    while (count) {
16920        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16921        if (val == 1) {
16922            break;
16923        }
16924
16925        DELAY(10000);
16926        count--;
16927    }
16928
16929    if (val != 0x1) {
16930        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16931        return (-2);
16932    }
16933
16934    /* Reset and init BRB, PRS */
16935    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16936    DELAY(50000);
16937    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16938    DELAY(50000);
16939    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16940    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16941
16942    /* Disable inputs of parser neighbor blocks */
16943    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16944    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16945    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16946    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16947
16948    /* Write 0 to parser credits for CFC search request */
16949    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16950
16951    /* send 10 Ethernet packets */
16952    for (i = 0; i < 10; i++) {
16953        bxe_lb_pckt(sc);
16954    }
16955
16956    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16957    count = (1000 * factor);
16958    while (count) {
16959        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16960        val = *BXE_SP(sc, wb_data[0]);
16961        if (val == 0xb0) {
16962            break;
16963        }
16964
16965        DELAY(10000);
16966        count--;
16967    }
16968
16969    if (val != 0xb0) {
16970        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16971        return (-3);
16972    }
16973
16974    /* Wait until PRS register shows 2 packets */
16975    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16976    if (val != 2) {
16977        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16978    }
16979
16980    /* Write 1 to parser credits for CFC search request */
16981    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16982
16983    /* Wait until PRS register shows 3 packets */
16984    DELAY(10000 * factor);
16985
16986    /* Wait until NIG register shows 1 packet of size 0x10 */
16987    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16988    if (val != 3) {
16989        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16990    }
16991
16992    /* clear NIG EOP FIFO */
16993    for (i = 0; i < 11; i++) {
16994        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16995    }
16996
16997    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16998    if (val != 1) {
16999        BLOGE(sc, "clear of NIG failed\n");
17000        return (-4);
17001    }
17002
17003    /* Reset and init BRB, PRS, NIG */
17004    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17005    DELAY(50000);
17006    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17007    DELAY(50000);
17008    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17009    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17010    if (!CNIC_SUPPORT(sc)) {
17011        /* set NIC mode */
17012        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17013    }
17014
17015    /* Enable inputs of parser neighbor blocks */
17016    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17017    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17018    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17019    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17020
17021    return (0);
17022}
17023
17024static void
17025bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17026{
17027    int is_required;
17028    uint32_t val;
17029    int port;
17030
17031    is_required = 0;
17032    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17033           SHARED_HW_CFG_FAN_FAILURE_MASK);
17034
17035    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17036        is_required = 1;
17037    }
17038    /*
17039     * The fan failure mechanism is usually related to the PHY type since
17040     * the power consumption of the board is affected by the PHY. Currently,
17041     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17042     */
17043    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17044        for (port = PORT_0; port < PORT_MAX; port++) {
17045            is_required |= elink_fan_failure_det_req(sc,
17046                                                     sc->devinfo.shmem_base,
17047                                                     sc->devinfo.shmem2_base,
17048                                                     port);
17049        }
17050    }
17051
17052    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17053
17054    if (is_required == 0) {
17055        return;
17056    }
17057
17058    /* Fan failure is indicated by SPIO 5 */
17059    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17060
17061    /* set to active low mode */
17062    val = REG_RD(sc, MISC_REG_SPIO_INT);
17063    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17064    REG_WR(sc, MISC_REG_SPIO_INT, val);
17065
17066    /* enable interrupt to signal the IGU */
17067    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17068    val |= MISC_SPIO_SPIO5;
17069    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17070}
17071
17072static void
17073bxe_enable_blocks_attention(struct bxe_softc *sc)
17074{
17075    uint32_t val;
17076
17077    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17078    if (!CHIP_IS_E1x(sc)) {
17079        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17080    } else {
17081        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17082    }
17083    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17084    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17085    /*
17086     * mask read length error interrupts in brb for parser
17087     * (parsing unit and 'checksum and crc' unit)
17088     * these errors are legal (PU reads fixed length and CAC can cause
17089     * read length error on truncated packets)
17090     */
17091    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17092    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17093    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17094    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17095    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17096    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17097/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17098/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17099    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17100    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17101    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17102/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17103/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17104    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17105    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17106    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17107    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17108/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17109/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17110
17111    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17112           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17113           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17114    if (!CHIP_IS_E1x(sc)) {
17115        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17116                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17117    }
17118    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17119
17120    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17121    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17122    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17123/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17124
17125    if (!CHIP_IS_E1x(sc)) {
17126        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17127        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17128    }
17129
17130    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17131    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17132/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17133    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17134}
17135
17136/**
17137 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17138 *
17139 * @sc:     driver handle
17140 */
17141static int
17142bxe_init_hw_common(struct bxe_softc *sc)
17143{
17144    uint8_t abs_func_id;
17145    uint32_t val;
17146
17147    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17148          SC_ABS_FUNC(sc));
17149
17150    /*
17151     * take the RESET lock to protect undi_unload flow from accessing
17152     * registers while we are resetting the chip
17153     */
17154    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17155
17156    bxe_reset_common(sc);
17157
17158    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17159
17160    val = 0xfffc;
17161    if (CHIP_IS_E3(sc)) {
17162        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17163        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17164    }
17165
17166    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17167
17168    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17169
17170    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17171    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17172
17173    if (!CHIP_IS_E1x(sc)) {
17174        /*
17175         * 4-port mode or 2-port mode we need to turn off master-enable for
17176         * everyone. After that we turn it back on for self. So, we disregard
17177         * multi-function, and always disable all functions on the given path,
17178         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17179         */
17180        for (abs_func_id = SC_PATH(sc);
17181             abs_func_id < (E2_FUNC_MAX * 2);
17182             abs_func_id += 2) {
17183            if (abs_func_id == SC_ABS_FUNC(sc)) {
17184                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17185                continue;
17186            }
17187
17188            bxe_pretend_func(sc, abs_func_id);
17189
17190            /* clear pf enable */
17191            bxe_pf_disable(sc);
17192
17193            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17194        }
17195    }
17196
17197    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17198
17199    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17200
17201    if (CHIP_IS_E1(sc)) {
17202        /*
17203         * enable HW interrupt from PXP on USDM overflow
17204         * bit 16 on INT_MASK_0
17205         */
17206        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17207    }
17208
17209    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17210    bxe_init_pxp(sc);
17211
17212#ifdef __BIG_ENDIAN
17213    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17214    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17215    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17216    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17217    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17218    /* make sure this value is 0 */
17219    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17220
17221    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17222    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17223    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17224    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17225    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17226#endif
17227
17228    ecore_ilt_init_page_size(sc, INITOP_SET);
17229
17230    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17231        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17232    }
17233
17234    /* let the HW do it's magic... */
17235    DELAY(100000);
17236
17237    /* finish PXP init */
17238    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17239    if (val != 1) {
17240        BLOGE(sc, "PXP2 CFG failed\n");
17241        return (-1);
17242    }
17243    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17244    if (val != 1) {
17245        BLOGE(sc, "PXP2 RD_INIT failed\n");
17246        return (-1);
17247    }
17248
17249    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17250
17251    /*
17252     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17253     * entries with value "0" and valid bit on. This needs to be done by the
17254     * first PF that is loaded in a path (i.e. common phase)
17255     */
17256    if (!CHIP_IS_E1x(sc)) {
17257/*
17258 * In E2 there is a bug in the timers block that can cause function 6 / 7
17259 * (i.e. vnic3) to start even if it is marked as "scan-off".
