bxe.c revision 260113
1/*-
2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3 *
4 * Eric Davis        <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano     <zambrano@broadcom.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 260113 2013-12-30 23:02:26Z edavis $");
36
37#define BXE_DRIVER_VERSION "1.78.76"
38
39#include "bxe.h"
40#include "ecore_sp.h"
41#include "ecore_init.h"
42#include "ecore_init_ops.h"
43
44#include "57710_int_offsets.h"
45#include "57711_int_offsets.h"
46#include "57712_int_offsets.h"
47
48/*
49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50 * explicitly here for older kernels that don't include this changeset.
51 */
52#ifndef CTLTYPE_U64
53#define CTLTYPE_U64      CTLTYPE_QUAD
54#define sysctl_handle_64 sysctl_handle_quad
55#endif
56
57/*
58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59 * here as zero(0) for older kernels that don't include this changeset
60 * thereby masking the functionality.
61 */
62#ifndef CSUM_TCP_IPV6
63#define CSUM_TCP_IPV6 0
64#define CSUM_UDP_IPV6 0
65#endif
66
67/*
68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69 * for older kernels that don't include this changeset.
70 */
71#if __FreeBSD_version < 900035
72#define pci_find_cap pci_find_extcap
73#endif
74
75#define BXE_DEF_SB_ATT_IDX 0x0001
76#define BXE_DEF_SB_IDX     0x0002
77
78/*
79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80 * function HW initialization.
81 */
82#define FLR_WAIT_USEC     10000 /* 10 msecs */
83#define FLR_WAIT_INTERVAL 50    /* usecs */
84#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85
86struct pbf_pN_buf_regs {
87    int pN;
88    uint32_t init_crd;
89    uint32_t crd;
90    uint32_t crd_freed;
91};
92
93struct pbf_pN_cmd_regs {
94    int pN;
95    uint32_t lines_occup;
96    uint32_t lines_freed;
97};
98
99/*
100 * PCI Device ID Table used by bxe_probe().
101 */
102#define BXE_DEVDESC_MAX 64
103static struct bxe_device_type bxe_devs[] = {
104    {
105        BRCM_VENDORID,
106        CHIP_NUM_57710,
107        PCI_ANY_ID, PCI_ANY_ID,
108        "Broadcom NetXtreme II BCM57710 10GbE"
109    },
110    {
111        BRCM_VENDORID,
112        CHIP_NUM_57711,
113        PCI_ANY_ID, PCI_ANY_ID,
114        "Broadcom NetXtreme II BCM57711 10GbE"
115    },
116    {
117        BRCM_VENDORID,
118        CHIP_NUM_57711E,
119        PCI_ANY_ID, PCI_ANY_ID,
120        "Broadcom NetXtreme II BCM57711E 10GbE"
121    },
122    {
123        BRCM_VENDORID,
124        CHIP_NUM_57712,
125        PCI_ANY_ID, PCI_ANY_ID,
126        "Broadcom NetXtreme II BCM57712 10GbE"
127    },
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_MF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "Broadcom NetXtreme II BCM57712 MF 10GbE"
133    },
134#if 0
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57712_VF,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "Broadcom NetXtreme II BCM57712 VF 10GbE"
140    },
141#endif
142    {
143        BRCM_VENDORID,
144        CHIP_NUM_57800,
145        PCI_ANY_ID, PCI_ANY_ID,
146        "Broadcom NetXtreme II BCM57800 10GbE"
147    },
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_MF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "Broadcom NetXtreme II BCM57800 MF 10GbE"
153    },
154#if 0
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57800_VF,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "Broadcom NetXtreme II BCM57800 VF 10GbE"
160    },
161#endif
162    {
163        BRCM_VENDORID,
164        CHIP_NUM_57810,
165        PCI_ANY_ID, PCI_ANY_ID,
166        "Broadcom NetXtreme II BCM57810 10GbE"
167    },
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_MF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "Broadcom NetXtreme II BCM57810 MF 10GbE"
173    },
174#if 0
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57810_VF,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "Broadcom NetXtreme II BCM57810 VF 10GbE"
180    },
181#endif
182    {
183        BRCM_VENDORID,
184        CHIP_NUM_57811,
185        PCI_ANY_ID, PCI_ANY_ID,
186        "Broadcom NetXtreme II BCM57811 10GbE"
187    },
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_MF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "Broadcom NetXtreme II BCM57811 MF 10GbE"
193    },
194#if 0
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57811_VF,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "Broadcom NetXtreme II BCM57811 VF 10GbE"
200    },
201#endif
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_4_10,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "Broadcom NetXtreme II BCM57840 4x10GbE"
207    },
208#if 0
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_2_20,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "Broadcom NetXtreme II BCM57840 2x20GbE"
214    },
215#endif
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_MF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "Broadcom NetXtreme II BCM57840 MF 10GbE"
221    },
222#if 0
223    {
224        BRCM_VENDORID,
225        CHIP_NUM_57840_VF,
226        PCI_ANY_ID, PCI_ANY_ID,
227        "Broadcom NetXtreme II BCM57840 VF 10GbE"
228    },
229#endif
230    {
231        0, 0, 0, 0, NULL
232    }
233};
234
235MALLOC_DECLARE(M_BXE_ILT);
236MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237
238/*
239 * FreeBSD device entry points.
240 */
241static int bxe_probe(device_t);
242static int bxe_attach(device_t);
243static int bxe_detach(device_t);
244static int bxe_shutdown(device_t);
245
246/*
247 * FreeBSD KLD module/device interface event handler method.
248 */
249static device_method_t bxe_methods[] = {
250    /* Device interface (device_if.h) */
251    DEVMETHOD(device_probe,     bxe_probe),
252    DEVMETHOD(device_attach,    bxe_attach),
253    DEVMETHOD(device_detach,    bxe_detach),
254    DEVMETHOD(device_shutdown,  bxe_shutdown),
255#if 0
256    DEVMETHOD(device_suspend,   bxe_suspend),
257    DEVMETHOD(device_resume,    bxe_resume),
258#endif
259    /* Bus interface (bus_if.h) */
260    DEVMETHOD(bus_print_child,  bus_generic_print_child),
261    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262    KOBJMETHOD_END
263};
264
265/*
266 * FreeBSD KLD Module data declaration
267 */
268static driver_t bxe_driver = {
269    "bxe",                   /* module name */
270    bxe_methods,             /* event handler */
271    sizeof(struct bxe_softc) /* extra data */
272};
273
274/*
275 * FreeBSD dev class is needed to manage dev instances and
276 * to associate with a bus type
277 */
278static devclass_t bxe_devclass;
279
280MODULE_DEPEND(bxe, pci, 1, 1, 1);
281MODULE_DEPEND(bxe, ether, 1, 1, 1);
282DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283
284/* resources needed for unloading a previously loaded device */
285
286#define BXE_PREV_WAIT_NEEDED 1
287struct mtx bxe_prev_mtx;
288MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289struct bxe_prev_list_node {
290    LIST_ENTRY(bxe_prev_list_node) node;
291    uint8_t bus;
292    uint8_t slot;
293    uint8_t path;
294    uint8_t aer; /* XXX automatic error recovery */
295    uint8_t undi;
296};
297static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298
299static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300
301/* Tunable device values... */
302
303SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304
305/* Debug */
306unsigned long bxe_debug = 0;
307TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309             &bxe_debug, 0, "Debug logging mode");
310
311/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312static int bxe_interrupt_mode = INTR_MODE_MSIX;
313TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316
317/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318static int bxe_queue_count = 4;
319TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321           &bxe_queue_count, 0, "Multi-Queue queue count");
322
323/* max number of buffers per queue (default RX_BD_USABLE) */
324static int bxe_max_rx_bufs = 0;
325TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328
329/* Host interrupt coalescing RX tick timer (usecs) */
330static int bxe_hc_rx_ticks = 25;
331TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334
335/* Host interrupt coalescing TX tick timer (usecs) */
336static int bxe_hc_tx_ticks = 50;
337TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340
341/* Maximum number of Rx packets to process at a time */
342static int bxe_rx_budget = 0xffffffff;
343TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345           &bxe_rx_budget, 0, "Rx processing budget");
346
347/* Maximum LRO aggregation size */
348static int bxe_max_aggregation_size = 0;
349TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351           &bxe_max_aggregation_size, 0, "max aggregation size");
352
353/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354static int bxe_mrrs = -1;
355TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357           &bxe_mrrs, 0, "PCIe maximum read request size");
358
359/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360static int bxe_autogreeen = 0;
361TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363           &bxe_autogreeen, 0, "AutoGrEEEn support");
364
365/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366static int bxe_udp_rss = 0;
367TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369           &bxe_udp_rss, 0, "UDP RSS support");
370
371
372#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373
374#define STATS_OFFSET32(stat_name)                   \
375    (offsetof(struct bxe_eth_stats, stat_name) / 4)
376
377#define Q_STATS_OFFSET32(stat_name)                   \
378    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379
380static const struct {
381    uint32_t offset;
382    uint32_t size;
383    uint32_t flags;
384#define STATS_FLAGS_PORT  1
385#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387    char string[STAT_NAME_LEN];
388} bxe_eth_stats_arr[] = {
389    { STATS_OFFSET32(total_bytes_received_hi),
390                8, STATS_FLAGS_BOTH, "rx_bytes" },
391    { STATS_OFFSET32(error_bytes_received_hi),
392                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393    { STATS_OFFSET32(total_unicast_packets_received_hi),
394                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395    { STATS_OFFSET32(total_multicast_packets_received_hi),
396                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397    { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                8, STATS_FLAGS_PORT, "rx_crc_errors" },
401    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                8, STATS_FLAGS_PORT, "rx_align_errors" },
403    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                8, STATS_FLAGS_PORT, "rx_fragments" },
409    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                8, STATS_FLAGS_PORT, "rx_jabbers" },
411    { STATS_OFFSET32(no_buff_discard_hi),
412                8, STATS_FLAGS_BOTH, "rx_discards" },
413    { STATS_OFFSET32(mac_filter_discard),
414                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415    { STATS_OFFSET32(mf_tag_discard),
416                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417    { STATS_OFFSET32(pfc_frames_received_hi),
418                8, STATS_FLAGS_PORT, "pfc_frames_received" },
419    { STATS_OFFSET32(pfc_frames_sent_hi),
420                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421    { STATS_OFFSET32(brb_drop_hi),
422                8, STATS_FLAGS_PORT, "rx_brb_discard" },
423    { STATS_OFFSET32(brb_truncate_hi),
424                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425    { STATS_OFFSET32(pause_frames_received_hi),
426                8, STATS_FLAGS_PORT, "rx_pause_frames" },
427    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429    { STATS_OFFSET32(nig_timer_max),
430                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431    { STATS_OFFSET32(total_bytes_transmitted_hi),
432                8, STATS_FLAGS_BOTH, "tx_bytes" },
433    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                8, STATS_FLAGS_PORT, "tx_error_bytes" },
435    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                8, STATS_FLAGS_PORT, "tx_mac_errors" },
443    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                8, STATS_FLAGS_PORT, "tx_single_collisions" },
447    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                8, STATS_FLAGS_PORT, "tx_deferred" },
451    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                8, STATS_FLAGS_PORT, "tx_late_collisions" },
455    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                8, STATS_FLAGS_PORT, "tx_total_collisions" },
457    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471    { STATS_OFFSET32(pause_frames_sent_hi),
472                8, STATS_FLAGS_PORT, "tx_pause_frames" },
473    { STATS_OFFSET32(total_tpa_aggregations_hi),
474                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477    { STATS_OFFSET32(total_tpa_bytes_hi),
478                8, STATS_FLAGS_FUNC, "tpa_bytes"},
479#if 0
480    { STATS_OFFSET32(recoverable_error),
481                4, STATS_FLAGS_FUNC, "recoverable_errors" },
482    { STATS_OFFSET32(unrecoverable_error),
483                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484#endif
485    { STATS_OFFSET32(eee_tx_lpi),
486                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487    { STATS_OFFSET32(rx_calls),
488                4, STATS_FLAGS_FUNC, "rx_calls"},
489    { STATS_OFFSET32(rx_pkts),
490                4, STATS_FLAGS_FUNC, "rx_pkts"},
491    { STATS_OFFSET32(rx_tpa_pkts),
492                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493    { STATS_OFFSET32(rx_soft_errors),
494                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495    { STATS_OFFSET32(rx_hw_csum_errors),
496                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501    { STATS_OFFSET32(rx_budget_reached),
502                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503    { STATS_OFFSET32(tx_pkts),
504                4, STATS_FLAGS_FUNC, "tx_pkts"},
505    { STATS_OFFSET32(tx_soft_errors),
506                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513    { STATS_OFFSET32(tx_ofld_frames_lso),
514                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517    { STATS_OFFSET32(tx_encap_failures),
518                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519    { STATS_OFFSET32(tx_hw_queue_full),
520                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521    { STATS_OFFSET32(tx_hw_max_queue_depth),
522                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523    { STATS_OFFSET32(tx_dma_mapping_failure),
524                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525    { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527    { STATS_OFFSET32(tx_window_violation_std),
528                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529    { STATS_OFFSET32(tx_window_violation_tso),
530                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531#if 0
532    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536#endif
537    { STATS_OFFSET32(tx_chain_lost_mbuf),
538                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539    { STATS_OFFSET32(tx_frames_deferred),
540                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541    { STATS_OFFSET32(tx_queue_xoff),
542                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543    { STATS_OFFSET32(mbuf_defrag_attempts),
544                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545    { STATS_OFFSET32(mbuf_defrag_failures),
546                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559    { STATS_OFFSET32(mbuf_alloc_tx),
560                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561    { STATS_OFFSET32(mbuf_alloc_rx),
562                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563    { STATS_OFFSET32(mbuf_alloc_sge),
564                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565    { STATS_OFFSET32(mbuf_alloc_tpa),
566                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567};
568
569static const struct {
570    uint32_t offset;
571    uint32_t size;
572    char string[STAT_NAME_LEN];
573} bxe_eth_q_stats_arr[] = {
574    { Q_STATS_OFFSET32(total_bytes_received_hi),
575                8, "rx_bytes" },
576    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                8, "rx_ucast_packets" },
578    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                8, "rx_mcast_packets" },
580    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                8, "rx_bcast_packets" },
582    { Q_STATS_OFFSET32(no_buff_discard_hi),
583                8, "rx_discards" },
584    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                8, "tx_bytes" },
586    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                8, "tx_ucast_packets" },
588    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                8, "tx_mcast_packets" },
590    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                8, "tx_bcast_packets" },
592    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                8, "tpa_aggregations" },
594    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                8, "tpa_aggregated_frames"},
596    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                8, "tpa_bytes"},
598    { Q_STATS_OFFSET32(rx_calls),
599                4, "rx_calls"},
600    { Q_STATS_OFFSET32(rx_pkts),
601                4, "rx_pkts"},
602    { Q_STATS_OFFSET32(rx_tpa_pkts),
603                4, "rx_tpa_pkts"},
604    { Q_STATS_OFFSET32(rx_soft_errors),
605                4, "rx_soft_errors"},
606    { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                4, "rx_hw_csum_errors"},
608    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                4, "rx_ofld_frames_csum_ip"},
610    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                4, "rx_ofld_frames_csum_tcp_udp"},
612    { Q_STATS_OFFSET32(rx_budget_reached),
613                4, "rx_budget_reached"},
614    { Q_STATS_OFFSET32(tx_pkts),
615                4, "tx_pkts"},
616    { Q_STATS_OFFSET32(tx_soft_errors),
617                4, "tx_soft_errors"},
618    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                4, "tx_ofld_frames_csum_ip"},
620    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                4, "tx_ofld_frames_csum_tcp"},
622    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                4, "tx_ofld_frames_csum_udp"},
624    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                4, "tx_ofld_frames_lso"},
626    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                4, "tx_ofld_frames_lso_hdr_splits"},
628    { Q_STATS_OFFSET32(tx_encap_failures),
629                4, "tx_encap_failures"},
630    { Q_STATS_OFFSET32(tx_hw_queue_full),
631                4, "tx_hw_queue_full"},
632    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                4, "tx_hw_max_queue_depth"},
634    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                4, "tx_dma_mapping_failure"},
636    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                4, "tx_max_drbr_queue_depth"},
638    { Q_STATS_OFFSET32(tx_window_violation_std),
639                4, "tx_window_violation_std"},
640    { Q_STATS_OFFSET32(tx_window_violation_tso),
641                4, "tx_window_violation_tso"},
642#if 0
643    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                4, "tx_unsupported_tso_request_ipv6"},
645    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                4, "tx_unsupported_tso_request_not_tcp"},
647#endif
648    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                4, "tx_chain_lost_mbuf"},
650    { Q_STATS_OFFSET32(tx_frames_deferred),
651                4, "tx_frames_deferred"},
652    { Q_STATS_OFFSET32(tx_queue_xoff),
653                4, "tx_queue_xoff"},
654    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                4, "mbuf_defrag_attempts"},
656    { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                4, "mbuf_defrag_failures"},
658    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                4, "mbuf_rx_bd_alloc_failed"},
660    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                4, "mbuf_rx_bd_mapping_failed"},
662    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                4, "mbuf_rx_tpa_alloc_failed"},
664    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                4, "mbuf_rx_tpa_mapping_failed"},
666    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                4, "mbuf_rx_sge_alloc_failed"},
668    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                4, "mbuf_rx_sge_mapping_failed"},
670    { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                4, "mbuf_alloc_tx"},
672    { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                4, "mbuf_alloc_rx"},
674    { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                4, "mbuf_alloc_sge"},
676    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                4, "mbuf_alloc_tpa"}
678};
679
680#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682
683
684static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                 uint8_t          read_cfg,
686                                 uint8_t          cmng_type);
687static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688static void    storm_memset_cmng(struct bxe_softc *sc,
689                                 struct cmng_init *cmng,
690                                 uint8_t          port);
691static void    bxe_set_reset_global(struct bxe_softc *sc);
692static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                 int              engine);
695static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                   uint8_t          *global,
698                                   uint8_t          print);
699static void    bxe_int_disable(struct bxe_softc *sc);
700static int     bxe_release_leader_lock(struct bxe_softc *sc);
701static void    bxe_pf_disable(struct bxe_softc *sc);
702static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                      struct bxe_fastpath *fp,
705                                      uint16_t            rx_bd_prod,
706                                      uint16_t            rx_cq_prod,
707                                      uint16_t            rx_sge_prod);
708static void    bxe_link_report_locked(struct bxe_softc *sc);
709static void    bxe_link_report(struct bxe_softc *sc);
710static void    bxe_link_status_update(struct bxe_softc *sc);
711static void    bxe_periodic_callout_func(void *xsc);
712static void    bxe_periodic_start(struct bxe_softc *sc);
713static void    bxe_periodic_stop(struct bxe_softc *sc);
714static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                    uint16_t prev_index,
716                                    uint16_t index);
717static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                     int                 queue);
719static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                     uint16_t            index);
721static uint8_t bxe_txeof(struct bxe_softc *sc,
722                         struct bxe_fastpath *fp);
723static void    bxe_task_fp(struct bxe_fastpath *fp);
724static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                     struct mbuf      *m,
726                                     uint8_t          contents);
727static int     bxe_alloc_mem(struct bxe_softc *sc);
728static void    bxe_free_mem(struct bxe_softc *sc);
729static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731static int     bxe_interrupt_attach(struct bxe_softc *sc);
732static void    bxe_interrupt_detach(struct bxe_softc *sc);
733static void    bxe_set_rx_mode(struct bxe_softc *sc);
734static int     bxe_init_locked(struct bxe_softc *sc);
735static int     bxe_stop_locked(struct bxe_softc *sc);
736static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                   int              load_mode);
738static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                     uint32_t         unload_mode,
740                                     uint8_t          keep_link);
741
742static void bxe_handle_sp_tq(void *context, int pending);
743static void bxe_handle_rx_mode_tq(void *context, int pending);
744static void bxe_handle_fp_tq(void *context, int pending);
745
746
747/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748uint32_t
749calc_crc32(uint8_t  *crc32_packet,
750           uint32_t crc32_length,
751           uint32_t crc32_seed,
752           uint8_t  complement)
753{
754   uint32_t byte         = 0;
755   uint32_t bit          = 0;
756   uint8_t  msb          = 0;
757   uint32_t temp         = 0;
758   uint32_t shft         = 0;
759   uint8_t  current_byte = 0;
760   uint32_t crc32_result = crc32_seed;
761   const uint32_t CRC32_POLY = 0x1edc6f41;
762
763   if ((crc32_packet == NULL) ||
764       (crc32_length == 0) ||
765       ((crc32_length % 8) != 0))
766    {
767        return (crc32_result);
768    }
769
770    for (byte = 0; byte < crc32_length; byte = byte + 1)
771    {
772        current_byte = crc32_packet[byte];
773        for (bit = 0; bit < 8; bit = bit + 1)
774        {
775            /* msb = crc32_result[31]; */
776            msb = (uint8_t)(crc32_result >> 31);
777
778            crc32_result = crc32_result << 1;
779
780            /* it (msb != current_byte[bit]) */
781            if (msb != (0x1 & (current_byte >> bit)))
782            {
783                crc32_result = crc32_result ^ CRC32_POLY;
784                /* crc32_result[0] = 1 */
785                crc32_result |= 1;
786            }
787        }
788    }
789
790    /* Last step is to:
791     * 1. "mirror" every bit
792     * 2. swap the 4 bytes
793     * 3. complement each bit
794     */
795
796    /* Mirror */
797    temp = crc32_result;
798    shft = sizeof(crc32_result) * 8 - 1;
799
800    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801    {
802        temp <<= 1;
803        temp |= crc32_result & 1;
804        shft-- ;
805    }
806
807    /* temp[31-bit] = crc32_result[bit] */
808    temp <<= shft;
809
810    /* Swap */
811    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812    {
813        uint32_t t0, t1, t2, t3;
814        t0 = (0x000000ff & (temp >> 24));
815        t1 = (0x0000ff00 & (temp >> 8));
816        t2 = (0x00ff0000 & (temp << 8));
817        t3 = (0xff000000 & (temp << 24));
818        crc32_result = t0 | t1 | t2 | t3;
819    }
820
821    /* Complement */
822    if (complement)
823    {
824        crc32_result = ~crc32_result;
825    }
826
827    return (crc32_result);
828}
829
830int
831bxe_test_bit(int                    nr,
832             volatile unsigned long *addr)
833{
834    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835}
836
837void
838bxe_set_bit(unsigned int           nr,
839            volatile unsigned long *addr)
840{
841    atomic_set_acq_long(addr, (1 << nr));
842}
843
844void
845bxe_clear_bit(int                    nr,
846              volatile unsigned long *addr)
847{
848    atomic_clear_acq_long(addr, (1 << nr));
849}
850
851int
852bxe_test_and_set_bit(int                    nr,
853                       volatile unsigned long *addr)
854{
855    unsigned long x;
856    nr = (1 << nr);
857    do {
858        x = *addr;
859    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860    // if (x & nr) bit_was_set; else bit_was_not_set;
861    return (x & nr);
862}
863
864int
865bxe_test_and_clear_bit(int                    nr,
866                       volatile unsigned long *addr)
867{
868    unsigned long x;
869    nr = (1 << nr);
870    do {
871        x = *addr;
872    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873    // if (x & nr) bit_was_set; else bit_was_not_set;
874    return (x & nr);
875}
876
877int
878bxe_cmpxchg(volatile int *addr,
879            int          old,
880            int          new)
881{
882    int x;
883    do {
884        x = *addr;
885    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886    return (x);
887}
888
889/*
890 * Get DMA memory from the OS.
891 *
892 * Validates that the OS has provided DMA buffers in response to a
893 * bus_dmamap_load call and saves the physical address of those buffers.
894 * When the callback is used the OS will return 0 for the mapping function
895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896 * failures back to the caller.
897 *
898 * Returns:
899 *   Nothing.
900 */
901static void
902bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903{
904    struct bxe_dma *dma = arg;
905
906    if (error) {
907        dma->paddr = 0;
908        dma->nseg  = 0;
909        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910    } else {
911        dma->paddr = segs->ds_addr;
912        dma->nseg  = nseg;
913#if 0
914        BLOGD(dma->sc, DBG_LOAD,,
915              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916              dma->msg, dma->vaddr, (void *)dma->paddr,
917              dma->nseg, dma->size);
918#endif
919    }
920}
921
922/*
923 * Allocate a block of memory and map it for DMA. No partial completions
924 * allowed and release any resources acquired if we can't acquire all
925 * resources.
926 *
927 * Returns:
928 *   0 = Success, !0 = Failure
929 */
930int
931bxe_dma_alloc(struct bxe_softc *sc,
932              bus_size_t       size,
933              struct bxe_dma   *dma,
934              const char       *msg)
935{
936    int rc;
937
938    if (dma->size > 0) {
939        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940              (unsigned long)dma->size);
941        return (1);
942    }
943
944    memset(dma, 0, sizeof(*dma)); /* sanity */
945    dma->sc   = sc;
946    dma->size = size;
947    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948
949    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                            BCM_PAGE_SIZE,      /* alignment */
951                            0,                  /* boundary limit */
952                            BUS_SPACE_MAXADDR,  /* restricted low */
953                            BUS_SPACE_MAXADDR,  /* restricted hi */
954                            NULL,               /* addr filter() */
955                            NULL,               /* addr filter() arg */
956                            size,               /* max map size */
957                            1,                  /* num discontinuous */
958                            size,               /* max seg size */
959                            BUS_DMA_ALLOCNOW,   /* flags */
960                            NULL,               /* lock() */
961                            NULL,               /* lock() arg */
962                            &dma->tag);         /* returned dma tag */
963    if (rc != 0) {
964        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965        memset(dma, 0, sizeof(*dma));
966        return (1);
967    }
968
969    rc = bus_dmamem_alloc(dma->tag,
970                          (void **)&dma->vaddr,
971                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                          &dma->map);
973    if (rc != 0) {
974        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975        bus_dma_tag_destroy(dma->tag);
976        memset(dma, 0, sizeof(*dma));
977        return (1);
978    }
979
980    rc = bus_dmamap_load(dma->tag,
981                         dma->map,
982                         dma->vaddr,
983                         size,
984                         bxe_dma_map_addr, /* BLOGD in here */
985                         dma,
986                         BUS_DMA_NOWAIT);
987    if (rc != 0) {
988        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990        bus_dma_tag_destroy(dma->tag);
991        memset(dma, 0, sizeof(*dma));
992        return (1);
993    }
994
995    return (0);
996}
997
998void
999bxe_dma_free(struct bxe_softc *sc,
1000             struct bxe_dma   *dma)
1001{
1002    if (dma->size > 0) {
1003#if 0
1004        BLOGD(sc, DBG_LOAD,
1005              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006              dma->msg, dma->vaddr, (void *)dma->paddr,
1007              dma->nseg, dma->size);
1008#endif
1009
1010        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011
1012        bus_dmamap_sync(dma->tag, dma->map,
1013                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014        bus_dmamap_unload(dma->tag, dma->map);
1015        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016        bus_dma_tag_destroy(dma->tag);
1017    }
1018
1019    memset(dma, 0, sizeof(*dma));
1020}
1021
1022/*
1023 * These indirect read and write routines are only during init.
1024 * The locking is handled by the MCP.
1025 */
1026
1027void
1028bxe_reg_wr_ind(struct bxe_softc *sc,
1029               uint32_t         addr,
1030               uint32_t         val)
1031{
1032    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035}
1036
1037uint32_t
1038bxe_reg_rd_ind(struct bxe_softc *sc,
1039               uint32_t         addr)
1040{
1041    uint32_t val;
1042
1043    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046
1047    return (val);
1048}
1049
1050#if 0
1051void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052{
1053    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054
1055    switch (dmae->opcode & DMAE_COMMAND_DST) {
1056    case DMAE_CMD_DST_PCI:
1057        if (src_type == DMAE_CMD_SRC_PCI)
1058            DP(msglvl, "DMAE: opcode 0x%08x\n"
1059               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063               dmae->comp_addr_hi, dmae->comp_addr_lo,
1064               dmae->comp_val);
1065        else
1066            DP(msglvl, "DMAE: opcode 0x%08x\n"
1067               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069               dmae->opcode, dmae->src_addr_lo >> 2,
1070               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071               dmae->comp_addr_hi, dmae->comp_addr_lo,
1072               dmae->comp_val);
1073        break;
1074    case DMAE_CMD_DST_GRC:
1075        if (src_type == DMAE_CMD_SRC_PCI)
1076            DP(msglvl, "DMAE: opcode 0x%08x\n"
1077               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080               dmae->len, dmae->dst_addr_lo >> 2,
1081               dmae->comp_addr_hi, dmae->comp_addr_lo,
1082               dmae->comp_val);
1083        else
1084            DP(msglvl, "DMAE: opcode 0x%08x\n"
1085               "src [%08x], len [%d*4], dst [%08x]\n"
1086               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087               dmae->opcode, dmae->src_addr_lo >> 2,
1088               dmae->len, dmae->dst_addr_lo >> 2,
1089               dmae->comp_addr_hi, dmae->comp_addr_lo,
1090               dmae->comp_val);
1091        break;
1092    default:
1093        if (src_type == DMAE_CMD_SRC_PCI)
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        else
1101            DP(msglvl, "DMAE: opcode 0x%08x\n"
1102               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104               dmae->opcode, dmae->src_addr_lo >> 2,
1105               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106               dmae->comp_val);
1107        break;
1108    }
1109
1110}
1111#endif
1112
1113static int
1114bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                    uint32_t         resource)
1116{
1117    uint32_t lock_status;
1118    uint32_t resource_bit = (1 << resource);
1119    int func = SC_FUNC(sc);
1120    uint32_t hw_lock_control_reg;
1121    int cnt;
1122
1123    /* validate the resource is within range */
1124    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126        return (-1);
1127    }
1128
1129    if (func <= 5) {
1130        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131    } else {
1132        hw_lock_control_reg =
1133                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134    }
1135
1136    /* validate the resource is not already taken */
1137    lock_status = REG_RD(sc, hw_lock_control_reg);
1138    if (lock_status & resource_bit) {
1139        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140              lock_status, resource_bit);
1141        return (-1);
1142    }
1143
1144    /* try every 5ms for 5 seconds */
1145    for (cnt = 0; cnt < 1000; cnt++) {
1146        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147        lock_status = REG_RD(sc, hw_lock_control_reg);
1148        if (lock_status & resource_bit) {
1149            return (0);
1150        }
1151        DELAY(5000);
1152    }
1153
1154    BLOGE(sc, "Resource lock timeout!\n");
1155    return (-1);
1156}
1157
1158static int
1159bxe_release_hw_lock(struct bxe_softc *sc,
1160                    uint32_t         resource)
1161{
1162    uint32_t lock_status;
1163    uint32_t resource_bit = (1 << resource);
1164    int func = SC_FUNC(sc);
1165    uint32_t hw_lock_control_reg;
1166
1167    /* validate the resource is within range */
1168    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170        return (-1);
1171    }
1172
1173    if (func <= 5) {
1174        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175    } else {
1176        hw_lock_control_reg =
1177                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178    }
1179
1180    /* validate the resource is currently taken */
1181    lock_status = REG_RD(sc, hw_lock_control_reg);
1182    if (!(lock_status & resource_bit)) {
1183        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184              lock_status, resource_bit);
1185        return (-1);
1186    }
1187
1188    REG_WR(sc, hw_lock_control_reg, resource_bit);
1189    return (0);
1190}
1191
1192/*
1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194 * had we done things the other way around, if two pfs from the same port
1195 * would attempt to access nvram at the same time, we could run into a
1196 * scenario such as:
1197 * pf A takes the port lock.
1198 * pf B succeeds in taking the same lock since they are from the same port.
1199 * pf A takes the per pf misc lock. Performs eeprom access.
1200 * pf A finishes. Unlocks the per pf misc lock.
1201 * Pf B takes the lock and proceeds to perform it's own access.
1202 * pf A unlocks the per port lock, while pf B is still working (!).
1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204 * access corrupted by pf B).*
1205 */
1206static int
1207bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208{
1209    int port = SC_PORT(sc);
1210    int count, i;
1211    uint32_t val = 0;
1212
1213    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215
1216    /* adjust timeout for emulation/FPGA */
1217    count = NVRAM_TIMEOUT_COUNT;
1218    if (CHIP_REV_IS_SLOW(sc)) {
1219        count *= 100;
1220    }
1221
1222    /* request access to nvram interface */
1223    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225
1226    for (i = 0; i < count*10; i++) {
1227        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229            break;
1230        }
1231
1232        DELAY(5);
1233    }
1234
1235    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236        BLOGE(sc, "Cannot get access to nvram interface\n");
1237        return (-1);
1238    }
1239
1240    return (0);
1241}
1242
1243static int
1244bxe_release_nvram_lock(struct bxe_softc *sc)
1245{
1246    int port = SC_PORT(sc);
1247    int count, i;
1248    uint32_t val = 0;
1249
1250    /* adjust timeout for emulation/FPGA */
1251    count = NVRAM_TIMEOUT_COUNT;
1252    if (CHIP_REV_IS_SLOW(sc)) {
1253        count *= 100;
1254    }
1255
1256    /* relinquish nvram interface */
1257    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259
1260    for (i = 0; i < count*10; i++) {
1261        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263            break;
1264        }
1265
1266        DELAY(5);
1267    }
1268
1269    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270        BLOGE(sc, "Cannot free access to nvram interface\n");
1271        return (-1);
1272    }
1273
1274    /* release HW lock: protect against other PFs in PF Direct Assignment */
1275    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276
1277    return (0);
1278}
1279
1280static void
1281bxe_enable_nvram_access(struct bxe_softc *sc)
1282{
1283    uint32_t val;
1284
1285    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286
1287    /* enable both bits, even on read */
1288    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290}
1291
1292static void
1293bxe_disable_nvram_access(struct bxe_softc *sc)
1294{
1295    uint32_t val;
1296
1297    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298
1299    /* disable both bits, even after read */
1300    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303}
1304
1305static int
1306bxe_nvram_read_dword(struct bxe_softc *sc,
1307                     uint32_t         offset,
1308                     uint32_t         *ret_val,
1309                     uint32_t         cmd_flags)
1310{
1311    int count, i, rc;
1312    uint32_t val;
1313
1314    /* build the command word */
1315    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316
1317    /* need to clear DONE bit separately */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319
1320    /* address of the NVRAM to read from */
1321    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323
1324    /* issue a read command */
1325    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326
1327    /* adjust timeout for emulation/FPGA */
1328    count = NVRAM_TIMEOUT_COUNT;
1329    if (CHIP_REV_IS_SLOW(sc)) {
1330        count *= 100;
1331    }
1332
1333    /* wait for completion */
1334    *ret_val = 0;
1335    rc = -1;
1336    for (i = 0; i < count; i++) {
1337        DELAY(5);
1338        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339
1340        if (val & MCPR_NVM_COMMAND_DONE) {
1341            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342            /* we read nvram data in cpu order
1343             * but ethtool sees it as an array of bytes
1344             * converting to big-endian will do the work
1345             */
1346            *ret_val = htobe32(val);
1347            rc = 0;
1348            break;
1349        }
1350    }
1351
1352    if (rc == -1) {
1353        BLOGE(sc, "nvram read timeout expired\n");
1354    }
1355
1356    return (rc);
1357}
1358
1359static int
1360bxe_nvram_read(struct bxe_softc *sc,
1361               uint32_t         offset,
1362               uint8_t          *ret_buf,
1363               int              buf_size)
1364{
1365    uint32_t cmd_flags;
1366    uint32_t val;
1367    int rc;
1368
1369    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371              offset, buf_size);
1372        return (-1);
1373    }
1374
1375    if ((offset + buf_size) > sc->devinfo.flash_size) {
1376        BLOGE(sc, "Invalid parameter, "
1377                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378              offset, buf_size, sc->devinfo.flash_size);
1379        return (-1);
1380    }
1381
1382    /* request access to nvram interface */
1383    rc = bxe_acquire_nvram_lock(sc);
1384    if (rc) {
1385        return (rc);
1386    }
1387
1388    /* enable access to nvram interface */
1389    bxe_enable_nvram_access(sc);
1390
1391    /* read the first word(s) */
1392    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395        memcpy(ret_buf, &val, 4);
1396
1397        /* advance to the next dword */
1398        offset += sizeof(uint32_t);
1399        ret_buf += sizeof(uint32_t);
1400        buf_size -= sizeof(uint32_t);
1401        cmd_flags = 0;
1402    }
1403
1404    if (rc == 0) {
1405        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407        memcpy(ret_buf, &val, 4);
1408    }
1409
1410    /* disable access to nvram interface */
1411    bxe_disable_nvram_access(sc);
1412    bxe_release_nvram_lock(sc);
1413
1414    return (rc);
1415}
1416
1417static int
1418bxe_nvram_write_dword(struct bxe_softc *sc,
1419                      uint32_t         offset,
1420                      uint32_t         val,
1421                      uint32_t         cmd_flags)
1422{
1423    int count, i, rc;
1424
1425    /* build the command word */
1426    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427
1428    /* need to clear DONE bit separately */
1429    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430
1431    /* write the data */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433
1434    /* address of the NVRAM to write to */
1435    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437
1438    /* issue the write command */
1439    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440
1441    /* adjust timeout for emulation/FPGA */
1442    count = NVRAM_TIMEOUT_COUNT;
1443    if (CHIP_REV_IS_SLOW(sc)) {
1444        count *= 100;
1445    }
1446
1447    /* wait for completion */
1448    rc = -1;
1449    for (i = 0; i < count; i++) {
1450        DELAY(5);
1451        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452        if (val & MCPR_NVM_COMMAND_DONE) {
1453            rc = 0;
1454            break;
1455        }
1456    }
1457
1458    if (rc == -1) {
1459        BLOGE(sc, "nvram write timeout expired\n");
1460    }
1461
1462    return (rc);
1463}
1464
1465#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466
1467static int
1468bxe_nvram_write1(struct bxe_softc *sc,
1469                 uint32_t         offset,
1470                 uint8_t          *data_buf,
1471                 int              buf_size)
1472{
1473    uint32_t cmd_flags;
1474    uint32_t align_offset;
1475    uint32_t val;
1476    int rc;
1477
1478    if ((offset + buf_size) > sc->devinfo.flash_size) {
1479        BLOGE(sc, "Invalid parameter, "
1480                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481              offset, buf_size, sc->devinfo.flash_size);
1482        return (-1);
1483    }
1484
1485    /* request access to nvram interface */
1486    rc = bxe_acquire_nvram_lock(sc);
1487    if (rc) {
1488        return (rc);
1489    }
1490
1491    /* enable access to nvram interface */
1492    bxe_enable_nvram_access(sc);
1493
1494    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495    align_offset = (offset & ~0x03);
1496    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497
1498    if (rc == 0) {
1499        val &= ~(0xff << BYTE_OFFSET(offset));
1500        val |= (*data_buf << BYTE_OFFSET(offset));
1501
1502        /* nvram data is returned as an array of bytes
1503         * convert it back to cpu order
1504         */
1505        val = be32toh(val);
1506
1507        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508    }
1509
1510    /* disable access to nvram interface */
1511    bxe_disable_nvram_access(sc);
1512    bxe_release_nvram_lock(sc);
1513
1514    return (rc);
1515}
1516
1517static int
1518bxe_nvram_write(struct bxe_softc *sc,
1519                uint32_t         offset,
1520                uint8_t          *data_buf,
1521                int              buf_size)
1522{
1523    uint32_t cmd_flags;
1524    uint32_t val;
1525    uint32_t written_so_far;
1526    int rc;
1527
1528    if (buf_size == 1) {
1529        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530    }
1531
1532    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534              offset, buf_size);
1535        return (-1);
1536    }
1537
1538    if (buf_size == 0) {
1539        return (0); /* nothing to do */
1540    }
1541
1542    if ((offset + buf_size) > sc->devinfo.flash_size) {
1543        BLOGE(sc, "Invalid parameter, "
1544                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545              offset, buf_size, sc->devinfo.flash_size);
1546        return (-1);
1547    }
1548
1549    /* request access to nvram interface */
1550    rc = bxe_acquire_nvram_lock(sc);
1551    if (rc) {
1552        return (rc);
1553    }
1554
1555    /* enable access to nvram interface */
1556    bxe_enable_nvram_access(sc);
1557
1558    written_so_far = 0;
1559    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560    while ((written_so_far < buf_size) && (rc == 0)) {
1561        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567        }
1568
1569        memcpy(&val, data_buf, 4);
1570
1571        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572
1573        /* advance to the next dword */
1574        offset += sizeof(uint32_t);
1575        data_buf += sizeof(uint32_t);
1576        written_so_far += sizeof(uint32_t);
1577        cmd_flags = 0;
1578    }
1579
1580    /* disable access to nvram interface */
1581    bxe_disable_nvram_access(sc);
1582    bxe_release_nvram_lock(sc);
1583
1584    return (rc);
1585}
1586
1587/* copy command into DMAE command memory and set DMAE command Go */
1588void
1589bxe_post_dmae(struct bxe_softc    *sc,
1590              struct dmae_command *dmae,
1591              int                 idx)
1592{
1593    uint32_t cmd_offset;
1594    int i;
1595
1596    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599    }
1600
1601    REG_WR(sc, dmae_reg_go_c[idx], 1);
1602}
1603
1604uint32_t
1605bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                         uint8_t  comp_type)
1607{
1608    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                      DMAE_COMMAND_C_TYPE_ENABLE));
1610}
1611
1612uint32_t
1613bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614{
1615    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616}
1617
1618uint32_t
1619bxe_dmae_opcode(struct bxe_softc *sc,
1620                uint8_t          src_type,
1621                uint8_t          dst_type,
1622                uint8_t          with_comp,
1623                uint8_t          comp_type)
1624{
1625    uint32_t opcode = 0;
1626
1627    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628               (dst_type << DMAE_COMMAND_DST_SHIFT));
1629
1630    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631
1632    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633
1634    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636
1637    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638
1639#ifdef __BIG_ENDIAN
1640    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641#else
1642    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643#endif
1644
1645    if (with_comp) {
1646        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647    }
1648
1649    return (opcode);
1650}
1651
1652static void
1653bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                        struct dmae_command *dmae,
1655                        uint8_t             src_type,
1656                        uint8_t             dst_type)
1657{
1658    memset(dmae, 0, sizeof(struct dmae_command));
1659
1660    /* set the opcode */
1661    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                   TRUE, DMAE_COMP_PCI);
1663
1664    /* fill in the completion parameters */
1665    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667    dmae->comp_val     = DMAE_COMP_VAL;
1668}
1669
1670/* issue a DMAE command over the init channel and wait for completion */
1671static int
1672bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                         struct dmae_command *dmae)
1674{
1675    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677
1678    BXE_DMAE_LOCK(sc);
1679
1680    /* reset completion */
1681    *wb_comp = 0;
1682
1683    /* post the command on the channel used for initializations */
1684    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685
1686    /* wait for completion */
1687    DELAY(5);
1688
1689    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690        if (!timeout ||
1691            (sc->recovery_state != BXE_RECOVERY_DONE &&
1692             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693            BLOGE(sc, "DMAE timeout!\n");
1694            BXE_DMAE_UNLOCK(sc);
1695            return (DMAE_TIMEOUT);
1696        }
1697
1698        timeout--;
1699        DELAY(50);
1700    }
1701
1702    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703        BLOGE(sc, "DMAE PCI error!\n");
1704        BXE_DMAE_UNLOCK(sc);
1705        return (DMAE_PCI_ERROR);
1706    }
1707
1708    BXE_DMAE_UNLOCK(sc);
1709    return (0);
1710}
1711
1712void
1713bxe_read_dmae(struct bxe_softc *sc,
1714              uint32_t         src_addr,
1715              uint32_t         len32)
1716{
1717    struct dmae_command dmae;
1718    uint32_t *data;
1719    int i, rc;
1720
1721    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722
1723    if (!sc->dmae_ready) {
1724        data = BXE_SP(sc, wb_data[0]);
1725
1726        for (i = 0; i < len32; i++) {
1727            data[i] = (CHIP_IS_E1(sc)) ?
1728                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                          REG_RD(sc, (src_addr + (i * 4)));
1730        }
1731
1732        return;
1733    }
1734
1735    /* set opcode and fixed command fields */
1736    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737
1738    /* fill in addresses and len */
1739    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740    dmae.src_addr_hi = 0;
1741    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743    dmae.len         = len32;
1744
1745    /* issue the command and wait for completion */
1746    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748    };
1749}
1750
1751void
1752bxe_write_dmae(struct bxe_softc *sc,
1753               bus_addr_t       dma_addr,
1754               uint32_t         dst_addr,
1755               uint32_t         len32)
1756{
1757    struct dmae_command dmae;
1758    int rc;
1759
1760    if (!sc->dmae_ready) {
1761        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762
1763        if (CHIP_IS_E1(sc)) {
1764            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765        } else {
1766            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767        }
1768
1769        return;
1770    }
1771
1772    /* set opcode and fixed command fields */
1773    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774
1775    /* fill in addresses and len */
1776    dmae.src_addr_lo = U64_LO(dma_addr);
1777    dmae.src_addr_hi = U64_HI(dma_addr);
1778    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779    dmae.dst_addr_hi = 0;
1780    dmae.len         = len32;
1781
1782    /* issue the command and wait for completion */
1783    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785    }
1786}
1787
1788void
1789bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                        bus_addr_t       phys_addr,
1791                        uint32_t         addr,
1792                        uint32_t         len)
1793{
1794    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795    int offset = 0;
1796
1797    while (len > dmae_wr_max) {
1798        bxe_write_dmae(sc,
1799                       (phys_addr + offset), /* src DMA address */
1800                       (addr + offset),      /* dst GRC address */
1801                       dmae_wr_max);
1802        offset += (dmae_wr_max * 4);
1803        len -= dmae_wr_max;
1804    }
1805
1806    bxe_write_dmae(sc,
1807                   (phys_addr + offset), /* src DMA address */
1808                   (addr + offset),      /* dst GRC address */
1809                   len);
1810}
1811
1812void
1813bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                       struct eth_context *cxt,
1815                       uint32_t           cid)
1816{
1817    /* ustorm cxt validation */
1818    cxt->ustorm_ag_context.cdu_usage =
1819        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821    /* xcontext validation */
1822    cxt->xstorm_ag_context.cdu_reserved =
1823        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825}
1826
1827static void
1828bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                            uint8_t          port,
1830                            uint8_t          fw_sb_id,
1831                            uint8_t          sb_index,
1832                            uint8_t          ticks)
1833{
1834    uint32_t addr =
1835        (BAR_CSTRORM_INTMEM +
1836         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837
1838    REG_WR8(sc, addr, ticks);
1839
1840    BLOGD(sc, DBG_LOAD,
1841          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842          port, fw_sb_id, sb_index, ticks);
1843}
1844
1845static void
1846bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                            uint8_t          port,
1848                            uint16_t         fw_sb_id,
1849                            uint8_t          sb_index,
1850                            uint8_t          disable)
1851{
1852    uint32_t enable_flag =
1853        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854    uint32_t addr =
1855        (BAR_CSTRORM_INTMEM +
1856         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857    uint8_t flags;
1858
1859    /* clear and set */
1860    flags = REG_RD8(sc, addr);
1861    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862    flags |= enable_flag;
1863    REG_WR8(sc, addr, flags);
1864
1865    BLOGD(sc, DBG_LOAD,
1866          "port %d fw_sb_id %d sb_index %d disable %d\n",
1867          port, fw_sb_id, sb_index, disable);
1868}
1869
1870void
1871bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                             uint8_t          fw_sb_id,
1873                             uint8_t          sb_index,
1874                             uint8_t          disable,
1875                             uint16_t         usec)
1876{
1877    int port = SC_PORT(sc);
1878    uint8_t ticks = (usec / 4); /* XXX ??? */
1879
1880    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881
1882    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884}
1885
1886void
1887elink_cb_udelay(struct bxe_softc *sc,
1888                uint32_t         usecs)
1889{
1890    DELAY(usecs);
1891}
1892
1893uint32_t
1894elink_cb_reg_read(struct bxe_softc *sc,
1895                  uint32_t         reg_addr)
1896{
1897    return (REG_RD(sc, reg_addr));
1898}
1899
1900void
1901elink_cb_reg_write(struct bxe_softc *sc,
1902                   uint32_t         reg_addr,
1903                   uint32_t         val)
1904{
1905    REG_WR(sc, reg_addr, val);
1906}
1907
1908void
1909elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                      uint32_t         offset,
1911                      uint32_t         *wb_write,
1912                      uint16_t         len)
1913{
1914    REG_WR_DMAE(sc, offset, wb_write, len);
1915}
1916
1917void
1918elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                     uint32_t         offset,
1920                     uint32_t         *wb_write,
1921                     uint16_t         len)
1922{
1923    REG_RD_DMAE(sc, offset, wb_write, len);
1924}
1925
1926uint8_t
1927elink_cb_path_id(struct bxe_softc *sc)
1928{
1929    return (SC_PATH(sc));
1930}
1931
1932void
1933elink_cb_event_log(struct bxe_softc     *sc,
1934                   const elink_log_id_t elink_log_id,
1935                   ...)
1936{
1937    /* XXX */
1938#if 0
1939    //va_list ap;
1940    va_start(ap, elink_log_id);
1941    _XXX_(sc, lm_log_id, ap);
1942    va_end(ap);
1943#endif
1944    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945}
1946
1947static int
1948bxe_set_spio(struct bxe_softc *sc,
1949             int              spio,
1950             uint32_t         mode)
1951{
1952    uint32_t spio_reg;
1953
1954    /* Only 2 SPIOs are configurable */
1955    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957        return (-1);
1958    }
1959
1960    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961
1962    /* read SPIO and mask except the float bits */
1963    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964
1965    switch (mode) {
1966    case MISC_SPIO_OUTPUT_LOW:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968        /* clear FLOAT and set CLR */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971        break;
1972
1973    case MISC_SPIO_OUTPUT_HIGH:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975        /* clear FLOAT and set SET */
1976        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978        break;
1979
1980    case MISC_SPIO_INPUT_HI_Z:
1981        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982        /* set FLOAT */
1983        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984        break;
1985
1986    default:
1987        break;
1988    }
1989
1990    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992
1993    return (0);
1994}
1995
1996static int
1997bxe_gpio_read(struct bxe_softc *sc,
1998              int              gpio_num,
1999              uint8_t          port)
2000{
2001    /* The GPIO should be swapped if swap register is set and active */
2002    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004    int gpio_shift = (gpio_num +
2005                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006    uint32_t gpio_mask = (1 << gpio_shift);
2007    uint32_t gpio_reg;
2008
2009    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011        return (-1);
2012    }
2013
2014    /* read GPIO value */
2015    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016
2017    /* get the requested pin value */
2018    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019}
2020
2021static int
2022bxe_gpio_write(struct bxe_softc *sc,
2023               int              gpio_num,
2024               uint32_t         mode,
2025               uint8_t          port)
2026{
2027    /* The GPIO should be swapped if swap register is set and active */
2028    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030    int gpio_shift = (gpio_num +
2031                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032    uint32_t gpio_mask = (1 << gpio_shift);
2033    uint32_t gpio_reg;
2034
2035    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037        return (-1);
2038    }
2039
2040    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041
2042    /* read GPIO and mask except the float bits */
2043    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044
2045    switch (mode) {
2046    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047        BLOGD(sc, DBG_PHY,
2048              "Set GPIO %d (shift %d) -> output low\n",
2049              gpio_num, gpio_shift);
2050        /* clear FLOAT and set CLR */
2051        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053        break;
2054
2055    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056        BLOGD(sc, DBG_PHY,
2057              "Set GPIO %d (shift %d) -> output high\n",
2058              gpio_num, gpio_shift);
2059        /* clear FLOAT and set SET */
2060        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062        break;
2063
2064    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065        BLOGD(sc, DBG_PHY,
2066              "Set GPIO %d (shift %d) -> input\n",
2067              gpio_num, gpio_shift);
2068        /* set FLOAT */
2069        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070        break;
2071
2072    default:
2073        break;
2074    }
2075
2076    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078
2079    return (0);
2080}
2081
2082static int
2083bxe_gpio_mult_write(struct bxe_softc *sc,
2084                    uint8_t          pins,
2085                    uint32_t         mode)
2086{
2087    uint32_t gpio_reg;
2088
2089    /* any port swapping should be handled by caller */
2090
2091    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093    /* read GPIO and mask except the float bits */
2094    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098
2099    switch (mode) {
2100    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102        /* set CLR */
2103        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104        break;
2105
2106    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108        /* set SET */
2109        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110        break;
2111
2112    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114        /* set FLOAT */
2115        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116        break;
2117
2118    default:
2119        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121        return (-1);
2122    }
2123
2124    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126
2127    return (0);
2128}
2129
2130static int
2131bxe_gpio_int_write(struct bxe_softc *sc,
2132                   int              gpio_num,
2133                   uint32_t         mode,
2134                   uint8_t          port)
2135{
2136    /* The GPIO should be swapped if swap register is set and active */
2137    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139    int gpio_shift = (gpio_num +
2140                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141    uint32_t gpio_mask = (1 << gpio_shift);
2142    uint32_t gpio_reg;
2143
2144    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146        return (-1);
2147    }
2148
2149    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150
2151    /* read GPIO int */
2152    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153
2154    switch (mode) {
2155    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156        BLOGD(sc, DBG_PHY,
2157              "Clear GPIO INT %d (shift %d) -> output low\n",
2158              gpio_num, gpio_shift);
2159        /* clear SET and set CLR */
2160        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162        break;
2163
2164    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165        BLOGD(sc, DBG_PHY,
2166              "Set GPIO INT %d (shift %d) -> output high\n",
2167              gpio_num, gpio_shift);
2168        /* clear CLR and set SET */
2169        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171        break;
2172
2173    default:
2174        break;
2175    }
2176
2177    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179
2180    return (0);
2181}
2182
2183uint32_t
2184elink_cb_gpio_read(struct bxe_softc *sc,
2185                   uint16_t         gpio_num,
2186                   uint8_t          port)
2187{
2188    return (bxe_gpio_read(sc, gpio_num, port));
2189}
2190
2191uint8_t
2192elink_cb_gpio_write(struct bxe_softc *sc,
2193                    uint16_t         gpio_num,
2194                    uint8_t          mode, /* 0=low 1=high */
2195                    uint8_t          port)
2196{
2197    return (bxe_gpio_write(sc, gpio_num, mode, port));
2198}
2199
2200uint8_t
2201elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                         uint8_t          pins,
2203                         uint8_t          mode) /* 0=low 1=high */
2204{
2205    return (bxe_gpio_mult_write(sc, pins, mode));
2206}
2207
2208uint8_t
2209elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                        uint16_t         gpio_num,
2211                        uint8_t          mode, /* 0=low 1=high */
2212                        uint8_t          port)
2213{
2214    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215}
2216
2217void
2218elink_cb_notify_link_changed(struct bxe_softc *sc)
2219{
2220    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222}
2223
2224/* send the MCP a request, block until there is a reply */
2225uint32_t
2226elink_cb_fw_command(struct bxe_softc *sc,
2227                    uint32_t         command,
2228                    uint32_t         param)
2229{
2230    int mb_idx = SC_FW_MB_IDX(sc);
2231    uint32_t seq;
2232    uint32_t rc = 0;
2233    uint32_t cnt = 1;
2234    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235
2236    BXE_FWMB_LOCK(sc);
2237
2238    seq = ++sc->fw_seq;
2239    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241
2242    BLOGD(sc, DBG_PHY,
2243          "wrote command 0x%08x to FW MB param 0x%08x\n",
2244          (command | seq), param);
2245
2246    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247    do {
2248        DELAY(delay * 1000);
2249        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251
2252    BLOGD(sc, DBG_PHY,
2253          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254          cnt*delay, rc, seq);
2255
2256    /* is this a reply to our command? */
2257    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258        rc &= FW_MSG_CODE_MASK;
2259    } else {
2260        /* Ruh-roh! */
2261        BLOGE(sc, "FW failed to respond!\n");
2262        // XXX bxe_fw_dump(sc);
2263        rc = 0;
2264    }
2265
2266    BXE_FWMB_UNLOCK(sc);
2267    return (rc);
2268}
2269
2270static uint32_t
2271bxe_fw_command(struct bxe_softc *sc,
2272               uint32_t         command,
2273               uint32_t         param)
2274{
2275    return (elink_cb_fw_command(sc, command, param));
2276}
2277
2278static void
2279__storm_memset_dma_mapping(struct bxe_softc *sc,
2280                           uint32_t         addr,
2281                           bus_addr_t       mapping)
2282{
2283    REG_WR(sc, addr, U64_LO(mapping));
2284    REG_WR(sc, (addr + 4), U64_HI(mapping));
2285}
2286
2287static void
2288storm_memset_spq_addr(struct bxe_softc *sc,
2289                      bus_addr_t       mapping,
2290                      uint16_t         abs_fid)
2291{
2292    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294    __storm_memset_dma_mapping(sc, addr, mapping);
2295}
2296
2297static void
2298storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                      uint16_t         abs_fid,
2300                      uint16_t         pf_id)
2301{
2302    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306}
2307
2308static void
2309storm_memset_func_en(struct bxe_softc *sc,
2310                     uint16_t         abs_fid,
2311                     uint8_t          enable)
2312{
2313    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317}
2318
2319static void
2320storm_memset_eq_data(struct bxe_softc       *sc,
2321                     struct event_ring_data *eq_data,
2322                     uint16_t               pfid)
2323{
2324    uint32_t addr;
2325    size_t size;
2326
2327    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328    size = sizeof(struct event_ring_data);
2329    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330}
2331
2332static void
2333storm_memset_eq_prod(struct bxe_softc *sc,
2334                     uint16_t         eq_prod,
2335                     uint16_t         pfid)
2336{
2337    uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339    REG_WR16(sc, addr, eq_prod);
2340}
2341
2342/*
2343 * Post a slowpath command.
