bxe.c revision 266979
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 266979 2014-06-02 18:54:45Z marcel $");
29
30#define BXE_DRIVER_VERSION "1.78.78"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
301SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
302             &bxe_debug, 0, "Debug logging mode");
303
304/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
305static int bxe_interrupt_mode = INTR_MODE_MSIX;
306TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
307SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
308           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
309
310/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
311static int bxe_queue_count = 4;
312TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
313SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
314           &bxe_queue_count, 0, "Multi-Queue queue count");
315
316/* max number of buffers per queue (default RX_BD_USABLE) */
317static int bxe_max_rx_bufs = 0;
318TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
319SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
320           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
321
322/* Host interrupt coalescing RX tick timer (usecs) */
323static int bxe_hc_rx_ticks = 25;
324TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
327
328/* Host interrupt coalescing TX tick timer (usecs) */
329static int bxe_hc_tx_ticks = 50;
330TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
331SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
332           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
333
334/* Maximum number of Rx packets to process at a time */
335static int bxe_rx_budget = 0xffffffff;
336TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
337SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
338           &bxe_rx_budget, 0, "Rx processing budget");
339
340/* Maximum LRO aggregation size */
341static int bxe_max_aggregation_size = 0;
342TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
343SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
344           &bxe_max_aggregation_size, 0, "max aggregation size");
345
346/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
347static int bxe_mrrs = -1;
348TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
349SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
350           &bxe_mrrs, 0, "PCIe maximum read request size");
351
352/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
353static int bxe_autogreeen = 0;
354TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
355SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
356           &bxe_autogreeen, 0, "AutoGrEEEn support");
357
358/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
359static int bxe_udp_rss = 0;
360TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
361SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
362           &bxe_udp_rss, 0, "UDP RSS support");
363
364
365#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
366
367#define STATS_OFFSET32(stat_name)                   \
368    (offsetof(struct bxe_eth_stats, stat_name) / 4)
369
370#define Q_STATS_OFFSET32(stat_name)                   \
371    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
372
373static const struct {
374    uint32_t offset;
375    uint32_t size;
376    uint32_t flags;
377#define STATS_FLAGS_PORT  1
378#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
379#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
380    char string[STAT_NAME_LEN];
381} bxe_eth_stats_arr[] = {
382    { STATS_OFFSET32(total_bytes_received_hi),
383                8, STATS_FLAGS_BOTH, "rx_bytes" },
384    { STATS_OFFSET32(error_bytes_received_hi),
385                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
386    { STATS_OFFSET32(total_unicast_packets_received_hi),
387                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
388    { STATS_OFFSET32(total_multicast_packets_received_hi),
389                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
390    { STATS_OFFSET32(total_broadcast_packets_received_hi),
391                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
392    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
393                8, STATS_FLAGS_PORT, "rx_crc_errors" },
394    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
395                8, STATS_FLAGS_PORT, "rx_align_errors" },
396    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
397                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
398    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
399                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
400    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
401                8, STATS_FLAGS_PORT, "rx_fragments" },
402    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
403                8, STATS_FLAGS_PORT, "rx_jabbers" },
404    { STATS_OFFSET32(no_buff_discard_hi),
405                8, STATS_FLAGS_BOTH, "rx_discards" },
406    { STATS_OFFSET32(mac_filter_discard),
407                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
408    { STATS_OFFSET32(mf_tag_discard),
409                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
410    { STATS_OFFSET32(pfc_frames_received_hi),
411                8, STATS_FLAGS_PORT, "pfc_frames_received" },
412    { STATS_OFFSET32(pfc_frames_sent_hi),
413                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
414    { STATS_OFFSET32(brb_drop_hi),
415                8, STATS_FLAGS_PORT, "rx_brb_discard" },
416    { STATS_OFFSET32(brb_truncate_hi),
417                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
418    { STATS_OFFSET32(pause_frames_received_hi),
419                8, STATS_FLAGS_PORT, "rx_pause_frames" },
420    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
421                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
422    { STATS_OFFSET32(nig_timer_max),
423                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
424    { STATS_OFFSET32(total_bytes_transmitted_hi),
425                8, STATS_FLAGS_BOTH, "tx_bytes" },
426    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
427                8, STATS_FLAGS_PORT, "tx_error_bytes" },
428    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
429                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
430    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
431                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
432    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
433                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
434    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
435                8, STATS_FLAGS_PORT, "tx_mac_errors" },
436    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
437                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
438    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
439                8, STATS_FLAGS_PORT, "tx_single_collisions" },
440    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
441                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
442    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
443                8, STATS_FLAGS_PORT, "tx_deferred" },
444    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
445                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
446    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
447                8, STATS_FLAGS_PORT, "tx_late_collisions" },
448    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
449                8, STATS_FLAGS_PORT, "tx_total_collisions" },
450    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
451                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
452    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
453                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
454    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
455                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
456    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
457                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
458    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
459                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
460    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
461                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
462    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
463                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
464    { STATS_OFFSET32(pause_frames_sent_hi),
465                8, STATS_FLAGS_PORT, "tx_pause_frames" },
466    { STATS_OFFSET32(total_tpa_aggregations_hi),
467                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
468    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
469                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
470    { STATS_OFFSET32(total_tpa_bytes_hi),
471                8, STATS_FLAGS_FUNC, "tpa_bytes"},
472#if 0
473    { STATS_OFFSET32(recoverable_error),
474                4, STATS_FLAGS_FUNC, "recoverable_errors" },
475    { STATS_OFFSET32(unrecoverable_error),
476                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
477#endif
478    { STATS_OFFSET32(eee_tx_lpi),
479                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
480    { STATS_OFFSET32(rx_calls),
481                4, STATS_FLAGS_FUNC, "rx_calls"},
482    { STATS_OFFSET32(rx_pkts),
483                4, STATS_FLAGS_FUNC, "rx_pkts"},
484    { STATS_OFFSET32(rx_tpa_pkts),
485                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
486    { STATS_OFFSET32(rx_soft_errors),
487                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
488    { STATS_OFFSET32(rx_hw_csum_errors),
489                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
490    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
491                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
492    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
493                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
494    { STATS_OFFSET32(rx_budget_reached),
495                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
496    { STATS_OFFSET32(tx_pkts),
497                4, STATS_FLAGS_FUNC, "tx_pkts"},
498    { STATS_OFFSET32(tx_soft_errors),
499                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
500    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
501                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
502    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
503                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
504    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
505                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
506    { STATS_OFFSET32(tx_ofld_frames_lso),
507                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
508    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
509                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
510    { STATS_OFFSET32(tx_encap_failures),
511                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
512    { STATS_OFFSET32(tx_hw_queue_full),
513                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
514    { STATS_OFFSET32(tx_hw_max_queue_depth),
515                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
516    { STATS_OFFSET32(tx_dma_mapping_failure),
517                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
518    { STATS_OFFSET32(tx_max_drbr_queue_depth),
519                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
520    { STATS_OFFSET32(tx_window_violation_std),
521                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
522    { STATS_OFFSET32(tx_window_violation_tso),
523                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
524#if 0
525    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
526                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
527    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
528                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
529#endif
530    { STATS_OFFSET32(tx_chain_lost_mbuf),
531                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
532    { STATS_OFFSET32(tx_frames_deferred),
533                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
534    { STATS_OFFSET32(tx_queue_xoff),
535                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
536    { STATS_OFFSET32(mbuf_defrag_attempts),
537                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
538    { STATS_OFFSET32(mbuf_defrag_failures),
539                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
540    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
541                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
542    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
543                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
544    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
545                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
546    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
547                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
548    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
549                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
550    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
551                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
552    { STATS_OFFSET32(mbuf_alloc_tx),
553                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
554    { STATS_OFFSET32(mbuf_alloc_rx),
555                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
556    { STATS_OFFSET32(mbuf_alloc_sge),
557                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
558    { STATS_OFFSET32(mbuf_alloc_tpa),
559                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
560};
561
562static const struct {
563    uint32_t offset;
564    uint32_t size;
565    char string[STAT_NAME_LEN];
566} bxe_eth_q_stats_arr[] = {
567    { Q_STATS_OFFSET32(total_bytes_received_hi),
568                8, "rx_bytes" },
569    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
570                8, "rx_ucast_packets" },
571    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
572                8, "rx_mcast_packets" },
573    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
574                8, "rx_bcast_packets" },
575    { Q_STATS_OFFSET32(no_buff_discard_hi),
576                8, "rx_discards" },
577    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
578                8, "tx_bytes" },
579    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
580                8, "tx_ucast_packets" },
581    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
582                8, "tx_mcast_packets" },
583    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
584                8, "tx_bcast_packets" },
585    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
586                8, "tpa_aggregations" },
587    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
588                8, "tpa_aggregated_frames"},
589    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
590                8, "tpa_bytes"},
591    { Q_STATS_OFFSET32(rx_calls),
592                4, "rx_calls"},
593    { Q_STATS_OFFSET32(rx_pkts),
594                4, "rx_pkts"},
595    { Q_STATS_OFFSET32(rx_tpa_pkts),
596                4, "rx_tpa_pkts"},
597    { Q_STATS_OFFSET32(rx_soft_errors),
598                4, "rx_soft_errors"},
599    { Q_STATS_OFFSET32(rx_hw_csum_errors),
600                4, "rx_hw_csum_errors"},
601    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
602                4, "rx_ofld_frames_csum_ip"},
603    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
604                4, "rx_ofld_frames_csum_tcp_udp"},
605    { Q_STATS_OFFSET32(rx_budget_reached),
606                4, "rx_budget_reached"},
607    { Q_STATS_OFFSET32(tx_pkts),
608                4, "tx_pkts"},
609    { Q_STATS_OFFSET32(tx_soft_errors),
610                4, "tx_soft_errors"},
611    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
612                4, "tx_ofld_frames_csum_ip"},
613    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
614                4, "tx_ofld_frames_csum_tcp"},
615    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
616                4, "tx_ofld_frames_csum_udp"},
617    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
618                4, "tx_ofld_frames_lso"},
619    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
620                4, "tx_ofld_frames_lso_hdr_splits"},
621    { Q_STATS_OFFSET32(tx_encap_failures),
622                4, "tx_encap_failures"},
623    { Q_STATS_OFFSET32(tx_hw_queue_full),
624                4, "tx_hw_queue_full"},
625    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
626                4, "tx_hw_max_queue_depth"},
627    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
628                4, "tx_dma_mapping_failure"},
629    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
630                4, "tx_max_drbr_queue_depth"},
631    { Q_STATS_OFFSET32(tx_window_violation_std),
632                4, "tx_window_violation_std"},
633    { Q_STATS_OFFSET32(tx_window_violation_tso),
634                4, "tx_window_violation_tso"},
635#if 0
636    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
637                4, "tx_unsupported_tso_request_ipv6"},
638    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
639                4, "tx_unsupported_tso_request_not_tcp"},
640#endif
641    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
642                4, "tx_chain_lost_mbuf"},
643    { Q_STATS_OFFSET32(tx_frames_deferred),
644                4, "tx_frames_deferred"},
645    { Q_STATS_OFFSET32(tx_queue_xoff),
646                4, "tx_queue_xoff"},
647    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
648                4, "mbuf_defrag_attempts"},
649    { Q_STATS_OFFSET32(mbuf_defrag_failures),
650                4, "mbuf_defrag_failures"},
651    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
652                4, "mbuf_rx_bd_alloc_failed"},
653    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
654                4, "mbuf_rx_bd_mapping_failed"},
655    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
656                4, "mbuf_rx_tpa_alloc_failed"},
657    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
658                4, "mbuf_rx_tpa_mapping_failed"},
659    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
660                4, "mbuf_rx_sge_alloc_failed"},
661    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
662                4, "mbuf_rx_sge_mapping_failed"},
663    { Q_STATS_OFFSET32(mbuf_alloc_tx),
664                4, "mbuf_alloc_tx"},
665    { Q_STATS_OFFSET32(mbuf_alloc_rx),
666                4, "mbuf_alloc_rx"},
667    { Q_STATS_OFFSET32(mbuf_alloc_sge),
668                4, "mbuf_alloc_sge"},
669    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
670                4, "mbuf_alloc_tpa"}
671};
672
673#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
674#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
675
676
677static void    bxe_cmng_fns_init(struct bxe_softc *sc,
678                                 uint8_t          read_cfg,
679                                 uint8_t          cmng_type);
680static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
681static void    storm_memset_cmng(struct bxe_softc *sc,
682                                 struct cmng_init *cmng,
683                                 uint8_t          port);
684static void    bxe_set_reset_global(struct bxe_softc *sc);
685static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
686static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
687                                 int              engine);
688static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
689static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
690                                   uint8_t          *global,
691                                   uint8_t          print);
692static void    bxe_int_disable(struct bxe_softc *sc);
693static int     bxe_release_leader_lock(struct bxe_softc *sc);
694static void    bxe_pf_disable(struct bxe_softc *sc);
695static void    bxe_free_fp_buffers(struct bxe_softc *sc);
696static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
697                                      struct bxe_fastpath *fp,
698                                      uint16_t            rx_bd_prod,
699                                      uint16_t            rx_cq_prod,
700                                      uint16_t            rx_sge_prod);
701static void    bxe_link_report_locked(struct bxe_softc *sc);
702static void    bxe_link_report(struct bxe_softc *sc);
703static void    bxe_link_status_update(struct bxe_softc *sc);
704static void    bxe_periodic_callout_func(void *xsc);
705static void    bxe_periodic_start(struct bxe_softc *sc);
706static void    bxe_periodic_stop(struct bxe_softc *sc);
707static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
708                                    uint16_t prev_index,
709                                    uint16_t index);
710static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
711                                     int                 queue);
712static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
713                                     uint16_t            index);
714static uint8_t bxe_txeof(struct bxe_softc *sc,
715                         struct bxe_fastpath *fp);
716static void    bxe_task_fp(struct bxe_fastpath *fp);
717static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
718                                     struct mbuf      *m,
719                                     uint8_t          contents);
720static int     bxe_alloc_mem(struct bxe_softc *sc);
721static void    bxe_free_mem(struct bxe_softc *sc);
722static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
723static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
724static int     bxe_interrupt_attach(struct bxe_softc *sc);
725static void    bxe_interrupt_detach(struct bxe_softc *sc);
726static void    bxe_set_rx_mode(struct bxe_softc *sc);
727static int     bxe_init_locked(struct bxe_softc *sc);
728static int     bxe_stop_locked(struct bxe_softc *sc);
729static __noinline int bxe_nic_load(struct bxe_softc *sc,
730                                   int              load_mode);
731static __noinline int bxe_nic_unload(struct bxe_softc *sc,
732                                     uint32_t         unload_mode,
733                                     uint8_t          keep_link);
734
735static void bxe_handle_sp_tq(void *context, int pending);
736static void bxe_handle_rx_mode_tq(void *context, int pending);
737static void bxe_handle_fp_tq(void *context, int pending);
738
739
740/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
741uint32_t
742calc_crc32(uint8_t  *crc32_packet,
743           uint32_t crc32_length,
744           uint32_t crc32_seed,
745           uint8_t  complement)
746{
747   uint32_t byte         = 0;
748   uint32_t bit          = 0;
749   uint8_t  msb          = 0;
750   uint32_t temp         = 0;
751   uint32_t shft         = 0;
752   uint8_t  current_byte = 0;
753   uint32_t crc32_result = crc32_seed;
754   const uint32_t CRC32_POLY = 0x1edc6f41;
755
756   if ((crc32_packet == NULL) ||
757       (crc32_length == 0) ||
758       ((crc32_length % 8) != 0))
759    {
760        return (crc32_result);
761    }
762
763    for (byte = 0; byte < crc32_length; byte = byte + 1)
764    {
765        current_byte = crc32_packet[byte];
766        for (bit = 0; bit < 8; bit = bit + 1)
767        {
768            /* msb = crc32_result[31]; */
769            msb = (uint8_t)(crc32_result >> 31);
770
771            crc32_result = crc32_result << 1;
772
773            /* it (msb != current_byte[bit]) */
774            if (msb != (0x1 & (current_byte >> bit)))
775            {
776                crc32_result = crc32_result ^ CRC32_POLY;
777                /* crc32_result[0] = 1 */
778                crc32_result |= 1;
779            }
780        }
781    }
782
783    /* Last step is to:
784     * 1. "mirror" every bit
785     * 2. swap the 4 bytes
786     * 3. complement each bit
787     */
788
789    /* Mirror */
790    temp = crc32_result;
791    shft = sizeof(crc32_result) * 8 - 1;
792
793    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
794    {
795        temp <<= 1;
796        temp |= crc32_result & 1;
797        shft-- ;
798    }
799
800    /* temp[31-bit] = crc32_result[bit] */
801    temp <<= shft;
802
803    /* Swap */
804    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
805    {
806        uint32_t t0, t1, t2, t3;
807        t0 = (0x000000ff & (temp >> 24));
808        t1 = (0x0000ff00 & (temp >> 8));
809        t2 = (0x00ff0000 & (temp << 8));
810        t3 = (0xff000000 & (temp << 24));
811        crc32_result = t0 | t1 | t2 | t3;
812    }
813
814    /* Complement */
815    if (complement)
816    {
817        crc32_result = ~crc32_result;
818    }
819
820    return (crc32_result);
821}
822
823int
824bxe_test_bit(int                    nr,
825             volatile unsigned long *addr)
826{
827    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
828}
829
830void
831bxe_set_bit(unsigned int           nr,
832            volatile unsigned long *addr)
833{
834    atomic_set_acq_long(addr, (1 << nr));
835}
836
837void
838bxe_clear_bit(int                    nr,
839              volatile unsigned long *addr)
840{
841    atomic_clear_acq_long(addr, (1 << nr));
842}
843
844int
845bxe_test_and_set_bit(int                    nr,
846                       volatile unsigned long *addr)
847{
848    unsigned long x;
849    nr = (1 << nr);
850    do {
851        x = *addr;
852    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
853    // if (x & nr) bit_was_set; else bit_was_not_set;
854    return (x & nr);
855}
856
857int
858bxe_test_and_clear_bit(int                    nr,
859                       volatile unsigned long *addr)
860{
861    unsigned long x;
862    nr = (1 << nr);
863    do {
864        x = *addr;
865    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
866    // if (x & nr) bit_was_set; else bit_was_not_set;
867    return (x & nr);
868}
869
870int
871bxe_cmpxchg(volatile int *addr,
872            int          old,
873            int          new)
874{
875    int x;
876    do {
877        x = *addr;
878    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
879    return (x);
880}
881
882/*
883 * Get DMA memory from the OS.
884 *
885 * Validates that the OS has provided DMA buffers in response to a
886 * bus_dmamap_load call and saves the physical address of those buffers.
887 * When the callback is used the OS will return 0 for the mapping function
888 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
889 * failures back to the caller.
890 *
891 * Returns:
892 *   Nothing.
893 */
894static void
895bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
896{
897    struct bxe_dma *dma = arg;
898
899    if (error) {
900        dma->paddr = 0;
901        dma->nseg  = 0;
902        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
903    } else {
904        dma->paddr = segs->ds_addr;
905        dma->nseg  = nseg;
906#if 0
907        BLOGD(dma->sc, DBG_LOAD,
908              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
909              dma->msg, dma->vaddr, (void *)dma->paddr,
910              dma->nseg, dma->size);
911#endif
912    }
913}
914
915/*
916 * Allocate a block of memory and map it for DMA. No partial completions
917 * allowed and release any resources acquired if we can't acquire all
918 * resources.
919 *
920 * Returns:
921 *   0 = Success, !0 = Failure
922 */
923int
924bxe_dma_alloc(struct bxe_softc *sc,
925              bus_size_t       size,
926              struct bxe_dma   *dma,
927              const char       *msg)
928{
929    int rc;
930
931    if (dma->size > 0) {
932        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
933              (unsigned long)dma->size);
934        return (1);
935    }
936
937    memset(dma, 0, sizeof(*dma)); /* sanity */
938    dma->sc   = sc;
939    dma->size = size;
940    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
941
942    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
943                            BCM_PAGE_SIZE,      /* alignment */
944                            0,                  /* boundary limit */
945                            BUS_SPACE_MAXADDR,  /* restricted low */
946                            BUS_SPACE_MAXADDR,  /* restricted hi */
947                            NULL,               /* addr filter() */
948                            NULL,               /* addr filter() arg */
949                            size,               /* max map size */
950                            1,                  /* num discontinuous */
951                            size,               /* max seg size */
952                            BUS_DMA_ALLOCNOW,   /* flags */
953                            NULL,               /* lock() */
954                            NULL,               /* lock() arg */
955                            &dma->tag);         /* returned dma tag */
956    if (rc != 0) {
957        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    rc = bus_dmamem_alloc(dma->tag,
963                          (void **)&dma->vaddr,
964                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
965                          &dma->map);
966    if (rc != 0) {
967        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
968        bus_dma_tag_destroy(dma->tag);
969        memset(dma, 0, sizeof(*dma));
970        return (1);
971    }
972
973    rc = bus_dmamap_load(dma->tag,
974                         dma->map,
975                         dma->vaddr,
976                         size,
977                         bxe_dma_map_addr, /* BLOGD in here */
978                         dma,
979                         BUS_DMA_NOWAIT);
980    if (rc != 0) {
981        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
982        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
983        bus_dma_tag_destroy(dma->tag);
984        memset(dma, 0, sizeof(*dma));
985        return (1);
986    }
987
988    return (0);
989}
990
991void
992bxe_dma_free(struct bxe_softc *sc,
993             struct bxe_dma   *dma)
994{
995    if (dma->size > 0) {
996#if 0
997        BLOGD(sc, DBG_LOAD,
998              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
999              dma->msg, dma->vaddr, (void *)dma->paddr,
1000              dma->nseg, dma->size);
1001#endif
1002
1003        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1004
1005        bus_dmamap_sync(dma->tag, dma->map,
1006                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1007        bus_dmamap_unload(dma->tag, dma->map);
1008        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1009        bus_dma_tag_destroy(dma->tag);
1010    }
1011
1012    memset(dma, 0, sizeof(*dma));
1013}
1014
1015/*
1016 * These indirect read and write routines are only during init.
1017 * The locking is handled by the MCP.
1018 */
1019
1020void
1021bxe_reg_wr_ind(struct bxe_softc *sc,
1022               uint32_t         addr,
1023               uint32_t         val)
1024{
1025    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1027    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028}
1029
1030uint32_t
1031bxe_reg_rd_ind(struct bxe_softc *sc,
1032               uint32_t         addr)
1033{
1034    uint32_t val;
1035
1036    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1037    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1038    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1039
1040    return (val);
1041}
1042
1043#if 0
1044void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1045{
1046    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1047
1048    switch (dmae->opcode & DMAE_COMMAND_DST) {
1049    case DMAE_CMD_DST_PCI:
1050        if (src_type == DMAE_CMD_SRC_PCI)
1051            DP(msglvl, "DMAE: opcode 0x%08x\n"
1052               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1053               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1055               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056               dmae->comp_addr_hi, dmae->comp_addr_lo,
1057               dmae->comp_val);
1058        else
1059            DP(msglvl, "DMAE: opcode 0x%08x\n"
1060               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1061               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1062               dmae->opcode, dmae->src_addr_lo >> 2,
1063               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1064               dmae->comp_addr_hi, dmae->comp_addr_lo,
1065               dmae->comp_val);
1066        break;
1067    case DMAE_CMD_DST_GRC:
1068        if (src_type == DMAE_CMD_SRC_PCI)
1069            DP(msglvl, "DMAE: opcode 0x%08x\n"
1070               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1071               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1073               dmae->len, dmae->dst_addr_lo >> 2,
1074               dmae->comp_addr_hi, dmae->comp_addr_lo,
1075               dmae->comp_val);
1076        else
1077            DP(msglvl, "DMAE: opcode 0x%08x\n"
1078               "src [%08x], len [%d*4], dst [%08x]\n"
1079               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1080               dmae->opcode, dmae->src_addr_lo >> 2,
1081               dmae->len, dmae->dst_addr_lo >> 2,
1082               dmae->comp_addr_hi, dmae->comp_addr_lo,
1083               dmae->comp_val);
1084        break;
1085    default:
1086        if (src_type == DMAE_CMD_SRC_PCI)
1087            DP(msglvl, "DMAE: opcode 0x%08x\n"
1088               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1089               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1090               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1091               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1092               dmae->comp_val);
1093        else
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_lo >> 2,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        break;
1101    }
1102
1103}
1104#endif
1105
1106static int
1107bxe_acquire_hw_lock(struct bxe_softc *sc,
1108                    uint32_t         resource)
1109{
1110    uint32_t lock_status;
1111    uint32_t resource_bit = (1 << resource);
1112    int func = SC_FUNC(sc);
1113    uint32_t hw_lock_control_reg;
1114    int cnt;
1115
1116    /* validate the resource is within range */
1117    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1118        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1119        return (-1);
1120    }
1121
1122    if (func <= 5) {
1123        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1124    } else {
1125        hw_lock_control_reg =
1126                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1127    }
1128
1129    /* validate the resource is not already taken */
1130    lock_status = REG_RD(sc, hw_lock_control_reg);
1131    if (lock_status & resource_bit) {
1132        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1133              lock_status, resource_bit);
1134        return (-1);
1135    }
1136
1137    /* try every 5ms for 5 seconds */
1138    for (cnt = 0; cnt < 1000; cnt++) {
1139        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1140        lock_status = REG_RD(sc, hw_lock_control_reg);
1141        if (lock_status & resource_bit) {
1142            return (0);
1143        }
1144        DELAY(5000);
1145    }
1146
1147    BLOGE(sc, "Resource lock timeout!\n");
1148    return (-1);
1149}
1150
1151static int
1152bxe_release_hw_lock(struct bxe_softc *sc,
1153                    uint32_t         resource)
1154{
1155    uint32_t lock_status;
1156    uint32_t resource_bit = (1 << resource);
1157    int func = SC_FUNC(sc);
1158    uint32_t hw_lock_control_reg;
1159
1160    /* validate the resource is within range */
1161    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1162        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1163        return (-1);
1164    }
1165
1166    if (func <= 5) {
1167        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1168    } else {
1169        hw_lock_control_reg =
1170                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1171    }
1172
1173    /* validate the resource is currently taken */
1174    lock_status = REG_RD(sc, hw_lock_control_reg);
1175    if (!(lock_status & resource_bit)) {
1176        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1177              lock_status, resource_bit);
1178        return (-1);
1179    }
1180
1181    REG_WR(sc, hw_lock_control_reg, resource_bit);
1182    return (0);
1183}
1184
1185/*
1186 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1187 * had we done things the other way around, if two pfs from the same port
1188 * would attempt to access nvram at the same time, we could run into a
1189 * scenario such as:
1190 * pf A takes the port lock.
1191 * pf B succeeds in taking the same lock since they are from the same port.
1192 * pf A takes the per pf misc lock. Performs eeprom access.
1193 * pf A finishes. Unlocks the per pf misc lock.
1194 * Pf B takes the lock and proceeds to perform it's own access.
1195 * pf A unlocks the per port lock, while pf B is still working (!).
1196 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1197 * access corrupted by pf B).*
1198 */
1199static int
1200bxe_acquire_nvram_lock(struct bxe_softc *sc)
1201{
1202    int port = SC_PORT(sc);
1203    int count, i;
1204    uint32_t val = 0;
1205
1206    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1207    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1208
1209    /* adjust timeout for emulation/FPGA */
1210    count = NVRAM_TIMEOUT_COUNT;
1211    if (CHIP_REV_IS_SLOW(sc)) {
1212        count *= 100;
1213    }
1214
1215    /* request access to nvram interface */
1216    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1217           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1218
1219    for (i = 0; i < count*10; i++) {
1220        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1221        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1222            break;
1223        }
1224
1225        DELAY(5);
1226    }
1227
1228    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1229        BLOGE(sc, "Cannot get access to nvram interface\n");
1230        return (-1);
1231    }
1232
1233    return (0);
1234}
1235
1236static int
1237bxe_release_nvram_lock(struct bxe_softc *sc)
1238{
1239    int port = SC_PORT(sc);
1240    int count, i;
1241    uint32_t val = 0;
1242
1243    /* adjust timeout for emulation/FPGA */
1244    count = NVRAM_TIMEOUT_COUNT;
1245    if (CHIP_REV_IS_SLOW(sc)) {
1246        count *= 100;
1247    }
1248
1249    /* relinquish nvram interface */
1250    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1251           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1252
1253    for (i = 0; i < count*10; i++) {
1254        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1255        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1256            break;
1257        }
1258
1259        DELAY(5);
1260    }
1261
1262    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1263        BLOGE(sc, "Cannot free access to nvram interface\n");
1264        return (-1);
1265    }
1266
1267    /* release HW lock: protect against other PFs in PF Direct Assignment */
1268    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1269
1270    return (0);
1271}
1272
1273static void
1274bxe_enable_nvram_access(struct bxe_softc *sc)
1275{
1276    uint32_t val;
1277
1278    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1279
1280    /* enable both bits, even on read */
1281    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1282           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1283}
1284
1285static void
1286bxe_disable_nvram_access(struct bxe_softc *sc)
1287{
1288    uint32_t val;
1289
1290    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1291
1292    /* disable both bits, even after read */
1293    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1294           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1295                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1296}
1297
1298static int
1299bxe_nvram_read_dword(struct bxe_softc *sc,
1300                     uint32_t         offset,
1301                     uint32_t         *ret_val,
1302                     uint32_t         cmd_flags)
1303{
1304    int count, i, rc;
1305    uint32_t val;
1306
1307    /* build the command word */
1308    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1309
1310    /* need to clear DONE bit separately */
1311    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1312
1313    /* address of the NVRAM to read from */
1314    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1315           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1316
1317    /* issue a read command */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1319
1320    /* adjust timeout for emulation/FPGA */
1321    count = NVRAM_TIMEOUT_COUNT;
1322    if (CHIP_REV_IS_SLOW(sc)) {
1323        count *= 100;
1324    }
1325
1326    /* wait for completion */
1327    *ret_val = 0;
1328    rc = -1;
1329    for (i = 0; i < count; i++) {
1330        DELAY(5);
1331        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1332
1333        if (val & MCPR_NVM_COMMAND_DONE) {
1334            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1335            /* we read nvram data in cpu order
1336             * but ethtool sees it as an array of bytes
1337             * converting to big-endian will do the work
1338             */
1339            *ret_val = htobe32(val);
1340            rc = 0;
1341            break;
1342        }
1343    }
1344
1345    if (rc == -1) {
1346        BLOGE(sc, "nvram read timeout expired\n");
1347    }
1348
1349    return (rc);
1350}
1351
1352static int
1353bxe_nvram_read(struct bxe_softc *sc,
1354               uint32_t         offset,
1355               uint8_t          *ret_buf,
1356               int              buf_size)
1357{
1358    uint32_t cmd_flags;
1359    uint32_t val;
1360    int rc;
1361
1362    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1363        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1364              offset, buf_size);
1365        return (-1);
1366    }
1367
1368    if ((offset + buf_size) > sc->devinfo.flash_size) {
1369        BLOGE(sc, "Invalid parameter, "
1370                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1371              offset, buf_size, sc->devinfo.flash_size);
1372        return (-1);
1373    }
1374
1375    /* request access to nvram interface */
1376    rc = bxe_acquire_nvram_lock(sc);
1377    if (rc) {
1378        return (rc);
1379    }
1380
1381    /* enable access to nvram interface */
1382    bxe_enable_nvram_access(sc);
1383
1384    /* read the first word(s) */
1385    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1386    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1387        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1388        memcpy(ret_buf, &val, 4);
1389
1390        /* advance to the next dword */
1391        offset += sizeof(uint32_t);
1392        ret_buf += sizeof(uint32_t);
1393        buf_size -= sizeof(uint32_t);
1394        cmd_flags = 0;
1395    }
1396
1397    if (rc == 0) {
1398        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1399        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1400        memcpy(ret_buf, &val, 4);
1401    }
1402
1403    /* disable access to nvram interface */
1404    bxe_disable_nvram_access(sc);
1405    bxe_release_nvram_lock(sc);
1406
1407    return (rc);
1408}
1409
1410static int
1411bxe_nvram_write_dword(struct bxe_softc *sc,
1412                      uint32_t         offset,
1413                      uint32_t         val,
1414                      uint32_t         cmd_flags)
1415{
1416    int count, i, rc;
1417
1418    /* build the command word */
1419    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1420
1421    /* need to clear DONE bit separately */
1422    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1423
1424    /* write the data */
1425    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1426
1427    /* address of the NVRAM to write to */
1428    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1429           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1430
1431    /* issue the write command */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1433
1434    /* adjust timeout for emulation/FPGA */
1435    count = NVRAM_TIMEOUT_COUNT;
1436    if (CHIP_REV_IS_SLOW(sc)) {
1437        count *= 100;
1438    }
1439
1440    /* wait for completion */
1441    rc = -1;
1442    for (i = 0; i < count; i++) {
1443        DELAY(5);
1444        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1445        if (val & MCPR_NVM_COMMAND_DONE) {
1446            rc = 0;
1447            break;
1448        }
1449    }
1450
1451    if (rc == -1) {
1452        BLOGE(sc, "nvram write timeout expired\n");
1453    }
1454
1455    return (rc);
1456}
1457
1458#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1459
1460static int
1461bxe_nvram_write1(struct bxe_softc *sc,
1462                 uint32_t         offset,
1463                 uint8_t          *data_buf,
1464                 int              buf_size)
1465{
1466    uint32_t cmd_flags;
1467    uint32_t align_offset;
1468    uint32_t val;
1469    int rc;
1470
1471    if ((offset + buf_size) > sc->devinfo.flash_size) {
1472        BLOGE(sc, "Invalid parameter, "
1473                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1474              offset, buf_size, sc->devinfo.flash_size);
1475        return (-1);
1476    }
1477
1478    /* request access to nvram interface */
1479    rc = bxe_acquire_nvram_lock(sc);
1480    if (rc) {
1481        return (rc);
1482    }
1483
1484    /* enable access to nvram interface */
1485    bxe_enable_nvram_access(sc);
1486
1487    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1488    align_offset = (offset & ~0x03);
1489    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1490
1491    if (rc == 0) {
1492        val &= ~(0xff << BYTE_OFFSET(offset));
1493        val |= (*data_buf << BYTE_OFFSET(offset));
1494
1495        /* nvram data is returned as an array of bytes
1496         * convert it back to cpu order
1497         */
1498        val = be32toh(val);
1499
1500        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1501    }
1502
1503    /* disable access to nvram interface */
1504    bxe_disable_nvram_access(sc);
1505    bxe_release_nvram_lock(sc);
1506
1507    return (rc);
1508}
1509
1510static int
1511bxe_nvram_write(struct bxe_softc *sc,
1512                uint32_t         offset,
1513                uint8_t          *data_buf,
1514                int              buf_size)
1515{
1516    uint32_t cmd_flags;
1517    uint32_t val;
1518    uint32_t written_so_far;
1519    int rc;
1520
1521    if (buf_size == 1) {
1522        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1523    }
1524
1525    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1526        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1527              offset, buf_size);
1528        return (-1);
1529    }
1530
1531    if (buf_size == 0) {
1532        return (0); /* nothing to do */
1533    }
1534
1535    if ((offset + buf_size) > sc->devinfo.flash_size) {
1536        BLOGE(sc, "Invalid parameter, "
1537                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1538              offset, buf_size, sc->devinfo.flash_size);
1539        return (-1);
1540    }
1541
1542    /* request access to nvram interface */
1543    rc = bxe_acquire_nvram_lock(sc);
1544    if (rc) {
1545        return (rc);
1546    }
1547
1548    /* enable access to nvram interface */
1549    bxe_enable_nvram_access(sc);
1550
1551    written_so_far = 0;
1552    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1553    while ((written_so_far < buf_size) && (rc == 0)) {
1554        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1555            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1556        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1557            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1559            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1560        }
1561
1562        memcpy(&val, data_buf, 4);
1563
1564        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1565
1566        /* advance to the next dword */
1567        offset += sizeof(uint32_t);
1568        data_buf += sizeof(uint32_t);
1569        written_so_far += sizeof(uint32_t);
1570        cmd_flags = 0;
1571    }
1572
1573    /* disable access to nvram interface */
1574    bxe_disable_nvram_access(sc);
1575    bxe_release_nvram_lock(sc);
1576
1577    return (rc);
1578}
1579
1580/* copy command into DMAE command memory and set DMAE command Go */
1581void
1582bxe_post_dmae(struct bxe_softc    *sc,
1583              struct dmae_command *dmae,
1584              int                 idx)
1585{
1586    uint32_t cmd_offset;
1587    int i;
1588
1589    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1590    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1591        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1592    }
1593
1594    REG_WR(sc, dmae_reg_go_c[idx], 1);
1595}
1596
1597uint32_t
1598bxe_dmae_opcode_add_comp(uint32_t opcode,
1599                         uint8_t  comp_type)
1600{
1601    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1602                      DMAE_COMMAND_C_TYPE_ENABLE));
1603}
1604
1605uint32_t
1606bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1607{
1608    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1609}
1610
1611uint32_t
1612bxe_dmae_opcode(struct bxe_softc *sc,
1613                uint8_t          src_type,
1614                uint8_t          dst_type,
1615                uint8_t          with_comp,
1616                uint8_t          comp_type)
1617{
1618    uint32_t opcode = 0;
1619
1620    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1621               (dst_type << DMAE_COMMAND_DST_SHIFT));
1622
1623    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1624
1625    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1626
1627    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1628               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1629
1630    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1631
1632#ifdef __BIG_ENDIAN
1633    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1634#else
1635    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1636#endif
1637
1638    if (with_comp) {
1639        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1640    }
1641
1642    return (opcode);
1643}
1644
1645static void
1646bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1647                        struct dmae_command *dmae,
1648                        uint8_t             src_type,
1649                        uint8_t             dst_type)
1650{
1651    memset(dmae, 0, sizeof(struct dmae_command));
1652
1653    /* set the opcode */
1654    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1655                                   TRUE, DMAE_COMP_PCI);
1656
1657    /* fill in the completion parameters */
1658    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1659    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1660    dmae->comp_val     = DMAE_COMP_VAL;
1661}
1662
1663/* issue a DMAE command over the init channel and wait for completion */
1664static int
1665bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1666                         struct dmae_command *dmae)
1667{
1668    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1669    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1670
1671    BXE_DMAE_LOCK(sc);
1672
1673    /* reset completion */
1674    *wb_comp = 0;
1675
1676    /* post the command on the channel used for initializations */
1677    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1678
1679    /* wait for completion */
1680    DELAY(5);
1681
1682    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1683        if (!timeout ||
1684            (sc->recovery_state != BXE_RECOVERY_DONE &&
1685             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1686            BLOGE(sc, "DMAE timeout!\n");
1687            BXE_DMAE_UNLOCK(sc);
1688            return (DMAE_TIMEOUT);
1689        }
1690
1691        timeout--;
1692        DELAY(50);
1693    }
1694
1695    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1696        BLOGE(sc, "DMAE PCI error!\n");
1697        BXE_DMAE_UNLOCK(sc);
1698        return (DMAE_PCI_ERROR);
1699    }
1700
1701    BXE_DMAE_UNLOCK(sc);
1702    return (0);
1703}
1704
1705void
1706bxe_read_dmae(struct bxe_softc *sc,
1707              uint32_t         src_addr,
1708              uint32_t         len32)
1709{
1710    struct dmae_command dmae;
1711    uint32_t *data;
1712    int i, rc;
1713
1714    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1715
1716    if (!sc->dmae_ready) {
1717        data = BXE_SP(sc, wb_data[0]);
1718
1719        for (i = 0; i < len32; i++) {
1720            data[i] = (CHIP_IS_E1(sc)) ?
1721                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1722                          REG_RD(sc, (src_addr + (i * 4)));
1723        }
1724
1725        return;
1726    }
1727
1728    /* set opcode and fixed command fields */
1729    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1730
1731    /* fill in addresses and len */
1732    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1733    dmae.src_addr_hi = 0;
1734    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1735    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1736    dmae.len         = len32;
1737
1738    /* issue the command and wait for completion */
1739    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1740        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1741    };
1742}
1743
1744void
1745bxe_write_dmae(struct bxe_softc *sc,
1746               bus_addr_t       dma_addr,
1747               uint32_t         dst_addr,
1748               uint32_t         len32)
1749{
1750    struct dmae_command dmae;
1751    int rc;
1752
1753    if (!sc->dmae_ready) {
1754        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1755
1756        if (CHIP_IS_E1(sc)) {
1757            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1758        } else {
1759            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760        }
1761
1762        return;
1763    }
1764
1765    /* set opcode and fixed command fields */
1766    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1767
1768    /* fill in addresses and len */
1769    dmae.src_addr_lo = U64_LO(dma_addr);
1770    dmae.src_addr_hi = U64_HI(dma_addr);
1771    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1772    dmae.dst_addr_hi = 0;
1773    dmae.len         = len32;
1774
1775    /* issue the command and wait for completion */
1776    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1777        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1778    }
1779}
1780
1781void
1782bxe_write_dmae_phys_len(struct bxe_softc *sc,
1783                        bus_addr_t       phys_addr,
1784                        uint32_t         addr,
1785                        uint32_t         len)
1786{
1787    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1788    int offset = 0;
1789
1790    while (len > dmae_wr_max) {
1791        bxe_write_dmae(sc,
1792                       (phys_addr + offset), /* src DMA address */
1793                       (addr + offset),      /* dst GRC address */
1794                       dmae_wr_max);
1795        offset += (dmae_wr_max * 4);
1796        len -= dmae_wr_max;
1797    }
1798
1799    bxe_write_dmae(sc,
1800                   (phys_addr + offset), /* src DMA address */
1801                   (addr + offset),      /* dst GRC address */
1802                   len);
1803}
1804
1805void
1806bxe_set_ctx_validation(struct bxe_softc   *sc,
1807                       struct eth_context *cxt,
1808                       uint32_t           cid)
1809{
1810    /* ustorm cxt validation */
1811    cxt->ustorm_ag_context.cdu_usage =
1812        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1813            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1814    /* xcontext validation */
1815    cxt->xstorm_ag_context.cdu_reserved =
1816        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1817            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1818}
1819
1820static void
1821bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1822                            uint8_t          port,
1823                            uint8_t          fw_sb_id,
1824                            uint8_t          sb_index,
1825                            uint8_t          ticks)
1826{
1827    uint32_t addr =
1828        (BAR_CSTRORM_INTMEM +
1829         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1830
1831    REG_WR8(sc, addr, ticks);
1832
1833    BLOGD(sc, DBG_LOAD,
1834          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1835          port, fw_sb_id, sb_index, ticks);
1836}
1837
1838static void
1839bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1840                            uint8_t          port,
1841                            uint16_t         fw_sb_id,
1842                            uint8_t          sb_index,
1843                            uint8_t          disable)
1844{
1845    uint32_t enable_flag =
1846        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1847    uint32_t addr =
1848        (BAR_CSTRORM_INTMEM +
1849         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1850    uint8_t flags;
1851
1852    /* clear and set */
1853    flags = REG_RD8(sc, addr);
1854    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1855    flags |= enable_flag;
1856    REG_WR8(sc, addr, flags);
1857
1858    BLOGD(sc, DBG_LOAD,
1859          "port %d fw_sb_id %d sb_index %d disable %d\n",
1860          port, fw_sb_id, sb_index, disable);
1861}
1862
1863void
1864bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1865                             uint8_t          fw_sb_id,
1866                             uint8_t          sb_index,
1867                             uint8_t          disable,
1868                             uint16_t         usec)
1869{
1870    int port = SC_PORT(sc);
1871    uint8_t ticks = (usec / 4); /* XXX ??? */
1872
1873    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1874
1875    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1876    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1877}
1878
1879void
1880elink_cb_udelay(struct bxe_softc *sc,
1881                uint32_t         usecs)
1882{
1883    DELAY(usecs);
1884}
1885
1886uint32_t
1887elink_cb_reg_read(struct bxe_softc *sc,
1888                  uint32_t         reg_addr)
1889{
1890    return (REG_RD(sc, reg_addr));
1891}
1892
1893void
1894elink_cb_reg_write(struct bxe_softc *sc,
1895                   uint32_t         reg_addr,
1896                   uint32_t         val)
1897{
1898    REG_WR(sc, reg_addr, val);
1899}
1900
1901void
1902elink_cb_reg_wb_write(struct bxe_softc *sc,
1903                      uint32_t         offset,
1904                      uint32_t         *wb_write,
1905                      uint16_t         len)
1906{
1907    REG_WR_DMAE(sc, offset, wb_write, len);
1908}
1909
1910void
1911elink_cb_reg_wb_read(struct bxe_softc *sc,
1912                     uint32_t         offset,
1913                     uint32_t         *wb_write,
1914                     uint16_t         len)
1915{
1916    REG_RD_DMAE(sc, offset, wb_write, len);
1917}
1918
1919uint8_t
1920elink_cb_path_id(struct bxe_softc *sc)
1921{
1922    return (SC_PATH(sc));
1923}
1924
1925void
1926elink_cb_event_log(struct bxe_softc     *sc,
1927                   const elink_log_id_t elink_log_id,
1928                   ...)
1929{
1930    /* XXX */
1931#if 0
1932    //va_list ap;
1933    va_start(ap, elink_log_id);
1934    _XXX_(sc, lm_log_id, ap);
1935    va_end(ap);
1936#endif
1937    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1938}
1939
1940static int
1941bxe_set_spio(struct bxe_softc *sc,
1942             int              spio,
1943             uint32_t         mode)
1944{
1945    uint32_t spio_reg;
1946
1947    /* Only 2 SPIOs are configurable */
1948    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1949        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1950        return (-1);
1951    }
1952
1953    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1954
1955    /* read SPIO and mask except the float bits */
1956    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1957
1958    switch (mode) {
1959    case MISC_SPIO_OUTPUT_LOW:
1960        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1961        /* clear FLOAT and set CLR */
1962        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1963        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1964        break;
1965
1966    case MISC_SPIO_OUTPUT_HIGH:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1968        /* clear FLOAT and set SET */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1971        break;
1972
1973    case MISC_SPIO_INPUT_HI_Z:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1975        /* set FLOAT */
1976        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1977        break;
1978
1979    default:
1980        break;
1981    }
1982
1983    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1984    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1985
1986    return (0);
1987}
1988
1989static int
1990bxe_gpio_read(struct bxe_softc *sc,
1991              int              gpio_num,
1992              uint8_t          port)
1993{
1994    /* The GPIO should be swapped if swap register is set and active */
1995    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1996                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1997    int gpio_shift = (gpio_num +
1998                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1999    uint32_t gpio_mask = (1 << gpio_shift);
2000    uint32_t gpio_reg;
2001
2002    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2003        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2004        return (-1);
2005    }
2006
2007    /* read GPIO value */
2008    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2009
2010    /* get the requested pin value */
2011    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2012}
2013
2014static int
2015bxe_gpio_write(struct bxe_softc *sc,
2016               int              gpio_num,
2017               uint32_t         mode,
2018               uint8_t          port)
2019{
2020    /* The GPIO should be swapped if swap register is set and active */
2021    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2022                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2023    int gpio_shift = (gpio_num +
2024                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2025    uint32_t gpio_mask = (1 << gpio_shift);
2026    uint32_t gpio_reg;
2027
2028    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2030        return (-1);
2031    }
2032
2033    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2034
2035    /* read GPIO and mask except the float bits */
2036    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2037
2038    switch (mode) {
2039    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2040        BLOGD(sc, DBG_PHY,
2041              "Set GPIO %d (shift %d) -> output low\n",
2042              gpio_num, gpio_shift);
2043        /* clear FLOAT and set CLR */
2044        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2045        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2046        break;
2047
2048    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2049        BLOGD(sc, DBG_PHY,
2050              "Set GPIO %d (shift %d) -> output high\n",
2051              gpio_num, gpio_shift);
2052        /* clear FLOAT and set SET */
2053        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2054        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2055        break;
2056
2057    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2058        BLOGD(sc, DBG_PHY,
2059              "Set GPIO %d (shift %d) -> input\n",
2060              gpio_num, gpio_shift);
2061        /* set FLOAT */
2062        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2063        break;
2064
2065    default:
2066        break;
2067    }
2068
2069    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2070    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071
2072    return (0);
2073}
2074
2075static int
2076bxe_gpio_mult_write(struct bxe_softc *sc,
2077                    uint8_t          pins,
2078                    uint32_t         mode)
2079{
2080    uint32_t gpio_reg;
2081
2082    /* any port swapping should be handled by caller */
2083
2084    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2085
2086    /* read GPIO and mask except the float bits */
2087    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2088    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2089    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2090    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2091
2092    switch (mode) {
2093    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2094        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2095        /* set CLR */
2096        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2097        break;
2098
2099    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2100        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2101        /* set SET */
2102        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2103        break;
2104
2105    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2106        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2107        /* set FLOAT */
2108        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2109        break;
2110
2111    default:
2112        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2113        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2114        return (-1);
2115    }
2116
2117    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2118    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2119
2120    return (0);
2121}
2122
2123static int
2124bxe_gpio_int_write(struct bxe_softc *sc,
2125                   int              gpio_num,
2126                   uint32_t         mode,
2127                   uint8_t          port)
2128{
2129    /* The GPIO should be swapped if swap register is set and active */
2130    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2131                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2132    int gpio_shift = (gpio_num +
2133                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2134    uint32_t gpio_mask = (1 << gpio_shift);
2135    uint32_t gpio_reg;
2136
2137    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2138        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2139        return (-1);
2140    }
2141
2142    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2143
2144    /* read GPIO int */
2145    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2146
2147    switch (mode) {
2148    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149        BLOGD(sc, DBG_PHY,
2150              "Clear GPIO INT %d (shift %d) -> output low\n",
2151              gpio_num, gpio_shift);
2152        /* clear SET and set CLR */
2153        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155        break;
2156
2157    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158        BLOGD(sc, DBG_PHY,
2159              "Set GPIO INT %d (shift %d) -> output high\n",
2160              gpio_num, gpio_shift);
2161        /* clear CLR and set SET */
2162        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164        break;
2165
2166    default:
2167        break;
2168    }
2169
2170    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2171    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2172
2173    return (0);
2174}
2175
2176uint32_t
2177elink_cb_gpio_read(struct bxe_softc *sc,
2178                   uint16_t         gpio_num,
2179                   uint8_t          port)
2180{
2181    return (bxe_gpio_read(sc, gpio_num, port));
2182}
2183
2184uint8_t
2185elink_cb_gpio_write(struct bxe_softc *sc,
2186                    uint16_t         gpio_num,
2187                    uint8_t          mode, /* 0=low 1=high */
2188                    uint8_t          port)
2189{
2190    return (bxe_gpio_write(sc, gpio_num, mode, port));
2191}
2192
2193uint8_t
2194elink_cb_gpio_mult_write(struct bxe_softc *sc,
2195                         uint8_t          pins,
2196                         uint8_t          mode) /* 0=low 1=high */
2197{
2198    return (bxe_gpio_mult_write(sc, pins, mode));
2199}
2200
2201uint8_t
2202elink_cb_gpio_int_write(struct bxe_softc *sc,
2203                        uint16_t         gpio_num,
2204                        uint8_t          mode, /* 0=low 1=high */
2205                        uint8_t          port)
2206{
2207    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2208}
2209
2210void
2211elink_cb_notify_link_changed(struct bxe_softc *sc)
2212{
2213    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2214                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2215}
2216
2217/* send the MCP a request, block until there is a reply */
2218uint32_t
2219elink_cb_fw_command(struct bxe_softc *sc,
2220                    uint32_t         command,
2221                    uint32_t         param)
2222{
2223    int mb_idx = SC_FW_MB_IDX(sc);
2224    uint32_t seq;
2225    uint32_t rc = 0;
2226    uint32_t cnt = 1;
2227    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2228
2229    BXE_FWMB_LOCK(sc);
2230
2231    seq = ++sc->fw_seq;
2232    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2233    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2234
2235    BLOGD(sc, DBG_PHY,
2236          "wrote command 0x%08x to FW MB param 0x%08x\n",
2237          (command | seq), param);
2238
2239    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2240    do {
2241        DELAY(delay * 1000);
2242        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2243    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2244
2245    BLOGD(sc, DBG_PHY,
2246          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2247          cnt*delay, rc, seq);
2248
2249    /* is this a reply to our command? */
2250    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2251        rc &= FW_MSG_CODE_MASK;
2252    } else {
2253        /* Ruh-roh! */
2254        BLOGE(sc, "FW failed to respond!\n");
2255        // XXX bxe_fw_dump(sc);
2256        rc = 0;
2257    }
2258
2259    BXE_FWMB_UNLOCK(sc);
2260    return (rc);
2261}
2262
2263static uint32_t
2264bxe_fw_command(struct bxe_softc *sc,
2265               uint32_t         command,
2266               uint32_t         param)
2267{
2268    return (elink_cb_fw_command(sc, command, param));
2269}
2270
2271static void
2272__storm_memset_dma_mapping(struct bxe_softc *sc,
2273                           uint32_t         addr,
2274                           bus_addr_t       mapping)
2275{
2276    REG_WR(sc, addr, U64_LO(mapping));
2277    REG_WR(sc, (addr + 4), U64_HI(mapping));
2278}
2279
2280static void
2281storm_memset_spq_addr(struct bxe_softc *sc,
2282                      bus_addr_t       mapping,
2283                      uint16_t         abs_fid)
2284{
2285    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2286                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2287    __storm_memset_dma_mapping(sc, addr, mapping);
2288}
2289
2290static void
2291storm_memset_vf_to_pf(struct bxe_softc *sc,
2292                      uint16_t         abs_fid,
2293                      uint16_t         pf_id)
2294{
2295    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2296    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2297    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299}
2300
2301static void
2302storm_memset_func_en(struct bxe_softc *sc,
2303                     uint16_t         abs_fid,
2304                     uint8_t          enable)
2305{
2306    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2307    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2308    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310}
2311
2312static void
2313storm_memset_eq_data(struct bxe_softc       *sc,
2314                     struct event_ring_data *eq_data,
2315                     uint16_t               pfid)
2316{
2317    uint32_t addr;
2318    size_t size;
2319
2320    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2321    size = sizeof(struct event_ring_data);
2322    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2323}
2324
2325static void
2326storm_memset_eq_prod(struct bxe_softc *sc,
2327                     uint16_t         eq_prod,
2328                     uint16_t         pfid)
2329{
2330    uint32_t addr = (BAR_CSTRORM_INTMEM +
2331                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2332    REG_WR16(sc, addr, eq_prod);
2333}
2334
2335/*
2336 * Post a slowpath command.
2337 *
2338 * A slowpath command is used to propogate a configuration change through
2339 * the controller in a controlled manner, allowing each STORM processor and
2340 * other H/W blocks to phase in the change.  The commands sent on the
2341 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2342 * completion of the ramrod will occur in different ways.  Here's a
2343 * breakdown of ramrods and how they complete:
2344 *
2345 * RAMROD_CMD_ID_ETH_PORT_SETUP
2346 *   Used to setup the leading connection on a port.  Completes on the
2347 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2348 *
2349 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2350 *   Used to setup an additional connection on a port.  Completes on the
2351 *   RCQ of the multi-queue/RSS connection being initialized.
2352 *
2353 * RAMROD_CMD_ID_ETH_STAT_QUERY
2354 *   Used to force the storm processors to update the statistics database
2355 *   in host memory.  This ramrod is send on the leading connection CID and
2356 *   completes as an index increment of the CSTORM on the default status
2357 *   block.
2358 *
2359 * RAMROD_CMD_ID_ETH_UPDATE
2360 *   Used to update the state of the leading connection, usually to udpate
2361 *   the RSS indirection table.  Completes on the RCQ of the leading
2362 *   connection. (Not currently used under FreeBSD until OS support becomes
2363 *   available.)
2364 *
2365 * RAMROD_CMD_ID_ETH_HALT
2366 *   Used when tearing down a connection prior to driver unload.  Completes
2367 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2368 *   use this on the leading connection.
2369 *
2370 * RAMROD_CMD_ID_ETH_SET_MAC
2371 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2372 *   the RCQ of the leading connection.
2373 *
2374 * RAMROD_CMD_ID_ETH_CFC_DEL
2375 *   Used when tearing down a conneciton prior to driver unload.  Completes
2376 *   on the RCQ of the leading connection (since the current connection
2377 *   has been completely removed from controller memory).
2378 *
2379 * RAMROD_CMD_ID_ETH_PORT_DEL
2380 *   Used to tear down the leading connection prior to driver unload,
2381 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2382 *   default status block.
2383 *
2384 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2385 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2386 *   RSS connection that is being offloaded.  (Not currently used under
2387 *   FreeBSD.)
2388 *
2389 * There can only be one command pending per function.
2390 *
2391 * Returns:
2392 *   0 = Success, !0 = Failure.
2393 */
2394
2395/* must be called under the spq lock */
2396static inline
2397struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2398{
2399    struct eth_spe *next_spe = sc->spq_prod_bd;
2400
2401    if (sc->spq_prod_bd == sc->spq_last_bd) {
2402        /* wrap back to the first eth_spq */
2403        sc->spq_prod_bd = sc->spq;
2404        sc->spq_prod_idx = 0;
2405    } else {
2406        sc->spq_prod_bd++;
2407        sc->spq_prod_idx++;
2408    }
2409
2410    return (next_spe);
2411}
2412
2413/* must be called under the spq lock */
2414static inline
2415void bxe_sp_prod_update(struct bxe_softc *sc)
2416{
2417    int func = SC_FUNC(sc);
2418
2419    /*
2420     * Make sure that BD data is updated before writing the producer.
2421     * BD data is written to the memory, the producer is read from the
2422     * memory, thus we need a full memory barrier to ensure the ordering.
2423     */
2424    mb();
2425
2426    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2427             sc->spq_prod_idx);
2428
2429    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2430                      BUS_SPACE_BARRIER_WRITE);
2431}
2432
2433/**
2434 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2435 *
2436 * @cmd:      command to check
2437 * @cmd_type: command type
2438 */
2439static inline
2440int bxe_is_contextless_ramrod(int cmd,
2441                              int cmd_type)
2442{
2443    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2444        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2445        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2446        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2447        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2448        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2449        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2450        return (TRUE);
2451    } else {
2452        return (FALSE);
2453    }
2454}
2455
2456/**
2457 * bxe_sp_post - place a single command on an SP ring
2458 *
2459 * @sc:         driver handle
2460 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2461 * @cid:        SW CID the command is related to
2462 * @data_hi:    command private data address (high 32 bits)
2463 * @data_lo:    command private data address (low 32 bits)
2464 * @cmd_type:   command type (e.g. NONE, ETH)
2465 *
2466 * SP data is handled as if it's always an address pair, thus data fields are
2467 * not swapped to little endian in upper functions. Instead this function swaps
2468 * data as if it's two uint32 fields.
2469 */
2470int
2471bxe_sp_post(struct bxe_softc *sc,
2472            int              command,
2473            int              cid,
2474            uint32_t         data_hi,
2475            uint32_t         data_lo,
2476            int              cmd_type)
2477{
2478    struct eth_spe *spe;
2479    uint16_t type;
2480    int common;
2481
2482    common = bxe_is_contextless_ramrod(command, cmd_type);
2483
2484    BXE_SP_LOCK(sc);
2485
2486    if (common) {
2487        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2488            BLOGE(sc, "EQ ring is full!\n");
2489            BXE_SP_UNLOCK(sc);
2490            return (-1);
2491        }
2492    } else {
2493        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2494            BLOGE(sc, "SPQ ring is full!\n");
2495            BXE_SP_UNLOCK(sc);
2496            return (-1);
2497        }
2498    }
2499
2500    spe = bxe_sp_get_next(sc);
2501
2502    /* CID needs port number to be encoded int it */
2503    spe->hdr.conn_and_cmd_data =
2504        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2505
2506    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2507
2508    /* TBD: Check if it works for VFs */
2509    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2510             SPE_HDR_FUNCTION_ID);
2511
2512    spe->hdr.type = htole16(type);
2513
2514    spe->data.update_data_addr.hi = htole32(data_hi);
2515    spe->data.update_data_addr.lo = htole32(data_lo);
2516
2517    /*
2518     * It's ok if the actual decrement is issued towards the memory
2519     * somewhere between the lock and unlock. Thus no more explict
2520     * memory barrier is needed.
2521     */
2522    if (common) {
2523        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2524    } else {
2525        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2526    }
2527
2528    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2529    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2530          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2531    BLOGD(sc, DBG_SP,
2532          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2533          sc->spq_prod_idx,
2534          (uint32_t)U64_HI(sc->spq_dma.paddr),
2535          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2536          command,
2537          common,
2538          HW_CID(sc, cid),
2539          data_hi,
2540          data_lo,
2541          type,
2542          atomic_load_acq_long(&sc->cq_spq_left),
2543          atomic_load_acq_long(&sc->eq_spq_left));
2544
2545    bxe_sp_prod_update(sc);
2546
2547    BXE_SP_UNLOCK(sc);
2548    return (0);
2549}
2550
2551/**
2552 * bxe_debug_print_ind_table - prints the indirection table configuration.
2553 *
2554 * @sc: driver hanlde
2555 * @p:  pointer to rss configuration
2556 */
2557#if 0
2558static void
2559bxe_debug_print_ind_table(struct bxe_softc               *sc,
2560                          struct ecore_config_rss_params *p)
2561{
2562    int i;
2563
2564    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2565    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2566    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2567        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2568
2569        /* Print 4 bytes in a line */
2570        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2571            (((i + 1) & 0x3) == 0)) {
2572            BLOGD(sc, DBG_LOAD, "\n");
2573            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2574        }
2575    }
2576
2577    BLOGD(sc, DBG_LOAD, "\n");
2578}
2579#endif
2580
2581/*
2582 * FreeBSD Device probe function.
2583 *
2584 * Compares the device found to the driver's list of supported devices and
2585 * reports back to the bsd loader whether this is the right driver for the device.
2586 * This is the driver entry function called from the "kldload" command.