17260 * This occurs when a different function (func2,3) is being marked
17261 * as "scan-off". Real-life scenario for example: if a driver is being
17262 * load-unloaded while func6,7 are down. This will cause the timer to access
17263 * the ilt, translate to a logical address and send a request to read/write.
17264 * Since the ilt for the function that is down is not valid, this will cause
17265 * a translation error which is unrecoverable.
17266 * The Workaround is intended to make sure that when this happens nothing
17267 * fatal will occur. The workaround:
17268 *  1.  First PF driver which loads on a path will:
17269 *      a.  After taking the chip out of reset, by using pretend,
17270 *          it will write "0" to the following registers of
17271 *          the other vnics.
17272 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17273 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17274 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17275 *          And for itself it will write '1' to
17276 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17277 *          dmae-operations (writing to pram for example.)
17278 *          note: can be done for only function 6,7 but cleaner this
17279 *            way.
17280 *      b.  Write zero+valid to the entire ILT.
17281 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17282 *          VNIC3 (of that port). The range allocated will be the
17283 *          entire ILT. This is needed to prevent  ILT range error.
17284 *  2.  Any PF driver load flow:
17285 *      a.  ILT update with the physical addresses of the allocated
17286 *          logical pages.
17287 *      b.  Wait 20msec. - note that this timeout is needed to make
17288 *          sure there are no requests in one of the PXP internal
17289 *          queues with "old" ILT addresses.
17290 *      c.  PF enable in the PGLC.
17291 *      d.  Clear the was_error of the PF in the PGLC. (could have
17292 *          occurred while driver was down)
17293 *      e.  PF enable in the CFC (WEAK + STRONG)
17294 *      f.  Timers scan enable
17295 *  3.  PF driver unload flow:
17296 *      a.  Clear the Timers scan_en.
17297 *      b.  Polling for scan_on=0 for that PF.
17298 *      c.  Clear the PF enable bit in the PXP.
17299 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17300 *      e.  Write zero+valid to all ILT entries (The valid bit must
17301 *          stay set)
17302 *      f.  If this is VNIC 3 of a port then also init
17303 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17304 *          to the last enrty in the ILT.
17305 *
17306 *      Notes:
17307 *      Currently the PF error in the PGLC is non recoverable.
17308 *      In the future the there will be a recovery routine for this error.
17309 *      Currently attention is masked.
17310 *      Having an MCP lock on the load/unload process does not guarantee that
17311 *      there is no Timer disable during Func6/7 enable. This is because the
17312 *      Timers scan is currently being cleared by the MCP on FLR.
17313 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17314 *      there is error before clearing it. But the flow above is simpler and
17315 *      more general.
17316 *      All ILT entries are written by zero+valid and not just PF6/7
17317 *      ILT entries since in the future the ILT entries allocation for
17318 *      PF-s might be dynamic.
17319 */
17320        struct ilt_client_info ilt_cli;
17321        struct ecore_ilt ilt;
17322
17323        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17324        memset(&ilt, 0, sizeof(struct ecore_ilt));
17325
17326        /* initialize dummy TM client */
17327        ilt_cli.start      = 0;
17328        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17329        ilt_cli.client_num = ILT_CLIENT_TM;
17330
17331        /*
17332         * Step 1: set zeroes to all ilt page entries with valid bit on
17333         * Step 2: set the timers first/last ilt entry to point
17334         * to the entire range to prevent ILT range error for 3rd/4th
17335         * vnic (this code assumes existence of the vnic)
17336         *
17337         * both steps performed by call to ecore_ilt_client_init_op()
17338         * with dummy TM client
17339         *
17340         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17341         * and his brother are split registers
17342         */
17343
17344        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17345        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17346        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17347
17348        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17349        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17350        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17351    }
17352
17353    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17354    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17355
17356    if (!CHIP_IS_E1x(sc)) {
17357        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17358                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17359
17360        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17361        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17362
17363        /* let the HW do it's magic... */
17364        do {
17365            DELAY(200000);
17366            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17367        } while (factor-- && (val != 1));
17368
17369        if (val != 1) {
17370            BLOGE(sc, "ATC_INIT failed\n");
17371            return (-1);
17372        }
17373    }
17374
17375    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17376
17377    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17378
17379    bxe_iov_init_dmae(sc);
17380
17381    /* clean the DMAE memory */
17382    sc->dmae_ready = 1;
17383    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17384
17385    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17386
17387    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17388
17389    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17390
17391    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17392
17393    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17394    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17395    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17396    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17397
17398    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17399
17400    /* QM queues pointers table */
17401    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17402
17403    /* soft reset pulse */
17404    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17405    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17406
17407    if (CNIC_SUPPORT(sc))
17408        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17409
17410    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17411    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17412    if (!CHIP_REV_IS_SLOW(sc)) {
17413        /* enable hw interrupt from doorbell Q */
17414        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17415    }
17416
17417    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17418
17419    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17420    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17421
17422    if (!CHIP_IS_E1(sc)) {
17423        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17424    }
17425
17426    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17427        if (IS_MF_AFEX(sc)) {
17428            /*
17429             * configure that AFEX and VLAN headers must be
17430             * received in AFEX mode
17431             */
17432            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17433            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17434            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17435            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17436            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17437        } else {
17438            /*
17439             * Bit-map indicating which L2 hdrs may appear
17440             * after the basic Ethernet header
17441             */
17442            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17443                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17444        }
17445    }
17446
17447    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17448    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17449    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17450    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17451
17452    if (!CHIP_IS_E1x(sc)) {
17453        /* reset VFC memories */
17454        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17455               VFC_MEMORIES_RST_REG_CAM_RST |
17456               VFC_MEMORIES_RST_REG_RAM_RST);
17457        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17458               VFC_MEMORIES_RST_REG_CAM_RST |
17459               VFC_MEMORIES_RST_REG_RAM_RST);
17460
17461        DELAY(20000);
17462    }
17463
17464    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17465    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17466    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17467    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17468
