bxe.c revision 260415
1/*-
2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3 *
4 * Eric Davis        <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano     <zambrano@broadcom.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 260415 2014-01-07 22:26:20Z edavis $");
36
37#define BXE_DRIVER_VERSION "1.78.77"
38
39#include "bxe.h"
40#include "ecore_sp.h"
41#include "ecore_init.h"
42#include "ecore_init_ops.h"
43
44#include "57710_int_offsets.h"
45#include "57711_int_offsets.h"
46#include "57712_int_offsets.h"
47
48/*
49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50 * explicitly here for older kernels that don't include this changeset.
51 */
52#ifndef CTLTYPE_U64
53#define CTLTYPE_U64      CTLTYPE_QUAD
54#define sysctl_handle_64 sysctl_handle_quad
55#endif
56
57/*
58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59 * here as zero(0) for older kernels that don't include this changeset
60 * thereby masking the functionality.
61 */
62#ifndef CSUM_TCP_IPV6
63#define CSUM_TCP_IPV6 0
64#define CSUM_UDP_IPV6 0
65#endif
66
67/*
68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69 * for older kernels that don't include this changeset.
70 */
71#if __FreeBSD_version < 900035
72#define pci_find_cap pci_find_extcap
73#endif
74
75#define BXE_DEF_SB_ATT_IDX 0x0001
76#define BXE_DEF_SB_IDX     0x0002
77
78/*
79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80 * function HW initialization.
81 */
82#define FLR_WAIT_USEC     10000 /* 10 msecs */
83#define FLR_WAIT_INTERVAL 50    /* usecs */
84#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85
86struct pbf_pN_buf_regs {
87    int pN;
88    uint32_t init_crd;
89    uint32_t crd;
90    uint32_t crd_freed;
91};
92
93struct pbf_pN_cmd_regs {
94    int pN;
95    uint32_t lines_occup;
96    uint32_t lines_freed;
97};
98
99/*
100 * PCI Device ID Table used by bxe_probe().
101 */
102#define BXE_DEVDESC_MAX 64
103static struct bxe_device_type bxe_devs[] = {
104    {
105        BRCM_VENDORID,
106        CHIP_NUM_57710,
107        PCI_ANY_ID, PCI_ANY_ID,
108        "Broadcom NetXtreme II BCM57710 10GbE"
109    },
110    {
111        BRCM_VENDORID,
112        CHIP_NUM_57711,
113        PCI_ANY_ID, PCI_ANY_ID,
114        "Broadcom NetXtreme II BCM57711 10GbE"
115    },
116    {
117        BRCM_VENDORID,
118        CHIP_NUM_57711E,
119        PCI_ANY_ID, PCI_ANY_ID,
120        "Broadcom NetXtreme II BCM57711E 10GbE"
121    },
122    {
123        BRCM_VENDORID,
124        CHIP_NUM_57712,
125        PCI_ANY_ID, PCI_ANY_ID,
126        "Broadcom NetXtreme II BCM57712 10GbE"
127    },
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_MF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "Broadcom NetXtreme II BCM57712 MF 10GbE"
133    },
134#if 0
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57712_VF,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "Broadcom NetXtreme II BCM57712 VF 10GbE"
140    },
141#endif
142    {
143        BRCM_VENDORID,
144        CHIP_NUM_57800,
145        PCI_ANY_ID, PCI_ANY_ID,
146        "Broadcom NetXtreme II BCM57800 10GbE"
147    },
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_MF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "Broadcom NetXtreme II BCM57800 MF 10GbE"
153    },
154#if 0
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57800_VF,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "Broadcom NetXtreme II BCM57800 VF 10GbE"
160    },
161#endif
162    {
163        BRCM_VENDORID,
164        CHIP_NUM_57810,
165        PCI_ANY_ID, PCI_ANY_ID,
166        "Broadcom NetXtreme II BCM57810 10GbE"
167    },
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_MF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "Broadcom NetXtreme II BCM57810 MF 10GbE"
173    },
174#if 0
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57810_VF,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "Broadcom NetXtreme II BCM57810 VF 10GbE"
180    },
181#endif
182    {
183        BRCM_VENDORID,
184        CHIP_NUM_57811,
185        PCI_ANY_ID, PCI_ANY_ID,
186        "Broadcom NetXtreme II BCM57811 10GbE"
187    },
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_MF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "Broadcom NetXtreme II BCM57811 MF 10GbE"
193    },
194#if 0
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57811_VF,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "Broadcom NetXtreme II BCM57811 VF 10GbE"
200    },
201#endif
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_4_10,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "Broadcom NetXtreme II BCM57840 4x10GbE"
207    },
208#if 0
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_2_20,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "Broadcom NetXtreme II BCM57840 2x20GbE"
214    },
215#endif
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_MF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "Broadcom NetXtreme II BCM57840 MF 10GbE"
221    },
222#if 0
223    {
224        BRCM_VENDORID,
225        CHIP_NUM_57840_VF,
226        PCI_ANY_ID, PCI_ANY_ID,
227        "Broadcom NetXtreme II BCM57840 VF 10GbE"
228    },
229#endif
230    {
231        0, 0, 0, 0, NULL
232    }
233};
234
235MALLOC_DECLARE(M_BXE_ILT);
236MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237
238/*
239 * FreeBSD device entry points.
240 */
241static int bxe_probe(device_t);
242static int bxe_attach(device_t);
243static int bxe_detach(device_t);
244static int bxe_shutdown(device_t);
245
246/*
247 * FreeBSD KLD module/device interface event handler method.
248 */
249static device_method_t bxe_methods[] = {
250    /* Device interface (device_if.h) */
251    DEVMETHOD(device_probe,     bxe_probe),
252    DEVMETHOD(device_attach,    bxe_attach),
253    DEVMETHOD(device_detach,    bxe_detach),
254    DEVMETHOD(device_shutdown,  bxe_shutdown),
255#if 0
256    DEVMETHOD(device_suspend,   bxe_suspend),
257    DEVMETHOD(device_resume,    bxe_resume),
258#endif
259    /* Bus interface (bus_if.h) */
260    DEVMETHOD(bus_print_child,  bus_generic_print_child),
261    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262    KOBJMETHOD_END
263};
264
265/*
266 * FreeBSD KLD Module data declaration
267 */
268static driver_t bxe_driver = {
269    "bxe",                   /* module name */
270    bxe_methods,             /* event handler */
271    sizeof(struct bxe_softc) /* extra data */
272};
273
274/*
275 * FreeBSD dev class is needed to manage dev instances and
276 * to associate with a bus type
277 */
278static devclass_t bxe_devclass;
279
280MODULE_DEPEND(bxe, pci, 1, 1, 1);
281MODULE_DEPEND(bxe, ether, 1, 1, 1);
282DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283
284/* resources needed for unloading a previously loaded device */
285
286#define BXE_PREV_WAIT_NEEDED 1
287struct mtx bxe_prev_mtx;
288MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289struct bxe_prev_list_node {
290    LIST_ENTRY(bxe_prev_list_node) node;
291    uint8_t bus;
292    uint8_t slot;
293    uint8_t path;
294    uint8_t aer; /* XXX automatic error recovery */
295    uint8_t undi;
296};
297static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298
299static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300
301/* Tunable device values... */
302
303SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304
305/* Debug */
306unsigned long bxe_debug = 0;
307TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309             &bxe_debug, 0, "Debug logging mode");
310
311/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312static int bxe_interrupt_mode = INTR_MODE_MSIX;
313TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316
317/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318static int bxe_queue_count = 4;
319TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321           &bxe_queue_count, 0, "Multi-Queue queue count");
322
323/* max number of buffers per queue (default RX_BD_USABLE) */
324static int bxe_max_rx_bufs = 0;
325TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328
329/* Host interrupt coalescing RX tick timer (usecs) */
330static int bxe_hc_rx_ticks = 25;
331TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334
335/* Host interrupt coalescing TX tick timer (usecs) */
336static int bxe_hc_tx_ticks = 50;
337TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340
341/* Maximum number of Rx packets to process at a time */
342static int bxe_rx_budget = 0xffffffff;
343TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345           &bxe_rx_budget, 0, "Rx processing budget");
346
347/* Maximum LRO aggregation size */
348static int bxe_max_aggregation_size = 0;
349TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351           &bxe_max_aggregation_size, 0, "max aggregation size");
352
353/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354static int bxe_mrrs = -1;
355TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357           &bxe_mrrs, 0, "PCIe maximum read request size");
358
359/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360static int bxe_autogreeen = 0;
361TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363           &bxe_autogreeen, 0, "AutoGrEEEn support");
364
365/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366static int bxe_udp_rss = 0;
367TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369           &bxe_udp_rss, 0, "UDP RSS support");
370
371
372#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373
374#define STATS_OFFSET32(stat_name)                   \
375    (offsetof(struct bxe_eth_stats, stat_name) / 4)
376
377#define Q_STATS_OFFSET32(stat_name)                   \
378    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379
380static const struct {
381    uint32_t offset;
382    uint32_t size;
383    uint32_t flags;
384#define STATS_FLAGS_PORT  1
385#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387    char string[STAT_NAME_LEN];
388} bxe_eth_stats_arr[] = {
389    { STATS_OFFSET32(total_bytes_received_hi),
390                8, STATS_FLAGS_BOTH, "rx_bytes" },
391    { STATS_OFFSET32(error_bytes_received_hi),
392                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393    { STATS_OFFSET32(total_unicast_packets_received_hi),
394                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395    { STATS_OFFSET32(total_multicast_packets_received_hi),
396                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397    { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                8, STATS_FLAGS_PORT, "rx_crc_errors" },
401    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                8, STATS_FLAGS_PORT, "rx_align_errors" },
403    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                8, STATS_FLAGS_PORT, "rx_fragments" },
409    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                8, STATS_FLAGS_PORT, "rx_jabbers" },
411    { STATS_OFFSET32(no_buff_discard_hi),
412                8, STATS_FLAGS_BOTH, "rx_discards" },
413    { STATS_OFFSET32(mac_filter_discard),
414                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415    { STATS_OFFSET32(mf_tag_discard),
416                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417    { STATS_OFFSET32(pfc_frames_received_hi),
418                8, STATS_FLAGS_PORT, "pfc_frames_received" },
419    { STATS_OFFSET32(pfc_frames_sent_hi),
420                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421    { STATS_OFFSET32(brb_drop_hi),
422                8, STATS_FLAGS_PORT, "rx_brb_discard" },
423    { STATS_OFFSET32(brb_truncate_hi),
424                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425    { STATS_OFFSET32(pause_frames_received_hi),
426                8, STATS_FLAGS_PORT, "rx_pause_frames" },
427    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429    { STATS_OFFSET32(nig_timer_max),
430                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431    { STATS_OFFSET32(total_bytes_transmitted_hi),
432                8, STATS_FLAGS_BOTH, "tx_bytes" },
433    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                8, STATS_FLAGS_PORT, "tx_error_bytes" },
435    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                8, STATS_FLAGS_PORT, "tx_mac_errors" },
443    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                8, STATS_FLAGS_PORT, "tx_single_collisions" },
447    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                8, STATS_FLAGS_PORT, "tx_deferred" },
451    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                8, STATS_FLAGS_PORT, "tx_late_collisions" },
455    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                8, STATS_FLAGS_PORT, "tx_total_collisions" },
457    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471    { STATS_OFFSET32(pause_frames_sent_hi),
472                8, STATS_FLAGS_PORT, "tx_pause_frames" },
473    { STATS_OFFSET32(total_tpa_aggregations_hi),
474                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477    { STATS_OFFSET32(total_tpa_bytes_hi),
478                8, STATS_FLAGS_FUNC, "tpa_bytes"},
479#if 0
480    { STATS_OFFSET32(recoverable_error),
481                4, STATS_FLAGS_FUNC, "recoverable_errors" },
482    { STATS_OFFSET32(unrecoverable_error),
483                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484#endif
485    { STATS_OFFSET32(eee_tx_lpi),
486                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487    { STATS_OFFSET32(rx_calls),
488                4, STATS_FLAGS_FUNC, "rx_calls"},
489    { STATS_OFFSET32(rx_pkts),
490                4, STATS_FLAGS_FUNC, "rx_pkts"},
491    { STATS_OFFSET32(rx_tpa_pkts),
492                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493    { STATS_OFFSET32(rx_soft_errors),
494                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495    { STATS_OFFSET32(rx_hw_csum_errors),
496                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501    { STATS_OFFSET32(rx_budget_reached),
502                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503    { STATS_OFFSET32(tx_pkts),
504                4, STATS_FLAGS_FUNC, "tx_pkts"},
505    { STATS_OFFSET32(tx_soft_errors),
506                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513    { STATS_OFFSET32(tx_ofld_frames_lso),
514                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517    { STATS_OFFSET32(tx_encap_failures),
518                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519    { STATS_OFFSET32(tx_hw_queue_full),
520                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521    { STATS_OFFSET32(tx_hw_max_queue_depth),
522                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523    { STATS_OFFSET32(tx_dma_mapping_failure),
524                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525    { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527    { STATS_OFFSET32(tx_window_violation_std),
528                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529    { STATS_OFFSET32(tx_window_violation_tso),
530                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531#if 0
532    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536#endif
537    { STATS_OFFSET32(tx_chain_lost_mbuf),
538                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539    { STATS_OFFSET32(tx_frames_deferred),
540                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541    { STATS_OFFSET32(tx_queue_xoff),
542                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543    { STATS_OFFSET32(mbuf_defrag_attempts),
544                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545    { STATS_OFFSET32(mbuf_defrag_failures),
546                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559    { STATS_OFFSET32(mbuf_alloc_tx),
560                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561    { STATS_OFFSET32(mbuf_alloc_rx),
562                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563    { STATS_OFFSET32(mbuf_alloc_sge),
564                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565    { STATS_OFFSET32(mbuf_alloc_tpa),
566                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567};
568
569static const struct {
570    uint32_t offset;
571    uint32_t size;
572    char string[STAT_NAME_LEN];
573} bxe_eth_q_stats_arr[] = {
574    { Q_STATS_OFFSET32(total_bytes_received_hi),
575                8, "rx_bytes" },
576    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                8, "rx_ucast_packets" },
578    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                8, "rx_mcast_packets" },
580    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                8, "rx_bcast_packets" },
582    { Q_STATS_OFFSET32(no_buff_discard_hi),
583                8, "rx_discards" },
584    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                8, "tx_bytes" },
586    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                8, "tx_ucast_packets" },
588    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                8, "tx_mcast_packets" },
590    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                8, "tx_bcast_packets" },
592    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                8, "tpa_aggregations" },
594    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                8, "tpa_aggregated_frames"},
596    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                8, "tpa_bytes"},
598    { Q_STATS_OFFSET32(rx_calls),
599                4, "rx_calls"},
600    { Q_STATS_OFFSET32(rx_pkts),
601                4, "rx_pkts"},
602    { Q_STATS_OFFSET32(rx_tpa_pkts),
603                4, "rx_tpa_pkts"},
604    { Q_STATS_OFFSET32(rx_soft_errors),
605                4, "rx_soft_errors"},
606    { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                4, "rx_hw_csum_errors"},
608    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                4, "rx_ofld_frames_csum_ip"},
610    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                4, "rx_ofld_frames_csum_tcp_udp"},
612    { Q_STATS_OFFSET32(rx_budget_reached),
613                4, "rx_budget_reached"},
614    { Q_STATS_OFFSET32(tx_pkts),
615                4, "tx_pkts"},
616    { Q_STATS_OFFSET32(tx_soft_errors),
617                4, "tx_soft_errors"},
618    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                4, "tx_ofld_frames_csum_ip"},
620    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                4, "tx_ofld_frames_csum_tcp"},
622    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                4, "tx_ofld_frames_csum_udp"},
624    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                4, "tx_ofld_frames_lso"},
626    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                4, "tx_ofld_frames_lso_hdr_splits"},
628    { Q_STATS_OFFSET32(tx_encap_failures),
629                4, "tx_encap_failures"},
630    { Q_STATS_OFFSET32(tx_hw_queue_full),
631                4, "tx_hw_queue_full"},
632    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                4, "tx_hw_max_queue_depth"},
634    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                4, "tx_dma_mapping_failure"},
636    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                4, "tx_max_drbr_queue_depth"},
638    { Q_STATS_OFFSET32(tx_window_violation_std),
639                4, "tx_window_violation_std"},
640    { Q_STATS_OFFSET32(tx_window_violation_tso),
641                4, "tx_window_violation_tso"},
642#if 0
643    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                4, "tx_unsupported_tso_request_ipv6"},
645    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                4, "tx_unsupported_tso_request_not_tcp"},
647#endif
648    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                4, "tx_chain_lost_mbuf"},
650    { Q_STATS_OFFSET32(tx_frames_deferred),
651                4, "tx_frames_deferred"},
652    { Q_STATS_OFFSET32(tx_queue_xoff),
653                4, "tx_queue_xoff"},
654    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                4, "mbuf_defrag_attempts"},
656    { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                4, "mbuf_defrag_failures"},
658    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                4, "mbuf_rx_bd_alloc_failed"},
660    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                4, "mbuf_rx_bd_mapping_failed"},
662    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                4, "mbuf_rx_tpa_alloc_failed"},
664    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                4, "mbuf_rx_tpa_mapping_failed"},
666    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                4, "mbuf_rx_sge_alloc_failed"},
668    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                4, "mbuf_rx_sge_mapping_failed"},
670    { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                4, "mbuf_alloc_tx"},
672    { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                4, "mbuf_alloc_rx"},
674    { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                4, "mbuf_alloc_sge"},
676    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                4, "mbuf_alloc_tpa"}
678};
679
680#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682
683
684static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                 uint8_t          read_cfg,
686                                 uint8_t          cmng_type);
687static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688static void    storm_memset_cmng(struct bxe_softc *sc,
689                                 struct cmng_init *cmng,
690                                 uint8_t          port);
691static void    bxe_set_reset_global(struct bxe_softc *sc);
692static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                 int              engine);
695static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                   uint8_t          *global,
698                                   uint8_t          print);
699static void    bxe_int_disable(struct bxe_softc *sc);
700static int     bxe_release_leader_lock(struct bxe_softc *sc);
701static void    bxe_pf_disable(struct bxe_softc *sc);
702static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                      struct bxe_fastpath *fp,
705                                      uint16_t            rx_bd_prod,
706                                      uint16_t            rx_cq_prod,
707                                      uint16_t            rx_sge_prod);
708static void    bxe_link_report_locked(struct bxe_softc *sc);
709static void    bxe_link_report(struct bxe_softc *sc);
710static void    bxe_link_status_update(struct bxe_softc *sc);
711static void    bxe_periodic_callout_func(void *xsc);
712static void    bxe_periodic_start(struct bxe_softc *sc);
713static void    bxe_periodic_stop(struct bxe_softc *sc);
714static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                    uint16_t prev_index,
716                                    uint16_t index);
717static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                     int                 queue);
719static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                     uint16_t            index);
721static uint8_t bxe_txeof(struct bxe_softc *sc,
722                         struct bxe_fastpath *fp);
723static void    bxe_task_fp(struct bxe_fastpath *fp);
724static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                     struct mbuf      *m,
726                                     uint8_t          contents);
727static int     bxe_alloc_mem(struct bxe_softc *sc);
728static void    bxe_free_mem(struct bxe_softc *sc);
729static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731static int     bxe_interrupt_attach(struct bxe_softc *sc);
732static void    bxe_interrupt_detach(struct bxe_softc *sc);
733static void    bxe_set_rx_mode(struct bxe_softc *sc);
734static int     bxe_init_locked(struct bxe_softc *sc);
735static int     bxe_stop_locked(struct bxe_softc *sc);
736static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                   int              load_mode);
738static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                     uint32_t         unload_mode,
740                                     uint8_t          keep_link);
741
742static void bxe_handle_sp_tq(void *context, int pending);
743static void bxe_handle_rx_mode_tq(void *context, int pending);
744static void bxe_handle_fp_tq(void *context, int pending);
745
746
747/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748uint32_t
749calc_crc32(uint8_t  *crc32_packet,
750           uint32_t crc32_length,
751           uint32_t crc32_seed,
752           uint8_t  complement)
753{
754   uint32_t byte         = 0;
755   uint32_t bit          = 0;
756   uint8_t  msb          = 0;
757   uint32_t temp         = 0;
758   uint32_t shft         = 0;
759   uint8_t  current_byte = 0;
760   uint32_t crc32_result = crc32_seed;
761   const uint32_t CRC32_POLY = 0x1edc6f41;
762
763   if ((crc32_packet == NULL) ||
764       (crc32_length == 0) ||
765       ((crc32_length % 8) != 0))
766    {
767        return (crc32_result);
768    }
769
770    for (byte = 0; byte < crc32_length; byte = byte + 1)
771    {
772        current_byte = crc32_packet[byte];
773        for (bit = 0; bit < 8; bit = bit + 1)
774        {
775            /* msb = crc32_result[31]; */
776            msb = (uint8_t)(crc32_result >> 31);
777
778            crc32_result = crc32_result << 1;
779
780            /* it (msb != current_byte[bit]) */
781            if (msb != (0x1 & (current_byte >> bit)))
782            {
783                crc32_result = crc32_result ^ CRC32_POLY;
784                /* crc32_result[0] = 1 */
785                crc32_result |= 1;
786            }
787        }
788    }
789
790    /* Last step is to:
791     * 1. "mirror" every bit
792     * 2. swap the 4 bytes
793     * 3. complement each bit
794     */
795
796    /* Mirror */
797    temp = crc32_result;
798    shft = sizeof(crc32_result) * 8 - 1;
799
800    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801    {
802        temp <<= 1;
803        temp |= crc32_result & 1;
804        shft-- ;
805    }
806
807    /* temp[31-bit] = crc32_result[bit] */
808    temp <<= shft;
809
810    /* Swap */
811    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812    {
813        uint32_t t0, t1, t2, t3;
814        t0 = (0x000000ff & (temp >> 24));
815        t1 = (0x0000ff00 & (temp >> 8));
816        t2 = (0x00ff0000 & (temp << 8));
817        t3 = (0xff000000 & (temp << 24));
818        crc32_result = t0 | t1 | t2 | t3;
819    }
820
821    /* Complement */
822    if (complement)
823    {
824        crc32_result = ~crc32_result;
825    }
826
827    return (crc32_result);
828}
829
830int
831bxe_test_bit(int                    nr,
832             volatile unsigned long *addr)
833{
834    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835}
836
837void
838bxe_set_bit(unsigned int           nr,
839            volatile unsigned long *addr)
840{
841    atomic_set_acq_long(addr, (1 << nr));
842}
843
844void
845bxe_clear_bit(int                    nr,
846              volatile unsigned long *addr)
847{
848    atomic_clear_acq_long(addr, (1 << nr));
849}
850
851int
852bxe_test_and_set_bit(int                    nr,
853                       volatile unsigned long *addr)
854{
855    unsigned long x;
856    nr = (1 << nr);
857    do {
858        x = *addr;
859    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860    // if (x & nr) bit_was_set; else bit_was_not_set;
861    return (x & nr);
862}
863
864int
865bxe_test_and_clear_bit(int                    nr,
866                       volatile unsigned long *addr)
867{
868    unsigned long x;
869    nr = (1 << nr);
870    do {
871        x = *addr;
872    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873    // if (x & nr) bit_was_set; else bit_was_not_set;
874    return (x & nr);
875}
876
877int
878bxe_cmpxchg(volatile int *addr,
879            int          old,
880            int          new)
881{
882    int x;
883    do {
884        x = *addr;
885    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886    return (x);
887}
888
889/*
890 * Get DMA memory from the OS.
891 *
892 * Validates that the OS has provided DMA buffers in response to a
893 * bus_dmamap_load call and saves the physical address of those buffers.
894 * When the callback is used the OS will return 0 for the mapping function
895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896 * failures back to the caller.
897 *
898 * Returns:
899 *   Nothing.
900 */
901static void
902bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903{
904    struct bxe_dma *dma = arg;
905
906    if (error) {
907        dma->paddr = 0;
908        dma->nseg  = 0;
909        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910    } else {
911        dma->paddr = segs->ds_addr;
912        dma->nseg  = nseg;
913#if 0
914        BLOGD(dma->sc, DBG_LOAD,,
915              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916              dma->msg, dma->vaddr, (void *)dma->paddr,
917              dma->nseg, dma->size);
918#endif
919    }
920}
921
922/*
923 * Allocate a block of memory and map it for DMA. No partial completions
924 * allowed and release any resources acquired if we can't acquire all
925 * resources.
926 *
927 * Returns:
928 *   0 = Success, !0 = Failure
929 */
930int
931bxe_dma_alloc(struct bxe_softc *sc,
932              bus_size_t       size,
933              struct bxe_dma   *dma,
934              const char       *msg)
935{
936    int rc;
937
938    if (dma->size > 0) {
939        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940              (unsigned long)dma->size);
941        return (1);
942    }
943
944    memset(dma, 0, sizeof(*dma)); /* sanity */
945    dma->sc   = sc;
946    dma->size = size;
947    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948
949    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                            BCM_PAGE_SIZE,      /* alignment */
951                            0,                  /* boundary limit */
952                            BUS_SPACE_MAXADDR,  /* restricted low */
953                            BUS_SPACE_MAXADDR,  /* restricted hi */
954                            NULL,               /* addr filter() */
955                            NULL,               /* addr filter() arg */
956                            size,               /* max map size */
957                            1,                  /* num discontinuous */
958                            size,               /* max seg size */
959                            BUS_DMA_ALLOCNOW,   /* flags */
960                            NULL,               /* lock() */
961                            NULL,               /* lock() arg */
962                            &dma->tag);         /* returned dma tag */
963    if (rc != 0) {
964        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965        memset(dma, 0, sizeof(*dma));
966        return (1);
967    }
968
969    rc = bus_dmamem_alloc(dma->tag,
970                          (void **)&dma->vaddr,
971                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                          &dma->map);
973    if (rc != 0) {
974        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975        bus_dma_tag_destroy(dma->tag);
976        memset(dma, 0, sizeof(*dma));
977        return (1);
978    }
979
980    rc = bus_dmamap_load(dma->tag,
981                         dma->map,
982                         dma->vaddr,
983                         size,
984                         bxe_dma_map_addr, /* BLOGD in here */
985                         dma,
986                         BUS_DMA_NOWAIT);
987    if (rc != 0) {
988        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990        bus_dma_tag_destroy(dma->tag);
991        memset(dma, 0, sizeof(*dma));
992        return (1);
993    }
994
995    return (0);
996}
997
998void
999bxe_dma_free(struct bxe_softc *sc,
1000             struct bxe_dma   *dma)
1001{
1002    if (dma->size > 0) {
1003#if 0
1004        BLOGD(sc, DBG_LOAD,
1005              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006              dma->msg, dma->vaddr, (void *)dma->paddr,
1007              dma->nseg, dma->size);
1008#endif
1009
1010        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011
1012        bus_dmamap_sync(dma->tag, dma->map,
1013                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014        bus_dmamap_unload(dma->tag, dma->map);
1015        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016        bus_dma_tag_destroy(dma->tag);
1017    }
1018
1019    memset(dma, 0, sizeof(*dma));
1020}
1021
1022/*
1023 * These indirect read and write routines are only during init.
1024 * The locking is handled by the MCP.
1025 */
1026
1027void
1028bxe_reg_wr_ind(struct bxe_softc *sc,
1029               uint32_t         addr,
1030               uint32_t         val)
1031{
1032    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035}
1036
1037uint32_t
1038bxe_reg_rd_ind(struct bxe_softc *sc,
1039               uint32_t         addr)
1040{
1041    uint32_t val;
1042
1043    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046
1047    return (val);
1048}
1049
1050#if 0
1051void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052{
1053    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054
1055    switch (dmae->opcode & DMAE_COMMAND_DST) {
1056    case DMAE_CMD_DST_PCI:
1057        if (src_type == DMAE_CMD_SRC_PCI)
1058            DP(msglvl, "DMAE: opcode 0x%08x\n"
1059               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063               dmae->comp_addr_hi, dmae->comp_addr_lo,
1064               dmae->comp_val);
1065        else
1066            DP(msglvl, "DMAE: opcode 0x%08x\n"
1067               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069               dmae->opcode, dmae->src_addr_lo >> 2,
1070               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071               dmae->comp_addr_hi, dmae->comp_addr_lo,
1072               dmae->comp_val);
1073        break;
1074    case DMAE_CMD_DST_GRC:
1075        if (src_type == DMAE_CMD_SRC_PCI)
1076            DP(msglvl, "DMAE: opcode 0x%08x\n"
1077               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080               dmae->len, dmae->dst_addr_lo >> 2,
1081               dmae->comp_addr_hi, dmae->comp_addr_lo,
1082               dmae->comp_val);
1083        else
1084            DP(msglvl, "DMAE: opcode 0x%08x\n"
1085               "src [%08x], len [%d*4], dst [%08x]\n"
1086               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087               dmae->opcode, dmae->src_addr_lo >> 2,
1088               dmae->len, dmae->dst_addr_lo >> 2,
1089               dmae->comp_addr_hi, dmae->comp_addr_lo,
1090               dmae->comp_val);
1091        break;
1092    default:
1093        if (src_type == DMAE_CMD_SRC_PCI)
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        else
1101            DP(msglvl, "DMAE: opcode 0x%08x\n"
1102               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104               dmae->opcode, dmae->src_addr_lo >> 2,
1105               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106               dmae->comp_val);
1107        break;
1108    }
1109
1110}
1111#endif
1112
1113static int
1114bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                    uint32_t         resource)
1116{
1117    uint32_t lock_status;
1118    uint32_t resource_bit = (1 << resource);
1119    int func = SC_FUNC(sc);
1120    uint32_t hw_lock_control_reg;
1121    int cnt;
1122
1123    /* validate the resource is within range */
1124    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126        return (-1);
1127    }
1128
1129    if (func <= 5) {
1130        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131    } else {
1132        hw_lock_control_reg =
1133                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134    }
1135
1136    /* validate the resource is not already taken */
1137    lock_status = REG_RD(sc, hw_lock_control_reg);
1138    if (lock_status & resource_bit) {
1139        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140              lock_status, resource_bit);
1141        return (-1);
1142    }
1143
1144    /* try every 5ms for 5 seconds */
1145    for (cnt = 0; cnt < 1000; cnt++) {
1146        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147        lock_status = REG_RD(sc, hw_lock_control_reg);
1148        if (lock_status & resource_bit) {
1149            return (0);
1150        }
1151        DELAY(5000);
1152    }
1153
1154    BLOGE(sc, "Resource lock timeout!\n");
1155    return (-1);
1156}
1157
1158static int
1159bxe_release_hw_lock(struct bxe_softc *sc,
1160                    uint32_t         resource)
1161{
1162    uint32_t lock_status;
1163    uint32_t resource_bit = (1 << resource);
1164    int func = SC_FUNC(sc);
1165    uint32_t hw_lock_control_reg;
1166
1167    /* validate the resource is within range */
1168    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170        return (-1);
1171    }
1172
1173    if (func <= 5) {
1174        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175    } else {
1176        hw_lock_control_reg =
1177                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178    }
1179
1180    /* validate the resource is currently taken */
1181    lock_status = REG_RD(sc, hw_lock_control_reg);
1182    if (!(lock_status & resource_bit)) {
1183        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184              lock_status, resource_bit);
1185        return (-1);
1186    }
1187
1188    REG_WR(sc, hw_lock_control_reg, resource_bit);
1189    return (0);
1190}
1191
1192/*
1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194 * had we done things the other way around, if two pfs from the same port
1195 * would attempt to access nvram at the same time, we could run into a
1196 * scenario such as:
1197 * pf A takes the port lock.
1198 * pf B succeeds in taking the same lock since they are from the same port.
1199 * pf A takes the per pf misc lock. Performs eeprom access.
1200 * pf A finishes. Unlocks the per pf misc lock.
1201 * Pf B takes the lock and proceeds to perform it's own access.
1202 * pf A unlocks the per port lock, while pf B is still working (!).
1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204 * access corrupted by pf B).*
1205 */
1206static int
1207bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208{
1209    int port = SC_PORT(sc);
1210    int count, i;
1211    uint32_t val = 0;
1212
1213    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215
1216    /* adjust timeout for emulation/FPGA */
1217    count = NVRAM_TIMEOUT_COUNT;
1218    if (CHIP_REV_IS_SLOW(sc)) {
1219        count *= 100;
1220    }
1221
1222    /* request access to nvram interface */
1223    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225
1226    for (i = 0; i < count*10; i++) {
1227        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229            break;
1230        }
1231
1232        DELAY(5);
1233    }
1234
1235    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236        BLOGE(sc, "Cannot get access to nvram interface\n");
1237        return (-1);
1238    }
1239
1240    return (0);
1241}
1242
1243static int
1244bxe_release_nvram_lock(struct bxe_softc *sc)
1245{
1246    int port = SC_PORT(sc);
1247    int count, i;
1248    uint32_t val = 0;
1249
1250    /* adjust timeout for emulation/FPGA */
1251    count = NVRAM_TIMEOUT_COUNT;
1252    if (CHIP_REV_IS_SLOW(sc)) {
1253        count *= 100;
1254    }
1255
1256    /* relinquish nvram interface */
1257    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259
1260    for (i = 0; i < count*10; i++) {
1261        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263            break;
1264        }
1265
1266        DELAY(5);
1267    }
1268
1269    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270        BLOGE(sc, "Cannot free access to nvram interface\n");
1271        return (-1);
1272    }
1273
1274    /* release HW lock: protect against other PFs in PF Direct Assignment */
1275    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276
1277    return (0);
1278}
1279
1280static void
1281bxe_enable_nvram_access(struct bxe_softc *sc)
1282{
1283    uint32_t val;
1284
1285    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286
1287    /* enable both bits, even on read */
1288    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290}
1291
1292static void
1293bxe_disable_nvram_access(struct bxe_softc *sc)
1294{
1295    uint32_t val;
1296
1297    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298
1299    /* disable both bits, even after read */
1300    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303}
1304
1305static int
1306bxe_nvram_read_dword(struct bxe_softc *sc,
1307                     uint32_t         offset,
1308                     uint32_t         *ret_val,
1309                     uint32_t         cmd_flags)
1310{
1311    int count, i, rc;
1312    uint32_t val;
1313
1314    /* build the command word */
1315    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316
1317    /* need to clear DONE bit separately */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319
1320    /* address of the NVRAM to read from */
1321    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323
1324    /* issue a read command */
1325    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326
1327    /* adjust timeout for emulation/FPGA */
1328    count = NVRAM_TIMEOUT_COUNT;
1329    if (CHIP_REV_IS_SLOW(sc)) {
1330        count *= 100;
1331    }
1332
1333    /* wait for completion */
1334    *ret_val = 0;
1335    rc = -1;
1336    for (i = 0; i < count; i++) {
1337        DELAY(5);
1338        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339
1340        if (val & MCPR_NVM_COMMAND_DONE) {
1341            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342            /* we read nvram data in cpu order
1343             * but ethtool sees it as an array of bytes
1344             * converting to big-endian will do the work
1345             */
1346            *ret_val = htobe32(val);
1347            rc = 0;
1348            break;
1349        }
1350    }
1351
1352    if (rc == -1) {
1353        BLOGE(sc, "nvram read timeout expired\n");
1354    }
1355
1356    return (rc);
1357}
1358
1359static int
1360bxe_nvram_read(struct bxe_softc *sc,
1361               uint32_t         offset,
1362               uint8_t          *ret_buf,
1363               int              buf_size)
1364{
1365    uint32_t cmd_flags;
1366    uint32_t val;
1367    int rc;
1368
1369    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371              offset, buf_size);
1372        return (-1);
1373    }
1374
1375    if ((offset + buf_size) > sc->devinfo.flash_size) {
1376        BLOGE(sc, "Invalid parameter, "
1377                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378              offset, buf_size, sc->devinfo.flash_size);
1379        return (-1);
1380    }
1381
1382    /* request access to nvram interface */
1383    rc = bxe_acquire_nvram_lock(sc);
1384    if (rc) {
1385        return (rc);
1386    }
1387
1388    /* enable access to nvram interface */
1389    bxe_enable_nvram_access(sc);
1390
1391    /* read the first word(s) */
1392    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395        memcpy(ret_buf, &val, 4);
1396
1397        /* advance to the next dword */
1398        offset += sizeof(uint32_t);
1399        ret_buf += sizeof(uint32_t);
1400        buf_size -= sizeof(uint32_t);
1401        cmd_flags = 0;
1402    }
1403
1404    if (rc == 0) {
1405        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407        memcpy(ret_buf, &val, 4);
1408    }
1409
1410    /* disable access to nvram interface */
1411    bxe_disable_nvram_access(sc);
1412    bxe_release_nvram_lock(sc);
1413
1414    return (rc);
1415}
1416
1417static int
1418bxe_nvram_write_dword(struct bxe_softc *sc,
1419                      uint32_t         offset,
1420                      uint32_t         val,
1421                      uint32_t         cmd_flags)
1422{
1423    int count, i, rc;
1424
1425    /* build the command word */
1426    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427
1428    /* need to clear DONE bit separately */
1429    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430
1431    /* write the data */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433
1434    /* address of the NVRAM to write to */
1435    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437
1438    /* issue the write command */
1439    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440
1441    /* adjust timeout for emulation/FPGA */
1442    count = NVRAM_TIMEOUT_COUNT;
1443    if (CHIP_REV_IS_SLOW(sc)) {
1444        count *= 100;
1445    }
1446
1447    /* wait for completion */
1448    rc = -1;
1449    for (i = 0; i < count; i++) {
1450        DELAY(5);
1451        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452        if (val & MCPR_NVM_COMMAND_DONE) {
1453            rc = 0;
1454            break;
1455        }
1456    }
1457
1458    if (rc == -1) {
1459        BLOGE(sc, "nvram write timeout expired\n");
1460    }
1461
1462    return (rc);
1463}
1464
1465#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466
1467static int
1468bxe_nvram_write1(struct bxe_softc *sc,
1469                 uint32_t         offset,
1470                 uint8_t          *data_buf,
1471                 int              buf_size)
1472{
1473    uint32_t cmd_flags;
1474    uint32_t align_offset;
1475    uint32_t val;
1476    int rc;
1477
1478    if ((offset + buf_size) > sc->devinfo.flash_size) {
1479        BLOGE(sc, "Invalid parameter, "
1480                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481              offset, buf_size, sc->devinfo.flash_size);
1482        return (-1);
1483    }
1484
1485    /* request access to nvram interface */
1486    rc = bxe_acquire_nvram_lock(sc);
1487    if (rc) {
1488        return (rc);
1489    }
1490
1491    /* enable access to nvram interface */
1492    bxe_enable_nvram_access(sc);
1493
1494    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495    align_offset = (offset & ~0x03);
1496    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497
1498    if (rc == 0) {
1499        val &= ~(0xff << BYTE_OFFSET(offset));
1500        val |= (*data_buf << BYTE_OFFSET(offset));
1501
1502        /* nvram data is returned as an array of bytes
1503         * convert it back to cpu order
1504         */
1505        val = be32toh(val);
1506
1507        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508    }
1509
1510    /* disable access to nvram interface */
1511    bxe_disable_nvram_access(sc);
1512    bxe_release_nvram_lock(sc);
1513
1514    return (rc);
1515}
1516
1517static int
1518bxe_nvram_write(struct bxe_softc *sc,
1519                uint32_t         offset,
1520                uint8_t          *data_buf,
1521                int              buf_size)
1522{
1523    uint32_t cmd_flags;
1524    uint32_t val;
1525    uint32_t written_so_far;
1526    int rc;
1527
1528    if (buf_size == 1) {
1529        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530    }
1531
1532    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534              offset, buf_size);
1535        return (-1);
1536    }
1537
1538    if (buf_size == 0) {
1539        return (0); /* nothing to do */
1540    }
1541
1542    if ((offset + buf_size) > sc->devinfo.flash_size) {
1543        BLOGE(sc, "Invalid parameter, "
1544                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545              offset, buf_size, sc->devinfo.flash_size);
1546        return (-1);
1547    }
1548
1549    /* request access to nvram interface */
1550    rc = bxe_acquire_nvram_lock(sc);
1551    if (rc) {
1552        return (rc);
1553    }
1554
1555    /* enable access to nvram interface */
1556    bxe_enable_nvram_access(sc);
1557
1558    written_so_far = 0;
1559    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560    while ((written_so_far < buf_size) && (rc == 0)) {
1561        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567        }
1568
1569        memcpy(&val, data_buf, 4);
1570
1571        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572
1573        /* advance to the next dword */
1574        offset += sizeof(uint32_t);
1575        data_buf += sizeof(uint32_t);
1576        written_so_far += sizeof(uint32_t);
1577        cmd_flags = 0;
1578    }
1579
1580    /* disable access to nvram interface */
1581    bxe_disable_nvram_access(sc);
1582    bxe_release_nvram_lock(sc);
1583
1584    return (rc);
1585}
1586
1587/* copy command into DMAE command memory and set DMAE command Go */
1588void
1589bxe_post_dmae(struct bxe_softc    *sc,
1590              struct dmae_command *dmae,
1591              int                 idx)
1592{
1593    uint32_t cmd_offset;
1594    int i;
1595
1596    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599    }
1600
1601    REG_WR(sc, dmae_reg_go_c[idx], 1);
1602}
1603
1604uint32_t
1605bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                         uint8_t  comp_type)
1607{
1608    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                      DMAE_COMMAND_C_TYPE_ENABLE));
1610}
1611
1612uint32_t
1613bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614{
1615    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616}
1617
1618uint32_t
1619bxe_dmae_opcode(struct bxe_softc *sc,
1620                uint8_t          src_type,
1621                uint8_t          dst_type,
1622                uint8_t          with_comp,
1623                uint8_t          comp_type)
1624{
1625    uint32_t opcode = 0;
1626
1627    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628               (dst_type << DMAE_COMMAND_DST_SHIFT));
1629
1630    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631
1632    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633
1634    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636
1637    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638
1639#ifdef __BIG_ENDIAN
1640    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641#else
1642    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643#endif
1644
1645    if (with_comp) {
1646        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647    }
1648
1649    return (opcode);
1650}
1651
1652static void
1653bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                        struct dmae_command *dmae,
1655                        uint8_t             src_type,
1656                        uint8_t             dst_type)
1657{
1658    memset(dmae, 0, sizeof(struct dmae_command));
1659
1660    /* set the opcode */
1661    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                   TRUE, DMAE_COMP_PCI);
1663
1664    /* fill in the completion parameters */
1665    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667    dmae->comp_val     = DMAE_COMP_VAL;
1668}
1669
1670/* issue a DMAE command over the init channel and wait for completion */
1671static int
1672bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                         struct dmae_command *dmae)
1674{
1675    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677
1678    BXE_DMAE_LOCK(sc);
1679
1680    /* reset completion */
1681    *wb_comp = 0;
1682
1683    /* post the command on the channel used for initializations */
1684    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685
1686    /* wait for completion */
1687    DELAY(5);
1688
1689    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690        if (!timeout ||
1691            (sc->recovery_state != BXE_RECOVERY_DONE &&
1692             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693            BLOGE(sc, "DMAE timeout!\n");
1694            BXE_DMAE_UNLOCK(sc);
1695            return (DMAE_TIMEOUT);
1696        }
1697
1698        timeout--;
1699        DELAY(50);
1700    }
1701
1702    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703        BLOGE(sc, "DMAE PCI error!\n");
1704        BXE_DMAE_UNLOCK(sc);
1705        return (DMAE_PCI_ERROR);
1706    }
1707
1708    BXE_DMAE_UNLOCK(sc);
1709    return (0);
1710}
1711
1712void
1713bxe_read_dmae(struct bxe_softc *sc,
1714              uint32_t         src_addr,
1715              uint32_t         len32)
1716{
1717    struct dmae_command dmae;
1718    uint32_t *data;
1719    int i, rc;
1720
1721    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722
1723    if (!sc->dmae_ready) {
1724        data = BXE_SP(sc, wb_data[0]);
1725
1726        for (i = 0; i < len32; i++) {
1727            data[i] = (CHIP_IS_E1(sc)) ?
1728                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                          REG_RD(sc, (src_addr + (i * 4)));
1730        }
1731
1732        return;
1733    }
1734
1735    /* set opcode and fixed command fields */
1736    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737
1738    /* fill in addresses and len */
1739    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740    dmae.src_addr_hi = 0;
1741    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743    dmae.len         = len32;
1744
1745    /* issue the command and wait for completion */
1746    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748    };
1749}
1750
1751void
1752bxe_write_dmae(struct bxe_softc *sc,
1753               bus_addr_t       dma_addr,
1754               uint32_t         dst_addr,
1755               uint32_t         len32)
1756{
1757    struct dmae_command dmae;
1758    int rc;
1759
1760    if (!sc->dmae_ready) {
1761        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762
1763        if (CHIP_IS_E1(sc)) {
1764            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765        } else {
1766            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767        }
1768
1769        return;
1770    }
1771
1772    /* set opcode and fixed command fields */
1773    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774
1775    /* fill in addresses and len */
1776    dmae.src_addr_lo = U64_LO(dma_addr);
1777    dmae.src_addr_hi = U64_HI(dma_addr);
1778    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779    dmae.dst_addr_hi = 0;
1780    dmae.len         = len32;
1781
1782    /* issue the command and wait for completion */
1783    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785    }
1786}
1787
1788void
1789bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                        bus_addr_t       phys_addr,
1791                        uint32_t         addr,
1792                        uint32_t         len)
1793{
1794    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795    int offset = 0;
1796
1797    while (len > dmae_wr_max) {
1798        bxe_write_dmae(sc,
1799                       (phys_addr + offset), /* src DMA address */
1800                       (addr + offset),      /* dst GRC address */
1801                       dmae_wr_max);
1802        offset += (dmae_wr_max * 4);
1803        len -= dmae_wr_max;
1804    }
1805
1806    bxe_write_dmae(sc,
1807                   (phys_addr + offset), /* src DMA address */
1808                   (addr + offset),      /* dst GRC address */
1809                   len);
1810}
1811
1812void
1813bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                       struct eth_context *cxt,
1815                       uint32_t           cid)
1816{
1817    /* ustorm cxt validation */
1818    cxt->ustorm_ag_context.cdu_usage =
1819        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821    /* xcontext validation */
1822    cxt->xstorm_ag_context.cdu_reserved =
1823        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825}
1826
1827static void
1828bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                            uint8_t          port,
1830                            uint8_t          fw_sb_id,
1831                            uint8_t          sb_index,
1832                            uint8_t          ticks)
1833{
1834    uint32_t addr =
1835        (BAR_CSTRORM_INTMEM +
1836         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837
1838    REG_WR8(sc, addr, ticks);
1839
1840    BLOGD(sc, DBG_LOAD,
1841          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842          port, fw_sb_id, sb_index, ticks);
1843}
1844
1845static void
1846bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                            uint8_t          port,
1848                            uint16_t         fw_sb_id,
1849                            uint8_t          sb_index,
1850                            uint8_t          disable)
1851{
1852    uint32_t enable_flag =
1853        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854    uint32_t addr =
1855        (BAR_CSTRORM_INTMEM +
1856         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857    uint8_t flags;
1858
1859    /* clear and set */
1860    flags = REG_RD8(sc, addr);
1861    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862    flags |= enable_flag;
1863    REG_WR8(sc, addr, flags);
1864
1865    BLOGD(sc, DBG_LOAD,
1866          "port %d fw_sb_id %d sb_index %d disable %d\n",
1867          port, fw_sb_id, sb_index, disable);
1868}
1869
1870void
1871bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                             uint8_t          fw_sb_id,
1873                             uint8_t          sb_index,
1874                             uint8_t          disable,
1875                             uint16_t         usec)
1876{
1877    int port = SC_PORT(sc);
1878    uint8_t ticks = (usec / 4); /* XXX ??? */
1879
1880    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881
1882    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884}
1885
1886void
1887elink_cb_udelay(struct bxe_softc *sc,
1888                uint32_t         usecs)
1889{
1890    DELAY(usecs);
1891}
1892
1893uint32_t
1894elink_cb_reg_read(struct bxe_softc *sc,
1895                  uint32_t         reg_addr)
1896{
1897    return (REG_RD(sc, reg_addr));
1898}
1899
1900void
1901elink_cb_reg_write(struct bxe_softc *sc,
1902                   uint32_t         reg_addr,
1903                   uint32_t         val)
1904{
1905    REG_WR(sc, reg_addr, val);
1906}
1907
1908void
1909elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                      uint32_t         offset,
1911                      uint32_t         *wb_write,
1912                      uint16_t         len)
1913{
1914    REG_WR_DMAE(sc, offset, wb_write, len);
1915}
1916
1917void
1918elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                     uint32_t         offset,
1920                     uint32_t         *wb_write,
1921                     uint16_t         len)
1922{
1923    REG_RD_DMAE(sc, offset, wb_write, len);
1924}
1925
1926uint8_t
1927elink_cb_path_id(struct bxe_softc *sc)
1928{
1929    return (SC_PATH(sc));
1930}
1931
1932void
1933elink_cb_event_log(struct bxe_softc     *sc,
1934                   const elink_log_id_t elink_log_id,
1935                   ...)
1936{
1937    /* XXX */
1938#if 0
1939    //va_list ap;
1940    va_start(ap, elink_log_id);
1941    _XXX_(sc, lm_log_id, ap);
1942    va_end(ap);
1943#endif
1944    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945}
1946
1947static int
1948bxe_set_spio(struct bxe_softc *sc,
1949             int              spio,
1950             uint32_t         mode)
1951{
1952    uint32_t spio_reg;
1953
1954    /* Only 2 SPIOs are configurable */
1955    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957        return (-1);
1958    }
1959
1960    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961
1962    /* read SPIO and mask except the float bits */
1963    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964
1965    switch (mode) {
1966    case MISC_SPIO_OUTPUT_LOW:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968        /* clear FLOAT and set CLR */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971        break;
1972
1973    case MISC_SPIO_OUTPUT_HIGH:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975        /* clear FLOAT and set SET */
1976        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978        break;
1979
1980    case MISC_SPIO_INPUT_HI_Z:
1981        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982        /* set FLOAT */
1983        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984        break;
1985
1986    default:
1987        break;
1988    }
1989
1990    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992
1993    return (0);
1994}
1995
1996static int
1997bxe_gpio_read(struct bxe_softc *sc,
1998              int              gpio_num,
1999              uint8_t          port)
2000{
2001    /* The GPIO should be swapped if swap register is set and active */
2002    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004    int gpio_shift = (gpio_num +
2005                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006    uint32_t gpio_mask = (1 << gpio_shift);
2007    uint32_t gpio_reg;
2008
2009    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011        return (-1);
2012    }
2013
2014    /* read GPIO value */
2015    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016
2017    /* get the requested pin value */
2018    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019}
2020
2021static int
2022bxe_gpio_write(struct bxe_softc *sc,
2023               int              gpio_num,
2024               uint32_t         mode,
2025               uint8_t          port)
2026{
2027    /* The GPIO should be swapped if swap register is set and active */
2028    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030    int gpio_shift = (gpio_num +
2031                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032    uint32_t gpio_mask = (1 << gpio_shift);
2033    uint32_t gpio_reg;
2034
2035    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037        return (-1);
2038    }
2039
2040    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041
2042    /* read GPIO and mask except the float bits */
2043    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044
2045    switch (mode) {
2046    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047        BLOGD(sc, DBG_PHY,
2048              "Set GPIO %d (shift %d) -> output low\n",
2049              gpio_num, gpio_shift);
2050        /* clear FLOAT and set CLR */
2051        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053        break;
2054
2055    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056        BLOGD(sc, DBG_PHY,
2057              "Set GPIO %d (shift %d) -> output high\n",
2058              gpio_num, gpio_shift);
2059        /* clear FLOAT and set SET */
2060        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062        break;
2063
2064    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065        BLOGD(sc, DBG_PHY,
2066              "Set GPIO %d (shift %d) -> input\n",
2067              gpio_num, gpio_shift);
2068        /* set FLOAT */
2069        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070        break;
2071
2072    default:
2073        break;
2074    }
2075
2076    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078
2079    return (0);
2080}
2081
2082static int
2083bxe_gpio_mult_write(struct bxe_softc *sc,
2084                    uint8_t          pins,
2085                    uint32_t         mode)
2086{
2087    uint32_t gpio_reg;
2088
2089    /* any port swapping should be handled by caller */
2090
2091    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093    /* read GPIO and mask except the float bits */
2094    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098
2099    switch (mode) {
2100    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102        /* set CLR */
2103        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104        break;
2105
2106    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108        /* set SET */
2109        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110        break;
2111
2112    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114        /* set FLOAT */
2115        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116        break;
2117
2118    default:
2119        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121        return (-1);
2122    }
2123
2124    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126
2127    return (0);
2128}
2129
2130static int
2131bxe_gpio_int_write(struct bxe_softc *sc,
2132                   int              gpio_num,
2133                   uint32_t         mode,
2134                   uint8_t          port)
2135{
2136    /* The GPIO should be swapped if swap register is set and active */
2137    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139    int gpio_shift = (gpio_num +
2140                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141    uint32_t gpio_mask = (1 << gpio_shift);
2142    uint32_t gpio_reg;
2143
2144    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146        return (-1);
2147    }
2148
2149    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150
2151    /* read GPIO int */
2152    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153
2154    switch (mode) {
2155    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156        BLOGD(sc, DBG_PHY,
2157              "Clear GPIO INT %d (shift %d) -> output low\n",
2158              gpio_num, gpio_shift);
2159        /* clear SET and set CLR */
2160        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162        break;
2163
2164    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165        BLOGD(sc, DBG_PHY,
2166              "Set GPIO INT %d (shift %d) -> output high\n",
2167              gpio_num, gpio_shift);
2168        /* clear CLR and set SET */
2169        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171        break;
2172
2173    default:
2174        break;
2175    }
2176
2177    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179
2180    return (0);
2181}
2182
2183uint32_t
2184elink_cb_gpio_read(struct bxe_softc *sc,
2185                   uint16_t         gpio_num,
2186                   uint8_t          port)
2187{
2188    return (bxe_gpio_read(sc, gpio_num, port));
2189}
2190
2191uint8_t
2192elink_cb_gpio_write(struct bxe_softc *sc,
2193                    uint16_t         gpio_num,
2194                    uint8_t          mode, /* 0=low 1=high */
2195                    uint8_t          port)
2196{
2197    return (bxe_gpio_write(sc, gpio_num, mode, port));
2198}
2199
2200uint8_t
2201elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                         uint8_t          pins,
2203                         uint8_t          mode) /* 0=low 1=high */
2204{
2205    return (bxe_gpio_mult_write(sc, pins, mode));
2206}
2207
2208uint8_t
2209elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                        uint16_t         gpio_num,
2211                        uint8_t          mode, /* 0=low 1=high */
2212                        uint8_t          port)
2213{
2214    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215}
2216
2217void
2218elink_cb_notify_link_changed(struct bxe_softc *sc)
2219{
2220    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222}
2223
2224/* send the MCP a request, block until there is a reply */
2225uint32_t
2226elink_cb_fw_command(struct bxe_softc *sc,
2227                    uint32_t         command,
2228                    uint32_t         param)
2229{
2230    int mb_idx = SC_FW_MB_IDX(sc);
2231    uint32_t seq;
2232    uint32_t rc = 0;
2233    uint32_t cnt = 1;
2234    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235
2236    BXE_FWMB_LOCK(sc);
2237
2238    seq = ++sc->fw_seq;
2239    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241
2242    BLOGD(sc, DBG_PHY,
2243          "wrote command 0x%08x to FW MB param 0x%08x\n",
2244          (command | seq), param);
2245
2246    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247    do {
2248        DELAY(delay * 1000);
2249        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251
2252    BLOGD(sc, DBG_PHY,
2253          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254          cnt*delay, rc, seq);
2255
2256    /* is this a reply to our command? */
2257    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258        rc &= FW_MSG_CODE_MASK;
2259    } else {
2260        /* Ruh-roh! */
2261        BLOGE(sc, "FW failed to respond!\n");
2262        // XXX bxe_fw_dump(sc);
2263        rc = 0;
2264    }
2265
2266    BXE_FWMB_UNLOCK(sc);
2267    return (rc);
2268}
2269
2270static uint32_t
2271bxe_fw_command(struct bxe_softc *sc,
2272               uint32_t         command,
2273               uint32_t         param)
2274{
2275    return (elink_cb_fw_command(sc, command, param));
2276}
2277
2278static void
2279__storm_memset_dma_mapping(struct bxe_softc *sc,
2280                           uint32_t         addr,
2281                           bus_addr_t       mapping)
2282{
2283    REG_WR(sc, addr, U64_LO(mapping));
2284    REG_WR(sc, (addr + 4), U64_HI(mapping));
2285}
2286
2287static void
2288storm_memset_spq_addr(struct bxe_softc *sc,
2289                      bus_addr_t       mapping,
2290                      uint16_t         abs_fid)
2291{
2292    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294    __storm_memset_dma_mapping(sc, addr, mapping);
2295}
2296
2297static void
2298storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                      uint16_t         abs_fid,
2300                      uint16_t         pf_id)
2301{
2302    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306}
2307
2308static void
2309storm_memset_func_en(struct bxe_softc *sc,
2310                     uint16_t         abs_fid,
2311                     uint8_t          enable)
2312{
2313    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317}
2318
2319static void
2320storm_memset_eq_data(struct bxe_softc       *sc,
2321                     struct event_ring_data *eq_data,
2322                     uint16_t               pfid)
2323{
2324    uint32_t addr;
2325    size_t size;
2326
2327    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328    size = sizeof(struct event_ring_data);
2329    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330}
2331
2332static void
2333storm_memset_eq_prod(struct bxe_softc *sc,
2334                     uint16_t         eq_prod,
2335                     uint16_t         pfid)
2336{
2337    uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339    REG_WR16(sc, addr, eq_prod);
2340}
2341
2342/*
2343 * Post a slowpath command.
2344 *
2345 * A slowpath command is used to propogate a configuration change through
2346 * the controller in a controlled manner, allowing each STORM processor and
2347 * other H/W blocks to phase in the change.  The commands sent on the
2348 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349 * completion of the ramrod will occur in different ways.  Here's a
2350 * breakdown of ramrods and how they complete:
2351 *
2352 * RAMROD_CMD_ID_ETH_PORT_SETUP
2353 *   Used to setup the leading connection on a port.  Completes on the
2354 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355 *
2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357 *   Used to setup an additional connection on a port.  Completes on the
2358 *   RCQ of the multi-queue/RSS connection being initialized.
2359 *
2360 * RAMROD_CMD_ID_ETH_STAT_QUERY
2361 *   Used to force the storm processors to update the statistics database
2362 *   in host memory.  This ramrod is send on the leading connection CID and
2363 *   completes as an index increment of the CSTORM on the default status
2364 *   block.
2365 *
2366 * RAMROD_CMD_ID_ETH_UPDATE
2367 *   Used to update the state of the leading connection, usually to udpate
2368 *   the RSS indirection table.  Completes on the RCQ of the leading
2369 *   connection. (Not currently used under FreeBSD until OS support becomes
2370 *   available.)
2371 *
2372 * RAMROD_CMD_ID_ETH_HALT
2373 *   Used when tearing down a connection prior to driver unload.  Completes
2374 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375 *   use this on the leading connection.
2376 *
2377 * RAMROD_CMD_ID_ETH_SET_MAC
2378 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379 *   the RCQ of the leading connection.
2380 *
2381 * RAMROD_CMD_ID_ETH_CFC_DEL
2382 *   Used when tearing down a conneciton prior to driver unload.  Completes
2383 *   on the RCQ of the leading connection (since the current connection
2384 *   has been completely removed from controller memory).
2385 *
2386 * RAMROD_CMD_ID_ETH_PORT_DEL
2387 *   Used to tear down the leading connection prior to driver unload,
2388 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389 *   default status block.
2390 *
2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393 *   RSS connection that is being offloaded.  (Not currently used under
2394 *   FreeBSD.)
2395 *
2396 * There can only be one command pending per function.
2397 *
2398 * Returns:
2399 *   0 = Success, !0 = Failure.
2400 */
2401
2402/* must be called under the spq lock */
2403static inline
2404struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405{
2406    struct eth_spe *next_spe = sc->spq_prod_bd;
2407
2408    if (sc->spq_prod_bd == sc->spq_last_bd) {
2409        /* wrap back to the first eth_spq */
2410        sc->spq_prod_bd = sc->spq;
2411        sc->spq_prod_idx = 0;
2412    } else {
2413        sc->spq_prod_bd++;
2414        sc->spq_prod_idx++;
2415    }
2416
2417    return (next_spe);
2418}
2419
2420/* must be called under the spq lock */
2421static inline
2422void bxe_sp_prod_update(struct bxe_softc *sc)
2423{
2424    int func = SC_FUNC(sc);
2425
2426    /*
2427     * Make sure that BD data is updated before writing the producer.
2428     * BD data is written to the memory, the producer is read from the
2429     * memory, thus we need a full memory barrier to ensure the ordering.
2430     */
2431    mb();
2432
2433    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434             sc->spq_prod_idx);
2435
2436    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                      BUS_SPACE_BARRIER_WRITE);
2438}
2439
2440/**
2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442 *
2443 * @cmd:      command to check
2444 * @cmd_type: command type
2445 */
2446static inline
2447int bxe_is_contextless_ramrod(int cmd,
2448                              int cmd_type)
2449{
2450    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457        return (TRUE);
2458    } else {
2459        return (FALSE);
2460    }
2461}
2462
2463/**
2464 * bxe_sp_post - place a single command on an SP ring
2465 *
2466 * @sc:         driver handle
2467 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468 * @cid:        SW CID the command is related to
2469 * @data_hi:    command private data address (high 32 bits)
2470 * @data_lo:    command private data address (low 32 bits)
2471 * @cmd_type:   command type (e.g. NONE, ETH)
2472 *
2473 * SP data is handled as if it's always an address pair, thus data fields are
2474 * not swapped to little endian in upper functions. Instead this function swaps
2475 * data as if it's two uint32 fields.