2344 *
2345 * A slowpath command is used to propogate a configuration change through
2346 * the controller in a controlled manner, allowing each STORM processor and
2347 * other H/W blocks to phase in the change.  The commands sent on the
2348 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349 * completion of the ramrod will occur in different ways.  Here's a
2350 * breakdown of ramrods and how they complete:
2351 *
2352 * RAMROD_CMD_ID_ETH_PORT_SETUP
2353 *   Used to setup the leading connection on a port.  Completes on the
2354 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355 *
2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357 *   Used to setup an additional connection on a port.  Completes on the
2358 *   RCQ of the multi-queue/RSS connection being initialized.
2359 *
2360 * RAMROD_CMD_ID_ETH_STAT_QUERY
2361 *   Used to force the storm processors to update the statistics database
2362 *   in host memory.  This ramrod is send on the leading connection CID and
2363 *   completes as an index increment of the CSTORM on the default status
2364 *   block.
2365 *
2366 * RAMROD_CMD_ID_ETH_UPDATE
2367 *   Used to update the state of the leading connection, usually to udpate
2368 *   the RSS indirection table.  Completes on the RCQ of the leading
2369 *   connection. (Not currently used under FreeBSD until OS support becomes
2370 *   available.)
2371 *
2372 * RAMROD_CMD_ID_ETH_HALT
2373 *   Used when tearing down a connection prior to driver unload.  Completes
2374 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375 *   use this on the leading connection.
2376 *
2377 * RAMROD_CMD_ID_ETH_SET_MAC
2378 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379 *   the RCQ of the leading connection.
2380 *
2381 * RAMROD_CMD_ID_ETH_CFC_DEL
2382 *   Used when tearing down a conneciton prior to driver unload.  Completes
2383 *   on the RCQ of the leading connection (since the current connection
2384 *   has been completely removed from controller memory).
2385 *
2386 * RAMROD_CMD_ID_ETH_PORT_DEL
2387 *   Used to tear down the leading connection prior to driver unload,
2388 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389 *   default status block.
2390 *
2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393 *   RSS connection that is being offloaded.  (Not currently used under
2394 *   FreeBSD.)
2395 *
2396 * There can only be one command pending per function.
2397 *
2398 * Returns:
2399 *   0 = Success, !0 = Failure.
2400 */
2401
2402/* must be called under the spq lock */
2403static inline
2404struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405{
2406    struct eth_spe *next_spe = sc->spq_prod_bd;
2407
2408    if (sc->spq_prod_bd == sc->spq_last_bd) {
2409        /* wrap back to the first eth_spq */
2410        sc->spq_prod_bd = sc->spq;
2411        sc->spq_prod_idx = 0;
2412    } else {
2413        sc->spq_prod_bd++;
2414        sc->spq_prod_idx++;
2415    }
2416
2417    return (next_spe);
2418}
2419
2420/* must be called under the spq lock */
2421static inline
2422void bxe_sp_prod_update(struct bxe_softc *sc)
2423{
2424    int func = SC_FUNC(sc);
2425
2426    /*
2427     * Make sure that BD data is updated before writing the producer.
2428     * BD data is written to the memory, the producer is read from the
2429     * memory, thus we need a full memory barrier to ensure the ordering.
2430     */
2431    mb();
2432
2433    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434             sc->spq_prod_idx);
2435
2436    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                      BUS_SPACE_BARRIER_WRITE);
2438}
2439
2440/**
2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442 *
2443 * @cmd:      command to check
2444 * @cmd_type: command type
2445 */
2446static inline
2447int bxe_is_contextless_ramrod(int cmd,
2448                              int cmd_type)
2449{
2450    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457        return (TRUE);
2458    } else {
2459        return (FALSE);
2460    }
2461}
2462
2463/**
2464 * bxe_sp_post - place a single command on an SP ring
2465 *
2466 * @sc:         driver handle
2467 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468 * @cid:        SW CID the command is related to
2469 * @data_hi:    command private data address (high 32 bits)
2470 * @data_lo:    command private data address (low 32 bits)
2471 * @cmd_type:   command type (e.g. NONE, ETH)
2472 *
2473 * SP data is handled as if it's always an address pair, thus data fields are
2474 * not swapped to little endian in upper functions. Instead this function swaps
2475 * data as if it's two uint32 fields.
2476 */
2477int
2478bxe_sp_post(struct bxe_softc *sc,
2479            int              command,
2480            int              cid,
2481            uint32_t         data_hi,
2482            uint32_t         data_lo,
2483            int              cmd_type)
2484{
2485    struct eth_spe *spe;
2486    uint16_t type;
2487    int common;
2488
2489    common = bxe_is_contextless_ramrod(command, cmd_type);
2490
2491    BXE_SP_LOCK(sc);
2492
2493    if (common) {
2494        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495            BLOGE(sc, "EQ ring is full!\n");
2496            BXE_SP_UNLOCK(sc);
2497            return (-1);
2498        }
2499    } else {
2500        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501            BLOGE(sc, "SPQ ring is full!\n");
2502            BXE_SP_UNLOCK(sc);
2503            return (-1);
2504        }
2505    }
2506
2507    spe = bxe_sp_get_next(sc);
2508
2509    /* CID needs port number to be encoded int it */
2510    spe->hdr.conn_and_cmd_data =
2511        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512
2513    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514
2515    /* TBD: Check if it works for VFs */
2516    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517             SPE_HDR_FUNCTION_ID);
2518
2519    spe->hdr.type = htole16(type);
2520
2521    spe->data.update_data_addr.hi = htole32(data_hi);
2522    spe->data.update_data_addr.lo = htole32(data_lo);
2523
2524    /*
2525     * It's ok if the actual decrement is issued towards the memory
2526     * somewhere between the lock and unlock. Thus no more explict
2527     * memory barrier is needed.
2528     */
2529    if (common) {
2530        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531    } else {
2532        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533    }
2534
2535    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538    BLOGD(sc, DBG_SP,
2539          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540          sc->spq_prod_idx,
2541          (uint32_t)U64_HI(sc->spq_dma.paddr),
2542          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543          command,
2544          common,
2545          HW_CID(sc, cid),
2546          data_hi,
2547          data_lo,
2548          type,
2549          atomic_load_acq_long(&sc->cq_spq_left),
2550          atomic_load_acq_long(&sc->eq_spq_left));
2551
2552    bxe_sp_prod_update(sc);
2553
2554    BXE_SP_UNLOCK(sc);
2555    return (0);
2556}
2557
2558/**
2559 * bxe_debug_print_ind_table - prints the indirection table configuration.
2560 *
2561 * @sc: driver hanlde
2562 * @p:  pointer to rss configuration
2563 */
2564#if 0
2565static void
2566bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                          struct ecore_config_rss_params *p)
2568{
2569    int i;
2570
2571    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575
2576        /* Print 4 bytes in a line */
2577        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578            (((i + 1) & 0x3) == 0)) {
2579            BLOGD(sc, DBG_LOAD, "\n");
2580            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581        }
2582    }
2583
2584    BLOGD(sc, DBG_LOAD, "\n");
2585}
2586#endif
2587
2588/*
2589 * FreeBSD Device probe function.
2590 *
2591 * Compares the device found to the driver's list of supported devices and
2592 * reports back to the bsd loader whether this is the right driver for the device.
2593 * This is the driver entry function called from the "kldload" command.
2594 *
2595 * Returns:
2596 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597 */
2598static int
2599bxe_probe(device_t dev)
2600{
2601    struct bxe_softc *sc;
2602    struct bxe_device_type *t;
2603    char *descbuf;
2604    uint16_t did, sdid, svid, vid;
2605
2606    /* Find our device structure */
2607    sc = device_get_softc(dev);
2608    sc->dev = dev;
2609    t = bxe_devs;
2610
2611    /* Get the data for the device to be probed. */
2612    vid  = pci_get_vendor(dev);
2613    did  = pci_get_device(dev);
2614    svid = pci_get_subvendor(dev);
2615    sdid = pci_get_subdevice(dev);
2616
2617    BLOGD(sc, DBG_LOAD,
2618          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620
2621    /* Look through the list of known devices for a match. */
2622    while (t->bxe_name != NULL) {
2623        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627            if (descbuf == NULL)
2628                return (ENOMEM);
2629
2630            /* Print out the device identity. */
2631            snprintf(descbuf, BXE_DEVDESC_MAX,
2632                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                     (((pci_read_config(dev, PCIR_REVID, 4) &
2634                        0xf0) >> 4) + 'A'),
2635                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                     BXE_DRIVER_VERSION);
2637
2638            device_set_desc_copy(dev, descbuf);
2639            free(descbuf, M_TEMP);
2640            return (BUS_PROBE_DEFAULT);
2641        }
2642        t++;
2643    }
2644
2645    return (ENXIO);
2646}
2647
2648static void
2649bxe_init_mutexes(struct bxe_softc *sc)
2650{
2651#ifdef BXE_CORE_LOCK_SX
2652    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653             "bxe%d_core_lock", sc->unit);
2654    sx_init(&sc->core_sx, sc->core_sx_name);
2655#else
2656    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657             "bxe%d_core_lock", sc->unit);
2658    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659#endif
2660
2661    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662             "bxe%d_sp_lock", sc->unit);
2663    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664
2665    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666             "bxe%d_dmae_lock", sc->unit);
2667    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668
2669    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670             "bxe%d_phy_lock", sc->unit);
2671    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672
2673    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674             "bxe%d_fwmb_lock", sc->unit);
2675    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676
2677    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678             "bxe%d_print_lock", sc->unit);
2679    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680
2681    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682             "bxe%d_stats_lock", sc->unit);
2683    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684
2685    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686             "bxe%d_mcast_lock", sc->unit);
2687    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688}
2689
2690static void
2691bxe_release_mutexes(struct bxe_softc *sc)
2692{
2693#ifdef BXE_CORE_LOCK_SX
2694    sx_destroy(&sc->core_sx);
2695#else
2696    if (mtx_initialized(&sc->core_mtx)) {
2697        mtx_destroy(&sc->core_mtx);
2698    }
2699#endif
2700
2701    if (mtx_initialized(&sc->sp_mtx)) {
2702        mtx_destroy(&sc->sp_mtx);
2703    }
2704
2705    if (mtx_initialized(&sc->dmae_mtx)) {
2706        mtx_destroy(&sc->dmae_mtx);
2707    }
2708
2709    if (mtx_initialized(&sc->port.phy_mtx)) {
2710        mtx_destroy(&sc->port.phy_mtx);
2711    }
2712
2713    if (mtx_initialized(&sc->fwmb_mtx)) {
2714        mtx_destroy(&sc->fwmb_mtx);
2715    }
2716
2717    if (mtx_initialized(&sc->print_mtx)) {
2718        mtx_destroy(&sc->print_mtx);
2719    }
2720
2721    if (mtx_initialized(&sc->stats_mtx)) {
2722        mtx_destroy(&sc->stats_mtx);
2723    }
2724
2725    if (mtx_initialized(&sc->mcast_mtx)) {
2726        mtx_destroy(&sc->mcast_mtx);
2727    }
2728}
2729
2730static void
2731bxe_tx_disable(struct bxe_softc* sc)
2732{
2733    struct ifnet *ifp = sc->ifnet;
2734
2735    /* tell the stack the driver is stopped and TX queue is full */
2736    if (ifp != NULL) {
2737        ifp->if_drv_flags = 0;
2738    }
2739}
2740
2741static void
2742bxe_drv_pulse(struct bxe_softc *sc)
2743{
2744    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745             sc->fw_drv_pulse_wr_seq);
2746}
2747
2748static inline uint16_t
2749bxe_tx_avail(struct bxe_softc *sc,
2750             struct bxe_fastpath *fp)
2751{
2752    int16_t  used;
2753    uint16_t prod;
2754    uint16_t cons;
2755
2756    prod = fp->tx_bd_prod;
2757    cons = fp->tx_bd_cons;
2758
2759    used = SUB_S16(prod, cons);
2760
2761#if 0
2762    KASSERT((used < 0), ("used tx bds < 0"));
2763    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765            ("invalid number of tx bds used"));
2766#endif
2767
2768    return (int16_t)(sc->tx_ring_size) - used;
2769}
2770
2771static inline int
2772bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773{
2774    uint16_t hw_cons;
2775
2776    mb(); /* status block fields can change */
2777    hw_cons = le16toh(*fp->tx_cons_sb);
2778    return (hw_cons != fp->tx_pkt_cons);
2779}
2780
2781static inline uint8_t
2782bxe_has_tx_work(struct bxe_fastpath *fp)
2783{
2784    /* expand this for multi-cos if ever supported */
2785    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786}
2787
2788static inline int
2789bxe_has_rx_work(struct bxe_fastpath *fp)
2790{
2791    uint16_t rx_cq_cons_sb;
2792
2793    mb(); /* status block fields can change */
2794    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796        rx_cq_cons_sb++;
2797    return (fp->rx_cq_cons != rx_cq_cons_sb);
2798}
2799
2800static void
2801bxe_sp_event(struct bxe_softc    *sc,
2802             struct bxe_fastpath *fp,
2803             union eth_rx_cqe    *rr_cqe)
2804{
2805    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809
2810    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812
2813#if 0
2814    /*
2815     * If cid is within VF range, replace the slowpath object with the
2816     * one corresponding to this VF
2817     */
2818    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820    }
2821#endif
2822
2823    switch (command) {
2824    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826        drv_cmd = ECORE_Q_CMD_UPDATE;
2827        break;
2828
2829    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831        drv_cmd = ECORE_Q_CMD_SETUP;
2832        break;
2833
2834    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837        break;
2838
2839    case (RAMROD_CMD_ID_ETH_HALT):
2840        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841        drv_cmd = ECORE_Q_CMD_HALT;
2842        break;
2843
2844    case (RAMROD_CMD_ID_ETH_TERMINATE):
2845        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846        drv_cmd = ECORE_Q_CMD_TERMINATE;
2847        break;
2848
2849    case (RAMROD_CMD_ID_ETH_EMPTY):
2850        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851        drv_cmd = ECORE_Q_CMD_EMPTY;
2852        break;
2853
2854    default:
2855        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856              command, fp->index);
2857        return;
2858    }
2859
2860    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862        /*
2863         * q_obj->complete_cmd() failure means that this was
2864         * an unexpected completion.
2865         *
2866         * In this case we don't want to increase the sc->spq_left
2867         * because apparently we haven't sent this command the first
2868         * place.
2869         */
2870        // bxe_panic(sc, ("Unexpected SP completion\n"));
2871        return;
2872    }
2873
2874#if 0
2875    /* SRIOV: reschedule any 'in_progress' operations */
2876    bxe_iov_sp_event(sc, cid, TRUE);
2877#endif
2878
2879    atomic_add_acq_long(&sc->cq_spq_left, 1);
2880
2881    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882          atomic_load_acq_long(&sc->cq_spq_left));
2883
2884#if 0
2885    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887        /*
2888         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890         * prevent case that both bits are cleared. At the end of load/unload
2891         * driver checks that sp_state is cleared and this order prevents
2892         * races.
2893         */
2894        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895        wmb();
2896        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897
2898        /* schedule the sp task as MCP ack is required */
2899        bxe_schedule_sp_task(sc);
2900    }
2901#endif
2902}
2903
2904/*
2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907 * the current aggregation queue as in-progress.
2908 */
2909static void
2910bxe_tpa_start(struct bxe_softc            *sc,
2911              struct bxe_fastpath         *fp,
2912              uint16_t                    queue,
2913              uint16_t                    cons,
2914              uint16_t                    prod,
2915              struct eth_fast_path_rx_cqe *cqe)
2916{
2917    struct bxe_sw_rx_bd tmp_bd;
2918    struct bxe_sw_rx_bd *rx_buf;
2919    struct eth_rx_bd *rx_bd;
2920    int max_agg_queues;
2921    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922    uint16_t index;
2923
2924    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                       "cons=%d prod=%d\n",
2926          fp->index, queue, cons, prod);
2927
2928    max_agg_queues = MAX_AGG_QS(sc);
2929
2930    KASSERT((queue < max_agg_queues),
2931            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932             fp->index, queue, max_agg_queues));
2933
2934    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936             fp->index, queue));
2937
2938    /* copy the existing mbuf and mapping from the TPA pool */
2939    tmp_bd = tpa_info->bd;
2940
2941    if (tmp_bd.m == NULL) {
2942        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943              fp->index, queue);
2944        /* XXX Error handling? */
2945        return;
2946    }
2947
2948    /* change the TPA queue to the start state */
2949    tpa_info->state            = BXE_TPA_STATE_START;
2950    tpa_info->placement_offset = cqe->placement_offset;
2951    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954
2955    fp->rx_tpa_queue_used |= (1 << queue);
2956
2957    /*
2958     * If all the buffer descriptors are filled with mbufs then fill in
2959     * the current consumer index with a new BD. Else if a maximum Rx
2960     * buffer limit is imposed then fill in the next producer index.
2961     */
2962    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                prod : cons;
2964
2965    /* move the received mbuf and mapping to TPA pool */
2966    tpa_info->bd = fp->rx_mbuf_chain[cons];
2967
2968    /* release any existing RX BD mbuf mappings */
2969    if (cons != index) {
2970        rx_buf = &fp->rx_mbuf_chain[cons];
2971
2972        if (rx_buf->m_map != NULL) {
2973            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                            BUS_DMASYNC_POSTREAD);
2975            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976        }
2977
2978        /*
2979         * We get here when the maximum number of rx buffers is less than
2980         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981         * it out here without concern of a memory leak.
2982         */
2983        fp->rx_mbuf_chain[cons].m = NULL;
2984    }
2985
2986    /* update the Rx SW BD with the mbuf info from the TPA pool */
2987    fp->rx_mbuf_chain[index] = tmp_bd;
2988
2989    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990    rx_bd = &fp->rx_chain[index];
2991    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993}
2994
2995/*
2996 * When a TPA aggregation is completed, loop through the individual mbufs
2997 * of the aggregation, combining them into a single mbuf which will be sent
2998 * up the stack. Refill all freed SGEs with mbufs as we go along.
2999 */
3000static int
3001bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                   struct bxe_fastpath       *fp,
3003                   struct bxe_sw_tpa_info    *tpa_info,
3004                   uint16_t                  queue,
3005                   uint16_t                  pages,
3006                   struct mbuf               *m,
3007			       struct eth_end_agg_rx_cqe *cqe,
3008                   uint16_t                  cqe_idx)
3009{
3010    struct mbuf *m_frag;
3011    uint32_t frag_len, frag_size, i;
3012    uint16_t sge_idx;
3013    int rc = 0;
3014    int j;
3015
3016    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017
3018    BLOGD(sc, DBG_LRO,
3019          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021
3022    /* make sure the aggregated frame is not too big to handle */
3023    if (pages > 8 * PAGES_PER_SGE) {
3024        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027              tpa_info->len_on_bd, frag_size);
3028        bxe_panic(sc, ("sge page count error\n"));
3029        return (EINVAL);
3030    }
3031
3032    /*
3033     * Scan through the scatter gather list pulling individual mbufs into a
3034     * single mbuf for the host stack.
3035     */
3036    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038
3039        /*
3040         * Firmware gives the indices of the SGE as if the ring is an array
3041         * (meaning that the "next" element will consume 2 indices).
3042         */
3043        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044
3045        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3047              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048
3049        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050
3051        /* allocate a new mbuf for the SGE */
3052        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053        if (rc) {
3054            /* Leave all remaining SGEs in the ring! */
3055            return (rc);
3056        }
3057
3058        /* update the fragment length */
3059        m_frag->m_len = frag_len;
3060
3061        /* concatenate the fragment to the head mbuf */
3062        m_cat(m, m_frag);
3063        fp->eth_q_stats.mbuf_alloc_sge--;
3064
3065        /* update the TPA mbuf size and remaining fragment size */
3066        m->m_pkthdr.len += frag_len;
3067        frag_size -= frag_len;
3068    }
3069
3070    BLOGD(sc, DBG_LRO,
3071          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072          fp->index, queue, frag_size);
3073
3074    return (rc);
3075}
3076
3077static inline void
3078bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079{
3080    int i, j;
3081
3082    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084
3085        for (j = 0; j < 2; j++) {
3086            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087            idx--;
3088        }
3089    }
3090}
3091
3092static inline void
3093bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094{
3095    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097
3098    /*
3099     * Clear the two last indices in the page to 1. These are the indices that
3100     * correspond to the "next" element, hence will never be indicated and
3101     * should be removed from the calculations.
3102     */
3103    bxe_clear_sge_mask_next_elems(fp);
3104}
3105
3106static inline void
3107bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                        uint16_t            idx)
3109{
3110    uint16_t last_max = fp->last_max_sge;
3111
3112    if (SUB_S16(idx, last_max) > 0) {
3113        fp->last_max_sge = idx;
3114    }
3115}
3116
3117static inline void
3118bxe_update_sge_prod(struct bxe_softc          *sc,
3119                    struct bxe_fastpath       *fp,
3120                    uint16_t                  sge_len,
3121                    struct eth_end_agg_rx_cqe *cqe)
3122{
3123    uint16_t last_max, last_elem, first_elem;
3124    uint16_t delta = 0;
3125    uint16_t i;
3126
3127    if (!sge_len) {
3128        return;
3129    }
3130
3131    /* first mark all used pages */
3132    for (i = 0; i < sge_len; i++) {
3133        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135    }
3136
3137    BLOGD(sc, DBG_LRO,
3138          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139          fp->index, sge_len - 1,
3140          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141
3142    /* assume that the last SGE index is the biggest */
3143    bxe_update_last_max_sge(fp,
3144                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145
3146    last_max = RX_SGE(fp->last_max_sge);
3147    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149
3150    /* if ring is not full */
3151    if (last_elem + 1 != first_elem) {
3152        last_elem++;
3153    }
3154
3155    /* now update the prod */
3156    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157        if (__predict_true(fp->sge_mask[i])) {
3158            break;
3159        }
3160
3161        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162        delta += BIT_VEC64_ELEM_SZ;
3163    }
3164
3165    if (delta > 0) {
3166        fp->rx_sge_prod += delta;
3167        /* clear page-end entries */
3168        bxe_clear_sge_mask_next_elems(fp);
3169    }
3170
3171    BLOGD(sc, DBG_LRO,
3172          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174}
3175
3176/*
3177 * The aggregation on the current TPA queue has completed. Pull the individual
3178 * mbuf fragments together into a single mbuf, perform all necessary checksum
3179 * calculations, and send the resuting mbuf to the stack.
3180 */
3181static void
3182bxe_tpa_stop(struct bxe_softc          *sc,
3183             struct bxe_fastpath       *fp,
3184             struct bxe_sw_tpa_info    *tpa_info,
3185             uint16_t                  queue,
3186             uint16_t                  pages,
3187			 struct eth_end_agg_rx_cqe *cqe,
3188             uint16_t                  cqe_idx)
3189{
3190    struct ifnet *ifp = sc->ifnet;
3191    struct mbuf *m;
3192    int rc = 0;
3193
3194    BLOGD(sc, DBG_LRO,
3195          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196          fp->index, queue, tpa_info->placement_offset,
3197          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198
3199    m = tpa_info->bd.m;
3200
3201    /* allocate a replacement before modifying existing mbuf */
3202    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203    if (rc) {
3204        /* drop the frame and log an error */
3205        fp->eth_q_stats.rx_soft_errors++;
3206        goto bxe_tpa_stop_exit;
3207    }
3208
3209    /* we have a replacement, fixup the current mbuf */
3210    m_adj(m, tpa_info->placement_offset);
3211    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212
3213    /* mark the checksums valid (taken care of by the firmware) */
3214    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216    m->m_pkthdr.csum_data = 0xffff;
3217    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                               CSUM_IP_VALID   |
3219                               CSUM_DATA_VALID |
3220                               CSUM_PSEUDO_HDR);
3221
3222    /* aggregate all of the SGEs into a single mbuf */
3223    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224    if (rc) {
3225        /* drop the packet and log an error */
3226        fp->eth_q_stats.rx_soft_errors++;
3227        m_freem(m);
3228    } else {
3229        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231            m->m_flags |= M_VLANTAG;
3232        }
3233
3234        /* assign packet to this interface interface */
3235        m->m_pkthdr.rcvif = ifp;
3236
3237#if __FreeBSD_version >= 800000
3238        /* specify what RSS queue was used for this flow */
3239        m->m_pkthdr.flowid = fp->index;
3240        m->m_flags |= M_FLOWID;
3241#endif
3242
3243        ifp->if_ipackets++;
3244        fp->eth_q_stats.rx_tpa_pkts++;
3245
3246        /* pass the frame to the stack */
3247        (*ifp->if_input)(ifp, m);
3248    }
3249
3250    /* we passed an mbuf up the stack or dropped the frame */
3251    fp->eth_q_stats.mbuf_alloc_tpa--;
3252
3253bxe_tpa_stop_exit:
3254
3255    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256    fp->rx_tpa_queue_used &= ~(1 << queue);
3257}
3258
3259static uint8_t
3260bxe_rxeof(struct bxe_softc    *sc,
3261          struct bxe_fastpath *fp)
3262{
3263    struct ifnet *ifp = sc->ifnet;
3264    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266    int rx_pkts = 0;
3267    int rc;
3268
3269    BXE_FP_RX_LOCK(fp);
3270
3271    /* CQ "next element" is of the size of the regular element */
3272    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274        hw_cq_cons++;
3275    }
3276
3277    bd_cons = fp->rx_bd_cons;
3278    bd_prod = fp->rx_bd_prod;
3279    bd_prod_fw = bd_prod;
3280    sw_cq_cons = fp->rx_cq_cons;
3281    sw_cq_prod = fp->rx_cq_prod;
3282
3283    /*
3284     * Memory barrier necessary as speculative reads of the rx
3285     * buffer can be ahead of the index in the status block
3286     */
3287    rmb();
3288
3289    BLOGD(sc, DBG_RX,
3290          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291          fp->index, hw_cq_cons, sw_cq_cons);
3292
3293    while (sw_cq_cons != hw_cq_cons) {
3294        struct bxe_sw_rx_bd *rx_buf = NULL;
3295        union eth_rx_cqe *cqe;
3296        struct eth_fast_path_rx_cqe *cqe_fp;
3297        uint8_t cqe_fp_flags;
3298        enum eth_rx_cqe_type cqe_fp_type;
3299        uint16_t len, pad;
3300        struct mbuf *m = NULL;
3301
3302        comp_ring_cons = RCQ(sw_cq_cons);
3303        bd_prod = RX_BD(bd_prod);
3304        bd_cons = RX_BD(bd_cons);
3305
3306        cqe          = &fp->rcq_chain[comp_ring_cons];
3307        cqe_fp       = &cqe->fast_path_cqe;
3308        cqe_fp_flags = cqe_fp->type_error_flags;
3309        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310
3311        BLOGD(sc, DBG_RX,
3312              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315              fp->index,
3316              hw_cq_cons,
3317              sw_cq_cons,
3318              bd_prod,
3319              bd_cons,
3320              CQE_TYPE(cqe_fp_flags),
3321              cqe_fp_flags,
3322              cqe_fp->status_flags,
3323              le32toh(cqe_fp->rss_hash_result),
3324              le16toh(cqe_fp->vlan_tag),
3325              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326
3327        /* is this a slowpath msg? */
3328        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329            bxe_sp_event(sc, fp, cqe);
3330            goto next_cqe;
3331        }
3332
3333        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334
3335        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336            struct bxe_sw_tpa_info *tpa_info;
3337            uint16_t frag_size, pages;
3338            uint8_t queue;
3339
3340#if 0
3341            /* sanity check */
3342            if (!fp->tpa_enable &&
3343                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                      CQE_TYPE(cqe_fp_type));
3346            }
3347#endif
3348
3349            if (CQE_TYPE_START(cqe_fp_type)) {
3350                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                              bd_cons, bd_prod, cqe_fp);
3352                m = NULL; /* packet not ready yet */
3353                goto next_rx;
3354            }
3355
3356            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358
3359            queue = cqe->end_agg_cqe.queue_index;
3360            tpa_info = &fp->rx_tpa_info[queue];
3361
3362            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                  fp->index, queue);
3364
3365            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                         tpa_info->len_on_bd);
3367            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368
3369            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                         &cqe->end_agg_cqe, comp_ring_cons);
3371
3372            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373
3374            goto next_cqe;
3375        }
3376
3377        /* non TPA */
3378
3379        /* is this an error packet? */
3380        if (__predict_false(cqe_fp_flags &
3381                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383            fp->eth_q_stats.rx_soft_errors++;
3384            goto next_rx;
3385        }
3386
3387        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388        pad = cqe_fp->placement_offset;
3389
3390        m = rx_buf->m;
3391
3392        if (__predict_false(m == NULL)) {
3393            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                  bd_cons, fp->index);
3395            goto next_rx;
3396        }
3397
3398        /* XXX double copy if packet length under a threshold */
3399
3400        /*
3401         * If all the buffer descriptors are filled with mbufs then fill in
3402         * the current consumer index with a new BD. Else if a maximum Rx
3403         * buffer limit is imposed then fill in the next producer index.
3404         */
3405        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                      bd_prod : bd_cons);
3408        if (rc != 0) {
3409            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                  fp->index, rc);
3411            fp->eth_q_stats.rx_soft_errors++;
3412
3413            if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                /* copy this consumer index to the producer index */
3415                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                       sizeof(struct bxe_sw_rx_bd));
3417                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418            }
3419
3420            goto next_rx;
3421        }
3422
3423        /* current mbuf was detached from the bd */
3424        fp->eth_q_stats.mbuf_alloc_rx--;
3425
3426        /* we allocated a replacement mbuf, fixup the current one */
3427        m_adj(m, pad);
3428        m->m_pkthdr.len = m->m_len = len;
3429
3430        /* assign packet to this interface interface */
3431        m->m_pkthdr.rcvif = ifp;
3432
3433        /* assume no hardware checksum has complated */
3434        m->m_pkthdr.csum_flags = 0;
3435
3436        /* validate checksum if offload enabled */
3437        if (ifp->if_capenable & IFCAP_RXCSUM) {
3438            /* check for a valid IP frame */
3439            if (!(cqe->fast_path_cqe.status_flags &
3440                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                if (__predict_false(cqe_fp_flags &
3443                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                    fp->eth_q_stats.rx_hw_csum_errors++;
3445                } else {
3446                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                }
3449            }
3450
3451            /* check for a valid TCP/UDP frame */
3452            if (!(cqe->fast_path_cqe.status_flags &
3453                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                if (__predict_false(cqe_fp_flags &
3455                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                    fp->eth_q_stats.rx_hw_csum_errors++;
3457                } else {
3458                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                    m->m_pkthdr.csum_data = 0xFFFF;
3460                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                               CSUM_PSEUDO_HDR);
3462                }
3463            }
3464        }
3465
3466        /* if there is a VLAN tag then flag that info */
3467        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469            m->m_flags |= M_VLANTAG;
3470        }
3471
3472#if __FreeBSD_version >= 800000
3473        /* specify what RSS queue was used for this flow */
3474        m->m_pkthdr.flowid = fp->index;
3475        m->m_flags |= M_FLOWID;
3476#endif
3477
3478next_rx:
3479
3480        bd_cons    = RX_BD_NEXT(bd_cons);
3481        bd_prod    = RX_BD_NEXT(bd_prod);
3482        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483
3484        /* pass the frame to the stack */
3485        if (__predict_true(m != NULL)) {
3486            ifp->if_ipackets++;
3487            rx_pkts++;
3488            (*ifp->if_input)(ifp, m);
3489        }
3490
3491next_cqe:
3492
3493        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495
3496        /* limit spinning on the queue */
3497        if (rx_pkts == sc->rx_budget) {
3498            fp->eth_q_stats.rx_budget_reached++;
3499            break;
3500        }
3501    } /* while work to do */
3502
3503    fp->rx_bd_cons = bd_cons;
3504    fp->rx_bd_prod = bd_prod_fw;
3505    fp->rx_cq_cons = sw_cq_cons;
3506    fp->rx_cq_prod = sw_cq_prod;
3507
3508    /* Update producers */
3509    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510
3511    fp->eth_q_stats.rx_pkts += rx_pkts;
3512    fp->eth_q_stats.rx_calls++;
3513
3514    BXE_FP_RX_UNLOCK(fp);
3515
3516    return (sw_cq_cons != hw_cq_cons);
3517}
3518
3519static uint16_t
3520bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                struct bxe_fastpath *fp,
3522                uint16_t            idx)
3523{
3524    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525    struct eth_tx_start_bd *tx_start_bd;
3526    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527    uint16_t new_cons;
3528    int nbd;
3529
3530    /* unmap the mbuf from non-paged memory */
3531    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532
3533    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534    nbd = le16toh(tx_start_bd->nbd) - 1;
3535
3536#if 0
3537    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538        bxe_panic(sc, ("BAD nbd!\n"));
3539    }
3540#endif
3541
3542    new_cons = (tx_buf->first_bd + nbd);
3543
3544#if 0
3545    struct eth_tx_bd *tx_data_bd;
3546
3547    /*
3548     * The following code doesn't do anything but is left here
3549     * for clarity on what the new value of new_cons skipped.
3550     */
3551
3552    /* get the next bd */
3553    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554
3555    /* skip the parse bd */
3556    --nbd;
3557    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558
3559    /* skip the TSO split header bd since they have no mapping */
3560    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561        --nbd;
3562        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563    }
3564
3565    /* now free frags */
3566    while (nbd > 0) {
3567        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568        if (--nbd) {
3569            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570        }
3571    }
3572#endif
3573
3574    /* free the mbuf */
3575    if (__predict_true(tx_buf->m != NULL)) {
3576        m_freem(tx_buf->m);
3577        fp->eth_q_stats.mbuf_alloc_tx--;
3578    } else {
3579        fp->eth_q_stats.tx_chain_lost_mbuf++;
3580    }
3581
3582    tx_buf->m = NULL;
3583    tx_buf->first_bd = 0;
3584
3585    return (new_cons);
3586}
3587
3588/* transmit timeout watchdog */
3589static int
3590bxe_watchdog(struct bxe_softc    *sc,
3591             struct bxe_fastpath *fp)
3592{
3593    BXE_FP_TX_LOCK(fp);
3594
3595    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596        BXE_FP_TX_UNLOCK(fp);
3597        return (0);
3598    }
3599
3600    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601
3602    BXE_FP_TX_UNLOCK(fp);
3603
3604    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606
3607    return (-1);
3608}
3609
3610/* processes transmit completions */
3611static uint8_t
3612bxe_txeof(struct bxe_softc    *sc,
3613          struct bxe_fastpath *fp)
3614{
3615    struct ifnet *ifp = sc->ifnet;
3616    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617    uint16_t tx_bd_avail;
3618
3619    BXE_FP_TX_LOCK_ASSERT(fp);
3620
3621    bd_cons = fp->tx_bd_cons;
3622    hw_cons = le16toh(*fp->tx_cons_sb);
3623    sw_cons = fp->tx_pkt_cons;
3624
3625    while (sw_cons != hw_cons) {
3626        pkt_cons = TX_BD(sw_cons);
3627
3628        BLOGD(sc, DBG_TX,
3629              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630              fp->index, hw_cons, sw_cons, pkt_cons);
3631
3632        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633
3634        sw_cons++;
3635    }
3636
3637    fp->tx_pkt_cons = sw_cons;
3638    fp->tx_bd_cons  = bd_cons;
3639
3640    BLOGD(sc, DBG_TX,
3641          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643
3644    mb();
3645
3646    tx_bd_avail = bxe_tx_avail(sc, fp);
3647
3648    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650    } else {
3651        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652    }
3653
3654    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655        /* reset the watchdog timer if there are pending transmits */
3656        fp->watchdog_timer = BXE_TX_TIMEOUT;
3657        return (TRUE);
3658    } else {
3659        /* clear watchdog when there are no pending transmits */
3660        fp->watchdog_timer = 0;
3661        return (FALSE);
3662    }
3663}
3664
3665static void
3666bxe_drain_tx_queues(struct bxe_softc *sc)
3667{
3668    struct bxe_fastpath *fp;
3669    int i, count;
3670
3671    /* wait until all TX fastpath tasks have completed */
3672    for (i = 0; i < sc->num_queues; i++) {
3673        fp = &sc->fp[i];
3674
3675        count = 1000;
3676
3677        while (bxe_has_tx_work(fp)) {
3678
3679            BXE_FP_TX_LOCK(fp);
3680            bxe_txeof(sc, fp);
3681            BXE_FP_TX_UNLOCK(fp);
3682
3683            if (count == 0) {
3684                BLOGE(sc, "Timeout waiting for fp[%d] "
3685                          "transmits to complete!\n", i);
3686                bxe_panic(sc, ("tx drain failure\n"));
3687                return;
3688            }
3689
3690            count--;
3691            DELAY(1000);
3692            rmb();
3693        }
3694    }
3695
3696    return;
3697}
3698
3699static int
3700bxe_del_all_macs(struct bxe_softc          *sc,
3701                 struct ecore_vlan_mac_obj *mac_obj,
3702                 int                       mac_type,
3703                 uint8_t                   wait_for_comp)
3704{
3705    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706    int rc;
3707
3708    /* wait for completion of requested */
3709    if (wait_for_comp) {
3710        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711    }
3712
3713    /* Set the mac type of addresses we want to clear */
3714    bxe_set_bit(mac_type, &vlan_mac_flags);
3715
3716    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717    if (rc < 0) {
3718        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719    }
3720
3721    return (rc);
3722}
3723
3724static int
3725bxe_fill_accept_flags(struct bxe_softc *sc,
3726                      uint32_t         rx_mode,
3727                      unsigned long    *rx_accept_flags,
3728                      unsigned long    *tx_accept_flags)
3729{
3730    /* Clear the flags first */
3731    *rx_accept_flags = 0;
3732    *tx_accept_flags = 0;
3733
3734    switch (rx_mode) {
3735    case BXE_RX_MODE_NONE:
3736        /*
3737         * 'drop all' supersedes any accept flags that may have been
3738         * passed to the function.
3739         */
3740        break;
3741
3742    case BXE_RX_MODE_NORMAL:
3743        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746
3747        /* internal switching mode */
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751
3752        break;
3753
3754    case BXE_RX_MODE_ALLMULTI:
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758
3759        /* internal switching mode */
3760        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763
3764        break;
3765
3766    case BXE_RX_MODE_PROMISC:
3767        /*
3768         * According to deffinition of SI mode, iface in promisc mode
3769         * should receive matched and unmatched (in resolution of port)
3770         * unicast packets.
3771         */
3772        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776
3777        /* internal switching mode */
3778        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780
3781        if (IS_MF_SI(sc)) {
3782            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783        } else {
3784            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785        }
3786
3787        break;
3788
3789    default:
3790        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791        return (-1);
3792    }
3793
3794    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795    if (rx_mode != BXE_RX_MODE_NONE) {
3796        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798    }
3799
3800    return (0);
3801}
3802
3803static int
3804bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                  uint8_t          cl_id,
3806                  unsigned long    rx_mode_flags,
3807                  unsigned long    rx_accept_flags,
3808                  unsigned long    tx_accept_flags,
3809                  unsigned long    ramrod_flags)
3810{
3811    struct ecore_rx_mode_ramrod_params ramrod_param;
3812    int rc;
3813
3814    memset(&ramrod_param, 0, sizeof(ramrod_param));
3815
3816    /* Prepare ramrod parameters */
3817    ramrod_param.cid = 0;
3818    ramrod_param.cl_id = cl_id;
3819    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820    ramrod_param.func_id = SC_FUNC(sc);
3821
3822    ramrod_param.pstate = &sc->sp_state;
3823    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824
3825    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827
3828    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829
3830    ramrod_param.ramrod_flags = ramrod_flags;
3831    ramrod_param.rx_mode_flags = rx_mode_flags;
3832
3833    ramrod_param.rx_accept_flags = rx_accept_flags;
3834    ramrod_param.tx_accept_flags = tx_accept_flags;
3835
3836    rc = ecore_config_rx_mode(sc, &ramrod_param);
3837    if (rc < 0) {
3838        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839        return (rc);
3840    }
3841
3842    return (0);
3843}
3844
3845static int
3846bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847{
3848    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850    int rc;
3851
3852    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                               &tx_accept_flags);
3854    if (rc) {
3855        return (rc);
3856    }
3857
3858    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860
3861    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                              rx_accept_flags, tx_accept_flags,
3864                              ramrod_flags));
3865}
3866
3867/* returns the "mcp load_code" according to global load_count array */
3868static int
3869bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870{
3871    int path = SC_PATH(sc);
3872    int port = SC_PORT(sc);
3873
3874    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875          path, load_count[path][0], load_count[path][1],
3876          load_count[path][2]);
3877    load_count[path][0]++;
3878    load_count[path][1 + port]++;
3879    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880          path, load_count[path][0], load_count[path][1],
3881          load_count[path][2]);
3882    if (load_count[path][0] == 1) {
3883        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884    } else if (load_count[path][1 + port] == 1) {
3885        return (FW_MSG_CODE_DRV_LOAD_PORT);
3886    } else {
3887        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888    }
3889}
3890
3891/* returns the "mcp load_code" according to global load_count array */
3892static int
3893bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894{
3895    int port = SC_PORT(sc);
3896    int path = SC_PATH(sc);
3897
3898    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899          path, load_count[path][0], load_count[path][1],
3900          load_count[path][2]);
3901    load_count[path][0]--;
3902    load_count[path][1 + port]--;
3903    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904          path, load_count[path][0], load_count[path][1],
3905          load_count[path][2]);
3906    if (load_count[path][0] == 0) {
3907        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908    } else if (load_count[path][1 + port] == 0) {
3909        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910    } else {
3911        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912    }
3913}
3914
3915/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916static uint32_t
3917bxe_send_unload_req(struct bxe_softc *sc,
3918                    int              unload_mode)
3919{
3920    uint32_t reset_code = 0;
3921#if 0
3922    int port = SC_PORT(sc);
3923    int path = SC_PATH(sc);
3924#endif
3925
3926    /* Select the UNLOAD request mode */
3927    if (unload_mode == UNLOAD_NORMAL) {
3928        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929    }
3930#if 0
3931    else if (sc->flags & BXE_NO_WOL_FLAG) {
3932        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933    } else if (sc->wol) {
3934        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935        uint8_t *mac_addr = sc->dev->dev_addr;
3936        uint32_t val;
3937        uint16_t pmc;
3938
3939        /*
3940         * The mac address is written to entries 1-4 to
3941         * preserve entry 0 which is used by the PMF
3942         */
3943        uint8_t entry = (SC_VN(sc) + 1)*8;
3944
3945        val = (mac_addr[0] << 8) | mac_addr[1];
3946        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947
3948        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949              (mac_addr[4] << 8) | mac_addr[5];
3950        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951
3952        /* Enable the PME and clear the status */
3953        pmc = pci_read_config(sc->dev,
3954                              (sc->devinfo.pcie_pm_cap_reg +
3955                               PCIR_POWER_STATUS),
3956                              2);
3957        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958        pci_write_config(sc->dev,
3959                         (sc->devinfo.pcie_pm_cap_reg +
3960                          PCIR_POWER_STATUS),
3961                         pmc, 4);
3962
3963        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964    }
3965#endif
3966    else {
3967        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968    }
3969
3970    /* Send the request to the MCP */
3971    if (!BXE_NOMCP(sc)) {
3972        reset_code = bxe_fw_command(sc, reset_code, 0);
3973    } else {
3974        reset_code = bxe_nic_unload_no_mcp(sc);
3975    }
3976
3977    return (reset_code);
3978}
3979
3980/* send UNLOAD_DONE command to the MCP */
3981static void
3982bxe_send_unload_done(struct bxe_softc *sc,
3983                     uint8_t          keep_link)
3984{
3985    uint32_t reset_param =
3986        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987
3988    /* Report UNLOAD_DONE to MCP */
3989    if (!BXE_NOMCP(sc)) {
3990        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991    }
3992}
3993
3994static int
3995bxe_func_wait_started(struct bxe_softc *sc)
3996{
3997    int tout = 50;
3998
3999    if (!sc->port.pmf) {
4000        return (0);
4001    }
4002
4003    /*
4004     * (assumption: No Attention from MCP at this stage)
4005     * PMF probably in the middle of TX disable/enable transaction
4006     * 1. Sync IRS for default SB
4007     * 2. Sync SP queue - this guarantees us that attention handling started
4008     * 3. Wait, that TX disable/enable transaction completes
4009     *
4010     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012     * received completion for the transaction the state is TX_STOPPED.
4013     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014     * transaction.
4015     */
4016
4017    /* XXX make sure default SB ISR is done */
4018    /* need a way to synchronize an irq (intr_mtx?) */
4019
4020    /* XXX flush any work queues */
4021
4022    while (ecore_func_get_state(sc, &sc->func_obj) !=
4023           ECORE_F_STATE_STARTED && tout--) {
4024        DELAY(20000);
4025    }
4026
4027    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028        /*
4029         * Failed to complete the transaction in a "good way"
4030         * Force both transactions with CLR bit.
4031         */
4032        struct ecore_func_state_params func_params = { NULL };
4033
4034        BLOGE(sc, "Unexpected function state! "
4035                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036
4037        func_params.f_obj = &sc->func_obj;
4038        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039
4040        /* STARTED-->TX_STOPPED */
4041        func_params.cmd = ECORE_F_CMD_TX_STOP;
4042        ecore_func_state_change(sc, &func_params);
4043
4044        /* TX_STOPPED-->STARTED */
4045        func_params.cmd = ECORE_F_CMD_TX_START;
4046        return (ecore_func_state_change(sc, &func_params));
4047    }
4048
4049    return (0);
4050}
4051
4052static int
4053bxe_stop_queue(struct bxe_softc *sc,
4054               int              index)
4055{
4056    struct bxe_fastpath *fp = &sc->fp[index];
4057    struct ecore_queue_state_params q_params = { NULL };
4058    int rc;
4059
4060    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061
4062    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063    /* We want to wait for completion in this context */
4064    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065
4066    /* Stop the primary connection: */
4067
4068    /* ...halt the connection */
4069    q_params.cmd = ECORE_Q_CMD_HALT;
4070    rc = ecore_queue_state_change(sc, &q_params);
4071    if (rc) {
4072        return (rc);
4073    }
4074
4075    /* ...terminate the connection */
4076    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079    rc = ecore_queue_state_change(sc, &q_params);
4080    if (rc) {
4081        return (rc);
4082    }
4083
4084    /* ...delete cfc entry */
4085    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088    return (ecore_queue_state_change(sc, &q_params));
4089}
4090
4091/* wait for the outstanding SP commands */
4092static inline uint8_t
4093bxe_wait_sp_comp(struct bxe_softc *sc,
4094                 unsigned long    mask)
4095{
4096    unsigned long tmp;
4097    int tout = 5000; /* wait for 5 secs tops */
4098
4099    while (tout--) {
4100        mb();
4101        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102            return (TRUE);
4103        }
4104
4105        DELAY(1000);
4106    }
4107
4108    mb();
4109
4110    tmp = atomic_load_acq_long(&sc->sp_state);
4111    if (tmp & mask) {
4112        BLOGE(sc, "Filtering completion timed out: "
4113                  "sp_state 0x%lx, mask 0x%lx\n",
4114              tmp, mask);
4115        return (FALSE);
4116    }
4117
4118    return (FALSE);
4119}
4120
4121static int
4122bxe_func_stop(struct bxe_softc *sc)
4123{
4124    struct ecore_func_state_params func_params = { NULL };
4125    int rc;
4126
4127    /* prepare parameters for function state transitions */
4128    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129    func_params.f_obj = &sc->func_obj;
4130    func_params.cmd = ECORE_F_CMD_STOP;
4131
4132    /*
4133     * Try to stop the function the 'good way'. If it fails (in case
4134     * of a parity error during bxe_chip_cleanup()) and we are
4135     * not in a debug mode, perform a state transaction in order to
4136     * enable further HW_RESET transaction.
4137     */
4138    rc = ecore_func_state_change(sc, &func_params);
4139    if (rc) {
4140        BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                  "Running a dry transaction\n");
4142        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143        return (ecore_func_state_change(sc, &func_params));
4144    }
4145
4146    return (0);
4147}
4148
4149static int
4150bxe_reset_hw(struct bxe_softc *sc,
4151             uint32_t         load_code)
4152{
4153    struct ecore_func_state_params func_params = { NULL };
4154
4155    /* Prepare parameters for function state transitions */
4156    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157
4158    func_params.f_obj = &sc->func_obj;
4159    func_params.cmd = ECORE_F_CMD_HW_RESET;
4160
4161    func_params.params.hw_init.load_phase = load_code;
4162
4163    return (ecore_func_state_change(sc, &func_params));
4164}
4165
4166static void
4167bxe_int_disable_sync(struct bxe_softc *sc,
4168                     int              disable_hw)
4169{
4170    if (disable_hw) {
4171        /* prevent the HW from sending interrupts */
4172        bxe_int_disable(sc);
4173    }
4174
4175    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176    /* make sure all ISRs are done */
4177
4178    /* XXX make sure sp_task is not running */
4179    /* cancel and flush work queues */
4180}
4181
4182static void
4183bxe_chip_cleanup(struct bxe_softc *sc,
4184                 uint32_t         unload_mode,
4185                 uint8_t          keep_link)
4186{
4187    int port = SC_PORT(sc);
4188    struct ecore_mcast_ramrod_params rparam = { NULL };
4189    uint32_t reset_code;
4190    int i, rc = 0;
4191
4192    bxe_drain_tx_queues(sc);
4193
4194    /* give HW time to discard old tx messages */
4195    DELAY(1000);
4196
4197    /* Clean all ETH MACs */
4198    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199    if (rc < 0) {
4200        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201    }
4202
4203    /* Clean up UC list  */
4204    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205    if (rc < 0) {
4206        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207    }
4208
4209    /* Disable LLH */
4210    if (!CHIP_IS_E1(sc)) {
4211        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212    }
4213
4214    /* Set "drop all" to stop Rx */
4215
4216    /*
4217     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218     * a race between the completion code and this code.
4219     */
4220    BXE_MCAST_LOCK(sc);
4221
4222    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224    } else {
4225        bxe_set_storm_rx_mode(sc);
4226    }
4227
4228    /* Clean up multicast configuration */
4229    rparam.mcast_obj = &sc->mcast_obj;
4230    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231    if (rc < 0) {
4232        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233    }
4234
4235    BXE_MCAST_UNLOCK(sc);
4236
4237    // XXX bxe_iov_chip_cleanup(sc);
4238
4239    /*
4240     * Send the UNLOAD_REQUEST to the MCP. This will return if
4241     * this function should perform FUNCTION, PORT, or COMMON HW
4242     * reset.
4243     */
4244    reset_code = bxe_send_unload_req(sc, unload_mode);
4245
4246    /*
4247     * (assumption: No Attention from MCP at this stage)
4248     * PMF probably in the middle of TX disable/enable transaction
4249     */
4250    rc = bxe_func_wait_started(sc);
4251    if (rc) {
4252        BLOGE(sc, "bxe_func_wait_started failed\n");
4253    }
4254
4255    /*
4256     * Close multi and leading connections
4257     * Completions for ramrods are collected in a synchronous way
4258     */
4259    for (i = 0; i < sc->num_queues; i++) {
4260        if (bxe_stop_queue(sc, i)) {
4261            goto unload_error;
4262        }
4263    }
4264
4265    /*
4266     * If SP settings didn't get completed so far - something
4267     * very wrong has happen.
4268     */
4269    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271    }
4272
4273unload_error:
4274
4275    rc = bxe_func_stop(sc);
4276    if (rc) {
4277        BLOGE(sc, "Function stop failed!\n");
4278    }
4279
4280    /* disable HW interrupts */
4281    bxe_int_disable_sync(sc, TRUE);
4282
4283    /* detach interrupts */
4284    bxe_interrupt_detach(sc);
4285
4286    /* Reset the chip */
4287    rc = bxe_reset_hw(sc, reset_code);
4288    if (rc) {
4289        BLOGE(sc, "Hardware reset failed\n");
4290    }
4291
4292    /* Report UNLOAD_DONE to MCP */
4293    bxe_send_unload_done(sc, keep_link);
4294}
4295
4296static void
4297bxe_disable_close_the_gate(struct bxe_softc *sc)
4298{
4299    uint32_t val;
4300    int port = SC_PORT(sc);
4301
4302    BLOGD(sc, DBG_LOAD,
4303          "Disabling 'close the gates'\n");
4304
4305    if (CHIP_IS_E1(sc)) {
4306        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308        val = REG_RD(sc, addr);
4309        val &= ~(0x300);
4310        REG_WR(sc, addr, val);
4311    } else {
4312        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316    }
4317}
4318
4319/*
4320 * Cleans the object that have internal lists without sending
4321 * ramrods. Should be run when interrutps are disabled.