17469    /* sync semi rtc */
17470    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17471           0x80000000);
17472    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17473           0x80000000);
17474
17475    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17476    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17477    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17478
17479    if (!CHIP_IS_E1x(sc)) {
17480        if (IS_MF_AFEX(sc)) {
17481            /*
17482             * configure that AFEX and VLAN headers must be
17483             * sent in AFEX mode
17484             */
17485            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17486            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17487            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17488            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17489            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17490        } else {
17491            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17492                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17493        }
17494    }
17495
17496    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17497
17498    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17499
17500    if (CNIC_SUPPORT(sc)) {
17501        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17502        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17503        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17504        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17505        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17506        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17507        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17508        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17509        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17510        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17511    }
17512    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17513
17514    if (sizeof(union cdu_context) != 1024) {
17515        /* we currently assume that a context is 1024 bytes */
17516        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17517              (long)sizeof(union cdu_context));
17518    }
17519
17520    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17521    val = (4 << 24) + (0 << 12) + 1024;
17522    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17523
17524    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17525
17526    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17527    /* enable context validation interrupt from CFC */
17528    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17529
17530    /* set the thresholds to prevent CFC/CDU race */
17531    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17532    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17533
17534    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17535        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17536    }
17537
17538    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17539    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17540
17541    /* Reset PCIE errors for debug */
17542    REG_WR(sc, 0x2814, 0xffffffff);
17543    REG_WR(sc, 0x3820, 0xffffffff);
17544
17545    if (!CHIP_IS_E1x(sc)) {
17546        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17547               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17548                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17549        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17550               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17551                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17552                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17553        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17554               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17555                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17556                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17557    }
17558
17559    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17560
17561    if (!CHIP_IS_E1(sc)) {
17562        /* in E3 this done in per-port section */
17563        if (!CHIP_IS_E3(sc))
17564            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17565    }
17566
17567    if (CHIP_IS_E1H(sc)) {
17568        /* not applicable for E2 (and above ...) */
17569        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17570    }
17571
17572    if (CHIP_REV_IS_SLOW(sc)) {
17573        DELAY(200000);
17574    }
17575
17576    /* finish CFC init */
17577    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17578    if (val != 1) {
17579        BLOGE(sc, "CFC LL_INIT failed\n");
17580        return (-1);
17581    }
17582    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17583    if (val != 1) {
17584        BLOGE(sc, "CFC AC_INIT failed\n");
17585        return (-1);
17586    }
17587    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17588    if (val != 1) {
17589        BLOGE(sc, "CFC CAM_INIT failed\n");
17590        return (-1);
17591    }
17592    REG_WR(sc, CFC_REG_DEBUG0, 0);
17593
17594    if (CHIP_IS_E1(sc)) {
17595        /* read NIG statistic to see if this is our first up since powerup */
17596        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17597        val = *BXE_SP(sc, wb_data[0]);
17598
17599        /* do internal memory self test */
17600        if ((val == 0) && bxe_int_mem_test(sc)) {
17601            BLOGE(sc, "internal mem self test failed\n");
17602            return (-1);
17603        }
17604    }
17605
17606    bxe_setup_fan_failure_detection(sc);
17607
17608    /* clear PXP2 attentions */
17609    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17610
17611    bxe_enable_blocks_attention(sc);
17612
17613    if (!CHIP_REV_IS_SLOW(sc)) {
17614        ecore_enable_blocks_parity(sc);
17615    }
17616
17617    if (!BXE_NOMCP(sc)) {
17618        if (CHIP_IS_E1x(sc)) {
17619            bxe_common_init_phy(sc);
17620        }
17621    }
17622
17623    return (0);
17624}
17625
17626/**
17627 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17628 *
17629 * @sc:     driver handle
17630 */
17631static int
17632bxe_init_hw_common_chip(struct bxe_softc *sc)
17633{
17634    int rc = bxe_init_hw_common(sc);
17635
17636    if (rc) {
17637        return (rc);
17638    }
17639
17640    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17641    if (!BXE_NOMCP(sc)) {
17642        bxe_common_init_phy(sc);
17643    }
17644
17645    return (0);
17646}
17647
17648static int
17649bxe_init_hw_port(struct bxe_softc *sc)
17650{
17651    int port = SC_PORT(sc);
17652    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17653    uint32_t low, high;
17654    uint32_t val;
17655
17656    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17657
17658    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17659
17660    ecore_init_block(sc, BLOCK_MISC, init_phase);
17661    ecore_init_block(sc, BLOCK_PXP, init_phase);
17662    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17663
17664    /*
17665     * Timers bug workaround: disables the pf_master bit in pglue at
17666     * common phase, we need to enable it here before any dmae access are
17667     * attempted. Therefore we manually added the enable-master to the
17668     * port phase (it also happens in the function phase)
17669     */
17670    if (!CHIP_IS_E1x(sc)) {
17671        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17672    }
17673
17674    ecore_init_block(sc, BLOCK_ATC, init_phase);
17675    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17676    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17677    ecore_init_block(sc, BLOCK_QM, init_phase);
17678
17679    ecore_init_block(sc, BLOCK_TCM, init_phase);
17680    ecore_init_block(sc, BLOCK_UCM, init_phase);
17681    ecore_init_block(sc, BLOCK_CCM, init_phase);
17682    ecore_init_block(sc, BLOCK_XCM, init_phase);
17683
17684    /* QM cid (connection) count */
17685    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17686
17687    if (CNIC_SUPPORT(sc)) {
17688        ecore_init_block(sc, BLOCK_TM, init_phase);
17689        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17690        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17691    }
17692
17693    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17694
17695    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17696
17697    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17698        if (IS_MF(sc)) {
17699            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17700        } else if (sc->mtu > 4096) {
17701            if (BXE_ONE_PORT(sc)) {
17702                low = 160;
17703            } else {
17704                val = sc->mtu;
17705                /* (24*1024 + val*4)/256 */
17706                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17707            }
17708        } else {
17709            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17710        }
17711        high = (low + 56); /* 14*1024/256 */
17712        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17713        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17714    }