2587 *
2588 * Returns:
2589 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2590 */
2591static int
2592bxe_probe(device_t dev)
2593{
2594    struct bxe_softc *sc;
2595    struct bxe_device_type *t;
2596    char *descbuf;
2597    uint16_t did, sdid, svid, vid;
2598
2599    /* Find our device structure */
2600    sc = device_get_softc(dev);
2601    sc->dev = dev;
2602    t = bxe_devs;
2603
2604    /* Get the data for the device to be probed. */
2605    vid  = pci_get_vendor(dev);
2606    did  = pci_get_device(dev);
2607    svid = pci_get_subvendor(dev);
2608    sdid = pci_get_subdevice(dev);
2609
2610    BLOGD(sc, DBG_LOAD,
2611          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2612          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2613
2614    /* Look through the list of known devices for a match. */
2615    while (t->bxe_name != NULL) {
2616        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2617            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2618            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2619            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2620            if (descbuf == NULL)
2621                return (ENOMEM);
2622
2623            /* Print out the device identity. */
2624            snprintf(descbuf, BXE_DEVDESC_MAX,
2625                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2626                     (((pci_read_config(dev, PCIR_REVID, 4) &
2627                        0xf0) >> 4) + 'A'),
2628                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2629                     BXE_DRIVER_VERSION);
2630
2631            device_set_desc_copy(dev, descbuf);
2632            free(descbuf, M_TEMP);
2633            return (BUS_PROBE_DEFAULT);
2634        }
2635        t++;
2636    }
2637
2638    return (ENXIO);
2639}
2640
2641static void
2642bxe_init_mutexes(struct bxe_softc *sc)
2643{
2644#ifdef BXE_CORE_LOCK_SX
2645    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2646             "bxe%d_core_lock", sc->unit);
2647    sx_init(&sc->core_sx, sc->core_sx_name);
2648#else
2649    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2650             "bxe%d_core_lock", sc->unit);
2651    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2652#endif
2653
2654    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2655             "bxe%d_sp_lock", sc->unit);
2656    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2657
2658    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2659             "bxe%d_dmae_lock", sc->unit);
2660    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2661
2662    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2663             "bxe%d_phy_lock", sc->unit);
2664    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2665
2666    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2667             "bxe%d_fwmb_lock", sc->unit);
2668    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2669
2670    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2671             "bxe%d_print_lock", sc->unit);
2672    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2673
2674    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2675             "bxe%d_stats_lock", sc->unit);
2676    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2677
2678    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2679             "bxe%d_mcast_lock", sc->unit);
2680    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2681}
2682
2683static void
2684bxe_release_mutexes(struct bxe_softc *sc)
2685{
2686#ifdef BXE_CORE_LOCK_SX
2687    sx_destroy(&sc->core_sx);
2688#else
2689    if (mtx_initialized(&sc->core_mtx)) {
2690        mtx_destroy(&sc->core_mtx);
2691    }
2692#endif
2693
2694    if (mtx_initialized(&sc->sp_mtx)) {
2695        mtx_destroy(&sc->sp_mtx);
2696    }
2697
2698    if (mtx_initialized(&sc->dmae_mtx)) {
2699        mtx_destroy(&sc->dmae_mtx);
2700    }
2701
2702    if (mtx_initialized(&sc->port.phy_mtx)) {
2703        mtx_destroy(&sc->port.phy_mtx);
2704    }
2705
2706    if (mtx_initialized(&sc->fwmb_mtx)) {
2707        mtx_destroy(&sc->fwmb_mtx);
2708    }
2709
2710    if (mtx_initialized(&sc->print_mtx)) {
2711        mtx_destroy(&sc->print_mtx);
2712    }
2713
2714    if (mtx_initialized(&sc->stats_mtx)) {
2715        mtx_destroy(&sc->stats_mtx);
2716    }
2717
2718    if (mtx_initialized(&sc->mcast_mtx)) {
2719        mtx_destroy(&sc->mcast_mtx);
2720    }
2721}
2722
2723static void
2724bxe_tx_disable(struct bxe_softc* sc)
2725{
2726    if_t ifp = sc->ifp;
2727
2728    /* tell the stack the driver is stopped and TX queue is full */
2729    if (ifp !=  NULL) {
2730        if_setdrvflags(ifp, 0);
2731    }
2732}
2733
2734static void
2735bxe_drv_pulse(struct bxe_softc *sc)
2736{
2737    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2738             sc->fw_drv_pulse_wr_seq);
2739}
2740
2741static inline uint16_t
2742bxe_tx_avail(struct bxe_softc *sc,
2743             struct bxe_fastpath *fp)
2744{
2745    int16_t  used;
2746    uint16_t prod;
2747    uint16_t cons;
2748
2749    prod = fp->tx_bd_prod;
2750    cons = fp->tx_bd_cons;
2751
2752    used = SUB_S16(prod, cons);
2753
2754#if 0
2755    KASSERT((used < 0), ("used tx bds < 0"));
2756    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2757    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2758            ("invalid number of tx bds used"));
2759#endif
2760
2761    return (int16_t)(sc->tx_ring_size) - used;
2762}
2763
2764static inline int
2765bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2766{
2767    uint16_t hw_cons;
2768
2769    mb(); /* status block fields can change */
2770    hw_cons = le16toh(*fp->tx_cons_sb);
2771    return (hw_cons != fp->tx_pkt_cons);
2772}
2773
2774static inline uint8_t
2775bxe_has_tx_work(struct bxe_fastpath *fp)
2776{
2777    /* expand this for multi-cos if ever supported */
2778    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2779}
2780
2781static inline int
2782bxe_has_rx_work(struct bxe_fastpath *fp)
2783{
2784    uint16_t rx_cq_cons_sb;
2785
2786    mb(); /* status block fields can change */
2787    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2788    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2789        rx_cq_cons_sb++;
2790    return (fp->rx_cq_cons != rx_cq_cons_sb);
2791}
2792
2793static void
2794bxe_sp_event(struct bxe_softc    *sc,
2795             struct bxe_fastpath *fp,
2796             union eth_rx_cqe    *rr_cqe)
2797{
2798    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2799    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2800    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2801    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2802
2803    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2804          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2805
2806#if 0
2807    /*
2808     * If cid is within VF range, replace the slowpath object with the
2809     * one corresponding to this VF
2810     */
2811    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2812        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2813    }
2814#endif
2815
2816    switch (command) {
2817    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2818        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2819        drv_cmd = ECORE_Q_CMD_UPDATE;
2820        break;
2821
2822    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2823        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2824        drv_cmd = ECORE_Q_CMD_SETUP;
2825        break;
2826
2827    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2828        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2829        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2830        break;
2831
2832    case (RAMROD_CMD_ID_ETH_HALT):
2833        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2834        drv_cmd = ECORE_Q_CMD_HALT;
2835        break;
2836
2837    case (RAMROD_CMD_ID_ETH_TERMINATE):
2838        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2839        drv_cmd = ECORE_Q_CMD_TERMINATE;
2840        break;
2841
2842    case (RAMROD_CMD_ID_ETH_EMPTY):
2843        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2844        drv_cmd = ECORE_Q_CMD_EMPTY;
2845        break;
2846
2847    default:
2848        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2849              command, fp->index);
2850        return;
2851    }
2852
2853    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2854        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2855        /*
2856         * q_obj->complete_cmd() failure means that this was
2857         * an unexpected completion.
2858         *
2859         * In this case we don't want to increase the sc->spq_left
2860         * because apparently we haven't sent this command the first
2861         * place.
2862         */
2863        // bxe_panic(sc, ("Unexpected SP completion\n"));
2864        return;
2865    }
2866
2867#if 0
2868    /* SRIOV: reschedule any 'in_progress' operations */
2869    bxe_iov_sp_event(sc, cid, TRUE);
2870#endif
2871
2872    atomic_add_acq_long(&sc->cq_spq_left, 1);
2873
2874    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2875          atomic_load_acq_long(&sc->cq_spq_left));
2876
2877#if 0
2878    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2879        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2880        /*
2881         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2882         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2883         * prevent case that both bits are cleared. At the end of load/unload
2884         * driver checks that sp_state is cleared and this order prevents
2885         * races.
2886         */
2887        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2888        wmb();
2889        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2890
2891        /* schedule the sp task as MCP ack is required */
2892        bxe_schedule_sp_task(sc);
2893    }
2894#endif
2895}
2896
2897/*
2898 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2899 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2900 * the current aggregation queue as in-progress.
2901 */
2902static void
2903bxe_tpa_start(struct bxe_softc            *sc,
2904              struct bxe_fastpath         *fp,
2905              uint16_t                    queue,
2906              uint16_t                    cons,
2907              uint16_t                    prod,
2908              struct eth_fast_path_rx_cqe *cqe)
2909{
2910    struct bxe_sw_rx_bd tmp_bd;
2911    struct bxe_sw_rx_bd *rx_buf;
2912    struct eth_rx_bd *rx_bd;
2913    int max_agg_queues;
2914    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2915    uint16_t index;
2916
2917    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2918                       "cons=%d prod=%d\n",
2919          fp->index, queue, cons, prod);
2920
2921    max_agg_queues = MAX_AGG_QS(sc);
2922
2923    KASSERT((queue < max_agg_queues),
2924            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2925             fp->index, queue, max_agg_queues));
2926
2927    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2928            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2929             fp->index, queue));
2930
2931    /* copy the existing mbuf and mapping from the TPA pool */
2932    tmp_bd = tpa_info->bd;
2933
2934    if (tmp_bd.m == NULL) {
2935        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2936              fp->index, queue);
2937        /* XXX Error handling? */
2938        return;
2939    }
2940
2941    /* change the TPA queue to the start state */
2942    tpa_info->state            = BXE_TPA_STATE_START;
2943    tpa_info->placement_offset = cqe->placement_offset;
2944    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2945    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2946    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2947
2948    fp->rx_tpa_queue_used |= (1 << queue);
2949
2950    /*
2951     * If all the buffer descriptors are filled with mbufs then fill in
2952     * the current consumer index with a new BD. Else if a maximum Rx
2953     * buffer limit is imposed then fill in the next producer index.
2954     */
2955    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2956                prod : cons;
2957
2958    /* move the received mbuf and mapping to TPA pool */
2959    tpa_info->bd = fp->rx_mbuf_chain[cons];
2960
2961    /* release any existing RX BD mbuf mappings */
2962    if (cons != index) {
2963        rx_buf = &fp->rx_mbuf_chain[cons];
2964
2965        if (rx_buf->m_map != NULL) {
2966            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2967                            BUS_DMASYNC_POSTREAD);
2968            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2969        }
2970
2971        /*
2972         * We get here when the maximum number of rx buffers is less than
2973         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2974         * it out here without concern of a memory leak.
2975         */
2976        fp->rx_mbuf_chain[cons].m = NULL;
2977    }
2978
2979    /* update the Rx SW BD with the mbuf info from the TPA pool */
2980    fp->rx_mbuf_chain[index] = tmp_bd;
2981
2982    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2983    rx_bd = &fp->rx_chain[index];
2984    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2985    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2986}
2987
2988/*
2989 * When a TPA aggregation is completed, loop through the individual mbufs
2990 * of the aggregation, combining them into a single mbuf which will be sent
2991 * up the stack. Refill all freed SGEs with mbufs as we go along.
2992 */
2993static int
2994bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2995                   struct bxe_fastpath       *fp,
2996                   struct bxe_sw_tpa_info    *tpa_info,
2997                   uint16_t                  queue,
2998                   uint16_t                  pages,
2999                   struct mbuf               *m,
3000			       struct eth_end_agg_rx_cqe *cqe,
3001                   uint16_t                  cqe_idx)
3002{
3003    struct mbuf *m_frag;
3004    uint32_t frag_len, frag_size, i;
3005    uint16_t sge_idx;
3006    int rc = 0;
3007    int j;
3008
3009    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3010
3011    BLOGD(sc, DBG_LRO,
3012          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3013          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3014
3015    /* make sure the aggregated frame is not too big to handle */
3016    if (pages > 8 * PAGES_PER_SGE) {
3017        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3018                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3019              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3020              tpa_info->len_on_bd, frag_size);
3021        bxe_panic(sc, ("sge page count error\n"));
3022        return (EINVAL);
3023    }
3024
3025    /*
3026     * Scan through the scatter gather list pulling individual mbufs into a
3027     * single mbuf for the host stack.
3028     */
3029    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3030        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3031
3032        /*
3033         * Firmware gives the indices of the SGE as if the ring is an array
3034         * (meaning that the "next" element will consume 2 indices).
3035         */
3036        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3037
3038        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3039                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3040              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3041
3042        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3043
3044        /* allocate a new mbuf for the SGE */
3045        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3046        if (rc) {
3047            /* Leave all remaining SGEs in the ring! */
3048            return (rc);
3049        }
3050
3051        /* update the fragment length */
3052        m_frag->m_len = frag_len;
3053
3054        /* concatenate the fragment to the head mbuf */
3055        m_cat(m, m_frag);
3056        fp->eth_q_stats.mbuf_alloc_sge--;
3057
3058        /* update the TPA mbuf size and remaining fragment size */
3059        m->m_pkthdr.len += frag_len;
3060        frag_size -= frag_len;
3061    }
3062
3063    BLOGD(sc, DBG_LRO,
3064          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3065          fp->index, queue, frag_size);
3066
3067    return (rc);
3068}
3069
3070static inline void
3071bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3072{
3073    int i, j;
3074
3075    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3076        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3077
3078        for (j = 0; j < 2; j++) {
3079            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3080            idx--;
3081        }
3082    }
3083}
3084
3085static inline void
3086bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3087{
3088    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3089    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3090
3091    /*
3092     * Clear the two last indices in the page to 1. These are the indices that
3093     * correspond to the "next" element, hence will never be indicated and
3094     * should be removed from the calculations.
3095     */
3096    bxe_clear_sge_mask_next_elems(fp);
3097}
3098
3099static inline void
3100bxe_update_last_max_sge(struct bxe_fastpath *fp,
3101                        uint16_t            idx)
3102{
3103    uint16_t last_max = fp->last_max_sge;
3104
3105    if (SUB_S16(idx, last_max) > 0) {
3106        fp->last_max_sge = idx;
3107    }
3108}
3109
3110static inline void
3111bxe_update_sge_prod(struct bxe_softc          *sc,
3112                    struct bxe_fastpath       *fp,
3113                    uint16_t                  sge_len,
3114                    struct eth_end_agg_rx_cqe *cqe)
3115{
3116    uint16_t last_max, last_elem, first_elem;
3117    uint16_t delta = 0;
3118    uint16_t i;
3119
3120    if (!sge_len) {
3121        return;
3122    }
3123
3124    /* first mark all used pages */
3125    for (i = 0; i < sge_len; i++) {
3126        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3127                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3128    }
3129
3130    BLOGD(sc, DBG_LRO,
3131          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3132          fp->index, sge_len - 1,
3133          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3134
3135    /* assume that the last SGE index is the biggest */
3136    bxe_update_last_max_sge(fp,
3137                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3138
3139    last_max = RX_SGE(fp->last_max_sge);
3140    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3141    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3142
3143    /* if ring is not full */
3144    if (last_elem + 1 != first_elem) {
3145        last_elem++;
3146    }
3147
3148    /* now update the prod */
3149    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3150        if (__predict_true(fp->sge_mask[i])) {
3151            break;
3152        }
3153
3154        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3155        delta += BIT_VEC64_ELEM_SZ;
3156    }
3157
3158    if (delta > 0) {
3159        fp->rx_sge_prod += delta;
3160        /* clear page-end entries */
3161        bxe_clear_sge_mask_next_elems(fp);
3162    }
3163
3164    BLOGD(sc, DBG_LRO,
3165          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3166          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3167}
3168
3169/*
3170 * The aggregation on the current TPA queue has completed. Pull the individual
3171 * mbuf fragments together into a single mbuf, perform all necessary checksum
3172 * calculations, and send the resuting mbuf to the stack.
3173 */
3174static void
3175bxe_tpa_stop(struct bxe_softc          *sc,
3176             struct bxe_fastpath       *fp,
3177             struct bxe_sw_tpa_info    *tpa_info,
3178             uint16_t                  queue,
3179             uint16_t                  pages,
3180			 struct eth_end_agg_rx_cqe *cqe,
3181             uint16_t                  cqe_idx)
3182{
3183    if_t ifp = sc->ifp;
3184    struct mbuf *m;
3185    int rc = 0;
3186
3187    BLOGD(sc, DBG_LRO,
3188          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3189          fp->index, queue, tpa_info->placement_offset,
3190          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3191
3192    m = tpa_info->bd.m;
3193
3194    /* allocate a replacement before modifying existing mbuf */
3195    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3196    if (rc) {
3197        /* drop the frame and log an error */
3198        fp->eth_q_stats.rx_soft_errors++;
3199        goto bxe_tpa_stop_exit;
3200    }
3201
3202    /* we have a replacement, fixup the current mbuf */
3203    m_adj(m, tpa_info->placement_offset);
3204    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3205
3206    /* mark the checksums valid (taken care of by the firmware) */
3207    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3208    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3209    m->m_pkthdr.csum_data = 0xffff;
3210    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3211                               CSUM_IP_VALID   |
3212                               CSUM_DATA_VALID |
3213                               CSUM_PSEUDO_HDR);
3214
3215    /* aggregate all of the SGEs into a single mbuf */
3216    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3217    if (rc) {
3218        /* drop the packet and log an error */
3219        fp->eth_q_stats.rx_soft_errors++;
3220        m_freem(m);
3221    } else {
3222        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3223            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3224            m->m_flags |= M_VLANTAG;
3225        }
3226
3227        /* assign packet to this interface interface */
3228        if_setrcvif(m, ifp);
3229
3230#if __FreeBSD_version >= 800000
3231        /* specify what RSS queue was used for this flow */
3232        m->m_pkthdr.flowid = fp->index;
3233        m->m_flags |= M_FLOWID;
3234#endif
3235
3236        if_incipackets(ifp, 1);
3237        fp->eth_q_stats.rx_tpa_pkts++;
3238
3239        /* pass the frame to the stack */
3240        if_input(ifp, m);
3241    }
3242
3243    /* we passed an mbuf up the stack or dropped the frame */
3244    fp->eth_q_stats.mbuf_alloc_tpa--;
3245
3246bxe_tpa_stop_exit:
3247
3248    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3249    fp->rx_tpa_queue_used &= ~(1 << queue);
3250}
3251
3252static uint8_t
3253bxe_rxeof(struct bxe_softc    *sc,
3254          struct bxe_fastpath *fp)
3255{
3256    if_t ifp = sc->ifp;
3257    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3258    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3259    int rx_pkts = 0;
3260    int rc;
3261
3262    BXE_FP_RX_LOCK(fp);
3263
3264    /* CQ "next element" is of the size of the regular element */
3265    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3266    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3267        hw_cq_cons++;
3268    }
3269
3270    bd_cons = fp->rx_bd_cons;
3271    bd_prod = fp->rx_bd_prod;
3272    bd_prod_fw = bd_prod;
3273    sw_cq_cons = fp->rx_cq_cons;
3274    sw_cq_prod = fp->rx_cq_prod;
3275
3276    /*
3277     * Memory barrier necessary as speculative reads of the rx
3278     * buffer can be ahead of the index in the status block
3279     */
3280    rmb();
3281
3282    BLOGD(sc, DBG_RX,
3283          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3284          fp->index, hw_cq_cons, sw_cq_cons);
3285
3286    while (sw_cq_cons != hw_cq_cons) {
3287        struct bxe_sw_rx_bd *rx_buf = NULL;
3288        union eth_rx_cqe *cqe;
3289        struct eth_fast_path_rx_cqe *cqe_fp;
3290        uint8_t cqe_fp_flags;
3291        enum eth_rx_cqe_type cqe_fp_type;
3292        uint16_t len, pad;
3293        struct mbuf *m = NULL;
3294
3295        comp_ring_cons = RCQ(sw_cq_cons);
3296        bd_prod = RX_BD(bd_prod);
3297        bd_cons = RX_BD(bd_cons);
3298
3299        cqe          = &fp->rcq_chain[comp_ring_cons];
3300        cqe_fp       = &cqe->fast_path_cqe;
3301        cqe_fp_flags = cqe_fp->type_error_flags;
3302        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3303
3304        BLOGD(sc, DBG_RX,
3305              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3306              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3307              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3308              fp->index,
3309              hw_cq_cons,
3310              sw_cq_cons,
3311              bd_prod,
3312              bd_cons,
3313              CQE_TYPE(cqe_fp_flags),
3314              cqe_fp_flags,
3315              cqe_fp->status_flags,
3316              le32toh(cqe_fp->rss_hash_result),
3317              le16toh(cqe_fp->vlan_tag),
3318              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3319
3320        /* is this a slowpath msg? */
3321        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3322            bxe_sp_event(sc, fp, cqe);
3323            goto next_cqe;
3324        }
3325
3326        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3327
3328        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3329            struct bxe_sw_tpa_info *tpa_info;
3330            uint16_t frag_size, pages;
3331            uint8_t queue;
3332
3333#if 0
3334            /* sanity check */
3335            if (!fp->tpa_enable &&
3336                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3337                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3338                      CQE_TYPE(cqe_fp_type));
3339            }
3340#endif
3341
3342            if (CQE_TYPE_START(cqe_fp_type)) {
3343                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3344                              bd_cons, bd_prod, cqe_fp);
3345                m = NULL; /* packet not ready yet */
3346                goto next_rx;
3347            }
3348
3349            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3350                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3351
3352            queue = cqe->end_agg_cqe.queue_index;
3353            tpa_info = &fp->rx_tpa_info[queue];
3354
3355            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3356                  fp->index, queue);
3357
3358            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3359                         tpa_info->len_on_bd);
3360            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3361
3362            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3363                         &cqe->end_agg_cqe, comp_ring_cons);
3364
3365            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3366
3367            goto next_cqe;
3368        }
3369
3370        /* non TPA */
3371
3372        /* is this an error packet? */
3373        if (__predict_false(cqe_fp_flags &
3374                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3375            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3376            fp->eth_q_stats.rx_soft_errors++;
3377            goto next_rx;
3378        }
3379
3380        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3381        pad = cqe_fp->placement_offset;
3382
3383        m = rx_buf->m;
3384
3385        if (__predict_false(m == NULL)) {
3386            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3387                  bd_cons, fp->index);
3388            goto next_rx;
3389        }
3390
3391        /* XXX double copy if packet length under a threshold */
3392
3393        /*
3394         * If all the buffer descriptors are filled with mbufs then fill in
3395         * the current consumer index with a new BD. Else if a maximum Rx
3396         * buffer limit is imposed then fill in the next producer index.
3397         */
3398        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3399                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3400                                      bd_prod : bd_cons);
3401        if (rc != 0) {
3402            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3403                  fp->index, rc);
3404            fp->eth_q_stats.rx_soft_errors++;
3405
3406            if (sc->max_rx_bufs != RX_BD_USABLE) {
3407                /* copy this consumer index to the producer index */
3408                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3409                       sizeof(struct bxe_sw_rx_bd));
3410                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3411            }
3412
3413            goto next_rx;
3414        }
3415
3416        /* current mbuf was detached from the bd */
3417        fp->eth_q_stats.mbuf_alloc_rx--;
3418
3419        /* we allocated a replacement mbuf, fixup the current one */
3420        m_adj(m, pad);
3421        m->m_pkthdr.len = m->m_len = len;
3422
3423        /* assign packet to this interface interface */
3424	if_setrcvif(m, ifp);
3425
3426        /* assume no hardware checksum has complated */
3427        m->m_pkthdr.csum_flags = 0;
3428
3429        /* validate checksum if offload enabled */
3430        if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3431            /* check for a valid IP frame */
3432            if (!(cqe->fast_path_cqe.status_flags &
3433                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3434                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3435                if (__predict_false(cqe_fp_flags &
3436                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3437                    fp->eth_q_stats.rx_hw_csum_errors++;
3438                } else {
3439                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3440                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3441                }
3442            }
3443
3444            /* check for a valid TCP/UDP frame */
3445            if (!(cqe->fast_path_cqe.status_flags &
3446                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3447                if (__predict_false(cqe_fp_flags &
3448                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3449                    fp->eth_q_stats.rx_hw_csum_errors++;
3450                } else {
3451                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3452                    m->m_pkthdr.csum_data = 0xFFFF;
3453                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3454                                               CSUM_PSEUDO_HDR);
3455                }
3456            }
3457        }
3458
3459        /* if there is a VLAN tag then flag that info */
3460        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3461            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3462            m->m_flags |= M_VLANTAG;
3463        }
3464
3465#if __FreeBSD_version >= 800000
3466        /* specify what RSS queue was used for this flow */
3467        m->m_pkthdr.flowid = fp->index;
3468        m->m_flags |= M_FLOWID;
3469#endif
3470
3471next_rx:
3472
3473        bd_cons    = RX_BD_NEXT(bd_cons);
3474        bd_prod    = RX_BD_NEXT(bd_prod);
3475        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3476
3477        /* pass the frame to the stack */
3478        if (__predict_true(m != NULL)) {
3479            if_incipackets(ifp, 1);
3480            rx_pkts++;
3481            if_input(ifp, m);
3482        }
3483
3484next_cqe:
3485
3486        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3487        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3488
3489        /* limit spinning on the queue */
3490        if (rx_pkts == sc->rx_budget) {
3491            fp->eth_q_stats.rx_budget_reached++;
3492            break;
3493        }
3494    } /* while work to do */
3495
3496    fp->rx_bd_cons = bd_cons;
3497    fp->rx_bd_prod = bd_prod_fw;
3498    fp->rx_cq_cons = sw_cq_cons;
3499    fp->rx_cq_prod = sw_cq_prod;
3500
3501    /* Update producers */
3502    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3503
3504    fp->eth_q_stats.rx_pkts += rx_pkts;
3505    fp->eth_q_stats.rx_calls++;
3506
3507    BXE_FP_RX_UNLOCK(fp);
3508
3509    return (sw_cq_cons != hw_cq_cons);
3510}
3511
3512static uint16_t
3513bxe_free_tx_pkt(struct bxe_softc    *sc,
3514                struct bxe_fastpath *fp,
3515                uint16_t            idx)
3516{
3517    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3518    struct eth_tx_start_bd *tx_start_bd;
3519    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3520    uint16_t new_cons;
3521    int nbd;
3522
3523    /* unmap the mbuf from non-paged memory */
3524    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3525
3526    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3527    nbd = le16toh(tx_start_bd->nbd) - 1;
3528
3529#if 0
3530    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3531        bxe_panic(sc, ("BAD nbd!\n"));
3532    }
3533#endif
3534
3535    new_cons = (tx_buf->first_bd + nbd);
3536
3537#if 0
3538    struct eth_tx_bd *tx_data_bd;
3539
3540    /*
3541     * The following code doesn't do anything but is left here
3542     * for clarity on what the new value of new_cons skipped.
3543     */
3544
3545    /* get the next bd */
3546    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3547
3548    /* skip the parse bd */
3549    --nbd;
3550    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3551
3552    /* skip the TSO split header bd since they have no mapping */
3553    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3554        --nbd;
3555        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3556    }
3557
3558    /* now free frags */
3559    while (nbd > 0) {
3560        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3561        if (--nbd) {
3562            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563        }
3564    }
3565#endif
3566
3567    /* free the mbuf */
3568    if (__predict_true(tx_buf->m != NULL)) {
3569        m_freem(tx_buf->m);
3570        fp->eth_q_stats.mbuf_alloc_tx--;
3571    } else {
3572        fp->eth_q_stats.tx_chain_lost_mbuf++;
3573    }
3574
3575    tx_buf->m = NULL;
3576    tx_buf->first_bd = 0;
3577
3578    return (new_cons);
3579}
3580
3581/* transmit timeout watchdog */
3582static int
3583bxe_watchdog(struct bxe_softc    *sc,
3584             struct bxe_fastpath *fp)
3585{
3586    BXE_FP_TX_LOCK(fp);
3587
3588    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3589        BXE_FP_TX_UNLOCK(fp);
3590        return (0);
3591    }
3592
3593    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3594
3595    BXE_FP_TX_UNLOCK(fp);
3596
3597    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3598    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3599
3600    return (-1);
3601}
3602
3603/* processes transmit completions */
3604static uint8_t
3605bxe_txeof(struct bxe_softc    *sc,
3606          struct bxe_fastpath *fp)
3607{
3608    if_t ifp = sc->ifp;
3609    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3610    uint16_t tx_bd_avail;
3611
3612    BXE_FP_TX_LOCK_ASSERT(fp);
3613
3614    bd_cons = fp->tx_bd_cons;
3615    hw_cons = le16toh(*fp->tx_cons_sb);
3616    sw_cons = fp->tx_pkt_cons;
3617
3618    while (sw_cons != hw_cons) {
3619        pkt_cons = TX_BD(sw_cons);
3620
3621        BLOGD(sc, DBG_TX,
3622              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3623              fp->index, hw_cons, sw_cons, pkt_cons);
3624
3625        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3626
3627        sw_cons++;
3628    }
3629
3630    fp->tx_pkt_cons = sw_cons;
3631    fp->tx_bd_cons  = bd_cons;
3632
3633    BLOGD(sc, DBG_TX,
3634          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3635          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3636
3637    mb();
3638
3639    tx_bd_avail = bxe_tx_avail(sc, fp);
3640
3641    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3642        if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3643    } else {
3644        if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3645    }
3646
3647    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3648        /* reset the watchdog timer if there are pending transmits */
3649        fp->watchdog_timer = BXE_TX_TIMEOUT;
3650        return (TRUE);
3651    } else {
3652        /* clear watchdog when there are no pending transmits */
3653        fp->watchdog_timer = 0;
3654        return (FALSE);
3655    }
3656}
3657
3658static void
3659bxe_drain_tx_queues(struct bxe_softc *sc)
3660{
3661    struct bxe_fastpath *fp;
3662    int i, count;
3663
3664    /* wait until all TX fastpath tasks have completed */
3665    for (i = 0; i < sc->num_queues; i++) {
3666        fp = &sc->fp[i];
3667
3668        count = 1000;
3669
3670        while (bxe_has_tx_work(fp)) {
3671
3672            BXE_FP_TX_LOCK(fp);
3673            bxe_txeof(sc, fp);
3674            BXE_FP_TX_UNLOCK(fp);
3675
3676            if (count == 0) {
3677                BLOGE(sc, "Timeout waiting for fp[%d] "
3678                          "transmits to complete!\n", i);
3679                bxe_panic(sc, ("tx drain failure\n"));
3680                return;
3681            }
3682
3683            count--;
3684            DELAY(1000);
3685            rmb();
3686        }
3687    }
3688
3689    return;
3690}
3691
3692static int
3693bxe_del_all_macs(struct bxe_softc          *sc,
3694                 struct ecore_vlan_mac_obj *mac_obj,
3695                 int                       mac_type,
3696                 uint8_t                   wait_for_comp)
3697{
3698    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3699    int rc;
3700
3701    /* wait for completion of requested */
3702    if (wait_for_comp) {
3703        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3704    }
3705
3706    /* Set the mac type of addresses we want to clear */
3707    bxe_set_bit(mac_type, &vlan_mac_flags);
3708
3709    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3710    if (rc < 0) {
3711        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3712    }
3713
3714    return (rc);
3715}
3716
3717static int
3718bxe_fill_accept_flags(struct bxe_softc *sc,
3719                      uint32_t         rx_mode,
3720                      unsigned long    *rx_accept_flags,
3721                      unsigned long    *tx_accept_flags)
3722{
3723    /* Clear the flags first */
3724    *rx_accept_flags = 0;
3725    *tx_accept_flags = 0;
3726
3727    switch (rx_mode) {
3728    case BXE_RX_MODE_NONE:
3729        /*
3730         * 'drop all' supersedes any accept flags that may have been
3731         * passed to the function.
3732         */
3733        break;
3734
3735    case BXE_RX_MODE_NORMAL:
3736        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3737        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3738        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3739
3740        /* internal switching mode */
3741        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3742        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3743        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3744
3745        break;
3746
3747    case BXE_RX_MODE_ALLMULTI:
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3751
3752        /* internal switching mode */
3753        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3754        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3755        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3756
3757        break;
3758
3759    case BXE_RX_MODE_PROMISC:
3760        /*
3761         * According to deffinition of SI mode, iface in promisc mode
3762         * should receive matched and unmatched (in resolution of port)
3763         * unicast packets.
3764         */
3765        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3766        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3767        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3768        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3769
3770        /* internal switching mode */
3771        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3772        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3773
3774        if (IS_MF_SI(sc)) {
3775            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3776        } else {
3777            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3778        }
3779
3780        break;
3781
3782    default:
3783        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3784        return (-1);
3785    }
3786
3787    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3788    if (rx_mode != BXE_RX_MODE_NONE) {
3789        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3790        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3791    }
3792
3793    return (0);
3794}
3795
3796static int
3797bxe_set_q_rx_mode(struct bxe_softc *sc,
3798                  uint8_t          cl_id,
3799                  unsigned long    rx_mode_flags,
3800                  unsigned long    rx_accept_flags,
3801                  unsigned long    tx_accept_flags,
3802                  unsigned long    ramrod_flags)
3803{
3804    struct ecore_rx_mode_ramrod_params ramrod_param;
3805    int rc;
3806
3807    memset(&ramrod_param, 0, sizeof(ramrod_param));
3808
3809    /* Prepare ramrod parameters */
3810    ramrod_param.cid = 0;
3811    ramrod_param.cl_id = cl_id;
3812    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3813    ramrod_param.func_id = SC_FUNC(sc);
3814
3815    ramrod_param.pstate = &sc->sp_state;
3816    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3817
3818    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3819    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3820
3821    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3822
3823    ramrod_param.ramrod_flags = ramrod_flags;
3824    ramrod_param.rx_mode_flags = rx_mode_flags;
3825
3826    ramrod_param.rx_accept_flags = rx_accept_flags;
3827    ramrod_param.tx_accept_flags = tx_accept_flags;
3828
3829    rc = ecore_config_rx_mode(sc, &ramrod_param);
3830    if (rc < 0) {
3831        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3832        return (rc);
3833    }
3834
3835    return (0);
3836}
3837
3838static int
3839bxe_set_storm_rx_mode(struct bxe_softc *sc)
3840{
3841    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3842    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3843    int rc;
3844
3845    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3846                               &tx_accept_flags);
3847    if (rc) {
3848        return (rc);
3849    }
3850
3851    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3852    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3853
3854    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3855    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3856                              rx_accept_flags, tx_accept_flags,
3857                              ramrod_flags));
3858}
3859
3860/* returns the "mcp load_code" according to global load_count array */
3861static int
3862bxe_nic_load_no_mcp(struct bxe_softc *sc)
3863{
3864    int path = SC_PATH(sc);
3865    int port = SC_PORT(sc);
3866
3867    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3868          path, load_count[path][0], load_count[path][1],
3869          load_count[path][2]);
3870    load_count[path][0]++;
3871    load_count[path][1 + port]++;
3872    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3873          path, load_count[path][0], load_count[path][1],
3874          load_count[path][2]);
3875    if (load_count[path][0] == 1) {
3876        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3877    } else if (load_count[path][1 + port] == 1) {
3878        return (FW_MSG_CODE_DRV_LOAD_PORT);
3879    } else {
3880        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3881    }
3882}
3883
3884/* returns the "mcp load_code" according to global load_count array */
3885static int
3886bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3887{
3888    int port = SC_PORT(sc);
3889    int path = SC_PATH(sc);
3890
3891    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3892          path, load_count[path][0], load_count[path][1],
3893          load_count[path][2]);
3894    load_count[path][0]--;
3895    load_count[path][1 + port]--;
3896    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3897          path, load_count[path][0], load_count[path][1],
3898          load_count[path][2]);
3899    if (load_count[path][0] == 0) {
3900        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3901    } else if (load_count[path][1 + port] == 0) {
3902        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3903    } else {
3904        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3905    }
3906}
3907
3908/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3909static uint32_t
3910bxe_send_unload_req(struct bxe_softc *sc,
3911                    int              unload_mode)
3912{
3913    uint32_t reset_code = 0;
3914#if 0
3915    int port = SC_PORT(sc);
3916    int path = SC_PATH(sc);
3917#endif
3918
3919    /* Select the UNLOAD request mode */
3920    if (unload_mode == UNLOAD_NORMAL) {
3921        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3922    }
3923#if 0
3924    else if (sc->flags & BXE_NO_WOL_FLAG) {
3925        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3926    } else if (sc->wol) {
3927        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3928        uint8_t *mac_addr = sc->dev->dev_addr;
3929        uint32_t val;
3930        uint16_t pmc;
3931
3932        /*
3933         * The mac address is written to entries 1-4 to
3934         * preserve entry 0 which is used by the PMF
3935         */
3936        uint8_t entry = (SC_VN(sc) + 1)*8;
3937
3938        val = (mac_addr[0] << 8) | mac_addr[1];
3939        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3940
3941        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3942              (mac_addr[4] << 8) | mac_addr[5];
3943        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3944
3945        /* Enable the PME and clear the status */
3946        pmc = pci_read_config(sc->dev,
3947                              (sc->devinfo.pcie_pm_cap_reg +
3948                               PCIR_POWER_STATUS),
3949                              2);
3950        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3951        pci_write_config(sc->dev,
3952                         (sc->devinfo.pcie_pm_cap_reg +
3953                          PCIR_POWER_STATUS),
3954                         pmc, 4);
3955
3956        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3957    }
3958#endif
3959    else {
3960        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3961    }
3962
3963    /* Send the request to the MCP */
3964    if (!BXE_NOMCP(sc)) {
3965        reset_code = bxe_fw_command(sc, reset_code, 0);
3966    } else {
3967        reset_code = bxe_nic_unload_no_mcp(sc);
3968    }
3969
3970    return (reset_code);
3971}
3972
3973/* send UNLOAD_DONE command to the MCP */
3974static void
3975bxe_send_unload_done(struct bxe_softc *sc,
3976                     uint8_t          keep_link)
3977{
3978    uint32_t reset_param =
3979        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3980
3981    /* Report UNLOAD_DONE to MCP */
3982    if (!BXE_NOMCP(sc)) {
3983        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3984    }
3985}
3986
3987static int
3988bxe_func_wait_started(struct bxe_softc *sc)
3989{
3990    int tout = 50;
3991
3992    if (!sc->port.pmf) {
3993        return (0);
3994    }
3995
3996    /*
3997     * (assumption: No Attention from MCP at this stage)
3998     * PMF probably in the middle of TX disable/enable transaction
3999     * 1. Sync IRS for default SB
4000     * 2. Sync SP queue - this guarantees us that attention handling started
4001     * 3. Wait, that TX disable/enable transaction completes
4002     *
4003     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4004     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4005     * received completion for the transaction the state is TX_STOPPED.
4006     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4007     * transaction.
4008     */
4009
4010    /* XXX make sure default SB ISR is done */
4011    /* need a way to synchronize an irq (intr_mtx?) */
4012
4013    /* XXX flush any work queues */
4014
4015    while (ecore_func_get_state(sc, &sc->func_obj) !=
4016           ECORE_F_STATE_STARTED && tout--) {
4017        DELAY(20000);
4018    }
4019
4020    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4021        /*
4022         * Failed to complete the transaction in a "good way"
4023         * Force both transactions with CLR bit.
4024         */
4025        struct ecore_func_state_params func_params = { NULL };
4026
4027        BLOGE(sc, "Unexpected function state! "
4028                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4029
4030        func_params.f_obj = &sc->func_obj;
4031        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4032
4033        /* STARTED-->TX_STOPPED */
4034        func_params.cmd = ECORE_F_CMD_TX_STOP;
4035        ecore_func_state_change(sc, &func_params);
4036
4037        /* TX_STOPPED-->STARTED */
4038        func_params.cmd = ECORE_F_CMD_TX_START;
4039        return (ecore_func_state_change(sc, &func_params));
4040    }
4041
4042    return (0);
4043}
4044
4045static int
4046bxe_stop_queue(struct bxe_softc *sc,
4047               int              index)
4048{
4049    struct bxe_fastpath *fp = &sc->fp[index];
4050    struct ecore_queue_state_params q_params = { NULL };
4051    int rc;
4052
4053    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4054
4055    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4056    /* We want to wait for completion in this context */
4057    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4058
4059    /* Stop the primary connection: */
4060
4061    /* ...halt the connection */
4062    q_params.cmd = ECORE_Q_CMD_HALT;
4063    rc = ecore_queue_state_change(sc, &q_params);
4064    if (rc) {
4065        return (rc);
4066    }
4067
4068    /* ...terminate the connection */
4069    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4070    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4071    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4072    rc = ecore_queue_state_change(sc, &q_params);
4073    if (rc) {
4074        return (rc);
4075    }
4076
4077    /* ...delete cfc entry */
4078    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4079    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4080    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4081    return (ecore_queue_state_change(sc, &q_params));
4082}
4083
4084/* wait for the outstanding SP commands */
4085static inline uint8_t
4086bxe_wait_sp_comp(struct bxe_softc *sc,
4087                 unsigned long    mask)
4088{
4089    unsigned long tmp;
4090    int tout = 5000; /* wait for 5 secs tops */
4091
4092    while (tout--) {
4093        mb();
4094        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4095            return (TRUE);
4096        }
4097
4098        DELAY(1000);
4099    }
4100
4101    mb();
4102
4103    tmp = atomic_load_acq_long(&sc->sp_state);
4104    if (tmp & mask) {
4105        BLOGE(sc, "Filtering completion timed out: "
4106                  "sp_state 0x%lx, mask 0x%lx\n",
4107              tmp, mask);
4108        return (FALSE);
4109    }
4110
4111    return (FALSE);
4112}
4113
4114static int
4115bxe_func_stop(struct bxe_softc *sc)
4116{
4117    struct ecore_func_state_params func_params = { NULL };
4118    int rc;
4119
4120    /* prepare parameters for function state transitions */
4121    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4122    func_params.f_obj = &sc->func_obj;
4123    func_params.cmd = ECORE_F_CMD_STOP;
4124
4125    /*
4126     * Try to stop the function the 'good way'. If it fails (in case
4127     * of a parity error during bxe_chip_cleanup()) and we are
4128     * not in a debug mode, perform a state transaction in order to
4129     * enable further HW_RESET transaction.
4130     */
4131    rc = ecore_func_state_change(sc, &func_params);
4132    if (rc) {
4133        BLOGE(sc, "FUNC_STOP ramrod failed. "
4134                  "Running a dry transaction\n");
4135        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4136        return (ecore_func_state_change(sc, &func_params));
4137    }
4138
4139    return (0);
4140}
4141
4142static int
4143bxe_reset_hw(struct bxe_softc *sc,
4144             uint32_t         load_code)
4145{
4146    struct ecore_func_state_params func_params = { NULL };
4147
4148    /* Prepare parameters for function state transitions */
4149    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4150
4151    func_params.f_obj = &sc->func_obj;
4152    func_params.cmd = ECORE_F_CMD_HW_RESET;
4153
4154    func_params.params.hw_init.load_phase = load_code;
4155
4156    return (ecore_func_state_change(sc, &func_params));
4157}
4158
4159static void
4160bxe_int_disable_sync(struct bxe_softc *sc,
4161                     int              disable_hw)
4162{
4163    if (disable_hw) {
4164        /* prevent the HW from sending interrupts */
4165        bxe_int_disable(sc);
4166    }
4167
4168    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4169    /* make sure all ISRs are done */
4170
4171    /* XXX make sure sp_task is not running */
4172    /* cancel and flush work queues */
4173}
4174
4175static void
4176bxe_chip_cleanup(struct bxe_softc *sc,
4177                 uint32_t         unload_mode,
4178                 uint8_t          keep_link)
4179{
4180    int port = SC_PORT(sc);
4181    struct ecore_mcast_ramrod_params rparam = { NULL };
4182    uint32_t reset_code;
4183    int i, rc = 0;
4184
4185    bxe_drain_tx_queues(sc);
4186
4187    /* give HW time to discard old tx messages */
4188    DELAY(1000);
4189
4190    /* Clean all ETH MACs */
4191    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4192    if (rc < 0) {
4193        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4194    }
4195
4196    /* Clean up UC list  */
4197    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4198    if (rc < 0) {
4199        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4200    }
4201
4202    /* Disable LLH */
4203    if (!CHIP_IS_E1(sc)) {
4204        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4205    }
4206
4207    /* Set "drop all" to stop Rx */
4208
4209    /*
4210     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4211     * a race between the completion code and this code.
4212     */
4213    BXE_MCAST_LOCK(sc);
4214
4215    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4216        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4217    } else {
4218        bxe_set_storm_rx_mode(sc);
4219    }
4220
4221    /* Clean up multicast configuration */
4222    rparam.mcast_obj = &sc->mcast_obj;
4223    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4224    if (rc < 0) {
4225        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4226    }
4227
4228    BXE_MCAST_UNLOCK(sc);
4229
4230    // XXX bxe_iov_chip_cleanup(sc);
4231
4232    /*
4233     * Send the UNLOAD_REQUEST to the MCP. This will return if
4234     * this function should perform FUNCTION, PORT, or COMMON HW
4235     * reset.
4236     */
4237    reset_code = bxe_send_unload_req(sc, unload_mode);
4238
4239    /*
4240     * (assumption: No Attention from MCP at this stage)
4241     * PMF probably in the middle of TX disable/enable transaction
4242     */
4243    rc = bxe_func_wait_started(sc);
4244    if (rc) {
4245        BLOGE(sc, "bxe_func_wait_started failed\n");
4246    }
4247
4248    /*
4249     * Close multi and leading connections
4250     * Completions for ramrods are collected in a synchronous way
4251     */
4252    for (i = 0; i < sc->num_queues; i++) {
4253        if (bxe_stop_queue(sc, i)) {
4254            goto unload_error;
4255        }
4256    }
4257
4258    /*
4259     * If SP settings didn't get completed so far - something
4260     * very wrong has happen.
4261     */
4262    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4263        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4264    }
4265
4266unload_error:
4267
4268    rc = bxe_func_stop(sc);
4269    if (rc) {
4270        BLOGE(sc, "Function stop failed!\n");
4271    }
4272
4273    /* disable HW interrupts */
4274    bxe_int_disable_sync(sc, TRUE);
4275
4276    /* detach interrupts */
4277    bxe_interrupt_detach(sc);
4278
4279    /* Reset the chip */
4280    rc = bxe_reset_hw(sc, reset_code);
4281    if (rc) {
4282        BLOGE(sc, "Hardware reset failed\n");
4283    }
4284
4285    /* Report UNLOAD_DONE to MCP */
4286    bxe_send_unload_done(sc, keep_link);
4287}
4288
4289static void
4290bxe_disable_close_the_gate(struct bxe_softc *sc)
4291{
4292    uint32_t val;
4293    int port = SC_PORT(sc);
4294
4295    BLOGD(sc, DBG_LOAD,
4296          "Disabling 'close the gates'\n");
4297
4298    if (CHIP_IS_E1(sc)) {
4299        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4300                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4301        val = REG_RD(sc, addr);
4302        val &= ~(0x300);
4303        REG_WR(sc, addr, val);
4304    } else {
4305        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4306        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4307                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4308        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4309    }
4310}
4311
4312/*
4313 * Cleans the object that have internal lists without sending
4314 * ramrods. Should be run when interrutps are disabled.
4315 */
4316static void
4317bxe_squeeze_objects(struct bxe_softc *sc)
4318{
4319    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4320    struct ecore_mcast_ramrod_params rparam = { NULL };
4321    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4322    int rc;
4323
4324    /* Cleanup MACs' object first... */
4325
4326    /* Wait for completion of requested */
4327    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4328    /* Perform a dry cleanup */
4329    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4330
4331    /* Clean ETH primary MAC */
4332    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4333    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4334                             &ramrod_flags);
4335    if (rc != 0) {
4336        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4337    }
4338
4339    /* Cleanup UC list */
4340    vlan_mac_flags = 0;
4341    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4342    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4343                             &ramrod_flags);
4344    if (rc != 0) {
4345        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4346    }
4347
4348    /* Now clean mcast object... */
4349
4350    rparam.mcast_obj = &sc->mcast_obj;
4351    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4352
4353    /* Add a DEL command... */
4354    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4355    if (rc < 0) {
4356        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4357    }
4358
4359    /* now wait until all pending commands are cleared */
4360
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4362    while (rc != 0) {
4363        if (rc < 0) {
4364            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4365            return;
4366        }
4367
4368        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    }
4370}
4371
4372/* stop the controller */
4373static __noinline int
4374bxe_nic_unload(struct bxe_softc *sc,
4375               uint32_t         unload_mode,
4376               uint8_t          keep_link)
4377{
4378    uint8_t global = FALSE;
4379    uint32_t val;
4380
4381    BXE_CORE_LOCK_ASSERT(sc);
4382
4383    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4384
4385    /* mark driver as unloaded in shmem2 */
4386    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4387        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4388        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4389                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4390    }
4391
4392    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4393        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4394        /*
4395         * We can get here if the driver has been unloaded
4396         * during parity error recovery and is either waiting for a
4397         * leader to complete or for other functions to unload and
4398         * then ifconfig down has been issued. In this case we want to
4399         * unload and let other functions to complete a recovery
4400         * process.
4401         */
4402        sc->recovery_state = BXE_RECOVERY_DONE;
4403        sc->is_leader = 0;
4404        bxe_release_leader_lock(sc);
4405        mb();
4406
4407        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4408        BLOGE(sc, "Can't unload in closed or error state\n");
4409        return (-1);
4410    }
4411
4412    /*
4413     * Nothing to do during unload if previous bxe_nic_load()
4414     * did not completed succesfully - all resourses are released.
4415     */
4416    if ((sc->state == BXE_STATE_CLOSED) ||
4417        (sc->state == BXE_STATE_ERROR)) {
4418        return (0);
4419    }
4420
4421    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4422    mb();
4423
4424    /* stop tx */
4425    bxe_tx_disable(sc);
4426
4427    sc->rx_mode = BXE_RX_MODE_NONE;
4428    /* XXX set rx mode ??? */
4429
4430    if (IS_PF(sc)) {
4431        /* set ALWAYS_ALIVE bit in shmem */
4432        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4433
4434        bxe_drv_pulse(sc);
4435
4436        bxe_stats_handle(sc, STATS_EVENT_STOP);
4437        bxe_save_statistics(sc);
4438    }
4439
4440    /* wait till consumers catch up with producers in all queues */
4441    bxe_drain_tx_queues(sc);
4442
4443    /* if VF indicate to PF this function is going down (PF will delete sp
4444     * elements and clear initializations
4445     */
4446    if (IS_VF(sc)) {
4447        ; /* bxe_vfpf_close_vf(sc); */
4448    } else if (unload_mode != UNLOAD_RECOVERY) {
4449        /* if this is a normal/close unload need to clean up chip */
4450        bxe_chip_cleanup(sc, unload_mode, keep_link);
4451    } else {
4452        /* Send the UNLOAD_REQUEST to the MCP */
4453        bxe_send_unload_req(sc, unload_mode);
4454
4455        /*
4456         * Prevent transactions to host from the functions on the
4457         * engine that doesn't reset global blocks in case of global
4458         * attention once gloabl blocks are reset and gates are opened
4459         * (the engine which leader will perform the recovery
4460         * last).
4461         */
4462        if (!CHIP_IS_E1x(sc)) {
4463            bxe_pf_disable(sc);
4464        }
4465
4466        /* disable HW interrupts */
4467        bxe_int_disable_sync(sc, TRUE);
4468
4469        /* detach interrupts */
4470        bxe_interrupt_detach(sc);
4471
4472        /* Report UNLOAD_DONE to MCP */
4473        bxe_send_unload_done(sc, FALSE);
4474    }
4475
4476    /*
4477     * At this stage no more interrupts will arrive so we may safely clean
4478     * the queue'able objects here in case they failed to get cleaned so far.
4479     */
4480    if (IS_PF(sc)) {
4481        bxe_squeeze_objects(sc);
4482    }
4483
4484    /* There should be no more pending SP commands at this stage */
4485    sc->sp_state = 0;
4486
4487    sc->port.pmf = 0;
4488
4489    bxe_free_fp_buffers(sc);
4490
4491    if (IS_PF(sc)) {
4492        bxe_free_mem(sc);
4493    }
4494
4495    bxe_free_fw_stats_mem(sc);
4496
4497    sc->state = BXE_STATE_CLOSED;
4498
4499    /*
4500     * Check if there are pending parity attentions. If there are - set
4501     * RECOVERY_IN_PROGRESS.
4502     */
4503    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4504        bxe_set_reset_in_progress(sc);
4505
4506        /* Set RESET_IS_GLOBAL if needed */
4507        if (global) {
4508            bxe_set_reset_global(sc);
4509        }
4510    }
4511
4512    /*
4513     * The last driver must disable a "close the gate" if there is no
4514     * parity attention or "process kill" pending.
4515     */
4516    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4517        bxe_reset_is_done(sc, SC_PATH(sc))) {
4518        bxe_disable_close_the_gate(sc);
4519    }
4520
4521    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4522
4523    return (0);
4524}
4525
4526/*
4527 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4528 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4529 */
4530static int
4531bxe_ifmedia_update(struct ifnet  *ifp)
4532{
4533    struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4534    struct ifmedia *ifm;
4535
4536    ifm = &sc->ifmedia;
4537
4538    /* We only support Ethernet media type. */
4539    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4540        return (EINVAL);
4541    }
4542
4543    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4544    case IFM_AUTO:
4545         break;
4546    case IFM_10G_CX4:
4547    case IFM_10G_SR:
4548    case IFM_10G_T:
4549    case IFM_10G_TWINAX:
4550    default:
4551        /* We don't support changing the media type. */
4552        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4553              IFM_SUBTYPE(ifm->ifm_media));
4554        return (EINVAL);
4555    }
4556
4557    return (0);
4558}
4559
4560/*
4561 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4562 */
4563static void
4564bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4565{
4566    struct bxe_softc *sc = if_getsoftc(ifp);
4567
4568    /* Report link down if the driver isn't running. */
4569    if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4570        ifmr->ifm_active |= IFM_NONE;
4571        return;
4572    }
4573
4574    /* Setup the default interface info. */
4575    ifmr->ifm_status = IFM_AVALID;
4576    ifmr->ifm_active = IFM_ETHER;
4577
4578    if (sc->link_vars.link_up) {
4579        ifmr->ifm_status |= IFM_ACTIVE;
4580    } else {
4581        ifmr->ifm_active |= IFM_NONE;
4582        return;
4583    }
4584
4585    ifmr->ifm_active |= sc->media;
4586
4587    if (sc->link_vars.duplex == DUPLEX_FULL) {
4588        ifmr->ifm_active |= IFM_FDX;
4589    } else {
4590        ifmr->ifm_active |= IFM_HDX;
4591    }
4592}
4593
4594static int
4595bxe_ioctl_nvram(struct bxe_softc *sc,
4596                uint32_t         priv_op,
4597                struct ifreq     *ifr)
4598{
4599    struct bxe_nvram_data nvdata_base;
4600    struct bxe_nvram_data *nvdata;
4601    int len;
4602    int error = 0;
4603
4604    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4605
4606    len = (sizeof(struct bxe_nvram_data) +
4607           nvdata_base.len -
4608           sizeof(uint32_t));
4609
4610    if (len > sizeof(struct bxe_nvram_data)) {
4611        if ((nvdata = (struct bxe_nvram_data *)
4612                 malloc(len, M_DEVBUF,
4613                        (M_NOWAIT | M_ZERO))) == NULL) {
4614            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4615            return (1);
4616        }
4617        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4618    } else {
4619        nvdata = &nvdata_base;
4620    }
4621
4622    if (priv_op == BXE_IOC_RD_NVRAM) {
4623        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4624              nvdata->offset, nvdata->len);
4625        error = bxe_nvram_read(sc,
4626                               nvdata->offset,
4627                               (uint8_t *)nvdata->value,
4628                               nvdata->len);
4629        copyout(nvdata, ifr->ifr_data, len);
4630    } else { /* BXE_IOC_WR_NVRAM */
4631        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4632              nvdata->offset, nvdata->len);
4633        copyin(ifr->ifr_data, nvdata, len);
4634        error = bxe_nvram_write(sc,
4635                                nvdata->offset,
4636                                (uint8_t *)nvdata->value,
4637                                nvdata->len);
4638    }
4639
4640    if (len > sizeof(struct bxe_nvram_data)) {
4641        free(nvdata, M_DEVBUF);
4642    }
4643
4644    return (error);
4645}
4646
4647static int
4648bxe_ioctl_stats_show(struct bxe_softc *sc,
4649                     uint32_t         priv_op,
4650                     struct ifreq     *ifr)
4651{
4652    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4653    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4654    caddr_t p_tmp;
4655    uint32_t *offset;
4656    int i;
4657
4658    switch (priv_op)
4659    {
4660    case BXE_IOC_STATS_SHOW_NUM:
4661        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4662        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4663            BXE_NUM_ETH_STATS;
4664        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4665            STAT_NAME_LEN;
4666        return (0);
4667
4668    case BXE_IOC_STATS_SHOW_STR:
4669        memset(ifr->ifr_data, 0, str_size);
4670        p_tmp = ifr->ifr_data;
4671        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4672            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4673            p_tmp += STAT_NAME_LEN;
4674        }
4675        return (0);
4676
4677    case BXE_IOC_STATS_SHOW_CNT:
4678        memset(ifr->ifr_data, 0, stats_size);
4679        p_tmp = ifr->ifr_data;
4680        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4681            offset = ((uint32_t *)&sc->eth_stats +
4682                      bxe_eth_stats_arr[i].offset);
4683            switch (bxe_eth_stats_arr[i].size) {
4684            case 4:
4685                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4686                break;
4687            case 8:
4688                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4689                break;
4690            default:
4691                *((uint64_t *)p_tmp) = 0;
4692            }
4693            p_tmp += sizeof(uint64_t);
4694        }
4695        return (0);
4696
4697    default:
4698        return (-1);
4699    }
4700}
4701
4702static void
4703bxe_handle_chip_tq(void *context,
4704                   int  pending)
4705{
4706    struct bxe_softc *sc = (struct bxe_softc *)context;
4707    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4708
4709    switch (work)
4710    {
4711    case CHIP_TQ_START:
4712        if ((if_getflags(sc->ifp) & IFF_UP) &&
4713            !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4714            /* start the interface */
4715            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4716            BXE_CORE_LOCK(sc);
4717            bxe_init_locked(sc);
4718            BXE_CORE_UNLOCK(sc);
4719        }
4720        break;
4721
4722    case CHIP_TQ_STOP:
4723        if (!(if_getflags(sc->ifp) & IFF_UP) &&
4724            (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4725            /* bring down the interface */
4726            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4727            bxe_periodic_stop(sc);
4728            BXE_CORE_LOCK(sc);
4729            bxe_stop_locked(sc);
4730            BXE_CORE_UNLOCK(sc);
4731        }
4732        break;
4733
4734    case CHIP_TQ_REINIT:
4735        if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4736            /* restart the interface */
4737            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4738            bxe_periodic_stop(sc);
4739            BXE_CORE_LOCK(sc);
4740            bxe_stop_locked(sc);
4741            bxe_init_locked(sc);
4742            BXE_CORE_UNLOCK(sc);
4743        }
4744        break;
4745
4746    default:
4747        break;
4748    }
4749}
4750
4751/*
4752 * Handles any IOCTL calls from the operating system.
4753 *
4754 * Returns:
4755 *   0 = Success, >0 Failure
4756 */
4757static int
4758bxe_ioctl(if_t ifp,
4759          u_long       command,
4760          caddr_t      data)
4761{
4762    struct bxe_softc *sc = if_getsoftc(ifp);
4763    struct ifreq *ifr = (struct ifreq *)data;
4764    struct bxe_nvram_data *nvdata;
4765    uint32_t priv_op;
4766    int mask = 0;
4767    int reinit = 0;
4768    int error = 0;
4769
4770    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4771    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4772
4773    switch (command)
4774    {
4775    case SIOCSIFMTU:
4776        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4777              ifr->ifr_mtu);
4778
4779        if (sc->mtu == ifr->ifr_mtu) {
4780            /* nothing to change */
4781            break;
4782        }
4783
4784        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4785            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4786                  ifr->ifr_mtu, mtu_min, mtu_max);
4787            error = EINVAL;
4788            break;
4789        }
4790
4791        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4792                             (unsigned long)ifr->ifr_mtu);
4793	/*
4794        atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4795                              (unsigned long)ifr->ifr_mtu);
4796	XXX - Not sure why it needs to be atomic
4797	*/
4798	if_setmtu(ifp, ifr->ifr_mtu);
4799        reinit = 1;
4800        break;
4801
4802    case SIOCSIFFLAGS:
4803        /* toggle the interface state up or down */
4804        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4805
4806        /* check if the interface is up */
4807        if (if_getflags(ifp) & IFF_UP) {
4808            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4809                /* set the receive mode flags */
4810                bxe_set_rx_mode(sc);
4811            } else {
4812                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4813                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4814            }
4815        } else {
4816            if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4817                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4818                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4819            }
4820        }
4821
4822        break;
4823
4824    case SIOCADDMULTI:
4825    case SIOCDELMULTI:
4826        /* add/delete multicast addresses */
4827        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4828
4829        /* check if the interface is up */
4830        if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4831            /* set the receive mode flags */
4832            bxe_set_rx_mode(sc);
4833        }
4834
4835        break;
4836
4837    case SIOCSIFCAP:
4838        /* find out which capabilities have changed */
4839        mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4840
4841        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4842              mask);
4843
4844        /* toggle the LRO capabilites enable flag */
4845        if (mask & IFCAP_LRO) {
4846	    if_togglecapenable(ifp, IFCAP_LRO);
4847            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4848                  (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4849            reinit = 1;
4850        }
4851
4852        /* toggle the TXCSUM checksum capabilites enable flag */
4853        if (mask & IFCAP_TXCSUM) {
4854	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4855            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4856                  (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4857            if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4858                if_sethwassistbits(ifp, (CSUM_IP      |
4859                                    CSUM_TCP      |
4860                                    CSUM_UDP      |
4861                                    CSUM_TSO      |
4862                                    CSUM_TCP_IPV6 |
4863                                    CSUM_UDP_IPV6), 0);
4864            } else {
4865		if_clearhwassist(ifp); /* XXX */
4866            }
4867        }
4868
4869        /* toggle the RXCSUM checksum capabilities enable flag */
4870        if (mask & IFCAP_RXCSUM) {
4871	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4872            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4873                  (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4874            if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4875                if_sethwassistbits(ifp, (CSUM_IP      |
4876                                    CSUM_TCP      |
4877                                    CSUM_UDP      |
4878                                    CSUM_TSO      |
4879                                    CSUM_TCP_IPV6 |
4880                                    CSUM_UDP_IPV6), 0);
4881            } else {
4882		if_clearhwassist(ifp); /* XXX */
4883            }
4884        }
4885
4886        /* toggle TSO4 capabilities enabled flag */
4887        if (mask & IFCAP_TSO4) {
4888            if_togglecapenable(ifp, IFCAP_TSO4);
4889            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4890                  (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4891        }
4892
4893        /* toggle TSO6 capabilities enabled flag */
4894        if (mask & IFCAP_TSO6) {
4895	    if_togglecapenable(ifp, IFCAP_TSO6);
4896            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4897                  (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4898        }
4899
4900        /* toggle VLAN_HWTSO capabilities enabled flag */
4901        if (mask & IFCAP_VLAN_HWTSO) {
4902
4903	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4904            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4905                  (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4906        }
4907
4908        /* toggle VLAN_HWCSUM capabilities enabled flag */
4909        if (mask & IFCAP_VLAN_HWCSUM) {
4910            /* XXX investigate this... */
4911            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4912            error = EINVAL;
4913        }
4914
4915        /* toggle VLAN_MTU capabilities enable flag */
4916        if (mask & IFCAP_VLAN_MTU) {
4917            /* XXX investigate this... */
4918            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4919            error = EINVAL;
4920        }
4921
4922        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4923        if (mask & IFCAP_VLAN_HWTAGGING) {
4924            /* XXX investigate this... */
4925            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4926            error = EINVAL;
4927        }
4928
4929        /* toggle VLAN_HWFILTER capabilities enabled flag */
4930        if (mask & IFCAP_VLAN_HWFILTER) {
4931            /* XXX investigate this... */
4932            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4933            error = EINVAL;
4934        }
4935
4936        /* XXX not yet...