2476 */
2477int
2478bxe_sp_post(struct bxe_softc *sc,
2479            int              command,
2480            int              cid,
2481            uint32_t         data_hi,
2482            uint32_t         data_lo,
2483            int              cmd_type)
2484{
2485    struct eth_spe *spe;
2486    uint16_t type;
2487    int common;
2488
2489    common = bxe_is_contextless_ramrod(command, cmd_type);
2490
2491    BXE_SP_LOCK(sc);
2492
2493    if (common) {
2494        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495            BLOGE(sc, "EQ ring is full!\n");
2496            BXE_SP_UNLOCK(sc);
2497            return (-1);
2498        }
2499    } else {
2500        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501            BLOGE(sc, "SPQ ring is full!\n");
2502            BXE_SP_UNLOCK(sc);
2503            return (-1);
2504        }
2505    }
2506
2507    spe = bxe_sp_get_next(sc);
2508
2509    /* CID needs port number to be encoded int it */
2510    spe->hdr.conn_and_cmd_data =
2511        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512
2513    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514
2515    /* TBD: Check if it works for VFs */
2516    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517             SPE_HDR_FUNCTION_ID);
2518
2519    spe->hdr.type = htole16(type);
2520
2521    spe->data.update_data_addr.hi = htole32(data_hi);
2522    spe->data.update_data_addr.lo = htole32(data_lo);
2523
2524    /*
2525     * It's ok if the actual decrement is issued towards the memory
2526     * somewhere between the lock and unlock. Thus no more explict
2527     * memory barrier is needed.
2528     */
2529    if (common) {
2530        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531    } else {
2532        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533    }
2534
2535    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538    BLOGD(sc, DBG_SP,
2539          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540          sc->spq_prod_idx,
2541          (uint32_t)U64_HI(sc->spq_dma.paddr),
2542          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543          command,
2544          common,
2545          HW_CID(sc, cid),
2546          data_hi,
2547          data_lo,
2548          type,
2549          atomic_load_acq_long(&sc->cq_spq_left),
2550          atomic_load_acq_long(&sc->eq_spq_left));
2551
2552    bxe_sp_prod_update(sc);
2553
2554    BXE_SP_UNLOCK(sc);
2555    return (0);
2556}
2557
2558/**
2559 * bxe_debug_print_ind_table - prints the indirection table configuration.
2560 *
2561 * @sc: driver hanlde
2562 * @p:  pointer to rss configuration
2563 */
2564#if 0
2565static void
2566bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                          struct ecore_config_rss_params *p)
2568{
2569    int i;
2570
2571    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575
2576        /* Print 4 bytes in a line */
2577        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578            (((i + 1) & 0x3) == 0)) {
2579            BLOGD(sc, DBG_LOAD, "\n");
2580            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581        }
2582    }
2583
2584    BLOGD(sc, DBG_LOAD, "\n");
2585}
2586#endif
2587
2588/*
2589 * FreeBSD Device probe function.
2590 *
2591 * Compares the device found to the driver's list of supported devices and
2592 * reports back to the bsd loader whether this is the right driver for the device.
2593 * This is the driver entry function called from the "kldload" command.
2594 *
2595 * Returns:
2596 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597 */
2598static int
2599bxe_probe(device_t dev)
2600{
2601    struct bxe_softc *sc;
2602    struct bxe_device_type *t;
2603    char *descbuf;
2604    uint16_t did, sdid, svid, vid;
2605
2606    /* Find our device structure */
2607    sc = device_get_softc(dev);
2608    sc->dev = dev;
2609    t = bxe_devs;
2610
2611    /* Get the data for the device to be probed. */
2612    vid  = pci_get_vendor(dev);
2613    did  = pci_get_device(dev);
2614    svid = pci_get_subvendor(dev);
2615    sdid = pci_get_subdevice(dev);
2616
2617    BLOGD(sc, DBG_LOAD,
2618          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620
2621    /* Look through the list of known devices for a match. */
2622    while (t->bxe_name != NULL) {
2623        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627            if (descbuf == NULL)
2628                return (ENOMEM);
2629
2630            /* Print out the device identity. */
2631            snprintf(descbuf, BXE_DEVDESC_MAX,
2632                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                     (((pci_read_config(dev, PCIR_REVID, 4) &
2634                        0xf0) >> 4) + 'A'),
2635                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                     BXE_DRIVER_VERSION);
2637
2638            device_set_desc_copy(dev, descbuf);
2639            free(descbuf, M_TEMP);
2640            return (BUS_PROBE_DEFAULT);
2641        }
2642        t++;
2643    }
2644
2645    return (ENXIO);
2646}
2647
2648static void
2649bxe_init_mutexes(struct bxe_softc *sc)
2650{
2651#ifdef BXE_CORE_LOCK_SX
2652    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653             "bxe%d_core_lock", sc->unit);
2654    sx_init(&sc->core_sx, sc->core_sx_name);
2655#else
2656    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657             "bxe%d_core_lock", sc->unit);
2658    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659#endif
2660
2661    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662             "bxe%d_sp_lock", sc->unit);
2663    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664
2665    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666             "bxe%d_dmae_lock", sc->unit);
2667    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668
2669    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670             "bxe%d_phy_lock", sc->unit);
2671    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672
2673    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674             "bxe%d_fwmb_lock", sc->unit);
2675    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676
2677    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678             "bxe%d_print_lock", sc->unit);
2679    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680
2681    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682             "bxe%d_stats_lock", sc->unit);
2683    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684
2685    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686             "bxe%d_mcast_lock", sc->unit);
2687    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688}
2689
2690static void
2691bxe_release_mutexes(struct bxe_softc *sc)
2692{
2693#ifdef BXE_CORE_LOCK_SX
2694    sx_destroy(&sc->core_sx);
2695#else
2696    if (mtx_initialized(&sc->core_mtx)) {
2697        mtx_destroy(&sc->core_mtx);
2698    }
2699#endif
2700
2701    if (mtx_initialized(&sc->sp_mtx)) {
2702        mtx_destroy(&sc->sp_mtx);
2703    }
2704
2705    if (mtx_initialized(&sc->dmae_mtx)) {
2706        mtx_destroy(&sc->dmae_mtx);
2707    }
2708
2709    if (mtx_initialized(&sc->port.phy_mtx)) {
2710        mtx_destroy(&sc->port.phy_mtx);
2711    }
2712
2713    if (mtx_initialized(&sc->fwmb_mtx)) {
2714        mtx_destroy(&sc->fwmb_mtx);
2715    }
2716
2717    if (mtx_initialized(&sc->print_mtx)) {
2718        mtx_destroy(&sc->print_mtx);
2719    }
2720
2721    if (mtx_initialized(&sc->stats_mtx)) {
2722        mtx_destroy(&sc->stats_mtx);
2723    }
2724
2725    if (mtx_initialized(&sc->mcast_mtx)) {
2726        mtx_destroy(&sc->mcast_mtx);
2727    }
2728}
2729
2730static void
2731bxe_tx_disable(struct bxe_softc* sc)
2732{
2733    struct ifnet *ifp = sc->ifnet;
2734
2735    /* tell the stack the driver is stopped and TX queue is full */
2736    if (ifp != NULL) {
2737        ifp->if_drv_flags = 0;
2738    }
2739}
2740
2741static void
2742bxe_drv_pulse(struct bxe_softc *sc)
2743{
2744    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745             sc->fw_drv_pulse_wr_seq);
2746}
2747
2748static inline uint16_t
2749bxe_tx_avail(struct bxe_softc *sc,
2750             struct bxe_fastpath *fp)
2751{
2752    int16_t  used;
2753    uint16_t prod;
2754    uint16_t cons;
2755
2756    prod = fp->tx_bd_prod;
2757    cons = fp->tx_bd_cons;
2758
2759    used = SUB_S16(prod, cons);
2760
2761#if 0
2762    KASSERT((used < 0), ("used tx bds < 0"));
2763    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765            ("invalid number of tx bds used"));
2766#endif
2767
2768    return (int16_t)(sc->tx_ring_size) - used;
2769}
2770
2771static inline int
2772bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773{
2774    uint16_t hw_cons;
2775
2776    mb(); /* status block fields can change */
2777    hw_cons = le16toh(*fp->tx_cons_sb);
2778    return (hw_cons != fp->tx_pkt_cons);
2779}
2780
2781static inline uint8_t
2782bxe_has_tx_work(struct bxe_fastpath *fp)
2783{
2784    /* expand this for multi-cos if ever supported */
2785    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786}
2787
2788static inline int
2789bxe_has_rx_work(struct bxe_fastpath *fp)
2790{
2791    uint16_t rx_cq_cons_sb;
2792
2793    mb(); /* status block fields can change */
2794    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796        rx_cq_cons_sb++;
2797    return (fp->rx_cq_cons != rx_cq_cons_sb);
2798}
2799
2800static void
2801bxe_sp_event(struct bxe_softc    *sc,
2802             struct bxe_fastpath *fp,
2803             union eth_rx_cqe    *rr_cqe)
2804{
2805    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809
2810    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812
2813#if 0
2814    /*
2815     * If cid is within VF range, replace the slowpath object with the
2816     * one corresponding to this VF
2817     */
2818    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820    }
2821#endif
2822
2823    switch (command) {
2824    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826        drv_cmd = ECORE_Q_CMD_UPDATE;
2827        break;
2828
2829    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831        drv_cmd = ECORE_Q_CMD_SETUP;
2832        break;
2833
2834    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837        break;
2838
2839    case (RAMROD_CMD_ID_ETH_HALT):
2840        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841        drv_cmd = ECORE_Q_CMD_HALT;
2842        break;
2843
2844    case (RAMROD_CMD_ID_ETH_TERMINATE):
2845        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846        drv_cmd = ECORE_Q_CMD_TERMINATE;
2847        break;
2848
2849    case (RAMROD_CMD_ID_ETH_EMPTY):
2850        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851        drv_cmd = ECORE_Q_CMD_EMPTY;
2852        break;
2853
2854    default:
2855        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856              command, fp->index);
2857        return;
2858    }
2859
2860    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862        /*
2863         * q_obj->complete_cmd() failure means that this was
2864         * an unexpected completion.
2865         *
2866         * In this case we don't want to increase the sc->spq_left
2867         * because apparently we haven't sent this command the first
2868         * place.
2869         */
2870        // bxe_panic(sc, ("Unexpected SP completion\n"));
2871        return;
2872    }
2873
2874#if 0
2875    /* SRIOV: reschedule any 'in_progress' operations */
2876    bxe_iov_sp_event(sc, cid, TRUE);
2877#endif
2878
2879    atomic_add_acq_long(&sc->cq_spq_left, 1);
2880
2881    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882          atomic_load_acq_long(&sc->cq_spq_left));
2883
2884#if 0
2885    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887        /*
2888         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890         * prevent case that both bits are cleared. At the end of load/unload
2891         * driver checks that sp_state is cleared and this order prevents
2892         * races.
2893         */
2894        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895        wmb();
2896        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897
2898        /* schedule the sp task as MCP ack is required */
2899        bxe_schedule_sp_task(sc);
2900    }
2901#endif
2902}
2903
2904/*
2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907 * the current aggregation queue as in-progress.
2908 */
2909static void
2910bxe_tpa_start(struct bxe_softc            *sc,
2911              struct bxe_fastpath         *fp,
2912              uint16_t                    queue,
2913              uint16_t                    cons,
2914              uint16_t                    prod,
2915              struct eth_fast_path_rx_cqe *cqe)
2916{
2917    struct bxe_sw_rx_bd tmp_bd;
2918    struct bxe_sw_rx_bd *rx_buf;
2919    struct eth_rx_bd *rx_bd;
2920    int max_agg_queues;
2921    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922    uint16_t index;
2923
2924    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                       "cons=%d prod=%d\n",
2926          fp->index, queue, cons, prod);
2927
2928    max_agg_queues = MAX_AGG_QS(sc);
2929
2930    KASSERT((queue < max_agg_queues),
2931            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932             fp->index, queue, max_agg_queues));
2933
2934    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936             fp->index, queue));
2937
2938    /* copy the existing mbuf and mapping from the TPA pool */
2939    tmp_bd = tpa_info->bd;
2940
2941    if (tmp_bd.m == NULL) {
2942        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943              fp->index, queue);
2944        /* XXX Error handling? */
2945        return;
2946    }
2947
2948    /* change the TPA queue to the start state */
2949    tpa_info->state            = BXE_TPA_STATE_START;
2950    tpa_info->placement_offset = cqe->placement_offset;
2951    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954
2955    fp->rx_tpa_queue_used |= (1 << queue);
2956
2957    /*
2958     * If all the buffer descriptors are filled with mbufs then fill in
2959     * the current consumer index with a new BD. Else if a maximum Rx
2960     * buffer limit is imposed then fill in the next producer index.
2961     */
2962    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                prod : cons;
2964
2965    /* move the received mbuf and mapping to TPA pool */
2966    tpa_info->bd = fp->rx_mbuf_chain[cons];
2967
2968    /* release any existing RX BD mbuf mappings */
2969    if (cons != index) {
2970        rx_buf = &fp->rx_mbuf_chain[cons];
2971
2972        if (rx_buf->m_map != NULL) {
2973            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                            BUS_DMASYNC_POSTREAD);
2975            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976        }
2977
2978        /*
2979         * We get here when the maximum number of rx buffers is less than
2980         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981         * it out here without concern of a memory leak.
2982         */
2983        fp->rx_mbuf_chain[cons].m = NULL;
2984    }
2985
2986    /* update the Rx SW BD with the mbuf info from the TPA pool */
2987    fp->rx_mbuf_chain[index] = tmp_bd;
2988
2989    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990    rx_bd = &fp->rx_chain[index];
2991    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993}
2994
2995/*
2996 * When a TPA aggregation is completed, loop through the individual mbufs
2997 * of the aggregation, combining them into a single mbuf which will be sent
2998 * up the stack. Refill all freed SGEs with mbufs as we go along.
2999 */
3000static int
3001bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                   struct bxe_fastpath       *fp,
3003                   struct bxe_sw_tpa_info    *tpa_info,
3004                   uint16_t                  queue,
3005                   uint16_t                  pages,
3006                   struct mbuf               *m,
3007			       struct eth_end_agg_rx_cqe *cqe,
3008                   uint16_t                  cqe_idx)
3009{
3010    struct mbuf *m_frag;
3011    uint32_t frag_len, frag_size, i;
3012    uint16_t sge_idx;
3013    int rc = 0;
3014    int j;
3015
3016    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017
3018    BLOGD(sc, DBG_LRO,
3019          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021
3022    /* make sure the aggregated frame is not too big to handle */
3023    if (pages > 8 * PAGES_PER_SGE) {
3024        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027              tpa_info->len_on_bd, frag_size);
3028        bxe_panic(sc, ("sge page count error\n"));
3029        return (EINVAL);
3030    }
3031
3032    /*
3033     * Scan through the scatter gather list pulling individual mbufs into a
3034     * single mbuf for the host stack.
3035     */
3036    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038
3039        /*
3040         * Firmware gives the indices of the SGE as if the ring is an array
3041         * (meaning that the "next" element will consume 2 indices).
3042         */
3043        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044
3045        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3047              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048
3049        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050
3051        /* allocate a new mbuf for the SGE */
3052        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053        if (rc) {
3054            /* Leave all remaining SGEs in the ring! */
3055            return (rc);
3056        }
3057
3058        /* update the fragment length */
3059        m_frag->m_len = frag_len;
3060
3061        /* concatenate the fragment to the head mbuf */
3062        m_cat(m, m_frag);
3063        fp->eth_q_stats.mbuf_alloc_sge--;
3064
3065        /* update the TPA mbuf size and remaining fragment size */
3066        m->m_pkthdr.len += frag_len;
3067        frag_size -= frag_len;
3068    }
3069
3070    BLOGD(sc, DBG_LRO,
3071          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072          fp->index, queue, frag_size);
3073
3074    return (rc);
3075}
3076
3077static inline void
3078bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079{
3080    int i, j;
3081
3082    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084
3085        for (j = 0; j < 2; j++) {
3086            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087            idx--;
3088        }
3089    }
3090}
3091
3092static inline void
3093bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094{
3095    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097
3098    /*
3099     * Clear the two last indices in the page to 1. These are the indices that
3100     * correspond to the "next" element, hence will never be indicated and
3101     * should be removed from the calculations.
3102     */
3103    bxe_clear_sge_mask_next_elems(fp);
3104}
3105
3106static inline void
3107bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                        uint16_t            idx)
3109{
3110    uint16_t last_max = fp->last_max_sge;
3111
3112    if (SUB_S16(idx, last_max) > 0) {
3113        fp->last_max_sge = idx;
3114    }
3115}
3116
3117static inline void
3118bxe_update_sge_prod(struct bxe_softc          *sc,
3119                    struct bxe_fastpath       *fp,
3120                    uint16_t                  sge_len,
3121                    struct eth_end_agg_rx_cqe *cqe)
3122{
3123    uint16_t last_max, last_elem, first_elem;
3124    uint16_t delta = 0;
3125    uint16_t i;
3126
3127    if (!sge_len) {
3128        return;
3129    }
3130
3131    /* first mark all used pages */
3132    for (i = 0; i < sge_len; i++) {
3133        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135    }
3136
3137    BLOGD(sc, DBG_LRO,
3138          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139          fp->index, sge_len - 1,
3140          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141
3142    /* assume that the last SGE index is the biggest */
3143    bxe_update_last_max_sge(fp,
3144                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145
3146    last_max = RX_SGE(fp->last_max_sge);
3147    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149
3150    /* if ring is not full */
3151    if (last_elem + 1 != first_elem) {
3152        last_elem++;
3153    }
3154
3155    /* now update the prod */
3156    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157        if (__predict_true(fp->sge_mask[i])) {
3158            break;
3159        }
3160
3161        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162        delta += BIT_VEC64_ELEM_SZ;
3163    }
3164
3165    if (delta > 0) {
3166        fp->rx_sge_prod += delta;
3167        /* clear page-end entries */
3168        bxe_clear_sge_mask_next_elems(fp);
3169    }
3170
3171    BLOGD(sc, DBG_LRO,
3172          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174}
3175
3176/*
3177 * The aggregation on the current TPA queue has completed. Pull the individual
3178 * mbuf fragments together into a single mbuf, perform all necessary checksum
3179 * calculations, and send the resuting mbuf to the stack.
3180 */
3181static void
3182bxe_tpa_stop(struct bxe_softc          *sc,
3183             struct bxe_fastpath       *fp,
3184             struct bxe_sw_tpa_info    *tpa_info,
3185             uint16_t                  queue,
3186             uint16_t                  pages,
3187			 struct eth_end_agg_rx_cqe *cqe,
3188             uint16_t                  cqe_idx)
3189{
3190    struct ifnet *ifp = sc->ifnet;
3191    struct mbuf *m;
3192    int rc = 0;
3193
3194    BLOGD(sc, DBG_LRO,
3195          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196          fp->index, queue, tpa_info->placement_offset,
3197          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198
3199    m = tpa_info->bd.m;
3200
3201    /* allocate a replacement before modifying existing mbuf */
3202    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203    if (rc) {
3204        /* drop the frame and log an error */
3205        fp->eth_q_stats.rx_soft_errors++;
3206        goto bxe_tpa_stop_exit;
3207    }
3208
3209    /* we have a replacement, fixup the current mbuf */
3210    m_adj(m, tpa_info->placement_offset);
3211    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212
3213    /* mark the checksums valid (taken care of by the firmware) */
3214    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216    m->m_pkthdr.csum_data = 0xffff;
3217    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                               CSUM_IP_VALID   |
3219                               CSUM_DATA_VALID |
3220                               CSUM_PSEUDO_HDR);
3221
3222    /* aggregate all of the SGEs into a single mbuf */
3223    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224    if (rc) {
3225        /* drop the packet and log an error */
3226        fp->eth_q_stats.rx_soft_errors++;
3227        m_freem(m);
3228    } else {
3229        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231            m->m_flags |= M_VLANTAG;
3232        }
3233
3234        /* assign packet to this interface interface */
3235        m->m_pkthdr.rcvif = ifp;
3236
3237#if __FreeBSD_version >= 800000
3238        /* specify what RSS queue was used for this flow */
3239        m->m_pkthdr.flowid = fp->index;
3240        m->m_flags |= M_FLOWID;
3241#endif
3242
3243        ifp->if_ipackets++;
3244        fp->eth_q_stats.rx_tpa_pkts++;
3245
3246        /* pass the frame to the stack */
3247        (*ifp->if_input)(ifp, m);
3248    }
3249
3250    /* we passed an mbuf up the stack or dropped the frame */
3251    fp->eth_q_stats.mbuf_alloc_tpa--;
3252
3253bxe_tpa_stop_exit:
3254
3255    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256    fp->rx_tpa_queue_used &= ~(1 << queue);
3257}
3258
3259static uint8_t
3260bxe_rxeof(struct bxe_softc    *sc,
3261          struct bxe_fastpath *fp)
3262{
3263    struct ifnet *ifp = sc->ifnet;
3264    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266    int rx_pkts = 0;
3267    int rc;
3268
3269    BXE_FP_RX_LOCK(fp);
3270
3271    /* CQ "next element" is of the size of the regular element */
3272    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274        hw_cq_cons++;
3275    }
3276
3277    bd_cons = fp->rx_bd_cons;
3278    bd_prod = fp->rx_bd_prod;
3279    bd_prod_fw = bd_prod;
3280    sw_cq_cons = fp->rx_cq_cons;
3281    sw_cq_prod = fp->rx_cq_prod;
3282
3283    /*
3284     * Memory barrier necessary as speculative reads of the rx
3285     * buffer can be ahead of the index in the status block
3286     */
3287    rmb();
3288
3289    BLOGD(sc, DBG_RX,
3290          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291          fp->index, hw_cq_cons, sw_cq_cons);
3292
3293    while (sw_cq_cons != hw_cq_cons) {
3294        struct bxe_sw_rx_bd *rx_buf = NULL;
3295        union eth_rx_cqe *cqe;
3296        struct eth_fast_path_rx_cqe *cqe_fp;
3297        uint8_t cqe_fp_flags;
3298        enum eth_rx_cqe_type cqe_fp_type;
3299        uint16_t len, pad;
3300        struct mbuf *m = NULL;
3301
3302        comp_ring_cons = RCQ(sw_cq_cons);
3303        bd_prod = RX_BD(bd_prod);
3304        bd_cons = RX_BD(bd_cons);
3305
3306        cqe          = &fp->rcq_chain[comp_ring_cons];
3307        cqe_fp       = &cqe->fast_path_cqe;
3308        cqe_fp_flags = cqe_fp->type_error_flags;
3309        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310
3311        BLOGD(sc, DBG_RX,
3312              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315              fp->index,
3316              hw_cq_cons,
3317              sw_cq_cons,
3318              bd_prod,
3319              bd_cons,
3320              CQE_TYPE(cqe_fp_flags),
3321              cqe_fp_flags,
3322              cqe_fp->status_flags,
3323              le32toh(cqe_fp->rss_hash_result),
3324              le16toh(cqe_fp->vlan_tag),
3325              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326
3327        /* is this a slowpath msg? */
3328        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329            bxe_sp_event(sc, fp, cqe);
3330            goto next_cqe;
3331        }
3332
3333        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334
3335        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336            struct bxe_sw_tpa_info *tpa_info;
3337            uint16_t frag_size, pages;
3338            uint8_t queue;
3339
3340#if 0
3341            /* sanity check */
3342            if (!fp->tpa_enable &&
3343                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                      CQE_TYPE(cqe_fp_type));
3346            }
3347#endif
3348
3349            if (CQE_TYPE_START(cqe_fp_type)) {
3350                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                              bd_cons, bd_prod, cqe_fp);
3352                m = NULL; /* packet not ready yet */
3353                goto next_rx;
3354            }
3355
3356            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358
3359            queue = cqe->end_agg_cqe.queue_index;
3360            tpa_info = &fp->rx_tpa_info[queue];
3361
3362            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                  fp->index, queue);
3364
3365            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                         tpa_info->len_on_bd);
3367            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368
3369            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                         &cqe->end_agg_cqe, comp_ring_cons);
3371
3372            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373
3374            goto next_cqe;
3375        }
3376
3377        /* non TPA */
3378
3379        /* is this an error packet? */
3380        if (__predict_false(cqe_fp_flags &
3381                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383            fp->eth_q_stats.rx_soft_errors++;
3384            goto next_rx;
3385        }
3386
3387        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388        pad = cqe_fp->placement_offset;
3389
3390        m = rx_buf->m;
3391
3392        if (__predict_false(m == NULL)) {
3393            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                  bd_cons, fp->index);
3395            goto next_rx;
3396        }
3397
3398        /* XXX double copy if packet length under a threshold */
3399
3400        /*
3401         * If all the buffer descriptors are filled with mbufs then fill in
3402         * the current consumer index with a new BD. Else if a maximum Rx
3403         * buffer limit is imposed then fill in the next producer index.
3404         */
3405        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                      bd_prod : bd_cons);
3408        if (rc != 0) {
3409            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                  fp->index, rc);
3411            fp->eth_q_stats.rx_soft_errors++;
3412
3413            if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                /* copy this consumer index to the producer index */
3415                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                       sizeof(struct bxe_sw_rx_bd));
3417                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418            }
3419
3420            goto next_rx;
3421        }
3422
3423        /* current mbuf was detached from the bd */
3424        fp->eth_q_stats.mbuf_alloc_rx--;
3425
3426        /* we allocated a replacement mbuf, fixup the current one */
3427        m_adj(m, pad);
3428        m->m_pkthdr.len = m->m_len = len;
3429
3430        /* assign packet to this interface interface */
3431        m->m_pkthdr.rcvif = ifp;
3432
3433        /* assume no hardware checksum has complated */
3434        m->m_pkthdr.csum_flags = 0;
3435
3436        /* validate checksum if offload enabled */
3437        if (ifp->if_capenable & IFCAP_RXCSUM) {
3438            /* check for a valid IP frame */
3439            if (!(cqe->fast_path_cqe.status_flags &
3440                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                if (__predict_false(cqe_fp_flags &
3443                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                    fp->eth_q_stats.rx_hw_csum_errors++;
3445                } else {
3446                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                }
3449            }
3450
3451            /* check for a valid TCP/UDP frame */
3452            if (!(cqe->fast_path_cqe.status_flags &
3453                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                if (__predict_false(cqe_fp_flags &
3455                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                    fp->eth_q_stats.rx_hw_csum_errors++;
3457                } else {
3458                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                    m->m_pkthdr.csum_data = 0xFFFF;
3460                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                               CSUM_PSEUDO_HDR);
3462                }
3463            }
3464        }
3465
3466        /* if there is a VLAN tag then flag that info */
3467        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469            m->m_flags |= M_VLANTAG;
3470        }
3471
3472#if __FreeBSD_version >= 800000
3473        /* specify what RSS queue was used for this flow */
3474        m->m_pkthdr.flowid = fp->index;
3475        m->m_flags |= M_FLOWID;
3476#endif
3477
3478next_rx:
3479
3480        bd_cons    = RX_BD_NEXT(bd_cons);
3481        bd_prod    = RX_BD_NEXT(bd_prod);
3482        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483
3484        /* pass the frame to the stack */
3485        if (__predict_true(m != NULL)) {
3486            ifp->if_ipackets++;
3487            rx_pkts++;
3488            (*ifp->if_input)(ifp, m);
3489        }
3490
3491next_cqe:
3492
3493        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495
3496        /* limit spinning on the queue */
3497        if (rx_pkts == sc->rx_budget) {
3498            fp->eth_q_stats.rx_budget_reached++;
3499            break;
3500        }
3501    } /* while work to do */
3502
3503    fp->rx_bd_cons = bd_cons;
3504    fp->rx_bd_prod = bd_prod_fw;
3505    fp->rx_cq_cons = sw_cq_cons;
3506    fp->rx_cq_prod = sw_cq_prod;
3507
3508    /* Update producers */
3509    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510
3511    fp->eth_q_stats.rx_pkts += rx_pkts;
3512    fp->eth_q_stats.rx_calls++;
3513
3514    BXE_FP_RX_UNLOCK(fp);
3515
3516    return (sw_cq_cons != hw_cq_cons);
3517}
3518
3519static uint16_t
3520bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                struct bxe_fastpath *fp,
3522                uint16_t            idx)
3523{
3524    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525    struct eth_tx_start_bd *tx_start_bd;
3526    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527    uint16_t new_cons;
3528    int nbd;
3529
3530    /* unmap the mbuf from non-paged memory */
3531    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532
3533    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534    nbd = le16toh(tx_start_bd->nbd) - 1;
3535
3536#if 0
3537    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538        bxe_panic(sc, ("BAD nbd!\n"));
3539    }
3540#endif
3541
3542    new_cons = (tx_buf->first_bd + nbd);
3543
3544#if 0
3545    struct eth_tx_bd *tx_data_bd;
3546
3547    /*
3548     * The following code doesn't do anything but is left here
3549     * for clarity on what the new value of new_cons skipped.
3550     */
3551
3552    /* get the next bd */
3553    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554
3555    /* skip the parse bd */
3556    --nbd;
3557    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558
3559    /* skip the TSO split header bd since they have no mapping */
3560    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561        --nbd;
3562        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563    }
3564
3565    /* now free frags */
3566    while (nbd > 0) {
3567        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568        if (--nbd) {
3569            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570        }
3571    }
3572#endif
3573
3574    /* free the mbuf */
3575    if (__predict_true(tx_buf->m != NULL)) {
3576        m_freem(tx_buf->m);
3577        fp->eth_q_stats.mbuf_alloc_tx--;
3578    } else {
3579        fp->eth_q_stats.tx_chain_lost_mbuf++;
3580    }
3581
3582    tx_buf->m = NULL;
3583    tx_buf->first_bd = 0;
3584
3585    return (new_cons);
3586}
3587
3588/* transmit timeout watchdog */
3589static int
3590bxe_watchdog(struct bxe_softc    *sc,
3591             struct bxe_fastpath *fp)
3592{
3593    BXE_FP_TX_LOCK(fp);
3594
3595    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596        BXE_FP_TX_UNLOCK(fp);
3597        return (0);
3598    }
3599
3600    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601
3602    BXE_FP_TX_UNLOCK(fp);
3603
3604    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606
3607    return (-1);
3608}
3609
3610/* processes transmit completions */
3611static uint8_t
3612bxe_txeof(struct bxe_softc    *sc,
3613          struct bxe_fastpath *fp)
3614{
3615    struct ifnet *ifp = sc->ifnet;
3616    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617    uint16_t tx_bd_avail;
3618
3619    BXE_FP_TX_LOCK_ASSERT(fp);
3620
3621    bd_cons = fp->tx_bd_cons;
3622    hw_cons = le16toh(*fp->tx_cons_sb);
3623    sw_cons = fp->tx_pkt_cons;
3624
3625    while (sw_cons != hw_cons) {
3626        pkt_cons = TX_BD(sw_cons);
3627
3628        BLOGD(sc, DBG_TX,
3629              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630              fp->index, hw_cons, sw_cons, pkt_cons);
3631
3632        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633
3634        sw_cons++;
3635    }
3636
3637    fp->tx_pkt_cons = sw_cons;
3638    fp->tx_bd_cons  = bd_cons;
3639
3640    BLOGD(sc, DBG_TX,
3641          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643
3644    mb();
3645
3646    tx_bd_avail = bxe_tx_avail(sc, fp);
3647
3648    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650    } else {
3651        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652    }
3653
3654    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655        /* reset the watchdog timer if there are pending transmits */
3656        fp->watchdog_timer = BXE_TX_TIMEOUT;
3657        return (TRUE);
3658    } else {
3659        /* clear watchdog when there are no pending transmits */
3660        fp->watchdog_timer = 0;
3661        return (FALSE);
3662    }
3663}
3664
3665static void
3666bxe_drain_tx_queues(struct bxe_softc *sc)
3667{
3668    struct bxe_fastpath *fp;
3669    int i, count;
3670
3671    /* wait until all TX fastpath tasks have completed */
3672    for (i = 0; i < sc->num_queues; i++) {
3673        fp = &sc->fp[i];
3674
3675        count = 1000;
3676
3677        while (bxe_has_tx_work(fp)) {
3678
3679            BXE_FP_TX_LOCK(fp);
3680            bxe_txeof(sc, fp);
3681            BXE_FP_TX_UNLOCK(fp);
3682
3683            if (count == 0) {
3684                BLOGE(sc, "Timeout waiting for fp[%d] "
3685                          "transmits to complete!\n", i);
3686                bxe_panic(sc, ("tx drain failure\n"));
3687                return;
3688            }
3689
3690            count--;
3691            DELAY(1000);
3692            rmb();
3693        }
3694    }
3695
3696    return;
3697}
3698
3699static int
3700bxe_del_all_macs(struct bxe_softc          *sc,
3701                 struct ecore_vlan_mac_obj *mac_obj,
3702                 int                       mac_type,
3703                 uint8_t                   wait_for_comp)
3704{
3705    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706    int rc;
3707
3708    /* wait for completion of requested */
3709    if (wait_for_comp) {
3710        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711    }
3712
3713    /* Set the mac type of addresses we want to clear */
3714    bxe_set_bit(mac_type, &vlan_mac_flags);
3715
3716    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717    if (rc < 0) {
3718        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719    }
3720
3721    return (rc);
3722}
3723
3724static int
3725bxe_fill_accept_flags(struct bxe_softc *sc,
3726                      uint32_t         rx_mode,
3727                      unsigned long    *rx_accept_flags,
3728                      unsigned long    *tx_accept_flags)
3729{
3730    /* Clear the flags first */
3731    *rx_accept_flags = 0;
3732    *tx_accept_flags = 0;
3733
3734    switch (rx_mode) {
3735    case BXE_RX_MODE_NONE:
3736        /*
3737         * 'drop all' supersedes any accept flags that may have been
3738         * passed to the function.
3739         */
3740        break;
3741
3742    case BXE_RX_MODE_NORMAL:
3743        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746
3747        /* internal switching mode */
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751
3752        break;
3753
3754    case BXE_RX_MODE_ALLMULTI:
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758
3759        /* internal switching mode */
3760        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763
3764        break;
3765
3766    case BXE_RX_MODE_PROMISC:
3767        /*
3768         * According to deffinition of SI mode, iface in promisc mode
3769         * should receive matched and unmatched (in resolution of port)
3770         * unicast packets.
3771         */
3772        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776
3777        /* internal switching mode */
3778        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780
3781        if (IS_MF_SI(sc)) {
3782            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783        } else {
3784            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785        }
3786
3787        break;
3788
3789    default:
3790        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791        return (-1);
3792    }
3793
3794    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795    if (rx_mode != BXE_RX_MODE_NONE) {
3796        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798    }
3799
3800    return (0);
3801}
3802
3803static int
3804bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                  uint8_t          cl_id,
3806                  unsigned long    rx_mode_flags,
3807                  unsigned long    rx_accept_flags,
3808                  unsigned long    tx_accept_flags,
3809                  unsigned long    ramrod_flags)
3810{
3811    struct ecore_rx_mode_ramrod_params ramrod_param;
3812    int rc;
3813
3814    memset(&ramrod_param, 0, sizeof(ramrod_param));
3815
3816    /* Prepare ramrod parameters */
3817    ramrod_param.cid = 0;
3818    ramrod_param.cl_id = cl_id;
3819    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820    ramrod_param.func_id = SC_FUNC(sc);
3821
3822    ramrod_param.pstate = &sc->sp_state;
3823    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824
3825    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827
3828    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829
3830    ramrod_param.ramrod_flags = ramrod_flags;
3831    ramrod_param.rx_mode_flags = rx_mode_flags;
3832
3833    ramrod_param.rx_accept_flags = rx_accept_flags;
3834    ramrod_param.tx_accept_flags = tx_accept_flags;
3835
3836    rc = ecore_config_rx_mode(sc, &ramrod_param);
3837    if (rc < 0) {
3838        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839        return (rc);
3840    }
3841
3842    return (0);
3843}
3844
3845static int
3846bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847{
3848    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850    int rc;
3851
3852    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                               &tx_accept_flags);
3854    if (rc) {
3855        return (rc);
3856    }
3857
3858    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860
3861    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                              rx_accept_flags, tx_accept_flags,
3864                              ramrod_flags));
3865}
3866
3867/* returns the "mcp load_code" according to global load_count array */
3868static int
3869bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870{
3871    int path = SC_PATH(sc);
3872    int port = SC_PORT(sc);
3873
3874    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875          path, load_count[path][0], load_count[path][1],
3876          load_count[path][2]);
3877    load_count[path][0]++;
3878    load_count[path][1 + port]++;
3879    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880          path, load_count[path][0], load_count[path][1],
3881          load_count[path][2]);
3882    if (load_count[path][0] == 1) {
3883        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884    } else if (load_count[path][1 + port] == 1) {
3885        return (FW_MSG_CODE_DRV_LOAD_PORT);
3886    } else {
3887        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888    }
3889}
3890
3891/* returns the "mcp load_code" according to global load_count array */
3892static int
3893bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894{
3895    int port = SC_PORT(sc);
3896    int path = SC_PATH(sc);
3897
3898    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899          path, load_count[path][0], load_count[path][1],
3900          load_count[path][2]);
3901    load_count[path][0]--;
3902    load_count[path][1 + port]--;
3903    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904          path, load_count[path][0], load_count[path][1],
3905          load_count[path][2]);
3906    if (load_count[path][0] == 0) {
3907        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908    } else if (load_count[path][1 + port] == 0) {
3909        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910    } else {
3911        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912    }
3913}
3914
3915/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916static uint32_t
3917bxe_send_unload_req(struct bxe_softc *sc,
3918                    int              unload_mode)
3919{
3920    uint32_t reset_code = 0;
3921#if 0
3922    int port = SC_PORT(sc);
3923    int path = SC_PATH(sc);
3924#endif
3925
3926    /* Select the UNLOAD request mode */
3927    if (unload_mode == UNLOAD_NORMAL) {
3928        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929    }
3930#if 0
3931    else if (sc->flags & BXE_NO_WOL_FLAG) {
3932        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933    } else if (sc->wol) {
3934        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935        uint8_t *mac_addr = sc->dev->dev_addr;
3936        uint32_t val;
3937        uint16_t pmc;
3938
3939        /*
3940         * The mac address is written to entries 1-4 to
3941         * preserve entry 0 which is used by the PMF
3942         */
3943        uint8_t entry = (SC_VN(sc) + 1)*8;
3944
3945        val = (mac_addr[0] << 8) | mac_addr[1];
3946        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947
3948        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949              (mac_addr[4] << 8) | mac_addr[5];
3950        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951
3952        /* Enable the PME and clear the status */
3953        pmc = pci_read_config(sc->dev,
3954                              (sc->devinfo.pcie_pm_cap_reg +
3955                               PCIR_POWER_STATUS),
3956                              2);
3957        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958        pci_write_config(sc->dev,
3959                         (sc->devinfo.pcie_pm_cap_reg +
3960                          PCIR_POWER_STATUS),
3961                         pmc, 4);
3962
3963        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964    }
3965#endif
3966    else {
3967        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968    }
3969
3970    /* Send the request to the MCP */
3971    if (!BXE_NOMCP(sc)) {
3972        reset_code = bxe_fw_command(sc, reset_code, 0);
3973    } else {
3974        reset_code = bxe_nic_unload_no_mcp(sc);
3975    }
3976
3977    return (reset_code);
3978}
3979
3980/* send UNLOAD_DONE command to the MCP */
3981static void
3982bxe_send_unload_done(struct bxe_softc *sc,
3983                     uint8_t          keep_link)
3984{
3985    uint32_t reset_param =
3986        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987
3988    /* Report UNLOAD_DONE to MCP */
3989    if (!BXE_NOMCP(sc)) {
3990        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991    }
3992}
3993
3994static int
3995bxe_func_wait_started(struct bxe_softc *sc)
3996{
3997    int tout = 50;
3998
3999    if (!sc->port.pmf) {
4000        return (0);
4001    }
4002
4003    /*
4004     * (assumption: No Attention from MCP at this stage)
4005     * PMF probably in the middle of TX disable/enable transaction
4006     * 1. Sync IRS for default SB
4007     * 2. Sync SP queue - this guarantees us that attention handling started
4008     * 3. Wait, that TX disable/enable transaction completes
4009     *
4010     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012     * received completion for the transaction the state is TX_STOPPED.
4013     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014     * transaction.
4015     */
4016
4017    /* XXX make sure default SB ISR is done */
4018    /* need a way to synchronize an irq (intr_mtx?) */
4019
4020    /* XXX flush any work queues */
4021
4022    while (ecore_func_get_state(sc, &sc->func_obj) !=
4023           ECORE_F_STATE_STARTED && tout--) {
4024        DELAY(20000);
4025    }
4026
4027    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028        /*
4029         * Failed to complete the transaction in a "good way"
4030         * Force both transactions with CLR bit.
4031         */
4032        struct ecore_func_state_params func_params = { NULL };
4033
4034        BLOGE(sc, "Unexpected function state! "
4035                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036
4037        func_params.f_obj = &sc->func_obj;
4038        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039
4040        /* STARTED-->TX_STOPPED */
4041        func_params.cmd = ECORE_F_CMD_TX_STOP;
4042        ecore_func_state_change(sc, &func_params);
4043
4044        /* TX_STOPPED-->STARTED */
4045        func_params.cmd = ECORE_F_CMD_TX_START;
4046        return (ecore_func_state_change(sc, &func_params));
4047    }
4048
4049    return (0);
4050}
4051
4052static int
4053bxe_stop_queue(struct bxe_softc *sc,
4054               int              index)
4055{
4056    struct bxe_fastpath *fp = &sc->fp[index];
4057    struct ecore_queue_state_params q_params = { NULL };
4058    int rc;
4059
4060    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061
4062    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063    /* We want to wait for completion in this context */
4064    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065
4066    /* Stop the primary connection: */
4067
4068    /* ...halt the connection */
4069    q_params.cmd = ECORE_Q_CMD_HALT;
4070    rc = ecore_queue_state_change(sc, &q_params);
4071    if (rc) {
4072        return (rc);
4073    }
4074
4075    /* ...terminate the connection */
4076    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079    rc = ecore_queue_state_change(sc, &q_params);
4080    if (rc) {
4081        return (rc);
4082    }
4083
4084    /* ...delete cfc entry */
4085    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088    return (ecore_queue_state_change(sc, &q_params));
4089}
4090
4091/* wait for the outstanding SP commands */
4092static inline uint8_t
4093bxe_wait_sp_comp(struct bxe_softc *sc,
4094                 unsigned long    mask)
4095{
4096    unsigned long tmp;
4097    int tout = 5000; /* wait for 5 secs tops */
4098
4099    while (tout--) {
4100        mb();
4101        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102            return (TRUE);
4103        }
4104
4105        DELAY(1000);
4106    }
4107
4108    mb();
4109
4110    tmp = atomic_load_acq_long(&sc->sp_state);
4111    if (tmp & mask) {
4112        BLOGE(sc, "Filtering completion timed out: "
4113                  "sp_state 0x%lx, mask 0x%lx\n",
4114              tmp, mask);
4115        return (FALSE);
4116    }
4117
4118    return (FALSE);
4119}
4120
4121static int
4122bxe_func_stop(struct bxe_softc *sc)
4123{
4124    struct ecore_func_state_params func_params = { NULL };
4125    int rc;
4126
4127    /* prepare parameters for function state transitions */
4128    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129    func_params.f_obj = &sc->func_obj;
4130    func_params.cmd = ECORE_F_CMD_STOP;
4131
4132    /*
4133     * Try to stop the function the 'good way'. If it fails (in case
4134     * of a parity error during bxe_chip_cleanup()) and we are
4135     * not in a debug mode, perform a state transaction in order to
4136     * enable further HW_RESET transaction.
4137     */
4138    rc = ecore_func_state_change(sc, &func_params);
4139    if (rc) {
4140        BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                  "Running a dry transaction\n");
4142        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143        return (ecore_func_state_change(sc, &func_params));
4144    }
4145
4146    return (0);
4147}
4148
4149static int
4150bxe_reset_hw(struct bxe_softc *sc,
4151             uint32_t         load_code)
4152{
4153    struct ecore_func_state_params func_params = { NULL };
4154
4155    /* Prepare parameters for function state transitions */
4156    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157
4158    func_params.f_obj = &sc->func_obj;
4159    func_params.cmd = ECORE_F_CMD_HW_RESET;
4160
4161    func_params.params.hw_init.load_phase = load_code;
4162
4163    return (ecore_func_state_change(sc, &func_params));
4164}
4165
4166static void
4167bxe_int_disable_sync(struct bxe_softc *sc,
4168                     int              disable_hw)
4169{
4170    if (disable_hw) {
4171        /* prevent the HW from sending interrupts */
4172        bxe_int_disable(sc);
4173    }
4174
4175    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176    /* make sure all ISRs are done */
4177
4178    /* XXX make sure sp_task is not running */
4179    /* cancel and flush work queues */
4180}
4181
4182static void
4183bxe_chip_cleanup(struct bxe_softc *sc,
4184                 uint32_t         unload_mode,
4185                 uint8_t          keep_link)
4186{
4187    int port = SC_PORT(sc);
4188    struct ecore_mcast_ramrod_params rparam = { NULL };
4189    uint32_t reset_code;
4190    int i, rc = 0;
4191
4192    bxe_drain_tx_queues(sc);
4193
4194    /* give HW time to discard old tx messages */
4195    DELAY(1000);
4196
4197    /* Clean all ETH MACs */
4198    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199    if (rc < 0) {
4200        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201    }
4202
4203    /* Clean up UC list  */
4204    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205    if (rc < 0) {
4206        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207    }
4208
4209    /* Disable LLH */
4210    if (!CHIP_IS_E1(sc)) {
4211        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212    }
4213
4214    /* Set "drop all" to stop Rx */
4215
4216    /*
4217     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218     * a race between the completion code and this code.
4219     */
4220    BXE_MCAST_LOCK(sc);
4221
4222    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224    } else {
4225        bxe_set_storm_rx_mode(sc);
4226    }
4227
4228    /* Clean up multicast configuration */
4229    rparam.mcast_obj = &sc->mcast_obj;
4230    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231    if (rc < 0) {
4232        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233    }
4234
4235    BXE_MCAST_UNLOCK(sc);
4236
4237    // XXX bxe_iov_chip_cleanup(sc);
4238
4239    /*
4240     * Send the UNLOAD_REQUEST to the MCP. This will return if
4241     * this function should perform FUNCTION, PORT, or COMMON HW
4242     * reset.
4243     */
4244    reset_code = bxe_send_unload_req(sc, unload_mode);
4245
4246    /*
4247     * (assumption: No Attention from MCP at this stage)
4248     * PMF probably in the middle of TX disable/enable transaction
4249     */
4250    rc = bxe_func_wait_started(sc);
4251    if (rc) {
4252        BLOGE(sc, "bxe_func_wait_started failed\n");
4253    }
4254
4255    /*
4256     * Close multi and leading connections
4257     * Completions for ramrods are collected in a synchronous way
4258     */
4259    for (i = 0; i < sc->num_queues; i++) {
4260        if (bxe_stop_queue(sc, i)) {
4261            goto unload_error;
4262        }
4263    }
4264
4265    /*
4266     * If SP settings didn't get completed so far - something
4267     * very wrong has happen.
4268     */
4269    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271    }
4272
4273unload_error:
4274
4275    rc = bxe_func_stop(sc);
4276    if (rc) {
4277        BLOGE(sc, "Function stop failed!\n");
4278    }
4279
4280    /* disable HW interrupts */
4281    bxe_int_disable_sync(sc, TRUE);
4282
4283    /* detach interrupts */
4284    bxe_interrupt_detach(sc);
4285
4286    /* Reset the chip */
4287    rc = bxe_reset_hw(sc, reset_code);
4288    if (rc) {
4289        BLOGE(sc, "Hardware reset failed\n");
4290    }
4291
4292    /* Report UNLOAD_DONE to MCP */
4293    bxe_send_unload_done(sc, keep_link);
4294}
4295
4296static void
4297bxe_disable_close_the_gate(struct bxe_softc *sc)
4298{
4299    uint32_t val;
4300    int port = SC_PORT(sc);
4301
4302    BLOGD(sc, DBG_LOAD,
4303          "Disabling 'close the gates'\n");
4304
4305    if (CHIP_IS_E1(sc)) {
4306        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308        val = REG_RD(sc, addr);
4309        val &= ~(0x300);
4310        REG_WR(sc, addr, val);
4311    } else {
4312        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316    }
4317}
4318
4319/*
4320 * Cleans the object that have internal lists without sending
4321 * ramrods. Should be run when interrutps are disabled.
4322 */
4323static void
4324bxe_squeeze_objects(struct bxe_softc *sc)
4325{
4326    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327    struct ecore_mcast_ramrod_params rparam = { NULL };
4328    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329    int rc;
4330
4331    /* Cleanup MACs' object first... */
4332
4333    /* Wait for completion of requested */
4334    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335    /* Perform a dry cleanup */
4336    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337
4338    /* Clean ETH primary MAC */
4339    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                             &ramrod_flags);
4342    if (rc != 0) {
4343        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344    }
4345
4346    /* Cleanup UC list */
4347    vlan_mac_flags = 0;
4348    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                             &ramrod_flags);
4351    if (rc != 0) {
4352        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353    }
4354
4355    /* Now clean mcast object... */
4356
4357    rparam.mcast_obj = &sc->mcast_obj;
4358    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359
4360    /* Add a DEL command... */
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362    if (rc < 0) {
4363        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364    }
4365
4366    /* now wait until all pending commands are cleared */
4367
4368    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    while (rc != 0) {
4370        if (rc < 0) {
4371            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372            return;
4373        }
4374
4375        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376    }
4377}
4378
4379/* stop the controller */
4380static __noinline int
4381bxe_nic_unload(struct bxe_softc *sc,
4382               uint32_t         unload_mode,
4383               uint8_t          keep_link)
4384{
4385    uint8_t global = FALSE;
4386    uint32_t val;
4387
4388    BXE_CORE_LOCK_ASSERT(sc);
4389
4390    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391
4392    /* mark driver as unloaded in shmem2 */
4393    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397    }
4398
4399    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401        /*
4402         * We can get here if the driver has been unloaded
4403         * during parity error recovery and is either waiting for a
4404         * leader to complete or for other functions to unload and
4405         * then ifconfig down has been issued. In this case we want to
4406         * unload and let other functions to complete a recovery
4407         * process.
4408         */
4409        sc->recovery_state = BXE_RECOVERY_DONE;
4410        sc->is_leader = 0;
4411        bxe_release_leader_lock(sc);
4412        mb();
4413
4414        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415        BLOGE(sc, "Can't unload in closed or error state\n");
4416        return (-1);
4417    }
4418
4419    /*
4420     * Nothing to do during unload if previous bxe_nic_load()
4421     * did not completed succesfully - all resourses are released.
4422     */
4423    if ((sc->state == BXE_STATE_CLOSED) ||
4424        (sc->state == BXE_STATE_ERROR)) {
4425        return (0);
4426    }
4427
4428    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429    mb();
4430
4431    /* stop tx */
4432    bxe_tx_disable(sc);
4433
4434    sc->rx_mode = BXE_RX_MODE_NONE;
4435    /* XXX set rx mode ??? */
4436
4437    if (IS_PF(sc)) {
4438        /* set ALWAYS_ALIVE bit in shmem */
4439        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440
4441        bxe_drv_pulse(sc);
4442
4443        bxe_stats_handle(sc, STATS_EVENT_STOP);
4444        bxe_save_statistics(sc);
4445    }
4446
4447    /* wait till consumers catch up with producers in all queues */
4448    bxe_drain_tx_queues(sc);
4449
4450    /* if VF indicate to PF this function is going down (PF will delete sp
4451     * elements and clear initializations
4452     */
4453    if (IS_VF(sc)) {
4454        ; /* bxe_vfpf_close_vf(sc); */
4455    } else if (unload_mode != UNLOAD_RECOVERY) {
4456        /* if this is a normal/close unload need to clean up chip */
4457        bxe_chip_cleanup(sc, unload_mode, keep_link);
4458    } else {
4459        /* Send the UNLOAD_REQUEST to the MCP */
4460        bxe_send_unload_req(sc, unload_mode);
4461
4462        /*
4463         * Prevent transactions to host from the functions on the
4464         * engine that doesn't reset global blocks in case of global
4465         * attention once gloabl blocks are reset and gates are opened
4466         * (the engine which leader will perform the recovery
4467         * last).
4468         */
4469        if (!CHIP_IS_E1x(sc)) {
4470            bxe_pf_disable(sc);
4471        }
4472
4473        /* disable HW interrupts */
4474        bxe_int_disable_sync(sc, TRUE);
4475
4476        /* detach interrupts */
4477        bxe_interrupt_detach(sc);
4478
4479        /* Report UNLOAD_DONE to MCP */
4480        bxe_send_unload_done(sc, FALSE);
4481    }
4482
4483    /*
4484     * At this stage no more interrupts will arrive so we may safely clean
4485     * the queue'able objects here in case they failed to get cleaned so far.
4486     */
4487    if (IS_PF(sc)) {
4488        bxe_squeeze_objects(sc);
4489    }
4490
4491    /* There should be no more pending SP commands at this stage */
4492    sc->sp_state = 0;
4493
4494    sc->port.pmf = 0;
4495
4496    bxe_free_fp_buffers(sc);
4497
4498    if (IS_PF(sc)) {
4499        bxe_free_mem(sc);
4500    }
4501
4502    bxe_free_fw_stats_mem(sc);
4503
4504    sc->state = BXE_STATE_CLOSED;
4505
4506    /*
4507     * Check if there are pending parity attentions. If there are - set
4508     * RECOVERY_IN_PROGRESS.
4509     */
4510    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511        bxe_set_reset_in_progress(sc);
4512
4513        /* Set RESET_IS_GLOBAL if needed */
4514        if (global) {
4515            bxe_set_reset_global(sc);
4516        }
4517    }
4518
4519    /*
4520     * The last driver must disable a "close the gate" if there is no
4521     * parity attention or "process kill" pending.
4522     */
4523    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524        bxe_reset_is_done(sc, SC_PATH(sc))) {
4525        bxe_disable_close_the_gate(sc);
4526    }
4527
4528    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529
4530    return (0);
4531}
4532
4533/*
4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536 */
4537static int
4538bxe_ifmedia_update(struct ifnet *ifp)
4539{
4540    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541    struct ifmedia *ifm;
4542
4543    ifm = &sc->ifmedia;
4544
4545    /* We only support Ethernet media type. */
4546    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547        return (EINVAL);
4548    }
4549
4550    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551    case IFM_AUTO:
4552         break;
4553    case IFM_10G_CX4:
4554    case IFM_10G_SR:
4555    case IFM_10G_T:
4556    case IFM_10G_TWINAX:
4557    default:
4558        /* We don't support changing the media type. */
4559        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560              IFM_SUBTYPE(ifm->ifm_media));
4561        return (EINVAL);
4562    }
4563
4564    return (0);
4565}
4566
4567/*
4568 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569 */
4570static void
4571bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572{
4573    struct bxe_softc *sc = ifp->if_softc;
4574
4575    /* Report link down if the driver isn't running. */
4576    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577        ifmr->ifm_active |= IFM_NONE;
4578        return;
4579    }
4580
4581    /* Setup the default interface info. */
4582    ifmr->ifm_status = IFM_AVALID;
4583    ifmr->ifm_active = IFM_ETHER;
4584
4585    if (sc->link_vars.link_up) {
4586        ifmr->ifm_status |= IFM_ACTIVE;
4587    } else {
4588        ifmr->ifm_active |= IFM_NONE;
4589        return;
4590    }
4591
4592    ifmr->ifm_active |= sc->media;
4593
4594    if (sc->link_vars.duplex == DUPLEX_FULL) {
4595        ifmr->ifm_active |= IFM_FDX;
4596    } else {
4597        ifmr->ifm_active |= IFM_HDX;
4598    }
4599}
4600
4601static int
4602bxe_ioctl_nvram(struct bxe_softc *sc,
4603                uint32_t         priv_op,
4604                struct ifreq     *ifr)
4605{
4606    struct bxe_nvram_data nvdata_base;
4607    struct bxe_nvram_data *nvdata;
4608    int len;
4609    int error = 0;
4610
4611    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612
4613    len = (sizeof(struct bxe_nvram_data) +
4614           nvdata_base.len -
4615           sizeof(uint32_t));
4616
4617    if (len > sizeof(struct bxe_nvram_data)) {
4618        if ((nvdata = (struct bxe_nvram_data *)
4619                 malloc(len, M_DEVBUF,
4620                        (M_NOWAIT | M_ZERO))) == NULL) {
4621            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622            return (1);
4623        }
4624        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625    } else {
4626        nvdata = &nvdata_base;
4627    }
4628
4629    if (priv_op == BXE_IOC_RD_NVRAM) {
4630        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631              nvdata->offset, nvdata->len);
4632        error = bxe_nvram_read(sc,
4633                               nvdata->offset,
4634                               (uint8_t *)nvdata->value,
4635                               nvdata->len);
4636        copyout(nvdata, ifr->ifr_data, len);
4637    } else { /* BXE_IOC_WR_NVRAM */
4638        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639              nvdata->offset, nvdata->len);
4640        copyin(ifr->ifr_data, nvdata, len);
4641        error = bxe_nvram_write(sc,
4642                                nvdata->offset,
4643                                (uint8_t *)nvdata->value,
4644                                nvdata->len);
4645    }
4646
4647    if (len > sizeof(struct bxe_nvram_data)) {
4648        free(nvdata, M_DEVBUF);
4649    }
4650
4651    return (error);
4652}
4653
4654static int
4655bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                     uint32_t         priv_op,
4657                     struct ifreq     *ifr)
4658{
4659    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661    caddr_t p_tmp;
4662    uint32_t *offset;
4663    int i;
4664
4665    switch (priv_op)
4666    {
4667    case BXE_IOC_STATS_SHOW_NUM:
4668        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670            BXE_NUM_ETH_STATS;
4671        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672            STAT_NAME_LEN;
4673        return (0);
4674
4675    case BXE_IOC_STATS_SHOW_STR:
4676        memset(ifr->ifr_data, 0, str_size);
4677        p_tmp = ifr->ifr_data;
4678        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680            p_tmp += STAT_NAME_LEN;
4681        }
4682        return (0);
4683
4684    case BXE_IOC_STATS_SHOW_CNT:
4685        memset(ifr->ifr_data, 0, stats_size);
4686        p_tmp = ifr->ifr_data;
4687        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688            offset = ((uint32_t *)&sc->eth_stats +
4689                      bxe_eth_stats_arr[i].offset);
4690            switch (bxe_eth_stats_arr[i].size) {
4691            case 4:
4692                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                break;
4694            case 8:
4695                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                break;
4697            default:
4698                *((uint64_t *)p_tmp) = 0;
4699            }
4700            p_tmp += sizeof(uint64_t);
4701        }
4702        return (0);
4703
4704    default:
4705        return (-1);
4706    }
4707}
4708
4709static void
4710bxe_handle_chip_tq(void *context,
4711                   int  pending)
4712{
4713    struct bxe_softc *sc = (struct bxe_softc *)context;
4714    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715
4716    switch (work)
4717    {
4718    case CHIP_TQ_START:
4719        if ((sc->ifnet->if_flags & IFF_UP) &&
4720            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721            /* start the interface */
4722            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723            BXE_CORE_LOCK(sc);
4724            bxe_init_locked(sc);
4725            BXE_CORE_UNLOCK(sc);
4726        }
4727        break;
4728
4729    case CHIP_TQ_STOP:
4730        if (!(sc->ifnet->if_flags & IFF_UP) &&
4731            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732            /* bring down the interface */
4733            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734            bxe_periodic_stop(sc);
4735            BXE_CORE_LOCK(sc);
4736            bxe_stop_locked(sc);
4737            BXE_CORE_UNLOCK(sc);
4738        }
4739        break;
4740
4741    case CHIP_TQ_REINIT:
4742        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743            /* restart the interface */
4744            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745            bxe_periodic_stop(sc);
4746            BXE_CORE_LOCK(sc);
4747            bxe_stop_locked(sc);
4748            bxe_init_locked(sc);
4749            BXE_CORE_UNLOCK(sc);
4750        }
4751        break;
4752
4753    default:
4754        break;
4755    }
4756}
4757
4758/*
4759 * Handles any IOCTL calls from the operating system.
4760 *
4761 * Returns:
4762 *   0 = Success, >0 Failure
4763 */
4764static int
4765bxe_ioctl(struct ifnet *ifp,
4766          u_long       command,
4767          caddr_t      data)
4768{
4769    struct bxe_softc *sc = ifp->if_softc;
4770    struct ifreq *ifr = (struct ifreq *)data;
4771    struct bxe_nvram_data *nvdata;
4772    uint32_t priv_op;
4773    int mask = 0;
4774    int reinit = 0;
4775    int error = 0;
4776
4777    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779
4780    switch (command)
4781    {
4782    case SIOCSIFMTU:
4783        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784              ifr->ifr_mtu);
4785
4786        if (sc->mtu == ifr->ifr_mtu) {
4787            /* nothing to change */
4788            break;
4789        }
4790
4791        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                  ifr->ifr_mtu, mtu_min, mtu_max);
4794            error = EINVAL;
4795            break;
4796        }
4797
4798        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                             (unsigned long)ifr->ifr_mtu);
4800        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                              (unsigned long)ifr->ifr_mtu);
4802
4803        reinit = 1;
4804        break;
4805
4806    case SIOCSIFFLAGS:
4807        /* toggle the interface state up or down */
4808        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809
4810        /* check if the interface is up */
4811        if (ifp->if_flags & IFF_UP) {
4812            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                /* set the receive mode flags */
4814                bxe_set_rx_mode(sc);
4815            } else {
4816                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818            }
4819        } else {
4820            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823            }
4824        }
4825
4826        break;
4827
4828    case SIOCADDMULTI:
4829    case SIOCDELMULTI:
4830        /* add/delete multicast addresses */
4831        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832
4833        /* check if the interface is up */
4834        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835            /* set the receive mode flags */
4836            bxe_set_rx_mode(sc);
4837        }
4838
4839        break;
4840
4841    case SIOCSIFCAP:
4842        /* find out which capabilities have changed */
4843        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844
4845        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846              mask);
4847
4848        /* toggle the LRO capabilites enable flag */
4849        if (mask & IFCAP_LRO) {
4850            ifp->if_capenable ^= IFCAP_LRO;
4851            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853            reinit = 1;
4854        }
4855
4856        /* toggle the TXCSUM checksum capabilites enable flag */
4857        if (mask & IFCAP_TXCSUM) {
4858            ifp->if_capenable ^= IFCAP_TXCSUM;
4859            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861            if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                ifp->if_hwassist = (CSUM_IP       |
4863                                    CSUM_TCP      |
4864                                    CSUM_UDP      |
4865                                    CSUM_TSO      |
4866                                    CSUM_TCP_IPV6 |
4867                                    CSUM_UDP_IPV6);
4868            } else {
4869                ifp->if_hwassist = 0;
4870            }
4871        }
4872
4873        /* toggle the RXCSUM checksum capabilities enable flag */
4874        if (mask & IFCAP_RXCSUM) {
4875            ifp->if_capenable ^= IFCAP_RXCSUM;
4876            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878            if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                ifp->if_hwassist = (CSUM_IP       |
4880                                    CSUM_TCP      |
4881                                    CSUM_UDP      |
4882                                    CSUM_TSO      |
4883                                    CSUM_TCP_IPV6 |
4884                                    CSUM_UDP_IPV6);
4885            } else {
4886                ifp->if_hwassist = 0;
4887            }
4888        }
4889
4890        /* toggle TSO4 capabilities enabled flag */
4891        if (mask & IFCAP_TSO4) {
4892            ifp->if_capenable ^= IFCAP_TSO4;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle TSO6 capabilities enabled flag */
4898        if (mask & IFCAP_TSO6) {
4899            ifp->if_capenable ^= IFCAP_TSO6;
4900            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWTSO capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWTSO) {
4906            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909        }
4910
4911        /* toggle VLAN_HWCSUM capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWCSUM) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_MTU capabilities enable flag */
4919        if (mask & IFCAP_VLAN_MTU) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWTAGGING) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* toggle VLAN_HWFILTER capabilities enabled flag */
4933        if (mask & IFCAP_VLAN_HWFILTER) {
4934            /* XXX investigate this... */
4935            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936            error = EINVAL;
4937        }
4938
4939        /* XXX not yet...