17715
17716    if (CHIP_IS_MODE_4_PORT(sc)) {
17717        REG_WR(sc, SC_PORT(sc) ?
17718               BRB1_REG_MAC_GUARANTIED_1 :
17719               BRB1_REG_MAC_GUARANTIED_0, 40);
17720    }
17721
17722    ecore_init_block(sc, BLOCK_PRS, init_phase);
17723    if (CHIP_IS_E3B0(sc)) {
17724        if (IS_MF_AFEX(sc)) {
17725            /* configure headers for AFEX mode */
17726            REG_WR(sc, SC_PORT(sc) ?
17727                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17728                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17729            REG_WR(sc, SC_PORT(sc) ?
17730                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17731                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17732            REG_WR(sc, SC_PORT(sc) ?
17733                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17734                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17735        } else {
17736            /* Ovlan exists only if we are in multi-function +
17737             * switch-dependent mode, in switch-independent there
17738             * is no ovlan headers
17739             */
17740            REG_WR(sc, SC_PORT(sc) ?
17741                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17742                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17743                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17744        }
17745    }
17746
17747    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17748    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17749    ecore_init_block(sc, BLOCK_USDM, init_phase);
17750    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17751
17752    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17753    ecore_init_block(sc, BLOCK_USEM, init_phase);
17754    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17755    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17756
17757    ecore_init_block(sc, BLOCK_UPB, init_phase);
17758    ecore_init_block(sc, BLOCK_XPB, init_phase);
17759
17760    ecore_init_block(sc, BLOCK_PBF, init_phase);
17761
17762    if (CHIP_IS_E1x(sc)) {
17763        /* configure PBF to work without PAUSE mtu 9000 */
17764        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17765
17766        /* update threshold */
17767        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17768        /* update init credit */
17769        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17770
17771        /* probe changes */
17772        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17773        DELAY(50);
17774        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17775    }
17776
17777    if (CNIC_SUPPORT(sc)) {
17778        ecore_init_block(sc, BLOCK_SRC, init_phase);
17779    }
17780
17781    ecore_init_block(sc, BLOCK_CDU, init_phase);
17782    ecore_init_block(sc, BLOCK_CFC, init_phase);
17783
17784    if (CHIP_IS_E1(sc)) {
17785        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17786        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17787    }
17788    ecore_init_block(sc, BLOCK_HC, init_phase);
17789
17790    ecore_init_block(sc, BLOCK_IGU, init_phase);
17791
17792    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17793    /* init aeu_mask_attn_func_0/1:
17794     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17795     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17796     *             bits 4-7 are used for "per vn group attention" */
17797    val = IS_MF(sc) ? 0xF7 : 0x7;
17798    /* Enable DCBX attention for all but E1 */
17799    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17800    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17801
17802    ecore_init_block(sc, BLOCK_NIG, init_phase);
17803
17804    if (!CHIP_IS_E1x(sc)) {
17805        /* Bit-map indicating which L2 hdrs may appear after the
17806         * basic Ethernet header
17807         */
17808        if (IS_MF_AFEX(sc)) {
17809            REG_WR(sc, SC_PORT(sc) ?
17810                   NIG_REG_P1_HDRS_AFTER_BASIC :
17811                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17812        } else {
17813            REG_WR(sc, SC_PORT(sc) ?
17814                   NIG_REG_P1_HDRS_AFTER_BASIC :
17815                   NIG_REG_P0_HDRS_AFTER_BASIC,
17816                   IS_MF_SD(sc) ? 7 : 6);
17817        }
17818
17819        if (CHIP_IS_E3(sc)) {
17820            REG_WR(sc, SC_PORT(sc) ?
17821                   NIG_REG_LLH1_MF_MODE :
17822                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17823        }
17824    }
17825    if (!CHIP_IS_E3(sc)) {
17826        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17827    }
17828
17829    if (!CHIP_IS_E1(sc)) {
17830        /* 0x2 disable mf_ov, 0x1 enable */
17831        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17832               (IS_MF_SD(sc) ? 0x1 : 0x2));
17833
17834        if (!CHIP_IS_E1x(sc)) {
17835            val = 0;
17836            switch (sc->devinfo.mf_info.mf_mode) {
17837            case MULTI_FUNCTION_SD:
17838                val = 1;
17839                break;
17840            case MULTI_FUNCTION_SI:
17841            case MULTI_FUNCTION_AFEX:
17842                val = 2;
17843                break;
17844            }
17845
17846            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17847                        NIG_REG_LLH0_CLS_TYPE), val);
17848        }
17849        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17850        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17851        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17852    }
17853
17854    /* If SPIO5 is set to generate interrupts, enable it for this port */
17855    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17856    if (val & MISC_SPIO_SPIO5) {
17857        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17858                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17859        val = REG_RD(sc, reg_addr);
17860        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17861        REG_WR(sc, reg_addr, val);
17862    }
17863
17864    return (0);
17865}
17866
17867static uint32_t
17868bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17869                       uint32_t         reg,
17870                       uint32_t         expected,
17871                       uint32_t         poll_count)
17872{
17873    uint32_t cur_cnt = poll_count;
17874    uint32_t val;
17875
17876    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17877        DELAY(FLR_WAIT_INTERVAL);
17878    }
17879
17880    return (val);
17881}
17882
17883static int
17884bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17885                              uint32_t         reg,
17886                              char             *msg,
17887                              uint32_t         poll_cnt)
17888{
17889    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17890
17891    if (val != 0) {
17892        BLOGE(sc, "%s usage count=%d\n", msg, val);
17893        return (1);
17894    }
17895
17896    return (0);
17897}
17898
17899/* Common routines with VF FLR cleanup */
17900static uint32_t
17901bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17902{
17903    /* adjust polling timeout */
17904    if (CHIP_REV_IS_EMUL(sc)) {
17905        return (FLR_POLL_CNT * 2000);
17906    }
17907
17908    if (CHIP_REV_IS_FPGA(sc)) {
17909        return (FLR_POLL_CNT * 120);
17910    }
17911
17912    return (FLR_POLL_CNT);
17913}
17914
17915static int
17916bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17917                           uint32_t         poll_cnt)
17918{
17919    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17920    if (bxe_flr_clnup_poll_hw_counter(sc,
17921                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17922                                      "CFC PF usage counter timed out",