4937         * IFCAP_WOL_MAGIC
4938         */
4939
4940        break;
4941
4942    case SIOCSIFMEDIA:
4943    case SIOCGIFMEDIA:
4944        /* set/get interface media */
4945        BLOGD(sc, DBG_IOCTL,
4946              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4947              (command & 0xff));
4948        error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command);
4949        break;
4950
4951    case SIOCGPRIVATE_0:
4952        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4953
4954        switch (priv_op)
4955        {
4956        case BXE_IOC_RD_NVRAM:
4957        case BXE_IOC_WR_NVRAM:
4958            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4959            BLOGD(sc, DBG_IOCTL,
4960                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4961                  nvdata->offset, nvdata->len);
4962            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4963            break;
4964
4965        case BXE_IOC_STATS_SHOW_NUM:
4966        case BXE_IOC_STATS_SHOW_STR:
4967        case BXE_IOC_STATS_SHOW_CNT:
4968            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4969                  priv_op);
4970            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4971            break;
4972
4973        default:
4974            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4975            error = EINVAL;
4976            break;
4977        }
4978
4979        break;
4980
4981    default:
4982        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4983              (command & 0xff));
4984        error = ether_ioctl_drv(ifp, command, data);
4985        break;
4986    }
4987
4988    if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4989        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4990              "Re-initializing hardware from IOCTL change\n");
4991        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4992        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4993    }
4994
4995    return (error);
4996}
4997
4998static __noinline void
4999bxe_dump_mbuf(struct bxe_softc *sc,
5000              struct mbuf      *m,
5001              uint8_t          contents)
5002{
5003    char * type;
5004    int i = 0;
5005
5006    if (!(sc->debug & DBG_MBUF)) {
5007        return;
5008    }
5009
5010    if (m == NULL) {
5011        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5012        return;
5013    }
5014
5015    while (m) {
5016        BLOGD(sc, DBG_MBUF,
5017              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5018              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5019
5020        if (m->m_flags & M_PKTHDR) {
5021             BLOGD(sc, DBG_MBUF,
5022                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5023                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5024                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5025        }
5026
5027        if (m->m_flags & M_EXT) {
5028            switch (m->m_ext.ext_type) {
5029            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5030            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5031            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5032            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5033            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5034            case EXT_PACKET:     type = "EXT_PACKET";     break;
5035            case EXT_MBUF:       type = "EXT_MBUF";       break;
5036            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5037            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5038            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5039            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5040            default:             type = "UNKNOWN";        break;
5041            }
5042
5043            BLOGD(sc, DBG_MBUF,
5044                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5045                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5046        }
5047
5048        if (contents) {
5049            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5050        }
5051
5052        m = m->m_next;
5053        i++;
5054    }
5055}
5056
5057/*
5058 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5059 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5060 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5061 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5062 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5063 */
5064static int
5065bxe_chktso_window(struct bxe_softc  *sc,
5066                  int               nsegs,
5067                  bus_dma_segment_t *segs,
5068                  struct mbuf       *m)
5069{
5070    uint32_t num_wnds, wnd_size, wnd_sum;
5071    int32_t frag_idx, wnd_idx;
5072    unsigned short lso_mss;
5073    int defrag;
5074
5075    defrag = 0;
5076    wnd_sum = 0;
5077    wnd_size = 10;
5078    num_wnds = nsegs - wnd_size;
5079    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5080
5081    /*
5082     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5083     * first window sum of data while skipping the first assuming it is the
5084     * header in FreeBSD.
5085     */
5086    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5087        wnd_sum += htole16(segs[frag_idx].ds_len);
5088    }
5089
5090    /* check the first 10 bd window size */
5091    if (wnd_sum < lso_mss) {
5092        return (1);
5093    }
5094
5095    /* run through the windows */
5096    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5097        /* subtract the first mbuf->m_len of the last wndw(-header) */
5098        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5099        /* add the next mbuf len to the len of our new window */
5100        wnd_sum += htole16(segs[frag_idx].ds_len);
5101        if (wnd_sum < lso_mss) {
5102            return (1);
5103        }
5104    }
5105
5106    return (0);
5107}
5108
5109static uint8_t
5110bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5111                    struct mbuf         *m,
5112                    uint32_t            *parsing_data)
5113{
5114    struct ether_vlan_header *eh = NULL;
5115    struct ip *ip4 = NULL;
5116    struct ip6_hdr *ip6 = NULL;
5117    caddr_t ip = NULL;
5118    struct tcphdr *th = NULL;
5119    int e_hlen, ip_hlen, l4_off;
5120    uint16_t proto;
5121
5122    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5123        /* no L4 checksum offload needed */
5124        return (0);
5125    }
5126
5127    /* get the Ethernet header */
5128    eh = mtod(m, struct ether_vlan_header *);
5129
5130    /* handle VLAN encapsulation if present */
5131    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5132        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5133        proto  = ntohs(eh->evl_proto);
5134    } else {
5135        e_hlen = ETHER_HDR_LEN;
5136        proto  = ntohs(eh->evl_encap_proto);
5137    }
5138
5139    switch (proto) {
5140    case ETHERTYPE_IP:
5141        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5142        ip4 = (m->m_len < sizeof(struct ip)) ?
5143                  (struct ip *)m->m_next->m_data :
5144                  (struct ip *)(m->m_data + e_hlen);
5145        /* ip_hl is number of 32-bit words */
5146        ip_hlen = (ip4->ip_hl << 2);
5147        ip = (caddr_t)ip4;
5148        break;
5149    case ETHERTYPE_IPV6:
5150        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5151        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5152                  (struct ip6_hdr *)m->m_next->m_data :
5153                  (struct ip6_hdr *)(m->m_data + e_hlen);
5154        /* XXX cannot support offload with IPv6 extensions */
5155        ip_hlen = sizeof(struct ip6_hdr);
5156        ip = (caddr_t)ip6;
5157        break;
5158    default:
5159        /* We can't offload in this case... */
5160        /* XXX error stat ??? */
5161        return (0);
5162    }
5163
5164    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5165    l4_off = (e_hlen + ip_hlen);
5166
5167    *parsing_data |=
5168        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5169         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5170
5171    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5172                                  CSUM_TSO |
5173                                  CSUM_TCP_IPV6)) {
5174        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5175        th = (struct tcphdr *)(ip + ip_hlen);
5176        /* th_off is number of 32-bit words */
5177        *parsing_data |= ((th->th_off <<
5178                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5179                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5180        return (l4_off + (th->th_off << 2)); /* entire header length */
5181    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5182                                         CSUM_UDP_IPV6)) {
5183        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5184        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5185    } else {
5186        /* XXX error stat ??? */
5187        return (0);
5188    }
5189}
5190
5191static uint8_t
5192bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5193                 struct mbuf                *m,
5194                 struct eth_tx_parse_bd_e1x *pbd)
5195{
5196    struct ether_vlan_header *eh = NULL;
5197    struct ip *ip4 = NULL;
5198    struct ip6_hdr *ip6 = NULL;
5199    caddr_t ip = NULL;
5200    struct tcphdr *th = NULL;
5201    struct udphdr *uh = NULL;
5202    int e_hlen, ip_hlen;
5203    uint16_t proto;
5204    uint8_t hlen;
5205    uint16_t tmp_csum;
5206    uint32_t *tmp_uh;
5207
5208    /* get the Ethernet header */
5209    eh = mtod(m, struct ether_vlan_header *);
5210
5211    /* handle VLAN encapsulation if present */
5212    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5213        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5214        proto  = ntohs(eh->evl_proto);
5215    } else {
5216        e_hlen = ETHER_HDR_LEN;
5217        proto  = ntohs(eh->evl_encap_proto);
5218    }
5219
5220    switch (proto) {
5221    case ETHERTYPE_IP:
5222        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5223        ip4 = (m->m_len < sizeof(struct ip)) ?
5224                  (struct ip *)m->m_next->m_data :
5225                  (struct ip *)(m->m_data + e_hlen);
5226        /* ip_hl is number of 32-bit words */
5227        ip_hlen = (ip4->ip_hl << 1);
5228        ip = (caddr_t)ip4;
5229        break;
5230    case ETHERTYPE_IPV6:
5231        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5232        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5233                  (struct ip6_hdr *)m->m_next->m_data :
5234                  (struct ip6_hdr *)(m->m_data + e_hlen);
5235        /* XXX cannot support offload with IPv6 extensions */
5236        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5237        ip = (caddr_t)ip6;
5238        break;
5239    default:
5240        /* We can't offload in this case... */
5241        /* XXX error stat ??? */
5242        return (0);
5243    }
5244
5245    hlen = (e_hlen >> 1);
5246
5247    /* note that rest of global_data is indirectly zeroed here */
5248    if (m->m_flags & M_VLANTAG) {
5249        pbd->global_data =
5250            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5251    } else {
5252        pbd->global_data = htole16(hlen);
5253    }
5254
5255    pbd->ip_hlen_w = ip_hlen;
5256
5257    hlen += pbd->ip_hlen_w;
5258
5259    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5260
5261    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5262                                  CSUM_TSO |
5263                                  CSUM_TCP_IPV6)) {
5264        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5265        /* th_off is number of 32-bit words */
5266        hlen += (uint16_t)(th->th_off << 1);
5267    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5268                                         CSUM_UDP_IPV6)) {
5269        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5270        hlen += (sizeof(struct udphdr) / 2);
5271    } else {
5272        /* valid case as only CSUM_IP was set */
5273        return (0);
5274    }
5275
5276    pbd->total_hlen_w = htole16(hlen);
5277
5278    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5279                                  CSUM_TSO |
5280                                  CSUM_TCP_IPV6)) {
5281        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5282        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5283    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5284                                         CSUM_UDP_IPV6)) {
5285        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5286
5287        /*
5288         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5289         * checksums and does not know anything about the UDP header and where
5290         * the checksum field is located. It only knows about TCP. Therefore
5291         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5292         * offload. Since the checksum field offset for TCP is 16 bytes and
5293         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5294         * bytes less than the start of the UDP header. This allows the
5295         * hardware to write the checksum in the correct spot. But the
5296         * hardware will compute a checksum which includes the last 10 bytes
5297         * of the IP header. To correct this we tweak the stack computed
5298         * pseudo checksum by folding in the calculation of the inverse
5299         * checksum for those final 10 bytes of the IP header. This allows
5300         * the correct checksum to be computed by the hardware.
5301         */
5302
5303        /* set pointer 10 bytes before UDP header */
5304        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5305
5306        /* calculate a pseudo header checksum over the first 10 bytes */
5307        tmp_csum = in_pseudo(*tmp_uh,
5308                             *(tmp_uh + 1),
5309                             *(uint16_t *)(tmp_uh + 2));
5310
5311        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5312    }
5313
5314    return (hlen * 2); /* entire header length, number of bytes */
5315}
5316
5317static void
5318bxe_set_pbd_lso_e2(struct mbuf *m,
5319                   uint32_t    *parsing_data)
5320{
5321    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5322                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5323                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5324
5325    /* XXX test for IPv6 with extension header... */
5326#if 0
5327    struct ip6_hdr *ip6;
5328    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5329        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5330#endif
5331}
5332
5333static void
5334bxe_set_pbd_lso(struct mbuf                *m,
5335                struct eth_tx_parse_bd_e1x *pbd)
5336{
5337    struct ether_vlan_header *eh = NULL;
5338    struct ip *ip = NULL;
5339    struct tcphdr *th = NULL;
5340    int e_hlen;
5341
5342    /* get the Ethernet header */
5343    eh = mtod(m, struct ether_vlan_header *);
5344
5345    /* handle VLAN encapsulation if present */
5346    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5347                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5348
5349    /* get the IP and TCP header, with LSO entire header in first mbuf */
5350    /* XXX assuming IPv4 */
5351    ip = (struct ip *)(m->m_data + e_hlen);
5352    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5353
5354    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5355    pbd->tcp_send_seq = ntohl(th->th_seq);
5356    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5357
5358#if 1
5359        /* XXX IPv4 */
5360        pbd->ip_id = ntohs(ip->ip_id);
5361        pbd->tcp_pseudo_csum =
5362            ntohs(in_pseudo(ip->ip_src.s_addr,
5363                            ip->ip_dst.s_addr,
5364                            htons(IPPROTO_TCP)));
5365#else
5366        /* XXX IPv6 */
5367        pbd->tcp_pseudo_csum =
5368            ntohs(in_pseudo(&ip6->ip6_src,
5369                            &ip6->ip6_dst,
5370                            htons(IPPROTO_TCP)));
5371#endif
5372
5373    pbd->global_data |=
5374        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5375}
5376
5377/*
5378 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5379 * visible to the controller.
5380 *
5381 * If an mbuf is submitted to this routine and cannot be given to the
5382 * controller (e.g. it has too many fragments) then the function may free
5383 * the mbuf and return to the caller.
5384 *
5385 * Returns:
5386 *   0 = Success, !0 = Failure
5387 *   Note the side effect that an mbuf may be freed if it causes a problem.
5388 */
5389static int
5390bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5391{
5392    bus_dma_segment_t segs[32];
5393    struct mbuf *m0;
5394    struct bxe_sw_tx_bd *tx_buf;
5395    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5396    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5397    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5398    struct eth_tx_bd *tx_data_bd;
5399    struct eth_tx_bd *tx_total_pkt_size_bd;
5400    struct eth_tx_start_bd *tx_start_bd;
5401    uint16_t bd_prod, pkt_prod, total_pkt_size;
5402    uint8_t mac_type;
5403    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5404    struct bxe_softc *sc;
5405    uint16_t tx_bd_avail;
5406    struct ether_vlan_header *eh;
5407    uint32_t pbd_e2_parsing_data = 0;
5408    uint8_t hlen = 0;
5409    int tmp_bd;
5410    int i;
5411
5412    sc = fp->sc;
5413
5414    M_ASSERTPKTHDR(*m_head);
5415
5416    m0 = *m_head;
5417    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5418    tx_start_bd = NULL;
5419    tx_data_bd = NULL;
5420    tx_total_pkt_size_bd = NULL;
5421
5422    /* get the H/W pointer for packets and BDs */
5423    pkt_prod = fp->tx_pkt_prod;
5424    bd_prod = fp->tx_bd_prod;
5425
5426    mac_type = UNICAST_ADDRESS;
5427
5428    /* map the mbuf into the next open DMAable memory */
5429    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5430    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5431                                    tx_buf->m_map, m0,
5432                                    segs, &nsegs, BUS_DMA_NOWAIT);
5433
5434    /* mapping errors */
5435    if(__predict_false(error != 0)) {
5436        fp->eth_q_stats.tx_dma_mapping_failure++;
5437        if (error == ENOMEM) {
5438            /* resource issue, try again later */
5439            rc = ENOMEM;
5440        } else if (error == EFBIG) {
5441            /* possibly recoverable with defragmentation */
5442            fp->eth_q_stats.mbuf_defrag_attempts++;
5443            m0 = m_defrag(*m_head, M_NOWAIT);
5444            if (m0 == NULL) {
5445                fp->eth_q_stats.mbuf_defrag_failures++;
5446                rc = ENOBUFS;
5447            } else {
5448                /* defrag successful, try mapping again */
5449                *m_head = m0;
5450                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5451                                                tx_buf->m_map, m0,
5452                                                segs, &nsegs, BUS_DMA_NOWAIT);
5453                if (error) {
5454                    fp->eth_q_stats.tx_dma_mapping_failure++;
5455                    rc = error;
5456                }
5457            }
5458        } else {
5459            /* unknown, unrecoverable mapping error */
5460            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5461            bxe_dump_mbuf(sc, m0, FALSE);
5462            rc = error;
5463        }
5464
5465        goto bxe_tx_encap_continue;
5466    }
5467
5468    tx_bd_avail = bxe_tx_avail(sc, fp);
5469
5470    /* make sure there is enough room in the send queue */
5471    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5472        /* Recoverable, try again later. */
5473        fp->eth_q_stats.tx_hw_queue_full++;
5474        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5475        rc = ENOMEM;
5476        goto bxe_tx_encap_continue;
5477    }
5478
5479    /* capture the current H/W TX chain high watermark */
5480    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5481                        (TX_BD_USABLE - tx_bd_avail))) {
5482        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5483    }
5484
5485    /* make sure it fits in the packet window */
5486    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5487        /*
5488         * The mbuf may be to big for the controller to handle. If the frame
5489         * is a TSO frame we'll need to do an additional check.
5490         */
5491        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5492            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5493                goto bxe_tx_encap_continue; /* OK to send */
5494            } else {
5495                fp->eth_q_stats.tx_window_violation_tso++;
5496            }
5497        } else {
5498            fp->eth_q_stats.tx_window_violation_std++;
5499        }
5500
5501        /* lets try to defragment this mbuf and remap it */
5502        fp->eth_q_stats.mbuf_defrag_attempts++;
5503        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5504
5505        m0 = m_defrag(*m_head, M_NOWAIT);
5506        if (m0 == NULL) {
5507            fp->eth_q_stats.mbuf_defrag_failures++;
5508            /* Ugh, just drop the frame... :( */
5509            rc = ENOBUFS;
5510        } else {
5511            /* defrag successful, try mapping again */
5512            *m_head = m0;
5513            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5514                                            tx_buf->m_map, m0,
5515                                            segs, &nsegs, BUS_DMA_NOWAIT);
5516            if (error) {
5517                fp->eth_q_stats.tx_dma_mapping_failure++;
5518                /* No sense in trying to defrag/copy chain, drop it. :( */
5519                rc = error;
5520            }
5521            else {
5522                /* if the chain is still too long then drop it */
5523                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5524                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5525                    rc = ENODEV;
5526                }
5527            }
5528        }
5529    }
5530
5531bxe_tx_encap_continue:
5532
5533    /* Check for errors */
5534    if (rc) {
5535        if (rc == ENOMEM) {
5536            /* recoverable try again later  */
5537        } else {
5538            fp->eth_q_stats.tx_soft_errors++;
5539            fp->eth_q_stats.mbuf_alloc_tx--;
5540            m_freem(*m_head);
5541            *m_head = NULL;
5542        }
5543
5544        return (rc);
5545    }
5546
5547    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5548    if (m0->m_flags & M_BCAST) {
5549        mac_type = BROADCAST_ADDRESS;
5550    } else if (m0->m_flags & M_MCAST) {
5551        mac_type = MULTICAST_ADDRESS;
5552    }
5553
5554    /* store the mbuf into the mbuf ring */
5555    tx_buf->m        = m0;
5556    tx_buf->first_bd = fp->tx_bd_prod;
5557    tx_buf->flags    = 0;
5558
5559    /* prepare the first transmit (start) BD for the mbuf */
5560    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5561
5562    BLOGD(sc, DBG_TX,
5563          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5564          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5565
5566    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5567    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5568    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5569    total_pkt_size += tx_start_bd->nbytes;
5570    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5571
5572    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5573
5574    /* all frames have at least Start BD + Parsing BD */
5575    nbds = nsegs + 1;
5576    tx_start_bd->nbd = htole16(nbds);
5577
5578    if (m0->m_flags & M_VLANTAG) {
5579        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5580        tx_start_bd->bd_flags.as_bitfield |=
5581            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5582    } else {
5583        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5584        if (IS_VF(sc)) {
5585            /* map ethernet header to find type and header length */
5586            eh = mtod(m0, struct ether_vlan_header *);
5587            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5588        } else {
5589            /* used by FW for packet accounting */
5590            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5591#if 0
5592            /*
5593             * If NPAR-SD is active then FW should do the tagging regardless
5594             * of value of priority. Otherwise, if priority indicates this is
5595             * a control packet we need to indicate to FW to avoid tagging.
5596             */
5597            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5598                SET_FLAG(tx_start_bd->general_data,
5599                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5600            }
5601#endif
5602        }
5603    }
5604
5605    /*
5606     * add a parsing BD from the chain. The parsing BD is always added
5607     * though it is only used for TSO and chksum
5608     */
5609    bd_prod = TX_BD_NEXT(bd_prod);
5610
5611    if (m0->m_pkthdr.csum_flags) {
5612        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5613            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5614            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5615        }
5616
5617        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5618            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5619                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5620        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5621            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5622                                                  ETH_TX_BD_FLAGS_IS_UDP |
5623                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5624        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5625                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5626            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5627        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5628            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5629                                                  ETH_TX_BD_FLAGS_IS_UDP);
5630        }
5631    }
5632
5633    if (!CHIP_IS_E1x(sc)) {
5634        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5635        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5636
5637        if (m0->m_pkthdr.csum_flags) {
5638            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5639        }
5640
5641#if 0
5642        /*
5643         * Add the MACs to the parsing BD if the module param was
5644         * explicitly set, if this is a vf, or in switch independent
5645         * mode.
5646         */
5647        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5648            eh = mtod(m0, struct ether_vlan_header *);
5649            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5650                                &pbd_e2->data.mac_addr.src_mid,
5651                                &pbd_e2->data.mac_addr.src_lo,
5652                                eh->evl_shost);
5653            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5654                                &pbd_e2->data.mac_addr.dst_mid,
5655                                &pbd_e2->data.mac_addr.dst_lo,
5656                                eh->evl_dhost);
5657        }
5658#endif
5659
5660        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5661                 mac_type);
5662    } else {
5663        uint16_t global_data = 0;
5664
5665        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5666        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5667
5668        if (m0->m_pkthdr.csum_flags) {
5669            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5670        }
5671
5672        SET_FLAG(global_data,
5673                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5674        pbd_e1x->global_data |= htole16(global_data);
5675    }
5676
5677    /* setup the parsing BD with TSO specific info */
5678    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5679        fp->eth_q_stats.tx_ofld_frames_lso++;
5680        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5681
5682        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5683            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5684
5685            /* split the first BD into header/data making the fw job easy */
5686            nbds++;
5687            tx_start_bd->nbd = htole16(nbds);
5688            tx_start_bd->nbytes = htole16(hlen);
5689
5690            bd_prod = TX_BD_NEXT(bd_prod);
5691
5692            /* new transmit BD after the tx_parse_bd */
5693            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5694            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5695            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5696            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5697            if (tx_total_pkt_size_bd == NULL) {
5698                tx_total_pkt_size_bd = tx_data_bd;
5699            }
5700
5701            BLOGD(sc, DBG_TX,
5702                  "TSO split header size is %d (%x:%x) nbds %d\n",
5703                  le16toh(tx_start_bd->nbytes),
5704                  le32toh(tx_start_bd->addr_hi),
5705                  le32toh(tx_start_bd->addr_lo),
5706                  nbds);
5707        }
5708
5709        if (!CHIP_IS_E1x(sc)) {
5710            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5711        } else {
5712            bxe_set_pbd_lso(m0, pbd_e1x);
5713        }
5714    }
5715
5716    if (pbd_e2_parsing_data) {
5717        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5718    }
5719
5720    /* prepare remaining BDs, start tx bd contains first seg/frag */
5721    for (i = 1; i < nsegs ; i++) {
5722        bd_prod = TX_BD_NEXT(bd_prod);
5723        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5724        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5725        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5726        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5727        if (tx_total_pkt_size_bd == NULL) {
5728            tx_total_pkt_size_bd = tx_data_bd;
5729        }
5730        total_pkt_size += tx_data_bd->nbytes;
5731    }
5732
5733    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5734
5735    if (tx_total_pkt_size_bd != NULL) {
5736        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5737    }
5738
5739    if (__predict_false(sc->debug & DBG_TX)) {
5740        tmp_bd = tx_buf->first_bd;
5741        for (i = 0; i < nbds; i++)
5742        {
5743            if (i == 0) {
5744                BLOGD(sc, DBG_TX,
5745                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5746                      "bd_flags=0x%x hdr_nbds=%d\n",
5747                      tx_start_bd,
5748                      tmp_bd,
5749                      le16toh(tx_start_bd->nbd),
5750                      le16toh(tx_start_bd->vlan_or_ethertype),
5751                      tx_start_bd->bd_flags.as_bitfield,
5752                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5753            } else if (i == 1) {
5754                if (pbd_e1x) {
5755                    BLOGD(sc, DBG_TX,
5756                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5757                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5758                          "tcp_seq=%u total_hlen_w=%u\n",
5759                          pbd_e1x,
5760                          tmp_bd,
5761                          pbd_e1x->global_data,
5762                          pbd_e1x->ip_hlen_w,
5763                          pbd_e1x->ip_id,
5764                          pbd_e1x->lso_mss,
5765                          pbd_e1x->tcp_flags,
5766                          pbd_e1x->tcp_pseudo_csum,
5767                          pbd_e1x->tcp_send_seq,
5768                          le16toh(pbd_e1x->total_hlen_w));
5769                } else { /* if (pbd_e2) */
5770                    BLOGD(sc, DBG_TX,
5771                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5772                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5773                          pbd_e2,
5774                          tmp_bd,
5775                          pbd_e2->data.mac_addr.dst_hi,
5776                          pbd_e2->data.mac_addr.dst_mid,
5777                          pbd_e2->data.mac_addr.dst_lo,
5778                          pbd_e2->data.mac_addr.src_hi,
5779                          pbd_e2->data.mac_addr.src_mid,
5780                          pbd_e2->data.mac_addr.src_lo,
5781                          pbd_e2->parsing_data);
5782                }
5783            }
5784
5785            if (i != 1) { /* skip parse db as it doesn't hold data */
5786                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5787                BLOGD(sc, DBG_TX,
5788                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5789                      tx_data_bd,
5790                      tmp_bd,
5791                      le16toh(tx_data_bd->nbytes),
5792                      le32toh(tx_data_bd->addr_hi),
5793                      le32toh(tx_data_bd->addr_lo));
5794            }
5795
5796            tmp_bd = TX_BD_NEXT(tmp_bd);
5797        }
5798    }
5799
5800    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5801
5802    /* update TX BD producer index value for next TX */
5803    bd_prod = TX_BD_NEXT(bd_prod);
5804
5805    /*
5806     * If the chain of tx_bd's describing this frame is adjacent to or spans
5807     * an eth_tx_next_bd element then we need to increment the nbds value.
5808     */
5809    if (TX_BD_IDX(bd_prod) < nbds) {
5810        nbds++;
5811    }
5812
5813    /* don't allow reordering of writes for nbd and packets */
5814    mb();
5815
5816    fp->tx_db.data.prod += nbds;
5817
5818    /* producer points to the next free tx_bd at this point */
5819    fp->tx_pkt_prod++;
5820    fp->tx_bd_prod = bd_prod;
5821
5822    DOORBELL(sc, fp->index, fp->tx_db.raw);
5823
5824    fp->eth_q_stats.tx_pkts++;
5825
5826    /* Prevent speculative reads from getting ahead of the status block. */
5827    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5828                      0, 0, BUS_SPACE_BARRIER_READ);
5829
5830    /* Prevent speculative reads from getting ahead of the doorbell. */
5831    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5832                      0, 0, BUS_SPACE_BARRIER_READ);
5833
5834    return (0);
5835}
5836
5837static void
5838bxe_tx_start_locked(struct bxe_softc *sc,
5839                    if_t ifp,
5840                    struct bxe_fastpath *fp)
5841{
5842    struct mbuf *m = NULL;
5843    int tx_count = 0;
5844    uint16_t tx_bd_avail;
5845
5846    BXE_FP_TX_LOCK_ASSERT(fp);
5847
5848    /* keep adding entries while there are frames to send */
5849    while (!if_sendq_empty(ifp)) {
5850
5851        /*
5852         * check for any frames to send
5853         * dequeue can still be NULL even if queue is not empty
5854         */
5855        m = if_dequeue(ifp);
5856        if (__predict_false(m == NULL)) {
5857            break;
5858        }
5859
5860        /* the mbuf now belongs to us */
5861        fp->eth_q_stats.mbuf_alloc_tx++;
5862
5863        /*
5864         * Put the frame into the transmit ring. If we don't have room,
5865         * place the mbuf back at the head of the TX queue, set the
5866         * OACTIVE flag, and wait for the NIC to drain the chain.
5867         */
5868        if (__predict_false(bxe_tx_encap(fp, &m))) {
5869            fp->eth_q_stats.tx_encap_failures++;
5870            if (m != NULL) {
5871                /* mark the TX queue as full and return the frame */
5872                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5873		if_sendq_prepend(ifp, m);
5874                fp->eth_q_stats.mbuf_alloc_tx--;
5875                fp->eth_q_stats.tx_queue_xoff++;
5876            }
5877
5878            /* stop looking for more work */
5879            break;
5880        }
5881
5882        /* the frame was enqueued successfully */
5883        tx_count++;
5884
5885        /* send a copy of the frame to any BPF listeners. */
5886        if_etherbpfmtap(ifp, m);
5887
5888        tx_bd_avail = bxe_tx_avail(sc, fp);
5889
5890        /* handle any completions if we're running low */
5891        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5892            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5893            bxe_txeof(sc, fp);
5894            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5895                break;
5896            }
5897        }
5898    }
5899
5900    /* all TX packets were dequeued and/or the tx ring is full */
5901    if (tx_count > 0) {
5902        /* reset the TX watchdog timeout timer */
5903        fp->watchdog_timer = BXE_TX_TIMEOUT;
5904    }
5905}
5906
5907/* Legacy (non-RSS) dispatch routine */
5908static void
5909bxe_tx_start(if_t ifp)
5910{
5911    struct bxe_softc *sc;
5912    struct bxe_fastpath *fp;
5913
5914    sc = if_getsoftc(ifp);
5915
5916    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5917        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5918        return;
5919    }
5920
5921    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5922        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5923        return;
5924    }
5925
5926    if (!sc->link_vars.link_up) {
5927        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5928        return;
5929    }
5930
5931    fp = &sc->fp[0];
5932
5933    BXE_FP_TX_LOCK(fp);
5934    bxe_tx_start_locked(sc, ifp, fp);
5935    BXE_FP_TX_UNLOCK(fp);
5936}
5937
5938#if __FreeBSD_version >= 800000
5939
5940static int
5941bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5942                       if_t                ifp,
5943                       struct bxe_fastpath *fp,
5944                       struct mbuf         *m)
5945{
5946    struct buf_ring *tx_br = fp->tx_br;
5947    struct mbuf *next;
5948    int depth, rc, tx_count;
5949    uint16_t tx_bd_avail;
5950
5951    rc = tx_count = 0;
5952
5953    if (!tx_br) {
5954        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5955        return (EINVAL);
5956    }
5957
5958    /* fetch the depth of the driver queue */
5959    depth = drbr_inuse_drv(ifp, tx_br);
5960    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5961        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5962    }
5963
5964    BXE_FP_TX_LOCK_ASSERT(fp);
5965
5966    if (m == NULL) {
5967        /* no new work, check for pending frames */
5968        next = drbr_dequeue_drv(ifp, tx_br);
5969    } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5970        /* have both new and pending work, maintain packet order */
5971        rc = drbr_enqueue_drv(ifp, tx_br, m);
5972        if (rc != 0) {
5973            fp->eth_q_stats.tx_soft_errors++;
5974            goto bxe_tx_mq_start_locked_exit;
5975        }
5976        next = drbr_dequeue_drv(ifp, tx_br);
5977    } else {
5978        /* new work only and nothing pending */
5979        next = m;
5980    }
5981
5982    /* keep adding entries while there are frames to send */
5983    while (next != NULL) {
5984
5985        /* the mbuf now belongs to us */
5986        fp->eth_q_stats.mbuf_alloc_tx++;
5987
5988        /*
5989         * Put the frame into the transmit ring. If we don't have room,
5990         * place the mbuf back at the head of the TX queue, set the
5991         * OACTIVE flag, and wait for the NIC to drain the chain.
5992         */
5993        rc = bxe_tx_encap(fp, &next);
5994        if (__predict_false(rc != 0)) {
5995            fp->eth_q_stats.tx_encap_failures++;
5996            if (next != NULL) {
5997                /* mark the TX queue as full and save the frame */
5998                if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5999                /* XXX this may reorder the frame */
6000                rc = drbr_enqueue_drv(ifp, tx_br, next);
6001                fp->eth_q_stats.mbuf_alloc_tx--;
6002                fp->eth_q_stats.tx_frames_deferred++;
6003            }
6004
6005            /* stop looking for more work */
6006            break;
6007        }
6008
6009        /* the transmit frame was enqueued successfully */
6010        tx_count++;
6011
6012        /* send a copy of the frame to any BPF listeners */
6013	if_etherbpfmtap(ifp, next);
6014
6015        tx_bd_avail = bxe_tx_avail(sc, fp);
6016
6017        /* handle any completions if we're running low */
6018        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6019            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6020            bxe_txeof(sc, fp);
6021            if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6022                break;
6023            }
6024        }
6025
6026        next = drbr_dequeue_drv(ifp, tx_br);
6027    }
6028
6029    /* all TX packets were dequeued and/or the tx ring is full */
6030    if (tx_count > 0) {
6031        /* reset the TX watchdog timeout timer */
6032        fp->watchdog_timer = BXE_TX_TIMEOUT;
6033    }
6034
6035bxe_tx_mq_start_locked_exit:
6036
6037    return (rc);
6038}
6039
6040/* Multiqueue (TSS) dispatch routine. */
6041static int
6042bxe_tx_mq_start(struct ifnet *ifp,
6043                struct mbuf  *m)
6044{
6045    struct bxe_softc *sc = if_getsoftc(ifp);
6046    struct bxe_fastpath *fp;
6047    int fp_index, rc;
6048
6049    fp_index = 0; /* default is the first queue */
6050
6051    /* change the queue if using flow ID */
6052    if ((m->m_flags & M_FLOWID) != 0) {
6053        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6054    }
6055
6056    fp = &sc->fp[fp_index];
6057
6058    if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6059        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6060        return (ENETDOWN);
6061    }
6062
6063    if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6064        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6065        return (EBUSY);
6066    }
6067
6068    if (!sc->link_vars.link_up) {
6069        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6070        return (ENETDOWN);
6071    }
6072
6073    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6074
6075    BXE_FP_TX_LOCK(fp);
6076    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6077    BXE_FP_TX_UNLOCK(fp);
6078
6079    return (rc);
6080}
6081
6082static void
6083bxe_mq_flush(struct ifnet *ifp)
6084{
6085    struct bxe_softc *sc = if_getsoftc(ifp);
6086    struct bxe_fastpath *fp;
6087    struct mbuf *m;
6088    int i;
6089
6090    for (i = 0; i < sc->num_queues; i++) {
6091        fp = &sc->fp[i];
6092
6093        if (fp->state != BXE_FP_STATE_OPEN) {
6094            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6095                  fp->index, fp->state);
6096            continue;
6097        }
6098
6099        if (fp->tx_br != NULL) {
6100            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6101            BXE_FP_TX_LOCK(fp);
6102            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6103                m_freem(m);
6104            }
6105            BXE_FP_TX_UNLOCK(fp);
6106        }
6107    }
6108
6109    if_qflush_drv(ifp);
6110}
6111
6112#endif /* FreeBSD_version >= 800000 */
6113
6114static uint16_t
6115bxe_cid_ilt_lines(struct bxe_softc *sc)
6116{
6117    if (IS_SRIOV(sc)) {
6118        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6119    }
6120    return (L2_ILT_LINES(sc));
6121}
6122
6123static void
6124bxe_ilt_set_info(struct bxe_softc *sc)
6125{
6126    struct ilt_client_info *ilt_client;
6127    struct ecore_ilt *ilt = sc->ilt;
6128    uint16_t line = 0;
6129
6130    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6131    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6132
6133    /* CDU */
6134    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6135    ilt_client->client_num = ILT_CLIENT_CDU;
6136    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6137    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6138    ilt_client->start = line;
6139    line += bxe_cid_ilt_lines(sc);
6140
6141    if (CNIC_SUPPORT(sc)) {
6142        line += CNIC_ILT_LINES;
6143    }
6144
6145    ilt_client->end = (line - 1);
6146
6147    BLOGD(sc, DBG_LOAD,
6148          "ilt client[CDU]: start %d, end %d, "
6149          "psz 0x%x, flags 0x%x, hw psz %d\n",
6150          ilt_client->start, ilt_client->end,
6151          ilt_client->page_size,
6152          ilt_client->flags,
6153          ilog2(ilt_client->page_size >> 12));
6154
6155    /* QM */
6156    if (QM_INIT(sc->qm_cid_count)) {
6157        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6158        ilt_client->client_num = ILT_CLIENT_QM;
6159        ilt_client->page_size = QM_ILT_PAGE_SZ;
6160        ilt_client->flags = 0;
6161        ilt_client->start = line;
6162
6163        /* 4 bytes for each cid */
6164        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6165                             QM_ILT_PAGE_SZ);
6166
6167        ilt_client->end = (line - 1);
6168
6169        BLOGD(sc, DBG_LOAD,
6170              "ilt client[QM]: start %d, end %d, "
6171              "psz 0x%x, flags 0x%x, hw psz %d\n",
6172              ilt_client->start, ilt_client->end,
6173              ilt_client->page_size, ilt_client->flags,
6174              ilog2(ilt_client->page_size >> 12));
6175    }
6176
6177    if (CNIC_SUPPORT(sc)) {
6178        /* SRC */
6179        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6180        ilt_client->client_num = ILT_CLIENT_SRC;
6181        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6182        ilt_client->flags = 0;
6183        ilt_client->start = line;
6184        line += SRC_ILT_LINES;
6185        ilt_client->end = (line - 1);
6186
6187        BLOGD(sc, DBG_LOAD,
6188              "ilt client[SRC]: start %d, end %d, "
6189              "psz 0x%x, flags 0x%x, hw psz %d\n",
6190              ilt_client->start, ilt_client->end,
6191              ilt_client->page_size, ilt_client->flags,
6192              ilog2(ilt_client->page_size >> 12));
6193
6194        /* TM */
6195        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6196        ilt_client->client_num = ILT_CLIENT_TM;
6197        ilt_client->page_size = TM_ILT_PAGE_SZ;
6198        ilt_client->flags = 0;
6199        ilt_client->start = line;
6200        line += TM_ILT_LINES;
6201        ilt_client->end = (line - 1);
6202
6203        BLOGD(sc, DBG_LOAD,
6204              "ilt client[TM]: start %d, end %d, "
6205              "psz 0x%x, flags 0x%x, hw psz %d\n",
6206              ilt_client->start, ilt_client->end,
6207              ilt_client->page_size, ilt_client->flags,
6208              ilog2(ilt_client->page_size >> 12));
6209    }
6210
6211    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6212}
6213
6214static void
6215bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6216{
6217    int i;
6218
6219    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6220
6221    for (i = 0; i < sc->num_queues; i++) {
6222        /* get the Rx buffer size for RX frames */
6223        sc->fp[i].rx_buf_size =
6224            (IP_HEADER_ALIGNMENT_PADDING +
6225             ETH_OVERHEAD +
6226             sc->mtu);
6227
6228        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6229              i, sc->fp[i].rx_buf_size);
6230
6231        /* get the mbuf allocation size for RX frames */
6232        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6233            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6234        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6235            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6236        } else {
6237            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6238        }
6239
6240        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6241              i, sc->fp[i].mbuf_alloc_size);
6242    }
6243}
6244
6245static int
6246bxe_alloc_ilt_mem(struct bxe_softc *sc)
6247{
6248    int rc = 0;
6249
6250    if ((sc->ilt =
6251         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6252                                    M_BXE_ILT,
6253                                    (M_NOWAIT | M_ZERO))) == NULL) {
6254        rc = 1;
6255    }
6256
6257    return (rc);
6258}
6259
6260static int
6261bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6262{
6263    int rc = 0;
6264
6265    if ((sc->ilt->lines =
6266         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6267                                    M_BXE_ILT,
6268                                    (M_NOWAIT | M_ZERO))) == NULL) {
6269        rc = 1;
6270    }
6271
6272    return (rc);
6273}
6274
6275static void
6276bxe_free_ilt_mem(struct bxe_softc *sc)
6277{
6278    if (sc->ilt != NULL) {
6279        free(sc->ilt, M_BXE_ILT);
6280        sc->ilt = NULL;
6281    }
6282}
6283
6284static void
6285bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6286{
6287    if (sc->ilt->lines != NULL) {
6288        free(sc->ilt->lines, M_BXE_ILT);
6289        sc->ilt->lines = NULL;
6290    }
6291}
6292
6293static void
6294bxe_free_mem(struct bxe_softc *sc)
6295{
6296    int i;
6297
6298#if 0
6299    if (!CONFIGURE_NIC_MODE(sc)) {
6300        /* free searcher T2 table */
6301        bxe_dma_free(sc, &sc->t2);
6302    }
6303#endif
6304
6305    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6306        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6307        sc->context[i].vcxt = NULL;
6308        sc->context[i].size = 0;
6309    }
6310
6311    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6312
6313    bxe_free_ilt_lines_mem(sc);
6314
6315#if 0
6316    bxe_iov_free_mem(sc);
6317#endif
6318}
6319
6320static int
6321bxe_alloc_mem(struct bxe_softc *sc)
6322{
6323    int context_size;
6324    int allocated;
6325    int i;
6326
6327#if 0
6328    if (!CONFIGURE_NIC_MODE(sc)) {
6329        /* allocate searcher T2 table */
6330        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6331                          &sc->t2, "searcher t2 table") != 0) {
6332            return (-1);
6333        }
6334    }
6335#endif
6336
6337    /*
6338     * Allocate memory for CDU context:
6339     * This memory is allocated separately and not in the generic ILT
6340     * functions because CDU differs in few aspects:
6341     * 1. There can be multiple entities allocating memory for context -
6342     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6343     * its own ILT lines.
6344     * 2. Since CDU page-size is not a single 4KB page (which is the case
6345     * for the other ILT clients), to be efficient we want to support
6346     * allocation of sub-page-size in the last entry.
6347     * 3. Context pointers are used by the driver to pass to FW / update
6348     * the context (for the other ILT clients the pointers are used just to
6349     * free the memory during unload).
6350     */
6351    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6352    for (i = 0, allocated = 0; allocated < context_size; i++) {
6353        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6354                                  (context_size - allocated));
6355
6356        if (bxe_dma_alloc(sc, sc->context[i].size,
6357                          &sc->context[i].vcxt_dma,
6358                          "cdu context") != 0) {
6359            bxe_free_mem(sc);
6360            return (-1);
6361        }
6362
6363        sc->context[i].vcxt =
6364            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6365
6366        allocated += sc->context[i].size;
6367    }
6368
6369    bxe_alloc_ilt_lines_mem(sc);
6370
6371    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6372          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6373    {
6374        for (i = 0; i < 4; i++) {
6375            BLOGD(sc, DBG_LOAD,
6376                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6377                  i,
6378                  sc->ilt->clients[i].page_size,
6379                  sc->ilt->clients[i].start,
6380                  sc->ilt->clients[i].end,
6381                  sc->ilt->clients[i].client_num,
6382                  sc->ilt->clients[i].flags);
6383        }
6384    }
6385    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6386        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6387        bxe_free_mem(sc);
6388        return (-1);
6389    }
6390
6391#if 0
6392    if (bxe_iov_alloc_mem(sc)) {
6393        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6394        bxe_free_mem(sc);
6395        return (-1);
6396    }
6397#endif
6398
6399    return (0);
6400}
6401
6402static void
6403bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6404{
6405    struct bxe_softc *sc;
6406    int i;
6407
6408    sc = fp->sc;
6409
6410    if (fp->rx_mbuf_tag == NULL) {
6411        return;
6412    }
6413
6414    /* free all mbufs and unload all maps */
6415    for (i = 0; i < RX_BD_TOTAL; i++) {
6416        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6417            bus_dmamap_sync(fp->rx_mbuf_tag,
6418                            fp->rx_mbuf_chain[i].m_map,
6419                            BUS_DMASYNC_POSTREAD);
6420            bus_dmamap_unload(fp->rx_mbuf_tag,
6421                              fp->rx_mbuf_chain[i].m_map);
6422        }
6423
6424        if (fp->rx_mbuf_chain[i].m != NULL) {
6425            m_freem(fp->rx_mbuf_chain[i].m);
6426            fp->rx_mbuf_chain[i].m = NULL;
6427            fp->eth_q_stats.mbuf_alloc_rx--;
6428        }
6429    }
6430}
6431
6432static void
6433bxe_free_tpa_pool(struct bxe_fastpath *fp)
6434{
6435    struct bxe_softc *sc;
6436    int i, max_agg_queues;
6437
6438    sc = fp->sc;
6439
6440    if (fp->rx_mbuf_tag == NULL) {
6441        return;
6442    }
6443
6444    max_agg_queues = MAX_AGG_QS(sc);
6445
6446    /* release all mbufs and unload all DMA maps in the TPA pool */
6447    for (i = 0; i < max_agg_queues; i++) {
6448        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6449            bus_dmamap_sync(fp->rx_mbuf_tag,
6450                            fp->rx_tpa_info[i].bd.m_map,
6451                            BUS_DMASYNC_POSTREAD);
6452            bus_dmamap_unload(fp->rx_mbuf_tag,
6453                              fp->rx_tpa_info[i].bd.m_map);
6454        }
6455
6456        if (fp->rx_tpa_info[i].bd.m != NULL) {
6457            m_freem(fp->rx_tpa_info[i].bd.m);
6458            fp->rx_tpa_info[i].bd.m = NULL;
6459            fp->eth_q_stats.mbuf_alloc_tpa--;
6460        }
6461    }
6462}
6463
6464static void
6465bxe_free_sge_chain(struct bxe_fastpath *fp)
6466{
6467    struct bxe_softc *sc;
6468    int i;
6469
6470    sc = fp->sc;
6471
6472    if (fp->rx_sge_mbuf_tag == NULL) {
6473        return;
6474    }
6475
6476    /* rree all mbufs and unload all maps */
6477    for (i = 0; i < RX_SGE_TOTAL; i++) {
6478        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6479            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6480                            fp->rx_sge_mbuf_chain[i].m_map,
6481                            BUS_DMASYNC_POSTREAD);
6482            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6483                              fp->rx_sge_mbuf_chain[i].m_map);
6484        }
6485
6486        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6487            m_freem(fp->rx_sge_mbuf_chain[i].m);
6488            fp->rx_sge_mbuf_chain[i].m = NULL;
6489            fp->eth_q_stats.mbuf_alloc_sge--;
6490        }
6491    }
6492}
6493
6494static void
6495bxe_free_fp_buffers(struct bxe_softc *sc)
6496{
6497    struct bxe_fastpath *fp;
6498    int i;
6499
6500    for (i = 0; i < sc->num_queues; i++) {
6501        fp = &sc->fp[i];
6502
6503#if __FreeBSD_version >= 800000
6504        if (fp->tx_br != NULL) {
6505            struct mbuf *m;
6506            /* just in case bxe_mq_flush() wasn't called */
6507            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6508                m_freem(m);
6509            }
6510            buf_ring_free(fp->tx_br, M_DEVBUF);
6511            fp->tx_br = NULL;
6512        }
6513#endif
6514
6515        /* free all RX buffers */
6516        bxe_free_rx_bd_chain(fp);
6517        bxe_free_tpa_pool(fp);
6518        bxe_free_sge_chain(fp);
6519
6520        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6521            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6522                  fp->eth_q_stats.mbuf_alloc_rx);
6523        }
6524
6525        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6526            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6527                  fp->eth_q_stats.mbuf_alloc_sge);
6528        }
6529
6530        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6531            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6532                  fp->eth_q_stats.mbuf_alloc_tpa);
6533        }
6534
6535        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6536            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6537                  fp->eth_q_stats.mbuf_alloc_tx);
6538        }
6539
6540        /* XXX verify all mbufs were reclaimed */
6541
6542        if (mtx_initialized(&fp->tx_mtx)) {
6543            mtx_destroy(&fp->tx_mtx);
6544        }
6545
6546        if (mtx_initialized(&fp->rx_mtx)) {
6547            mtx_destroy(&fp->rx_mtx);
6548        }
6549    }
6550}
6551
6552static int
6553bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6554                     uint16_t            prev_index,
6555                     uint16_t            index)
6556{
6557    struct bxe_sw_rx_bd *rx_buf;
6558    struct eth_rx_bd *rx_bd;
6559    bus_dma_segment_t segs[1];
6560    bus_dmamap_t map;
6561    struct mbuf *m;
6562    int nsegs, rc;
6563
6564    rc = 0;
6565
6566    /* allocate the new RX BD mbuf */
6567    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6568    if (__predict_false(m == NULL)) {
6569        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6570        return (ENOBUFS);
6571    }
6572
6573    fp->eth_q_stats.mbuf_alloc_rx++;
6574
6575    /* initialize the mbuf buffer length */
6576    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6577
6578    /* map the mbuf into non-paged pool */
6579    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6580                                 fp->rx_mbuf_spare_map,
6581                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6582    if (__predict_false(rc != 0)) {
6583        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6584        m_freem(m);
6585        fp->eth_q_stats.mbuf_alloc_rx--;
6586        return (rc);
6587    }
6588
6589    /* all mbufs must map to a single segment */
6590    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6591
6592    /* release any existing RX BD mbuf mappings */
6593
6594    if (prev_index != index) {
6595        rx_buf = &fp->rx_mbuf_chain[prev_index];
6596
6597        if (rx_buf->m_map != NULL) {
6598            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6599                            BUS_DMASYNC_POSTREAD);
6600            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6601        }
6602
6603        /*
6604         * We only get here from bxe_rxeof() when the maximum number
6605         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6606         * holds the mbuf in the prev_index so it's OK to NULL it out
6607         * here without concern of a memory leak.
6608         */
6609        fp->rx_mbuf_chain[prev_index].m = NULL;
6610    }
6611
6612    rx_buf = &fp->rx_mbuf_chain[index];
6613
6614    if (rx_buf->m_map != NULL) {
6615        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6616                        BUS_DMASYNC_POSTREAD);
6617        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6618    }
6619
6620    /* save the mbuf and mapping info for a future packet */
6621    map = (prev_index != index) ?
6622              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6623    rx_buf->m_map = fp->rx_mbuf_spare_map;
6624    fp->rx_mbuf_spare_map = map;
6625    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6626                    BUS_DMASYNC_PREREAD);
6627    rx_buf->m = m;
6628
6629    rx_bd = &fp->rx_chain[index];
6630    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6631    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6632
6633    return (rc);
6634}
6635
6636static int
6637bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6638                      int                 queue)
6639{
6640    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6641    bus_dma_segment_t segs[1];
6642    bus_dmamap_t map;
6643    struct mbuf *m;
6644    int nsegs;
6645    int rc = 0;
6646
6647    /* allocate the new TPA mbuf */
6648    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6649    if (__predict_false(m == NULL)) {
6650        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6651        return (ENOBUFS);
6652    }
6653
6654    fp->eth_q_stats.mbuf_alloc_tpa++;
6655
6656    /* initialize the mbuf buffer length */
6657    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6658
6659    /* map the mbuf into non-paged pool */
6660    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6661                                 fp->rx_tpa_info_mbuf_spare_map,
6662                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6663    if (__predict_false(rc != 0)) {
6664        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6665        m_free(m);
6666        fp->eth_q_stats.mbuf_alloc_tpa--;
6667        return (rc);
6668    }
6669
6670    /* all mbufs must map to a single segment */
6671    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6672
6673    /* release any existing TPA mbuf mapping */
6674    if (tpa_info->bd.m_map != NULL) {
6675        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6676                        BUS_DMASYNC_POSTREAD);
6677        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6678    }
6679
6680    /* save the mbuf and mapping info for the TPA mbuf */
6681    map = tpa_info->bd.m_map;
6682    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6683    fp->rx_tpa_info_mbuf_spare_map = map;
6684    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6685                    BUS_DMASYNC_PREREAD);
6686    tpa_info->bd.m = m;
6687    tpa_info->seg = segs[0];
6688
6689    return (rc);
6690}
6691
6692/*
6693 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6694 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6695 * chain.
6696 */
6697static int
6698bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6699                      uint16_t            index)
6700{
6701    struct bxe_sw_rx_bd *sge_buf;
6702    struct eth_rx_sge *sge;
6703    bus_dma_segment_t segs[1];
6704    bus_dmamap_t map;
6705    struct mbuf *m;
6706    int nsegs;
6707    int rc = 0;
6708
6709    /* allocate a new SGE mbuf */
6710    m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6711    if (__predict_false(m == NULL)) {
6712        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6713        return (ENOMEM);
6714    }
6715
6716    fp->eth_q_stats.mbuf_alloc_sge++;
6717
6718    /* initialize the mbuf buffer length */
6719    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6720
6721    /* map the SGE mbuf into non-paged pool */
6722    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6723                                 fp->rx_sge_mbuf_spare_map,
6724                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6725    if (__predict_false(rc != 0)) {
6726        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6727        m_freem(m);
6728        fp->eth_q_stats.mbuf_alloc_sge--;
6729        return (rc);
6730    }
6731
6732    /* all mbufs must map to a single segment */
6733    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6734
6735    sge_buf = &fp->rx_sge_mbuf_chain[index];
6736
6737    /* release any existing SGE mbuf mapping */
6738    if (sge_buf->m_map != NULL) {
6739        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6740                        BUS_DMASYNC_POSTREAD);
6741        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6742    }
6743
6744    /* save the mbuf and mapping info for a future packet */
6745    map = sge_buf->m_map;
6746    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6747    fp->rx_sge_mbuf_spare_map = map;
6748    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6749                    BUS_DMASYNC_PREREAD);
6750    sge_buf->m = m;
6751
6752    sge = &fp->rx_sge_chain[index];
6753    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6754    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6755
6756    return (rc);
6757}
6758
6759static __noinline int
6760bxe_alloc_fp_buffers(struct bxe_softc *sc)
6761{
6762    struct bxe_fastpath *fp;
6763    int i, j, rc = 0;
6764    int ring_prod, cqe_ring_prod;
6765    int max_agg_queues;
6766
6767    for (i = 0; i < sc->num_queues; i++) {
6768        fp = &sc->fp[i];
6769
6770#if __FreeBSD_version >= 800000
6771        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6772                                   M_NOWAIT, &fp->tx_mtx);
6773        if (fp->tx_br == NULL) {
6774            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6775            goto bxe_alloc_fp_buffers_error;
6776        }
6777#endif
6778
6779        ring_prod = cqe_ring_prod = 0;
6780        fp->rx_bd_cons = 0;
6781        fp->rx_cq_cons = 0;
6782
6783        /* allocate buffers for the RX BDs in RX BD chain */
6784        for (j = 0; j < sc->max_rx_bufs; j++) {
6785            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6786            if (rc != 0) {
6787                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6788                      i, rc);
6789                goto bxe_alloc_fp_buffers_error;
6790            }
6791
6792            ring_prod     = RX_BD_NEXT(ring_prod);
6793            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6794        }
6795
6796        fp->rx_bd_prod = ring_prod;
6797        fp->rx_cq_prod = cqe_ring_prod;
6798        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6799
6800        if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
6801            max_agg_queues = MAX_AGG_QS(sc);
6802
6803            fp->tpa_enable = TRUE;
6804
6805            /* fill the TPA pool */
6806            for (j = 0; j < max_agg_queues; j++) {
6807                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6808                if (rc != 0) {
6809                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6810                          i, j);
6811                    fp->tpa_enable = FALSE;
6812                    goto bxe_alloc_fp_buffers_error;
6813                }
6814
6815                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6816            }
6817
6818            if (fp->tpa_enable) {
6819                /* fill the RX SGE chain */
6820                ring_prod = 0;
6821                for (j = 0; j < RX_SGE_USABLE; j++) {
6822                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6823                    if (rc != 0) {
6824                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6825                              i, ring_prod);
6826                        fp->tpa_enable = FALSE;
6827                        ring_prod = 0;
6828                        goto bxe_alloc_fp_buffers_error;
6829                    }
6830
6831                    ring_prod = RX_SGE_NEXT(ring_prod);
6832                }
6833
6834                fp->rx_sge_prod = ring_prod;
6835            }
6836        }
6837    }
6838
6839    return (0);
6840
6841bxe_alloc_fp_buffers_error:
6842
6843    /* unwind what was already allocated */
6844    bxe_free_rx_bd_chain(fp);
6845    bxe_free_tpa_pool(fp);
6846    bxe_free_sge_chain(fp);
6847
6848    return (ENOBUFS);
6849}
6850
6851static void
6852bxe_free_fw_stats_mem(struct bxe_softc *sc)
6853{
6854    bxe_dma_free(sc, &sc->fw_stats_dma);
6855
6856    sc->fw_stats_num = 0;
6857
6858    sc->fw_stats_req_size = 0;
6859    sc->fw_stats_req = NULL;
6860    sc->fw_stats_req_mapping = 0;
6861
6862    sc->fw_stats_data_size = 0;
6863    sc->fw_stats_data = NULL;
6864    sc->fw_stats_data_mapping = 0;
6865}
6866
6867static int
6868bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6869{
6870    uint8_t num_queue_stats;
6871    int num_groups;
6872
6873    /* number of queues for statistics is number of eth queues */
6874    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6875
6876    /*
6877     * Total number of FW statistics requests =
6878     *   1 for port stats + 1 for PF stats + num of queues
6879     */
6880    sc->fw_stats_num = (2 + num_queue_stats);
6881
6882    /*
6883     * Request is built from stats_query_header and an array of
6884     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6885     * rules. The real number or requests is configured in the
6886     * stats_query_header.
6887     */
6888    num_groups =
6889        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6890         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6891
6892    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6893          sc->fw_stats_num, num_groups);
6894
6895    sc->fw_stats_req_size =
6896        (sizeof(struct stats_query_header) +
6897         (num_groups * sizeof(struct stats_query_cmd_group)));
6898
6899    /*
6900     * Data for statistics requests + stats_counter.
6901     * stats_counter holds per-STORM counters that are incremented when
6902     * STORM has finished with the current request. Memory for FCoE
6903     * offloaded statistics are counted anyway, even if they will not be sent.
6904     * VF stats are not accounted for here as the data of VF stats is stored
6905     * in memory allocated by the VF, not here.
6906     */
6907    sc->fw_stats_data_size =
6908        (sizeof(struct stats_counter) +
6909         sizeof(struct per_port_stats) +
6910         sizeof(struct per_pf_stats) +
6911         /* sizeof(struct fcoe_statistics_params) + */
6912         (sizeof(struct per_queue_stats) * num_queue_stats));
6913
6914    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6915                      &sc->fw_stats_dma, "fw stats") != 0) {
6916        bxe_free_fw_stats_mem(sc);
6917        return (-1);
6918    }
6919
6920    /* set up the shortcuts */
6921
6922    sc->fw_stats_req =
6923        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6924    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6925
6926    sc->fw_stats_data =
6927        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6928                                     sc->fw_stats_req_size);
6929    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6930                                 sc->fw_stats_req_size);
6931
6932    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6933          (uintmax_t)sc->fw_stats_req_mapping);
6934
6935    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6936          (uintmax_t)sc->fw_stats_data_mapping);
6937
6938    return (0);
6939}
6940
6941/*
6942 * Bits map:
6943 * 0-7  - Engine0 load counter.
6944 * 8-15 - Engine1 load counter.
6945 * 16   - Engine0 RESET_IN_PROGRESS bit.
6946 * 17   - Engine1 RESET_IN_PROGRESS bit.
6947 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6948 *        function on the engine
6949 * 19   - Engine1 ONE_IS_LOADED.
6950 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6951 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6952 *        for just the one belonging to its engine).