4322 */
4323static void
4324bxe_squeeze_objects(struct bxe_softc *sc)
4325{
4326    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327    struct ecore_mcast_ramrod_params rparam = { NULL };
4328    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329    int rc;
4330
4331    /* Cleanup MACs' object first... */
4332
4333    /* Wait for completion of requested */
4334    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335    /* Perform a dry cleanup */
4336    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337
4338    /* Clean ETH primary MAC */
4339    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                             &ramrod_flags);
4342    if (rc != 0) {
4343        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344    }
4345
4346    /* Cleanup UC list */
4347    vlan_mac_flags = 0;
4348    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                             &ramrod_flags);
4351    if (rc != 0) {
4352        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353    }
4354
4355    /* Now clean mcast object... */
4356
4357    rparam.mcast_obj = &sc->mcast_obj;
4358    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359
4360    /* Add a DEL command... */
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362    if (rc < 0) {
4363        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364    }
4365
4366    /* now wait until all pending commands are cleared */
4367
4368    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    while (rc != 0) {
4370        if (rc < 0) {
4371            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372            return;
4373        }
4374
4375        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376    }
4377}
4378
4379/* stop the controller */
4380static __noinline int
4381bxe_nic_unload(struct bxe_softc *sc,
4382               uint32_t         unload_mode,
4383               uint8_t          keep_link)
4384{
4385    uint8_t global = FALSE;
4386    uint32_t val;
4387
4388    BXE_CORE_LOCK_ASSERT(sc);
4389
4390    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391
4392    /* mark driver as unloaded in shmem2 */
4393    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397    }
4398
4399    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401        /*
4402         * We can get here if the driver has been unloaded
4403         * during parity error recovery and is either waiting for a
4404         * leader to complete or for other functions to unload and
4405         * then ifconfig down has been issued. In this case we want to
4406         * unload and let other functions to complete a recovery
4407         * process.
4408         */
4409        sc->recovery_state = BXE_RECOVERY_DONE;
4410        sc->is_leader = 0;
4411        bxe_release_leader_lock(sc);
4412        mb();
4413
4414        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415        BLOGE(sc, "Can't unload in closed or error state\n");
4416        return (-1);
4417    }
4418
4419    /*
4420     * Nothing to do during unload if previous bxe_nic_load()
4421     * did not completed succesfully - all resourses are released.
4422     */
4423    if ((sc->state == BXE_STATE_CLOSED) ||
4424        (sc->state == BXE_STATE_ERROR)) {
4425        return (0);
4426    }
4427
4428    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429    mb();
4430
4431    /* stop tx */
4432    bxe_tx_disable(sc);
4433
4434    sc->rx_mode = BXE_RX_MODE_NONE;
4435    /* XXX set rx mode ??? */
4436
4437    if (IS_PF(sc)) {
4438        /* set ALWAYS_ALIVE bit in shmem */
4439        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440
4441        bxe_drv_pulse(sc);
4442
4443        bxe_stats_handle(sc, STATS_EVENT_STOP);
4444        bxe_save_statistics(sc);
4445    }
4446
4447    /* wait till consumers catch up with producers in all queues */
4448    bxe_drain_tx_queues(sc);
4449
4450    /* if VF indicate to PF this function is going down (PF will delete sp
4451     * elements and clear initializations
4452     */
4453    if (IS_VF(sc)) {
4454        ; /* bxe_vfpf_close_vf(sc); */
4455    } else if (unload_mode != UNLOAD_RECOVERY) {
4456        /* if this is a normal/close unload need to clean up chip */
4457        bxe_chip_cleanup(sc, unload_mode, keep_link);
4458    } else {
4459        /* Send the UNLOAD_REQUEST to the MCP */
4460        bxe_send_unload_req(sc, unload_mode);
4461
4462        /*
4463         * Prevent transactions to host from the functions on the
4464         * engine that doesn't reset global blocks in case of global
4465         * attention once gloabl blocks are reset and gates are opened
4466         * (the engine which leader will perform the recovery
4467         * last).
4468         */
4469        if (!CHIP_IS_E1x(sc)) {
4470            bxe_pf_disable(sc);
4471        }
4472
4473        /* disable HW interrupts */
4474        bxe_int_disable_sync(sc, TRUE);
4475
4476        /* detach interrupts */
4477        bxe_interrupt_detach(sc);
4478
4479        /* Report UNLOAD_DONE to MCP */
4480        bxe_send_unload_done(sc, FALSE);
4481    }
4482
4483    /*
4484     * At this stage no more interrupts will arrive so we may safely clean
4485     * the queue'able objects here in case they failed to get cleaned so far.
4486     */
4487    if (IS_PF(sc)) {
4488        bxe_squeeze_objects(sc);
4489    }
4490
4491    /* There should be no more pending SP commands at this stage */
4492    sc->sp_state = 0;
4493
4494    sc->port.pmf = 0;
4495
4496    bxe_free_fp_buffers(sc);
4497
4498    if (IS_PF(sc)) {
4499        bxe_free_mem(sc);
4500    }
4501
4502    bxe_free_fw_stats_mem(sc);
4503
4504    sc->state = BXE_STATE_CLOSED;
4505
4506    /*
4507     * Check if there are pending parity attentions. If there are - set
4508     * RECOVERY_IN_PROGRESS.
4509     */
4510    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511        bxe_set_reset_in_progress(sc);
4512
4513        /* Set RESET_IS_GLOBAL if needed */
4514        if (global) {
4515            bxe_set_reset_global(sc);
4516        }
4517    }
4518
4519    /*
4520     * The last driver must disable a "close the gate" if there is no
4521     * parity attention or "process kill" pending.
4522     */
4523    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524        bxe_reset_is_done(sc, SC_PATH(sc))) {
4525        bxe_disable_close_the_gate(sc);
4526    }
4527
4528    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529
4530    return (0);
4531}
4532
4533/*
4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536 */
4537static int
4538bxe_ifmedia_update(struct ifnet *ifp)
4539{
4540    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541    struct ifmedia *ifm;
4542
4543    ifm = &sc->ifmedia;
4544
4545    /* We only support Ethernet media type. */
4546    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547        return (EINVAL);
4548    }
4549
4550    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551    case IFM_AUTO:
4552         break;
4553    case IFM_10G_CX4:
4554    case IFM_10G_SR:
4555    case IFM_10G_T:
4556    case IFM_10G_TWINAX:
4557    default:
4558        /* We don't support changing the media type. */
4559        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560              IFM_SUBTYPE(ifm->ifm_media));
4561        return (EINVAL);
4562    }
4563
4564    return (0);
4565}
4566
4567/*
4568 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569 */
4570static void
4571bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572{
4573    struct bxe_softc *sc = ifp->if_softc;
4574
4575    /* Report link down if the driver isn't running. */
4576    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577        ifmr->ifm_active |= IFM_NONE;
4578        return;
4579    }
4580
4581    /* Setup the default interface info. */
4582    ifmr->ifm_status = IFM_AVALID;
4583    ifmr->ifm_active = IFM_ETHER;
4584
4585    if (sc->link_vars.link_up) {
4586        ifmr->ifm_status |= IFM_ACTIVE;
4587    } else {
4588        ifmr->ifm_active |= IFM_NONE;
4589        return;
4590    }
4591
4592    ifmr->ifm_active |= sc->media;
4593
4594    if (sc->link_vars.duplex == DUPLEX_FULL) {
4595        ifmr->ifm_active |= IFM_FDX;
4596    } else {
4597        ifmr->ifm_active |= IFM_HDX;
4598    }
4599}
4600
4601static int
4602bxe_ioctl_nvram(struct bxe_softc *sc,
4603                uint32_t         priv_op,
4604                struct ifreq     *ifr)
4605{
4606    struct bxe_nvram_data nvdata_base;
4607    struct bxe_nvram_data *nvdata;
4608    int len;
4609    int error = 0;
4610
4611    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612
4613    len = (sizeof(struct bxe_nvram_data) +
4614           nvdata_base.len -
4615           sizeof(uint32_t));
4616
4617    if (len > sizeof(struct bxe_nvram_data)) {
4618        if ((nvdata = (struct bxe_nvram_data *)
4619                 malloc(len, M_DEVBUF,
4620                        (M_NOWAIT | M_ZERO))) == NULL) {
4621            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622            return (1);
4623        }
4624        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625    } else {
4626        nvdata = &nvdata_base;
4627    }
4628
4629    if (priv_op == BXE_IOC_RD_NVRAM) {
4630        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631              nvdata->offset, nvdata->len);
4632        error = bxe_nvram_read(sc,
4633                               nvdata->offset,
4634                               (uint8_t *)nvdata->value,
4635                               nvdata->len);
4636        copyout(nvdata, ifr->ifr_data, len);
4637    } else { /* BXE_IOC_WR_NVRAM */
4638        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639              nvdata->offset, nvdata->len);
4640        copyin(ifr->ifr_data, nvdata, len);
4641        error = bxe_nvram_write(sc,
4642                                nvdata->offset,
4643                                (uint8_t *)nvdata->value,
4644                                nvdata->len);
4645    }
4646
4647    if (len > sizeof(struct bxe_nvram_data)) {
4648        free(nvdata, M_DEVBUF);
4649    }
4650
4651    return (error);
4652}
4653
4654static int
4655bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                     uint32_t         priv_op,
4657                     struct ifreq     *ifr)
4658{
4659    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661    caddr_t p_tmp;
4662    uint32_t *offset;
4663    int i;
4664
4665    switch (priv_op)
4666    {
4667    case BXE_IOC_STATS_SHOW_NUM:
4668        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670            BXE_NUM_ETH_STATS;
4671        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672            STAT_NAME_LEN;
4673        return (0);
4674
4675    case BXE_IOC_STATS_SHOW_STR:
4676        memset(ifr->ifr_data, 0, str_size);
4677        p_tmp = ifr->ifr_data;
4678        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680            p_tmp += STAT_NAME_LEN;
4681        }
4682        return (0);
4683
4684    case BXE_IOC_STATS_SHOW_CNT:
4685        memset(ifr->ifr_data, 0, stats_size);
4686        p_tmp = ifr->ifr_data;
4687        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688            offset = ((uint32_t *)&sc->eth_stats +
4689                      bxe_eth_stats_arr[i].offset);
4690            switch (bxe_eth_stats_arr[i].size) {
4691            case 4:
4692                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                break;
4694            case 8:
4695                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                break;
4697            default:
4698                *((uint64_t *)p_tmp) = 0;
4699            }
4700            p_tmp += sizeof(uint64_t);
4701        }
4702        return (0);
4703
4704    default:
4705        return (-1);
4706    }
4707}
4708
4709static void
4710bxe_handle_chip_tq(void *context,
4711                   int  pending)
4712{
4713    struct bxe_softc *sc = (struct bxe_softc *)context;
4714    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715
4716    switch (work)
4717    {
4718    case CHIP_TQ_START:
4719        if ((sc->ifnet->if_flags & IFF_UP) &&
4720            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721            /* start the interface */
4722            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723            BXE_CORE_LOCK(sc);
4724            bxe_init_locked(sc);
4725            BXE_CORE_UNLOCK(sc);
4726        }
4727        break;
4728
4729    case CHIP_TQ_STOP:
4730        if (!(sc->ifnet->if_flags & IFF_UP) &&
4731            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732            /* bring down the interface */
4733            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734            bxe_periodic_stop(sc);
4735            BXE_CORE_LOCK(sc);
4736            bxe_stop_locked(sc);
4737            BXE_CORE_UNLOCK(sc);
4738        }
4739        break;
4740
4741    case CHIP_TQ_REINIT:
4742        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743            /* restart the interface */
4744            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745            bxe_periodic_stop(sc);
4746            BXE_CORE_LOCK(sc);
4747            bxe_stop_locked(sc);
4748            bxe_init_locked(sc);
4749            BXE_CORE_UNLOCK(sc);
4750        }
4751        break;
4752
4753    default:
4754        break;
4755    }
4756}
4757
4758/*
4759 * Handles any IOCTL calls from the operating system.
4760 *
4761 * Returns:
4762 *   0 = Success, >0 Failure
4763 */
4764static int
4765bxe_ioctl(struct ifnet *ifp,
4766          u_long       command,
4767          caddr_t      data)
4768{
4769    struct bxe_softc *sc = ifp->if_softc;
4770    struct ifreq *ifr = (struct ifreq *)data;
4771    struct bxe_nvram_data *nvdata;
4772    uint32_t priv_op;
4773    int mask = 0;
4774    int reinit = 0;
4775    int error = 0;
4776
4777    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779
4780    switch (command)
4781    {
4782    case SIOCSIFMTU:
4783        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784              ifr->ifr_mtu);
4785
4786        if (sc->mtu == ifr->ifr_mtu) {
4787            /* nothing to change */
4788            break;
4789        }
4790
4791        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                  ifr->ifr_mtu, mtu_min, mtu_max);
4794            error = EINVAL;
4795            break;
4796        }
4797
4798        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                             (unsigned long)ifr->ifr_mtu);
4800        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                              (unsigned long)ifr->ifr_mtu);
4802
4803        reinit = 1;
4804        break;
4805
4806    case SIOCSIFFLAGS:
4807        /* toggle the interface state up or down */
4808        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809
4810        /* check if the interface is up */
4811        if (ifp->if_flags & IFF_UP) {
4812            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                /* set the receive mode flags */
4814                bxe_set_rx_mode(sc);
4815            } else {
4816                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818            }
4819        } else {
4820            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823            }
4824        }
4825
4826        break;
4827
4828    case SIOCADDMULTI:
4829    case SIOCDELMULTI:
4830        /* add/delete multicast addresses */
4831        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832
4833        /* check if the interface is up */
4834        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835            /* set the receive mode flags */
4836            bxe_set_rx_mode(sc);
4837        }
4838
4839        break;
4840
4841    case SIOCSIFCAP:
4842        /* find out which capabilities have changed */
4843        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844
4845        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846              mask);
4847
4848        /* toggle the LRO capabilites enable flag */
4849        if (mask & IFCAP_LRO) {
4850            ifp->if_capenable ^= IFCAP_LRO;
4851            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853            reinit = 1;
4854        }
4855
4856        /* toggle the TXCSUM checksum capabilites enable flag */
4857        if (mask & IFCAP_TXCSUM) {
4858            ifp->if_capenable ^= IFCAP_TXCSUM;
4859            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861            if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                ifp->if_hwassist = (CSUM_IP       |
4863                                    CSUM_TCP      |
4864                                    CSUM_UDP      |
4865                                    CSUM_TSO      |
4866                                    CSUM_TCP_IPV6 |
4867                                    CSUM_UDP_IPV6);
4868            } else {
4869                ifp->if_hwassist = 0;
4870            }
4871        }
4872
4873        /* toggle the RXCSUM checksum capabilities enable flag */
4874        if (mask & IFCAP_RXCSUM) {
4875            ifp->if_capenable ^= IFCAP_RXCSUM;
4876            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878            if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                ifp->if_hwassist = (CSUM_IP       |
4880                                    CSUM_TCP      |
4881                                    CSUM_UDP      |
4882                                    CSUM_TSO      |
4883                                    CSUM_TCP_IPV6 |
4884                                    CSUM_UDP_IPV6);
4885            } else {
4886                ifp->if_hwassist = 0;
4887            }
4888        }
4889
4890        /* toggle TSO4 capabilities enabled flag */
4891        if (mask & IFCAP_TSO4) {
4892            ifp->if_capenable ^= IFCAP_TSO4;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle TSO6 capabilities enabled flag */
4898        if (mask & IFCAP_TSO6) {
4899            ifp->if_capenable ^= IFCAP_TSO6;
4900            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWTSO capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWTSO) {
4906            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909        }
4910
4911        /* toggle VLAN_HWCSUM capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWCSUM) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_MTU capabilities enable flag */
4919        if (mask & IFCAP_VLAN_MTU) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWTAGGING) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* toggle VLAN_HWFILTER capabilities enabled flag */
4933        if (mask & IFCAP_VLAN_HWFILTER) {
4934            /* XXX investigate this... */
4935            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936            error = EINVAL;
4937        }
4938
4939        /* XXX not yet...
4940         * IFCAP_WOL_MAGIC
4941         */
4942
4943        break;
4944
4945    case SIOCSIFMEDIA:
4946    case SIOCGIFMEDIA:
4947        /* set/get interface media */
4948        BLOGD(sc, DBG_IOCTL,
4949              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950              (command & 0xff));
4951        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952        break;
4953
4954    case SIOCGPRIVATE_0:
4955        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956
4957        switch (priv_op)
4958        {
4959        case BXE_IOC_RD_NVRAM:
4960        case BXE_IOC_WR_NVRAM:
4961            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962            BLOGD(sc, DBG_IOCTL,
4963                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                  nvdata->offset, nvdata->len);
4965            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966            break;
4967
4968        case BXE_IOC_STATS_SHOW_NUM:
4969        case BXE_IOC_STATS_SHOW_STR:
4970        case BXE_IOC_STATS_SHOW_CNT:
4971            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                  priv_op);
4973            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974            break;
4975
4976        default:
4977            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978            error = EINVAL;
4979            break;
4980        }
4981
4982        break;
4983
4984    default:
4985        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986              (command & 0xff));
4987        error = ether_ioctl(ifp, command, data);
4988        break;
4989    }
4990
4991    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993              "Re-initializing hardware from IOCTL change\n");
4994        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996    }
4997
4998    return (error);
4999}
5000
5001static __noinline void
5002bxe_dump_mbuf(struct bxe_softc *sc,
5003              struct mbuf      *m,
5004              uint8_t          contents)
5005{
5006    char * type;
5007    int i = 0;
5008
5009    if (!(sc->debug & DBG_MBUF)) {
5010        return;
5011    }
5012
5013    if (m == NULL) {
5014        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015        return;
5016    }
5017
5018    while (m) {
5019        BLOGD(sc, DBG_MBUF,
5020              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022
5023        if (m->m_flags & M_PKTHDR) {
5024             BLOGD(sc, DBG_MBUF,
5025                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028        }
5029
5030        if (m->m_flags & M_EXT) {
5031            switch (m->m_ext.ext_type) {
5032            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037            case EXT_PACKET:     type = "EXT_PACKET";     break;
5038            case EXT_MBUF:       type = "EXT_MBUF";       break;
5039            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043            default:             type = "UNKNOWN";        break;
5044            }
5045
5046            BLOGD(sc, DBG_MBUF,
5047                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049        }
5050
5051        if (contents) {
5052            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053        }
5054
5055        m = m->m_next;
5056        i++;
5057    }
5058}
5059
5060/*
5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066 */
5067static int
5068bxe_chktso_window(struct bxe_softc  *sc,
5069                  int               nsegs,
5070                  bus_dma_segment_t *segs,
5071                  struct mbuf       *m)
5072{
5073    uint32_t num_wnds, wnd_size, wnd_sum;
5074    int32_t frag_idx, wnd_idx;
5075    unsigned short lso_mss;
5076    int defrag;
5077
5078    defrag = 0;
5079    wnd_sum = 0;
5080    wnd_size = 10;
5081    num_wnds = nsegs - wnd_size;
5082    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083
5084    /*
5085     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086     * first window sum of data while skipping the first assuming it is the
5087     * header in FreeBSD.
5088     */
5089    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090        wnd_sum += htole16(segs[frag_idx].ds_len);
5091    }
5092
5093    /* check the first 10 bd window size */
5094    if (wnd_sum < lso_mss) {
5095        return (1);
5096    }
5097
5098    /* run through the windows */
5099    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100        /* subtract the first mbuf->m_len of the last wndw(-header) */
5101        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102        /* add the next mbuf len to the len of our new window */
5103        wnd_sum += htole16(segs[frag_idx].ds_len);
5104        if (wnd_sum < lso_mss) {
5105            return (1);
5106        }
5107    }
5108
5109    return (0);
5110}
5111
5112static uint8_t
5113bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                    struct mbuf         *m,
5115                    uint32_t            *parsing_data)
5116{
5117    struct ether_vlan_header *eh = NULL;
5118    struct ip *ip4 = NULL;
5119    struct ip6_hdr *ip6 = NULL;
5120    caddr_t ip = NULL;
5121    struct tcphdr *th = NULL;
5122    int e_hlen, ip_hlen, l4_off;
5123    uint16_t proto;
5124
5125    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126        /* no L4 checksum offload needed */
5127        return (0);
5128    }
5129
5130    /* get the Ethernet header */
5131    eh = mtod(m, struct ether_vlan_header *);
5132
5133    /* handle VLAN encapsulation if present */
5134    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136        proto  = ntohs(eh->evl_proto);
5137    } else {
5138        e_hlen = ETHER_HDR_LEN;
5139        proto  = ntohs(eh->evl_encap_proto);
5140    }
5141
5142    switch (proto) {
5143    case ETHERTYPE_IP:
5144        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145        ip4 = (m->m_len < sizeof(struct ip)) ?
5146                  (struct ip *)m->m_next->m_data :
5147                  (struct ip *)(m->m_data + e_hlen);
5148        /* ip_hl is number of 32-bit words */
5149        ip_hlen = (ip4->ip_hl << 2);
5150        ip = (caddr_t)ip4;
5151        break;
5152    case ETHERTYPE_IPV6:
5153        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                  (struct ip6_hdr *)m->m_next->m_data :
5156                  (struct ip6_hdr *)(m->m_data + e_hlen);
5157        /* XXX cannot support offload with IPv6 extensions */
5158        ip_hlen = sizeof(struct ip6_hdr);
5159        ip = (caddr_t)ip6;
5160        break;
5161    default:
5162        /* We can't offload in this case... */
5163        /* XXX error stat ??? */
5164        return (0);
5165    }
5166
5167    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168    l4_off = (e_hlen + ip_hlen);
5169
5170    *parsing_data |=
5171        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173
5174    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                  CSUM_TSO |
5176                                  CSUM_TCP_IPV6)) {
5177        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178        th = (struct tcphdr *)(ip + ip_hlen);
5179        /* th_off is number of 32-bit words */
5180        *parsing_data |= ((th->th_off <<
5181                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183        return (l4_off + (th->th_off << 2)); /* entire header length */
5184    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                         CSUM_UDP_IPV6)) {
5186        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188    } else {
5189        /* XXX error stat ??? */
5190        return (0);
5191    }
5192}
5193
5194static uint8_t
5195bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                 struct mbuf                *m,
5197                 struct eth_tx_parse_bd_e1x *pbd)
5198{
5199    struct ether_vlan_header *eh = NULL;
5200    struct ip *ip4 = NULL;
5201    struct ip6_hdr *ip6 = NULL;
5202    caddr_t ip = NULL;
5203    struct tcphdr *th = NULL;
5204    struct udphdr *uh = NULL;
5205    int e_hlen, ip_hlen;
5206    uint16_t proto;
5207    uint8_t hlen;
5208    uint16_t tmp_csum;
5209    uint32_t *tmp_uh;
5210
5211    /* get the Ethernet header */
5212    eh = mtod(m, struct ether_vlan_header *);
5213
5214    /* handle VLAN encapsulation if present */
5215    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217        proto  = ntohs(eh->evl_proto);
5218    } else {
5219        e_hlen = ETHER_HDR_LEN;
5220        proto  = ntohs(eh->evl_encap_proto);
5221    }
5222
5223    switch (proto) {
5224    case ETHERTYPE_IP:
5225        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226        ip4 = (m->m_len < sizeof(struct ip)) ?
5227                  (struct ip *)m->m_next->m_data :
5228                  (struct ip *)(m->m_data + e_hlen);
5229        /* ip_hl is number of 32-bit words */
5230        ip_hlen = (ip4->ip_hl << 1);
5231        ip = (caddr_t)ip4;
5232        break;
5233    case ETHERTYPE_IPV6:
5234        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                  (struct ip6_hdr *)m->m_next->m_data :
5237                  (struct ip6_hdr *)(m->m_data + e_hlen);
5238        /* XXX cannot support offload with IPv6 extensions */
5239        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240        ip = (caddr_t)ip6;
5241        break;
5242    default:
5243        /* We can't offload in this case... */
5244        /* XXX error stat ??? */
5245        return (0);
5246    }
5247
5248    hlen = (e_hlen >> 1);
5249
5250    /* note that rest of global_data is indirectly zeroed here */
5251    if (m->m_flags & M_VLANTAG) {
5252        pbd->global_data =
5253            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254    } else {
5255        pbd->global_data = htole16(hlen);
5256    }
5257
5258    pbd->ip_hlen_w = ip_hlen;
5259
5260    hlen += pbd->ip_hlen_w;
5261
5262    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263
5264    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                  CSUM_TSO |
5266                                  CSUM_TCP_IPV6)) {
5267        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268        /* th_off is number of 32-bit words */
5269        hlen += (uint16_t)(th->th_off << 1);
5270    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                         CSUM_UDP_IPV6)) {
5272        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273        hlen += (sizeof(struct udphdr) / 2);
5274    } else {
5275        /* valid case as only CSUM_IP was set */
5276        return (0);
5277    }
5278
5279    pbd->total_hlen_w = htole16(hlen);
5280
5281    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                  CSUM_TSO |
5283                                  CSUM_TCP_IPV6)) {
5284        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                         CSUM_UDP_IPV6)) {
5288        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289
5290        /*
5291         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292         * checksums and does not know anything about the UDP header and where
5293         * the checksum field is located. It only knows about TCP. Therefore
5294         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295         * offload. Since the checksum field offset for TCP is 16 bytes and
5296         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297         * bytes less than the start of the UDP header. This allows the
5298         * hardware to write the checksum in the correct spot. But the
5299         * hardware will compute a checksum which includes the last 10 bytes
5300         * of the IP header. To correct this we tweak the stack computed
5301         * pseudo checksum by folding in the calculation of the inverse
5302         * checksum for those final 10 bytes of the IP header. This allows
5303         * the correct checksum to be computed by the hardware.
5304         */
5305
5306        /* set pointer 10 bytes before UDP header */
5307        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308
5309        /* calculate a pseudo header checksum over the first 10 bytes */
5310        tmp_csum = in_pseudo(*tmp_uh,
5311                             *(tmp_uh + 1),
5312                             *(uint16_t *)(tmp_uh + 2));
5313
5314        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315    }
5316
5317    return (hlen * 2); /* entire header length, number of bytes */
5318}
5319
5320static void
5321bxe_set_pbd_lso_e2(struct mbuf *m,
5322                   uint32_t    *parsing_data)
5323{
5324    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5327
5328    /* XXX test for IPv6 with extension header... */
5329#if 0
5330    struct ip6_hdr *ip6;
5331    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333#endif
5334}
5335
5336static void
5337bxe_set_pbd_lso(struct mbuf                *m,
5338                struct eth_tx_parse_bd_e1x *pbd)
5339{
5340    struct ether_vlan_header *eh = NULL;
5341    struct ip *ip = NULL;
5342    struct tcphdr *th = NULL;
5343    int e_hlen;
5344
5345    /* get the Ethernet header */
5346    eh = mtod(m, struct ether_vlan_header *);
5347
5348    /* handle VLAN encapsulation if present */
5349    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351
5352    /* get the IP and TCP header, with LSO entire header in first mbuf */
5353    /* XXX assuming IPv4 */
5354    ip = (struct ip *)(m->m_data + e_hlen);
5355    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356
5357    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358    pbd->tcp_send_seq = ntohl(th->th_seq);
5359    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360
5361#if 1
5362        /* XXX IPv4 */
5363        pbd->ip_id = ntohs(ip->ip_id);
5364        pbd->tcp_pseudo_csum =
5365            ntohs(in_pseudo(ip->ip_src.s_addr,
5366                            ip->ip_dst.s_addr,
5367                            htons(IPPROTO_TCP)));
5368#else
5369        /* XXX IPv6 */
5370        pbd->tcp_pseudo_csum =
5371            ntohs(in_pseudo(&ip6->ip6_src,
5372                            &ip6->ip6_dst,
5373                            htons(IPPROTO_TCP)));
5374#endif
5375
5376    pbd->global_data |=
5377        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378}
5379
5380/*
5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382 * visible to the controller.
5383 *
5384 * If an mbuf is submitted to this routine and cannot be given to the
5385 * controller (e.g. it has too many fragments) then the function may free
5386 * the mbuf and return to the caller.
5387 *
5388 * Returns:
5389 *   0 = Success, !0 = Failure
5390 *   Note the side effect that an mbuf may be freed if it causes a problem.
5391 */
5392static int
5393bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394{
5395    bus_dma_segment_t segs[32];
5396    struct mbuf *m0;
5397    struct bxe_sw_tx_bd *tx_buf;
5398    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401    struct eth_tx_bd *tx_data_bd;
5402    struct eth_tx_bd *tx_total_pkt_size_bd;
5403    struct eth_tx_start_bd *tx_start_bd;
5404    uint16_t bd_prod, pkt_prod, total_pkt_size;
5405    uint8_t mac_type;
5406    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407    struct bxe_softc *sc;
5408    uint16_t tx_bd_avail;
5409    struct ether_vlan_header *eh;
5410    uint32_t pbd_e2_parsing_data = 0;
5411    uint8_t hlen = 0;
5412    int tmp_bd;
5413    int i;
5414
5415    sc = fp->sc;
5416
5417    M_ASSERTPKTHDR(*m_head);
5418
5419    m0 = *m_head;
5420    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421    tx_start_bd = NULL;
5422    tx_data_bd = NULL;
5423    tx_total_pkt_size_bd = NULL;
5424
5425    /* get the H/W pointer for packets and BDs */
5426    pkt_prod = fp->tx_pkt_prod;
5427    bd_prod = fp->tx_bd_prod;
5428
5429    mac_type = UNICAST_ADDRESS;
5430
5431    /* map the mbuf into the next open DMAable memory */
5432    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                    tx_buf->m_map, m0,
5435                                    segs, &nsegs, BUS_DMA_NOWAIT);
5436
5437    /* mapping errors */
5438    if(__predict_false(error != 0)) {
5439        fp->eth_q_stats.tx_dma_mapping_failure++;
5440        if (error == ENOMEM) {
5441            /* resource issue, try again later */
5442            rc = ENOMEM;
5443        } else if (error == EFBIG) {
5444            /* possibly recoverable with defragmentation */
5445            fp->eth_q_stats.mbuf_defrag_attempts++;
5446            m0 = m_defrag(*m_head, M_DONTWAIT);
5447            if (m0 == NULL) {
5448                fp->eth_q_stats.mbuf_defrag_failures++;
5449                rc = ENOBUFS;
5450            } else {
5451                /* defrag successful, try mapping again */
5452                *m_head = m0;
5453                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                tx_buf->m_map, m0,
5455                                                segs, &nsegs, BUS_DMA_NOWAIT);
5456                if (error) {
5457                    fp->eth_q_stats.tx_dma_mapping_failure++;
5458                    rc = error;
5459                }
5460            }
5461        } else {
5462            /* unknown, unrecoverable mapping error */
5463            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464            bxe_dump_mbuf(sc, m0, FALSE);
5465            rc = error;
5466        }
5467
5468        goto bxe_tx_encap_continue;
5469    }
5470
5471    tx_bd_avail = bxe_tx_avail(sc, fp);
5472
5473    /* make sure there is enough room in the send queue */
5474    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475        /* Recoverable, try again later. */
5476        fp->eth_q_stats.tx_hw_queue_full++;
5477        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478        rc = ENOMEM;
5479        goto bxe_tx_encap_continue;
5480    }
5481
5482    /* capture the current H/W TX chain high watermark */
5483    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                        (TX_BD_USABLE - tx_bd_avail))) {
5485        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486    }
5487
5488    /* make sure it fits in the packet window */
5489    if (__predict_false(nsegs > 12)) {
5490        /*
5491         * The mbuf may be to big for the controller to handle. If the frame
5492         * is a TSO frame we'll need to do an additional check.
5493         */
5494        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                goto bxe_tx_encap_continue; /* OK to send */
5497            } else {
5498                fp->eth_q_stats.tx_window_violation_tso++;
5499            }
5500        } else {
5501            fp->eth_q_stats.tx_window_violation_std++;
5502        }
5503
5504        /* XXX I don't like this, change to double copy packet */
5505
5506        /* no sense trying to defrag again, just drop the frame */
5507        rc = ENODEV;
5508    }
5509
5510bxe_tx_encap_continue:
5511
5512    /* Check for errors */
5513    if (rc) {
5514        if (rc == ENOMEM) {
5515            /* recoverable try again later  */
5516        } else {
5517            fp->eth_q_stats.tx_soft_errors++;
5518            fp->eth_q_stats.mbuf_alloc_tx--;
5519            m_freem(*m_head);
5520            *m_head = NULL;
5521        }
5522
5523        return (rc);
5524    }
5525
5526    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5527    if (m0->m_flags & M_BCAST) {
5528        mac_type = BROADCAST_ADDRESS;
5529    } else if (m0->m_flags & M_MCAST) {
5530        mac_type = MULTICAST_ADDRESS;
5531    }
5532
5533    /* store the mbuf into the mbuf ring */
5534    tx_buf->m        = m0;
5535    tx_buf->first_bd = fp->tx_bd_prod;
5536    tx_buf->flags    = 0;
5537
5538    /* prepare the first transmit (start) BD for the mbuf */
5539    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5540
5541    BLOGD(sc, DBG_TX,
5542          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5543          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5544
5545    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5546    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5547    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5548    total_pkt_size += tx_start_bd->nbytes;
5549    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5550
5551    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5552
5553    /* all frames have at least Start BD + Parsing BD */
5554    nbds = nsegs + 1;
5555    tx_start_bd->nbd = htole16(nbds);
5556
5557    if (m0->m_flags & M_VLANTAG) {
5558        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5559        tx_start_bd->bd_flags.as_bitfield |=
5560            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5561    } else {
5562        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5563        if (IS_VF(sc)) {
5564            /* map ethernet header to find type and header length */
5565            eh = mtod(m0, struct ether_vlan_header *);
5566            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5567        } else {
5568            /* used by FW for packet accounting */
5569            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5570#if 0
5571            /*
5572             * If NPAR-SD is active then FW should do the tagging regardless
5573             * of value of priority. Otherwise, if priority indicates this is
5574             * a control packet we need to indicate to FW to avoid tagging.
5575             */
5576            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5577                SET_FLAG(tx_start_bd->general_data,
5578                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5579            }
5580#endif
5581        }
5582    }
5583
5584    /*
5585     * add a parsing BD from the chain. The parsing BD is always added
5586     * though it is only used for TSO and chksum
5587     */
5588    bd_prod = TX_BD_NEXT(bd_prod);
5589
5590    if (m0->m_pkthdr.csum_flags) {
5591        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5592            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5593            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5594        }
5595
5596        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5597            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5598                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5599        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5600            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5601                                                  ETH_TX_BD_FLAGS_IS_UDP |
5602                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5603        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5604                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5605            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5606        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5607            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5608                                                  ETH_TX_BD_FLAGS_IS_UDP);
5609        }
5610    }
5611
5612    if (!CHIP_IS_E1x(sc)) {
5613        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5614        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5615
5616        if (m0->m_pkthdr.csum_flags) {
5617            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5618        }
5619
5620#if 0
5621        /*
5622         * Add the MACs to the parsing BD if the module param was
5623         * explicitly set, if this is a vf, or in switch independent
5624         * mode.
5625         */
5626        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5627            eh = mtod(m0, struct ether_vlan_header *);
5628            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5629                                &pbd_e2->data.mac_addr.src_mid,
5630                                &pbd_e2->data.mac_addr.src_lo,
5631                                eh->evl_shost);
5632            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5633                                &pbd_e2->data.mac_addr.dst_mid,
5634                                &pbd_e2->data.mac_addr.dst_lo,
5635                                eh->evl_dhost);
5636        }
5637#endif
5638
5639        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5640                 mac_type);
5641    } else {
5642        uint16_t global_data = 0;
5643
5644        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5645        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5646
5647        if (m0->m_pkthdr.csum_flags) {
5648            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5649        }
5650
5651        SET_FLAG(global_data,
5652                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5653        pbd_e1x->global_data |= htole16(global_data);
5654    }
5655
5656    /* setup the parsing BD with TSO specific info */
5657    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5658        fp->eth_q_stats.tx_ofld_frames_lso++;
5659        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5660
5661        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5662            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5663
5664            /* split the first BD into header/data making the fw job easy */
5665            nbds++;
5666            tx_start_bd->nbd = htole16(nbds);
5667            tx_start_bd->nbytes = htole16(hlen);
5668
5669            bd_prod = TX_BD_NEXT(bd_prod);
5670
5671            /* new transmit BD after the tx_parse_bd */
5672            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5673            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5674            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5675            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5676            if (tx_total_pkt_size_bd == NULL) {
5677                tx_total_pkt_size_bd = tx_data_bd;
5678            }
5679
5680            BLOGD(sc, DBG_TX,
5681                  "TSO split header size is %d (%x:%x) nbds %d\n",
5682                  le16toh(tx_start_bd->nbytes),
5683                  le32toh(tx_start_bd->addr_hi),
5684                  le32toh(tx_start_bd->addr_lo),
5685                  nbds);
5686        }
5687
5688        if (!CHIP_IS_E1x(sc)) {
5689            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5690        } else {
5691            bxe_set_pbd_lso(m0, pbd_e1x);
5692        }
5693    }
5694
5695    if (pbd_e2_parsing_data) {
5696        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5697    }
5698
5699    /* prepare remaining BDs, start tx bd contains first seg/frag */
5700    for (i = 1; i < nsegs ; i++) {
5701        bd_prod = TX_BD_NEXT(bd_prod);
5702        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5703        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5704        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5705        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5706        if (tx_total_pkt_size_bd == NULL) {
5707            tx_total_pkt_size_bd = tx_data_bd;
5708        }
5709        total_pkt_size += tx_data_bd->nbytes;
5710    }
5711
5712    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5713
5714    if (tx_total_pkt_size_bd != NULL) {
5715        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5716    }
5717
5718    if (__predict_false(sc->debug & DBG_TX)) {
5719        tmp_bd = tx_buf->first_bd;
5720        for (i = 0; i < nbds; i++)
5721        {
5722            if (i == 0) {
5723                BLOGD(sc, DBG_TX,
5724                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5725                      "bd_flags=0x%x hdr_nbds=%d\n",
5726                      tx_start_bd,
5727                      tmp_bd,
5728                      le16toh(tx_start_bd->nbd),
5729                      le16toh(tx_start_bd->vlan_or_ethertype),
5730                      tx_start_bd->bd_flags.as_bitfield,
5731                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5732            } else if (i == 1) {
5733                if (pbd_e1x) {
5734                    BLOGD(sc, DBG_TX,
5735                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5736                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5737                          "tcp_seq=%u total_hlen_w=%u\n",
5738                          pbd_e1x,
5739                          tmp_bd,
5740                          pbd_e1x->global_data,
5741                          pbd_e1x->ip_hlen_w,
5742                          pbd_e1x->ip_id,
5743                          pbd_e1x->lso_mss,
5744                          pbd_e1x->tcp_flags,
5745                          pbd_e1x->tcp_pseudo_csum,
5746                          pbd_e1x->tcp_send_seq,
5747                          le16toh(pbd_e1x->total_hlen_w));
5748                } else { /* if (pbd_e2) */
5749                    BLOGD(sc, DBG_TX,
5750                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5751                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5752                          pbd_e2,
5753                          tmp_bd,
5754                          pbd_e2->data.mac_addr.dst_hi,
5755                          pbd_e2->data.mac_addr.dst_mid,
5756                          pbd_e2->data.mac_addr.dst_lo,
5757                          pbd_e2->data.mac_addr.src_hi,
5758                          pbd_e2->data.mac_addr.src_mid,
5759                          pbd_e2->data.mac_addr.src_lo,
5760                          pbd_e2->parsing_data);
5761                }
5762            }
5763
5764            if (i != 1) { /* skip parse db as it doesn't hold data */
5765                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5766                BLOGD(sc, DBG_TX,
5767                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5768                      tx_data_bd,
5769                      tmp_bd,
5770                      le16toh(tx_data_bd->nbytes),
5771                      le32toh(tx_data_bd->addr_hi),
5772                      le32toh(tx_data_bd->addr_lo));
5773            }
5774
5775            tmp_bd = TX_BD_NEXT(tmp_bd);
5776        }
5777    }
5778
5779    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5780
5781    /* update TX BD producer index value for next TX */
5782    bd_prod = TX_BD_NEXT(bd_prod);
5783
5784    /*
5785     * If the chain of tx_bd's describing this frame is adjacent to or spans
5786     * an eth_tx_next_bd element then we need to increment the nbds value.
5787     */
5788    if (TX_BD_IDX(bd_prod) < nbds) {
5789        nbds++;
5790    }
5791
5792    /* don't allow reordering of writes for nbd and packets */
5793    mb();
5794
5795    fp->tx_db.data.prod += nbds;
5796
5797    /* producer points to the next free tx_bd at this point */
5798    fp->tx_pkt_prod++;
5799    fp->tx_bd_prod = bd_prod;
5800
5801    DOORBELL(sc, fp->index, fp->tx_db.raw);
5802
5803    fp->eth_q_stats.tx_pkts++;
5804
5805    /* Prevent speculative reads from getting ahead of the status block. */
5806    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5807                      0, 0, BUS_SPACE_BARRIER_READ);
5808
5809    /* Prevent speculative reads from getting ahead of the doorbell. */
5810    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5811                      0, 0, BUS_SPACE_BARRIER_READ);
5812
5813    return (0);
5814}
5815
5816static void
5817bxe_tx_start_locked(struct bxe_softc    *sc,
5818                    struct ifnet        *ifp,
5819                    struct bxe_fastpath *fp)
5820{
5821    struct mbuf *m = NULL;
5822    int tx_count = 0;
5823    uint16_t tx_bd_avail;
5824
5825    BXE_FP_TX_LOCK_ASSERT(fp);
5826
5827    /* keep adding entries while there are frames to send */
5828    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5829
5830        /*
5831         * check for any frames to send
5832         * dequeue can still be NULL even if queue is not empty
5833         */
5834        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5835        if (__predict_false(m == NULL)) {
5836            break;
5837        }
5838
5839        /* the mbuf now belongs to us */
5840        fp->eth_q_stats.mbuf_alloc_tx++;
5841
5842        /*
5843         * Put the frame into the transmit ring. If we don't have room,
5844         * place the mbuf back at the head of the TX queue, set the
5845         * OACTIVE flag, and wait for the NIC to drain the chain.
5846         */
5847        if (__predict_false(bxe_tx_encap(fp, &m))) {
5848            fp->eth_q_stats.tx_encap_failures++;
5849            if (m != NULL) {
5850                /* mark the TX queue as full and return the frame */
5851                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5852                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5853                fp->eth_q_stats.mbuf_alloc_tx--;
5854                fp->eth_q_stats.tx_queue_xoff++;
5855            }
5856
5857            /* stop looking for more work */
5858            break;
5859        }
5860
5861        /* the frame was enqueued successfully */
5862        tx_count++;
5863
5864        /* send a copy of the frame to any BPF listeners. */
5865        BPF_MTAP(ifp, m);
5866
5867        tx_bd_avail = bxe_tx_avail(sc, fp);
5868
5869        /* handle any completions if we're running low */
5870        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5871            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5872            bxe_txeof(sc, fp);
5873            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5874                break;
5875            }
5876        }
5877    }
5878
5879    /* all TX packets were dequeued and/or the tx ring is full */
5880    if (tx_count > 0) {
5881        /* reset the TX watchdog timeout timer */
5882        fp->watchdog_timer = BXE_TX_TIMEOUT;
5883    }
5884}
5885
5886/* Legacy (non-RSS) dispatch routine */
5887static void
5888bxe_tx_start(struct ifnet *ifp)
5889{
5890    struct bxe_softc *sc;
5891    struct bxe_fastpath *fp;
5892
5893    sc = ifp->if_softc;
5894
5895    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5896        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5897        return;
5898    }
5899
5900    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5901        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5902        return;
5903    }
5904
5905    if (!sc->link_vars.link_up) {
5906        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5907        return;
5908    }
5909
5910    fp = &sc->fp[0];
5911
5912    BXE_FP_TX_LOCK(fp);
5913    bxe_tx_start_locked(sc, ifp, fp);
5914    BXE_FP_TX_UNLOCK(fp);
5915}
5916
5917#if __FreeBSD_version >= 800000
5918
5919static int
5920bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5921                       struct ifnet        *ifp,
5922                       struct bxe_fastpath *fp,
5923                       struct mbuf         *m)
5924{
5925    struct buf_ring *tx_br = fp->tx_br;
5926    struct mbuf *next;
5927    int depth, rc, tx_count;
5928    uint16_t tx_bd_avail;
5929
5930    rc = tx_count = 0;
5931
5932    if (!tx_br) {
5933        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5934        return (EINVAL);
5935    }
5936
5937    /* fetch the depth of the driver queue */
5938    depth = drbr_inuse(ifp, tx_br);
5939    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5940        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5941    }
5942
5943    BXE_FP_TX_LOCK_ASSERT(fp);
5944
5945    if (m == NULL) {
5946        /* no new work, check for pending frames */
5947        next = drbr_dequeue(ifp, tx_br);
5948    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5949        /* have both new and pending work, maintain packet order */
5950        rc = drbr_enqueue(ifp, tx_br, m);
5951        if (rc != 0) {
5952            fp->eth_q_stats.tx_soft_errors++;
5953            goto bxe_tx_mq_start_locked_exit;
5954        }
5955        next = drbr_dequeue(ifp, tx_br);
5956    } else {
5957        /* new work only and nothing pending */
5958        next = m;
5959    }
5960
5961    /* keep adding entries while there are frames to send */
5962    while (next != NULL) {
5963
5964        /* the mbuf now belongs to us */
5965        fp->eth_q_stats.mbuf_alloc_tx++;
5966
5967        /*
5968         * Put the frame into the transmit ring. If we don't have room,
5969         * place the mbuf back at the head of the TX queue, set the
5970         * OACTIVE flag, and wait for the NIC to drain the chain.
5971         */
5972        rc = bxe_tx_encap(fp, &next);
5973        if (__predict_false(rc != 0)) {
5974            fp->eth_q_stats.tx_encap_failures++;
5975            if (next != NULL) {
5976                /* mark the TX queue as full and save the frame */
5977                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5978                /* XXX this may reorder the frame */
5979                rc = drbr_enqueue(ifp, tx_br, next);
5980                fp->eth_q_stats.mbuf_alloc_tx--;
5981                fp->eth_q_stats.tx_frames_deferred++;
5982            }
5983
5984            /* stop looking for more work */
5985            break;
5986        }
5987
5988        /* the transmit frame was enqueued successfully */
5989        tx_count++;
5990
5991        /* send a copy of the frame to any BPF listeners */
5992        BPF_MTAP(ifp, next);
5993
5994        tx_bd_avail = bxe_tx_avail(sc, fp);
5995
5996        /* handle any completions if we're running low */
5997        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5998            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5999            bxe_txeof(sc, fp);
6000            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6001                break;
6002            }
6003        }
6004
6005        next = drbr_dequeue(ifp, tx_br);
6006    }
6007
6008    /* all TX packets were dequeued and/or the tx ring is full */
6009    if (tx_count > 0) {
6010        /* reset the TX watchdog timeout timer */
6011        fp->watchdog_timer = BXE_TX_TIMEOUT;
6012    }
6013
6014bxe_tx_mq_start_locked_exit:
6015
6016    return (rc);
6017}
6018
6019/* Multiqueue (TSS) dispatch routine. */
6020static int
6021bxe_tx_mq_start(struct ifnet *ifp,
6022                struct mbuf  *m)
6023{
6024    struct bxe_softc *sc = ifp->if_softc;
6025    struct bxe_fastpath *fp;
6026    int fp_index, rc;
6027
6028    fp_index = 0; /* default is the first queue */
6029
6030    /* change the queue if using flow ID */
6031    if ((m->m_flags & M_FLOWID) != 0) {
6032        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6033    }
6034
6035    fp = &sc->fp[fp_index];
6036
6037    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6038        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6039        return (ENETDOWN);
6040    }
6041
6042    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6043        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6044        return (EBUSY);
6045    }
6046
6047    if (!sc->link_vars.link_up) {
6048        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6049        return (ENETDOWN);
6050    }
6051
6052    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6053
6054    BXE_FP_TX_LOCK(fp);
6055    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6056    BXE_FP_TX_UNLOCK(fp);
6057
6058    return (rc);
6059}
6060
6061static void
6062bxe_mq_flush(struct ifnet *ifp)
6063{
6064    struct bxe_softc *sc = ifp->if_softc;
6065    struct bxe_fastpath *fp;
6066    struct mbuf *m;
6067    int i;
6068
6069    for (i = 0; i < sc->num_queues; i++) {
6070        fp = &sc->fp[i];
6071
6072        if (fp->state != BXE_FP_STATE_OPEN) {
6073            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6074                  fp->index, fp->state);
6075            continue;
6076        }
6077
6078        if (fp->tx_br != NULL) {
6079            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6080            BXE_FP_TX_LOCK(fp);
6081            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6082                m_freem(m);
6083            }
6084            BXE_FP_TX_UNLOCK(fp);
6085        }
6086    }
6087
6088    if_qflush(ifp);
6089}
6090
6091#endif /* FreeBSD_version >= 800000 */
6092
6093static uint16_t
6094bxe_cid_ilt_lines(struct bxe_softc *sc)
6095{
6096    if (IS_SRIOV(sc)) {
6097        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6098    }
6099    return (L2_ILT_LINES(sc));
6100}
6101
6102static void
6103bxe_ilt_set_info(struct bxe_softc *sc)
6104{
6105    struct ilt_client_info *ilt_client;
6106    struct ecore_ilt *ilt = sc->ilt;
6107    uint16_t line = 0;
6108
6109    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6110    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6111
6112    /* CDU */
6113    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6114    ilt_client->client_num = ILT_CLIENT_CDU;
6115    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6116    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6117    ilt_client->start = line;
6118    line += bxe_cid_ilt_lines(sc);
6119
6120    if (CNIC_SUPPORT(sc)) {
6121        line += CNIC_ILT_LINES;
6122    }
6123
6124    ilt_client->end = (line - 1);
6125
6126    BLOGD(sc, DBG_LOAD,
6127          "ilt client[CDU]: start %d, end %d, "
6128          "psz 0x%x, flags 0x%x, hw psz %d\n",
6129          ilt_client->start, ilt_client->end,
6130          ilt_client->page_size,
6131          ilt_client->flags,
6132          ilog2(ilt_client->page_size >> 12));
6133
6134    /* QM */
6135    if (QM_INIT(sc->qm_cid_count)) {
6136        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6137        ilt_client->client_num = ILT_CLIENT_QM;
6138        ilt_client->page_size = QM_ILT_PAGE_SZ;
6139        ilt_client->flags = 0;
6140        ilt_client->start = line;
6141
6142        /* 4 bytes for each cid */
6143        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6144                             QM_ILT_PAGE_SZ);
6145
6146        ilt_client->end = (line - 1);
6147
6148        BLOGD(sc, DBG_LOAD,
6149              "ilt client[QM]: start %d, end %d, "
6150              "psz 0x%x, flags 0x%x, hw psz %d\n",
6151              ilt_client->start, ilt_client->end,
6152              ilt_client->page_size, ilt_client->flags,
6153              ilog2(ilt_client->page_size >> 12));
6154    }
6155
6156    if (CNIC_SUPPORT(sc)) {
6157        /* SRC */
6158        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6159        ilt_client->client_num = ILT_CLIENT_SRC;
6160        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6161        ilt_client->flags = 0;
6162        ilt_client->start = line;
6163        line += SRC_ILT_LINES;
6164        ilt_client->end = (line - 1);
6165
6166        BLOGD(sc, DBG_LOAD,
6167              "ilt client[SRC]: start %d, end %d, "
6168              "psz 0x%x, flags 0x%x, hw psz %d\n",
6169              ilt_client->start, ilt_client->end,
6170              ilt_client->page_size, ilt_client->flags,
6171              ilog2(ilt_client->page_size >> 12));
6172
6173        /* TM */
6174        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6175        ilt_client->client_num = ILT_CLIENT_TM;
6176        ilt_client->page_size = TM_ILT_PAGE_SZ;
6177        ilt_client->flags = 0;
6178        ilt_client->start = line;
6179        line += TM_ILT_LINES;
6180        ilt_client->end = (line - 1);
6181
6182        BLOGD(sc, DBG_LOAD,
6183              "ilt client[TM]: start %d, end %d, "
6184              "psz 0x%x, flags 0x%x, hw psz %d\n",
6185              ilt_client->start, ilt_client->end,
6186              ilt_client->page_size, ilt_client->flags,
6187              ilog2(ilt_client->page_size >> 12));
6188    }
6189
6190    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6191}
6192
6193static void
6194bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6195{
6196    int i;
6197
6198    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6199
6200    for (i = 0; i < sc->num_queues; i++) {
6201        /* get the Rx buffer size for RX frames */
6202        sc->fp[i].rx_buf_size =
6203            (IP_HEADER_ALIGNMENT_PADDING +
6204             ETH_OVERHEAD +
6205             sc->mtu);
6206
6207        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6208              i, sc->fp[i].rx_buf_size);
6209
6210        /* get the mbuf allocation size for RX frames */
6211        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6212            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6213        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6214            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6215        } else {
6216            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6217        }
6218
6219        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6220              i, sc->fp[i].mbuf_alloc_size);
6221    }
6222}
6223
6224static int
6225bxe_alloc_ilt_mem(struct bxe_softc *sc)
6226{
6227    int rc = 0;
6228
6229    if ((sc->ilt =
6230         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6231                                    M_BXE_ILT,
6232                                    (M_NOWAIT | M_ZERO))) == NULL) {
6233        rc = 1;
6234    }
6235
6236    return (rc);
6237}
6238
6239static int
6240bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6241{
6242    int rc = 0;
6243
6244    if ((sc->ilt->lines =
6245         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6246                                    M_BXE_ILT,
6247                                    (M_NOWAIT | M_ZERO))) == NULL) {
6248        rc = 1;
6249    }
6250
6251    return (rc);
6252}
6253
6254static void
6255bxe_free_ilt_mem(struct bxe_softc *sc)
6256{
6257    if (sc->ilt != NULL) {
6258        free(sc->ilt, M_BXE_ILT);
6259        sc->ilt = NULL;
6260    }
6261}
6262
6263static void
6264bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6265{
6266    if (sc->ilt->lines != NULL) {
6267        free(sc->ilt->lines, M_BXE_ILT);
6268        sc->ilt->lines = NULL;
6269    }
6270}
6271
6272static void
6273bxe_free_mem(struct bxe_softc *sc)
6274{
6275    int i;
6276
6277#if 0
6278    if (!CONFIGURE_NIC_MODE(sc)) {
6279        /* free searcher T2 table */
6280        bxe_dma_free(sc, &sc->t2);
6281    }
6282#endif
6283
6284    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6285        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6286        sc->context[i].vcxt = NULL;
6287        sc->context[i].size = 0;
6288    }
6289
6290    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6291
6292    bxe_free_ilt_lines_mem(sc);
6293
6294#if 0
6295    bxe_iov_free_mem(sc);
6296#endif
6297}
6298
6299static int
6300bxe_alloc_mem(struct bxe_softc *sc)
6301{
6302    int context_size;
6303    int allocated;
6304    int i;
6305
6306#if 0
6307    if (!CONFIGURE_NIC_MODE(sc)) {
6308        /* allocate searcher T2 table */
6309        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6310                          &sc->t2, "searcher t2 table") != 0) {
6311            return (-1);
6312        }
6313    }
6314#endif
6315
6316    /*
6317     * Allocate memory for CDU context:
6318     * This memory is allocated separately and not in the generic ILT
6319     * functions because CDU differs in few aspects:
6320     * 1. There can be multiple entities allocating memory for context -
6321     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6322     * its own ILT lines.