17923                                      poll_cnt)) {
17924        return (1);
17925    }
17926
17927    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17928    if (bxe_flr_clnup_poll_hw_counter(sc,
17929                                      DORQ_REG_PF_USAGE_CNT,
17930                                      "DQ PF usage counter timed out",
17931                                      poll_cnt)) {
17932        return (1);
17933    }
17934
17935    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17936    if (bxe_flr_clnup_poll_hw_counter(sc,
17937                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17938                                      "QM PF usage counter timed out",
17939                                      poll_cnt)) {
17940        return (1);
17941    }
17942
17943    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17944    if (bxe_flr_clnup_poll_hw_counter(sc,
17945                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17946                                      "Timers VNIC usage counter timed out",
17947                                      poll_cnt)) {
17948        return (1);
17949    }
17950
17951    if (bxe_flr_clnup_poll_hw_counter(sc,
17952                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17953                                      "Timers NUM_SCANS usage counter timed out",
17954                                      poll_cnt)) {
17955        return (1);
17956    }
17957
17958    /* Wait DMAE PF usage counter to zero */
17959    if (bxe_flr_clnup_poll_hw_counter(sc,
17960                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17961                                      "DMAE dommand register timed out",
17962                                      poll_cnt)) {
17963        return (1);
17964    }
17965
17966    return (0);
17967}
17968
17969#define OP_GEN_PARAM(param)                                            \
17970    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17971#define OP_GEN_TYPE(type)                                           \
17972    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17973#define OP_GEN_AGG_VECT(index)                                             \
17974    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17975
17976static int
17977bxe_send_final_clnup(struct bxe_softc *sc,
17978                     uint8_t          clnup_func,
17979                     uint32_t         poll_cnt)
17980{
17981    uint32_t op_gen_command = 0;
17982    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17983                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17984    int ret = 0;
17985
17986    if (REG_RD(sc, comp_addr)) {
17987        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17988        return (1);
17989    }
17990
17991    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17992    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17993    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17994    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17995
17996    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17997    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17998
17999    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18000        BLOGE(sc, "FW final cleanup did not succeed\n");
18001        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18002              (REG_RD(sc, comp_addr)));
18003        bxe_panic(sc, ("FLR cleanup failed\n"));
18004        return (1);
18005    }
18006
18007    /* Zero completion for nxt FLR */
18008    REG_WR(sc, comp_addr, 0);
18009
18010    return (ret);
18011}
18012
18013static void
18014bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18015                       struct pbf_pN_buf_regs *regs,
18016                       uint32_t               poll_count)
18017{
18018    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18019    uint32_t cur_cnt = poll_count;
18020
18021    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18022    crd = crd_start = REG_RD(sc, regs->crd);
18023    init_crd = REG_RD(sc, regs->init_crd);
18024
18025    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18026    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18027    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18028
18029    while ((crd != init_crd) &&
18030           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18031            (init_crd - crd_start))) {
18032        if (cur_cnt--) {
18033            DELAY(FLR_WAIT_INTERVAL);
18034            crd = REG_RD(sc, regs->crd);
18035            crd_freed = REG_RD(sc, regs->crd_freed);
18036        } else {
18037            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18038            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18039            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18040            break;
18041        }
18042    }
18043
18044    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18045          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18046}
18047
18048static void
18049bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18050                       struct pbf_pN_cmd_regs *regs,
18051                       uint32_t               poll_count)
18052{
18053    uint32_t occup, to_free, freed, freed_start;
18054    uint32_t cur_cnt = poll_count;
18055
18056    occup = to_free = REG_RD(sc, regs->lines_occup);
18057    freed = freed_start = REG_RD(sc, regs->lines_freed);
18058
18059    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18060    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18061
18062    while (occup &&
18063           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18064        if (cur_cnt--) {
18065            DELAY(FLR_WAIT_INTERVAL);
18066            occup = REG_RD(sc, regs->lines_occup);
18067            freed = REG_RD(sc, regs->lines_freed);
18068        } else {
18069            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18070            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18071            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18072            break;
18073        }
18074    }
18075
18076    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18077          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18078}
18079
18080static void
18081bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18082{
18083    struct pbf_pN_cmd_regs cmd_regs[] = {
18084        {0, (CHIP_IS_E3B0(sc)) ?
18085            PBF_REG_TQ_OCCUPANCY_Q0 :
18086            PBF_REG_P0_TQ_OCCUPANCY,
18087            (CHIP_IS_E3B0(sc)) ?
18088            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18089            PBF_REG_P0_TQ_LINES_FREED_CNT},
18090        {1, (CHIP_IS_E3B0(sc)) ?
18091            PBF_REG_TQ_OCCUPANCY_Q1 :
18092            PBF_REG_P1_TQ_OCCUPANCY,
18093            (CHIP_IS_E3B0(sc)) ?
18094            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18095            PBF_REG_P1_TQ_LINES_FREED_CNT},
18096        {4, (CHIP_IS_E3B0(sc)) ?
18097            PBF_REG_TQ_OCCUPANCY_LB_Q :
18098            PBF_REG_P4_TQ_OCCUPANCY,
18099            (CHIP_IS_E3B0(sc)) ?
18100            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18101            PBF_REG_P4_TQ_LINES_FREED_CNT}
18102    };
18103
18104    struct pbf_pN_buf_regs buf_regs[] = {
18105        {0, (CHIP_IS_E3B0(sc)) ?
18106            PBF_REG_INIT_CRD_Q0 :
18107            PBF_REG_P0_INIT_CRD ,
18108            (CHIP_IS_E3B0(sc)) ?
18109            PBF_REG_CREDIT_Q0 :
18110            PBF_REG_P0_CREDIT,
18111            (CHIP_IS_E3B0(sc)) ?
18112            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18113            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18114        {1, (CHIP_IS_E3B0(sc)) ?
18115            PBF_REG_INIT_CRD_Q1 :
18116            PBF_REG_P1_INIT_CRD,
18117            (CHIP_IS_E3B0(sc)) ?