6953 */
6954#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6955#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6956#define BXE_PATH0_LOAD_CNT_SHIFT  0
6957#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6958#define BXE_PATH1_LOAD_CNT_SHIFT  8
6959#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6960#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6961#define BXE_GLOBAL_RESET_BIT      0x00040000
6962
6963/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6964static void
6965bxe_set_reset_global(struct bxe_softc *sc)
6966{
6967    uint32_t val;
6968    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6969    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6970    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6971    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972}
6973
6974/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6975static void
6976bxe_clear_reset_global(struct bxe_softc *sc)
6977{
6978    uint32_t val;
6979    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6980    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6981    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6982    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6983}
6984
6985/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6986static uint8_t
6987bxe_reset_is_global(struct bxe_softc *sc)
6988{
6989    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6990    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6991    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6992}
6993
6994/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6995static void
6996bxe_set_reset_done(struct bxe_softc *sc)
6997{
6998    uint32_t val;
6999    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7000                                 BXE_PATH0_RST_IN_PROG_BIT;
7001
7002    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7003
7004    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7005    /* Clear the bit */
7006    val &= ~bit;
7007    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7008
7009    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7010}
7011
7012/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7013static void
7014bxe_set_reset_in_progress(struct bxe_softc *sc)
7015{
7016    uint32_t val;
7017    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7018                                 BXE_PATH0_RST_IN_PROG_BIT;
7019
7020    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7021
7022    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7023    /* Set the bit */
7024    val |= bit;
7025    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7026
7027    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7028}
7029
7030/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7031static uint8_t
7032bxe_reset_is_done(struct bxe_softc *sc,
7033                  int              engine)
7034{
7035    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7036    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7037                            BXE_PATH0_RST_IN_PROG_BIT;
7038
7039    /* return false if bit is set */
7040    return (val & bit) ? FALSE : TRUE;
7041}
7042
7043/* get the load status for an engine, should be run under rtnl lock */
7044static uint8_t
7045bxe_get_load_status(struct bxe_softc *sc,
7046                    int              engine)
7047{
7048    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7049                             BXE_PATH0_LOAD_CNT_MASK;
7050    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7051                              BXE_PATH0_LOAD_CNT_SHIFT;
7052    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7053
7054    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7055
7056    val = ((val & mask) >> shift);
7057
7058    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7059
7060    return (val != 0);
7061}
7062
7063/* set pf load mark */
7064/* XXX needs to be under rtnl lock */
7065static void
7066bxe_set_pf_load(struct bxe_softc *sc)
7067{
7068    uint32_t val;
7069    uint32_t val1;
7070    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7071                                  BXE_PATH0_LOAD_CNT_MASK;
7072    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7073                                   BXE_PATH0_LOAD_CNT_SHIFT;
7074
7075    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7076
7077    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7078    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7079
7080    /* get the current counter value */
7081    val1 = ((val & mask) >> shift);
7082
7083    /* set bit of this PF */
7084    val1 |= (1 << SC_ABS_FUNC(sc));
7085
7086    /* clear the old value */
7087    val &= ~mask;
7088
7089    /* set the new one */
7090    val |= ((val1 << shift) & mask);
7091
7092    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7093
7094    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7095}
7096
7097/* clear pf load mark */
7098/* XXX needs to be under rtnl lock */
7099static uint8_t
7100bxe_clear_pf_load(struct bxe_softc *sc)
7101{
7102    uint32_t val1, val;
7103    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7104                                  BXE_PATH0_LOAD_CNT_MASK;
7105    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7106                                   BXE_PATH0_LOAD_CNT_SHIFT;
7107
7108    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7109    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7110    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7111
7112    /* get the current counter value */
7113    val1 = (val & mask) >> shift;
7114
7115    /* clear bit of that PF */
7116    val1 &= ~(1 << SC_ABS_FUNC(sc));
7117
7118    /* clear the old value */
7119    val &= ~mask;
7120
7121    /* set the new one */
7122    val |= ((val1 << shift) & mask);
7123
7124    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7126    return (val1 != 0);
7127}
7128
7129/* send load requrest to mcp and analyze response */
7130static int
7131bxe_nic_load_request(struct bxe_softc *sc,
7132                     uint32_t         *load_code)
7133{
7134    /* init fw_seq */
7135    sc->fw_seq =
7136        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7137         DRV_MSG_SEQ_NUMBER_MASK);
7138
7139    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7140
7141    /* get the current FW pulse sequence */
7142    sc->fw_drv_pulse_wr_seq =
7143        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7144         DRV_PULSE_SEQ_MASK);
7145
7146    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7147          sc->fw_drv_pulse_wr_seq);
7148
7149    /* load request */
7150    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7151                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7152
7153    /* if the MCP fails to respond we must abort */
7154    if (!(*load_code)) {
7155        BLOGE(sc, "MCP response failure!\n");
7156        return (-1);
7157    }
7158
7159    /* if MCP refused then must abort */
7160    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7161        BLOGE(sc, "MCP refused load request\n");
7162        return (-1);
7163    }
7164
7165    return (0);
7166}
7167
7168/*
7169 * Check whether another PF has already loaded FW to chip. In virtualized
7170 * environments a pf from anoth VM may have already initialized the device
7171 * including loading FW.
7172 */
7173static int
7174bxe_nic_load_analyze_req(struct bxe_softc *sc,
7175                         uint32_t         load_code)
7176{
7177    uint32_t my_fw, loaded_fw;
7178
7179    /* is another pf loaded on this engine? */
7180    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7181        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7182        /* build my FW version dword */
7183        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7184                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7185                 (BCM_5710_FW_REVISION_VERSION << 16) +
7186                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7187
7188        /* read loaded FW from chip */
7189        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7190        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7191              loaded_fw, my_fw);
7192
7193        /* abort nic load if version mismatch */
7194        if (my_fw != loaded_fw) {
7195            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7196                  loaded_fw, my_fw);
7197            return (-1);
7198        }
7199    }
7200
7201    return (0);
7202}
7203
7204/* mark PMF if applicable */
7205static void
7206bxe_nic_load_pmf(struct bxe_softc *sc,
7207                 uint32_t         load_code)
7208{
7209    uint32_t ncsi_oem_data_addr;
7210
7211    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7212        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7213        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7214        /*
7215         * Barrier here for ordering between the writing to sc->port.pmf here
7216         * and reading it from the periodic task.
7217         */
7218        sc->port.pmf = 1;
7219        mb();
7220    } else {
7221        sc->port.pmf = 0;
7222    }
7223
7224    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7225
7226    /* XXX needed? */
7227    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7228        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7229            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7230            if (ncsi_oem_data_addr) {
7231                REG_WR(sc,
7232                       (ncsi_oem_data_addr +
7233                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7234                       0);
7235            }
7236        }
7237    }
7238}
7239
7240static void
7241bxe_read_mf_cfg(struct bxe_softc *sc)
7242{
7243    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7244    int abs_func;
7245    int vn;
7246
7247    if (BXE_NOMCP(sc)) {
7248        return; /* what should be the default bvalue in this case */
7249    }
7250
7251    /*
7252     * The formula for computing the absolute function number is...
7253     * For 2 port configuration (4 functions per port):
7254     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7255     * For 4 port configuration (2 functions per port):
7256     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7257     */
7258    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7259        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7260        if (abs_func >= E1H_FUNC_MAX) {
7261            break;
7262        }
7263        sc->devinfo.mf_info.mf_config[vn] =
7264            MFCFG_RD(sc, func_mf_config[abs_func].config);
7265    }
7266
7267    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7268        FUNC_MF_CFG_FUNC_DISABLED) {
7269        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7270        sc->flags |= BXE_MF_FUNC_DIS;
7271    } else {
7272        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7273        sc->flags &= ~BXE_MF_FUNC_DIS;
7274    }
7275}
7276
7277/* acquire split MCP access lock register */
7278static int bxe_acquire_alr(struct bxe_softc *sc)
7279{
7280    uint32_t j, val;
7281
7282    for (j = 0; j < 1000; j++) {
7283        val = (1UL << 31);
7284        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7285        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7286        if (val & (1L << 31))
7287            break;
7288
7289        DELAY(5000);
7290    }
7291
7292    if (!(val & (1L << 31))) {
7293        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7294        return (-1);
7295    }
7296
7297    return (0);
7298}
7299
7300/* release split MCP access lock register */
7301static void bxe_release_alr(struct bxe_softc *sc)
7302{
7303    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7304}
7305
7306static void
7307bxe_fan_failure(struct bxe_softc *sc)
7308{
7309    int port = SC_PORT(sc);
7310    uint32_t ext_phy_config;
7311
7312    /* mark the failure */
7313    ext_phy_config =
7314        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7315
7316    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7317    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7318    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7319             ext_phy_config);
7320
7321    /* log the failure */
7322    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7323              "the card to prevent permanent damage. "
7324              "Please contact OEM Support for assistance\n");
7325
7326    /* XXX */
7327#if 1
7328    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7329#else
7330    /*
7331     * Schedule device reset (unload)
7332     * This is due to some boards consuming sufficient power when driver is
7333     * up to overheat if fan fails.
7334     */
7335    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7336    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7337#endif
7338}
7339
7340/* this function is called upon a link interrupt */
7341static void
7342bxe_link_attn(struct bxe_softc *sc)
7343{
7344    uint32_t pause_enabled = 0;
7345    struct host_port_stats *pstats;
7346    int cmng_fns;
7347
7348    /* Make sure that we are synced with the current statistics */
7349    bxe_stats_handle(sc, STATS_EVENT_STOP);
7350
7351    elink_link_update(&sc->link_params, &sc->link_vars);
7352
7353    if (sc->link_vars.link_up) {
7354
7355        /* dropless flow control */
7356        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7357            pause_enabled = 0;
7358
7359            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7360                pause_enabled = 1;
7361            }
7362
7363            REG_WR(sc,
7364                   (BAR_USTRORM_INTMEM +
7365                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7366                   pause_enabled);
7367        }
7368
7369        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7370            pstats = BXE_SP(sc, port_stats);
7371            /* reset old mac stats */
7372            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7373        }
7374
7375        if (sc->state == BXE_STATE_OPEN) {
7376            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7377        }
7378    }
7379
7380    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7381        cmng_fns = bxe_get_cmng_fns_mode(sc);
7382
7383        if (cmng_fns != CMNG_FNS_NONE) {
7384            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7385            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7386        } else {
7387            /* rate shaping and fairness are disabled */
7388            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7389        }
7390    }
7391
7392    bxe_link_report_locked(sc);
7393
7394    if (IS_MF(sc)) {
7395        ; // XXX bxe_link_sync_notify(sc);
7396    }
7397}
7398
7399static void
7400bxe_attn_int_asserted(struct bxe_softc *sc,
7401                      uint32_t         asserted)
7402{
7403    int port = SC_PORT(sc);
7404    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7405                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7406    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7407                                        NIG_REG_MASK_INTERRUPT_PORT0;
7408    uint32_t aeu_mask;
7409    uint32_t nig_mask = 0;
7410    uint32_t reg_addr;
7411    uint32_t igu_acked;
7412    uint32_t cnt;
7413
7414    if (sc->attn_state & asserted) {
7415        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7416    }
7417
7418    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7419
7420    aeu_mask = REG_RD(sc, aeu_addr);
7421
7422    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7423          aeu_mask, asserted);
7424
7425    aeu_mask &= ~(asserted & 0x3ff);
7426
7427    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7428
7429    REG_WR(sc, aeu_addr, aeu_mask);
7430
7431    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7432
7433    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7434    sc->attn_state |= asserted;
7435    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7436
7437    if (asserted & ATTN_HARD_WIRED_MASK) {
7438        if (asserted & ATTN_NIG_FOR_FUNC) {
7439
7440            BXE_PHY_LOCK(sc);
7441
7442            /* save nig interrupt mask */
7443            nig_mask = REG_RD(sc, nig_int_mask_addr);
7444
7445            /* If nig_mask is not set, no need to call the update function */
7446            if (nig_mask) {
7447                REG_WR(sc, nig_int_mask_addr, 0);
7448
7449                bxe_link_attn(sc);
7450            }
7451
7452            /* handle unicore attn? */
7453        }
7454
7455        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7456            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7457        }
7458
7459        if (asserted & GPIO_2_FUNC) {
7460            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7461        }
7462
7463        if (asserted & GPIO_3_FUNC) {
7464            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7465        }
7466
7467        if (asserted & GPIO_4_FUNC) {
7468            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7469        }
7470
7471        if (port == 0) {
7472            if (asserted & ATTN_GENERAL_ATTN_1) {
7473                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7474                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7475            }
7476            if (asserted & ATTN_GENERAL_ATTN_2) {
7477                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7478                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7479            }
7480            if (asserted & ATTN_GENERAL_ATTN_3) {
7481                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7482                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7483            }
7484        } else {
7485            if (asserted & ATTN_GENERAL_ATTN_4) {
7486                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7487                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7488            }
7489            if (asserted & ATTN_GENERAL_ATTN_5) {
7490                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7491                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7492            }
7493            if (asserted & ATTN_GENERAL_ATTN_6) {
7494                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7495                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7496            }
7497        }
7498    } /* hardwired */
7499
7500    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7501        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7502    } else {
7503        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7504    }
7505
7506    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7507          asserted,
7508          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7509    REG_WR(sc, reg_addr, asserted);
7510
7511    /* now set back the mask */
7512    if (asserted & ATTN_NIG_FOR_FUNC) {
7513        /*
7514         * Verify that IGU ack through BAR was written before restoring
7515         * NIG mask. This loop should exit after 2-3 iterations max.
7516         */
7517        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7518            cnt = 0;
7519
7520            do {
7521                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7522            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7523                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7524
7525            if (!igu_acked) {
7526                BLOGE(sc, "Failed to verify IGU ack on time\n");
7527            }
7528
7529            mb();
7530        }
7531
7532        REG_WR(sc, nig_int_mask_addr, nig_mask);
7533
7534        BXE_PHY_UNLOCK(sc);
7535    }
7536}
7537
7538static void
7539bxe_print_next_block(struct bxe_softc *sc,
7540                     int              idx,
7541                     const char       *blk)
7542{
7543    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7544}
7545
7546static int
7547bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7548                              uint32_t         sig,
7549                              int              par_num,
7550                              uint8_t          print)
7551{
7552    uint32_t cur_bit = 0;
7553    int i = 0;
7554
7555    for (i = 0; sig; i++) {
7556        cur_bit = ((uint32_t)0x1 << i);
7557        if (sig & cur_bit) {
7558            switch (cur_bit) {
7559            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7560                if (print)
7561                    bxe_print_next_block(sc, par_num++, "BRB");
7562                break;
7563            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7564                if (print)
7565                    bxe_print_next_block(sc, par_num++, "PARSER");
7566                break;
7567            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7568                if (print)
7569                    bxe_print_next_block(sc, par_num++, "TSDM");
7570                break;
7571            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7572                if (print)
7573                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7574                break;
7575            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7576                if (print)
7577                    bxe_print_next_block(sc, par_num++, "TCM");
7578                break;
7579            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7580                if (print)
7581                    bxe_print_next_block(sc, par_num++, "TSEMI");
7582                break;
7583            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7584                if (print)
7585                    bxe_print_next_block(sc, par_num++, "XPB");
7586                break;
7587            }
7588
7589            /* Clear the bit */
7590            sig &= ~cur_bit;
7591        }
7592    }
7593
7594    return (par_num);
7595}
7596
7597static int
7598bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7599                              uint32_t         sig,
7600                              int              par_num,
7601                              uint8_t          *global,
7602                              uint8_t          print)
7603{
7604    int i = 0;
7605    uint32_t cur_bit = 0;
7606    for (i = 0; sig; i++) {
7607        cur_bit = ((uint32_t)0x1 << i);
7608        if (sig & cur_bit) {
7609            switch (cur_bit) {
7610            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7611                if (print)
7612                    bxe_print_next_block(sc, par_num++, "PBF");
7613                break;
7614            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7615                if (print)
7616                    bxe_print_next_block(sc, par_num++, "QM");
7617                break;
7618            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7619                if (print)
7620                    bxe_print_next_block(sc, par_num++, "TM");
7621                break;
7622            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7623                if (print)
7624                    bxe_print_next_block(sc, par_num++, "XSDM");
7625                break;
7626            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7627                if (print)
7628                    bxe_print_next_block(sc, par_num++, "XCM");
7629                break;
7630            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7631                if (print)
7632                    bxe_print_next_block(sc, par_num++, "XSEMI");
7633                break;
7634            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7635                if (print)
7636                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7637                break;
7638            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7639                if (print)
7640                    bxe_print_next_block(sc, par_num++, "NIG");
7641                break;
7642            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7643                if (print)
7644                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7645                *global = TRUE;
7646                break;
7647            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7648                if (print)
7649                    bxe_print_next_block(sc, par_num++, "DEBUG");
7650                break;
7651            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7652                if (print)
7653                    bxe_print_next_block(sc, par_num++, "USDM");
7654                break;
7655            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7656                if (print)
7657                    bxe_print_next_block(sc, par_num++, "UCM");
7658                break;
7659            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7660                if (print)
7661                    bxe_print_next_block(sc, par_num++, "USEMI");
7662                break;
7663            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7664                if (print)
7665                    bxe_print_next_block(sc, par_num++, "UPB");
7666                break;
7667            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7668                if (print)
7669                    bxe_print_next_block(sc, par_num++, "CSDM");
7670                break;
7671            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7672                if (print)
7673                    bxe_print_next_block(sc, par_num++, "CCM");
7674                break;
7675            }
7676
7677            /* Clear the bit */
7678            sig &= ~cur_bit;
7679        }
7680    }
7681
7682    return (par_num);
7683}
7684
7685static int
7686bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7687                              uint32_t         sig,
7688                              int              par_num,
7689                              uint8_t          print)
7690{
7691    uint32_t cur_bit = 0;
7692    int i = 0;
7693
7694    for (i = 0; sig; i++) {
7695        cur_bit = ((uint32_t)0x1 << i);
7696        if (sig & cur_bit) {
7697            switch (cur_bit) {
7698            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7699                if (print)
7700                    bxe_print_next_block(sc, par_num++, "CSEMI");
7701                break;
7702            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7703                if (print)
7704                    bxe_print_next_block(sc, par_num++, "PXP");
7705                break;
7706            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7707                if (print)
7708                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7709                break;
7710            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7711                if (print)
7712                    bxe_print_next_block(sc, par_num++, "CFC");
7713                break;
7714            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7715                if (print)
7716                    bxe_print_next_block(sc, par_num++, "CDU");
7717                break;
7718            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7719                if (print)
7720                    bxe_print_next_block(sc, par_num++, "DMAE");
7721                break;
7722            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7723                if (print)
7724                    bxe_print_next_block(sc, par_num++, "IGU");
7725                break;
7726            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7727                if (print)
7728                    bxe_print_next_block(sc, par_num++, "MISC");
7729                break;
7730            }
7731
7732            /* Clear the bit */
7733            sig &= ~cur_bit;
7734        }
7735    }
7736
7737    return (par_num);
7738}
7739
7740static int
7741bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7742                              uint32_t         sig,
7743                              int              par_num,
7744                              uint8_t          *global,
7745                              uint8_t          print)
7746{
7747    uint32_t cur_bit = 0;
7748    int i = 0;
7749
7750    for (i = 0; sig; i++) {
7751        cur_bit = ((uint32_t)0x1 << i);
7752        if (sig & cur_bit) {
7753            switch (cur_bit) {
7754            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7755                if (print)
7756                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7757                *global = TRUE;
7758                break;
7759            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7760                if (print)
7761                    bxe_print_next_block(sc, par_num++,
7762                              "MCP UMP RX");
7763                *global = TRUE;
7764                break;
7765            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7766                if (print)
7767                    bxe_print_next_block(sc, par_num++,
7768                              "MCP UMP TX");
7769                *global = TRUE;
7770                break;
7771            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7772                if (print)
7773                    bxe_print_next_block(sc, par_num++,
7774                              "MCP SCPAD");
7775                *global = TRUE;
7776                break;
7777            }
7778
7779            /* Clear the bit */
7780            sig &= ~cur_bit;
7781        }
7782    }
7783
7784    return (par_num);
7785}
7786
7787static int
7788bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7789                              uint32_t         sig,
7790                              int              par_num,
7791                              uint8_t          print)
7792{
7793    uint32_t cur_bit = 0;
7794    int i = 0;
7795
7796    for (i = 0; sig; i++) {
7797        cur_bit = ((uint32_t)0x1 << i);
7798        if (sig & cur_bit) {
7799            switch (cur_bit) {
7800            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7801                if (print)
7802                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7803                break;
7804            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7805                if (print)
7806                    bxe_print_next_block(sc, par_num++, "ATC");
7807                break;
7808            }
7809
7810            /* Clear the bit */
7811            sig &= ~cur_bit;
7812        }
7813    }
7814
7815    return (par_num);
7816}
7817
7818static uint8_t
7819bxe_parity_attn(struct bxe_softc *sc,
7820                uint8_t          *global,
7821                uint8_t          print,
7822                uint32_t         *sig)
7823{
7824    int par_num = 0;
7825
7826    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7827        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7828        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7829        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7830        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7831        BLOGE(sc, "Parity error: HW block parity attention:\n"
7832                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7833              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7834              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7835              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7836              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7837              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7838
7839        if (print)
7840            BLOGI(sc, "Parity errors detected in blocks: ");
7841
7842        par_num =
7843            bxe_check_blocks_with_parity0(sc, sig[0] &
7844                                          HW_PRTY_ASSERT_SET_0,
7845                                          par_num, print);
7846        par_num =
7847            bxe_check_blocks_with_parity1(sc, sig[1] &
7848                                          HW_PRTY_ASSERT_SET_1,
7849                                          par_num, global, print);
7850        par_num =
7851            bxe_check_blocks_with_parity2(sc, sig[2] &
7852                                          HW_PRTY_ASSERT_SET_2,
7853                                          par_num, print);
7854        par_num =
7855            bxe_check_blocks_with_parity3(sc, sig[3] &
7856                                          HW_PRTY_ASSERT_SET_3,
7857                                          par_num, global, print);
7858        par_num =
7859            bxe_check_blocks_with_parity4(sc, sig[4] &
7860                                          HW_PRTY_ASSERT_SET_4,
7861                                          par_num, print);
7862
7863        if (print)
7864            BLOGI(sc, "\n");
7865
7866        return (TRUE);
7867    }
7868
7869    return (FALSE);
7870}
7871
7872static uint8_t
7873bxe_chk_parity_attn(struct bxe_softc *sc,
7874                    uint8_t          *global,
7875                    uint8_t          print)
7876{
7877    struct attn_route attn = { {0} };
7878    int port = SC_PORT(sc);
7879
7880    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7881    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7882    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7883    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7884
7885    if (!CHIP_IS_E1x(sc))
7886        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7887
7888    return (bxe_parity_attn(sc, global, print, attn.sig));
7889}
7890
7891static void
7892bxe_attn_int_deasserted4(struct bxe_softc *sc,
7893                         uint32_t         attn)
7894{
7895    uint32_t val;
7896
7897    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7898        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7899        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7900        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7901            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7902        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7903            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7908        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7909            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7910        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7911            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7912        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7913            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7914        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7915            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7916        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7917            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7918    }
7919
7920    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7921        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7922        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7923        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7924            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7925        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7926            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7927        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7928            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7929        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7930            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7931        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7932            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7933        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7934            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7935    }
7936
7937    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7938                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7939        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7940              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7941                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7942    }
7943}
7944
7945static void
7946bxe_e1h_disable(struct bxe_softc *sc)
7947{
7948    int port = SC_PORT(sc);
7949
7950    bxe_tx_disable(sc);
7951
7952    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7953}
7954
7955static void
7956bxe_e1h_enable(struct bxe_softc *sc)
7957{
7958    int port = SC_PORT(sc);
7959
7960    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7961
7962    // XXX bxe_tx_enable(sc);
7963}
7964
7965/*
7966 * called due to MCP event (on pmf):
7967 *   reread new bandwidth configuration
7968 *   configure FW
7969 *   notify others function about the change
7970 */
7971static void
7972bxe_config_mf_bw(struct bxe_softc *sc)
7973{
7974    if (sc->link_vars.link_up) {
7975        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7976        // XXX bxe_link_sync_notify(sc);
7977    }
7978
7979    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7980}
7981
7982static void
7983bxe_set_mf_bw(struct bxe_softc *sc)
7984{
7985    bxe_config_mf_bw(sc);
7986    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7987}
7988
7989static void
7990bxe_handle_eee_event(struct bxe_softc *sc)
7991{
7992    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7993    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7994}
7995
7996#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7997
7998static void
7999bxe_drv_info_ether_stat(struct bxe_softc *sc)
8000{
8001    struct eth_stats_info *ether_stat =
8002        &sc->sp->drv_info_to_mcp.ether_stat;
8003
8004    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8005            ETH_STAT_INFO_VERSION_LEN);
8006
8007    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8008    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8009                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8010                                          ether_stat->mac_local + MAC_PAD,
8011                                          MAC_PAD, ETH_ALEN);
8012
8013    ether_stat->mtu_size = sc->mtu;
8014
8015    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8016    if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8017        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8018    }
8019
8020    // XXX ether_stat->feature_flags |= ???;
8021
8022    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8023
8024    ether_stat->txq_size = sc->tx_ring_size;
8025    ether_stat->rxq_size = sc->rx_ring_size;
8026}
8027
8028static void
8029bxe_handle_drv_info_req(struct bxe_softc *sc)
8030{
8031    enum drv_info_opcode op_code;
8032    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8033
8034    /* if drv_info version supported by MFW doesn't match - send NACK */
8035    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8036        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8037        return;
8038    }
8039
8040    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8041               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8042
8043    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8044
8045    switch (op_code) {
8046    case ETH_STATS_OPCODE:
8047        bxe_drv_info_ether_stat(sc);
8048        break;
8049    case FCOE_STATS_OPCODE:
8050    case ISCSI_STATS_OPCODE:
8051    default:
8052        /* if op code isn't supported - send NACK */
8053        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8054        return;
8055    }
8056
8057    /*
8058     * If we got drv_info attn from MFW then these fields are defined in
8059     * shmem2 for sure
8060     */
8061    SHMEM2_WR(sc, drv_info_host_addr_lo,
8062              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8063    SHMEM2_WR(sc, drv_info_host_addr_hi,
8064              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8065
8066    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8067}
8068
8069static void
8070bxe_dcc_event(struct bxe_softc *sc,
8071              uint32_t         dcc_event)
8072{
8073    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8074
8075    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8076        /*
8077         * This is the only place besides the function initialization
8078         * where the sc->flags can change so it is done without any
8079         * locks
8080         */
8081        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8082            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8083            sc->flags |= BXE_MF_FUNC_DIS;
8084            bxe_e1h_disable(sc);
8085        } else {
8086            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8087            sc->flags &= ~BXE_MF_FUNC_DIS;
8088            bxe_e1h_enable(sc);
8089        }
8090        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8091    }
8092
8093    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8094        bxe_config_mf_bw(sc);
8095        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8096    }
8097
8098    /* Report results to MCP */
8099    if (dcc_event)
8100        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8101    else
8102        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8103}
8104
8105static void
8106bxe_pmf_update(struct bxe_softc *sc)
8107{
8108    int port = SC_PORT(sc);
8109    uint32_t val;
8110
8111    sc->port.pmf = 1;
8112    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8113
8114    /*
8115     * We need the mb() to ensure the ordering between the writing to
8116     * sc->port.pmf here and reading it from the bxe_periodic_task().
8117     */
8118    mb();
8119
8120    /* queue a periodic task */
8121    // XXX schedule task...
8122
8123    // XXX bxe_dcbx_pmf_update(sc);
8124
8125    /* enable nig attention */
8126    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8127    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8128        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8129        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8130    } else if (!CHIP_IS_E1x(sc)) {
8131        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8132        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8133    }
8134
8135    bxe_stats_handle(sc, STATS_EVENT_PMF);
8136}
8137
8138static int
8139bxe_mc_assert(struct bxe_softc *sc)
8140{
8141    char last_idx;
8142    int i, rc = 0;
8143    uint32_t row0, row1, row2, row3;
8144
8145    /* XSTORM */
8146    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8147    if (last_idx)
8148        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8149
8150    /* print the asserts */
8151    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8152
8153        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8154        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8155        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8156        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8157
8158        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8159            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8160                  i, row3, row2, row1, row0);
8161            rc++;
8162        } else {
8163            break;
8164        }
8165    }
8166
8167    /* TSTORM */
8168    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8169    if (last_idx) {
8170        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8171    }
8172
8173    /* print the asserts */
8174    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8175
8176        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8177        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8178        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8179        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8180
8181        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8182            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8183                  i, row3, row2, row1, row0);
8184            rc++;
8185        } else {
8186            break;
8187        }
8188    }
8189
8190    /* CSTORM */
8191    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8192    if (last_idx) {
8193        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8194    }
8195
8196    /* print the asserts */
8197    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8198
8199        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8200        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8201        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8202        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8203
8204        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8205            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8206                  i, row3, row2, row1, row0);
8207            rc++;
8208        } else {
8209            break;
8210        }
8211    }
8212
8213    /* USTORM */
8214    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8215    if (last_idx) {
8216        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8217    }
8218
8219    /* print the asserts */
8220    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8221
8222        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8223        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8224        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8225        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8226
8227        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8228            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8229                  i, row3, row2, row1, row0);
8230            rc++;
8231        } else {
8232            break;
8233        }
8234    }
8235
8236    return (rc);
8237}
8238
8239static void
8240bxe_attn_int_deasserted3(struct bxe_softc *sc,
8241                         uint32_t         attn)
8242{
8243    int func = SC_FUNC(sc);
8244    uint32_t val;
8245
8246    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8247
8248        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8249
8250            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8251            bxe_read_mf_cfg(sc);
8252            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8253                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8254            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8255
8256            if (val & DRV_STATUS_DCC_EVENT_MASK)
8257                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8258
8259            if (val & DRV_STATUS_SET_MF_BW)
8260                bxe_set_mf_bw(sc);
8261
8262            if (val & DRV_STATUS_DRV_INFO_REQ)
8263                bxe_handle_drv_info_req(sc);
8264
8265#if 0
8266            if (val & DRV_STATUS_VF_DISABLED)
8267                bxe_vf_handle_flr_event(sc);
8268#endif
8269
8270            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8271                bxe_pmf_update(sc);
8272
8273#if 0
8274            if (sc->port.pmf &&
8275                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8276                (sc->dcbx_enabled > 0))
8277                /* start dcbx state machine */
8278                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8279#endif
8280
8281#if 0
8282            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8283                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8284#endif
8285
8286            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8287                bxe_handle_eee_event(sc);
8288
8289            if (sc->link_vars.periodic_flags &
8290                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8291                /* sync with link */
8292                BXE_PHY_LOCK(sc);
8293                sc->link_vars.periodic_flags &=
8294                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8295                BXE_PHY_UNLOCK(sc);
8296                if (IS_MF(sc))
8297                    ; // XXX bxe_link_sync_notify(sc);
8298                bxe_link_report(sc);
8299            }
8300
8301            /*
8302             * Always call it here: bxe_link_report() will
8303             * prevent the link indication duplication.
8304             */
8305            bxe_link_status_update(sc);
8306
8307        } else if (attn & BXE_MC_ASSERT_BITS) {
8308
8309            BLOGE(sc, "MC assert!\n");
8310            bxe_mc_assert(sc);
8311            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8312            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8313            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8314            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8315            bxe_panic(sc, ("MC assert!\n"));
8316
8317        } else if (attn & BXE_MCP_ASSERT) {
8318
8319            BLOGE(sc, "MCP assert!\n");
8320            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8321            // XXX bxe_fw_dump(sc);
8322
8323        } else {
8324            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8325        }
8326    }
8327
8328    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8329        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8330        if (attn & BXE_GRC_TIMEOUT) {
8331            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8332            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8333        }
8334        if (attn & BXE_GRC_RSV) {
8335            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8336            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8337        }
8338        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8339    }
8340}
8341
8342static void
8343bxe_attn_int_deasserted2(struct bxe_softc *sc,
8344                         uint32_t         attn)
8345{
8346    int port = SC_PORT(sc);
8347    int reg_offset;
8348    uint32_t val0, mask0, val1, mask1;
8349    uint32_t val;
8350
8351    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8352        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8353        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8354        /* CFC error attention */
8355        if (val & 0x2) {
8356            BLOGE(sc, "FATAL error from CFC\n");
8357        }
8358    }
8359
8360    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8361        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8362        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8363        /* RQ_USDMDP_FIFO_OVERFLOW */
8364        if (val & 0x18000) {
8365            BLOGE(sc, "FATAL error from PXP\n");
8366        }
8367
8368        if (!CHIP_IS_E1x(sc)) {
8369            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8370            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8371        }
8372    }
8373
8374#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8375#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8376
8377    if (attn & AEU_PXP2_HW_INT_BIT) {
8378        /*  CQ47854 workaround do not panic on
8379         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8380         */
8381        if (!CHIP_IS_E1x(sc)) {
8382            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8383            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8384            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8385            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8386            /*
8387             * If the olny PXP2_EOP_ERROR_BIT is set in
8388             * STS0 and STS1 - clear it
8389             *
8390             * probably we lose additional attentions between
8391             * STS0 and STS_CLR0, in this case user will not
8392             * be notified about them
8393             */
8394            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8395                !(val1 & mask1))
8396                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8397
8398            /* print the register, since no one can restore it */
8399            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8400
8401            /*
8402             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8403             * then notify
8404             */
8405            if (val0 & PXP2_EOP_ERROR_BIT) {
8406                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8407
8408                /*
8409                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8410                 * set then clear attention from PXP2 block without panic
8411                 */
8412                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8413                    ((val1 & mask1) == 0))
8414                    attn &= ~AEU_PXP2_HW_INT_BIT;
8415            }
8416        }
8417    }
8418
8419    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8420        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8421                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8422
8423        val = REG_RD(sc, reg_offset);
8424        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8425        REG_WR(sc, reg_offset, val);
8426
8427        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8428              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8429        bxe_panic(sc, ("HW block attention set2\n"));
8430    }
8431}
8432
8433static void
8434bxe_attn_int_deasserted1(struct bxe_softc *sc,
8435                         uint32_t         attn)
8436{
8437    int port = SC_PORT(sc);
8438    int reg_offset;
8439    uint32_t val;
8440
8441    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8442        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8443        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8444        /* DORQ discard attention */
8445        if (val & 0x2) {
8446            BLOGE(sc, "FATAL error from DORQ\n");
8447        }
8448    }
8449
8450    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8451        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8452                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8453
8454        val = REG_RD(sc, reg_offset);
8455        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8456        REG_WR(sc, reg_offset, val);
8457
8458        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8459              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8460        bxe_panic(sc, ("HW block attention set1\n"));
8461    }
8462}
8463
8464static void
8465bxe_attn_int_deasserted0(struct bxe_softc *sc,
8466                         uint32_t         attn)
8467{
8468    int port = SC_PORT(sc);
8469    int reg_offset;
8470    uint32_t val;
8471
8472    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8473                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8474
8475    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8476        val = REG_RD(sc, reg_offset);
8477        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8478        REG_WR(sc, reg_offset, val);
8479
8480        BLOGW(sc, "SPIO5 hw attention\n");
8481
8482        /* Fan failure attention */
8483        elink_hw_reset_phy(&sc->link_params);
8484        bxe_fan_failure(sc);
8485    }
8486
8487    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8488        BXE_PHY_LOCK(sc);
8489        elink_handle_module_detect_int(&sc->link_params);
8490        BXE_PHY_UNLOCK(sc);
8491    }
8492
8493    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8494        val = REG_RD(sc, reg_offset);
8495        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8496        REG_WR(sc, reg_offset, val);
8497
8498        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8499                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8500    }
8501}
8502
8503static void
8504bxe_attn_int_deasserted(struct bxe_softc *sc,
8505                        uint32_t         deasserted)
8506{
8507    struct attn_route attn;
8508    struct attn_route *group_mask;
8509    int port = SC_PORT(sc);
8510    int index;
8511    uint32_t reg_addr;
8512    uint32_t val;
8513    uint32_t aeu_mask;
8514    uint8_t global = FALSE;
8515
8516    /*
8517     * Need to take HW lock because MCP or other port might also
8518     * try to handle this event.
8519     */
8520    bxe_acquire_alr(sc);
8521
8522    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8523        /* XXX
8524         * In case of parity errors don't handle attentions so that
8525         * other function would "see" parity errors.
8526         */
8527        sc->recovery_state = BXE_RECOVERY_INIT;
8528        // XXX schedule a recovery task...
8529        /* disable HW interrupts */
8530        bxe_int_disable(sc);
8531        bxe_release_alr(sc);
8532        return;
8533    }
8534
8535    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8536    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8537    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8538    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8539    if (!CHIP_IS_E1x(sc)) {
8540        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8541    } else {
8542        attn.sig[4] = 0;
8543    }
8544
8545    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8546          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8547
8548    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8549        if (deasserted & (1 << index)) {
8550            group_mask = &sc->attn_group[index];
8551
8552            BLOGD(sc, DBG_INTR,
8553                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8554                  group_mask->sig[0], group_mask->sig[1],
8555                  group_mask->sig[2], group_mask->sig[3],
8556                  group_mask->sig[4]);
8557
8558            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8559            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8560            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8561            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8562            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8563        }
8564    }
8565
8566    bxe_release_alr(sc);
8567
8568    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8569        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8570                    COMMAND_REG_ATTN_BITS_CLR);
8571    } else {
8572        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8573    }
8574
8575    val = ~deasserted;
8576    BLOGD(sc, DBG_INTR,
8577          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8578          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8579    REG_WR(sc, reg_addr, val);
8580
8581    if (~sc->attn_state & deasserted) {
8582        BLOGE(sc, "IGU error\n");
8583    }
8584
8585    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8586                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8587
8588    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8589
8590    aeu_mask = REG_RD(sc, reg_addr);
8591
8592    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8593          aeu_mask, deasserted);
8594    aeu_mask |= (deasserted & 0x3ff);
8595    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8596
8597    REG_WR(sc, reg_addr, aeu_mask);
8598    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8599
8600    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8601    sc->attn_state &= ~deasserted;
8602    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8603}
8604
8605static void
8606bxe_attn_int(struct bxe_softc *sc)
8607{
8608    /* read local copy of bits */
8609    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8610    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8611    uint32_t attn_state = sc->attn_state;
8612
8613    /* look for changed bits */
8614    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8615    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8616
8617    BLOGD(sc, DBG_INTR,
8618          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8619          attn_bits, attn_ack, asserted, deasserted);
8620
8621    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8622        BLOGE(sc, "BAD attention state\n");
8623    }
8624
8625    /* handle bits that were raised */
8626    if (asserted) {
8627        bxe_attn_int_asserted(sc, asserted);
8628    }
8629
8630    if (deasserted) {
8631        bxe_attn_int_deasserted(sc, deasserted);
8632    }
8633}
8634
8635static uint16_t
8636bxe_update_dsb_idx(struct bxe_softc *sc)
8637{
8638    struct host_sp_status_block *def_sb = sc->def_sb;
8639    uint16_t rc = 0;
8640
8641    mb(); /* status block is written to by the chip */
8642
8643    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8644        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8645        rc |= BXE_DEF_SB_ATT_IDX;
8646    }
8647
8648    if (sc->def_idx != def_sb->sp_sb.running_index) {
8649        sc->def_idx = def_sb->sp_sb.running_index;
8650        rc |= BXE_DEF_SB_IDX;
8651    }
8652
8653    mb();
8654
8655    return (rc);
8656}
8657
8658static inline struct ecore_queue_sp_obj *
8659bxe_cid_to_q_obj(struct bxe_softc *sc,
8660                 uint32_t         cid)
8661{
8662    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8663    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8664}
8665
8666static void
8667bxe_handle_mcast_eqe(struct bxe_softc *sc)
8668{
8669    struct ecore_mcast_ramrod_params rparam;
8670    int rc;
8671
8672    memset(&rparam, 0, sizeof(rparam));
8673
8674    rparam.mcast_obj = &sc->mcast_obj;
8675
8676    BXE_MCAST_LOCK(sc);
8677
8678    /* clear pending state for the last command */
8679    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8680
8681    /* if there are pending mcast commands - send them */
8682    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8683        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8684        if (rc < 0) {
8685            BLOGD(sc, DBG_SP,
8686                  "ERROR: Failed to send pending mcast commands (%d)\n",
8687                  rc);
8688        }
8689    }
8690
8691    BXE_MCAST_UNLOCK(sc);
8692}
8693
8694static void
8695bxe_handle_classification_eqe(struct bxe_softc      *sc,
8696                              union event_ring_elem *elem)
8697{
8698    unsigned long ramrod_flags = 0;
8699    int rc = 0;
8700    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8701    struct ecore_vlan_mac_obj *vlan_mac_obj;
8702
8703    /* always push next commands out, don't wait here */
8704    bit_set(&ramrod_flags, RAMROD_CONT);
8705
8706    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8707    case ECORE_FILTER_MAC_PENDING:
8708        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8709        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8710        break;
8711
8712    case ECORE_FILTER_MCAST_PENDING:
8713        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8714        /*
8715         * This is only relevant for 57710 where multicast MACs are
8716         * configured as unicast MACs using the same ramrod.
8717         */
8718        bxe_handle_mcast_eqe(sc);
8719        return;
8720
8721    default:
8722        BLOGE(sc, "Unsupported classification command: %d\n",
8723              elem->message.data.eth_event.echo);
8724        return;
8725    }
8726
8727    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8728
8729    if (rc < 0) {
8730        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8731    } else if (rc > 0) {
8732        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8733    }
8734}
8735
8736static void
8737bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8738                       union event_ring_elem *elem)
8739{
8740    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8741
8742    /* send rx_mode command again if was requested */
8743    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8744                               &sc->sp_state)) {
8745        bxe_set_storm_rx_mode(sc);
8746    }
8747#if 0
8748    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8749                                    &sc->sp_state)) {
8750        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8751    }
8752    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8753                                    &sc->sp_state)) {
8754        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8755    }
8756#endif
8757}
8758
8759static void
8760bxe_update_eq_prod(struct bxe_softc *sc,
8761                   uint16_t         prod)
8762{
8763    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8764    wmb(); /* keep prod updates ordered */
8765}
8766
8767static void
8768bxe_eq_int(struct bxe_softc *sc)
8769{
8770    uint16_t hw_cons, sw_cons, sw_prod;
8771    union event_ring_elem *elem;
8772    uint8_t echo;
8773    uint32_t cid;
8774    uint8_t opcode;
8775    int spqe_cnt = 0;
8776    struct ecore_queue_sp_obj *q_obj;
8777    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8778    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8779
8780    hw_cons = le16toh(*sc->eq_cons_sb);
8781
8782    /*
8783     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8784     * when we get to the next-page we need to adjust so the loop
8785     * condition below will be met. The next element is the size of a
8786     * regular element and hence incrementing by 1
8787     */
8788    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8789        hw_cons++;
8790    }
8791
8792    /*
8793     * This function may never run in parallel with itself for a
8794     * specific sc and no need for a read memory barrier here.
8795     */
8796    sw_cons = sc->eq_cons;
8797    sw_prod = sc->eq_prod;
8798
8799    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8800          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8801
8802    for (;
8803         sw_cons != hw_cons;
8804         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8805
8806        elem = &sc->eq[EQ_DESC(sw_cons)];
8807
8808#if 0
8809        int rc;
8810        rc = bxe_iov_eq_sp_event(sc, elem);
8811        if (!rc) {
8812            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8813            goto next_spqe;
8814        }
8815#endif
8816
8817        /* elem CID originates from FW, actually LE */
8818        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8819        opcode = elem->message.opcode;
8820
8821        /* handle eq element */
8822        switch (opcode) {
8823#if 0
8824        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8825            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8826            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8827            continue;
8828#endif
8829
8830        case EVENT_RING_OPCODE_STAT_QUERY:
8831            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8832                  sc->stats_comp++);
8833            /* nothing to do with stats comp */
8834            goto next_spqe;
8835
8836        case EVENT_RING_OPCODE_CFC_DEL:
8837            /* handle according to cid range */
8838            /* we may want to verify here that the sc state is HALTING */
8839            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8840            q_obj = bxe_cid_to_q_obj(sc, cid);
8841            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8842                break;
8843            }
8844            goto next_spqe;
8845
8846        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8847            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8848            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8849                break;
8850            }
8851            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8852            goto next_spqe;
8853
8854        case EVENT_RING_OPCODE_START_TRAFFIC:
8855            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8856            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8857                break;
8858            }
8859            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8860            goto next_spqe;
8861
8862        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8863            echo = elem->message.data.function_update_event.echo;
8864            if (echo == SWITCH_UPDATE) {
8865                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8866                if (f_obj->complete_cmd(sc, f_obj,
8867                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8868                    break;
8869                }
8870            }
8871            else {
8872                BLOGD(sc, DBG_SP,
8873                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8874#if 0
8875                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8876                /*
8877                 * We will perform the queues update from the sp_core_task as
8878                 * all queue SP operations should run with CORE_LOCK.
8879                 */
8880                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8881                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8882#endif
8883            }
8884            goto next_spqe;
8885
8886#if 0
8887        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8888            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8889            bxe_after_afex_vif_lists(sc, elem);
8890            goto next_spqe;
8891#endif
8892
8893        case EVENT_RING_OPCODE_FORWARD_SETUP:
8894            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8895            if (q_obj->complete_cmd(sc, q_obj,
8896                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8897                break;
8898            }
8899            goto next_spqe;
8900
8901        case EVENT_RING_OPCODE_FUNCTION_START:
8902            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8903            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8904                break;
8905            }
8906            goto next_spqe;
8907
8908        case EVENT_RING_OPCODE_FUNCTION_STOP:
8909            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8910            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8911                break;
8912            }
8913            goto next_spqe;
8914        }
8915
8916        switch (opcode | sc->state) {
8917        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8918        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8919            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8920            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8921            rss_raw->clear_pending(rss_raw);
8922            break;
8923
8924        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8925        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8926        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8927        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8928        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8929        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8930            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8931            bxe_handle_classification_eqe(sc, elem);
8932            break;
8933
8934        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8935        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8936        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8937            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8938            bxe_handle_mcast_eqe(sc);
8939            break;
8940
8941        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8942        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8943        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8944            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8945            bxe_handle_rx_mode_eqe(sc, elem);
8946            break;
8947
8948        default:
8949            /* unknown event log error and continue */
8950            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8951                  elem->message.opcode, sc->state);
8952        }
8953
8954next_spqe:
8955        spqe_cnt++;
8956    } /* for */
8957
8958    mb();
8959    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8960
8961    sc->eq_cons = sw_cons;
8962    sc->eq_prod = sw_prod;
8963
8964    /* make sure that above mem writes were issued towards the memory */
8965    wmb();
8966
8967    /* update producer */
8968    bxe_update_eq_prod(sc, sc->eq_prod);
8969}
8970
8971static void
8972bxe_handle_sp_tq(void *context,
8973                 int  pending)
8974{
8975    struct bxe_softc *sc = (struct bxe_softc *)context;
8976    uint16_t status;
8977
8978    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8979
8980    /* what work needs to be performed? */
8981    status = bxe_update_dsb_idx(sc);
8982
8983    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8984
8985    /* HW attentions */
8986    if (status & BXE_DEF_SB_ATT_IDX) {
8987        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8988        bxe_attn_int(sc);
8989        status &= ~BXE_DEF_SB_ATT_IDX;
8990    }
8991
8992    /* SP events: STAT_QUERY and others */
8993    if (status & BXE_DEF_SB_IDX) {
8994        /* handle EQ completions */
8995        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8996        bxe_eq_int(sc);
8997        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8998                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8999        status &= ~BXE_DEF_SB_IDX;
9000    }
9001
9002    /* if status is non zero then something went wrong */
9003    if (__predict_false(status)) {
9004        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9005    }
9006
9007    /* ack status block only if something was actually handled */
9008    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9009               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9010
9011    /*
9012     * Must be called after the EQ processing (since eq leads to sriov
9013     * ramrod completion flows).
9014     * This flow may have been scheduled by the arrival of a ramrod
9015     * completion, or by the sriov code rescheduling itself.
9016     */
9017    // XXX bxe_iov_sp_task(sc);
9018
9019#if 0
9020    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9021    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9022                               &sc->sp_state)) {
9023        bxe_link_report(sc);
9024        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9025    }
9026#endif
9027}
9028
9029static void
9030bxe_handle_fp_tq(void *context,
9031                 int  pending)
9032{
9033    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9034    struct bxe_softc *sc = fp->sc;
9035    uint8_t more_tx = FALSE;
9036    uint8_t more_rx = FALSE;
9037
9038    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9039
9040    /* XXX
9041     * IFF_DRV_RUNNING state can't be checked here since we process
9042     * slowpath events on a client queue during setup. Instead
9043     * we need to add a "process/continue" flag here that the driver
9044     * can use to tell the task here not to do anything.
9045     */
9046#if 0
9047    if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9048        return;
9049    }
9050#endif
9051
9052    /* update the fastpath index */
9053    bxe_update_fp_sb_idx(fp);
9054
9055    /* XXX add loop here if ever support multiple tx CoS */
9056    /* fp->txdata[cos] */
9057    if (bxe_has_tx_work(fp)) {
9058        BXE_FP_TX_LOCK(fp);
9059        more_tx = bxe_txeof(sc, fp);
9060        BXE_FP_TX_UNLOCK(fp);
9061    }
9062
9063    if (bxe_has_rx_work(fp)) {
9064        more_rx = bxe_rxeof(sc, fp);
9065    }
9066
9067    if (more_rx /*|| more_tx*/) {
9068        /* still more work to do */
9069        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9070        return;
9071    }
9072
9073    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9074               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9075}
9076
9077static void
9078bxe_task_fp(struct bxe_fastpath *fp)
9079{
9080    struct bxe_softc *sc = fp->sc;
9081    uint8_t more_tx = FALSE;
9082    uint8_t more_rx = FALSE;
9083
9084    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9085
9086    /* update the fastpath index */
9087    bxe_update_fp_sb_idx(fp);
9088
9089    /* XXX add loop here if ever support multiple tx CoS */
9090    /* fp->txdata[cos] */
9091    if (bxe_has_tx_work(fp)) {
9092        BXE_FP_TX_LOCK(fp);
9093        more_tx = bxe_txeof(sc, fp);
9094        BXE_FP_TX_UNLOCK(fp);
9095    }
9096
9097    if (bxe_has_rx_work(fp)) {
9098        more_rx = bxe_rxeof(sc, fp);
9099    }
9100
9101    if (more_rx /*|| more_tx*/) {
9102        /* still more work to do, bail out if this ISR and process later */
9103        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9104        return;
9105    }
9106
9107    /*
9108     * Here we write the fastpath index taken before doing any tx or rx work.
9109     * It is very well possible other hw events occurred up to this point and
9110     * they were actually processed accordingly above. Since we're going to
9111     * write an older fastpath index, an interrupt is coming which we might
9112     * not do any work in.
9113     */
9114    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9115               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9116}
9117
9118/*
9119 * Legacy interrupt entry point.
9120 *
9121 * Verifies that the controller generated the interrupt and
9122 * then calls a separate routine to handle the various
9123 * interrupt causes: link, RX, and TX.
9124 */
9125static void
9126bxe_intr_legacy(void *xsc)
9127{
9128    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9129    struct bxe_fastpath *fp;
9130    uint16_t status, mask;
9131    int i;
9132
9133    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9134
9135#if 0
9136    /* Don't handle any interrupts if we're not ready. */
9137    if (__predict_false(sc->intr_sem != 0)) {
9138        return;
9139    }
9140#endif
9141
9142    /*
9143     * 0 for ustorm, 1 for cstorm
9144     * the bits returned from ack_int() are 0-15
9145     * bit 0 = attention status block
9146     * bit 1 = fast path status block
9147     * a mask of 0x2 or more = tx/rx event
9148     * a mask of 1 = slow path event
9149     */
9150
9151    status = bxe_ack_int(sc);
9152
9153    /* the interrupt is not for us */
9154    if (__predict_false(status == 0)) {
9155        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9156        return;
9157    }
9158
9159    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9160
9161    FOR_EACH_ETH_QUEUE(sc, i) {
9162        fp = &sc->fp[i];
9163        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9164        if (status & mask) {
9165            /* acknowledge and disable further fastpath interrupts */
9166            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9167            bxe_task_fp(fp);
9168            status &= ~mask;
9169        }
9170    }
9171
9172#if 0
9173    if (CNIC_SUPPORT(sc)) {
9174        mask = 0x2;
9175        if (status & (mask | 0x1)) {
9176            ...
9177            status &= ~mask;
9178        }
9179    }
9180#endif
9181
9182    if (__predict_false(status & 0x1)) {
9183        /* acknowledge and disable further slowpath interrupts */
9184        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9185
9186        /* schedule slowpath handler */
9187        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9188
9189        status &= ~0x1;
9190    }
9191
9192    if (__predict_false(status)) {
9193        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9194    }
9195}
9196
9197/* slowpath interrupt entry point */
9198static void
9199bxe_intr_sp(void *xsc)
9200{
9201    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9202
9203    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9204
9205    /* acknowledge and disable further slowpath interrupts */
9206    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9207
9208    /* schedule slowpath handler */
9209    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9210}
9211
9212/* fastpath interrupt entry point */
9213static void
9214bxe_intr_fp(void *xfp)
9215{
9216    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9217    struct bxe_softc *sc = fp->sc;
9218
9219    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9220
9221    BLOGD(sc, DBG_INTR,
9222          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9223          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9224
9225#if 0
9226    /* Don't handle any interrupts if we're not ready. */
9227    if (__predict_false(sc->intr_sem != 0)) {
9228        return;
9229    }
9230#endif
9231
9232    /* acknowledge and disable further fastpath interrupts */
9233    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9234
9235    bxe_task_fp(fp);
9236}
9237
9238/* Release all interrupts allocated by the driver. */
9239static void
9240bxe_interrupt_free(struct bxe_softc *sc)
9241{
9242    int i;
9243
9244    switch (sc->interrupt_mode) {
9245    case INTR_MODE_INTX:
9246        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9247        if (sc->intr[0].resource != NULL) {
9248            bus_release_resource(sc->dev,
9249                                 SYS_RES_IRQ,
9250                                 sc->intr[0].rid,
9251                                 sc->intr[0].resource);
9252        }
9253        break;
9254    case INTR_MODE_MSI:
9255        for (i = 0; i < sc->intr_count; i++) {
9256            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9257            if (sc->intr[i].resource && sc->intr[i].rid) {
9258                bus_release_resource(sc->dev,
9259                                     SYS_RES_IRQ,
9260                                     sc->intr[i].rid,
9261                                     sc->intr[i].resource);
9262            }
9263        }
9264        pci_release_msi(sc->dev);
9265        break;
9266    case INTR_MODE_MSIX:
9267        for (i = 0; i < sc->intr_count; i++) {
9268            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9269            if (sc->intr[i].resource && sc->intr[i].rid) {
9270                bus_release_resource(sc->dev,
9271                                     SYS_RES_IRQ,
9272                                     sc->intr[i].rid,
9273                                     sc->intr[i].resource);
9274            }
9275        }
9276        pci_release_msi(sc->dev);
9277        break;
9278    default:
9279        /* nothing to do as initial allocation failed */
9280        break;
9281    }
9282}
9283
9284/*
9285 * This function determines and allocates the appropriate
9286 * interrupt based on system capabilites and user request.
9287 *
9288 * The user may force a particular interrupt mode, specify
9289 * the number of receive queues, specify the method for
9290 * distribuitng received frames to receive queues, or use
9291 * the default settings which will automatically select the
9292 * best supported combination.  In addition, the OS may or
9293 * may not support certain combinations of these settings.
9294 * This routine attempts to reconcile the settings requested
9295 * by the user with the capabilites available from the system
9296 * to select the optimal combination of features.
9297 *
9298 * Returns:
9299 *   0 = Success, !0 = Failure.
9300 */
9301static int
9302bxe_interrupt_alloc(struct bxe_softc *sc)
9303{
9304    int msix_count = 0;
9305    int msi_count = 0;
9306    int num_requested = 0;
9307    int num_allocated = 0;
9308    int rid, i, j;
9309    int rc;
9310
9311    /* get the number of available MSI/MSI-X interrupts from the OS */
9312    if (sc->interrupt_mode > 0) {
9313        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9314            msix_count = pci_msix_count(sc->dev);
9315        }
9316
9317        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9318            msi_count = pci_msi_count(sc->dev);
9319        }
9320
9321        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9322              msi_count, msix_count);
9323    }
9324
9325    do { /* try allocating MSI-X interrupt resources (at least 2) */
9326        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9327            break;
9328        }
9329
9330        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9331            (msix_count < 2)) {
9332            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9333            break;
9334        }
9335
9336        /* ask for the necessary number of MSI-X vectors */
9337        num_requested = min((sc->num_queues + 1), msix_count);
9338
9339        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9340
9341        num_allocated = num_requested;
9342        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9343            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9344            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9345            break;
9346        }
9347
9348        if (num_allocated < 2) { /* possible? */
9349            BLOGE(sc, "MSI-X allocation less than 2!\n");
9350            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9351            pci_release_msi(sc->dev);
9352            break;
9353        }
9354
9355        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9356              num_requested, num_allocated);
9357
9358        /* best effort so use the number of vectors allocated to us */
9359        sc->intr_count = num_allocated;
9360        sc->num_queues = num_allocated - 1;
9361
9362        rid = 1; /* initial resource identifier */
9363
9364        /* allocate the MSI-X vectors */
9365        for (i = 0; i < num_allocated; i++) {
9366            sc->intr[i].rid = (rid + i);
9367
9368            if ((sc->intr[i].resource =
9369                 bus_alloc_resource_any(sc->dev,
9370                                        SYS_RES_IRQ,
9371                                        &sc->intr[i].rid,
9372                                        RF_ACTIVE)) == NULL) {
9373                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9374                      i, (rid + i));
9375
9376                for (j = (i - 1); j >= 0; j--) {
9377                    bus_release_resource(sc->dev,
9378                                         SYS_RES_IRQ,
9379                                         sc->intr[j].rid,
9380                                         sc->intr[j].resource);
9381                }
9382
9383                sc->intr_count = 0;
9384                sc->num_queues = 0;
9385                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9386                pci_release_msi(sc->dev);
9387                break;
9388            }
9389
9390            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9391        }
9392    } while (0);
9393
9394    do { /* try allocating MSI vector resources (at least 2) */
9395        if (sc->interrupt_mode != INTR_MODE_MSI) {
9396            break;
9397        }
9398
9399        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9400            (msi_count < 1)) {
9401            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9402            break;
9403        }
9404
9405        /* ask for a single MSI vector */
9406        num_requested = 1;
9407
9408        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9409
9410        num_allocated = num_requested;
9411        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9412            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9413            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9414            break;
9415        }
9416
9417        if (num_allocated != 1) { /* possible? */
9418            BLOGE(sc, "MSI allocation is not 1!\n");
9419            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9420            pci_release_msi(sc->dev);
9421            break;
9422        }
9423
9424        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9425              num_requested, num_allocated);
9426
9427        /* best effort so use the number of vectors allocated to us */
9428        sc->intr_count = num_allocated;
9429        sc->num_queues = num_allocated;
9430
9431        rid = 1; /* initial resource identifier */
9432
9433        sc->intr[0].rid = rid;
9434
9435        if ((sc->intr[0].resource =
9436             bus_alloc_resource_any(sc->dev,
9437                                    SYS_RES_IRQ,
9438                                    &sc->intr[0].rid,
9439                                    RF_ACTIVE)) == NULL) {
9440            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9441            sc->intr_count = 0;
9442            sc->num_queues = 0;
9443            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9444            pci_release_msi(sc->dev);
9445            break;
9446        }
9447
9448        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9449    } while (0);
9450
9451    do { /* try allocating INTx vector resources */
9452        if (sc->interrupt_mode != INTR_MODE_INTX) {
9453            break;
9454        }
9455
9456        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9457
9458        /* only one vector for INTx */
9459        sc->intr_count = 1;
9460        sc->num_queues = 1;
9461
9462        rid = 0; /* initial resource identifier */
9463
9464        sc->intr[0].rid = rid;
9465
9466        if ((sc->intr[0].resource =
9467             bus_alloc_resource_any(sc->dev,
9468                                    SYS_RES_IRQ,
9469                                    &sc->intr[0].rid,
9470                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9471            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9472            sc->intr_count = 0;
9473            sc->num_queues = 0;
9474            sc->interrupt_mode = -1; /* Failed! */
9475            break;
9476        }
9477
9478        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9479    } while (0);
9480
9481    if (sc->interrupt_mode == -1) {
9482        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9483        rc = 1;
9484    } else {
9485        BLOGD(sc, DBG_LOAD,
9486              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9487              sc->interrupt_mode, sc->num_queues);
9488        rc = 0;
9489    }
9490
9491    return (rc);
9492}
9493
9494static void
9495bxe_interrupt_detach(struct bxe_softc *sc)
9496{
9497    struct bxe_fastpath *fp;
9498    int i;
9499
9500    /* release interrupt resources */
9501    for (i = 0; i < sc->intr_count; i++) {
9502        if (sc->intr[i].resource && sc->intr[i].tag) {
9503            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9504            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9505        }
9506    }
9507
9508    for (i = 0; i < sc->num_queues; i++) {
9509        fp = &sc->fp[i];
9510        if (fp->tq) {
9511            taskqueue_drain(fp->tq, &fp->tq_task);
9512            taskqueue_free(fp->tq);
9513            fp->tq = NULL;
9514        }
9515    }
9516
9517    if (sc->rx_mode_tq) {
9518        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9519        taskqueue_free(sc->rx_mode_tq);
9520        sc->rx_mode_tq = NULL;
9521    }
9522
9523    if (sc->sp_tq) {
9524        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9525        taskqueue_free(sc->sp_tq);
9526        sc->sp_tq = NULL;
9527    }
9528}
9529
9530/*
9531 * Enables interrupts and attach to the ISR.
9532 *
9533 * When using multiple MSI/MSI-X vectors the first vector
9534 * is used for slowpath operations while all remaining
9535 * vectors are used for fastpath operations.  If only a
9536 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9537 * ISR must look for both slowpath and fastpath completions.
9538 */
9539static int
9540bxe_interrupt_attach(struct bxe_softc *sc)
9541{
9542    struct bxe_fastpath *fp;
9543    int rc = 0;
9544    int i;
9545
9546    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9547             "bxe%d_sp_tq", sc->unit);
9548    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9549    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9550                                      taskqueue_thread_enqueue,
9551                                      &sc->sp_tq);
9552    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9553                            "%s", sc->sp_tq_name);
9554
9555    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9556             "bxe%d_rx_mode_tq", sc->unit);
9557    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9558    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9559                                           taskqueue_thread_enqueue,
9560                                           &sc->rx_mode_tq);
9561    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9562                            "%s", sc->rx_mode_tq_name);
9563
9564    for (i = 0; i < sc->num_queues; i++) {
9565        fp = &sc->fp[i];
9566        snprintf(fp->tq_name, sizeof(fp->tq_name),
9567                 "bxe%d_fp%d_tq", sc->unit, i);
9568        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9569        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9570                                       taskqueue_thread_enqueue,
9571                                       &fp->tq);
9572        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9573                                "%s", fp->tq_name);
9574    }
9575
9576    /* setup interrupt handlers */
9577    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9578        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9579
9580        /*
9581         * Setup the interrupt handler. Note that we pass the driver instance
9582         * to the interrupt handler for the slowpath.