4940         * IFCAP_WOL_MAGIC
4941         */
4942
4943        break;
4944
4945    case SIOCSIFMEDIA:
4946    case SIOCGIFMEDIA:
4947        /* set/get interface media */
4948        BLOGD(sc, DBG_IOCTL,
4949              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950              (command & 0xff));
4951        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952        break;
4953
4954    case SIOCGPRIVATE_0:
4955        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956
4957        switch (priv_op)
4958        {
4959        case BXE_IOC_RD_NVRAM:
4960        case BXE_IOC_WR_NVRAM:
4961            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962            BLOGD(sc, DBG_IOCTL,
4963                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                  nvdata->offset, nvdata->len);
4965            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966            break;
4967
4968        case BXE_IOC_STATS_SHOW_NUM:
4969        case BXE_IOC_STATS_SHOW_STR:
4970        case BXE_IOC_STATS_SHOW_CNT:
4971            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                  priv_op);
4973            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974            break;
4975
4976        default:
4977            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978            error = EINVAL;
4979            break;
4980        }
4981
4982        break;
4983
4984    default:
4985        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986              (command & 0xff));
4987        error = ether_ioctl(ifp, command, data);
4988        break;
4989    }
4990
4991    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993              "Re-initializing hardware from IOCTL change\n");
4994        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996    }
4997
4998    return (error);
4999}
5000
5001static __noinline void
5002bxe_dump_mbuf(struct bxe_softc *sc,
5003              struct mbuf      *m,
5004              uint8_t          contents)
5005{
5006    char * type;
5007    int i = 0;
5008
5009    if (!(sc->debug & DBG_MBUF)) {
5010        return;
5011    }
5012
5013    if (m == NULL) {
5014        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015        return;
5016    }
5017
5018    while (m) {
5019        BLOGD(sc, DBG_MBUF,
5020              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022
5023        if (m->m_flags & M_PKTHDR) {
5024             BLOGD(sc, DBG_MBUF,
5025                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028        }
5029
5030        if (m->m_flags & M_EXT) {
5031            switch (m->m_ext.ext_type) {
5032            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037            case EXT_PACKET:     type = "EXT_PACKET";     break;
5038            case EXT_MBUF:       type = "EXT_MBUF";       break;
5039            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043            default:             type = "UNKNOWN";        break;
5044            }
5045
5046            BLOGD(sc, DBG_MBUF,
5047                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049        }
5050
5051        if (contents) {
5052            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053        }
5054
5055        m = m->m_next;
5056        i++;
5057    }
5058}
5059
5060/*
5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066 */
5067static int
5068bxe_chktso_window(struct bxe_softc  *sc,
5069                  int               nsegs,
5070                  bus_dma_segment_t *segs,
5071                  struct mbuf       *m)
5072{
5073    uint32_t num_wnds, wnd_size, wnd_sum;
5074    int32_t frag_idx, wnd_idx;
5075    unsigned short lso_mss;
5076    int defrag;
5077
5078    defrag = 0;
5079    wnd_sum = 0;
5080    wnd_size = 10;
5081    num_wnds = nsegs - wnd_size;
5082    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083
5084    /*
5085     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086     * first window sum of data while skipping the first assuming it is the
5087     * header in FreeBSD.
5088     */
5089    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090        wnd_sum += htole16(segs[frag_idx].ds_len);
5091    }
5092
5093    /* check the first 10 bd window size */
5094    if (wnd_sum < lso_mss) {
5095        return (1);
5096    }
5097
5098    /* run through the windows */
5099    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100        /* subtract the first mbuf->m_len of the last wndw(-header) */
5101        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102        /* add the next mbuf len to the len of our new window */
5103        wnd_sum += htole16(segs[frag_idx].ds_len);
5104        if (wnd_sum < lso_mss) {
5105            return (1);
5106        }
5107    }
5108
5109    return (0);
5110}
5111
5112static uint8_t
5113bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                    struct mbuf         *m,
5115                    uint32_t            *parsing_data)
5116{
5117    struct ether_vlan_header *eh = NULL;
5118    struct ip *ip4 = NULL;
5119    struct ip6_hdr *ip6 = NULL;
5120    caddr_t ip = NULL;
5121    struct tcphdr *th = NULL;
5122    int e_hlen, ip_hlen, l4_off;
5123    uint16_t proto;
5124
5125    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126        /* no L4 checksum offload needed */
5127        return (0);
5128    }
5129
5130    /* get the Ethernet header */
5131    eh = mtod(m, struct ether_vlan_header *);
5132
5133    /* handle VLAN encapsulation if present */
5134    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136        proto  = ntohs(eh->evl_proto);
5137    } else {
5138        e_hlen = ETHER_HDR_LEN;
5139        proto  = ntohs(eh->evl_encap_proto);
5140    }
5141
5142    switch (proto) {
5143    case ETHERTYPE_IP:
5144        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145        ip4 = (m->m_len < sizeof(struct ip)) ?
5146                  (struct ip *)m->m_next->m_data :
5147                  (struct ip *)(m->m_data + e_hlen);
5148        /* ip_hl is number of 32-bit words */
5149        ip_hlen = (ip4->ip_hl << 2);
5150        ip = (caddr_t)ip4;
5151        break;
5152    case ETHERTYPE_IPV6:
5153        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                  (struct ip6_hdr *)m->m_next->m_data :
5156                  (struct ip6_hdr *)(m->m_data + e_hlen);
5157        /* XXX cannot support offload with IPv6 extensions */
5158        ip_hlen = sizeof(struct ip6_hdr);
5159        ip = (caddr_t)ip6;
5160        break;
5161    default:
5162        /* We can't offload in this case... */
5163        /* XXX error stat ??? */
5164        return (0);
5165    }
5166
5167    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168    l4_off = (e_hlen + ip_hlen);
5169
5170    *parsing_data |=
5171        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173
5174    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                  CSUM_TSO |
5176                                  CSUM_TCP_IPV6)) {
5177        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178        th = (struct tcphdr *)(ip + ip_hlen);
5179        /* th_off is number of 32-bit words */
5180        *parsing_data |= ((th->th_off <<
5181                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183        return (l4_off + (th->th_off << 2)); /* entire header length */
5184    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                         CSUM_UDP_IPV6)) {
5186        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188    } else {
5189        /* XXX error stat ??? */
5190        return (0);
5191    }
5192}
5193
5194static uint8_t
5195bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                 struct mbuf                *m,
5197                 struct eth_tx_parse_bd_e1x *pbd)
5198{
5199    struct ether_vlan_header *eh = NULL;
5200    struct ip *ip4 = NULL;
5201    struct ip6_hdr *ip6 = NULL;
5202    caddr_t ip = NULL;
5203    struct tcphdr *th = NULL;
5204    struct udphdr *uh = NULL;
5205    int e_hlen, ip_hlen;
5206    uint16_t proto;
5207    uint8_t hlen;
5208    uint16_t tmp_csum;
5209    uint32_t *tmp_uh;
5210
5211    /* get the Ethernet header */
5212    eh = mtod(m, struct ether_vlan_header *);
5213
5214    /* handle VLAN encapsulation if present */
5215    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217        proto  = ntohs(eh->evl_proto);
5218    } else {
5219        e_hlen = ETHER_HDR_LEN;
5220        proto  = ntohs(eh->evl_encap_proto);
5221    }
5222
5223    switch (proto) {
5224    case ETHERTYPE_IP:
5225        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226        ip4 = (m->m_len < sizeof(struct ip)) ?
5227                  (struct ip *)m->m_next->m_data :
5228                  (struct ip *)(m->m_data + e_hlen);
5229        /* ip_hl is number of 32-bit words */
5230        ip_hlen = (ip4->ip_hl << 1);
5231        ip = (caddr_t)ip4;
5232        break;
5233    case ETHERTYPE_IPV6:
5234        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                  (struct ip6_hdr *)m->m_next->m_data :
5237                  (struct ip6_hdr *)(m->m_data + e_hlen);
5238        /* XXX cannot support offload with IPv6 extensions */
5239        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240        ip = (caddr_t)ip6;
5241        break;
5242    default:
5243        /* We can't offload in this case... */
5244        /* XXX error stat ??? */
5245        return (0);
5246    }
5247
5248    hlen = (e_hlen >> 1);
5249
5250    /* note that rest of global_data is indirectly zeroed here */
5251    if (m->m_flags & M_VLANTAG) {
5252        pbd->global_data =
5253            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254    } else {
5255        pbd->global_data = htole16(hlen);
5256    }
5257
5258    pbd->ip_hlen_w = ip_hlen;
5259
5260    hlen += pbd->ip_hlen_w;
5261
5262    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263
5264    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                  CSUM_TSO |
5266                                  CSUM_TCP_IPV6)) {
5267        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268        /* th_off is number of 32-bit words */
5269        hlen += (uint16_t)(th->th_off << 1);
5270    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                         CSUM_UDP_IPV6)) {
5272        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273        hlen += (sizeof(struct udphdr) / 2);
5274    } else {
5275        /* valid case as only CSUM_IP was set */
5276        return (0);
5277    }
5278
5279    pbd->total_hlen_w = htole16(hlen);
5280
5281    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                  CSUM_TSO |
5283                                  CSUM_TCP_IPV6)) {
5284        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                         CSUM_UDP_IPV6)) {
5288        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289
5290        /*
5291         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292         * checksums and does not know anything about the UDP header and where
5293         * the checksum field is located. It only knows about TCP. Therefore
5294         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295         * offload. Since the checksum field offset for TCP is 16 bytes and
5296         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297         * bytes less than the start of the UDP header. This allows the
5298         * hardware to write the checksum in the correct spot. But the
5299         * hardware will compute a checksum which includes the last 10 bytes
5300         * of the IP header. To correct this we tweak the stack computed
5301         * pseudo checksum by folding in the calculation of the inverse
5302         * checksum for those final 10 bytes of the IP header. This allows
5303         * the correct checksum to be computed by the hardware.
5304         */
5305
5306        /* set pointer 10 bytes before UDP header */
5307        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308
5309        /* calculate a pseudo header checksum over the first 10 bytes */
5310        tmp_csum = in_pseudo(*tmp_uh,
5311                             *(tmp_uh + 1),
5312                             *(uint16_t *)(tmp_uh + 2));
5313
5314        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315    }
5316
5317    return (hlen * 2); /* entire header length, number of bytes */
5318}
5319
5320static void
5321bxe_set_pbd_lso_e2(struct mbuf *m,
5322                   uint32_t    *parsing_data)
5323{
5324    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5327
5328    /* XXX test for IPv6 with extension header... */
5329#if 0
5330    struct ip6_hdr *ip6;
5331    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333#endif
5334}
5335
5336static void
5337bxe_set_pbd_lso(struct mbuf                *m,
5338                struct eth_tx_parse_bd_e1x *pbd)
5339{
5340    struct ether_vlan_header *eh = NULL;
5341    struct ip *ip = NULL;
5342    struct tcphdr *th = NULL;
5343    int e_hlen;
5344
5345    /* get the Ethernet header */
5346    eh = mtod(m, struct ether_vlan_header *);
5347
5348    /* handle VLAN encapsulation if present */
5349    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351
5352    /* get the IP and TCP header, with LSO entire header in first mbuf */
5353    /* XXX assuming IPv4 */
5354    ip = (struct ip *)(m->m_data + e_hlen);
5355    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356
5357    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358    pbd->tcp_send_seq = ntohl(th->th_seq);
5359    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360
5361#if 1
5362        /* XXX IPv4 */
5363        pbd->ip_id = ntohs(ip->ip_id);
5364        pbd->tcp_pseudo_csum =
5365            ntohs(in_pseudo(ip->ip_src.s_addr,
5366                            ip->ip_dst.s_addr,
5367                            htons(IPPROTO_TCP)));
5368#else
5369        /* XXX IPv6 */
5370        pbd->tcp_pseudo_csum =
5371            ntohs(in_pseudo(&ip6->ip6_src,
5372                            &ip6->ip6_dst,
5373                            htons(IPPROTO_TCP)));
5374#endif
5375
5376    pbd->global_data |=
5377        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378}
5379
5380/*
5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382 * visible to the controller.
5383 *
5384 * If an mbuf is submitted to this routine and cannot be given to the
5385 * controller (e.g. it has too many fragments) then the function may free
5386 * the mbuf and return to the caller.
5387 *
5388 * Returns:
5389 *   0 = Success, !0 = Failure
5390 *   Note the side effect that an mbuf may be freed if it causes a problem.
5391 */
5392static int
5393bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394{
5395    bus_dma_segment_t segs[32];
5396    struct mbuf *m0;
5397    struct bxe_sw_tx_bd *tx_buf;
5398    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401    struct eth_tx_bd *tx_data_bd;
5402    struct eth_tx_bd *tx_total_pkt_size_bd;
5403    struct eth_tx_start_bd *tx_start_bd;
5404    uint16_t bd_prod, pkt_prod, total_pkt_size;
5405    uint8_t mac_type;
5406    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407    struct bxe_softc *sc;
5408    uint16_t tx_bd_avail;
5409    struct ether_vlan_header *eh;
5410    uint32_t pbd_e2_parsing_data = 0;
5411    uint8_t hlen = 0;
5412    int tmp_bd;
5413    int i;
5414
5415    sc = fp->sc;
5416
5417    M_ASSERTPKTHDR(*m_head);
5418
5419    m0 = *m_head;
5420    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421    tx_start_bd = NULL;
5422    tx_data_bd = NULL;
5423    tx_total_pkt_size_bd = NULL;
5424
5425    /* get the H/W pointer for packets and BDs */
5426    pkt_prod = fp->tx_pkt_prod;
5427    bd_prod = fp->tx_bd_prod;
5428
5429    mac_type = UNICAST_ADDRESS;
5430
5431    /* map the mbuf into the next open DMAable memory */
5432    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                    tx_buf->m_map, m0,
5435                                    segs, &nsegs, BUS_DMA_NOWAIT);
5436
5437    /* mapping errors */
5438    if(__predict_false(error != 0)) {
5439        fp->eth_q_stats.tx_dma_mapping_failure++;
5440        if (error == ENOMEM) {
5441            /* resource issue, try again later */
5442            rc = ENOMEM;
5443        } else if (error == EFBIG) {
5444            /* possibly recoverable with defragmentation */
5445            fp->eth_q_stats.mbuf_defrag_attempts++;
5446            m0 = m_defrag(*m_head, M_DONTWAIT);
5447            if (m0 == NULL) {
5448                fp->eth_q_stats.mbuf_defrag_failures++;
5449                rc = ENOBUFS;
5450            } else {
5451                /* defrag successful, try mapping again */
5452                *m_head = m0;
5453                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                tx_buf->m_map, m0,
5455                                                segs, &nsegs, BUS_DMA_NOWAIT);
5456                if (error) {
5457                    fp->eth_q_stats.tx_dma_mapping_failure++;
5458                    rc = error;
5459                }
5460            }
5461        } else {
5462            /* unknown, unrecoverable mapping error */
5463            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464            bxe_dump_mbuf(sc, m0, FALSE);
5465            rc = error;
5466        }
5467
5468        goto bxe_tx_encap_continue;
5469    }
5470
5471    tx_bd_avail = bxe_tx_avail(sc, fp);
5472
5473    /* make sure there is enough room in the send queue */
5474    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475        /* Recoverable, try again later. */
5476        fp->eth_q_stats.tx_hw_queue_full++;
5477        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478        rc = ENOMEM;
5479        goto bxe_tx_encap_continue;
5480    }
5481
5482    /* capture the current H/W TX chain high watermark */
5483    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                        (TX_BD_USABLE - tx_bd_avail))) {
5485        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486    }
5487
5488    /* make sure it fits in the packet window */
5489    if (__predict_false(nsegs > 12)) {
5490        /*
5491         * The mbuf may be to big for the controller to handle. If the frame
5492         * is a TSO frame we'll need to do an additional check.
5493         */
5494        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                goto bxe_tx_encap_continue; /* OK to send */
5497            } else {
5498                fp->eth_q_stats.tx_window_violation_tso++;
5499            }
5500        } else {
5501            fp->eth_q_stats.tx_window_violation_std++;
5502        }
5503
5504        /* lets try to defragment this mbuf */
5505        fp->eth_q_stats.mbuf_defrag_attempts++;
5506
5507        m0 = m_defrag(*m_head, M_DONTWAIT);
5508        if (m0 == NULL) {
5509            fp->eth_q_stats.mbuf_defrag_failures++;
5510            /* Ugh, just drop the frame... :( */
5511            rc = ENOBUFS;
5512        } else {
5513            /* defrag successful, try mapping again */
5514            *m_head = m0;
5515            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5516                                            tx_buf->m_map, m0,
5517                                            segs, &nsegs, BUS_DMA_NOWAIT);
5518            if (error) {
5519                fp->eth_q_stats.tx_dma_mapping_failure++;
5520                /* No sense in trying to defrag/copy chain, drop it. :( */
5521                rc = error;
5522            }
5523
5524            /* if the chain is still too long then drop it */
5525            if (__predict_false(nsegs > 12)) {
5526                rc = ENODEV;
5527            }
5528        }
5529    }
5530
5531bxe_tx_encap_continue:
5532
5533    /* Check for errors */
5534    if (rc) {
5535        if (rc == ENOMEM) {
5536            /* recoverable try again later  */
5537        } else {
5538            fp->eth_q_stats.tx_soft_errors++;
5539            fp->eth_q_stats.mbuf_alloc_tx--;
5540            m_freem(*m_head);
5541            *m_head = NULL;
5542        }
5543
5544        return (rc);
5545    }
5546
5547    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5548    if (m0->m_flags & M_BCAST) {
5549        mac_type = BROADCAST_ADDRESS;
5550    } else if (m0->m_flags & M_MCAST) {
5551        mac_type = MULTICAST_ADDRESS;
5552    }
5553
5554    /* store the mbuf into the mbuf ring */
5555    tx_buf->m        = m0;
5556    tx_buf->first_bd = fp->tx_bd_prod;
5557    tx_buf->flags    = 0;
5558
5559    /* prepare the first transmit (start) BD for the mbuf */
5560    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5561
5562    BLOGD(sc, DBG_TX,
5563          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5564          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5565
5566    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5567    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5568    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5569    total_pkt_size += tx_start_bd->nbytes;
5570    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5571
5572    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5573
5574    /* all frames have at least Start BD + Parsing BD */
5575    nbds = nsegs + 1;
5576    tx_start_bd->nbd = htole16(nbds);
5577
5578    if (m0->m_flags & M_VLANTAG) {
5579        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5580        tx_start_bd->bd_flags.as_bitfield |=
5581            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5582    } else {
5583        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5584        if (IS_VF(sc)) {
5585            /* map ethernet header to find type and header length */
5586            eh = mtod(m0, struct ether_vlan_header *);
5587            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5588        } else {
5589            /* used by FW for packet accounting */
5590            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5591#if 0
5592            /*
5593             * If NPAR-SD is active then FW should do the tagging regardless
5594             * of value of priority. Otherwise, if priority indicates this is
5595             * a control packet we need to indicate to FW to avoid tagging.
5596             */
5597            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5598                SET_FLAG(tx_start_bd->general_data,
5599                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5600            }
5601#endif
5602        }
5603    }
5604
5605    /*
5606     * add a parsing BD from the chain. The parsing BD is always added
5607     * though it is only used for TSO and chksum
5608     */
5609    bd_prod = TX_BD_NEXT(bd_prod);
5610
5611    if (m0->m_pkthdr.csum_flags) {
5612        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5613            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5614            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5615        }
5616
5617        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5618            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5619                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5620        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5621            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5622                                                  ETH_TX_BD_FLAGS_IS_UDP |
5623                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5624        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5625                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5626            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5627        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5628            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5629                                                  ETH_TX_BD_FLAGS_IS_UDP);
5630        }
5631    }
5632
5633    if (!CHIP_IS_E1x(sc)) {
5634        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5635        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5636
5637        if (m0->m_pkthdr.csum_flags) {
5638            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5639        }
5640
5641#if 0
5642        /*
5643         * Add the MACs to the parsing BD if the module param was
5644         * explicitly set, if this is a vf, or in switch independent
5645         * mode.
5646         */
5647        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5648            eh = mtod(m0, struct ether_vlan_header *);
5649            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5650                                &pbd_e2->data.mac_addr.src_mid,
5651                                &pbd_e2->data.mac_addr.src_lo,
5652                                eh->evl_shost);
5653            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5654                                &pbd_e2->data.mac_addr.dst_mid,
5655                                &pbd_e2->data.mac_addr.dst_lo,
5656                                eh->evl_dhost);
5657        }
5658#endif
5659
5660        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5661                 mac_type);
5662    } else {
5663        uint16_t global_data = 0;
5664
5665        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5666        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5667
5668        if (m0->m_pkthdr.csum_flags) {
5669            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5670        }
5671
5672        SET_FLAG(global_data,
5673                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5674        pbd_e1x->global_data |= htole16(global_data);
5675    }
5676
5677    /* setup the parsing BD with TSO specific info */
5678    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5679        fp->eth_q_stats.tx_ofld_frames_lso++;
5680        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5681
5682        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5683            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5684
5685            /* split the first BD into header/data making the fw job easy */
5686            nbds++;
5687            tx_start_bd->nbd = htole16(nbds);
5688            tx_start_bd->nbytes = htole16(hlen);
5689
5690            bd_prod = TX_BD_NEXT(bd_prod);
5691
5692            /* new transmit BD after the tx_parse_bd */
5693            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5694            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5695            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5696            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5697            if (tx_total_pkt_size_bd == NULL) {
5698                tx_total_pkt_size_bd = tx_data_bd;
5699            }
5700
5701            BLOGD(sc, DBG_TX,
5702                  "TSO split header size is %d (%x:%x) nbds %d\n",
5703                  le16toh(tx_start_bd->nbytes),
5704                  le32toh(tx_start_bd->addr_hi),
5705                  le32toh(tx_start_bd->addr_lo),
5706                  nbds);
5707        }
5708
5709        if (!CHIP_IS_E1x(sc)) {
5710            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5711        } else {
5712            bxe_set_pbd_lso(m0, pbd_e1x);
5713        }
5714    }
5715
5716    if (pbd_e2_parsing_data) {
5717        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5718    }
5719
5720    /* prepare remaining BDs, start tx bd contains first seg/frag */
5721    for (i = 1; i < nsegs ; i++) {
5722        bd_prod = TX_BD_NEXT(bd_prod);
5723        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5724        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5725        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5726        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5727        if (tx_total_pkt_size_bd == NULL) {
5728            tx_total_pkt_size_bd = tx_data_bd;
5729        }
5730        total_pkt_size += tx_data_bd->nbytes;
5731    }
5732
5733    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5734
5735    if (tx_total_pkt_size_bd != NULL) {
5736        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5737    }
5738
5739    if (__predict_false(sc->debug & DBG_TX)) {
5740        tmp_bd = tx_buf->first_bd;
5741        for (i = 0; i < nbds; i++)
5742        {
5743            if (i == 0) {
5744                BLOGD(sc, DBG_TX,
5745                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5746                      "bd_flags=0x%x hdr_nbds=%d\n",
5747                      tx_start_bd,
5748                      tmp_bd,
5749                      le16toh(tx_start_bd->nbd),
5750                      le16toh(tx_start_bd->vlan_or_ethertype),
5751                      tx_start_bd->bd_flags.as_bitfield,
5752                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5753            } else if (i == 1) {
5754                if (pbd_e1x) {
5755                    BLOGD(sc, DBG_TX,
5756                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5757                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5758                          "tcp_seq=%u total_hlen_w=%u\n",
5759                          pbd_e1x,
5760                          tmp_bd,
5761                          pbd_e1x->global_data,
5762                          pbd_e1x->ip_hlen_w,
5763                          pbd_e1x->ip_id,
5764                          pbd_e1x->lso_mss,
5765                          pbd_e1x->tcp_flags,
5766                          pbd_e1x->tcp_pseudo_csum,
5767                          pbd_e1x->tcp_send_seq,
5768                          le16toh(pbd_e1x->total_hlen_w));
5769                } else { /* if (pbd_e2) */
5770                    BLOGD(sc, DBG_TX,
5771                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5772                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5773                          pbd_e2,
5774                          tmp_bd,
5775                          pbd_e2->data.mac_addr.dst_hi,
5776                          pbd_e2->data.mac_addr.dst_mid,
5777                          pbd_e2->data.mac_addr.dst_lo,
5778                          pbd_e2->data.mac_addr.src_hi,
5779                          pbd_e2->data.mac_addr.src_mid,
5780                          pbd_e2->data.mac_addr.src_lo,
5781                          pbd_e2->parsing_data);
5782                }
5783            }
5784
5785            if (i != 1) { /* skip parse db as it doesn't hold data */
5786                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5787                BLOGD(sc, DBG_TX,
5788                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5789                      tx_data_bd,
5790                      tmp_bd,
5791                      le16toh(tx_data_bd->nbytes),
5792                      le32toh(tx_data_bd->addr_hi),
5793                      le32toh(tx_data_bd->addr_lo));
5794            }
5795
5796            tmp_bd = TX_BD_NEXT(tmp_bd);
5797        }
5798    }
5799
5800    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5801
5802    /* update TX BD producer index value for next TX */
5803    bd_prod = TX_BD_NEXT(bd_prod);
5804
5805    /*
5806     * If the chain of tx_bd's describing this frame is adjacent to or spans
5807     * an eth_tx_next_bd element then we need to increment the nbds value.
5808     */
5809    if (TX_BD_IDX(bd_prod) < nbds) {
5810        nbds++;
5811    }
5812
5813    /* don't allow reordering of writes for nbd and packets */
5814    mb();
5815
5816    fp->tx_db.data.prod += nbds;
5817
5818    /* producer points to the next free tx_bd at this point */
5819    fp->tx_pkt_prod++;
5820    fp->tx_bd_prod = bd_prod;
5821
5822    DOORBELL(sc, fp->index, fp->tx_db.raw);
5823
5824    fp->eth_q_stats.tx_pkts++;
5825
5826    /* Prevent speculative reads from getting ahead of the status block. */
5827    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5828                      0, 0, BUS_SPACE_BARRIER_READ);
5829
5830    /* Prevent speculative reads from getting ahead of the doorbell. */
5831    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5832                      0, 0, BUS_SPACE_BARRIER_READ);
5833
5834    return (0);
5835}
5836
5837static void
5838bxe_tx_start_locked(struct bxe_softc    *sc,
5839                    struct ifnet        *ifp,
5840                    struct bxe_fastpath *fp)
5841{
5842    struct mbuf *m = NULL;
5843    int tx_count = 0;
5844    uint16_t tx_bd_avail;
5845
5846    BXE_FP_TX_LOCK_ASSERT(fp);
5847
5848    /* keep adding entries while there are frames to send */
5849    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5850
5851        /*
5852         * check for any frames to send
5853         * dequeue can still be NULL even if queue is not empty
5854         */
5855        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5856        if (__predict_false(m == NULL)) {
5857            break;
5858        }
5859
5860        /* the mbuf now belongs to us */
5861        fp->eth_q_stats.mbuf_alloc_tx++;
5862
5863        /*
5864         * Put the frame into the transmit ring. If we don't have room,
5865         * place the mbuf back at the head of the TX queue, set the
5866         * OACTIVE flag, and wait for the NIC to drain the chain.
5867         */
5868        if (__predict_false(bxe_tx_encap(fp, &m))) {
5869            fp->eth_q_stats.tx_encap_failures++;
5870            if (m != NULL) {
5871                /* mark the TX queue as full and return the frame */
5872                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5873                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5874                fp->eth_q_stats.mbuf_alloc_tx--;
5875                fp->eth_q_stats.tx_queue_xoff++;
5876            }
5877
5878            /* stop looking for more work */
5879            break;
5880        }
5881
5882        /* the frame was enqueued successfully */
5883        tx_count++;
5884
5885        /* send a copy of the frame to any BPF listeners. */
5886        BPF_MTAP(ifp, m);
5887
5888        tx_bd_avail = bxe_tx_avail(sc, fp);
5889
5890        /* handle any completions if we're running low */
5891        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5892            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5893            bxe_txeof(sc, fp);
5894            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5895                break;
5896            }
5897        }
5898    }
5899
5900    /* all TX packets were dequeued and/or the tx ring is full */
5901    if (tx_count > 0) {
5902        /* reset the TX watchdog timeout timer */
5903        fp->watchdog_timer = BXE_TX_TIMEOUT;
5904    }
5905}
5906
5907/* Legacy (non-RSS) dispatch routine */
5908static void
5909bxe_tx_start(struct ifnet *ifp)
5910{
5911    struct bxe_softc *sc;
5912    struct bxe_fastpath *fp;
5913
5914    sc = ifp->if_softc;
5915
5916    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5917        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5918        return;
5919    }
5920
5921    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5922        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5923        return;
5924    }
5925
5926    if (!sc->link_vars.link_up) {
5927        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5928        return;
5929    }
5930
5931    fp = &sc->fp[0];
5932
5933    BXE_FP_TX_LOCK(fp);
5934    bxe_tx_start_locked(sc, ifp, fp);
5935    BXE_FP_TX_UNLOCK(fp);
5936}
5937
5938#if __FreeBSD_version >= 800000
5939
5940static int
5941bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5942                       struct ifnet        *ifp,
5943                       struct bxe_fastpath *fp,
5944                       struct mbuf         *m)
5945{
5946    struct buf_ring *tx_br = fp->tx_br;
5947    struct mbuf *next;
5948    int depth, rc, tx_count;
5949    uint16_t tx_bd_avail;
5950
5951    rc = tx_count = 0;
5952
5953    if (!tx_br) {
5954        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5955        return (EINVAL);
5956    }
5957
5958    /* fetch the depth of the driver queue */
5959    depth = drbr_inuse(ifp, tx_br);
5960    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5961        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5962    }
5963
5964    BXE_FP_TX_LOCK_ASSERT(fp);
5965
5966    if (m == NULL) {
5967        /* no new work, check for pending frames */
5968        next = drbr_dequeue(ifp, tx_br);
5969    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5970        /* have both new and pending work, maintain packet order */
5971        rc = drbr_enqueue(ifp, tx_br, m);
5972        if (rc != 0) {
5973            fp->eth_q_stats.tx_soft_errors++;
5974            goto bxe_tx_mq_start_locked_exit;
5975        }
5976        next = drbr_dequeue(ifp, tx_br);
5977    } else {
5978        /* new work only and nothing pending */
5979        next = m;
5980    }
5981
5982    /* keep adding entries while there are frames to send */
5983    while (next != NULL) {
5984
5985        /* the mbuf now belongs to us */
5986        fp->eth_q_stats.mbuf_alloc_tx++;
5987
5988        /*
5989         * Put the frame into the transmit ring. If we don't have room,
5990         * place the mbuf back at the head of the TX queue, set the
5991         * OACTIVE flag, and wait for the NIC to drain the chain.
5992         */
5993        rc = bxe_tx_encap(fp, &next);
5994        if (__predict_false(rc != 0)) {
5995            fp->eth_q_stats.tx_encap_failures++;
5996            if (next != NULL) {
5997                /* mark the TX queue as full and save the frame */
5998                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5999                /* XXX this may reorder the frame */
6000                rc = drbr_enqueue(ifp, tx_br, next);
6001                fp->eth_q_stats.mbuf_alloc_tx--;
6002                fp->eth_q_stats.tx_frames_deferred++;
6003            }
6004
6005            /* stop looking for more work */
6006            break;
6007        }
6008
6009        /* the transmit frame was enqueued successfully */
6010        tx_count++;
6011
6012        /* send a copy of the frame to any BPF listeners */
6013        BPF_MTAP(ifp, next);
6014
6015        tx_bd_avail = bxe_tx_avail(sc, fp);
6016
6017        /* handle any completions if we're running low */
6018        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6019            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6020            bxe_txeof(sc, fp);
6021            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6022                break;
6023            }
6024        }
6025
6026        next = drbr_dequeue(ifp, tx_br);
6027    }
6028
6029    /* all TX packets were dequeued and/or the tx ring is full */
6030    if (tx_count > 0) {
6031        /* reset the TX watchdog timeout timer */
6032        fp->watchdog_timer = BXE_TX_TIMEOUT;
6033    }
6034
6035bxe_tx_mq_start_locked_exit:
6036
6037    return (rc);
6038}
6039
6040/* Multiqueue (TSS) dispatch routine. */
6041static int
6042bxe_tx_mq_start(struct ifnet *ifp,
6043                struct mbuf  *m)
6044{
6045    struct bxe_softc *sc = ifp->if_softc;
6046    struct bxe_fastpath *fp;
6047    int fp_index, rc;
6048
6049    fp_index = 0; /* default is the first queue */
6050
6051    /* change the queue if using flow ID */
6052    if ((m->m_flags & M_FLOWID) != 0) {
6053        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6054    }
6055
6056    fp = &sc->fp[fp_index];
6057
6058    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6059        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6060        return (ENETDOWN);
6061    }
6062
6063    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6064        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6065        return (EBUSY);
6066    }
6067
6068    if (!sc->link_vars.link_up) {
6069        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6070        return (ENETDOWN);
6071    }
6072
6073    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6074
6075    BXE_FP_TX_LOCK(fp);
6076    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6077    BXE_FP_TX_UNLOCK(fp);
6078
6079    return (rc);
6080}
6081
6082static void
6083bxe_mq_flush(struct ifnet *ifp)
6084{
6085    struct bxe_softc *sc = ifp->if_softc;
6086    struct bxe_fastpath *fp;
6087    struct mbuf *m;
6088    int i;
6089
6090    for (i = 0; i < sc->num_queues; i++) {
6091        fp = &sc->fp[i];
6092
6093        if (fp->state != BXE_FP_STATE_OPEN) {
6094            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6095                  fp->index, fp->state);
6096            continue;
6097        }
6098
6099        if (fp->tx_br != NULL) {
6100            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6101            BXE_FP_TX_LOCK(fp);
6102            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6103                m_freem(m);
6104            }
6105            BXE_FP_TX_UNLOCK(fp);
6106        }
6107    }
6108
6109    if_qflush(ifp);
6110}
6111
6112#endif /* FreeBSD_version >= 800000 */
6113
6114static uint16_t
6115bxe_cid_ilt_lines(struct bxe_softc *sc)
6116{
6117    if (IS_SRIOV(sc)) {
6118        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6119    }
6120    return (L2_ILT_LINES(sc));
6121}
6122
6123static void
6124bxe_ilt_set_info(struct bxe_softc *sc)
6125{
6126    struct ilt_client_info *ilt_client;
6127    struct ecore_ilt *ilt = sc->ilt;
6128    uint16_t line = 0;
6129
6130    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6131    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6132
6133    /* CDU */
6134    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6135    ilt_client->client_num = ILT_CLIENT_CDU;
6136    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6137    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6138    ilt_client->start = line;
6139    line += bxe_cid_ilt_lines(sc);
6140
6141    if (CNIC_SUPPORT(sc)) {
6142        line += CNIC_ILT_LINES;
6143    }
6144
6145    ilt_client->end = (line - 1);
6146
6147    BLOGD(sc, DBG_LOAD,
6148          "ilt client[CDU]: start %d, end %d, "
6149          "psz 0x%x, flags 0x%x, hw psz %d\n",
6150          ilt_client->start, ilt_client->end,
6151          ilt_client->page_size,
6152          ilt_client->flags,
6153          ilog2(ilt_client->page_size >> 12));
6154
6155    /* QM */
6156    if (QM_INIT(sc->qm_cid_count)) {
6157        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6158        ilt_client->client_num = ILT_CLIENT_QM;
6159        ilt_client->page_size = QM_ILT_PAGE_SZ;
6160        ilt_client->flags = 0;
6161        ilt_client->start = line;
6162
6163        /* 4 bytes for each cid */
6164        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6165                             QM_ILT_PAGE_SZ);
6166
6167        ilt_client->end = (line - 1);
6168
6169        BLOGD(sc, DBG_LOAD,
6170              "ilt client[QM]: start %d, end %d, "
6171              "psz 0x%x, flags 0x%x, hw psz %d\n",
6172              ilt_client->start, ilt_client->end,
6173              ilt_client->page_size, ilt_client->flags,
6174              ilog2(ilt_client->page_size >> 12));
6175    }
6176
6177    if (CNIC_SUPPORT(sc)) {
6178        /* SRC */
6179        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6180        ilt_client->client_num = ILT_CLIENT_SRC;
6181        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6182        ilt_client->flags = 0;
6183        ilt_client->start = line;
6184        line += SRC_ILT_LINES;
6185        ilt_client->end = (line - 1);
6186
6187        BLOGD(sc, DBG_LOAD,
6188              "ilt client[SRC]: start %d, end %d, "
6189              "psz 0x%x, flags 0x%x, hw psz %d\n",
6190              ilt_client->start, ilt_client->end,
6191              ilt_client->page_size, ilt_client->flags,
6192              ilog2(ilt_client->page_size >> 12));
6193
6194        /* TM */
6195        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6196        ilt_client->client_num = ILT_CLIENT_TM;
6197        ilt_client->page_size = TM_ILT_PAGE_SZ;
6198        ilt_client->flags = 0;
6199        ilt_client->start = line;
6200        line += TM_ILT_LINES;
6201        ilt_client->end = (line - 1);
6202
6203        BLOGD(sc, DBG_LOAD,
6204              "ilt client[TM]: start %d, end %d, "
6205              "psz 0x%x, flags 0x%x, hw psz %d\n",
6206              ilt_client->start, ilt_client->end,
6207              ilt_client->page_size, ilt_client->flags,
6208              ilog2(ilt_client->page_size >> 12));
6209    }
6210
6211    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6212}
6213
6214static void
6215bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6216{
6217    int i;
6218
6219    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6220
6221    for (i = 0; i < sc->num_queues; i++) {
6222        /* get the Rx buffer size for RX frames */
6223        sc->fp[i].rx_buf_size =
6224            (IP_HEADER_ALIGNMENT_PADDING +
6225             ETH_OVERHEAD +
6226             sc->mtu);
6227
6228        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6229              i, sc->fp[i].rx_buf_size);
6230
6231        /* get the mbuf allocation size for RX frames */
6232        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6233            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6234        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6235            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6236        } else {
6237            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6238        }
6239
6240        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6241              i, sc->fp[i].mbuf_alloc_size);
6242    }
6243}
6244
6245static int
6246bxe_alloc_ilt_mem(struct bxe_softc *sc)
6247{
6248    int rc = 0;
6249
6250    if ((sc->ilt =
6251         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6252                                    M_BXE_ILT,
6253                                    (M_NOWAIT | M_ZERO))) == NULL) {
6254        rc = 1;
6255    }
6256
6257    return (rc);
6258}
6259
6260static int
6261bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6262{
6263    int rc = 0;
6264
6265    if ((sc->ilt->lines =
6266         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6267                                    M_BXE_ILT,
6268                                    (M_NOWAIT | M_ZERO))) == NULL) {
6269        rc = 1;
6270    }
6271
6272    return (rc);
6273}
6274
6275static void
6276bxe_free_ilt_mem(struct bxe_softc *sc)
6277{
6278    if (sc->ilt != NULL) {
6279        free(sc->ilt, M_BXE_ILT);
6280        sc->ilt = NULL;
6281    }
6282}
6283
6284static void
6285bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6286{
6287    if (sc->ilt->lines != NULL) {
6288        free(sc->ilt->lines, M_BXE_ILT);
6289        sc->ilt->lines = NULL;
6290    }
6291}
6292
6293static void
6294bxe_free_mem(struct bxe_softc *sc)
6295{
6296    int i;
6297
6298#if 0
6299    if (!CONFIGURE_NIC_MODE(sc)) {
6300        /* free searcher T2 table */
6301        bxe_dma_free(sc, &sc->t2);
6302    }
6303#endif
6304
6305    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6306        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6307        sc->context[i].vcxt = NULL;
6308        sc->context[i].size = 0;
6309    }
6310
6311    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6312
6313    bxe_free_ilt_lines_mem(sc);
6314
6315#if 0
6316    bxe_iov_free_mem(sc);
6317#endif
6318}
6319
6320static int
6321bxe_alloc_mem(struct bxe_softc *sc)
6322{
6323    int context_size;
6324    int allocated;
6325    int i;
6326
6327#if 0
6328    if (!CONFIGURE_NIC_MODE(sc)) {
6329        /* allocate searcher T2 table */
6330        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6331                          &sc->t2, "searcher t2 table") != 0) {
6332            return (-1);
6333        }
6334    }
6335#endif
6336
6337    /*
6338     * Allocate memory for CDU context:
6339     * This memory is allocated separately and not in the generic ILT
6340     * functions because CDU differs in few aspects:
6341     * 1. There can be multiple entities allocating memory for context -
6342     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6343     * its own ILT lines.
6344     * 2. Since CDU page-size is not a single 4KB page (which is the case
6345     * for the other ILT clients), to be efficient we want to support
6346     * allocation of sub-page-size in the last entry.
6347     * 3. Context pointers are used by the driver to pass to FW / update
6348     * the context (for the other ILT clients the pointers are used just to
6349     * free the memory during unload).
6350     */
6351    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6352    for (i = 0, allocated = 0; allocated < context_size; i++) {
6353        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6354                                  (context_size - allocated));
6355
6356        if (bxe_dma_alloc(sc, sc->context[i].size,
6357                          &sc->context[i].vcxt_dma,
6358                          "cdu context") != 0) {
6359            bxe_free_mem(sc);
6360            return (-1);
6361        }
6362
6363        sc->context[i].vcxt =
6364            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6365
6366        allocated += sc->context[i].size;
6367    }
6368
6369    bxe_alloc_ilt_lines_mem(sc);
6370
6371    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6372          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6373    {
6374        for (i = 0; i < 4; i++) {
6375            BLOGD(sc, DBG_LOAD,
6376                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6377                  i,
6378                  sc->ilt->clients[i].page_size,
6379                  sc->ilt->clients[i].start,
6380                  sc->ilt->clients[i].end,
6381                  sc->ilt->clients[i].client_num,
6382                  sc->ilt->clients[i].flags);
6383        }
6384    }
6385    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6386        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6387        bxe_free_mem(sc);
6388        return (-1);
6389    }
6390
6391#if 0
6392    if (bxe_iov_alloc_mem(sc)) {
6393        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6394        bxe_free_mem(sc);
6395        return (-1);
6396    }
6397#endif
6398
6399    return (0);
6400}
6401
6402static void
6403bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6404{
6405    struct bxe_softc *sc;
6406    int i;
6407
6408    sc = fp->sc;
6409
6410    if (fp->rx_mbuf_tag == NULL) {
6411        return;
6412    }
6413
6414    /* free all mbufs and unload all maps */
6415    for (i = 0; i < RX_BD_TOTAL; i++) {
6416        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6417            bus_dmamap_sync(fp->rx_mbuf_tag,
6418                            fp->rx_mbuf_chain[i].m_map,
6419                            BUS_DMASYNC_POSTREAD);
6420            bus_dmamap_unload(fp->rx_mbuf_tag,
6421                              fp->rx_mbuf_chain[i].m_map);
6422        }
6423
6424        if (fp->rx_mbuf_chain[i].m != NULL) {
6425            m_freem(fp->rx_mbuf_chain[i].m);
6426            fp->rx_mbuf_chain[i].m = NULL;
6427            fp->eth_q_stats.mbuf_alloc_rx--;
6428        }
6429    }
6430}
6431
6432static void
6433bxe_free_tpa_pool(struct bxe_fastpath *fp)
6434{
6435    struct bxe_softc *sc;
6436    int i, max_agg_queues;
6437
6438    sc = fp->sc;
6439
6440    if (fp->rx_mbuf_tag == NULL) {
6441        return;
6442    }
6443
6444    max_agg_queues = MAX_AGG_QS(sc);
6445
6446    /* release all mbufs and unload all DMA maps in the TPA pool */
6447    for (i = 0; i < max_agg_queues; i++) {
6448        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6449            bus_dmamap_sync(fp->rx_mbuf_tag,
6450                            fp->rx_tpa_info[i].bd.m_map,
6451                            BUS_DMASYNC_POSTREAD);
6452            bus_dmamap_unload(fp->rx_mbuf_tag,
6453                              fp->rx_tpa_info[i].bd.m_map);
6454        }
6455
6456        if (fp->rx_tpa_info[i].bd.m != NULL) {
6457            m_freem(fp->rx_tpa_info[i].bd.m);
6458            fp->rx_tpa_info[i].bd.m = NULL;
6459            fp->eth_q_stats.mbuf_alloc_tpa--;
6460        }
6461    }
6462}
6463
6464static void
6465bxe_free_sge_chain(struct bxe_fastpath *fp)
6466{
6467    struct bxe_softc *sc;
6468    int i;
6469
6470    sc = fp->sc;
6471
6472    if (fp->rx_sge_mbuf_tag == NULL) {
6473        return;
6474    }
6475
6476    /* rree all mbufs and unload all maps */
6477    for (i = 0; i < RX_SGE_TOTAL; i++) {
6478        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6479            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6480                            fp->rx_sge_mbuf_chain[i].m_map,
6481                            BUS_DMASYNC_POSTREAD);
6482            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6483                              fp->rx_sge_mbuf_chain[i].m_map);
6484        }
6485
6486        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6487            m_freem(fp->rx_sge_mbuf_chain[i].m);
6488            fp->rx_sge_mbuf_chain[i].m = NULL;
6489            fp->eth_q_stats.mbuf_alloc_sge--;
6490        }
6491    }
6492}
6493
6494static void
6495bxe_free_fp_buffers(struct bxe_softc *sc)
6496{
6497    struct bxe_fastpath *fp;
6498    int i;
6499
6500    for (i = 0; i < sc->num_queues; i++) {
6501        fp = &sc->fp[i];
6502
6503#if __FreeBSD_version >= 800000
6504        if (fp->tx_br != NULL) {
6505            struct mbuf *m;
6506            /* just in case bxe_mq_flush() wasn't called */
6507            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6508                m_freem(m);
6509            }
6510            buf_ring_free(fp->tx_br, M_DEVBUF);
6511            fp->tx_br = NULL;
6512        }
6513#endif
6514
6515        /* free all RX buffers */
6516        bxe_free_rx_bd_chain(fp);
6517        bxe_free_tpa_pool(fp);
6518        bxe_free_sge_chain(fp);
6519
6520        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6521            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6522                  fp->eth_q_stats.mbuf_alloc_rx);
6523        }
6524
6525        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6526            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6527                  fp->eth_q_stats.mbuf_alloc_sge);
6528        }
6529
6530        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6531            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6532                  fp->eth_q_stats.mbuf_alloc_tpa);
6533        }
6534
6535        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6536            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6537                  fp->eth_q_stats.mbuf_alloc_tx);
6538        }
6539
6540        /* XXX verify all mbufs were reclaimed */
6541
6542        if (mtx_initialized(&fp->tx_mtx)) {
6543            mtx_destroy(&fp->tx_mtx);
6544        }
6545
6546        if (mtx_initialized(&fp->rx_mtx)) {
6547            mtx_destroy(&fp->rx_mtx);
6548        }
6549    }
6550}
6551
6552static int
6553bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6554                     uint16_t            prev_index,
6555                     uint16_t            index)
6556{
6557    struct bxe_sw_rx_bd *rx_buf;
6558    struct eth_rx_bd *rx_bd;
6559    bus_dma_segment_t segs[1];
6560    bus_dmamap_t map;
6561    struct mbuf *m;
6562    int nsegs, rc;
6563
6564    rc = 0;
6565
6566    /* allocate the new RX BD mbuf */
6567    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6568    if (__predict_false(m == NULL)) {
6569        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6570        return (ENOBUFS);
6571    }
6572
6573    fp->eth_q_stats.mbuf_alloc_rx++;
6574
6575    /* initialize the mbuf buffer length */
6576    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6577
6578    /* map the mbuf into non-paged pool */
6579    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6580                                 fp->rx_mbuf_spare_map,
6581                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6582    if (__predict_false(rc != 0)) {
6583        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6584        m_freem(m);
6585        fp->eth_q_stats.mbuf_alloc_rx--;
6586        return (rc);
6587    }
6588
6589    /* all mbufs must map to a single segment */
6590    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6591
6592    /* release any existing RX BD mbuf mappings */
6593
6594    if (prev_index != index) {
6595        rx_buf = &fp->rx_mbuf_chain[prev_index];
6596
6597        if (rx_buf->m_map != NULL) {
6598            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6599                            BUS_DMASYNC_POSTREAD);
6600            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6601        }
6602
6603        /*
6604         * We only get here from bxe_rxeof() when the maximum number
6605         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6606         * holds the mbuf in the prev_index so it's OK to NULL it out
6607         * here without concern of a memory leak.
6608         */
6609        fp->rx_mbuf_chain[prev_index].m = NULL;
6610    }
6611
6612    rx_buf = &fp->rx_mbuf_chain[index];
6613
6614    if (rx_buf->m_map != NULL) {
6615        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6616                        BUS_DMASYNC_POSTREAD);
6617        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6618    }
6619
6620    /* save the mbuf and mapping info for a future packet */
6621    map = (prev_index != index) ?
6622              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6623    rx_buf->m_map = fp->rx_mbuf_spare_map;
6624    fp->rx_mbuf_spare_map = map;
6625    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6626                    BUS_DMASYNC_PREREAD);
6627    rx_buf->m = m;
6628
6629    rx_bd = &fp->rx_chain[index];
6630    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6631    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6632
6633    return (rc);
6634}
6635
6636static int
6637bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6638                      int                 queue)
6639{
6640    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6641    bus_dma_segment_t segs[1];
6642    bus_dmamap_t map;
6643    struct mbuf *m;
6644    int nsegs;
6645    int rc = 0;
6646
6647    /* allocate the new TPA mbuf */
6648    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6649    if (__predict_false(m == NULL)) {
6650        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6651        return (ENOBUFS);
6652    }
6653
6654    fp->eth_q_stats.mbuf_alloc_tpa++;
6655
6656    /* initialize the mbuf buffer length */
6657    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6658
6659    /* map the mbuf into non-paged pool */
6660    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6661                                 fp->rx_tpa_info_mbuf_spare_map,
6662                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6663    if (__predict_false(rc != 0)) {
6664        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6665        m_free(m);
6666        fp->eth_q_stats.mbuf_alloc_tpa--;
6667        return (rc);
6668    }
6669
6670    /* all mbufs must map to a single segment */
6671    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6672
6673    /* release any existing TPA mbuf mapping */
6674    if (tpa_info->bd.m_map != NULL) {
6675        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6676                        BUS_DMASYNC_POSTREAD);
6677        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6678    }
6679
6680    /* save the mbuf and mapping info for the TPA mbuf */
6681    map = tpa_info->bd.m_map;
6682    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6683    fp->rx_tpa_info_mbuf_spare_map = map;
6684    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6685                    BUS_DMASYNC_PREREAD);
6686    tpa_info->bd.m = m;
6687    tpa_info->seg = segs[0];
6688
6689    return (rc);
6690}
6691
6692/*
6693 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6694 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6695 * chain.
6696 */
6697static int
6698bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6699                      uint16_t            index)
6700{
6701    struct bxe_sw_rx_bd *sge_buf;
6702    struct eth_rx_sge *sge;
6703    bus_dma_segment_t segs[1];
6704    bus_dmamap_t map;
6705    struct mbuf *m;
6706    int nsegs;
6707    int rc = 0;
6708
6709    /* allocate a new SGE mbuf */
6710    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6711    if (__predict_false(m == NULL)) {
6712        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6713        return (ENOMEM);
6714    }
6715
6716    fp->eth_q_stats.mbuf_alloc_sge++;
6717
6718    /* initialize the mbuf buffer length */
6719    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6720
6721    /* map the SGE mbuf into non-paged pool */
6722    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6723                                 fp->rx_sge_mbuf_spare_map,
6724                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6725    if (__predict_false(rc != 0)) {
6726        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6727        m_freem(m);
6728        fp->eth_q_stats.mbuf_alloc_sge--;
6729        return (rc);
6730    }
6731
6732    /* all mbufs must map to a single segment */
6733    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6734
6735    sge_buf = &fp->rx_sge_mbuf_chain[index];
6736
6737    /* release any existing SGE mbuf mapping */
6738    if (sge_buf->m_map != NULL) {
6739        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6740                        BUS_DMASYNC_POSTREAD);
6741        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6742    }
6743
6744    /* save the mbuf and mapping info for a future packet */
6745    map = sge_buf->m_map;
6746    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6747    fp->rx_sge_mbuf_spare_map = map;
6748    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6749                    BUS_DMASYNC_PREREAD);
6750    sge_buf->m = m;
6751
6752    sge = &fp->rx_sge_chain[index];
6753    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6754    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6755
6756    return (rc);
6757}
6758
6759static __noinline int
6760bxe_alloc_fp_buffers(struct bxe_softc *sc)
6761{
6762    struct bxe_fastpath *fp;
6763    int i, j, rc = 0;
6764    int ring_prod, cqe_ring_prod;
6765    int max_agg_queues;
6766
6767    for (i = 0; i < sc->num_queues; i++) {
6768        fp = &sc->fp[i];
6769
6770#if __FreeBSD_version >= 800000
6771        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6772                                   M_DONTWAIT, &fp->tx_mtx);
6773        if (fp->tx_br == NULL) {
6774            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6775            goto bxe_alloc_fp_buffers_error;
6776        }
6777#endif
6778
6779        ring_prod = cqe_ring_prod = 0;
6780        fp->rx_bd_cons = 0;
6781        fp->rx_cq_cons = 0;
6782
6783        /* allocate buffers for the RX BDs in RX BD chain */
6784        for (j = 0; j < sc->max_rx_bufs; j++) {
6785            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6786            if (rc != 0) {
6787                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6788                      i, rc);
6789                goto bxe_alloc_fp_buffers_error;
6790            }
6791
6792            ring_prod     = RX_BD_NEXT(ring_prod);
6793            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6794        }
6795
6796        fp->rx_bd_prod = ring_prod;
6797        fp->rx_cq_prod = cqe_ring_prod;
6798        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6799
6800        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6801            max_agg_queues = MAX_AGG_QS(sc);
6802
6803            fp->tpa_enable = TRUE;
6804
6805            /* fill the TPA pool */
6806            for (j = 0; j < max_agg_queues; j++) {
6807                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6808                if (rc != 0) {
6809                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6810                          i, j);
6811                    fp->tpa_enable = FALSE;
6812                    goto bxe_alloc_fp_buffers_error;
6813                }
6814
6815                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6816            }
6817
6818            if (fp->tpa_enable) {
6819                /* fill the RX SGE chain */
6820                ring_prod = 0;
6821                for (j = 0; j < RX_SGE_USABLE; j++) {
6822                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6823                    if (rc != 0) {
6824                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6825                              i, ring_prod);
6826                        fp->tpa_enable = FALSE;
6827                        ring_prod = 0;
6828                        goto bxe_alloc_fp_buffers_error;
6829                    }
6830
6831                    ring_prod = RX_SGE_NEXT(ring_prod);
6832                }
6833
6834                fp->rx_sge_prod = ring_prod;
6835            }
6836        }
6837    }
6838
6839    return (0);
6840
6841bxe_alloc_fp_buffers_error:
6842
6843    /* unwind what was already allocated */
6844    bxe_free_rx_bd_chain(fp);
6845    bxe_free_tpa_pool(fp);
6846    bxe_free_sge_chain(fp);
6847
6848    return (ENOBUFS);
6849}
6850
6851static void
6852bxe_free_fw_stats_mem(struct bxe_softc *sc)
6853{
6854    bxe_dma_free(sc, &sc->fw_stats_dma);
6855
6856    sc->fw_stats_num = 0;
6857
6858    sc->fw_stats_req_size = 0;
6859    sc->fw_stats_req = NULL;
6860    sc->fw_stats_req_mapping = 0;
6861
6862    sc->fw_stats_data_size = 0;
6863    sc->fw_stats_data = NULL;
6864    sc->fw_stats_data_mapping = 0;
6865}
6866
6867static int
6868bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6869{
6870    uint8_t num_queue_stats;
6871    int num_groups;
6872
6873    /* number of queues for statistics is number of eth queues */
6874    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6875
6876    /*
6877     * Total number of FW statistics requests =
6878     *   1 for port stats + 1 for PF stats + num of queues
6879     */
6880    sc->fw_stats_num = (2 + num_queue_stats);
6881
6882    /*
6883     * Request is built from stats_query_header and an array of
6884     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6885     * rules. The real number or requests is configured in the
6886     * stats_query_header.
6887     */
6888    num_groups =
6889        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6890         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6891
6892    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6893          sc->fw_stats_num, num_groups);
6894
6895    sc->fw_stats_req_size =
6896        (sizeof(struct stats_query_header) +
6897         (num_groups * sizeof(struct stats_query_cmd_group)));
6898
6899    /*
6900     * Data for statistics requests + stats_counter.
6901     * stats_counter holds per-STORM counters that are incremented when
6902     * STORM has finished with the current request. Memory for FCoE
6903     * offloaded statistics are counted anyway, even if they will not be sent.
6904     * VF stats are not accounted for here as the data of VF stats is stored
6905     * in memory allocated by the VF, not here.
6906     */
6907    sc->fw_stats_data_size =
6908        (sizeof(struct stats_counter) +
6909         sizeof(struct per_port_stats) +
6910         sizeof(struct per_pf_stats) +
6911         /* sizeof(struct fcoe_statistics_params) + */
6912         (sizeof(struct per_queue_stats) * num_queue_stats));
6913
6914    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6915                      &sc->fw_stats_dma, "fw stats") != 0) {
6916        bxe_free_fw_stats_mem(sc);
6917        return (-1);
6918    }
6919
6920    /* set up the shortcuts */
6921
6922    sc->fw_stats_req =
6923        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6924    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6925
6926    sc->fw_stats_data =
6927        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6928                                     sc->fw_stats_req_size);
6929    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6930                                 sc->fw_stats_req_size);
6931
6932    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6933          (uintmax_t)sc->fw_stats_req_mapping);
6934
6935    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6936          (uintmax_t)sc->fw_stats_data_mapping);
6937
6938    return (0);
6939}
6940
6941/*
6942 * Bits map:
6943 * 0-7  - Engine0 load counter.
6944 * 8-15 - Engine1 load counter.
6945 * 16   - Engine0 RESET_IN_PROGRESS bit.
6946 * 17   - Engine1 RESET_IN_PROGRESS bit.
6947 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6948 *        function on the engine
6949 * 19   - Engine1 ONE_IS_LOADED.
6950 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6951 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6952 *        for just the one belonging to its engine).