18118            PBF_REG_CREDIT_Q1 :
18119            PBF_REG_P1_CREDIT,
18120            (CHIP_IS_E3B0(sc)) ?
18121            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18122            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18123        {4, (CHIP_IS_E3B0(sc)) ?
18124            PBF_REG_INIT_CRD_LB_Q :
18125            PBF_REG_P4_INIT_CRD,
18126            (CHIP_IS_E3B0(sc)) ?
18127            PBF_REG_CREDIT_LB_Q :
18128            PBF_REG_P4_CREDIT,
18129            (CHIP_IS_E3B0(sc)) ?
18130            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18131            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18132    };
18133
18134    int i;
18135
18136    /* Verify the command queues are flushed P0, P1, P4 */
18137    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18138        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18139    }
18140
18141    /* Verify the transmission buffers are flushed P0, P1, P4 */
18142    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18143        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18144    }
18145}
18146
18147static void
18148bxe_hw_enable_status(struct bxe_softc *sc)
18149{
18150    uint32_t val;
18151
18152    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18153    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18154
18155    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18156    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18157
18158    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18159    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18160
18161    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18162    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18163
18164    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18165    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18166
18167    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18168    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18169
18170    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18171    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18172
18173    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18174    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18175}
18176
18177static int
18178bxe_pf_flr_clnup(struct bxe_softc *sc)
18179{
18180    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18181
18182    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18183
18184    /* Re-enable PF target read access */
18185    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18186
18187    /* Poll HW usage counters */
18188    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18189    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18190        return (-1);
18191    }
18192
18193    /* Zero the igu 'trailing edge' and 'leading edge' */
18194
18195    /* Send the FW cleanup command */
18196    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18197        return (-1);
18198    }
18199
18200    /* ATC cleanup */
18201
18202    /* Verify TX hw is flushed */
18203    bxe_tx_hw_flushed(sc, poll_cnt);
18204
18205    /* Wait 100ms (not adjusted according to platform) */
18206    DELAY(100000);
18207
18208    /* Verify no pending pci transactions */
18209    if (bxe_is_pcie_pending(sc)) {
18210        BLOGE(sc, "PCIE Transactions still pending\n");
18211    }
18212
18213    /* Debug */
18214    bxe_hw_enable_status(sc);
18215
18216    /*
18217     * Master enable - Due to WB DMAE writes performed before this
18218     * register is re-initialized as part of the regular function init
18219     */
18220    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18221
18222    return (0);
18223}
18224
18225#if 0
18226static void
18227bxe_init_searcher(struct bxe_softc *sc)
18228{
18229    int port = SC_PORT(sc);
18230    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18231    /* T1 hash bits value determines the T1 number of entries */
18232    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18233}
18234#endif
18235
18236static int
18237bxe_init_hw_func(struct bxe_softc *sc)
18238{
18239    int port = SC_PORT(sc);
18240    int func = SC_FUNC(sc);
18241    int init_phase = PHASE_PF0 + func;
18242    struct ecore_ilt *ilt = sc->ilt;
18243    uint16_t cdu_ilt_start;
18244    uint32_t addr, val;
18245    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18246    int i, main_mem_width, rc;
18247
18248    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18249
18250    /* FLR cleanup */
18251    if (!CHIP_IS_E1x(sc)) {
18252        rc = bxe_pf_flr_clnup(sc);
18253        if (rc) {
18254            BLOGE(sc, "FLR cleanup failed!\n");
18255            // XXX bxe_fw_dump(sc);
18256            // XXX bxe_idle_chk(sc);
18257            return (rc);
18258        }
18259    }
18260
18261    /* set MSI reconfigure capability */
18262    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18263        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18264        val = REG_RD(sc, addr);
18265        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18266        REG_WR(sc, addr, val);
18267    }
18268
18269    ecore_init_block(sc, BLOCK_PXP, init_phase);
18270    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18271
18272    ilt = sc->ilt;
18273    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18274
18275#if 0
18276    if (IS_SRIOV(sc)) {
18277        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18278    }
18279    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18280
18281#if (BXE_FIRST_VF_CID > 0)
18282    /*
18283     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18284     * those of the VFs, so start line should be reset
18285     */
18286    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18287#endif
18288#endif
18289
18290    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18291        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18292        ilt->lines[cdu_ilt_start + i].page_mapping =
18293            sc->context[i].vcxt_dma.paddr;
18294        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18295    }
18296    ecore_ilt_init_op(sc, INITOP_SET);
18297
18298#if 0
18299    if (!CONFIGURE_NIC_MODE(sc)) {
18300        bxe_init_searcher(sc);
18301        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18302        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18303    } else
18304#endif
18305    {
18306        /* Set NIC mode */
18307        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18308        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18309    }
18310
18311    if (!CHIP_IS_E1x(sc)) {
18312        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18313
18314        /* Turn on a single ISR mode in IGU if driver is going to use
18315         * INT#x or MSI
18316         */
18317        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18318            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18319        }
18320
18321        /*
18322         * Timers workaround bug: function init part.