6323     * 2. Since CDU page-size is not a single 4KB page (which is the case
6324     * for the other ILT clients), to be efficient we want to support
6325     * allocation of sub-page-size in the last entry.
6326     * 3. Context pointers are used by the driver to pass to FW / update
6327     * the context (for the other ILT clients the pointers are used just to
6328     * free the memory during unload).
6329     */
6330    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6331    for (i = 0, allocated = 0; allocated < context_size; i++) {
6332        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6333                                  (context_size - allocated));
6334
6335        if (bxe_dma_alloc(sc, sc->context[i].size,
6336                          &sc->context[i].vcxt_dma,
6337                          "cdu context") != 0) {
6338            bxe_free_mem(sc);
6339            return (-1);
6340        }
6341
6342        sc->context[i].vcxt =
6343            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6344
6345        allocated += sc->context[i].size;
6346    }
6347
6348    bxe_alloc_ilt_lines_mem(sc);
6349
6350    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6351          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6352    {
6353        for (i = 0; i < 4; i++) {
6354            BLOGD(sc, DBG_LOAD,
6355                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6356                  i,
6357                  sc->ilt->clients[i].page_size,
6358                  sc->ilt->clients[i].start,
6359                  sc->ilt->clients[i].end,
6360                  sc->ilt->clients[i].client_num,
6361                  sc->ilt->clients[i].flags);
6362        }
6363    }
6364    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6365        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6366        bxe_free_mem(sc);
6367        return (-1);
6368    }
6369
6370#if 0
6371    if (bxe_iov_alloc_mem(sc)) {
6372        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6373        bxe_free_mem(sc);
6374        return (-1);
6375    }
6376#endif
6377
6378    return (0);
6379}
6380
6381static void
6382bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6383{
6384    struct bxe_softc *sc;
6385    int i;
6386
6387    sc = fp->sc;
6388
6389    if (fp->rx_mbuf_tag == NULL) {
6390        return;
6391    }
6392
6393    /* free all mbufs and unload all maps */
6394    for (i = 0; i < RX_BD_TOTAL; i++) {
6395        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6396            bus_dmamap_sync(fp->rx_mbuf_tag,
6397                            fp->rx_mbuf_chain[i].m_map,
6398                            BUS_DMASYNC_POSTREAD);
6399            bus_dmamap_unload(fp->rx_mbuf_tag,
6400                              fp->rx_mbuf_chain[i].m_map);
6401        }
6402
6403        if (fp->rx_mbuf_chain[i].m != NULL) {
6404            m_freem(fp->rx_mbuf_chain[i].m);
6405            fp->rx_mbuf_chain[i].m = NULL;
6406            fp->eth_q_stats.mbuf_alloc_rx--;
6407        }
6408    }
6409}
6410
6411static void
6412bxe_free_tpa_pool(struct bxe_fastpath *fp)
6413{
6414    struct bxe_softc *sc;
6415    int i, max_agg_queues;
6416
6417    sc = fp->sc;
6418
6419    if (fp->rx_mbuf_tag == NULL) {
6420        return;
6421    }
6422
6423    max_agg_queues = MAX_AGG_QS(sc);
6424
6425    /* release all mbufs and unload all DMA maps in the TPA pool */
6426    for (i = 0; i < max_agg_queues; i++) {
6427        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6428            bus_dmamap_sync(fp->rx_mbuf_tag,
6429                            fp->rx_tpa_info[i].bd.m_map,
6430                            BUS_DMASYNC_POSTREAD);
6431            bus_dmamap_unload(fp->rx_mbuf_tag,
6432                              fp->rx_tpa_info[i].bd.m_map);
6433        }
6434
6435        if (fp->rx_tpa_info[i].bd.m != NULL) {
6436            m_freem(fp->rx_tpa_info[i].bd.m);
6437            fp->rx_tpa_info[i].bd.m = NULL;
6438            fp->eth_q_stats.mbuf_alloc_tpa--;
6439        }
6440    }
6441}
6442
6443static void
6444bxe_free_sge_chain(struct bxe_fastpath *fp)
6445{
6446    struct bxe_softc *sc;
6447    int i;
6448
6449    sc = fp->sc;
6450
6451    if (fp->rx_sge_mbuf_tag == NULL) {
6452        return;
6453    }
6454
6455    /* rree all mbufs and unload all maps */
6456    for (i = 0; i < RX_SGE_TOTAL; i++) {
6457        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6458            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6459                            fp->rx_sge_mbuf_chain[i].m_map,
6460                            BUS_DMASYNC_POSTREAD);
6461            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6462                              fp->rx_sge_mbuf_chain[i].m_map);
6463        }
6464
6465        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6466            m_freem(fp->rx_sge_mbuf_chain[i].m);
6467            fp->rx_sge_mbuf_chain[i].m = NULL;
6468            fp->eth_q_stats.mbuf_alloc_sge--;
6469        }
6470    }
6471}
6472
6473static void
6474bxe_free_fp_buffers(struct bxe_softc *sc)
6475{
6476    struct bxe_fastpath *fp;
6477    int i;
6478
6479    for (i = 0; i < sc->num_queues; i++) {
6480        fp = &sc->fp[i];
6481
6482#if __FreeBSD_version >= 800000
6483        if (fp->tx_br != NULL) {
6484            struct mbuf *m;
6485            /* just in case bxe_mq_flush() wasn't called */
6486            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6487                m_freem(m);
6488            }
6489            buf_ring_free(fp->tx_br, M_DEVBUF);
6490            fp->tx_br = NULL;
6491        }
6492#endif
6493
6494        /* free all RX buffers */
6495        bxe_free_rx_bd_chain(fp);
6496        bxe_free_tpa_pool(fp);
6497        bxe_free_sge_chain(fp);
6498
6499        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6500            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6501                  fp->eth_q_stats.mbuf_alloc_rx);
6502        }
6503
6504        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6505            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6506                  fp->eth_q_stats.mbuf_alloc_sge);
6507        }
6508
6509        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6510            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6511                  fp->eth_q_stats.mbuf_alloc_tpa);
6512        }
6513
6514        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6515            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6516                  fp->eth_q_stats.mbuf_alloc_tx);
6517        }
6518
6519        /* XXX verify all mbufs were reclaimed */
6520
6521        if (mtx_initialized(&fp->tx_mtx)) {
6522            mtx_destroy(&fp->tx_mtx);
6523        }
6524
6525        if (mtx_initialized(&fp->rx_mtx)) {
6526            mtx_destroy(&fp->rx_mtx);
6527        }
6528    }
6529}
6530
6531static int
6532bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6533                     uint16_t            prev_index,
6534                     uint16_t            index)
6535{
6536    struct bxe_sw_rx_bd *rx_buf;
6537    struct eth_rx_bd *rx_bd;
6538    bus_dma_segment_t segs[1];
6539    bus_dmamap_t map;
6540    struct mbuf *m;
6541    int nsegs, rc;
6542
6543    rc = 0;
6544
6545    /* allocate the new RX BD mbuf */
6546    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6547    if (__predict_false(m == NULL)) {
6548        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6549        return (ENOBUFS);
6550    }
6551
6552    fp->eth_q_stats.mbuf_alloc_rx++;
6553
6554    /* initialize the mbuf buffer length */
6555    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6556
6557    /* map the mbuf into non-paged pool */
6558    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6559                                 fp->rx_mbuf_spare_map,
6560                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6561    if (__predict_false(rc != 0)) {
6562        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6563        m_freem(m);
6564        fp->eth_q_stats.mbuf_alloc_rx--;
6565        return (rc);
6566    }
6567
6568    /* all mbufs must map to a single segment */
6569    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6570
6571    /* release any existing RX BD mbuf mappings */
6572
6573    if (prev_index != index) {
6574        rx_buf = &fp->rx_mbuf_chain[prev_index];
6575
6576        if (rx_buf->m_map != NULL) {
6577            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6578                            BUS_DMASYNC_POSTREAD);
6579            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6580        }
6581
6582        /*
6583         * We only get here from bxe_rxeof() when the maximum number
6584         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6585         * holds the mbuf in the prev_index so it's OK to NULL it out
6586         * here without concern of a memory leak.
6587         */
6588        fp->rx_mbuf_chain[prev_index].m = NULL;
6589    }
6590
6591    rx_buf = &fp->rx_mbuf_chain[index];
6592
6593    if (rx_buf->m_map != NULL) {
6594        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6595                        BUS_DMASYNC_POSTREAD);
6596        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6597    }
6598
6599    /* save the mbuf and mapping info for a future packet */
6600    map = (prev_index != index) ?
6601              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6602    rx_buf->m_map = fp->rx_mbuf_spare_map;
6603    fp->rx_mbuf_spare_map = map;
6604    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6605                    BUS_DMASYNC_PREREAD);
6606    rx_buf->m = m;
6607
6608    rx_bd = &fp->rx_chain[index];
6609    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6610    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6611
6612    return (rc);
6613}
6614
6615static int
6616bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6617                      int                 queue)
6618{
6619    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6620    bus_dma_segment_t segs[1];
6621    bus_dmamap_t map;
6622    struct mbuf *m;
6623    int nsegs;
6624    int rc = 0;
6625
6626    /* allocate the new TPA mbuf */
6627    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6628    if (__predict_false(m == NULL)) {
6629        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6630        return (ENOBUFS);
6631    }
6632
6633    fp->eth_q_stats.mbuf_alloc_tpa++;
6634
6635    /* initialize the mbuf buffer length */
6636    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6637
6638    /* map the mbuf into non-paged pool */
6639    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6640                                 fp->rx_tpa_info_mbuf_spare_map,
6641                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6642    if (__predict_false(rc != 0)) {
6643        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6644        m_free(m);
6645        fp->eth_q_stats.mbuf_alloc_tpa--;
6646        return (rc);
6647    }
6648
6649    /* all mbufs must map to a single segment */
6650    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6651
6652    /* release any existing TPA mbuf mapping */
6653    if (tpa_info->bd.m_map != NULL) {
6654        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6655                        BUS_DMASYNC_POSTREAD);
6656        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6657    }
6658
6659    /* save the mbuf and mapping info for the TPA mbuf */
6660    map = tpa_info->bd.m_map;
6661    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6662    fp->rx_tpa_info_mbuf_spare_map = map;
6663    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6664                    BUS_DMASYNC_PREREAD);
6665    tpa_info->bd.m = m;
6666    tpa_info->seg = segs[0];
6667
6668    return (rc);
6669}
6670
6671/*
6672 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6673 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6674 * chain.
6675 */
6676static int
6677bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6678                      uint16_t            index)
6679{
6680    struct bxe_sw_rx_bd *sge_buf;
6681    struct eth_rx_sge *sge;
6682    bus_dma_segment_t segs[1];
6683    bus_dmamap_t map;
6684    struct mbuf *m;
6685    int nsegs;
6686    int rc = 0;
6687
6688    /* allocate a new SGE mbuf */
6689    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6690    if (__predict_false(m == NULL)) {
6691        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6692        return (ENOMEM);
6693    }
6694
6695    fp->eth_q_stats.mbuf_alloc_sge++;
6696
6697    /* initialize the mbuf buffer length */
6698    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6699
6700    /* map the SGE mbuf into non-paged pool */
6701    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6702                                 fp->rx_sge_mbuf_spare_map,
6703                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6704    if (__predict_false(rc != 0)) {
6705        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6706        m_freem(m);
6707        fp->eth_q_stats.mbuf_alloc_sge--;
6708        return (rc);
6709    }
6710
6711    /* all mbufs must map to a single segment */
6712    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6713
6714    sge_buf = &fp->rx_sge_mbuf_chain[index];
6715
6716    /* release any existing SGE mbuf mapping */
6717    if (sge_buf->m_map != NULL) {
6718        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6719                        BUS_DMASYNC_POSTREAD);
6720        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6721    }
6722
6723    /* save the mbuf and mapping info for a future packet */
6724    map = sge_buf->m_map;
6725    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6726    fp->rx_sge_mbuf_spare_map = map;
6727    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6728                    BUS_DMASYNC_PREREAD);
6729    sge_buf->m = m;
6730
6731    sge = &fp->rx_sge_chain[index];
6732    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6733    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6734
6735    return (rc);
6736}
6737
6738static __noinline int
6739bxe_alloc_fp_buffers(struct bxe_softc *sc)
6740{
6741    struct bxe_fastpath *fp;
6742    int i, j, rc = 0;
6743    int ring_prod, cqe_ring_prod;
6744    int max_agg_queues;
6745
6746    for (i = 0; i < sc->num_queues; i++) {
6747        fp = &sc->fp[i];
6748
6749#if __FreeBSD_version >= 800000
6750        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6751                                   M_DONTWAIT, &fp->tx_mtx);
6752        if (fp->tx_br == NULL) {
6753            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6754            goto bxe_alloc_fp_buffers_error;
6755        }
6756#endif
6757
6758        ring_prod = cqe_ring_prod = 0;
6759        fp->rx_bd_cons = 0;
6760        fp->rx_cq_cons = 0;
6761
6762        /* allocate buffers for the RX BDs in RX BD chain */
6763        for (j = 0; j < sc->max_rx_bufs; j++) {
6764            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6765            if (rc != 0) {
6766                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6767                      i, rc);
6768                goto bxe_alloc_fp_buffers_error;
6769            }
6770
6771            ring_prod     = RX_BD_NEXT(ring_prod);
6772            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6773        }
6774
6775        fp->rx_bd_prod = ring_prod;
6776        fp->rx_cq_prod = cqe_ring_prod;
6777        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6778
6779        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6780            max_agg_queues = MAX_AGG_QS(sc);
6781
6782            fp->tpa_enable = TRUE;
6783
6784            /* fill the TPA pool */
6785            for (j = 0; j < max_agg_queues; j++) {
6786                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6787                if (rc != 0) {
6788                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6789                          i, j);
6790                    fp->tpa_enable = FALSE;
6791                    goto bxe_alloc_fp_buffers_error;
6792                }
6793
6794                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6795            }
6796
6797            if (fp->tpa_enable) {
6798                /* fill the RX SGE chain */
6799                ring_prod = 0;
6800                for (j = 0; j < RX_SGE_USABLE; j++) {
6801                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6802                    if (rc != 0) {
6803                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6804                              i, ring_prod);
6805                        fp->tpa_enable = FALSE;
6806                        ring_prod = 0;
6807                        goto bxe_alloc_fp_buffers_error;
6808                    }
6809
6810                    ring_prod = RX_SGE_NEXT(ring_prod);
6811                }
6812
6813                fp->rx_sge_prod = ring_prod;
6814            }
6815        }
6816    }
6817
6818    return (0);
6819
6820bxe_alloc_fp_buffers_error:
6821
6822    /* unwind what was already allocated */
6823    bxe_free_rx_bd_chain(fp);
6824    bxe_free_tpa_pool(fp);
6825    bxe_free_sge_chain(fp);
6826
6827    return (ENOBUFS);
6828}
6829
6830static void
6831bxe_free_fw_stats_mem(struct bxe_softc *sc)
6832{
6833    bxe_dma_free(sc, &sc->fw_stats_dma);
6834
6835    sc->fw_stats_num = 0;
6836
6837    sc->fw_stats_req_size = 0;
6838    sc->fw_stats_req = NULL;
6839    sc->fw_stats_req_mapping = 0;
6840
6841    sc->fw_stats_data_size = 0;
6842    sc->fw_stats_data = NULL;
6843    sc->fw_stats_data_mapping = 0;
6844}
6845
6846static int
6847bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6848{
6849    uint8_t num_queue_stats;
6850    int num_groups;
6851
6852    /* number of queues for statistics is number of eth queues */
6853    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6854
6855    /*
6856     * Total number of FW statistics requests =
6857     *   1 for port stats + 1 for PF stats + num of queues
6858     */
6859    sc->fw_stats_num = (2 + num_queue_stats);
6860
6861    /*
6862     * Request is built from stats_query_header and an array of
6863     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6864     * rules. The real number or requests is configured in the
6865     * stats_query_header.
6866     */
6867    num_groups =
6868        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6869         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6870
6871    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6872          sc->fw_stats_num, num_groups);
6873
6874    sc->fw_stats_req_size =
6875        (sizeof(struct stats_query_header) +
6876         (num_groups * sizeof(struct stats_query_cmd_group)));
6877
6878    /*
6879     * Data for statistics requests + stats_counter.
6880     * stats_counter holds per-STORM counters that are incremented when
6881     * STORM has finished with the current request. Memory for FCoE
6882     * offloaded statistics are counted anyway, even if they will not be sent.
6883     * VF stats are not accounted for here as the data of VF stats is stored
6884     * in memory allocated by the VF, not here.
6885     */
6886    sc->fw_stats_data_size =
6887        (sizeof(struct stats_counter) +
6888         sizeof(struct per_port_stats) +
6889         sizeof(struct per_pf_stats) +
6890         /* sizeof(struct fcoe_statistics_params) + */
6891         (sizeof(struct per_queue_stats) * num_queue_stats));
6892
6893    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6894                      &sc->fw_stats_dma, "fw stats") != 0) {
6895        bxe_free_fw_stats_mem(sc);
6896        return (-1);
6897    }
6898
6899    /* set up the shortcuts */
6900
6901    sc->fw_stats_req =
6902        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6903    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6904
6905    sc->fw_stats_data =
6906        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6907                                     sc->fw_stats_req_size);
6908    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6909                                 sc->fw_stats_req_size);
6910
6911    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6912          (uintmax_t)sc->fw_stats_req_mapping);
6913
6914    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6915          (uintmax_t)sc->fw_stats_data_mapping);
6916
6917    return (0);
6918}
6919
6920/*
6921 * Bits map:
6922 * 0-7  - Engine0 load counter.
6923 * 8-15 - Engine1 load counter.
6924 * 16   - Engine0 RESET_IN_PROGRESS bit.
6925 * 17   - Engine1 RESET_IN_PROGRESS bit.
6926 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6927 *        function on the engine
6928 * 19   - Engine1 ONE_IS_LOADED.
6929 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6930 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6931 *        for just the one belonging to its engine).
6932 */
6933#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6934#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6935#define BXE_PATH0_LOAD_CNT_SHIFT  0
6936#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6937#define BXE_PATH1_LOAD_CNT_SHIFT  8
6938#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6939#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6940#define BXE_GLOBAL_RESET_BIT      0x00040000
6941
6942/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6943static void
6944bxe_set_reset_global(struct bxe_softc *sc)
6945{
6946    uint32_t val;
6947    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6948    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6949    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6950    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6951}
6952
6953/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6954static void
6955bxe_clear_reset_global(struct bxe_softc *sc)
6956{
6957    uint32_t val;
6958    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6959    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6960    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6961    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6962}
6963
6964/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6965static uint8_t
6966bxe_reset_is_global(struct bxe_softc *sc)
6967{
6968    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6969    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6970    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6971}
6972
6973/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6974static void
6975bxe_set_reset_done(struct bxe_softc *sc)
6976{
6977    uint32_t val;
6978    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6979                                 BXE_PATH0_RST_IN_PROG_BIT;
6980
6981    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6982
6983    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6984    /* Clear the bit */
6985    val &= ~bit;
6986    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6987
6988    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6989}
6990
6991/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6992static void
6993bxe_set_reset_in_progress(struct bxe_softc *sc)
6994{
6995    uint32_t val;
6996    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6997                                 BXE_PATH0_RST_IN_PROG_BIT;
6998
6999    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7000
7001    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7002    /* Set the bit */
7003    val |= bit;
7004    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7005
7006    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7007}
7008
7009/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7010static uint8_t
7011bxe_reset_is_done(struct bxe_softc *sc,
7012                  int              engine)
7013{
7014    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7015    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7016                            BXE_PATH0_RST_IN_PROG_BIT;
7017
7018    /* return false if bit is set */
7019    return (val & bit) ? FALSE : TRUE;
7020}
7021
7022/* get the load status for an engine, should be run under rtnl lock */
7023static uint8_t
7024bxe_get_load_status(struct bxe_softc *sc,
7025                    int              engine)
7026{
7027    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7028                             BXE_PATH0_LOAD_CNT_MASK;
7029    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7030                              BXE_PATH0_LOAD_CNT_SHIFT;
7031    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7032
7033    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7034
7035    val = ((val & mask) >> shift);
7036
7037    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7038
7039    return (val != 0);
7040}
7041
7042/* set pf load mark */
7043/* XXX needs to be under rtnl lock */
7044static void
7045bxe_set_pf_load(struct bxe_softc *sc)
7046{
7047    uint32_t val;
7048    uint32_t val1;
7049    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7050                                  BXE_PATH0_LOAD_CNT_MASK;
7051    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7052                                   BXE_PATH0_LOAD_CNT_SHIFT;
7053
7054    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7055
7056    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7057    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7058
7059    /* get the current counter value */
7060    val1 = ((val & mask) >> shift);
7061
7062    /* set bit of this PF */
7063    val1 |= (1 << SC_ABS_FUNC(sc));
7064
7065    /* clear the old value */
7066    val &= ~mask;
7067
7068    /* set the new one */
7069    val |= ((val1 << shift) & mask);
7070
7071    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7072
7073    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7074}
7075
7076/* clear pf load mark */
7077/* XXX needs to be under rtnl lock */
7078static uint8_t
7079bxe_clear_pf_load(struct bxe_softc *sc)
7080{
7081    uint32_t val1, val;
7082    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7083                                  BXE_PATH0_LOAD_CNT_MASK;
7084    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7085                                   BXE_PATH0_LOAD_CNT_SHIFT;
7086
7087    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7088    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7089    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7090
7091    /* get the current counter value */
7092    val1 = (val & mask) >> shift;
7093
7094    /* clear bit of that PF */
7095    val1 &= ~(1 << SC_ABS_FUNC(sc));
7096
7097    /* clear the old value */
7098    val &= ~mask;
7099
7100    /* set the new one */
7101    val |= ((val1 << shift) & mask);
7102
7103    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7104    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7105    return (val1 != 0);
7106}
7107
7108/* send load requrest to mcp and analyze response */
7109static int
7110bxe_nic_load_request(struct bxe_softc *sc,
7111                     uint32_t         *load_code)
7112{
7113    /* init fw_seq */
7114    sc->fw_seq =
7115        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7116         DRV_MSG_SEQ_NUMBER_MASK);
7117
7118    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7119
7120    /* get the current FW pulse sequence */
7121    sc->fw_drv_pulse_wr_seq =
7122        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7123         DRV_PULSE_SEQ_MASK);
7124
7125    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7126          sc->fw_drv_pulse_wr_seq);
7127
7128    /* load request */
7129    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7130                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7131
7132    /* if the MCP fails to respond we must abort */
7133    if (!(*load_code)) {
7134        BLOGE(sc, "MCP response failure!\n");
7135        return (-1);
7136    }
7137
7138    /* if MCP refused then must abort */
7139    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7140        BLOGE(sc, "MCP refused load request\n");
7141        return (-1);
7142    }
7143
7144    return (0);
7145}
7146
7147/*
7148 * Check whether another PF has already loaded FW to chip. In virtualized
7149 * environments a pf from anoth VM may have already initialized the device
7150 * including loading FW.
7151 */
7152static int
7153bxe_nic_load_analyze_req(struct bxe_softc *sc,
7154                         uint32_t         load_code)
7155{
7156    uint32_t my_fw, loaded_fw;
7157
7158    /* is another pf loaded on this engine? */
7159    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7160        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7161        /* build my FW version dword */
7162        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7163                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7164                 (BCM_5710_FW_REVISION_VERSION << 16) +
7165                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7166
7167        /* read loaded FW from chip */
7168        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7169        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7170              loaded_fw, my_fw);
7171
7172        /* abort nic load if version mismatch */
7173        if (my_fw != loaded_fw) {
7174            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7175                  loaded_fw, my_fw);
7176            return (-1);
7177        }
7178    }
7179
7180    return (0);
7181}
7182
7183/* mark PMF if applicable */
7184static void
7185bxe_nic_load_pmf(struct bxe_softc *sc,
7186                 uint32_t         load_code)
7187{
7188    uint32_t ncsi_oem_data_addr;
7189
7190    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7191        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7192        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7193        /*
7194         * Barrier here for ordering between the writing to sc->port.pmf here
7195         * and reading it from the periodic task.
7196         */
7197        sc->port.pmf = 1;
7198        mb();
7199    } else {
7200        sc->port.pmf = 0;
7201    }
7202
7203    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7204
7205    /* XXX needed? */
7206    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7207        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7208            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7209            if (ncsi_oem_data_addr) {
7210                REG_WR(sc,
7211                       (ncsi_oem_data_addr +
7212                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7213                       0);
7214            }
7215        }
7216    }
7217}
7218
7219static void
7220bxe_read_mf_cfg(struct bxe_softc *sc)
7221{
7222    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7223    int abs_func;
7224    int vn;
7225
7226    if (BXE_NOMCP(sc)) {
7227        return; /* what should be the default bvalue in this case */
7228    }
7229
7230    /*
7231     * The formula for computing the absolute function number is...
7232     * For 2 port configuration (4 functions per port):
7233     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7234     * For 4 port configuration (2 functions per port):
7235     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7236     */
7237    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7238        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7239        if (abs_func >= E1H_FUNC_MAX) {
7240            break;
7241        }
7242        sc->devinfo.mf_info.mf_config[vn] =
7243            MFCFG_RD(sc, func_mf_config[abs_func].config);
7244    }
7245
7246    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7247        FUNC_MF_CFG_FUNC_DISABLED) {
7248        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7249        sc->flags |= BXE_MF_FUNC_DIS;
7250    } else {
7251        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7252        sc->flags &= ~BXE_MF_FUNC_DIS;
7253    }
7254}
7255
7256/* acquire split MCP access lock register */
7257static int bxe_acquire_alr(struct bxe_softc *sc)
7258{
7259    uint32_t j, val;
7260
7261    for (j = 0; j < 1000; j++) {
7262        val = (1UL << 31);
7263        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7264        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7265        if (val & (1L << 31))
7266            break;
7267
7268        DELAY(5000);
7269    }
7270
7271    if (!(val & (1L << 31))) {
7272        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7273        return (-1);
7274    }
7275
7276    return (0);
7277}
7278
7279/* release split MCP access lock register */
7280static void bxe_release_alr(struct bxe_softc *sc)
7281{
7282    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7283}
7284
7285static void
7286bxe_fan_failure(struct bxe_softc *sc)
7287{
7288    int port = SC_PORT(sc);
7289    uint32_t ext_phy_config;
7290
7291    /* mark the failure */
7292    ext_phy_config =
7293        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7294
7295    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7296    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7297    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7298             ext_phy_config);
7299
7300    /* log the failure */
7301    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7302              "the card to prevent permanent damage. "
7303              "Please contact OEM Support for assistance\n");
7304
7305    /* XXX */
7306#if 1
7307    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7308#else
7309    /*
7310     * Schedule device reset (unload)
7311     * This is due to some boards consuming sufficient power when driver is
7312     * up to overheat if fan fails.
7313     */
7314    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7315    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7316#endif
7317}
7318
7319/* this function is called upon a link interrupt */
7320static void
7321bxe_link_attn(struct bxe_softc *sc)
7322{
7323    uint32_t pause_enabled = 0;
7324    struct host_port_stats *pstats;
7325    int cmng_fns;
7326
7327    /* Make sure that we are synced with the current statistics */
7328    bxe_stats_handle(sc, STATS_EVENT_STOP);
7329
7330    elink_link_update(&sc->link_params, &sc->link_vars);
7331
7332    if (sc->link_vars.link_up) {
7333
7334        /* dropless flow control */
7335        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7336            pause_enabled = 0;
7337
7338            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7339                pause_enabled = 1;
7340            }
7341
7342            REG_WR(sc,
7343                   (BAR_USTRORM_INTMEM +
7344                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7345                   pause_enabled);
7346        }
7347
7348        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7349            pstats = BXE_SP(sc, port_stats);
7350            /* reset old mac stats */
7351            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7352        }
7353
7354        if (sc->state == BXE_STATE_OPEN) {
7355            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7356        }
7357    }
7358
7359    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7360        cmng_fns = bxe_get_cmng_fns_mode(sc);
7361
7362        if (cmng_fns != CMNG_FNS_NONE) {
7363            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7364            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7365        } else {
7366            /* rate shaping and fairness are disabled */
7367            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7368        }
7369    }
7370
7371    bxe_link_report_locked(sc);
7372
7373    if (IS_MF(sc)) {
7374        ; // XXX bxe_link_sync_notify(sc);
7375    }
7376}
7377
7378static void
7379bxe_attn_int_asserted(struct bxe_softc *sc,
7380                      uint32_t         asserted)
7381{
7382    int port = SC_PORT(sc);
7383    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7384                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7385    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7386                                        NIG_REG_MASK_INTERRUPT_PORT0;
7387    uint32_t aeu_mask;
7388    uint32_t nig_mask = 0;
7389    uint32_t reg_addr;
7390    uint32_t igu_acked;
7391    uint32_t cnt;
7392
7393    if (sc->attn_state & asserted) {
7394        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7395    }
7396
7397    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7398
7399    aeu_mask = REG_RD(sc, aeu_addr);
7400
7401    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7402          aeu_mask, asserted);
7403
7404    aeu_mask &= ~(asserted & 0x3ff);
7405
7406    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7407
7408    REG_WR(sc, aeu_addr, aeu_mask);
7409
7410    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7411
7412    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7413    sc->attn_state |= asserted;
7414    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7415
7416    if (asserted & ATTN_HARD_WIRED_MASK) {
7417        if (asserted & ATTN_NIG_FOR_FUNC) {
7418
7419            BXE_PHY_LOCK(sc);
7420
7421            /* save nig interrupt mask */
7422            nig_mask = REG_RD(sc, nig_int_mask_addr);
7423
7424            /* If nig_mask is not set, no need to call the update function */
7425            if (nig_mask) {
7426                REG_WR(sc, nig_int_mask_addr, 0);
7427
7428                bxe_link_attn(sc);
7429            }
7430
7431            /* handle unicore attn? */
7432        }
7433
7434        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7435            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7436        }
7437
7438        if (asserted & GPIO_2_FUNC) {
7439            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7440        }
7441
7442        if (asserted & GPIO_3_FUNC) {
7443            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7444        }
7445
7446        if (asserted & GPIO_4_FUNC) {
7447            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7448        }
7449
7450        if (port == 0) {
7451            if (asserted & ATTN_GENERAL_ATTN_1) {
7452                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7453                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7454            }
7455            if (asserted & ATTN_GENERAL_ATTN_2) {
7456                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7457                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7458            }
7459            if (asserted & ATTN_GENERAL_ATTN_3) {
7460                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7461                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7462            }
7463        } else {
7464            if (asserted & ATTN_GENERAL_ATTN_4) {
7465                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7466                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7467            }
7468            if (asserted & ATTN_GENERAL_ATTN_5) {
7469                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7470                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7471            }
7472            if (asserted & ATTN_GENERAL_ATTN_6) {
7473                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7474                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7475            }
7476        }
7477    } /* hardwired */
7478
7479    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7480        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7481    } else {
7482        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7483    }
7484
7485    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7486          asserted,
7487          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7488    REG_WR(sc, reg_addr, asserted);
7489
7490    /* now set back the mask */
7491    if (asserted & ATTN_NIG_FOR_FUNC) {
7492        /*
7493         * Verify that IGU ack through BAR was written before restoring
7494         * NIG mask. This loop should exit after 2-3 iterations max.
7495         */
7496        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7497            cnt = 0;
7498
7499            do {
7500                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7501            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7502                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7503
7504            if (!igu_acked) {
7505                BLOGE(sc, "Failed to verify IGU ack on time\n");
7506            }
7507
7508            mb();
7509        }
7510
7511        REG_WR(sc, nig_int_mask_addr, nig_mask);
7512
7513        BXE_PHY_UNLOCK(sc);
7514    }
7515}
7516
7517static void
7518bxe_print_next_block(struct bxe_softc *sc,
7519                     int              idx,
7520                     const char       *blk)
7521{
7522    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7523}
7524
7525static int
7526bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7527                              uint32_t         sig,
7528                              int              par_num,
7529                              uint8_t          print)
7530{
7531    uint32_t cur_bit = 0;
7532    int i = 0;
7533
7534    for (i = 0; sig; i++) {
7535        cur_bit = ((uint32_t)0x1 << i);
7536        if (sig & cur_bit) {
7537            switch (cur_bit) {
7538            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7539                if (print)
7540                    bxe_print_next_block(sc, par_num++, "BRB");
7541                break;
7542            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7543                if (print)
7544                    bxe_print_next_block(sc, par_num++, "PARSER");
7545                break;
7546            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7547                if (print)
7548                    bxe_print_next_block(sc, par_num++, "TSDM");
7549                break;
7550            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7551                if (print)
7552                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7553                break;
7554            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7555                if (print)
7556                    bxe_print_next_block(sc, par_num++, "TCM");
7557                break;
7558            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7559                if (print)
7560                    bxe_print_next_block(sc, par_num++, "TSEMI");
7561                break;
7562            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7563                if (print)
7564                    bxe_print_next_block(sc, par_num++, "XPB");
7565                break;
7566            }
7567
7568            /* Clear the bit */
7569            sig &= ~cur_bit;
7570        }
7571    }
7572
7573    return (par_num);
7574}
7575
7576static int
7577bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7578                              uint32_t         sig,
7579                              int              par_num,
7580                              uint8_t          *global,
7581                              uint8_t          print)
7582{
7583    int i = 0;
7584    uint32_t cur_bit = 0;
7585    for (i = 0; sig; i++) {
7586        cur_bit = ((uint32_t)0x1 << i);
7587        if (sig & cur_bit) {
7588            switch (cur_bit) {
7589            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7590                if (print)
7591                    bxe_print_next_block(sc, par_num++, "PBF");
7592                break;
7593            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7594                if (print)
7595                    bxe_print_next_block(sc, par_num++, "QM");
7596                break;
7597            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7598                if (print)
7599                    bxe_print_next_block(sc, par_num++, "TM");
7600                break;
7601            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7602                if (print)
7603                    bxe_print_next_block(sc, par_num++, "XSDM");
7604                break;
7605            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7606                if (print)
7607                    bxe_print_next_block(sc, par_num++, "XCM");
7608                break;
7609            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7610                if (print)
7611                    bxe_print_next_block(sc, par_num++, "XSEMI");
7612                break;
7613            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7614                if (print)
7615                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7616                break;
7617            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7618                if (print)
7619                    bxe_print_next_block(sc, par_num++, "NIG");
7620                break;
7621            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7622                if (print)
7623                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7624                *global = TRUE;
7625                break;
7626            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7627                if (print)
7628                    bxe_print_next_block(sc, par_num++, "DEBUG");
7629                break;
7630            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7631                if (print)
7632                    bxe_print_next_block(sc, par_num++, "USDM");
7633                break;
7634            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7635                if (print)
7636                    bxe_print_next_block(sc, par_num++, "UCM");
7637                break;
7638            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7639                if (print)
7640                    bxe_print_next_block(sc, par_num++, "USEMI");
7641                break;
7642            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7643                if (print)
7644                    bxe_print_next_block(sc, par_num++, "UPB");
7645                break;
7646            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7647                if (print)
7648                    bxe_print_next_block(sc, par_num++, "CSDM");
7649                break;
7650            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7651                if (print)
7652                    bxe_print_next_block(sc, par_num++, "CCM");
7653                break;
7654            }
7655
7656            /* Clear the bit */
7657            sig &= ~cur_bit;
7658        }
7659    }
7660
7661    return (par_num);
7662}
7663
7664static int
7665bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7666                              uint32_t         sig,
7667                              int              par_num,
7668                              uint8_t          print)
7669{
7670    uint32_t cur_bit = 0;
7671    int i = 0;
7672
7673    for (i = 0; sig; i++) {
7674        cur_bit = ((uint32_t)0x1 << i);
7675        if (sig & cur_bit) {
7676            switch (cur_bit) {
7677            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7678                if (print)
7679                    bxe_print_next_block(sc, par_num++, "CSEMI");
7680                break;
7681            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7682                if (print)
7683                    bxe_print_next_block(sc, par_num++, "PXP");
7684                break;
7685            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7686                if (print)
7687                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7688                break;
7689            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7690                if (print)
7691                    bxe_print_next_block(sc, par_num++, "CFC");
7692                break;
7693            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7694                if (print)
7695                    bxe_print_next_block(sc, par_num++, "CDU");
7696                break;
7697            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7698                if (print)
7699                    bxe_print_next_block(sc, par_num++, "DMAE");
7700                break;
7701            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7702                if (print)
7703                    bxe_print_next_block(sc, par_num++, "IGU");
7704                break;
7705            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7706                if (print)
7707                    bxe_print_next_block(sc, par_num++, "MISC");
7708                break;
7709            }
7710
7711            /* Clear the bit */
7712            sig &= ~cur_bit;
7713        }
7714    }
7715
7716    return (par_num);
7717}
7718
7719static int
7720bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7721                              uint32_t         sig,
7722                              int              par_num,
7723                              uint8_t          *global,
7724                              uint8_t          print)
7725{
7726    uint32_t cur_bit = 0;
7727    int i = 0;
7728
7729    for (i = 0; sig; i++) {
7730        cur_bit = ((uint32_t)0x1 << i);
7731        if (sig & cur_bit) {
7732            switch (cur_bit) {
7733            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7734                if (print)
7735                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7736                *global = TRUE;
7737                break;
7738            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7739                if (print)
7740                    bxe_print_next_block(sc, par_num++,
7741                              "MCP UMP RX");
7742                *global = TRUE;
7743                break;
7744            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7745                if (print)
7746                    bxe_print_next_block(sc, par_num++,
7747                              "MCP UMP TX");
7748                *global = TRUE;
7749                break;
7750            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7751                if (print)
7752                    bxe_print_next_block(sc, par_num++,
7753                              "MCP SCPAD");
7754                *global = TRUE;
7755                break;
7756            }
7757
7758            /* Clear the bit */
7759            sig &= ~cur_bit;
7760        }
7761    }
7762
7763    return (par_num);
7764}
7765
7766static int
7767bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7768                              uint32_t         sig,
7769                              int              par_num,
7770                              uint8_t          print)
7771{
7772    uint32_t cur_bit = 0;
7773    int i = 0;
7774
7775    for (i = 0; sig; i++) {
7776        cur_bit = ((uint32_t)0x1 << i);
7777        if (sig & cur_bit) {
7778            switch (cur_bit) {
7779            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7780                if (print)
7781                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7782                break;
7783            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7784                if (print)
7785                    bxe_print_next_block(sc, par_num++, "ATC");
7786                break;
7787            }
7788
7789            /* Clear the bit */
7790            sig &= ~cur_bit;
7791        }
7792    }
7793
7794    return (par_num);
7795}
7796
7797static uint8_t
7798bxe_parity_attn(struct bxe_softc *sc,
7799                uint8_t          *global,
7800                uint8_t          print,
7801                uint32_t         *sig)
7802{
7803    int par_num = 0;
7804
7805    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7806        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7807        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7808        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7809        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7810        BLOGE(sc, "Parity error: HW block parity attention:\n"
7811                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7812              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7813              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7814              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7815              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7816              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7817
7818        if (print)
7819            BLOGI(sc, "Parity errors detected in blocks: ");
7820
7821        par_num =
7822            bxe_check_blocks_with_parity0(sc, sig[0] &
7823                                          HW_PRTY_ASSERT_SET_0,
7824                                          par_num, print);
7825        par_num =
7826            bxe_check_blocks_with_parity1(sc, sig[1] &
7827                                          HW_PRTY_ASSERT_SET_1,
7828                                          par_num, global, print);
7829        par_num =
7830            bxe_check_blocks_with_parity2(sc, sig[2] &
7831                                          HW_PRTY_ASSERT_SET_2,
7832                                          par_num, print);
7833        par_num =
7834            bxe_check_blocks_with_parity3(sc, sig[3] &
7835                                          HW_PRTY_ASSERT_SET_3,
7836                                          par_num, global, print);
7837        par_num =
7838            bxe_check_blocks_with_parity4(sc, sig[4] &
7839                                          HW_PRTY_ASSERT_SET_4,
7840                                          par_num, print);
7841
7842        if (print)
7843            BLOGI(sc, "\n");
7844
7845        return (TRUE);
7846    }
7847
7848    return (FALSE);
7849}
7850
7851static uint8_t
7852bxe_chk_parity_attn(struct bxe_softc *sc,
7853                    uint8_t          *global,
7854                    uint8_t          print)
7855{
7856    struct attn_route attn = { {0} };
7857    int port = SC_PORT(sc);
7858
7859    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7860    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7861    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7862    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7863
7864    if (!CHIP_IS_E1x(sc))
7865        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7866
7867    return (bxe_parity_attn(sc, global, print, attn.sig));
7868}
7869
7870static void
7871bxe_attn_int_deasserted4(struct bxe_softc *sc,
7872                         uint32_t         attn)
7873{
7874    uint32_t val;
7875
7876    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7877        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7878        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7879        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7880            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7881        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7882            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7883        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7884            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7885        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7886            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7887        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7888            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7889        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7890            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7891        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7892            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7893        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7894            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7895        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7896            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7897    }
7898
7899    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7900        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7901        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7902        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7903            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7904        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7905            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7906        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7907            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7908        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7909            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7910        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7911            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7912        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7913            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7914    }
7915
7916    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7917                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7918        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7919              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7920                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7921    }
7922}
7923
7924static void
7925bxe_e1h_disable(struct bxe_softc *sc)
7926{
7927    int port = SC_PORT(sc);
7928
7929    bxe_tx_disable(sc);
7930
7931    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7932}
7933
7934static void
7935bxe_e1h_enable(struct bxe_softc *sc)
7936{
7937    int port = SC_PORT(sc);
7938
7939    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7940
7941    // XXX bxe_tx_enable(sc);
7942}
7943
7944/*
7945 * called due to MCP event (on pmf):
7946 *   reread new bandwidth configuration
7947 *   configure FW
7948 *   notify others function about the change
7949 */
7950static void
7951bxe_config_mf_bw(struct bxe_softc *sc)
7952{
7953    if (sc->link_vars.link_up) {
7954        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7955        // XXX bxe_link_sync_notify(sc);
7956    }
7957
7958    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7959}
7960
7961static void
7962bxe_set_mf_bw(struct bxe_softc *sc)
7963{
7964    bxe_config_mf_bw(sc);
7965    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7966}
7967
7968static void
7969bxe_handle_eee_event(struct bxe_softc *sc)
7970{
7971    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7972    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7973}
7974
7975#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7976
7977static void
7978bxe_drv_info_ether_stat(struct bxe_softc *sc)
7979{
7980    struct eth_stats_info *ether_stat =
7981        &sc->sp->drv_info_to_mcp.ether_stat;
7982
7983    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7984            ETH_STAT_INFO_VERSION_LEN);
7985
7986    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7987    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7988                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7989                                          ether_stat->mac_local + MAC_PAD,
7990                                          MAC_PAD, ETH_ALEN);
7991
7992    ether_stat->mtu_size = sc->mtu;
7993
7994    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7995    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
7996        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7997    }
7998
7999    // XXX ether_stat->feature_flags |= ???;
8000
8001    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8002
8003    ether_stat->txq_size = sc->tx_ring_size;
8004    ether_stat->rxq_size = sc->rx_ring_size;
8005}
8006
8007static void
8008bxe_handle_drv_info_req(struct bxe_softc *sc)
8009{
8010    enum drv_info_opcode op_code;
8011    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8012
8013    /* if drv_info version supported by MFW doesn't match - send NACK */
8014    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8015        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8016        return;
8017    }
8018
8019    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8020               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8021
8022    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8023
8024    switch (op_code) {
8025    case ETH_STATS_OPCODE:
8026        bxe_drv_info_ether_stat(sc);
8027        break;
8028    case FCOE_STATS_OPCODE:
8029    case ISCSI_STATS_OPCODE:
8030    default:
8031        /* if op code isn't supported - send NACK */
8032        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8033        return;
8034    }
8035
8036    /*
8037     * If we got drv_info attn from MFW then these fields are defined in
8038     * shmem2 for sure
8039     */
8040    SHMEM2_WR(sc, drv_info_host_addr_lo,
8041              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8042    SHMEM2_WR(sc, drv_info_host_addr_hi,
8043              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8044
8045    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8046}
8047
8048static void
8049bxe_dcc_event(struct bxe_softc *sc,
8050              uint32_t         dcc_event)
8051{
8052    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8053
8054    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8055        /*
8056         * This is the only place besides the function initialization
8057         * where the sc->flags can change so it is done without any
8058         * locks
8059         */
8060        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8061            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8062            sc->flags |= BXE_MF_FUNC_DIS;
8063            bxe_e1h_disable(sc);
8064        } else {
8065            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8066            sc->flags &= ~BXE_MF_FUNC_DIS;
8067            bxe_e1h_enable(sc);
8068        }
8069        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8070    }
8071
8072    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8073        bxe_config_mf_bw(sc);
8074        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8075    }
8076
8077    /* Report results to MCP */
8078    if (dcc_event)
8079        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8080    else
8081        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8082}
8083
8084static void
8085bxe_pmf_update(struct bxe_softc *sc)
8086{
8087    int port = SC_PORT(sc);
8088    uint32_t val;
8089
8090    sc->port.pmf = 1;
8091    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8092
8093    /*
8094     * We need the mb() to ensure the ordering between the writing to
8095     * sc->port.pmf here and reading it from the bxe_periodic_task().
8096     */
8097    mb();
8098
8099    /* queue a periodic task */
8100    // XXX schedule task...
8101
8102    // XXX bxe_dcbx_pmf_update(sc);
8103
8104    /* enable nig attention */
8105    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8106    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8107        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8108        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8109    } else if (!CHIP_IS_E1x(sc)) {
8110        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8111        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8112    }
8113
8114    bxe_stats_handle(sc, STATS_EVENT_PMF);
8115}
8116
8117static int
8118bxe_mc_assert(struct bxe_softc *sc)
8119{
8120    char last_idx;
8121    int i, rc = 0;
8122    uint32_t row0, row1, row2, row3;
8123
8124    /* XSTORM */
8125    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8126    if (last_idx)
8127        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8128
8129    /* print the asserts */
8130    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8131
8132        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8133        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8134        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8135        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8136
8137        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8138            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8139                  i, row3, row2, row1, row0);
8140            rc++;
8141        } else {
8142            break;
8143        }
8144    }
8145
8146    /* TSTORM */
8147    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8148    if (last_idx) {
8149        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8150    }
8151
8152    /* print the asserts */
8153    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8154
8155        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8156        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8157        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8158        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8159
8160        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8161            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8162                  i, row3, row2, row1, row0);
8163            rc++;
8164        } else {
8165            break;
8166        }
8167    }
8168
8169    /* CSTORM */
8170    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8171    if (last_idx) {
8172        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8173    }
8174
8175    /* print the asserts */
8176    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8177
8178        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8179        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8180        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8181        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8182
8183        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8184            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8185                  i, row3, row2, row1, row0);
8186            rc++;
8187        } else {
8188            break;
8189        }
8190    }
8191
8192    /* USTORM */
8193    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8194    if (last_idx) {
8195        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8196    }
8197
8198    /* print the asserts */
8199    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8200
8201        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8202        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8203        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8204        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8205
8206        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8207            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8208                  i, row3, row2, row1, row0);
8209            rc++;
8210        } else {
8211            break;
8212        }
8213    }
8214
8215    return (rc);
8216}
8217
8218static void
8219bxe_attn_int_deasserted3(struct bxe_softc *sc,
8220                         uint32_t         attn)
8221{
8222    int func = SC_FUNC(sc);
8223    uint32_t val;
8224
8225    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8226
8227        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8228
8229            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8230            bxe_read_mf_cfg(sc);
8231            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8232                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8233            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8234
8235            if (val & DRV_STATUS_DCC_EVENT_MASK)
8236                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8237
8238            if (val & DRV_STATUS_SET_MF_BW)
8239                bxe_set_mf_bw(sc);
8240
8241            if (val & DRV_STATUS_DRV_INFO_REQ)
8242                bxe_handle_drv_info_req(sc);
8243
8244#if 0
8245            if (val & DRV_STATUS_VF_DISABLED)
8246                bxe_vf_handle_flr_event(sc);
8247#endif
8248
8249            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8250                bxe_pmf_update(sc);
8251
8252#if 0
8253            if (sc->port.pmf &&
8254                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8255                (sc->dcbx_enabled > 0))
8256                /* start dcbx state machine */
8257                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8258#endif
8259
8260#if 0
8261            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8262                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8263#endif
8264
8265            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8266                bxe_handle_eee_event(sc);
8267
8268            if (sc->link_vars.periodic_flags &
8269                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8270                /* sync with link */
8271                BXE_PHY_LOCK(sc);
8272                sc->link_vars.periodic_flags &=
8273                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8274                BXE_PHY_UNLOCK(sc);
8275                if (IS_MF(sc))
8276                    ; // XXX bxe_link_sync_notify(sc);
8277                bxe_link_report(sc);
8278            }
8279
8280            /*
8281             * Always call it here: bxe_link_report() will
8282             * prevent the link indication duplication.
8283             */
8284            bxe_link_status_update(sc);
8285
8286        } else if (attn & BXE_MC_ASSERT_BITS) {
8287
8288            BLOGE(sc, "MC assert!\n");
8289            bxe_mc_assert(sc);
8290            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8291            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8292            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8293            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8294            bxe_panic(sc, ("MC assert!\n"));
8295
8296        } else if (attn & BXE_MCP_ASSERT) {
8297
8298            BLOGE(sc, "MCP assert!\n");
8299            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8300            // XXX bxe_fw_dump(sc);
8301
8302        } else {
8303            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8304        }
8305    }
8306
8307    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8308        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8309        if (attn & BXE_GRC_TIMEOUT) {
8310            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8311            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8312        }
8313        if (attn & BXE_GRC_RSV) {
8314            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8315            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8316        }
8317        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8318    }
8319}
8320
8321static void
8322bxe_attn_int_deasserted2(struct bxe_softc *sc,
8323                         uint32_t         attn)
8324{
8325    int port = SC_PORT(sc);
8326    int reg_offset;
8327    uint32_t val0, mask0, val1, mask1;
8328    uint32_t val;
8329
8330    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8331        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8332        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8333        /* CFC error attention */
8334        if (val & 0x2) {
8335            BLOGE(sc, "FATAL error from CFC\n");
8336        }
8337    }
8338
8339    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8340        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8341        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8342        /* RQ_USDMDP_FIFO_OVERFLOW */
8343        if (val & 0x18000) {
8344            BLOGE(sc, "FATAL error from PXP\n");
8345        }
8346
8347        if (!CHIP_IS_E1x(sc)) {
8348            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8349            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8350        }
8351    }
8352
8353#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8354#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8355
8356    if (attn & AEU_PXP2_HW_INT_BIT) {
8357        /*  CQ47854 workaround do not panic on
8358         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8359         */
8360        if (!CHIP_IS_E1x(sc)) {
8361            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8362            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8363            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8364            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8365            /*
8366             * If the olny PXP2_EOP_ERROR_BIT is set in
8367             * STS0 and STS1 - clear it
8368             *
8369             * probably we lose additional attentions between
8370             * STS0 and STS_CLR0, in this case user will not
8371             * be notified about them
8372             */
8373            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8374                !(val1 & mask1))
8375                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8376
8377            /* print the register, since no one can restore it */
8378            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8379
8380            /*
8381             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8382             * then notify
8383             */
8384            if (val0 & PXP2_EOP_ERROR_BIT) {
8385                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8386
8387                /*
8388                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8389                 * set then clear attention from PXP2 block without panic
8390                 */
8391                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8392                    ((val1 & mask1) == 0))
8393                    attn &= ~AEU_PXP2_HW_INT_BIT;
8394            }
8395        }
8396    }
8397
8398    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8399        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8400                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8401
8402        val = REG_RD(sc, reg_offset);
8403        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8404        REG_WR(sc, reg_offset, val);
8405
8406        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8407              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8408        bxe_panic(sc, ("HW block attention set2\n"));
8409    }
8410}
8411
8412static void
8413bxe_attn_int_deasserted1(struct bxe_softc *sc,
8414                         uint32_t         attn)
8415{
8416    int port = SC_PORT(sc);
8417    int reg_offset;
8418    uint32_t val;
8419
8420    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8421        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8422        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8423        /* DORQ discard attention */
8424        if (val & 0x2) {
8425            BLOGE(sc, "FATAL error from DORQ\n");
8426        }
8427    }
8428
8429    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8430        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8431                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8432
8433        val = REG_RD(sc, reg_offset);
8434        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8435        REG_WR(sc, reg_offset, val);
8436
8437        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8438              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8439        bxe_panic(sc, ("HW block attention set1\n"));
8440    }
8441}
8442
8443static void
8444bxe_attn_int_deasserted0(struct bxe_softc *sc,
8445                         uint32_t         attn)
8446{
8447    int port = SC_PORT(sc);
8448    int reg_offset;
8449    uint32_t val;
8450
8451    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8452                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8453
8454    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8455        val = REG_RD(sc, reg_offset);
8456        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8457        REG_WR(sc, reg_offset, val);
8458
8459        BLOGW(sc, "SPIO5 hw attention\n");
8460
8461        /* Fan failure attention */
8462        elink_hw_reset_phy(&sc->link_params);
8463        bxe_fan_failure(sc);
8464    }
8465
8466    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8467        BXE_PHY_LOCK(sc);
8468        elink_handle_module_detect_int(&sc->link_params);
8469        BXE_PHY_UNLOCK(sc);
8470    }
8471
8472    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8473        val = REG_RD(sc, reg_offset);
8474        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8475        REG_WR(sc, reg_offset, val);
8476
8477        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8478                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8479    }
8480}
8481
8482static void
8483bxe_attn_int_deasserted(struct bxe_softc *sc,
8484                        uint32_t         deasserted)
8485{
8486    struct attn_route attn;
8487    struct attn_route *group_mask;
8488    int port = SC_PORT(sc);
8489    int index;
8490    uint32_t reg_addr;
8491    uint32_t val;
8492    uint32_t aeu_mask;
8493    uint8_t global = FALSE;
8494
8495    /*
8496     * Need to take HW lock because MCP or other port might also
8497     * try to handle this event.