9583         */
9584        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9585                                 (INTR_TYPE_NET | INTR_MPSAFE),
9586                                 NULL, bxe_intr_sp, sc,
9587                                 &sc->intr[0].tag)) != 0) {
9588            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9589            goto bxe_interrupt_attach_exit;
9590        }
9591
9592        bus_describe_intr(sc->dev, sc->intr[0].resource,
9593                          sc->intr[0].tag, "sp");
9594
9595        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9596
9597        /* initialize the fastpath vectors (note the first was used for sp) */
9598        for (i = 0; i < sc->num_queues; i++) {
9599            fp = &sc->fp[i];
9600            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9601
9602            /*
9603             * Setup the interrupt handler. Note that we pass the
9604             * fastpath context to the interrupt handler in this
9605             * case.
9606             */
9607            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9608                                     (INTR_TYPE_NET | INTR_MPSAFE),
9609                                     NULL, bxe_intr_fp, fp,
9610                                     &sc->intr[i + 1].tag)) != 0) {
9611                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9612                      (i + 1), rc);
9613                goto bxe_interrupt_attach_exit;
9614            }
9615
9616            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9617                              sc->intr[i + 1].tag, "fp%02d", i);
9618
9619            /* bind the fastpath instance to a cpu */
9620            if (sc->num_queues > 1) {
9621                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9622            }
9623
9624            fp->state = BXE_FP_STATE_IRQ;
9625        }
9626    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9627        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9628
9629        /*
9630         * Setup the interrupt handler. Note that we pass the
9631         * driver instance to the interrupt handler which
9632         * will handle both the slowpath and fastpath.
9633         */
9634        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9635                                 (INTR_TYPE_NET | INTR_MPSAFE),
9636                                 NULL, bxe_intr_legacy, sc,
9637                                 &sc->intr[0].tag)) != 0) {
9638            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9639            goto bxe_interrupt_attach_exit;
9640        }
9641
9642    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9643        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9644
9645        /*
9646         * Setup the interrupt handler. Note that we pass the
9647         * driver instance to the interrupt handler which
9648         * will handle both the slowpath and fastpath.
9649         */
9650        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9651                                 (INTR_TYPE_NET | INTR_MPSAFE),
9652                                 NULL, bxe_intr_legacy, sc,
9653                                 &sc->intr[0].tag)) != 0) {
9654            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9655            goto bxe_interrupt_attach_exit;
9656        }
9657    }
9658
9659bxe_interrupt_attach_exit:
9660
9661    return (rc);
9662}
9663
9664static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9665static int  bxe_init_hw_common(struct bxe_softc *sc);
9666static int  bxe_init_hw_port(struct bxe_softc *sc);
9667static int  bxe_init_hw_func(struct bxe_softc *sc);
9668static void bxe_reset_common(struct bxe_softc *sc);
9669static void bxe_reset_port(struct bxe_softc *sc);
9670static void bxe_reset_func(struct bxe_softc *sc);
9671static int  bxe_gunzip_init(struct bxe_softc *sc);
9672static void bxe_gunzip_end(struct bxe_softc *sc);
9673static int  bxe_init_firmware(struct bxe_softc *sc);
9674static void bxe_release_firmware(struct bxe_softc *sc);
9675
9676static struct
9677ecore_func_sp_drv_ops bxe_func_sp_drv = {
9678    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9679    .init_hw_cmn      = bxe_init_hw_common,
9680    .init_hw_port     = bxe_init_hw_port,
9681    .init_hw_func     = bxe_init_hw_func,
9682
9683    .reset_hw_cmn     = bxe_reset_common,
9684    .reset_hw_port    = bxe_reset_port,
9685    .reset_hw_func    = bxe_reset_func,
9686
9687    .gunzip_init      = bxe_gunzip_init,
9688    .gunzip_end       = bxe_gunzip_end,
9689
9690    .init_fw          = bxe_init_firmware,
9691    .release_fw       = bxe_release_firmware,
9692};
9693
9694static void
9695bxe_init_func_obj(struct bxe_softc *sc)
9696{
9697    sc->dmae_ready = 0;
9698
9699    ecore_init_func_obj(sc,
9700                        &sc->func_obj,
9701                        BXE_SP(sc, func_rdata),
9702                        BXE_SP_MAPPING(sc, func_rdata),
9703                        BXE_SP(sc, func_afex_rdata),
9704                        BXE_SP_MAPPING(sc, func_afex_rdata),
9705                        &bxe_func_sp_drv);
9706}
9707
9708static int
9709bxe_init_hw(struct bxe_softc *sc,
9710            uint32_t         load_code)
9711{
9712    struct ecore_func_state_params func_params = { NULL };
9713    int rc;
9714
9715    /* prepare the parameters for function state transitions */
9716    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9717
9718    func_params.f_obj = &sc->func_obj;
9719    func_params.cmd = ECORE_F_CMD_HW_INIT;
9720
9721    func_params.params.hw_init.load_phase = load_code;
9722
9723    /*
9724     * Via a plethora of function pointers, we will eventually reach
9725     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9726     */
9727    rc = ecore_func_state_change(sc, &func_params);
9728
9729    return (rc);
9730}
9731
9732static void
9733bxe_fill(struct bxe_softc *sc,
9734         uint32_t         addr,
9735         int              fill,
9736         uint32_t         len)
9737{
9738    uint32_t i;
9739
9740    if (!(len % 4) && !(addr % 4)) {
9741        for (i = 0; i < len; i += 4) {
9742            REG_WR(sc, (addr + i), fill);
9743        }
9744    } else {
9745        for (i = 0; i < len; i++) {
9746            REG_WR8(sc, (addr + i), fill);
9747        }
9748    }
9749}
9750
9751/* writes FP SP data to FW - data_size in dwords */
9752static void
9753bxe_wr_fp_sb_data(struct bxe_softc *sc,
9754                  int              fw_sb_id,
9755                  uint32_t         *sb_data_p,
9756                  uint32_t         data_size)
9757{
9758    int index;
9759
9760    for (index = 0; index < data_size; index++) {
9761        REG_WR(sc,
9762               (BAR_CSTRORM_INTMEM +
9763                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9764                (sizeof(uint32_t) * index)),
9765               *(sb_data_p + index));
9766    }
9767}
9768
9769static void
9770bxe_zero_fp_sb(struct bxe_softc *sc,
9771               int              fw_sb_id)
9772{
9773    struct hc_status_block_data_e2 sb_data_e2;
9774    struct hc_status_block_data_e1x sb_data_e1x;
9775    uint32_t *sb_data_p;
9776    uint32_t data_size = 0;
9777
9778    if (!CHIP_IS_E1x(sc)) {
9779        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9780        sb_data_e2.common.state = SB_DISABLED;
9781        sb_data_e2.common.p_func.vf_valid = FALSE;
9782        sb_data_p = (uint32_t *)&sb_data_e2;
9783        data_size = (sizeof(struct hc_status_block_data_e2) /
9784                     sizeof(uint32_t));
9785    } else {
9786        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9787        sb_data_e1x.common.state = SB_DISABLED;
9788        sb_data_e1x.common.p_func.vf_valid = FALSE;
9789        sb_data_p = (uint32_t *)&sb_data_e1x;
9790        data_size = (sizeof(struct hc_status_block_data_e1x) /
9791                     sizeof(uint32_t));
9792    }
9793
9794    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9795
9796    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9797             0, CSTORM_STATUS_BLOCK_SIZE);
9798    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9799             0, CSTORM_SYNC_BLOCK_SIZE);
9800}
9801
9802static void
9803bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9804                  struct hc_sp_status_block_data *sp_sb_data)
9805{
9806    int i;
9807
9808    for (i = 0;
9809         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9810         i++) {
9811        REG_WR(sc,
9812               (BAR_CSTRORM_INTMEM +
9813                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9814                (i * sizeof(uint32_t))),
9815               *((uint32_t *)sp_sb_data + i));
9816    }
9817}
9818
9819static void
9820bxe_zero_sp_sb(struct bxe_softc *sc)
9821{
9822    struct hc_sp_status_block_data sp_sb_data;
9823
9824    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9825
9826    sp_sb_data.state           = SB_DISABLED;
9827    sp_sb_data.p_func.vf_valid = FALSE;
9828
9829    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9830
9831    bxe_fill(sc,
9832             (BAR_CSTRORM_INTMEM +
9833              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9834              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9835    bxe_fill(sc,
9836             (BAR_CSTRORM_INTMEM +
9837              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9838              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9839}
9840
9841static void
9842bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9843                             int                       igu_sb_id,
9844                             int                       igu_seg_id)
9845{
9846    hc_sm->igu_sb_id      = igu_sb_id;
9847    hc_sm->igu_seg_id     = igu_seg_id;
9848    hc_sm->timer_value    = 0xFF;
9849    hc_sm->time_to_expire = 0xFFFFFFFF;
9850}
9851
9852static void
9853bxe_map_sb_state_machines(struct hc_index_data *index_data)
9854{
9855    /* zero out state machine indices */
9856
9857    /* rx indices */
9858    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9859
9860    /* tx indices */
9861    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9862    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9863    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9864    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9865
9866    /* map indices */
9867
9868    /* rx indices */
9869    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9870        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9871
9872    /* tx indices */
9873    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9874        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9875    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9876        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9877    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9878        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9879    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9880        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9881}
9882
9883static void
9884bxe_init_sb(struct bxe_softc *sc,
9885            bus_addr_t       busaddr,
9886            int              vfid,
9887            uint8_t          vf_valid,
9888            int              fw_sb_id,
9889            int              igu_sb_id)
9890{
9891    struct hc_status_block_data_e2  sb_data_e2;
9892    struct hc_status_block_data_e1x sb_data_e1x;
9893    struct hc_status_block_sm       *hc_sm_p;
9894    uint32_t *sb_data_p;
9895    int igu_seg_id;
9896    int data_size;
9897
9898    if (CHIP_INT_MODE_IS_BC(sc)) {
9899        igu_seg_id = HC_SEG_ACCESS_NORM;
9900    } else {
9901        igu_seg_id = IGU_SEG_ACCESS_NORM;
9902    }
9903
9904    bxe_zero_fp_sb(sc, fw_sb_id);
9905
9906    if (!CHIP_IS_E1x(sc)) {
9907        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9908        sb_data_e2.common.state = SB_ENABLED;
9909        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9910        sb_data_e2.common.p_func.vf_id = vfid;
9911        sb_data_e2.common.p_func.vf_valid = vf_valid;
9912        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9913        sb_data_e2.common.same_igu_sb_1b = TRUE;
9914        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9915        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9916        hc_sm_p = sb_data_e2.common.state_machine;
9917        sb_data_p = (uint32_t *)&sb_data_e2;
9918        data_size = (sizeof(struct hc_status_block_data_e2) /
9919                     sizeof(uint32_t));
9920        bxe_map_sb_state_machines(sb_data_e2.index_data);
9921    } else {
9922        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9923        sb_data_e1x.common.state = SB_ENABLED;
9924        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9925        sb_data_e1x.common.p_func.vf_id = 0xff;
9926        sb_data_e1x.common.p_func.vf_valid = FALSE;
9927        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9928        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9929        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9930        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9931        hc_sm_p = sb_data_e1x.common.state_machine;
9932        sb_data_p = (uint32_t *)&sb_data_e1x;
9933        data_size = (sizeof(struct hc_status_block_data_e1x) /
9934                     sizeof(uint32_t));
9935        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9936    }
9937
9938    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9939    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9940
9941    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9942
9943    /* write indices to HW - PCI guarantees endianity of regpairs */
9944    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9945}
9946
9947static inline uint8_t
9948bxe_fp_qzone_id(struct bxe_fastpath *fp)
9949{
9950    if (CHIP_IS_E1x(fp->sc)) {
9951        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9952    } else {
9953        return (fp->cl_id);
9954    }
9955}
9956
9957static inline uint32_t
9958bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9959                           struct bxe_fastpath *fp)
9960{
9961    uint32_t offset = BAR_USTRORM_INTMEM;
9962
9963#if 0
9964    if (IS_VF(sc)) {
9965        return (PXP_VF_ADDR_USDM_QUEUES_START +
9966                (sc->acquire_resp.resc.hw_qid[fp->index] *
9967                 sizeof(struct ustorm_queue_zone_data)));
9968    } else
9969#endif
9970    if (!CHIP_IS_E1x(sc)) {
9971        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9972    } else {
9973        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9974    }
9975
9976    return (offset);
9977}
9978
9979static void
9980bxe_init_eth_fp(struct bxe_softc *sc,
9981                int              idx)
9982{
9983    struct bxe_fastpath *fp = &sc->fp[idx];
9984    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9985    unsigned long q_type = 0;
9986    int cos;
9987
9988    fp->sc    = sc;
9989    fp->index = idx;
9990
9991    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9992             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9993    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9994
9995    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9996             "bxe%d_fp%d_rx_lock", sc->unit, idx);
9997    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
9998
9999    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10000    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10001
10002    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10003                    (SC_L_ID(sc) + idx) :
10004                    /* want client ID same as IGU SB ID for non-E1 */
10005                    fp->igu_sb_id;
10006    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10007
10008    /* setup sb indices */
10009    if (!CHIP_IS_E1x(sc)) {
10010        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10011        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10012    } else {
10013        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10014        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10015    }
10016
10017    /* init shortcut */
10018    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10019
10020    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10021
10022    /*
10023     * XXX If multiple CoS is ever supported then each fastpath structure
10024     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10025     */
10026    for (cos = 0; cos < sc->max_cos; cos++) {
10027        cids[cos] = idx;
10028    }
10029    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10030
10031    /* nothing more for a VF to do */
10032    if (IS_VF(sc)) {
10033        return;
10034    }
10035
10036    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10037                fp->fw_sb_id, fp->igu_sb_id);
10038
10039    bxe_update_fp_sb_idx(fp);
10040
10041    /* Configure Queue State object */
10042    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10043    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10044
10045    ecore_init_queue_obj(sc,
10046                         &sc->sp_objs[idx].q_obj,
10047                         fp->cl_id,
10048                         cids,
10049                         sc->max_cos,
10050                         SC_FUNC(sc),
10051                         BXE_SP(sc, q_rdata),
10052                         BXE_SP_MAPPING(sc, q_rdata),
10053                         q_type);
10054
10055    /* configure classification DBs */
10056    ecore_init_mac_obj(sc,
10057                       &sc->sp_objs[idx].mac_obj,
10058                       fp->cl_id,
10059                       idx,
10060                       SC_FUNC(sc),
10061                       BXE_SP(sc, mac_rdata),
10062                       BXE_SP_MAPPING(sc, mac_rdata),
10063                       ECORE_FILTER_MAC_PENDING,
10064                       &sc->sp_state,
10065                       ECORE_OBJ_TYPE_RX_TX,
10066                       &sc->macs_pool);
10067
10068    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10069          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10070}
10071
10072static inline void
10073bxe_update_rx_prod(struct bxe_softc    *sc,
10074                   struct bxe_fastpath *fp,
10075                   uint16_t            rx_bd_prod,
10076                   uint16_t            rx_cq_prod,
10077                   uint16_t            rx_sge_prod)
10078{
10079    struct ustorm_eth_rx_producers rx_prods = { 0 };
10080    uint32_t i;
10081
10082    /* update producers */
10083    rx_prods.bd_prod  = rx_bd_prod;
10084    rx_prods.cqe_prod = rx_cq_prod;
10085    rx_prods.sge_prod = rx_sge_prod;
10086
10087    /*
10088     * Make sure that the BD and SGE data is updated before updating the
10089     * producers since FW might read the BD/SGE right after the producer
10090     * is updated.
10091     * This is only applicable for weak-ordered memory model archs such
10092     * as IA-64. The following barrier is also mandatory since FW will
10093     * assumes BDs must have buffers.
10094     */
10095    wmb();
10096
10097    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10098        REG_WR(sc,
10099               (fp->ustorm_rx_prods_offset + (i * 4)),
10100               ((uint32_t *)&rx_prods)[i]);
10101    }
10102
10103    wmb(); /* keep prod updates ordered */
10104
10105    BLOGD(sc, DBG_RX,
10106          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10107          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10108}
10109
10110static void
10111bxe_init_rx_rings(struct bxe_softc *sc)
10112{
10113    struct bxe_fastpath *fp;
10114    int i;
10115
10116    for (i = 0; i < sc->num_queues; i++) {
10117        fp = &sc->fp[i];
10118
10119        fp->rx_bd_cons = 0;
10120
10121        /*
10122         * Activate the BD ring...
10123         * Warning, this will generate an interrupt (to the TSTORM)
10124         * so this can only be done after the chip is initialized
10125         */
10126        bxe_update_rx_prod(sc, fp,
10127                           fp->rx_bd_prod,
10128                           fp->rx_cq_prod,
10129                           fp->rx_sge_prod);
10130
10131        if (i != 0) {
10132            continue;
10133        }
10134
10135        if (CHIP_IS_E1(sc)) {
10136            REG_WR(sc,
10137                   (BAR_USTRORM_INTMEM +
10138                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10139                   U64_LO(fp->rcq_dma.paddr));
10140            REG_WR(sc,
10141                   (BAR_USTRORM_INTMEM +
10142                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10143                   U64_HI(fp->rcq_dma.paddr));
10144        }
10145    }
10146}
10147
10148static void
10149bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10150{
10151    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10152    fp->tx_db.data.zero_fill1 = 0;
10153    fp->tx_db.data.prod = 0;
10154
10155    fp->tx_pkt_prod = 0;
10156    fp->tx_pkt_cons = 0;
10157    fp->tx_bd_prod = 0;
10158    fp->tx_bd_cons = 0;
10159    fp->eth_q_stats.tx_pkts = 0;
10160}
10161
10162static inline void
10163bxe_init_tx_rings(struct bxe_softc *sc)
10164{
10165    int i;
10166
10167    for (i = 0; i < sc->num_queues; i++) {
10168#if 0
10169        uint8_t cos;
10170        for (cos = 0; cos < sc->max_cos; cos++) {
10171            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10172        }
10173#else
10174        bxe_init_tx_ring_one(&sc->fp[i]);
10175#endif
10176    }
10177}
10178
10179static void
10180bxe_init_def_sb(struct bxe_softc *sc)
10181{
10182    struct host_sp_status_block *def_sb = sc->def_sb;
10183    bus_addr_t mapping = sc->def_sb_dma.paddr;
10184    int igu_sp_sb_index;
10185    int igu_seg_id;
10186    int port = SC_PORT(sc);
10187    int func = SC_FUNC(sc);
10188    int reg_offset, reg_offset_en5;
10189    uint64_t section;
10190    int index, sindex;
10191    struct hc_sp_status_block_data sp_sb_data;
10192
10193    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10194
10195    if (CHIP_INT_MODE_IS_BC(sc)) {
10196        igu_sp_sb_index = DEF_SB_IGU_ID;
10197        igu_seg_id = HC_SEG_ACCESS_DEF;
10198    } else {
10199        igu_sp_sb_index = sc->igu_dsb_id;
10200        igu_seg_id = IGU_SEG_ACCESS_DEF;
10201    }
10202
10203    /* attentions */
10204    section = ((uint64_t)mapping +
10205               offsetof(struct host_sp_status_block, atten_status_block));
10206    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10207    sc->attn_state = 0;
10208
10209    reg_offset = (port) ?
10210                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10211                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10212    reg_offset_en5 = (port) ?
10213                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10214                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10215
10216    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10217        /* take care of sig[0]..sig[4] */
10218        for (sindex = 0; sindex < 4; sindex++) {
10219            sc->attn_group[index].sig[sindex] =
10220                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10221        }
10222
10223        if (!CHIP_IS_E1x(sc)) {
10224            /*
10225             * enable5 is separate from the rest of the registers,
10226             * and the address skip is 4 and not 16 between the
10227             * different groups
10228             */
10229            sc->attn_group[index].sig[4] =
10230                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10231        } else {
10232            sc->attn_group[index].sig[4] = 0;
10233        }
10234    }
10235
10236    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10237        reg_offset = (port) ?
10238                         HC_REG_ATTN_MSG1_ADDR_L :
10239                         HC_REG_ATTN_MSG0_ADDR_L;
10240        REG_WR(sc, reg_offset, U64_LO(section));
10241        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10242    } else if (!CHIP_IS_E1x(sc)) {
10243        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10244        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10245    }
10246
10247    section = ((uint64_t)mapping +
10248               offsetof(struct host_sp_status_block, sp_sb));
10249
10250    bxe_zero_sp_sb(sc);
10251
10252    /* PCI guarantees endianity of regpair */
10253    sp_sb_data.state           = SB_ENABLED;
10254    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10255    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10256    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10257    sp_sb_data.igu_seg_id      = igu_seg_id;
10258    sp_sb_data.p_func.pf_id    = func;
10259    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10260    sp_sb_data.p_func.vf_id    = 0xff;
10261
10262    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10263
10264    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10265}
10266
10267static void
10268bxe_init_sp_ring(struct bxe_softc *sc)
10269{
10270    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10271    sc->spq_prod_idx = 0;
10272    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10273    sc->spq_prod_bd = sc->spq;
10274    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10275}
10276
10277static void
10278bxe_init_eq_ring(struct bxe_softc *sc)
10279{
10280    union event_ring_elem *elem;
10281    int i;
10282
10283    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10284        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10285
10286        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10287                                                 BCM_PAGE_SIZE *
10288                                                 (i % NUM_EQ_PAGES)));
10289        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10290                                                 BCM_PAGE_SIZE *
10291                                                 (i % NUM_EQ_PAGES)));
10292    }
10293
10294    sc->eq_cons    = 0;
10295    sc->eq_prod    = NUM_EQ_DESC;
10296    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10297
10298    atomic_store_rel_long(&sc->eq_spq_left,
10299                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10300                               NUM_EQ_DESC) - 1));
10301}
10302
10303static void
10304bxe_init_internal_common(struct bxe_softc *sc)
10305{
10306    int i;
10307
10308    if (IS_MF_SI(sc)) {
10309        /*
10310         * In switch independent mode, the TSTORM needs to accept
10311         * packets that failed classification, since approximate match
10312         * mac addresses aren't written to NIG LLH.
10313         */
10314        REG_WR8(sc,
10315                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10316                2);
10317    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10318        REG_WR8(sc,
10319                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10320                0);
10321    }
10322
10323    /*
10324     * Zero this manually as its initialization is currently missing
10325     * in the initTool.
10326     */
10327    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10328        REG_WR(sc,
10329               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10330               0);
10331    }
10332
10333    if (!CHIP_IS_E1x(sc)) {
10334        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10335                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10336    }
10337}
10338
10339static void
10340bxe_init_internal(struct bxe_softc *sc,
10341                  uint32_t         load_code)
10342{
10343    switch (load_code) {
10344    case FW_MSG_CODE_DRV_LOAD_COMMON:
10345    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10346        bxe_init_internal_common(sc);
10347        /* no break */
10348
10349    case FW_MSG_CODE_DRV_LOAD_PORT:
10350        /* nothing to do */
10351        /* no break */
10352
10353    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10354        /* internal memory per function is initialized inside bxe_pf_init */
10355        break;
10356
10357    default:
10358        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10359        break;
10360    }
10361}
10362
10363static void
10364storm_memset_func_cfg(struct bxe_softc                         *sc,
10365                      struct tstorm_eth_function_common_config *tcfg,
10366                      uint16_t                                  abs_fid)
10367{
10368    uint32_t addr;
10369    size_t size;
10370
10371    addr = (BAR_TSTRORM_INTMEM +
10372            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10373    size = sizeof(struct tstorm_eth_function_common_config);
10374    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10375}
10376
10377static void
10378bxe_func_init(struct bxe_softc            *sc,
10379              struct bxe_func_init_params *p)
10380{
10381    struct tstorm_eth_function_common_config tcfg = { 0 };
10382
10383    if (CHIP_IS_E1x(sc)) {
10384        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10385    }
10386
10387    /* Enable the function in the FW */
10388    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10389    storm_memset_func_en(sc, p->func_id, 1);
10390
10391    /* spq */
10392    if (p->func_flgs & FUNC_FLG_SPQ) {
10393        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10394        REG_WR(sc,
10395               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10396               p->spq_prod);
10397    }
10398}
10399
10400/*
10401 * Calculates the sum of vn_min_rates.
10402 * It's needed for further normalizing of the min_rates.
10403 * Returns:
10404 *   sum of vn_min_rates.
10405 *     or
10406 *   0 - if all the min_rates are 0.
10407 * In the later case fainess algorithm should be deactivated.
10408 * If all min rates are not zero then those that are zeroes will be set to 1.
10409 */
10410static void
10411bxe_calc_vn_min(struct bxe_softc       *sc,
10412                struct cmng_init_input *input)
10413{
10414    uint32_t vn_cfg;
10415    uint32_t vn_min_rate;
10416    int all_zero = 1;
10417    int vn;
10418
10419    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10420        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10421        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10422                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10423
10424        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10425            /* skip hidden VNs */
10426            vn_min_rate = 0;
10427        } else if (!vn_min_rate) {
10428            /* If min rate is zero - set it to 100 */
10429            vn_min_rate = DEF_MIN_RATE;
10430        } else {
10431            all_zero = 0;
10432        }
10433
10434        input->vnic_min_rate[vn] = vn_min_rate;
10435    }
10436
10437    /* if ETS or all min rates are zeros - disable fairness */
10438    if (BXE_IS_ETS_ENABLED(sc)) {
10439        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10440        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10441    } else if (all_zero) {
10442        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10443        BLOGD(sc, DBG_LOAD,
10444              "Fariness disabled (all MIN values are zeroes)\n");
10445    } else {
10446        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10447    }
10448}
10449
10450static inline uint16_t
10451bxe_extract_max_cfg(struct bxe_softc *sc,
10452                    uint32_t         mf_cfg)
10453{
10454    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10455                        FUNC_MF_CFG_MAX_BW_SHIFT);
10456
10457    if (!max_cfg) {
10458        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10459        max_cfg = 100;
10460    }
10461
10462    return (max_cfg);
10463}
10464
10465static void
10466bxe_calc_vn_max(struct bxe_softc       *sc,
10467                int                    vn,
10468                struct cmng_init_input *input)
10469{
10470    uint16_t vn_max_rate;
10471    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10472    uint32_t max_cfg;
10473
10474    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10475        vn_max_rate = 0;
10476    } else {
10477        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10478
10479        if (IS_MF_SI(sc)) {
10480            /* max_cfg in percents of linkspeed */
10481            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10482        } else { /* SD modes */
10483            /* max_cfg is absolute in 100Mb units */
10484            vn_max_rate = (max_cfg * 100);
10485        }
10486    }
10487
10488    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10489
10490    input->vnic_max_rate[vn] = vn_max_rate;
10491}
10492
10493static void
10494bxe_cmng_fns_init(struct bxe_softc *sc,
10495                  uint8_t          read_cfg,
10496                  uint8_t          cmng_type)
10497{
10498    struct cmng_init_input input;
10499    int vn;
10500
10501    memset(&input, 0, sizeof(struct cmng_init_input));
10502
10503    input.port_rate = sc->link_vars.line_speed;
10504
10505    if (cmng_type == CMNG_FNS_MINMAX) {
10506        /* read mf conf from shmem */
10507        if (read_cfg) {
10508            bxe_read_mf_cfg(sc);
10509        }
10510
10511        /* get VN min rate and enable fairness if not 0 */
10512        bxe_calc_vn_min(sc, &input);
10513
10514        /* get VN max rate */
10515        if (sc->port.pmf) {
10516            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10517                bxe_calc_vn_max(sc, vn, &input);
10518            }
10519        }
10520
10521        /* always enable rate shaping and fairness */
10522        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10523
10524        ecore_init_cmng(&input, &sc->cmng);
10525        return;
10526    }
10527
10528    /* rate shaping and fairness are disabled */
10529    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10530}
10531
10532static int
10533bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10534{
10535    if (CHIP_REV_IS_SLOW(sc)) {
10536        return (CMNG_FNS_NONE);
10537    }
10538
10539    if (IS_MF(sc)) {
10540        return (CMNG_FNS_MINMAX);
10541    }
10542
10543    return (CMNG_FNS_NONE);
10544}
10545
10546static void
10547storm_memset_cmng(struct bxe_softc *sc,
10548                  struct cmng_init *cmng,
10549                  uint8_t          port)
10550{
10551    int vn;
10552    int func;
10553    uint32_t addr;
10554    size_t size;
10555
10556    addr = (BAR_XSTRORM_INTMEM +
10557            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10558    size = sizeof(struct cmng_struct_per_port);
10559    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10560
10561    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10562        func = func_by_vn(sc, vn);
10563
10564        addr = (BAR_XSTRORM_INTMEM +
10565                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10566        size = sizeof(struct rate_shaping_vars_per_vn);
10567        ecore_storm_memset_struct(sc, addr, size,
10568                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10569
10570        addr = (BAR_XSTRORM_INTMEM +
10571                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10572        size = sizeof(struct fairness_vars_per_vn);
10573        ecore_storm_memset_struct(sc, addr, size,
10574                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10575    }
10576}
10577
10578static void
10579bxe_pf_init(struct bxe_softc *sc)
10580{
10581    struct bxe_func_init_params func_init = { 0 };
10582    struct event_ring_data eq_data = { { 0 } };
10583    uint16_t flags;
10584
10585    if (!CHIP_IS_E1x(sc)) {
10586        /* reset IGU PF statistics: MSIX + ATTN */
10587        /* PF */
10588        REG_WR(sc,
10589               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10590                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10591                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10592               0);
10593        /* ATTN */
10594        REG_WR(sc,
10595               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10596                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10597                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10598                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10599               0);
10600    }
10601
10602    /* function setup flags */
10603    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10604
10605    /*
10606     * This flag is relevant for E1x only.
10607     * E2 doesn't have a TPA configuration in a function level.
10608     */
10609    flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10610
10611    func_init.func_flgs = flags;
10612    func_init.pf_id     = SC_FUNC(sc);
10613    func_init.func_id   = SC_FUNC(sc);
10614    func_init.spq_map   = sc->spq_dma.paddr;
10615    func_init.spq_prod  = sc->spq_prod_idx;
10616
10617    bxe_func_init(sc, &func_init);
10618
10619    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10620
10621    /*
10622     * Congestion management values depend on the link rate.
10623     * There is no active link so initial link rate is set to 10Gbps.
10624     * When the link comes up the congestion management values are
10625     * re-calculated according to the actual link rate.
10626     */
10627    sc->link_vars.line_speed = SPEED_10000;
10628    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10629
10630    /* Only the PMF sets the HW */
10631    if (sc->port.pmf) {
10632        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10633    }
10634
10635    /* init Event Queue - PCI bus guarantees correct endainity */
10636    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10637    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10638    eq_data.producer     = sc->eq_prod;
10639    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10640    eq_data.sb_id        = DEF_SB_ID;
10641    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10642}
10643
10644static void
10645bxe_hc_int_enable(struct bxe_softc *sc)
10646{
10647    int port = SC_PORT(sc);
10648    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10649    uint32_t val = REG_RD(sc, addr);
10650    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10651    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10652                           (sc->intr_count == 1)) ? TRUE : FALSE;
10653    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10654
10655    if (msix) {
10656        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10657                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10658        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10659                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10660        if (single_msix) {
10661            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10662        }
10663    } else if (msi) {
10664        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10665        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10666                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10667                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10668    } else {
10669        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10670                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10671                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10672                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10673
10674        if (!CHIP_IS_E1(sc)) {
10675            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10676                  val, port, addr);
10677
10678            REG_WR(sc, addr, val);
10679
10680            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10681        }
10682    }
10683
10684    if (CHIP_IS_E1(sc)) {
10685        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10686    }
10687
10688    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10689          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10690
10691    REG_WR(sc, addr, val);
10692
10693    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10694    mb();
10695
10696    if (!CHIP_IS_E1(sc)) {
10697        /* init leading/trailing edge */
10698        if (IS_MF(sc)) {
10699            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10700            if (sc->port.pmf) {
10701                /* enable nig and gpio3 attention */
10702                val |= 0x1100;
10703            }
10704        } else {
10705            val = 0xffff;
10706        }
10707
10708        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10709        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10710    }
10711
10712    /* make sure that interrupts are indeed enabled from here on */
10713    mb();
10714}
10715
10716static void
10717bxe_igu_int_enable(struct bxe_softc *sc)
10718{
10719    uint32_t val;
10720    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10721    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10722                           (sc->intr_count == 1)) ? TRUE : FALSE;
10723    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10724
10725    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10726
10727    if (msix) {
10728        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10729                 IGU_PF_CONF_SINGLE_ISR_EN);
10730        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10731                IGU_PF_CONF_ATTN_BIT_EN);
10732        if (single_msix) {
10733            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10734        }
10735    } else if (msi) {
10736        val &= ~IGU_PF_CONF_INT_LINE_EN;
10737        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10738                IGU_PF_CONF_ATTN_BIT_EN |
10739                IGU_PF_CONF_SINGLE_ISR_EN);
10740    } else {
10741        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10742        val |= (IGU_PF_CONF_INT_LINE_EN |
10743                IGU_PF_CONF_ATTN_BIT_EN |
10744                IGU_PF_CONF_SINGLE_ISR_EN);
10745    }
10746
10747    /* clean previous status - need to configure igu prior to ack*/
10748    if ((!msix) || single_msix) {
10749        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10750        bxe_ack_int(sc);
10751    }
10752
10753    val |= IGU_PF_CONF_FUNC_EN;
10754
10755    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10756          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10757
10758    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10759
10760    mb();
10761
10762    /* init leading/trailing edge */
10763    if (IS_MF(sc)) {
10764        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10765        if (sc->port.pmf) {
10766            /* enable nig and gpio3 attention */
10767            val |= 0x1100;
10768        }
10769    } else {
10770        val = 0xffff;
10771    }
10772
10773    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10774    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10775
10776    /* make sure that interrupts are indeed enabled from here on */
10777    mb();
10778}
10779
10780static void
10781bxe_int_enable(struct bxe_softc *sc)
10782{
10783    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10784        bxe_hc_int_enable(sc);
10785    } else {
10786        bxe_igu_int_enable(sc);
10787    }
10788}
10789
10790static void
10791bxe_hc_int_disable(struct bxe_softc *sc)
10792{
10793    int port = SC_PORT(sc);
10794    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10795    uint32_t val = REG_RD(sc, addr);
10796
10797    /*
10798     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10799     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10800     * block
10801     */
10802    if (CHIP_IS_E1(sc)) {
10803        /*
10804         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10805         * to prevent from HC sending interrupts after we exit the function
10806         */
10807        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10808
10809        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10810                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10811                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10812    } else {
10813        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10814                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10815                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10816                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10817    }
10818
10819    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10820
10821    /* flush all outstanding writes */
10822    mb();
10823
10824    REG_WR(sc, addr, val);
10825    if (REG_RD(sc, addr) != val) {
10826        BLOGE(sc, "proper val not read from HC IGU!\n");
10827    }
10828}
10829
10830static void
10831bxe_igu_int_disable(struct bxe_softc *sc)
10832{
10833    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10834
10835    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10836             IGU_PF_CONF_INT_LINE_EN |
10837             IGU_PF_CONF_ATTN_BIT_EN);
10838
10839    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10840
10841    /* flush all outstanding writes */
10842    mb();
10843
10844    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10845    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10846        BLOGE(sc, "proper val not read from IGU!\n");
10847    }
10848}
10849
10850static void
10851bxe_int_disable(struct bxe_softc *sc)
10852{
10853    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10854        bxe_hc_int_disable(sc);
10855    } else {
10856        bxe_igu_int_disable(sc);
10857    }
10858}
10859
10860static void
10861bxe_nic_init(struct bxe_softc *sc,
10862             int              load_code)
10863{
10864    int i;
10865
10866    for (i = 0; i < sc->num_queues; i++) {
10867        bxe_init_eth_fp(sc, i);
10868    }
10869
10870    rmb(); /* ensure status block indices were read */
10871
10872    bxe_init_rx_rings(sc);
10873    bxe_init_tx_rings(sc);
10874
10875    if (IS_VF(sc)) {
10876        return;
10877    }
10878
10879    /* initialize MOD_ABS interrupts */
10880    elink_init_mod_abs_int(sc, &sc->link_vars,
10881                           sc->devinfo.chip_id,
10882                           sc->devinfo.shmem_base,
10883                           sc->devinfo.shmem2_base,
10884                           SC_PORT(sc));
10885
10886    bxe_init_def_sb(sc);
10887    bxe_update_dsb_idx(sc);
10888    bxe_init_sp_ring(sc);
10889    bxe_init_eq_ring(sc);
10890    bxe_init_internal(sc, load_code);
10891    bxe_pf_init(sc);
10892    bxe_stats_init(sc);
10893
10894    /* flush all before enabling interrupts */
10895    mb();
10896
10897    bxe_int_enable(sc);
10898
10899    /* check for SPIO5 */
10900    bxe_attn_int_deasserted0(sc,
10901                             REG_RD(sc,
10902                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10903                                     SC_PORT(sc)*4)) &
10904                             AEU_INPUTS_ATTN_BITS_SPIO5);
10905}
10906
10907static inline void
10908bxe_init_objs(struct bxe_softc *sc)
10909{
10910    /* mcast rules must be added to tx if tx switching is enabled */
10911    ecore_obj_type o_type =
10912        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10913                                         ECORE_OBJ_TYPE_RX;
10914
10915    /* RX_MODE controlling object */
10916    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10917
10918    /* multicast configuration controlling object */
10919    ecore_init_mcast_obj(sc,
10920                         &sc->mcast_obj,
10921                         sc->fp[0].cl_id,
10922                         sc->fp[0].index,
10923                         SC_FUNC(sc),
10924                         SC_FUNC(sc),
10925                         BXE_SP(sc, mcast_rdata),
10926                         BXE_SP_MAPPING(sc, mcast_rdata),
10927                         ECORE_FILTER_MCAST_PENDING,
10928                         &sc->sp_state,
10929                         o_type);
10930
10931    /* Setup CAM credit pools */
10932    ecore_init_mac_credit_pool(sc,
10933                               &sc->macs_pool,
10934                               SC_FUNC(sc),
10935                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10936                                                 VNICS_PER_PATH(sc));
10937
10938    ecore_init_vlan_credit_pool(sc,
10939                                &sc->vlans_pool,
10940                                SC_ABS_FUNC(sc) >> 1,
10941                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10942                                                  VNICS_PER_PATH(sc));
10943
10944    /* RSS configuration object */
10945    ecore_init_rss_config_obj(sc,
10946                              &sc->rss_conf_obj,
10947                              sc->fp[0].cl_id,
10948                              sc->fp[0].index,
10949                              SC_FUNC(sc),
10950                              SC_FUNC(sc),
10951                              BXE_SP(sc, rss_rdata),
10952                              BXE_SP_MAPPING(sc, rss_rdata),
10953                              ECORE_FILTER_RSS_CONF_PENDING,
10954                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10955}
10956
10957/*
10958 * Initialize the function. This must be called before sending CLIENT_SETUP
10959 * for the first client.
10960 */
10961static inline int
10962bxe_func_start(struct bxe_softc *sc)
10963{
10964    struct ecore_func_state_params func_params = { NULL };
10965    struct ecore_func_start_params *start_params = &func_params.params.start;
10966
10967    /* Prepare parameters for function state transitions */
10968    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10969
10970    func_params.f_obj = &sc->func_obj;
10971    func_params.cmd = ECORE_F_CMD_START;
10972
10973    /* Function parameters */
10974    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10975    start_params->sd_vlan_tag = OVLAN(sc);
10976
10977    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10978        start_params->network_cos_mode = STATIC_COS;
10979    } else { /* CHIP_IS_E1X */
10980        start_params->network_cos_mode = FW_WRR;
10981    }
10982
10983    start_params->gre_tunnel_mode = 0;
10984    start_params->gre_tunnel_rss  = 0;
10985
10986    return (ecore_func_state_change(sc, &func_params));
10987}
10988
10989static int
10990bxe_set_power_state(struct bxe_softc *sc,
10991                    uint8_t          state)
10992{
10993    uint16_t pmcsr;
10994
10995    /* If there is no power capability, silently succeed */
10996    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10997        BLOGW(sc, "No power capability\n");
10998        return (0);
10999    }
11000
11001    pmcsr = pci_read_config(sc->dev,
11002                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11003                            2);
11004
11005    switch (state) {
11006    case PCI_PM_D0:
11007        pci_write_config(sc->dev,
11008                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11009                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11010
11011        if (pmcsr & PCIM_PSTAT_DMASK) {
11012            /* delay required during transition out of D3hot */
11013            DELAY(20000);
11014        }
11015
11016        break;
11017
11018    case PCI_PM_D3hot:
11019        /* XXX if there are other clients above don't shut down the power */
11020
11021        /* don't shut down the power for emulation and FPGA */
11022        if (CHIP_REV_IS_SLOW(sc)) {
11023            return (0);
11024        }
11025
11026        pmcsr &= ~PCIM_PSTAT_DMASK;
11027        pmcsr |= PCIM_PSTAT_D3;
11028
11029        if (sc->wol) {
11030            pmcsr |= PCIM_PSTAT_PMEENABLE;
11031        }
11032
11033        pci_write_config(sc->dev,
11034                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11035                         pmcsr, 4);
11036
11037        /*
11038         * No more memory access after this point until device is brought back
11039         * to D0 state.
11040         */
11041        break;
11042
11043    default:
11044        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11045        return (-1);
11046    }
11047
11048    return (0);
11049}
11050
11051
11052/* return true if succeeded to acquire the lock */
11053static uint8_t
11054bxe_trylock_hw_lock(struct bxe_softc *sc,
11055                    uint32_t         resource)
11056{
11057    uint32_t lock_status;
11058    uint32_t resource_bit = (1 << resource);
11059    int func = SC_FUNC(sc);
11060    uint32_t hw_lock_control_reg;
11061
11062    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11063
11064    /* Validating that the resource is within range */
11065    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11066        BLOGD(sc, DBG_LOAD,
11067              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11068              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11069        return (FALSE);
11070    }
11071
11072    if (func <= 5) {
11073        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11074    } else {
11075        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11076    }
11077
11078    /* try to acquire the lock */
11079    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11080    lock_status = REG_RD(sc, hw_lock_control_reg);
11081    if (lock_status & resource_bit) {
11082        return (TRUE);
11083    }
11084
11085    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11086
11087    return (FALSE);
11088}
11089
11090/*
11091 * Get the recovery leader resource id according to the engine this function
11092 * belongs to. Currently only only 2 engines is supported.
11093 */
11094static int
11095bxe_get_leader_lock_resource(struct bxe_softc *sc)
11096{
11097    if (SC_PATH(sc)) {
11098        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11099    } else {
11100        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11101    }
11102}
11103
11104/* try to acquire a leader lock for current engine */
11105static uint8_t
11106bxe_trylock_leader_lock(struct bxe_softc *sc)
11107{
11108    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11109}
11110
11111static int
11112bxe_release_leader_lock(struct bxe_softc *sc)
11113{
11114    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11115}
11116
11117/* close gates #2, #3 and #4 */
11118static void
11119bxe_set_234_gates(struct bxe_softc *sc,
11120                  uint8_t          close)
11121{
11122    uint32_t val;
11123
11124    /* gates #2 and #4a are closed/opened for "not E1" only */
11125    if (!CHIP_IS_E1(sc)) {
11126        /* #4 */
11127        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11128        /* #2 */
11129        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11130    }
11131
11132    /* #3 */
11133    if (CHIP_IS_E1x(sc)) {
11134        /* prevent interrupts from HC on both ports */
11135        val = REG_RD(sc, HC_REG_CONFIG_1);
11136        REG_WR(sc, HC_REG_CONFIG_1,
11137               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11138               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11139
11140        val = REG_RD(sc, HC_REG_CONFIG_0);
11141        REG_WR(sc, HC_REG_CONFIG_0,
11142               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11143               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11144    } else {
11145        /* Prevent incomming interrupts in IGU */
11146        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11147
11148        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11149               (!close) ?
11150               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11151               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11152    }
11153
11154    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11155          close ? "closing" : "opening");
11156
11157    wmb();
11158}
11159
11160/* poll for pending writes bit, it should get cleared in no more than 1s */
11161static int
11162bxe_er_poll_igu_vq(struct bxe_softc *sc)
11163{
11164    uint32_t cnt = 1000;
11165    uint32_t pend_bits = 0;
11166
11167    do {
11168        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11169
11170        if (pend_bits == 0) {
11171            break;
11172        }
11173
11174        DELAY(1000);
11175    } while (--cnt > 0);
11176
11177    if (cnt == 0) {
11178        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11179        return (-1);
11180    }
11181
11182    return (0);
11183}
11184
11185#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11186
11187static void
11188bxe_clp_reset_prep(struct bxe_softc *sc,
11189                   uint32_t         *magic_val)
11190{
11191    /* Do some magic... */
11192    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11193    *magic_val = val & SHARED_MF_CLP_MAGIC;
11194    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11195}
11196
11197/* restore the value of the 'magic' bit */
11198static void
11199bxe_clp_reset_done(struct bxe_softc *sc,
11200                   uint32_t         magic_val)
11201{
11202    /* Restore the 'magic' bit value... */
11203    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11204    MFCFG_WR(sc, shared_mf_config.clp_mb,
11205              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11206}
11207
11208/* prepare for MCP reset, takes care of CLP configurations */
11209static void
11210bxe_reset_mcp_prep(struct bxe_softc *sc,
11211                   uint32_t         *magic_val)
11212{
11213    uint32_t shmem;
11214    uint32_t validity_offset;
11215
11216    /* set `magic' bit in order to save MF config */
11217    if (!CHIP_IS_E1(sc)) {
11218        bxe_clp_reset_prep(sc, magic_val);
11219    }
11220
11221    /* get shmem offset */
11222    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11223    validity_offset =
11224        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11225
11226    /* Clear validity map flags */
11227    if (shmem > 0) {
11228        REG_WR(sc, shmem + validity_offset, 0);
11229    }
11230}
11231
11232#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11233#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11234
11235static void
11236bxe_mcp_wait_one(struct bxe_softc *sc)
11237{
11238    /* special handling for emulation and FPGA (10 times longer) */
11239    if (CHIP_REV_IS_SLOW(sc)) {
11240        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11241    } else {
11242        DELAY((MCP_ONE_TIMEOUT) * 1000);
11243    }
11244}
11245
11246/* initialize shmem_base and waits for validity signature to appear */
11247static int
11248bxe_init_shmem(struct bxe_softc *sc)
11249{
11250    int cnt = 0;
11251    uint32_t val = 0;
11252
11253    do {
11254        sc->devinfo.shmem_base     =
11255        sc->link_params.shmem_base =
11256            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11257
11258        if (sc->devinfo.shmem_base) {
11259            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11260            if (val & SHR_MEM_VALIDITY_MB)
11261                return (0);
11262        }
11263
11264        bxe_mcp_wait_one(sc);
11265
11266    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11267
11268    BLOGE(sc, "BAD MCP validity signature\n");
11269
11270    return (-1);
11271}
11272
11273static int
11274bxe_reset_mcp_comp(struct bxe_softc *sc,
11275                   uint32_t         magic_val)
11276{
11277    int rc = bxe_init_shmem(sc);
11278
11279    /* Restore the `magic' bit value */
11280    if (!CHIP_IS_E1(sc)) {
11281        bxe_clp_reset_done(sc, magic_val);
11282    }
11283
11284    return (rc);
11285}
11286
11287static void
11288bxe_pxp_prep(struct bxe_softc *sc)
11289{
11290    if (!CHIP_IS_E1(sc)) {
11291        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11292        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11293        wmb();
11294    }
11295}
11296
11297/*
11298 * Reset the whole chip except for:
11299 *      - PCIE core
11300 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11301 *      - IGU
11302 *      - MISC (including AEU)
11303 *      - GRC
11304 *      - RBCN, RBCP
11305 */
11306static void
11307bxe_process_kill_chip_reset(struct bxe_softc *sc,
11308                            uint8_t          global)
11309{
11310    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11311    uint32_t global_bits2, stay_reset2;
11312
11313    /*
11314     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11315     * (per chip) blocks.
11316     */
11317    global_bits2 =
11318        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11319        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11320
11321    /*
11322     * Don't reset the following blocks.
11323     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11324     *            reset, as in 4 port device they might still be owned
11325     *            by the MCP (there is only one leader per path).
11326     */
11327    not_reset_mask1 =
11328        MISC_REGISTERS_RESET_REG_1_RST_HC |
11329        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11330        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11331
11332    not_reset_mask2 =
11333        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11334        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11335        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11336        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11337        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11338        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11339        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11340        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11341        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11342        MISC_REGISTERS_RESET_REG_2_PGLC |
11343        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11344        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11345        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11346        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11347        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11348        MISC_REGISTERS_RESET_REG_2_UMAC1;
11349
11350    /*
11351     * Keep the following blocks in reset:
11352     *  - all xxMACs are handled by the elink code.
11353     */
11354    stay_reset2 =
11355        MISC_REGISTERS_RESET_REG_2_XMAC |
11356        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11357
11358    /* Full reset masks according to the chip */
11359    reset_mask1 = 0xffffffff;
11360
11361    if (CHIP_IS_E1(sc))
11362        reset_mask2 = 0xffff;
11363    else if (CHIP_IS_E1H(sc))
11364        reset_mask2 = 0x1ffff;
11365    else if (CHIP_IS_E2(sc))
11366        reset_mask2 = 0xfffff;
11367    else /* CHIP_IS_E3 */
11368        reset_mask2 = 0x3ffffff;
11369
11370    /* Don't reset global blocks unless we need to */
11371    if (!global)
11372        reset_mask2 &= ~global_bits2;
11373
11374    /*
11375     * In case of attention in the QM, we need to reset PXP
11376     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11377     * because otherwise QM reset would release 'close the gates' shortly
11378     * before resetting the PXP, then the PSWRQ would send a write
11379     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11380     * read the payload data from PSWWR, but PSWWR would not
11381     * respond. The write queue in PGLUE would stuck, dmae commands
11382     * would not return. Therefore it's important to reset the second
11383     * reset register (containing the
11384     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11385     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11386     * bit).
11387     */
11388    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11389           reset_mask2 & (~not_reset_mask2));
11390
11391    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11392           reset_mask1 & (~not_reset_mask1));
11393
11394    mb();
11395    wmb();
11396
11397    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11398           reset_mask2 & (~stay_reset2));
11399
11400    mb();
11401    wmb();
11402
11403    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11404    wmb();
11405}
11406
11407static int
11408bxe_process_kill(struct bxe_softc *sc,
11409                 uint8_t          global)
11410{
11411    int cnt = 1000;
11412    uint32_t val = 0;
11413    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11414    uint32_t tags_63_32 = 0;
11415
11416    /* Empty the Tetris buffer, wait for 1s */
11417    do {
11418        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11419        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11420        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11421        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11422        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11423        if (CHIP_IS_E3(sc)) {
11424            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11425        }
11426
11427        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11428            ((port_is_idle_0 & 0x1) == 0x1) &&
11429            ((port_is_idle_1 & 0x1) == 0x1) &&
11430            (pgl_exp_rom2 == 0xffffffff) &&
11431            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11432            break;
11433        DELAY(1000);
11434    } while (cnt-- > 0);
11435
11436    if (cnt <= 0) {
11437        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11438                  "are still outstanding read requests after 1s! "
11439                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11440                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11441              sr_cnt, blk_cnt, port_is_idle_0,
11442              port_is_idle_1, pgl_exp_rom2);
11443        return (-1);
11444    }
11445
11446    mb();
11447
11448    /* Close gates #2, #3 and #4 */
11449    bxe_set_234_gates(sc, TRUE);
11450
11451    /* Poll for IGU VQs for 57712 and newer chips */
11452    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11453        return (-1);
11454    }
11455
11456    /* XXX indicate that "process kill" is in progress to MCP */
11457
11458    /* clear "unprepared" bit */
11459    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11460    mb();
11461
11462    /* Make sure all is written to the chip before the reset */
11463    wmb();
11464
11465    /*
11466     * Wait for 1ms to empty GLUE and PCI-E core queues,
11467     * PSWHST, GRC and PSWRD Tetris buffer.
11468     */
11469    DELAY(1000);
11470
11471    /* Prepare to chip reset: */
11472    /* MCP */
11473    if (global) {
11474        bxe_reset_mcp_prep(sc, &val);
11475    }
11476
11477    /* PXP */
11478    bxe_pxp_prep(sc);
11479    mb();
11480
11481    /* reset the chip */
11482    bxe_process_kill_chip_reset(sc, global);
11483    mb();
11484
11485    /* Recover after reset: */
11486    /* MCP */
11487    if (global && bxe_reset_mcp_comp(sc, val)) {
11488        return (-1);
11489    }
11490
11491    /* XXX add resetting the NO_MCP mode DB here */
11492
11493    /* Open the gates #2, #3 and #4 */
11494    bxe_set_234_gates(sc, FALSE);
11495
11496    /* XXX
11497     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11498     * re-enable attentions
11499     */
11500
11501    return (0);
11502}
11503
11504static int
11505bxe_leader_reset(struct bxe_softc *sc)
11506{
11507    int rc = 0;
11508    uint8_t global = bxe_reset_is_global(sc);
11509    uint32_t load_code;
11510
11511    /*
11512     * If not going to reset MCP, load "fake" driver to reset HW while
11513     * driver is owner of the HW.
11514     */
11515    if (!global && !BXE_NOMCP(sc)) {
11516        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11517                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11518        if (!load_code) {
11519            BLOGE(sc, "MCP response failure, aborting\n");
11520            rc = -1;
11521            goto exit_leader_reset;
11522        }
11523
11524        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11525            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11526            BLOGE(sc, "MCP unexpected response, aborting\n");
11527            rc = -1;
11528            goto exit_leader_reset2;
11529        }
11530
11531        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11532        if (!load_code) {
11533            BLOGE(sc, "MCP response failure, aborting\n");
11534            rc = -1;
11535            goto exit_leader_reset2;
11536        }
11537    }
11538
11539    /* try to recover after the failure */
11540    if (bxe_process_kill(sc, global)) {
11541        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11542        rc = -1;
11543        goto exit_leader_reset2;
11544    }
11545
11546    /*
11547     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11548     * state.
11549     */
11550    bxe_set_reset_done(sc);
11551    if (global) {
11552        bxe_clear_reset_global(sc);
11553    }
11554
11555exit_leader_reset2:
11556
11557    /* unload "fake driver" if it was loaded */
11558    if (!global && !BXE_NOMCP(sc)) {
11559        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11560        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11561    }
11562
11563exit_leader_reset:
11564
11565    sc->is_leader = 0;
11566    bxe_release_leader_lock(sc);
11567
11568    mb();
11569    return (rc);
11570}
11571
11572/*
11573 * prepare INIT transition, parameters configured:
11574 *   - HC configuration
11575 *   - Queue's CDU context
11576 */
11577static void
11578bxe_pf_q_prep_init(struct bxe_softc               *sc,
11579                   struct bxe_fastpath            *fp,
11580                   struct ecore_queue_init_params *init_params)
11581{
11582    uint8_t cos;
11583    int cxt_index, cxt_offset;
11584
11585    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11586    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11587
11588    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11589    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11590
11591    /* HC rate */
11592    init_params->rx.hc_rate =
11593        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11594    init_params->tx.hc_rate =
11595        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11596
11597    /* FW SB ID */
11598    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11599
11600    /* CQ index among the SB indices */
11601    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11602    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11603
11604    /* set maximum number of COSs supported by this queue */
11605    init_params->max_cos = sc->max_cos;
11606
11607    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11608          fp->index, init_params->max_cos);
11609
11610    /* set the context pointers queue object */
11611    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11612        /* XXX change index/cid here if ever support multiple tx CoS */
11613        /* fp->txdata[cos]->cid */
11614        cxt_index = fp->index / ILT_PAGE_CIDS;
11615        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11616        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11617    }
11618}
11619
11620/* set flags that are common for the Tx-only and not normal connections */
11621static unsigned long
11622bxe_get_common_flags(struct bxe_softc    *sc,
11623                     struct bxe_fastpath *fp,
11624                     uint8_t             zero_stats)
11625{
11626    unsigned long flags = 0;
11627
11628    /* PF driver will always initialize the Queue to an ACTIVE state */
11629    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11630
11631    /*
11632     * tx only connections collect statistics (on the same index as the
11633     * parent connection). The statistics are zeroed when the parent
11634     * connection is initialized.
11635     */
11636
11637    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11638    if (zero_stats) {
11639        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11640    }
11641
11642    /*
11643     * tx only connections can support tx-switching, though their
11644     * CoS-ness doesn't survive the loopback
11645     */
11646    if (sc->flags & BXE_TX_SWITCHING) {
11647        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11648    }
11649
11650    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11651
11652    return (flags);
11653}
11654
11655static unsigned long
11656bxe_get_q_flags(struct bxe_softc    *sc,
11657                struct bxe_fastpath *fp,
11658                uint8_t             leading)
11659{
11660    unsigned long flags = 0;
11661
11662    if (IS_MF_SD(sc)) {
11663        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11664    }
11665
11666    if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11667        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11668        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11669#if 0
11670        if (fp->mode == TPA_MODE_GRO)
11671            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11672#endif
11673    }
11674
11675    if (leading) {
11676        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11677        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11678    }
11679
11680    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11681
11682#if 0
11683    /* configure silent vlan removal */
11684    if (IS_MF_AFEX(sc)) {
11685        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11686    }
11687#endif
11688
11689    /* merge with common flags */
11690    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11691}
11692
11693static void
11694bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11695                      struct bxe_fastpath               *fp,
11696                      struct ecore_general_setup_params *gen_init,
11697                      uint8_t                           cos)
11698{
11699    gen_init->stat_id = bxe_stats_id(fp);
11700    gen_init->spcl_id = fp->cl_id;
11701    gen_init->mtu = sc->mtu;
11702    gen_init->cos = cos;
11703}
11704
11705static void
11706bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11707                 struct bxe_fastpath           *fp,
11708                 struct rxq_pause_params       *pause,
11709                 struct ecore_rxq_setup_params *rxq_init)
11710{
11711    uint8_t max_sge = 0;
11712    uint16_t sge_sz = 0;
11713    uint16_t tpa_agg_size = 0;
11714
11715    if (if_getcapenable(sc->ifp)  & IFCAP_LRO) {
11716        pause->sge_th_lo = SGE_TH_LO(sc);
11717        pause->sge_th_hi = SGE_TH_HI(sc);
11718
11719        /* validate SGE ring has enough to cross high threshold */
11720        if (sc->dropless_fc &&
11721            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11722            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11723            BLOGW(sc, "sge ring threshold limit\n");
11724        }
11725
11726        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11727        tpa_agg_size = (2 * sc->mtu);
11728        if (tpa_agg_size < sc->max_aggregation_size) {
11729            tpa_agg_size = sc->max_aggregation_size;
11730        }
11731
11732        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11733        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11734                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11735        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11736    }
11737
11738    /* pause - not for e1 */
11739    if (!CHIP_IS_E1(sc)) {
11740        pause->bd_th_lo = BD_TH_LO(sc);
11741        pause->bd_th_hi = BD_TH_HI(sc);
11742
11743        pause->rcq_th_lo = RCQ_TH_LO(sc);
11744        pause->rcq_th_hi = RCQ_TH_HI(sc);
11745
11746        /* validate rings have enough entries to cross high thresholds */
11747        if (sc->dropless_fc &&
11748            pause->bd_th_hi + FW_PREFETCH_CNT >
11749            sc->rx_ring_size) {
11750            BLOGW(sc, "rx bd ring threshold limit\n");
11751        }
11752
11753        if (sc->dropless_fc &&
11754            pause->rcq_th_hi + FW_PREFETCH_CNT >
11755            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11756            BLOGW(sc, "rcq ring threshold limit\n");
11757        }
11758
11759        pause->pri_map = 1;
11760    }
11761
11762    /* rxq setup */
11763    rxq_init->dscr_map   = fp->rx_dma.paddr;
11764    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11765    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11766    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11767
11768    /*
11769     * This should be a maximum number of data bytes that may be
11770     * placed on the BD (not including paddings).
11771     */
11772    rxq_init->buf_sz = (fp->rx_buf_size -
11773                        IP_HEADER_ALIGNMENT_PADDING);
11774
11775    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11776    rxq_init->tpa_agg_sz      = tpa_agg_size;
11777    rxq_init->sge_buf_sz      = sge_sz;
11778    rxq_init->max_sges_pkt    = max_sge;
11779    rxq_init->rss_engine_id   = SC_FUNC(sc);
11780    rxq_init->mcast_engine_id = SC_FUNC(sc);
11781
11782    /*
11783     * Maximum number or simultaneous TPA aggregation for this Queue.
11784     * For PF Clients it should be the maximum available number.
11785     * VF driver(s) may want to define it to a smaller value.