18323         * Need to wait 20msec after initializing ILT,
18324         * needed to make sure there are no requests in
18325         * one of the PXP internal queues with "old" ILT addresses
18326         */
18327        DELAY(20000);
18328
18329        /*
18330         * Master enable - Due to WB DMAE writes performed before this
18331         * register is re-initialized as part of the regular function
18332         * init
18333         */
18334        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18335        /* Enable the function in IGU */
18336        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18337    }
18338
18339    sc->dmae_ready = 1;
18340
18341    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18342
18343    if (!CHIP_IS_E1x(sc))
18344        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18345
18346    ecore_init_block(sc, BLOCK_ATC, init_phase);
18347    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18348    ecore_init_block(sc, BLOCK_NIG, init_phase);
18349    ecore_init_block(sc, BLOCK_SRC, init_phase);
18350    ecore_init_block(sc, BLOCK_MISC, init_phase);
18351    ecore_init_block(sc, BLOCK_TCM, init_phase);
18352    ecore_init_block(sc, BLOCK_UCM, init_phase);
18353    ecore_init_block(sc, BLOCK_CCM, init_phase);
18354    ecore_init_block(sc, BLOCK_XCM, init_phase);
18355    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18356    ecore_init_block(sc, BLOCK_USEM, init_phase);
18357    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18358    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18359
18360    if (!CHIP_IS_E1x(sc))
18361        REG_WR(sc, QM_REG_PF_EN, 1);
18362
18363    if (!CHIP_IS_E1x(sc)) {
18364        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18365        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18366        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18367        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18368    }
18369    ecore_init_block(sc, BLOCK_QM, init_phase);
18370
18371    ecore_init_block(sc, BLOCK_TM, init_phase);
18372    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18373
18374    bxe_iov_init_dq(sc);
18375
18376    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18377    ecore_init_block(sc, BLOCK_PRS, init_phase);
18378    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18379    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18380    ecore_init_block(sc, BLOCK_USDM, init_phase);
18381    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18382    ecore_init_block(sc, BLOCK_UPB, init_phase);
18383    ecore_init_block(sc, BLOCK_XPB, init_phase);
18384    ecore_init_block(sc, BLOCK_PBF, init_phase);
18385    if (!CHIP_IS_E1x(sc))
18386        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18387
18388    ecore_init_block(sc, BLOCK_CDU, init_phase);
18389
18390    ecore_init_block(sc, BLOCK_CFC, init_phase);
18391
18392    if (!CHIP_IS_E1x(sc))
18393        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18394
18395    if (IS_MF(sc)) {
18396        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18397        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18398    }
18399
18400    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18401
18402    /* HC init per function */
18403    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18404        if (CHIP_IS_E1H(sc)) {
18405            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18406
18407            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18408            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18409        }
18410        ecore_init_block(sc, BLOCK_HC, init_phase);
18411
18412    } else {
18413        int num_segs, sb_idx, prod_offset;
18414
18415        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18416
18417        if (!CHIP_IS_E1x(sc)) {
18418            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18419            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18420        }
18421
18422        ecore_init_block(sc, BLOCK_IGU, init_phase);
18423
18424        if (!CHIP_IS_E1x(sc)) {
18425            int dsb_idx = 0;
18426            /**
18427             * Producer memory:
18428             * E2 mode: address 0-135 match to the mapping memory;
18429             * 136 - PF0 default prod; 137 - PF1 default prod;
18430             * 138 - PF2 default prod; 139 - PF3 default prod;
18431             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18432             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18433             * 144-147 reserved.
18434             *
18435             * E1.5 mode - In backward compatible mode;
18436             * for non default SB; each even line in the memory
18437             * holds the U producer and each odd line hold
18438             * the C producer. The first 128 producers are for
18439             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18440             * producers are for the DSB for each PF.
18441             * Each PF has five segments: (the order inside each
18442             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18443             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18444             * 144-147 attn prods;
18445             */
18446            /* non-default-status-blocks */
18447            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18448                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18449            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18450                prod_offset = (sc->igu_base_sb + sb_idx) *
18451                    num_segs;
18452
18453                for (i = 0; i < num_segs; i++) {
18454                    addr = IGU_REG_PROD_CONS_MEMORY +
18455                            (prod_offset + i) * 4;
18456                    REG_WR(sc, addr, 0);
18457                }
18458                /* send consumer update with value 0 */
18459                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18460                           USTORM_ID, 0, IGU_INT_NOP, 1);
18461                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18462            }
18463
18464            /* default-status-blocks */
18465            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18466                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18467
18468            if (CHIP_IS_MODE_4_PORT(sc))
18469                dsb_idx = SC_FUNC(sc);
18470            else
18471                dsb_idx = SC_VN(sc);
18472
18473            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18474                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18475                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18476
18477            /*
18478             * igu prods come in chunks of E1HVN_MAX (4) -
18479             * does not matters what is the current chip mode
18480             */
18481            for (i = 0; i < (num_segs * E1HVN_MAX);
18482                 i += E1HVN_MAX) {
18483                addr = IGU_REG_PROD_CONS_MEMORY +
18484                            (prod_offset + i)*4;
18485                REG_WR(sc, addr, 0);
18486            }
18487            /* send consumer update with 0 */
18488            if (CHIP_INT_MODE_IS_BC(sc)) {
18489                bxe_ack_sb(sc, sc->igu_dsb_id,
18490                           USTORM_ID, 0, IGU_INT_NOP, 1);
18491                bxe_ack_sb(sc, sc->igu_dsb_id,
18492                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18493                bxe_ack_sb(sc, sc->igu_dsb_id,
18494                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18495                bxe_ack_sb(sc, sc->igu_dsb_id,
18496                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18497                bxe_ack_sb(sc, sc->igu_dsb_id,
18498                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18499            } else {
18500                bxe_ack_sb(sc, sc->igu_dsb_id,
18501                           USTORM_ID, 0, IGU_INT_NOP, 1);
18502                bxe_ack_sb(sc, sc->igu_dsb_id,
18503                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18504            }
18505            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18506
18507            /* !!! these should become driver const once
18508               rf-tool supports split-68 const */
18509            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18510            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18511            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18512            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18513            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18514            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18515        }
18516    }
18517
18518    /* Reset PCIE errors for debug */
18519    REG_WR(sc, 0x2114, 0xffffffff);
18520    REG_WR(sc, 0x2120, 0xffffffff);
18521
18522    if (CHIP_IS_E1x(sc)) {