8498     */
8499    bxe_acquire_alr(sc);
8500
8501    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8502        /* XXX
8503         * In case of parity errors don't handle attentions so that
8504         * other function would "see" parity errors.
8505         */
8506        sc->recovery_state = BXE_RECOVERY_INIT;
8507        // XXX schedule a recovery task...
8508        /* disable HW interrupts */
8509        bxe_int_disable(sc);
8510        bxe_release_alr(sc);
8511        return;
8512    }
8513
8514    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8515    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8516    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8517    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8518    if (!CHIP_IS_E1x(sc)) {
8519        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8520    } else {
8521        attn.sig[4] = 0;
8522    }
8523
8524    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8525          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8526
8527    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8528        if (deasserted & (1 << index)) {
8529            group_mask = &sc->attn_group[index];
8530
8531            BLOGD(sc, DBG_INTR,
8532                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8533                  group_mask->sig[0], group_mask->sig[1],
8534                  group_mask->sig[2], group_mask->sig[3],
8535                  group_mask->sig[4]);
8536
8537            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8538            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8539            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8540            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8541            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8542        }
8543    }
8544
8545    bxe_release_alr(sc);
8546
8547    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8548        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8549                    COMMAND_REG_ATTN_BITS_CLR);
8550    } else {
8551        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8552    }
8553
8554    val = ~deasserted;
8555    BLOGD(sc, DBG_INTR,
8556          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8557          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8558    REG_WR(sc, reg_addr, val);
8559
8560    if (~sc->attn_state & deasserted) {
8561        BLOGE(sc, "IGU error\n");
8562    }
8563
8564    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8565                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8566
8567    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8568
8569    aeu_mask = REG_RD(sc, reg_addr);
8570
8571    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8572          aeu_mask, deasserted);
8573    aeu_mask |= (deasserted & 0x3ff);
8574    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8575
8576    REG_WR(sc, reg_addr, aeu_mask);
8577    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8578
8579    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8580    sc->attn_state &= ~deasserted;
8581    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8582}
8583
8584static void
8585bxe_attn_int(struct bxe_softc *sc)
8586{
8587    /* read local copy of bits */
8588    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8589    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8590    uint32_t attn_state = sc->attn_state;
8591
8592    /* look for changed bits */
8593    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8594    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8595
8596    BLOGD(sc, DBG_INTR,
8597          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8598          attn_bits, attn_ack, asserted, deasserted);
8599
8600    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8601        BLOGE(sc, "BAD attention state\n");
8602    }
8603
8604    /* handle bits that were raised */
8605    if (asserted) {
8606        bxe_attn_int_asserted(sc, asserted);
8607    }
8608
8609    if (deasserted) {
8610        bxe_attn_int_deasserted(sc, deasserted);
8611    }
8612}
8613
8614static uint16_t
8615bxe_update_dsb_idx(struct bxe_softc *sc)
8616{
8617    struct host_sp_status_block *def_sb = sc->def_sb;
8618    uint16_t rc = 0;
8619
8620    mb(); /* status block is written to by the chip */
8621
8622    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8623        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8624        rc |= BXE_DEF_SB_ATT_IDX;
8625    }
8626
8627    if (sc->def_idx != def_sb->sp_sb.running_index) {
8628        sc->def_idx = def_sb->sp_sb.running_index;
8629        rc |= BXE_DEF_SB_IDX;
8630    }
8631
8632    mb();
8633
8634    return (rc);
8635}
8636
8637static inline struct ecore_queue_sp_obj *
8638bxe_cid_to_q_obj(struct bxe_softc *sc,
8639                 uint32_t         cid)
8640{
8641    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8642    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8643}
8644
8645static void
8646bxe_handle_mcast_eqe(struct bxe_softc *sc)
8647{
8648    struct ecore_mcast_ramrod_params rparam;
8649    int rc;
8650
8651    memset(&rparam, 0, sizeof(rparam));
8652
8653    rparam.mcast_obj = &sc->mcast_obj;
8654
8655    BXE_MCAST_LOCK(sc);
8656
8657    /* clear pending state for the last command */
8658    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8659
8660    /* if there are pending mcast commands - send them */
8661    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8662        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8663        if (rc < 0) {
8664            BLOGD(sc, DBG_SP,
8665                  "ERROR: Failed to send pending mcast commands (%d)\n",
8666                  rc);
8667        }
8668    }
8669
8670    BXE_MCAST_UNLOCK(sc);
8671}
8672
8673static void
8674bxe_handle_classification_eqe(struct bxe_softc      *sc,
8675                              union event_ring_elem *elem)
8676{
8677    unsigned long ramrod_flags = 0;
8678    int rc = 0;
8679    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8680    struct ecore_vlan_mac_obj *vlan_mac_obj;
8681
8682    /* always push next commands out, don't wait here */
8683    bit_set(&ramrod_flags, RAMROD_CONT);
8684
8685    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8686    case ECORE_FILTER_MAC_PENDING:
8687        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8688        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8689        break;
8690
8691    case ECORE_FILTER_MCAST_PENDING:
8692        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8693        /*
8694         * This is only relevant for 57710 where multicast MACs are
8695         * configured as unicast MACs using the same ramrod.
8696         */
8697        bxe_handle_mcast_eqe(sc);
8698        return;
8699
8700    default:
8701        BLOGE(sc, "Unsupported classification command: %d\n",
8702              elem->message.data.eth_event.echo);
8703        return;
8704    }
8705
8706    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8707
8708    if (rc < 0) {
8709        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8710    } else if (rc > 0) {
8711        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8712    }
8713}
8714
8715static void
8716bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8717                       union event_ring_elem *elem)
8718{
8719    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8720
8721    /* send rx_mode command again if was requested */
8722    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8723                               &sc->sp_state)) {
8724        bxe_set_storm_rx_mode(sc);
8725    }
8726#if 0
8727    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8728                                    &sc->sp_state)) {
8729        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8730    }
8731    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8732                                    &sc->sp_state)) {
8733        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8734    }
8735#endif
8736}
8737
8738static void
8739bxe_update_eq_prod(struct bxe_softc *sc,
8740                   uint16_t         prod)
8741{
8742    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8743    wmb(); /* keep prod updates ordered */
8744}
8745
8746static void
8747bxe_eq_int(struct bxe_softc *sc)
8748{
8749    uint16_t hw_cons, sw_cons, sw_prod;
8750    union event_ring_elem *elem;
8751    uint8_t echo;
8752    uint32_t cid;
8753    uint8_t opcode;
8754    int spqe_cnt = 0;
8755    struct ecore_queue_sp_obj *q_obj;
8756    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8757    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8758
8759    hw_cons = le16toh(*sc->eq_cons_sb);
8760
8761    /*
8762     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8763     * when we get to the next-page we need to adjust so the loop
8764     * condition below will be met. The next element is the size of a
8765     * regular element and hence incrementing by 1
8766     */
8767    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8768        hw_cons++;
8769    }
8770
8771    /*
8772     * This function may never run in parallel with itself for a
8773     * specific sc and no need for a read memory barrier here.
8774     */
8775    sw_cons = sc->eq_cons;
8776    sw_prod = sc->eq_prod;
8777
8778    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8779          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8780
8781    for (;
8782         sw_cons != hw_cons;
8783         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8784
8785        elem = &sc->eq[EQ_DESC(sw_cons)];
8786
8787#if 0
8788        int rc;
8789        rc = bxe_iov_eq_sp_event(sc, elem);
8790        if (!rc) {
8791            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8792            goto next_spqe;
8793        }
8794#endif
8795
8796        /* elem CID originates from FW, actually LE */
8797        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8798        opcode = elem->message.opcode;
8799
8800        /* handle eq element */
8801        switch (opcode) {
8802#if 0
8803        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8804            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8805            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8806            continue;
8807#endif
8808
8809        case EVENT_RING_OPCODE_STAT_QUERY:
8810            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8811                  sc->stats_comp++);
8812            /* nothing to do with stats comp */
8813            goto next_spqe;
8814
8815        case EVENT_RING_OPCODE_CFC_DEL:
8816            /* handle according to cid range */
8817            /* we may want to verify here that the sc state is HALTING */
8818            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8819            q_obj = bxe_cid_to_q_obj(sc, cid);
8820            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8821                break;
8822            }
8823            goto next_spqe;
8824
8825        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8826            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8827            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8828                break;
8829            }
8830            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8831            goto next_spqe;
8832
8833        case EVENT_RING_OPCODE_START_TRAFFIC:
8834            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8835            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8836                break;
8837            }
8838            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8839            goto next_spqe;
8840
8841        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8842            echo = elem->message.data.function_update_event.echo;
8843            if (echo == SWITCH_UPDATE) {
8844                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8845                if (f_obj->complete_cmd(sc, f_obj,
8846                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8847                    break;
8848                }
8849            }
8850            else {
8851                BLOGD(sc, DBG_SP,
8852                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8853#if 0
8854                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8855                /*
8856                 * We will perform the queues update from the sp_core_task as
8857                 * all queue SP operations should run with CORE_LOCK.
8858                 */
8859                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8860                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8861#endif
8862            }
8863            goto next_spqe;
8864
8865#if 0
8866        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8867            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8868            bxe_after_afex_vif_lists(sc, elem);
8869            goto next_spqe;
8870#endif
8871
8872        case EVENT_RING_OPCODE_FORWARD_SETUP:
8873            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8874            if (q_obj->complete_cmd(sc, q_obj,
8875                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8876                break;
8877            }
8878            goto next_spqe;
8879
8880        case EVENT_RING_OPCODE_FUNCTION_START:
8881            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8882            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8883                break;
8884            }
8885            goto next_spqe;
8886
8887        case EVENT_RING_OPCODE_FUNCTION_STOP:
8888            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8889            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8890                break;
8891            }
8892            goto next_spqe;
8893        }
8894
8895        switch (opcode | sc->state) {
8896        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8897        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8898            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8899            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8900            rss_raw->clear_pending(rss_raw);
8901            break;
8902
8903        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8904        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8905        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8906        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8907        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8908        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8909            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8910            bxe_handle_classification_eqe(sc, elem);
8911            break;
8912
8913        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8914        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8915        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8916            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8917            bxe_handle_mcast_eqe(sc);
8918            break;
8919
8920        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8921        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8922        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8923            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8924            bxe_handle_rx_mode_eqe(sc, elem);
8925            break;
8926
8927        default:
8928            /* unknown event log error and continue */
8929            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8930                  elem->message.opcode, sc->state);
8931        }
8932
8933next_spqe:
8934        spqe_cnt++;
8935    } /* for */
8936
8937    mb();
8938    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8939
8940    sc->eq_cons = sw_cons;
8941    sc->eq_prod = sw_prod;
8942
8943    /* make sure that above mem writes were issued towards the memory */
8944    wmb();
8945
8946    /* update producer */
8947    bxe_update_eq_prod(sc, sc->eq_prod);
8948}
8949
8950static void
8951bxe_handle_sp_tq(void *context,
8952                 int  pending)
8953{
8954    struct bxe_softc *sc = (struct bxe_softc *)context;
8955    uint16_t status;
8956
8957    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8958
8959    /* what work needs to be performed? */
8960    status = bxe_update_dsb_idx(sc);
8961
8962    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8963
8964    /* HW attentions */
8965    if (status & BXE_DEF_SB_ATT_IDX) {
8966        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8967        bxe_attn_int(sc);
8968        status &= ~BXE_DEF_SB_ATT_IDX;
8969    }
8970
8971    /* SP events: STAT_QUERY and others */
8972    if (status & BXE_DEF_SB_IDX) {
8973        /* handle EQ completions */
8974        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8975        bxe_eq_int(sc);
8976        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8977                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8978        status &= ~BXE_DEF_SB_IDX;
8979    }
8980
8981    /* if status is non zero then something went wrong */
8982    if (__predict_false(status)) {
8983        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8984    }
8985
8986    /* ack status block only if something was actually handled */
8987    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8988               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8989
8990    /*
8991     * Must be called after the EQ processing (since eq leads to sriov
8992     * ramrod completion flows).
8993     * This flow may have been scheduled by the arrival of a ramrod
8994     * completion, or by the sriov code rescheduling itself.
8995     */
8996    // XXX bxe_iov_sp_task(sc);
8997
8998#if 0
8999    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9000    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9001                               &sc->sp_state)) {
9002        bxe_link_report(sc);
9003        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9004    }
9005#endif
9006}
9007
9008static void
9009bxe_handle_fp_tq(void *context,
9010                 int  pending)
9011{
9012    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9013    struct bxe_softc *sc = fp->sc;
9014    uint8_t more_tx = FALSE;
9015    uint8_t more_rx = FALSE;
9016
9017    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9018
9019    /* XXX
9020     * IFF_DRV_RUNNING state can't be checked here since we process
9021     * slowpath events on a client queue during setup. Instead
9022     * we need to add a "process/continue" flag here that the driver
9023     * can use to tell the task here not to do anything.
9024     */
9025#if 0
9026    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9027        return;
9028    }
9029#endif
9030
9031    /* update the fastpath index */
9032    bxe_update_fp_sb_idx(fp);
9033
9034    /* XXX add loop here if ever support multiple tx CoS */
9035    /* fp->txdata[cos] */
9036    if (bxe_has_tx_work(fp)) {
9037        BXE_FP_TX_LOCK(fp);
9038        more_tx = bxe_txeof(sc, fp);
9039        BXE_FP_TX_UNLOCK(fp);
9040    }
9041
9042    if (bxe_has_rx_work(fp)) {
9043        more_rx = bxe_rxeof(sc, fp);
9044    }
9045
9046    if (more_rx /*|| more_tx*/) {
9047        /* still more work to do */
9048        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9049        return;
9050    }
9051
9052    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9053               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9054}
9055
9056static void
9057bxe_task_fp(struct bxe_fastpath *fp)
9058{
9059    struct bxe_softc *sc = fp->sc;
9060    uint8_t more_tx = FALSE;
9061    uint8_t more_rx = FALSE;
9062
9063    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9064
9065    /* update the fastpath index */
9066    bxe_update_fp_sb_idx(fp);
9067
9068    /* XXX add loop here if ever support multiple tx CoS */
9069    /* fp->txdata[cos] */
9070    if (bxe_has_tx_work(fp)) {
9071        BXE_FP_TX_LOCK(fp);
9072        more_tx = bxe_txeof(sc, fp);
9073        BXE_FP_TX_UNLOCK(fp);
9074    }
9075
9076    if (bxe_has_rx_work(fp)) {
9077        more_rx = bxe_rxeof(sc, fp);
9078    }
9079
9080    if (more_rx /*|| more_tx*/) {
9081        /* still more work to do, bail out if this ISR and process later */
9082        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9083        return;
9084    }
9085
9086    /*
9087     * Here we write the fastpath index taken before doing any tx or rx work.
9088     * It is very well possible other hw events occurred up to this point and
9089     * they were actually processed accordingly above. Since we're going to
9090     * write an older fastpath index, an interrupt is coming which we might
9091     * not do any work in.
9092     */
9093    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9094               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9095}
9096
9097/*
9098 * Legacy interrupt entry point.
9099 *
9100 * Verifies that the controller generated the interrupt and
9101 * then calls a separate routine to handle the various
9102 * interrupt causes: link, RX, and TX.
9103 */
9104static void
9105bxe_intr_legacy(void *xsc)
9106{
9107    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9108    struct bxe_fastpath *fp;
9109    uint16_t status, mask;
9110    int i;
9111
9112    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9113
9114#if 0
9115    /* Don't handle any interrupts if we're not ready. */
9116    if (__predict_false(sc->intr_sem != 0)) {
9117        return;
9118    }
9119#endif
9120
9121    /*
9122     * 0 for ustorm, 1 for cstorm
9123     * the bits returned from ack_int() are 0-15
9124     * bit 0 = attention status block
9125     * bit 1 = fast path status block
9126     * a mask of 0x2 or more = tx/rx event
9127     * a mask of 1 = slow path event
9128     */
9129
9130    status = bxe_ack_int(sc);
9131
9132    /* the interrupt is not for us */
9133    if (__predict_false(status == 0)) {
9134        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9135        return;
9136    }
9137
9138    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9139
9140    FOR_EACH_ETH_QUEUE(sc, i) {
9141        fp = &sc->fp[i];
9142        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9143        if (status & mask) {
9144            /* acknowledge and disable further fastpath interrupts */
9145            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9146            bxe_task_fp(fp);
9147            status &= ~mask;
9148        }
9149    }
9150
9151#if 0
9152    if (CNIC_SUPPORT(sc)) {
9153        mask = 0x2;
9154        if (status & (mask | 0x1)) {
9155            ...
9156            status &= ~mask;
9157        }
9158    }
9159#endif
9160
9161    if (__predict_false(status & 0x1)) {
9162        /* acknowledge and disable further slowpath interrupts */
9163        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9164
9165        /* schedule slowpath handler */
9166        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9167
9168        status &= ~0x1;
9169    }
9170
9171    if (__predict_false(status)) {
9172        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9173    }
9174}
9175
9176/* slowpath interrupt entry point */
9177static void
9178bxe_intr_sp(void *xsc)
9179{
9180    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9181
9182    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9183
9184    /* acknowledge and disable further slowpath interrupts */
9185    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9186
9187    /* schedule slowpath handler */
9188    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9189}
9190
9191/* fastpath interrupt entry point */
9192static void
9193bxe_intr_fp(void *xfp)
9194{
9195    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9196    struct bxe_softc *sc = fp->sc;
9197
9198    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9199
9200    BLOGD(sc, DBG_INTR,
9201          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9202          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9203
9204#if 0
9205    /* Don't handle any interrupts if we're not ready. */
9206    if (__predict_false(sc->intr_sem != 0)) {
9207        return;
9208    }
9209#endif
9210
9211    /* acknowledge and disable further fastpath interrupts */
9212    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9213
9214    bxe_task_fp(fp);
9215}
9216
9217/* Release all interrupts allocated by the driver. */
9218static void
9219bxe_interrupt_free(struct bxe_softc *sc)
9220{
9221    int i;
9222
9223    switch (sc->interrupt_mode) {
9224    case INTR_MODE_INTX:
9225        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9226        if (sc->intr[0].resource != NULL) {
9227            bus_release_resource(sc->dev,
9228                                 SYS_RES_IRQ,
9229                                 sc->intr[0].rid,
9230                                 sc->intr[0].resource);
9231        }
9232        break;
9233    case INTR_MODE_MSI:
9234        for (i = 0; i < sc->intr_count; i++) {
9235            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9236            if (sc->intr[i].resource && sc->intr[i].rid) {
9237                bus_release_resource(sc->dev,
9238                                     SYS_RES_IRQ,
9239                                     sc->intr[i].rid,
9240                                     sc->intr[i].resource);
9241            }
9242        }
9243        pci_release_msi(sc->dev);
9244        break;
9245    case INTR_MODE_MSIX:
9246        for (i = 0; i < sc->intr_count; i++) {
9247            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9248            if (sc->intr[i].resource && sc->intr[i].rid) {
9249                bus_release_resource(sc->dev,
9250                                     SYS_RES_IRQ,
9251                                     sc->intr[i].rid,
9252                                     sc->intr[i].resource);
9253            }
9254        }
9255        pci_release_msi(sc->dev);
9256        break;
9257    default:
9258        /* nothing to do as initial allocation failed */
9259        break;
9260    }
9261}
9262
9263/*
9264 * This function determines and allocates the appropriate
9265 * interrupt based on system capabilites and user request.
9266 *
9267 * The user may force a particular interrupt mode, specify
9268 * the number of receive queues, specify the method for
9269 * distribuitng received frames to receive queues, or use
9270 * the default settings which will automatically select the
9271 * best supported combination.  In addition, the OS may or
9272 * may not support certain combinations of these settings.
9273 * This routine attempts to reconcile the settings requested
9274 * by the user with the capabilites available from the system
9275 * to select the optimal combination of features.
9276 *
9277 * Returns:
9278 *   0 = Success, !0 = Failure.
9279 */
9280static int
9281bxe_interrupt_alloc(struct bxe_softc *sc)
9282{
9283    int msix_count = 0;
9284    int msi_count = 0;
9285    int num_requested = 0;
9286    int num_allocated = 0;
9287    int rid, i, j;
9288    int rc;
9289
9290    /* get the number of available MSI/MSI-X interrupts from the OS */
9291    if (sc->interrupt_mode > 0) {
9292        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9293            msix_count = pci_msix_count(sc->dev);
9294        }
9295
9296        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9297            msi_count = pci_msi_count(sc->dev);
9298        }
9299
9300        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9301              msi_count, msix_count);
9302    }
9303
9304    do { /* try allocating MSI-X interrupt resources (at least 2) */
9305        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9306            break;
9307        }
9308
9309        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9310            (msix_count < 2)) {
9311            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9312            break;
9313        }
9314
9315        /* ask for the necessary number of MSI-X vectors */
9316        num_requested = min((sc->num_queues + 1), msix_count);
9317
9318        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9319
9320        num_allocated = num_requested;
9321        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9322            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9323            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9324            break;
9325        }
9326
9327        if (num_allocated < 2) { /* possible? */
9328            BLOGE(sc, "MSI-X allocation less than 2!\n");
9329            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9330            pci_release_msi(sc->dev);
9331            break;
9332        }
9333
9334        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9335              num_requested, num_allocated);
9336
9337        /* best effort so use the number of vectors allocated to us */
9338        sc->intr_count = num_allocated;
9339        sc->num_queues = num_allocated - 1;
9340
9341        rid = 1; /* initial resource identifier */
9342
9343        /* allocate the MSI-X vectors */
9344        for (i = 0; i < num_allocated; i++) {
9345            sc->intr[i].rid = (rid + i);
9346
9347            if ((sc->intr[i].resource =
9348                 bus_alloc_resource_any(sc->dev,
9349                                        SYS_RES_IRQ,
9350                                        &sc->intr[i].rid,
9351                                        RF_ACTIVE)) == NULL) {
9352                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9353                      i, (rid + i));
9354
9355                for (j = (i - 1); j >= 0; j--) {
9356                    bus_release_resource(sc->dev,
9357                                         SYS_RES_IRQ,
9358                                         sc->intr[j].rid,
9359                                         sc->intr[j].resource);
9360                }
9361
9362                sc->intr_count = 0;
9363                sc->num_queues = 0;
9364                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9365                pci_release_msi(sc->dev);
9366                break;
9367            }
9368
9369            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9370        }
9371    } while (0);
9372
9373    do { /* try allocating MSI vector resources (at least 2) */
9374        if (sc->interrupt_mode != INTR_MODE_MSI) {
9375            break;
9376        }
9377
9378        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9379            (msi_count < 2)) {
9380            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9381            break;
9382        }
9383
9384        /* ask for the necessary number of MSI vectors */
9385        num_requested = min((sc->num_queues + 1), msi_count);
9386
9387        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9388
9389        num_allocated = num_requested;
9390        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9391            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9392            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9393            break;
9394        }
9395
9396        if (num_allocated < 2) { /* possible? */
9397            BLOGE(sc, "MSI allocation less than 2!\n");
9398            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9399            pci_release_msi(sc->dev);
9400            break;
9401        }
9402
9403        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9404              num_requested, num_allocated);
9405
9406        /* best effort so use the number of vectors allocated to us */
9407        sc->intr_count = num_allocated;
9408        sc->num_queues = num_allocated - 1;
9409
9410        rid = 1; /* initial resource identifier */
9411
9412        /* allocate the MSI vectors */
9413        for (i = 0; i < num_allocated; i++) {
9414            sc->intr[i].rid = (rid + i);
9415
9416            if ((sc->intr[i].resource =
9417                 bus_alloc_resource_any(sc->dev,
9418                                        SYS_RES_IRQ,
9419                                        &sc->intr[i].rid,
9420                                        RF_ACTIVE)) == NULL) {
9421                BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9422                      i, (rid + i));
9423
9424                for (j = (i - 1); j >= 0; j--) {
9425                    bus_release_resource(sc->dev,
9426                                         SYS_RES_IRQ,
9427                                         sc->intr[j].rid,
9428                                         sc->intr[j].resource);
9429                }
9430
9431                sc->intr_count = 0;
9432                sc->num_queues = 0;
9433                sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9434                pci_release_msi(sc->dev);
9435                break;
9436            }
9437
9438            BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9439        }
9440    } while (0);
9441
9442    do { /* try allocating INTx vector resources */
9443        if (sc->interrupt_mode != INTR_MODE_INTX) {
9444            break;
9445        }
9446
9447        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9448
9449        /* only one vector for INTx */
9450        sc->intr_count = 1;
9451        sc->num_queues = 1;
9452
9453        rid = 0; /* initial resource identifier */
9454
9455        sc->intr[0].rid = rid;
9456
9457        if ((sc->intr[0].resource =
9458             bus_alloc_resource_any(sc->dev,
9459                                    SYS_RES_IRQ,
9460                                    &sc->intr[0].rid,
9461                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9462            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9463            sc->intr_count = 0;
9464            sc->num_queues = 0;
9465            sc->interrupt_mode = -1; /* Failed! */
9466            break;
9467        }
9468
9469        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9470    } while (0);
9471
9472    if (sc->interrupt_mode == -1) {
9473        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9474        rc = 1;
9475    } else {
9476        BLOGD(sc, DBG_LOAD,
9477              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9478              sc->interrupt_mode, sc->num_queues);
9479        rc = 0;
9480    }
9481
9482    return (rc);
9483}
9484
9485static void
9486bxe_interrupt_detach(struct bxe_softc *sc)
9487{
9488    struct bxe_fastpath *fp;
9489    int i;
9490
9491    /* release interrupt resources */
9492    for (i = 0; i < sc->intr_count; i++) {
9493        if (sc->intr[i].resource && sc->intr[i].tag) {
9494            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9495            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9496        }
9497    }
9498
9499    for (i = 0; i < sc->num_queues; i++) {
9500        fp = &sc->fp[i];
9501        if (fp->tq) {
9502            taskqueue_drain(fp->tq, &fp->tq_task);
9503            taskqueue_free(fp->tq);
9504            fp->tq = NULL;
9505        }
9506    }
9507
9508    if (sc->rx_mode_tq) {
9509        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9510        taskqueue_free(sc->rx_mode_tq);
9511        sc->rx_mode_tq = NULL;
9512    }
9513
9514    if (sc->sp_tq) {
9515        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9516        taskqueue_free(sc->sp_tq);
9517        sc->sp_tq = NULL;
9518    }
9519}
9520
9521/*
9522 * Enables interrupts and attach to the ISR.
9523 *
9524 * When using multiple MSI/MSI-X vectors the first vector
9525 * is used for slowpath operations while all remaining
9526 * vectors are used for fastpath operations.  If only a
9527 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9528 * ISR must look for both slowpath and fastpath completions.
9529 */
9530static int
9531bxe_interrupt_attach(struct bxe_softc *sc)
9532{
9533    struct bxe_fastpath *fp;
9534    int rc = 0;
9535    int i;
9536
9537    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9538             "bxe%d_sp_tq", sc->unit);
9539    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9540    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9541                                      taskqueue_thread_enqueue,
9542                                      &sc->sp_tq);
9543    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9544                            "%s", sc->sp_tq_name);
9545
9546    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9547             "bxe%d_rx_mode_tq", sc->unit);
9548    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9549    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9550                                           taskqueue_thread_enqueue,
9551                                           &sc->rx_mode_tq);
9552    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9553                            "%s", sc->rx_mode_tq_name);
9554
9555    for (i = 0; i < sc->num_queues; i++) {
9556        fp = &sc->fp[i];
9557        snprintf(fp->tq_name, sizeof(fp->tq_name),
9558                 "bxe%d_fp%d_tq", sc->unit, i);
9559        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9560        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9561                                       taskqueue_thread_enqueue,
9562                                       &fp->tq);
9563        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9564                                "%s", fp->tq_name);
9565    }
9566
9567    /* setup interrupt handlers */
9568    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9569        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9570
9571        /*
9572         * Setup the interrupt handler. Note that we pass the driver instance
9573         * to the interrupt handler for the slowpath.
9574         */
9575        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9576                                 (INTR_TYPE_NET | INTR_MPSAFE),
9577                                 NULL, bxe_intr_sp, sc,
9578                                 &sc->intr[0].tag)) != 0) {
9579            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9580            goto bxe_interrupt_attach_exit;
9581        }
9582
9583        bus_describe_intr(sc->dev, sc->intr[0].resource,
9584                          sc->intr[0].tag, "sp");
9585
9586        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9587
9588        /* initialize the fastpath vectors (note the first was used for sp) */
9589        for (i = 0; i < sc->num_queues; i++) {
9590            fp = &sc->fp[i];
9591            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9592
9593            /*
9594             * Setup the interrupt handler. Note that we pass the
9595             * fastpath context to the interrupt handler in this
9596             * case.
9597             */
9598            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9599                                     (INTR_TYPE_NET | INTR_MPSAFE),
9600                                     NULL, bxe_intr_fp, fp,
9601                                     &sc->intr[i + 1].tag)) != 0) {
9602                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9603                      (i + 1), rc);
9604                goto bxe_interrupt_attach_exit;
9605            }
9606
9607            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9608                              sc->intr[i + 1].tag, "fp%02d", i);
9609
9610            /* bind the fastpath instance to a cpu */
9611            if (sc->num_queues > 1) {
9612                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9613            }
9614
9615            fp->state = BXE_FP_STATE_IRQ;
9616        }
9617    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9618        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9619
9620        /*
9621         * Setup the interrupt handler. Note that we pass the driver instance
9622         * to the interrupt handler for the slowpath.
9623         */
9624        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9625                                 (INTR_TYPE_NET | INTR_MPSAFE),
9626                                 NULL, bxe_intr_sp, sc,
9627                                 &sc->intr[0].tag)) != 0) {
9628            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9629            goto bxe_interrupt_attach_exit;
9630        }
9631
9632        bus_describe_intr(sc->dev, sc->intr[0].resource,
9633                          sc->intr[0].tag, "sp");
9634
9635        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9636
9637        /* initialize the fastpath vectors (note the first was used for sp) */
9638        for (i = 0; i < sc->num_queues; i++) {
9639            fp = &sc->fp[i];
9640            BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9641
9642            /*
9643             * Setup the interrupt handler. Note that we pass the
9644             * fastpath context to the interrupt handler in this
9645             * case.
9646             */
9647            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9648                                     (INTR_TYPE_NET | INTR_MPSAFE),
9649                                     NULL, bxe_intr_fp, fp,
9650                                     &sc->intr[i + 1].tag)) != 0) {
9651                BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9652                      (i + 1), rc);
9653                goto bxe_interrupt_attach_exit;
9654            }
9655
9656            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9657                              sc->intr[i + 1].tag, "fp%02d", i);
9658
9659            /* bind the fastpath instance to a cpu */
9660            if (sc->num_queues > 1) {
9661                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9662            }
9663
9664            fp->state = BXE_FP_STATE_IRQ;
9665        }
9666    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9667        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9668
9669        /*
9670         * Setup the interrupt handler. Note that we pass the
9671         * driver instance to the interrupt handler which
9672         * will handle both the slowpath and fastpath.
9673         */
9674        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9675                                 (INTR_TYPE_NET | INTR_MPSAFE),
9676                                 NULL, bxe_intr_legacy, sc,
9677                                 &sc->intr[0].tag)) != 0) {
9678            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9679            goto bxe_interrupt_attach_exit;
9680        }
9681    }
9682
9683bxe_interrupt_attach_exit:
9684
9685    return (rc);
9686}
9687
9688static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9689static int  bxe_init_hw_common(struct bxe_softc *sc);
9690static int  bxe_init_hw_port(struct bxe_softc *sc);
9691static int  bxe_init_hw_func(struct bxe_softc *sc);
9692static void bxe_reset_common(struct bxe_softc *sc);
9693static void bxe_reset_port(struct bxe_softc *sc);
9694static void bxe_reset_func(struct bxe_softc *sc);
9695static int  bxe_gunzip_init(struct bxe_softc *sc);
9696static void bxe_gunzip_end(struct bxe_softc *sc);
9697static int  bxe_init_firmware(struct bxe_softc *sc);
9698static void bxe_release_firmware(struct bxe_softc *sc);
9699
9700static struct
9701ecore_func_sp_drv_ops bxe_func_sp_drv = {
9702    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9703    .init_hw_cmn      = bxe_init_hw_common,
9704    .init_hw_port     = bxe_init_hw_port,
9705    .init_hw_func     = bxe_init_hw_func,
9706
9707    .reset_hw_cmn     = bxe_reset_common,
9708    .reset_hw_port    = bxe_reset_port,
9709    .reset_hw_func    = bxe_reset_func,
9710
9711    .gunzip_init      = bxe_gunzip_init,
9712    .gunzip_end       = bxe_gunzip_end,
9713
9714    .init_fw          = bxe_init_firmware,
9715    .release_fw       = bxe_release_firmware,
9716};
9717
9718static void
9719bxe_init_func_obj(struct bxe_softc *sc)
9720{
9721    sc->dmae_ready = 0;
9722
9723    ecore_init_func_obj(sc,
9724                        &sc->func_obj,
9725                        BXE_SP(sc, func_rdata),
9726                        BXE_SP_MAPPING(sc, func_rdata),
9727                        BXE_SP(sc, func_afex_rdata),
9728                        BXE_SP_MAPPING(sc, func_afex_rdata),
9729                        &bxe_func_sp_drv);
9730}
9731
9732static int
9733bxe_init_hw(struct bxe_softc *sc,
9734            uint32_t         load_code)
9735{
9736    struct ecore_func_state_params func_params = { NULL };
9737    int rc;
9738
9739    /* prepare the parameters for function state transitions */
9740    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9741
9742    func_params.f_obj = &sc->func_obj;
9743    func_params.cmd = ECORE_F_CMD_HW_INIT;
9744
9745    func_params.params.hw_init.load_phase = load_code;
9746
9747    /*
9748     * Via a plethora of function pointers, we will eventually reach
9749     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9750     */
9751    rc = ecore_func_state_change(sc, &func_params);
9752
9753    return (rc);
9754}
9755
9756static void
9757bxe_fill(struct bxe_softc *sc,
9758         uint32_t         addr,
9759         int              fill,
9760         uint32_t         len)
9761{
9762    uint32_t i;
9763
9764    if (!(len % 4) && !(addr % 4)) {
9765        for (i = 0; i < len; i += 4) {
9766            REG_WR(sc, (addr + i), fill);
9767        }
9768    } else {
9769        for (i = 0; i < len; i++) {
9770            REG_WR8(sc, (addr + i), fill);
9771        }
9772    }
9773}
9774
9775/* writes FP SP data to FW - data_size in dwords */
9776static void
9777bxe_wr_fp_sb_data(struct bxe_softc *sc,
9778                  int              fw_sb_id,
9779                  uint32_t         *sb_data_p,
9780                  uint32_t         data_size)
9781{
9782    int index;
9783
9784    for (index = 0; index < data_size; index++) {
9785        REG_WR(sc,
9786               (BAR_CSTRORM_INTMEM +
9787                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9788                (sizeof(uint32_t) * index)),
9789               *(sb_data_p + index));
9790    }
9791}
9792
9793static void
9794bxe_zero_fp_sb(struct bxe_softc *sc,
9795               int              fw_sb_id)
9796{
9797    struct hc_status_block_data_e2 sb_data_e2;
9798    struct hc_status_block_data_e1x sb_data_e1x;
9799    uint32_t *sb_data_p;
9800    uint32_t data_size = 0;
9801
9802    if (!CHIP_IS_E1x(sc)) {
9803        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9804        sb_data_e2.common.state = SB_DISABLED;
9805        sb_data_e2.common.p_func.vf_valid = FALSE;
9806        sb_data_p = (uint32_t *)&sb_data_e2;
9807        data_size = (sizeof(struct hc_status_block_data_e2) /
9808                     sizeof(uint32_t));
9809    } else {
9810        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9811        sb_data_e1x.common.state = SB_DISABLED;
9812        sb_data_e1x.common.p_func.vf_valid = FALSE;
9813        sb_data_p = (uint32_t *)&sb_data_e1x;
9814        data_size = (sizeof(struct hc_status_block_data_e1x) /
9815                     sizeof(uint32_t));
9816    }
9817
9818    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9819
9820    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9821             0, CSTORM_STATUS_BLOCK_SIZE);
9822    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9823             0, CSTORM_SYNC_BLOCK_SIZE);
9824}
9825
9826static void
9827bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9828                  struct hc_sp_status_block_data *sp_sb_data)
9829{
9830    int i;
9831
9832    for (i = 0;
9833         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9834         i++) {
9835        REG_WR(sc,
9836               (BAR_CSTRORM_INTMEM +
9837                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9838                (i * sizeof(uint32_t))),
9839               *((uint32_t *)sp_sb_data + i));
9840    }
9841}
9842
9843static void
9844bxe_zero_sp_sb(struct bxe_softc *sc)
9845{
9846    struct hc_sp_status_block_data sp_sb_data;
9847
9848    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9849
9850    sp_sb_data.state           = SB_DISABLED;
9851    sp_sb_data.p_func.vf_valid = FALSE;
9852
9853    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9854
9855    bxe_fill(sc,
9856             (BAR_CSTRORM_INTMEM +
9857              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9858              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9859    bxe_fill(sc,
9860             (BAR_CSTRORM_INTMEM +
9861              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9862              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9863}
9864
9865static void
9866bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9867                             int                       igu_sb_id,
9868                             int                       igu_seg_id)
9869{
9870    hc_sm->igu_sb_id      = igu_sb_id;
9871    hc_sm->igu_seg_id     = igu_seg_id;
9872    hc_sm->timer_value    = 0xFF;
9873    hc_sm->time_to_expire = 0xFFFFFFFF;
9874}
9875
9876static void
9877bxe_map_sb_state_machines(struct hc_index_data *index_data)
9878{
9879    /* zero out state machine indices */
9880
9881    /* rx indices */
9882    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9883
9884    /* tx indices */
9885    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9886    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9887    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9888    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9889
9890    /* map indices */
9891
9892    /* rx indices */
9893    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9894        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9895
9896    /* tx indices */
9897    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9898        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9899    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9900        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9901    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9902        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9903    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9904        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9905}
9906
9907static void
9908bxe_init_sb(struct bxe_softc *sc,
9909            bus_addr_t       busaddr,
9910            int              vfid,
9911            uint8_t          vf_valid,
9912            int              fw_sb_id,
9913            int              igu_sb_id)
9914{
9915    struct hc_status_block_data_e2  sb_data_e2;
9916    struct hc_status_block_data_e1x sb_data_e1x;
9917    struct hc_status_block_sm       *hc_sm_p;
9918    uint32_t *sb_data_p;
9919    int igu_seg_id;
9920    int data_size;
9921
9922    if (CHIP_INT_MODE_IS_BC(sc)) {
9923        igu_seg_id = HC_SEG_ACCESS_NORM;
9924    } else {
9925        igu_seg_id = IGU_SEG_ACCESS_NORM;
9926    }
9927
9928    bxe_zero_fp_sb(sc, fw_sb_id);
9929
9930    if (!CHIP_IS_E1x(sc)) {
9931        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9932        sb_data_e2.common.state = SB_ENABLED;
9933        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9934        sb_data_e2.common.p_func.vf_id = vfid;
9935        sb_data_e2.common.p_func.vf_valid = vf_valid;
9936        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9937        sb_data_e2.common.same_igu_sb_1b = TRUE;
9938        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9939        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9940        hc_sm_p = sb_data_e2.common.state_machine;
9941        sb_data_p = (uint32_t *)&sb_data_e2;
9942        data_size = (sizeof(struct hc_status_block_data_e2) /
9943                     sizeof(uint32_t));
9944        bxe_map_sb_state_machines(sb_data_e2.index_data);
9945    } else {
9946        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9947        sb_data_e1x.common.state = SB_ENABLED;
9948        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9949        sb_data_e1x.common.p_func.vf_id = 0xff;
9950        sb_data_e1x.common.p_func.vf_valid = FALSE;
9951        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9952        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9953        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9954        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9955        hc_sm_p = sb_data_e1x.common.state_machine;
9956        sb_data_p = (uint32_t *)&sb_data_e1x;
9957        data_size = (sizeof(struct hc_status_block_data_e1x) /
9958                     sizeof(uint32_t));
9959        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9960    }
9961
9962    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9963    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9964
9965    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9966
9967    /* write indices to HW - PCI guarantees endianity of regpairs */
9968    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9969}
9970
9971static inline uint8_t
9972bxe_fp_qzone_id(struct bxe_fastpath *fp)
9973{
9974    if (CHIP_IS_E1x(fp->sc)) {
9975        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9976    } else {
9977        return (fp->cl_id);
9978    }
9979}
9980
9981static inline uint32_t
9982bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9983                           struct bxe_fastpath *fp)
9984{
9985    uint32_t offset = BAR_USTRORM_INTMEM;
9986
9987#if 0
9988    if (IS_VF(sc)) {
9989        return (PXP_VF_ADDR_USDM_QUEUES_START +
9990                (sc->acquire_resp.resc.hw_qid[fp->index] *
9991                 sizeof(struct ustorm_queue_zone_data)));
9992    } else
9993#endif
9994    if (!CHIP_IS_E1x(sc)) {
9995        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9996    } else {
9997        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9998    }
9999
10000    return (offset);
10001}
10002
10003static void
10004bxe_init_eth_fp(struct bxe_softc *sc,
10005                int              idx)
10006{
10007    struct bxe_fastpath *fp = &sc->fp[idx];
10008    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10009    unsigned long q_type = 0;
10010    int cos;
10011
10012    fp->sc    = sc;
10013    fp->index = idx;
10014
10015    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10016             "bxe%d_fp%d_tx_lock", sc->unit, idx);
10017    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10018
10019    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10020             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10021    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10022
10023    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10024    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10025
10026    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10027                    (SC_L_ID(sc) + idx) :
10028                    /* want client ID same as IGU SB ID for non-E1 */
10029                    fp->igu_sb_id;
10030    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10031
10032    /* setup sb indices */
10033    if (!CHIP_IS_E1x(sc)) {
10034        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10035        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10036    } else {
10037        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10038        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10039    }
10040
10041    /* init shortcut */
10042    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10043
10044    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10045
10046    /*
10047     * XXX If multiple CoS is ever supported then each fastpath structure
10048     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10049     */
10050    for (cos = 0; cos < sc->max_cos; cos++) {
10051        cids[cos] = idx;
10052    }
10053    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10054
10055    /* nothing more for a VF to do */
10056    if (IS_VF(sc)) {
10057        return;
10058    }
10059
10060    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10061                fp->fw_sb_id, fp->igu_sb_id);
10062
10063    bxe_update_fp_sb_idx(fp);
10064
10065    /* Configure Queue State object */
10066    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10067    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10068
10069    ecore_init_queue_obj(sc,
10070                         &sc->sp_objs[idx].q_obj,
10071                         fp->cl_id,
10072                         cids,
10073                         sc->max_cos,
10074                         SC_FUNC(sc),
10075                         BXE_SP(sc, q_rdata),
10076                         BXE_SP_MAPPING(sc, q_rdata),
10077                         q_type);
10078
10079    /* configure classification DBs */
10080    ecore_init_mac_obj(sc,
10081                       &sc->sp_objs[idx].mac_obj,
10082                       fp->cl_id,
10083                       idx,
10084                       SC_FUNC(sc),
10085                       BXE_SP(sc, mac_rdata),
10086                       BXE_SP_MAPPING(sc, mac_rdata),
10087                       ECORE_FILTER_MAC_PENDING,
10088                       &sc->sp_state,
10089                       ECORE_OBJ_TYPE_RX_TX,
10090                       &sc->macs_pool);
10091
10092    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10093          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10094}
10095
10096static inline void
10097bxe_update_rx_prod(struct bxe_softc    *sc,
10098                   struct bxe_fastpath *fp,
10099                   uint16_t            rx_bd_prod,
10100                   uint16_t            rx_cq_prod,
10101                   uint16_t            rx_sge_prod)
10102{
10103    struct ustorm_eth_rx_producers rx_prods = { 0 };
10104    uint32_t i;
10105
10106    /* update producers */
10107    rx_prods.bd_prod  = rx_bd_prod;
10108    rx_prods.cqe_prod = rx_cq_prod;
10109    rx_prods.sge_prod = rx_sge_prod;
10110
10111    /*
10112     * Make sure that the BD and SGE data is updated before updating the
10113     * producers since FW might read the BD/SGE right after the producer
10114     * is updated.
10115     * This is only applicable for weak-ordered memory model archs such
10116     * as IA-64. The following barrier is also mandatory since FW will
10117     * assumes BDs must have buffers.
10118     */
10119    wmb();
10120
10121    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10122        REG_WR(sc,
10123               (fp->ustorm_rx_prods_offset + (i * 4)),
10124               ((uint32_t *)&rx_prods)[i]);
10125    }
10126
10127    wmb(); /* keep prod updates ordered */
10128
10129    BLOGD(sc, DBG_RX,
10130          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10131          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10132}
10133
10134static void
10135bxe_init_rx_rings(struct bxe_softc *sc)
10136{
10137    struct bxe_fastpath *fp;
10138    int i;
10139
10140    for (i = 0; i < sc->num_queues; i++) {
10141        fp = &sc->fp[i];
10142
10143        fp->rx_bd_cons = 0;
10144
10145        /*
10146         * Activate the BD ring...
10147         * Warning, this will generate an interrupt (to the TSTORM)
10148         * so this can only be done after the chip is initialized
10149         */
10150        bxe_update_rx_prod(sc, fp,
10151                           fp->rx_bd_prod,
10152                           fp->rx_cq_prod,
10153                           fp->rx_sge_prod);
10154
10155        if (i != 0) {
10156            continue;
10157        }
10158
10159        if (CHIP_IS_E1(sc)) {
10160            REG_WR(sc,
10161                   (BAR_USTRORM_INTMEM +
10162                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10163                   U64_LO(fp->rcq_dma.paddr));
10164            REG_WR(sc,
10165                   (BAR_USTRORM_INTMEM +
10166                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10167                   U64_HI(fp->rcq_dma.paddr));
10168        }
10169    }
10170}
10171
10172static void
10173bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10174{
10175    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10176    fp->tx_db.data.zero_fill1 = 0;
10177    fp->tx_db.data.prod = 0;
10178
10179    fp->tx_pkt_prod = 0;
10180    fp->tx_pkt_cons = 0;
10181    fp->tx_bd_prod = 0;
10182    fp->tx_bd_cons = 0;
10183    fp->eth_q_stats.tx_pkts = 0;
10184}
10185
10186static inline void
10187bxe_init_tx_rings(struct bxe_softc *sc)
10188{
10189    int i;
10190
10191    for (i = 0; i < sc->num_queues; i++) {
10192#if 0
10193        uint8_t cos;
10194        for (cos = 0; cos < sc->max_cos; cos++) {
10195            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10196        }
10197#else
10198        bxe_init_tx_ring_one(&sc->fp[i]);
10199#endif
10200    }
10201}
10202
10203static void
10204bxe_init_def_sb(struct bxe_softc *sc)
10205{
10206    struct host_sp_status_block *def_sb = sc->def_sb;
10207    bus_addr_t mapping = sc->def_sb_dma.paddr;
10208    int igu_sp_sb_index;
10209    int igu_seg_id;
10210    int port = SC_PORT(sc);
10211    int func = SC_FUNC(sc);
10212    int reg_offset, reg_offset_en5;
10213    uint64_t section;
10214    int index, sindex;
10215    struct hc_sp_status_block_data sp_sb_data;
10216
10217    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10218
10219    if (CHIP_INT_MODE_IS_BC(sc)) {
10220        igu_sp_sb_index = DEF_SB_IGU_ID;
10221        igu_seg_id = HC_SEG_ACCESS_DEF;
10222    } else {
10223        igu_sp_sb_index = sc->igu_dsb_id;
10224        igu_seg_id = IGU_SEG_ACCESS_DEF;
10225    }
10226
10227    /* attentions */
10228    section = ((uint64_t)mapping +
10229               offsetof(struct host_sp_status_block, atten_status_block));
10230    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10231    sc->attn_state = 0;
10232
10233    reg_offset = (port) ?
10234                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10235                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10236    reg_offset_en5 = (port) ?
10237                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10238                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10239
10240    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10241        /* take care of sig[0]..sig[4] */
10242        for (sindex = 0; sindex < 4; sindex++) {
10243            sc->attn_group[index].sig[sindex] =
10244                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10245        }
10246
10247        if (!CHIP_IS_E1x(sc)) {
10248            /*
10249             * enable5 is separate from the rest of the registers,
10250             * and the address skip is 4 and not 16 between the
10251             * different groups
10252             */
10253            sc->attn_group[index].sig[4] =
10254                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10255        } else {
10256            sc->attn_group[index].sig[4] = 0;
10257        }
10258    }
10259
10260    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10261        reg_offset = (port) ?
10262                         HC_REG_ATTN_MSG1_ADDR_L :
10263                         HC_REG_ATTN_MSG0_ADDR_L;
10264        REG_WR(sc, reg_offset, U64_LO(section));
10265        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10266    } else if (!CHIP_IS_E1x(sc)) {
10267        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10268        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10269    }
10270
10271    section = ((uint64_t)mapping +
10272               offsetof(struct host_sp_status_block, sp_sb));
10273
10274    bxe_zero_sp_sb(sc);
10275
10276    /* PCI guarantees endianity of regpair */
10277    sp_sb_data.state           = SB_ENABLED;
10278    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10279    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10280    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10281    sp_sb_data.igu_seg_id      = igu_seg_id;
10282    sp_sb_data.p_func.pf_id    = func;
10283    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10284    sp_sb_data.p_func.vf_id    = 0xff;
10285
10286    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10287
10288    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10289}
10290
10291static void
10292bxe_init_sp_ring(struct bxe_softc *sc)
10293{
10294    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10295    sc->spq_prod_idx = 0;
10296    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10297    sc->spq_prod_bd = sc->spq;
10298    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10299}
10300
10301static void
10302bxe_init_eq_ring(struct bxe_softc *sc)
10303{
10304    union event_ring_elem *elem;
10305    int i;
10306
10307    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10308        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10309
10310        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10311                                                 BCM_PAGE_SIZE *
10312                                                 (i % NUM_EQ_PAGES)));
10313        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10314                                                 BCM_PAGE_SIZE *
10315                                                 (i % NUM_EQ_PAGES)));
10316    }
10317
10318    sc->eq_cons    = 0;
10319    sc->eq_prod    = NUM_EQ_DESC;
10320    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10321
10322    atomic_store_rel_long(&sc->eq_spq_left,
10323                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10324                               NUM_EQ_DESC) - 1));
10325}
10326
10327static void
10328bxe_init_internal_common(struct bxe_softc *sc)
10329{
10330    int i;
10331
10332    if (IS_MF_SI(sc)) {
10333        /*
10334         * In switch independent mode, the TSTORM needs to accept
10335         * packets that failed classification, since approximate match
10336         * mac addresses aren't written to NIG LLH.
10337         */
10338        REG_WR8(sc,
10339                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10340                2);
10341    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10342        REG_WR8(sc,
10343                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10344                0);
10345    }
10346
10347    /*
10348     * Zero this manually as its initialization is currently missing
10349     * in the initTool.
10350     */
10351    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10352        REG_WR(sc,
10353               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10354               0);
10355    }
10356
10357    if (!CHIP_IS_E1x(sc)) {
10358        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10359                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10360    }
10361}
10362
10363static void
10364bxe_init_internal(struct bxe_softc *sc,
10365                  uint32_t         load_code)
10366{
10367    switch (load_code) {
10368    case FW_MSG_CODE_DRV_LOAD_COMMON:
10369    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10370        bxe_init_internal_common(sc);
10371        /* no break */
10372
10373    case FW_MSG_CODE_DRV_LOAD_PORT:
10374        /* nothing to do */
10375        /* no break */
10376
10377    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10378        /* internal memory per function is initialized inside bxe_pf_init */
10379        break;
10380
10381    default:
10382        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10383        break;
10384    }
10385}
10386
10387static void
10388storm_memset_func_cfg(struct bxe_softc                         *sc,
10389                      struct tstorm_eth_function_common_config *tcfg,
10390                      uint16_t                                  abs_fid)
10391{
10392    uint32_t addr;
10393    size_t size;
10394
10395    addr = (BAR_TSTRORM_INTMEM +
10396            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10397    size = sizeof(struct tstorm_eth_function_common_config);
10398    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10399}
10400
10401static void
10402bxe_func_init(struct bxe_softc            *sc,
10403              struct bxe_func_init_params *p)
10404{
10405    struct tstorm_eth_function_common_config tcfg = { 0 };
10406
10407    if (CHIP_IS_E1x(sc)) {
10408        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10409    }
10410
10411    /* Enable the function in the FW */
10412    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10413    storm_memset_func_en(sc, p->func_id, 1);
10414
10415    /* spq */
10416    if (p->func_flgs & FUNC_FLG_SPQ) {
10417        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10418        REG_WR(sc,
10419               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10420               p->spq_prod);
10421    }
10422}
10423
10424/*
10425 * Calculates the sum of vn_min_rates.
10426 * It's needed for further normalizing of the min_rates.
10427 * Returns:
10428 *   sum of vn_min_rates.
10429 *     or
10430 *   0 - if all the min_rates are 0.
10431 * In the later case fainess algorithm should be deactivated.
10432 * If all min rates are not zero then those that are zeroes will be set to 1.