11786     */
11787    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11788
11789    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11790    rxq_init->fw_sb_id = fp->fw_sb_id;
11791
11792    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11793
11794    /*
11795     * configure silent vlan removal
11796     * if multi function mode is afex, then mask default vlan
11797     */
11798    if (IS_MF_AFEX(sc)) {
11799        rxq_init->silent_removal_value =
11800            sc->devinfo.mf_info.afex_def_vlan_tag;
11801        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11802    }
11803}
11804
11805static void
11806bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11807                 struct bxe_fastpath           *fp,
11808                 struct ecore_txq_setup_params *txq_init,
11809                 uint8_t                       cos)
11810{
11811    /*
11812     * XXX If multiple CoS is ever supported then each fastpath structure
11813     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11814     * fp->txdata[cos]->tx_dma.paddr;
11815     */
11816    txq_init->dscr_map     = fp->tx_dma.paddr;
11817    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11818    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11819    txq_init->fw_sb_id     = fp->fw_sb_id;
11820
11821    /*
11822     * set the TSS leading client id for TX classfication to the
11823     * leading RSS client id
11824     */
11825    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11826}
11827
11828/*
11829 * This function performs 2 steps in a queue state machine:
11830 *   1) RESET->INIT
11831 *   2) INIT->SETUP
11832 */
11833static int
11834bxe_setup_queue(struct bxe_softc    *sc,
11835                struct bxe_fastpath *fp,
11836                uint8_t             leading)
11837{
11838    struct ecore_queue_state_params q_params = { NULL };
11839    struct ecore_queue_setup_params *setup_params =
11840                        &q_params.params.setup;
11841#if 0
11842    struct ecore_queue_setup_tx_only_params *tx_only_params =
11843                        &q_params.params.tx_only;
11844    uint8_t tx_index;
11845#endif
11846    int rc;
11847
11848    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11849
11850    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11851
11852    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11853
11854    /* we want to wait for completion in this context */
11855    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11856
11857    /* prepare the INIT parameters */
11858    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11859
11860    /* Set the command */
11861    q_params.cmd = ECORE_Q_CMD_INIT;
11862
11863    /* Change the state to INIT */
11864    rc = ecore_queue_state_change(sc, &q_params);
11865    if (rc) {
11866        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11867        return (rc);
11868    }
11869
11870    BLOGD(sc, DBG_LOAD, "init complete\n");
11871
11872    /* now move the Queue to the SETUP state */
11873    memset(setup_params, 0, sizeof(*setup_params));
11874
11875    /* set Queue flags */
11876    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11877
11878    /* set general SETUP parameters */
11879    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11880                          FIRST_TX_COS_INDEX);
11881
11882    bxe_pf_rx_q_prep(sc, fp,
11883                     &setup_params->pause_params,
11884                     &setup_params->rxq_params);
11885
11886    bxe_pf_tx_q_prep(sc, fp,
11887                     &setup_params->txq_params,
11888                     FIRST_TX_COS_INDEX);
11889
11890    /* Set the command */
11891    q_params.cmd = ECORE_Q_CMD_SETUP;
11892
11893    /* change the state to SETUP */
11894    rc = ecore_queue_state_change(sc, &q_params);
11895    if (rc) {
11896        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11897        return (rc);
11898    }
11899
11900#if 0
11901    /* loop through the relevant tx-only indices */
11902    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11903         tx_index < sc->max_cos;
11904         tx_index++) {
11905        /* prepare and send tx-only ramrod*/
11906        rc = bxe_setup_tx_only(sc, fp, &q_params,
11907                               tx_only_params, tx_index, leading);
11908        if (rc) {
11909            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11910                  fp->index, tx_index);
11911            return (rc);
11912        }
11913    }
11914#endif
11915
11916    return (rc);
11917}
11918
11919static int
11920bxe_setup_leading(struct bxe_softc *sc)
11921{
11922    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11923}
11924
11925static int
11926bxe_config_rss_pf(struct bxe_softc            *sc,
11927                  struct ecore_rss_config_obj *rss_obj,
11928                  uint8_t                     config_hash)
11929{
11930    struct ecore_config_rss_params params = { NULL };
11931    int i;
11932
11933    /*
11934     * Although RSS is meaningless when there is a single HW queue we
11935     * still need it enabled in order to have HW Rx hash generated.
11936     */
11937
11938    params.rss_obj = rss_obj;
11939
11940    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11941
11942    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11943
11944    /* RSS configuration */
11945    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11946    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11947    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11948    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11949    if (rss_obj->udp_rss_v4) {
11950        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11951    }
11952    if (rss_obj->udp_rss_v6) {
11953        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11954    }
11955
11956    /* Hash bits */
11957    params.rss_result_mask = MULTI_MASK;
11958
11959    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11960
11961    if (config_hash) {
11962        /* RSS keys */
11963        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11964            params.rss_key[i] = arc4random();
11965        }
11966
11967        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11968    }
11969
11970    return (ecore_config_rss(sc, &params));
11971}
11972
11973static int
11974bxe_config_rss_eth(struct bxe_softc *sc,
11975                   uint8_t          config_hash)
11976{
11977    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11978}
11979
11980static int
11981bxe_init_rss_pf(struct bxe_softc *sc)
11982{
11983    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11984    int i;
11985
11986    /*
11987     * Prepare the initial contents of the indirection table if
11988     * RSS is enabled
11989     */
11990    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11991        sc->rss_conf_obj.ind_table[i] =
11992            (sc->fp->cl_id + (i % num_eth_queues));
11993    }
11994
11995    if (sc->udp_rss) {
11996        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11997    }
11998
11999    /*
12000     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12001     * per-port, so if explicit configuration is needed, do it only
12002     * for a PMF.
12003     *
12004     * For 57712 and newer it's a per-function configuration.
12005     */
12006    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12007}
12008
12009static int
12010bxe_set_mac_one(struct bxe_softc          *sc,
12011                uint8_t                   *mac,
12012                struct ecore_vlan_mac_obj *obj,
12013                uint8_t                   set,
12014                int                       mac_type,
12015                unsigned long             *ramrod_flags)
12016{
12017    struct ecore_vlan_mac_ramrod_params ramrod_param;
12018    int rc;
12019
12020    memset(&ramrod_param, 0, sizeof(ramrod_param));
12021
12022    /* fill in general parameters */
12023    ramrod_param.vlan_mac_obj = obj;
12024    ramrod_param.ramrod_flags = *ramrod_flags;
12025
12026    /* fill a user request section if needed */
12027    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12028        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12029
12030        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12031
12032        /* Set the command: ADD or DEL */
12033        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12034                                            ECORE_VLAN_MAC_DEL;
12035    }
12036
12037    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12038
12039    if (rc == ECORE_EXISTS) {
12040        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12041        /* do not treat adding same MAC as error */
12042        rc = 0;
12043    } else if (rc < 0) {
12044        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12045    }
12046
12047    return (rc);
12048}
12049
12050static int
12051bxe_set_eth_mac(struct bxe_softc *sc,
12052                uint8_t          set)
12053{
12054    unsigned long ramrod_flags = 0;
12055
12056    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12057
12058    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12059
12060    /* Eth MAC is set on RSS leading client (fp[0]) */
12061    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12062                            &sc->sp_objs->mac_obj,
12063                            set, ECORE_ETH_MAC, &ramrod_flags));
12064}
12065
12066#if 0
12067static void
12068bxe_update_max_mf_config(struct bxe_softc *sc,
12069                         uint32_t         value)
12070{
12071    /* load old values */
12072    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12073
12074    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12075        /* leave all but MAX value */
12076        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12077
12078        /* set new MAX value */
12079        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12080                   FUNC_MF_CFG_MAX_BW_MASK);
12081
12082        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12083    }
12084}
12085#endif
12086
12087static int
12088bxe_get_cur_phy_idx(struct bxe_softc *sc)
12089{
12090    uint32_t sel_phy_idx = 0;
12091
12092    if (sc->link_params.num_phys <= 1) {
12093        return (ELINK_INT_PHY);
12094    }
12095
12096    if (sc->link_vars.link_up) {
12097        sel_phy_idx = ELINK_EXT_PHY1;
12098        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12099        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12100            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12101             ELINK_SUPPORTED_FIBRE))
12102            sel_phy_idx = ELINK_EXT_PHY2;
12103    } else {
12104        switch (elink_phy_selection(&sc->link_params)) {
12105        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12106        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12107        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12108               sel_phy_idx = ELINK_EXT_PHY1;
12109               break;
12110        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12111        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12112               sel_phy_idx = ELINK_EXT_PHY2;
12113               break;
12114        }
12115    }
12116
12117    return (sel_phy_idx);
12118}
12119
12120static int
12121bxe_get_link_cfg_idx(struct bxe_softc *sc)
12122{
12123    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12124
12125    /*
12126     * The selected activated PHY is always after swapping (in case PHY
12127     * swapping is enabled). So when swapping is enabled, we need to reverse
12128     * the configuration
12129     */
12130
12131    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12132        if (sel_phy_idx == ELINK_EXT_PHY1)
12133            sel_phy_idx = ELINK_EXT_PHY2;
12134        else if (sel_phy_idx == ELINK_EXT_PHY2)
12135            sel_phy_idx = ELINK_EXT_PHY1;
12136    }
12137
12138    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12139}
12140
12141static void
12142bxe_set_requested_fc(struct bxe_softc *sc)
12143{
12144    /*
12145     * Initialize link parameters structure variables
12146     * It is recommended to turn off RX FC for jumbo frames
12147     * for better performance
12148     */
12149    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12150        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12151    } else {
12152        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12153    }
12154}
12155
12156static void
12157bxe_calc_fc_adv(struct bxe_softc *sc)
12158{
12159    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12160    switch (sc->link_vars.ieee_fc &
12161            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12162    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12163    default:
12164        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12165                                           ADVERTISED_Pause);
12166        break;
12167
12168    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12169        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12170                                          ADVERTISED_Pause);
12171        break;
12172
12173    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12174        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12175        break;
12176    }
12177}
12178
12179static uint16_t
12180bxe_get_mf_speed(struct bxe_softc *sc)
12181{
12182    uint16_t line_speed = sc->link_vars.line_speed;
12183    if (IS_MF(sc)) {
12184        uint16_t maxCfg =
12185            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12186
12187        /* calculate the current MAX line speed limit for the MF devices */
12188        if (IS_MF_SI(sc)) {
12189            line_speed = (line_speed * maxCfg) / 100;
12190        } else { /* SD mode */
12191            uint16_t vn_max_rate = maxCfg * 100;
12192
12193            if (vn_max_rate < line_speed) {
12194                line_speed = vn_max_rate;
12195            }
12196        }
12197    }
12198
12199    return (line_speed);
12200}
12201
12202static void
12203bxe_fill_report_data(struct bxe_softc            *sc,
12204                     struct bxe_link_report_data *data)
12205{
12206    uint16_t line_speed = bxe_get_mf_speed(sc);
12207
12208    memset(data, 0, sizeof(*data));
12209
12210    /* fill the report data with the effective line speed */
12211    data->line_speed = line_speed;
12212
12213    /* Link is down */
12214    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12215        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12216    }
12217
12218    /* Full DUPLEX */
12219    if (sc->link_vars.duplex == DUPLEX_FULL) {
12220        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12221    }
12222
12223    /* Rx Flow Control is ON */
12224    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12225        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12226    }
12227
12228    /* Tx Flow Control is ON */
12229    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12230        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12231    }
12232}
12233
12234/* report link status to OS, should be called under phy_lock */
12235static void
12236bxe_link_report_locked(struct bxe_softc *sc)
12237{
12238    struct bxe_link_report_data cur_data;
12239
12240    /* reread mf_cfg */
12241    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12242        bxe_read_mf_cfg(sc);
12243    }
12244
12245    /* Read the current link report info */
12246    bxe_fill_report_data(sc, &cur_data);
12247
12248    /* Don't report link down or exactly the same link status twice */
12249    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12250        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12251                      &sc->last_reported_link.link_report_flags) &&
12252         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12253                      &cur_data.link_report_flags))) {
12254        return;
12255    }
12256
12257    sc->link_cnt++;
12258
12259    /* report new link params and remember the state for the next time */
12260    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12261
12262    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12263                     &cur_data.link_report_flags)) {
12264        if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN);
12265        BLOGI(sc, "NIC Link is Down\n");
12266    } else {
12267        const char *duplex;
12268        const char *flow;
12269
12270        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12271                                   &cur_data.link_report_flags)) {
12272            duplex = "full";
12273        } else {
12274            duplex = "half";
12275        }
12276
12277        /*
12278         * Handle the FC at the end so that only these flags would be
12279         * possibly set. This way we may easily check if there is no FC
12280         * enabled.
12281         */
12282        if (cur_data.link_report_flags) {
12283            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12284                             &cur_data.link_report_flags) &&
12285                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12286                             &cur_data.link_report_flags)) {
12287                flow = "ON - receive & transmit";
12288            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12289                                    &cur_data.link_report_flags) &&
12290                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12291                                     &cur_data.link_report_flags)) {
12292                flow = "ON - receive";
12293            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12294                                     &cur_data.link_report_flags) &&
12295                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12296                                    &cur_data.link_report_flags)) {
12297                flow = "ON - transmit";
12298            } else {
12299                flow = "none"; /* possible? */
12300            }
12301        } else {
12302            flow = "none";
12303        }
12304
12305        if_linkstate_change_drv(sc->ifp, LINK_STATE_UP);
12306        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12307              cur_data.line_speed, duplex, flow);
12308    }
12309}
12310
12311static void
12312bxe_link_report(struct bxe_softc *sc)
12313{
12314    BXE_PHY_LOCK(sc);
12315    bxe_link_report_locked(sc);
12316    BXE_PHY_UNLOCK(sc);
12317}
12318
12319static void
12320bxe_link_status_update(struct bxe_softc *sc)
12321{
12322    if (sc->state != BXE_STATE_OPEN) {
12323        return;
12324    }
12325
12326#if 0
12327    /* read updated dcb configuration */
12328    if (IS_PF(sc))
12329        bxe_dcbx_pmf_update(sc);
12330#endif
12331
12332    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12333        elink_link_status_update(&sc->link_params, &sc->link_vars);
12334    } else {
12335        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12336                                  ELINK_SUPPORTED_10baseT_Full |
12337                                  ELINK_SUPPORTED_100baseT_Half |
12338                                  ELINK_SUPPORTED_100baseT_Full |
12339                                  ELINK_SUPPORTED_1000baseT_Full |
12340                                  ELINK_SUPPORTED_2500baseX_Full |
12341                                  ELINK_SUPPORTED_10000baseT_Full |
12342                                  ELINK_SUPPORTED_TP |
12343                                  ELINK_SUPPORTED_FIBRE |
12344                                  ELINK_SUPPORTED_Autoneg |
12345                                  ELINK_SUPPORTED_Pause |
12346                                  ELINK_SUPPORTED_Asym_Pause);
12347        sc->port.advertising[0] = sc->port.supported[0];
12348
12349        sc->link_params.sc                = sc;
12350        sc->link_params.port              = SC_PORT(sc);
12351        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12352        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12353        sc->link_params.req_line_speed[0] = SPEED_10000;
12354        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12355        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12356
12357        if (CHIP_REV_IS_FPGA(sc)) {
12358            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12359            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12360            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12361                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12362        } else {
12363            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12364            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12365            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12366                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12367        }
12368
12369        sc->link_vars.link_up = 1;
12370
12371        sc->link_vars.duplex    = DUPLEX_FULL;
12372        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12373
12374        if (IS_PF(sc)) {
12375            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12376            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12377            bxe_link_report(sc);
12378        }
12379    }
12380
12381    if (IS_PF(sc)) {
12382        if (sc->link_vars.link_up) {
12383            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12384        } else {
12385            bxe_stats_handle(sc, STATS_EVENT_STOP);
12386        }
12387        bxe_link_report(sc);
12388    } else {
12389        bxe_link_report(sc);
12390        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12391    }
12392}
12393
12394static int
12395bxe_initial_phy_init(struct bxe_softc *sc,
12396                     int              load_mode)
12397{
12398    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12399    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12400    struct elink_params *lp = &sc->link_params;
12401
12402    bxe_set_requested_fc(sc);
12403
12404    if (CHIP_REV_IS_SLOW(sc)) {
12405        uint32_t bond = CHIP_BOND_ID(sc);
12406        uint32_t feat = 0;
12407
12408        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12409            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12410        } else if (bond & 0x4) {
12411            if (CHIP_IS_E3(sc)) {
12412                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12413            } else {
12414                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12415            }
12416        } else if (bond & 0x8) {
12417            if (CHIP_IS_E3(sc)) {
12418                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12419            } else {
12420                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12421            }
12422        }
12423
12424        /* disable EMAC for E3 and above */
12425        if (bond & 0x2) {
12426            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12427        }
12428
12429        sc->link_params.feature_config_flags |= feat;
12430    }
12431
12432    BXE_PHY_LOCK(sc);
12433
12434    if (load_mode == LOAD_DIAG) {
12435        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12436        /* Prefer doing PHY loopback at 10G speed, if possible */
12437        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12438            if (lp->speed_cap_mask[cfg_idx] &
12439                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12440                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12441            } else {
12442                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12443            }
12444        }
12445    }
12446
12447    if (load_mode == LOAD_LOOPBACK_EXT) {
12448        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12449    }
12450
12451    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12452
12453    BXE_PHY_UNLOCK(sc);
12454
12455    bxe_calc_fc_adv(sc);
12456
12457    if (sc->link_vars.link_up) {
12458        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12459        bxe_link_report(sc);
12460    }
12461
12462    if (!CHIP_REV_IS_SLOW(sc)) {
12463        bxe_periodic_start(sc);
12464    }
12465
12466    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12467    return (rc);
12468}
12469
12470/* must be called under IF_ADDR_LOCK */
12471static int
12472bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12473                         struct ecore_mcast_ramrod_params *p)
12474{
12475    if_t ifp = sc->ifp;
12476    int mc_count = 0;
12477    int mcnt, i;
12478    struct ecore_mcast_list_elem *mc_mac;
12479    unsigned char *mta;
12480
12481    mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12482                                           /* should we enforce one? */
12483    ECORE_LIST_INIT(&p->mcast_list);
12484    p->mcast_list_len = 0;
12485
12486    if (!mc_count) {
12487        return (0);
12488    }
12489
12490    mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12491            mc_count, M_DEVBUF, M_NOWAIT);
12492
12493    if(mta == NULL) {
12494        BLOGE(sc, "Failed to allocate temp mcast list\n");
12495        return (-1);
12496    }
12497
12498    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12499                    (M_NOWAIT | M_ZERO));
12500    if (!mc_mac) {
12501        free(mta, M_DEVBUF);
12502        BLOGE(sc, "Failed to allocate temp mcast list\n");
12503        return (-1);
12504    }
12505
12506    if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected
12507                                                      to be  different */
12508    for(i=0; i< mcnt; i++) {
12509
12510        bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN);
12511        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12512
12513        BLOGD(sc, DBG_LOAD,
12514              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12515              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12516              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12517
12518        mc_mac++;
12519    }
12520
12521    p->mcast_list_len = mc_count;
12522    free(mta, M_DEVBUF);
12523
12524    return (0);
12525}
12526
12527static void
12528bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12529{
12530    struct ecore_mcast_list_elem *mc_mac =
12531        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12532                               struct ecore_mcast_list_elem,
12533                               link);
12534
12535    if (mc_mac) {
12536        /* only a single free as all mc_macs are in the same heap array */
12537        free(mc_mac, M_DEVBUF);
12538    }
12539}
12540
12541static int
12542bxe_set_mc_list(struct bxe_softc *sc)
12543{
12544    struct ecore_mcast_ramrod_params rparam = { NULL };
12545    int rc = 0;
12546
12547    rparam.mcast_obj = &sc->mcast_obj;
12548
12549    BXE_MCAST_LOCK(sc);
12550
12551    /* first, clear all configured multicast MACs */
12552    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12553    if (rc < 0) {
12554        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12555        return (rc);
12556    }
12557
12558    /* configure a new MACs list */
12559    rc = bxe_init_mcast_macs_list(sc, &rparam);
12560    if (rc) {
12561        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12562        BXE_MCAST_UNLOCK(sc);
12563        return (rc);
12564    }
12565
12566    /* Now add the new MACs */
12567    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12568    if (rc < 0) {
12569        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12570    }
12571
12572    bxe_free_mcast_macs_list(&rparam);
12573
12574    BXE_MCAST_UNLOCK(sc);
12575
12576    return (rc);
12577}
12578
12579static int
12580bxe_set_uc_list(struct bxe_softc *sc)
12581{
12582    if_t ifp = sc->ifp;
12583    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12584    struct ifaddr *ifa;
12585    unsigned long ramrod_flags = 0;
12586    int rc;
12587
12588#if __FreeBSD_version < 800000
12589    IF_ADDR_LOCK(ifp);
12590#else
12591    if_addr_rlock_drv(ifp);
12592#endif
12593
12594    /* first schedule a cleanup up of old configuration */
12595    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12596    if (rc < 0) {
12597        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12598#if __FreeBSD_version < 800000
12599        IF_ADDR_UNLOCK(ifp);
12600#else
12601        if_addr_runlock_drv(ifp);
12602#endif
12603        return (rc);
12604    }
12605
12606    ifa = if_getifaddr(ifp); /* XXX Is this structure */
12607    while (ifa) {
12608        if (ifa->ifa_addr->sa_family != AF_LINK) {
12609            ifa = TAILQ_NEXT(ifa, ifa_link);
12610            continue;
12611        }
12612
12613        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12614                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12615        if (rc == -EEXIST) {
12616            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12617            /* do not treat adding same MAC as an error */
12618            rc = 0;
12619        } else if (rc < 0) {
12620            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12621#if __FreeBSD_version < 800000
12622            IF_ADDR_UNLOCK(ifp);
12623#else
12624            if_addr_runlock_drv(ifp);
12625#endif
12626            return (rc);
12627        }
12628
12629        ifa = TAILQ_NEXT(ifa, ifa_link);
12630    }
12631
12632#if __FreeBSD_version < 800000
12633    IF_ADDR_UNLOCK(ifp);
12634#else
12635    if_addr_runlock_drv(ifp);
12636#endif
12637
12638    /* Execute the pending commands */
12639    bit_set(&ramrod_flags, RAMROD_CONT);
12640    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12641                            ECORE_UC_LIST_MAC, &ramrod_flags));
12642}
12643
12644static void
12645bxe_handle_rx_mode_tq(void *context,
12646                      int  pending)
12647{
12648    struct bxe_softc *sc = (struct bxe_softc *)context;
12649    if_t ifp = sc->ifp;
12650    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12651
12652    BXE_CORE_LOCK(sc);
12653
12654    if (sc->state != BXE_STATE_OPEN) {
12655        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12656        BXE_CORE_UNLOCK(sc);
12657        return;
12658    }
12659
12660    BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12661
12662    if (if_getflags(ifp) & IFF_PROMISC) {
12663        rx_mode = BXE_RX_MODE_PROMISC;
12664    } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12665               ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12666                CHIP_IS_E1(sc))) {
12667        rx_mode = BXE_RX_MODE_ALLMULTI;
12668    } else {
12669        if (IS_PF(sc)) {
12670            /* some multicasts */
12671            if (bxe_set_mc_list(sc) < 0) {
12672                rx_mode = BXE_RX_MODE_ALLMULTI;
12673            }
12674            if (bxe_set_uc_list(sc) < 0) {
12675                rx_mode = BXE_RX_MODE_PROMISC;
12676            }
12677        }
12678#if 0
12679        else {
12680            /*
12681             * Configuring mcast to a VF involves sleeping (when we
12682             * wait for the PF's response). Since this function is
12683             * called from a non sleepable context we must schedule
12684             * a work item for this purpose
12685             */
12686            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12687            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12688        }
12689#endif
12690    }
12691
12692    sc->rx_mode = rx_mode;
12693
12694    /* schedule the rx_mode command */
12695    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12696        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12697        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12698        BXE_CORE_UNLOCK(sc);
12699        return;
12700    }
12701
12702    if (IS_PF(sc)) {
12703        bxe_set_storm_rx_mode(sc);
12704    }
12705#if 0
12706    else {
12707        /*
12708         * Configuring mcast to a VF involves sleeping (when we
12709         * wait for the PF's response). Since this function is
12710         * called from a non sleepable context we must schedule
12711         * a work item for this purpose
12712         */
12713        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12714        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12715    }
12716#endif
12717
12718    BXE_CORE_UNLOCK(sc);
12719}
12720
12721static void
12722bxe_set_rx_mode(struct bxe_softc *sc)
12723{
12724    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12725}
12726
12727/* update flags in shmem */
12728static void
12729bxe_update_drv_flags(struct bxe_softc *sc,
12730                     uint32_t         flags,
12731                     uint32_t         set)
12732{
12733    uint32_t drv_flags;
12734
12735    if (SHMEM2_HAS(sc, drv_flags)) {
12736        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12737        drv_flags = SHMEM2_RD(sc, drv_flags);
12738
12739        if (set) {
12740            SET_FLAGS(drv_flags, flags);
12741        } else {
12742            RESET_FLAGS(drv_flags, flags);
12743        }
12744
12745        SHMEM2_WR(sc, drv_flags, drv_flags);
12746        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12747
12748        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12749    }
12750}
12751
12752/* periodic timer callout routine, only runs when the interface is up */
12753
12754static void
12755bxe_periodic_callout_func(void *xsc)
12756{
12757    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12758    int i;
12759
12760    if (!BXE_CORE_TRYLOCK(sc)) {
12761        /* just bail and try again next time */
12762
12763        if ((sc->state == BXE_STATE_OPEN) &&
12764            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12765            /* schedule the next periodic callout */
12766            callout_reset(&sc->periodic_callout, hz,
12767                          bxe_periodic_callout_func, sc);
12768        }
12769
12770        return;
12771    }
12772
12773    if ((sc->state != BXE_STATE_OPEN) ||
12774        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12775        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12776        BXE_CORE_UNLOCK(sc);
12777        return;
12778    }
12779
12780    /* Check for TX timeouts on any fastpath. */
12781    FOR_EACH_QUEUE(sc, i) {
12782        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12783            /* Ruh-Roh, chip was reset! */
12784            break;
12785        }
12786    }
12787
12788    if (!CHIP_REV_IS_SLOW(sc)) {
12789        /*
12790         * This barrier is needed to ensure the ordering between the writing
12791         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12792         * the reading here.
12793         */
12794        mb();
12795        if (sc->port.pmf) {
12796            BXE_PHY_LOCK(sc);
12797            elink_period_func(&sc->link_params, &sc->link_vars);
12798            BXE_PHY_UNLOCK(sc);
12799        }
12800    }
12801
12802    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12803        int mb_idx = SC_FW_MB_IDX(sc);
12804        uint32_t drv_pulse;
12805        uint32_t mcp_pulse;
12806
12807        ++sc->fw_drv_pulse_wr_seq;
12808        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12809
12810        drv_pulse = sc->fw_drv_pulse_wr_seq;
12811        bxe_drv_pulse(sc);
12812
12813        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12814                     MCP_PULSE_SEQ_MASK);
12815
12816        /*
12817         * The delta between driver pulse and mcp response should
12818         * be 1 (before mcp response) or 0 (after mcp response).
12819         */
12820        if ((drv_pulse != mcp_pulse) &&
12821            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12822            /* someone lost a heartbeat... */
12823            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12824                  drv_pulse, mcp_pulse);
12825        }
12826    }
12827
12828    /* state is BXE_STATE_OPEN */
12829    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12830
12831#if 0
12832    /* sample VF bulletin board for new posts from PF */
12833    if (IS_VF(sc)) {
12834        bxe_sample_bulletin(sc);
12835    }
12836#endif
12837
12838    BXE_CORE_UNLOCK(sc);
12839
12840    if ((sc->state == BXE_STATE_OPEN) &&
12841        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12842        /* schedule the next periodic callout */
12843        callout_reset(&sc->periodic_callout, hz,
12844                      bxe_periodic_callout_func, sc);
12845    }
12846}
12847
12848static void
12849bxe_periodic_start(struct bxe_softc *sc)
12850{
12851    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12852    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12853}
12854
12855static void
12856bxe_periodic_stop(struct bxe_softc *sc)
12857{
12858    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12859    callout_drain(&sc->periodic_callout);
12860}
12861
12862/* start the controller */
12863static __noinline int
12864bxe_nic_load(struct bxe_softc *sc,
12865             int              load_mode)
12866{
12867    uint32_t val;
12868    int load_code = 0;
12869    int i, rc = 0;
12870
12871    BXE_CORE_LOCK_ASSERT(sc);
12872
12873    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12874
12875    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12876
12877    if (IS_PF(sc)) {
12878        /* must be called before memory allocation and HW init */
12879        bxe_ilt_set_info(sc);
12880    }
12881
12882    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12883
12884    bxe_set_fp_rx_buf_size(sc);
12885
12886    if (bxe_alloc_fp_buffers(sc) != 0) {
12887        BLOGE(sc, "Failed to allocate fastpath memory\n");
12888        sc->state = BXE_STATE_CLOSED;
12889        rc = ENOMEM;
12890        goto bxe_nic_load_error0;
12891    }
12892
12893    if (bxe_alloc_mem(sc) != 0) {
12894        sc->state = BXE_STATE_CLOSED;
12895        rc = ENOMEM;
12896        goto bxe_nic_load_error0;
12897    }
12898
12899    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12900        sc->state = BXE_STATE_CLOSED;
12901        rc = ENOMEM;
12902        goto bxe_nic_load_error0;
12903    }
12904
12905    if (IS_PF(sc)) {
12906        /* set pf load just before approaching the MCP */
12907        bxe_set_pf_load(sc);
12908
12909        /* if MCP exists send load request and analyze response */
12910        if (!BXE_NOMCP(sc)) {
12911            /* attempt to load pf */
12912            if (bxe_nic_load_request(sc, &load_code) != 0) {
12913                sc->state = BXE_STATE_CLOSED;
12914                rc = ENXIO;
12915                goto bxe_nic_load_error1;
12916            }
12917
12918            /* what did the MCP say? */
12919            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12920                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12921                sc->state = BXE_STATE_CLOSED;
12922                rc = ENXIO;
12923                goto bxe_nic_load_error2;
12924            }
12925        } else {
12926            BLOGI(sc, "Device has no MCP!\n");
12927            load_code = bxe_nic_load_no_mcp(sc);
12928        }
12929
12930        /* mark PMF if applicable */
12931        bxe_nic_load_pmf(sc, load_code);
12932
12933        /* Init Function state controlling object */
12934        bxe_init_func_obj(sc);
12935
12936        /* Initialize HW */
12937        if (bxe_init_hw(sc, load_code) != 0) {
12938            BLOGE(sc, "HW init failed\n");
12939            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12940            sc->state = BXE_STATE_CLOSED;
12941            rc = ENXIO;
12942            goto bxe_nic_load_error2;
12943        }
12944    }
12945
12946    /* attach interrupts */
12947    if (bxe_interrupt_attach(sc) != 0) {
12948        sc->state = BXE_STATE_CLOSED;
12949        rc = ENXIO;
12950        goto bxe_nic_load_error2;
12951    }
12952
12953    bxe_nic_init(sc, load_code);
12954
12955    /* Init per-function objects */
12956    if (IS_PF(sc)) {
12957        bxe_init_objs(sc);
12958        // XXX bxe_iov_nic_init(sc);
12959
12960        /* set AFEX default VLAN tag to an invalid value */
12961        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12962        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12963
12964        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12965        rc = bxe_func_start(sc);
12966        if (rc) {
12967            BLOGE(sc, "Function start failed!\n");
12968            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12969            sc->state = BXE_STATE_ERROR;
12970            goto bxe_nic_load_error3;
12971        }
12972
12973        /* send LOAD_DONE command to MCP */
12974        if (!BXE_NOMCP(sc)) {
12975            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12976            if (!load_code) {
12977                BLOGE(sc, "MCP response failure, aborting\n");
12978                sc->state = BXE_STATE_ERROR;
12979                rc = ENXIO;
12980                goto bxe_nic_load_error3;
12981            }
12982        }
12983
12984        rc = bxe_setup_leading(sc);
12985        if (rc) {
12986            BLOGE(sc, "Setup leading failed!\n");
12987            sc->state = BXE_STATE_ERROR;
12988            goto bxe_nic_load_error3;
12989        }
12990
12991        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12992            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12993            if (rc) {
12994                BLOGE(sc, "Queue(%d) setup failed\n", i);
12995                sc->state = BXE_STATE_ERROR;
12996                goto bxe_nic_load_error3;
12997            }
12998        }
12999
13000        rc = bxe_init_rss_pf(sc);
13001        if (rc) {
13002            BLOGE(sc, "PF RSS init failed\n");
13003            sc->state = BXE_STATE_ERROR;
13004            goto bxe_nic_load_error3;
13005        }
13006    }
13007    /* XXX VF */
13008#if 0
13009    else { /* VF */
13010        FOR_EACH_ETH_QUEUE(sc, i) {
13011            rc = bxe_vfpf_setup_q(sc, i);
13012            if (rc) {
13013                BLOGE(sc, "Queue(%d) setup failed\n", i);
13014                sc->state = BXE_STATE_ERROR;
13015                goto bxe_nic_load_error3;
13016            }
13017        }
13018    }
13019#endif
13020
13021    /* now when Clients are configured we are ready to work */
13022    sc->state = BXE_STATE_OPEN;
13023
13024    /* Configure a ucast MAC */
13025    if (IS_PF(sc)) {
13026        rc = bxe_set_eth_mac(sc, TRUE);
13027    }
13028#if 0
13029    else { /* IS_VF(sc) */
13030        rc = bxe_vfpf_set_mac(sc);
13031    }
13032#endif
13033    if (rc) {
13034        BLOGE(sc, "Setting Ethernet MAC failed\n");
13035        sc->state = BXE_STATE_ERROR;
13036        goto bxe_nic_load_error3;
13037    }
13038
13039#if 0
13040    if (IS_PF(sc) && sc->pending_max) {
13041        /* for AFEX */
13042        bxe_update_max_mf_config(sc, sc->pending_max);
13043        sc->pending_max = 0;
13044    }
13045#endif
13046
13047    if (sc->port.pmf) {
13048        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13049        if (rc) {
13050            sc->state = BXE_STATE_ERROR;
13051            goto bxe_nic_load_error3;
13052        }
13053    }
13054
13055    sc->link_params.feature_config_flags &=
13056        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13057
13058    /* start fast path */
13059
13060    /* Initialize Rx filter */
13061    bxe_set_rx_mode(sc);
13062
13063    /* start the Tx */
13064    switch (/* XXX load_mode */LOAD_OPEN) {
13065    case LOAD_NORMAL:
13066    case LOAD_OPEN:
13067        break;
13068
13069    case LOAD_DIAG:
13070    case LOAD_LOOPBACK_EXT:
13071        sc->state = BXE_STATE_DIAG;
13072        break;
13073
13074    default:
13075        break;
13076    }
13077
13078    if (sc->port.pmf) {
13079        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13080    } else {
13081        bxe_link_status_update(sc);
13082    }
13083
13084    /* start the periodic timer callout */
13085    bxe_periodic_start(sc);
13086
13087    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13088        /* mark driver is loaded in shmem2 */
13089        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13090        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13091                  (val |
13092                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13093                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13094    }
13095
13096    /* wait for all pending SP commands to complete */
13097    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13098        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13099        bxe_periodic_stop(sc);
13100        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13101        return (ENXIO);
13102    }
13103
13104#if 0
13105    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13106    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13107        bxe_dcbx_init(sc, FALSE);
13108    }
13109#endif
13110
13111    /* Tell the stack the driver is running! */
13112    if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13113
13114    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13115
13116    return (0);
13117
13118bxe_nic_load_error3:
13119
13120    if (IS_PF(sc)) {
13121        bxe_int_disable_sync(sc, 1);
13122
13123        /* clean out queued objects */
13124        bxe_squeeze_objects(sc);
13125    }
13126
13127    bxe_interrupt_detach(sc);
13128
13129bxe_nic_load_error2:
13130
13131    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13132        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13133        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13134    }
13135
13136    sc->port.pmf = 0;
13137
13138bxe_nic_load_error1:
13139
13140    /* clear pf_load status, as it was already set */
13141    if (IS_PF(sc)) {
13142        bxe_clear_pf_load(sc);
13143    }
13144
13145bxe_nic_load_error0:
13146
13147    bxe_free_fw_stats_mem(sc);
13148    bxe_free_fp_buffers(sc);
13149    bxe_free_mem(sc);
13150
13151    return (rc);
13152}
13153
13154static int
13155bxe_init_locked(struct bxe_softc *sc)
13156{
13157    int other_engine = SC_PATH(sc) ? 0 : 1;
13158    uint8_t other_load_status, load_status;
13159    uint8_t global = FALSE;
13160    int rc;
13161
13162    BXE_CORE_LOCK_ASSERT(sc);
13163
13164    /* check if the driver is already running */
13165    if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13166        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13167        return (0);
13168    }
13169
13170    bxe_set_power_state(sc, PCI_PM_D0);
13171
13172    /*
13173     * If parity occurred during the unload, then attentions and/or
13174     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13175     * loaded on the current engine to complete the recovery. Parity recovery
13176     * is only relevant for PF driver.
13177     */
13178    if (IS_PF(sc)) {
13179        other_load_status = bxe_get_load_status(sc, other_engine);
13180        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13181
13182        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13183            bxe_chk_parity_attn(sc, &global, TRUE)) {
13184            do {
13185                /*
13186                 * If there are attentions and they are in global blocks, set
13187                 * the GLOBAL_RESET bit regardless whether it will be this
13188                 * function that will complete the recovery or not.
13189                 */
13190                if (global) {
13191                    bxe_set_reset_global(sc);
13192                }
13193
13194                /*
13195                 * Only the first function on the current engine should try
13196                 * to recover in open. In case of attentions in global blocks
13197                 * only the first in the chip should try to recover.
13198                 */
13199                if ((!load_status && (!global || !other_load_status)) &&
13200                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13201                    BLOGI(sc, "Recovered during init\n");
13202                    break;
13203                }
13204
13205                /* recovery has failed... */
13206                bxe_set_power_state(sc, PCI_PM_D3hot);
13207                sc->recovery_state = BXE_RECOVERY_FAILED;
13208
13209                BLOGE(sc, "Recovery flow hasn't properly "
13210                          "completed yet, try again later. "
13211                          "If you still see this message after a "
13212                          "few retries then power cycle is required.\n");
13213
13214                rc = ENXIO;
13215                goto bxe_init_locked_done;
13216            } while (0);
13217        }
13218    }
13219
13220    sc->recovery_state = BXE_RECOVERY_DONE;
13221
13222    rc = bxe_nic_load(sc, LOAD_OPEN);
13223
13224bxe_init_locked_done:
13225
13226    if (rc) {
13227        /* Tell the stack the driver is NOT running! */
13228        BLOGE(sc, "Initialization failed, "
13229                  "stack notified driver is NOT running!\n");
13230	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13231    }
13232
13233    return (rc);
13234}
13235
13236static int
13237bxe_stop_locked(struct bxe_softc *sc)
13238{
13239    BXE_CORE_LOCK_ASSERT(sc);
13240    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13241}
13242
13243/*
13244 * Handles controller initialization when called from an unlocked routine.
13245 * ifconfig calls this function.
13246 *
13247 * Returns:
13248 *   void
13249 */
13250static void
13251bxe_init(void *xsc)
13252{
13253    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13254
13255    BXE_CORE_LOCK(sc);
13256    bxe_init_locked(sc);
13257    BXE_CORE_UNLOCK(sc);
13258}
13259
13260static int
13261bxe_init_ifnet(struct bxe_softc *sc)
13262{
13263    if_t ifp;
13264    int capabilities;
13265
13266    /* ifconfig entrypoint for media type/status reporting */
13267    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13268                 bxe_ifmedia_update,
13269                 bxe_ifmedia_status);
13270
13271    /* set the default interface values */
13272    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13273    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13274    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13275
13276    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13277
13278    /* allocate the ifnet structure */
13279    if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13280        BLOGE(sc, "Interface allocation failed!\n");
13281        return (ENXIO);
13282    }
13283
13284    if_setsoftc(ifp, sc);
13285    if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13286    if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13287    if_setioctlfn(ifp, bxe_ioctl);
13288    if_setstartfn(ifp, bxe_tx_start);
13289#if __FreeBSD_version >= 800000
13290    if_settransmitfn(ifp, bxe_tx_mq_start);
13291    if_setqflushfn(ifp, bxe_mq_flush);
13292#endif
13293#ifdef FreeBSD8_0
13294    if_settimer(ifp, 0);
13295#endif
13296    if_setinitfn(ifp, bxe_init);
13297    if_setmtu(ifp, sc->mtu);
13298    if_sethwassist(ifp, (CSUM_IP      |
13299                        CSUM_TCP      |
13300                        CSUM_UDP      |
13301                        CSUM_TSO      |
13302                        CSUM_TCP_IPV6 |
13303                        CSUM_UDP_IPV6));
13304
13305    capabilities =
13306#if __FreeBSD_version < 700000
13307        (IFCAP_VLAN_MTU       |
13308         IFCAP_VLAN_HWTAGGING |
13309         IFCAP_HWCSUM         |
13310         IFCAP_JUMBO_MTU      |
13311         IFCAP_LRO);
13312#else
13313        (IFCAP_VLAN_MTU       |
13314         IFCAP_VLAN_HWTAGGING |
13315         IFCAP_VLAN_HWTSO     |
13316         IFCAP_VLAN_HWFILTER  |
13317         IFCAP_VLAN_HWCSUM    |
13318         IFCAP_HWCSUM         |
13319         IFCAP_JUMBO_MTU      |
13320         IFCAP_LRO            |
13321         IFCAP_TSO4           |
13322         IFCAP_TSO6           |
13323         IFCAP_WOL_MAGIC);
13324#endif
13325    if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13326    if_setbaudrate(ifp, IF_Gbps(10));
13327/* XXX */
13328    if_setsendqlen(ifp, sc->tx_ring_size);
13329    if_setsendqready(ifp);
13330/* XXX */
13331
13332    sc->ifp = ifp;
13333
13334    /* attach to the Ethernet interface list */
13335    ether_ifattach_drv(ifp, sc->link_params.mac_addr);
13336
13337    return (0);
13338}
13339
13340static void
13341bxe_deallocate_bars(struct bxe_softc *sc)
13342{
13343    int i;
13344
13345    for (i = 0; i < MAX_BARS; i++) {
13346        if (sc->bar[i].resource != NULL) {
13347            bus_release_resource(sc->dev,
13348                                 SYS_RES_MEMORY,
13349                                 sc->bar[i].rid,
13350                                 sc->bar[i].resource);
13351            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13352                  i, PCIR_BAR(i));
13353        }
13354    }
13355}
13356
13357static int
13358bxe_allocate_bars(struct bxe_softc *sc)
13359{
13360    u_int flags;
13361    int i;
13362
13363    memset(sc->bar, 0, sizeof(sc->bar));
13364
13365    for (i = 0; i < MAX_BARS; i++) {
13366
13367        /* memory resources reside at BARs 0, 2, 4 */
13368        /* Run `pciconf -lb` to see mappings */
13369        if ((i != 0) && (i != 2) && (i != 4)) {
13370            continue;
13371        }
13372
13373        sc->bar[i].rid = PCIR_BAR(i);
13374
13375        flags = RF_ACTIVE;
13376        if (i == 0) {
13377            flags |= RF_SHAREABLE;
13378        }
13379
13380        if ((sc->bar[i].resource =
13381             bus_alloc_resource_any(sc->dev,
13382                                    SYS_RES_MEMORY,
13383                                    &sc->bar[i].rid,
13384                                    flags)) == NULL) {
13385#if 0
13386            /* BAR4 doesn't exist for E1 */
13387            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13388                  i, PCIR_BAR(i));
13389#endif
13390            return (0);
13391        }
13392
13393        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13394        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13395        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13396
13397        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13398              i, PCIR_BAR(i),
13399              (void *)rman_get_start(sc->bar[i].resource),
13400              (void *)rman_get_end(sc->bar[i].resource),
13401              rman_get_size(sc->bar[i].resource),
13402              (void *)sc->bar[i].kva);
13403    }
13404
13405    return (0);
13406}
13407
13408static void
13409bxe_get_function_num(struct bxe_softc *sc)
13410{
13411    uint32_t val = 0;
13412
13413    /*
13414     * Read the ME register to get the function number. The ME register
13415     * holds the relative-function number and absolute-function number. The
13416     * absolute-function number appears only in E2 and above. Before that
13417     * these bits always contained zero, therefore we cannot blindly use them.
13418     */
13419
13420    val = REG_RD(sc, BAR_ME_REGISTER);
13421
13422    sc->pfunc_rel =
13423        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13424    sc->path_id =
13425        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13426
13427    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13428        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13429    } else {
13430        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13431    }
13432
13433    BLOGD(sc, DBG_LOAD,
13434          "Relative function %d, Absolute function %d, Path %d\n",
13435          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13436}
13437
13438static uint32_t
13439bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13440{
13441    uint32_t shmem2_size;
13442    uint32_t offset;
13443    uint32_t mf_cfg_offset_value;
13444
13445    /* Non 57712 */
13446    offset = (SHMEM_RD(sc, func_mb) +
13447              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13448
13449    /* 57712 plus */
13450    if (sc->devinfo.shmem2_base != 0) {
13451        shmem2_size = SHMEM2_RD(sc, size);
13452        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13453            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13454            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13455                offset = mf_cfg_offset_value;
13456            }
13457        }
13458    }
13459
13460    return (offset);
13461}
13462
13463static uint32_t
13464bxe_pcie_capability_read(struct bxe_softc *sc,
13465                         int    reg,
13466                         int    width)
13467{
13468    int pcie_reg;
13469
13470    /* ensure PCIe capability is enabled */
13471    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13472        if (pcie_reg != 0) {
13473            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13474            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13475        }
13476    }
13477
13478    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13479
13480    return (0);
13481}
13482
13483static uint8_t
13484bxe_is_pcie_pending(struct bxe_softc *sc)
13485{
13486    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13487            PCIM_EXP_STA_TRANSACTION_PND);
13488}
13489
13490/*
13491 * Walk the PCI capabiites list for the device to find what features are
13492 * supported. These capabilites may be enabled/disabled by firmware so it's
13493 * best to walk the list rather than make assumptions.
13494 */
13495static void
13496bxe_probe_pci_caps(struct bxe_softc *sc)
13497{
13498    uint16_t link_status;
13499    int reg;
13500
13501    /* check if PCI Power Management is enabled */
13502    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13503        if (reg != 0) {
13504            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13505
13506            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13507            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13508        }
13509    }
13510
13511    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13512
13513    /* handle PCIe 2.0 workarounds for 57710 */
13514    if (CHIP_IS_E1(sc)) {
13515        /* workaround for 57710 errata E4_57710_27462 */
13516        sc->devinfo.pcie_link_speed =
13517            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13518
13519        /* workaround for 57710 errata E4_57710_27488 */
13520        sc->devinfo.pcie_link_width =
13521            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13522        if (sc->devinfo.pcie_link_speed > 1) {
13523            sc->devinfo.pcie_link_width =
13524                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13525        }
13526    } else {
13527        sc->devinfo.pcie_link_speed =
13528            (link_status & PCIM_LINK_STA_SPEED);
13529        sc->devinfo.pcie_link_width =
13530            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13531    }
13532
13533    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13534          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13535
13536    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13537    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13538
13539    /* check if MSI capability is enabled */
13540    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13541        if (reg != 0) {
13542            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13543
13544            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13545            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13546        }
13547    }
13548
13549    /* check if MSI-X capability is enabled */
13550    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13551        if (reg != 0) {
13552            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13553
13554            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13555            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13556        }
13557    }
13558}
13559
13560static int
13561bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13562{
13563    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13564    uint32_t val;
13565
13566    /* get the outer vlan if we're in switch-dependent mode */
13567
13568    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13569    mf_info->ext_id = (uint16_t)val;
13570
13571    mf_info->multi_vnics_mode = 1;
13572
13573    if (!VALID_OVLAN(mf_info->ext_id)) {
13574        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13575        return (1);
13576    }
13577
13578    /* get the capabilities */
13579    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13580        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13581        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13582    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13583               FUNC_MF_CFG_PROTOCOL_FCOE) {
13584        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13585    } else {
13586        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13587    }
13588
13589    mf_info->vnics_per_port =
13590        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13591
13592    return (0);
13593}
13594
13595static uint32_t
13596bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13597{
13598    uint32_t retval = 0;
13599    uint32_t val;
13600
13601    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13602
13603    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13604        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13605            retval |= MF_PROTO_SUPPORT_ETHERNET;
13606        }
13607        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13608            retval |= MF_PROTO_SUPPORT_ISCSI;
13609        }
13610        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13611            retval |= MF_PROTO_SUPPORT_FCOE;
13612        }
13613    }
13614
13615    return (retval);
13616}
13617
13618static int
13619bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13620{
13621    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13622    uint32_t val;
13623
13624    /*
13625     * There is no outer vlan if we're in switch-independent mode.
13626     * If the mac is valid then assume multi-function.
13627     */
13628
13629    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13630
13631    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13632
13633    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13634
13635    mf_info->vnics_per_port =
13636        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13637
13638    return (0);
13639}
13640
13641static int
13642bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13643{
13644    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13645    uint32_t e1hov_tag;
13646    uint32_t func_config;
13647    uint32_t niv_config;
13648
13649    mf_info->multi_vnics_mode = 1;
13650
13651    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13652    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13653    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13654
13655    mf_info->ext_id =
13656        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13657                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13658
13659    mf_info->default_vlan =
13660        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13661                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13662
13663    mf_info->niv_allowed_priorities =
13664        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13665                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13666
13667    mf_info->niv_default_cos =
13668        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13669                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13670
13671    mf_info->afex_vlan_mode =
13672        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13673         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13674
13675    mf_info->niv_mba_enabled =
13676        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13677         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13678
13679    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13680
13681    mf_info->vnics_per_port =
13682        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13683
13684    return (0);
13685}
13686
13687static int
13688bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13689{
13690    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13691    uint32_t mf_cfg1;
13692    uint32_t mf_cfg2;
13693    uint32_t ovlan1;
13694    uint32_t ovlan2;
13695    uint8_t i, j;
13696
13697    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13698          SC_PORT(sc));
13699    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13700          mf_info->mf_config[SC_VN(sc)]);
13701    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13702          mf_info->multi_vnics_mode);
13703    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13704          mf_info->vnics_per_port);
13705    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13706          mf_info->ext_id);
13707    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13708          mf_info->min_bw[0], mf_info->min_bw[1],
13709          mf_info->min_bw[2], mf_info->min_bw[3]);
13710    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13711          mf_info->max_bw[0], mf_info->max_bw[1],
13712          mf_info->max_bw[2], mf_info->max_bw[3]);
13713    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13714          sc->mac_addr_str);
13715
13716    /* various MF mode sanity checks... */
13717
13718    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13719        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13720              SC_PORT(sc));
13721        return (1);
13722    }
13723
13724    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13725        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13726              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13727        return (1);
13728    }
13729
13730    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13731        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13732        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13733            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13734                  SC_VN(sc), OVLAN(sc));
13735            return (1);
13736        }
13737
13738        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13739            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13740                  mf_info->multi_vnics_mode, OVLAN(sc));
13741            return (1);
13742        }
13743
13744        /*
13745         * Verify all functions are either MF or SF mode. If MF, make sure
13746         * sure that all non-hidden functions have a valid ovlan. If SF,
13747         * make sure that all non-hidden functions have an invalid ovlan.
13748         */
13749        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13750            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13751            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13752            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13753                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13754                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13755                BLOGE(sc, "mf_mode=SD function %d MF config "
13756                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13757                      i, mf_info->multi_vnics_mode, ovlan1);
13758                return (1);
13759            }
13760        }
13761
13762        /* Verify all funcs on the same port each have a different ovlan. */
13763        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13764            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13765            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13766            /* iterate from the next function on the port to the max func */
13767            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13768                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13769                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13770                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13771                    VALID_OVLAN(ovlan1) &&
13772                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13773                    VALID_OVLAN(ovlan2) &&
13774                    (ovlan1 == ovlan2)) {
13775                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13776                              "have the same ovlan (%d)\n",
13777                          i, j, ovlan1);
13778                    return (1);
13779                }
13780            }
13781        }
13782    } /* MULTI_FUNCTION_SD */
13783
13784    return (0);
13785}
13786
13787static int
13788bxe_get_mf_cfg_info(struct bxe_softc *sc)
13789{
13790    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13791    uint32_t val, mac_upper;
13792    uint8_t i, vnic;
13793
13794    /* initialize mf_info defaults */
13795    mf_info->vnics_per_port   = 1;
13796    mf_info->multi_vnics_mode = FALSE;
13797    mf_info->path_has_ovlan   = FALSE;
13798    mf_info->mf_mode          = SINGLE_FUNCTION;
13799
13800    if (!CHIP_IS_MF_CAP(sc)) {
13801        return (0);
13802    }
13803
13804    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13805        BLOGE(sc, "Invalid mf_cfg_base!\n");
13806        return (1);
13807    }
13808
13809    /* get the MF mode (switch dependent / independent / single-function) */
13810
13811    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13812
13813    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13814    {
13815    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13816
13817        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13818
13819        /* check for legal upper mac bytes */
13820        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13821            mf_info->mf_mode = MULTI_FUNCTION_SI;
13822        } else {
13823            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13824        }
13825
13826        break;
13827
13828    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13829    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13830
13831        /* get outer vlan configuration */
13832        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13833
13834        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13835            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13836            mf_info->mf_mode = MULTI_FUNCTION_SD;
13837        } else {
13838            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13839        }
13840
13841        break;
13842
13843    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13844
13845        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13846        return (0);
13847
13848    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13849
13850        /*
13851         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13852         * and the MAC address is valid.
13853         */
13854        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13855
13856        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13857            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13858            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13859        } else {
13860            BLOGE(sc, "Invalid config for AFEX mode\n");
13861        }
13862
13863        break;
13864
13865    default:
13866
13867        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13868              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13869
13870        return (1);
13871    }
13872
13873    /* set path mf_mode (which could be different than function mf_mode) */
13874    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13875        mf_info->path_has_ovlan = TRUE;
13876    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13877        /*
13878         * Decide on path multi vnics mode. If we're not in MF mode and in
13879         * 4-port mode, this is good enough to check vnic-0 of the other port
13880         * on the same path
13881         */
13882        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13883            uint8_t other_port = !(PORT_ID(sc) & 1);
13884            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13885
13886            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13887
13888            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13889        }
13890    }
13891
13892    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13893        /* invalid MF config */
13894        if (SC_VN(sc) >= 1) {
13895            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13896            return (1);
13897        }
13898
13899        return (0);
13900    }
13901
13902    /* get the MF configuration */
13903    mf_info->mf_config[SC_VN(sc)] =
13904        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13905
13906    switch(mf_info->mf_mode)
13907    {
13908    case MULTI_FUNCTION_SD:
13909
13910        bxe_get_shmem_mf_cfg_info_sd(sc);
13911        break;
13912
13913    case MULTI_FUNCTION_SI:
13914
13915        bxe_get_shmem_mf_cfg_info_si(sc);
13916        break;
13917
13918    case MULTI_FUNCTION_AFEX:
13919
13920        bxe_get_shmem_mf_cfg_info_niv(sc);
13921        break;
13922
13923    default:
13924
13925        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13926              mf_info->mf_mode);
13927        return (1);
13928    }
13929
13930    /* get the congestion management parameters */
13931
13932    vnic = 0;
13933    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13934        /* get min/max bw */
13935        val = MFCFG_RD(sc, func_mf_config[i].config);
13936        mf_info->min_bw[vnic] =
13937            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13938        mf_info->max_bw[vnic] =
13939            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13940        vnic++;
13941    }
13942
13943    return (bxe_check_valid_mf_cfg(sc));
13944}
13945
13946static int
13947bxe_get_shmem_info(struct bxe_softc *sc)
13948{
13949    int port;
13950    uint32_t mac_hi, mac_lo, val;
13951
13952    port = SC_PORT(sc);
13953    mac_hi = mac_lo = 0;
13954
13955    sc->link_params.sc   = sc;
13956    sc->link_params.port = port;
13957
13958    /* get the hardware config info */
13959    sc->devinfo.hw_config =
13960        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13961    sc->devinfo.hw_config2 =
13962        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13963
13964    sc->link_params.hw_led_mode =
13965        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13966         SHARED_HW_CFG_LED_MODE_SHIFT);
13967
13968    /* get the port feature config */
13969    sc->port.config =
13970        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13971
13972    /* get the link params */
13973    sc->link_params.speed_cap_mask[0] =
13974        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13975    sc->link_params.speed_cap_mask[1] =
13976        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13977
13978    /* get the lane config */
13979    sc->link_params.lane_config =
13980        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13981
13982    /* get the link config */
13983    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13984    sc->port.link_config[ELINK_INT_PHY] = val;
13985    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13986    sc->port.link_config[ELINK_EXT_PHY1] =
13987        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13988
13989    /* get the override preemphasis flag and enable it or turn it off */
13990    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13991    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13992        sc->link_params.feature_config_flags |=
13993            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13994    } else {
13995        sc->link_params.feature_config_flags &=
13996            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13997    }
13998
13999    /* get the initial value of the link params */
14000    sc->link_params.multi_phy_config =
14001        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14002
14003    /* get external phy info */
14004    sc->port.ext_phy_config =
14005        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14006
14007    /* get the multifunction configuration */
14008    bxe_get_mf_cfg_info(sc);
14009
14010    /* get the mac address */
14011    if (IS_MF(sc)) {
14012        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14013        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14014    } else {
14015        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14016        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14017    }
14018
14019    if ((mac_lo == 0) && (mac_hi == 0)) {
14020        *sc->mac_addr_str = 0;
14021        BLOGE(sc, "No Ethernet address programmed!\n");
14022    } else {
14023        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14024        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14025        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14026        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14027        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14028        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14029        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14030                 "%02x:%02x:%02x:%02x:%02x:%02x",
14031                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14032                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14033                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14034        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14035    }
14036
14037#if 0
14038    if (!IS_MF(sc) &&
14039        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14040         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14041        sc->flags |= BXE_NO_ISCSI;
14042    }
14043    if (!IS_MF(sc) &&
14044        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14045         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14046        sc->flags |= BXE_NO_FCOE_FLAG;
14047    }
14048#endif
14049
14050    return (0);
14051}
14052
14053static void
14054bxe_get_tunable_params(struct bxe_softc *sc)
14055{
14056    /* sanity checks */
14057
14058    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14059        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14060        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14061        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14062        bxe_interrupt_mode = INTR_MODE_MSIX;
14063    }
14064
14065    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14066        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14067        bxe_queue_count = 0;
14068    }
14069
14070    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14071        if (bxe_max_rx_bufs == 0) {
14072            bxe_max_rx_bufs = RX_BD_USABLE;
14073        } else {
14074            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14075            bxe_max_rx_bufs = 2048;
14076        }
14077    }
14078
14079    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14080        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14081        bxe_hc_rx_ticks = 25;
14082    }
14083
14084    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14085        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14086        bxe_hc_tx_ticks = 50;
14087    }
14088
14089    if (bxe_max_aggregation_size == 0) {
14090        bxe_max_aggregation_size = TPA_AGG_SIZE;
14091    }
14092
14093    if (bxe_max_aggregation_size > 0xffff) {
14094        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14095              bxe_max_aggregation_size);
14096        bxe_max_aggregation_size = TPA_AGG_SIZE;
14097    }
14098
14099    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14100        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14101        bxe_mrrs = -1;
14102    }
14103
14104    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14105        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14106        bxe_autogreeen = 0;
14107    }
14108
14109    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14110        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14111        bxe_udp_rss = 0;
14112    }
14113
14114    /* pull in user settings */
14115
14116    sc->interrupt_mode       = bxe_interrupt_mode;
14117    sc->max_rx_bufs          = bxe_max_rx_bufs;
14118    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14119    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14120    sc->max_aggregation_size = bxe_max_aggregation_size;
14121    sc->mrrs                 = bxe_mrrs;
14122    sc->autogreeen           = bxe_autogreeen;
14123    sc->udp_rss              = bxe_udp_rss;
14124
14125    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14126        sc->num_queues = 1;
14127    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14128        sc->num_queues =
14129            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14130                MAX_RSS_CHAINS);
14131        if (sc->num_queues > mp_ncpus) {
14132            sc->num_queues = mp_ncpus;
14133        }
14134    }
14135
14136    BLOGD(sc, DBG_LOAD,
14137          "User Config: "
14138          "debug=0x%lx "
14139          "interrupt_mode=%d "
14140          "queue_count=%d "
14141          "hc_rx_ticks=%d "
14142          "hc_tx_ticks=%d "
14143          "rx_budget=%d "
14144          "max_aggregation_size=%d "
14145          "mrrs=%d "
14146          "autogreeen=%d "
14147          "udp_rss=%d\n",
14148          bxe_debug,
14149          sc->interrupt_mode,
14150          sc->num_queues,
14151          sc->hc_rx_ticks,
14152          sc->hc_tx_ticks,
14153          bxe_rx_budget,
14154          sc->max_aggregation_size,
14155          sc->mrrs,
14156          sc->autogreeen,
14157          sc->udp_rss);
14158}
14159
14160static void
14161bxe_media_detect(struct bxe_softc *sc)
14162{
14163    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14164    switch (sc->link_params.phy[phy_idx].media_type) {
14165    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14166    case ELINK_ETH_PHY_XFP_FIBER:
14167        BLOGI(sc, "Found 10Gb Fiber media.\n");
14168        sc->media = IFM_10G_SR;
14169        break;
14170    case ELINK_ETH_PHY_SFP_1G_FIBER:
14171        BLOGI(sc, "Found 1Gb Fiber media.\n");
14172        sc->media = IFM_1000_SX;
14173        break;
14174    case ELINK_ETH_PHY_KR:
14175    case ELINK_ETH_PHY_CX4:
14176        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14177        sc->media = IFM_10G_CX4;
14178        break;
14179    case ELINK_ETH_PHY_DA_TWINAX:
14180        BLOGI(sc, "Found 10Gb Twinax media.\n");
14181        sc->media = IFM_10G_TWINAX;
14182        break;
14183    case ELINK_ETH_PHY_BASE_T:
14184        if (sc->link_params.speed_cap_mask[0] &
14185            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14186            BLOGI(sc, "Found 10GBase-T media.\n");
14187            sc->media = IFM_10G_T;
14188        } else {
14189            BLOGI(sc, "Found 1000Base-T media.\n");
14190            sc->media = IFM_1000_T;
14191        }
14192        break;
14193    case ELINK_ETH_PHY_NOT_PRESENT:
14194        BLOGI(sc, "Media not present.\n");
14195        sc->media = 0;
14196        break;
14197    case ELINK_ETH_PHY_UNSPECIFIED:
14198    default:
14199        BLOGI(sc, "Unknown media!\n");
14200        sc->media = 0;
14201        break;
14202    }
14203}
14204
14205#define GET_FIELD(value, fname)                     \
14206    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14207#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14208#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14209
14210static int
14211bxe_get_igu_cam_info(struct bxe_softc *sc)
14212{
14213    int pfid = SC_FUNC(sc);
14214    int igu_sb_id;
14215    uint32_t val;
14216    uint8_t fid, igu_sb_cnt = 0;
14217
14218    sc->igu_base_sb = 0xff;
14219
14220    if (CHIP_INT_MODE_IS_BC(sc)) {
14221        int vn = SC_VN(sc);
14222        igu_sb_cnt = sc->igu_sb_cnt;
14223        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14224                           FP_SB_MAX_E1x);
14225        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14226                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14227        return (0);
14228    }
14229
14230    /* IGU in normal mode - read CAM */
14231    for (igu_sb_id = 0;
14232         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14233         igu_sb_id++) {
14234        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14235        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14236            continue;
14237        }
14238        fid = IGU_FID(val);
14239        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14240            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14241                continue;
14242            }
14243            if (IGU_VEC(val) == 0) {
14244                /* default status block */
14245                sc->igu_dsb_id = igu_sb_id;
14246            } else {
14247                if (sc->igu_base_sb == 0xff) {
14248                    sc->igu_base_sb = igu_sb_id;
14249                }
14250                igu_sb_cnt++;
14251            }
14252        }
14253    }
14254
14255    /*
14256     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14257     * that number of CAM entries will not be equal to the value advertised in
14258     * PCI. Driver should use the minimal value of both as the actual status
14259     * block count
14260     */
14261    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14262
14263    if (igu_sb_cnt == 0) {
14264        BLOGE(sc, "CAM configuration error\n");
14265        return (-1);
14266    }
14267
14268    return (0);
14269}
14270
14271/*
14272 * Gather various information from the device config space, the device itself,
14273 * shmem, and the user input.