18523        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18524        main_mem_base = HC_REG_MAIN_MEMORY +
18525                SC_PORT(sc) * (main_mem_size * 4);
18526        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18527        main_mem_width = 8;
18528
18529        val = REG_RD(sc, main_mem_prty_clr);
18530        if (val) {
18531            BLOGD(sc, DBG_LOAD,
18532                  "Parity errors in HC block during function init (0x%x)!\n",
18533                  val);
18534        }
18535
18536        /* Clear "false" parity errors in MSI-X table */
18537        for (i = main_mem_base;
18538             i < main_mem_base + main_mem_size * 4;
18539             i += main_mem_width) {
18540            bxe_read_dmae(sc, i, main_mem_width / 4);
18541            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18542                           i, main_mem_width / 4);
18543        }
18544        /* Clear HC parity attention */
18545        REG_RD(sc, main_mem_prty_clr);
18546    }
18547
18548#if 1
18549    /* Enable STORMs SP logging */
18550    REG_WR8(sc, BAR_USTRORM_INTMEM +
18551           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18552    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18553           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18554    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18555           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18556    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18557           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18558#endif
18559
18560    elink_phy_probe(&sc->link_params);
18561
18562    return (0);
18563}
18564
18565static void
18566bxe_link_reset(struct bxe_softc *sc)
18567{
18568    if (!BXE_NOMCP(sc)) {
18569        BXE_PHY_LOCK(sc);
18570        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18571        BXE_PHY_UNLOCK(sc);
18572    } else {
18573        if (!CHIP_REV_IS_SLOW(sc)) {
18574            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18575        }
18576    }
18577}
18578
18579static void
18580bxe_reset_port(struct bxe_softc *sc)
18581{
18582    int port = SC_PORT(sc);
18583    uint32_t val;
18584
18585    /* reset physical Link */
18586    bxe_link_reset(sc);
18587
18588    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18589
18590    /* Do not rcv packets to BRB */
18591    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18592    /* Do not direct rcv packets that are not for MCP to the BRB */
18593    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18594               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18595
18596    /* Configure AEU */
18597    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18598
18599    DELAY(100000);
18600
18601    /* Check for BRB port occupancy */
18602    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18603    if (val) {
18604        BLOGD(sc, DBG_LOAD,
18605              "BRB1 is not empty, %d blocks are occupied\n", val);
18606    }
18607
18608    /* TODO: Close Doorbell port? */
18609}
18610
18611static void
18612bxe_ilt_wr(struct bxe_softc *sc,
18613           uint32_t         index,
18614           bus_addr_t       addr)
18615{
18616    int reg;
18617    uint32_t wb_write[2];
18618
18619    if (CHIP_IS_E1(sc)) {
18620        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18621    } else {
18622        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18623    }
18624
18625    wb_write[0] = ONCHIP_ADDR1(addr);
18626    wb_write[1] = ONCHIP_ADDR2(addr);
18627    REG_WR_DMAE(sc, reg, wb_write, 2);
18628}
18629
18630static void
18631bxe_clear_func_ilt(struct bxe_softc *sc,
18632                   uint32_t         func)
18633{
18634    uint32_t i, base = FUNC_ILT_BASE(func);
18635    for (i = base; i < base + ILT_PER_FUNC; i++) {
18636        bxe_ilt_wr(sc, i, 0);
18637    }
18638}
18639
18640static void
18641bxe_reset_func(struct bxe_softc *sc)
18642{
18643    struct bxe_fastpath *fp;
18644    int port = SC_PORT(sc);
18645    int func = SC_FUNC(sc);
18646    int i;
18647
18648    /* Disable the function in the FW */
18649    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18650    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18651    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18652    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18653
18654    /* FP SBs */
18655    FOR_EACH_ETH_QUEUE(sc, i) {
18656        fp = &sc->fp[i];
18657        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18658                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18659                SB_DISABLED);
18660    }
18661
18662#if 0
18663    if (CNIC_LOADED(sc)) {
18664        /* CNIC SB */
18665        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18666                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18667                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18668    }
18669#endif
18670
18671    /* SP SB */
18672    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18673            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18674            SB_DISABLED);
18675
18676    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18677        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18678    }
18679
18680    /* Configure IGU */
18681    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18682        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18683        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18684    } else {
18685        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18686        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18687    }
18688
18689    if (CNIC_LOADED(sc)) {
18690        /* Disable Timer scan */
18691        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18692        /*
18693         * Wait for at least 10ms and up to 2 second for the timers
18694         * scan to complete
18695         */
18696        for (i = 0; i < 200; i++) {
18697            DELAY(10000);
18698            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18699                break;
18700        }
18701    }
18702
18703    /* Clear ILT */
18704    bxe_clear_func_ilt(sc, func);
18705
18706    /*
18707     * Timers workaround bug for E2: if this is vnic-3,
18708     * we need to set the entire ilt range for this timers.
18709     */
18710    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18711        struct ilt_client_info ilt_cli;
18712        /* use dummy TM client */
18713        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18714        ilt_cli.start = 0;
18715        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18716        ilt_cli.client_num = ILT_CLIENT_TM;
18717
18718        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18719    }
18720
18721    /* this assumes that reset_port() called before reset_func()*/
18722    if (!CHIP_IS_E1x(sc)) {
18723        bxe_pf_disable(sc);
18724    }
18725
18726    sc->dmae_ready = 0;
18727}
18728
18729static int
18730bxe_gunzip_init(struct bxe_softc *sc)
18731{
18732    return (0);
18733}
18734
18735static void
18736bxe_gunzip_end(struct bxe_softc *sc)
18737{
18738    return;
18739}
18740
18741static int
18742bxe_init_firmware(struct bxe_softc *sc)
18743{
18744    if (CHIP_IS_E1(sc)) {
18745        ecore_init_e1_firmware(sc);
18746        sc->iro_array = e1_iro_arr;
18747    } else if (CHIP_IS_E1H(sc)) {
18748        ecore_init_e1h_firmware(sc);
18749        sc->iro_array = e1h_iro_arr;
18750    } else if (!CHIP_IS_E1x(sc)) {
18751        ecore_init_e2_firmware(sc);
18752        sc->iro_array = e2_iro_arr;
18753    } else {
18754        BLOGE(sc, "Unsupported chip revision\n");
18755        return (-1);
18756    }
18757
18758    return (0);
18759}
18760
18761static void
18762bxe_release_firmware(struct bxe_softc *sc)
18763{
18764    /* Do nothing */
18765    return;
18766}
18767
18768static int
18769ecore_gunzip(struct bxe_softc *sc,
18770             const uint8_t    *zbuf,
18771             int              len)
18772{
18773    /* XXX : Implement... */
18774    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18775    return (FALSE);
18776}
18777
18778static void
18779ecore_reg_wr_ind(struct bxe_softc *sc,
18780                 uint32_t         addr,
18781                 uint32_t         val)
18782{
18783    bxe_reg_wr_ind(sc, addr, val);
18784}
18785
18786static void
18787ecore_write_dmae_phys_len(struct bxe_softc *sc,
18788                          bus_addr_t       phys_addr,
18789                          uint32_t         addr,
18790                          uint32_t         len)
18791{
18792    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18793}
18794
18795void
18796ecore_storm_memset_struct(struct bxe_softc *sc,
18797                          uint32_t         addr,
18798                          size_t           size,
18799                          uint32_t         *data)
18800{
18801    uint8_t i;
18802    for (i = 0; i < size/4; i++) {
18803        REG_WR(sc, addr + (i * 4), data[i]);
18804    }
18805}
18806
18807