10433 */
10434static void
10435bxe_calc_vn_min(struct bxe_softc       *sc,
10436                struct cmng_init_input *input)
10437{
10438    uint32_t vn_cfg;
10439    uint32_t vn_min_rate;
10440    int all_zero = 1;
10441    int vn;
10442
10443    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10444        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10445        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10446                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10447
10448        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10449            /* skip hidden VNs */
10450            vn_min_rate = 0;
10451        } else if (!vn_min_rate) {
10452            /* If min rate is zero - set it to 100 */
10453            vn_min_rate = DEF_MIN_RATE;
10454        } else {
10455            all_zero = 0;
10456        }
10457
10458        input->vnic_min_rate[vn] = vn_min_rate;
10459    }
10460
10461    /* if ETS or all min rates are zeros - disable fairness */
10462    if (BXE_IS_ETS_ENABLED(sc)) {
10463        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10464        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10465    } else if (all_zero) {
10466        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10467        BLOGD(sc, DBG_LOAD,
10468              "Fariness disabled (all MIN values are zeroes)\n");
10469    } else {
10470        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10471    }
10472}
10473
10474static inline uint16_t
10475bxe_extract_max_cfg(struct bxe_softc *sc,
10476                    uint32_t         mf_cfg)
10477{
10478    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10479                        FUNC_MF_CFG_MAX_BW_SHIFT);
10480
10481    if (!max_cfg) {
10482        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10483        max_cfg = 100;
10484    }
10485
10486    return (max_cfg);
10487}
10488
10489static void
10490bxe_calc_vn_max(struct bxe_softc       *sc,
10491                int                    vn,
10492                struct cmng_init_input *input)
10493{
10494    uint16_t vn_max_rate;
10495    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10496    uint32_t max_cfg;
10497
10498    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10499        vn_max_rate = 0;
10500    } else {
10501        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10502
10503        if (IS_MF_SI(sc)) {
10504            /* max_cfg in percents of linkspeed */
10505            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10506        } else { /* SD modes */
10507            /* max_cfg is absolute in 100Mb units */
10508            vn_max_rate = (max_cfg * 100);
10509        }
10510    }
10511
10512    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10513
10514    input->vnic_max_rate[vn] = vn_max_rate;
10515}
10516
10517static void
10518bxe_cmng_fns_init(struct bxe_softc *sc,
10519                  uint8_t          read_cfg,
10520                  uint8_t          cmng_type)
10521{
10522    struct cmng_init_input input;
10523    int vn;
10524
10525    memset(&input, 0, sizeof(struct cmng_init_input));
10526
10527    input.port_rate = sc->link_vars.line_speed;
10528
10529    if (cmng_type == CMNG_FNS_MINMAX) {
10530        /* read mf conf from shmem */
10531        if (read_cfg) {
10532            bxe_read_mf_cfg(sc);
10533        }
10534
10535        /* get VN min rate and enable fairness if not 0 */
10536        bxe_calc_vn_min(sc, &input);
10537
10538        /* get VN max rate */
10539        if (sc->port.pmf) {
10540            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10541                bxe_calc_vn_max(sc, vn, &input);
10542            }
10543        }
10544
10545        /* always enable rate shaping and fairness */
10546        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10547
10548        ecore_init_cmng(&input, &sc->cmng);
10549        return;
10550    }
10551
10552    /* rate shaping and fairness are disabled */
10553    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10554}
10555
10556static int
10557bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10558{
10559    if (CHIP_REV_IS_SLOW(sc)) {
10560        return (CMNG_FNS_NONE);
10561    }
10562
10563    if (IS_MF(sc)) {
10564        return (CMNG_FNS_MINMAX);
10565    }
10566
10567    return (CMNG_FNS_NONE);
10568}
10569
10570static void
10571storm_memset_cmng(struct bxe_softc *sc,
10572                  struct cmng_init *cmng,
10573                  uint8_t          port)
10574{
10575    int vn;
10576    int func;
10577    uint32_t addr;
10578    size_t size;
10579
10580    addr = (BAR_XSTRORM_INTMEM +
10581            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10582    size = sizeof(struct cmng_struct_per_port);
10583    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10584
10585    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10586        func = func_by_vn(sc, vn);
10587
10588        addr = (BAR_XSTRORM_INTMEM +
10589                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10590        size = sizeof(struct rate_shaping_vars_per_vn);
10591        ecore_storm_memset_struct(sc, addr, size,
10592                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10593
10594        addr = (BAR_XSTRORM_INTMEM +
10595                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10596        size = sizeof(struct fairness_vars_per_vn);
10597        ecore_storm_memset_struct(sc, addr, size,
10598                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10599    }
10600}
10601
10602static void
10603bxe_pf_init(struct bxe_softc *sc)
10604{
10605    struct bxe_func_init_params func_init = { 0 };
10606    struct event_ring_data eq_data = { { 0 } };
10607    uint16_t flags;
10608
10609    if (!CHIP_IS_E1x(sc)) {
10610        /* reset IGU PF statistics: MSIX + ATTN */
10611        /* PF */
10612        REG_WR(sc,
10613               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10614                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10615                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10616               0);
10617        /* ATTN */
10618        REG_WR(sc,
10619               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10620                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10621                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10622                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10623               0);
10624    }
10625
10626    /* function setup flags */
10627    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10628
10629    /*
10630     * This flag is relevant for E1x only.
10631     * E2 doesn't have a TPA configuration in a function level.
10632     */
10633    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10634
10635    func_init.func_flgs = flags;
10636    func_init.pf_id     = SC_FUNC(sc);
10637    func_init.func_id   = SC_FUNC(sc);
10638    func_init.spq_map   = sc->spq_dma.paddr;
10639    func_init.spq_prod  = sc->spq_prod_idx;
10640
10641    bxe_func_init(sc, &func_init);
10642
10643    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10644
10645    /*
10646     * Congestion management values depend on the link rate.
10647     * There is no active link so initial link rate is set to 10Gbps.
10648     * When the link comes up the congestion management values are
10649     * re-calculated according to the actual link rate.
10650     */
10651    sc->link_vars.line_speed = SPEED_10000;
10652    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10653
10654    /* Only the PMF sets the HW */
10655    if (sc->port.pmf) {
10656        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10657    }
10658
10659    /* init Event Queue - PCI bus guarantees correct endainity */
10660    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10661    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10662    eq_data.producer     = sc->eq_prod;
10663    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10664    eq_data.sb_id        = DEF_SB_ID;
10665    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10666}
10667
10668static void
10669bxe_hc_int_enable(struct bxe_softc *sc)
10670{
10671    int port = SC_PORT(sc);
10672    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10673    uint32_t val = REG_RD(sc, addr);
10674    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10675    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10676                           (sc->intr_count == 1)) ? TRUE : FALSE;
10677    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10678
10679    if (msix) {
10680        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10681                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10682        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10683                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10684        if (single_msix) {
10685            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10686        }
10687    } else if (msi) {
10688        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10689        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10690                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10691                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10692    } else {
10693        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10694                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10695                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10696                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10697
10698        if (!CHIP_IS_E1(sc)) {
10699            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10700                  val, port, addr);
10701
10702            REG_WR(sc, addr, val);
10703
10704            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10705        }
10706    }
10707
10708    if (CHIP_IS_E1(sc)) {
10709        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10710    }
10711
10712    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10713          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10714
10715    REG_WR(sc, addr, val);
10716
10717    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10718    mb();
10719
10720    if (!CHIP_IS_E1(sc)) {
10721        /* init leading/trailing edge */
10722        if (IS_MF(sc)) {
10723            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10724            if (sc->port.pmf) {
10725                /* enable nig and gpio3 attention */
10726                val |= 0x1100;
10727            }
10728        } else {
10729            val = 0xffff;
10730        }
10731
10732        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10733        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10734    }
10735
10736    /* make sure that interrupts are indeed enabled from here on */
10737    mb();
10738}
10739
10740static void
10741bxe_igu_int_enable(struct bxe_softc *sc)
10742{
10743    uint32_t val;
10744    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10745    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10746                           (sc->intr_count == 1)) ? TRUE : FALSE;
10747    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10748
10749    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10750
10751    if (msix) {
10752        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10753                 IGU_PF_CONF_SINGLE_ISR_EN);
10754        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10755                IGU_PF_CONF_ATTN_BIT_EN);
10756        if (single_msix) {
10757            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10758        }
10759    } else if (msi) {
10760        val &= ~IGU_PF_CONF_INT_LINE_EN;
10761        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10762                IGU_PF_CONF_ATTN_BIT_EN |
10763                IGU_PF_CONF_SINGLE_ISR_EN);
10764    } else {
10765        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10766        val |= (IGU_PF_CONF_INT_LINE_EN |
10767                IGU_PF_CONF_ATTN_BIT_EN |
10768                IGU_PF_CONF_SINGLE_ISR_EN);
10769    }
10770
10771    /* clean previous status - need to configure igu prior to ack*/
10772    if ((!msix) || single_msix) {
10773        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10774        bxe_ack_int(sc);
10775    }
10776
10777    val |= IGU_PF_CONF_FUNC_EN;
10778
10779    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10780          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10781
10782    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10783
10784    mb();
10785
10786    /* init leading/trailing edge */
10787    if (IS_MF(sc)) {
10788        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10789        if (sc->port.pmf) {
10790            /* enable nig and gpio3 attention */
10791            val |= 0x1100;
10792        }
10793    } else {
10794        val = 0xffff;
10795    }
10796
10797    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10798    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10799
10800    /* make sure that interrupts are indeed enabled from here on */
10801    mb();
10802}
10803
10804static void
10805bxe_int_enable(struct bxe_softc *sc)
10806{
10807    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10808        bxe_hc_int_enable(sc);
10809    } else {
10810        bxe_igu_int_enable(sc);
10811    }
10812}
10813
10814static void
10815bxe_hc_int_disable(struct bxe_softc *sc)
10816{
10817    int port = SC_PORT(sc);
10818    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10819    uint32_t val = REG_RD(sc, addr);
10820
10821    /*
10822     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10823     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10824     * block
10825     */
10826    if (CHIP_IS_E1(sc)) {
10827        /*
10828         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10829         * to prevent from HC sending interrupts after we exit the function
10830         */
10831        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10832
10833        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10834                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10835                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10836    } else {
10837        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10838                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10839                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10840                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10841    }
10842
10843    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10844
10845    /* flush all outstanding writes */
10846    mb();
10847
10848    REG_WR(sc, addr, val);
10849    if (REG_RD(sc, addr) != val) {
10850        BLOGE(sc, "proper val not read from HC IGU!\n");
10851    }
10852}
10853
10854static void
10855bxe_igu_int_disable(struct bxe_softc *sc)
10856{
10857    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10858
10859    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10860             IGU_PF_CONF_INT_LINE_EN |
10861             IGU_PF_CONF_ATTN_BIT_EN);
10862
10863    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10864
10865    /* flush all outstanding writes */
10866    mb();
10867
10868    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10869    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10870        BLOGE(sc, "proper val not read from IGU!\n");
10871    }
10872}
10873
10874static void
10875bxe_int_disable(struct bxe_softc *sc)
10876{
10877    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10878        bxe_hc_int_disable(sc);
10879    } else {
10880        bxe_igu_int_disable(sc);
10881    }
10882}
10883
10884static void
10885bxe_nic_init(struct bxe_softc *sc,
10886             int              load_code)
10887{
10888    int i;
10889
10890    for (i = 0; i < sc->num_queues; i++) {
10891        bxe_init_eth_fp(sc, i);
10892    }
10893
10894    rmb(); /* ensure status block indices were read */
10895
10896    bxe_init_rx_rings(sc);
10897    bxe_init_tx_rings(sc);
10898
10899    if (IS_VF(sc)) {
10900        return;
10901    }
10902
10903    /* initialize MOD_ABS interrupts */
10904    elink_init_mod_abs_int(sc, &sc->link_vars,
10905                           sc->devinfo.chip_id,
10906                           sc->devinfo.shmem_base,
10907                           sc->devinfo.shmem2_base,
10908                           SC_PORT(sc));
10909
10910    bxe_init_def_sb(sc);
10911    bxe_update_dsb_idx(sc);
10912    bxe_init_sp_ring(sc);
10913    bxe_init_eq_ring(sc);
10914    bxe_init_internal(sc, load_code);
10915    bxe_pf_init(sc);
10916    bxe_stats_init(sc);
10917
10918    /* flush all before enabling interrupts */
10919    mb();
10920
10921    bxe_int_enable(sc);
10922
10923    /* check for SPIO5 */
10924    bxe_attn_int_deasserted0(sc,
10925                             REG_RD(sc,
10926                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10927                                     SC_PORT(sc)*4)) &
10928                             AEU_INPUTS_ATTN_BITS_SPIO5);
10929}
10930
10931static inline void
10932bxe_init_objs(struct bxe_softc *sc)
10933{
10934    /* mcast rules must be added to tx if tx switching is enabled */
10935    ecore_obj_type o_type =
10936        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10937                                         ECORE_OBJ_TYPE_RX;
10938
10939    /* RX_MODE controlling object */
10940    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10941
10942    /* multicast configuration controlling object */
10943    ecore_init_mcast_obj(sc,
10944                         &sc->mcast_obj,
10945                         sc->fp[0].cl_id,
10946                         sc->fp[0].index,
10947                         SC_FUNC(sc),
10948                         SC_FUNC(sc),
10949                         BXE_SP(sc, mcast_rdata),
10950                         BXE_SP_MAPPING(sc, mcast_rdata),
10951                         ECORE_FILTER_MCAST_PENDING,
10952                         &sc->sp_state,
10953                         o_type);
10954
10955    /* Setup CAM credit pools */
10956    ecore_init_mac_credit_pool(sc,
10957                               &sc->macs_pool,
10958                               SC_FUNC(sc),
10959                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10960                                                 VNICS_PER_PATH(sc));
10961
10962    ecore_init_vlan_credit_pool(sc,
10963                                &sc->vlans_pool,
10964                                SC_ABS_FUNC(sc) >> 1,
10965                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10966                                                  VNICS_PER_PATH(sc));
10967
10968    /* RSS configuration object */
10969    ecore_init_rss_config_obj(sc,
10970                              &sc->rss_conf_obj,
10971                              sc->fp[0].cl_id,
10972                              sc->fp[0].index,
10973                              SC_FUNC(sc),
10974                              SC_FUNC(sc),
10975                              BXE_SP(sc, rss_rdata),
10976                              BXE_SP_MAPPING(sc, rss_rdata),
10977                              ECORE_FILTER_RSS_CONF_PENDING,
10978                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10979}
10980
10981/*
10982 * Initialize the function. This must be called before sending CLIENT_SETUP
10983 * for the first client.
10984 */
10985static inline int
10986bxe_func_start(struct bxe_softc *sc)
10987{
10988    struct ecore_func_state_params func_params = { NULL };
10989    struct ecore_func_start_params *start_params = &func_params.params.start;
10990
10991    /* Prepare parameters for function state transitions */
10992    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10993
10994    func_params.f_obj = &sc->func_obj;
10995    func_params.cmd = ECORE_F_CMD_START;
10996
10997    /* Function parameters */
10998    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10999    start_params->sd_vlan_tag = OVLAN(sc);
11000
11001    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11002        start_params->network_cos_mode = STATIC_COS;
11003    } else { /* CHIP_IS_E1X */
11004        start_params->network_cos_mode = FW_WRR;
11005    }
11006
11007    start_params->gre_tunnel_mode = 0;
11008    start_params->gre_tunnel_rss  = 0;
11009
11010    return (ecore_func_state_change(sc, &func_params));
11011}
11012
11013static int
11014bxe_set_power_state(struct bxe_softc *sc,
11015                    uint8_t          state)
11016{
11017    uint16_t pmcsr;
11018
11019    /* If there is no power capability, silently succeed */
11020    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11021        BLOGW(sc, "No power capability\n");
11022        return (0);
11023    }
11024
11025    pmcsr = pci_read_config(sc->dev,
11026                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11027                            2);
11028
11029    switch (state) {
11030    case PCI_PM_D0:
11031        pci_write_config(sc->dev,
11032                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11033                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11034
11035        if (pmcsr & PCIM_PSTAT_DMASK) {
11036            /* delay required during transition out of D3hot */
11037            DELAY(20000);
11038        }
11039
11040        break;
11041
11042    case PCI_PM_D3hot:
11043        /* XXX if there are other clients above don't shut down the power */
11044
11045        /* don't shut down the power for emulation and FPGA */
11046        if (CHIP_REV_IS_SLOW(sc)) {
11047            return (0);
11048        }
11049
11050        pmcsr &= ~PCIM_PSTAT_DMASK;
11051        pmcsr |= PCIM_PSTAT_D3;
11052
11053        if (sc->wol) {
11054            pmcsr |= PCIM_PSTAT_PMEENABLE;
11055        }
11056
11057        pci_write_config(sc->dev,
11058                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11059                         pmcsr, 4);
11060
11061        /*
11062         * No more memory access after this point until device is brought back
11063         * to D0 state.
11064         */
11065        break;
11066
11067    default:
11068        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11069        return (-1);
11070    }
11071
11072    return (0);
11073}
11074
11075
11076/* return true if succeeded to acquire the lock */
11077static uint8_t
11078bxe_trylock_hw_lock(struct bxe_softc *sc,
11079                    uint32_t         resource)
11080{
11081    uint32_t lock_status;
11082    uint32_t resource_bit = (1 << resource);
11083    int func = SC_FUNC(sc);
11084    uint32_t hw_lock_control_reg;
11085
11086    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11087
11088    /* Validating that the resource is within range */
11089    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11090        BLOGD(sc, DBG_LOAD,
11091              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11092              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11093        return (FALSE);
11094    }
11095
11096    if (func <= 5) {
11097        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11098    } else {
11099        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11100    }
11101
11102    /* try to acquire the lock */
11103    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11104    lock_status = REG_RD(sc, hw_lock_control_reg);
11105    if (lock_status & resource_bit) {
11106        return (TRUE);
11107    }
11108
11109    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11110
11111    return (FALSE);
11112}
11113
11114/*
11115 * Get the recovery leader resource id according to the engine this function
11116 * belongs to. Currently only only 2 engines is supported.
11117 */
11118static int
11119bxe_get_leader_lock_resource(struct bxe_softc *sc)
11120{
11121    if (SC_PATH(sc)) {
11122        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11123    } else {
11124        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11125    }
11126}
11127
11128/* try to acquire a leader lock for current engine */
11129static uint8_t
11130bxe_trylock_leader_lock(struct bxe_softc *sc)
11131{
11132    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11133}
11134
11135static int
11136bxe_release_leader_lock(struct bxe_softc *sc)
11137{
11138    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11139}
11140
11141/* close gates #2, #3 and #4 */
11142static void
11143bxe_set_234_gates(struct bxe_softc *sc,
11144                  uint8_t          close)
11145{
11146    uint32_t val;
11147
11148    /* gates #2 and #4a are closed/opened for "not E1" only */
11149    if (!CHIP_IS_E1(sc)) {
11150        /* #4 */
11151        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11152        /* #2 */
11153        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11154    }
11155
11156    /* #3 */
11157    if (CHIP_IS_E1x(sc)) {
11158        /* prevent interrupts from HC on both ports */
11159        val = REG_RD(sc, HC_REG_CONFIG_1);
11160        REG_WR(sc, HC_REG_CONFIG_1,
11161               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11162               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11163
11164        val = REG_RD(sc, HC_REG_CONFIG_0);
11165        REG_WR(sc, HC_REG_CONFIG_0,
11166               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11167               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11168    } else {
11169        /* Prevent incomming interrupts in IGU */
11170        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11171
11172        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11173               (!close) ?
11174               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11175               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11176    }
11177
11178    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11179          close ? "closing" : "opening");
11180
11181    wmb();
11182}
11183
11184/* poll for pending writes bit, it should get cleared in no more than 1s */
11185static int
11186bxe_er_poll_igu_vq(struct bxe_softc *sc)
11187{
11188    uint32_t cnt = 1000;
11189    uint32_t pend_bits = 0;
11190
11191    do {
11192        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11193
11194        if (pend_bits == 0) {
11195            break;
11196        }
11197
11198        DELAY(1000);
11199    } while (--cnt > 0);
11200
11201    if (cnt == 0) {
11202        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11203        return (-1);
11204    }
11205
11206    return (0);
11207}
11208
11209#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11210
11211static void
11212bxe_clp_reset_prep(struct bxe_softc *sc,
11213                   uint32_t         *magic_val)
11214{
11215    /* Do some magic... */
11216    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11217    *magic_val = val & SHARED_MF_CLP_MAGIC;
11218    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11219}
11220
11221/* restore the value of the 'magic' bit */
11222static void
11223bxe_clp_reset_done(struct bxe_softc *sc,
11224                   uint32_t         magic_val)
11225{
11226    /* Restore the 'magic' bit value... */
11227    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11228    MFCFG_WR(sc, shared_mf_config.clp_mb,
11229              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11230}
11231
11232/* prepare for MCP reset, takes care of CLP configurations */
11233static void
11234bxe_reset_mcp_prep(struct bxe_softc *sc,
11235                   uint32_t         *magic_val)
11236{
11237    uint32_t shmem;
11238    uint32_t validity_offset;
11239
11240    /* set `magic' bit in order to save MF config */
11241    if (!CHIP_IS_E1(sc)) {
11242        bxe_clp_reset_prep(sc, magic_val);
11243    }
11244
11245    /* get shmem offset */
11246    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11247    validity_offset =
11248        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11249
11250    /* Clear validity map flags */
11251    if (shmem > 0) {
11252        REG_WR(sc, shmem + validity_offset, 0);
11253    }
11254}
11255
11256#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11257#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11258
11259static void
11260bxe_mcp_wait_one(struct bxe_softc *sc)
11261{
11262    /* special handling for emulation and FPGA (10 times longer) */
11263    if (CHIP_REV_IS_SLOW(sc)) {
11264        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11265    } else {
11266        DELAY((MCP_ONE_TIMEOUT) * 1000);
11267    }
11268}
11269
11270/* initialize shmem_base and waits for validity signature to appear */
11271static int
11272bxe_init_shmem(struct bxe_softc *sc)
11273{
11274    int cnt = 0;
11275    uint32_t val = 0;
11276
11277    do {
11278        sc->devinfo.shmem_base     =
11279        sc->link_params.shmem_base =
11280            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11281
11282        if (sc->devinfo.shmem_base) {
11283            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11284            if (val & SHR_MEM_VALIDITY_MB)
11285                return (0);
11286        }
11287
11288        bxe_mcp_wait_one(sc);
11289
11290    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11291
11292    BLOGE(sc, "BAD MCP validity signature\n");
11293
11294    return (-1);
11295}
11296
11297static int
11298bxe_reset_mcp_comp(struct bxe_softc *sc,
11299                   uint32_t         magic_val)
11300{
11301    int rc = bxe_init_shmem(sc);
11302
11303    /* Restore the `magic' bit value */
11304    if (!CHIP_IS_E1(sc)) {
11305        bxe_clp_reset_done(sc, magic_val);
11306    }
11307
11308    return (rc);
11309}
11310
11311static void
11312bxe_pxp_prep(struct bxe_softc *sc)
11313{
11314    if (!CHIP_IS_E1(sc)) {
11315        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11316        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11317        wmb();
11318    }
11319}
11320
11321/*
11322 * Reset the whole chip except for:
11323 *      - PCIE core
11324 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11325 *      - IGU
11326 *      - MISC (including AEU)
11327 *      - GRC
11328 *      - RBCN, RBCP
11329 */
11330static void
11331bxe_process_kill_chip_reset(struct bxe_softc *sc,
11332                            uint8_t          global)
11333{
11334    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11335    uint32_t global_bits2, stay_reset2;
11336
11337    /*
11338     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11339     * (per chip) blocks.
11340     */
11341    global_bits2 =
11342        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11343        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11344
11345    /*
11346     * Don't reset the following blocks.
11347     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11348     *            reset, as in 4 port device they might still be owned
11349     *            by the MCP (there is only one leader per path).
11350     */
11351    not_reset_mask1 =
11352        MISC_REGISTERS_RESET_REG_1_RST_HC |
11353        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11354        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11355
11356    not_reset_mask2 =
11357        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11358        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11359        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11360        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11361        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11362        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11363        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11364        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11365        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11366        MISC_REGISTERS_RESET_REG_2_PGLC |
11367        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11368        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11369        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11370        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11371        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11372        MISC_REGISTERS_RESET_REG_2_UMAC1;
11373
11374    /*
11375     * Keep the following blocks in reset:
11376     *  - all xxMACs are handled by the elink code.
11377     */
11378    stay_reset2 =
11379        MISC_REGISTERS_RESET_REG_2_XMAC |
11380        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11381
11382    /* Full reset masks according to the chip */
11383    reset_mask1 = 0xffffffff;
11384
11385    if (CHIP_IS_E1(sc))
11386        reset_mask2 = 0xffff;
11387    else if (CHIP_IS_E1H(sc))
11388        reset_mask2 = 0x1ffff;
11389    else if (CHIP_IS_E2(sc))
11390        reset_mask2 = 0xfffff;
11391    else /* CHIP_IS_E3 */
11392        reset_mask2 = 0x3ffffff;
11393
11394    /* Don't reset global blocks unless we need to */
11395    if (!global)
11396        reset_mask2 &= ~global_bits2;
11397
11398    /*
11399     * In case of attention in the QM, we need to reset PXP
11400     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11401     * because otherwise QM reset would release 'close the gates' shortly
11402     * before resetting the PXP, then the PSWRQ would send a write
11403     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11404     * read the payload data from PSWWR, but PSWWR would not
11405     * respond. The write queue in PGLUE would stuck, dmae commands
11406     * would not return. Therefore it's important to reset the second
11407     * reset register (containing the
11408     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11409     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11410     * bit).
11411     */
11412    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11413           reset_mask2 & (~not_reset_mask2));
11414
11415    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11416           reset_mask1 & (~not_reset_mask1));
11417
11418    mb();
11419    wmb();
11420
11421    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11422           reset_mask2 & (~stay_reset2));
11423
11424    mb();
11425    wmb();
11426
11427    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11428    wmb();
11429}
11430
11431static int
11432bxe_process_kill(struct bxe_softc *sc,
11433                 uint8_t          global)
11434{
11435    int cnt = 1000;
11436    uint32_t val = 0;
11437    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11438    uint32_t tags_63_32 = 0;
11439
11440    /* Empty the Tetris buffer, wait for 1s */
11441    do {
11442        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11443        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11444        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11445        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11446        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11447        if (CHIP_IS_E3(sc)) {
11448            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11449        }
11450
11451        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11452            ((port_is_idle_0 & 0x1) == 0x1) &&
11453            ((port_is_idle_1 & 0x1) == 0x1) &&
11454            (pgl_exp_rom2 == 0xffffffff) &&
11455            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11456            break;
11457        DELAY(1000);
11458    } while (cnt-- > 0);
11459
11460    if (cnt <= 0) {
11461        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11462                  "are still outstanding read requests after 1s! "
11463                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11464                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11465              sr_cnt, blk_cnt, port_is_idle_0,
11466              port_is_idle_1, pgl_exp_rom2);
11467        return (-1);
11468    }
11469
11470    mb();
11471
11472    /* Close gates #2, #3 and #4 */
11473    bxe_set_234_gates(sc, TRUE);
11474
11475    /* Poll for IGU VQs for 57712 and newer chips */
11476    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11477        return (-1);
11478    }
11479
11480    /* XXX indicate that "process kill" is in progress to MCP */
11481
11482    /* clear "unprepared" bit */
11483    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11484    mb();
11485
11486    /* Make sure all is written to the chip before the reset */
11487    wmb();
11488
11489    /*
11490     * Wait for 1ms to empty GLUE and PCI-E core queues,
11491     * PSWHST, GRC and PSWRD Tetris buffer.
11492     */
11493    DELAY(1000);
11494
11495    /* Prepare to chip reset: */
11496    /* MCP */
11497    if (global) {
11498        bxe_reset_mcp_prep(sc, &val);
11499    }
11500
11501    /* PXP */
11502    bxe_pxp_prep(sc);
11503    mb();
11504
11505    /* reset the chip */
11506    bxe_process_kill_chip_reset(sc, global);
11507    mb();
11508
11509    /* Recover after reset: */
11510    /* MCP */
11511    if (global && bxe_reset_mcp_comp(sc, val)) {
11512        return (-1);
11513    }
11514
11515    /* XXX add resetting the NO_MCP mode DB here */
11516
11517    /* Open the gates #2, #3 and #4 */
11518    bxe_set_234_gates(sc, FALSE);
11519
11520    /* XXX
11521     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11522     * re-enable attentions
11523     */
11524
11525    return (0);
11526}
11527
11528static int
11529bxe_leader_reset(struct bxe_softc *sc)
11530{
11531    int rc = 0;
11532    uint8_t global = bxe_reset_is_global(sc);
11533    uint32_t load_code;
11534
11535    /*
11536     * If not going to reset MCP, load "fake" driver to reset HW while
11537     * driver is owner of the HW.
11538     */
11539    if (!global && !BXE_NOMCP(sc)) {
11540        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11541                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11542        if (!load_code) {
11543            BLOGE(sc, "MCP response failure, aborting\n");
11544            rc = -1;
11545            goto exit_leader_reset;
11546        }
11547
11548        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11549            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11550            BLOGE(sc, "MCP unexpected response, aborting\n");
11551            rc = -1;
11552            goto exit_leader_reset2;
11553        }
11554
11555        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11556        if (!load_code) {
11557            BLOGE(sc, "MCP response failure, aborting\n");
11558            rc = -1;
11559            goto exit_leader_reset2;
11560        }
11561    }
11562
11563    /* try to recover after the failure */
11564    if (bxe_process_kill(sc, global)) {
11565        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11566        rc = -1;
11567        goto exit_leader_reset2;
11568    }
11569
11570    /*
11571     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11572     * state.
11573     */
11574    bxe_set_reset_done(sc);
11575    if (global) {
11576        bxe_clear_reset_global(sc);
11577    }
11578
11579exit_leader_reset2:
11580
11581    /* unload "fake driver" if it was loaded */
11582    if (!global && !BXE_NOMCP(sc)) {
11583        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11584        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11585    }
11586
11587exit_leader_reset:
11588
11589    sc->is_leader = 0;
11590    bxe_release_leader_lock(sc);
11591
11592    mb();
11593    return (rc);
11594}
11595
11596/*
11597 * prepare INIT transition, parameters configured:
11598 *   - HC configuration
11599 *   - Queue's CDU context
11600 */
11601static void
11602bxe_pf_q_prep_init(struct bxe_softc               *sc,
11603                   struct bxe_fastpath            *fp,
11604                   struct ecore_queue_init_params *init_params)
11605{
11606    uint8_t cos;
11607    int cxt_index, cxt_offset;
11608
11609    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11610    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11611
11612    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11613    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11614
11615    /* HC rate */
11616    init_params->rx.hc_rate =
11617        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11618    init_params->tx.hc_rate =
11619        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11620
11621    /* FW SB ID */
11622    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11623
11624    /* CQ index among the SB indices */
11625    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11626    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11627
11628    /* set maximum number of COSs supported by this queue */
11629    init_params->max_cos = sc->max_cos;
11630
11631    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11632          fp->index, init_params->max_cos);
11633
11634    /* set the context pointers queue object */
11635    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11636        /* XXX change index/cid here if ever support multiple tx CoS */
11637        /* fp->txdata[cos]->cid */
11638        cxt_index = fp->index / ILT_PAGE_CIDS;
11639        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11640        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11641    }
11642}
11643
11644/* set flags that are common for the Tx-only and not normal connections */
11645static unsigned long
11646bxe_get_common_flags(struct bxe_softc    *sc,
11647                     struct bxe_fastpath *fp,
11648                     uint8_t             zero_stats)
11649{
11650    unsigned long flags = 0;
11651
11652    /* PF driver will always initialize the Queue to an ACTIVE state */
11653    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11654
11655    /*
11656     * tx only connections collect statistics (on the same index as the
11657     * parent connection). The statistics are zeroed when the parent
11658     * connection is initialized.
11659     */
11660
11661    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11662    if (zero_stats) {
11663        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11664    }
11665
11666    /*
11667     * tx only connections can support tx-switching, though their
11668     * CoS-ness doesn't survive the loopback
11669     */
11670    if (sc->flags & BXE_TX_SWITCHING) {
11671        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11672    }
11673
11674    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11675
11676    return (flags);
11677}
11678
11679static unsigned long
11680bxe_get_q_flags(struct bxe_softc    *sc,
11681                struct bxe_fastpath *fp,
11682                uint8_t             leading)
11683{
11684    unsigned long flags = 0;
11685
11686    if (IS_MF_SD(sc)) {
11687        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11688    }
11689
11690    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11691        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11692        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11693#if 0
11694        if (fp->mode == TPA_MODE_GRO)
11695            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11696#endif
11697    }
11698
11699    if (leading) {
11700        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11701        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11702    }
11703
11704    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11705
11706#if 0
11707    /* configure silent vlan removal */
11708    if (IS_MF_AFEX(sc)) {
11709        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11710    }
11711#endif
11712
11713    /* merge with common flags */
11714    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11715}
11716
11717static void
11718bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11719                      struct bxe_fastpath               *fp,
11720                      struct ecore_general_setup_params *gen_init,
11721                      uint8_t                           cos)
11722{
11723    gen_init->stat_id = bxe_stats_id(fp);
11724    gen_init->spcl_id = fp->cl_id;
11725    gen_init->mtu = sc->mtu;
11726    gen_init->cos = cos;
11727}
11728
11729static void
11730bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11731                 struct bxe_fastpath           *fp,
11732                 struct rxq_pause_params       *pause,
11733                 struct ecore_rxq_setup_params *rxq_init)
11734{
11735    uint8_t max_sge = 0;
11736    uint16_t sge_sz = 0;
11737    uint16_t tpa_agg_size = 0;
11738
11739    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11740        pause->sge_th_lo = SGE_TH_LO(sc);
11741        pause->sge_th_hi = SGE_TH_HI(sc);
11742
11743        /* validate SGE ring has enough to cross high threshold */
11744        if (sc->dropless_fc &&
11745            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11746            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11747            BLOGW(sc, "sge ring threshold limit\n");
11748        }
11749
11750        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11751        tpa_agg_size = (2 * sc->mtu);
11752        if (tpa_agg_size < sc->max_aggregation_size) {
11753            tpa_agg_size = sc->max_aggregation_size;
11754        }
11755
11756        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11757        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11758                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11759        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11760    }
11761
11762    /* pause - not for e1 */
11763    if (!CHIP_IS_E1(sc)) {
11764        pause->bd_th_lo = BD_TH_LO(sc);
11765        pause->bd_th_hi = BD_TH_HI(sc);
11766
11767        pause->rcq_th_lo = RCQ_TH_LO(sc);
11768        pause->rcq_th_hi = RCQ_TH_HI(sc);
11769
11770        /* validate rings have enough entries to cross high thresholds */
11771        if (sc->dropless_fc &&
11772            pause->bd_th_hi + FW_PREFETCH_CNT >
11773            sc->rx_ring_size) {
11774            BLOGW(sc, "rx bd ring threshold limit\n");
11775        }
11776
11777        if (sc->dropless_fc &&
11778            pause->rcq_th_hi + FW_PREFETCH_CNT >
11779            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11780            BLOGW(sc, "rcq ring threshold limit\n");
11781        }
11782
11783        pause->pri_map = 1;
11784    }
11785
11786    /* rxq setup */
11787    rxq_init->dscr_map   = fp->rx_dma.paddr;
11788    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11789    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11790    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11791
11792    /*
11793     * This should be a maximum number of data bytes that may be
11794     * placed on the BD (not including paddings).
11795     */
11796    rxq_init->buf_sz = (fp->rx_buf_size -
11797                        IP_HEADER_ALIGNMENT_PADDING);
11798
11799    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11800    rxq_init->tpa_agg_sz      = tpa_agg_size;
11801    rxq_init->sge_buf_sz      = sge_sz;
11802    rxq_init->max_sges_pkt    = max_sge;
11803    rxq_init->rss_engine_id   = SC_FUNC(sc);
11804    rxq_init->mcast_engine_id = SC_FUNC(sc);
11805
11806    /*
11807     * Maximum number or simultaneous TPA aggregation for this Queue.
11808     * For PF Clients it should be the maximum available number.
11809     * VF driver(s) may want to define it to a smaller value.
11810     */
11811    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11812
11813    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11814    rxq_init->fw_sb_id = fp->fw_sb_id;
11815
11816    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11817
11818    /*
11819     * configure silent vlan removal
11820     * if multi function mode is afex, then mask default vlan
11821     */
11822    if (IS_MF_AFEX(sc)) {
11823        rxq_init->silent_removal_value =
11824            sc->devinfo.mf_info.afex_def_vlan_tag;
11825        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11826    }
11827}
11828
11829static void
11830bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11831                 struct bxe_fastpath           *fp,
11832                 struct ecore_txq_setup_params *txq_init,
11833                 uint8_t                       cos)
11834{
11835    /*
11836     * XXX If multiple CoS is ever supported then each fastpath structure
11837     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11838     * fp->txdata[cos]->tx_dma.paddr;
11839     */
11840    txq_init->dscr_map     = fp->tx_dma.paddr;
11841    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11842    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11843    txq_init->fw_sb_id     = fp->fw_sb_id;
11844
11845    /*
11846     * set the TSS leading client id for TX classfication to the
11847     * leading RSS client id
11848     */
11849    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11850}
11851
11852/*
11853 * This function performs 2 steps in a queue state machine:
11854 *   1) RESET->INIT
11855 *   2) INIT->SETUP
11856 */
11857static int
11858bxe_setup_queue(struct bxe_softc    *sc,
11859                struct bxe_fastpath *fp,
11860                uint8_t             leading)
11861{
11862    struct ecore_queue_state_params q_params = { NULL };
11863    struct ecore_queue_setup_params *setup_params =
11864                        &q_params.params.setup;
11865#if 0
11866    struct ecore_queue_setup_tx_only_params *tx_only_params =
11867                        &q_params.params.tx_only;
11868    uint8_t tx_index;
11869#endif
11870    int rc;
11871
11872    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11873
11874    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11875
11876    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11877
11878    /* we want to wait for completion in this context */
11879    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11880
11881    /* prepare the INIT parameters */
11882    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11883
11884    /* Set the command */
11885    q_params.cmd = ECORE_Q_CMD_INIT;
11886
11887    /* Change the state to INIT */
11888    rc = ecore_queue_state_change(sc, &q_params);
11889    if (rc) {
11890        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11891        return (rc);
11892    }
11893
11894    BLOGD(sc, DBG_LOAD, "init complete\n");
11895
11896    /* now move the Queue to the SETUP state */
11897    memset(setup_params, 0, sizeof(*setup_params));
11898
11899    /* set Queue flags */
11900    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11901
11902    /* set general SETUP parameters */
11903    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11904                          FIRST_TX_COS_INDEX);
11905
11906    bxe_pf_rx_q_prep(sc, fp,
11907                     &setup_params->pause_params,
11908                     &setup_params->rxq_params);
11909
11910    bxe_pf_tx_q_prep(sc, fp,
11911                     &setup_params->txq_params,
11912                     FIRST_TX_COS_INDEX);
11913
11914    /* Set the command */
11915    q_params.cmd = ECORE_Q_CMD_SETUP;
11916
11917    /* change the state to SETUP */
11918    rc = ecore_queue_state_change(sc, &q_params);
11919    if (rc) {
11920        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11921        return (rc);
11922    }
11923
11924#if 0
11925    /* loop through the relevant tx-only indices */
11926    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11927         tx_index < sc->max_cos;
11928         tx_index++) {
11929        /* prepare and send tx-only ramrod*/
11930        rc = bxe_setup_tx_only(sc, fp, &q_params,
11931                               tx_only_params, tx_index, leading);
11932        if (rc) {
11933            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11934                  fp->index, tx_index);
11935            return (rc);
11936        }
11937    }
11938#endif
11939
11940    return (rc);
11941}
11942
11943static int
11944bxe_setup_leading(struct bxe_softc *sc)
11945{
11946    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11947}
11948
11949static int
11950bxe_config_rss_pf(struct bxe_softc            *sc,
11951                  struct ecore_rss_config_obj *rss_obj,
11952                  uint8_t                     config_hash)
11953{
11954    struct ecore_config_rss_params params = { NULL };
11955    int i;
11956
11957    /*
11958     * Although RSS is meaningless when there is a single HW queue we
11959     * still need it enabled in order to have HW Rx hash generated.
11960     */
11961
11962    params.rss_obj = rss_obj;
11963
11964    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11965
11966    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11967
11968    /* RSS configuration */
11969    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11970    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11971    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11972    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11973    if (rss_obj->udp_rss_v4) {
11974        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11975    }
11976    if (rss_obj->udp_rss_v6) {
11977        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11978    }
11979
11980    /* Hash bits */
11981    params.rss_result_mask = MULTI_MASK;
11982
11983    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11984
11985    if (config_hash) {
11986        /* RSS keys */
11987        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11988            params.rss_key[i] = arc4random();
11989        }
11990
11991        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11992    }
11993
11994    return (ecore_config_rss(sc, &params));
11995}
11996
11997static int
11998bxe_config_rss_eth(struct bxe_softc *sc,
11999                   uint8_t          config_hash)
12000{
12001    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12002}
12003
12004static int
12005bxe_init_rss_pf(struct bxe_softc *sc)
12006{
12007    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12008    int i;
12009
12010    /*
12011     * Prepare the initial contents of the indirection table if
12012     * RSS is enabled
12013     */
12014    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12015        sc->rss_conf_obj.ind_table[i] =
12016            (sc->fp->cl_id + (i % num_eth_queues));
12017    }
12018
12019    if (sc->udp_rss) {
12020        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12021    }
12022
12023    /*
12024     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12025     * per-port, so if explicit configuration is needed, do it only
12026     * for a PMF.
12027     *
12028     * For 57712 and newer it's a per-function configuration.
12029     */
12030    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12031}
12032
12033static int
12034bxe_set_mac_one(struct bxe_softc          *sc,
12035                uint8_t                   *mac,
12036                struct ecore_vlan_mac_obj *obj,
12037                uint8_t                   set,
12038                int                       mac_type,
12039                unsigned long             *ramrod_flags)
12040{
12041    struct ecore_vlan_mac_ramrod_params ramrod_param;
12042    int rc;
12043
12044    memset(&ramrod_param, 0, sizeof(ramrod_param));
12045
12046    /* fill in general parameters */
12047    ramrod_param.vlan_mac_obj = obj;
12048    ramrod_param.ramrod_flags = *ramrod_flags;
12049
12050    /* fill a user request section if needed */
12051    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12052        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12053
12054        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12055
12056        /* Set the command: ADD or DEL */
12057        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12058                                            ECORE_VLAN_MAC_DEL;
12059    }
12060
12061    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12062
12063    if (rc == ECORE_EXISTS) {
12064        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12065        /* do not treat adding same MAC as error */
12066        rc = 0;
12067    } else if (rc < 0) {
12068        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12069    }
12070
12071    return (rc);
12072}
12073
12074static int
12075bxe_set_eth_mac(struct bxe_softc *sc,
12076                uint8_t          set)
12077{
12078    unsigned long ramrod_flags = 0;
12079
12080    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12081
12082    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12083
12084    /* Eth MAC is set on RSS leading client (fp[0]) */
12085    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12086                            &sc->sp_objs->mac_obj,
12087                            set, ECORE_ETH_MAC, &ramrod_flags));
12088}
12089
12090#if 0
12091static void
12092bxe_update_max_mf_config(struct bxe_softc *sc,
12093                         uint32_t         value)
12094{
12095    /* load old values */
12096    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12097
12098    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12099        /* leave all but MAX value */
12100        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12101
12102        /* set new MAX value */
12103        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12104                   FUNC_MF_CFG_MAX_BW_MASK);
12105
12106        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12107    }
12108}
12109#endif
12110
12111static int
12112bxe_get_cur_phy_idx(struct bxe_softc *sc)
12113{
12114    uint32_t sel_phy_idx = 0;
12115
12116    if (sc->link_params.num_phys <= 1) {
12117        return (ELINK_INT_PHY);
12118    }
12119
12120    if (sc->link_vars.link_up) {
12121        sel_phy_idx = ELINK_EXT_PHY1;
12122        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12123        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12124            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12125             ELINK_SUPPORTED_FIBRE))
12126            sel_phy_idx = ELINK_EXT_PHY2;
12127    } else {
12128        switch (elink_phy_selection(&sc->link_params)) {
12129        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12130        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12131        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12132               sel_phy_idx = ELINK_EXT_PHY1;
12133               break;
12134        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12135        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12136               sel_phy_idx = ELINK_EXT_PHY2;
12137               break;
12138        }
12139    }
12140
12141    return (sel_phy_idx);
12142}
12143
12144static int
12145bxe_get_link_cfg_idx(struct bxe_softc *sc)
12146{
12147    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12148
12149    /*
12150     * The selected activated PHY is always after swapping (in case PHY
12151     * swapping is enabled). So when swapping is enabled, we need to reverse
12152     * the configuration
12153     */
12154
12155    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12156        if (sel_phy_idx == ELINK_EXT_PHY1)
12157            sel_phy_idx = ELINK_EXT_PHY2;
12158        else if (sel_phy_idx == ELINK_EXT_PHY2)
12159            sel_phy_idx = ELINK_EXT_PHY1;
12160    }
12161
12162    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12163}
12164
12165static void
12166bxe_set_requested_fc(struct bxe_softc *sc)
12167{
12168    /*
12169     * Initialize link parameters structure variables
12170     * It is recommended to turn off RX FC for jumbo frames
12171     * for better performance
12172     */
12173    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12174        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12175    } else {
12176        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12177    }
12178}
12179
12180static void
12181bxe_calc_fc_adv(struct bxe_softc *sc)
12182{
12183    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12184    switch (sc->link_vars.ieee_fc &
12185            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12186    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12187    default:
12188        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12189                                           ADVERTISED_Pause);
12190        break;
12191
12192    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12193        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12194                                          ADVERTISED_Pause);
12195        break;
12196
12197    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12198        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12199        break;
12200    }
12201}
12202
12203static uint16_t
12204bxe_get_mf_speed(struct bxe_softc *sc)
12205{
12206    uint16_t line_speed = sc->link_vars.line_speed;
12207    if (IS_MF(sc)) {
12208        uint16_t maxCfg =
12209            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12210
12211        /* calculate the current MAX line speed limit for the MF devices */
12212        if (IS_MF_SI(sc)) {
12213            line_speed = (line_speed * maxCfg) / 100;
12214        } else { /* SD mode */
12215            uint16_t vn_max_rate = maxCfg * 100;
12216
12217            if (vn_max_rate < line_speed) {
12218                line_speed = vn_max_rate;
12219            }
12220        }
12221    }
12222
12223    return (line_speed);
12224}
12225
12226static void
12227bxe_fill_report_data(struct bxe_softc            *sc,
12228                     struct bxe_link_report_data *data)
12229{
12230    uint16_t line_speed = bxe_get_mf_speed(sc);
12231
12232    memset(data, 0, sizeof(*data));
12233
12234    /* fill the report data with the effective line speed */
12235    data->line_speed = line_speed;
12236
12237    /* Link is down */
12238    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12239        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12240    }
12241
12242    /* Full DUPLEX */
12243    if (sc->link_vars.duplex == DUPLEX_FULL) {
12244        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12245    }
12246
12247    /* Rx Flow Control is ON */
12248    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12249        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12250    }
12251
12252    /* Tx Flow Control is ON */
12253    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12254        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12255    }
12256}
12257
12258/* report link status to OS, should be called under phy_lock */
12259static void
12260bxe_link_report_locked(struct bxe_softc *sc)
12261{
12262    struct bxe_link_report_data cur_data;
12263
12264    /* reread mf_cfg */
12265    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12266        bxe_read_mf_cfg(sc);
12267    }
12268
12269    /* Read the current link report info */
12270    bxe_fill_report_data(sc, &cur_data);
12271
12272    /* Don't report link down or exactly the same link status twice */
12273    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12274        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12275                      &sc->last_reported_link.link_report_flags) &&
12276         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12277                      &cur_data.link_report_flags))) {
12278        return;
12279    }
12280
12281    sc->link_cnt++;
12282
12283    /* report new link params and remember the state for the next time */
12284    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12285
12286    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12287                     &cur_data.link_report_flags)) {
12288        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12289        BLOGI(sc, "NIC Link is Down\n");
12290    } else {
12291        const char *duplex;
12292        const char *flow;
12293
12294        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12295                                   &cur_data.link_report_flags)) {
12296            duplex = "full";
12297        } else {
12298            duplex = "half";
12299        }
12300
12301        /*
12302         * Handle the FC at the end so that only these flags would be
12303         * possibly set. This way we may easily check if there is no FC
12304         * enabled.
12305         */
12306        if (cur_data.link_report_flags) {
12307            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12308                             &cur_data.link_report_flags) &&
12309                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12310                             &cur_data.link_report_flags)) {
12311                flow = "ON - receive & transmit";
12312            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12313                                    &cur_data.link_report_flags) &&
12314                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12315                                     &cur_data.link_report_flags)) {
12316                flow = "ON - receive";
12317            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12318                                     &cur_data.link_report_flags) &&
12319                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12320                                    &cur_data.link_report_flags)) {
12321                flow = "ON - transmit";
12322            } else {
12323                flow = "none"; /* possible? */
12324            }
12325        } else {
12326            flow = "none";
12327        }
12328
12329        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12330        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12331              cur_data.line_speed, duplex, flow);
12332    }
12333}
12334
12335static void
12336bxe_link_report(struct bxe_softc *sc)
12337{
12338    BXE_PHY_LOCK(sc);
12339    bxe_link_report_locked(sc);
12340    BXE_PHY_UNLOCK(sc);
12341}
12342
12343static void
12344bxe_link_status_update(struct bxe_softc *sc)
12345{
12346    if (sc->state != BXE_STATE_OPEN) {
12347        return;
12348    }
12349
12350#if 0
12351    /* read updated dcb configuration */
12352    if (IS_PF(sc))
12353        bxe_dcbx_pmf_update(sc);
12354#endif
12355
12356    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12357        elink_link_status_update(&sc->link_params, &sc->link_vars);
12358    } else {
12359        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12360                                  ELINK_SUPPORTED_10baseT_Full |
12361                                  ELINK_SUPPORTED_100baseT_Half |
12362                                  ELINK_SUPPORTED_100baseT_Full |
12363                                  ELINK_SUPPORTED_1000baseT_Full |
12364                                  ELINK_SUPPORTED_2500baseX_Full |
12365                                  ELINK_SUPPORTED_10000baseT_Full |
12366                                  ELINK_SUPPORTED_TP |
12367                                  ELINK_SUPPORTED_FIBRE |
12368                                  ELINK_SUPPORTED_Autoneg |
12369                                  ELINK_SUPPORTED_Pause |
12370                                  ELINK_SUPPORTED_Asym_Pause);
12371        sc->port.advertising[0] = sc->port.supported[0];
12372
12373        sc->link_params.sc                = sc;
12374        sc->link_params.port              = SC_PORT(sc);
12375        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12376        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12377        sc->link_params.req_line_speed[0] = SPEED_10000;
12378        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12379        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12380
12381        if (CHIP_REV_IS_FPGA(sc)) {
12382            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12383            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12384            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12385                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12386        } else {
12387            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12388            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12389            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12390                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12391        }
12392
12393        sc->link_vars.link_up = 1;
12394
12395        sc->link_vars.duplex    = DUPLEX_FULL;
12396        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12397
12398        if (IS_PF(sc)) {
12399            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12400            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12401            bxe_link_report(sc);
12402        }
12403    }
12404
12405    if (IS_PF(sc)) {
12406        if (sc->link_vars.link_up) {
12407            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12408        } else {
12409            bxe_stats_handle(sc, STATS_EVENT_STOP);
12410        }
12411        bxe_link_report(sc);
12412    } else {
12413        bxe_link_report(sc);
12414        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12415    }
12416}
12417
12418static int
12419bxe_initial_phy_init(struct bxe_softc *sc,
12420                     int              load_mode)
12421{
12422    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12423    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12424    struct elink_params *lp = &sc->link_params;
12425
12426    bxe_set_requested_fc(sc);
12427
12428    if (CHIP_REV_IS_SLOW(sc)) {
12429        uint32_t bond = CHIP_BOND_ID(sc);
12430        uint32_t feat = 0;
12431
12432        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12433            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12434        } else if (bond & 0x4) {
12435            if (CHIP_IS_E3(sc)) {
12436                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12437            } else {
12438                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12439            }
12440        } else if (bond & 0x8) {
12441            if (CHIP_IS_E3(sc)) {
12442                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12443            } else {
12444                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12445            }
12446        }
12447
12448        /* disable EMAC for E3 and above */
12449        if (bond & 0x2) {
12450            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12451        }
12452
12453        sc->link_params.feature_config_flags |= feat;
12454    }
12455
12456    BXE_PHY_LOCK(sc);
12457
12458    if (load_mode == LOAD_DIAG) {
12459        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12460        /* Prefer doing PHY loopback at 10G speed, if possible */
12461        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12462            if (lp->speed_cap_mask[cfg_idx] &
12463                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12464                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12465            } else {
12466                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12467            }
12468        }
12469    }
12470
12471    if (load_mode == LOAD_LOOPBACK_EXT) {
12472        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12473    }
12474
12475    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12476
12477    BXE_PHY_UNLOCK(sc);
12478
12479    bxe_calc_fc_adv(sc);
12480
12481    if (sc->link_vars.link_up) {
12482        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12483        bxe_link_report(sc);
12484    }
12485
12486    if (!CHIP_REV_IS_SLOW(sc)) {
12487        bxe_periodic_start(sc);
12488    }
12489
12490    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12491    return (rc);
12492}
12493
12494/* must be called under IF_ADDR_LOCK */
12495static int
12496bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12497                         struct ecore_mcast_ramrod_params *p)
12498{
12499    struct ifnet *ifp = sc->ifnet;
12500    int mc_count = 0;
12501    struct ifmultiaddr *ifma;
12502    struct ecore_mcast_list_elem *mc_mac;
12503
12504    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12505        if (ifma->ifma_addr->sa_family != AF_LINK) {
12506            continue;
12507        }
12508
12509        mc_count++;
12510    }
12511
12512    ECORE_LIST_INIT(&p->mcast_list);
12513    p->mcast_list_len = 0;
12514
12515    if (!mc_count) {
12516        return (0);
12517    }
12518
12519    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12520                    (M_NOWAIT | M_ZERO));
12521    if (!mc_mac) {
12522        BLOGE(sc, "Failed to allocate temp mcast list\n");
12523        return (-1);
12524    }
12525
12526    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12527        if (ifma->ifma_addr->sa_family != AF_LINK) {
12528            continue;
12529        }
12530
12531        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12532        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12533
12534        BLOGD(sc, DBG_LOAD,
12535              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12536              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12537              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12538
12539        mc_mac++;
12540    }
12541
12542    p->mcast_list_len = mc_count;
12543
12544    return (0);
12545}
12546
12547static void
12548bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12549{
12550    struct ecore_mcast_list_elem *mc_mac =
12551        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12552                               struct ecore_mcast_list_elem,
12553                               link);
12554
12555    if (mc_mac) {
12556        /* only a single free as all mc_macs are in the same heap array */
12557        free(mc_mac, M_DEVBUF);
12558    }
12559}
12560
12561static int
12562bxe_set_mc_list(struct bxe_softc *sc)
12563{
12564    struct ecore_mcast_ramrod_params rparam = { NULL };
12565    int rc = 0;
12566
12567    rparam.mcast_obj = &sc->mcast_obj;
12568
12569    BXE_MCAST_LOCK(sc);
12570
12571    /* first, clear all configured multicast MACs */
12572    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12573    if (rc < 0) {
12574        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12575        return (rc);
12576    }
12577
12578    /* configure a new MACs list */
12579    rc = bxe_init_mcast_macs_list(sc, &rparam);
12580    if (rc) {
12581        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12582        BXE_MCAST_UNLOCK(sc);
12583        return (rc);
12584    }
12585
12586    /* Now add the new MACs */
12587    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12588    if (rc < 0) {
12589        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12590    }
12591
12592    bxe_free_mcast_macs_list(&rparam);
12593
12594    BXE_MCAST_UNLOCK(sc);
12595
12596    return (rc);
12597}
12598
12599static int
12600bxe_set_uc_list(struct bxe_softc *sc)
12601{
12602    struct ifnet *ifp = sc->ifnet;
12603    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12604    struct ifaddr *ifa;
12605    unsigned long ramrod_flags = 0;
12606    int rc;
12607
12608#if __FreeBSD_version < 800000
12609    IF_ADDR_LOCK(ifp);
12610#else
12611    if_addr_rlock(ifp);
12612#endif
12613
12614    /* first schedule a cleanup up of old configuration */
12615    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12616    if (rc < 0) {
12617        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12618#if __FreeBSD_version < 800000
12619        IF_ADDR_UNLOCK(ifp);
12620#else
12621        if_addr_runlock(ifp);
12622#endif
12623        return (rc);
12624    }
12625
12626    ifa = ifp->if_addr;
12627    while (ifa) {
12628        if (ifa->ifa_addr->sa_family != AF_LINK) {
12629            ifa = TAILQ_NEXT(ifa, ifa_link);
12630            continue;
12631        }
12632
12633        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12634                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12635        if (rc == -EEXIST) {
12636            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12637            /* do not treat adding same MAC as an error */
12638            rc = 0;
12639        } else if (rc < 0) {
12640            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12641#if __FreeBSD_version < 800000
12642            IF_ADDR_UNLOCK(ifp);
12643#else
12644            if_addr_runlock(ifp);
12645#endif
12646            return (rc);
12647        }
12648
12649        ifa = TAILQ_NEXT(ifa, ifa_link);
12650    }
12651
12652#if __FreeBSD_version < 800000
12653    IF_ADDR_UNLOCK(ifp);
12654#else
12655    if_addr_runlock(ifp);
12656#endif
12657
12658    /* Execute the pending commands */
12659    bit_set(&ramrod_flags, RAMROD_CONT);
12660    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12661                            ECORE_UC_LIST_MAC, &ramrod_flags));
12662}
12663
12664static void
12665bxe_handle_rx_mode_tq(void *context,
12666                      int  pending)
12667{
12668    struct bxe_softc *sc = (struct bxe_softc *)context;
12669    struct ifnet *ifp = sc->ifnet;
12670    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12671
12672    BXE_CORE_LOCK(sc);
12673
12674    if (sc->state != BXE_STATE_OPEN) {
12675        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12676        BXE_CORE_UNLOCK(sc);
12677        return;
12678    }
12679
12680    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12681
12682    if (ifp->if_flags & IFF_PROMISC) {
12683        rx_mode = BXE_RX_MODE_PROMISC;
12684    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12685               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12686                CHIP_IS_E1(sc))) {
12687        rx_mode = BXE_RX_MODE_ALLMULTI;
12688    } else {
12689        if (IS_PF(sc)) {
12690            /* some multicasts */
12691            if (bxe_set_mc_list(sc) < 0) {
12692                rx_mode = BXE_RX_MODE_ALLMULTI;
12693            }
12694            if (bxe_set_uc_list(sc) < 0) {
12695                rx_mode = BXE_RX_MODE_PROMISC;
12696            }
12697        }
12698#if 0
12699        else {
12700            /*
12701             * Configuring mcast to a VF involves sleeping (when we
12702             * wait for the PF's response). Since this function is
12703             * called from a non sleepable context we must schedule
12704             * a work item for this purpose
12705             */
12706            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12707            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12708        }
12709#endif
12710    }
12711
12712    sc->rx_mode = rx_mode;
12713
12714    /* schedule the rx_mode command */
12715    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12716        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12717        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12718        BXE_CORE_UNLOCK(sc);
12719        return;
12720    }
12721
12722    if (IS_PF(sc)) {
12723        bxe_set_storm_rx_mode(sc);
12724    }
12725#if 0
12726    else {
12727        /*
12728         * Configuring mcast to a VF involves sleeping (when we
12729         * wait for the PF's response). Since this function is
12730         * called from a non sleepable context we must schedule
12731         * a work item for this purpose
12732         */
12733        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12734        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12735    }
12736#endif
12737
12738    BXE_CORE_UNLOCK(sc);
12739}
12740
12741static void
12742bxe_set_rx_mode(struct bxe_softc *sc)
12743{
12744    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12745}
12746
12747/* update flags in shmem */
12748static void
12749bxe_update_drv_flags(struct bxe_softc *sc,
12750                     uint32_t         flags,
12751                     uint32_t         set)
12752{
12753    uint32_t drv_flags;
12754
12755    if (SHMEM2_HAS(sc, drv_flags)) {
12756        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12757        drv_flags = SHMEM2_RD(sc, drv_flags);
12758
12759        if (set) {
12760            SET_FLAGS(drv_flags, flags);
12761        } else {
12762            RESET_FLAGS(drv_flags, flags);
12763        }
12764
12765        SHMEM2_WR(sc, drv_flags, drv_flags);
12766        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12767
12768        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12769    }
12770}
12771
12772/* periodic timer callout routine, only runs when the interface is up */
12773
12774static void
12775bxe_periodic_callout_func(void *xsc)
12776{
12777    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12778    int i;
12779
12780    if (!BXE_CORE_TRYLOCK(sc)) {
12781        /* just bail and try again next time */
12782
12783        if ((sc->state == BXE_STATE_OPEN) &&
12784            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12785            /* schedule the next periodic callout */
12786            callout_reset(&sc->periodic_callout, hz,
12787                          bxe_periodic_callout_func, sc);
12788        }
12789
12790        return;
12791    }
12792
12793    if ((sc->state != BXE_STATE_OPEN) ||
12794        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12795        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12796        BXE_CORE_UNLOCK(sc);
12797        return;
12798    }
12799
12800    /* Check for TX timeouts on any fastpath. */
12801    FOR_EACH_QUEUE(sc, i) {
12802        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12803            /* Ruh-Roh, chip was reset! */
12804            break;
12805        }
12806    }
12807
12808    if (!CHIP_REV_IS_SLOW(sc)) {
12809        /*
12810         * This barrier is needed to ensure the ordering between the writing
12811         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12812         * the reading here.