6953 */
6954#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6955#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6956#define BXE_PATH0_LOAD_CNT_SHIFT  0
6957#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6958#define BXE_PATH1_LOAD_CNT_SHIFT  8
6959#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6960#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6961#define BXE_GLOBAL_RESET_BIT      0x00040000
6962
6963/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6964static void
6965bxe_set_reset_global(struct bxe_softc *sc)
6966{
6967    uint32_t val;
6968    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6969    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6970    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6971    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972}
6973
6974/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6975static void
6976bxe_clear_reset_global(struct bxe_softc *sc)
6977{
6978    uint32_t val;
6979    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6980    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6981    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6982    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6983}
6984
6985/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6986static uint8_t
6987bxe_reset_is_global(struct bxe_softc *sc)
6988{
6989    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6990    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6991    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6992}
6993
6994/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6995static void
6996bxe_set_reset_done(struct bxe_softc *sc)
6997{
6998    uint32_t val;
6999    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7000                                 BXE_PATH0_RST_IN_PROG_BIT;
7001
7002    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7003
7004    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7005    /* Clear the bit */
7006    val &= ~bit;
7007    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7008
7009    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7010}
7011
7012/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7013static void
7014bxe_set_reset_in_progress(struct bxe_softc *sc)
7015{
7016    uint32_t val;
7017    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7018                                 BXE_PATH0_RST_IN_PROG_BIT;
7019
7020    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7021
7022    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7023    /* Set the bit */
7024    val |= bit;
7025    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7026
7027    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7028}
7029
7030/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7031static uint8_t
7032bxe_reset_is_done(struct bxe_softc *sc,
7033                  int              engine)
7034{
7035    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7036    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7037                            BXE_PATH0_RST_IN_PROG_BIT;
7038
7039    /* return false if bit is set */
7040    return (val & bit) ? FALSE : TRUE;
7041}
7042
7043/* get the load status for an engine, should be run under rtnl lock */
7044static uint8_t
7045bxe_get_load_status(struct bxe_softc *sc,
7046                    int              engine)
7047{
7048    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7049                             BXE_PATH0_LOAD_CNT_MASK;
7050    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7051                              BXE_PATH0_LOAD_CNT_SHIFT;
7052    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7053
7054    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7055
7056    val = ((val & mask) >> shift);
7057
7058    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7059
7060    return (val != 0);
7061}
7062
7063/* set pf load mark */
7064/* XXX needs to be under rtnl lock */
7065static void
7066bxe_set_pf_load(struct bxe_softc *sc)
7067{
7068    uint32_t val;
7069    uint32_t val1;
7070    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7071                                  BXE_PATH0_LOAD_CNT_MASK;
7072    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7073                                   BXE_PATH0_LOAD_CNT_SHIFT;
7074
7075    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7076
7077    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7078    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7079
7080    /* get the current counter value */
7081    val1 = ((val & mask) >> shift);
7082
7083    /* set bit of this PF */
7084    val1 |= (1 << SC_ABS_FUNC(sc));
7085
7086    /* clear the old value */
7087    val &= ~mask;
7088
7089    /* set the new one */
7090    val |= ((val1 << shift) & mask);
7091
7092    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7093
7094    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7095}
7096
7097/* clear pf load mark */
7098/* XXX needs to be under rtnl lock */
7099static uint8_t
7100bxe_clear_pf_load(struct bxe_softc *sc)
7101{
7102    uint32_t val1, val;
7103    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7104                                  BXE_PATH0_LOAD_CNT_MASK;
7105    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7106                                   BXE_PATH0_LOAD_CNT_SHIFT;
7107
7108    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7109    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7110    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7111
7112    /* get the current counter value */
7113    val1 = (val & mask) >> shift;
7114
7115    /* clear bit of that PF */
7116    val1 &= ~(1 << SC_ABS_FUNC(sc));
7117
7118    /* clear the old value */
7119    val &= ~mask;
7120
7121    /* set the new one */
7122    val |= ((val1 << shift) & mask);
7123
7124    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7126    return (val1 != 0);
7127}
7128
7129/* send load requrest to mcp and analyze response */
7130static int
7131bxe_nic_load_request(struct bxe_softc *sc,
7132                     uint32_t         *load_code)
7133{
7134    /* init fw_seq */
7135    sc->fw_seq =
7136        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7137         DRV_MSG_SEQ_NUMBER_MASK);
7138
7139    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7140
7141    /* get the current FW pulse sequence */
7142    sc->fw_drv_pulse_wr_seq =
7143        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7144         DRV_PULSE_SEQ_MASK);
7145
7146    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7147          sc->fw_drv_pulse_wr_seq);
7148
7149    /* load request */
7150    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7151                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7152
7153    /* if the MCP fails to respond we must abort */
7154    if (!(*load_code)) {
7155        BLOGE(sc, "MCP response failure!\n");
7156        return (-1);
7157    }
7158
7159    /* if MCP refused then must abort */
7160    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7161        BLOGE(sc, "MCP refused load request\n");
7162        return (-1);
7163    }
7164
7165    return (0);
7166}
7167
7168/*
7169 * Check whether another PF has already loaded FW to chip. In virtualized
7170 * environments a pf from anoth VM may have already initialized the device
7171 * including loading FW.
7172 */
7173static int
7174bxe_nic_load_analyze_req(struct bxe_softc *sc,
7175                         uint32_t         load_code)
7176{
7177    uint32_t my_fw, loaded_fw;
7178
7179    /* is another pf loaded on this engine? */
7180    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7181        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7182        /* build my FW version dword */
7183        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7184                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7185                 (BCM_5710_FW_REVISION_VERSION << 16) +
7186                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7187
7188        /* read loaded FW from chip */
7189        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7190        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7191              loaded_fw, my_fw);
7192
7193        /* abort nic load if version mismatch */
7194        if (my_fw != loaded_fw) {
7195            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7196                  loaded_fw, my_fw);
7197            return (-1);
7198        }
7199    }
7200
7201    return (0);
7202}
7203
7204/* mark PMF if applicable */
7205static void
7206bxe_nic_load_pmf(struct bxe_softc *sc,
7207                 uint32_t         load_code)
7208{
7209    uint32_t ncsi_oem_data_addr;
7210
7211    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7212        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7213        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7214        /*
7215         * Barrier here for ordering between the writing to sc->port.pmf here
7216         * and reading it from the periodic task.
7217         */
7218        sc->port.pmf = 1;
7219        mb();
7220    } else {
7221        sc->port.pmf = 0;
7222    }
7223
7224    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7225
7226    /* XXX needed? */
7227    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7228        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7229            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7230            if (ncsi_oem_data_addr) {
7231                REG_WR(sc,
7232                       (ncsi_oem_data_addr +
7233                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7234                       0);
7235            }
7236        }
7237    }
7238}
7239
7240static void
7241bxe_read_mf_cfg(struct bxe_softc *sc)
7242{
7243    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7244    int abs_func;
7245    int vn;
7246
7247    if (BXE_NOMCP(sc)) {
7248        return; /* what should be the default bvalue in this case */
7249    }
7250
7251    /*
7252     * The formula for computing the absolute function number is...
7253     * For 2 port configuration (4 functions per port):
7254     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7255     * For 4 port configuration (2 functions per port):
7256     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7257     */
7258    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7259        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7260        if (abs_func >= E1H_FUNC_MAX) {
7261            break;
7262        }
7263        sc->devinfo.mf_info.mf_config[vn] =
7264            MFCFG_RD(sc, func_mf_config[abs_func].config);
7265    }
7266
7267    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7268        FUNC_MF_CFG_FUNC_DISABLED) {
7269        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7270        sc->flags |= BXE_MF_FUNC_DIS;
7271    } else {
7272        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7273        sc->flags &= ~BXE_MF_FUNC_DIS;
7274    }
7275}
7276
7277/* acquire split MCP access lock register */
7278static int bxe_acquire_alr(struct bxe_softc *sc)
7279{
7280    uint32_t j, val;
7281
7282    for (j = 0; j < 1000; j++) {
7283        val = (1UL << 31);
7284        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7285        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7286        if (val & (1L << 31))
7287            break;
7288
7289        DELAY(5000);
7290    }
7291
7292    if (!(val & (1L << 31))) {
7293        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7294        return (-1);
7295    }
7296
7297    return (0);
7298}
7299
7300/* release split MCP access lock register */
7301static void bxe_release_alr(struct bxe_softc *sc)
7302{
7303    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7304}
7305
7306static void
7307bxe_fan_failure(struct bxe_softc *sc)
7308{
7309    int port = SC_PORT(sc);
7310    uint32_t ext_phy_config;
7311
7312    /* mark the failure */
7313    ext_phy_config =
7314        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7315
7316    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7317    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7318    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7319             ext_phy_config);
7320
7321    /* log the failure */
7322    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7323              "the card to prevent permanent damage. "
7324              "Please contact OEM Support for assistance\n");
7325
7326    /* XXX */
7327#if 1
7328    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7329#else
7330    /*
7331     * Schedule device reset (unload)
7332     * This is due to some boards consuming sufficient power when driver is
7333     * up to overheat if fan fails.
7334     */
7335    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7336    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7337#endif
7338}
7339
7340/* this function is called upon a link interrupt */
7341static void
7342bxe_link_attn(struct bxe_softc *sc)
7343{
7344    uint32_t pause_enabled = 0;
7345    struct host_port_stats *pstats;
7346    int cmng_fns;
7347
7348    /* Make sure that we are synced with the current statistics */
7349    bxe_stats_handle(sc, STATS_EVENT_STOP);
7350
7351    elink_link_update(&sc->link_params, &sc->link_vars);
7352
7353    if (sc->link_vars.link_up) {
7354
7355        /* dropless flow control */
7356        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7357            pause_enabled = 0;
7358
7359            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7360                pause_enabled = 1;
7361            }
7362
7363            REG_WR(sc,
7364                   (BAR_USTRORM_INTMEM +
7365                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7366                   pause_enabled);
7367        }
7368
7369        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7370            pstats = BXE_SP(sc, port_stats);
7371            /* reset old mac stats */
7372            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7373        }
7374
7375        if (sc->state == BXE_STATE_OPEN) {
7376            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7377        }
7378    }
7379
7380    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7381        cmng_fns = bxe_get_cmng_fns_mode(sc);
7382
7383        if (cmng_fns != CMNG_FNS_NONE) {
7384            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7385            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7386        } else {
7387            /* rate shaping and fairness are disabled */
7388            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7389        }
7390    }
7391
7392    bxe_link_report_locked(sc);
7393
7394    if (IS_MF(sc)) {
7395        ; // XXX bxe_link_sync_notify(sc);
7396    }
7397}
7398
7399static void
7400bxe_attn_int_asserted(struct bxe_softc *sc,
7401                      uint32_t         asserted)
7402{
7403    int port = SC_PORT(sc);
7404    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7405                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7406    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7407                                        NIG_REG_MASK_INTERRUPT_PORT0;
7408    uint32_t aeu_mask;
7409    uint32_t nig_mask = 0;
7410    uint32_t reg_addr;
7411    uint32_t igu_acked;
7412    uint32_t cnt;
7413
7414    if (sc->attn_state & asserted) {
7415        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7416    }
7417
7418    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7419
7420    aeu_mask = REG_RD(sc, aeu_addr);
7421
7422    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7423          aeu_mask, asserted);
7424
7425    aeu_mask &= ~(asserted & 0x3ff);
7426
7427    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7428
7429    REG_WR(sc, aeu_addr, aeu_mask);
7430
7431    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7432
7433    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7434    sc->attn_state |= asserted;
7435    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7436
7437    if (asserted & ATTN_HARD_WIRED_MASK) {
7438        if (asserted & ATTN_NIG_FOR_FUNC) {
7439
7440            BXE_PHY_LOCK(sc);
7441
7442            /* save nig interrupt mask */
7443            nig_mask = REG_RD(sc, nig_int_mask_addr);
7444
7445            /* If nig_mask is not set, no need to call the update function */
7446            if (nig_mask) {
7447                REG_WR(sc, nig_int_mask_addr, 0);
7448
7449                bxe_link_attn(sc);
7450            }
7451
7452            /* handle unicore attn? */
7453        }
7454
7455        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7456            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7457        }
7458
7459        if (asserted & GPIO_2_FUNC) {
7460            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7461        }
7462
7463        if (asserted & GPIO_3_FUNC) {
7464            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7465        }
7466
7467        if (asserted & GPIO_4_FUNC) {
7468            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7469        }
7470
7471        if (port == 0) {
7472            if (asserted & ATTN_GENERAL_ATTN_1) {
7473                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7474                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7475            }
7476            if (asserted & ATTN_GENERAL_ATTN_2) {
7477                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7478                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7479            }
7480            if (asserted & ATTN_GENERAL_ATTN_3) {
7481                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7482                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7483            }
7484        } else {
7485            if (asserted & ATTN_GENERAL_ATTN_4) {
7486                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7487                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7488            }
7489            if (asserted & ATTN_GENERAL_ATTN_5) {
7490                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7491                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7492            }
7493            if (asserted & ATTN_GENERAL_ATTN_6) {
7494                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7495                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7496            }
7497        }
7498    } /* hardwired */
7499
7500    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7501        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7502    } else {
7503        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7504    }
7505
7506    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7507          asserted,
7508          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7509    REG_WR(sc, reg_addr, asserted);
7510
7511    /* now set back the mask */
7512    if (asserted & ATTN_NIG_FOR_FUNC) {
7513        /*
7514         * Verify that IGU ack through BAR was written before restoring
7515         * NIG mask. This loop should exit after 2-3 iterations max.
7516         */
7517        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7518            cnt = 0;
7519
7520            do {
7521                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7522            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7523                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7524
7525            if (!igu_acked) {
7526                BLOGE(sc, "Failed to verify IGU ack on time\n");
7527            }
7528
7529            mb();
7530        }
7531
7532        REG_WR(sc, nig_int_mask_addr, nig_mask);
7533
7534        BXE_PHY_UNLOCK(sc);
7535    }
7536}
7537
7538static void
7539bxe_print_next_block(struct bxe_softc *sc,
7540                     int              idx,
7541                     const char       *blk)
7542{
7543    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7544}
7545
7546static int
7547bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7548                              uint32_t         sig,
7549                              int              par_num,
7550                              uint8_t          print)
7551{
7552    uint32_t cur_bit = 0;
7553    int i = 0;
7554
7555    for (i = 0; sig; i++) {
7556        cur_bit = ((uint32_t)0x1 << i);
7557        if (sig & cur_bit) {
7558            switch (cur_bit) {
7559            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7560                if (print)
7561                    bxe_print_next_block(sc, par_num++, "BRB");
7562                break;
7563            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7564                if (print)
7565                    bxe_print_next_block(sc, par_num++, "PARSER");
7566                break;
7567            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7568                if (print)
7569                    bxe_print_next_block(sc, par_num++, "TSDM");
7570                break;
7571            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7572                if (print)
7573                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7574                break;
7575            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7576                if (print)
7577                    bxe_print_next_block(sc, par_num++, "TCM");
7578                break;
7579            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7580                if (print)
7581                    bxe_print_next_block(sc, par_num++, "TSEMI");
7582                break;
7583            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7584                if (print)
7585                    bxe_print_next_block(sc, par_num++, "XPB");
7586                break;
7587            }
7588
7589            /* Clear the bit */
7590            sig &= ~cur_bit;
7591        }
7592    }
7593
7594    return (par_num);
7595}
7596
7597static int
7598bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7599                              uint32_t         sig,
7600                              int              par_num,
7601                              uint8_t          *global,
7602                              uint8_t          print)
7603{
7604    int i = 0;
7605    uint32_t cur_bit = 0;
7606    for (i = 0; sig; i++) {
7607        cur_bit = ((uint32_t)0x1 << i);
7608        if (sig & cur_bit) {
7609            switch (cur_bit) {
7610            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7611                if (print)
7612                    bxe_print_next_block(sc, par_num++, "PBF");
7613                break;
7614            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7615                if (print)
7616                    bxe_print_next_block(sc, par_num++, "QM");
7617                break;
7618            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7619                if (print)
7620                    bxe_print_next_block(sc, par_num++, "TM");
7621                break;
7622            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7623                if (print)
7624                    bxe_print_next_block(sc, par_num++, "XSDM");
7625                break;
7626            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7627                if (print)
7628                    bxe_print_next_block(sc, par_num++, "XCM");
7629                break;
7630            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7631                if (print)
7632                    bxe_print_next_block(sc, par_num++, "XSEMI");
7633                break;
7634            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7635                if (print)
7636                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7637                break;
7638            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7639                if (print)
7640                    bxe_print_next_block(sc, par_num++, "NIG");
7641                break;
7642            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7643                if (print)
7644                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7645                *global = TRUE;
7646                break;
7647            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7648                if (print)
7649                    bxe_print_next_block(sc, par_num++, "DEBUG");
7650                break;
7651            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7652                if (print)
7653                    bxe_print_next_block(sc, par_num++, "USDM");
7654                break;
7655            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7656                if (print)
7657                    bxe_print_next_block(sc, par_num++, "UCM");
7658                break;
7659            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7660                if (print)
7661                    bxe_print_next_block(sc, par_num++, "USEMI");
7662                break;
7663            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7664                if (print)
7665                    bxe_print_next_block(sc, par_num++, "UPB");
7666                break;
7667            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7668                if (print)
7669                    bxe_print_next_block(sc, par_num++, "CSDM");
7670                break;
7671            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7672                if (print)
7673                    bxe_print_next_block(sc, par_num++, "CCM");
7674                break;
7675            }
7676
7677            /* Clear the bit */
7678            sig &= ~cur_bit;
7679        }
7680    }
7681
7682    return (par_num);
7683}
7684
7685static int
7686bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7687                              uint32_t         sig,
7688                              int              par_num,
7689                              uint8_t          print)
7690{
7691    uint32_t cur_bit = 0;
7692    int i = 0;
7693
7694    for (i = 0; sig; i++) {
7695        cur_bit = ((uint32_t)0x1 << i);
7696        if (sig & cur_bit) {
7697            switch (cur_bit) {
7698            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7699                if (print)
7700                    bxe_print_next_block(sc, par_num++, "CSEMI");
7701                break;
7702            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7703                if (print)
7704                    bxe_print_next_block(sc, par_num++, "PXP");
7705                break;
7706            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7707                if (print)
7708                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7709                break;
7710            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7711                if (print)
7712                    bxe_print_next_block(sc, par_num++, "CFC");
7713                break;
7714            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7715                if (print)
7716                    bxe_print_next_block(sc, par_num++, "CDU");
7717                break;
7718            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7719                if (print)
7720                    bxe_print_next_block(sc, par_num++, "DMAE");
7721                break;
7722            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7723                if (print)
7724                    bxe_print_next_block(sc, par_num++, "IGU");
7725                break;
7726            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7727                if (print)
7728                    bxe_print_next_block(sc, par_num++, "MISC");
7729                break;
7730            }
7731
7732            /* Clear the bit */
7733            sig &= ~cur_bit;
7734        }
7735    }
7736
7737    return (par_num);
7738}
7739
7740static int
7741bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7742                              uint32_t         sig,
7743                              int              par_num,
7744                              uint8_t          *global,
7745                              uint8_t          print)
7746{
7747    uint32_t cur_bit = 0;
7748    int i = 0;
7749
7750    for (i = 0; sig; i++) {
7751        cur_bit = ((uint32_t)0x1 << i);
7752        if (sig & cur_bit) {
7753            switch (cur_bit) {
7754            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7755                if (print)
7756                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7757                *global = TRUE;
7758                break;
7759            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7760                if (print)
7761                    bxe_print_next_block(sc, par_num++,
7762                              "MCP UMP RX");
7763                *global = TRUE;
7764                break;
7765            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7766                if (print)
7767                    bxe_print_next_block(sc, par_num++,
7768                              "MCP UMP TX");
7769                *global = TRUE;
7770                break;
7771            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7772                if (print)
7773                    bxe_print_next_block(sc, par_num++,
7774                              "MCP SCPAD");
7775                *global = TRUE;
7776                break;
7777            }
7778
7779            /* Clear the bit */
7780            sig &= ~cur_bit;
7781        }
7782    }
7783
7784    return (par_num);
7785}
7786
7787static int
7788bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7789                              uint32_t         sig,
7790                              int              par_num,
7791                              uint8_t          print)
7792{
7793    uint32_t cur_bit = 0;
7794    int i = 0;
7795
7796    for (i = 0; sig; i++) {
7797        cur_bit = ((uint32_t)0x1 << i);
7798        if (sig & cur_bit) {
7799            switch (cur_bit) {
7800            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7801                if (print)
7802                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7803                break;
7804            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7805                if (print)
7806                    bxe_print_next_block(sc, par_num++, "ATC");
7807                break;
7808            }
7809
7810            /* Clear the bit */
7811            sig &= ~cur_bit;
7812        }
7813    }
7814
7815    return (par_num);
7816}
7817
7818static uint8_t
7819bxe_parity_attn(struct bxe_softc *sc,
7820                uint8_t          *global,
7821                uint8_t          print,
7822                uint32_t         *sig)
7823{
7824    int par_num = 0;
7825
7826    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7827        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7828        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7829        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7830        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7831        BLOGE(sc, "Parity error: HW block parity attention:\n"
7832                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7833              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7834              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7835              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7836              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7837              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7838
7839        if (print)
7840            BLOGI(sc, "Parity errors detected in blocks: ");
7841
7842        par_num =
7843            bxe_check_blocks_with_parity0(sc, sig[0] &
7844                                          HW_PRTY_ASSERT_SET_0,
7845                                          par_num, print);
7846        par_num =
7847            bxe_check_blocks_with_parity1(sc, sig[1] &
7848                                          HW_PRTY_ASSERT_SET_1,
7849                                          par_num, global, print);
7850        par_num =
7851            bxe_check_blocks_with_parity2(sc, sig[2] &
7852                                          HW_PRTY_ASSERT_SET_2,
7853                                          par_num, print);
7854        par_num =
7855            bxe_check_blocks_with_parity3(sc, sig[3] &
7856                                          HW_PRTY_ASSERT_SET_3,
7857                                          par_num, global, print);
7858        par_num =
7859            bxe_check_blocks_with_parity4(sc, sig[4] &
7860                                          HW_PRTY_ASSERT_SET_4,
7861                                          par_num, print);
7862
7863        if (print)
7864            BLOGI(sc, "\n");
7865
7866        return (TRUE);
7867    }
7868
7869    return (FALSE);
7870}
7871
7872static uint8_t
7873bxe_chk_parity_attn(struct bxe_softc *sc,
7874                    uint8_t          *global,
7875                    uint8_t          print)
7876{
7877    struct attn_route attn = { {0} };
7878    int port = SC_PORT(sc);
7879
7880    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7881    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7882    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7883    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7884
7885    if (!CHIP_IS_E1x(sc))
7886        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7887
7888    return (bxe_parity_attn(sc, global, print, attn.sig));
7889}
7890
7891static void
7892bxe_attn_int_deasserted4(struct bxe_softc *sc,
7893                         uint32_t         attn)
7894{
7895    uint32_t val;
7896
7897    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7898        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7899        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7900        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7901            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7902        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7903            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7908        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7909            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7910        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7911            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7912        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7913            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7914        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7915            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7916        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7917            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7918    }
7919
7920    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7921        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7922        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7923        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7924            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7925        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7926            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7927        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7928            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7929        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7930            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7931        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7932            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7933        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7934            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7935    }
7936
7937    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7938                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7939        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7940              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7941                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7942    }
7943}
7944
7945static void
7946bxe_e1h_disable(struct bxe_softc *sc)
7947{
7948    int port = SC_PORT(sc);
7949
7950    bxe_tx_disable(sc);
7951
7952    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7953}
7954
7955static void
7956bxe_e1h_enable(struct bxe_softc *sc)
7957{
7958    int port = SC_PORT(sc);
7959
7960    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7961
7962    // XXX bxe_tx_enable(sc);
7963}
7964
7965/*
7966 * called due to MCP event (on pmf):
7967 *   reread new bandwidth configuration
7968 *   configure FW
7969 *   notify others function about the change
7970 */
7971static void
7972bxe_config_mf_bw(struct bxe_softc *sc)
7973{
7974    if (sc->link_vars.link_up) {
7975        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7976        // XXX bxe_link_sync_notify(sc);
7977    }
7978
7979    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7980}
7981
7982static void
7983bxe_set_mf_bw(struct bxe_softc *sc)
7984{
7985    bxe_config_mf_bw(sc);
7986    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7987}
7988
7989static void
7990bxe_handle_eee_event(struct bxe_softc *sc)
7991{
7992    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7993    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7994}
7995
7996#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7997
7998static void
7999bxe_drv_info_ether_stat(struct bxe_softc *sc)
8000{
8001    struct eth_stats_info *ether_stat =
8002        &sc->sp->drv_info_to_mcp.ether_stat;
8003
8004    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8005            ETH_STAT_INFO_VERSION_LEN);
8006
8007    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8008    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8009                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8010                                          ether_stat->mac_local + MAC_PAD,
8011                                          MAC_PAD, ETH_ALEN);
8012
8013    ether_stat->mtu_size = sc->mtu;
8014
8015    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8016    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8017        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8018    }
8019
8020    // XXX ether_stat->feature_flags |= ???;
8021
8022    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8023
8024    ether_stat->txq_size = sc->tx_ring_size;
8025    ether_stat->rxq_size = sc->rx_ring_size;
8026}
8027
8028static void
8029bxe_handle_drv_info_req(struct bxe_softc *sc)
8030{
8031    enum drv_info_opcode op_code;
8032    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8033
8034    /* if drv_info version supported by MFW doesn't match - send NACK */
8035    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8036        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8037        return;
8038    }
8039
8040    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8041               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8042
8043    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8044
8045    switch (op_code) {
8046    case ETH_STATS_OPCODE:
8047        bxe_drv_info_ether_stat(sc);
8048        break;
8049    case FCOE_STATS_OPCODE:
8050    case ISCSI_STATS_OPCODE:
8051    default:
8052        /* if op code isn't supported - send NACK */
8053        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8054        return;
8055    }
8056
8057    /*
8058     * If we got drv_info attn from MFW then these fields are defined in
8059     * shmem2 for sure
8060     */
8061    SHMEM2_WR(sc, drv_info_host_addr_lo,
8062              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8063    SHMEM2_WR(sc, drv_info_host_addr_hi,
8064              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8065
8066    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8067}
8068
8069static void
8070bxe_dcc_event(struct bxe_softc *sc,
8071              uint32_t         dcc_event)
8072{
8073    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8074
8075    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8076        /*
8077         * This is the only place besides the function initialization
8078         * where the sc->flags can change so it is done without any
8079         * locks
8080         */
8081        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8082            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8083            sc->flags |= BXE_MF_FUNC_DIS;
8084            bxe_e1h_disable(sc);
8085        } else {
8086            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8087            sc->flags &= ~BXE_MF_FUNC_DIS;
8088            bxe_e1h_enable(sc);
8089        }
8090        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8091    }
8092
8093    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8094        bxe_config_mf_bw(sc);
8095        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8096    }
8097
8098    /* Report results to MCP */
8099    if (dcc_event)
8100        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8101    else
8102        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8103}
8104
8105static void
8106bxe_pmf_update(struct bxe_softc *sc)
8107{
8108    int port = SC_PORT(sc);
8109    uint32_t val;
8110
8111    sc->port.pmf = 1;
8112    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8113
8114    /*
8115     * We need the mb() to ensure the ordering between the writing to
8116     * sc->port.pmf here and reading it from the bxe_periodic_task().
8117     */
8118    mb();
8119
8120    /* queue a periodic task */
8121    // XXX schedule task...
8122
8123    // XXX bxe_dcbx_pmf_update(sc);
8124
8125    /* enable nig attention */
8126    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8127    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8128        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8129        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8130    } else if (!CHIP_IS_E1x(sc)) {
8131        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8132        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8133    }
8134
8135    bxe_stats_handle(sc, STATS_EVENT_PMF);
8136}
8137
8138static int
8139bxe_mc_assert(struct bxe_softc *sc)
8140{
8141    char last_idx;
8142    int i, rc = 0;
8143    uint32_t row0, row1, row2, row3;
8144
8145    /* XSTORM */
8146    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8147    if (last_idx)
8148        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8149
8150    /* print the asserts */
8151    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8152
8153        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8154        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8155        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8156        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8157
8158        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8159            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8160                  i, row3, row2, row1, row0);
8161            rc++;
8162        } else {
8163            break;
8164        }
8165    }
8166
8167    /* TSTORM */
8168    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8169    if (last_idx) {
8170        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8171    }
8172
8173    /* print the asserts */
8174    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8175
8176        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8177        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8178        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8179        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8180
8181        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8182            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8183                  i, row3, row2, row1, row0);
8184            rc++;
8185        } else {
8186            break;
8187        }
8188    }
8189
8190    /* CSTORM */
8191    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8192    if (last_idx) {
8193        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8194    }
8195
8196    /* print the asserts */
8197    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8198
8199        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8200        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8201        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8202        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8203
8204        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8205            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8206                  i, row3, row2, row1, row0);
8207            rc++;
8208        } else {
8209            break;
8210        }
8211    }
8212
8213    /* USTORM */
8214    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8215    if (last_idx) {
8216        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8217    }
8218
8219    /* print the asserts */
8220    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8221
8222        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8223        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8224        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8225        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8226
8227        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8228            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8229                  i, row3, row2, row1, row0);
8230            rc++;
8231        } else {
8232            break;
8233        }
8234    }
8235
8236    return (rc);
8237}
8238
8239static void
8240bxe_attn_int_deasserted3(struct bxe_softc *sc,
8241                         uint32_t         attn)
8242{
8243    int func = SC_FUNC(sc);
8244    uint32_t val;
8245
8246    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8247
8248        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8249
8250            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8251            bxe_read_mf_cfg(sc);
8252            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8253                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8254            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8255
8256            if (val & DRV_STATUS_DCC_EVENT_MASK)
8257                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8258
8259            if (val & DRV_STATUS_SET_MF_BW)
8260                bxe_set_mf_bw(sc);
8261
8262            if (val & DRV_STATUS_DRV_INFO_REQ)
8263                bxe_handle_drv_info_req(sc);
8264
8265#if 0
8266            if (val & DRV_STATUS_VF_DISABLED)
8267                bxe_vf_handle_flr_event(sc);
8268#endif
8269
8270            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8271                bxe_pmf_update(sc);
8272
8273#if 0
8274            if (sc->port.pmf &&
8275                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8276                (sc->dcbx_enabled > 0))
8277                /* start dcbx state machine */
8278                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8279#endif
8280
8281#if 0
8282            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8283                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8284#endif
8285
8286            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8287                bxe_handle_eee_event(sc);
8288
8289            if (sc->link_vars.periodic_flags &
8290                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8291                /* sync with link */
8292                BXE_PHY_LOCK(sc);
8293                sc->link_vars.periodic_flags &=
8294                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8295                BXE_PHY_UNLOCK(sc);
8296                if (IS_MF(sc))
8297                    ; // XXX bxe_link_sync_notify(sc);
8298                bxe_link_report(sc);
8299            }
8300
8301            /*
8302             * Always call it here: bxe_link_report() will
8303             * prevent the link indication duplication.
8304             */
8305            bxe_link_status_update(sc);
8306
8307        } else if (attn & BXE_MC_ASSERT_BITS) {
8308
8309            BLOGE(sc, "MC assert!\n");
8310            bxe_mc_assert(sc);
8311            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8312            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8313            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8314            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8315            bxe_panic(sc, ("MC assert!\n"));
8316
8317        } else if (attn & BXE_MCP_ASSERT) {
8318
8319            BLOGE(sc, "MCP assert!\n");
8320            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8321            // XXX bxe_fw_dump(sc);
8322
8323        } else {
8324            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8325        }
8326    }
8327
8328    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8329        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8330        if (attn & BXE_GRC_TIMEOUT) {
8331            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8332            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8333        }
8334        if (attn & BXE_GRC_RSV) {
8335            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8336            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8337        }
8338        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8339    }
8340}
8341
8342static void
8343bxe_attn_int_deasserted2(struct bxe_softc *sc,
8344                         uint32_t         attn)
8345{
8346    int port = SC_PORT(sc);
8347    int reg_offset;
8348    uint32_t val0, mask0, val1, mask1;
8349    uint32_t val;
8350
8351    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8352        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8353        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8354        /* CFC error attention */
8355        if (val & 0x2) {
8356            BLOGE(sc, "FATAL error from CFC\n");
8357        }
8358    }
8359
8360    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8361        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8362        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8363        /* RQ_USDMDP_FIFO_OVERFLOW */
8364        if (val & 0x18000) {
8365            BLOGE(sc, "FATAL error from PXP\n");
8366        }
8367
8368        if (!CHIP_IS_E1x(sc)) {
8369            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8370            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8371        }
8372    }
8373
8374#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8375#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8376
8377    if (attn & AEU_PXP2_HW_INT_BIT) {
8378        /*  CQ47854 workaround do not panic on
8379         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8380         */
8381        if (!CHIP_IS_E1x(sc)) {
8382            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8383            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8384            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8385            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8386            /*
8387             * If the olny PXP2_EOP_ERROR_BIT is set in
8388             * STS0 and STS1 - clear it
8389             *
8390             * probably we lose additional attentions between
8391             * STS0 and STS_CLR0, in this case user will not
8392             * be notified about them
8393             */
8394            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8395                !(val1 & mask1))
8396                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8397
8398            /* print the register, since no one can restore it */
8399            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8400
8401            /*
8402             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8403             * then notify
8404             */
8405            if (val0 & PXP2_EOP_ERROR_BIT) {
8406                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8407
8408                /*
8409                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8410                 * set then clear attention from PXP2 block without panic
8411                 */
8412                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8413                    ((val1 & mask1) == 0))
8414                    attn &= ~AEU_PXP2_HW_INT_BIT;
8415            }
8416        }
8417    }
8418
8419    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8420        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8421                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8422
8423        val = REG_RD(sc, reg_offset);
8424        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8425        REG_WR(sc, reg_offset, val);
8426
8427        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8428              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8429        bxe_panic(sc, ("HW block attention set2\n"));
8430    }
8431}
8432
8433static void
8434bxe_attn_int_deasserted1(struct bxe_softc *sc,
8435                         uint32_t         attn)
8436{
8437    int port = SC_PORT(sc);
8438    int reg_offset;
8439    uint32_t val;
8440
8441    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8442        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8443        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8444        /* DORQ discard attention */
8445        if (val & 0x2) {
8446            BLOGE(sc, "FATAL error from DORQ\n");
8447        }
8448    }
8449
8450    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8451        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8452                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8453
8454        val = REG_RD(sc, reg_offset);
8455        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8456        REG_WR(sc, reg_offset, val);
8457
8458        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8459              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8460        bxe_panic(sc, ("HW block attention set1\n"));
8461    }
8462}
8463
8464static void
8465bxe_attn_int_deasserted0(struct bxe_softc *sc,
8466                         uint32_t         attn)
8467{
8468    int port = SC_PORT(sc);
8469    int reg_offset;
8470    uint32_t val;
8471
8472    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8473                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8474
8475    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8476        val = REG_RD(sc, reg_offset);
8477        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8478        REG_WR(sc, reg_offset, val);
8479
8480        BLOGW(sc, "SPIO5 hw attention\n");
8481
8482        /* Fan failure attention */
8483        elink_hw_reset_phy(&sc->link_params);
8484        bxe_fan_failure(sc);
8485    }
8486
8487    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8488        BXE_PHY_LOCK(sc);
8489        elink_handle_module_detect_int(&sc->link_params);
8490        BXE_PHY_UNLOCK(sc);
8491    }
8492
8493    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8494        val = REG_RD(sc, reg_offset);
8495        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8496        REG_WR(sc, reg_offset, val);
8497
8498        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8499                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8500    }
8501}
8502
8503static void
8504bxe_attn_int_deasserted(struct bxe_softc *sc,
8505                        uint32_t         deasserted)
8506{
8507    struct attn_route attn;
8508    struct attn_route *group_mask;
8509    int port = SC_PORT(sc);
8510    int index;
8511    uint32_t reg_addr;
8512    uint32_t val;
8513    uint32_t aeu_mask;
8514    uint8_t global = FALSE;
8515
8516    /*
8517     * Need to take HW lock because MCP or other port might also
8518     * try to handle this event.
8519     */
8520    bxe_acquire_alr(sc);
8521
8522    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8523        /* XXX
8524         * In case of parity errors don't handle attentions so that
8525         * other function would "see" parity errors.
8526         */
8527        sc->recovery_state = BXE_RECOVERY_INIT;
8528        // XXX schedule a recovery task...
8529        /* disable HW interrupts */
8530        bxe_int_disable(sc);
8531        bxe_release_alr(sc);
8532        return;
8533    }
8534
8535    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8536    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8537    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8538    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8539    if (!CHIP_IS_E1x(sc)) {
8540        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8541    } else {
8542        attn.sig[4] = 0;
8543    }
8544
8545    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8546          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8547
8548    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8549        if (deasserted & (1 << index)) {
8550            group_mask = &sc->attn_group[index];
8551
8552            BLOGD(sc, DBG_INTR,
8553                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8554                  group_mask->sig[0], group_mask->sig[1],
8555                  group_mask->sig[2], group_mask->sig[3],
8556                  group_mask->sig[4]);
8557
8558            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8559            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8560            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8561            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8562            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8563        }
8564    }
8565
8566    bxe_release_alr(sc);
8567
8568    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8569        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8570                    COMMAND_REG_ATTN_BITS_CLR);
8571    } else {
8572        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8573    }
8574
8575    val = ~deasserted;
8576    BLOGD(sc, DBG_INTR,
8577          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8578          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8579    REG_WR(sc, reg_addr, val);
8580
8581    if (~sc->attn_state & deasserted) {
8582        BLOGE(sc, "IGU error\n");
8583    }
8584
8585    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8586                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8587
8588    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8589
8590    aeu_mask = REG_RD(sc, reg_addr);
8591
8592    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8593          aeu_mask, deasserted);
8594    aeu_mask |= (deasserted & 0x3ff);
8595    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8596
8597    REG_WR(sc, reg_addr, aeu_mask);
8598    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8599
8600    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8601    sc->attn_state &= ~deasserted;
8602    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8603}
8604
8605static void
8606bxe_attn_int(struct bxe_softc *sc)
8607{
8608    /* read local copy of bits */
8609    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8610    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8611    uint32_t attn_state = sc->attn_state;
8612
8613    /* look for changed bits */
8614    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8615    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8616
8617    BLOGD(sc, DBG_INTR,
8618          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8619          attn_bits, attn_ack, asserted, deasserted);
8620
8621    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8622        BLOGE(sc, "BAD attention state\n");
8623    }
8624
8625    /* handle bits that were raised */
8626    if (asserted) {
8627        bxe_attn_int_asserted(sc, asserted);
8628    }
8629
8630    if (deasserted) {
8631        bxe_attn_int_deasserted(sc, deasserted);
8632    }
8633}
8634
8635static uint16_t
8636bxe_update_dsb_idx(struct bxe_softc *sc)
8637{
8638    struct host_sp_status_block *def_sb = sc->def_sb;
8639    uint16_t rc = 0;
8640
8641    mb(); /* status block is written to by the chip */
8642
8643    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8644        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8645        rc |= BXE_DEF_SB_ATT_IDX;
8646    }
8647
8648    if (sc->def_idx != def_sb->sp_sb.running_index) {
8649        sc->def_idx = def_sb->sp_sb.running_index;
8650        rc |= BXE_DEF_SB_IDX;
8651    }
8652
8653    mb();
8654
8655    return (rc);
8656}
8657
8658static inline struct ecore_queue_sp_obj *
8659bxe_cid_to_q_obj(struct bxe_softc *sc,
8660                 uint32_t         cid)
8661{
8662    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8663    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8664}
8665
8666static void
8667bxe_handle_mcast_eqe(struct bxe_softc *sc)
8668{
8669    struct ecore_mcast_ramrod_params rparam;
8670    int rc;
8671
8672    memset(&rparam, 0, sizeof(rparam));
8673
8674    rparam.mcast_obj = &sc->mcast_obj;
8675
8676    BXE_MCAST_LOCK(sc);
8677
8678    /* clear pending state for the last command */
8679    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8680
8681    /* if there are pending mcast commands - send them */
8682    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8683        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8684        if (rc < 0) {
8685            BLOGD(sc, DBG_SP,
8686                  "ERROR: Failed to send pending mcast commands (%d)\n",
8687                  rc);
8688        }
8689    }
8690
8691    BXE_MCAST_UNLOCK(sc);
8692}
8693
8694static void
8695bxe_handle_classification_eqe(struct bxe_softc      *sc,
8696                              union event_ring_elem *elem)
8697{
8698    unsigned long ramrod_flags = 0;
8699    int rc = 0;
8700    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8701    struct ecore_vlan_mac_obj *vlan_mac_obj;
8702
8703    /* always push next commands out, don't wait here */
8704    bit_set(&ramrod_flags, RAMROD_CONT);
8705
8706    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8707    case ECORE_FILTER_MAC_PENDING:
8708        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8709        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8710        break;
8711
8712    case ECORE_FILTER_MCAST_PENDING:
8713        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8714        /*
8715         * This is only relevant for 57710 where multicast MACs are
8716         * configured as unicast MACs using the same ramrod.
8717         */
8718        bxe_handle_mcast_eqe(sc);
8719        return;
8720
8721    default:
8722        BLOGE(sc, "Unsupported classification command: %d\n",
8723              elem->message.data.eth_event.echo);
8724        return;
8725    }
8726
8727    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8728
8729    if (rc < 0) {
8730        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8731    } else if (rc > 0) {
8732        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8733    }
8734}
8735
8736static void
8737bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8738                       union event_ring_elem *elem)
8739{
8740    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8741
8742    /* send rx_mode command again if was requested */
8743    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8744                               &sc->sp_state)) {
8745        bxe_set_storm_rx_mode(sc);
8746    }
8747#if 0
8748    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8749                                    &sc->sp_state)) {
8750        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8751    }
8752    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8753                                    &sc->sp_state)) {
8754        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8755    }
8756#endif
8757}
8758
8759static void
8760bxe_update_eq_prod(struct bxe_softc *sc,
8761                   uint16_t         prod)
8762{
8763    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8764    wmb(); /* keep prod updates ordered */
8765}
8766
8767static void
8768bxe_eq_int(struct bxe_softc *sc)
8769{
8770    uint16_t hw_cons, sw_cons, sw_prod;
8771    union event_ring_elem *elem;
8772    uint8_t echo;
8773    uint32_t cid;
8774    uint8_t opcode;
8775    int spqe_cnt = 0;
8776    struct ecore_queue_sp_obj *q_obj;
8777    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8778    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8779
8780    hw_cons = le16toh(*sc->eq_cons_sb);
8781
8782    /*
8783     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8784     * when we get to the next-page we need to adjust so the loop
8785     * condition below will be met. The next element is the size of a
8786     * regular element and hence incrementing by 1
8787     */
8788    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8789        hw_cons++;
8790    }
8791
8792    /*
8793     * This function may never run in parallel with itself for a
8794     * specific sc and no need for a read memory barrier here.
8795     */
8796    sw_cons = sc->eq_cons;
8797    sw_prod = sc->eq_prod;
8798
8799    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8800          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8801
8802    for (;
8803         sw_cons != hw_cons;
8804         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8805
8806        elem = &sc->eq[EQ_DESC(sw_cons)];
8807
8808#if 0
8809        int rc;
8810        rc = bxe_iov_eq_sp_event(sc, elem);
8811        if (!rc) {
8812            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8813            goto next_spqe;
8814        }
8815#endif
8816
8817        /* elem CID originates from FW, actually LE */
8818        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8819        opcode = elem->message.opcode;
8820
8821        /* handle eq element */
8822        switch (opcode) {
8823#if 0
8824        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8825            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8826            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8827            continue;
8828#endif
8829
8830        case EVENT_RING_OPCODE_STAT_QUERY:
8831            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8832                  sc->stats_comp++);
8833            /* nothing to do with stats comp */
8834            goto next_spqe;
8835
8836        case EVENT_RING_OPCODE_CFC_DEL:
8837            /* handle according to cid range */
8838            /* we may want to verify here that the sc state is HALTING */
8839            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8840            q_obj = bxe_cid_to_q_obj(sc, cid);
8841            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8842                break;
8843            }
8844            goto next_spqe;
8845
8846        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8847            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8848            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8849                break;
8850            }
8851            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8852            goto next_spqe;
8853
8854        case EVENT_RING_OPCODE_START_TRAFFIC:
8855            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8856            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8857                break;
8858            }
8859            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8860            goto next_spqe;
8861
8862        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8863            echo = elem->message.data.function_update_event.echo;
8864            if (echo == SWITCH_UPDATE) {
8865                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8866                if (f_obj->complete_cmd(sc, f_obj,
8867                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8868                    break;
8869                }
8870            }
8871            else {
8872                BLOGD(sc, DBG_SP,
8873                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8874#if 0
8875                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8876                /*
8877                 * We will perform the queues update from the sp_core_task as
8878                 * all queue SP operations should run with CORE_LOCK.
8879                 */
8880                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8881                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8882#endif
8883            }
8884            goto next_spqe;
8885
8886#if 0
8887        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8888            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8889            bxe_after_afex_vif_lists(sc, elem);
8890            goto next_spqe;
8891#endif
8892
8893        case EVENT_RING_OPCODE_FORWARD_SETUP:
8894            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8895            if (q_obj->complete_cmd(sc, q_obj,
8896                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8897                break;
8898            }
8899            goto next_spqe;
8900
8901        case EVENT_RING_OPCODE_FUNCTION_START:
8902            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8903            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8904                break;
8905            }
8906            goto next_spqe;
8907
8908        case EVENT_RING_OPCODE_FUNCTION_STOP:
8909            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8910            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8911                break;
8912            }
8913            goto next_spqe;
8914        }
8915
8916        switch (opcode | sc->state) {
8917        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8918        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8919            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8920            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8921            rss_raw->clear_pending(rss_raw);
8922            break;
8923
8924        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8925        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8926        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8927        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8928        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8929        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8930            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8931            bxe_handle_classification_eqe(sc, elem);
8932            break;
8933
8934        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8935        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8936        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8937            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8938            bxe_handle_mcast_eqe(sc);
8939            break;
8940
8941        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8942        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8943        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8944            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8945            bxe_handle_rx_mode_eqe(sc, elem);
8946            break;
8947
8948        default:
8949            /* unknown event log error and continue */
8950            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8951                  elem->message.opcode, sc->state);
8952        }
8953
8954next_spqe:
8955        spqe_cnt++;
8956    } /* for */
8957
8958    mb();
8959    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8960
8961    sc->eq_cons = sw_cons;
8962    sc->eq_prod = sw_prod;
8963
8964    /* make sure that above mem writes were issued towards the memory */
8965    wmb();
8966
8967    /* update producer */
8968    bxe_update_eq_prod(sc, sc->eq_prod);
8969}
8970
8971static void
8972bxe_handle_sp_tq(void *context,
8973                 int  pending)
8974{
8975    struct bxe_softc *sc = (struct bxe_softc *)context;
8976    uint16_t status;
8977
8978    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8979
8980    /* what work needs to be performed? */
8981    status = bxe_update_dsb_idx(sc);
8982
8983    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8984
8985    /* HW attentions */
8986    if (status & BXE_DEF_SB_ATT_IDX) {
8987        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8988        bxe_attn_int(sc);
8989        status &= ~BXE_DEF_SB_ATT_IDX;
8990    }
8991
8992    /* SP events: STAT_QUERY and others */
8993    if (status & BXE_DEF_SB_IDX) {
8994        /* handle EQ completions */
8995        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8996        bxe_eq_int(sc);
8997        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8998                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8999        status &= ~BXE_DEF_SB_IDX;
9000    }
9001
9002    /* if status is non zero then something went wrong */
9003    if (__predict_false(status)) {
9004        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9005    }
9006
9007    /* ack status block only if something was actually handled */
9008    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9009               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9010
9011    /*
9012     * Must be called after the EQ processing (since eq leads to sriov
9013     * ramrod completion flows).
9014     * This flow may have been scheduled by the arrival of a ramrod
9015     * completion, or by the sriov code rescheduling itself.
9016     */
9017    // XXX bxe_iov_sp_task(sc);
9018
9019#if 0
9020    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9021    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9022                               &sc->sp_state)) {
9023        bxe_link_report(sc);
9024        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9025    }
9026#endif
9027}
9028
9029static void
9030bxe_handle_fp_tq(void *context,
9031                 int  pending)
9032{
9033    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9034    struct bxe_softc *sc = fp->sc;
9035    uint8_t more_tx = FALSE;
9036    uint8_t more_rx = FALSE;
9037
9038    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9039
9040    /* XXX
9041     * IFF_DRV_RUNNING state can't be checked here since we process
9042     * slowpath events on a client queue during setup. Instead
9043     * we need to add a "process/continue" flag here that the driver
9044     * can use to tell the task here not to do anything.
9045     */
9046#if 0
9047    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9048        return;
9049    }
9050#endif
9051
9052    /* update the fastpath index */
9053    bxe_update_fp_sb_idx(fp);
9054
9055    /* XXX add loop here if ever support multiple tx CoS */
9056    /* fp->txdata[cos] */
9057    if (bxe_has_tx_work(fp)) {
9058        BXE_FP_TX_LOCK(fp);
9059        more_tx = bxe_txeof(sc, fp);
9060        BXE_FP_TX_UNLOCK(fp);
9061    }
9062
9063    if (bxe_has_rx_work(fp)) {
9064        more_rx = bxe_rxeof(sc, fp);
9065    }
9066
9067    if (more_rx /*|| more_tx*/) {
9068        /* still more work to do */
9069        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9070        return;
9071    }
9072
9073    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9074               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9075}
9076
9077static void
9078bxe_task_fp(struct bxe_fastpath *fp)
9079{
9080    struct bxe_softc *sc = fp->sc;
9081    uint8_t more_tx = FALSE;
9082    uint8_t more_rx = FALSE;
9083
9084    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9085
9086    /* update the fastpath index */
9087    bxe_update_fp_sb_idx(fp);
9088
9089    /* XXX add loop here if ever support multiple tx CoS */
9090    /* fp->txdata[cos] */
9091    if (bxe_has_tx_work(fp)) {
9092        BXE_FP_TX_LOCK(fp);
9093        more_tx = bxe_txeof(sc, fp);
9094        BXE_FP_TX_UNLOCK(fp);
9095    }
9096
9097    if (bxe_has_rx_work(fp)) {
9098        more_rx = bxe_rxeof(sc, fp);
9099    }
9100
9101    if (more_rx /*|| more_tx*/) {
9102        /* still more work to do, bail out if this ISR and process later */
9103        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9104        return;
9105    }
9106
9107    /*
9108     * Here we write the fastpath index taken before doing any tx or rx work.
9109     * It is very well possible other hw events occurred up to this point and
9110     * they were actually processed accordingly above. Since we're going to
9111     * write an older fastpath index, an interrupt is coming which we might
9112     * not do any work in.
9113     */
9114    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9115               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9116}
9117
9118/*
9119 * Legacy interrupt entry point.
9120 *
9121 * Verifies that the controller generated the interrupt and
9122 * then calls a separate routine to handle the various
9123 * interrupt causes: link, RX, and TX.
9124 */
9125static void
9126bxe_intr_legacy(void *xsc)
9127{
9128    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9129    struct bxe_fastpath *fp;
9130    uint16_t status, mask;
9131    int i;
9132
9133    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9134
9135#if 0
9136    /* Don't handle any interrupts if we're not ready. */
9137    if (__predict_false(sc->intr_sem != 0)) {
9138        return;
9139    }
9140#endif
9141
9142    /*
9143     * 0 for ustorm, 1 for cstorm
9144     * the bits returned from ack_int() are 0-15
9145     * bit 0 = attention status block
9146     * bit 1 = fast path status block
9147     * a mask of 0x2 or more = tx/rx event
9148     * a mask of 1 = slow path event
9149     */
9150
9151    status = bxe_ack_int(sc);
9152
9153    /* the interrupt is not for us */
9154    if (__predict_false(status == 0)) {
9155        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9156        return;
9157    }
9158
9159    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9160
9161    FOR_EACH_ETH_QUEUE(sc, i) {
9162        fp = &sc->fp[i];
9163        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9164        if (status & mask) {
9165            /* acknowledge and disable further fastpath interrupts */
9166            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9167            bxe_task_fp(fp);
9168            status &= ~mask;
9169        }
9170    }
9171
9172#if 0
9173    if (CNIC_SUPPORT(sc)) {
9174        mask = 0x2;
9175        if (status & (mask | 0x1)) {
9176            ...
9177            status &= ~mask;
9178        }
9179    }
9180#endif
9181
9182    if (__predict_false(status & 0x1)) {
9183        /* acknowledge and disable further slowpath interrupts */
9184        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9185
9186        /* schedule slowpath handler */
9187        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9188
9189        status &= ~0x1;
9190    }
9191
9192    if (__predict_false(status)) {
9193        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9194    }
9195}
9196
9197/* slowpath interrupt entry point */
9198static void
9199bxe_intr_sp(void *xsc)
9200{
9201    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9202
9203    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9204
9205    /* acknowledge and disable further slowpath interrupts */
9206    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9207
9208    /* schedule slowpath handler */
9209    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9210}
9211
9212/* fastpath interrupt entry point */
9213static void
9214bxe_intr_fp(void *xfp)
9215{
9216    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9217    struct bxe_softc *sc = fp->sc;
9218
9219    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9220
9221    BLOGD(sc, DBG_INTR,
9222          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9223          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9224
9225#if 0
9226    /* Don't handle any interrupts if we're not ready. */
9227    if (__predict_false(sc->intr_sem != 0)) {
9228        return;
9229    }
9230#endif
9231
9232    /* acknowledge and disable further fastpath interrupts */
9233    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9234
9235    bxe_task_fp(fp);
9236}
9237
9238/* Release all interrupts allocated by the driver. */
9239static void
9240bxe_interrupt_free(struct bxe_softc *sc)
9241{
9242    int i;
9243
9244    switch (sc->interrupt_mode) {
9245    case INTR_MODE_INTX:
9246        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9247        if (sc->intr[0].resource != NULL) {
9248            bus_release_resource(sc->dev,
9249                                 SYS_RES_IRQ,
9250                                 sc->intr[0].rid,
9251                                 sc->intr[0].resource);
9252        }
9253        break;
9254    case INTR_MODE_MSI:
9255        for (i = 0; i < sc->intr_count; i++) {
9256            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9257            if (sc->intr[i].resource && sc->intr[i].rid) {
9258                bus_release_resource(sc->dev,
9259                                     SYS_RES_IRQ,
9260                                     sc->intr[i].rid,
9261                                     sc->intr[i].resource);
9262            }
9263        }
9264        pci_release_msi(sc->dev);
9265        break;
9266    case INTR_MODE_MSIX:
9267        for (i = 0; i < sc->intr_count; i++) {
9268            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9269            if (sc->intr[i].resource && sc->intr[i].rid) {
9270                bus_release_resource(sc->dev,
9271                                     SYS_RES_IRQ,
9272                                     sc->intr[i].rid,
9273                                     sc->intr[i].resource);
9274            }
9275        }
9276        pci_release_msi(sc->dev);
9277        break;
9278    default:
9279        /* nothing to do as initial allocation failed */
9280        break;
9281    }
9282}
9283
9284/*
9285 * This function determines and allocates the appropriate
9286 * interrupt based on system capabilites and user request.
9287 *
9288 * The user may force a particular interrupt mode, specify
9289 * the number of receive queues, specify the method for
9290 * distribuitng received frames to receive queues, or use
9291 * the default settings which will automatically select the
9292 * best supported combination.  In addition, the OS may or
9293 * may not support certain combinations of these settings.
9294 * This routine attempts to reconcile the settings requested
9295 * by the user with the capabilites available from the system
9296 * to select the optimal combination of features.
9297 *
9298 * Returns:
9299 *   0 = Success, !0 = Failure.
9300 */
9301static int
9302bxe_interrupt_alloc(struct bxe_softc *sc)
9303{
9304    int msix_count = 0;
9305    int msi_count = 0;
9306    int num_requested = 0;
9307    int num_allocated = 0;
9308    int rid, i, j;
9309    int rc;
9310
9311    /* get the number of available MSI/MSI-X interrupts from the OS */
9312    if (sc->interrupt_mode > 0) {
9313        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9314            msix_count = pci_msix_count(sc->dev);
9315        }
9316
9317        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9318            msi_count = pci_msi_count(sc->dev);
9319        }
9320
9321        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9322              msi_count, msix_count);
9323    }
9324
9325    do { /* try allocating MSI-X interrupt resources (at least 2) */
9326        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9327            break;
9328        }
9329
9330        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9331            (msix_count < 2)) {
9332            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9333            break;
9334        }
9335
9336        /* ask for the necessary number of MSI-X vectors */
9337        num_requested = min((sc->num_queues + 1), msix_count);
9338
9339        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9340
9341        num_allocated = num_requested;
9342        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9343            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9344            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9345            break;
9346        }
9347
9348        if (num_allocated < 2) { /* possible? */
9349            BLOGE(sc, "MSI-X allocation less than 2!\n");
9350            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9351            pci_release_msi(sc->dev);
9352            break;
9353        }
9354
9355        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9356              num_requested, num_allocated);
9357
9358        /* best effort so use the number of vectors allocated to us */
9359        sc->intr_count = num_allocated;
9360        sc->num_queues = num_allocated - 1;
9361
9362        rid = 1; /* initial resource identifier */
9363
9364        /* allocate the MSI-X vectors */
9365        for (i = 0; i < num_allocated; i++) {
9366            sc->intr[i].rid = (rid + i);
9367
9368            if ((sc->intr[i].resource =
9369                 bus_alloc_resource_any(sc->dev,
9370                                        SYS_RES_IRQ,
9371                                        &sc->intr[i].rid,
9372                                        RF_ACTIVE)) == NULL) {
9373                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9374                      i, (rid + i));
9375
9376                for (j = (i - 1); j >= 0; j--) {
9377                    bus_release_resource(sc->dev,
9378                                         SYS_RES_IRQ,
9379                                         sc->intr[j].rid,
9380                                         sc->intr[j].resource);
9381                }
9382
9383                sc->intr_count = 0;
9384                sc->num_queues = 0;
9385                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9386                pci_release_msi(sc->dev);
9387                break;
9388            }
9389
9390            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9391        }
9392    } while (0);
9393
9394    do { /* try allocating MSI vector resources (at least 2) */
9395        if (sc->interrupt_mode != INTR_MODE_MSI) {
9396            break;
9397        }
9398
9399        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9400            (msi_count < 2)) {
9401            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9402            break;
9403        }
9404
9405        /* ask for the necessary number of MSI vectors */
9406        num_requested = min((sc->num_queues + 1), msi_count);
9407
9408        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9409
9410        num_allocated = num_requested;
9411        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9412            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9413            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9414            break;
9415        }
9416
9417        if (num_allocated < 2) { /* possible? */
9418            BLOGE(sc, "MSI allocation less than 2!\n");
9419            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9420            pci_release_msi(sc->dev);
9421            break;
9422        }
9423
9424        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9425              num_requested, num_allocated);
9426
9427        /* best effort so use the number of vectors allocated to us */
9428        sc->intr_count = num_allocated;
9429        sc->num_queues = num_allocated - 1;
9430
9431        rid = 1; /* initial resource identifier */
9432
9433        /* allocate the MSI vectors */
9434        for (i = 0; i < num_allocated; i++) {
9435            sc->intr[i].rid = (rid + i);
9436
9437            if ((sc->intr[i].resource =
9438                 bus_alloc_resource_any(sc->dev,
9439                                        SYS_RES_IRQ,
9440                                        &sc->intr[i].rid,
9441                                        RF_ACTIVE)) == NULL) {
9442                BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9443                      i, (rid + i));
9444
9445                for (j = (i - 1); j >= 0; j--) {
9446                    bus_release_resource(sc->dev,
9447                                         SYS_RES_IRQ,
9448                                         sc->intr[j].rid,
9449                                         sc->intr[j].resource);
9450                }
9451
9452                sc->intr_count = 0;
9453                sc->num_queues = 0;
9454                sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9455                pci_release_msi(sc->dev);
9456                break;
9457            }
9458
9459            BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9460        }
9461    } while (0);
9462
9463    do { /* try allocating INTx vector resources */
9464        if (sc->interrupt_mode != INTR_MODE_INTX) {
9465            break;
9466        }
9467
9468        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9469
9470        /* only one vector for INTx */
9471        sc->intr_count = 1;
9472        sc->num_queues = 1;
9473
9474        rid = 0; /* initial resource identifier */
9475
9476        sc->intr[0].rid = rid;
9477
9478        if ((sc->intr[0].resource =
9479             bus_alloc_resource_any(sc->dev,
9480                                    SYS_RES_IRQ,
9481                                    &sc->intr[0].rid,
9482                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9483            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9484            sc->intr_count = 0;
9485            sc->num_queues = 0;
9486            sc->interrupt_mode = -1; /* Failed! */
9487            break;
9488        }
9489
9490        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9491    } while (0);
9492
9493    if (sc->interrupt_mode == -1) {
9494        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9495        rc = 1;
9496    } else {
9497        BLOGD(sc, DBG_LOAD,
9498              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9499              sc->interrupt_mode, sc->num_queues);
9500        rc = 0;
9501    }
9502
9503    return (rc);
9504}
9505
9506static void
9507bxe_interrupt_detach(struct bxe_softc *sc)
9508{
9509    struct bxe_fastpath *fp;
9510    int i;
9511
9512    /* release interrupt resources */
9513    for (i = 0; i < sc->intr_count; i++) {
9514        if (sc->intr[i].resource && sc->intr[i].tag) {
9515            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9516            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9517        }
9518    }
9519
9520    for (i = 0; i < sc->num_queues; i++) {
9521        fp = &sc->fp[i];
9522        if (fp->tq) {
9523            taskqueue_drain(fp->tq, &fp->tq_task);
9524            taskqueue_free(fp->tq);
9525            fp->tq = NULL;
9526        }
9527    }
9528
9529    if (sc->rx_mode_tq) {
9530        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9531        taskqueue_free(sc->rx_mode_tq);
9532        sc->rx_mode_tq = NULL;
9533    }
9534
9535    if (sc->sp_tq) {
9536        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9537        taskqueue_free(sc->sp_tq);
9538        sc->sp_tq = NULL;
9539    }
9540}
9541
9542/*
9543 * Enables interrupts and attach to the ISR.
9544 *
9545 * When using multiple MSI/MSI-X vectors the first vector
9546 * is used for slowpath operations while all remaining
9547 * vectors are used for fastpath operations.  If only a
9548 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9549 * ISR must look for both slowpath and fastpath completions.
9550 */
9551static int
9552bxe_interrupt_attach(struct bxe_softc *sc)
9553{
9554    struct bxe_fastpath *fp;
9555    int rc = 0;
9556    int i;
9557
9558    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9559             "bxe%d_sp_tq", sc->unit);
9560    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9561    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9562                                      taskqueue_thread_enqueue,
9563                                      &sc->sp_tq);
9564    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9565                            "%s", sc->sp_tq_name);
9566
9567    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9568             "bxe%d_rx_mode_tq", sc->unit);
9569    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9570    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9571                                           taskqueue_thread_enqueue,
9572                                           &sc->rx_mode_tq);
9573    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9574                            "%s", sc->rx_mode_tq_name);
9575
9576    for (i = 0; i < sc->num_queues; i++) {
9577        fp = &sc->fp[i];
9578        snprintf(fp->tq_name, sizeof(fp->tq_name),
9579                 "bxe%d_fp%d_tq", sc->unit, i);
9580        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9581        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9582                                       taskqueue_thread_enqueue,
9583                                       &fp->tq);
9584        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9585                                "%s", fp->tq_name);
9586    }
9587
9588    /* setup interrupt handlers */
9589    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9590        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9591
9592        /*
9593         * Setup the interrupt handler. Note that we pass the driver instance
9594         * to the interrupt handler for the slowpath.