14274 */
14275static int
14276bxe_get_device_info(struct bxe_softc *sc)
14277{
14278    uint32_t val;
14279    int rc;
14280
14281    /* Get the data for the device */
14282    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14283    sc->devinfo.device_id    = pci_get_device(sc->dev);
14284    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14285    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14286
14287    /* get the chip revision (chip metal comes from pci config space) */
14288    sc->devinfo.chip_id     =
14289    sc->link_params.chip_id =
14290        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14291         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14292         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14293         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14294
14295    /* force 57811 according to MISC register */
14296    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14297        if (CHIP_IS_57810(sc)) {
14298            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14299                                   (sc->devinfo.chip_id & 0x0000ffff));
14300        } else if (CHIP_IS_57810_MF(sc)) {
14301            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14302                                   (sc->devinfo.chip_id & 0x0000ffff));
14303        }
14304        sc->devinfo.chip_id |= 0x1;
14305    }
14306
14307    BLOGD(sc, DBG_LOAD,
14308          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14309          sc->devinfo.chip_id,
14310          ((sc->devinfo.chip_id >> 16) & 0xffff),
14311          ((sc->devinfo.chip_id >> 12) & 0xf),
14312          ((sc->devinfo.chip_id >>  4) & 0xff),
14313          ((sc->devinfo.chip_id >>  0) & 0xf));
14314
14315    val = (REG_RD(sc, 0x2874) & 0x55);
14316    if ((sc->devinfo.chip_id & 0x1) ||
14317        (CHIP_IS_E1(sc) && val) ||
14318        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14319        sc->flags |= BXE_ONE_PORT_FLAG;
14320        BLOGD(sc, DBG_LOAD, "single port device\n");
14321    }
14322
14323    /* set the doorbell size */
14324    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14325
14326    /* determine whether the device is in 2 port or 4 port mode */
14327    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14328    if (CHIP_IS_E2E3(sc)) {
14329        /*
14330         * Read port4mode_en_ovwr[0]:
14331         *   If 1, four port mode is in port4mode_en_ovwr[1].
14332         *   If 0, four port mode is in port4mode_en[0].
14333         */
14334        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14335        if (val & 1) {
14336            val = ((val >> 1) & 1);
14337        } else {
14338            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14339        }
14340
14341        sc->devinfo.chip_port_mode =
14342            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14343
14344        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14345    }
14346
14347    /* get the function and path info for the device */
14348    bxe_get_function_num(sc);
14349
14350    /* get the shared memory base address */
14351    sc->devinfo.shmem_base     =
14352    sc->link_params.shmem_base =
14353        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14354    sc->devinfo.shmem2_base =
14355        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14356                                  MISC_REG_GENERIC_CR_0));
14357
14358    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14359          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14360
14361    if (!sc->devinfo.shmem_base) {
14362        /* this should ONLY prevent upcoming shmem reads */
14363        BLOGI(sc, "MCP not active\n");
14364        sc->flags |= BXE_NO_MCP_FLAG;
14365        return (0);
14366    }
14367
14368    /* make sure the shared memory contents are valid */
14369    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14370    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14371        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14372        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14373        return (0);
14374    }
14375    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14376
14377    /* get the bootcode version */
14378    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14379    snprintf(sc->devinfo.bc_ver_str,
14380             sizeof(sc->devinfo.bc_ver_str),
14381             "%d.%d.%d",
14382             ((sc->devinfo.bc_ver >> 24) & 0xff),
14383             ((sc->devinfo.bc_ver >> 16) & 0xff),
14384             ((sc->devinfo.bc_ver >>  8) & 0xff));
14385    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14386
14387    /* get the bootcode shmem address */
14388    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14389    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14390
14391    /* clean indirect addresses as they're not used */
14392    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14393    if (IS_PF(sc)) {
14394        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14395        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14396        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14397        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14398        if (CHIP_IS_E1x(sc)) {
14399            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14400            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14401            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14402            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14403        }
14404
14405        /*
14406         * Enable internal target-read (in case we are probed after PF
14407         * FLR). Must be done prior to any BAR read access. Only for
14408         * 57712 and up
14409         */
14410        if (!CHIP_IS_E1x(sc)) {
14411            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14412        }
14413    }
14414
14415    /* get the nvram size */
14416    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14417    sc->devinfo.flash_size =
14418        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14419    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14420
14421    /* get PCI capabilites */
14422    bxe_probe_pci_caps(sc);
14423
14424    bxe_set_power_state(sc, PCI_PM_D0);
14425
14426    /* get various configuration parameters from shmem */
14427    bxe_get_shmem_info(sc);
14428
14429    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14430        val = pci_read_config(sc->dev,
14431                              (sc->devinfo.pcie_msix_cap_reg +
14432                               PCIR_MSIX_CTRL),
14433                              2);
14434        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14435    } else {
14436        sc->igu_sb_cnt = 1;
14437    }
14438
14439    sc->igu_base_addr = BAR_IGU_INTMEM;
14440
14441    /* initialize IGU parameters */
14442    if (CHIP_IS_E1x(sc)) {
14443        sc->devinfo.int_block = INT_BLOCK_HC;
14444        sc->igu_dsb_id = DEF_SB_IGU_ID;
14445        sc->igu_base_sb = 0;
14446    } else {
14447        sc->devinfo.int_block = INT_BLOCK_IGU;
14448
14449        /* do not allow device reset during IGU info preocessing */
14450        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14451
14452        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14453
14454        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14455            int tout = 5000;
14456
14457            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14458
14459            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14460            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14461            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14462
14463            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14464                tout--;
14465                DELAY(1000);
14466            }
14467
14468            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14469                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14470                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14471                return (-1);
14472            }
14473        }
14474
14475        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14476            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14477            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14478        } else {
14479            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14480        }
14481
14482        rc = bxe_get_igu_cam_info(sc);
14483
14484        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14485
14486        if (rc) {
14487            return (rc);
14488        }
14489    }
14490
14491    /*
14492     * Get base FW non-default (fast path) status block ID. This value is
14493     * used to initialize the fw_sb_id saved on the fp/queue structure to
14494     * determine the id used by the FW.
14495     */
14496    if (CHIP_IS_E1x(sc)) {
14497        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14498    } else {
14499        /*
14500         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14501         * the same queue are indicated on the same IGU SB). So we prefer
14502         * FW and IGU SBs to be the same value.
14503         */
14504        sc->base_fw_ndsb = sc->igu_base_sb;
14505    }
14506
14507    BLOGD(sc, DBG_LOAD,
14508          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14509          sc->igu_dsb_id, sc->igu_base_sb,
14510          sc->igu_sb_cnt, sc->base_fw_ndsb);
14511
14512    elink_phy_probe(&sc->link_params);
14513
14514    return (0);
14515}
14516
14517static void
14518bxe_link_settings_supported(struct bxe_softc *sc,
14519                            uint32_t         switch_cfg)
14520{
14521    uint32_t cfg_size = 0;
14522    uint32_t idx;
14523    uint8_t port = SC_PORT(sc);
14524
14525    /* aggregation of supported attributes of all external phys */
14526    sc->port.supported[0] = 0;
14527    sc->port.supported[1] = 0;
14528
14529    switch (sc->link_params.num_phys) {
14530    case 1:
14531        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14532        cfg_size = 1;
14533        break;
14534    case 2:
14535        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14536        cfg_size = 1;
14537        break;
14538    case 3:
14539        if (sc->link_params.multi_phy_config &
14540            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14541            sc->port.supported[1] =
14542                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14543            sc->port.supported[0] =
14544                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14545        } else {
14546            sc->port.supported[0] =
14547                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14548            sc->port.supported[1] =
14549                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14550        }
14551        cfg_size = 2;
14552        break;
14553    }
14554
14555    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14556        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14557              SHMEM_RD(sc,
14558                       dev_info.port_hw_config[port].external_phy_config),
14559              SHMEM_RD(sc,
14560                       dev_info.port_hw_config[port].external_phy_config2));
14561        return;
14562    }
14563
14564    if (CHIP_IS_E3(sc))
14565        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14566    else {
14567        switch (switch_cfg) {
14568        case ELINK_SWITCH_CFG_1G:
14569            sc->port.phy_addr =
14570                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14571            break;
14572        case ELINK_SWITCH_CFG_10G:
14573            sc->port.phy_addr =
14574                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14575            break;
14576        default:
14577            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14578                  sc->port.link_config[0]);
14579            return;
14580        }
14581    }
14582
14583    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14584
14585    /* mask what we support according to speed_cap_mask per configuration */
14586    for (idx = 0; idx < cfg_size; idx++) {
14587        if (!(sc->link_params.speed_cap_mask[idx] &
14588              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14589            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14590        }
14591
14592        if (!(sc->link_params.speed_cap_mask[idx] &
14593              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14594            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14595        }
14596
14597        if (!(sc->link_params.speed_cap_mask[idx] &
14598              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14599            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14600        }
14601
14602        if (!(sc->link_params.speed_cap_mask[idx] &
14603              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14604            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14605        }
14606
14607        if (!(sc->link_params.speed_cap_mask[idx] &
14608              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14609            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14610        }
14611
14612        if (!(sc->link_params.speed_cap_mask[idx] &
14613              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14614            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14615        }
14616
14617        if (!(sc->link_params.speed_cap_mask[idx] &
14618              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14619            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14620        }
14621
14622        if (!(sc->link_params.speed_cap_mask[idx] &
14623              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14624            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14625        }
14626    }
14627
14628    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14629          sc->port.supported[0], sc->port.supported[1]);
14630}
14631
14632static void
14633bxe_link_settings_requested(struct bxe_softc *sc)
14634{
14635    uint32_t link_config;
14636    uint32_t idx;
14637    uint32_t cfg_size = 0;
14638
14639    sc->port.advertising[0] = 0;
14640    sc->port.advertising[1] = 0;
14641
14642    switch (sc->link_params.num_phys) {
14643    case 1:
14644    case 2:
14645        cfg_size = 1;
14646        break;
14647    case 3:
14648        cfg_size = 2;
14649        break;
14650    }
14651
14652    for (idx = 0; idx < cfg_size; idx++) {
14653        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14654        link_config = sc->port.link_config[idx];
14655
14656        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14657        case PORT_FEATURE_LINK_SPEED_AUTO:
14658            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14659                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14660                sc->port.advertising[idx] |= sc->port.supported[idx];
14661                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14662                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14663                    sc->port.advertising[idx] |=
14664                        (ELINK_SUPPORTED_100baseT_Half |
14665                         ELINK_SUPPORTED_100baseT_Full);
14666            } else {
14667                /* force 10G, no AN */
14668                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14669                sc->port.advertising[idx] |=
14670                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14671                continue;
14672            }
14673            break;
14674
14675        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14676            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14677                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14678                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14679                                              ADVERTISED_TP);
14680            } else {
14681                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14682                          "speed_cap_mask=0x%08x\n",
14683                      link_config, sc->link_params.speed_cap_mask[idx]);
14684                return;
14685            }
14686            break;
14687
14688        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14689            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14690                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14691                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14692                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14693                                              ADVERTISED_TP);
14694            } else {
14695                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14696                          "speed_cap_mask=0x%08x\n",
14697                      link_config, sc->link_params.speed_cap_mask[idx]);
14698                return;
14699            }
14700            break;
14701
14702        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14703            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14704                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14705                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14706                                              ADVERTISED_TP);
14707            } else {
14708                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14709                          "speed_cap_mask=0x%08x\n",
14710                      link_config, sc->link_params.speed_cap_mask[idx]);
14711                return;
14712            }
14713            break;
14714
14715        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14716            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14717                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14718                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14719                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14720                                              ADVERTISED_TP);
14721            } else {
14722                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14723                          "speed_cap_mask=0x%08x\n",
14724                      link_config, sc->link_params.speed_cap_mask[idx]);
14725                return;
14726            }
14727            break;
14728
14729        case PORT_FEATURE_LINK_SPEED_1G:
14730            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14731                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14732                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14733                                              ADVERTISED_TP);
14734            } else {
14735                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14736                          "speed_cap_mask=0x%08x\n",
14737                      link_config, sc->link_params.speed_cap_mask[idx]);
14738                return;
14739            }
14740            break;
14741
14742        case PORT_FEATURE_LINK_SPEED_2_5G:
14743            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14744                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14745                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14746                                              ADVERTISED_TP);
14747            } else {
14748                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14749                          "speed_cap_mask=0x%08x\n",
14750                      link_config, sc->link_params.speed_cap_mask[idx]);
14751                return;
14752            }
14753            break;
14754
14755        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14756            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14757                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14758                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14759                                              ADVERTISED_FIBRE);
14760            } else {
14761                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14762                          "speed_cap_mask=0x%08x\n",
14763                      link_config, sc->link_params.speed_cap_mask[idx]);
14764                return;
14765            }
14766            break;
14767
14768        case PORT_FEATURE_LINK_SPEED_20G:
14769            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14770            break;
14771
14772        default:
14773            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14774                      "speed_cap_mask=0x%08x\n",
14775                  link_config, sc->link_params.speed_cap_mask[idx]);
14776            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14777            sc->port.advertising[idx] = sc->port.supported[idx];
14778            break;
14779        }
14780
14781        sc->link_params.req_flow_ctrl[idx] =
14782            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14783
14784        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14785            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14786                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14787            } else {
14788                bxe_set_requested_fc(sc);
14789            }
14790        }
14791
14792        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14793                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14794              sc->link_params.req_line_speed[idx],
14795              sc->link_params.req_duplex[idx],
14796              sc->link_params.req_flow_ctrl[idx],
14797              sc->port.advertising[idx]);
14798    }
14799}
14800
14801static void
14802bxe_get_phy_info(struct bxe_softc *sc)
14803{
14804    uint8_t port = SC_PORT(sc);
14805    uint32_t config = sc->port.config;
14806    uint32_t eee_mode;
14807
14808    /* shmem data already read in bxe_get_shmem_info() */
14809
14810    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14811                        "link_config0=0x%08x\n",
14812               sc->link_params.lane_config,
14813               sc->link_params.speed_cap_mask[0],
14814               sc->port.link_config[0]);
14815
14816    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14817    bxe_link_settings_requested(sc);
14818
14819    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14820        sc->link_params.feature_config_flags |=
14821            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14822    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14823        sc->link_params.feature_config_flags &=
14824            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14825    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14826        sc->link_params.feature_config_flags |=
14827            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14828    }
14829
14830    /* configure link feature according to nvram value */
14831    eee_mode =
14832        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14833          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14834         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14835    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14836        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14837                                    ELINK_EEE_MODE_ENABLE_LPI |
14838                                    ELINK_EEE_MODE_OUTPUT_TIME);
14839    } else {
14840        sc->link_params.eee_mode = 0;
14841    }
14842
14843    /* get the media type */
14844    bxe_media_detect(sc);
14845}
14846
14847static void
14848bxe_get_params(struct bxe_softc *sc)
14849{
14850    /* get user tunable params */
14851    bxe_get_tunable_params(sc);
14852
14853    /* select the RX and TX ring sizes */
14854    sc->tx_ring_size = TX_BD_USABLE;
14855    sc->rx_ring_size = RX_BD_USABLE;
14856
14857    /* XXX disable WoL */
14858    sc->wol = 0;
14859}
14860
14861static void
14862bxe_set_modes_bitmap(struct bxe_softc *sc)
14863{
14864    uint32_t flags = 0;
14865
14866    if (CHIP_REV_IS_FPGA(sc)) {
14867        SET_FLAGS(flags, MODE_FPGA);
14868    } else if (CHIP_REV_IS_EMUL(sc)) {
14869        SET_FLAGS(flags, MODE_EMUL);
14870    } else {
14871        SET_FLAGS(flags, MODE_ASIC);
14872    }
14873
14874    if (CHIP_IS_MODE_4_PORT(sc)) {
14875        SET_FLAGS(flags, MODE_PORT4);
14876    } else {
14877        SET_FLAGS(flags, MODE_PORT2);
14878    }
14879
14880    if (CHIP_IS_E2(sc)) {
14881        SET_FLAGS(flags, MODE_E2);
14882    } else if (CHIP_IS_E3(sc)) {
14883        SET_FLAGS(flags, MODE_E3);
14884        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14885            SET_FLAGS(flags, MODE_E3_A0);
14886        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14887            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14888        }
14889    }
14890
14891    if (IS_MF(sc)) {
14892        SET_FLAGS(flags, MODE_MF);
14893        switch (sc->devinfo.mf_info.mf_mode) {
14894        case MULTI_FUNCTION_SD:
14895            SET_FLAGS(flags, MODE_MF_SD);
14896            break;
14897        case MULTI_FUNCTION_SI:
14898            SET_FLAGS(flags, MODE_MF_SI);
14899            break;
14900        case MULTI_FUNCTION_AFEX:
14901            SET_FLAGS(flags, MODE_MF_AFEX);
14902            break;
14903        }
14904    } else {
14905        SET_FLAGS(flags, MODE_SF);
14906    }
14907
14908#if defined(__LITTLE_ENDIAN)
14909    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14910#else /* __BIG_ENDIAN */
14911    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14912#endif
14913
14914    INIT_MODE_FLAGS(sc) = flags;
14915}
14916
14917static int
14918bxe_alloc_hsi_mem(struct bxe_softc *sc)
14919{
14920    struct bxe_fastpath *fp;
14921    bus_addr_t busaddr;
14922    int max_agg_queues;
14923    int max_segments;
14924    bus_size_t max_size;
14925    bus_size_t max_seg_size;
14926    char buf[32];
14927    int rc;
14928    int i, j;
14929
14930    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14931
14932    /* allocate the parent bus DMA tag */
14933    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14934                            1,                        /* alignment */
14935                            0,                        /* boundary limit */
14936                            BUS_SPACE_MAXADDR,        /* restricted low */
14937                            BUS_SPACE_MAXADDR,        /* restricted hi */
14938                            NULL,                     /* addr filter() */
14939                            NULL,                     /* addr filter() arg */
14940                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14941                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14942                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14943                            0,                        /* flags */
14944                            NULL,                     /* lock() */
14945                            NULL,                     /* lock() arg */
14946                            &sc->parent_dma_tag);     /* returned dma tag */
14947    if (rc != 0) {
14948        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14949        return (1);
14950    }
14951
14952    /************************/
14953    /* DEFAULT STATUS BLOCK */
14954    /************************/
14955
14956    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14957                      &sc->def_sb_dma, "default status block") != 0) {
14958        /* XXX */
14959        bus_dma_tag_destroy(sc->parent_dma_tag);
14960        return (1);
14961    }
14962
14963    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14964
14965    /***************/
14966    /* EVENT QUEUE */
14967    /***************/
14968
14969    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14970                      &sc->eq_dma, "event queue") != 0) {
14971        /* XXX */
14972        bxe_dma_free(sc, &sc->def_sb_dma);
14973        sc->def_sb = NULL;
14974        bus_dma_tag_destroy(sc->parent_dma_tag);
14975        return (1);
14976    }
14977
14978    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14979
14980    /*************/
14981    /* SLOW PATH */
14982    /*************/
14983
14984    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14985                      &sc->sp_dma, "slow path") != 0) {
14986        /* XXX */
14987        bxe_dma_free(sc, &sc->eq_dma);
14988        sc->eq = NULL;
14989        bxe_dma_free(sc, &sc->def_sb_dma);
14990        sc->def_sb = NULL;
14991        bus_dma_tag_destroy(sc->parent_dma_tag);
14992        return (1);
14993    }
14994
14995    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14996
14997    /*******************/
14998    /* SLOW PATH QUEUE */
14999    /*******************/
15000
15001    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15002                      &sc->spq_dma, "slow path queue") != 0) {
15003        /* XXX */
15004        bxe_dma_free(sc, &sc->sp_dma);
15005        sc->sp = NULL;
15006        bxe_dma_free(sc, &sc->eq_dma);
15007        sc->eq = NULL;
15008        bxe_dma_free(sc, &sc->def_sb_dma);
15009        sc->def_sb = NULL;
15010        bus_dma_tag_destroy(sc->parent_dma_tag);
15011        return (1);
15012    }
15013
15014    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15015
15016    /***************************/
15017    /* FW DECOMPRESSION BUFFER */
15018    /***************************/
15019
15020    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15021                      "fw decompression buffer") != 0) {
15022        /* XXX */
15023        bxe_dma_free(sc, &sc->spq_dma);
15024        sc->spq = NULL;
15025        bxe_dma_free(sc, &sc->sp_dma);
15026        sc->sp = NULL;
15027        bxe_dma_free(sc, &sc->eq_dma);
15028        sc->eq = NULL;
15029        bxe_dma_free(sc, &sc->def_sb_dma);
15030        sc->def_sb = NULL;
15031        bus_dma_tag_destroy(sc->parent_dma_tag);
15032        return (1);
15033    }
15034
15035    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15036
15037    if ((sc->gz_strm =
15038         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15039        /* XXX */
15040        bxe_dma_free(sc, &sc->gz_buf_dma);
15041        sc->gz_buf = NULL;
15042        bxe_dma_free(sc, &sc->spq_dma);
15043        sc->spq = NULL;
15044        bxe_dma_free(sc, &sc->sp_dma);
15045        sc->sp = NULL;
15046        bxe_dma_free(sc, &sc->eq_dma);
15047        sc->eq = NULL;
15048        bxe_dma_free(sc, &sc->def_sb_dma);
15049        sc->def_sb = NULL;
15050        bus_dma_tag_destroy(sc->parent_dma_tag);
15051        return (1);
15052    }
15053
15054    /*************/
15055    /* FASTPATHS */
15056    /*************/
15057
15058    /* allocate DMA memory for each fastpath structure */
15059    for (i = 0; i < sc->num_queues; i++) {
15060        fp = &sc->fp[i];
15061        fp->sc    = sc;
15062        fp->index = i;
15063
15064        /*******************/
15065        /* FP STATUS BLOCK */
15066        /*******************/
15067
15068        snprintf(buf, sizeof(buf), "fp %d status block", i);
15069        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15070                          &fp->sb_dma, buf) != 0) {
15071            /* XXX unwind and free previous fastpath allocations */
15072            BLOGE(sc, "Failed to alloc %s\n", buf);
15073            return (1);
15074        } else {
15075            if (CHIP_IS_E2E3(sc)) {
15076                fp->status_block.e2_sb =
15077                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15078            } else {
15079                fp->status_block.e1x_sb =
15080                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15081            }
15082        }
15083
15084        /******************/
15085        /* FP TX BD CHAIN */
15086        /******************/
15087
15088        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15089        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15090                          &fp->tx_dma, buf) != 0) {
15091            /* XXX unwind and free previous fastpath allocations */
15092            BLOGE(sc, "Failed to alloc %s\n", buf);
15093            return (1);
15094        } else {
15095            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15096        }
15097
15098        /* link together the tx bd chain pages */
15099        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15100            /* index into the tx bd chain array to last entry per page */
15101            struct eth_tx_next_bd *tx_next_bd =
15102                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15103            /* point to the next page and wrap from last page */
15104            busaddr = (fp->tx_dma.paddr +
15105                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15106            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15107            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15108        }
15109
15110        /******************/
15111        /* FP RX BD CHAIN */
15112        /******************/
15113
15114        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15115        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15116                          &fp->rx_dma, buf) != 0) {
15117            /* XXX unwind and free previous fastpath allocations */
15118            BLOGE(sc, "Failed to alloc %s\n", buf);
15119            return (1);
15120        } else {
15121            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15122        }
15123
15124        /* link together the rx bd chain pages */
15125        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15126            /* index into the rx bd chain array to last entry per page */
15127            struct eth_rx_bd *rx_bd =
15128                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15129            /* point to the next page and wrap from last page */
15130            busaddr = (fp->rx_dma.paddr +
15131                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15132            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15133            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15134        }
15135
15136        /*******************/
15137        /* FP RX RCQ CHAIN */
15138        /*******************/
15139
15140        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15141        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15142                          &fp->rcq_dma, buf) != 0) {
15143            /* XXX unwind and free previous fastpath allocations */
15144            BLOGE(sc, "Failed to alloc %s\n", buf);
15145            return (1);
15146        } else {
15147            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15148        }
15149
15150        /* link together the rcq chain pages */
15151        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15152            /* index into the rcq chain array to last entry per page */
15153            struct eth_rx_cqe_next_page *rx_cqe_next =
15154                (struct eth_rx_cqe_next_page *)
15155                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15156            /* point to the next page and wrap from last page */
15157            busaddr = (fp->rcq_dma.paddr +
15158                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15159            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15160            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15161        }
15162
15163        /*******************/
15164        /* FP RX SGE CHAIN */
15165        /*******************/
15166
15167        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15168        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15169                          &fp->rx_sge_dma, buf) != 0) {
15170            /* XXX unwind and free previous fastpath allocations */
15171            BLOGE(sc, "Failed to alloc %s\n", buf);
15172            return (1);
15173        } else {
15174            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15175        }
15176
15177        /* link together the sge chain pages */
15178        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15179            /* index into the rcq chain array to last entry per page */
15180            struct eth_rx_sge *rx_sge =
15181                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15182            /* point to the next page and wrap from last page */
15183            busaddr = (fp->rx_sge_dma.paddr +
15184                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15185            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15186            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15187        }
15188
15189        /***********************/
15190        /* FP TX MBUF DMA MAPS */
15191        /***********************/
15192
15193        /* set required sizes before mapping to conserve resources */
15194        if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15195            max_size     = BXE_TSO_MAX_SIZE;
15196            max_segments = BXE_TSO_MAX_SEGMENTS;
15197            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15198        } else {
15199            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15200            max_segments = BXE_MAX_SEGMENTS;
15201            max_seg_size = MCLBYTES;
15202        }
15203
15204        /* create a dma tag for the tx mbufs */
15205        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15206                                1,                  /* alignment */
15207                                0,                  /* boundary limit */
15208                                BUS_SPACE_MAXADDR,  /* restricted low */
15209                                BUS_SPACE_MAXADDR,  /* restricted hi */
15210                                NULL,               /* addr filter() */
15211                                NULL,               /* addr filter() arg */
15212                                max_size,           /* max map size */
15213                                max_segments,       /* num discontinuous */
15214                                max_seg_size,       /* max seg size */
15215                                0,                  /* flags */
15216                                NULL,               /* lock() */
15217                                NULL,               /* lock() arg */
15218                                &fp->tx_mbuf_tag);  /* returned dma tag */
15219        if (rc != 0) {
15220            /* XXX unwind and free previous fastpath allocations */
15221            BLOGE(sc, "Failed to create dma tag for "
15222                      "'fp %d tx mbufs' (%d)\n",
15223                  i, rc);
15224            return (1);
15225        }
15226
15227        /* create dma maps for each of the tx mbuf clusters */
15228        for (j = 0; j < TX_BD_TOTAL; j++) {
15229            if (bus_dmamap_create(fp->tx_mbuf_tag,
15230                                  BUS_DMA_NOWAIT,
15231                                  &fp->tx_mbuf_chain[j].m_map)) {
15232                /* XXX unwind and free previous fastpath allocations */
15233                BLOGE(sc, "Failed to create dma map for "
15234                          "'fp %d tx mbuf %d' (%d)\n",
15235                      i, j, rc);
15236                return (1);
15237            }
15238        }
15239
15240        /***********************/
15241        /* FP RX MBUF DMA MAPS */
15242        /***********************/
15243
15244        /* create a dma tag for the rx mbufs */
15245        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15246                                1,                  /* alignment */
15247                                0,                  /* boundary limit */
15248                                BUS_SPACE_MAXADDR,  /* restricted low */
15249                                BUS_SPACE_MAXADDR,  /* restricted hi */
15250                                NULL,               /* addr filter() */
15251                                NULL,               /* addr filter() arg */
15252                                MJUM9BYTES,         /* max map size */
15253                                1,                  /* num discontinuous */
15254                                MJUM9BYTES,         /* max seg size */
15255                                0,                  /* flags */
15256                                NULL,               /* lock() */
15257                                NULL,               /* lock() arg */
15258                                &fp->rx_mbuf_tag);  /* returned dma tag */
15259        if (rc != 0) {
15260            /* XXX unwind and free previous fastpath allocations */
15261            BLOGE(sc, "Failed to create dma tag for "
15262                      "'fp %d rx mbufs' (%d)\n",
15263                  i, rc);
15264            return (1);
15265        }
15266
15267        /* create dma maps for each of the rx mbuf clusters */
15268        for (j = 0; j < RX_BD_TOTAL; j++) {
15269            if (bus_dmamap_create(fp->rx_mbuf_tag,
15270                                  BUS_DMA_NOWAIT,
15271                                  &fp->rx_mbuf_chain[j].m_map)) {
15272                /* XXX unwind and free previous fastpath allocations */
15273                BLOGE(sc, "Failed to create dma map for "
15274                          "'fp %d rx mbuf %d' (%d)\n",
15275                      i, j, rc);
15276                return (1);
15277            }
15278        }
15279
15280        /* create dma map for the spare rx mbuf cluster */
15281        if (bus_dmamap_create(fp->rx_mbuf_tag,
15282                              BUS_DMA_NOWAIT,
15283                              &fp->rx_mbuf_spare_map)) {
15284            /* XXX unwind and free previous fastpath allocations */
15285            BLOGE(sc, "Failed to create dma map for "
15286                      "'fp %d spare rx mbuf' (%d)\n",
15287                  i, rc);
15288            return (1);
15289        }
15290
15291        /***************************/
15292        /* FP RX SGE MBUF DMA MAPS */
15293        /***************************/
15294
15295        /* create a dma tag for the rx sge mbufs */
15296        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15297                                1,                  /* alignment */
15298                                0,                  /* boundary limit */
15299                                BUS_SPACE_MAXADDR,  /* restricted low */
15300                                BUS_SPACE_MAXADDR,  /* restricted hi */
15301                                NULL,               /* addr filter() */
15302                                NULL,               /* addr filter() arg */
15303                                BCM_PAGE_SIZE,      /* max map size */
15304                                1,                  /* num discontinuous */
15305                                BCM_PAGE_SIZE,      /* max seg size */
15306                                0,                  /* flags */
15307                                NULL,               /* lock() */
15308                                NULL,               /* lock() arg */
15309                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15310        if (rc != 0) {
15311            /* XXX unwind and free previous fastpath allocations */
15312            BLOGE(sc, "Failed to create dma tag for "
15313                      "'fp %d rx sge mbufs' (%d)\n",
15314                  i, rc);
15315            return (1);
15316        }
15317
15318        /* create dma maps for the rx sge mbuf clusters */
15319        for (j = 0; j < RX_SGE_TOTAL; j++) {
15320            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15321                                  BUS_DMA_NOWAIT,
15322                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15323                /* XXX unwind and free previous fastpath allocations */
15324                BLOGE(sc, "Failed to create dma map for "
15325                          "'fp %d rx sge mbuf %d' (%d)\n",
15326                      i, j, rc);
15327                return (1);
15328            }
15329        }
15330
15331        /* create dma map for the spare rx sge mbuf cluster */
15332        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15333                              BUS_DMA_NOWAIT,
15334                              &fp->rx_sge_mbuf_spare_map)) {
15335            /* XXX unwind and free previous fastpath allocations */
15336            BLOGE(sc, "Failed to create dma map for "
15337                      "'fp %d spare rx sge mbuf' (%d)\n",
15338                  i, rc);
15339            return (1);
15340        }
15341
15342        /***************************/
15343        /* FP RX TPA MBUF DMA MAPS */
15344        /***************************/
15345
15346        /* create dma maps for the rx tpa mbuf clusters */
15347        max_agg_queues = MAX_AGG_QS(sc);
15348
15349        for (j = 0; j < max_agg_queues; j++) {
15350            if (bus_dmamap_create(fp->rx_mbuf_tag,
15351                                  BUS_DMA_NOWAIT,
15352                                  &fp->rx_tpa_info[j].bd.m_map)) {
15353                /* XXX unwind and free previous fastpath allocations */
15354                BLOGE(sc, "Failed to create dma map for "
15355                          "'fp %d rx tpa mbuf %d' (%d)\n",
15356                      i, j, rc);
15357                return (1);
15358            }
15359        }
15360
15361        /* create dma map for the spare rx tpa mbuf cluster */
15362        if (bus_dmamap_create(fp->rx_mbuf_tag,
15363                              BUS_DMA_NOWAIT,
15364                              &fp->rx_tpa_info_mbuf_spare_map)) {
15365            /* XXX unwind and free previous fastpath allocations */
15366            BLOGE(sc, "Failed to create dma map for "
15367                      "'fp %d spare rx tpa mbuf' (%d)\n",
15368                  i, rc);
15369            return (1);
15370        }
15371
15372        bxe_init_sge_ring_bit_mask(fp);
15373    }
15374
15375    return (0);
15376}
15377
15378static void
15379bxe_free_hsi_mem(struct bxe_softc *sc)
15380{
15381    struct bxe_fastpath *fp;
15382    int max_agg_queues;
15383    int i, j;
15384
15385    if (sc->parent_dma_tag == NULL) {
15386        return; /* assume nothing was allocated */
15387    }
15388
15389    for (i = 0; i < sc->num_queues; i++) {
15390        fp = &sc->fp[i];
15391
15392        /*******************/
15393        /* FP STATUS BLOCK */
15394        /*******************/
15395
15396        bxe_dma_free(sc, &fp->sb_dma);
15397        memset(&fp->status_block, 0, sizeof(fp->status_block));
15398
15399        /******************/
15400        /* FP TX BD CHAIN */
15401        /******************/
15402
15403        bxe_dma_free(sc, &fp->tx_dma);
15404        fp->tx_chain = NULL;
15405
15406        /******************/
15407        /* FP RX BD CHAIN */
15408        /******************/
15409
15410        bxe_dma_free(sc, &fp->rx_dma);
15411        fp->rx_chain = NULL;
15412
15413        /*******************/
15414        /* FP RX RCQ CHAIN */
15415        /*******************/
15416
15417        bxe_dma_free(sc, &fp->rcq_dma);
15418        fp->rcq_chain = NULL;
15419
15420        /*******************/
15421        /* FP RX SGE CHAIN */
15422        /*******************/
15423
15424        bxe_dma_free(sc, &fp->rx_sge_dma);
15425        fp->rx_sge_chain = NULL;
15426
15427        /***********************/
15428        /* FP TX MBUF DMA MAPS */
15429        /***********************/
15430
15431        if (fp->tx_mbuf_tag != NULL) {
15432            for (j = 0; j < TX_BD_TOTAL; j++) {
15433                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15434                    bus_dmamap_unload(fp->tx_mbuf_tag,
15435                                      fp->tx_mbuf_chain[j].m_map);
15436                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15437                                       fp->tx_mbuf_chain[j].m_map);
15438                }
15439            }
15440
15441            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15442            fp->tx_mbuf_tag = NULL;
15443        }
15444
15445        /***********************/
15446        /* FP RX MBUF DMA MAPS */
15447        /***********************/
15448
15449        if (fp->rx_mbuf_tag != NULL) {
15450            for (j = 0; j < RX_BD_TOTAL; j++) {
15451                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15452                    bus_dmamap_unload(fp->rx_mbuf_tag,
15453                                      fp->rx_mbuf_chain[j].m_map);
15454                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15455                                       fp->rx_mbuf_chain[j].m_map);
15456                }
15457            }
15458
15459            if (fp->rx_mbuf_spare_map != NULL) {
15460                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15461                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15462            }
15463
15464            /***************************/
15465            /* FP RX TPA MBUF DMA MAPS */
15466            /***************************/
15467
15468            max_agg_queues = MAX_AGG_QS(sc);
15469
15470            for (j = 0; j < max_agg_queues; j++) {
15471                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15472                    bus_dmamap_unload(fp->rx_mbuf_tag,
15473                                      fp->rx_tpa_info[j].bd.m_map);
15474                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15475                                       fp->rx_tpa_info[j].bd.m_map);
15476                }
15477            }
15478
15479            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15480                bus_dmamap_unload(fp->rx_mbuf_tag,
15481                                  fp->rx_tpa_info_mbuf_spare_map);
15482                bus_dmamap_destroy(fp->rx_mbuf_tag,
15483                                   fp->rx_tpa_info_mbuf_spare_map);
15484            }
15485
15486            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15487            fp->rx_mbuf_tag = NULL;
15488        }
15489
15490        /***************************/
15491        /* FP RX SGE MBUF DMA MAPS */
15492        /***************************/
15493
15494        if (fp->rx_sge_mbuf_tag != NULL) {
15495            for (j = 0; j < RX_SGE_TOTAL; j++) {
15496                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15497                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15498                                      fp->rx_sge_mbuf_chain[j].m_map);
15499                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15500                                       fp->rx_sge_mbuf_chain[j].m_map);
15501                }
15502            }
15503
15504            if (fp->rx_sge_mbuf_spare_map != NULL) {
15505                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15506                                  fp->rx_sge_mbuf_spare_map);
15507                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15508                                   fp->rx_sge_mbuf_spare_map);
15509            }
15510
15511            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15512            fp->rx_sge_mbuf_tag = NULL;
15513        }
15514    }
15515
15516    /***************************/
15517    /* FW DECOMPRESSION BUFFER */
15518    /***************************/
15519
15520    bxe_dma_free(sc, &sc->gz_buf_dma);
15521    sc->gz_buf = NULL;
15522    free(sc->gz_strm, M_DEVBUF);
15523    sc->gz_strm = NULL;
15524
15525    /*******************/
15526    /* SLOW PATH QUEUE */
15527    /*******************/
15528
15529    bxe_dma_free(sc, &sc->spq_dma);
15530    sc->spq = NULL;
15531
15532    /*************/
15533    /* SLOW PATH */
15534    /*************/
15535
15536    bxe_dma_free(sc, &sc->sp_dma);
15537    sc->sp = NULL;
15538
15539    /***************/
15540    /* EVENT QUEUE */
15541    /***************/
15542
15543    bxe_dma_free(sc, &sc->eq_dma);
15544    sc->eq = NULL;
15545
15546    /************************/
15547    /* DEFAULT STATUS BLOCK */
15548    /************************/
15549
15550    bxe_dma_free(sc, &sc->def_sb_dma);
15551    sc->def_sb = NULL;
15552
15553    bus_dma_tag_destroy(sc->parent_dma_tag);
15554    sc->parent_dma_tag = NULL;
15555}
15556
15557/*
15558 * Previous driver DMAE transaction may have occurred when pre-boot stage
15559 * ended and boot began. This would invalidate the addresses of the
15560 * transaction, resulting in was-error bit set in the PCI causing all
15561 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15562 * the interrupt which detected this from the pglueb and the was-done bit
15563 */
15564static void
15565bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15566{
15567    uint32_t val;
15568
15569    if (!CHIP_IS_E1x(sc)) {
15570        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15571        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15572            BLOGD(sc, DBG_LOAD,
15573                  "Clearing 'was-error' bit that was set in pglueb");
15574            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15575        }
15576    }
15577}
15578
15579static int
15580bxe_prev_mcp_done(struct bxe_softc *sc)
15581{
15582    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15583                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15584    if (!rc) {
15585        BLOGE(sc, "MCP response failure, aborting\n");
15586        return (-1);
15587    }
15588
15589    return (0);
15590}
15591
15592static struct bxe_prev_list_node *
15593bxe_prev_path_get_entry(struct bxe_softc *sc)
15594{
15595    struct bxe_prev_list_node *tmp;
15596
15597    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15598        if ((sc->pcie_bus == tmp->bus) &&
15599            (sc->pcie_device == tmp->slot) &&
15600            (SC_PATH(sc) == tmp->path)) {
15601            return (tmp);
15602        }
15603    }
15604
15605    return (NULL);
15606}
15607
15608static uint8_t
15609bxe_prev_is_path_marked(struct bxe_softc *sc)
15610{
15611    struct bxe_prev_list_node *tmp;
15612    int rc = FALSE;
15613
15614    mtx_lock(&bxe_prev_mtx);
15615
15616    tmp = bxe_prev_path_get_entry(sc);
15617    if (tmp) {
15618        if (tmp->aer) {
15619            BLOGD(sc, DBG_LOAD,
15620                  "Path %d/%d/%d was marked by AER\n",
15621                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15622        } else {
15623            rc = TRUE;
15624            BLOGD(sc, DBG_LOAD,
15625                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15626                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15627        }
15628    }
15629
15630    mtx_unlock(&bxe_prev_mtx);
15631
15632    return (rc);
15633}
15634
15635static int
15636bxe_prev_mark_path(struct bxe_softc *sc,
15637                   uint8_t          after_undi)
15638{
15639    struct bxe_prev_list_node *tmp;
15640
15641    mtx_lock(&bxe_prev_mtx);
15642
15643    /* Check whether the entry for this path already exists */
15644    tmp = bxe_prev_path_get_entry(sc);
15645    if (tmp) {
15646        if (!tmp->aer) {
15647            BLOGD(sc, DBG_LOAD,
15648                  "Re-marking AER in path %d/%d/%d\n",
15649                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15650        } else {
15651            BLOGD(sc, DBG_LOAD,
15652                  "Removing AER indication from path %d/%d/%d\n",
15653                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15654            tmp->aer = 0;
15655        }
15656
15657        mtx_unlock(&bxe_prev_mtx);
15658        return (0);
15659    }
15660
15661    mtx_unlock(&bxe_prev_mtx);
15662
15663    /* Create an entry for this path and add it */
15664    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15665                 (M_NOWAIT | M_ZERO));
15666    if (!tmp) {
15667        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15668        return (-1);
15669    }
15670
15671    tmp->bus  = sc->pcie_bus;
15672    tmp->slot = sc->pcie_device;
15673    tmp->path = SC_PATH(sc);
15674    tmp->aer  = 0;
15675    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15676
15677    mtx_lock(&bxe_prev_mtx);
15678
15679    BLOGD(sc, DBG_LOAD,
15680          "Marked path %d/%d/%d - finished previous unload\n",
15681          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15682    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15683
15684    mtx_unlock(&bxe_prev_mtx);
15685
15686    return (0);
15687}
15688
15689static int
15690bxe_do_flr(struct bxe_softc *sc)
15691{
15692    int i;
15693
15694    /* only E2 and onwards support FLR */
15695    if (CHIP_IS_E1x(sc)) {
15696        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15697        return (-1);
15698    }
15699
15700    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15701    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15702        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15703              sc->devinfo.bc_ver);
15704        return (-1);
15705    }
15706
15707    /* Wait for Transaction Pending bit clean */
15708    for (i = 0; i < 4; i++) {
15709        if (i) {
15710            DELAY(((1 << (i - 1)) * 100) * 1000);
15711        }
15712
15713        if (!bxe_is_pcie_pending(sc)) {
15714            goto clear;
15715        }
15716    }
15717
15718    BLOGE(sc, "PCIE transaction is not cleared, "
15719              "proceeding with reset anyway\n");
15720
15721clear:
15722
15723    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15724    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15725
15726    return (0);
15727}
15728
15729struct bxe_mac_vals {
15730    uint32_t xmac_addr;
15731    uint32_t xmac_val;
15732    uint32_t emac_addr;
15733    uint32_t emac_val;
15734    uint32_t umac_addr;
15735    uint32_t umac_val;
15736    uint32_t bmac_addr;
15737    uint32_t bmac_val[2];
15738};
15739
15740static void
15741bxe_prev_unload_close_mac(struct bxe_softc *sc,
15742                          struct bxe_mac_vals *vals)
15743{
15744    uint32_t val, base_addr, offset, mask, reset_reg;
15745    uint8_t mac_stopped = FALSE;
15746    uint8_t port = SC_PORT(sc);
15747    uint32_t wb_data[2];
15748
15749    /* reset addresses as they also mark which values were changed */
15750    vals->bmac_addr = 0;
15751    vals->umac_addr = 0;
15752    vals->xmac_addr = 0;
15753    vals->emac_addr = 0;
15754
15755    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15756
15757    if (!CHIP_IS_E3(sc)) {
15758        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15759        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15760        if ((mask & reset_reg) && val) {
15761            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15762            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15763                                    : NIG_REG_INGRESS_BMAC0_MEM;
15764            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15765                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15766
15767            /*
15768             * use rd/wr since we cannot use dmae. This is safe
15769             * since MCP won't access the bus due to the request
15770             * to unload, and no function on the path can be
15771             * loaded at this time.
15772             */
15773            wb_data[0] = REG_RD(sc, base_addr + offset);
15774            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15775            vals->bmac_addr = base_addr + offset;
15776            vals->bmac_val[0] = wb_data[0];
15777            vals->bmac_val[1] = wb_data[1];
15778            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15779            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15780            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15781        }
15782
15783        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15784        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15785        vals->emac_val = REG_RD(sc, vals->emac_addr);
15786        REG_WR(sc, vals->emac_addr, 0);
15787        mac_stopped = TRUE;
15788    } else {
15789        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15790            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15791            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15792            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15793            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15794            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15795            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15796            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15797            REG_WR(sc, vals->xmac_addr, 0);
15798            mac_stopped = TRUE;
15799        }
15800
15801        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15802        if (mask & reset_reg) {
15803            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15804            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15805            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15806            vals->umac_val = REG_RD(sc, vals->umac_addr);
15807            REG_WR(sc, vals->umac_addr, 0);
15808            mac_stopped = TRUE;
15809        }
15810    }
15811
15812    if (mac_stopped) {
15813        DELAY(20000);
15814    }
15815}
15816
15817#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15818#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15819#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15820#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15821
15822static void
15823bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15824                         uint8_t          port,
15825                         uint8_t          inc)
15826{
15827    uint16_t rcq, bd;
15828    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15829
15830    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15831    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15832
15833    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15834    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15835
15836    BLOGD(sc, DBG_LOAD,
15837          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15838          port, bd, rcq);
15839}
15840
15841static int
15842bxe_prev_unload_common(struct bxe_softc *sc)
15843{
15844    uint32_t reset_reg, tmp_reg = 0, rc;
15845    uint8_t prev_undi = FALSE;
15846    struct bxe_mac_vals mac_vals;
15847    uint32_t timer_count = 1000;
15848    uint32_t prev_brb;
15849
15850    /*
15851     * It is possible a previous function received 'common' answer,
15852     * but hasn't loaded yet, therefore creating a scenario of
15853     * multiple functions receiving 'common' on the same path.
15854     */
15855    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15856
15857    memset(&mac_vals, 0, sizeof(mac_vals));
15858
15859    if (bxe_prev_is_path_marked(sc)) {
15860        return (bxe_prev_mcp_done(sc));
15861    }
15862
15863    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15864
15865    /* Reset should be performed after BRB is emptied */
15866    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15867        /* Close the MAC Rx to prevent BRB from filling up */
15868        bxe_prev_unload_close_mac(sc, &mac_vals);
15869
15870        /* close LLH filters towards the BRB */
15871        elink_set_rx_filter(&sc->link_params, 0);
15872
15873        /*
15874         * Check if the UNDI driver was previously loaded.
15875         * UNDI driver initializes CID offset for normal bell to 0x7
15876         */
15877        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15878            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15879            if (tmp_reg == 0x7) {
15880                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15881                prev_undi = TRUE;
15882                /* clear the UNDI indication */
15883                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15884                /* clear possible idle check errors */
15885                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15886            }
15887        }
15888
15889        /* wait until BRB is empty */
15890        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15891        while (timer_count) {
15892            prev_brb = tmp_reg;
15893
15894            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15895            if (!tmp_reg) {
15896                break;
15897            }
15898
15899            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15900
15901            /* reset timer as long as BRB actually gets emptied */
15902            if (prev_brb > tmp_reg) {
15903                timer_count = 1000;
15904            } else {
15905                timer_count--;
15906            }
15907
15908            /* If UNDI resides in memory, manually increment it */
15909            if (prev_undi) {
15910                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15911            }
15912
15913            DELAY(10);
15914        }
15915
15916        if (!timer_count) {
15917            BLOGE(sc, "Failed to empty BRB\n");
15918        }
15919    }
15920
15921    /* No packets are in the pipeline, path is ready for reset */
15922    bxe_reset_common(sc);
15923
15924    if (mac_vals.xmac_addr) {
15925        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15926    }
15927    if (mac_vals.umac_addr) {
15928        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15929    }
15930    if (mac_vals.emac_addr) {
15931        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15932    }
15933    if (mac_vals.bmac_addr) {
15934        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15935        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15936    }
15937
15938    rc = bxe_prev_mark_path(sc, prev_undi);
15939    if (rc) {
15940        bxe_prev_mcp_done(sc);
15941        return (rc);
15942    }
15943
15944    return (bxe_prev_mcp_done(sc));
15945}
15946
15947static int
15948bxe_prev_unload_uncommon(struct bxe_softc *sc)
15949{
15950    int rc;
15951
15952    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15953
15954    /* Test if previous unload process was already finished for this path */
15955    if (bxe_prev_is_path_marked(sc)) {
15956        return (bxe_prev_mcp_done(sc));
15957    }
15958
15959    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15960
15961    /*
15962     * If function has FLR capabilities, and existing FW version matches
15963     * the one required, then FLR will be sufficient to clean any residue
15964     * left by previous driver
15965     */
15966    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15967    if (!rc) {
15968        /* fw version is good */
15969        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15970        rc = bxe_do_flr(sc);
15971    }
15972
15973    if (!rc) {
15974        /* FLR was performed */
15975        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15976        return (0);
15977    }
15978
15979    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15980
15981    /* Close the MCP request, return failure*/
15982    rc = bxe_prev_mcp_done(sc);
15983    if (!rc) {
15984        rc = BXE_PREV_WAIT_NEEDED;
15985    }
15986
15987    return (rc);
15988}
15989
15990static int
15991bxe_prev_unload(struct bxe_softc *sc)
15992{
15993    int time_counter = 10;
15994    uint32_t fw, hw_lock_reg, hw_lock_val;
15995    uint32_t rc = 0;
15996
15997    /*
15998     * Clear HW from errors which may have resulted from an interrupted
15999     * DMAE transaction.
16000     */
16001    bxe_prev_interrupted_dmae(sc);
16002
16003    /* Release previously held locks */
16004    hw_lock_reg =
16005        (SC_FUNC(sc) <= 5) ?
16006            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16007            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16008
16009    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16010    if (hw_lock_val) {
16011        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16012            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16013            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16014                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16015        }
16016        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16017        REG_WR(sc, hw_lock_reg, 0xffffffff);
16018    } else {
16019        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16020    }
16021
16022    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16023        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16024        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16025    }
16026
16027    do {
16028        /* Lock MCP using an unload request */
16029        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16030        if (!fw) {
16031            BLOGE(sc, "MCP response failure, aborting\n");
16032            rc = -1;
16033            break;
16034        }
16035
16036        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16037            rc = bxe_prev_unload_common(sc);
16038            break;
16039        }
16040
16041        /* non-common reply from MCP night require looping */
16042        rc = bxe_prev_unload_uncommon(sc);
16043        if (rc != BXE_PREV_WAIT_NEEDED) {
16044            break;
16045        }
16046
16047        DELAY(20000);
16048    } while (--time_counter);
16049
16050    if (!time_counter || rc) {
16051        BLOGE(sc, "Failed to unload previous driver!\n");
16052        rc = -1;
16053    }
16054
16055    return (rc);
16056}
16057
16058void
16059bxe_dcbx_set_state(struct bxe_softc *sc,
16060                   uint8_t          dcb_on,
16061                   uint32_t         dcbx_enabled)
16062{
16063    if (!CHIP_IS_E1x(sc)) {
16064        sc->dcb_state = dcb_on;
16065        sc->dcbx_enabled = dcbx_enabled;
16066    } else {
16067        sc->dcb_state = FALSE;
16068        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16069    }
16070    BLOGD(sc, DBG_LOAD,
16071          "DCB state [%s:%s]\n",
16072          dcb_on ? "ON" : "OFF",
16073          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16074          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16075          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16076          "on-chip with negotiation" : "invalid");
16077}
16078
16079/* must be called after sriov-enable */
16080static int
16081bxe_set_qm_cid_count(struct bxe_softc *sc)
16082{
16083    int cid_count = BXE_L2_MAX_CID(sc);
16084
16085    if (IS_SRIOV(sc)) {
16086        cid_count += BXE_VF_CIDS;
16087    }
16088
16089    if (CNIC_SUPPORT(sc)) {
16090        cid_count += CNIC_CID_MAX;
16091    }
16092
16093    return (roundup(cid_count, QM_CID_ROUND));
16094}
16095
16096static void
16097bxe_init_multi_cos(struct bxe_softc *sc)
16098{
16099    int pri, cos;
16100
16101    uint32_t pri_map = 0; /* XXX change to user config */
16102
16103    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16104        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16105        if (cos < sc->max_cos) {
16106            sc->prio_to_cos[pri] = cos;
16107        } else {
16108            BLOGW(sc, "Invalid COS %d for priority %d "
16109                      "(max COS is %d), setting to 0\n",
16110                  cos, pri, (sc->max_cos - 1));
16111            sc->prio_to_cos[pri] = 0;
16112        }
16113    }
16114}
16115
16116static int
16117bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16118{
16119    struct bxe_softc *sc;
16120    int error, result;
16121
16122    result = 0;
16123    error = sysctl_handle_int(oidp, &result, 0, req);
16124
16125    if (error || !req->newptr) {
16126        return (error);
16127    }
16128
16129    if (result == 1) {
16130        sc = (struct bxe_softc *)arg1;
16131        BLOGI(sc, "... dumping driver state ...\n");
16132        /* XXX */
16133    }
16134
16135    return (error);
16136}
16137
16138static int
16139bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16140{
16141    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16142    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16143    uint32_t *offset;
16144    uint64_t value = 0;
16145    int index = (int)arg2;
16146
16147    if (index >= BXE_NUM_ETH_STATS) {
16148        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16149        return (-1);
16150    }
16151
16152    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16153
16154    switch (bxe_eth_stats_arr[index].size) {
16155    case 4:
16156        value = (uint64_t)*offset;
16157        break;
16158    case 8:
16159        value = HILO_U64(*offset, *(offset + 1));
16160        break;
16161    default:
16162        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16163              index, bxe_eth_stats_arr[index].size);
16164        return (-1);
16165    }
16166
16167    return (sysctl_handle_64(oidp, &value, 0, req));
16168}
16169
16170static int
16171bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16172{
16173    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16174    uint32_t *eth_stats;
16175    uint32_t *offset;
16176    uint64_t value = 0;
16177    uint32_t q_stat = (uint32_t)arg2;
16178    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16179    uint32_t index = (q_stat & 0xffff);
16180
16181    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16182
16183    if (index >= BXE_NUM_ETH_Q_STATS) {
16184        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16185        return (-1);
16186    }
16187
16188    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16189
16190    switch (bxe_eth_q_stats_arr[index].size) {
16191    case 4:
16192        value = (uint64_t)*offset;
16193        break;
16194    case 8:
16195        value = HILO_U64(*offset, *(offset + 1));
16196        break;
16197    default:
16198        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16199              index, bxe_eth_q_stats_arr[index].size);
16200        return (-1);
16201    }
16202
16203    return (sysctl_handle_64(oidp, &value, 0, req));
16204}
16205
16206static void
16207bxe_add_sysctls(struct bxe_softc *sc)
16208{
16209    struct sysctl_ctx_list *ctx;
16210    struct sysctl_oid_list *children;
16211    struct sysctl_oid *queue_top, *queue;
16212    struct sysctl_oid_list *queue_top_children, *queue_children;
16213    char queue_num_buf[32];
16214    uint32_t q_stat;
16215    int i, j;
16216
16217    ctx = device_get_sysctl_ctx(sc->dev);
16218    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16219
16220    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16221                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16222                      "version");
16223
16224    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16225                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16226                      "bootcode version");
16227
16228    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16229             BCM_5710_FW_MAJOR_VERSION,
16230             BCM_5710_FW_MINOR_VERSION,
16231             BCM_5710_FW_REVISION_VERSION,
16232             BCM_5710_FW_ENGINEERING_VERSION);
16233    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16234                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16235                      "firmware version");
16236
16237    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16238        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16239         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16240         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16241         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16242                                                                "Unknown"));
16243    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16244                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16245                      "multifunction mode");
16246
16247    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16248                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16249                    "multifunction vnics per port");
16250
16251    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16252                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16253                      "mac address");
16254
16255    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16256        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16257         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16258         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16259                                              "???GT/s"),
16260        sc->devinfo.pcie_link_width);
16261    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16262                      CTLFLAG_RD, &sc->pci_link_str, 0,
16263                      "pci link status");
16264
16265    sc->debug = bxe_debug;
16266    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16267                    CTLFLAG_RW, &sc->debug, 0,
16268                    "debug logging mode");
16269
16270    sc->rx_budget = bxe_rx_budget;
16271    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16272                    CTLFLAG_RW, &sc->rx_budget, 0,
16273                    "rx processing budget");
16274
16275    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16276                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16277                    bxe_sysctl_state, "IU", "dump driver state");
16278
16279    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16280        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16281                        bxe_eth_stats_arr[i].string,
16282                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16283                        bxe_sysctl_eth_stat, "LU",
16284                        bxe_eth_stats_arr[i].string);
16285    }
16286
16287    /* add a new parent node for all queues "dev.bxe.#.queue" */
16288    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16289                                CTLFLAG_RD, NULL, "queue");
16290    queue_top_children = SYSCTL_CHILDREN(queue_top);
16291
16292    for (i = 0; i < sc->num_queues; i++) {
16293        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16294        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16295        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16296                                queue_num_buf, CTLFLAG_RD, NULL,
16297                                "single queue");
16298        queue_children = SYSCTL_CHILDREN(queue);
16299
16300        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16301            q_stat = ((i << 16) | j);
16302            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16303                            bxe_eth_q_stats_arr[j].string,
16304                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16305                            bxe_sysctl_eth_q_stat, "LU",
16306                            bxe_eth_q_stats_arr[j].string);
16307        }
16308    }
16309}
16310
16311/*
16312 * Device attach function.
16313 *
16314 * Allocates device resources, performs secondary chip identification, and
16315 * initializes driver instance variables. This function is called from driver
16316 * load after a successful probe.
16317 *
16318 * Returns:
16319 *   0 = Success, >0 = Failure
16320 */
16321static int
16322bxe_attach(device_t dev)
16323{
16324    struct bxe_softc *sc;
16325
16326    sc = device_get_softc(dev);
16327
16328    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16329
16330    sc->state = BXE_STATE_CLOSED;
16331
16332    sc->dev  = dev;
16333    sc->unit = device_get_unit(dev);
16334
16335    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16336
16337    sc->pcie_bus    = pci_get_bus(dev);
16338    sc->pcie_device = pci_get_slot(dev);
16339    sc->pcie_func   = pci_get_function(dev);
16340
16341    /* enable bus master capability */
16342    pci_enable_busmaster(dev);
16343
16344    /* get the BARs */
16345    if (bxe_allocate_bars(sc) != 0) {
16346        return (ENXIO);
16347    }
16348
16349    /* initialize the mutexes */
16350    bxe_init_mutexes(sc);
16351
16352    /* prepare the periodic callout */
16353    callout_init(&sc->periodic_callout, 0);
16354
16355    /* prepare the chip taskqueue */
16356    sc->chip_tq_flags = CHIP_TQ_NONE;
16357    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16358             "bxe%d_chip_tq", sc->unit);
16359    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16360    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16361                                   taskqueue_thread_enqueue,
16362                                   &sc->chip_tq);
16363    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16364                            "%s", sc->chip_tq_name);
16365
16366    /* get device info and set params */
16367    if (bxe_get_device_info(sc) != 0) {
16368        BLOGE(sc, "getting device info\n");
16369        bxe_deallocate_bars(sc);
16370        pci_disable_busmaster(dev);
16371        return (ENXIO);
16372    }
16373
16374    /* get final misc params */
16375    bxe_get_params(sc);
16376
16377    /* set the default MTU (changed via ifconfig) */
16378    sc->mtu = ETHERMTU;
16379
16380    bxe_set_modes_bitmap(sc);
16381
16382    /* XXX
16383     * If in AFEX mode and the function is configured for FCoE
16384     * then bail... no L2 allowed.