12813         */
12814        mb();
12815        if (sc->port.pmf) {
12816            BXE_PHY_LOCK(sc);
12817            elink_period_func(&sc->link_params, &sc->link_vars);
12818            BXE_PHY_UNLOCK(sc);
12819        }
12820    }
12821
12822    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12823        int mb_idx = SC_FW_MB_IDX(sc);
12824        uint32_t drv_pulse;
12825        uint32_t mcp_pulse;
12826
12827        ++sc->fw_drv_pulse_wr_seq;
12828        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12829
12830        drv_pulse = sc->fw_drv_pulse_wr_seq;
12831        bxe_drv_pulse(sc);
12832
12833        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12834                     MCP_PULSE_SEQ_MASK);
12835
12836        /*
12837         * The delta between driver pulse and mcp response should
12838         * be 1 (before mcp response) or 0 (after mcp response).
12839         */
12840        if ((drv_pulse != mcp_pulse) &&
12841            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12842            /* someone lost a heartbeat... */
12843            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12844                  drv_pulse, mcp_pulse);
12845        }
12846    }
12847
12848    /* state is BXE_STATE_OPEN */
12849    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12850
12851#if 0
12852    /* sample VF bulletin board for new posts from PF */
12853    if (IS_VF(sc)) {
12854        bxe_sample_bulletin(sc);
12855    }
12856#endif
12857
12858    BXE_CORE_UNLOCK(sc);
12859
12860    if ((sc->state == BXE_STATE_OPEN) &&
12861        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12862        /* schedule the next periodic callout */
12863        callout_reset(&sc->periodic_callout, hz,
12864                      bxe_periodic_callout_func, sc);
12865    }
12866}
12867
12868static void
12869bxe_periodic_start(struct bxe_softc *sc)
12870{
12871    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12872    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12873}
12874
12875static void
12876bxe_periodic_stop(struct bxe_softc *sc)
12877{
12878    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12879    callout_drain(&sc->periodic_callout);
12880}
12881
12882/* start the controller */
12883static __noinline int
12884bxe_nic_load(struct bxe_softc *sc,
12885             int              load_mode)
12886{
12887    uint32_t val;
12888    int load_code = 0;
12889    int i, rc = 0;
12890
12891    BXE_CORE_LOCK_ASSERT(sc);
12892
12893    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12894
12895    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12896
12897    if (IS_PF(sc)) {
12898        /* must be called before memory allocation and HW init */
12899        bxe_ilt_set_info(sc);
12900    }
12901
12902    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12903
12904    bxe_set_fp_rx_buf_size(sc);
12905
12906    if (bxe_alloc_fp_buffers(sc) != 0) {
12907        BLOGE(sc, "Failed to allocate fastpath memory\n");
12908        sc->state = BXE_STATE_CLOSED;
12909        rc = ENOMEM;
12910        goto bxe_nic_load_error0;
12911    }
12912
12913    if (bxe_alloc_mem(sc) != 0) {
12914        sc->state = BXE_STATE_CLOSED;
12915        rc = ENOMEM;
12916        goto bxe_nic_load_error0;
12917    }
12918
12919    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12920        sc->state = BXE_STATE_CLOSED;
12921        rc = ENOMEM;
12922        goto bxe_nic_load_error0;
12923    }
12924
12925    if (IS_PF(sc)) {
12926        /* set pf load just before approaching the MCP */
12927        bxe_set_pf_load(sc);
12928
12929        /* if MCP exists send load request and analyze response */
12930        if (!BXE_NOMCP(sc)) {
12931            /* attempt to load pf */
12932            if (bxe_nic_load_request(sc, &load_code) != 0) {
12933                sc->state = BXE_STATE_CLOSED;
12934                rc = ENXIO;
12935                goto bxe_nic_load_error1;
12936            }
12937
12938            /* what did the MCP say? */
12939            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12940                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12941                sc->state = BXE_STATE_CLOSED;
12942                rc = ENXIO;
12943                goto bxe_nic_load_error2;
12944            }
12945        } else {
12946            BLOGI(sc, "Device has no MCP!\n");
12947            load_code = bxe_nic_load_no_mcp(sc);
12948        }
12949
12950        /* mark PMF if applicable */
12951        bxe_nic_load_pmf(sc, load_code);
12952
12953        /* Init Function state controlling object */
12954        bxe_init_func_obj(sc);
12955
12956        /* Initialize HW */
12957        if (bxe_init_hw(sc, load_code) != 0) {
12958            BLOGE(sc, "HW init failed\n");
12959            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12960            sc->state = BXE_STATE_CLOSED;
12961            rc = ENXIO;
12962            goto bxe_nic_load_error2;
12963        }
12964    }
12965
12966    /* attach interrupts */
12967    if (bxe_interrupt_attach(sc) != 0) {
12968        sc->state = BXE_STATE_CLOSED;
12969        rc = ENXIO;
12970        goto bxe_nic_load_error2;
12971    }
12972
12973    bxe_nic_init(sc, load_code);
12974
12975    /* Init per-function objects */
12976    if (IS_PF(sc)) {
12977        bxe_init_objs(sc);
12978        // XXX bxe_iov_nic_init(sc);
12979
12980        /* set AFEX default VLAN tag to an invalid value */
12981        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12982        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12983
12984        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12985        rc = bxe_func_start(sc);
12986        if (rc) {
12987            BLOGE(sc, "Function start failed!\n");
12988            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12989            sc->state = BXE_STATE_ERROR;
12990            goto bxe_nic_load_error3;
12991        }
12992
12993        /* send LOAD_DONE command to MCP */
12994        if (!BXE_NOMCP(sc)) {
12995            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12996            if (!load_code) {
12997                BLOGE(sc, "MCP response failure, aborting\n");
12998                sc->state = BXE_STATE_ERROR;
12999                rc = ENXIO;
13000                goto bxe_nic_load_error3;
13001            }
13002        }
13003
13004        rc = bxe_setup_leading(sc);
13005        if (rc) {
13006            BLOGE(sc, "Setup leading failed!\n");
13007            sc->state = BXE_STATE_ERROR;
13008            goto bxe_nic_load_error3;
13009        }
13010
13011        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13012            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13013            if (rc) {
13014                BLOGE(sc, "Queue(%d) setup failed\n", i);
13015                sc->state = BXE_STATE_ERROR;
13016                goto bxe_nic_load_error3;
13017            }
13018        }
13019
13020        rc = bxe_init_rss_pf(sc);
13021        if (rc) {
13022            BLOGE(sc, "PF RSS init failed\n");
13023            sc->state = BXE_STATE_ERROR;
13024            goto bxe_nic_load_error3;
13025        }
13026    }
13027    /* XXX VF */
13028#if 0
13029    else { /* VF */
13030        FOR_EACH_ETH_QUEUE(sc, i) {
13031            rc = bxe_vfpf_setup_q(sc, i);
13032            if (rc) {
13033                BLOGE(sc, "Queue(%d) setup failed\n", i);
13034                sc->state = BXE_STATE_ERROR;
13035                goto bxe_nic_load_error3;
13036            }
13037        }
13038    }
13039#endif
13040
13041    /* now when Clients are configured we are ready to work */
13042    sc->state = BXE_STATE_OPEN;
13043
13044    /* Configure a ucast MAC */
13045    if (IS_PF(sc)) {
13046        rc = bxe_set_eth_mac(sc, TRUE);
13047    }
13048#if 0
13049    else { /* IS_VF(sc) */
13050        rc = bxe_vfpf_set_mac(sc);
13051    }
13052#endif
13053    if (rc) {
13054        BLOGE(sc, "Setting Ethernet MAC failed\n");
13055        sc->state = BXE_STATE_ERROR;
13056        goto bxe_nic_load_error3;
13057    }
13058
13059#if 0
13060    if (IS_PF(sc) && sc->pending_max) {
13061        /* for AFEX */
13062        bxe_update_max_mf_config(sc, sc->pending_max);
13063        sc->pending_max = 0;
13064    }
13065#endif
13066
13067    if (sc->port.pmf) {
13068        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13069        if (rc) {
13070            sc->state = BXE_STATE_ERROR;
13071            goto bxe_nic_load_error3;
13072        }
13073    }
13074
13075    sc->link_params.feature_config_flags &=
13076        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13077
13078    /* start fast path */
13079
13080    /* Initialize Rx filter */
13081    bxe_set_rx_mode(sc);
13082
13083    /* start the Tx */
13084    switch (/* XXX load_mode */LOAD_OPEN) {
13085    case LOAD_NORMAL:
13086    case LOAD_OPEN:
13087        break;
13088
13089    case LOAD_DIAG:
13090    case LOAD_LOOPBACK_EXT:
13091        sc->state = BXE_STATE_DIAG;
13092        break;
13093
13094    default:
13095        break;
13096    }
13097
13098    if (sc->port.pmf) {
13099        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13100    } else {
13101        bxe_link_status_update(sc);
13102    }
13103
13104    /* start the periodic timer callout */
13105    bxe_periodic_start(sc);
13106
13107    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13108        /* mark driver is loaded in shmem2 */
13109        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13110        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13111                  (val |
13112                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13113                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13114    }
13115
13116    /* wait for all pending SP commands to complete */
13117    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13118        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13119        bxe_periodic_stop(sc);
13120        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13121        return (ENXIO);
13122    }
13123
13124#if 0
13125    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13126    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13127        bxe_dcbx_init(sc, FALSE);
13128    }
13129#endif
13130
13131    /* Tell the stack the driver is running! */
13132    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13133
13134    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13135
13136    return (0);
13137
13138bxe_nic_load_error3:
13139
13140    if (IS_PF(sc)) {
13141        bxe_int_disable_sync(sc, 1);
13142
13143        /* clean out queued objects */
13144        bxe_squeeze_objects(sc);
13145    }
13146
13147    bxe_interrupt_detach(sc);
13148
13149bxe_nic_load_error2:
13150
13151    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13152        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13153        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13154    }
13155
13156    sc->port.pmf = 0;
13157
13158bxe_nic_load_error1:
13159
13160    /* clear pf_load status, as it was already set */
13161    if (IS_PF(sc)) {
13162        bxe_clear_pf_load(sc);
13163    }
13164
13165bxe_nic_load_error0:
13166
13167    bxe_free_fw_stats_mem(sc);
13168    bxe_free_fp_buffers(sc);
13169    bxe_free_mem(sc);
13170
13171    return (rc);
13172}
13173
13174static int
13175bxe_init_locked(struct bxe_softc *sc)
13176{
13177    int other_engine = SC_PATH(sc) ? 0 : 1;
13178    uint8_t other_load_status, load_status;
13179    uint8_t global = FALSE;
13180    int rc;
13181
13182    BXE_CORE_LOCK_ASSERT(sc);
13183
13184    /* check if the driver is already running */
13185    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13186        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13187        return (0);
13188    }
13189
13190    bxe_set_power_state(sc, PCI_PM_D0);
13191
13192    /*
13193     * If parity occurred during the unload, then attentions and/or
13194     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13195     * loaded on the current engine to complete the recovery. Parity recovery
13196     * is only relevant for PF driver.
13197     */
13198    if (IS_PF(sc)) {
13199        other_load_status = bxe_get_load_status(sc, other_engine);
13200        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13201
13202        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13203            bxe_chk_parity_attn(sc, &global, TRUE)) {
13204            do {
13205                /*
13206                 * If there are attentions and they are in global blocks, set
13207                 * the GLOBAL_RESET bit regardless whether it will be this
13208                 * function that will complete the recovery or not.
13209                 */
13210                if (global) {
13211                    bxe_set_reset_global(sc);
13212                }
13213
13214                /*
13215                 * Only the first function on the current engine should try
13216                 * to recover in open. In case of attentions in global blocks
13217                 * only the first in the chip should try to recover.
13218                 */
13219                if ((!load_status && (!global || !other_load_status)) &&
13220                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13221                    BLOGI(sc, "Recovered during init\n");
13222                    break;
13223                }
13224
13225                /* recovery has failed... */
13226                bxe_set_power_state(sc, PCI_PM_D3hot);
13227                sc->recovery_state = BXE_RECOVERY_FAILED;
13228
13229                BLOGE(sc, "Recovery flow hasn't properly "
13230                          "completed yet, try again later. "
13231                          "If you still see this message after a "
13232                          "few retries then power cycle is required.\n");
13233
13234                rc = ENXIO;
13235                goto bxe_init_locked_done;
13236            } while (0);
13237        }
13238    }
13239
13240    sc->recovery_state = BXE_RECOVERY_DONE;
13241
13242    rc = bxe_nic_load(sc, LOAD_OPEN);
13243
13244bxe_init_locked_done:
13245
13246    if (rc) {
13247        /* Tell the stack the driver is NOT running! */
13248        BLOGE(sc, "Initialization failed, "
13249                  "stack notified driver is NOT running!\n");
13250        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13251    }
13252
13253    return (rc);
13254}
13255
13256static int
13257bxe_stop_locked(struct bxe_softc *sc)
13258{
13259    BXE_CORE_LOCK_ASSERT(sc);
13260    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13261}
13262
13263/*
13264 * Handles controller initialization when called from an unlocked routine.
13265 * ifconfig calls this function.
13266 *
13267 * Returns:
13268 *   void
13269 */
13270static void
13271bxe_init(void *xsc)
13272{
13273    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13274
13275    BXE_CORE_LOCK(sc);
13276    bxe_init_locked(sc);
13277    BXE_CORE_UNLOCK(sc);
13278}
13279
13280static int
13281bxe_init_ifnet(struct bxe_softc *sc)
13282{
13283    struct ifnet *ifp;
13284
13285    /* ifconfig entrypoint for media type/status reporting */
13286    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13287                 bxe_ifmedia_update,
13288                 bxe_ifmedia_status);
13289
13290    /* set the default interface values */
13291    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13292    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13293    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13294
13295    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13296
13297    /* allocate the ifnet structure */
13298    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13299        BLOGE(sc, "Interface allocation failed!\n");
13300        return (ENXIO);
13301    }
13302
13303    ifp->if_softc = sc;
13304    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13305    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13306    ifp->if_ioctl = bxe_ioctl;
13307    ifp->if_start = bxe_tx_start;
13308#if __FreeBSD_version >= 800000
13309    ifp->if_transmit = bxe_tx_mq_start;
13310    ifp->if_qflush = bxe_mq_flush;
13311#endif
13312#ifdef FreeBSD8_0
13313    ifp->if_timer = 0;
13314#endif
13315    ifp->if_init = bxe_init;
13316    ifp->if_mtu = sc->mtu;
13317    ifp->if_hwassist = (CSUM_IP       |
13318                        CSUM_TCP      |
13319                        CSUM_UDP      |
13320                        CSUM_TSO      |
13321                        CSUM_TCP_IPV6 |
13322                        CSUM_UDP_IPV6);
13323    ifp->if_capabilities =
13324#if __FreeBSD_version < 700000
13325        (IFCAP_VLAN_MTU       |
13326         IFCAP_VLAN_HWTAGGING |
13327         IFCAP_HWCSUM         |
13328         IFCAP_JUMBO_MTU      |
13329         IFCAP_LRO);
13330#else
13331        (IFCAP_VLAN_MTU       |
13332         IFCAP_VLAN_HWTAGGING |
13333         IFCAP_VLAN_HWTSO     |
13334         IFCAP_VLAN_HWFILTER  |
13335         IFCAP_VLAN_HWCSUM    |
13336         IFCAP_HWCSUM         |
13337         IFCAP_JUMBO_MTU      |
13338         IFCAP_LRO            |
13339         IFCAP_TSO4           |
13340         IFCAP_TSO6           |
13341         IFCAP_WOL_MAGIC);
13342#endif
13343    ifp->if_capenable = ifp->if_capabilities;
13344    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13345#if __FreeBSD_version < 1000025
13346    ifp->if_baudrate = 1000000000;
13347#else
13348    if_initbaudrate(ifp, IF_Gbps(10));
13349#endif
13350    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13351
13352    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13353    IFQ_SET_READY(&ifp->if_snd);
13354
13355    sc->ifnet = ifp;
13356
13357    /* attach to the Ethernet interface list */
13358    ether_ifattach(ifp, sc->link_params.mac_addr);
13359
13360    return (0);
13361}
13362
13363static void
13364bxe_deallocate_bars(struct bxe_softc *sc)
13365{
13366    int i;
13367
13368    for (i = 0; i < MAX_BARS; i++) {
13369        if (sc->bar[i].resource != NULL) {
13370            bus_release_resource(sc->dev,
13371                                 SYS_RES_MEMORY,
13372                                 sc->bar[i].rid,
13373                                 sc->bar[i].resource);
13374            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13375                  i, PCIR_BAR(i));
13376        }
13377    }
13378}
13379
13380static int
13381bxe_allocate_bars(struct bxe_softc *sc)
13382{
13383    u_int flags;
13384    int i;
13385
13386    memset(sc->bar, 0, sizeof(sc->bar));
13387
13388    for (i = 0; i < MAX_BARS; i++) {
13389
13390        /* memory resources reside at BARs 0, 2, 4 */
13391        /* Run `pciconf -lb` to see mappings */
13392        if ((i != 0) && (i != 2) && (i != 4)) {
13393            continue;
13394        }
13395
13396        sc->bar[i].rid = PCIR_BAR(i);
13397
13398        flags = RF_ACTIVE;
13399        if (i == 0) {
13400            flags |= RF_SHAREABLE;
13401        }
13402
13403        if ((sc->bar[i].resource =
13404             bus_alloc_resource_any(sc->dev,
13405                                    SYS_RES_MEMORY,
13406                                    &sc->bar[i].rid,
13407                                    flags)) == NULL) {
13408#if 0
13409            /* BAR4 doesn't exist for E1 */
13410            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13411                  i, PCIR_BAR(i));
13412#endif
13413            return (0);
13414        }
13415
13416        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13417        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13418        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13419
13420        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13421              i, PCIR_BAR(i),
13422              (void *)rman_get_start(sc->bar[i].resource),
13423              (void *)rman_get_end(sc->bar[i].resource),
13424              rman_get_size(sc->bar[i].resource),
13425              (void *)sc->bar[i].kva);
13426    }
13427
13428    return (0);
13429}
13430
13431static void
13432bxe_get_function_num(struct bxe_softc *sc)
13433{
13434    uint32_t val = 0;
13435
13436    /*
13437     * Read the ME register to get the function number. The ME register
13438     * holds the relative-function number and absolute-function number. The
13439     * absolute-function number appears only in E2 and above. Before that
13440     * these bits always contained zero, therefore we cannot blindly use them.
13441     */
13442
13443    val = REG_RD(sc, BAR_ME_REGISTER);
13444
13445    sc->pfunc_rel =
13446        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13447    sc->path_id =
13448        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13449
13450    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13451        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13452    } else {
13453        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13454    }
13455
13456    BLOGD(sc, DBG_LOAD,
13457          "Relative function %d, Absolute function %d, Path %d\n",
13458          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13459}
13460
13461static uint32_t
13462bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13463{
13464    uint32_t shmem2_size;
13465    uint32_t offset;
13466    uint32_t mf_cfg_offset_value;
13467
13468    /* Non 57712 */
13469    offset = (SHMEM_RD(sc, func_mb) +
13470              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13471
13472    /* 57712 plus */
13473    if (sc->devinfo.shmem2_base != 0) {
13474        shmem2_size = SHMEM2_RD(sc, size);
13475        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13476            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13477            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13478                offset = mf_cfg_offset_value;
13479            }
13480        }
13481    }
13482
13483    return (offset);
13484}
13485
13486static uint32_t
13487bxe_pcie_capability_read(struct bxe_softc *sc,
13488                         int    reg,
13489                         int    width)
13490{
13491    int pcie_reg;
13492
13493    /* ensure PCIe capability is enabled */
13494    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13495        if (pcie_reg != 0) {
13496            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13497            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13498        }
13499    }
13500
13501    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13502
13503    return (0);
13504}
13505
13506static uint8_t
13507bxe_is_pcie_pending(struct bxe_softc *sc)
13508{
13509    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13510            PCIM_EXP_STA_TRANSACTION_PND);
13511}
13512
13513/*
13514 * Walk the PCI capabiites list for the device to find what features are
13515 * supported. These capabilites may be enabled/disabled by firmware so it's
13516 * best to walk the list rather than make assumptions.
13517 */
13518static void
13519bxe_probe_pci_caps(struct bxe_softc *sc)
13520{
13521    uint16_t link_status;
13522    int reg;
13523
13524    /* check if PCI Power Management is enabled */
13525    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13526        if (reg != 0) {
13527            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13528
13529            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13530            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13531        }
13532    }
13533
13534    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13535
13536    /* handle PCIe 2.0 workarounds for 57710 */
13537    if (CHIP_IS_E1(sc)) {
13538        /* workaround for 57710 errata E4_57710_27462 */
13539        sc->devinfo.pcie_link_speed =
13540            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13541
13542        /* workaround for 57710 errata E4_57710_27488 */
13543        sc->devinfo.pcie_link_width =
13544            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13545        if (sc->devinfo.pcie_link_speed > 1) {
13546            sc->devinfo.pcie_link_width =
13547                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13548        }
13549    } else {
13550        sc->devinfo.pcie_link_speed =
13551            (link_status & PCIM_LINK_STA_SPEED);
13552        sc->devinfo.pcie_link_width =
13553            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13554    }
13555
13556    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13557          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13558
13559    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13560    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13561
13562    /* check if MSI capability is enabled */
13563    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13564        if (reg != 0) {
13565            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13566
13567            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13568            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13569        }
13570    }
13571
13572    /* check if MSI-X capability is enabled */
13573    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13574        if (reg != 0) {
13575            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13576
13577            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13578            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13579        }
13580    }
13581}
13582
13583static int
13584bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13585{
13586    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13587    uint32_t val;
13588
13589    /* get the outer vlan if we're in switch-dependent mode */
13590
13591    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13592    mf_info->ext_id = (uint16_t)val;
13593
13594    mf_info->multi_vnics_mode = 1;
13595
13596    if (!VALID_OVLAN(mf_info->ext_id)) {
13597        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13598        return (1);
13599    }
13600
13601    /* get the capabilities */
13602    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13603        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13604        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13605    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13606               FUNC_MF_CFG_PROTOCOL_FCOE) {
13607        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13608    } else {
13609        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13610    }
13611
13612    mf_info->vnics_per_port =
13613        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13614
13615    return (0);
13616}
13617
13618static uint32_t
13619bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13620{
13621    uint32_t retval = 0;
13622    uint32_t val;
13623
13624    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13625
13626    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13627        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13628            retval |= MF_PROTO_SUPPORT_ETHERNET;
13629        }
13630        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13631            retval |= MF_PROTO_SUPPORT_ISCSI;
13632        }
13633        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13634            retval |= MF_PROTO_SUPPORT_FCOE;
13635        }
13636    }
13637
13638    return (retval);
13639}
13640
13641static int
13642bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13643{
13644    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13645    uint32_t val;
13646
13647    /*
13648     * There is no outer vlan if we're in switch-independent mode.
13649     * If the mac is valid then assume multi-function.
13650     */
13651
13652    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13653
13654    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13655
13656    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13657
13658    mf_info->vnics_per_port =
13659        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13660
13661    return (0);
13662}
13663
13664static int
13665bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13666{
13667    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13668    uint32_t e1hov_tag;
13669    uint32_t func_config;
13670    uint32_t niv_config;
13671
13672    mf_info->multi_vnics_mode = 1;
13673
13674    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13675    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13676    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13677
13678    mf_info->ext_id =
13679        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13680                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13681
13682    mf_info->default_vlan =
13683        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13684                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13685
13686    mf_info->niv_allowed_priorities =
13687        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13688                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13689
13690    mf_info->niv_default_cos =
13691        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13692                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13693
13694    mf_info->afex_vlan_mode =
13695        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13696         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13697
13698    mf_info->niv_mba_enabled =
13699        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13700         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13701
13702    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13703
13704    mf_info->vnics_per_port =
13705        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13706
13707    return (0);
13708}
13709
13710static int
13711bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13712{
13713    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13714    uint32_t mf_cfg1;
13715    uint32_t mf_cfg2;
13716    uint32_t ovlan1;
13717    uint32_t ovlan2;
13718    uint8_t i, j;
13719
13720    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13721          SC_PORT(sc));
13722    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13723          mf_info->mf_config[SC_VN(sc)]);
13724    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13725          mf_info->multi_vnics_mode);
13726    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13727          mf_info->vnics_per_port);
13728    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13729          mf_info->ext_id);
13730    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13731          mf_info->min_bw[0], mf_info->min_bw[1],
13732          mf_info->min_bw[2], mf_info->min_bw[3]);
13733    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13734          mf_info->max_bw[0], mf_info->max_bw[1],
13735          mf_info->max_bw[2], mf_info->max_bw[3]);
13736    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13737          sc->mac_addr_str);
13738
13739    /* various MF mode sanity checks... */
13740
13741    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13742        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13743              SC_PORT(sc));
13744        return (1);
13745    }
13746
13747    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13748        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13749              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13750        return (1);
13751    }
13752
13753    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13754        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13755        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13756            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13757                  SC_VN(sc), OVLAN(sc));
13758            return (1);
13759        }
13760
13761        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13762            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13763                  mf_info->multi_vnics_mode, OVLAN(sc));
13764            return (1);
13765        }
13766
13767        /*
13768         * Verify all functions are either MF or SF mode. If MF, make sure
13769         * sure that all non-hidden functions have a valid ovlan. If SF,
13770         * make sure that all non-hidden functions have an invalid ovlan.
13771         */
13772        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13773            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13774            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13775            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13776                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13777                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13778                BLOGE(sc, "mf_mode=SD function %d MF config "
13779                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13780                      i, mf_info->multi_vnics_mode, ovlan1);
13781                return (1);
13782            }
13783        }
13784
13785        /* Verify all funcs on the same port each have a different ovlan. */
13786        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13787            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13788            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13789            /* iterate from the next function on the port to the max func */
13790            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13791                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13792                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13793                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13794                    VALID_OVLAN(ovlan1) &&
13795                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13796                    VALID_OVLAN(ovlan2) &&
13797                    (ovlan1 == ovlan2)) {
13798                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13799                              "have the same ovlan (%d)\n",
13800                          i, j, ovlan1);
13801                    return (1);
13802                }
13803            }
13804        }
13805    } /* MULTI_FUNCTION_SD */
13806
13807    return (0);
13808}
13809
13810static int
13811bxe_get_mf_cfg_info(struct bxe_softc *sc)
13812{
13813    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13814    uint32_t val, mac_upper;
13815    uint8_t i, vnic;
13816
13817    /* initialize mf_info defaults */
13818    mf_info->vnics_per_port   = 1;
13819    mf_info->multi_vnics_mode = FALSE;
13820    mf_info->path_has_ovlan   = FALSE;
13821    mf_info->mf_mode          = SINGLE_FUNCTION;
13822
13823    if (!CHIP_IS_MF_CAP(sc)) {
13824        return (0);
13825    }
13826
13827    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13828        BLOGE(sc, "Invalid mf_cfg_base!\n");
13829        return (1);
13830    }
13831
13832    /* get the MF mode (switch dependent / independent / single-function) */
13833
13834    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13835
13836    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13837    {
13838    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13839
13840        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13841
13842        /* check for legal upper mac bytes */
13843        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13844            mf_info->mf_mode = MULTI_FUNCTION_SI;
13845        } else {
13846            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13847        }
13848
13849        break;
13850
13851    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13852    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13853
13854        /* get outer vlan configuration */
13855        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13856
13857        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13858            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13859            mf_info->mf_mode = MULTI_FUNCTION_SD;
13860        } else {
13861            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13862        }
13863
13864        break;
13865
13866    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13867
13868        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13869        return (0);
13870
13871    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13872
13873        /*
13874         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13875         * and the MAC address is valid.
13876         */
13877        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13878
13879        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13880            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13881            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13882        } else {
13883            BLOGE(sc, "Invalid config for AFEX mode\n");
13884        }
13885
13886        break;
13887
13888    default:
13889
13890        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13891              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13892
13893        return (1);
13894    }
13895
13896    /* set path mf_mode (which could be different than function mf_mode) */
13897    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13898        mf_info->path_has_ovlan = TRUE;
13899    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13900        /*
13901         * Decide on path multi vnics mode. If we're not in MF mode and in
13902         * 4-port mode, this is good enough to check vnic-0 of the other port
13903         * on the same path
13904         */
13905        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13906            uint8_t other_port = !(PORT_ID(sc) & 1);
13907            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13908
13909            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13910
13911            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13912        }
13913    }
13914
13915    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13916        /* invalid MF config */
13917        if (SC_VN(sc) >= 1) {
13918            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13919            return (1);
13920        }
13921
13922        return (0);
13923    }
13924
13925    /* get the MF configuration */
13926    mf_info->mf_config[SC_VN(sc)] =
13927        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13928
13929    switch(mf_info->mf_mode)
13930    {
13931    case MULTI_FUNCTION_SD:
13932
13933        bxe_get_shmem_mf_cfg_info_sd(sc);
13934        break;
13935
13936    case MULTI_FUNCTION_SI:
13937
13938        bxe_get_shmem_mf_cfg_info_si(sc);
13939        break;
13940
13941    case MULTI_FUNCTION_AFEX:
13942
13943        bxe_get_shmem_mf_cfg_info_niv(sc);
13944        break;
13945
13946    default:
13947
13948        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13949              mf_info->mf_mode);
13950        return (1);
13951    }
13952
13953    /* get the congestion management parameters */
13954
13955    vnic = 0;
13956    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13957        /* get min/max bw */
13958        val = MFCFG_RD(sc, func_mf_config[i].config);
13959        mf_info->min_bw[vnic] =
13960            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13961        mf_info->max_bw[vnic] =
13962            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13963        vnic++;
13964    }
13965
13966    return (bxe_check_valid_mf_cfg(sc));
13967}
13968
13969static int
13970bxe_get_shmem_info(struct bxe_softc *sc)
13971{
13972    int port;
13973    uint32_t mac_hi, mac_lo, val;
13974
13975    port = SC_PORT(sc);
13976    mac_hi = mac_lo = 0;
13977
13978    sc->link_params.sc   = sc;
13979    sc->link_params.port = port;
13980
13981    /* get the hardware config info */
13982    sc->devinfo.hw_config =
13983        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13984    sc->devinfo.hw_config2 =
13985        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13986
13987    sc->link_params.hw_led_mode =
13988        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13989         SHARED_HW_CFG_LED_MODE_SHIFT);
13990
13991    /* get the port feature config */
13992    sc->port.config =
13993        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13994
13995    /* get the link params */
13996    sc->link_params.speed_cap_mask[0] =
13997        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13998    sc->link_params.speed_cap_mask[1] =
13999        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14000
14001    /* get the lane config */
14002    sc->link_params.lane_config =
14003        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14004
14005    /* get the link config */
14006    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14007    sc->port.link_config[ELINK_INT_PHY] = val;
14008    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14009    sc->port.link_config[ELINK_EXT_PHY1] =
14010        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14011
14012    /* get the override preemphasis flag and enable it or turn it off */
14013    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14014    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14015        sc->link_params.feature_config_flags |=
14016            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14017    } else {
14018        sc->link_params.feature_config_flags &=
14019            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14020    }
14021
14022    /* get the initial value of the link params */
14023    sc->link_params.multi_phy_config =
14024        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14025
14026    /* get external phy info */
14027    sc->port.ext_phy_config =
14028        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14029
14030    /* get the multifunction configuration */
14031    bxe_get_mf_cfg_info(sc);
14032
14033    /* get the mac address */
14034    if (IS_MF(sc)) {
14035        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14036        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14037    } else {
14038        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14039        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14040    }
14041
14042    if ((mac_lo == 0) && (mac_hi == 0)) {
14043        *sc->mac_addr_str = 0;
14044        BLOGE(sc, "No Ethernet address programmed!\n");
14045    } else {
14046        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14047        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14048        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14049        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14050        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14051        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14052        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14053                 "%02x:%02x:%02x:%02x:%02x:%02x",
14054                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14055                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14056                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14057        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14058    }
14059
14060#if 0
14061    if (!IS_MF(sc) &&
14062        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14063         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14064        sc->flags |= BXE_NO_ISCSI;
14065    }
14066    if (!IS_MF(sc) &&
14067        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14068         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14069        sc->flags |= BXE_NO_FCOE_FLAG;
14070    }
14071#endif
14072
14073    return (0);
14074}
14075
14076static void
14077bxe_get_tunable_params(struct bxe_softc *sc)
14078{
14079    /* sanity checks */
14080
14081    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14082        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14083        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14084        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14085        bxe_interrupt_mode = INTR_MODE_MSIX;
14086    }
14087
14088    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14089        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14090        bxe_queue_count = 0;
14091    }
14092
14093    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14094        if (bxe_max_rx_bufs == 0) {
14095            bxe_max_rx_bufs = RX_BD_USABLE;
14096        } else {
14097            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14098            bxe_max_rx_bufs = 2048;
14099        }
14100    }
14101
14102    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14103        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14104        bxe_hc_rx_ticks = 25;
14105    }
14106
14107    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14108        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14109        bxe_hc_tx_ticks = 50;
14110    }
14111
14112    if (bxe_max_aggregation_size == 0) {
14113        bxe_max_aggregation_size = TPA_AGG_SIZE;
14114    }
14115
14116    if (bxe_max_aggregation_size > 0xffff) {
14117        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14118              bxe_max_aggregation_size);
14119        bxe_max_aggregation_size = TPA_AGG_SIZE;
14120    }
14121
14122    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14123        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14124        bxe_mrrs = -1;
14125    }
14126
14127    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14128        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14129        bxe_autogreeen = 0;
14130    }
14131
14132    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14133        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14134        bxe_udp_rss = 0;
14135    }
14136
14137    /* pull in user settings */
14138
14139    sc->interrupt_mode       = bxe_interrupt_mode;
14140    sc->max_rx_bufs          = bxe_max_rx_bufs;
14141    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14142    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14143    sc->max_aggregation_size = bxe_max_aggregation_size;
14144    sc->mrrs                 = bxe_mrrs;
14145    sc->autogreeen           = bxe_autogreeen;
14146    sc->udp_rss              = bxe_udp_rss;
14147
14148    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14149        sc->num_queues = 1;
14150    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14151        sc->num_queues =
14152            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14153                MAX_RSS_CHAINS);
14154        if (sc->num_queues > mp_ncpus) {
14155            sc->num_queues = mp_ncpus;
14156        }
14157    }
14158
14159    BLOGD(sc, DBG_LOAD,
14160          "User Config: "
14161          "debug=0x%lx "
14162          "interrupt_mode=%d "
14163          "queue_count=%d "
14164          "hc_rx_ticks=%d "
14165          "hc_tx_ticks=%d "
14166          "rx_budget=%d "
14167          "max_aggregation_size=%d "
14168          "mrrs=%d "
14169          "autogreeen=%d "
14170          "udp_rss=%d\n",
14171          bxe_debug,
14172          sc->interrupt_mode,
14173          sc->num_queues,
14174          sc->hc_rx_ticks,
14175          sc->hc_tx_ticks,
14176          bxe_rx_budget,
14177          sc->max_aggregation_size,
14178          sc->mrrs,
14179          sc->autogreeen,
14180          sc->udp_rss);
14181}
14182
14183static void
14184bxe_media_detect(struct bxe_softc *sc)
14185{
14186    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14187    switch (sc->link_params.phy[phy_idx].media_type) {
14188    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14189    case ELINK_ETH_PHY_XFP_FIBER:
14190        BLOGI(sc, "Found 10Gb Fiber media.\n");
14191        sc->media = IFM_10G_SR;
14192        break;
14193    case ELINK_ETH_PHY_SFP_1G_FIBER:
14194        BLOGI(sc, "Found 1Gb Fiber media.\n");
14195        sc->media = IFM_1000_SX;
14196        break;
14197    case ELINK_ETH_PHY_KR:
14198    case ELINK_ETH_PHY_CX4:
14199        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14200        sc->media = IFM_10G_CX4;
14201        break;
14202    case ELINK_ETH_PHY_DA_TWINAX:
14203        BLOGI(sc, "Found 10Gb Twinax media.\n");
14204        sc->media = IFM_10G_TWINAX;
14205        break;
14206    case ELINK_ETH_PHY_BASE_T:
14207        if (sc->link_params.speed_cap_mask[0] &
14208            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14209            BLOGI(sc, "Found 10GBase-T media.\n");
14210            sc->media = IFM_10G_T;
14211        } else {
14212            BLOGI(sc, "Found 1000Base-T media.\n");
14213            sc->media = IFM_1000_T;
14214        }
14215        break;
14216    case ELINK_ETH_PHY_NOT_PRESENT:
14217        BLOGI(sc, "Media not present.\n");
14218        sc->media = 0;
14219        break;
14220    case ELINK_ETH_PHY_UNSPECIFIED:
14221    default:
14222        BLOGI(sc, "Unknown media!\n");
14223        sc->media = 0;
14224        break;
14225    }
14226}
14227
14228#define GET_FIELD(value, fname)                     \
14229    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14230#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14231#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14232
14233static int
14234bxe_get_igu_cam_info(struct bxe_softc *sc)
14235{
14236    int pfid = SC_FUNC(sc);
14237    int igu_sb_id;
14238    uint32_t val;
14239    uint8_t fid, igu_sb_cnt = 0;
14240
14241    sc->igu_base_sb = 0xff;
14242
14243    if (CHIP_INT_MODE_IS_BC(sc)) {
14244        int vn = SC_VN(sc);
14245        igu_sb_cnt = sc->igu_sb_cnt;
14246        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14247                           FP_SB_MAX_E1x);
14248        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14249                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14250        return (0);
14251    }
14252
14253    /* IGU in normal mode - read CAM */
14254    for (igu_sb_id = 0;
14255         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14256         igu_sb_id++) {
14257        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14258        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14259            continue;
14260        }
14261        fid = IGU_FID(val);
14262        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14263            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14264                continue;
14265            }
14266            if (IGU_VEC(val) == 0) {
14267                /* default status block */
14268                sc->igu_dsb_id = igu_sb_id;
14269            } else {
14270                if (sc->igu_base_sb == 0xff) {
14271                    sc->igu_base_sb = igu_sb_id;
14272                }
14273                igu_sb_cnt++;
14274            }
14275        }
14276    }
14277
14278    /*
14279     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14280     * that number of CAM entries will not be equal to the value advertised in
14281     * PCI. Driver should use the minimal value of both as the actual status
14282     * block count
14283     */
14284    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14285
14286    if (igu_sb_cnt == 0) {
14287        BLOGE(sc, "CAM configuration error\n");
14288        return (-1);
14289    }
14290
14291    return (0);
14292}
14293
14294/*
14295 * Gather various information from the device config space, the device itself,
14296 * shmem, and the user input.
14297 */
14298static int
14299bxe_get_device_info(struct bxe_softc *sc)
14300{
14301    uint32_t val;
14302    int rc;
14303
14304    /* Get the data for the device */
14305    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14306    sc->devinfo.device_id    = pci_get_device(sc->dev);
14307    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14308    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14309
14310    /* get the chip revision (chip metal comes from pci config space) */
14311    sc->devinfo.chip_id     =
14312    sc->link_params.chip_id =
14313        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14314         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14315         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14316         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14317
14318    /* force 57811 according to MISC register */
14319    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14320        if (CHIP_IS_57810(sc)) {
14321            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14322                                   (sc->devinfo.chip_id & 0x0000ffff));
14323        } else if (CHIP_IS_57810_MF(sc)) {
14324            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14325                                   (sc->devinfo.chip_id & 0x0000ffff));
14326        }
14327        sc->devinfo.chip_id |= 0x1;
14328    }
14329
14330    BLOGD(sc, DBG_LOAD,
14331          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14332          sc->devinfo.chip_id,
14333          ((sc->devinfo.chip_id >> 16) & 0xffff),
14334          ((sc->devinfo.chip_id >> 12) & 0xf),
14335          ((sc->devinfo.chip_id >>  4) & 0xff),
14336          ((sc->devinfo.chip_id >>  0) & 0xf));
14337
14338    val = (REG_RD(sc, 0x2874) & 0x55);
14339    if ((sc->devinfo.chip_id & 0x1) ||
14340        (CHIP_IS_E1(sc) && val) ||
14341        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14342        sc->flags |= BXE_ONE_PORT_FLAG;
14343        BLOGD(sc, DBG_LOAD, "single port device\n");
14344    }
14345
14346    /* set the doorbell size */
14347    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14348
14349    /* determine whether the device is in 2 port or 4 port mode */
14350    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14351    if (CHIP_IS_E2E3(sc)) {
14352        /*
14353         * Read port4mode_en_ovwr[0]:
14354         *   If 1, four port mode is in port4mode_en_ovwr[1].
14355         *   If 0, four port mode is in port4mode_en[0].
14356         */
14357        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14358        if (val & 1) {
14359            val = ((val >> 1) & 1);
14360        } else {
14361            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14362        }
14363
14364        sc->devinfo.chip_port_mode =
14365            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14366
14367        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14368    }
14369
14370    /* get the function and path info for the device */
14371    bxe_get_function_num(sc);
14372
14373    /* get the shared memory base address */
14374    sc->devinfo.shmem_base     =
14375    sc->link_params.shmem_base =
14376        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14377    sc->devinfo.shmem2_base =
14378        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14379                                  MISC_REG_GENERIC_CR_0));
14380
14381    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14382          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14383
14384    if (!sc->devinfo.shmem_base) {
14385        /* this should ONLY prevent upcoming shmem reads */
14386        BLOGI(sc, "MCP not active\n");
14387        sc->flags |= BXE_NO_MCP_FLAG;
14388        return (0);
14389    }
14390
14391    /* make sure the shared memory contents are valid */
14392    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14393    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14394        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14395        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14396        return (0);
14397    }
14398    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14399
14400    /* get the bootcode version */
14401    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14402    snprintf(sc->devinfo.bc_ver_str,
14403             sizeof(sc->devinfo.bc_ver_str),
14404             "%d.%d.%d",
14405             ((sc->devinfo.bc_ver >> 24) & 0xff),
14406             ((sc->devinfo.bc_ver >> 16) & 0xff),
14407             ((sc->devinfo.bc_ver >>  8) & 0xff));
14408    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14409
14410    /* get the bootcode shmem address */
14411    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14412    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14413
14414    /* clean indirect addresses as they're not used */
14415    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14416    if (IS_PF(sc)) {
14417        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14418        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14419        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14420        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14421        if (CHIP_IS_E1x(sc)) {
14422            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14423            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14424            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14425            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14426        }
14427
14428        /*
14429         * Enable internal target-read (in case we are probed after PF
14430         * FLR). Must be done prior to any BAR read access. Only for
14431         * 57712 and up
14432         */
14433        if (!CHIP_IS_E1x(sc)) {
14434            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14435        }
14436    }
14437
14438    /* get the nvram size */
14439    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14440    sc->devinfo.flash_size =
14441        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14442    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14443
14444    /* get PCI capabilites */
14445    bxe_probe_pci_caps(sc);
14446
14447    bxe_set_power_state(sc, PCI_PM_D0);
14448
14449    /* get various configuration parameters from shmem */
14450    bxe_get_shmem_info(sc);
14451
14452    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14453        val = pci_read_config(sc->dev,
14454                              (sc->devinfo.pcie_msix_cap_reg +
14455                               PCIR_MSIX_CTRL),
14456                              2);
14457        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14458    } else {
14459        sc->igu_sb_cnt = 1;
14460    }
14461
14462    sc->igu_base_addr = BAR_IGU_INTMEM;
14463
14464    /* initialize IGU parameters */
14465    if (CHIP_IS_E1x(sc)) {
14466        sc->devinfo.int_block = INT_BLOCK_HC;
14467        sc->igu_dsb_id = DEF_SB_IGU_ID;
14468        sc->igu_base_sb = 0;
14469    } else {
14470        sc->devinfo.int_block = INT_BLOCK_IGU;
14471
14472        /* do not allow device reset during IGU info preocessing */
14473        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474
14475        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14476
14477        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14478            int tout = 5000;
14479
14480            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14481
14482            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14483            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14484            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14485
14486            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14487                tout--;
14488                DELAY(1000);
14489            }
14490
14491            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14492                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14493                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14494                return (-1);
14495            }
14496        }
14497
14498        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14499            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14500            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14501        } else {
14502            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14503        }
14504
14505        rc = bxe_get_igu_cam_info(sc);
14506
14507        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14508
14509        if (rc) {
14510            return (rc);
14511        }
14512    }
14513
14514    /*
14515     * Get base FW non-default (fast path) status block ID. This value is
14516     * used to initialize the fw_sb_id saved on the fp/queue structure to
14517     * determine the id used by the FW.
14518     */
14519    if (CHIP_IS_E1x(sc)) {
14520        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14521    } else {
14522        /*
14523         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14524         * the same queue are indicated on the same IGU SB). So we prefer
14525         * FW and IGU SBs to be the same value.