9595         */
9596        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9597                                 (INTR_TYPE_NET | INTR_MPSAFE),
9598                                 NULL, bxe_intr_sp, sc,
9599                                 &sc->intr[0].tag)) != 0) {
9600            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9601            goto bxe_interrupt_attach_exit;
9602        }
9603
9604        bus_describe_intr(sc->dev, sc->intr[0].resource,
9605                          sc->intr[0].tag, "sp");
9606
9607        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9608
9609        /* initialize the fastpath vectors (note the first was used for sp) */
9610        for (i = 0; i < sc->num_queues; i++) {
9611            fp = &sc->fp[i];
9612            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9613
9614            /*
9615             * Setup the interrupt handler. Note that we pass the
9616             * fastpath context to the interrupt handler in this
9617             * case.
9618             */
9619            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9620                                     (INTR_TYPE_NET | INTR_MPSAFE),
9621                                     NULL, bxe_intr_fp, fp,
9622                                     &sc->intr[i + 1].tag)) != 0) {
9623                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9624                      (i + 1), rc);
9625                goto bxe_interrupt_attach_exit;
9626            }
9627
9628            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9629                              sc->intr[i + 1].tag, "fp%02d", i);
9630
9631            /* bind the fastpath instance to a cpu */
9632            if (sc->num_queues > 1) {
9633                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9634            }
9635
9636            fp->state = BXE_FP_STATE_IRQ;
9637        }
9638    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9639        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9640
9641        /*
9642         * Setup the interrupt handler. Note that we pass the driver instance
9643         * to the interrupt handler for the slowpath.
9644         */
9645        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9646                                 (INTR_TYPE_NET | INTR_MPSAFE),
9647                                 NULL, bxe_intr_sp, sc,
9648                                 &sc->intr[0].tag)) != 0) {
9649            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9650            goto bxe_interrupt_attach_exit;
9651        }
9652
9653        bus_describe_intr(sc->dev, sc->intr[0].resource,
9654                          sc->intr[0].tag, "sp");
9655
9656        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9657
9658        /* initialize the fastpath vectors (note the first was used for sp) */
9659        for (i = 0; i < sc->num_queues; i++) {
9660            fp = &sc->fp[i];
9661            BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9662
9663            /*
9664             * Setup the interrupt handler. Note that we pass the
9665             * fastpath context to the interrupt handler in this
9666             * case.
9667             */
9668            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9669                                     (INTR_TYPE_NET | INTR_MPSAFE),
9670                                     NULL, bxe_intr_fp, fp,
9671                                     &sc->intr[i + 1].tag)) != 0) {
9672                BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9673                      (i + 1), rc);
9674                goto bxe_interrupt_attach_exit;
9675            }
9676
9677            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9678                              sc->intr[i + 1].tag, "fp%02d", i);
9679
9680            /* bind the fastpath instance to a cpu */
9681            if (sc->num_queues > 1) {
9682                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9683            }
9684
9685            fp->state = BXE_FP_STATE_IRQ;
9686        }
9687    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9688        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9689
9690        /*
9691         * Setup the interrupt handler. Note that we pass the
9692         * driver instance to the interrupt handler which
9693         * will handle both the slowpath and fastpath.
9694         */
9695        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9696                                 (INTR_TYPE_NET | INTR_MPSAFE),
9697                                 NULL, bxe_intr_legacy, sc,
9698                                 &sc->intr[0].tag)) != 0) {
9699            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9700            goto bxe_interrupt_attach_exit;
9701        }
9702    }
9703
9704bxe_interrupt_attach_exit:
9705
9706    return (rc);
9707}
9708
9709static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9710static int  bxe_init_hw_common(struct bxe_softc *sc);
9711static int  bxe_init_hw_port(struct bxe_softc *sc);
9712static int  bxe_init_hw_func(struct bxe_softc *sc);
9713static void bxe_reset_common(struct bxe_softc *sc);
9714static void bxe_reset_port(struct bxe_softc *sc);
9715static void bxe_reset_func(struct bxe_softc *sc);
9716static int  bxe_gunzip_init(struct bxe_softc *sc);
9717static void bxe_gunzip_end(struct bxe_softc *sc);
9718static int  bxe_init_firmware(struct bxe_softc *sc);
9719static void bxe_release_firmware(struct bxe_softc *sc);
9720
9721static struct
9722ecore_func_sp_drv_ops bxe_func_sp_drv = {
9723    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9724    .init_hw_cmn      = bxe_init_hw_common,
9725    .init_hw_port     = bxe_init_hw_port,
9726    .init_hw_func     = bxe_init_hw_func,
9727
9728    .reset_hw_cmn     = bxe_reset_common,
9729    .reset_hw_port    = bxe_reset_port,
9730    .reset_hw_func    = bxe_reset_func,
9731
9732    .gunzip_init      = bxe_gunzip_init,
9733    .gunzip_end       = bxe_gunzip_end,
9734
9735    .init_fw          = bxe_init_firmware,
9736    .release_fw       = bxe_release_firmware,
9737};
9738
9739static void
9740bxe_init_func_obj(struct bxe_softc *sc)
9741{
9742    sc->dmae_ready = 0;
9743
9744    ecore_init_func_obj(sc,
9745                        &sc->func_obj,
9746                        BXE_SP(sc, func_rdata),
9747                        BXE_SP_MAPPING(sc, func_rdata),
9748                        BXE_SP(sc, func_afex_rdata),
9749                        BXE_SP_MAPPING(sc, func_afex_rdata),
9750                        &bxe_func_sp_drv);
9751}
9752
9753static int
9754bxe_init_hw(struct bxe_softc *sc,
9755            uint32_t         load_code)
9756{
9757    struct ecore_func_state_params func_params = { NULL };
9758    int rc;
9759
9760    /* prepare the parameters for function state transitions */
9761    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9762
9763    func_params.f_obj = &sc->func_obj;
9764    func_params.cmd = ECORE_F_CMD_HW_INIT;
9765
9766    func_params.params.hw_init.load_phase = load_code;
9767
9768    /*
9769     * Via a plethora of function pointers, we will eventually reach
9770     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9771     */
9772    rc = ecore_func_state_change(sc, &func_params);
9773
9774    return (rc);
9775}
9776
9777static void
9778bxe_fill(struct bxe_softc *sc,
9779         uint32_t         addr,
9780         int              fill,
9781         uint32_t         len)
9782{
9783    uint32_t i;
9784
9785    if (!(len % 4) && !(addr % 4)) {
9786        for (i = 0; i < len; i += 4) {
9787            REG_WR(sc, (addr + i), fill);
9788        }
9789    } else {
9790        for (i = 0; i < len; i++) {
9791            REG_WR8(sc, (addr + i), fill);
9792        }
9793    }
9794}
9795
9796/* writes FP SP data to FW - data_size in dwords */
9797static void
9798bxe_wr_fp_sb_data(struct bxe_softc *sc,
9799                  int              fw_sb_id,
9800                  uint32_t         *sb_data_p,
9801                  uint32_t         data_size)
9802{
9803    int index;
9804
9805    for (index = 0; index < data_size; index++) {
9806        REG_WR(sc,
9807               (BAR_CSTRORM_INTMEM +
9808                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9809                (sizeof(uint32_t) * index)),
9810               *(sb_data_p + index));
9811    }
9812}
9813
9814static void
9815bxe_zero_fp_sb(struct bxe_softc *sc,
9816               int              fw_sb_id)
9817{
9818    struct hc_status_block_data_e2 sb_data_e2;
9819    struct hc_status_block_data_e1x sb_data_e1x;
9820    uint32_t *sb_data_p;
9821    uint32_t data_size = 0;
9822
9823    if (!CHIP_IS_E1x(sc)) {
9824        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9825        sb_data_e2.common.state = SB_DISABLED;
9826        sb_data_e2.common.p_func.vf_valid = FALSE;
9827        sb_data_p = (uint32_t *)&sb_data_e2;
9828        data_size = (sizeof(struct hc_status_block_data_e2) /
9829                     sizeof(uint32_t));
9830    } else {
9831        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9832        sb_data_e1x.common.state = SB_DISABLED;
9833        sb_data_e1x.common.p_func.vf_valid = FALSE;
9834        sb_data_p = (uint32_t *)&sb_data_e1x;
9835        data_size = (sizeof(struct hc_status_block_data_e1x) /
9836                     sizeof(uint32_t));
9837    }
9838
9839    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9840
9841    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9842             0, CSTORM_STATUS_BLOCK_SIZE);
9843    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9844             0, CSTORM_SYNC_BLOCK_SIZE);
9845}
9846
9847static void
9848bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9849                  struct hc_sp_status_block_data *sp_sb_data)
9850{
9851    int i;
9852
9853    for (i = 0;
9854         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9855         i++) {
9856        REG_WR(sc,
9857               (BAR_CSTRORM_INTMEM +
9858                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9859                (i * sizeof(uint32_t))),
9860               *((uint32_t *)sp_sb_data + i));
9861    }
9862}
9863
9864static void
9865bxe_zero_sp_sb(struct bxe_softc *sc)
9866{
9867    struct hc_sp_status_block_data sp_sb_data;
9868
9869    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9870
9871    sp_sb_data.state           = SB_DISABLED;
9872    sp_sb_data.p_func.vf_valid = FALSE;
9873
9874    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9875
9876    bxe_fill(sc,
9877             (BAR_CSTRORM_INTMEM +
9878              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9879              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9880    bxe_fill(sc,
9881             (BAR_CSTRORM_INTMEM +
9882              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9883              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9884}
9885
9886static void
9887bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9888                             int                       igu_sb_id,
9889                             int                       igu_seg_id)
9890{
9891    hc_sm->igu_sb_id      = igu_sb_id;
9892    hc_sm->igu_seg_id     = igu_seg_id;
9893    hc_sm->timer_value    = 0xFF;
9894    hc_sm->time_to_expire = 0xFFFFFFFF;
9895}
9896
9897static void
9898bxe_map_sb_state_machines(struct hc_index_data *index_data)
9899{
9900    /* zero out state machine indices */
9901
9902    /* rx indices */
9903    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9904
9905    /* tx indices */
9906    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9907    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9908    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9909    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9910
9911    /* map indices */
9912
9913    /* rx indices */
9914    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9915        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9916
9917    /* tx indices */
9918    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9919        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9920    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9921        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9922    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9923        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9924    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9925        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9926}
9927
9928static void
9929bxe_init_sb(struct bxe_softc *sc,
9930            bus_addr_t       busaddr,
9931            int              vfid,
9932            uint8_t          vf_valid,
9933            int              fw_sb_id,
9934            int              igu_sb_id)
9935{
9936    struct hc_status_block_data_e2  sb_data_e2;
9937    struct hc_status_block_data_e1x sb_data_e1x;
9938    struct hc_status_block_sm       *hc_sm_p;
9939    uint32_t *sb_data_p;
9940    int igu_seg_id;
9941    int data_size;
9942
9943    if (CHIP_INT_MODE_IS_BC(sc)) {
9944        igu_seg_id = HC_SEG_ACCESS_NORM;
9945    } else {
9946        igu_seg_id = IGU_SEG_ACCESS_NORM;
9947    }
9948
9949    bxe_zero_fp_sb(sc, fw_sb_id);
9950
9951    if (!CHIP_IS_E1x(sc)) {
9952        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9953        sb_data_e2.common.state = SB_ENABLED;
9954        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9955        sb_data_e2.common.p_func.vf_id = vfid;
9956        sb_data_e2.common.p_func.vf_valid = vf_valid;
9957        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9958        sb_data_e2.common.same_igu_sb_1b = TRUE;
9959        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9960        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9961        hc_sm_p = sb_data_e2.common.state_machine;
9962        sb_data_p = (uint32_t *)&sb_data_e2;
9963        data_size = (sizeof(struct hc_status_block_data_e2) /
9964                     sizeof(uint32_t));
9965        bxe_map_sb_state_machines(sb_data_e2.index_data);
9966    } else {
9967        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9968        sb_data_e1x.common.state = SB_ENABLED;
9969        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9970        sb_data_e1x.common.p_func.vf_id = 0xff;
9971        sb_data_e1x.common.p_func.vf_valid = FALSE;
9972        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9973        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9974        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9975        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9976        hc_sm_p = sb_data_e1x.common.state_machine;
9977        sb_data_p = (uint32_t *)&sb_data_e1x;
9978        data_size = (sizeof(struct hc_status_block_data_e1x) /
9979                     sizeof(uint32_t));
9980        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9981    }
9982
9983    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9984    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9985
9986    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9987
9988    /* write indices to HW - PCI guarantees endianity of regpairs */
9989    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9990}
9991
9992static inline uint8_t
9993bxe_fp_qzone_id(struct bxe_fastpath *fp)
9994{
9995    if (CHIP_IS_E1x(fp->sc)) {
9996        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9997    } else {
9998        return (fp->cl_id);
9999    }
10000}
10001
10002static inline uint32_t
10003bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
10004                           struct bxe_fastpath *fp)
10005{
10006    uint32_t offset = BAR_USTRORM_INTMEM;
10007
10008#if 0
10009    if (IS_VF(sc)) {
10010        return (PXP_VF_ADDR_USDM_QUEUES_START +
10011                (sc->acquire_resp.resc.hw_qid[fp->index] *
10012                 sizeof(struct ustorm_queue_zone_data)));
10013    } else
10014#endif
10015    if (!CHIP_IS_E1x(sc)) {
10016        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10017    } else {
10018        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10019    }
10020
10021    return (offset);
10022}
10023
10024static void
10025bxe_init_eth_fp(struct bxe_softc *sc,
10026                int              idx)
10027{
10028    struct bxe_fastpath *fp = &sc->fp[idx];
10029    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10030    unsigned long q_type = 0;
10031    int cos;
10032
10033    fp->sc    = sc;
10034    fp->index = idx;
10035
10036    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10037             "bxe%d_fp%d_tx_lock", sc->unit, idx);
10038    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10039
10040    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10041             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10042    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10043
10044    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10045    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10046
10047    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10048                    (SC_L_ID(sc) + idx) :
10049                    /* want client ID same as IGU SB ID for non-E1 */
10050                    fp->igu_sb_id;
10051    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10052
10053    /* setup sb indices */
10054    if (!CHIP_IS_E1x(sc)) {
10055        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10056        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10057    } else {
10058        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10059        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10060    }
10061
10062    /* init shortcut */
10063    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10064
10065    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10066
10067    /*
10068     * XXX If multiple CoS is ever supported then each fastpath structure
10069     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10070     */
10071    for (cos = 0; cos < sc->max_cos; cos++) {
10072        cids[cos] = idx;
10073    }
10074    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10075
10076    /* nothing more for a VF to do */
10077    if (IS_VF(sc)) {
10078        return;
10079    }
10080
10081    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10082                fp->fw_sb_id, fp->igu_sb_id);
10083
10084    bxe_update_fp_sb_idx(fp);
10085
10086    /* Configure Queue State object */
10087    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10088    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10089
10090    ecore_init_queue_obj(sc,
10091                         &sc->sp_objs[idx].q_obj,
10092                         fp->cl_id,
10093                         cids,
10094                         sc->max_cos,
10095                         SC_FUNC(sc),
10096                         BXE_SP(sc, q_rdata),
10097                         BXE_SP_MAPPING(sc, q_rdata),
10098                         q_type);
10099
10100    /* configure classification DBs */
10101    ecore_init_mac_obj(sc,
10102                       &sc->sp_objs[idx].mac_obj,
10103                       fp->cl_id,
10104                       idx,
10105                       SC_FUNC(sc),
10106                       BXE_SP(sc, mac_rdata),
10107                       BXE_SP_MAPPING(sc, mac_rdata),
10108                       ECORE_FILTER_MAC_PENDING,
10109                       &sc->sp_state,
10110                       ECORE_OBJ_TYPE_RX_TX,
10111                       &sc->macs_pool);
10112
10113    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10114          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10115}
10116
10117static inline void
10118bxe_update_rx_prod(struct bxe_softc    *sc,
10119                   struct bxe_fastpath *fp,
10120                   uint16_t            rx_bd_prod,
10121                   uint16_t            rx_cq_prod,
10122                   uint16_t            rx_sge_prod)
10123{
10124    struct ustorm_eth_rx_producers rx_prods = { 0 };
10125    uint32_t i;
10126
10127    /* update producers */
10128    rx_prods.bd_prod  = rx_bd_prod;
10129    rx_prods.cqe_prod = rx_cq_prod;
10130    rx_prods.sge_prod = rx_sge_prod;
10131
10132    /*
10133     * Make sure that the BD and SGE data is updated before updating the
10134     * producers since FW might read the BD/SGE right after the producer
10135     * is updated.
10136     * This is only applicable for weak-ordered memory model archs such
10137     * as IA-64. The following barrier is also mandatory since FW will
10138     * assumes BDs must have buffers.
10139     */
10140    wmb();
10141
10142    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10143        REG_WR(sc,
10144               (fp->ustorm_rx_prods_offset + (i * 4)),
10145               ((uint32_t *)&rx_prods)[i]);
10146    }
10147
10148    wmb(); /* keep prod updates ordered */
10149
10150    BLOGD(sc, DBG_RX,
10151          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10152          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10153}
10154
10155static void
10156bxe_init_rx_rings(struct bxe_softc *sc)
10157{
10158    struct bxe_fastpath *fp;
10159    int i;
10160
10161    for (i = 0; i < sc->num_queues; i++) {
10162        fp = &sc->fp[i];
10163
10164        fp->rx_bd_cons = 0;
10165
10166        /*
10167         * Activate the BD ring...
10168         * Warning, this will generate an interrupt (to the TSTORM)
10169         * so this can only be done after the chip is initialized
10170         */
10171        bxe_update_rx_prod(sc, fp,
10172                           fp->rx_bd_prod,
10173                           fp->rx_cq_prod,
10174                           fp->rx_sge_prod);
10175
10176        if (i != 0) {
10177            continue;
10178        }
10179
10180        if (CHIP_IS_E1(sc)) {
10181            REG_WR(sc,
10182                   (BAR_USTRORM_INTMEM +
10183                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10184                   U64_LO(fp->rcq_dma.paddr));
10185            REG_WR(sc,
10186                   (BAR_USTRORM_INTMEM +
10187                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10188                   U64_HI(fp->rcq_dma.paddr));
10189        }
10190    }
10191}
10192
10193static void
10194bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10195{
10196    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10197    fp->tx_db.data.zero_fill1 = 0;
10198    fp->tx_db.data.prod = 0;
10199
10200    fp->tx_pkt_prod = 0;
10201    fp->tx_pkt_cons = 0;
10202    fp->tx_bd_prod = 0;
10203    fp->tx_bd_cons = 0;
10204    fp->eth_q_stats.tx_pkts = 0;
10205}
10206
10207static inline void
10208bxe_init_tx_rings(struct bxe_softc *sc)
10209{
10210    int i;
10211
10212    for (i = 0; i < sc->num_queues; i++) {
10213#if 0
10214        uint8_t cos;
10215        for (cos = 0; cos < sc->max_cos; cos++) {
10216            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10217        }
10218#else
10219        bxe_init_tx_ring_one(&sc->fp[i]);
10220#endif
10221    }
10222}
10223
10224static void
10225bxe_init_def_sb(struct bxe_softc *sc)
10226{
10227    struct host_sp_status_block *def_sb = sc->def_sb;
10228    bus_addr_t mapping = sc->def_sb_dma.paddr;
10229    int igu_sp_sb_index;
10230    int igu_seg_id;
10231    int port = SC_PORT(sc);
10232    int func = SC_FUNC(sc);
10233    int reg_offset, reg_offset_en5;
10234    uint64_t section;
10235    int index, sindex;
10236    struct hc_sp_status_block_data sp_sb_data;
10237
10238    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10239
10240    if (CHIP_INT_MODE_IS_BC(sc)) {
10241        igu_sp_sb_index = DEF_SB_IGU_ID;
10242        igu_seg_id = HC_SEG_ACCESS_DEF;
10243    } else {
10244        igu_sp_sb_index = sc->igu_dsb_id;
10245        igu_seg_id = IGU_SEG_ACCESS_DEF;
10246    }
10247
10248    /* attentions */
10249    section = ((uint64_t)mapping +
10250               offsetof(struct host_sp_status_block, atten_status_block));
10251    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10252    sc->attn_state = 0;
10253
10254    reg_offset = (port) ?
10255                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10256                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10257    reg_offset_en5 = (port) ?
10258                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10259                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10260
10261    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10262        /* take care of sig[0]..sig[4] */
10263        for (sindex = 0; sindex < 4; sindex++) {
10264            sc->attn_group[index].sig[sindex] =
10265                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10266        }
10267
10268        if (!CHIP_IS_E1x(sc)) {
10269            /*
10270             * enable5 is separate from the rest of the registers,
10271             * and the address skip is 4 and not 16 between the
10272             * different groups
10273             */
10274            sc->attn_group[index].sig[4] =
10275                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10276        } else {
10277            sc->attn_group[index].sig[4] = 0;
10278        }
10279    }
10280
10281    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10282        reg_offset = (port) ?
10283                         HC_REG_ATTN_MSG1_ADDR_L :
10284                         HC_REG_ATTN_MSG0_ADDR_L;
10285        REG_WR(sc, reg_offset, U64_LO(section));
10286        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10287    } else if (!CHIP_IS_E1x(sc)) {
10288        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10289        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10290    }
10291
10292    section = ((uint64_t)mapping +
10293               offsetof(struct host_sp_status_block, sp_sb));
10294
10295    bxe_zero_sp_sb(sc);
10296
10297    /* PCI guarantees endianity of regpair */
10298    sp_sb_data.state           = SB_ENABLED;
10299    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10300    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10301    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10302    sp_sb_data.igu_seg_id      = igu_seg_id;
10303    sp_sb_data.p_func.pf_id    = func;
10304    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10305    sp_sb_data.p_func.vf_id    = 0xff;
10306
10307    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10308
10309    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10310}
10311
10312static void
10313bxe_init_sp_ring(struct bxe_softc *sc)
10314{
10315    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10316    sc->spq_prod_idx = 0;
10317    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10318    sc->spq_prod_bd = sc->spq;
10319    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10320}
10321
10322static void
10323bxe_init_eq_ring(struct bxe_softc *sc)
10324{
10325    union event_ring_elem *elem;
10326    int i;
10327
10328    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10329        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10330
10331        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10332                                                 BCM_PAGE_SIZE *
10333                                                 (i % NUM_EQ_PAGES)));
10334        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10335                                                 BCM_PAGE_SIZE *
10336                                                 (i % NUM_EQ_PAGES)));
10337    }
10338
10339    sc->eq_cons    = 0;
10340    sc->eq_prod    = NUM_EQ_DESC;
10341    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10342
10343    atomic_store_rel_long(&sc->eq_spq_left,
10344                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10345                               NUM_EQ_DESC) - 1));
10346}
10347
10348static void
10349bxe_init_internal_common(struct bxe_softc *sc)
10350{
10351    int i;
10352
10353    if (IS_MF_SI(sc)) {
10354        /*
10355         * In switch independent mode, the TSTORM needs to accept
10356         * packets that failed classification, since approximate match
10357         * mac addresses aren't written to NIG LLH.
10358         */
10359        REG_WR8(sc,
10360                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10361                2);
10362    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10363        REG_WR8(sc,
10364                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10365                0);
10366    }
10367
10368    /*
10369     * Zero this manually as its initialization is currently missing
10370     * in the initTool.
10371     */
10372    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10373        REG_WR(sc,
10374               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10375               0);
10376    }
10377
10378    if (!CHIP_IS_E1x(sc)) {
10379        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10380                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10381    }
10382}
10383
10384static void
10385bxe_init_internal(struct bxe_softc *sc,
10386                  uint32_t         load_code)
10387{
10388    switch (load_code) {
10389    case FW_MSG_CODE_DRV_LOAD_COMMON:
10390    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10391        bxe_init_internal_common(sc);
10392        /* no break */
10393
10394    case FW_MSG_CODE_DRV_LOAD_PORT:
10395        /* nothing to do */
10396        /* no break */
10397
10398    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10399        /* internal memory per function is initialized inside bxe_pf_init */
10400        break;
10401
10402    default:
10403        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10404        break;
10405    }
10406}
10407
10408static void
10409storm_memset_func_cfg(struct bxe_softc                         *sc,
10410                      struct tstorm_eth_function_common_config *tcfg,
10411                      uint16_t                                  abs_fid)
10412{
10413    uint32_t addr;
10414    size_t size;
10415
10416    addr = (BAR_TSTRORM_INTMEM +
10417            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10418    size = sizeof(struct tstorm_eth_function_common_config);
10419    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10420}
10421
10422static void
10423bxe_func_init(struct bxe_softc            *sc,
10424              struct bxe_func_init_params *p)
10425{
10426    struct tstorm_eth_function_common_config tcfg = { 0 };
10427
10428    if (CHIP_IS_E1x(sc)) {
10429        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10430    }
10431
10432    /* Enable the function in the FW */
10433    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10434    storm_memset_func_en(sc, p->func_id, 1);
10435
10436    /* spq */
10437    if (p->func_flgs & FUNC_FLG_SPQ) {
10438        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10439        REG_WR(sc,
10440               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10441               p->spq_prod);
10442    }
10443}
10444
10445/*
10446 * Calculates the sum of vn_min_rates.
10447 * It's needed for further normalizing of the min_rates.
10448 * Returns:
10449 *   sum of vn_min_rates.
10450 *     or
10451 *   0 - if all the min_rates are 0.
10452 * In the later case fainess algorithm should be deactivated.
10453 * If all min rates are not zero then those that are zeroes will be set to 1.
10454 */
10455static void
10456bxe_calc_vn_min(struct bxe_softc       *sc,
10457                struct cmng_init_input *input)
10458{
10459    uint32_t vn_cfg;
10460    uint32_t vn_min_rate;
10461    int all_zero = 1;
10462    int vn;
10463
10464    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10465        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10466        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10467                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10468
10469        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10470            /* skip hidden VNs */
10471            vn_min_rate = 0;
10472        } else if (!vn_min_rate) {
10473            /* If min rate is zero - set it to 100 */
10474            vn_min_rate = DEF_MIN_RATE;
10475        } else {
10476            all_zero = 0;
10477        }
10478
10479        input->vnic_min_rate[vn] = vn_min_rate;
10480    }
10481
10482    /* if ETS or all min rates are zeros - disable fairness */
10483    if (BXE_IS_ETS_ENABLED(sc)) {
10484        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10485        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10486    } else if (all_zero) {
10487        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10488        BLOGD(sc, DBG_LOAD,
10489              "Fariness disabled (all MIN values are zeroes)\n");
10490    } else {
10491        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10492    }
10493}
10494
10495static inline uint16_t
10496bxe_extract_max_cfg(struct bxe_softc *sc,
10497                    uint32_t         mf_cfg)
10498{
10499    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10500                        FUNC_MF_CFG_MAX_BW_SHIFT);
10501
10502    if (!max_cfg) {
10503        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10504        max_cfg = 100;
10505    }
10506
10507    return (max_cfg);
10508}
10509
10510static void
10511bxe_calc_vn_max(struct bxe_softc       *sc,
10512                int                    vn,
10513                struct cmng_init_input *input)
10514{
10515    uint16_t vn_max_rate;
10516    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10517    uint32_t max_cfg;
10518
10519    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10520        vn_max_rate = 0;
10521    } else {
10522        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10523
10524        if (IS_MF_SI(sc)) {
10525            /* max_cfg in percents of linkspeed */
10526            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10527        } else { /* SD modes */
10528            /* max_cfg is absolute in 100Mb units */
10529            vn_max_rate = (max_cfg * 100);
10530        }
10531    }
10532
10533    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10534
10535    input->vnic_max_rate[vn] = vn_max_rate;
10536}
10537
10538static void
10539bxe_cmng_fns_init(struct bxe_softc *sc,
10540                  uint8_t          read_cfg,
10541                  uint8_t          cmng_type)
10542{
10543    struct cmng_init_input input;
10544    int vn;
10545
10546    memset(&input, 0, sizeof(struct cmng_init_input));
10547
10548    input.port_rate = sc->link_vars.line_speed;
10549
10550    if (cmng_type == CMNG_FNS_MINMAX) {
10551        /* read mf conf from shmem */
10552        if (read_cfg) {
10553            bxe_read_mf_cfg(sc);
10554        }
10555
10556        /* get VN min rate and enable fairness if not 0 */
10557        bxe_calc_vn_min(sc, &input);
10558
10559        /* get VN max rate */
10560        if (sc->port.pmf) {
10561            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10562                bxe_calc_vn_max(sc, vn, &input);
10563            }
10564        }
10565
10566        /* always enable rate shaping and fairness */
10567        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10568
10569        ecore_init_cmng(&input, &sc->cmng);
10570        return;
10571    }
10572
10573    /* rate shaping and fairness are disabled */
10574    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10575}
10576
10577static int
10578bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10579{
10580    if (CHIP_REV_IS_SLOW(sc)) {
10581        return (CMNG_FNS_NONE);
10582    }
10583
10584    if (IS_MF(sc)) {
10585        return (CMNG_FNS_MINMAX);
10586    }
10587
10588    return (CMNG_FNS_NONE);
10589}
10590
10591static void
10592storm_memset_cmng(struct bxe_softc *sc,
10593                  struct cmng_init *cmng,
10594                  uint8_t          port)
10595{
10596    int vn;
10597    int func;
10598    uint32_t addr;
10599    size_t size;
10600
10601    addr = (BAR_XSTRORM_INTMEM +
10602            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10603    size = sizeof(struct cmng_struct_per_port);
10604    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10605
10606    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10607        func = func_by_vn(sc, vn);
10608
10609        addr = (BAR_XSTRORM_INTMEM +
10610                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10611        size = sizeof(struct rate_shaping_vars_per_vn);
10612        ecore_storm_memset_struct(sc, addr, size,
10613                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10614
10615        addr = (BAR_XSTRORM_INTMEM +
10616                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10617        size = sizeof(struct fairness_vars_per_vn);
10618        ecore_storm_memset_struct(sc, addr, size,
10619                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10620    }
10621}
10622
10623static void
10624bxe_pf_init(struct bxe_softc *sc)
10625{
10626    struct bxe_func_init_params func_init = { 0 };
10627    struct event_ring_data eq_data = { { 0 } };
10628    uint16_t flags;
10629
10630    if (!CHIP_IS_E1x(sc)) {
10631        /* reset IGU PF statistics: MSIX + ATTN */
10632        /* PF */
10633        REG_WR(sc,
10634               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10635                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10636                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10637               0);
10638        /* ATTN */
10639        REG_WR(sc,
10640               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10641                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10642                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10643                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10644               0);
10645    }
10646
10647    /* function setup flags */
10648    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10649
10650    /*
10651     * This flag is relevant for E1x only.
10652     * E2 doesn't have a TPA configuration in a function level.
10653     */
10654    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10655
10656    func_init.func_flgs = flags;
10657    func_init.pf_id     = SC_FUNC(sc);
10658    func_init.func_id   = SC_FUNC(sc);
10659    func_init.spq_map   = sc->spq_dma.paddr;
10660    func_init.spq_prod  = sc->spq_prod_idx;
10661
10662    bxe_func_init(sc, &func_init);
10663
10664    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10665
10666    /*
10667     * Congestion management values depend on the link rate.
10668     * There is no active link so initial link rate is set to 10Gbps.
10669     * When the link comes up the congestion management values are
10670     * re-calculated according to the actual link rate.
10671     */
10672    sc->link_vars.line_speed = SPEED_10000;
10673    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10674
10675    /* Only the PMF sets the HW */
10676    if (sc->port.pmf) {
10677        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10678    }
10679
10680    /* init Event Queue - PCI bus guarantees correct endainity */
10681    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10682    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10683    eq_data.producer     = sc->eq_prod;
10684    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10685    eq_data.sb_id        = DEF_SB_ID;
10686    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10687}
10688
10689static void
10690bxe_hc_int_enable(struct bxe_softc *sc)
10691{
10692    int port = SC_PORT(sc);
10693    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10694    uint32_t val = REG_RD(sc, addr);
10695    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10696    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10697                           (sc->intr_count == 1)) ? TRUE : FALSE;
10698    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10699
10700    if (msix) {
10701        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10702                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10703        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10704                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10705        if (single_msix) {
10706            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10707        }
10708    } else if (msi) {
10709        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10710        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10711                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10712                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10713    } else {
10714        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10715                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10716                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10717                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10718
10719        if (!CHIP_IS_E1(sc)) {
10720            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10721                  val, port, addr);
10722
10723            REG_WR(sc, addr, val);
10724
10725            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10726        }
10727    }
10728
10729    if (CHIP_IS_E1(sc)) {
10730        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10731    }
10732
10733    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10734          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10735
10736    REG_WR(sc, addr, val);
10737
10738    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10739    mb();
10740
10741    if (!CHIP_IS_E1(sc)) {
10742        /* init leading/trailing edge */
10743        if (IS_MF(sc)) {
10744            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10745            if (sc->port.pmf) {
10746                /* enable nig and gpio3 attention */
10747                val |= 0x1100;
10748            }
10749        } else {
10750            val = 0xffff;
10751        }
10752
10753        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10754        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10755    }
10756
10757    /* make sure that interrupts are indeed enabled from here on */
10758    mb();
10759}
10760
10761static void
10762bxe_igu_int_enable(struct bxe_softc *sc)
10763{
10764    uint32_t val;
10765    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10766    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10767                           (sc->intr_count == 1)) ? TRUE : FALSE;
10768    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10769
10770    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10771
10772    if (msix) {
10773        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10774                 IGU_PF_CONF_SINGLE_ISR_EN);
10775        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10776                IGU_PF_CONF_ATTN_BIT_EN);
10777        if (single_msix) {
10778            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10779        }
10780    } else if (msi) {
10781        val &= ~IGU_PF_CONF_INT_LINE_EN;
10782        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10783                IGU_PF_CONF_ATTN_BIT_EN |
10784                IGU_PF_CONF_SINGLE_ISR_EN);
10785    } else {
10786        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10787        val |= (IGU_PF_CONF_INT_LINE_EN |
10788                IGU_PF_CONF_ATTN_BIT_EN |
10789                IGU_PF_CONF_SINGLE_ISR_EN);
10790    }
10791
10792    /* clean previous status - need to configure igu prior to ack*/
10793    if ((!msix) || single_msix) {
10794        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10795        bxe_ack_int(sc);
10796    }
10797
10798    val |= IGU_PF_CONF_FUNC_EN;
10799
10800    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10801          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10802
10803    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10804
10805    mb();
10806
10807    /* init leading/trailing edge */
10808    if (IS_MF(sc)) {
10809        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10810        if (sc->port.pmf) {
10811            /* enable nig and gpio3 attention */
10812            val |= 0x1100;
10813        }
10814    } else {
10815        val = 0xffff;
10816    }
10817
10818    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10819    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10820
10821    /* make sure that interrupts are indeed enabled from here on */
10822    mb();
10823}
10824
10825static void
10826bxe_int_enable(struct bxe_softc *sc)
10827{
10828    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10829        bxe_hc_int_enable(sc);
10830    } else {
10831        bxe_igu_int_enable(sc);
10832    }
10833}
10834
10835static void
10836bxe_hc_int_disable(struct bxe_softc *sc)
10837{
10838    int port = SC_PORT(sc);
10839    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10840    uint32_t val = REG_RD(sc, addr);
10841
10842    /*
10843     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10844     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10845     * block
10846     */
10847    if (CHIP_IS_E1(sc)) {
10848        /*
10849         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10850         * to prevent from HC sending interrupts after we exit the function
10851         */
10852        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10853
10854        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10855                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10856                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10857    } else {
10858        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10859                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10860                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10861                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10862    }
10863
10864    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10865
10866    /* flush all outstanding writes */
10867    mb();
10868
10869    REG_WR(sc, addr, val);
10870    if (REG_RD(sc, addr) != val) {
10871        BLOGE(sc, "proper val not read from HC IGU!\n");
10872    }
10873}
10874
10875static void
10876bxe_igu_int_disable(struct bxe_softc *sc)
10877{
10878    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10879
10880    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10881             IGU_PF_CONF_INT_LINE_EN |
10882             IGU_PF_CONF_ATTN_BIT_EN);
10883
10884    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10885
10886    /* flush all outstanding writes */
10887    mb();
10888
10889    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10890    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10891        BLOGE(sc, "proper val not read from IGU!\n");
10892    }
10893}
10894
10895static void
10896bxe_int_disable(struct bxe_softc *sc)
10897{
10898    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10899        bxe_hc_int_disable(sc);
10900    } else {
10901        bxe_igu_int_disable(sc);
10902    }
10903}
10904
10905static void
10906bxe_nic_init(struct bxe_softc *sc,
10907             int              load_code)
10908{
10909    int i;
10910
10911    for (i = 0; i < sc->num_queues; i++) {
10912        bxe_init_eth_fp(sc, i);
10913    }
10914
10915    rmb(); /* ensure status block indices were read */
10916
10917    bxe_init_rx_rings(sc);
10918    bxe_init_tx_rings(sc);
10919
10920    if (IS_VF(sc)) {
10921        return;
10922    }
10923
10924    /* initialize MOD_ABS interrupts */
10925    elink_init_mod_abs_int(sc, &sc->link_vars,
10926                           sc->devinfo.chip_id,
10927                           sc->devinfo.shmem_base,
10928                           sc->devinfo.shmem2_base,
10929                           SC_PORT(sc));
10930
10931    bxe_init_def_sb(sc);
10932    bxe_update_dsb_idx(sc);
10933    bxe_init_sp_ring(sc);
10934    bxe_init_eq_ring(sc);
10935    bxe_init_internal(sc, load_code);
10936    bxe_pf_init(sc);
10937    bxe_stats_init(sc);
10938
10939    /* flush all before enabling interrupts */
10940    mb();
10941
10942    bxe_int_enable(sc);
10943
10944    /* check for SPIO5 */
10945    bxe_attn_int_deasserted0(sc,
10946                             REG_RD(sc,
10947                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10948                                     SC_PORT(sc)*4)) &
10949                             AEU_INPUTS_ATTN_BITS_SPIO5);
10950}
10951
10952static inline void
10953bxe_init_objs(struct bxe_softc *sc)
10954{
10955    /* mcast rules must be added to tx if tx switching is enabled */
10956    ecore_obj_type o_type =
10957        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10958                                         ECORE_OBJ_TYPE_RX;
10959
10960    /* RX_MODE controlling object */
10961    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10962
10963    /* multicast configuration controlling object */
10964    ecore_init_mcast_obj(sc,
10965                         &sc->mcast_obj,
10966                         sc->fp[0].cl_id,
10967                         sc->fp[0].index,
10968                         SC_FUNC(sc),
10969                         SC_FUNC(sc),
10970                         BXE_SP(sc, mcast_rdata),
10971                         BXE_SP_MAPPING(sc, mcast_rdata),
10972                         ECORE_FILTER_MCAST_PENDING,
10973                         &sc->sp_state,
10974                         o_type);
10975
10976    /* Setup CAM credit pools */
10977    ecore_init_mac_credit_pool(sc,
10978                               &sc->macs_pool,
10979                               SC_FUNC(sc),
10980                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10981                                                 VNICS_PER_PATH(sc));
10982
10983    ecore_init_vlan_credit_pool(sc,
10984                                &sc->vlans_pool,
10985                                SC_ABS_FUNC(sc) >> 1,
10986                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10987                                                  VNICS_PER_PATH(sc));
10988
10989    /* RSS configuration object */
10990    ecore_init_rss_config_obj(sc,
10991                              &sc->rss_conf_obj,
10992                              sc->fp[0].cl_id,
10993                              sc->fp[0].index,
10994                              SC_FUNC(sc),
10995                              SC_FUNC(sc),
10996                              BXE_SP(sc, rss_rdata),
10997                              BXE_SP_MAPPING(sc, rss_rdata),
10998                              ECORE_FILTER_RSS_CONF_PENDING,
10999                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
11000}
11001
11002/*
11003 * Initialize the function. This must be called before sending CLIENT_SETUP
11004 * for the first client.
11005 */
11006static inline int
11007bxe_func_start(struct bxe_softc *sc)
11008{
11009    struct ecore_func_state_params func_params = { NULL };
11010    struct ecore_func_start_params *start_params = &func_params.params.start;
11011
11012    /* Prepare parameters for function state transitions */
11013    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11014
11015    func_params.f_obj = &sc->func_obj;
11016    func_params.cmd = ECORE_F_CMD_START;
11017
11018    /* Function parameters */
11019    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11020    start_params->sd_vlan_tag = OVLAN(sc);
11021
11022    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11023        start_params->network_cos_mode = STATIC_COS;
11024    } else { /* CHIP_IS_E1X */
11025        start_params->network_cos_mode = FW_WRR;
11026    }
11027
11028    start_params->gre_tunnel_mode = 0;
11029    start_params->gre_tunnel_rss  = 0;
11030
11031    return (ecore_func_state_change(sc, &func_params));
11032}
11033
11034static int
11035bxe_set_power_state(struct bxe_softc *sc,
11036                    uint8_t          state)
11037{
11038    uint16_t pmcsr;
11039
11040    /* If there is no power capability, silently succeed */
11041    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11042        BLOGW(sc, "No power capability\n");
11043        return (0);
11044    }
11045
11046    pmcsr = pci_read_config(sc->dev,
11047                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11048                            2);
11049
11050    switch (state) {
11051    case PCI_PM_D0:
11052        pci_write_config(sc->dev,
11053                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11054                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11055
11056        if (pmcsr & PCIM_PSTAT_DMASK) {
11057            /* delay required during transition out of D3hot */
11058            DELAY(20000);
11059        }
11060
11061        break;
11062
11063    case PCI_PM_D3hot:
11064        /* XXX if there are other clients above don't shut down the power */
11065
11066        /* don't shut down the power for emulation and FPGA */
11067        if (CHIP_REV_IS_SLOW(sc)) {
11068            return (0);
11069        }
11070
11071        pmcsr &= ~PCIM_PSTAT_DMASK;
11072        pmcsr |= PCIM_PSTAT_D3;
11073
11074        if (sc->wol) {
11075            pmcsr |= PCIM_PSTAT_PMEENABLE;
11076        }
11077
11078        pci_write_config(sc->dev,
11079                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11080                         pmcsr, 4);
11081
11082        /*
11083         * No more memory access after this point until device is brought back
11084         * to D0 state.
11085         */
11086        break;
11087
11088    default:
11089        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11090        return (-1);
11091    }
11092
11093    return (0);
11094}
11095
11096
11097/* return true if succeeded to acquire the lock */
11098static uint8_t
11099bxe_trylock_hw_lock(struct bxe_softc *sc,
11100                    uint32_t         resource)
11101{
11102    uint32_t lock_status;
11103    uint32_t resource_bit = (1 << resource);
11104    int func = SC_FUNC(sc);
11105    uint32_t hw_lock_control_reg;
11106
11107    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11108
11109    /* Validating that the resource is within range */
11110    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11111        BLOGD(sc, DBG_LOAD,
11112              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11113              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11114        return (FALSE);
11115    }
11116
11117    if (func <= 5) {
11118        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11119    } else {
11120        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11121    }
11122
11123    /* try to acquire the lock */
11124    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11125    lock_status = REG_RD(sc, hw_lock_control_reg);
11126    if (lock_status & resource_bit) {
11127        return (TRUE);
11128    }
11129
11130    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11131
11132    return (FALSE);
11133}
11134
11135/*
11136 * Get the recovery leader resource id according to the engine this function
11137 * belongs to. Currently only only 2 engines is supported.
11138 */
11139static int
11140bxe_get_leader_lock_resource(struct bxe_softc *sc)
11141{
11142    if (SC_PATH(sc)) {
11143        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11144    } else {
11145        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11146    }
11147}
11148
11149/* try to acquire a leader lock for current engine */
11150static uint8_t
11151bxe_trylock_leader_lock(struct bxe_softc *sc)
11152{
11153    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11154}
11155
11156static int
11157bxe_release_leader_lock(struct bxe_softc *sc)
11158{
11159    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11160}
11161
11162/* close gates #2, #3 and #4 */
11163static void
11164bxe_set_234_gates(struct bxe_softc *sc,
11165                  uint8_t          close)
11166{
11167    uint32_t val;
11168
11169    /* gates #2 and #4a are closed/opened for "not E1" only */
11170    if (!CHIP_IS_E1(sc)) {
11171        /* #4 */
11172        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11173        /* #2 */
11174        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11175    }
11176
11177    /* #3 */
11178    if (CHIP_IS_E1x(sc)) {
11179        /* prevent interrupts from HC on both ports */
11180        val = REG_RD(sc, HC_REG_CONFIG_1);
11181        REG_WR(sc, HC_REG_CONFIG_1,
11182               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11183               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11184
11185        val = REG_RD(sc, HC_REG_CONFIG_0);
11186        REG_WR(sc, HC_REG_CONFIG_0,
11187               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11188               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11189    } else {
11190        /* Prevent incomming interrupts in IGU */
11191        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11192
11193        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11194               (!close) ?
11195               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11196               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11197    }
11198
11199    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11200          close ? "closing" : "opening");
11201
11202    wmb();
11203}
11204
11205/* poll for pending writes bit, it should get cleared in no more than 1s */
11206static int
11207bxe_er_poll_igu_vq(struct bxe_softc *sc)
11208{
11209    uint32_t cnt = 1000;
11210    uint32_t pend_bits = 0;
11211
11212    do {
11213        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11214
11215        if (pend_bits == 0) {
11216            break;
11217        }
11218
11219        DELAY(1000);
11220    } while (--cnt > 0);
11221
11222    if (cnt == 0) {
11223        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11224        return (-1);
11225    }
11226
11227    return (0);
11228}
11229
11230#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11231
11232static void
11233bxe_clp_reset_prep(struct bxe_softc *sc,
11234                   uint32_t         *magic_val)
11235{
11236    /* Do some magic... */
11237    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11238    *magic_val = val & SHARED_MF_CLP_MAGIC;
11239    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11240}
11241
11242/* restore the value of the 'magic' bit */
11243static void
11244bxe_clp_reset_done(struct bxe_softc *sc,
11245                   uint32_t         magic_val)
11246{
11247    /* Restore the 'magic' bit value... */
11248    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11249    MFCFG_WR(sc, shared_mf_config.clp_mb,
11250              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11251}
11252
11253/* prepare for MCP reset, takes care of CLP configurations */
11254static void
11255bxe_reset_mcp_prep(struct bxe_softc *sc,
11256                   uint32_t         *magic_val)
11257{
11258    uint32_t shmem;
11259    uint32_t validity_offset;
11260
11261    /* set `magic' bit in order to save MF config */
11262    if (!CHIP_IS_E1(sc)) {
11263        bxe_clp_reset_prep(sc, magic_val);
11264    }
11265
11266    /* get shmem offset */
11267    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11268    validity_offset =
11269        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11270
11271    /* Clear validity map flags */
11272    if (shmem > 0) {
11273        REG_WR(sc, shmem + validity_offset, 0);
11274    }
11275}
11276
11277#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11278#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11279
11280static void
11281bxe_mcp_wait_one(struct bxe_softc *sc)
11282{
11283    /* special handling for emulation and FPGA (10 times longer) */
11284    if (CHIP_REV_IS_SLOW(sc)) {
11285        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11286    } else {
11287        DELAY((MCP_ONE_TIMEOUT) * 1000);
11288    }
11289}
11290
11291/* initialize shmem_base and waits for validity signature to appear */
11292static int
11293bxe_init_shmem(struct bxe_softc *sc)
11294{
11295    int cnt = 0;
11296    uint32_t val = 0;
11297
11298    do {
11299        sc->devinfo.shmem_base     =
11300        sc->link_params.shmem_base =
11301            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11302
11303        if (sc->devinfo.shmem_base) {
11304            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11305            if (val & SHR_MEM_VALIDITY_MB)
11306                return (0);
11307        }
11308
11309        bxe_mcp_wait_one(sc);
11310
11311    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11312
11313    BLOGE(sc, "BAD MCP validity signature\n");
11314
11315    return (-1);
11316}
11317
11318static int
11319bxe_reset_mcp_comp(struct bxe_softc *sc,
11320                   uint32_t         magic_val)
11321{
11322    int rc = bxe_init_shmem(sc);
11323
11324    /* Restore the `magic' bit value */
11325    if (!CHIP_IS_E1(sc)) {
11326        bxe_clp_reset_done(sc, magic_val);
11327    }
11328
11329    return (rc);
11330}
11331
11332static void
11333bxe_pxp_prep(struct bxe_softc *sc)
11334{
11335    if (!CHIP_IS_E1(sc)) {
11336        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11337        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11338        wmb();
11339    }
11340}
11341
11342/*
11343 * Reset the whole chip except for:
11344 *      - PCIE core
11345 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11346 *      - IGU
11347 *      - MISC (including AEU)
11348 *      - GRC
11349 *      - RBCN, RBCP
11350 */
11351static void
11352bxe_process_kill_chip_reset(struct bxe_softc *sc,
11353                            uint8_t          global)
11354{
11355    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11356    uint32_t global_bits2, stay_reset2;
11357
11358    /*
11359     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11360     * (per chip) blocks.
11361     */
11362    global_bits2 =
11363        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11364        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11365
11366    /*
11367     * Don't reset the following blocks.
11368     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11369     *            reset, as in 4 port device they might still be owned
11370     *            by the MCP (there is only one leader per path).
11371     */
11372    not_reset_mask1 =
11373        MISC_REGISTERS_RESET_REG_1_RST_HC |
11374        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11375        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11376
11377    not_reset_mask2 =
11378        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11379        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11380        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11381        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11382        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11383        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11384        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11385        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11386        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11387        MISC_REGISTERS_RESET_REG_2_PGLC |
11388        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11389        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11390        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11391        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11392        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11393        MISC_REGISTERS_RESET_REG_2_UMAC1;
11394
11395    /*
11396     * Keep the following blocks in reset:
11397     *  - all xxMACs are handled by the elink code.
11398     */
11399    stay_reset2 =
11400        MISC_REGISTERS_RESET_REG_2_XMAC |
11401        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11402
11403    /* Full reset masks according to the chip */
11404    reset_mask1 = 0xffffffff;
11405
11406    if (CHIP_IS_E1(sc))
11407        reset_mask2 = 0xffff;
11408    else if (CHIP_IS_E1H(sc))
11409        reset_mask2 = 0x1ffff;
11410    else if (CHIP_IS_E2(sc))
11411        reset_mask2 = 0xfffff;
11412    else /* CHIP_IS_E3 */
11413        reset_mask2 = 0x3ffffff;
11414
11415    /* Don't reset global blocks unless we need to */
11416    if (!global)
11417        reset_mask2 &= ~global_bits2;
11418
11419    /*
11420     * In case of attention in the QM, we need to reset PXP
11421     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11422     * because otherwise QM reset would release 'close the gates' shortly
11423     * before resetting the PXP, then the PSWRQ would send a write
11424     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11425     * read the payload data from PSWWR, but PSWWR would not
11426     * respond. The write queue in PGLUE would stuck, dmae commands
11427     * would not return. Therefore it's important to reset the second
11428     * reset register (containing the
11429     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11430     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11431     * bit).
11432     */
11433    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11434           reset_mask2 & (~not_reset_mask2));
11435
11436    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11437           reset_mask1 & (~not_reset_mask1));
11438
11439    mb();
11440    wmb();
11441
11442    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11443           reset_mask2 & (~stay_reset2));
11444
11445    mb();
11446    wmb();
11447
11448    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11449    wmb();
11450}
11451
11452static int
11453bxe_process_kill(struct bxe_softc *sc,
11454                 uint8_t          global)
11455{
11456    int cnt = 1000;
11457    uint32_t val = 0;
11458    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11459    uint32_t tags_63_32 = 0;
11460
11461    /* Empty the Tetris buffer, wait for 1s */
11462    do {
11463        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11464        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11465        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11466        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11467        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11468        if (CHIP_IS_E3(sc)) {
11469            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11470        }
11471
11472        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11473            ((port_is_idle_0 & 0x1) == 0x1) &&
11474            ((port_is_idle_1 & 0x1) == 0x1) &&
11475            (pgl_exp_rom2 == 0xffffffff) &&
11476            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11477            break;
11478        DELAY(1000);
11479    } while (cnt-- > 0);
11480
11481    if (cnt <= 0) {
11482        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11483                  "are still outstanding read requests after 1s! "
11484                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11485                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11486              sr_cnt, blk_cnt, port_is_idle_0,
11487              port_is_idle_1, pgl_exp_rom2);
11488        return (-1);
11489    }
11490
11491    mb();
11492
11493    /* Close gates #2, #3 and #4 */
11494    bxe_set_234_gates(sc, TRUE);
11495
11496    /* Poll for IGU VQs for 57712 and newer chips */
11497    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11498        return (-1);
11499    }
11500
11501    /* XXX indicate that "process kill" is in progress to MCP */
11502
11503    /* clear "unprepared" bit */
11504    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11505    mb();
11506
11507    /* Make sure all is written to the chip before the reset */
11508    wmb();
11509
11510    /*
11511     * Wait for 1ms to empty GLUE and PCI-E core queues,
11512     * PSWHST, GRC and PSWRD Tetris buffer.
11513     */
11514    DELAY(1000);
11515
11516    /* Prepare to chip reset: */
11517    /* MCP */
11518    if (global) {
11519        bxe_reset_mcp_prep(sc, &val);
11520    }
11521
11522    /* PXP */
11523    bxe_pxp_prep(sc);
11524    mb();
11525
11526    /* reset the chip */
11527    bxe_process_kill_chip_reset(sc, global);
11528    mb();
11529
11530    /* Recover after reset: */
11531    /* MCP */
11532    if (global && bxe_reset_mcp_comp(sc, val)) {
11533        return (-1);
11534    }
11535
11536    /* XXX add resetting the NO_MCP mode DB here */
11537
11538    /* Open the gates #2, #3 and #4 */
11539    bxe_set_234_gates(sc, FALSE);
11540
11541    /* XXX
11542     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11543     * re-enable attentions
11544     */
11545
11546    return (0);
11547}
11548
11549static int
11550bxe_leader_reset(struct bxe_softc *sc)
11551{
11552    int rc = 0;
11553    uint8_t global = bxe_reset_is_global(sc);
11554    uint32_t load_code;
11555
11556    /*
11557     * If not going to reset MCP, load "fake" driver to reset HW while
11558     * driver is owner of the HW.
11559     */
11560    if (!global && !BXE_NOMCP(sc)) {
11561        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11562                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11563        if (!load_code) {
11564            BLOGE(sc, "MCP response failure, aborting\n");
11565            rc = -1;
11566            goto exit_leader_reset;
11567        }
11568
11569        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11570            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11571            BLOGE(sc, "MCP unexpected response, aborting\n");
11572            rc = -1;
11573            goto exit_leader_reset2;
11574        }
11575
11576        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11577        if (!load_code) {
11578            BLOGE(sc, "MCP response failure, aborting\n");
11579            rc = -1;
11580            goto exit_leader_reset2;
11581        }
11582    }
11583
11584    /* try to recover after the failure */
11585    if (bxe_process_kill(sc, global)) {
11586        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11587        rc = -1;
11588        goto exit_leader_reset2;
11589    }
11590
11591    /*
11592     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11593     * state.
11594     */
11595    bxe_set_reset_done(sc);
11596    if (global) {
11597        bxe_clear_reset_global(sc);
11598    }
11599
11600exit_leader_reset2:
11601
11602    /* unload "fake driver" if it was loaded */
11603    if (!global && !BXE_NOMCP(sc)) {
11604        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11605        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11606    }
11607
11608exit_leader_reset:
11609
11610    sc->is_leader = 0;
11611    bxe_release_leader_lock(sc);
11612
11613    mb();
11614    return (rc);
11615}
11616
11617/*
11618 * prepare INIT transition, parameters configured:
11619 *   - HC configuration
11620 *   - Queue's CDU context
11621 */
11622static void
11623bxe_pf_q_prep_init(struct bxe_softc               *sc,
11624                   struct bxe_fastpath            *fp,
11625                   struct ecore_queue_init_params *init_params)
11626{
11627    uint8_t cos;
11628    int cxt_index, cxt_offset;
11629
11630    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11631    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11632
11633    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11634    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11635
11636    /* HC rate */
11637    init_params->rx.hc_rate =
11638        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11639    init_params->tx.hc_rate =
11640        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11641
11642    /* FW SB ID */
11643    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11644
11645    /* CQ index among the SB indices */
11646    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11647    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11648
11649    /* set maximum number of COSs supported by this queue */
11650    init_params->max_cos = sc->max_cos;
11651
11652    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11653          fp->index, init_params->max_cos);
11654
11655    /* set the context pointers queue object */
11656    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11657        /* XXX change index/cid here if ever support multiple tx CoS */
11658        /* fp->txdata[cos]->cid */
11659        cxt_index = fp->index / ILT_PAGE_CIDS;
11660        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11661        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11662    }
11663}
11664
11665/* set flags that are common for the Tx-only and not normal connections */
11666static unsigned long
11667bxe_get_common_flags(struct bxe_softc    *sc,
11668                     struct bxe_fastpath *fp,
11669                     uint8_t             zero_stats)
11670{
11671    unsigned long flags = 0;
11672
11673    /* PF driver will always initialize the Queue to an ACTIVE state */
11674    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11675
11676    /*
11677     * tx only connections collect statistics (on the same index as the
11678     * parent connection). The statistics are zeroed when the parent
11679     * connection is initialized.
11680     */
11681
11682    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11683    if (zero_stats) {
11684        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11685    }
11686
11687    /*
11688     * tx only connections can support tx-switching, though their
11689     * CoS-ness doesn't survive the loopback
11690     */
11691    if (sc->flags & BXE_TX_SWITCHING) {
11692        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11693    }
11694
11695    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11696
11697    return (flags);
11698}
11699
11700static unsigned long
11701bxe_get_q_flags(struct bxe_softc    *sc,
11702                struct bxe_fastpath *fp,
11703                uint8_t             leading)
11704{
11705    unsigned long flags = 0;
11706
11707    if (IS_MF_SD(sc)) {
11708        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11709    }
11710
11711    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11712        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11713        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11714#if 0
11715        if (fp->mode == TPA_MODE_GRO)
11716            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11717#endif
11718    }
11719
11720    if (leading) {
11721        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11722        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11723    }
11724
11725    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11726
11727#if 0
11728    /* configure silent vlan removal */
11729    if (IS_MF_AFEX(sc)) {
11730        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11731    }
11732#endif
11733
11734    /* merge with common flags */
11735    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11736}
11737
11738static void
11739bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11740                      struct bxe_fastpath               *fp,
11741                      struct ecore_general_setup_params *gen_init,
11742                      uint8_t                           cos)
11743{
11744    gen_init->stat_id = bxe_stats_id(fp);
11745    gen_init->spcl_id = fp->cl_id;
11746    gen_init->mtu = sc->mtu;
11747    gen_init->cos = cos;
11748}
11749
11750static void
11751bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11752                 struct bxe_fastpath           *fp,
11753                 struct rxq_pause_params       *pause,
11754                 struct ecore_rxq_setup_params *rxq_init)
11755{
11756    uint8_t max_sge = 0;
11757    uint16_t sge_sz = 0;
11758    uint16_t tpa_agg_size = 0;
11759
11760    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11761        pause->sge_th_lo = SGE_TH_LO(sc);
11762        pause->sge_th_hi = SGE_TH_HI(sc);
11763
11764        /* validate SGE ring has enough to cross high threshold */
11765        if (sc->dropless_fc &&
11766            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11767            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11768            BLOGW(sc, "sge ring threshold limit\n");
11769        }
11770
11771        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11772        tpa_agg_size = (2 * sc->mtu);
11773        if (tpa_agg_size < sc->max_aggregation_size) {
11774            tpa_agg_size = sc->max_aggregation_size;
11775        }
11776
11777        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11778        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11779                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11780        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11781    }
11782
11783    /* pause - not for e1 */
11784    if (!CHIP_IS_E1(sc)) {
11785        pause->bd_th_lo = BD_TH_LO(sc);
11786        pause->bd_th_hi = BD_TH_HI(sc);
11787
11788        pause->rcq_th_lo = RCQ_TH_LO(sc);
11789        pause->rcq_th_hi = RCQ_TH_HI(sc);
11790
11791        /* validate rings have enough entries to cross high thresholds */
11792        if (sc->dropless_fc &&
11793            pause->bd_th_hi + FW_PREFETCH_CNT >
11794            sc->rx_ring_size) {
11795            BLOGW(sc, "rx bd ring threshold limit\n");
11796        }
11797
11798        if (sc->dropless_fc &&
11799            pause->rcq_th_hi + FW_PREFETCH_CNT >
11800            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11801            BLOGW(sc, "rcq ring threshold limit\n");
11802        }
11803
11804        pause->pri_map = 1;
11805    }
11806
11807    /* rxq setup */
11808    rxq_init->dscr_map   = fp->rx_dma.paddr;
11809    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11810    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11811    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11812
11813    /*
11814     * This should be a maximum number of data bytes that may be
11815     * placed on the BD (not including paddings).
11816     */
11817    rxq_init->buf_sz = (fp->rx_buf_size -
11818                        IP_HEADER_ALIGNMENT_PADDING);
11819
11820    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11821    rxq_init->tpa_agg_sz      = tpa_agg_size;
11822    rxq_init->sge_buf_sz      = sge_sz;
11823    rxq_init->max_sges_pkt    = max_sge;
11824    rxq_init->rss_engine_id   = SC_FUNC(sc);
11825    rxq_init->mcast_engine_id = SC_FUNC(sc);
11826
11827    /*
11828     * Maximum number or simultaneous TPA aggregation for this Queue.
11829     * For PF Clients it should be the maximum available number.
11830     * VF driver(s) may want to define it to a smaller value.