16385     */
16386
16387    /* get phy settings from shmem and 'and' against admin settings */
16388    bxe_get_phy_info(sc);
16389
16390    /* initialize the FreeBSD ifnet interface */
16391    if (bxe_init_ifnet(sc) != 0) {
16392        bxe_release_mutexes(sc);
16393        bxe_deallocate_bars(sc);
16394        pci_disable_busmaster(dev);
16395        return (ENXIO);
16396    }
16397
16398    /* allocate device interrupts */
16399    if (bxe_interrupt_alloc(sc) != 0) {
16400        if (sc->ifp != NULL) {
16401            ether_ifdetach_drv(sc->ifp);
16402        }
16403        ifmedia_removeall(&sc->ifmedia);
16404        bxe_release_mutexes(sc);
16405        bxe_deallocate_bars(sc);
16406        pci_disable_busmaster(dev);
16407        return (ENXIO);
16408    }
16409
16410    /* allocate ilt */
16411    if (bxe_alloc_ilt_mem(sc) != 0) {
16412        bxe_interrupt_free(sc);
16413        if (sc->ifp != NULL) {
16414            ether_ifdetach_drv(sc->ifp);
16415        }
16416        ifmedia_removeall(&sc->ifmedia);
16417        bxe_release_mutexes(sc);
16418        bxe_deallocate_bars(sc);
16419        pci_disable_busmaster(dev);
16420        return (ENXIO);
16421    }
16422
16423    /* allocate the host hardware/software hsi structures */
16424    if (bxe_alloc_hsi_mem(sc) != 0) {
16425        bxe_free_ilt_mem(sc);
16426        bxe_interrupt_free(sc);
16427        if (sc->ifp != NULL) {
16428            ether_ifdetach_drv(sc->ifp);
16429        }
16430        ifmedia_removeall(&sc->ifmedia);
16431        bxe_release_mutexes(sc);
16432        bxe_deallocate_bars(sc);
16433        pci_disable_busmaster(dev);
16434        return (ENXIO);
16435    }
16436
16437    /* need to reset chip if UNDI was active */
16438    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16439        /* init fw_seq */
16440        sc->fw_seq =
16441            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16442             DRV_MSG_SEQ_NUMBER_MASK);
16443        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16444        bxe_prev_unload(sc);
16445    }
16446
16447#if 1
16448    /* XXX */
16449    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16450#else
16451    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16452        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16453        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16454        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16455        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16456        bxe_dcbx_init_params(sc);
16457    } else {
16458        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16459    }
16460#endif
16461
16462    /* calculate qm_cid_count */
16463    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16464    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16465
16466    sc->max_cos = 1;
16467    bxe_init_multi_cos(sc);
16468
16469    bxe_add_sysctls(sc);
16470
16471    return (0);
16472}
16473
16474/*
16475 * Device detach function.
16476 *
16477 * Stops the controller, resets the controller, and releases resources.
16478 *
16479 * Returns:
16480 *   0 = Success, >0 = Failure
16481 */
16482static int
16483bxe_detach(device_t dev)
16484{
16485    struct bxe_softc *sc;
16486    if_t ifp;
16487
16488    sc = device_get_softc(dev);
16489
16490    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16491
16492    ifp = sc->ifp;
16493    if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16494        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16495        return(EBUSY);
16496    }
16497
16498    /* stop the periodic callout */
16499    bxe_periodic_stop(sc);
16500
16501    /* stop the chip taskqueue */
16502    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16503    if (sc->chip_tq) {
16504        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16505        taskqueue_free(sc->chip_tq);
16506        sc->chip_tq = NULL;
16507    }
16508
16509    /* stop and reset the controller if it was open */
16510    if (sc->state != BXE_STATE_CLOSED) {
16511        BXE_CORE_LOCK(sc);
16512        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16513        BXE_CORE_UNLOCK(sc);
16514    }
16515
16516    /* release the network interface */
16517    if (ifp != NULL) {
16518        ether_ifdetach_drv(ifp);
16519    }
16520    ifmedia_removeall(&sc->ifmedia);
16521
16522    /* XXX do the following based on driver state... */
16523
16524    /* free the host hardware/software hsi structures */
16525    bxe_free_hsi_mem(sc);
16526
16527    /* free ilt */
16528    bxe_free_ilt_mem(sc);
16529
16530    /* release the interrupts */
16531    bxe_interrupt_free(sc);
16532
16533    /* Release the mutexes*/
16534    bxe_release_mutexes(sc);
16535
16536    /* Release the PCIe BAR mapped memory */
16537    bxe_deallocate_bars(sc);
16538
16539    /* Release the FreeBSD interface. */
16540    if (sc->ifp != NULL) {
16541        if_free_drv(sc->ifp);
16542    }
16543
16544    pci_disable_busmaster(dev);
16545
16546    return (0);
16547}
16548
16549/*
16550 * Device shutdown function.
16551 *
16552 * Stops and resets the controller.
16553 *
16554 * Returns:
16555 *   Nothing
16556 */
16557static int
16558bxe_shutdown(device_t dev)
16559{
16560    struct bxe_softc *sc;
16561
16562    sc = device_get_softc(dev);
16563
16564    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16565
16566    /* stop the periodic callout */
16567    bxe_periodic_stop(sc);
16568
16569    BXE_CORE_LOCK(sc);
16570    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16571    BXE_CORE_UNLOCK(sc);
16572
16573    return (0);
16574}
16575
16576void
16577bxe_igu_ack_sb(struct bxe_softc *sc,
16578               uint8_t          igu_sb_id,
16579               uint8_t          segment,
16580               uint16_t         index,
16581               uint8_t          op,
16582               uint8_t          update)
16583{
16584    uint32_t igu_addr = sc->igu_base_addr;
16585    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16586    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16587}
16588
16589static void
16590bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16591                     uint8_t          func,
16592                     uint8_t          idu_sb_id,
16593                     uint8_t          is_pf)
16594{
16595    uint32_t data, ctl, cnt = 100;
16596    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16597    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16598    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16599    uint32_t sb_bit =  1 << (idu_sb_id%32);
16600    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16601    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16602
16603    /* Not supported in BC mode */
16604    if (CHIP_INT_MODE_IS_BC(sc)) {
16605        return;
16606    }
16607
16608    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16609             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16610            IGU_REGULAR_CLEANUP_SET |
16611            IGU_REGULAR_BCLEANUP);
16612
16613    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16614           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16615           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16616
16617    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16618            data, igu_addr_data);
16619    REG_WR(sc, igu_addr_data, data);
16620
16621    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16622                      BUS_SPACE_BARRIER_WRITE);
16623    mb();
16624
16625    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16626            ctl, igu_addr_ctl);
16627    REG_WR(sc, igu_addr_ctl, ctl);
16628
16629    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16630                      BUS_SPACE_BARRIER_WRITE);
16631    mb();
16632
16633    /* wait for clean up to finish */
16634    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16635        DELAY(20000);
16636    }
16637
16638    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16639        BLOGD(sc, DBG_LOAD,
16640              "Unable to finish IGU cleanup: "
16641              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16642              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16643    }
16644}
16645
16646static void
16647bxe_igu_clear_sb(struct bxe_softc *sc,
16648                 uint8_t          idu_sb_id)
16649{
16650    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16651}
16652
16653
16654
16655
16656
16657
16658
16659/*******************/
16660/* ECORE CALLBACKS */
16661/*******************/
16662
16663static void
16664bxe_reset_common(struct bxe_softc *sc)
16665{
16666    uint32_t val = 0x1400;
16667
16668    /* reset_common */
16669    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16670
16671    if (CHIP_IS_E3(sc)) {
16672        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16673        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16674    }
16675
16676    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16677}
16678
16679static void
16680bxe_common_init_phy(struct bxe_softc *sc)
16681{
16682    uint32_t shmem_base[2];
16683    uint32_t shmem2_base[2];
16684
16685    /* Avoid common init in case MFW supports LFA */
16686    if (SHMEM2_RD(sc, size) >
16687        (uint32_t)offsetof(struct shmem2_region,
16688                           lfa_host_addr[SC_PORT(sc)])) {
16689        return;
16690    }
16691
16692    shmem_base[0]  = sc->devinfo.shmem_base;
16693    shmem2_base[0] = sc->devinfo.shmem2_base;
16694
16695    if (!CHIP_IS_E1x(sc)) {
16696        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16697        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16698    }
16699
16700    BXE_PHY_LOCK(sc);
16701    elink_common_init_phy(sc, shmem_base, shmem2_base,
16702                          sc->devinfo.chip_id, 0);
16703    BXE_PHY_UNLOCK(sc);
16704}
16705
16706static void
16707bxe_pf_disable(struct bxe_softc *sc)
16708{
16709    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16710
16711    val &= ~IGU_PF_CONF_FUNC_EN;
16712
16713    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16714    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16715    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16716}
16717
16718static void
16719bxe_init_pxp(struct bxe_softc *sc)
16720{
16721    uint16_t devctl;
16722    int r_order, w_order;
16723
16724    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16725
16726    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16727
16728    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16729
16730    if (sc->mrrs == -1) {
16731        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16732    } else {
16733        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16734        r_order = sc->mrrs;
16735    }
16736
16737    ecore_init_pxp_arb(sc, r_order, w_order);
16738}
16739
16740static uint32_t
16741bxe_get_pretend_reg(struct bxe_softc *sc)
16742{
16743    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16744    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16745    return (base + (SC_ABS_FUNC(sc)) * stride);
16746}
16747
16748/*
16749 * Called only on E1H or E2.
16750 * When pretending to be PF, the pretend value is the function number 0..7.
16751 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16752 * combination.
16753 */
16754static int
16755bxe_pretend_func(struct bxe_softc *sc,
16756                 uint16_t         pretend_func_val)
16757{
16758    uint32_t pretend_reg;
16759
16760    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16761        return (-1);
16762    }
16763
16764    /* get my own pretend register */
16765    pretend_reg = bxe_get_pretend_reg(sc);
16766    REG_WR(sc, pretend_reg, pretend_func_val);
16767    REG_RD(sc, pretend_reg);
16768    return (0);
16769}
16770
16771static void
16772bxe_iov_init_dmae(struct bxe_softc *sc)
16773{
16774    return;
16775#if 0
16776    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16777
16778    if (!IS_SRIOV(sc)) {
16779        return;
16780    }
16781
16782    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16783#endif
16784}
16785
16786#if 0
16787static int
16788bxe_iov_init_ilt(struct bxe_softc *sc,
16789                 uint16_t         line)
16790{
16791    return (line);
16792#if 0
16793    int i;
16794    struct ecore_ilt* ilt = sc->ilt;
16795
16796    if (!IS_SRIOV(sc)) {
16797        return (line);
16798    }
16799
16800    /* set vfs ilt lines */
16801    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16802        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16803        ilt->lines[line+i].page = hw_cxt->addr;
16804        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16805        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16806    }
16807    return (line+i);
16808#endif
16809}
16810#endif
16811
16812static void
16813bxe_iov_init_dq(struct bxe_softc *sc)
16814{
16815    return;
16816#if 0
16817    if (!IS_SRIOV(sc)) {
16818        return;
16819    }
16820
16821    /* Set the DQ such that the CID reflect the abs_vfid */
16822    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16823    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16824
16825    /*
16826     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16827     * the PF L2 queues
16828     */
16829    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16830
16831    /* The VF window size is the log2 of the max number of CIDs per VF */
16832    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16833
16834    /*
16835     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16836     * the Pf doorbell size although the 2 are independent.
16837     */
16838    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16839           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16840
16841    /*
16842     * No security checks for now -
16843     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16844     * CID range 0 - 0x1ffff
16845     */
16846    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16847    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16848    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16849    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16850
16851    /* set the number of VF alllowed doorbells to the full DQ range */
16852    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16853
16854    /* set the VF doorbell threshold */
16855    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16856#endif
16857}
16858
16859/* send a NIG loopback debug packet */
16860static void
16861bxe_lb_pckt(struct bxe_softc *sc)
16862{
16863    uint32_t wb_write[3];
16864
16865    /* Ethernet source and destination addresses */
16866    wb_write[0] = 0x55555555;
16867    wb_write[1] = 0x55555555;
16868    wb_write[2] = 0x20;     /* SOP */
16869    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16870
16871    /* NON-IP protocol */
16872    wb_write[0] = 0x09000000;
16873    wb_write[1] = 0x55555555;
16874    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16875    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16876}
16877
16878/*
16879 * Some of the internal memories are not directly readable from the driver.
16880 * To test them we send debug packets.
16881 */
16882static int
16883bxe_int_mem_test(struct bxe_softc *sc)
16884{
16885    int factor;
16886    int count, i;
16887    uint32_t val = 0;
16888
16889    if (CHIP_REV_IS_FPGA(sc)) {
16890        factor = 120;
16891    } else if (CHIP_REV_IS_EMUL(sc)) {
16892        factor = 200;
16893    } else {
16894        factor = 1;
16895    }
16896
16897    /* disable inputs of parser neighbor blocks */
16898    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16899    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16900    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16901    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16902
16903    /*  write 0 to parser credits for CFC search request */
16904    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16905
16906    /* send Ethernet packet */
16907    bxe_lb_pckt(sc);
16908
16909    /* TODO do i reset NIG statistic? */
16910    /* Wait until NIG register shows 1 packet of size 0x10 */
16911    count = 1000 * factor;
16912    while (count) {
16913        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16914        val = *BXE_SP(sc, wb_data[0]);
16915        if (val == 0x10) {
16916            break;
16917        }
16918
16919        DELAY(10000);
16920        count--;
16921    }
16922
16923    if (val != 0x10) {
16924        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16925        return (-1);
16926    }
16927
16928    /* wait until PRS register shows 1 packet */
16929    count = (1000 * factor);
16930    while (count) {
16931        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16932        if (val == 1) {
16933            break;
16934        }
16935
16936        DELAY(10000);
16937        count--;
16938    }
16939
16940    if (val != 0x1) {
16941        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16942        return (-2);
16943    }
16944
16945    /* Reset and init BRB, PRS */
16946    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16947    DELAY(50000);
16948    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16949    DELAY(50000);
16950    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16951    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16952
16953    /* Disable inputs of parser neighbor blocks */
16954    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16955    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16956    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16957    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16958
16959    /* Write 0 to parser credits for CFC search request */
16960    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16961
16962    /* send 10 Ethernet packets */
16963    for (i = 0; i < 10; i++) {
16964        bxe_lb_pckt(sc);
16965    }
16966
16967    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16968    count = (1000 * factor);
16969    while (count) {
16970        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16971        val = *BXE_SP(sc, wb_data[0]);
16972        if (val == 0xb0) {
16973            break;
16974        }
16975
16976        DELAY(10000);
16977        count--;
16978    }
16979
16980    if (val != 0xb0) {
16981        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16982        return (-3);
16983    }
16984
16985    /* Wait until PRS register shows 2 packets */
16986    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16987    if (val != 2) {
16988        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16989    }
16990
16991    /* Write 1 to parser credits for CFC search request */
16992    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16993
16994    /* Wait until PRS register shows 3 packets */
16995    DELAY(10000 * factor);
16996
16997    /* Wait until NIG register shows 1 packet of size 0x10 */
16998    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16999    if (val != 3) {
17000        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17001    }
17002
17003    /* clear NIG EOP FIFO */
17004    for (i = 0; i < 11; i++) {
17005        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17006    }
17007
17008    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17009    if (val != 1) {
17010        BLOGE(sc, "clear of NIG failed\n");
17011        return (-4);
17012    }
17013
17014    /* Reset and init BRB, PRS, NIG */
17015    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17016    DELAY(50000);
17017    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17018    DELAY(50000);
17019    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17020    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17021    if (!CNIC_SUPPORT(sc)) {
17022        /* set NIC mode */
17023        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17024    }
17025
17026    /* Enable inputs of parser neighbor blocks */
17027    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17028    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17029    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17030    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17031
17032    return (0);
17033}
17034
17035static void
17036bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17037{
17038    int is_required;
17039    uint32_t val;
17040    int port;
17041
17042    is_required = 0;
17043    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17044           SHARED_HW_CFG_FAN_FAILURE_MASK);
17045
17046    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17047        is_required = 1;
17048    }
17049    /*
17050     * The fan failure mechanism is usually related to the PHY type since
17051     * the power consumption of the board is affected by the PHY. Currently,
17052     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17053     */
17054    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17055        for (port = PORT_0; port < PORT_MAX; port++) {
17056            is_required |= elink_fan_failure_det_req(sc,
17057                                                     sc->devinfo.shmem_base,
17058                                                     sc->devinfo.shmem2_base,
17059                                                     port);
17060        }
17061    }
17062
17063    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17064
17065    if (is_required == 0) {
17066        return;
17067    }
17068
17069    /* Fan failure is indicated by SPIO 5 */
17070    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17071
17072    /* set to active low mode */
17073    val = REG_RD(sc, MISC_REG_SPIO_INT);
17074    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17075    REG_WR(sc, MISC_REG_SPIO_INT, val);
17076
17077    /* enable interrupt to signal the IGU */
17078    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17079    val |= MISC_SPIO_SPIO5;
17080    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17081}
17082
17083static void
17084bxe_enable_blocks_attention(struct bxe_softc *sc)
17085{
17086    uint32_t val;
17087
17088    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17089    if (!CHIP_IS_E1x(sc)) {
17090        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17091    } else {
17092        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17093    }
17094    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17095    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17096    /*
17097     * mask read length error interrupts in brb for parser
17098     * (parsing unit and 'checksum and crc' unit)
17099     * these errors are legal (PU reads fixed length and CAC can cause
17100     * read length error on truncated packets)
17101     */
17102    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17103    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17104    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17105    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17106    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17107    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17108/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17109/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17110    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17111    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17112    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17113/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17114/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17115    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17116    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17117    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17118    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17119/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17120/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17121
17122    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17123           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17124           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17125    if (!CHIP_IS_E1x(sc)) {
17126        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17127                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17128    }
17129    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17130
17131    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17132    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17133    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17134/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17135
17136    if (!CHIP_IS_E1x(sc)) {
17137        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17138        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17139    }
17140
17141    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17142    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17143/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17144    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17145}
17146
17147/**
17148 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17149 *
17150 * @sc:     driver handle
17151 */
17152static int
17153bxe_init_hw_common(struct bxe_softc *sc)
17154{
17155    uint8_t abs_func_id;
17156    uint32_t val;
17157
17158    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17159          SC_ABS_FUNC(sc));
17160
17161    /*
17162     * take the RESET lock to protect undi_unload flow from accessing
17163     * registers while we are resetting the chip
17164     */
17165    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17166
17167    bxe_reset_common(sc);
17168
17169    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17170
17171    val = 0xfffc;
17172    if (CHIP_IS_E3(sc)) {
17173        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17174        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17175    }
17176
17177    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17178
17179    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17180
17181    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17182    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17183
17184    if (!CHIP_IS_E1x(sc)) {
17185        /*
17186         * 4-port mode or 2-port mode we need to turn off master-enable for
17187         * everyone. After that we turn it back on for self. So, we disregard
17188         * multi-function, and always disable all functions on the given path,
17189         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17190         */
17191        for (abs_func_id = SC_PATH(sc);
17192             abs_func_id < (E2_FUNC_MAX * 2);
17193             abs_func_id += 2) {
17194            if (abs_func_id == SC_ABS_FUNC(sc)) {
17195                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17196                continue;
17197            }
17198
17199            bxe_pretend_func(sc, abs_func_id);
17200
17201            /* clear pf enable */
17202            bxe_pf_disable(sc);
17203
17204            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17205        }
17206    }
17207
17208    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17209
17210    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17211
17212    if (CHIP_IS_E1(sc)) {
17213        /*
17214         * enable HW interrupt from PXP on USDM overflow
17215         * bit 16 on INT_MASK_0
17216         */
17217        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17218    }
17219
17220    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17221    bxe_init_pxp(sc);
17222
17223#ifdef __BIG_ENDIAN
17224    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17225    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17226    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17227    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17228    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17229    /* make sure this value is 0 */
17230    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17231
17232    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17233    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17234    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17235    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17236    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17237#endif
17238
17239    ecore_ilt_init_page_size(sc, INITOP_SET);
17240
17241    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17242        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17243    }
17244
17245    /* let the HW do it's magic... */
17246    DELAY(100000);
17247
17248    /* finish PXP init */
17249    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17250    if (val != 1) {
17251        BLOGE(sc, "PXP2 CFG failed\n");
17252        return (-1);
17253    }
17254    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17255    if (val != 1) {
17256        BLOGE(sc, "PXP2 RD_INIT failed\n");
17257        return (-1);
17258    }
17259
17260    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17261
17262    /*
17263     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17264     * entries with value "0" and valid bit on. This needs to be done by the
17265     * first PF that is loaded in a path (i.e. common phase)
17266     */
17267    if (!CHIP_IS_E1x(sc)) {
17268/*
17269 * In E2 there is a bug in the timers block that can cause function 6 / 7
17270 * (i.e. vnic3) to start even if it is marked as "scan-off".
17271 * This occurs when a different function (func2,3) is being marked
17272 * as "scan-off". Real-life scenario for example: if a driver is being
17273 * load-unloaded while func6,7 are down. This will cause the timer to access
17274 * the ilt, translate to a logical address and send a request to read/write.
17275 * Since the ilt for the function that is down is not valid, this will cause
17276 * a translation error which is unrecoverable.
17277 * The Workaround is intended to make sure that when this happens nothing
17278 * fatal will occur. The workaround:
17279 *  1.  First PF driver which loads on a path will:
17280 *      a.  After taking the chip out of reset, by using pretend,
17281 *          it will write "0" to the following registers of
17282 *          the other vnics.
17283 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17284 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17285 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17286 *          And for itself it will write '1' to
17287 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17288 *          dmae-operations (writing to pram for example.)
17289 *          note: can be done for only function 6,7 but cleaner this
17290 *            way.
17291 *      b.  Write zero+valid to the entire ILT.
17292 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17293 *          VNIC3 (of that port). The range allocated will be the
17294 *          entire ILT. This is needed to prevent  ILT range error.
17295 *  2.  Any PF driver load flow:
17296 *      a.  ILT update with the physical addresses of the allocated
17297 *          logical pages.
17298 *      b.  Wait 20msec. - note that this timeout is needed to make
17299 *          sure there are no requests in one of the PXP internal
17300 *          queues with "old" ILT addresses.
17301 *      c.  PF enable in the PGLC.
17302 *      d.  Clear the was_error of the PF in the PGLC. (could have
17303 *          occurred while driver was down)
17304 *      e.  PF enable in the CFC (WEAK + STRONG)
17305 *      f.  Timers scan enable
17306 *  3.  PF driver unload flow:
17307 *      a.  Clear the Timers scan_en.
17308 *      b.  Polling for scan_on=0 for that PF.
17309 *      c.  Clear the PF enable bit in the PXP.
17310 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17311 *      e.  Write zero+valid to all ILT entries (The valid bit must
17312 *          stay set)
17313 *      f.  If this is VNIC 3 of a port then also init
17314 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17315 *          to the last enrty in the ILT.
17316 *
17317 *      Notes:
17318 *      Currently the PF error in the PGLC is non recoverable.
17319 *      In the future the there will be a recovery routine for this error.
17320 *      Currently attention is masked.
17321 *      Having an MCP lock on the load/unload process does not guarantee that
17322 *      there is no Timer disable during Func6/7 enable. This is because the
17323 *      Timers scan is currently being cleared by the MCP on FLR.
17324 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17325 *      there is error before clearing it. But the flow above is simpler and
17326 *      more general.
17327 *      All ILT entries are written by zero+valid and not just PF6/7
17328 *      ILT entries since in the future the ILT entries allocation for
17329 *      PF-s might be dynamic.
17330 */
17331        struct ilt_client_info ilt_cli;
17332        struct ecore_ilt ilt;
17333
17334        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17335        memset(&ilt, 0, sizeof(struct ecore_ilt));
17336
17337        /* initialize dummy TM client */
17338        ilt_cli.start      = 0;
17339        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17340        ilt_cli.client_num = ILT_CLIENT_TM;
17341
17342        /*
17343         * Step 1: set zeroes to all ilt page entries with valid bit on
17344         * Step 2: set the timers first/last ilt entry to point
17345         * to the entire range to prevent ILT range error for 3rd/4th
17346         * vnic (this code assumes existence of the vnic)
17347         *
17348         * both steps performed by call to ecore_ilt_client_init_op()
17349         * with dummy TM client
17350         *
17351         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17352         * and his brother are split registers
17353         */
17354
17355        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17356        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17357        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17358
17359        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17360        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17361        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17362    }
17363
17364    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17365    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17366
17367    if (!CHIP_IS_E1x(sc)) {
17368        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17369                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17370
17371        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17372        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17373
17374        /* let the HW do it's magic... */
17375        do {
17376            DELAY(200000);
17377            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17378        } while (factor-- && (val != 1));
17379
17380        if (val != 1) {
17381            BLOGE(sc, "ATC_INIT failed\n");
17382            return (-1);
17383        }
17384    }
17385
17386    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17387
17388    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17389
17390    bxe_iov_init_dmae(sc);
17391
17392    /* clean the DMAE memory */
17393    sc->dmae_ready = 1;
17394    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17395
17396    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17397
17398    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17399
17400    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17401
17402    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17403
17404    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17405    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17406    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17407    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17408
17409    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17410
17411    /* QM queues pointers table */
17412    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17413
17414    /* soft reset pulse */
17415    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17416    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17417
17418    if (CNIC_SUPPORT(sc))
17419        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17420
17421    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17422    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17423    if (!CHIP_REV_IS_SLOW(sc)) {
17424        /* enable hw interrupt from doorbell Q */
17425        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17426    }
17427
17428    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17429
17430    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17431    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17432
17433    if (!CHIP_IS_E1(sc)) {
17434        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17435    }
17436
17437    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17438        if (IS_MF_AFEX(sc)) {
17439            /*
17440             * configure that AFEX and VLAN headers must be
17441             * received in AFEX mode
17442             */
17443            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17444            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17445            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17446            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17447            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17448        } else {
17449            /*
17450             * Bit-map indicating which L2 hdrs may appear
17451             * after the basic Ethernet header
17452             */
17453            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17454                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17455        }
17456    }
17457
17458    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17459    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17460    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17461    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17462
17463    if (!CHIP_IS_E1x(sc)) {
17464        /* reset VFC memories */
17465        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17466               VFC_MEMORIES_RST_REG_CAM_RST |
17467               VFC_MEMORIES_RST_REG_RAM_RST);
17468        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17469               VFC_MEMORIES_RST_REG_CAM_RST |
17470               VFC_MEMORIES_RST_REG_RAM_RST);
17471
17472        DELAY(20000);
17473    }
17474
17475    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17476    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17477    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17478    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17479
17480    /* sync semi rtc */
17481    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17482           0x80000000);
17483    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17484           0x80000000);
17485
17486    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17487    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17488    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17489
17490    if (!CHIP_IS_E1x(sc)) {
17491        if (IS_MF_AFEX(sc)) {
17492            /*
17493             * configure that AFEX and VLAN headers must be
17494             * sent in AFEX mode
17495             */
17496            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17497            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17498            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17499            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17500            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17501        } else {
17502            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17503                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17504        }
17505    }
17506
17507    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17508
17509    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17510
17511    if (CNIC_SUPPORT(sc)) {
17512        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17513        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17514        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17515        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17516        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17517        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17521        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17522    }
17523    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17524
17525    if (sizeof(union cdu_context) != 1024) {
17526        /* we currently assume that a context is 1024 bytes */
17527        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17528              (long)sizeof(union cdu_context));
17529    }
17530
17531    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17532    val = (4 << 24) + (0 << 12) + 1024;
17533    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17534
17535    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17536
17537    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17538    /* enable context validation interrupt from CFC */
17539    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17540
17541    /* set the thresholds to prevent CFC/CDU race */
17542    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17543    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17544
17545    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17546        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17547    }
17548
17549    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17550    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17551
17552    /* Reset PCIE errors for debug */
17553    REG_WR(sc, 0x2814, 0xffffffff);
17554    REG_WR(sc, 0x3820, 0xffffffff);
17555
17556    if (!CHIP_IS_E1x(sc)) {
17557        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17558               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17559                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17560        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17561               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17562                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17563                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17564        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17565               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17566                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17567                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17568    }
17569
17570    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17571
17572    if (!CHIP_IS_E1(sc)) {
17573        /* in E3 this done in per-port section */
17574        if (!CHIP_IS_E3(sc))
17575            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17576    }
17577
17578    if (CHIP_IS_E1H(sc)) {
17579        /* not applicable for E2 (and above ...) */
17580        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17581    }
17582
17583    if (CHIP_REV_IS_SLOW(sc)) {
17584        DELAY(200000);
17585    }
17586
17587    /* finish CFC init */
17588    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17589    if (val != 1) {
17590        BLOGE(sc, "CFC LL_INIT failed\n");
17591        return (-1);
17592    }
17593    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17594    if (val != 1) {
17595        BLOGE(sc, "CFC AC_INIT failed\n");
17596        return (-1);
17597    }
17598    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17599    if (val != 1) {
17600        BLOGE(sc, "CFC CAM_INIT failed\n");
17601        return (-1);
17602    }
17603    REG_WR(sc, CFC_REG_DEBUG0, 0);
17604
17605    if (CHIP_IS_E1(sc)) {
17606        /* read NIG statistic to see if this is our first up since powerup */
17607        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17608        val = *BXE_SP(sc, wb_data[0]);
17609
17610        /* do internal memory self test */
17611        if ((val == 0) && bxe_int_mem_test(sc)) {
17612            BLOGE(sc, "internal mem self test failed\n");
17613            return (-1);
17614        }
17615    }
17616
17617    bxe_setup_fan_failure_detection(sc);
17618
17619    /* clear PXP2 attentions */
17620    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17621
17622    bxe_enable_blocks_attention(sc);
17623
17624    if (!CHIP_REV_IS_SLOW(sc)) {
17625        ecore_enable_blocks_parity(sc);
17626    }
17627
17628    if (!BXE_NOMCP(sc)) {
17629        if (CHIP_IS_E1x(sc)) {
17630            bxe_common_init_phy(sc);
17631        }
17632    }
17633
17634    return (0);
17635}
17636
17637/**
17638 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17639 *
17640 * @sc:     driver handle
17641 */
17642static int
17643bxe_init_hw_common_chip(struct bxe_softc *sc)
17644{
17645    int rc = bxe_init_hw_common(sc);
17646
17647    if (rc) {
17648        return (rc);
17649    }
17650
17651    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17652    if (!BXE_NOMCP(sc)) {
17653        bxe_common_init_phy(sc);
17654    }
17655
17656    return (0);
17657}
17658
17659static int
17660bxe_init_hw_port(struct bxe_softc *sc)
17661{
17662    int port = SC_PORT(sc);
17663    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17664    uint32_t low, high;
17665    uint32_t val;
17666
17667    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17668
17669    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17670
17671    ecore_init_block(sc, BLOCK_MISC, init_phase);
17672    ecore_init_block(sc, BLOCK_PXP, init_phase);
17673    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17674
17675    /*
17676     * Timers bug workaround: disables the pf_master bit in pglue at
17677     * common phase, we need to enable it here before any dmae access are
17678     * attempted. Therefore we manually added the enable-master to the
17679     * port phase (it also happens in the function phase)
17680     */
17681    if (!CHIP_IS_E1x(sc)) {
17682        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17683    }
17684
17685    ecore_init_block(sc, BLOCK_ATC, init_phase);
17686    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17687    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17688    ecore_init_block(sc, BLOCK_QM, init_phase);
17689
17690    ecore_init_block(sc, BLOCK_TCM, init_phase);
17691    ecore_init_block(sc, BLOCK_UCM, init_phase);
17692    ecore_init_block(sc, BLOCK_CCM, init_phase);
17693    ecore_init_block(sc, BLOCK_XCM, init_phase);
17694
17695    /* QM cid (connection) count */
17696    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17697
17698    if (CNIC_SUPPORT(sc)) {
17699        ecore_init_block(sc, BLOCK_TM, init_phase);
17700        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17701        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17702    }
17703
17704    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17705
17706    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17707
17708    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17709        if (IS_MF(sc)) {
17710            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17711        } else if (sc->mtu > 4096) {
17712            if (BXE_ONE_PORT(sc)) {
17713                low = 160;
17714            } else {
17715                val = sc->mtu;
17716                /* (24*1024 + val*4)/256 */
17717                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17718            }
17719        } else {
17720            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17721        }
17722        high = (low + 56); /* 14*1024/256 */
17723        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17724        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17725    }
17726
17727    if (CHIP_IS_MODE_4_PORT(sc)) {
17728        REG_WR(sc, SC_PORT(sc) ?
17729               BRB1_REG_MAC_GUARANTIED_1 :
17730               BRB1_REG_MAC_GUARANTIED_0, 40);
17731    }
17732
17733    ecore_init_block(sc, BLOCK_PRS, init_phase);
17734    if (CHIP_IS_E3B0(sc)) {
17735        if (IS_MF_AFEX(sc)) {
17736            /* configure headers for AFEX mode */
17737            REG_WR(sc, SC_PORT(sc) ?
17738                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17739                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17740            REG_WR(sc, SC_PORT(sc) ?
17741                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17742                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17743            REG_WR(sc, SC_PORT(sc) ?
17744                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17745                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17746        } else {
17747            /* Ovlan exists only if we are in multi-function +
17748             * switch-dependent mode, in switch-independent there
17749             * is no ovlan headers
17750             */
17751            REG_WR(sc, SC_PORT(sc) ?
17752                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17753                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17754                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17755        }
17756    }
17757
17758    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17759    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17760    ecore_init_block(sc, BLOCK_USDM, init_phase);
17761    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17762
17763    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17764    ecore_init_block(sc, BLOCK_USEM, init_phase);
17765    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17766    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17767
17768    ecore_init_block(sc, BLOCK_UPB, init_phase);
17769    ecore_init_block(sc, BLOCK_XPB, init_phase);
17770
17771    ecore_init_block(sc, BLOCK_PBF, init_phase);
17772
17773    if (CHIP_IS_E1x(sc)) {
17774        /* configure PBF to work without PAUSE mtu 9000 */
17775        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17776
17777        /* update threshold */
17778        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17779        /* update init credit */
17780        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17781
17782        /* probe changes */
17783        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17784        DELAY(50);
17785        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17786    }
17787
17788    if (CNIC_SUPPORT(sc)) {
17789        ecore_init_block(sc, BLOCK_SRC, init_phase);
17790    }
17791
17792    ecore_init_block(sc, BLOCK_CDU, init_phase);
17793    ecore_init_block(sc, BLOCK_CFC, init_phase);
17794
17795    if (CHIP_IS_E1(sc)) {
17796        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17797        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17798    }
17799    ecore_init_block(sc, BLOCK_HC, init_phase);
17800
17801    ecore_init_block(sc, BLOCK_IGU, init_phase);
17802
17803    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17804    /* init aeu_mask_attn_func_0/1:
17805     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17806     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17807     *             bits 4-7 are used for "per vn group attention" */
17808    val = IS_MF(sc) ? 0xF7 : 0x7;
17809    /* Enable DCBX attention for all but E1 */
17810    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17811    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17812
17813    ecore_init_block(sc, BLOCK_NIG, init_phase);
17814
17815    if (!CHIP_IS_E1x(sc)) {
17816        /* Bit-map indicating which L2 hdrs may appear after the
17817         * basic Ethernet header
17818         */
17819        if (IS_MF_AFEX(sc)) {
17820            REG_WR(sc, SC_PORT(sc) ?
17821                   NIG_REG_P1_HDRS_AFTER_BASIC :
17822                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17823        } else {
17824            REG_WR(sc, SC_PORT(sc) ?
17825                   NIG_REG_P1_HDRS_AFTER_BASIC :
17826                   NIG_REG_P0_HDRS_AFTER_BASIC,
17827                   IS_MF_SD(sc) ? 7 : 6);
17828        }
17829
17830        if (CHIP_IS_E3(sc)) {
17831            REG_WR(sc, SC_PORT(sc) ?
17832                   NIG_REG_LLH1_MF_MODE :
17833                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17834        }
17835    }
17836    if (!CHIP_IS_E3(sc)) {
17837        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17838    }
17839
17840    if (!CHIP_IS_E1(sc)) {
17841        /* 0x2 disable mf_ov, 0x1 enable */
17842        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17843               (IS_MF_SD(sc) ? 0x1 : 0x2));
17844
17845        if (!CHIP_IS_E1x(sc)) {
17846            val = 0;
17847            switch (sc->devinfo.mf_info.mf_mode) {
17848            case MULTI_FUNCTION_SD:
17849                val = 1;
17850                break;
17851            case MULTI_FUNCTION_SI:
17852            case MULTI_FUNCTION_AFEX:
17853                val = 2;
17854                break;
17855            }
17856
17857            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17858                        NIG_REG_LLH0_CLS_TYPE), val);
17859        }
17860        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17861        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17862        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17863    }
17864
17865    /* If SPIO5 is set to generate interrupts, enable it for this port */
17866    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17867    if (val & MISC_SPIO_SPIO5) {
17868        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17869                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17870        val = REG_RD(sc, reg_addr);
17871        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17872        REG_WR(sc, reg_addr, val);
17873    }
17874
17875    return (0);
17876}
17877
17878static uint32_t
17879bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17880                       uint32_t         reg,
17881                       uint32_t         expected,
17882                       uint32_t         poll_count)
17883{
17884    uint32_t cur_cnt = poll_count;
17885    uint32_t val;
17886
17887    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17888        DELAY(FLR_WAIT_INTERVAL);
17889    }
17890
17891    return (val);
17892}
17893
17894static int
17895bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17896                              uint32_t         reg,
17897                              char             *msg,
17898                              uint32_t         poll_cnt)
17899{
17900    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17901
17902    if (val != 0) {
17903        BLOGE(sc, "%s usage count=%d\n", msg, val);
17904        return (1);
17905    }
17906
17907    return (0);
17908}
17909
17910/* Common routines with VF FLR cleanup */
17911static uint32_t
17912bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17913{
17914    /* adjust polling timeout */
17915    if (CHIP_REV_IS_EMUL(sc)) {
17916        return (FLR_POLL_CNT * 2000);
17917    }
17918
17919    if (CHIP_REV_IS_FPGA(sc)) {
17920        return (FLR_POLL_CNT * 120);
17921    }
17922
17923    return (FLR_POLL_CNT);
17924}
17925
17926static int
17927bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17928                           uint32_t         poll_cnt)
17929{
17930    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17931    if (bxe_flr_clnup_poll_hw_counter(sc,
17932                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17933                                      "CFC PF usage counter timed out",
17934                                      poll_cnt)) {
17935        return (1);
17936    }
17937
17938    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17939    if (bxe_flr_clnup_poll_hw_counter(sc,
17940                                      DORQ_REG_PF_USAGE_CNT,
17941                                      "DQ PF usage counter timed out",
17942                                      poll_cnt)) {
17943        return (1);
17944    }
17945
17946    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17947    if (bxe_flr_clnup_poll_hw_counter(sc,
17948                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17949                                      "QM PF usage counter timed out",
17950                                      poll_cnt)) {
17951        return (1);
17952    }
17953
17954    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17955    if (bxe_flr_clnup_poll_hw_counter(sc,
17956                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17957                                      "Timers VNIC usage counter timed out",
17958                                      poll_cnt)) {
17959        return (1);
17960    }
17961
17962    if (bxe_flr_clnup_poll_hw_counter(sc,
17963                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17964                                      "Timers NUM_SCANS usage counter timed out",
17965                                      poll_cnt)) {
17966        return (1);
17967    }
17968
17969    /* Wait DMAE PF usage counter to zero */
17970    if (bxe_flr_clnup_poll_hw_counter(sc,
17971                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17972                                      "DMAE dommand register timed out",
17973                                      poll_cnt)) {
17974        return (1);
17975    }
17976
17977    return (0);
17978}
17979
17980#define OP_GEN_PARAM(param)                                            \
17981    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17982#define OP_GEN_TYPE(type)                                           \
17983    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17984#define OP_GEN_AGG_VECT(index)                                             \
17985    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17986
17987static int
17988bxe_send_final_clnup(struct bxe_softc *sc,
17989                     uint8_t          clnup_func,
17990                     uint32_t         poll_cnt)
17991{
17992    uint32_t op_gen_command = 0;
17993    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17994                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17995    int ret = 0;
17996
17997    if (REG_RD(sc, comp_addr)) {
17998        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17999        return (1);
18000    }
18001
18002    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18003    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18004    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18005    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18006
18007    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18008    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18009
18010    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18011        BLOGE(sc, "FW final cleanup did not succeed\n");
18012        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18013              (REG_RD(sc, comp_addr)));
18014        bxe_panic(sc, ("FLR cleanup failed\n"));
18015        return (1);
18016    }
18017
18018    /* Zero completion for nxt FLR */
18019    REG_WR(sc, comp_addr, 0);
18020
18021    return (ret);
18022}
18023
18024static void
18025bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18026                       struct pbf_pN_buf_regs *regs,
18027                       uint32_t               poll_count)
18028{
18029    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18030    uint32_t cur_cnt = poll_count;
18031
18032    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18033    crd = crd_start = REG_RD(sc, regs->crd);
18034    init_crd = REG_RD(sc, regs->init_crd);
18035
18036    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18037    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18038    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18039
18040    while ((crd != init_crd) &&
18041           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18042            (init_crd - crd_start))) {
18043        if (cur_cnt--) {
18044            DELAY(FLR_WAIT_INTERVAL);
18045            crd = REG_RD(sc, regs->crd);
18046            crd_freed = REG_RD(sc, regs->crd_freed);
18047        } else {
18048            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18049            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18050            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18051            break;
18052        }
18053    }
18054
18055    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18056          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18057}
18058
18059static void
18060bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18061                       struct pbf_pN_cmd_regs *regs,
18062                       uint32_t               poll_count)
18063{
18064    uint32_t occup, to_free, freed, freed_start;
18065    uint32_t cur_cnt = poll_count;
18066
18067    occup = to_free = REG_RD(sc, regs->lines_occup);
18068    freed = freed_start = REG_RD(sc, regs->lines_freed);
18069
18070    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18071    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18072
18073    while (occup &&
18074           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18075        if (cur_cnt--) {
18076            DELAY(FLR_WAIT_INTERVAL);
18077            occup = REG_RD(sc, regs->lines_occup);
18078            freed = REG_RD(sc, regs->lines_freed);
18079        } else {
18080            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18081            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18082            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18083            break;
18084        }
18085    }
18086
18087    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18088          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18089}
18090
18091static void
18092bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18093{
18094    struct pbf_pN_cmd_regs cmd_regs[] = {
18095        {0, (CHIP_IS_E3B0(sc)) ?
18096            PBF_REG_TQ_OCCUPANCY_Q0 :
18097            PBF_REG_P0_TQ_OCCUPANCY,
18098            (CHIP_IS_E3B0(sc)) ?
18099            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18100            PBF_REG_P0_TQ_LINES_FREED_CNT},
18101        {1, (CHIP_IS_E3B0(sc)) ?
18102            PBF_REG_TQ_OCCUPANCY_Q1 :
18103            PBF_REG_P1_TQ_OCCUPANCY,
18104            (CHIP_IS_E3B0(sc)) ?
18105            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18106            PBF_REG_P1_TQ_LINES_FREED_CNT},
18107        {4, (CHIP_IS_E3B0(sc)) ?
18108            PBF_REG_TQ_OCCUPANCY_LB_Q :
18109            PBF_REG_P4_TQ_OCCUPANCY,
18110            (CHIP_IS_E3B0(sc)) ?
18111            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18112            PBF_REG_P4_TQ_LINES_FREED_CNT}
18113    };
18114
18115    struct pbf_pN_buf_regs buf_regs[] = {
18116        {0, (CHIP_IS_E3B0(sc)) ?
18117            PBF_REG_INIT_CRD_Q0 :
18118            PBF_REG_P0_INIT_CRD ,
18119            (CHIP_IS_E3B0(sc)) ?
18120            PBF_REG_CREDIT_Q0 :
18121            PBF_REG_P0_CREDIT,
18122            (CHIP_IS_E3B0(sc)) ?
18123            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18124            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18125        {1, (CHIP_IS_E3B0(sc)) ?
18126            PBF_REG_INIT_CRD_Q1 :
18127            PBF_REG_P1_INIT_CRD,
18128            (CHIP_IS_E3B0(sc)) ?
18129            PBF_REG_CREDIT_Q1 :
18130            PBF_REG_P1_CREDIT,
18131            (CHIP_IS_E3B0(sc)) ?
18132            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18133            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18134        {4, (CHIP_IS_E3B0(sc)) ?
18135            PBF_REG_INIT_CRD_LB_Q :
18136            PBF_REG_P4_INIT_CRD,
18137            (CHIP_IS_E3B0(sc)) ?
18138            PBF_REG_CREDIT_LB_Q :
18139            PBF_REG_P4_CREDIT,
18140            (CHIP_IS_E3B0(sc)) ?
18141            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18142            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18143    };
18144
18145    int i;
18146
18147    /* Verify the command queues are flushed P0, P1, P4 */
18148    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18149        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18150    }
18151
18152    /* Verify the transmission buffers are flushed P0, P1, P4 */
18153    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18154        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18155    }
18156}
18157
18158static void
18159bxe_hw_enable_status(struct bxe_softc *sc)
18160{
18161    uint32_t val;
18162
18163    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18164    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18165
18166    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18167    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18168
18169    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18170    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18171
18172    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18173    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18174
18175    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18176    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18177
18178    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18179    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18180
18181    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18182    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18183
18184    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18185    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18186}
18187
18188static int
18189bxe_pf_flr_clnup(struct bxe_softc *sc)
18190{
18191    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18192
18193    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18194
18195    /* Re-enable PF target read access */
18196    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18197
18198    /* Poll HW usage counters */
18199    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18200    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18201        return (-1);
18202    }
18203
18204    /* Zero the igu 'trailing edge' and 'leading edge' */
18205
18206    /* Send the FW cleanup command */
18207    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18208        return (-1);
18209    }
18210
18211    /* ATC cleanup */
18212
18213    /* Verify TX hw is flushed */
18214    bxe_tx_hw_flushed(sc, poll_cnt);
18215
18216    /* Wait 100ms (not adjusted according to platform) */
18217    DELAY(100000);
18218
18219    /* Verify no pending pci transactions */
18220    if (bxe_is_pcie_pending(sc)) {
18221        BLOGE(sc, "PCIE Transactions still pending\n");
18222    }
18223
18224    /* Debug */
18225    bxe_hw_enable_status(sc);
18226
18227    /*
18228     * Master enable - Due to WB DMAE writes performed before this
18229     * register is re-initialized as part of the regular function init
18230     */
18231    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18232
18233    return (0);
18234}
18235
18236#if 0
18237static void
18238bxe_init_searcher(struct bxe_softc *sc)
18239{
18240    int port = SC_PORT(sc);
18241    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18242    /* T1 hash bits value determines the T1 number of entries */
18243    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18244}
18245#endif
18246
18247static int
18248bxe_init_hw_func(struct bxe_softc *sc)
18249{
18250    int port = SC_PORT(sc);
18251    int func = SC_FUNC(sc);
18252    int init_phase = PHASE_PF0 + func;
18253    struct ecore_ilt *ilt = sc->ilt;
18254    uint16_t cdu_ilt_start;
18255    uint32_t addr, val;
18256    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18257    int i, main_mem_width, rc;
18258
18259    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18260
18261    /* FLR cleanup */
18262    if (!CHIP_IS_E1x(sc)) {
18263        rc = bxe_pf_flr_clnup(sc);
18264        if (rc) {
18265            BLOGE(sc, "FLR cleanup failed!\n");
18266            // XXX bxe_fw_dump(sc);
18267            // XXX bxe_idle_chk(sc);
18268            return (rc);
18269        }
18270    }
18271
18272    /* set MSI reconfigure capability */
18273    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18274        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18275        val = REG_RD(sc, addr);
18276        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18277        REG_WR(sc, addr, val);
18278    }
18279
18280    ecore_init_block(sc, BLOCK_PXP, init_phase);
18281    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18282
18283    ilt = sc->ilt;
18284    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18285
18286#if 0
18287    if (IS_SRIOV(sc)) {
18288        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18289    }
18290    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18291
18292#if (BXE_FIRST_VF_CID > 0)
18293    /*
18294     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18295     * those of the VFs, so start line should be reset
18296     */
18297    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18298#endif
18299#endif
18300
18301    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18302        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18303        ilt->lines[cdu_ilt_start + i].page_mapping =
18304            sc->context[i].vcxt_dma.paddr;
18305        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18306    }
18307    ecore_ilt_init_op(sc, INITOP_SET);
18308
18309#if 0
18310    if (!CONFIGURE_NIC_MODE(sc)) {
18311        bxe_init_searcher(sc);
18312        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18313        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18314    } else
18315#endif
18316    {
18317        /* Set NIC mode */
18318        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18319        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18320    }
18321
18322    if (!CHIP_IS_E1x(sc)) {
18323        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18324
18325        /* Turn on a single ISR mode in IGU if driver is going to use
18326         * INT#x or MSI
18327         */
18328        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18329            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18330        }
18331
18332        /*
18333         * Timers workaround bug: function init part.
18334         * Need to wait 20msec after initializing ILT,
18335         * needed to make sure there are no requests in
18336         * one of the PXP internal queues with "old" ILT addresses
18337         */
18338        DELAY(20000);
18339
18340        /*
18341         * Master enable - Due to WB DMAE writes performed before this
18342         * register is re-initialized as part of the regular function
18343         * init
18344         */
18345        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18346        /* Enable the function in IGU */
18347        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18348    }
18349
18350    sc->dmae_ready = 1;
18351
18352    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18353
18354    if (!CHIP_IS_E1x(sc))
18355        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18356
18357    ecore_init_block(sc, BLOCK_ATC, init_phase);
18358    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18359    ecore_init_block(sc, BLOCK_NIG, init_phase);
18360    ecore_init_block(sc, BLOCK_SRC, init_phase);
18361    ecore_init_block(sc, BLOCK_MISC, init_phase);
18362    ecore_init_block(sc, BLOCK_TCM, init_phase);
18363    ecore_init_block(sc, BLOCK_UCM, init_phase);
18364    ecore_init_block(sc, BLOCK_CCM, init_phase);
18365    ecore_init_block(sc, BLOCK_XCM, init_phase);
18366    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18367    ecore_init_block(sc, BLOCK_USEM, init_phase);
18368    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18369    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18370
18371    if (!CHIP_IS_E1x(sc))
18372        REG_WR(sc, QM_REG_PF_EN, 1);
18373
18374    if (!CHIP_IS_E1x(sc)) {
18375        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18376        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18377        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18378        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18379    }
18380    ecore_init_block(sc, BLOCK_QM, init_phase);
18381
18382    ecore_init_block(sc, BLOCK_TM, init_phase);
18383    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18384
18385    bxe_iov_init_dq(sc);
18386
18387    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18388    ecore_init_block(sc, BLOCK_PRS, init_phase);
18389    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18390    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18391    ecore_init_block(sc, BLOCK_USDM, init_phase);
18392    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18393    ecore_init_block(sc, BLOCK_UPB, init_phase);
18394    ecore_init_block(sc, BLOCK_XPB, init_phase);
18395    ecore_init_block(sc, BLOCK_PBF, init_phase);
18396    if (!CHIP_IS_E1x(sc))
18397        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18398
18399    ecore_init_block(sc, BLOCK_CDU, init_phase);
18400
18401    ecore_init_block(sc, BLOCK_CFC, init_phase);
18402
18403    if (!CHIP_IS_E1x(sc))
18404        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18405
18406    if (IS_MF(sc)) {
18407        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18408        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18409    }
18410
18411    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18412
18413    /* HC init per function */
18414    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18415        if (CHIP_IS_E1H(sc)) {
18416            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18417
18418            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18419            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18420        }
18421        ecore_init_block(sc, BLOCK_HC, init_phase);
18422
18423    } else {
18424        int num_segs, sb_idx, prod_offset;
18425
18426        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18427
18428        if (!CHIP_IS_E1x(sc)) {
18429            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18430            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18431        }
18432
18433        ecore_init_block(sc, BLOCK_IGU, init_phase);
18434
18435        if (!CHIP_IS_E1x(sc)) {
18436            int dsb_idx = 0;
18437            /**
18438             * Producer memory:
18439             * E2 mode: address 0-135 match to the mapping memory;
18440             * 136 - PF0 default prod; 137 - PF1 default prod;
18441             * 138 - PF2 default prod; 139 - PF3 default prod;
18442             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18443             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18444             * 144-147 reserved.
18445             *
18446             * E1.5 mode - In backward compatible mode;
18447             * for non default SB; each even line in the memory
18448             * holds the U producer and each odd line hold
18449             * the C producer. The first 128 producers are for
18450             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18451             * producers are for the DSB for each PF.
18452             * Each PF has five segments: (the order inside each
18453             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18454             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18455             * 144-147 attn prods;
18456             */
18457            /* non-default-status-blocks */
18458            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18459                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18460            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18461                prod_offset = (sc->igu_base_sb + sb_idx) *
18462                    num_segs;
18463
18464                for (i = 0; i < num_segs; i++) {
18465                    addr = IGU_REG_PROD_CONS_MEMORY +
18466                            (prod_offset + i) * 4;
18467                    REG_WR(sc, addr, 0);
18468                }
18469                /* send consumer update with value 0 */
18470                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18471                           USTORM_ID, 0, IGU_INT_NOP, 1);
18472                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18473            }
18474
18475            /* default-status-blocks */
18476            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18477                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18478
18479            if (CHIP_IS_MODE_4_PORT(sc))
18480                dsb_idx = SC_FUNC(sc);
18481            else
18482                dsb_idx = SC_VN(sc);
18483
18484            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18485                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18486                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18487
18488            /*
18489             * igu prods come in chunks of E1HVN_MAX (4) -
18490             * does not matters what is the current chip mode
18491             */
18492            for (i = 0; i < (num_segs * E1HVN_MAX);
18493                 i += E1HVN_MAX) {
18494                addr = IGU_REG_PROD_CONS_MEMORY +
18495                            (prod_offset + i)*4;
18496                REG_WR(sc, addr, 0);
18497            }
18498            /* send consumer update with 0 */
18499            if (CHIP_INT_MODE_IS_BC(sc)) {
18500                bxe_ack_sb(sc, sc->igu_dsb_id,
18501                           USTORM_ID, 0, IGU_INT_NOP, 1);
18502                bxe_ack_sb(sc, sc->igu_dsb_id,
18503                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18504                bxe_ack_sb(sc, sc->igu_dsb_id,
18505                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18506                bxe_ack_sb(sc, sc->igu_dsb_id,
18507                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18508                bxe_ack_sb(sc, sc->igu_dsb_id,
18509                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18510            } else {
18511                bxe_ack_sb(sc, sc->igu_dsb_id,
18512                           USTORM_ID, 0, IGU_INT_NOP, 1);
18513                bxe_ack_sb(sc, sc->igu_dsb_id,
18514                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18515            }
18516            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18517
18518            /* !!! these should become driver const once
18519               rf-tool supports split-68 const */
18520            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18521            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18522            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18523            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18524            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18525            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18526        }
18527    }
18528
18529    /* Reset PCIE errors for debug */
18530    REG_WR(sc, 0x2114, 0xffffffff);
18531    REG_WR(sc, 0x2120, 0xffffffff);
18532
18533    if (CHIP_IS_E1x(sc)) {
18534        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18535        main_mem_base = HC_REG_MAIN_MEMORY +
18536                SC_PORT(sc) * (main_mem_size * 4);
18537        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18538        main_mem_width = 8;
18539
18540        val = REG_RD(sc, main_mem_prty_clr);
18541        if (val) {
18542            BLOGD(sc, DBG_LOAD,
18543                  "Parity errors in HC block during function init (0x%x)!\n",
18544                  val);
18545        }
18546
18547        /* Clear "false" parity errors in MSI-X table */
18548        for (i = main_mem_base;
18549             i < main_mem_base + main_mem_size * 4;
18550             i += main_mem_width) {
18551            bxe_read_dmae(sc, i, main_mem_width / 4);
18552            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18553                           i, main_mem_width / 4);
18554        }
18555        /* Clear HC parity attention */
18556        REG_RD(sc, main_mem_prty_clr);
18557    }
18558
18559#if 1
18560    /* Enable STORMs SP logging */
18561    REG_WR8(sc, BAR_USTRORM_INTMEM +
18562           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18563    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18564           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18565    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18566           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18567    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18568           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18569#endif
18570
18571    elink_phy_probe(&sc->link_params);
18572
18573    return (0);
18574}
18575
18576static void
18577bxe_link_reset(struct bxe_softc *sc)
18578{
18579    if (!BXE_NOMCP(sc)) {
18580        BXE_PHY_LOCK(sc);
18581        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18582        BXE_PHY_UNLOCK(sc);
18583    } else {
18584        if (!CHIP_REV_IS_SLOW(sc)) {
18585            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18586        }
18587    }
18588}
18589
18590static void
18591bxe_reset_port(struct bxe_softc *sc)
18592{
18593    int port = SC_PORT(sc);
18594    uint32_t val;
18595
18596    /* reset physical Link */
18597    bxe_link_reset(sc);
18598
18599    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18600
18601    /* Do not rcv packets to BRB */
18602    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18603    /* Do not direct rcv packets that are not for MCP to the BRB */
18604    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18605               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18606
18607    /* Configure AEU */
18608    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18609
18610    DELAY(100000);
18611
18612    /* Check for BRB port occupancy */
18613    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18614    if (val) {
18615        BLOGD(sc, DBG_LOAD,
18616              "BRB1 is not empty, %d blocks are occupied\n", val);
18617    }
18618
18619    /* TODO: Close Doorbell port? */
18620}
18621
18622static void
18623bxe_ilt_wr(struct bxe_softc *sc,
18624           uint32_t         index,
18625           bus_addr_t       addr)
18626{
18627    int reg;
18628    uint32_t wb_write[2];
18629
18630    if (CHIP_IS_E1(sc)) {
18631        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18632    } else {
18633        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18634    }
18635
18636    wb_write[0] = ONCHIP_ADDR1(addr);
18637    wb_write[1] = ONCHIP_ADDR2(addr);
18638    REG_WR_DMAE(sc, reg, wb_write, 2);
18639}
18640
18641static void
18642bxe_clear_func_ilt(struct bxe_softc *sc,
18643                   uint32_t         func)
18644{
18645    uint32_t i, base = FUNC_ILT_BASE(func);
18646    for (i = base; i < base + ILT_PER_FUNC; i++) {
18647        bxe_ilt_wr(sc, i, 0);
18648    }
18649}
18650
18651static void
18652bxe_reset_func(struct bxe_softc *sc)
18653{
18654    struct bxe_fastpath *fp;
18655    int port = SC_PORT(sc);
18656    int func = SC_FUNC(sc);
18657    int i;
18658
18659    /* Disable the function in the FW */
18660    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18661    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18662    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18663    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18664
18665    /* FP SBs */
18666    FOR_EACH_ETH_QUEUE(sc, i) {
18667        fp = &sc->fp[i];
18668        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18669                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18670                SB_DISABLED);
18671    }
18672
18673#if 0
18674    if (CNIC_LOADED(sc)) {
18675        /* CNIC SB */
18676        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18677                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18678                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18679    }
18680#endif
18681
18682    /* SP SB */
18683    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18684            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18685            SB_DISABLED);
18686
18687    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18688        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18689    }
18690
18691    /* Configure IGU */
18692    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18693        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18694        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18695    } else {
18696        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18697        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18698    }
18699
18700    if (CNIC_LOADED(sc)) {
18701        /* Disable Timer scan */
18702        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18703        /*
18704         * Wait for at least 10ms and up to 2 second for the timers
18705         * scan to complete
18706         */
18707        for (i = 0; i < 200; i++) {
18708            DELAY(10000);
18709            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18710                break;
18711        }
18712    }
18713
18714    /* Clear ILT */
18715    bxe_clear_func_ilt(sc, func);
18716
18717    /*
18718     * Timers workaround bug for E2: if this is vnic-3,
18719     * we need to set the entire ilt range for this timers.
18720     */
18721    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18722        struct ilt_client_info ilt_cli;
18723        /* use dummy TM client */
18724        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18725        ilt_cli.start = 0;
18726        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18727        ilt_cli.client_num = ILT_CLIENT_TM;
18728
18729        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18730    }
18731
18732    /* this assumes that reset_port() called before reset_func()*/
18733    if (!CHIP_IS_E1x(sc)) {
18734        bxe_pf_disable(sc);
18735    }
18736
18737    sc->dmae_ready = 0;
18738}
18739
18740static int
18741bxe_gunzip_init(struct bxe_softc *sc)
18742{
18743    return (0);
18744}
18745
18746static void
18747bxe_gunzip_end(struct bxe_softc *sc)
18748{
18749    return;
18750}
18751
18752static int
18753bxe_init_firmware(struct bxe_softc *sc)
18754{
18755    if (CHIP_IS_E1(sc)) {
18756        ecore_init_e1_firmware(sc);
18757        sc->iro_array = e1_iro_arr;
18758    } else if (CHIP_IS_E1H(sc)) {
18759        ecore_init_e1h_firmware(sc);
18760        sc->iro_array = e1h_iro_arr;
18761    } else if (!CHIP_IS_E1x(sc)) {
18762        ecore_init_e2_firmware(sc);
18763        sc->iro_array = e2_iro_arr;
18764    } else {
18765        BLOGE(sc, "Unsupported chip revision\n");
18766        return (-1);
18767    }
18768
18769    return (0);
18770}
18771
18772static void
18773bxe_release_firmware(struct bxe_softc *sc)
18774{
18775    /* Do nothing */
18776    return;
18777}
18778
18779static int
18780ecore_gunzip(struct bxe_softc *sc,
18781             const uint8_t    *zbuf,
18782             int              len)
18783{
18784    /* XXX : Implement... */
18785    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18786    return (FALSE);
18787}
18788
18789static void
18790ecore_reg_wr_ind(struct bxe_softc *sc,
18791                 uint32_t         addr,
18792                 uint32_t         val)
18793{
18794    bxe_reg_wr_ind(sc, addr, val);
18795}
18796
18797static void
18798ecore_write_dmae_phys_len(struct bxe_softc *sc,
18799                          bus_addr_t       phys_addr,
18800                          uint32_t         addr,
18801                          uint32_t         len)
18802{
18803    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18804}
18805
18806void
18807ecore_storm_memset_struct(struct bxe_softc *sc,
18808                          uint32_t         addr,
18809                          size_t           size,
18810                          uint32_t         *data)
18811{
18812    uint8_t i;
18813    for (i = 0; i < size/4; i++) {
18814        REG_WR(sc, addr + (i * 4), data[i]);
18815    }
18816}
18817
18818