11831     */
11832    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11833
11834    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11835    rxq_init->fw_sb_id = fp->fw_sb_id;
11836
11837    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11838
11839    /*
11840     * configure silent vlan removal
11841     * if multi function mode is afex, then mask default vlan
11842     */
11843    if (IS_MF_AFEX(sc)) {
11844        rxq_init->silent_removal_value =
11845            sc->devinfo.mf_info.afex_def_vlan_tag;
11846        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11847    }
11848}
11849
11850static void
11851bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11852                 struct bxe_fastpath           *fp,
11853                 struct ecore_txq_setup_params *txq_init,
11854                 uint8_t                       cos)
11855{
11856    /*
11857     * XXX If multiple CoS is ever supported then each fastpath structure
11858     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11859     * fp->txdata[cos]->tx_dma.paddr;
11860     */
11861    txq_init->dscr_map     = fp->tx_dma.paddr;
11862    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11863    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11864    txq_init->fw_sb_id     = fp->fw_sb_id;
11865
11866    /*
11867     * set the TSS leading client id for TX classfication to the
11868     * leading RSS client id
11869     */
11870    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11871}
11872
11873/*
11874 * This function performs 2 steps in a queue state machine:
11875 *   1) RESET->INIT
11876 *   2) INIT->SETUP
11877 */
11878static int
11879bxe_setup_queue(struct bxe_softc    *sc,
11880                struct bxe_fastpath *fp,
11881                uint8_t             leading)
11882{
11883    struct ecore_queue_state_params q_params = { NULL };
11884    struct ecore_queue_setup_params *setup_params =
11885                        &q_params.params.setup;
11886#if 0
11887    struct ecore_queue_setup_tx_only_params *tx_only_params =
11888                        &q_params.params.tx_only;
11889    uint8_t tx_index;
11890#endif
11891    int rc;
11892
11893    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11894
11895    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11896
11897    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11898
11899    /* we want to wait for completion in this context */
11900    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11901
11902    /* prepare the INIT parameters */
11903    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11904
11905    /* Set the command */
11906    q_params.cmd = ECORE_Q_CMD_INIT;
11907
11908    /* Change the state to INIT */
11909    rc = ecore_queue_state_change(sc, &q_params);
11910    if (rc) {
11911        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11912        return (rc);
11913    }
11914
11915    BLOGD(sc, DBG_LOAD, "init complete\n");
11916
11917    /* now move the Queue to the SETUP state */
11918    memset(setup_params, 0, sizeof(*setup_params));
11919
11920    /* set Queue flags */
11921    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11922
11923    /* set general SETUP parameters */
11924    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11925                          FIRST_TX_COS_INDEX);
11926
11927    bxe_pf_rx_q_prep(sc, fp,
11928                     &setup_params->pause_params,
11929                     &setup_params->rxq_params);
11930
11931    bxe_pf_tx_q_prep(sc, fp,
11932                     &setup_params->txq_params,
11933                     FIRST_TX_COS_INDEX);
11934
11935    /* Set the command */
11936    q_params.cmd = ECORE_Q_CMD_SETUP;
11937
11938    /* change the state to SETUP */
11939    rc = ecore_queue_state_change(sc, &q_params);
11940    if (rc) {
11941        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11942        return (rc);
11943    }
11944
11945#if 0
11946    /* loop through the relevant tx-only indices */
11947    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11948         tx_index < sc->max_cos;
11949         tx_index++) {
11950        /* prepare and send tx-only ramrod*/
11951        rc = bxe_setup_tx_only(sc, fp, &q_params,
11952                               tx_only_params, tx_index, leading);
11953        if (rc) {
11954            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11955                  fp->index, tx_index);
11956            return (rc);
11957        }
11958    }
11959#endif
11960
11961    return (rc);
11962}
11963
11964static int
11965bxe_setup_leading(struct bxe_softc *sc)
11966{
11967    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11968}
11969
11970static int
11971bxe_config_rss_pf(struct bxe_softc            *sc,
11972                  struct ecore_rss_config_obj *rss_obj,
11973                  uint8_t                     config_hash)
11974{
11975    struct ecore_config_rss_params params = { NULL };
11976    int i;
11977
11978    /*
11979     * Although RSS is meaningless when there is a single HW queue we
11980     * still need it enabled in order to have HW Rx hash generated.
11981     */
11982
11983    params.rss_obj = rss_obj;
11984
11985    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11986
11987    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11988
11989    /* RSS configuration */
11990    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11991    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11992    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11993    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11994    if (rss_obj->udp_rss_v4) {
11995        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11996    }
11997    if (rss_obj->udp_rss_v6) {
11998        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11999    }
12000
12001    /* Hash bits */
12002    params.rss_result_mask = MULTI_MASK;
12003
12004    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
12005
12006    if (config_hash) {
12007        /* RSS keys */
12008        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
12009            params.rss_key[i] = arc4random();
12010        }
12011
12012        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12013    }
12014
12015    return (ecore_config_rss(sc, &params));
12016}
12017
12018static int
12019bxe_config_rss_eth(struct bxe_softc *sc,
12020                   uint8_t          config_hash)
12021{
12022    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12023}
12024
12025static int
12026bxe_init_rss_pf(struct bxe_softc *sc)
12027{
12028    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12029    int i;
12030
12031    /*
12032     * Prepare the initial contents of the indirection table if
12033     * RSS is enabled
12034     */
12035    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12036        sc->rss_conf_obj.ind_table[i] =
12037            (sc->fp->cl_id + (i % num_eth_queues));
12038    }
12039
12040    if (sc->udp_rss) {
12041        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12042    }
12043
12044    /*
12045     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12046     * per-port, so if explicit configuration is needed, do it only
12047     * for a PMF.
12048     *
12049     * For 57712 and newer it's a per-function configuration.
12050     */
12051    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12052}
12053
12054static int
12055bxe_set_mac_one(struct bxe_softc          *sc,
12056                uint8_t                   *mac,
12057                struct ecore_vlan_mac_obj *obj,
12058                uint8_t                   set,
12059                int                       mac_type,
12060                unsigned long             *ramrod_flags)
12061{
12062    struct ecore_vlan_mac_ramrod_params ramrod_param;
12063    int rc;
12064
12065    memset(&ramrod_param, 0, sizeof(ramrod_param));
12066
12067    /* fill in general parameters */
12068    ramrod_param.vlan_mac_obj = obj;
12069    ramrod_param.ramrod_flags = *ramrod_flags;
12070
12071    /* fill a user request section if needed */
12072    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12073        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12074
12075        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12076
12077        /* Set the command: ADD or DEL */
12078        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12079                                            ECORE_VLAN_MAC_DEL;
12080    }
12081
12082    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12083
12084    if (rc == ECORE_EXISTS) {
12085        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12086        /* do not treat adding same MAC as error */
12087        rc = 0;
12088    } else if (rc < 0) {
12089        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12090    }
12091
12092    return (rc);
12093}
12094
12095static int
12096bxe_set_eth_mac(struct bxe_softc *sc,
12097                uint8_t          set)
12098{
12099    unsigned long ramrod_flags = 0;
12100
12101    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12102
12103    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12104
12105    /* Eth MAC is set on RSS leading client (fp[0]) */
12106    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12107                            &sc->sp_objs->mac_obj,
12108                            set, ECORE_ETH_MAC, &ramrod_flags));
12109}
12110
12111#if 0
12112static void
12113bxe_update_max_mf_config(struct bxe_softc *sc,
12114                         uint32_t         value)
12115{
12116    /* load old values */
12117    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12118
12119    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12120        /* leave all but MAX value */
12121        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12122
12123        /* set new MAX value */
12124        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12125                   FUNC_MF_CFG_MAX_BW_MASK);
12126
12127        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12128    }
12129}
12130#endif
12131
12132static int
12133bxe_get_cur_phy_idx(struct bxe_softc *sc)
12134{
12135    uint32_t sel_phy_idx = 0;
12136
12137    if (sc->link_params.num_phys <= 1) {
12138        return (ELINK_INT_PHY);
12139    }
12140
12141    if (sc->link_vars.link_up) {
12142        sel_phy_idx = ELINK_EXT_PHY1;
12143        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12144        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12145            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12146             ELINK_SUPPORTED_FIBRE))
12147            sel_phy_idx = ELINK_EXT_PHY2;
12148    } else {
12149        switch (elink_phy_selection(&sc->link_params)) {
12150        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12151        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12152        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12153               sel_phy_idx = ELINK_EXT_PHY1;
12154               break;
12155        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12156        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12157               sel_phy_idx = ELINK_EXT_PHY2;
12158               break;
12159        }
12160    }
12161
12162    return (sel_phy_idx);
12163}
12164
12165static int
12166bxe_get_link_cfg_idx(struct bxe_softc *sc)
12167{
12168    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12169
12170    /*
12171     * The selected activated PHY is always after swapping (in case PHY
12172     * swapping is enabled). So when swapping is enabled, we need to reverse
12173     * the configuration
12174     */
12175
12176    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12177        if (sel_phy_idx == ELINK_EXT_PHY1)
12178            sel_phy_idx = ELINK_EXT_PHY2;
12179        else if (sel_phy_idx == ELINK_EXT_PHY2)
12180            sel_phy_idx = ELINK_EXT_PHY1;
12181    }
12182
12183    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12184}
12185
12186static void
12187bxe_set_requested_fc(struct bxe_softc *sc)
12188{
12189    /*
12190     * Initialize link parameters structure variables
12191     * It is recommended to turn off RX FC for jumbo frames
12192     * for better performance
12193     */
12194    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12195        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12196    } else {
12197        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12198    }
12199}
12200
12201static void
12202bxe_calc_fc_adv(struct bxe_softc *sc)
12203{
12204    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12205    switch (sc->link_vars.ieee_fc &
12206            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12207    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12208    default:
12209        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12210                                           ADVERTISED_Pause);
12211        break;
12212
12213    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12214        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12215                                          ADVERTISED_Pause);
12216        break;
12217
12218    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12219        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12220        break;
12221    }
12222}
12223
12224static uint16_t
12225bxe_get_mf_speed(struct bxe_softc *sc)
12226{
12227    uint16_t line_speed = sc->link_vars.line_speed;
12228    if (IS_MF(sc)) {
12229        uint16_t maxCfg =
12230            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12231
12232        /* calculate the current MAX line speed limit for the MF devices */
12233        if (IS_MF_SI(sc)) {
12234            line_speed = (line_speed * maxCfg) / 100;
12235        } else { /* SD mode */
12236            uint16_t vn_max_rate = maxCfg * 100;
12237
12238            if (vn_max_rate < line_speed) {
12239                line_speed = vn_max_rate;
12240            }
12241        }
12242    }
12243
12244    return (line_speed);
12245}
12246
12247static void
12248bxe_fill_report_data(struct bxe_softc            *sc,
12249                     struct bxe_link_report_data *data)
12250{
12251    uint16_t line_speed = bxe_get_mf_speed(sc);
12252
12253    memset(data, 0, sizeof(*data));
12254
12255    /* fill the report data with the effective line speed */
12256    data->line_speed = line_speed;
12257
12258    /* Link is down */
12259    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12260        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12261    }
12262
12263    /* Full DUPLEX */
12264    if (sc->link_vars.duplex == DUPLEX_FULL) {
12265        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12266    }
12267
12268    /* Rx Flow Control is ON */
12269    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12270        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12271    }
12272
12273    /* Tx Flow Control is ON */
12274    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12275        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12276    }
12277}
12278
12279/* report link status to OS, should be called under phy_lock */
12280static void
12281bxe_link_report_locked(struct bxe_softc *sc)
12282{
12283    struct bxe_link_report_data cur_data;
12284
12285    /* reread mf_cfg */
12286    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12287        bxe_read_mf_cfg(sc);
12288    }
12289
12290    /* Read the current link report info */
12291    bxe_fill_report_data(sc, &cur_data);
12292
12293    /* Don't report link down or exactly the same link status twice */
12294    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12295        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12296                      &sc->last_reported_link.link_report_flags) &&
12297         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12298                      &cur_data.link_report_flags))) {
12299        return;
12300    }
12301
12302    sc->link_cnt++;
12303
12304    /* report new link params and remember the state for the next time */
12305    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12306
12307    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12308                     &cur_data.link_report_flags)) {
12309        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12310        BLOGI(sc, "NIC Link is Down\n");
12311    } else {
12312        const char *duplex;
12313        const char *flow;
12314
12315        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12316                                   &cur_data.link_report_flags)) {
12317            duplex = "full";
12318        } else {
12319            duplex = "half";
12320        }
12321
12322        /*
12323         * Handle the FC at the end so that only these flags would be
12324         * possibly set. This way we may easily check if there is no FC
12325         * enabled.
12326         */
12327        if (cur_data.link_report_flags) {
12328            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12329                             &cur_data.link_report_flags) &&
12330                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12331                             &cur_data.link_report_flags)) {
12332                flow = "ON - receive & transmit";
12333            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12334                                    &cur_data.link_report_flags) &&
12335                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12336                                     &cur_data.link_report_flags)) {
12337                flow = "ON - receive";
12338            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12339                                     &cur_data.link_report_flags) &&
12340                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12341                                    &cur_data.link_report_flags)) {
12342                flow = "ON - transmit";
12343            } else {
12344                flow = "none"; /* possible? */
12345            }
12346        } else {
12347            flow = "none";
12348        }
12349
12350        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12351        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12352              cur_data.line_speed, duplex, flow);
12353    }
12354}
12355
12356static void
12357bxe_link_report(struct bxe_softc *sc)
12358{
12359    BXE_PHY_LOCK(sc);
12360    bxe_link_report_locked(sc);
12361    BXE_PHY_UNLOCK(sc);
12362}
12363
12364static void
12365bxe_link_status_update(struct bxe_softc *sc)
12366{
12367    if (sc->state != BXE_STATE_OPEN) {
12368        return;
12369    }
12370
12371#if 0
12372    /* read updated dcb configuration */
12373    if (IS_PF(sc))
12374        bxe_dcbx_pmf_update(sc);
12375#endif
12376
12377    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12378        elink_link_status_update(&sc->link_params, &sc->link_vars);
12379    } else {
12380        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12381                                  ELINK_SUPPORTED_10baseT_Full |
12382                                  ELINK_SUPPORTED_100baseT_Half |
12383                                  ELINK_SUPPORTED_100baseT_Full |
12384                                  ELINK_SUPPORTED_1000baseT_Full |
12385                                  ELINK_SUPPORTED_2500baseX_Full |
12386                                  ELINK_SUPPORTED_10000baseT_Full |
12387                                  ELINK_SUPPORTED_TP |
12388                                  ELINK_SUPPORTED_FIBRE |
12389                                  ELINK_SUPPORTED_Autoneg |
12390                                  ELINK_SUPPORTED_Pause |
12391                                  ELINK_SUPPORTED_Asym_Pause);
12392        sc->port.advertising[0] = sc->port.supported[0];
12393
12394        sc->link_params.sc                = sc;
12395        sc->link_params.port              = SC_PORT(sc);
12396        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12397        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12398        sc->link_params.req_line_speed[0] = SPEED_10000;
12399        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12400        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12401
12402        if (CHIP_REV_IS_FPGA(sc)) {
12403            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12404            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12405            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12406                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12407        } else {
12408            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12409            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12410            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12411                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12412        }
12413
12414        sc->link_vars.link_up = 1;
12415
12416        sc->link_vars.duplex    = DUPLEX_FULL;
12417        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12418
12419        if (IS_PF(sc)) {
12420            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12421            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12422            bxe_link_report(sc);
12423        }
12424    }
12425
12426    if (IS_PF(sc)) {
12427        if (sc->link_vars.link_up) {
12428            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12429        } else {
12430            bxe_stats_handle(sc, STATS_EVENT_STOP);
12431        }
12432        bxe_link_report(sc);
12433    } else {
12434        bxe_link_report(sc);
12435        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12436    }
12437}
12438
12439static int
12440bxe_initial_phy_init(struct bxe_softc *sc,
12441                     int              load_mode)
12442{
12443    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12444    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12445    struct elink_params *lp = &sc->link_params;
12446
12447    bxe_set_requested_fc(sc);
12448
12449    if (CHIP_REV_IS_SLOW(sc)) {
12450        uint32_t bond = CHIP_BOND_ID(sc);
12451        uint32_t feat = 0;
12452
12453        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12454            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12455        } else if (bond & 0x4) {
12456            if (CHIP_IS_E3(sc)) {
12457                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12458            } else {
12459                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12460            }
12461        } else if (bond & 0x8) {
12462            if (CHIP_IS_E3(sc)) {
12463                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12464            } else {
12465                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12466            }
12467        }
12468
12469        /* disable EMAC for E3 and above */
12470        if (bond & 0x2) {
12471            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12472        }
12473
12474        sc->link_params.feature_config_flags |= feat;
12475    }
12476
12477    BXE_PHY_LOCK(sc);
12478
12479    if (load_mode == LOAD_DIAG) {
12480        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12481        /* Prefer doing PHY loopback at 10G speed, if possible */
12482        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12483            if (lp->speed_cap_mask[cfg_idx] &
12484                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12485                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12486            } else {
12487                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12488            }
12489        }
12490    }
12491
12492    if (load_mode == LOAD_LOOPBACK_EXT) {
12493        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12494    }
12495
12496    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12497
12498    BXE_PHY_UNLOCK(sc);
12499
12500    bxe_calc_fc_adv(sc);
12501
12502    if (sc->link_vars.link_up) {
12503        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12504        bxe_link_report(sc);
12505    }
12506
12507    if (!CHIP_REV_IS_SLOW(sc)) {
12508        bxe_periodic_start(sc);
12509    }
12510
12511    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12512    return (rc);
12513}
12514
12515/* must be called under IF_ADDR_LOCK */
12516static int
12517bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12518                         struct ecore_mcast_ramrod_params *p)
12519{
12520    struct ifnet *ifp = sc->ifnet;
12521    int mc_count = 0;
12522    struct ifmultiaddr *ifma;
12523    struct ecore_mcast_list_elem *mc_mac;
12524
12525    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12526        if (ifma->ifma_addr->sa_family != AF_LINK) {
12527            continue;
12528        }
12529
12530        mc_count++;
12531    }
12532
12533    ECORE_LIST_INIT(&p->mcast_list);
12534    p->mcast_list_len = 0;
12535
12536    if (!mc_count) {
12537        return (0);
12538    }
12539
12540    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12541                    (M_NOWAIT | M_ZERO));
12542    if (!mc_mac) {
12543        BLOGE(sc, "Failed to allocate temp mcast list\n");
12544        return (-1);
12545    }
12546
12547    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12548        if (ifma->ifma_addr->sa_family != AF_LINK) {
12549            continue;
12550        }
12551
12552        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12553        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12554
12555        BLOGD(sc, DBG_LOAD,
12556              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12557              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12558              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12559
12560        mc_mac++;
12561    }
12562
12563    p->mcast_list_len = mc_count;
12564
12565    return (0);
12566}
12567
12568static void
12569bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12570{
12571    struct ecore_mcast_list_elem *mc_mac =
12572        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12573                               struct ecore_mcast_list_elem,
12574                               link);
12575
12576    if (mc_mac) {
12577        /* only a single free as all mc_macs are in the same heap array */
12578        free(mc_mac, M_DEVBUF);
12579    }
12580}
12581
12582static int
12583bxe_set_mc_list(struct bxe_softc *sc)
12584{
12585    struct ecore_mcast_ramrod_params rparam = { NULL };
12586    int rc = 0;
12587
12588    rparam.mcast_obj = &sc->mcast_obj;
12589
12590    BXE_MCAST_LOCK(sc);
12591
12592    /* first, clear all configured multicast MACs */
12593    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12594    if (rc < 0) {
12595        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12596        return (rc);
12597    }
12598
12599    /* configure a new MACs list */
12600    rc = bxe_init_mcast_macs_list(sc, &rparam);
12601    if (rc) {
12602        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12603        BXE_MCAST_UNLOCK(sc);
12604        return (rc);
12605    }
12606
12607    /* Now add the new MACs */
12608    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12609    if (rc < 0) {
12610        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12611    }
12612
12613    bxe_free_mcast_macs_list(&rparam);
12614
12615    BXE_MCAST_UNLOCK(sc);
12616
12617    return (rc);
12618}
12619
12620static int
12621bxe_set_uc_list(struct bxe_softc *sc)
12622{
12623    struct ifnet *ifp = sc->ifnet;
12624    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12625    struct ifaddr *ifa;
12626    unsigned long ramrod_flags = 0;
12627    int rc;
12628
12629#if __FreeBSD_version < 800000
12630    IF_ADDR_LOCK(ifp);
12631#else
12632    if_addr_rlock(ifp);
12633#endif
12634
12635    /* first schedule a cleanup up of old configuration */
12636    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12637    if (rc < 0) {
12638        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12639#if __FreeBSD_version < 800000
12640        IF_ADDR_UNLOCK(ifp);
12641#else
12642        if_addr_runlock(ifp);
12643#endif
12644        return (rc);
12645    }
12646
12647    ifa = ifp->if_addr;
12648    while (ifa) {
12649        if (ifa->ifa_addr->sa_family != AF_LINK) {
12650            ifa = TAILQ_NEXT(ifa, ifa_link);
12651            continue;
12652        }
12653
12654        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12655                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12656        if (rc == -EEXIST) {
12657            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12658            /* do not treat adding same MAC as an error */
12659            rc = 0;
12660        } else if (rc < 0) {
12661            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12662#if __FreeBSD_version < 800000
12663            IF_ADDR_UNLOCK(ifp);
12664#else
12665            if_addr_runlock(ifp);
12666#endif
12667            return (rc);
12668        }
12669
12670        ifa = TAILQ_NEXT(ifa, ifa_link);
12671    }
12672
12673#if __FreeBSD_version < 800000
12674    IF_ADDR_UNLOCK(ifp);
12675#else
12676    if_addr_runlock(ifp);
12677#endif
12678
12679    /* Execute the pending commands */
12680    bit_set(&ramrod_flags, RAMROD_CONT);
12681    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12682                            ECORE_UC_LIST_MAC, &ramrod_flags));
12683}
12684
12685static void
12686bxe_handle_rx_mode_tq(void *context,
12687                      int  pending)
12688{
12689    struct bxe_softc *sc = (struct bxe_softc *)context;
12690    struct ifnet *ifp = sc->ifnet;
12691    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12692
12693    BXE_CORE_LOCK(sc);
12694
12695    if (sc->state != BXE_STATE_OPEN) {
12696        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12697        BXE_CORE_UNLOCK(sc);
12698        return;
12699    }
12700
12701    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12702
12703    if (ifp->if_flags & IFF_PROMISC) {
12704        rx_mode = BXE_RX_MODE_PROMISC;
12705    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12706               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12707                CHIP_IS_E1(sc))) {
12708        rx_mode = BXE_RX_MODE_ALLMULTI;
12709    } else {
12710        if (IS_PF(sc)) {
12711            /* some multicasts */
12712            if (bxe_set_mc_list(sc) < 0) {
12713                rx_mode = BXE_RX_MODE_ALLMULTI;
12714            }
12715            if (bxe_set_uc_list(sc) < 0) {
12716                rx_mode = BXE_RX_MODE_PROMISC;
12717            }
12718        }
12719#if 0
12720        else {
12721            /*
12722             * Configuring mcast to a VF involves sleeping (when we
12723             * wait for the PF's response). Since this function is
12724             * called from a non sleepable context we must schedule
12725             * a work item for this purpose
12726             */
12727            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12728            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12729        }
12730#endif
12731    }
12732
12733    sc->rx_mode = rx_mode;
12734
12735    /* schedule the rx_mode command */
12736    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12737        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12738        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12739        BXE_CORE_UNLOCK(sc);
12740        return;
12741    }
12742
12743    if (IS_PF(sc)) {
12744        bxe_set_storm_rx_mode(sc);
12745    }
12746#if 0
12747    else {
12748        /*
12749         * Configuring mcast to a VF involves sleeping (when we
12750         * wait for the PF's response). Since this function is
12751         * called from a non sleepable context we must schedule
12752         * a work item for this purpose
12753         */
12754        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12755        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12756    }
12757#endif
12758
12759    BXE_CORE_UNLOCK(sc);
12760}
12761
12762static void
12763bxe_set_rx_mode(struct bxe_softc *sc)
12764{
12765    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12766}
12767
12768/* update flags in shmem */
12769static void
12770bxe_update_drv_flags(struct bxe_softc *sc,
12771                     uint32_t         flags,
12772                     uint32_t         set)
12773{
12774    uint32_t drv_flags;
12775
12776    if (SHMEM2_HAS(sc, drv_flags)) {
12777        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12778        drv_flags = SHMEM2_RD(sc, drv_flags);
12779
12780        if (set) {
12781            SET_FLAGS(drv_flags, flags);
12782        } else {
12783            RESET_FLAGS(drv_flags, flags);
12784        }
12785
12786        SHMEM2_WR(sc, drv_flags, drv_flags);
12787        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12788
12789        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12790    }
12791}
12792
12793/* periodic timer callout routine, only runs when the interface is up */
12794
12795static void
12796bxe_periodic_callout_func(void *xsc)
12797{
12798    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12799    int i;
12800
12801    if (!BXE_CORE_TRYLOCK(sc)) {
12802        /* just bail and try again next time */
12803
12804        if ((sc->state == BXE_STATE_OPEN) &&
12805            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12806            /* schedule the next periodic callout */
12807            callout_reset(&sc->periodic_callout, hz,
12808                          bxe_periodic_callout_func, sc);
12809        }
12810
12811        return;
12812    }
12813
12814    if ((sc->state != BXE_STATE_OPEN) ||
12815        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12816        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12817        BXE_CORE_UNLOCK(sc);
12818        return;
12819    }
12820
12821    /* Check for TX timeouts on any fastpath. */
12822    FOR_EACH_QUEUE(sc, i) {
12823        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12824            /* Ruh-Roh, chip was reset! */
12825            break;
12826        }
12827    }
12828
12829    if (!CHIP_REV_IS_SLOW(sc)) {
12830        /*
12831         * This barrier is needed to ensure the ordering between the writing
12832         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12833         * the reading here.
12834         */
12835        mb();
12836        if (sc->port.pmf) {
12837            BXE_PHY_LOCK(sc);
12838            elink_period_func(&sc->link_params, &sc->link_vars);
12839            BXE_PHY_UNLOCK(sc);
12840        }
12841    }
12842
12843    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12844        int mb_idx = SC_FW_MB_IDX(sc);
12845        uint32_t drv_pulse;
12846        uint32_t mcp_pulse;
12847
12848        ++sc->fw_drv_pulse_wr_seq;
12849        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12850
12851        drv_pulse = sc->fw_drv_pulse_wr_seq;
12852        bxe_drv_pulse(sc);
12853
12854        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12855                     MCP_PULSE_SEQ_MASK);
12856
12857        /*
12858         * The delta between driver pulse and mcp response should
12859         * be 1 (before mcp response) or 0 (after mcp response).
12860         */
12861        if ((drv_pulse != mcp_pulse) &&
12862            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12863            /* someone lost a heartbeat... */
12864            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12865                  drv_pulse, mcp_pulse);
12866        }
12867    }
12868
12869    /* state is BXE_STATE_OPEN */
12870    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12871
12872#if 0
12873    /* sample VF bulletin board for new posts from PF */
12874    if (IS_VF(sc)) {
12875        bxe_sample_bulletin(sc);
12876    }
12877#endif
12878
12879    BXE_CORE_UNLOCK(sc);
12880
12881    if ((sc->state == BXE_STATE_OPEN) &&
12882        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12883        /* schedule the next periodic callout */
12884        callout_reset(&sc->periodic_callout, hz,
12885                      bxe_periodic_callout_func, sc);
12886    }
12887}
12888
12889static void
12890bxe_periodic_start(struct bxe_softc *sc)
12891{
12892    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12893    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12894}
12895
12896static void
12897bxe_periodic_stop(struct bxe_softc *sc)
12898{
12899    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12900    callout_drain(&sc->periodic_callout);
12901}
12902
12903/* start the controller */
12904static __noinline int
12905bxe_nic_load(struct bxe_softc *sc,
12906             int              load_mode)
12907{
12908    uint32_t val;
12909    int load_code = 0;
12910    int i, rc = 0;
12911
12912    BXE_CORE_LOCK_ASSERT(sc);
12913
12914    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12915
12916    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12917
12918    if (IS_PF(sc)) {
12919        /* must be called before memory allocation and HW init */
12920        bxe_ilt_set_info(sc);
12921    }
12922
12923    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12924
12925    bxe_set_fp_rx_buf_size(sc);
12926
12927    if (bxe_alloc_fp_buffers(sc) != 0) {
12928        BLOGE(sc, "Failed to allocate fastpath memory\n");
12929        sc->state = BXE_STATE_CLOSED;
12930        rc = ENOMEM;
12931        goto bxe_nic_load_error0;
12932    }
12933
12934    if (bxe_alloc_mem(sc) != 0) {
12935        sc->state = BXE_STATE_CLOSED;
12936        rc = ENOMEM;
12937        goto bxe_nic_load_error0;
12938    }
12939
12940    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12941        sc->state = BXE_STATE_CLOSED;
12942        rc = ENOMEM;
12943        goto bxe_nic_load_error0;
12944    }
12945
12946    if (IS_PF(sc)) {
12947        /* set pf load just before approaching the MCP */
12948        bxe_set_pf_load(sc);
12949
12950        /* if MCP exists send load request and analyze response */
12951        if (!BXE_NOMCP(sc)) {
12952            /* attempt to load pf */
12953            if (bxe_nic_load_request(sc, &load_code) != 0) {
12954                sc->state = BXE_STATE_CLOSED;
12955                rc = ENXIO;
12956                goto bxe_nic_load_error1;
12957            }
12958
12959            /* what did the MCP say? */
12960            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12961                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12962                sc->state = BXE_STATE_CLOSED;
12963                rc = ENXIO;
12964                goto bxe_nic_load_error2;
12965            }
12966        } else {
12967            BLOGI(sc, "Device has no MCP!\n");
12968            load_code = bxe_nic_load_no_mcp(sc);
12969        }
12970
12971        /* mark PMF if applicable */
12972        bxe_nic_load_pmf(sc, load_code);
12973
12974        /* Init Function state controlling object */
12975        bxe_init_func_obj(sc);
12976
12977        /* Initialize HW */
12978        if (bxe_init_hw(sc, load_code) != 0) {
12979            BLOGE(sc, "HW init failed\n");
12980            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12981            sc->state = BXE_STATE_CLOSED;
12982            rc = ENXIO;
12983            goto bxe_nic_load_error2;
12984        }
12985    }
12986
12987    /* attach interrupts */
12988    if (bxe_interrupt_attach(sc) != 0) {
12989        sc->state = BXE_STATE_CLOSED;
12990        rc = ENXIO;
12991        goto bxe_nic_load_error2;
12992    }
12993
12994    bxe_nic_init(sc, load_code);
12995
12996    /* Init per-function objects */
12997    if (IS_PF(sc)) {
12998        bxe_init_objs(sc);
12999        // XXX bxe_iov_nic_init(sc);
13000
13001        /* set AFEX default VLAN tag to an invalid value */
13002        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
13003        // XXX bxe_nic_load_afex_dcc(sc, load_code);
13004
13005        sc->state = BXE_STATE_OPENING_WAITING_PORT;
13006        rc = bxe_func_start(sc);
13007        if (rc) {
13008            BLOGE(sc, "Function start failed!\n");
13009            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13010            sc->state = BXE_STATE_ERROR;
13011            goto bxe_nic_load_error3;
13012        }
13013
13014        /* send LOAD_DONE command to MCP */
13015        if (!BXE_NOMCP(sc)) {
13016            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13017            if (!load_code) {
13018                BLOGE(sc, "MCP response failure, aborting\n");
13019                sc->state = BXE_STATE_ERROR;
13020                rc = ENXIO;
13021                goto bxe_nic_load_error3;
13022            }
13023        }
13024
13025        rc = bxe_setup_leading(sc);
13026        if (rc) {
13027            BLOGE(sc, "Setup leading failed!\n");
13028            sc->state = BXE_STATE_ERROR;
13029            goto bxe_nic_load_error3;
13030        }
13031
13032        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13033            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13034            if (rc) {
13035                BLOGE(sc, "Queue(%d) setup failed\n", i);
13036                sc->state = BXE_STATE_ERROR;
13037                goto bxe_nic_load_error3;
13038            }
13039        }
13040
13041        rc = bxe_init_rss_pf(sc);
13042        if (rc) {
13043            BLOGE(sc, "PF RSS init failed\n");
13044            sc->state = BXE_STATE_ERROR;
13045            goto bxe_nic_load_error3;
13046        }
13047    }
13048    /* XXX VF */
13049#if 0
13050    else { /* VF */
13051        FOR_EACH_ETH_QUEUE(sc, i) {
13052            rc = bxe_vfpf_setup_q(sc, i);
13053            if (rc) {
13054                BLOGE(sc, "Queue(%d) setup failed\n", i);
13055                sc->state = BXE_STATE_ERROR;
13056                goto bxe_nic_load_error3;
13057            }
13058        }
13059    }
13060#endif
13061
13062    /* now when Clients are configured we are ready to work */
13063    sc->state = BXE_STATE_OPEN;
13064
13065    /* Configure a ucast MAC */
13066    if (IS_PF(sc)) {
13067        rc = bxe_set_eth_mac(sc, TRUE);
13068    }
13069#if 0
13070    else { /* IS_VF(sc) */
13071        rc = bxe_vfpf_set_mac(sc);
13072    }
13073#endif
13074    if (rc) {
13075        BLOGE(sc, "Setting Ethernet MAC failed\n");
13076        sc->state = BXE_STATE_ERROR;
13077        goto bxe_nic_load_error3;
13078    }
13079
13080#if 0
13081    if (IS_PF(sc) && sc->pending_max) {
13082        /* for AFEX */
13083        bxe_update_max_mf_config(sc, sc->pending_max);
13084        sc->pending_max = 0;
13085    }
13086#endif
13087
13088    if (sc->port.pmf) {
13089        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13090        if (rc) {
13091            sc->state = BXE_STATE_ERROR;
13092            goto bxe_nic_load_error3;
13093        }
13094    }
13095
13096    sc->link_params.feature_config_flags &=
13097        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13098
13099    /* start fast path */
13100
13101    /* Initialize Rx filter */
13102    bxe_set_rx_mode(sc);
13103
13104    /* start the Tx */
13105    switch (/* XXX load_mode */LOAD_OPEN) {
13106    case LOAD_NORMAL:
13107    case LOAD_OPEN:
13108        break;
13109
13110    case LOAD_DIAG:
13111    case LOAD_LOOPBACK_EXT:
13112        sc->state = BXE_STATE_DIAG;
13113        break;
13114
13115    default:
13116        break;
13117    }
13118
13119    if (sc->port.pmf) {
13120        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13121    } else {
13122        bxe_link_status_update(sc);
13123    }
13124
13125    /* start the periodic timer callout */
13126    bxe_periodic_start(sc);
13127
13128    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13129        /* mark driver is loaded in shmem2 */
13130        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13131        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13132                  (val |
13133                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13134                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13135    }
13136
13137    /* wait for all pending SP commands to complete */
13138    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13139        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13140        bxe_periodic_stop(sc);
13141        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13142        return (ENXIO);
13143    }
13144
13145#if 0
13146    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13147    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13148        bxe_dcbx_init(sc, FALSE);
13149    }
13150#endif
13151
13152    /* Tell the stack the driver is running! */
13153    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13154
13155    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13156
13157    return (0);
13158
13159bxe_nic_load_error3:
13160
13161    if (IS_PF(sc)) {
13162        bxe_int_disable_sync(sc, 1);
13163
13164        /* clean out queued objects */
13165        bxe_squeeze_objects(sc);
13166    }
13167
13168    bxe_interrupt_detach(sc);
13169
13170bxe_nic_load_error2:
13171
13172    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13173        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13174        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13175    }
13176
13177    sc->port.pmf = 0;
13178
13179bxe_nic_load_error1:
13180
13181    /* clear pf_load status, as it was already set */
13182    if (IS_PF(sc)) {
13183        bxe_clear_pf_load(sc);
13184    }
13185
13186bxe_nic_load_error0:
13187
13188    bxe_free_fw_stats_mem(sc);
13189    bxe_free_fp_buffers(sc);
13190    bxe_free_mem(sc);
13191
13192    return (rc);
13193}
13194
13195static int
13196bxe_init_locked(struct bxe_softc *sc)
13197{
13198    int other_engine = SC_PATH(sc) ? 0 : 1;
13199    uint8_t other_load_status, load_status;
13200    uint8_t global = FALSE;
13201    int rc;
13202
13203    BXE_CORE_LOCK_ASSERT(sc);
13204
13205    /* check if the driver is already running */
13206    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13207        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13208        return (0);
13209    }
13210
13211    bxe_set_power_state(sc, PCI_PM_D0);
13212
13213    /*
13214     * If parity occurred during the unload, then attentions and/or
13215     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13216     * loaded on the current engine to complete the recovery. Parity recovery
13217     * is only relevant for PF driver.
13218     */
13219    if (IS_PF(sc)) {
13220        other_load_status = bxe_get_load_status(sc, other_engine);
13221        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13222
13223        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13224            bxe_chk_parity_attn(sc, &global, TRUE)) {
13225            do {
13226                /*
13227                 * If there are attentions and they are in global blocks, set
13228                 * the GLOBAL_RESET bit regardless whether it will be this
13229                 * function that will complete the recovery or not.
13230                 */
13231                if (global) {
13232                    bxe_set_reset_global(sc);
13233                }
13234
13235                /*
13236                 * Only the first function on the current engine should try
13237                 * to recover in open. In case of attentions in global blocks
13238                 * only the first in the chip should try to recover.
13239                 */
13240                if ((!load_status && (!global || !other_load_status)) &&
13241                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13242                    BLOGI(sc, "Recovered during init\n");
13243                    break;
13244                }
13245
13246                /* recovery has failed... */
13247                bxe_set_power_state(sc, PCI_PM_D3hot);
13248                sc->recovery_state = BXE_RECOVERY_FAILED;
13249
13250                BLOGE(sc, "Recovery flow hasn't properly "
13251                          "completed yet, try again later. "
13252                          "If you still see this message after a "
13253                          "few retries then power cycle is required.\n");
13254
13255                rc = ENXIO;
13256                goto bxe_init_locked_done;
13257            } while (0);
13258        }
13259    }
13260
13261    sc->recovery_state = BXE_RECOVERY_DONE;
13262
13263    rc = bxe_nic_load(sc, LOAD_OPEN);
13264
13265bxe_init_locked_done:
13266
13267    if (rc) {
13268        /* Tell the stack the driver is NOT running! */
13269        BLOGE(sc, "Initialization failed, "
13270                  "stack notified driver is NOT running!\n");
13271        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13272    }
13273
13274    return (rc);
13275}
13276
13277static int
13278bxe_stop_locked(struct bxe_softc *sc)
13279{
13280    BXE_CORE_LOCK_ASSERT(sc);
13281    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13282}
13283
13284/*
13285 * Handles controller initialization when called from an unlocked routine.
13286 * ifconfig calls this function.
13287 *
13288 * Returns:
13289 *   void
13290 */
13291static void
13292bxe_init(void *xsc)
13293{
13294    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13295
13296    BXE_CORE_LOCK(sc);
13297    bxe_init_locked(sc);
13298    BXE_CORE_UNLOCK(sc);
13299}
13300
13301static int
13302bxe_init_ifnet(struct bxe_softc *sc)
13303{
13304    struct ifnet *ifp;
13305
13306    /* ifconfig entrypoint for media type/status reporting */
13307    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13308                 bxe_ifmedia_update,
13309                 bxe_ifmedia_status);
13310
13311    /* set the default interface values */
13312    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13313    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13314    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13315
13316    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13317
13318    /* allocate the ifnet structure */
13319    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13320        BLOGE(sc, "Interface allocation failed!\n");
13321        return (ENXIO);
13322    }
13323
13324    ifp->if_softc = sc;
13325    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13326    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13327    ifp->if_ioctl = bxe_ioctl;
13328    ifp->if_start = bxe_tx_start;
13329#if __FreeBSD_version >= 800000
13330    ifp->if_transmit = bxe_tx_mq_start;
13331    ifp->if_qflush = bxe_mq_flush;
13332#endif
13333#ifdef FreeBSD8_0
13334    ifp->if_timer = 0;
13335#endif
13336    ifp->if_init = bxe_init;
13337    ifp->if_mtu = sc->mtu;
13338    ifp->if_hwassist = (CSUM_IP       |
13339                        CSUM_TCP      |
13340                        CSUM_UDP      |
13341                        CSUM_TSO      |
13342                        CSUM_TCP_IPV6 |
13343                        CSUM_UDP_IPV6);
13344    ifp->if_capabilities =
13345#if __FreeBSD_version < 700000
13346        (IFCAP_VLAN_MTU       |
13347         IFCAP_VLAN_HWTAGGING |
13348         IFCAP_HWCSUM         |
13349         IFCAP_JUMBO_MTU      |
13350         IFCAP_LRO);
13351#else
13352        (IFCAP_VLAN_MTU       |
13353         IFCAP_VLAN_HWTAGGING |
13354         IFCAP_VLAN_HWTSO     |
13355         IFCAP_VLAN_HWFILTER  |
13356         IFCAP_VLAN_HWCSUM    |
13357         IFCAP_HWCSUM         |
13358         IFCAP_JUMBO_MTU      |
13359         IFCAP_LRO            |
13360         IFCAP_TSO4           |
13361         IFCAP_TSO6           |
13362         IFCAP_WOL_MAGIC);
13363#endif
13364    ifp->if_capenable = ifp->if_capabilities;
13365    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13366#if __FreeBSD_version < 1000025
13367    ifp->if_baudrate = 1000000000;
13368#else
13369    if_initbaudrate(ifp, IF_Gbps(10));
13370#endif
13371    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13372
13373    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13374    IFQ_SET_READY(&ifp->if_snd);
13375
13376    sc->ifnet = ifp;
13377
13378    /* attach to the Ethernet interface list */
13379    ether_ifattach(ifp, sc->link_params.mac_addr);
13380
13381    return (0);
13382}
13383
13384static void
13385bxe_deallocate_bars(struct bxe_softc *sc)
13386{
13387    int i;
13388
13389    for (i = 0; i < MAX_BARS; i++) {
13390        if (sc->bar[i].resource != NULL) {
13391            bus_release_resource(sc->dev,
13392                                 SYS_RES_MEMORY,
13393                                 sc->bar[i].rid,
13394                                 sc->bar[i].resource);
13395            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13396                  i, PCIR_BAR(i));
13397        }
13398    }
13399}
13400
13401static int
13402bxe_allocate_bars(struct bxe_softc *sc)
13403{
13404    u_int flags;
13405    int i;
13406
13407    memset(sc->bar, 0, sizeof(sc->bar));
13408
13409    for (i = 0; i < MAX_BARS; i++) {
13410
13411        /* memory resources reside at BARs 0, 2, 4 */
13412        /* Run `pciconf -lb` to see mappings */
13413        if ((i != 0) && (i != 2) && (i != 4)) {
13414            continue;
13415        }
13416
13417        sc->bar[i].rid = PCIR_BAR(i);
13418
13419        flags = RF_ACTIVE;
13420        if (i == 0) {
13421            flags |= RF_SHAREABLE;
13422        }
13423
13424        if ((sc->bar[i].resource =
13425             bus_alloc_resource_any(sc->dev,
13426                                    SYS_RES_MEMORY,
13427                                    &sc->bar[i].rid,
13428                                    flags)) == NULL) {
13429#if 0
13430            /* BAR4 doesn't exist for E1 */
13431            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13432                  i, PCIR_BAR(i));
13433#endif
13434            return (0);
13435        }
13436
13437        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13438        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13439        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13440
13441        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13442              i, PCIR_BAR(i),
13443              (void *)rman_get_start(sc->bar[i].resource),
13444              (void *)rman_get_end(sc->bar[i].resource),
13445              rman_get_size(sc->bar[i].resource),
13446              (void *)sc->bar[i].kva);
13447    }
13448
13449    return (0);
13450}
13451
13452static void
13453bxe_get_function_num(struct bxe_softc *sc)
13454{
13455    uint32_t val = 0;
13456
13457    /*
13458     * Read the ME register to get the function number. The ME register
13459     * holds the relative-function number and absolute-function number. The
13460     * absolute-function number appears only in E2 and above. Before that
13461     * these bits always contained zero, therefore we cannot blindly use them.
13462     */
13463
13464    val = REG_RD(sc, BAR_ME_REGISTER);
13465
13466    sc->pfunc_rel =
13467        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13468    sc->path_id =
13469        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13470
13471    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13472        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13473    } else {
13474        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13475    }
13476
13477    BLOGD(sc, DBG_LOAD,
13478          "Relative function %d, Absolute function %d, Path %d\n",
13479          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13480}
13481
13482static uint32_t
13483bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13484{
13485    uint32_t shmem2_size;
13486    uint32_t offset;
13487    uint32_t mf_cfg_offset_value;
13488
13489    /* Non 57712 */
13490    offset = (SHMEM_RD(sc, func_mb) +
13491              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13492
13493    /* 57712 plus */
13494    if (sc->devinfo.shmem2_base != 0) {
13495        shmem2_size = SHMEM2_RD(sc, size);
13496        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13497            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13498            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13499                offset = mf_cfg_offset_value;
13500            }
13501        }
13502    }
13503
13504    return (offset);
13505}
13506
13507static uint32_t
13508bxe_pcie_capability_read(struct bxe_softc *sc,
13509                         int    reg,
13510                         int    width)
13511{
13512    int pcie_reg;
13513
13514    /* ensure PCIe capability is enabled */
13515    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13516        if (pcie_reg != 0) {
13517            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13518            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13519        }
13520    }
13521
13522    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13523
13524    return (0);
13525}
13526
13527static uint8_t
13528bxe_is_pcie_pending(struct bxe_softc *sc)
13529{
13530    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13531            PCIM_EXP_STA_TRANSACTION_PND);
13532}
13533
13534/*
13535 * Walk the PCI capabiites list for the device to find what features are
13536 * supported. These capabilites may be enabled/disabled by firmware so it's
13537 * best to walk the list rather than make assumptions.
13538 */
13539static void
13540bxe_probe_pci_caps(struct bxe_softc *sc)
13541{
13542    uint16_t link_status;
13543    int reg;
13544
13545    /* check if PCI Power Management is enabled */
13546    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13547        if (reg != 0) {
13548            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13549
13550            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13551            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13552        }
13553    }
13554
13555    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13556
13557    /* handle PCIe 2.0 workarounds for 57710 */
13558    if (CHIP_IS_E1(sc)) {
13559        /* workaround for 57710 errata E4_57710_27462 */
13560        sc->devinfo.pcie_link_speed =
13561            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13562
13563        /* workaround for 57710 errata E4_57710_27488 */
13564        sc->devinfo.pcie_link_width =
13565            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13566        if (sc->devinfo.pcie_link_speed > 1) {
13567            sc->devinfo.pcie_link_width =
13568                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13569        }
13570    } else {
13571        sc->devinfo.pcie_link_speed =
13572            (link_status & PCIM_LINK_STA_SPEED);
13573        sc->devinfo.pcie_link_width =
13574            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13575    }
13576
13577    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13578          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13579
13580    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13581    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13582
13583    /* check if MSI capability is enabled */
13584    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13585        if (reg != 0) {
13586            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13587
13588            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13589            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13590        }
13591    }
13592
13593    /* check if MSI-X capability is enabled */
13594    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13595        if (reg != 0) {
13596            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13597
13598            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13599            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13600        }
13601    }
13602}
13603
13604static int
13605bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13606{
13607    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13608    uint32_t val;
13609
13610    /* get the outer vlan if we're in switch-dependent mode */
13611
13612    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13613    mf_info->ext_id = (uint16_t)val;
13614
13615    mf_info->multi_vnics_mode = 1;
13616
13617    if (!VALID_OVLAN(mf_info->ext_id)) {
13618        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13619        return (1);
13620    }
13621
13622    /* get the capabilities */
13623    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13624        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13625        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13626    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13627               FUNC_MF_CFG_PROTOCOL_FCOE) {
13628        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13629    } else {
13630        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13631    }
13632
13633    mf_info->vnics_per_port =
13634        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13635
13636    return (0);
13637}
13638
13639static uint32_t
13640bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13641{
13642    uint32_t retval = 0;
13643    uint32_t val;
13644
13645    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13646
13647    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13648        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13649            retval |= MF_PROTO_SUPPORT_ETHERNET;
13650        }
13651        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13652            retval |= MF_PROTO_SUPPORT_ISCSI;
13653        }
13654        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13655            retval |= MF_PROTO_SUPPORT_FCOE;
13656        }
13657    }
13658
13659    return (retval);
13660}
13661
13662static int
13663bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13664{
13665    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13666    uint32_t val;
13667
13668    /*
13669     * There is no outer vlan if we're in switch-independent mode.
13670     * If the mac is valid then assume multi-function.
13671     */
13672
13673    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13674
13675    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13676
13677    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13678
13679    mf_info->vnics_per_port =
13680        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13681
13682    return (0);
13683}
13684
13685static int
13686bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13687{
13688    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13689    uint32_t e1hov_tag;
13690    uint32_t func_config;
13691    uint32_t niv_config;
13692
13693    mf_info->multi_vnics_mode = 1;
13694
13695    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13696    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13697    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13698
13699    mf_info->ext_id =
13700        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13701                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13702
13703    mf_info->default_vlan =
13704        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13705                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13706
13707    mf_info->niv_allowed_priorities =
13708        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13709                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13710
13711    mf_info->niv_default_cos =
13712        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13713                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13714
13715    mf_info->afex_vlan_mode =
13716        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13717         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13718
13719    mf_info->niv_mba_enabled =
13720        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13721         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13722
13723    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13724
13725    mf_info->vnics_per_port =
13726        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13727
13728    return (0);
13729}
13730
13731static int
13732bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13733{
13734    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13735    uint32_t mf_cfg1;
13736    uint32_t mf_cfg2;
13737    uint32_t ovlan1;
13738    uint32_t ovlan2;
13739    uint8_t i, j;
13740
13741    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13742          SC_PORT(sc));
13743    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13744          mf_info->mf_config[SC_VN(sc)]);
13745    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13746          mf_info->multi_vnics_mode);
13747    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13748          mf_info->vnics_per_port);
13749    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13750          mf_info->ext_id);
13751    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13752          mf_info->min_bw[0], mf_info->min_bw[1],
13753          mf_info->min_bw[2], mf_info->min_bw[3]);
13754    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13755          mf_info->max_bw[0], mf_info->max_bw[1],
13756          mf_info->max_bw[2], mf_info->max_bw[3]);
13757    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13758          sc->mac_addr_str);
13759
13760    /* various MF mode sanity checks... */
13761
13762    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13763        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13764              SC_PORT(sc));
13765        return (1);
13766    }
13767
13768    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13769        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13770              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13771        return (1);
13772    }
13773
13774    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13775        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13776        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13777            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13778                  SC_VN(sc), OVLAN(sc));
13779            return (1);
13780        }
13781
13782        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13783            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13784                  mf_info->multi_vnics_mode, OVLAN(sc));
13785            return (1);
13786        }
13787
13788        /*
13789         * Verify all functions are either MF or SF mode. If MF, make sure
13790         * sure that all non-hidden functions have a valid ovlan. If SF,
13791         * make sure that all non-hidden functions have an invalid ovlan.
13792         */
13793        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13794            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13795            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13796            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13797                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13798                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13799                BLOGE(sc, "mf_mode=SD function %d MF config "
13800                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13801                      i, mf_info->multi_vnics_mode, ovlan1);
13802                return (1);
13803            }
13804        }
13805
13806        /* Verify all funcs on the same port each have a different ovlan. */
13807        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13808            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13809            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13810            /* iterate from the next function on the port to the max func */
13811            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13812                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13813                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13814                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13815                    VALID_OVLAN(ovlan1) &&
13816                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13817                    VALID_OVLAN(ovlan2) &&
13818                    (ovlan1 == ovlan2)) {
13819                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13820                              "have the same ovlan (%d)\n",
13821                          i, j, ovlan1);
13822                    return (1);
13823                }
13824            }
13825        }
13826    } /* MULTI_FUNCTION_SD */
13827
13828    return (0);
13829}
13830
13831static int
13832bxe_get_mf_cfg_info(struct bxe_softc *sc)
13833{
13834    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13835    uint32_t val, mac_upper;
13836    uint8_t i, vnic;
13837
13838    /* initialize mf_info defaults */
13839    mf_info->vnics_per_port   = 1;
13840    mf_info->multi_vnics_mode = FALSE;
13841    mf_info->path_has_ovlan   = FALSE;
13842    mf_info->mf_mode          = SINGLE_FUNCTION;
13843
13844    if (!CHIP_IS_MF_CAP(sc)) {
13845        return (0);
13846    }
13847
13848    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13849        BLOGE(sc, "Invalid mf_cfg_base!\n");
13850        return (1);
13851    }
13852
13853    /* get the MF mode (switch dependent / independent / single-function) */
13854
13855    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13856
13857    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13858    {
13859    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13860
13861        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13862
13863        /* check for legal upper mac bytes */
13864        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13865            mf_info->mf_mode = MULTI_FUNCTION_SI;
13866        } else {
13867            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13868        }
13869
13870        break;
13871
13872    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13873    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13874
13875        /* get outer vlan configuration */
13876        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13877
13878        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13879            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13880            mf_info->mf_mode = MULTI_FUNCTION_SD;
13881        } else {
13882            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13883        }
13884
13885        break;
13886
13887    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13888
13889        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13890        return (0);
13891
13892    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13893
13894        /*
13895         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13896         * and the MAC address is valid.
13897         */
13898        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13899
13900        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13901            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13902            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13903        } else {
13904            BLOGE(sc, "Invalid config for AFEX mode\n");
13905        }
13906
13907        break;
13908
13909    default:
13910
13911        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13912              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13913
13914        return (1);
13915    }
13916
13917    /* set path mf_mode (which could be different than function mf_mode) */
13918    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13919        mf_info->path_has_ovlan = TRUE;
13920    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13921        /*
13922         * Decide on path multi vnics mode. If we're not in MF mode and in
13923         * 4-port mode, this is good enough to check vnic-0 of the other port
13924         * on the same path
13925         */
13926        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13927            uint8_t other_port = !(PORT_ID(sc) & 1);
13928            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13929
13930            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13931
13932            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13933        }
13934    }
13935
13936    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13937        /* invalid MF config */
13938        if (SC_VN(sc) >= 1) {
13939            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13940            return (1);
13941        }
13942
13943        return (0);
13944    }
13945
13946    /* get the MF configuration */
13947    mf_info->mf_config[SC_VN(sc)] =
13948        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13949
13950    switch(mf_info->mf_mode)
13951    {
13952    case MULTI_FUNCTION_SD:
13953
13954        bxe_get_shmem_mf_cfg_info_sd(sc);
13955        break;
13956
13957    case MULTI_FUNCTION_SI:
13958
13959        bxe_get_shmem_mf_cfg_info_si(sc);
13960        break;
13961
13962    case MULTI_FUNCTION_AFEX:
13963
13964        bxe_get_shmem_mf_cfg_info_niv(sc);
13965        break;
13966
13967    default:
13968
13969        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13970              mf_info->mf_mode);
13971        return (1);
13972    }
13973
13974    /* get the congestion management parameters */
13975
13976    vnic = 0;
13977    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13978        /* get min/max bw */
13979        val = MFCFG_RD(sc, func_mf_config[i].config);
13980        mf_info->min_bw[vnic] =
13981            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13982        mf_info->max_bw[vnic] =
13983            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13984        vnic++;
13985    }
13986
13987    return (bxe_check_valid_mf_cfg(sc));
13988}
13989
13990static int
13991bxe_get_shmem_info(struct bxe_softc *sc)
13992{
13993    int port;
13994    uint32_t mac_hi, mac_lo, val;
13995
13996    port = SC_PORT(sc);
13997    mac_hi = mac_lo = 0;
13998
13999    sc->link_params.sc   = sc;
14000    sc->link_params.port = port;
14001
14002    /* get the hardware config info */
14003    sc->devinfo.hw_config =
14004        SHMEM_RD(sc, dev_info.shared_hw_config.config);
14005    sc->devinfo.hw_config2 =
14006        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
14007
14008    sc->link_params.hw_led_mode =
14009        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
14010         SHARED_HW_CFG_LED_MODE_SHIFT);
14011
14012    /* get the port feature config */
14013    sc->port.config =
14014        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
14015
14016    /* get the link params */
14017    sc->link_params.speed_cap_mask[0] =
14018        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
14019    sc->link_params.speed_cap_mask[1] =
14020        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14021
14022    /* get the lane config */
14023    sc->link_params.lane_config =
14024        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14025
14026    /* get the link config */
14027    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14028    sc->port.link_config[ELINK_INT_PHY] = val;
14029    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14030    sc->port.link_config[ELINK_EXT_PHY1] =
14031        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14032
14033    /* get the override preemphasis flag and enable it or turn it off */
14034    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14035    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14036        sc->link_params.feature_config_flags |=
14037            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14038    } else {
14039        sc->link_params.feature_config_flags &=
14040            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14041    }
14042
14043    /* get the initial value of the link params */
14044    sc->link_params.multi_phy_config =
14045        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14046
14047    /* get external phy info */
14048    sc->port.ext_phy_config =
14049        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14050
14051    /* get the multifunction configuration */
14052    bxe_get_mf_cfg_info(sc);
14053
14054    /* get the mac address */
14055    if (IS_MF(sc)) {
14056        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14057        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14058    } else {
14059        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14060        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14061    }
14062
14063    if ((mac_lo == 0) && (mac_hi == 0)) {
14064        *sc->mac_addr_str = 0;
14065        BLOGE(sc, "No Ethernet address programmed!\n");
14066    } else {
14067        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14068        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14069        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14070        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14071        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14072        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14073        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14074                 "%02x:%02x:%02x:%02x:%02x:%02x",
14075                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14076                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14077                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14078        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14079    }
14080
14081#if 0
14082    if (!IS_MF(sc) &&
14083        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14084         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14085        sc->flags |= BXE_NO_ISCSI;
14086    }
14087    if (!IS_MF(sc) &&
14088        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14089         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14090        sc->flags |= BXE_NO_FCOE_FLAG;
14091    }
14092#endif
14093
14094    return (0);
14095}
14096
14097static void
14098bxe_get_tunable_params(struct bxe_softc *sc)
14099{
14100    /* sanity checks */
14101
14102    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14103        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14104        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14105        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14106        bxe_interrupt_mode = INTR_MODE_MSIX;
14107    }
14108
14109    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14110        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14111        bxe_queue_count = 0;
14112    }
14113
14114    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14115        if (bxe_max_rx_bufs == 0) {
14116            bxe_max_rx_bufs = RX_BD_USABLE;
14117        } else {
14118            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14119            bxe_max_rx_bufs = 2048;
14120        }
14121    }
14122
14123    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14124        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14125        bxe_hc_rx_ticks = 25;
14126    }
14127
14128    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14129        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14130        bxe_hc_tx_ticks = 50;
14131    }
14132
14133    if (bxe_max_aggregation_size == 0) {
14134        bxe_max_aggregation_size = TPA_AGG_SIZE;
14135    }
14136
14137    if (bxe_max_aggregation_size > 0xffff) {
14138        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14139              bxe_max_aggregation_size);
14140        bxe_max_aggregation_size = TPA_AGG_SIZE;
14141    }
14142
14143    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14144        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14145        bxe_mrrs = -1;
14146    }
14147
14148    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14149        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14150        bxe_autogreeen = 0;
14151    }
14152
14153    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14154        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14155        bxe_udp_rss = 0;
14156    }
14157
14158    /* pull in user settings */
14159
14160    sc->interrupt_mode       = bxe_interrupt_mode;
14161    sc->max_rx_bufs          = bxe_max_rx_bufs;
14162    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14163    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14164    sc->max_aggregation_size = bxe_max_aggregation_size;
14165    sc->mrrs                 = bxe_mrrs;
14166    sc->autogreeen           = bxe_autogreeen;
14167    sc->udp_rss              = bxe_udp_rss;
14168
14169    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14170        sc->num_queues = 1;
14171    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14172        sc->num_queues =
14173            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14174                MAX_RSS_CHAINS);
14175        if (sc->num_queues > mp_ncpus) {
14176            sc->num_queues = mp_ncpus;
14177        }
14178    }
14179
14180    BLOGD(sc, DBG_LOAD,
14181          "User Config: "
14182          "debug=0x%lx "
14183          "interrupt_mode=%d "
14184          "queue_count=%d "
14185          "hc_rx_ticks=%d "
14186          "hc_tx_ticks=%d "
14187          "rx_budget=%d "
14188          "max_aggregation_size=%d "
14189          "mrrs=%d "
14190          "autogreeen=%d "
14191          "udp_rss=%d\n",
14192          bxe_debug,
14193          sc->interrupt_mode,
14194          sc->num_queues,
14195          sc->hc_rx_ticks,
14196          sc->hc_tx_ticks,
14197          bxe_rx_budget,
14198          sc->max_aggregation_size,
14199          sc->mrrs,
14200          sc->autogreeen,
14201          sc->udp_rss);
14202}
14203
14204static void
14205bxe_media_detect(struct bxe_softc *sc)
14206{
14207    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14208    switch (sc->link_params.phy[phy_idx].media_type) {
14209    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14210    case ELINK_ETH_PHY_XFP_FIBER:
14211        BLOGI(sc, "Found 10Gb Fiber media.\n");
14212        sc->media = IFM_10G_SR;
14213        break;
14214    case ELINK_ETH_PHY_SFP_1G_FIBER:
14215        BLOGI(sc, "Found 1Gb Fiber media.\n");
14216        sc->media = IFM_1000_SX;
14217        break;
14218    case ELINK_ETH_PHY_KR:
14219    case ELINK_ETH_PHY_CX4:
14220        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14221        sc->media = IFM_10G_CX4;
14222        break;
14223    case ELINK_ETH_PHY_DA_TWINAX:
14224        BLOGI(sc, "Found 10Gb Twinax media.\n");
14225        sc->media = IFM_10G_TWINAX;
14226        break;
14227    case ELINK_ETH_PHY_BASE_T:
14228        if (sc->link_params.speed_cap_mask[0] &
14229            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14230            BLOGI(sc, "Found 10GBase-T media.\n");
14231            sc->media = IFM_10G_T;
14232        } else {
14233            BLOGI(sc, "Found 1000Base-T media.\n");
14234            sc->media = IFM_1000_T;
14235        }
14236        break;
14237    case ELINK_ETH_PHY_NOT_PRESENT:
14238        BLOGI(sc, "Media not present.\n");
14239        sc->media = 0;
14240        break;
14241    case ELINK_ETH_PHY_UNSPECIFIED:
14242    default:
14243        BLOGI(sc, "Unknown media!\n");
14244        sc->media = 0;
14245        break;
14246    }
14247}
14248
14249#define GET_FIELD(value, fname)                     \
14250    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14251#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14252#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14253
14254static int
14255bxe_get_igu_cam_info(struct bxe_softc *sc)
14256{
14257    int pfid = SC_FUNC(sc);
14258    int igu_sb_id;
14259    uint32_t val;
14260    uint8_t fid, igu_sb_cnt = 0;
14261
14262    sc->igu_base_sb = 0xff;
14263
14264    if (CHIP_INT_MODE_IS_BC(sc)) {
14265        int vn = SC_VN(sc);
14266        igu_sb_cnt = sc->igu_sb_cnt;
14267        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14268                           FP_SB_MAX_E1x);
14269        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14270                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14271        return (0);
14272    }
14273
14274    /* IGU in normal mode - read CAM */
14275    for (igu_sb_id = 0;
14276         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14277         igu_sb_id++) {
14278        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14279        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14280            continue;
14281        }
14282        fid = IGU_FID(val);
14283        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14284            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14285                continue;
14286            }
14287            if (IGU_VEC(val) == 0) {
14288                /* default status block */
14289                sc->igu_dsb_id = igu_sb_id;
14290            } else {
14291                if (sc->igu_base_sb == 0xff) {
14292                    sc->igu_base_sb = igu_sb_id;
14293                }
14294                igu_sb_cnt++;
14295            }
14296        }
14297    }
14298
14299    /*
14300     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14301     * that number of CAM entries will not be equal to the value advertised in
14302     * PCI. Driver should use the minimal value of both as the actual status
14303     * block count
14304     */
14305    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14306
14307    if (igu_sb_cnt == 0) {
14308        BLOGE(sc, "CAM configuration error\n");
14309        return (-1);
14310    }
14311
14312    return (0);
14313}
14314
14315/*
14316 * Gather various information from the device config space, the device itself,
14317 * shmem, and the user input.
14318 */
14319static int
14320bxe_get_device_info(struct bxe_softc *sc)
14321{
14322    uint32_t val;
14323    int rc;
14324
14325    /* Get the data for the device */
14326    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14327    sc->devinfo.device_id    = pci_get_device(sc->dev);
14328    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14329    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14330
14331    /* get the chip revision (chip metal comes from pci config space) */
14332    sc->devinfo.chip_id     =
14333    sc->link_params.chip_id =
14334        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14335         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14336         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14337         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14338
14339    /* force 57811 according to MISC register */
14340    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14341        if (CHIP_IS_57810(sc)) {
14342            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14343                                   (sc->devinfo.chip_id & 0x0000ffff));
14344        } else if (CHIP_IS_57810_MF(sc)) {
14345            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14346                                   (sc->devinfo.chip_id & 0x0000ffff));
14347        }
14348        sc->devinfo.chip_id |= 0x1;
14349    }
14350
14351    BLOGD(sc, DBG_LOAD,
14352          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14353          sc->devinfo.chip_id,
14354          ((sc->devinfo.chip_id >> 16) & 0xffff),
14355          ((sc->devinfo.chip_id >> 12) & 0xf),
14356          ((sc->devinfo.chip_id >>  4) & 0xff),
14357          ((sc->devinfo.chip_id >>  0) & 0xf));
14358
14359    val = (REG_RD(sc, 0x2874) & 0x55);
14360    if ((sc->devinfo.chip_id & 0x1) ||
14361        (CHIP_IS_E1(sc) && val) ||
14362        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14363        sc->flags |= BXE_ONE_PORT_FLAG;
14364        BLOGD(sc, DBG_LOAD, "single port device\n");
14365    }
14366
14367    /* set the doorbell size */
14368    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14369
14370    /* determine whether the device is in 2 port or 4 port mode */
14371    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14372    if (CHIP_IS_E2E3(sc)) {
14373        /*
14374         * Read port4mode_en_ovwr[0]:
14375         *   If 1, four port mode is in port4mode_en_ovwr[1].
14376         *   If 0, four port mode is in port4mode_en[0].
14377         */
14378        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14379        if (val & 1) {
14380            val = ((val >> 1) & 1);
14381        } else {
14382            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14383        }
14384
14385        sc->devinfo.chip_port_mode =
14386            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14387
14388        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14389    }
14390
14391    /* get the function and path info for the device */
14392    bxe_get_function_num(sc);
14393
14394    /* get the shared memory base address */
14395    sc->devinfo.shmem_base     =
14396    sc->link_params.shmem_base =
14397        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14398    sc->devinfo.shmem2_base =
14399        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14400                                  MISC_REG_GENERIC_CR_0));
14401
14402    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14403          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14404
14405    if (!sc->devinfo.shmem_base) {
14406        /* this should ONLY prevent upcoming shmem reads */
14407        BLOGI(sc, "MCP not active\n");
14408        sc->flags |= BXE_NO_MCP_FLAG;
14409        return (0);
14410    }
14411
14412    /* make sure the shared memory contents are valid */
14413    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14414    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14415        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14416        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14417        return (0);
14418    }
14419    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14420
14421    /* get the bootcode version */
14422    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14423    snprintf(sc->devinfo.bc_ver_str,
14424             sizeof(sc->devinfo.bc_ver_str),
14425             "%d.%d.%d",
14426             ((sc->devinfo.bc_ver >> 24) & 0xff),
14427             ((sc->devinfo.bc_ver >> 16) & 0xff),
14428             ((sc->devinfo.bc_ver >>  8) & 0xff));
14429    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14430
14431    /* get the bootcode shmem address */
14432    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14433    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14434
14435    /* clean indirect addresses as they're not used */
14436    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14437    if (IS_PF(sc)) {
14438        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14439        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14440        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14441        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14442        if (CHIP_IS_E1x(sc)) {
14443            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14444            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14445            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14446            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14447        }
14448
14449        /*
14450         * Enable internal target-read (in case we are probed after PF
14451         * FLR). Must be done prior to any BAR read access. Only for
14452         * 57712 and up
14453         */
14454        if (!CHIP_IS_E1x(sc)) {
14455            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14456        }
14457    }
14458
14459    /* get the nvram size */
14460    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14461    sc->devinfo.flash_size =
14462        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14463    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14464
14465    /* get PCI capabilites */
14466    bxe_probe_pci_caps(sc);
14467
14468    bxe_set_power_state(sc, PCI_PM_D0);
14469
14470    /* get various configuration parameters from shmem */
14471    bxe_get_shmem_info(sc);
14472
14473    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14474        val = pci_read_config(sc->dev,
14475                              (sc->devinfo.pcie_msix_cap_reg +
14476                               PCIR_MSIX_CTRL),
14477                              2);
14478        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14479    } else {
14480        sc->igu_sb_cnt = 1;
14481    }
14482
14483    sc->igu_base_addr = BAR_IGU_INTMEM;
14484
14485    /* initialize IGU parameters */
14486    if (CHIP_IS_E1x(sc)) {
14487        sc->devinfo.int_block = INT_BLOCK_HC;
14488        sc->igu_dsb_id = DEF_SB_IGU_ID;
14489        sc->igu_base_sb = 0;
14490    } else {
14491        sc->devinfo.int_block = INT_BLOCK_IGU;
14492
14493        /* do not allow device reset during IGU info preocessing */
14494        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14495
14496        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14497
14498        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14499            int tout = 5000;
14500
14501            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14502
14503            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14504            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14505            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14506
14507            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14508                tout--;
14509                DELAY(1000);
14510            }
14511
14512            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14513                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14514                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14515                return (-1);
14516            }
14517        }
14518
14519        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14520            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14521            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14522        } else {
14523            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14524        }
14525
14526        rc = bxe_get_igu_cam_info(sc);
14527
14528        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14529
14530        if (rc) {
14531            return (rc);
14532        }
14533    }
14534
14535    /*
14536     * Get base FW non-default (fast path) status block ID. This value is
14537     * used to initialize the fw_sb_id saved on the fp/queue structure to
14538     * determine the id used by the FW.
14539     */
14540    if (CHIP_IS_E1x(sc)) {
14541        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14542    } else {
14543        /*
14544         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14545         * the same queue are indicated on the same IGU SB). So we prefer
14546         * FW and IGU SBs to be the same value.
14547         */
14548        sc->base_fw_ndsb = sc->igu_base_sb;
14549    }
14550
14551    BLOGD(sc, DBG_LOAD,
14552          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14553          sc->igu_dsb_id, sc->igu_base_sb,
14554          sc->igu_sb_cnt, sc->base_fw_ndsb);
14555
14556    elink_phy_probe(&sc->link_params);
14557
14558    return (0);
14559}
14560
14561static void
14562bxe_link_settings_supported(struct bxe_softc *sc,
14563                            uint32_t         switch_cfg)
14564{
14565    uint32_t cfg_size = 0;
14566    uint32_t idx;
14567    uint8_t port = SC_PORT(sc);
14568
14569    /* aggregation of supported attributes of all external phys */
14570    sc->port.supported[0] = 0;
14571    sc->port.supported[1] = 0;
14572
14573    switch (sc->link_params.num_phys) {
14574    case 1:
14575        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14576        cfg_size = 1;
14577        break;
14578    case 2:
14579        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14580        cfg_size = 1;
14581        break;
14582    case 3:
14583        if (sc->link_params.multi_phy_config &
14584            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14585            sc->port.supported[1] =
14586                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14587            sc->port.supported[0] =
14588                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14589        } else {
14590            sc->port.supported[0] =
14591                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14592            sc->port.supported[1] =
14593                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14594        }
14595        cfg_size = 2;
14596        break;
14597    }
14598
14599    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14600        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14601              SHMEM_RD(sc,
14602                       dev_info.port_hw_config[port].external_phy_config),
14603              SHMEM_RD(sc,
14604                       dev_info.port_hw_config[port].external_phy_config2));
14605        return;
14606    }
14607
14608    if (CHIP_IS_E3(sc))
14609        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14610    else {
14611        switch (switch_cfg) {
14612        case ELINK_SWITCH_CFG_1G:
14613            sc->port.phy_addr =
14614                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14615            break;
14616        case ELINK_SWITCH_CFG_10G:
14617            sc->port.phy_addr =
14618                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14619            break;
14620        default:
14621            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14622                  sc->port.link_config[0]);
14623            return;
14624        }
14625    }
14626
14627    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14628
14629    /* mask what we support according to speed_cap_mask per configuration */
14630    for (idx = 0; idx < cfg_size; idx++) {
14631        if (!(sc->link_params.speed_cap_mask[idx] &
14632              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14633            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14634        }
14635
14636        if (!(sc->link_params.speed_cap_mask[idx] &
14637              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14638            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14639        }
14640
14641        if (!(sc->link_params.speed_cap_mask[idx] &
14642              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14643            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14644        }
14645
14646        if (!(sc->link_params.speed_cap_mask[idx] &
14647              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14648            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14649        }
14650
14651        if (!(sc->link_params.speed_cap_mask[idx] &
14652              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14653            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14654        }
14655
14656        if (!(sc->link_params.speed_cap_mask[idx] &
14657              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14658            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14659        }
14660
14661        if (!(sc->link_params.speed_cap_mask[idx] &
14662              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14663            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14664        }
14665
14666        if (!(sc->link_params.speed_cap_mask[idx] &
14667              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14668            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14669        }
14670    }
14671
14672    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14673          sc->port.supported[0], sc->port.supported[1]);
14674}
14675
14676static void
14677bxe_link_settings_requested(struct bxe_softc *sc)
14678{
14679    uint32_t link_config;
14680    uint32_t idx;
14681    uint32_t cfg_size = 0;
14682
14683    sc->port.advertising[0] = 0;
14684    sc->port.advertising[1] = 0;
14685
14686    switch (sc->link_params.num_phys) {
14687    case 1:
14688    case 2:
14689        cfg_size = 1;
14690        break;
14691    case 3:
14692        cfg_size = 2;
14693        break;
14694    }
14695
14696    for (idx = 0; idx < cfg_size; idx++) {
14697        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14698        link_config = sc->port.link_config[idx];
14699
14700        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14701        case PORT_FEATURE_LINK_SPEED_AUTO:
14702            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14703                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14704                sc->port.advertising[idx] |= sc->port.supported[idx];
14705                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14706                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14707                    sc->port.advertising[idx] |=
14708                        (ELINK_SUPPORTED_100baseT_Half |
14709                         ELINK_SUPPORTED_100baseT_Full);
14710            } else {
14711                /* force 10G, no AN */
14712                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14713                sc->port.advertising[idx] |=
14714                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14715                continue;
14716            }
14717            break;
14718
14719        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14720            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14721                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14722                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14723                                              ADVERTISED_TP);
14724            } else {
14725                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14726                          "speed_cap_mask=0x%08x\n",
14727                      link_config, sc->link_params.speed_cap_mask[idx]);
14728                return;
14729            }
14730            break;
14731
14732        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14733            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14734                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14735                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14736                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14737                                              ADVERTISED_TP);
14738            } else {
14739                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14740                          "speed_cap_mask=0x%08x\n",
14741                      link_config, sc->link_params.speed_cap_mask[idx]);
14742                return;
14743            }
14744            break;
14745
14746        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14747            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14748                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14749                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14750                                              ADVERTISED_TP);
14751            } else {
14752                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14753                          "speed_cap_mask=0x%08x\n",
14754                      link_config, sc->link_params.speed_cap_mask[idx]);
14755                return;
14756            }
14757            break;
14758
14759        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14760            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14761                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14762                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14763                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14764                                              ADVERTISED_TP);
14765            } else {
14766                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14767                          "speed_cap_mask=0x%08x\n",
14768                      link_config, sc->link_params.speed_cap_mask[idx]);
14769                return;
14770            }
14771            break;
14772
14773        case PORT_FEATURE_LINK_SPEED_1G:
14774            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14775                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14776                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14777                                              ADVERTISED_TP);
14778            } else {
14779                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14780                          "speed_cap_mask=0x%08x\n",
14781                      link_config, sc->link_params.speed_cap_mask[idx]);
14782                return;
14783            }
14784            break;
14785
14786        case PORT_FEATURE_LINK_SPEED_2_5G:
14787            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14788                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14789                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14790                                              ADVERTISED_TP);
14791            } else {
14792                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14793                          "speed_cap_mask=0x%08x\n",
14794                      link_config, sc->link_params.speed_cap_mask[idx]);
14795                return;
14796            }
14797            break;
14798
14799        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14800            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14801                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14802                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14803                                              ADVERTISED_FIBRE);
14804            } else {
14805                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14806                          "speed_cap_mask=0x%08x\n",
14807                      link_config, sc->link_params.speed_cap_mask[idx]);
14808                return;
14809            }
14810            break;
14811
14812        case PORT_FEATURE_LINK_SPEED_20G:
14813            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14814            break;
14815
14816        default:
14817            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14818                      "speed_cap_mask=0x%08x\n",
14819                  link_config, sc->link_params.speed_cap_mask[idx]);
14820            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14821            sc->port.advertising[idx] = sc->port.supported[idx];
14822            break;
14823        }
14824
14825        sc->link_params.req_flow_ctrl[idx] =
14826            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14827
14828        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14829            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14830                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14831            } else {
14832                bxe_set_requested_fc(sc);
14833            }
14834        }
14835
14836        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14837                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14838              sc->link_params.req_line_speed[idx],
14839              sc->link_params.req_duplex[idx],
14840              sc->link_params.req_flow_ctrl[idx],
14841              sc->port.advertising[idx]);
14842    }
14843}
14844
14845static void
14846bxe_get_phy_info(struct bxe_softc *sc)
14847{
14848    uint8_t port = SC_PORT(sc);
14849    uint32_t config = sc->port.config;
14850    uint32_t eee_mode;
14851
14852    /* shmem data already read in bxe_get_shmem_info() */
14853
14854    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14855                        "link_config0=0x%08x\n",
14856               sc->link_params.lane_config,
14857               sc->link_params.speed_cap_mask[0],
14858               sc->port.link_config[0]);
14859
14860    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14861    bxe_link_settings_requested(sc);
14862
14863    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14864        sc->link_params.feature_config_flags |=
14865            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14866    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14867        sc->link_params.feature_config_flags &=
14868            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14869    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14870        sc->link_params.feature_config_flags |=
14871            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14872    }
14873
14874    /* configure link feature according to nvram value */
14875    eee_mode =
14876        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14877          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14878         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14879    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14880        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14881                                    ELINK_EEE_MODE_ENABLE_LPI |
14882                                    ELINK_EEE_MODE_OUTPUT_TIME);
14883    } else {
14884        sc->link_params.eee_mode = 0;
14885    }
14886
14887    /* get the media type */
14888    bxe_media_detect(sc);
14889}
14890
14891static void
14892bxe_get_params(struct bxe_softc *sc)
14893{
14894    /* get user tunable params */
14895    bxe_get_tunable_params(sc);
14896
14897    /* select the RX and TX ring sizes */
14898    sc->tx_ring_size = TX_BD_USABLE;
14899    sc->rx_ring_size = RX_BD_USABLE;
14900
14901    /* XXX disable WoL */
14902    sc->wol = 0;
14903}
14904
14905static void
14906bxe_set_modes_bitmap(struct bxe_softc *sc)
14907{
14908    uint32_t flags = 0;
14909
14910    if (CHIP_REV_IS_FPGA(sc)) {
14911        SET_FLAGS(flags, MODE_FPGA);
14912    } else if (CHIP_REV_IS_EMUL(sc)) {
14913        SET_FLAGS(flags, MODE_EMUL);
14914    } else {
14915        SET_FLAGS(flags, MODE_ASIC);
14916    }
14917
14918    if (CHIP_IS_MODE_4_PORT(sc)) {
14919        SET_FLAGS(flags, MODE_PORT4);
14920    } else {
14921        SET_FLAGS(flags, MODE_PORT2);
14922    }
14923
14924    if (CHIP_IS_E2(sc)) {
14925        SET_FLAGS(flags, MODE_E2);
14926    } else if (CHIP_IS_E3(sc)) {
14927        SET_FLAGS(flags, MODE_E3);
14928        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14929            SET_FLAGS(flags, MODE_E3_A0);
14930        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14931            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14932        }
14933    }
14934
14935    if (IS_MF(sc)) {
14936        SET_FLAGS(flags, MODE_MF);
14937        switch (sc->devinfo.mf_info.mf_mode) {
14938        case MULTI_FUNCTION_SD:
14939            SET_FLAGS(flags, MODE_MF_SD);
14940            break;
14941        case MULTI_FUNCTION_SI:
14942            SET_FLAGS(flags, MODE_MF_SI);
14943            break;
14944        case MULTI_FUNCTION_AFEX:
14945            SET_FLAGS(flags, MODE_MF_AFEX);
14946            break;
14947        }
14948    } else {
14949        SET_FLAGS(flags, MODE_SF);
14950    }
14951
14952#if defined(__LITTLE_ENDIAN)
14953    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14954#else /* __BIG_ENDIAN */
14955    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14956#endif
14957
14958    INIT_MODE_FLAGS(sc) = flags;
14959}
14960
14961static int
14962bxe_alloc_hsi_mem(struct bxe_softc *sc)
14963{
14964    struct bxe_fastpath *fp;
14965    bus_addr_t busaddr;
14966    int max_agg_queues;
14967    int max_segments;
14968    bus_size_t max_size;
14969    bus_size_t max_seg_size;
14970    char buf[32];
14971    int rc;
14972    int i, j;
14973
14974    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14975
14976    /* allocate the parent bus DMA tag */
14977    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14978                            1,                        /* alignment */
14979                            0,                        /* boundary limit */
14980                            BUS_SPACE_MAXADDR,        /* restricted low */
14981                            BUS_SPACE_MAXADDR,        /* restricted hi */
14982                            NULL,                     /* addr filter() */
14983                            NULL,                     /* addr filter() arg */
14984                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14985                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14986                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14987                            0,                        /* flags */
14988                            NULL,                     /* lock() */
14989                            NULL,                     /* lock() arg */
14990                            &sc->parent_dma_tag);     /* returned dma tag */
14991    if (rc != 0) {
14992        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14993        return (1);
14994    }
14995
14996    /************************/
14997    /* DEFAULT STATUS BLOCK */
14998    /************************/
14999
15000    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
15001                      &sc->def_sb_dma, "default status block") != 0) {
15002        /* XXX */
15003        bus_dma_tag_destroy(sc->parent_dma_tag);
15004        return (1);
15005    }
15006
15007    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
15008
15009    /***************/
15010    /* EVENT QUEUE */
15011    /***************/
15012
15013    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15014                      &sc->eq_dma, "event queue") != 0) {
15015        /* XXX */
15016        bxe_dma_free(sc, &sc->def_sb_dma);
15017        sc->def_sb = NULL;
15018        bus_dma_tag_destroy(sc->parent_dma_tag);
15019        return (1);
15020    }
15021
15022    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15023
15024    /*************/
15025    /* SLOW PATH */
15026    /*************/
15027
15028    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15029                      &sc->sp_dma, "slow path") != 0) {
15030        /* XXX */
15031        bxe_dma_free(sc, &sc->eq_dma);
15032        sc->eq = NULL;
15033        bxe_dma_free(sc, &sc->def_sb_dma);
15034        sc->def_sb = NULL;
15035        bus_dma_tag_destroy(sc->parent_dma_tag);
15036        return (1);
15037    }
15038
15039    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15040
15041    /*******************/
15042    /* SLOW PATH QUEUE */
15043    /*******************/
15044
15045    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15046                      &sc->spq_dma, "slow path queue") != 0) {
15047        /* XXX */
15048        bxe_dma_free(sc, &sc->sp_dma);
15049        sc->sp = NULL;
15050        bxe_dma_free(sc, &sc->eq_dma);
15051        sc->eq = NULL;
15052        bxe_dma_free(sc, &sc->def_sb_dma);
15053        sc->def_sb = NULL;
15054        bus_dma_tag_destroy(sc->parent_dma_tag);
15055        return (1);
15056    }
15057
15058    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15059
15060    /***************************/
15061    /* FW DECOMPRESSION BUFFER */
15062    /***************************/
15063
15064    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15065                      "fw decompression buffer") != 0) {
15066        /* XXX */
15067        bxe_dma_free(sc, &sc->spq_dma);
15068        sc->spq = NULL;
15069        bxe_dma_free(sc, &sc->sp_dma);
15070        sc->sp = NULL;
15071        bxe_dma_free(sc, &sc->eq_dma);
15072        sc->eq = NULL;
15073        bxe_dma_free(sc, &sc->def_sb_dma);
15074        sc->def_sb = NULL;
15075        bus_dma_tag_destroy(sc->parent_dma_tag);
15076        return (1);
15077    }
15078
15079    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15080
15081    if ((sc->gz_strm =
15082         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15083        /* XXX */
15084        bxe_dma_free(sc, &sc->gz_buf_dma);
15085        sc->gz_buf = NULL;
15086        bxe_dma_free(sc, &sc->spq_dma);
15087        sc->spq = NULL;
15088        bxe_dma_free(sc, &sc->sp_dma);
15089        sc->sp = NULL;
15090        bxe_dma_free(sc, &sc->eq_dma);
15091        sc->eq = NULL;
15092        bxe_dma_free(sc, &sc->def_sb_dma);
15093        sc->def_sb = NULL;
15094        bus_dma_tag_destroy(sc->parent_dma_tag);
15095        return (1);
15096    }
15097
15098    /*************/
15099    /* FASTPATHS */
15100    /*************/
15101
15102    /* allocate DMA memory for each fastpath structure */
15103    for (i = 0; i < sc->num_queues; i++) {
15104        fp = &sc->fp[i];
15105        fp->sc    = sc;
15106        fp->index = i;
15107
15108        /*******************/
15109        /* FP STATUS BLOCK */
15110        /*******************/
15111
15112        snprintf(buf, sizeof(buf), "fp %d status block", i);
15113        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15114                          &fp->sb_dma, buf) != 0) {
15115            /* XXX unwind and free previous fastpath allocations */
15116            BLOGE(sc, "Failed to alloc %s\n", buf);
15117            return (1);
15118        } else {
15119            if (CHIP_IS_E2E3(sc)) {
15120                fp->status_block.e2_sb =
15121                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15122            } else {
15123                fp->status_block.e1x_sb =
15124                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15125            }
15126        }
15127
15128        /******************/
15129        /* FP TX BD CHAIN */
15130        /******************/
15131
15132        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15133        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15134                          &fp->tx_dma, buf) != 0) {
15135            /* XXX unwind and free previous fastpath allocations */
15136            BLOGE(sc, "Failed to alloc %s\n", buf);
15137            return (1);
15138        } else {
15139            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15140        }
15141
15142        /* link together the tx bd chain pages */
15143        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15144            /* index into the tx bd chain array to last entry per page */
15145            struct eth_tx_next_bd *tx_next_bd =
15146                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15147            /* point to the next page and wrap from last page */
15148            busaddr = (fp->tx_dma.paddr +
15149                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15150            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15151            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15152        }
15153
15154        /******************/
15155        /* FP RX BD CHAIN */
15156        /******************/
15157
15158        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15159        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15160                          &fp->rx_dma, buf) != 0) {
15161            /* XXX unwind and free previous fastpath allocations */
15162            BLOGE(sc, "Failed to alloc %s\n", buf);
15163            return (1);
15164        } else {
15165            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15166        }
15167
15168        /* link together the rx bd chain pages */
15169        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15170            /* index into the rx bd chain array to last entry per page */
15171            struct eth_rx_bd *rx_bd =
15172                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15173            /* point to the next page and wrap from last page */
15174            busaddr = (fp->rx_dma.paddr +
15175                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15176            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15177            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15178        }
15179
15180        /*******************/
15181        /* FP RX RCQ CHAIN */
15182        /*******************/
15183
15184        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15185        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15186                          &fp->rcq_dma, buf) != 0) {
15187            /* XXX unwind and free previous fastpath allocations */
15188            BLOGE(sc, "Failed to alloc %s\n", buf);
15189            return (1);
15190        } else {
15191            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15192        }
15193
15194        /* link together the rcq chain pages */
15195        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15196            /* index into the rcq chain array to last entry per page */
15197            struct eth_rx_cqe_next_page *rx_cqe_next =
15198                (struct eth_rx_cqe_next_page *)
15199                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15200            /* point to the next page and wrap from last page */
15201            busaddr = (fp->rcq_dma.paddr +
15202                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15203            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15204            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15205        }
15206
15207        /*******************/
15208        /* FP RX SGE CHAIN */
15209        /*******************/
15210
15211        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15212        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15213                          &fp->rx_sge_dma, buf) != 0) {
15214            /* XXX unwind and free previous fastpath allocations */
15215            BLOGE(sc, "Failed to alloc %s\n", buf);
15216            return (1);
15217        } else {
15218            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15219        }
15220
15221        /* link together the sge chain pages */
15222        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15223            /* index into the rcq chain array to last entry per page */
15224            struct eth_rx_sge *rx_sge =
15225                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15226            /* point to the next page and wrap from last page */
15227            busaddr = (fp->rx_sge_dma.paddr +
15228                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15229            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15230            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15231        }
15232
15233        /***********************/
15234        /* FP TX MBUF DMA MAPS */
15235        /***********************/
15236
15237        /* set required sizes before mapping to conserve resources */
15238        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15239            max_size     = BXE_TSO_MAX_SIZE;
15240            max_segments = BXE_TSO_MAX_SEGMENTS;
15241            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15242        } else {
15243            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15244            max_segments = BXE_MAX_SEGMENTS;
15245            max_seg_size = MCLBYTES;
15246        }
15247
15248        /* create a dma tag for the tx mbufs */
15249        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15250                                1,                  /* alignment */
15251                                0,                  /* boundary limit */
15252                                BUS_SPACE_MAXADDR,  /* restricted low */
15253                                BUS_SPACE_MAXADDR,  /* restricted hi */
15254                                NULL,               /* addr filter() */
15255                                NULL,               /* addr filter() arg */
15256                                max_size,           /* max map size */
15257                                max_segments,       /* num discontinuous */
15258                                max_seg_size,       /* max seg size */
15259                                0,                  /* flags */
15260                                NULL,               /* lock() */
15261                                NULL,               /* lock() arg */
15262                                &fp->tx_mbuf_tag);  /* returned dma tag */
15263        if (rc != 0) {
15264            /* XXX unwind and free previous fastpath allocations */
15265            BLOGE(sc, "Failed to create dma tag for "
15266                      "'fp %d tx mbufs' (%d)\n",
15267                  i, rc);
15268            return (1);
15269        }
15270
15271        /* create dma maps for each of the tx mbuf clusters */
15272        for (j = 0; j < TX_BD_TOTAL; j++) {
15273            if (bus_dmamap_create(fp->tx_mbuf_tag,
15274                                  BUS_DMA_NOWAIT,
15275                                  &fp->tx_mbuf_chain[j].m_map)) {
15276                /* XXX unwind and free previous fastpath allocations */
15277                BLOGE(sc, "Failed to create dma map for "
15278                          "'fp %d tx mbuf %d' (%d)\n",
15279                      i, j, rc);
15280                return (1);
15281            }
15282        }
15283
15284        /***********************/
15285        /* FP RX MBUF DMA MAPS */
15286        /***********************/
15287
15288        /* create a dma tag for the rx mbufs */
15289        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15290                                1,                  /* alignment */
15291                                0,                  /* boundary limit */
15292                                BUS_SPACE_MAXADDR,  /* restricted low */
15293                                BUS_SPACE_MAXADDR,  /* restricted hi */
15294                                NULL,               /* addr filter() */
15295                                NULL,               /* addr filter() arg */
15296                                MJUM9BYTES,         /* max map size */
15297                                1,                  /* num discontinuous */
15298                                MJUM9BYTES,         /* max seg size */
15299                                0,                  /* flags */
15300                                NULL,               /* lock() */
15301                                NULL,               /* lock() arg */
15302                                &fp->rx_mbuf_tag);  /* returned dma tag */
15303        if (rc != 0) {
15304            /* XXX unwind and free previous fastpath allocations */
15305            BLOGE(sc, "Failed to create dma tag for "
15306                      "'fp %d rx mbufs' (%d)\n",
15307                  i, rc);
15308            return (1);
15309        }
15310
15311        /* create dma maps for each of the rx mbuf clusters */
15312        for (j = 0; j < RX_BD_TOTAL; j++) {
15313            if (bus_dmamap_create(fp->rx_mbuf_tag,
15314                                  BUS_DMA_NOWAIT,
15315                                  &fp->rx_mbuf_chain[j].m_map)) {
15316                /* XXX unwind and free previous fastpath allocations */
15317                BLOGE(sc, "Failed to create dma map for "
15318                          "'fp %d rx mbuf %d' (%d)\n",
15319                      i, j, rc);
15320                return (1);
15321            }
15322        }
15323
15324        /* create dma map for the spare rx mbuf cluster */
15325        if (bus_dmamap_create(fp->rx_mbuf_tag,
15326                              BUS_DMA_NOWAIT,
15327                              &fp->rx_mbuf_spare_map)) {
15328            /* XXX unwind and free previous fastpath allocations */
15329            BLOGE(sc, "Failed to create dma map for "
15330                      "'fp %d spare rx mbuf' (%d)\n",
15331                  i, rc);
15332            return (1);
15333        }
15334
15335        /***************************/
15336        /* FP RX SGE MBUF DMA MAPS */
15337        /***************************/
15338
15339        /* create a dma tag for the rx sge mbufs */
15340        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15341                                1,                  /* alignment */
15342                                0,                  /* boundary limit */
15343                                BUS_SPACE_MAXADDR,  /* restricted low */
15344                                BUS_SPACE_MAXADDR,  /* restricted hi */
15345                                NULL,               /* addr filter() */
15346                                NULL,               /* addr filter() arg */
15347                                BCM_PAGE_SIZE,      /* max map size */
15348                                1,                  /* num discontinuous */
15349                                BCM_PAGE_SIZE,      /* max seg size */
15350                                0,                  /* flags */
15351                                NULL,               /* lock() */
15352                                NULL,               /* lock() arg */
15353                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15354        if (rc != 0) {
15355            /* XXX unwind and free previous fastpath allocations */
15356            BLOGE(sc, "Failed to create dma tag for "
15357                      "'fp %d rx sge mbufs' (%d)\n",
15358                  i, rc);
15359            return (1);
15360        }
15361
15362        /* create dma maps for the rx sge mbuf clusters */
15363        for (j = 0; j < RX_SGE_TOTAL; j++) {
15364            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15365                                  BUS_DMA_NOWAIT,
15366                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15367                /* XXX unwind and free previous fastpath allocations */
15368                BLOGE(sc, "Failed to create dma map for "
15369                          "'fp %d rx sge mbuf %d' (%d)\n",
15370                      i, j, rc);
15371                return (1);
15372            }
15373        }
15374
15375        /* create dma map for the spare rx sge mbuf cluster */
15376        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15377                              BUS_DMA_NOWAIT,
15378                              &fp->rx_sge_mbuf_spare_map)) {
15379            /* XXX unwind and free previous fastpath allocations */
15380            BLOGE(sc, "Failed to create dma map for "
15381                      "'fp %d spare rx sge mbuf' (%d)\n",
15382                  i, rc);
15383            return (1);
15384        }
15385
15386        /***************************/
15387        /* FP RX TPA MBUF DMA MAPS */
15388        /***************************/
15389
15390        /* create dma maps for the rx tpa mbuf clusters */
15391        max_agg_queues = MAX_AGG_QS(sc);
15392
15393        for (j = 0; j < max_agg_queues; j++) {
15394            if (bus_dmamap_create(fp->rx_mbuf_tag,
15395                                  BUS_DMA_NOWAIT,
15396                                  &fp->rx_tpa_info[j].bd.m_map)) {
15397                /* XXX unwind and free previous fastpath allocations */
15398                BLOGE(sc, "Failed to create dma map for "
15399                          "'fp %d rx tpa mbuf %d' (%d)\n",
15400                      i, j, rc);
15401                return (1);
15402            }
15403        }
15404
15405        /* create dma map for the spare rx tpa mbuf cluster */
15406        if (bus_dmamap_create(fp->rx_mbuf_tag,
15407                              BUS_DMA_NOWAIT,
15408                              &fp->rx_tpa_info_mbuf_spare_map)) {
15409            /* XXX unwind and free previous fastpath allocations */
15410            BLOGE(sc, "Failed to create dma map for "
15411                      "'fp %d spare rx tpa mbuf' (%d)\n",
15412                  i, rc);
15413            return (1);
15414        }
15415
15416        bxe_init_sge_ring_bit_mask(fp);
15417    }
15418
15419    return (0);
15420}
15421
15422static void
15423bxe_free_hsi_mem(struct bxe_softc *sc)
15424{
15425    struct bxe_fastpath *fp;
15426    int max_agg_queues;
15427    int i, j;
15428
15429    if (sc->parent_dma_tag == NULL) {
15430        return; /* assume nothing was allocated */
15431    }
15432
15433    for (i = 0; i < sc->num_queues; i++) {
15434        fp = &sc->fp[i];
15435
15436        /*******************/
15437        /* FP STATUS BLOCK */
15438        /*******************/
15439
15440        bxe_dma_free(sc, &fp->sb_dma);
15441        memset(&fp->status_block, 0, sizeof(fp->status_block));
15442
15443        /******************/
15444        /* FP TX BD CHAIN */
15445        /******************/
15446
15447        bxe_dma_free(sc, &fp->tx_dma);
15448        fp->tx_chain = NULL;
15449
15450        /******************/
15451        /* FP RX BD CHAIN */
15452        /******************/
15453
15454        bxe_dma_free(sc, &fp->rx_dma);
15455        fp->rx_chain = NULL;
15456
15457        /*******************/
15458        /* FP RX RCQ CHAIN */
15459        /*******************/
15460
15461        bxe_dma_free(sc, &fp->rcq_dma);
15462        fp->rcq_chain = NULL;
15463
15464        /*******************/
15465        /* FP RX SGE CHAIN */
15466        /*******************/
15467
15468        bxe_dma_free(sc, &fp->rx_sge_dma);
15469        fp->rx_sge_chain = NULL;
15470
15471        /***********************/
15472        /* FP TX MBUF DMA MAPS */
15473        /***********************/
15474
15475        if (fp->tx_mbuf_tag != NULL) {
15476            for (j = 0; j < TX_BD_TOTAL; j++) {
15477                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15478                    bus_dmamap_unload(fp->tx_mbuf_tag,
15479                                      fp->tx_mbuf_chain[j].m_map);
15480                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15481                                       fp->tx_mbuf_chain[j].m_map);
15482                }
15483            }
15484
15485            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15486            fp->tx_mbuf_tag = NULL;
15487        }
15488
15489        /***********************/
15490        /* FP RX MBUF DMA MAPS */
15491        /***********************/
15492
15493        if (fp->rx_mbuf_tag != NULL) {
15494            for (j = 0; j < RX_BD_TOTAL; j++) {
15495                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15496                    bus_dmamap_unload(fp->rx_mbuf_tag,
15497                                      fp->rx_mbuf_chain[j].m_map);
15498                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15499                                       fp->rx_mbuf_chain[j].m_map);
15500                }
15501            }
15502
15503            if (fp->rx_mbuf_spare_map != NULL) {
15504                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15505                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15506            }
15507
15508            /***************************/
15509            /* FP RX TPA MBUF DMA MAPS */
15510            /***************************/
15511
15512            max_agg_queues = MAX_AGG_QS(sc);
15513
15514            for (j = 0; j < max_agg_queues; j++) {
15515                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15516                    bus_dmamap_unload(fp->rx_mbuf_tag,
15517                                      fp->rx_tpa_info[j].bd.m_map);
15518                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15519                                       fp->rx_tpa_info[j].bd.m_map);
15520                }
15521            }
15522
15523            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15524                bus_dmamap_unload(fp->rx_mbuf_tag,
15525                                  fp->rx_tpa_info_mbuf_spare_map);
15526                bus_dmamap_destroy(fp->rx_mbuf_tag,
15527                                   fp->rx_tpa_info_mbuf_spare_map);
15528            }
15529
15530            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15531            fp->rx_mbuf_tag = NULL;
15532        }
15533
15534        /***************************/
15535        /* FP RX SGE MBUF DMA MAPS */
15536        /***************************/
15537
15538        if (fp->rx_sge_mbuf_tag != NULL) {
15539            for (j = 0; j < RX_SGE_TOTAL; j++) {
15540                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15541                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15542                                      fp->rx_sge_mbuf_chain[j].m_map);
15543                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15544                                       fp->rx_sge_mbuf_chain[j].m_map);
15545                }
15546            }
15547
15548            if (fp->rx_sge_mbuf_spare_map != NULL) {
15549                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15550                                  fp->rx_sge_mbuf_spare_map);
15551                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15552                                   fp->rx_sge_mbuf_spare_map);
15553            }
15554
15555            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15556            fp->rx_sge_mbuf_tag = NULL;
15557        }
15558    }
15559
15560    /***************************/
15561    /* FW DECOMPRESSION BUFFER */
15562    /***************************/
15563
15564    bxe_dma_free(sc, &sc->gz_buf_dma);
15565    sc->gz_buf = NULL;
15566    free(sc->gz_strm, M_DEVBUF);
15567    sc->gz_strm = NULL;
15568
15569    /*******************/
15570    /* SLOW PATH QUEUE */
15571    /*******************/
15572
15573    bxe_dma_free(sc, &sc->spq_dma);
15574    sc->spq = NULL;
15575
15576    /*************/
15577    /* SLOW PATH */
15578    /*************/
15579
15580    bxe_dma_free(sc, &sc->sp_dma);
15581    sc->sp = NULL;
15582
15583    /***************/
15584    /* EVENT QUEUE */
15585    /***************/
15586
15587    bxe_dma_free(sc, &sc->eq_dma);
15588    sc->eq = NULL;
15589
15590    /************************/
15591    /* DEFAULT STATUS BLOCK */
15592    /************************/
15593
15594    bxe_dma_free(sc, &sc->def_sb_dma);
15595    sc->def_sb = NULL;
15596
15597    bus_dma_tag_destroy(sc->parent_dma_tag);
15598    sc->parent_dma_tag = NULL;
15599}
15600
15601/*
15602 * Previous driver DMAE transaction may have occurred when pre-boot stage
15603 * ended and boot began. This would invalidate the addresses of the
15604 * transaction, resulting in was-error bit set in the PCI causing all
15605 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15606 * the interrupt which detected this from the pglueb and the was-done bit
15607 */
15608static void
15609bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15610{
15611    uint32_t val;
15612
15613    if (!CHIP_IS_E1x(sc)) {
15614        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15615        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15616            BLOGD(sc, DBG_LOAD,
15617                  "Clearing 'was-error' bit that was set in pglueb");
15618            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15619        }
15620    }
15621}
15622
15623static int
15624bxe_prev_mcp_done(struct bxe_softc *sc)
15625{
15626    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15627                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15628    if (!rc) {
15629        BLOGE(sc, "MCP response failure, aborting\n");
15630        return (-1);
15631    }
15632
15633    return (0);
15634}
15635
15636static struct bxe_prev_list_node *
15637bxe_prev_path_get_entry(struct bxe_softc *sc)
15638{
15639    struct bxe_prev_list_node *tmp;
15640
15641    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15642        if ((sc->pcie_bus == tmp->bus) &&
15643            (sc->pcie_device == tmp->slot) &&
15644            (SC_PATH(sc) == tmp->path)) {
15645            return (tmp);
15646        }
15647    }
15648
15649    return (NULL);
15650}
15651
15652static uint8_t
15653bxe_prev_is_path_marked(struct bxe_softc *sc)
15654{
15655    struct bxe_prev_list_node *tmp;
15656    int rc = FALSE;
15657
15658    mtx_lock(&bxe_prev_mtx);
15659
15660    tmp = bxe_prev_path_get_entry(sc);
15661    if (tmp) {
15662        if (tmp->aer) {
15663            BLOGD(sc, DBG_LOAD,
15664                  "Path %d/%d/%d was marked by AER\n",
15665                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15666        } else {
15667            rc = TRUE;
15668            BLOGD(sc, DBG_LOAD,
15669                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15670                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15671        }
15672    }
15673
15674    mtx_unlock(&bxe_prev_mtx);
15675
15676    return (rc);
15677}
15678
15679static int
15680bxe_prev_mark_path(struct bxe_softc *sc,
15681                   uint8_t          after_undi)
15682{
15683    struct bxe_prev_list_node *tmp;
15684
15685    mtx_lock(&bxe_prev_mtx);
15686
15687    /* Check whether the entry for this path already exists */
15688    tmp = bxe_prev_path_get_entry(sc);
15689    if (tmp) {
15690        if (!tmp->aer) {
15691            BLOGD(sc, DBG_LOAD,
15692                  "Re-marking AER in path %d/%d/%d\n",
15693                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15694        } else {
15695            BLOGD(sc, DBG_LOAD,
15696                  "Removing AER indication from path %d/%d/%d\n",
15697                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15698            tmp->aer = 0;
15699        }
15700
15701        mtx_unlock(&bxe_prev_mtx);
15702        return (0);
15703    }
15704
15705    mtx_unlock(&bxe_prev_mtx);
15706
15707    /* Create an entry for this path and add it */
15708    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15709                 (M_NOWAIT | M_ZERO));
15710    if (!tmp) {
15711        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15712        return (-1);
15713    }
15714
15715    tmp->bus  = sc->pcie_bus;
15716    tmp->slot = sc->pcie_device;
15717    tmp->path = SC_PATH(sc);
15718    tmp->aer  = 0;
15719    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15720
15721    mtx_lock(&bxe_prev_mtx);
15722
15723    BLOGD(sc, DBG_LOAD,
15724          "Marked path %d/%d/%d - finished previous unload\n",
15725          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15726    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15727
15728    mtx_unlock(&bxe_prev_mtx);
15729
15730    return (0);
15731}
15732
15733static int
15734bxe_do_flr(struct bxe_softc *sc)
15735{
15736    int i;
15737
15738    /* only E2 and onwards support FLR */
15739    if (CHIP_IS_E1x(sc)) {
15740        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15741        return (-1);
15742    }
15743
15744    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15745    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15746        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15747              sc->devinfo.bc_ver);
15748        return (-1);
15749    }
15750
15751    /* Wait for Transaction Pending bit clean */
15752    for (i = 0; i < 4; i++) {
15753        if (i) {
15754            DELAY(((1 << (i - 1)) * 100) * 1000);
15755        }
15756
15757        if (!bxe_is_pcie_pending(sc)) {
15758            goto clear;
15759        }
15760    }
15761
15762    BLOGE(sc, "PCIE transaction is not cleared, "
15763              "proceeding with reset anyway\n");
15764
15765clear:
15766
15767    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15768    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15769
15770    return (0);
15771}
15772
15773struct bxe_mac_vals {
15774    uint32_t xmac_addr;
15775    uint32_t xmac_val;
15776    uint32_t emac_addr;
15777    uint32_t emac_val;
15778    uint32_t umac_addr;
15779    uint32_t umac_val;
15780    uint32_t bmac_addr;
15781    uint32_t bmac_val[2];
15782};
15783
15784static void
15785bxe_prev_unload_close_mac(struct bxe_softc *sc,
15786                          struct bxe_mac_vals *vals)
15787{
15788    uint32_t val, base_addr, offset, mask, reset_reg;
15789    uint8_t mac_stopped = FALSE;
15790    uint8_t port = SC_PORT(sc);
15791    uint32_t wb_data[2];
15792
15793    /* reset addresses as they also mark which values were changed */
15794    vals->bmac_addr = 0;
15795    vals->umac_addr = 0;
15796    vals->xmac_addr = 0;
15797    vals->emac_addr = 0;
15798
15799    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15800
15801    if (!CHIP_IS_E3(sc)) {
15802        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15803        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15804        if ((mask & reset_reg) && val) {
15805            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15806            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15807                                    : NIG_REG_INGRESS_BMAC0_MEM;
15808            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15809                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15810
15811            /*
15812             * use rd/wr since we cannot use dmae. This is safe
15813             * since MCP won't access the bus due to the request
15814             * to unload, and no function on the path can be
15815             * loaded at this time.
15816             */
15817            wb_data[0] = REG_RD(sc, base_addr + offset);
15818            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15819            vals->bmac_addr = base_addr + offset;
15820            vals->bmac_val[0] = wb_data[0];
15821            vals->bmac_val[1] = wb_data[1];
15822            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15823            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15824            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15825        }
15826
15827        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15828        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15829        vals->emac_val = REG_RD(sc, vals->emac_addr);
15830        REG_WR(sc, vals->emac_addr, 0);
15831        mac_stopped = TRUE;
15832    } else {
15833        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15834            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15835            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15836            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15837            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15838            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15839            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15840            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15841            REG_WR(sc, vals->xmac_addr, 0);
15842            mac_stopped = TRUE;
15843        }
15844
15845        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15846        if (mask & reset_reg) {
15847            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15848            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15849            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15850            vals->umac_val = REG_RD(sc, vals->umac_addr);
15851            REG_WR(sc, vals->umac_addr, 0);
15852            mac_stopped = TRUE;
15853        }
15854    }
15855
15856    if (mac_stopped) {
15857        DELAY(20000);
15858    }
15859}
15860
15861#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15862#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15863#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15864#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15865
15866static void
15867bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15868                         uint8_t          port,
15869                         uint8_t          inc)
15870{
15871    uint16_t rcq, bd;
15872    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15873
15874    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15875    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15876
15877    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15878    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15879
15880    BLOGD(sc, DBG_LOAD,
15881          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15882          port, bd, rcq);
15883}
15884
15885static int
15886bxe_prev_unload_common(struct bxe_softc *sc)
15887{
15888    uint32_t reset_reg, tmp_reg = 0, rc;
15889    uint8_t prev_undi = FALSE;
15890    struct bxe_mac_vals mac_vals;
15891    uint32_t timer_count = 1000;
15892    uint32_t prev_brb;
15893
15894    /*
15895     * It is possible a previous function received 'common' answer,
15896     * but hasn't loaded yet, therefore creating a scenario of
15897     * multiple functions receiving 'common' on the same path.
15898     */
15899    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15900
15901    memset(&mac_vals, 0, sizeof(mac_vals));
15902
15903    if (bxe_prev_is_path_marked(sc)) {
15904        return (bxe_prev_mcp_done(sc));
15905    }
15906
15907    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15908
15909    /* Reset should be performed after BRB is emptied */
15910    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15911        /* Close the MAC Rx to prevent BRB from filling up */
15912        bxe_prev_unload_close_mac(sc, &mac_vals);
15913
15914        /* close LLH filters towards the BRB */
15915        elink_set_rx_filter(&sc->link_params, 0);
15916
15917        /*
15918         * Check if the UNDI driver was previously loaded.
15919         * UNDI driver initializes CID offset for normal bell to 0x7
15920         */
15921        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15922            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15923            if (tmp_reg == 0x7) {
15924                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15925                prev_undi = TRUE;
15926                /* clear the UNDI indication */
15927                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15928                /* clear possible idle check errors */
15929                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15930            }
15931        }
15932
15933        /* wait until BRB is empty */
15934        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15935        while (timer_count) {
15936            prev_brb = tmp_reg;
15937
15938            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15939            if (!tmp_reg) {
15940                break;
15941            }
15942
15943            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15944
15945            /* reset timer as long as BRB actually gets emptied */
15946            if (prev_brb > tmp_reg) {
15947                timer_count = 1000;
15948            } else {
15949                timer_count--;
15950            }
15951
15952            /* If UNDI resides in memory, manually increment it */
15953            if (prev_undi) {
15954                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15955            }
15956
15957            DELAY(10);
15958        }
15959
15960        if (!timer_count) {
15961            BLOGE(sc, "Failed to empty BRB\n");
15962        }
15963    }
15964
15965    /* No packets are in the pipeline, path is ready for reset */
15966    bxe_reset_common(sc);
15967
15968    if (mac_vals.xmac_addr) {
15969        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15970    }
15971    if (mac_vals.umac_addr) {
15972        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15973    }
15974    if (mac_vals.emac_addr) {
15975        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15976    }
15977    if (mac_vals.bmac_addr) {
15978        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15979        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15980    }
15981
15982    rc = bxe_prev_mark_path(sc, prev_undi);
15983    if (rc) {
15984        bxe_prev_mcp_done(sc);
15985        return (rc);
15986    }
15987
15988    return (bxe_prev_mcp_done(sc));
15989}
15990
15991static int
15992bxe_prev_unload_uncommon(struct bxe_softc *sc)
15993{
15994    int rc;
15995
15996    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15997
15998    /* Test if previous unload process was already finished for this path */
15999    if (bxe_prev_is_path_marked(sc)) {
16000        return (bxe_prev_mcp_done(sc));
16001    }
16002
16003    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
16004
16005    /*
16006     * If function has FLR capabilities, and existing FW version matches
16007     * the one required, then FLR will be sufficient to clean any residue
16008     * left by previous driver
16009     */
16010    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
16011    if (!rc) {
16012        /* fw version is good */
16013        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
16014        rc = bxe_do_flr(sc);
16015    }
16016
16017    if (!rc) {
16018        /* FLR was performed */
16019        BLOGD(sc, DBG_LOAD, "FLR successful\n");
16020        return (0);
16021    }
16022
16023    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16024
16025    /* Close the MCP request, return failure*/
16026    rc = bxe_prev_mcp_done(sc);
16027    if (!rc) {
16028        rc = BXE_PREV_WAIT_NEEDED;
16029    }
16030
16031    return (rc);
16032}
16033
16034static int
16035bxe_prev_unload(struct bxe_softc *sc)
16036{
16037    int time_counter = 10;
16038    uint32_t fw, hw_lock_reg, hw_lock_val;
16039    uint32_t rc = 0;
16040
16041    /*
16042     * Clear HW from errors which may have resulted from an interrupted
16043     * DMAE transaction.
16044     */
16045    bxe_prev_interrupted_dmae(sc);
16046
16047    /* Release previously held locks */
16048    hw_lock_reg =
16049        (SC_FUNC(sc) <= 5) ?
16050            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16051            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16052
16053    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16054    if (hw_lock_val) {
16055        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16056            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16057            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16058                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16059        }
16060        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16061        REG_WR(sc, hw_lock_reg, 0xffffffff);
16062    } else {
16063        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16064    }
16065
16066    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16067        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16068        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16069    }
16070
16071    do {
16072        /* Lock MCP using an unload request */
16073        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16074        if (!fw) {
16075            BLOGE(sc, "MCP response failure, aborting\n");
16076            rc = -1;
16077            break;
16078        }
16079
16080        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16081            rc = bxe_prev_unload_common(sc);
16082            break;
16083        }
16084
16085        /* non-common reply from MCP night require looping */
16086        rc = bxe_prev_unload_uncommon(sc);
16087        if (rc != BXE_PREV_WAIT_NEEDED) {
16088            break;
16089        }
16090
16091        DELAY(20000);
16092    } while (--time_counter);
16093
16094    if (!time_counter || rc) {
16095        BLOGE(sc, "Failed to unload previous driver!\n");
16096        rc = -1;
16097    }
16098
16099    return (rc);
16100}
16101
16102void
16103bxe_dcbx_set_state(struct bxe_softc *sc,
16104                   uint8_t          dcb_on,
16105                   uint32_t         dcbx_enabled)
16106{
16107    if (!CHIP_IS_E1x(sc)) {
16108        sc->dcb_state = dcb_on;
16109        sc->dcbx_enabled = dcbx_enabled;
16110    } else {
16111        sc->dcb_state = FALSE;
16112        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16113    }
16114    BLOGD(sc, DBG_LOAD,
16115          "DCB state [%s:%s]\n",
16116          dcb_on ? "ON" : "OFF",
16117          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16118          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16119          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16120          "on-chip with negotiation" : "invalid");
16121}
16122
16123/* must be called after sriov-enable */
16124static int
16125bxe_set_qm_cid_count(struct bxe_softc *sc)
16126{
16127    int cid_count = BXE_L2_MAX_CID(sc);
16128
16129    if (IS_SRIOV(sc)) {
16130        cid_count += BXE_VF_CIDS;
16131    }
16132
16133    if (CNIC_SUPPORT(sc)) {
16134        cid_count += CNIC_CID_MAX;
16135    }
16136
16137    return (roundup(cid_count, QM_CID_ROUND));
16138}
16139
16140static void
16141bxe_init_multi_cos(struct bxe_softc *sc)
16142{
16143    int pri, cos;
16144
16145    uint32_t pri_map = 0; /* XXX change to user config */
16146
16147    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16148        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16149        if (cos < sc->max_cos) {
16150            sc->prio_to_cos[pri] = cos;
16151        } else {
16152            BLOGW(sc, "Invalid COS %d for priority %d "
16153                      "(max COS is %d), setting to 0\n",
16154                  cos, pri, (sc->max_cos - 1));
16155            sc->prio_to_cos[pri] = 0;
16156        }
16157    }
16158}
16159
16160static int
16161bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16162{
16163    struct bxe_softc *sc;
16164    int error, result;
16165
16166    result = 0;
16167    error = sysctl_handle_int(oidp, &result, 0, req);
16168
16169    if (error || !req->newptr) {
16170        return (error);
16171    }
16172
16173    if (result == 1) {
16174        sc = (struct bxe_softc *)arg1;
16175        BLOGI(sc, "... dumping driver state ...\n");
16176        /* XXX */
16177    }
16178
16179    return (error);
16180}
16181
16182static int
16183bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16184{
16185    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16186    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16187    uint32_t *offset;
16188    uint64_t value = 0;
16189    int index = (int)arg2;
16190
16191    if (index >= BXE_NUM_ETH_STATS) {
16192        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16193        return (-1);
16194    }
16195
16196    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16197
16198    switch (bxe_eth_stats_arr[index].size) {
16199    case 4:
16200        value = (uint64_t)*offset;
16201        break;
16202    case 8:
16203        value = HILO_U64(*offset, *(offset + 1));
16204        break;
16205    default:
16206        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16207              index, bxe_eth_stats_arr[index].size);
16208        return (-1);
16209    }
16210
16211    return (sysctl_handle_64(oidp, &value, 0, req));
16212}
16213
16214static int
16215bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16216{
16217    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16218    uint32_t *eth_stats;
16219    uint32_t *offset;
16220    uint64_t value = 0;
16221    uint32_t q_stat = (uint32_t)arg2;
16222    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16223    uint32_t index = (q_stat & 0xffff);
16224
16225    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16226
16227    if (index >= BXE_NUM_ETH_Q_STATS) {
16228        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16229        return (-1);
16230    }
16231
16232    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16233
16234    switch (bxe_eth_q_stats_arr[index].size) {
16235    case 4:
16236        value = (uint64_t)*offset;
16237        break;
16238    case 8:
16239        value = HILO_U64(*offset, *(offset + 1));
16240        break;
16241    default:
16242        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16243              index, bxe_eth_q_stats_arr[index].size);
16244        return (-1);
16245    }
16246
16247    return (sysctl_handle_64(oidp, &value, 0, req));
16248}
16249
16250static void
16251bxe_add_sysctls(struct bxe_softc *sc)
16252{
16253    struct sysctl_ctx_list *ctx;
16254    struct sysctl_oid_list *children;
16255    struct sysctl_oid *queue_top, *queue;
16256    struct sysctl_oid_list *queue_top_children, *queue_children;
16257    char queue_num_buf[32];
16258    uint32_t q_stat;
16259    int i, j;
16260
16261    ctx = device_get_sysctl_ctx(sc->dev);
16262    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16263
16264    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16265                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16266                      "version");
16267
16268    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16269                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16270                      "bootcode version");
16271
16272    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16273             BCM_5710_FW_MAJOR_VERSION,
16274             BCM_5710_FW_MINOR_VERSION,
16275             BCM_5710_FW_REVISION_VERSION,
16276             BCM_5710_FW_ENGINEERING_VERSION);
16277    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16278                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16279                      "firmware version");
16280
16281    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16282        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16283         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16284         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16285         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16286                                                                "Unknown"));
16287    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16288                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16289                      "multifunction mode");
16290
16291    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16292                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16293                    "multifunction vnics per port");
16294
16295    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16296                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16297                      "mac address");
16298
16299    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16300        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16301         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16302         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16303                                              "???GT/s"),
16304        sc->devinfo.pcie_link_width);
16305    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16306                      CTLFLAG_RD, &sc->pci_link_str, 0,
16307                      "pci link status");
16308
16309    sc->debug = bxe_debug;
16310    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16311                    CTLFLAG_RW, &sc->debug, 0,
16312                    "debug logging mode");
16313
16314    sc->rx_budget = bxe_rx_budget;
16315    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16316                    CTLFLAG_RW, &sc->rx_budget, 0,
16317                    "rx processing budget");
16318
16319    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16320                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16321                    bxe_sysctl_state, "IU", "dump driver state");
16322
16323    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16324        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16325                        bxe_eth_stats_arr[i].string,
16326                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16327                        bxe_sysctl_eth_stat, "LU",
16328                        bxe_eth_stats_arr[i].string);
16329    }
16330
16331    /* add a new parent node for all queues "dev.bxe.#.queue" */
16332    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16333                                CTLFLAG_RD, NULL, "queue");
16334    queue_top_children = SYSCTL_CHILDREN(queue_top);
16335
16336    for (i = 0; i < sc->num_queues; i++) {
16337        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16338        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16339        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16340                                queue_num_buf, CTLFLAG_RD, NULL,
16341                                "single queue");
16342        queue_children = SYSCTL_CHILDREN(queue);
16343
16344        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16345            q_stat = ((i << 16) | j);
16346            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16347                            bxe_eth_q_stats_arr[j].string,
16348                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16349                            bxe_sysctl_eth_q_stat, "LU",
16350                            bxe_eth_q_stats_arr[j].string);
16351        }
16352    }
16353}
16354
16355/*
16356 * Device attach function.
16357 *
16358 * Allocates device resources, performs secondary chip identification, and
16359 * initializes driver instance variables. This function is called from driver
16360 * load after a successful probe.
16361 *
16362 * Returns:
16363 *   0 = Success, >0 = Failure
16364 */
16365static int
16366bxe_attach(device_t dev)
16367{
16368    struct bxe_softc *sc;
16369
16370    sc = device_get_softc(dev);
16371
16372    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16373
16374    sc->state = BXE_STATE_CLOSED;
16375
16376    sc->dev  = dev;
16377    sc->unit = device_get_unit(dev);
16378
16379    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16380
16381    sc->pcie_bus    = pci_get_bus(dev);
16382    sc->pcie_device = pci_get_slot(dev);
16383    sc->pcie_func   = pci_get_function(dev);
16384
16385    /* enable bus master capability */
16386    pci_enable_busmaster(dev);
16387
16388    /* get the BARs */
16389    if (bxe_allocate_bars(sc) != 0) {
16390        return (ENXIO);
16391    }
16392
16393    /* initialize the mutexes */
16394    bxe_init_mutexes(sc);
16395
16396    /* prepare the periodic callout */
16397    callout_init(&sc->periodic_callout, 0);
16398
16399    /* prepare the chip taskqueue */
16400    sc->chip_tq_flags = CHIP_TQ_NONE;
16401    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16402             "bxe%d_chip_tq", sc->unit);
16403    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16404    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16405                                   taskqueue_thread_enqueue,
16406                                   &sc->chip_tq);
16407    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16408                            "%s", sc->chip_tq_name);
16409
16410    /* get device info and set params */
16411    if (bxe_get_device_info(sc) != 0) {
16412        BLOGE(sc, "getting device info\n");
16413        bxe_deallocate_bars(sc);
16414        pci_disable_busmaster(dev);
16415        return (ENXIO);
16416    }
16417
16418    /* get final misc params */
16419    bxe_get_params(sc);
16420
16421    /* set the default MTU (changed via ifconfig) */
16422    sc->mtu = ETHERMTU;
16423
16424    bxe_set_modes_bitmap(sc);
16425
16426    /* XXX
16427     * If in AFEX mode and the function is configured for FCoE
16428     * then bail... no L2 allowed.
16429     */
16430
16431    /* get phy settings from shmem and 'and' against admin settings */
16432    bxe_get_phy_info(sc);
16433
16434    /* initialize the FreeBSD ifnet interface */
16435    if (bxe_init_ifnet(sc) != 0) {
16436        bxe_release_mutexes(sc);
16437        bxe_deallocate_bars(sc);
16438        pci_disable_busmaster(dev);
16439        return (ENXIO);
16440    }
16441
16442    /* allocate device interrupts */
16443    if (bxe_interrupt_alloc(sc) != 0) {
16444        if (sc->ifnet != NULL) {
16445            ether_ifdetach(sc->ifnet);
16446        }
16447        ifmedia_removeall(&sc->ifmedia);
16448        bxe_release_mutexes(sc);
16449        bxe_deallocate_bars(sc);
16450        pci_disable_busmaster(dev);
16451        return (ENXIO);
16452    }
16453
16454    /* allocate ilt */
16455    if (bxe_alloc_ilt_mem(sc) != 0) {
16456        bxe_interrupt_free(sc);
16457        if (sc->ifnet != NULL) {
16458            ether_ifdetach(sc->ifnet);
16459        }
16460        ifmedia_removeall(&sc->ifmedia);
16461        bxe_release_mutexes(sc);
16462        bxe_deallocate_bars(sc);
16463        pci_disable_busmaster(dev);
16464        return (ENXIO);
16465    }
16466
16467    /* allocate the host hardware/software hsi structures */
16468    if (bxe_alloc_hsi_mem(sc) != 0) {
16469        bxe_free_ilt_mem(sc);
16470        bxe_interrupt_free(sc);
16471        if (sc->ifnet != NULL) {
16472            ether_ifdetach(sc->ifnet);
16473        }
16474        ifmedia_removeall(&sc->ifmedia);
16475        bxe_release_mutexes(sc);
16476        bxe_deallocate_bars(sc);
16477        pci_disable_busmaster(dev);
16478        return (ENXIO);
16479    }
16480
16481    /* need to reset chip if UNDI was active */
16482    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16483        /* init fw_seq */
16484        sc->fw_seq =
16485            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16486             DRV_MSG_SEQ_NUMBER_MASK);
16487        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16488        bxe_prev_unload(sc);
16489    }
16490
16491#if 1
16492    /* XXX */
16493    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16494#else
16495    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16496        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16497        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16498        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16499        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16500        bxe_dcbx_init_params(sc);
16501    } else {
16502        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16503    }
16504#endif
16505
16506    /* calculate qm_cid_count */
16507    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16508    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16509
16510    sc->max_cos = 1;
16511    bxe_init_multi_cos(sc);
16512
16513    bxe_add_sysctls(sc);
16514
16515    return (0);
16516}
16517
16518/*
16519 * Device detach function.
16520 *
16521 * Stops the controller, resets the controller, and releases resources.
16522 *
16523 * Returns:
16524 *   0 = Success, >0 = Failure
16525 */
16526static int
16527bxe_detach(device_t dev)
16528{
16529    struct bxe_softc *sc;
16530    struct ifnet *ifp;
16531
16532    sc = device_get_softc(dev);
16533
16534    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16535
16536    ifp = sc->ifnet;
16537    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16538        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16539        return(EBUSY);
16540    }
16541
16542    /* stop the periodic callout */
16543    bxe_periodic_stop(sc);
16544
16545    /* stop the chip taskqueue */
16546    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16547    if (sc->chip_tq) {
16548        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16549        taskqueue_free(sc->chip_tq);
16550        sc->chip_tq = NULL;
16551    }
16552
16553    /* stop and reset the controller if it was open */
16554    if (sc->state != BXE_STATE_CLOSED) {
16555        BXE_CORE_LOCK(sc);
16556        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16557        BXE_CORE_UNLOCK(sc);
16558    }
16559
16560    /* release the network interface */
16561    if (ifp != NULL) {
16562        ether_ifdetach(ifp);
16563    }
16564    ifmedia_removeall(&sc->ifmedia);
16565
16566    /* XXX do the following based on driver state... */
16567
16568    /* free the host hardware/software hsi structures */
16569    bxe_free_hsi_mem(sc);
16570
16571    /* free ilt */
16572    bxe_free_ilt_mem(sc);
16573
16574    /* release the interrupts */
16575    bxe_interrupt_free(sc);
16576
16577    /* Release the mutexes*/
16578    bxe_release_mutexes(sc);
16579
16580    /* Release the PCIe BAR mapped memory */
16581    bxe_deallocate_bars(sc);
16582
16583    /* Release the FreeBSD interface. */
16584    if (sc->ifnet != NULL) {
16585        if_free(sc->ifnet);
16586    }
16587
16588    pci_disable_busmaster(dev);
16589
16590    return (0);
16591}
16592
16593/*
16594 * Device shutdown function.
16595 *
16596 * Stops and resets the controller.
16597 *
16598 * Returns:
16599 *   Nothing
16600 */
16601static int
16602bxe_shutdown(device_t dev)
16603{
16604    struct bxe_softc *sc;
16605
16606    sc = device_get_softc(dev);
16607
16608    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16609
16610    /* stop the periodic callout */
16611    bxe_periodic_stop(sc);
16612
16613    BXE_CORE_LOCK(sc);
16614    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16615    BXE_CORE_UNLOCK(sc);
16616
16617    return (0);
16618}
16619
16620void
16621bxe_igu_ack_sb(struct bxe_softc *sc,
16622               uint8_t          igu_sb_id,
16623               uint8_t          segment,
16624               uint16_t         index,
16625               uint8_t          op,
16626               uint8_t          update)
16627{
16628    uint32_t igu_addr = sc->igu_base_addr;
16629    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16630    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16631}
16632
16633static void
16634bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16635                     uint8_t          func,
16636                     uint8_t          idu_sb_id,
16637                     uint8_t          is_pf)
16638{
16639    uint32_t data, ctl, cnt = 100;
16640    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16641    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16642    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16643    uint32_t sb_bit =  1 << (idu_sb_id%32);
16644    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16645    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16646
16647    /* Not supported in BC mode */
16648    if (CHIP_INT_MODE_IS_BC(sc)) {
16649        return;
16650    }
16651
16652    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16653             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16654            IGU_REGULAR_CLEANUP_SET |
16655            IGU_REGULAR_BCLEANUP);
16656
16657    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16658           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16659           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16660
16661    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16662            data, igu_addr_data);
16663    REG_WR(sc, igu_addr_data, data);
16664
16665    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16666                      BUS_SPACE_BARRIER_WRITE);
16667    mb();
16668
16669    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16670            ctl, igu_addr_ctl);
16671    REG_WR(sc, igu_addr_ctl, ctl);
16672
16673    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16674                      BUS_SPACE_BARRIER_WRITE);
16675    mb();
16676
16677    /* wait for clean up to finish */
16678    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16679        DELAY(20000);
16680    }
16681
16682    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16683        BLOGD(sc, DBG_LOAD,
16684              "Unable to finish IGU cleanup: "
16685              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16686              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16687    }
16688}
16689
16690static void
16691bxe_igu_clear_sb(struct bxe_softc *sc,
16692                 uint8_t          idu_sb_id)
16693{
16694    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16695}
16696
16697
16698
16699
16700
16701
16702
16703/*******************/
16704/* ECORE CALLBACKS */
16705/*******************/
16706
16707static void
16708bxe_reset_common(struct bxe_softc *sc)
16709{
16710    uint32_t val = 0x1400;
16711
16712    /* reset_common */
16713    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16714
16715    if (CHIP_IS_E3(sc)) {
16716        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16717        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16718    }
16719
16720    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16721}
16722
16723static void
16724bxe_common_init_phy(struct bxe_softc *sc)
16725{
16726    uint32_t shmem_base[2];
16727    uint32_t shmem2_base[2];
16728
16729    /* Avoid common init in case MFW supports LFA */
16730    if (SHMEM2_RD(sc, size) >
16731        (uint32_t)offsetof(struct shmem2_region,
16732                           lfa_host_addr[SC_PORT(sc)])) {
16733        return;
16734    }
16735
16736    shmem_base[0]  = sc->devinfo.shmem_base;
16737    shmem2_base[0] = sc->devinfo.shmem2_base;
16738
16739    if (!CHIP_IS_E1x(sc)) {
16740        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16741        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16742    }
16743
16744    BXE_PHY_LOCK(sc);
16745    elink_common_init_phy(sc, shmem_base, shmem2_base,
16746                          sc->devinfo.chip_id, 0);
16747    BXE_PHY_UNLOCK(sc);
16748}
16749
16750static void
16751bxe_pf_disable(struct bxe_softc *sc)
16752{
16753    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16754
16755    val &= ~IGU_PF_CONF_FUNC_EN;
16756
16757    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16758    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16759    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16760}
16761
16762static void
16763bxe_init_pxp(struct bxe_softc *sc)
16764{
16765    uint16_t devctl;
16766    int r_order, w_order;
16767
16768    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16769
16770    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16771
16772    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16773
16774    if (sc->mrrs == -1) {
16775        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16776    } else {
16777        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16778        r_order = sc->mrrs;
16779    }
16780
16781    ecore_init_pxp_arb(sc, r_order, w_order);
16782}
16783
16784static uint32_t
16785bxe_get_pretend_reg(struct bxe_softc *sc)
16786{
16787    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16788    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16789    return (base + (SC_ABS_FUNC(sc)) * stride);
16790}
16791
16792/*
16793 * Called only on E1H or E2.
16794 * When pretending to be PF, the pretend value is the function number 0..7.
16795 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16796 * combination.
16797 */
16798static int
16799bxe_pretend_func(struct bxe_softc *sc,
16800                 uint16_t         pretend_func_val)
16801{
16802    uint32_t pretend_reg;
16803
16804    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16805        return (-1);
16806    }
16807
16808    /* get my own pretend register */
16809    pretend_reg = bxe_get_pretend_reg(sc);
16810    REG_WR(sc, pretend_reg, pretend_func_val);
16811    REG_RD(sc, pretend_reg);
16812    return (0);
16813}
16814
16815static void
16816bxe_iov_init_dmae(struct bxe_softc *sc)
16817{
16818    return;
16819#if 0
16820    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16821
16822    if (!IS_SRIOV(sc)) {
16823        return;
16824    }
16825
16826    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16827#endif
16828}
16829
16830#if 0
16831static int
16832bxe_iov_init_ilt(struct bxe_softc *sc,
16833                 uint16_t         line)
16834{
16835    return (line);
16836#if 0
16837    int i;
16838    struct ecore_ilt* ilt = sc->ilt;
16839
16840    if (!IS_SRIOV(sc)) {
16841        return (line);
16842    }
16843
16844    /* set vfs ilt lines */
16845    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16846        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16847        ilt->lines[line+i].page = hw_cxt->addr;
16848        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16849        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16850    }
16851    return (line+i);
16852#endif
16853}
16854#endif
16855
16856static void
16857bxe_iov_init_dq(struct bxe_softc *sc)
16858{
16859    return;
16860#if 0
16861    if (!IS_SRIOV(sc)) {
16862        return;
16863    }
16864
16865    /* Set the DQ such that the CID reflect the abs_vfid */
16866    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16867    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16868
16869    /*
16870     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16871     * the PF L2 queues
16872     */
16873    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16874
16875    /* The VF window size is the log2 of the max number of CIDs per VF */
16876    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16877
16878    /*
16879     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16880     * the Pf doorbell size although the 2 are independent.
16881     */
16882    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16883           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16884
16885    /*
16886     * No security checks for now -
16887     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16888     * CID range 0 - 0x1ffff
16889     */
16890    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16891    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16892    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16893    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16894
16895    /* set the number of VF alllowed doorbells to the full DQ range */
16896    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16897
16898    /* set the VF doorbell threshold */
16899    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16900#endif
16901}
16902
16903/* send a NIG loopback debug packet */
16904static void
16905bxe_lb_pckt(struct bxe_softc *sc)
16906{
16907    uint32_t wb_write[3];
16908
16909    /* Ethernet source and destination addresses */
16910    wb_write[0] = 0x55555555;
16911    wb_write[1] = 0x55555555;
16912    wb_write[2] = 0x20;     /* SOP */
16913    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16914
16915    /* NON-IP protocol */
16916    wb_write[0] = 0x09000000;
16917    wb_write[1] = 0x55555555;
16918    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16919    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16920}
16921
16922/*
16923 * Some of the internal memories are not directly readable from the driver.
16924 * To test them we send debug packets.
16925 */
16926static int
16927bxe_int_mem_test(struct bxe_softc *sc)
16928{
16929    int factor;
16930    int count, i;
16931    uint32_t val = 0;
16932
16933    if (CHIP_REV_IS_FPGA(sc)) {
16934        factor = 120;
16935    } else if (CHIP_REV_IS_EMUL(sc)) {
16936        factor = 200;
16937    } else {
16938        factor = 1;
16939    }
16940
16941    /* disable inputs of parser neighbor blocks */
16942    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16943    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16944    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16945    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16946
16947    /*  write 0 to parser credits for CFC search request */
16948    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16949
16950    /* send Ethernet packet */
16951    bxe_lb_pckt(sc);
16952
16953    /* TODO do i reset NIG statistic? */
16954    /* Wait until NIG register shows 1 packet of size 0x10 */
16955    count = 1000 * factor;
16956    while (count) {
16957        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16958        val = *BXE_SP(sc, wb_data[0]);
16959        if (val == 0x10) {
16960            break;
16961        }
16962
16963        DELAY(10000);
16964        count--;
16965    }
16966
16967    if (val != 0x10) {
16968        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16969        return (-1);
16970    }
16971
16972    /* wait until PRS register shows 1 packet */
16973    count = (1000 * factor);
16974    while (count) {
16975        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16976        if (val == 1) {
16977            break;
16978        }
16979
16980        DELAY(10000);
16981        count--;
16982    }
16983
16984    if (val != 0x1) {
16985        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16986        return (-2);
16987    }
16988
16989    /* Reset and init BRB, PRS */
16990    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16991    DELAY(50000);
16992    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16993    DELAY(50000);
16994    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16995    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16996
16997    /* Disable inputs of parser neighbor blocks */
16998    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16999    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
17000    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
17001    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
17002
17003    /* Write 0 to parser credits for CFC search request */
17004    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
17005
17006    /* send 10 Ethernet packets */
17007    for (i = 0; i < 10; i++) {
17008        bxe_lb_pckt(sc);
17009    }
17010
17011    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
17012    count = (1000 * factor);
17013    while (count) {
17014        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17015        val = *BXE_SP(sc, wb_data[0]);
17016        if (val == 0xb0) {
17017            break;
17018        }
17019
17020        DELAY(10000);
17021        count--;
17022    }
17023
17024    if (val != 0xb0) {
17025        BLOGE(sc, "NIG timeout val=0x%x\n", val);
17026        return (-3);
17027    }
17028
17029    /* Wait until PRS register shows 2 packets */
17030    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17031    if (val != 2) {
17032        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17033    }
17034
17035    /* Write 1 to parser credits for CFC search request */
17036    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17037
17038    /* Wait until PRS register shows 3 packets */
17039    DELAY(10000 * factor);
17040
17041    /* Wait until NIG register shows 1 packet of size 0x10 */
17042    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17043    if (val != 3) {
17044        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17045    }
17046
17047    /* clear NIG EOP FIFO */
17048    for (i = 0; i < 11; i++) {
17049        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17050    }
17051
17052    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17053    if (val != 1) {
17054        BLOGE(sc, "clear of NIG failed\n");
17055        return (-4);
17056    }
17057
17058    /* Reset and init BRB, PRS, NIG */
17059    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17060    DELAY(50000);
17061    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17062    DELAY(50000);
17063    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17064    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17065    if (!CNIC_SUPPORT(sc)) {
17066        /* set NIC mode */
17067        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17068    }
17069
17070    /* Enable inputs of parser neighbor blocks */
17071    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17072    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17073    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17074    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17075
17076    return (0);
17077}
17078
17079static void
17080bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17081{
17082    int is_required;
17083    uint32_t val;
17084    int port;
17085
17086    is_required = 0;
17087    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17088           SHARED_HW_CFG_FAN_FAILURE_MASK);
17089
17090    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17091        is_required = 1;
17092    }
17093    /*
17094     * The fan failure mechanism is usually related to the PHY type since
17095     * the power consumption of the board is affected by the PHY. Currently,
17096     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17097     */
17098    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17099        for (port = PORT_0; port < PORT_MAX; port++) {
17100            is_required |= elink_fan_failure_det_req(sc,
17101                                                     sc->devinfo.shmem_base,
17102                                                     sc->devinfo.shmem2_base,
17103                                                     port);
17104        }
17105    }
17106
17107    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17108
17109    if (is_required == 0) {
17110        return;
17111    }
17112
17113    /* Fan failure is indicated by SPIO 5 */
17114    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17115
17116    /* set to active low mode */
17117    val = REG_RD(sc, MISC_REG_SPIO_INT);
17118    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17119    REG_WR(sc, MISC_REG_SPIO_INT, val);
17120
17121    /* enable interrupt to signal the IGU */
17122    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17123    val |= MISC_SPIO_SPIO5;
17124    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17125}
17126
17127static void
17128bxe_enable_blocks_attention(struct bxe_softc *sc)
17129{
17130    uint32_t val;
17131
17132    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17133    if (!CHIP_IS_E1x(sc)) {
17134        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17135    } else {
17136        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17137    }
17138    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17139    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17140    /*
17141     * mask read length error interrupts in brb for parser
17142     * (parsing unit and 'checksum and crc' unit)
17143     * these errors are legal (PU reads fixed length and CAC can cause
17144     * read length error on truncated packets)
17145     */
17146    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17147    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17148    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17149    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17150    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17151    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17152/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17153/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17154    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17155    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17156    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17157/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17158/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17159    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17160    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17161    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17162    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17163/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17164/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17165
17166    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17167           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17168           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17169    if (!CHIP_IS_E1x(sc)) {
17170        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17171                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17172    }
17173    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17174
17175    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17176    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17177    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17178/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17179
17180    if (!CHIP_IS_E1x(sc)) {
17181        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17182        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17183    }
17184
17185    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17186    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17187/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17188    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17189}
17190
17191/**
17192 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17193 *
17194 * @sc:     driver handle
17195 */
17196static int
17197bxe_init_hw_common(struct bxe_softc *sc)
17198{
17199    uint8_t abs_func_id;
17200    uint32_t val;
17201
17202    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17203          SC_ABS_FUNC(sc));
17204
17205    /*
17206     * take the RESET lock to protect undi_unload flow from accessing
17207     * registers while we are resetting the chip
17208     */
17209    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17210
17211    bxe_reset_common(sc);
17212
17213    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17214
17215    val = 0xfffc;
17216    if (CHIP_IS_E3(sc)) {
17217        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17218        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17219    }
17220
17221    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17222
17223    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17224
17225    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17226    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17227
17228    if (!CHIP_IS_E1x(sc)) {
17229        /*
17230         * 4-port mode or 2-port mode we need to turn off master-enable for
17231         * everyone. After that we turn it back on for self. So, we disregard
17232         * multi-function, and always disable all functions on the given path,
17233         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17234         */
17235        for (abs_func_id = SC_PATH(sc);
17236             abs_func_id < (E2_FUNC_MAX * 2);
17237             abs_func_id += 2) {
17238            if (abs_func_id == SC_ABS_FUNC(sc)) {
17239                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17240                continue;
17241            }
17242
17243            bxe_pretend_func(sc, abs_func_id);
17244
17245            /* clear pf enable */
17246            bxe_pf_disable(sc);
17247
17248            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17249        }
17250    }
17251
17252    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17253
17254    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17255
17256    if (CHIP_IS_E1(sc)) {
17257        /*
17258         * enable HW interrupt from PXP on USDM overflow
17259         * bit 16 on INT_MASK_0
17260         */
17261        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17262    }
17263
17264    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17265    bxe_init_pxp(sc);
17266
17267#ifdef __BIG_ENDIAN
17268    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17269    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17270    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17271    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17272    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17273    /* make sure this value is 0 */
17274    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17275
17276    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17277    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17278    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17279    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17280    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17281#endif
17282
17283    ecore_ilt_init_page_size(sc, INITOP_SET);
17284
17285    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17286        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17287    }
17288
17289    /* let the HW do it's magic... */
17290    DELAY(100000);
17291
17292    /* finish PXP init */
17293    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17294    if (val != 1) {
17295        BLOGE(sc, "PXP2 CFG failed\n");
17296        return (-1);
17297    }
17298    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17299    if (val != 1) {
17300        BLOGE(sc, "PXP2 RD_INIT failed\n");
17301        return (-1);
17302    }
17303
17304    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17305
17306    /*
17307     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17308     * entries with value "0" and valid bit on. This needs to be done by the
17309     * first PF that is loaded in a path (i.e. common phase)
17310     */
17311    if (!CHIP_IS_E1x(sc)) {
17312/*
17313 * In E2 there is a bug in the timers block that can cause function 6 / 7
17314 * (i.e. vnic3) to start even if it is marked as "scan-off".
17315 * This occurs when a different function (func2,3) is being marked
17316 * as "scan-off". Real-life scenario for example: if a driver is being
17317 * load-unloaded while func6,7 are down. This will cause the timer to access
17318 * the ilt, translate to a logical address and send a request to read/write.
17319 * Since the ilt for the function that is down is not valid, this will cause
17320 * a translation error which is unrecoverable.
17321 * The Workaround is intended to make sure that when this happens nothing
17322 * fatal will occur. The workaround:
17323 *  1.  First PF driver which loads on a path will:
17324 *      a.  After taking the chip out of reset, by using pretend,
17325 *          it will write "0" to the following registers of
17326 *          the other vnics.
17327 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17328 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17329 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17330 *          And for itself it will write '1' to
17331 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17332 *          dmae-operations (writing to pram for example.)
17333 *          note: can be done for only function 6,7 but cleaner this
17334 *            way.
17335 *      b.  Write zero+valid to the entire ILT.
17336 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17337 *          VNIC3 (of that port). The range allocated will be the
17338 *          entire ILT. This is needed to prevent  ILT range error.
17339 *  2.  Any PF driver load flow:
17340 *      a.  ILT update with the physical addresses of the allocated
17341 *          logical pages.
17342 *      b.  Wait 20msec. - note that this timeout is needed to make
17343 *          sure there are no requests in one of the PXP internal
17344 *          queues with "old" ILT addresses.
17345 *      c.  PF enable in the PGLC.
17346 *      d.  Clear the was_error of the PF in the PGLC. (could have
17347 *          occurred while driver was down)
17348 *      e.  PF enable in the CFC (WEAK + STRONG)
17349 *      f.  Timers scan enable
17350 *  3.  PF driver unload flow:
17351 *      a.  Clear the Timers scan_en.
17352 *      b.  Polling for scan_on=0 for that PF.
17353 *      c.  Clear the PF enable bit in the PXP.
17354 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17355 *      e.  Write zero+valid to all ILT entries (The valid bit must
17356 *          stay set)
17357 *      f.  If this is VNIC 3 of a port then also init
17358 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17359 *          to the last enrty in the ILT.
17360 *
17361 *      Notes:
17362 *      Currently the PF error in the PGLC is non recoverable.
17363 *      In the future the there will be a recovery routine for this error.
17364 *      Currently attention is masked.
17365 *      Having an MCP lock on the load/unload process does not guarantee that
17366 *      there is no Timer disable during Func6/7 enable. This is because the
17367 *      Timers scan is currently being cleared by the MCP on FLR.
17368 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17369 *      there is error before clearing it. But the flow above is simpler and
17370 *      more general.
17371 *      All ILT entries are written by zero+valid and not just PF6/7
17372 *      ILT entries since in the future the ILT entries allocation for
17373 *      PF-s might be dynamic.
17374 */
17375        struct ilt_client_info ilt_cli;
17376        struct ecore_ilt ilt;
17377
17378        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17379        memset(&ilt, 0, sizeof(struct ecore_ilt));
17380
17381        /* initialize dummy TM client */
17382        ilt_cli.start      = 0;
17383        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17384        ilt_cli.client_num = ILT_CLIENT_TM;
17385
17386        /*
17387         * Step 1: set zeroes to all ilt page entries with valid bit on
17388         * Step 2: set the timers first/last ilt entry to point
17389         * to the entire range to prevent ILT range error for 3rd/4th
17390         * vnic (this code assumes existence of the vnic)
17391         *
17392         * both steps performed by call to ecore_ilt_client_init_op()
17393         * with dummy TM client
17394         *
17395         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17396         * and his brother are split registers
17397         */
17398
17399        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17400        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17401        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17402
17403        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17404        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17405        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17406    }
17407
17408    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17409    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17410
17411    if (!CHIP_IS_E1x(sc)) {
17412        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17413                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17414
17415        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17416        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17417
17418        /* let the HW do it's magic... */
17419        do {
17420            DELAY(200000);
17421            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17422        } while (factor-- && (val != 1));
17423
17424        if (val != 1) {
17425            BLOGE(sc, "ATC_INIT failed\n");
17426            return (-1);
17427        }
17428    }
17429
17430    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17431
17432    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17433
17434    bxe_iov_init_dmae(sc);
17435
17436    /* clean the DMAE memory */
17437    sc->dmae_ready = 1;
17438    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17439
17440    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17441
17442    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17443
17444    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17445
17446    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17447
17448    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17449    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17450    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17451    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17452
17453    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17454
17455    /* QM queues pointers table */
17456    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17457
17458    /* soft reset pulse */
17459    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17460    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17461
17462    if (CNIC_SUPPORT(sc))
17463        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17464
17465    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17466    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17467    if (!CHIP_REV_IS_SLOW(sc)) {
17468        /* enable hw interrupt from doorbell Q */
17469        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17470    }
17471
17472    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17473
17474    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17475    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17476
17477    if (!CHIP_IS_E1(sc)) {
17478        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17479    }
17480
17481    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17482        if (IS_MF_AFEX(sc)) {
17483            /*
17484             * configure that AFEX and VLAN headers must be
17485             * received in AFEX mode
17486             */
17487            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17488            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17489            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17490            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17491            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17492        } else {
17493            /*
17494             * Bit-map indicating which L2 hdrs may appear
17495             * after the basic Ethernet header
17496             */
17497            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17498                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17499        }
17500    }
17501
17502    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17503    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17504    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17505    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17506
17507    if (!CHIP_IS_E1x(sc)) {
17508        /* reset VFC memories */
17509        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17510               VFC_MEMORIES_RST_REG_CAM_RST |
17511               VFC_MEMORIES_RST_REG_RAM_RST);
17512        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17513               VFC_MEMORIES_RST_REG_CAM_RST |
17514               VFC_MEMORIES_RST_REG_RAM_RST);
17515
17516        DELAY(20000);
17517    }
17518
17519    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17520    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17521    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17522    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17523
17524    /* sync semi rtc */
17525    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17526           0x80000000);
17527    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17528           0x80000000);
17529
17530    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17531    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17532    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17533
17534    if (!CHIP_IS_E1x(sc)) {
17535        if (IS_MF_AFEX(sc)) {
17536            /*
17537             * configure that AFEX and VLAN headers must be
17538             * sent in AFEX mode
17539             */
17540            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17541            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17542            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17543            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17544            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17545        } else {
17546            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17547                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17548        }
17549    }
17550
17551    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17552
17553    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17554
17555    if (CNIC_SUPPORT(sc)) {
17556        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17557        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17558        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17559        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17560        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17561        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17562        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17563        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17564        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17565        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17566    }
17567    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17568
17569    if (sizeof(union cdu_context) != 1024) {
17570        /* we currently assume that a context is 1024 bytes */
17571        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17572              (long)sizeof(union cdu_context));
17573    }
17574
17575    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17576    val = (4 << 24) + (0 << 12) + 1024;
17577    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17578
17579    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17580
17581    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17582    /* enable context validation interrupt from CFC */
17583    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17584
17585    /* set the thresholds to prevent CFC/CDU race */
17586    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17587    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17588
17589    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17590        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17591    }
17592
17593    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17594    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17595
17596    /* Reset PCIE errors for debug */
17597    REG_WR(sc, 0x2814, 0xffffffff);
17598    REG_WR(sc, 0x3820, 0xffffffff);
17599
17600    if (!CHIP_IS_E1x(sc)) {
17601        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17602               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17603                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17604        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17605               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17606                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17607                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17608        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17609               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17610                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17611                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17612    }
17613
17614    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17615
17616    if (!CHIP_IS_E1(sc)) {
17617        /* in E3 this done in per-port section */
17618        if (!CHIP_IS_E3(sc))
17619            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17620    }
17621
17622    if (CHIP_IS_E1H(sc)) {
17623        /* not applicable for E2 (and above ...) */
17624        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17625    }
17626
17627    if (CHIP_REV_IS_SLOW(sc)) {
17628        DELAY(200000);
17629    }
17630
17631    /* finish CFC init */
17632    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17633    if (val != 1) {
17634        BLOGE(sc, "CFC LL_INIT failed\n");
17635        return (-1);
17636    }
17637    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17638    if (val != 1) {
17639        BLOGE(sc, "CFC AC_INIT failed\n");
17640        return (-1);
17641    }
17642    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17643    if (val != 1) {
17644        BLOGE(sc, "CFC CAM_INIT failed\n");
17645        return (-1);
17646    }
17647    REG_WR(sc, CFC_REG_DEBUG0, 0);
17648
17649    if (CHIP_IS_E1(sc)) {
17650        /* read NIG statistic to see if this is our first up since powerup */
17651        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17652        val = *BXE_SP(sc, wb_data[0]);
17653
17654        /* do internal memory self test */
17655        if ((val == 0) && bxe_int_mem_test(sc)) {
17656            BLOGE(sc, "internal mem self test failed\n");
17657            return (-1);
17658        }
17659    }
17660
17661    bxe_setup_fan_failure_detection(sc);
17662
17663    /* clear PXP2 attentions */
17664    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17665
17666    bxe_enable_blocks_attention(sc);
17667
17668    if (!CHIP_REV_IS_SLOW(sc)) {
17669        ecore_enable_blocks_parity(sc);
17670    }
17671
17672    if (!BXE_NOMCP(sc)) {
17673        if (CHIP_IS_E1x(sc)) {
17674            bxe_common_init_phy(sc);
17675        }
17676    }
17677
17678    return (0);
17679}
17680
17681/**
17682 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17683 *
17684 * @sc:     driver handle
17685 */
17686static int
17687bxe_init_hw_common_chip(struct bxe_softc *sc)
17688{
17689    int rc = bxe_init_hw_common(sc);
17690
17691    if (rc) {
17692        return (rc);
17693    }
17694
17695    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17696    if (!BXE_NOMCP(sc)) {
17697        bxe_common_init_phy(sc);
17698    }
17699
17700    return (0);
17701}
17702
17703static int
17704bxe_init_hw_port(struct bxe_softc *sc)
17705{
17706    int port = SC_PORT(sc);
17707    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17708    uint32_t low, high;
17709    uint32_t val;
17710
17711    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17712
17713    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17714
17715    ecore_init_block(sc, BLOCK_MISC, init_phase);
17716    ecore_init_block(sc, BLOCK_PXP, init_phase);
17717    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17718
17719    /*
17720     * Timers bug workaround: disables the pf_master bit in pglue at
17721     * common phase, we need to enable it here before any dmae access are
17722     * attempted. Therefore we manually added the enable-master to the
17723     * port phase (it also happens in the function phase)
17724     */
17725    if (!CHIP_IS_E1x(sc)) {
17726        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17727    }
17728
17729    ecore_init_block(sc, BLOCK_ATC, init_phase);
17730    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17731    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17732    ecore_init_block(sc, BLOCK_QM, init_phase);
17733
17734    ecore_init_block(sc, BLOCK_TCM, init_phase);
17735    ecore_init_block(sc, BLOCK_UCM, init_phase);
17736    ecore_init_block(sc, BLOCK_CCM, init_phase);
17737    ecore_init_block(sc, BLOCK_XCM, init_phase);
17738
17739    /* QM cid (connection) count */
17740    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17741
17742    if (CNIC_SUPPORT(sc)) {
17743        ecore_init_block(sc, BLOCK_TM, init_phase);
17744        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17745        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17746    }
17747
17748    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17749
17750    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17751
17752    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17753        if (IS_MF(sc)) {
17754            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17755        } else if (sc->mtu > 4096) {
17756            if (BXE_ONE_PORT(sc)) {
17757                low = 160;
17758            } else {
17759                val = sc->mtu;
17760                /* (24*1024 + val*4)/256 */
17761                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17762            }
17763        } else {
17764            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17765        }
17766        high = (low + 56); /* 14*1024/256 */
17767        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17768        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17769    }
17770
17771    if (CHIP_IS_MODE_4_PORT(sc)) {
17772        REG_WR(sc, SC_PORT(sc) ?
17773               BRB1_REG_MAC_GUARANTIED_1 :
17774               BRB1_REG_MAC_GUARANTIED_0, 40);
17775    }
17776
17777    ecore_init_block(sc, BLOCK_PRS, init_phase);
17778    if (CHIP_IS_E3B0(sc)) {
17779        if (IS_MF_AFEX(sc)) {
17780            /* configure headers for AFEX mode */
17781            REG_WR(sc, SC_PORT(sc) ?
17782                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17783                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17784            REG_WR(sc, SC_PORT(sc) ?
17785                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17786                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17787            REG_WR(sc, SC_PORT(sc) ?
17788                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17789                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17790        } else {
17791            /* Ovlan exists only if we are in multi-function +
17792             * switch-dependent mode, in switch-independent there
17793             * is no ovlan headers
17794             */
17795            REG_WR(sc, SC_PORT(sc) ?
17796                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17797                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17798                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17799        }
17800    }
17801
17802    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17803    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17804    ecore_init_block(sc, BLOCK_USDM, init_phase);
17805    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17806
17807    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17808    ecore_init_block(sc, BLOCK_USEM, init_phase);
17809    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17810    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17811
17812    ecore_init_block(sc, BLOCK_UPB, init_phase);
17813    ecore_init_block(sc, BLOCK_XPB, init_phase);
17814
17815    ecore_init_block(sc, BLOCK_PBF, init_phase);
17816
17817    if (CHIP_IS_E1x(sc)) {
17818        /* configure PBF to work without PAUSE mtu 9000 */
17819        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17820
17821        /* update threshold */
17822        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17823        /* update init credit */
17824        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17825
17826        /* probe changes */
17827        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17828        DELAY(50);
17829        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17830    }
17831
17832    if (CNIC_SUPPORT(sc)) {
17833        ecore_init_block(sc, BLOCK_SRC, init_phase);
17834    }
17835
17836    ecore_init_block(sc, BLOCK_CDU, init_phase);
17837    ecore_init_block(sc, BLOCK_CFC, init_phase);
17838
17839    if (CHIP_IS_E1(sc)) {
17840        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17841        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17842    }
17843    ecore_init_block(sc, BLOCK_HC, init_phase);
17844
17845    ecore_init_block(sc, BLOCK_IGU, init_phase);
17846
17847    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17848    /* init aeu_mask_attn_func_0/1:
17849     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17850     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17851     *             bits 4-7 are used for "per vn group attention" */
17852    val = IS_MF(sc) ? 0xF7 : 0x7;
17853    /* Enable DCBX attention for all but E1 */
17854    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17855    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17856
17857    ecore_init_block(sc, BLOCK_NIG, init_phase);
17858
17859    if (!CHIP_IS_E1x(sc)) {
17860        /* Bit-map indicating which L2 hdrs may appear after the
17861         * basic Ethernet header
17862         */
17863        if (IS_MF_AFEX(sc)) {
17864            REG_WR(sc, SC_PORT(sc) ?
17865                   NIG_REG_P1_HDRS_AFTER_BASIC :
17866                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17867        } else {
17868            REG_WR(sc, SC_PORT(sc) ?
17869                   NIG_REG_P1_HDRS_AFTER_BASIC :
17870                   NIG_REG_P0_HDRS_AFTER_BASIC,
17871                   IS_MF_SD(sc) ? 7 : 6);
17872        }
17873
17874        if (CHIP_IS_E3(sc)) {
17875            REG_WR(sc, SC_PORT(sc) ?
17876                   NIG_REG_LLH1_MF_MODE :
17877                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17878        }
17879    }
17880    if (!CHIP_IS_E3(sc)) {
17881        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17882    }
17883
17884    if (!CHIP_IS_E1(sc)) {
17885        /* 0x2 disable mf_ov, 0x1 enable */
17886        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17887               (IS_MF_SD(sc) ? 0x1 : 0x2));
17888
17889        if (!CHIP_IS_E1x(sc)) {
17890            val = 0;
17891            switch (sc->devinfo.mf_info.mf_mode) {
17892            case MULTI_FUNCTION_SD:
17893                val = 1;
17894                break;
17895            case MULTI_FUNCTION_SI:
17896            case MULTI_FUNCTION_AFEX:
17897                val = 2;
17898                break;
17899            }
17900
17901            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17902                        NIG_REG_LLH0_CLS_TYPE), val);
17903        }
17904        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17905        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17906        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17907    }
17908
17909    /* If SPIO5 is set to generate interrupts, enable it for this port */
17910    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17911    if (val & MISC_SPIO_SPIO5) {
17912        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17913                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17914        val = REG_RD(sc, reg_addr);
17915        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17916        REG_WR(sc, reg_addr, val);
17917    }
17918
17919    return (0);
17920}
17921
17922static uint32_t
17923bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17924                       uint32_t         reg,
17925                       uint32_t         expected,
17926                       uint32_t         poll_count)
17927{
17928    uint32_t cur_cnt = poll_count;
17929    uint32_t val;
17930
17931    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17932        DELAY(FLR_WAIT_INTERVAL);
17933    }
17934
17935    return (val);
17936}
17937
17938static int
17939bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17940                              uint32_t         reg,
17941                              char             *msg,
17942                              uint32_t         poll_cnt)
17943{
17944    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17945
17946    if (val != 0) {
17947        BLOGE(sc, "%s usage count=%d\n", msg, val);
17948        return (1);
17949    }
17950
17951    return (0);
17952}
17953
17954/* Common routines with VF FLR cleanup */
17955static uint32_t
17956bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17957{
17958    /* adjust polling timeout */
17959    if (CHIP_REV_IS_EMUL(sc)) {
17960        return (FLR_POLL_CNT * 2000);
17961    }
17962
17963    if (CHIP_REV_IS_FPGA(sc)) {
17964        return (FLR_POLL_CNT * 120);
17965    }
17966
17967    return (FLR_POLL_CNT);
17968}
17969
17970static int
17971bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17972                           uint32_t         poll_cnt)
17973{
17974    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17975    if (bxe_flr_clnup_poll_hw_counter(sc,
17976                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17977                                      "CFC PF usage counter timed out",
17978                                      poll_cnt)) {
17979        return (1);
17980    }
17981
17982    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17983    if (bxe_flr_clnup_poll_hw_counter(sc,
17984                                      DORQ_REG_PF_USAGE_CNT,
17985                                      "DQ PF usage counter timed out",
17986                                      poll_cnt)) {
17987        return (1);
17988    }
17989
17990    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17991    if (bxe_flr_clnup_poll_hw_counter(sc,
17992                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17993                                      "QM PF usage counter timed out",
17994                                      poll_cnt)) {
17995        return (1);
17996    }
17997
17998    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17999    if (bxe_flr_clnup_poll_hw_counter(sc,
18000                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
18001                                      "Timers VNIC usage counter timed out",
18002                                      poll_cnt)) {
18003        return (1);
18004    }
18005
18006    if (bxe_flr_clnup_poll_hw_counter(sc,
18007                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
18008                                      "Timers NUM_SCANS usage counter timed out",
18009                                      poll_cnt)) {
18010        return (1);
18011    }
18012
18013    /* Wait DMAE PF usage counter to zero */
18014    if (bxe_flr_clnup_poll_hw_counter(sc,
18015                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
18016                                      "DMAE dommand register timed out",
18017                                      poll_cnt)) {
18018        return (1);
18019    }
18020
18021    return (0);
18022}
18023
18024#define OP_GEN_PARAM(param)                                            \
18025    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18026#define OP_GEN_TYPE(type)                                           \
18027    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18028#define OP_GEN_AGG_VECT(index)                                             \
18029    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18030
18031static int
18032bxe_send_final_clnup(struct bxe_softc *sc,
18033                     uint8_t          clnup_func,
18034                     uint32_t         poll_cnt)
18035{
18036    uint32_t op_gen_command = 0;
18037    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18038                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18039    int ret = 0;
18040
18041    if (REG_RD(sc, comp_addr)) {
18042        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18043        return (1);
18044    }
18045
18046    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18047    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18048    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18049    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18050
18051    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18052    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18053
18054    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18055        BLOGE(sc, "FW final cleanup did not succeed\n");
18056        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18057              (REG_RD(sc, comp_addr)));
18058        bxe_panic(sc, ("FLR cleanup failed\n"));
18059        return (1);
18060    }
18061
18062    /* Zero completion for nxt FLR */
18063    REG_WR(sc, comp_addr, 0);
18064
18065    return (ret);
18066}
18067
18068static void
18069bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18070                       struct pbf_pN_buf_regs *regs,
18071                       uint32_t               poll_count)
18072{
18073    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18074    uint32_t cur_cnt = poll_count;
18075
18076    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18077    crd = crd_start = REG_RD(sc, regs->crd);
18078    init_crd = REG_RD(sc, regs->init_crd);
18079
18080    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18081    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18082    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18083
18084    while ((crd != init_crd) &&
18085           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18086            (init_crd - crd_start))) {
18087        if (cur_cnt--) {
18088            DELAY(FLR_WAIT_INTERVAL);
18089            crd = REG_RD(sc, regs->crd);
18090            crd_freed = REG_RD(sc, regs->crd_freed);
18091        } else {
18092            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18093            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18094            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18095            break;
18096        }
18097    }
18098
18099    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18100          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18101}
18102
18103static void
18104bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18105                       struct pbf_pN_cmd_regs *regs,
18106                       uint32_t               poll_count)
18107{
18108    uint32_t occup, to_free, freed, freed_start;
18109    uint32_t cur_cnt = poll_count;
18110
18111    occup = to_free = REG_RD(sc, regs->lines_occup);
18112    freed = freed_start = REG_RD(sc, regs->lines_freed);
18113
18114    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18115    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18116
18117    while (occup &&
18118           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18119        if (cur_cnt--) {
18120            DELAY(FLR_WAIT_INTERVAL);
18121            occup = REG_RD(sc, regs->lines_occup);
18122            freed = REG_RD(sc, regs->lines_freed);
18123        } else {
18124            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18125            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18126            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18127            break;
18128        }
18129    }
18130
18131    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18132          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18133}
18134
18135static void
18136bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18137{
18138    struct pbf_pN_cmd_regs cmd_regs[] = {
18139        {0, (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_TQ_OCCUPANCY_Q0 :
18141            PBF_REG_P0_TQ_OCCUPANCY,
18142            (CHIP_IS_E3B0(sc)) ?
18143            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18144            PBF_REG_P0_TQ_LINES_FREED_CNT},
18145        {1, (CHIP_IS_E3B0(sc)) ?
18146            PBF_REG_TQ_OCCUPANCY_Q1 :
18147            PBF_REG_P1_TQ_OCCUPANCY,
18148            (CHIP_IS_E3B0(sc)) ?
18149            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18150            PBF_REG_P1_TQ_LINES_FREED_CNT},
18151        {4, (CHIP_IS_E3B0(sc)) ?
18152            PBF_REG_TQ_OCCUPANCY_LB_Q :
18153            PBF_REG_P4_TQ_OCCUPANCY,
18154            (CHIP_IS_E3B0(sc)) ?
18155            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18156            PBF_REG_P4_TQ_LINES_FREED_CNT}
18157    };
18158
18159    struct pbf_pN_buf_regs buf_regs[] = {
18160        {0, (CHIP_IS_E3B0(sc)) ?
18161            PBF_REG_INIT_CRD_Q0 :
18162            PBF_REG_P0_INIT_CRD ,
18163            (CHIP_IS_E3B0(sc)) ?
18164            PBF_REG_CREDIT_Q0 :
18165            PBF_REG_P0_CREDIT,
18166            (CHIP_IS_E3B0(sc)) ?
18167            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18168            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18169        {1, (CHIP_IS_E3B0(sc)) ?
18170            PBF_REG_INIT_CRD_Q1 :
18171            PBF_REG_P1_INIT_CRD,
18172            (CHIP_IS_E3B0(sc)) ?
18173            PBF_REG_CREDIT_Q1 :
18174            PBF_REG_P1_CREDIT,
18175            (CHIP_IS_E3B0(sc)) ?
18176            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18177            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18178        {4, (CHIP_IS_E3B0(sc)) ?
18179            PBF_REG_INIT_CRD_LB_Q :
18180            PBF_REG_P4_INIT_CRD,
18181            (CHIP_IS_E3B0(sc)) ?
18182            PBF_REG_CREDIT_LB_Q :
18183            PBF_REG_P4_CREDIT,
18184            (CHIP_IS_E3B0(sc)) ?
18185            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18186            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18187    };
18188
18189    int i;
18190
18191    /* Verify the command queues are flushed P0, P1, P4 */
18192    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18193        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18194    }
18195
18196    /* Verify the transmission buffers are flushed P0, P1, P4 */
18197    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18198        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18199    }
18200}
18201
18202static void
18203bxe_hw_enable_status(struct bxe_softc *sc)
18204{
18205    uint32_t val;
18206
18207    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18208    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18209
18210    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18211    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18212
18213    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18214    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18215
18216    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18217    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18218
18219    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18220    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18221
18222    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18223    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18224
18225    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18226    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18227
18228    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18229    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18230}
18231
18232static int
18233bxe_pf_flr_clnup(struct bxe_softc *sc)
18234{
18235    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18236
18237    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18238
18239    /* Re-enable PF target read access */
18240    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18241
18242    /* Poll HW usage counters */
18243    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18244    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18245        return (-1);
18246    }
18247
18248    /* Zero the igu 'trailing edge' and 'leading edge' */
18249
18250    /* Send the FW cleanup command */
18251    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18252        return (-1);
18253    }
18254
18255    /* ATC cleanup */
18256
18257    /* Verify TX hw is flushed */
18258    bxe_tx_hw_flushed(sc, poll_cnt);
18259
18260    /* Wait 100ms (not adjusted according to platform) */
18261    DELAY(100000);
18262
18263    /* Verify no pending pci transactions */
18264    if (bxe_is_pcie_pending(sc)) {
18265        BLOGE(sc, "PCIE Transactions still pending\n");
18266    }
18267
18268    /* Debug */
18269    bxe_hw_enable_status(sc);
18270
18271    /*
18272     * Master enable - Due to WB DMAE writes performed before this
18273     * register is re-initialized as part of the regular function init
18274     */
18275    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18276
18277    return (0);
18278}
18279
18280#if 0
18281static void
18282bxe_init_searcher(struct bxe_softc *sc)
18283{
18284    int port = SC_PORT(sc);
18285    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18286    /* T1 hash bits value determines the T1 number of entries */
18287    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18288}
18289#endif
18290
18291static int
18292bxe_init_hw_func(struct bxe_softc *sc)
18293{
18294    int port = SC_PORT(sc);
18295    int func = SC_FUNC(sc);
18296    int init_phase = PHASE_PF0 + func;
18297    struct ecore_ilt *ilt = sc->ilt;
18298    uint16_t cdu_ilt_start;
18299    uint32_t addr, val;
18300    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18301    int i, main_mem_width, rc;
18302
18303    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18304
18305    /* FLR cleanup */
18306    if (!CHIP_IS_E1x(sc)) {
18307        rc = bxe_pf_flr_clnup(sc);
18308        if (rc) {
18309            BLOGE(sc, "FLR cleanup failed!\n");
18310            // XXX bxe_fw_dump(sc);
18311            // XXX bxe_idle_chk(sc);
18312            return (rc);
18313        }
18314    }
18315
18316    /* set MSI reconfigure capability */
18317    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18318        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18319        val = REG_RD(sc, addr);
18320        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18321        REG_WR(sc, addr, val);
18322    }
18323
18324    ecore_init_block(sc, BLOCK_PXP, init_phase);
18325    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18326
18327    ilt = sc->ilt;
18328    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18329
18330#if 0
18331    if (IS_SRIOV(sc)) {
18332        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18333    }
18334    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18335
18336#if (BXE_FIRST_VF_CID > 0)
18337    /*
18338     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18339     * those of the VFs, so start line should be reset
18340     */
18341    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18342#endif
18343#endif
18344
18345    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18346        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18347        ilt->lines[cdu_ilt_start + i].page_mapping =
18348            sc->context[i].vcxt_dma.paddr;
18349        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18350    }
18351    ecore_ilt_init_op(sc, INITOP_SET);
18352
18353#if 0
18354    if (!CONFIGURE_NIC_MODE(sc)) {
18355        bxe_init_searcher(sc);
18356        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18357        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18358    } else
18359#endif
18360    {
18361        /* Set NIC mode */
18362        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18363        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18364    }
18365
18366    if (!CHIP_IS_E1x(sc)) {
18367        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18368
18369        /* Turn on a single ISR mode in IGU if driver is going to use
18370         * INT#x or MSI
18371         */
18372        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18373            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18374        }
18375
18376        /*
18377         * Timers workaround bug: function init part.
18378         * Need to wait 20msec after initializing ILT,
18379         * needed to make sure there are no requests in
18380         * one of the PXP internal queues with "old" ILT addresses
18381         */
18382        DELAY(20000);
18383
18384        /*
18385         * Master enable - Due to WB DMAE writes performed before this
18386         * register is re-initialized as part of the regular function
18387         * init
18388         */
18389        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18390        /* Enable the function in IGU */
18391        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18392    }
18393
18394    sc->dmae_ready = 1;
18395
18396    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18397
18398    if (!CHIP_IS_E1x(sc))
18399        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18400
18401    ecore_init_block(sc, BLOCK_ATC, init_phase);
18402    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18403    ecore_init_block(sc, BLOCK_NIG, init_phase);
18404    ecore_init_block(sc, BLOCK_SRC, init_phase);
18405    ecore_init_block(sc, BLOCK_MISC, init_phase);
18406    ecore_init_block(sc, BLOCK_TCM, init_phase);
18407    ecore_init_block(sc, BLOCK_UCM, init_phase);
18408    ecore_init_block(sc, BLOCK_CCM, init_phase);
18409    ecore_init_block(sc, BLOCK_XCM, init_phase);
18410    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18411    ecore_init_block(sc, BLOCK_USEM, init_phase);
18412    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18413    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18414
18415    if (!CHIP_IS_E1x(sc))
18416        REG_WR(sc, QM_REG_PF_EN, 1);
18417
18418    if (!CHIP_IS_E1x(sc)) {
18419        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18420        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18421        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18422        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18423    }
18424    ecore_init_block(sc, BLOCK_QM, init_phase);
18425
18426    ecore_init_block(sc, BLOCK_TM, init_phase);
18427    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18428
18429    bxe_iov_init_dq(sc);
18430
18431    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18432    ecore_init_block(sc, BLOCK_PRS, init_phase);
18433    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18434    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18435    ecore_init_block(sc, BLOCK_USDM, init_phase);
18436    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18437    ecore_init_block(sc, BLOCK_UPB, init_phase);
18438    ecore_init_block(sc, BLOCK_XPB, init_phase);
18439    ecore_init_block(sc, BLOCK_PBF, init_phase);
18440    if (!CHIP_IS_E1x(sc))
18441        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18442
18443    ecore_init_block(sc, BLOCK_CDU, init_phase);
18444
18445    ecore_init_block(sc, BLOCK_CFC, init_phase);
18446
18447    if (!CHIP_IS_E1x(sc))
18448        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18449
18450    if (IS_MF(sc)) {
18451        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18452        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18453    }
18454
18455    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18456
18457    /* HC init per function */
18458    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18459        if (CHIP_IS_E1H(sc)) {
18460            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18461
18462            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18463            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18464        }
18465        ecore_init_block(sc, BLOCK_HC, init_phase);
18466
18467    } else {
18468        int num_segs, sb_idx, prod_offset;
18469
18470        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18471
18472        if (!CHIP_IS_E1x(sc)) {
18473            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18474            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18475        }
18476
18477        ecore_init_block(sc, BLOCK_IGU, init_phase);
18478
18479        if (!CHIP_IS_E1x(sc)) {
18480            int dsb_idx = 0;
18481            /**
18482             * Producer memory:
18483             * E2 mode: address 0-135 match to the mapping memory;
18484             * 136 - PF0 default prod; 137 - PF1 default prod;
18485             * 138 - PF2 default prod; 139 - PF3 default prod;
18486             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18487             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18488             * 144-147 reserved.
18489             *
18490             * E1.5 mode - In backward compatible mode;
18491             * for non default SB; each even line in the memory
18492             * holds the U producer and each odd line hold
18493             * the C producer. The first 128 producers are for
18494             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18495             * producers are for the DSB for each PF.
18496             * Each PF has five segments: (the order inside each
18497             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18498             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18499             * 144-147 attn prods;
18500             */
18501            /* non-default-status-blocks */
18502            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18503                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18504            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18505                prod_offset = (sc->igu_base_sb + sb_idx) *
18506                    num_segs;
18507
18508                for (i = 0; i < num_segs; i++) {
18509                    addr = IGU_REG_PROD_CONS_MEMORY +
18510                            (prod_offset + i) * 4;
18511                    REG_WR(sc, addr, 0);
18512                }
18513                /* send consumer update with value 0 */
18514                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18515                           USTORM_ID, 0, IGU_INT_NOP, 1);
18516                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18517            }
18518
18519            /* default-status-blocks */
18520            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18521                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18522
18523            if (CHIP_IS_MODE_4_PORT(sc))
18524                dsb_idx = SC_FUNC(sc);
18525            else
18526                dsb_idx = SC_VN(sc);
18527
18528            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18529                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18530                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18531
18532            /*
18533             * igu prods come in chunks of E1HVN_MAX (4) -
18534             * does not matters what is the current chip mode
18535             */
18536            for (i = 0; i < (num_segs * E1HVN_MAX);
18537                 i += E1HVN_MAX) {
18538                addr = IGU_REG_PROD_CONS_MEMORY +
18539                            (prod_offset + i)*4;
18540                REG_WR(sc, addr, 0);
18541            }
18542            /* send consumer update with 0 */
18543            if (CHIP_INT_MODE_IS_BC(sc)) {
18544                bxe_ack_sb(sc, sc->igu_dsb_id,
18545                           USTORM_ID, 0, IGU_INT_NOP, 1);
18546                bxe_ack_sb(sc, sc->igu_dsb_id,
18547                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18548                bxe_ack_sb(sc, sc->igu_dsb_id,
18549                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18550                bxe_ack_sb(sc, sc->igu_dsb_id,
18551                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18552                bxe_ack_sb(sc, sc->igu_dsb_id,
18553                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18554            } else {
18555                bxe_ack_sb(sc, sc->igu_dsb_id,
18556                           USTORM_ID, 0, IGU_INT_NOP, 1);
18557                bxe_ack_sb(sc, sc->igu_dsb_id,
18558                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18559            }
18560            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18561
18562            /* !!! these should become driver const once
18563               rf-tool supports split-68 const */
18564            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18565            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18566            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18567            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18568            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18569            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18570        }
18571    }
18572
18573    /* Reset PCIE errors for debug */
18574    REG_WR(sc, 0x2114, 0xffffffff);
18575    REG_WR(sc, 0x2120, 0xffffffff);
18576
18577    if (CHIP_IS_E1x(sc)) {
18578        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18579        main_mem_base = HC_REG_MAIN_MEMORY +
18580                SC_PORT(sc) * (main_mem_size * 4);
18581        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18582        main_mem_width = 8;
18583
18584        val = REG_RD(sc, main_mem_prty_clr);
18585        if (val) {
18586            BLOGD(sc, DBG_LOAD,
18587                  "Parity errors in HC block during function init (0x%x)!\n",
18588                  val);
18589        }
18590
18591        /* Clear "false" parity errors in MSI-X table */
18592        for (i = main_mem_base;
18593             i < main_mem_base + main_mem_size * 4;
18594             i += main_mem_width) {
18595            bxe_read_dmae(sc, i, main_mem_width / 4);
18596            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18597                           i, main_mem_width / 4);
18598        }
18599        /* Clear HC parity attention */
18600        REG_RD(sc, main_mem_prty_clr);
18601    }
18602
18603#if 1
18604    /* Enable STORMs SP logging */
18605    REG_WR8(sc, BAR_USTRORM_INTMEM +
18606           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18607    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18608           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18609    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18610           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18611    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18612           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18613#endif
18614
18615    elink_phy_probe(&sc->link_params);
18616
18617    return (0);
18618}
18619
18620static void
18621bxe_link_reset(struct bxe_softc *sc)
18622{
18623    if (!BXE_NOMCP(sc)) {
18624        BXE_PHY_LOCK(sc);
18625        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18626        BXE_PHY_UNLOCK(sc);
18627    } else {
18628        if (!CHIP_REV_IS_SLOW(sc)) {
18629            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18630        }
18631    }
18632}
18633
18634static void
18635bxe_reset_port(struct bxe_softc *sc)
18636{
18637    int port = SC_PORT(sc);
18638    uint32_t val;
18639
18640    /* reset physical Link */
18641    bxe_link_reset(sc);
18642
18643    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18644
18645    /* Do not rcv packets to BRB */
18646    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18647    /* Do not direct rcv packets that are not for MCP to the BRB */
18648    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18649               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18650
18651    /* Configure AEU */
18652    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18653
18654    DELAY(100000);
18655
18656    /* Check for BRB port occupancy */
18657    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18658    if (val) {
18659        BLOGD(sc, DBG_LOAD,
18660              "BRB1 is not empty, %d blocks are occupied\n", val);
18661    }
18662
18663    /* TODO: Close Doorbell port? */
18664}
18665
18666static void
18667bxe_ilt_wr(struct bxe_softc *sc,
18668           uint32_t         index,
18669           bus_addr_t       addr)
18670{
18671    int reg;
18672    uint32_t wb_write[2];
18673
18674    if (CHIP_IS_E1(sc)) {
18675        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18676    } else {
18677        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18678    }
18679
18680    wb_write[0] = ONCHIP_ADDR1(addr);
18681    wb_write[1] = ONCHIP_ADDR2(addr);
18682    REG_WR_DMAE(sc, reg, wb_write, 2);
18683}
18684
18685static void
18686bxe_clear_func_ilt(struct bxe_softc *sc,
18687                   uint32_t         func)
18688{
18689    uint32_t i, base = FUNC_ILT_BASE(func);
18690    for (i = base; i < base + ILT_PER_FUNC; i++) {
18691        bxe_ilt_wr(sc, i, 0);
18692    }
18693}
18694
18695static void
18696bxe_reset_func(struct bxe_softc *sc)
18697{
18698    struct bxe_fastpath *fp;
18699    int port = SC_PORT(sc);
18700    int func = SC_FUNC(sc);
18701    int i;
18702
18703    /* Disable the function in the FW */
18704    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18705    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18706    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18707    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18708
18709    /* FP SBs */
18710    FOR_EACH_ETH_QUEUE(sc, i) {
18711        fp = &sc->fp[i];
18712        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18713                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18714                SB_DISABLED);
18715    }
18716
18717#if 0
18718    if (CNIC_LOADED(sc)) {
18719        /* CNIC SB */
18720        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18721                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18722                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18723    }
18724#endif
18725
18726    /* SP SB */
18727    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18728            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18729            SB_DISABLED);
18730
18731    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18732        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18733    }
18734
18735    /* Configure IGU */
18736    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18737        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18738        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18739    } else {
18740        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18741        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18742    }
18743
18744    if (CNIC_LOADED(sc)) {
18745        /* Disable Timer scan */
18746        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18747        /*
18748         * Wait for at least 10ms and up to 2 second for the timers
18749         * scan to complete
18750         */
18751        for (i = 0; i < 200; i++) {
18752            DELAY(10000);
18753            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18754                break;
18755        }
18756    }
18757
18758    /* Clear ILT */
18759    bxe_clear_func_ilt(sc, func);
18760
18761    /*
18762     * Timers workaround bug for E2: if this is vnic-3,
18763     * we need to set the entire ilt range for this timers.
18764     */
18765    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18766        struct ilt_client_info ilt_cli;
18767        /* use dummy TM client */
18768        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18769        ilt_cli.start = 0;
18770        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18771        ilt_cli.client_num = ILT_CLIENT_TM;
18772
18773        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18774    }
18775
18776    /* this assumes that reset_port() called before reset_func()*/
18777    if (!CHIP_IS_E1x(sc)) {
18778        bxe_pf_disable(sc);
18779    }
18780
18781    sc->dmae_ready = 0;
18782}
18783
18784static int
18785bxe_gunzip_init(struct bxe_softc *sc)
18786{
18787    return (0);
18788}
18789
18790static void
18791bxe_gunzip_end(struct bxe_softc *sc)
18792{
18793    return;
18794}
18795
18796static int
18797bxe_init_firmware(struct bxe_softc *sc)
18798{
18799    if (CHIP_IS_E1(sc)) {
18800        ecore_init_e1_firmware(sc);
18801        sc->iro_array = e1_iro_arr;
18802    } else if (CHIP_IS_E1H(sc)) {
18803        ecore_init_e1h_firmware(sc);
18804        sc->iro_array = e1h_iro_arr;
18805    } else if (!CHIP_IS_E1x(sc)) {
18806        ecore_init_e2_firmware(sc);
18807        sc->iro_array = e2_iro_arr;
18808    } else {
18809        BLOGE(sc, "Unsupported chip revision\n");
18810        return (-1);
18811    }
18812
18813    return (0);
18814}
18815
18816static void
18817bxe_release_firmware(struct bxe_softc *sc)
18818{
18819    /* Do nothing */
18820    return;
18821}
18822
18823static int
18824ecore_gunzip(struct bxe_softc *sc,
18825             const uint8_t    *zbuf,
18826             int              len)
18827{
18828    /* XXX : Implement... */
18829    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18830    return (FALSE);
18831}
18832
18833static void
18834ecore_reg_wr_ind(struct bxe_softc *sc,
18835                 uint32_t         addr,
18836                 uint32_t         val)
18837{
18838    bxe_reg_wr_ind(sc, addr, val);
18839}
18840
18841static void
18842ecore_write_dmae_phys_len(struct bxe_softc *sc,
18843                          bus_addr_t       phys_addr,
18844                          uint32_t         addr,
18845                          uint32_t         len)
18846{
18847    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18848}
18849
18850void
18851ecore_storm_memset_struct(struct bxe_softc *sc,
18852                          uint32_t         addr,
18853                          size_t           size,
18854                          uint32_t         *data)
18855{
18856    uint8_t i;
18857    for (i = 0; i < size/4; i++) {
18858        REG_WR(sc, addr + (i * 4), data[i]);
18859    }
18860}
18861
18862