14526         */
14527        sc->base_fw_ndsb = sc->igu_base_sb;
14528    }
14529
14530    BLOGD(sc, DBG_LOAD,
14531          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14532          sc->igu_dsb_id, sc->igu_base_sb,
14533          sc->igu_sb_cnt, sc->base_fw_ndsb);
14534
14535    elink_phy_probe(&sc->link_params);
14536
14537    return (0);
14538}
14539
14540static void
14541bxe_link_settings_supported(struct bxe_softc *sc,
14542                            uint32_t         switch_cfg)
14543{
14544    uint32_t cfg_size = 0;
14545    uint32_t idx;
14546    uint8_t port = SC_PORT(sc);
14547
14548    /* aggregation of supported attributes of all external phys */
14549    sc->port.supported[0] = 0;
14550    sc->port.supported[1] = 0;
14551
14552    switch (sc->link_params.num_phys) {
14553    case 1:
14554        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14555        cfg_size = 1;
14556        break;
14557    case 2:
14558        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14559        cfg_size = 1;
14560        break;
14561    case 3:
14562        if (sc->link_params.multi_phy_config &
14563            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14564            sc->port.supported[1] =
14565                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14566            sc->port.supported[0] =
14567                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14568        } else {
14569            sc->port.supported[0] =
14570                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14571            sc->port.supported[1] =
14572                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14573        }
14574        cfg_size = 2;
14575        break;
14576    }
14577
14578    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14579        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14580              SHMEM_RD(sc,
14581                       dev_info.port_hw_config[port].external_phy_config),
14582              SHMEM_RD(sc,
14583                       dev_info.port_hw_config[port].external_phy_config2));
14584        return;
14585    }
14586
14587    if (CHIP_IS_E3(sc))
14588        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14589    else {
14590        switch (switch_cfg) {
14591        case ELINK_SWITCH_CFG_1G:
14592            sc->port.phy_addr =
14593                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14594            break;
14595        case ELINK_SWITCH_CFG_10G:
14596            sc->port.phy_addr =
14597                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14598            break;
14599        default:
14600            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14601                  sc->port.link_config[0]);
14602            return;
14603        }
14604    }
14605
14606    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14607
14608    /* mask what we support according to speed_cap_mask per configuration */
14609    for (idx = 0; idx < cfg_size; idx++) {
14610        if (!(sc->link_params.speed_cap_mask[idx] &
14611              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14612            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14613        }
14614
14615        if (!(sc->link_params.speed_cap_mask[idx] &
14616              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14617            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14618        }
14619
14620        if (!(sc->link_params.speed_cap_mask[idx] &
14621              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14622            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14623        }
14624
14625        if (!(sc->link_params.speed_cap_mask[idx] &
14626              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14627            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14628        }
14629
14630        if (!(sc->link_params.speed_cap_mask[idx] &
14631              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14632            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14633        }
14634
14635        if (!(sc->link_params.speed_cap_mask[idx] &
14636              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14637            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14638        }
14639
14640        if (!(sc->link_params.speed_cap_mask[idx] &
14641              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14642            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14643        }
14644
14645        if (!(sc->link_params.speed_cap_mask[idx] &
14646              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14647            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14648        }
14649    }
14650
14651    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14652          sc->port.supported[0], sc->port.supported[1]);
14653}
14654
14655static void
14656bxe_link_settings_requested(struct bxe_softc *sc)
14657{
14658    uint32_t link_config;
14659    uint32_t idx;
14660    uint32_t cfg_size = 0;
14661
14662    sc->port.advertising[0] = 0;
14663    sc->port.advertising[1] = 0;
14664
14665    switch (sc->link_params.num_phys) {
14666    case 1:
14667    case 2:
14668        cfg_size = 1;
14669        break;
14670    case 3:
14671        cfg_size = 2;
14672        break;
14673    }
14674
14675    for (idx = 0; idx < cfg_size; idx++) {
14676        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14677        link_config = sc->port.link_config[idx];
14678
14679        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14680        case PORT_FEATURE_LINK_SPEED_AUTO:
14681            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14682                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14683                sc->port.advertising[idx] |= sc->port.supported[idx];
14684                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14685                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14686                    sc->port.advertising[idx] |=
14687                        (ELINK_SUPPORTED_100baseT_Half |
14688                         ELINK_SUPPORTED_100baseT_Full);
14689            } else {
14690                /* force 10G, no AN */
14691                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14692                sc->port.advertising[idx] |=
14693                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14694                continue;
14695            }
14696            break;
14697
14698        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14699            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14700                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14701                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14702                                              ADVERTISED_TP);
14703            } else {
14704                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14705                          "speed_cap_mask=0x%08x\n",
14706                      link_config, sc->link_params.speed_cap_mask[idx]);
14707                return;
14708            }
14709            break;
14710
14711        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14712            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14713                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14714                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14715                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14716                                              ADVERTISED_TP);
14717            } else {
14718                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14719                          "speed_cap_mask=0x%08x\n",
14720                      link_config, sc->link_params.speed_cap_mask[idx]);
14721                return;
14722            }
14723            break;
14724
14725        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14726            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14727                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14728                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14729                                              ADVERTISED_TP);
14730            } else {
14731                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14732                          "speed_cap_mask=0x%08x\n",
14733                      link_config, sc->link_params.speed_cap_mask[idx]);
14734                return;
14735            }
14736            break;
14737
14738        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14739            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14740                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14741                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14742                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14743                                              ADVERTISED_TP);
14744            } else {
14745                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14746                          "speed_cap_mask=0x%08x\n",
14747                      link_config, sc->link_params.speed_cap_mask[idx]);
14748                return;
14749            }
14750            break;
14751
14752        case PORT_FEATURE_LINK_SPEED_1G:
14753            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14754                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14755                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14756                                              ADVERTISED_TP);
14757            } else {
14758                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14759                          "speed_cap_mask=0x%08x\n",
14760                      link_config, sc->link_params.speed_cap_mask[idx]);
14761                return;
14762            }
14763            break;
14764
14765        case PORT_FEATURE_LINK_SPEED_2_5G:
14766            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14767                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14768                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14769                                              ADVERTISED_TP);
14770            } else {
14771                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14772                          "speed_cap_mask=0x%08x\n",
14773                      link_config, sc->link_params.speed_cap_mask[idx]);
14774                return;
14775            }
14776            break;
14777
14778        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14779            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14780                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14781                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14782                                              ADVERTISED_FIBRE);
14783            } else {
14784                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14785                          "speed_cap_mask=0x%08x\n",
14786                      link_config, sc->link_params.speed_cap_mask[idx]);
14787                return;
14788            }
14789            break;
14790
14791        case PORT_FEATURE_LINK_SPEED_20G:
14792            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14793            break;
14794
14795        default:
14796            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14797                      "speed_cap_mask=0x%08x\n",
14798                  link_config, sc->link_params.speed_cap_mask[idx]);
14799            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14800            sc->port.advertising[idx] = sc->port.supported[idx];
14801            break;
14802        }
14803
14804        sc->link_params.req_flow_ctrl[idx] =
14805            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14806
14807        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14808            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14809                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14810            } else {
14811                bxe_set_requested_fc(sc);
14812            }
14813        }
14814
14815        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14816                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14817              sc->link_params.req_line_speed[idx],
14818              sc->link_params.req_duplex[idx],
14819              sc->link_params.req_flow_ctrl[idx],
14820              sc->port.advertising[idx]);
14821    }
14822}
14823
14824static void
14825bxe_get_phy_info(struct bxe_softc *sc)
14826{
14827    uint8_t port = SC_PORT(sc);
14828    uint32_t config = sc->port.config;
14829    uint32_t eee_mode;
14830
14831    /* shmem data already read in bxe_get_shmem_info() */
14832
14833    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14834                        "link_config0=0x%08x\n",
14835               sc->link_params.lane_config,
14836               sc->link_params.speed_cap_mask[0],
14837               sc->port.link_config[0]);
14838
14839    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14840    bxe_link_settings_requested(sc);
14841
14842    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14843        sc->link_params.feature_config_flags |=
14844            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14845    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14846        sc->link_params.feature_config_flags &=
14847            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14848    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14849        sc->link_params.feature_config_flags |=
14850            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14851    }
14852
14853    /* configure link feature according to nvram value */
14854    eee_mode =
14855        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14856          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14857         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14858    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14859        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14860                                    ELINK_EEE_MODE_ENABLE_LPI |
14861                                    ELINK_EEE_MODE_OUTPUT_TIME);
14862    } else {
14863        sc->link_params.eee_mode = 0;
14864    }
14865
14866    /* get the media type */
14867    bxe_media_detect(sc);
14868}
14869
14870static void
14871bxe_get_params(struct bxe_softc *sc)
14872{
14873    /* get user tunable params */
14874    bxe_get_tunable_params(sc);
14875
14876    /* select the RX and TX ring sizes */
14877    sc->tx_ring_size = TX_BD_USABLE;
14878    sc->rx_ring_size = RX_BD_USABLE;
14879
14880    /* XXX disable WoL */
14881    sc->wol = 0;
14882}
14883
14884static void
14885bxe_set_modes_bitmap(struct bxe_softc *sc)
14886{
14887    uint32_t flags = 0;
14888
14889    if (CHIP_REV_IS_FPGA(sc)) {
14890        SET_FLAGS(flags, MODE_FPGA);
14891    } else if (CHIP_REV_IS_EMUL(sc)) {
14892        SET_FLAGS(flags, MODE_EMUL);
14893    } else {
14894        SET_FLAGS(flags, MODE_ASIC);
14895    }
14896
14897    if (CHIP_IS_MODE_4_PORT(sc)) {
14898        SET_FLAGS(flags, MODE_PORT4);
14899    } else {
14900        SET_FLAGS(flags, MODE_PORT2);
14901    }
14902
14903    if (CHIP_IS_E2(sc)) {
14904        SET_FLAGS(flags, MODE_E2);
14905    } else if (CHIP_IS_E3(sc)) {
14906        SET_FLAGS(flags, MODE_E3);
14907        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14908            SET_FLAGS(flags, MODE_E3_A0);
14909        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14910            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14911        }
14912    }
14913
14914    if (IS_MF(sc)) {
14915        SET_FLAGS(flags, MODE_MF);
14916        switch (sc->devinfo.mf_info.mf_mode) {
14917        case MULTI_FUNCTION_SD:
14918            SET_FLAGS(flags, MODE_MF_SD);
14919            break;
14920        case MULTI_FUNCTION_SI:
14921            SET_FLAGS(flags, MODE_MF_SI);
14922            break;
14923        case MULTI_FUNCTION_AFEX:
14924            SET_FLAGS(flags, MODE_MF_AFEX);
14925            break;
14926        }
14927    } else {
14928        SET_FLAGS(flags, MODE_SF);
14929    }
14930
14931#if defined(__LITTLE_ENDIAN)
14932    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14933#else /* __BIG_ENDIAN */
14934    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14935#endif
14936
14937    INIT_MODE_FLAGS(sc) = flags;
14938}
14939
14940static int
14941bxe_alloc_hsi_mem(struct bxe_softc *sc)
14942{
14943    struct bxe_fastpath *fp;
14944    bus_addr_t busaddr;
14945    int max_agg_queues;
14946    int max_segments;
14947    bus_size_t max_size;
14948    bus_size_t max_seg_size;
14949    char buf[32];
14950    int rc;
14951    int i, j;
14952
14953    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14954
14955    /* allocate the parent bus DMA tag */
14956    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14957                            1,                        /* alignment */
14958                            0,                        /* boundary limit */
14959                            BUS_SPACE_MAXADDR,        /* restricted low */
14960                            BUS_SPACE_MAXADDR,        /* restricted hi */
14961                            NULL,                     /* addr filter() */
14962                            NULL,                     /* addr filter() arg */
14963                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14964                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14965                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14966                            0,                        /* flags */
14967                            NULL,                     /* lock() */
14968                            NULL,                     /* lock() arg */
14969                            &sc->parent_dma_tag);     /* returned dma tag */
14970    if (rc != 0) {
14971        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14972        return (1);
14973    }
14974
14975    /************************/
14976    /* DEFAULT STATUS BLOCK */
14977    /************************/
14978
14979    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14980                      &sc->def_sb_dma, "default status block") != 0) {
14981        /* XXX */
14982        bus_dma_tag_destroy(sc->parent_dma_tag);
14983        return (1);
14984    }
14985
14986    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14987
14988    /***************/
14989    /* EVENT QUEUE */
14990    /***************/
14991
14992    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14993                      &sc->eq_dma, "event queue") != 0) {
14994        /* XXX */
14995        bxe_dma_free(sc, &sc->def_sb_dma);
14996        sc->def_sb = NULL;
14997        bus_dma_tag_destroy(sc->parent_dma_tag);
14998        return (1);
14999    }
15000
15001    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15002
15003    /*************/
15004    /* SLOW PATH */
15005    /*************/
15006
15007    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15008                      &sc->sp_dma, "slow path") != 0) {
15009        /* XXX */
15010        bxe_dma_free(sc, &sc->eq_dma);
15011        sc->eq = NULL;
15012        bxe_dma_free(sc, &sc->def_sb_dma);
15013        sc->def_sb = NULL;
15014        bus_dma_tag_destroy(sc->parent_dma_tag);
15015        return (1);
15016    }
15017
15018    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15019
15020    /*******************/
15021    /* SLOW PATH QUEUE */
15022    /*******************/
15023
15024    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15025                      &sc->spq_dma, "slow path queue") != 0) {
15026        /* XXX */
15027        bxe_dma_free(sc, &sc->sp_dma);
15028        sc->sp = NULL;
15029        bxe_dma_free(sc, &sc->eq_dma);
15030        sc->eq = NULL;
15031        bxe_dma_free(sc, &sc->def_sb_dma);
15032        sc->def_sb = NULL;
15033        bus_dma_tag_destroy(sc->parent_dma_tag);
15034        return (1);
15035    }
15036
15037    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15038
15039    /***************************/
15040    /* FW DECOMPRESSION BUFFER */
15041    /***************************/
15042
15043    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15044                      "fw decompression buffer") != 0) {
15045        /* XXX */
15046        bxe_dma_free(sc, &sc->spq_dma);
15047        sc->spq = NULL;
15048        bxe_dma_free(sc, &sc->sp_dma);
15049        sc->sp = NULL;
15050        bxe_dma_free(sc, &sc->eq_dma);
15051        sc->eq = NULL;
15052        bxe_dma_free(sc, &sc->def_sb_dma);
15053        sc->def_sb = NULL;
15054        bus_dma_tag_destroy(sc->parent_dma_tag);
15055        return (1);
15056    }
15057
15058    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15059
15060    if ((sc->gz_strm =
15061         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15062        /* XXX */
15063        bxe_dma_free(sc, &sc->gz_buf_dma);
15064        sc->gz_buf = NULL;
15065        bxe_dma_free(sc, &sc->spq_dma);
15066        sc->spq = NULL;
15067        bxe_dma_free(sc, &sc->sp_dma);
15068        sc->sp = NULL;
15069        bxe_dma_free(sc, &sc->eq_dma);
15070        sc->eq = NULL;
15071        bxe_dma_free(sc, &sc->def_sb_dma);
15072        sc->def_sb = NULL;
15073        bus_dma_tag_destroy(sc->parent_dma_tag);
15074        return (1);
15075    }
15076
15077    /*************/
15078    /* FASTPATHS */
15079    /*************/
15080
15081    /* allocate DMA memory for each fastpath structure */
15082    for (i = 0; i < sc->num_queues; i++) {
15083        fp = &sc->fp[i];
15084        fp->sc    = sc;
15085        fp->index = i;
15086
15087        /*******************/
15088        /* FP STATUS BLOCK */
15089        /*******************/
15090
15091        snprintf(buf, sizeof(buf), "fp %d status block", i);
15092        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15093                          &fp->sb_dma, buf) != 0) {
15094            /* XXX unwind and free previous fastpath allocations */
15095            BLOGE(sc, "Failed to alloc %s\n", buf);
15096            return (1);
15097        } else {
15098            if (CHIP_IS_E2E3(sc)) {
15099                fp->status_block.e2_sb =
15100                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15101            } else {
15102                fp->status_block.e1x_sb =
15103                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15104            }
15105        }
15106
15107        /******************/
15108        /* FP TX BD CHAIN */
15109        /******************/
15110
15111        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15112        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15113                          &fp->tx_dma, buf) != 0) {
15114            /* XXX unwind and free previous fastpath allocations */
15115            BLOGE(sc, "Failed to alloc %s\n", buf);
15116            return (1);
15117        } else {
15118            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15119        }
15120
15121        /* link together the tx bd chain pages */
15122        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15123            /* index into the tx bd chain array to last entry per page */
15124            struct eth_tx_next_bd *tx_next_bd =
15125                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15126            /* point to the next page and wrap from last page */
15127            busaddr = (fp->tx_dma.paddr +
15128                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15129            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15130            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15131        }
15132
15133        /******************/
15134        /* FP RX BD CHAIN */
15135        /******************/
15136
15137        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15138        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15139                          &fp->rx_dma, buf) != 0) {
15140            /* XXX unwind and free previous fastpath allocations */
15141            BLOGE(sc, "Failed to alloc %s\n", buf);
15142            return (1);
15143        } else {
15144            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15145        }
15146
15147        /* link together the rx bd chain pages */
15148        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15149            /* index into the rx bd chain array to last entry per page */
15150            struct eth_rx_bd *rx_bd =
15151                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15152            /* point to the next page and wrap from last page */
15153            busaddr = (fp->rx_dma.paddr +
15154                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15155            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15156            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15157        }
15158
15159        /*******************/
15160        /* FP RX RCQ CHAIN */
15161        /*******************/
15162
15163        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15164        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15165                          &fp->rcq_dma, buf) != 0) {
15166            /* XXX unwind and free previous fastpath allocations */
15167            BLOGE(sc, "Failed to alloc %s\n", buf);
15168            return (1);
15169        } else {
15170            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15171        }
15172
15173        /* link together the rcq chain pages */
15174        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15175            /* index into the rcq chain array to last entry per page */
15176            struct eth_rx_cqe_next_page *rx_cqe_next =
15177                (struct eth_rx_cqe_next_page *)
15178                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15179            /* point to the next page and wrap from last page */
15180            busaddr = (fp->rcq_dma.paddr +
15181                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15182            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15183            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15184        }
15185
15186        /*******************/
15187        /* FP RX SGE CHAIN */
15188        /*******************/
15189
15190        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15191        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15192                          &fp->rx_sge_dma, buf) != 0) {
15193            /* XXX unwind and free previous fastpath allocations */
15194            BLOGE(sc, "Failed to alloc %s\n", buf);
15195            return (1);
15196        } else {
15197            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15198        }
15199
15200        /* link together the sge chain pages */
15201        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15202            /* index into the rcq chain array to last entry per page */
15203            struct eth_rx_sge *rx_sge =
15204                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15205            /* point to the next page and wrap from last page */
15206            busaddr = (fp->rx_sge_dma.paddr +
15207                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15208            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15209            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15210        }
15211
15212        /***********************/
15213        /* FP TX MBUF DMA MAPS */
15214        /***********************/
15215
15216        /* set required sizes before mapping to conserve resources */
15217        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15218            max_size     = BXE_TSO_MAX_SIZE;
15219            max_segments = BXE_TSO_MAX_SEGMENTS;
15220            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15221        } else {
15222            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15223            max_segments = BXE_MAX_SEGMENTS;
15224            max_seg_size = MCLBYTES;
15225        }
15226
15227        /* create a dma tag for the tx mbufs */
15228        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15229                                1,                  /* alignment */
15230                                0,                  /* boundary limit */
15231                                BUS_SPACE_MAXADDR,  /* restricted low */
15232                                BUS_SPACE_MAXADDR,  /* restricted hi */
15233                                NULL,               /* addr filter() */
15234                                NULL,               /* addr filter() arg */
15235                                max_size,           /* max map size */
15236                                max_segments,       /* num discontinuous */
15237                                max_seg_size,       /* max seg size */
15238                                0,                  /* flags */
15239                                NULL,               /* lock() */
15240                                NULL,               /* lock() arg */
15241                                &fp->tx_mbuf_tag);  /* returned dma tag */
15242        if (rc != 0) {
15243            /* XXX unwind and free previous fastpath allocations */
15244            BLOGE(sc, "Failed to create dma tag for "
15245                      "'fp %d tx mbufs' (%d)\n",
15246                  i, rc);
15247            return (1);
15248        }
15249
15250        /* create dma maps for each of the tx mbuf clusters */
15251        for (j = 0; j < TX_BD_TOTAL; j++) {
15252            if (bus_dmamap_create(fp->tx_mbuf_tag,
15253                                  BUS_DMA_NOWAIT,
15254                                  &fp->tx_mbuf_chain[j].m_map)) {
15255                /* XXX unwind and free previous fastpath allocations */
15256                BLOGE(sc, "Failed to create dma map for "
15257                          "'fp %d tx mbuf %d' (%d)\n",
15258                      i, j, rc);
15259                return (1);
15260            }
15261        }
15262
15263        /***********************/
15264        /* FP RX MBUF DMA MAPS */
15265        /***********************/
15266
15267        /* create a dma tag for the rx mbufs */
15268        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15269                                1,                  /* alignment */
15270                                0,                  /* boundary limit */
15271                                BUS_SPACE_MAXADDR,  /* restricted low */
15272                                BUS_SPACE_MAXADDR,  /* restricted hi */
15273                                NULL,               /* addr filter() */
15274                                NULL,               /* addr filter() arg */
15275                                MJUM9BYTES,         /* max map size */
15276                                1,                  /* num discontinuous */
15277                                MJUM9BYTES,         /* max seg size */
15278                                0,                  /* flags */
15279                                NULL,               /* lock() */
15280                                NULL,               /* lock() arg */
15281                                &fp->rx_mbuf_tag);  /* returned dma tag */
15282        if (rc != 0) {
15283            /* XXX unwind and free previous fastpath allocations */
15284            BLOGE(sc, "Failed to create dma tag for "
15285                      "'fp %d rx mbufs' (%d)\n",
15286                  i, rc);
15287            return (1);
15288        }
15289
15290        /* create dma maps for each of the rx mbuf clusters */
15291        for (j = 0; j < RX_BD_TOTAL; j++) {
15292            if (bus_dmamap_create(fp->rx_mbuf_tag,
15293                                  BUS_DMA_NOWAIT,
15294                                  &fp->rx_mbuf_chain[j].m_map)) {
15295                /* XXX unwind and free previous fastpath allocations */
15296                BLOGE(sc, "Failed to create dma map for "
15297                          "'fp %d rx mbuf %d' (%d)\n",
15298                      i, j, rc);
15299                return (1);
15300            }
15301        }
15302
15303        /* create dma map for the spare rx mbuf cluster */
15304        if (bus_dmamap_create(fp->rx_mbuf_tag,
15305                              BUS_DMA_NOWAIT,
15306                              &fp->rx_mbuf_spare_map)) {
15307            /* XXX unwind and free previous fastpath allocations */
15308            BLOGE(sc, "Failed to create dma map for "
15309                      "'fp %d spare rx mbuf' (%d)\n",
15310                  i, rc);
15311            return (1);
15312        }
15313
15314        /***************************/
15315        /* FP RX SGE MBUF DMA MAPS */
15316        /***************************/
15317
15318        /* create a dma tag for the rx sge mbufs */
15319        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15320                                1,                  /* alignment */
15321                                0,                  /* boundary limit */
15322                                BUS_SPACE_MAXADDR,  /* restricted low */
15323                                BUS_SPACE_MAXADDR,  /* restricted hi */
15324                                NULL,               /* addr filter() */
15325                                NULL,               /* addr filter() arg */
15326                                BCM_PAGE_SIZE,      /* max map size */
15327                                1,                  /* num discontinuous */
15328                                BCM_PAGE_SIZE,      /* max seg size */
15329                                0,                  /* flags */
15330                                NULL,               /* lock() */
15331                                NULL,               /* lock() arg */
15332                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15333        if (rc != 0) {
15334            /* XXX unwind and free previous fastpath allocations */
15335            BLOGE(sc, "Failed to create dma tag for "
15336                      "'fp %d rx sge mbufs' (%d)\n",
15337                  i, rc);
15338            return (1);
15339        }
15340
15341        /* create dma maps for the rx sge mbuf clusters */
15342        for (j = 0; j < RX_SGE_TOTAL; j++) {
15343            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15344                                  BUS_DMA_NOWAIT,
15345                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15346                /* XXX unwind and free previous fastpath allocations */
15347                BLOGE(sc, "Failed to create dma map for "
15348                          "'fp %d rx sge mbuf %d' (%d)\n",
15349                      i, j, rc);
15350                return (1);
15351            }
15352        }
15353
15354        /* create dma map for the spare rx sge mbuf cluster */
15355        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15356                              BUS_DMA_NOWAIT,
15357                              &fp->rx_sge_mbuf_spare_map)) {
15358            /* XXX unwind and free previous fastpath allocations */
15359            BLOGE(sc, "Failed to create dma map for "
15360                      "'fp %d spare rx sge mbuf' (%d)\n",
15361                  i, rc);
15362            return (1);
15363        }
15364
15365        /***************************/
15366        /* FP RX TPA MBUF DMA MAPS */
15367        /***************************/
15368
15369        /* create dma maps for the rx tpa mbuf clusters */
15370        max_agg_queues = MAX_AGG_QS(sc);
15371
15372        for (j = 0; j < max_agg_queues; j++) {
15373            if (bus_dmamap_create(fp->rx_mbuf_tag,
15374                                  BUS_DMA_NOWAIT,
15375                                  &fp->rx_tpa_info[j].bd.m_map)) {
15376                /* XXX unwind and free previous fastpath allocations */
15377                BLOGE(sc, "Failed to create dma map for "
15378                          "'fp %d rx tpa mbuf %d' (%d)\n",
15379                      i, j, rc);
15380                return (1);
15381            }
15382        }
15383
15384        /* create dma map for the spare rx tpa mbuf cluster */
15385        if (bus_dmamap_create(fp->rx_mbuf_tag,
15386                              BUS_DMA_NOWAIT,
15387                              &fp->rx_tpa_info_mbuf_spare_map)) {
15388            /* XXX unwind and free previous fastpath allocations */
15389            BLOGE(sc, "Failed to create dma map for "
15390                      "'fp %d spare rx tpa mbuf' (%d)\n",
15391                  i, rc);
15392            return (1);
15393        }
15394
15395        bxe_init_sge_ring_bit_mask(fp);
15396    }
15397
15398    return (0);
15399}
15400
15401static void
15402bxe_free_hsi_mem(struct bxe_softc *sc)
15403{
15404    struct bxe_fastpath *fp;
15405    int max_agg_queues;
15406    int i, j;
15407
15408    if (sc->parent_dma_tag == NULL) {
15409        return; /* assume nothing was allocated */
15410    }
15411
15412    for (i = 0; i < sc->num_queues; i++) {
15413        fp = &sc->fp[i];
15414
15415        /*******************/
15416        /* FP STATUS BLOCK */
15417        /*******************/
15418
15419        bxe_dma_free(sc, &fp->sb_dma);
15420        memset(&fp->status_block, 0, sizeof(fp->status_block));
15421
15422        /******************/
15423        /* FP TX BD CHAIN */
15424        /******************/
15425
15426        bxe_dma_free(sc, &fp->tx_dma);
15427        fp->tx_chain = NULL;
15428
15429        /******************/
15430        /* FP RX BD CHAIN */
15431        /******************/
15432
15433        bxe_dma_free(sc, &fp->rx_dma);
15434        fp->rx_chain = NULL;
15435
15436        /*******************/
15437        /* FP RX RCQ CHAIN */
15438        /*******************/
15439
15440        bxe_dma_free(sc, &fp->rcq_dma);
15441        fp->rcq_chain = NULL;
15442
15443        /*******************/
15444        /* FP RX SGE CHAIN */
15445        /*******************/
15446
15447        bxe_dma_free(sc, &fp->rx_sge_dma);
15448        fp->rx_sge_chain = NULL;
15449
15450        /***********************/
15451        /* FP TX MBUF DMA MAPS */
15452        /***********************/
15453
15454        if (fp->tx_mbuf_tag != NULL) {
15455            for (j = 0; j < TX_BD_TOTAL; j++) {
15456                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15457                    bus_dmamap_unload(fp->tx_mbuf_tag,
15458                                      fp->tx_mbuf_chain[j].m_map);
15459                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15460                                       fp->tx_mbuf_chain[j].m_map);
15461                }
15462            }
15463
15464            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15465            fp->tx_mbuf_tag = NULL;
15466        }
15467
15468        /***********************/
15469        /* FP RX MBUF DMA MAPS */
15470        /***********************/
15471
15472        if (fp->rx_mbuf_tag != NULL) {
15473            for (j = 0; j < RX_BD_TOTAL; j++) {
15474                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15475                    bus_dmamap_unload(fp->rx_mbuf_tag,
15476                                      fp->rx_mbuf_chain[j].m_map);
15477                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15478                                       fp->rx_mbuf_chain[j].m_map);
15479                }
15480            }
15481
15482            if (fp->rx_mbuf_spare_map != NULL) {
15483                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15484                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15485            }
15486
15487            /***************************/
15488            /* FP RX TPA MBUF DMA MAPS */
15489            /***************************/
15490
15491            max_agg_queues = MAX_AGG_QS(sc);
15492
15493            for (j = 0; j < max_agg_queues; j++) {
15494                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15495                    bus_dmamap_unload(fp->rx_mbuf_tag,
15496                                      fp->rx_tpa_info[j].bd.m_map);
15497                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15498                                       fp->rx_tpa_info[j].bd.m_map);
15499                }
15500            }
15501
15502            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15503                bus_dmamap_unload(fp->rx_mbuf_tag,
15504                                  fp->rx_tpa_info_mbuf_spare_map);
15505                bus_dmamap_destroy(fp->rx_mbuf_tag,
15506                                   fp->rx_tpa_info_mbuf_spare_map);
15507            }
15508
15509            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15510            fp->rx_mbuf_tag = NULL;
15511        }
15512
15513        /***************************/
15514        /* FP RX SGE MBUF DMA MAPS */
15515        /***************************/
15516
15517        if (fp->rx_sge_mbuf_tag != NULL) {
15518            for (j = 0; j < RX_SGE_TOTAL; j++) {
15519                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15520                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15521                                      fp->rx_sge_mbuf_chain[j].m_map);
15522                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15523                                       fp->rx_sge_mbuf_chain[j].m_map);
15524                }
15525            }
15526
15527            if (fp->rx_sge_mbuf_spare_map != NULL) {
15528                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15529                                  fp->rx_sge_mbuf_spare_map);
15530                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15531                                   fp->rx_sge_mbuf_spare_map);
15532            }
15533
15534            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15535            fp->rx_sge_mbuf_tag = NULL;
15536        }
15537    }
15538
15539    /***************************/
15540    /* FW DECOMPRESSION BUFFER */
15541    /***************************/
15542
15543    bxe_dma_free(sc, &sc->gz_buf_dma);
15544    sc->gz_buf = NULL;
15545    free(sc->gz_strm, M_DEVBUF);
15546    sc->gz_strm = NULL;
15547
15548    /*******************/
15549    /* SLOW PATH QUEUE */
15550    /*******************/
15551
15552    bxe_dma_free(sc, &sc->spq_dma);
15553    sc->spq = NULL;
15554
15555    /*************/
15556    /* SLOW PATH */
15557    /*************/
15558
15559    bxe_dma_free(sc, &sc->sp_dma);
15560    sc->sp = NULL;
15561
15562    /***************/
15563    /* EVENT QUEUE */
15564    /***************/
15565
15566    bxe_dma_free(sc, &sc->eq_dma);
15567    sc->eq = NULL;
15568
15569    /************************/
15570    /* DEFAULT STATUS BLOCK */
15571    /************************/
15572
15573    bxe_dma_free(sc, &sc->def_sb_dma);
15574    sc->def_sb = NULL;
15575
15576    bus_dma_tag_destroy(sc->parent_dma_tag);
15577    sc->parent_dma_tag = NULL;
15578}
15579
15580/*
15581 * Previous driver DMAE transaction may have occurred when pre-boot stage
15582 * ended and boot began. This would invalidate the addresses of the
15583 * transaction, resulting in was-error bit set in the PCI causing all
15584 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15585 * the interrupt which detected this from the pglueb and the was-done bit
15586 */
15587static void
15588bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15589{
15590    uint32_t val;
15591
15592    if (!CHIP_IS_E1x(sc)) {
15593        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15594        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15595            BLOGD(sc, DBG_LOAD,
15596                  "Clearing 'was-error' bit that was set in pglueb");
15597            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15598        }
15599    }
15600}
15601
15602static int
15603bxe_prev_mcp_done(struct bxe_softc *sc)
15604{
15605    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15606                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15607    if (!rc) {
15608        BLOGE(sc, "MCP response failure, aborting\n");
15609        return (-1);
15610    }
15611
15612    return (0);
15613}
15614
15615static struct bxe_prev_list_node *
15616bxe_prev_path_get_entry(struct bxe_softc *sc)
15617{
15618    struct bxe_prev_list_node *tmp;
15619
15620    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15621        if ((sc->pcie_bus == tmp->bus) &&
15622            (sc->pcie_device == tmp->slot) &&
15623            (SC_PATH(sc) == tmp->path)) {
15624            return (tmp);
15625        }
15626    }
15627
15628    return (NULL);
15629}
15630
15631static uint8_t
15632bxe_prev_is_path_marked(struct bxe_softc *sc)
15633{
15634    struct bxe_prev_list_node *tmp;
15635    int rc = FALSE;
15636
15637    mtx_lock(&bxe_prev_mtx);
15638
15639    tmp = bxe_prev_path_get_entry(sc);
15640    if (tmp) {
15641        if (tmp->aer) {
15642            BLOGD(sc, DBG_LOAD,
15643                  "Path %d/%d/%d was marked by AER\n",
15644                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15645        } else {
15646            rc = TRUE;
15647            BLOGD(sc, DBG_LOAD,
15648                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15649                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15650        }
15651    }
15652
15653    mtx_unlock(&bxe_prev_mtx);
15654
15655    return (rc);
15656}
15657
15658static int
15659bxe_prev_mark_path(struct bxe_softc *sc,
15660                   uint8_t          after_undi)
15661{
15662    struct bxe_prev_list_node *tmp;
15663
15664    mtx_lock(&bxe_prev_mtx);
15665
15666    /* Check whether the entry for this path already exists */
15667    tmp = bxe_prev_path_get_entry(sc);
15668    if (tmp) {
15669        if (!tmp->aer) {
15670            BLOGD(sc, DBG_LOAD,
15671                  "Re-marking AER in path %d/%d/%d\n",
15672                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15673        } else {
15674            BLOGD(sc, DBG_LOAD,
15675                  "Removing AER indication from path %d/%d/%d\n",
15676                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15677            tmp->aer = 0;
15678        }
15679
15680        mtx_unlock(&bxe_prev_mtx);
15681        return (0);
15682    }
15683
15684    mtx_unlock(&bxe_prev_mtx);
15685
15686    /* Create an entry for this path and add it */
15687    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15688                 (M_NOWAIT | M_ZERO));
15689    if (!tmp) {
15690        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15691        return (-1);
15692    }
15693
15694    tmp->bus  = sc->pcie_bus;
15695    tmp->slot = sc->pcie_device;
15696    tmp->path = SC_PATH(sc);
15697    tmp->aer  = 0;
15698    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15699
15700    mtx_lock(&bxe_prev_mtx);
15701
15702    BLOGD(sc, DBG_LOAD,
15703          "Marked path %d/%d/%d - finished previous unload\n",
15704          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15705    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15706
15707    mtx_unlock(&bxe_prev_mtx);
15708
15709    return (0);
15710}
15711
15712static int
15713bxe_do_flr(struct bxe_softc *sc)
15714{
15715    int i;
15716
15717    /* only E2 and onwards support FLR */
15718    if (CHIP_IS_E1x(sc)) {
15719        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15720        return (-1);
15721    }
15722
15723    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15724    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15725        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15726              sc->devinfo.bc_ver);
15727        return (-1);
15728    }
15729
15730    /* Wait for Transaction Pending bit clean */
15731    for (i = 0; i < 4; i++) {
15732        if (i) {
15733            DELAY(((1 << (i - 1)) * 100) * 1000);
15734        }
15735
15736        if (!bxe_is_pcie_pending(sc)) {
15737            goto clear;
15738        }
15739    }
15740
15741    BLOGE(sc, "PCIE transaction is not cleared, "
15742              "proceeding with reset anyway\n");
15743
15744clear:
15745
15746    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15747    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15748
15749    return (0);
15750}
15751
15752struct bxe_mac_vals {
15753    uint32_t xmac_addr;
15754    uint32_t xmac_val;
15755    uint32_t emac_addr;
15756    uint32_t emac_val;
15757    uint32_t umac_addr;
15758    uint32_t umac_val;
15759    uint32_t bmac_addr;
15760    uint32_t bmac_val[2];
15761};
15762
15763static void
15764bxe_prev_unload_close_mac(struct bxe_softc *sc,
15765                          struct bxe_mac_vals *vals)
15766{
15767    uint32_t val, base_addr, offset, mask, reset_reg;
15768    uint8_t mac_stopped = FALSE;
15769    uint8_t port = SC_PORT(sc);
15770    uint32_t wb_data[2];
15771
15772    /* reset addresses as they also mark which values were changed */
15773    vals->bmac_addr = 0;
15774    vals->umac_addr = 0;
15775    vals->xmac_addr = 0;
15776    vals->emac_addr = 0;
15777
15778    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15779
15780    if (!CHIP_IS_E3(sc)) {
15781        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15782        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15783        if ((mask & reset_reg) && val) {
15784            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15785            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15786                                    : NIG_REG_INGRESS_BMAC0_MEM;
15787            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15788                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15789
15790            /*
15791             * use rd/wr since we cannot use dmae. This is safe
15792             * since MCP won't access the bus due to the request
15793             * to unload, and no function on the path can be
15794             * loaded at this time.
15795             */
15796            wb_data[0] = REG_RD(sc, base_addr + offset);
15797            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15798            vals->bmac_addr = base_addr + offset;
15799            vals->bmac_val[0] = wb_data[0];
15800            vals->bmac_val[1] = wb_data[1];
15801            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15802            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15803            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15804        }
15805
15806        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15807        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15808        vals->emac_val = REG_RD(sc, vals->emac_addr);
15809        REG_WR(sc, vals->emac_addr, 0);
15810        mac_stopped = TRUE;
15811    } else {
15812        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15813            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15814            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15815            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15816            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15817            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15818            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15819            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15820            REG_WR(sc, vals->xmac_addr, 0);
15821            mac_stopped = TRUE;
15822        }
15823
15824        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15825        if (mask & reset_reg) {
15826            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15827            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15828            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15829            vals->umac_val = REG_RD(sc, vals->umac_addr);
15830            REG_WR(sc, vals->umac_addr, 0);
15831            mac_stopped = TRUE;
15832        }
15833    }
15834
15835    if (mac_stopped) {
15836        DELAY(20000);
15837    }
15838}
15839
15840#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15841#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15842#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15843#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15844
15845static void
15846bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15847                         uint8_t          port,
15848                         uint8_t          inc)
15849{
15850    uint16_t rcq, bd;
15851    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15852
15853    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15854    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15855
15856    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15857    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15858
15859    BLOGD(sc, DBG_LOAD,
15860          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15861          port, bd, rcq);
15862}
15863
15864static int
15865bxe_prev_unload_common(struct bxe_softc *sc)
15866{
15867    uint32_t reset_reg, tmp_reg = 0, rc;
15868    uint8_t prev_undi = FALSE;
15869    struct bxe_mac_vals mac_vals;
15870    uint32_t timer_count = 1000;
15871    uint32_t prev_brb;
15872
15873    /*
15874     * It is possible a previous function received 'common' answer,
15875     * but hasn't loaded yet, therefore creating a scenario of
15876     * multiple functions receiving 'common' on the same path.
15877     */
15878    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15879
15880    memset(&mac_vals, 0, sizeof(mac_vals));
15881
15882    if (bxe_prev_is_path_marked(sc)) {
15883        return (bxe_prev_mcp_done(sc));
15884    }
15885
15886    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15887
15888    /* Reset should be performed after BRB is emptied */
15889    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15890        /* Close the MAC Rx to prevent BRB from filling up */
15891        bxe_prev_unload_close_mac(sc, &mac_vals);
15892
15893        /* close LLH filters towards the BRB */
15894        elink_set_rx_filter(&sc->link_params, 0);
15895
15896        /*
15897         * Check if the UNDI driver was previously loaded.
15898         * UNDI driver initializes CID offset for normal bell to 0x7
15899         */
15900        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15901            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15902            if (tmp_reg == 0x7) {
15903                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15904                prev_undi = TRUE;
15905                /* clear the UNDI indication */
15906                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15907                /* clear possible idle check errors */
15908                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15909            }
15910        }
15911
15912        /* wait until BRB is empty */
15913        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15914        while (timer_count) {
15915            prev_brb = tmp_reg;
15916
15917            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15918            if (!tmp_reg) {
15919                break;
15920            }
15921
15922            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15923
15924            /* reset timer as long as BRB actually gets emptied */
15925            if (prev_brb > tmp_reg) {
15926                timer_count = 1000;
15927            } else {
15928                timer_count--;
15929            }
15930
15931            /* If UNDI resides in memory, manually increment it */
15932            if (prev_undi) {
15933                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15934            }
15935
15936            DELAY(10);
15937        }
15938
15939        if (!timer_count) {
15940            BLOGE(sc, "Failed to empty BRB\n");
15941        }
15942    }
15943
15944    /* No packets are in the pipeline, path is ready for reset */
15945    bxe_reset_common(sc);
15946
15947    if (mac_vals.xmac_addr) {
15948        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15949    }
15950    if (mac_vals.umac_addr) {
15951        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15952    }
15953    if (mac_vals.emac_addr) {
15954        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15955    }
15956    if (mac_vals.bmac_addr) {
15957        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15958        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15959    }
15960
15961    rc = bxe_prev_mark_path(sc, prev_undi);
15962    if (rc) {
15963        bxe_prev_mcp_done(sc);
15964        return (rc);
15965    }
15966
15967    return (bxe_prev_mcp_done(sc));
15968}
15969
15970static int
15971bxe_prev_unload_uncommon(struct bxe_softc *sc)
15972{
15973    int rc;
15974
15975    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15976
15977    /* Test if previous unload process was already finished for this path */
15978    if (bxe_prev_is_path_marked(sc)) {
15979        return (bxe_prev_mcp_done(sc));
15980    }
15981
15982    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15983
15984    /*
15985     * If function has FLR capabilities, and existing FW version matches
15986     * the one required, then FLR will be sufficient to clean any residue
15987     * left by previous driver
15988     */
15989    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15990    if (!rc) {
15991        /* fw version is good */
15992        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15993        rc = bxe_do_flr(sc);
15994    }
15995
15996    if (!rc) {
15997        /* FLR was performed */
15998        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15999        return (0);
16000    }
16001
16002    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16003
16004    /* Close the MCP request, return failure*/
16005    rc = bxe_prev_mcp_done(sc);
16006    if (!rc) {
16007        rc = BXE_PREV_WAIT_NEEDED;
16008    }
16009
16010    return (rc);
16011}
16012
16013static int
16014bxe_prev_unload(struct bxe_softc *sc)
16015{
16016    int time_counter = 10;
16017    uint32_t fw, hw_lock_reg, hw_lock_val;
16018    uint32_t rc = 0;
16019
16020    /*
16021     * Clear HW from errors which may have resulted from an interrupted
16022     * DMAE transaction.
16023     */
16024    bxe_prev_interrupted_dmae(sc);
16025
16026    /* Release previously held locks */
16027    hw_lock_reg =
16028        (SC_FUNC(sc) <= 5) ?
16029            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16030            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16031
16032    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16033    if (hw_lock_val) {
16034        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16035            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16036            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16037                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16038        }
16039        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16040        REG_WR(sc, hw_lock_reg, 0xffffffff);
16041    } else {
16042        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16043    }
16044
16045    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16046        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16047        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16048    }
16049
16050    do {
16051        /* Lock MCP using an unload request */
16052        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16053        if (!fw) {
16054            BLOGE(sc, "MCP response failure, aborting\n");
16055            rc = -1;
16056            break;
16057        }
16058
16059        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16060            rc = bxe_prev_unload_common(sc);
16061            break;
16062        }
16063
16064        /* non-common reply from MCP night require looping */
16065        rc = bxe_prev_unload_uncommon(sc);
16066        if (rc != BXE_PREV_WAIT_NEEDED) {
16067            break;
16068        }
16069
16070        DELAY(20000);
16071    } while (--time_counter);
16072
16073    if (!time_counter || rc) {
16074        BLOGE(sc, "Failed to unload previous driver!\n");
16075        rc = -1;
16076    }
16077
16078    return (rc);
16079}
16080
16081void
16082bxe_dcbx_set_state(struct bxe_softc *sc,
16083                   uint8_t          dcb_on,
16084                   uint32_t         dcbx_enabled)
16085{
16086    if (!CHIP_IS_E1x(sc)) {
16087        sc->dcb_state = dcb_on;
16088        sc->dcbx_enabled = dcbx_enabled;
16089    } else {
16090        sc->dcb_state = FALSE;
16091        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16092    }
16093    BLOGD(sc, DBG_LOAD,
16094          "DCB state [%s:%s]\n",
16095          dcb_on ? "ON" : "OFF",
16096          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16097          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16098          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16099          "on-chip with negotiation" : "invalid");
16100}
16101
16102/* must be called after sriov-enable */
16103static int
16104bxe_set_qm_cid_count(struct bxe_softc *sc)
16105{
16106    int cid_count = BXE_L2_MAX_CID(sc);
16107
16108    if (IS_SRIOV(sc)) {
16109        cid_count += BXE_VF_CIDS;
16110    }
16111
16112    if (CNIC_SUPPORT(sc)) {
16113        cid_count += CNIC_CID_MAX;
16114    }
16115
16116    return (roundup(cid_count, QM_CID_ROUND));
16117}
16118
16119static void
16120bxe_init_multi_cos(struct bxe_softc *sc)
16121{
16122    int pri, cos;
16123
16124    uint32_t pri_map = 0; /* XXX change to user config */
16125
16126    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16127        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16128        if (cos < sc->max_cos) {
16129            sc->prio_to_cos[pri] = cos;
16130        } else {
16131            BLOGW(sc, "Invalid COS %d for priority %d "
16132                      "(max COS is %d), setting to 0\n",
16133                  cos, pri, (sc->max_cos - 1));
16134            sc->prio_to_cos[pri] = 0;
16135        }
16136    }
16137}
16138
16139static int
16140bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16141{
16142    struct bxe_softc *sc;
16143    int error, result;
16144
16145    result = 0;
16146    error = sysctl_handle_int(oidp, &result, 0, req);
16147
16148    if (error || !req->newptr) {
16149        return (error);
16150    }
16151
16152    if (result == 1) {
16153        sc = (struct bxe_softc *)arg1;
16154        BLOGI(sc, "... dumping driver state ...\n");
16155        /* XXX */
16156    }
16157
16158    return (error);
16159}
16160
16161static int
16162bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16163{
16164    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16165    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16166    uint32_t *offset;
16167    uint64_t value = 0;
16168    int index = (int)arg2;
16169
16170    if (index >= BXE_NUM_ETH_STATS) {
16171        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16172        return (-1);
16173    }
16174
16175    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16176
16177    switch (bxe_eth_stats_arr[index].size) {
16178    case 4:
16179        value = (uint64_t)*offset;
16180        break;
16181    case 8:
16182        value = HILO_U64(*offset, *(offset + 1));
16183        break;
16184    default:
16185        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16186              index, bxe_eth_stats_arr[index].size);
16187        return (-1);
16188    }
16189
16190    return (sysctl_handle_64(oidp, &value, 0, req));
16191}
16192
16193static int
16194bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16195{
16196    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16197    uint32_t *eth_stats;
16198    uint32_t *offset;
16199    uint64_t value = 0;
16200    uint32_t q_stat = (uint32_t)arg2;
16201    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16202    uint32_t index = (q_stat & 0xffff);
16203
16204    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16205
16206    if (index >= BXE_NUM_ETH_Q_STATS) {
16207        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16208        return (-1);
16209    }
16210
16211    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16212
16213    switch (bxe_eth_q_stats_arr[index].size) {
16214    case 4:
16215        value = (uint64_t)*offset;
16216        break;
16217    case 8:
16218        value = HILO_U64(*offset, *(offset + 1));
16219        break;
16220    default:
16221        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16222              index, bxe_eth_q_stats_arr[index].size);
16223        return (-1);
16224    }
16225
16226    return (sysctl_handle_64(oidp, &value, 0, req));
16227}
16228
16229static void
16230bxe_add_sysctls(struct bxe_softc *sc)
16231{
16232    struct sysctl_ctx_list *ctx;
16233    struct sysctl_oid_list *children;
16234    struct sysctl_oid *queue_top, *queue;
16235    struct sysctl_oid_list *queue_top_children, *queue_children;
16236    char queue_num_buf[32];
16237    uint32_t q_stat;
16238    int i, j;
16239
16240    ctx = device_get_sysctl_ctx(sc->dev);
16241    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16242
16243    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16244                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16245                      "version");
16246
16247    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16248                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16249                      "bootcode version");
16250
16251    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16252             BCM_5710_FW_MAJOR_VERSION,
16253             BCM_5710_FW_MINOR_VERSION,
16254             BCM_5710_FW_REVISION_VERSION,
16255             BCM_5710_FW_ENGINEERING_VERSION);
16256    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16257                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16258                      "firmware version");
16259
16260    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16261        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16262         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16263         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16264         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16265                                                                "Unknown"));
16266    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16267                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16268                      "multifunction mode");
16269
16270    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16271                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16272                    "multifunction vnics per port");
16273
16274    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16275                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16276                      "mac address");
16277
16278    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16279        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16280         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16281         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16282                                              "???GT/s"),
16283        sc->devinfo.pcie_link_width);
16284    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16285                      CTLFLAG_RD, &sc->pci_link_str, 0,
16286                      "pci link status");
16287
16288    sc->debug = bxe_debug;
16289    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16290                    CTLFLAG_RW, &sc->debug, 0,
16291                    "debug logging mode");
16292
16293    sc->rx_budget = bxe_rx_budget;
16294    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16295                    CTLFLAG_RW, &sc->rx_budget, 0,
16296                    "rx processing budget");
16297
16298    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16299                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16300                    bxe_sysctl_state, "IU", "dump driver state");
16301
16302    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16303        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16304                        bxe_eth_stats_arr[i].string,
16305                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16306                        bxe_sysctl_eth_stat, "LU",
16307                        bxe_eth_stats_arr[i].string);
16308    }
16309
16310    /* add a new parent node for all queues "dev.bxe.#.queue" */
16311    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16312                                CTLFLAG_RD, NULL, "queue");
16313    queue_top_children = SYSCTL_CHILDREN(queue_top);
16314
16315    for (i = 0; i < sc->num_queues; i++) {
16316        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16317        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16318        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16319                                queue_num_buf, CTLFLAG_RD, NULL,
16320                                "single queue");
16321        queue_children = SYSCTL_CHILDREN(queue);
16322
16323        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16324            q_stat = ((i << 16) | j);
16325            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16326                            bxe_eth_q_stats_arr[j].string,
16327                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16328                            bxe_sysctl_eth_q_stat, "LU",
16329                            bxe_eth_q_stats_arr[j].string);
16330        }
16331    }
16332}
16333
16334/*
16335 * Device attach function.
16336 *
16337 * Allocates device resources, performs secondary chip identification, and
16338 * initializes driver instance variables. This function is called from driver
16339 * load after a successful probe.
16340 *
16341 * Returns:
16342 *   0 = Success, >0 = Failure
16343 */
16344static int
16345bxe_attach(device_t dev)
16346{
16347    struct bxe_softc *sc;
16348
16349    sc = device_get_softc(dev);
16350
16351    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16352
16353    sc->state = BXE_STATE_CLOSED;
16354
16355    sc->dev  = dev;
16356    sc->unit = device_get_unit(dev);
16357
16358    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16359
16360    sc->pcie_bus    = pci_get_bus(dev);
16361    sc->pcie_device = pci_get_slot(dev);
16362    sc->pcie_func   = pci_get_function(dev);
16363
16364    /* enable bus master capability */
16365    pci_enable_busmaster(dev);
16366
16367    /* get the BARs */
16368    if (bxe_allocate_bars(sc) != 0) {
16369        return (ENXIO);
16370    }
16371
16372    /* initialize the mutexes */
16373    bxe_init_mutexes(sc);
16374
16375    /* prepare the periodic callout */
16376    callout_init(&sc->periodic_callout, 0);
16377
16378    /* prepare the chip taskqueue */
16379    sc->chip_tq_flags = CHIP_TQ_NONE;
16380    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16381             "bxe%d_chip_tq", sc->unit);
16382    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16383    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16384                                   taskqueue_thread_enqueue,
16385                                   &sc->chip_tq);
16386    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16387                            "%s", sc->chip_tq_name);
16388
16389    /* get device info and set params */
16390    if (bxe_get_device_info(sc) != 0) {
16391        BLOGE(sc, "getting device info\n");
16392        bxe_deallocate_bars(sc);
16393        pci_disable_busmaster(dev);
16394        return (ENXIO);
16395    }
16396
16397    /* get final misc params */
16398    bxe_get_params(sc);
16399
16400    /* set the default MTU (changed via ifconfig) */
16401    sc->mtu = ETHERMTU;
16402
16403    bxe_set_modes_bitmap(sc);
16404
16405    /* XXX
16406     * If in AFEX mode and the function is configured for FCoE
16407     * then bail... no L2 allowed.
16408     */
16409
16410    /* get phy settings from shmem and 'and' against admin settings */
16411    bxe_get_phy_info(sc);
16412
16413    /* initialize the FreeBSD ifnet interface */
16414    if (bxe_init_ifnet(sc) != 0) {
16415        bxe_release_mutexes(sc);
16416        bxe_deallocate_bars(sc);
16417        pci_disable_busmaster(dev);
16418        return (ENXIO);
16419    }
16420
16421    /* allocate device interrupts */
16422    if (bxe_interrupt_alloc(sc) != 0) {
16423        if (sc->ifnet != NULL) {
16424            ether_ifdetach(sc->ifnet);
16425        }
16426        ifmedia_removeall(&sc->ifmedia);
16427        bxe_release_mutexes(sc);
16428        bxe_deallocate_bars(sc);
16429        pci_disable_busmaster(dev);
16430        return (ENXIO);
16431    }
16432
16433    /* allocate ilt */
16434    if (bxe_alloc_ilt_mem(sc) != 0) {
16435        bxe_interrupt_free(sc);
16436        if (sc->ifnet != NULL) {
16437            ether_ifdetach(sc->ifnet);
16438        }
16439        ifmedia_removeall(&sc->ifmedia);
16440        bxe_release_mutexes(sc);
16441        bxe_deallocate_bars(sc);
16442        pci_disable_busmaster(dev);
16443        return (ENXIO);
16444    }
16445
16446    /* allocate the host hardware/software hsi structures */
16447    if (bxe_alloc_hsi_mem(sc) != 0) {
16448        bxe_free_ilt_mem(sc);
16449        bxe_interrupt_free(sc);
16450        if (sc->ifnet != NULL) {
16451            ether_ifdetach(sc->ifnet);
16452        }
16453        ifmedia_removeall(&sc->ifmedia);
16454        bxe_release_mutexes(sc);
16455        bxe_deallocate_bars(sc);
16456        pci_disable_busmaster(dev);
16457        return (ENXIO);
16458    }
16459
16460    /* need to reset chip if UNDI was active */
16461    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16462        /* init fw_seq */
16463        sc->fw_seq =
16464            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16465             DRV_MSG_SEQ_NUMBER_MASK);
16466        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16467        bxe_prev_unload(sc);
16468    }
16469
16470#if 1
16471    /* XXX */
16472    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16473#else
16474    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16475        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16476        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16477        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16478        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16479        bxe_dcbx_init_params(sc);
16480    } else {
16481        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16482    }
16483#endif
16484
16485    /* calculate qm_cid_count */
16486    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16487    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16488
16489    sc->max_cos = 1;
16490    bxe_init_multi_cos(sc);
16491
16492    bxe_add_sysctls(sc);
16493
16494    return (0);
16495}
16496
16497/*
16498 * Device detach function.
16499 *
16500 * Stops the controller, resets the controller, and releases resources.
16501 *
16502 * Returns:
16503 *   0 = Success, >0 = Failure
16504 */
16505static int
16506bxe_detach(device_t dev)
16507{
16508    struct bxe_softc *sc;
16509    struct ifnet *ifp;
16510
16511    sc = device_get_softc(dev);
16512
16513    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16514
16515    ifp = sc->ifnet;
16516    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16517        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16518        return(EBUSY);
16519    }
16520
16521    /* stop the periodic callout */
16522    bxe_periodic_stop(sc);
16523
16524    /* stop the chip taskqueue */
16525    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16526    if (sc->chip_tq) {
16527        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16528        taskqueue_free(sc->chip_tq);
16529        sc->chip_tq = NULL;
16530    }
16531
16532    /* stop and reset the controller if it was open */
16533    if (sc->state != BXE_STATE_CLOSED) {
16534        BXE_CORE_LOCK(sc);
16535        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16536        BXE_CORE_UNLOCK(sc);
16537    }
16538
16539    /* release the network interface */
16540    if (ifp != NULL) {
16541        ether_ifdetach(ifp);
16542    }
16543    ifmedia_removeall(&sc->ifmedia);
16544
16545    /* XXX do the following based on driver state... */
16546
16547    /* free the host hardware/software hsi structures */
16548    bxe_free_hsi_mem(sc);
16549
16550    /* free ilt */
16551    bxe_free_ilt_mem(sc);
16552
16553    /* release the interrupts */
16554    bxe_interrupt_free(sc);
16555
16556    /* Release the mutexes*/
16557    bxe_release_mutexes(sc);
16558
16559    /* Release the PCIe BAR mapped memory */
16560    bxe_deallocate_bars(sc);
16561
16562    /* Release the FreeBSD interface. */
16563    if (sc->ifnet != NULL) {
16564        if_free(sc->ifnet);
16565    }
16566
16567    pci_disable_busmaster(dev);
16568
16569    return (0);
16570}
16571
16572/*
16573 * Device shutdown function.
16574 *
16575 * Stops and resets the controller.
16576 *
16577 * Returns:
16578 *   Nothing
16579 */
16580static int
16581bxe_shutdown(device_t dev)
16582{
16583    struct bxe_softc *sc;
16584
16585    sc = device_get_softc(dev);
16586
16587    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16588
16589    /* stop the periodic callout */
16590    bxe_periodic_stop(sc);
16591
16592    BXE_CORE_LOCK(sc);
16593    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16594    BXE_CORE_UNLOCK(sc);
16595
16596    return (0);
16597}
16598
16599void
16600bxe_igu_ack_sb(struct bxe_softc *sc,
16601               uint8_t          igu_sb_id,
16602               uint8_t          segment,
16603               uint16_t         index,
16604               uint8_t          op,
16605               uint8_t          update)
16606{
16607    uint32_t igu_addr = sc->igu_base_addr;
16608    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16609    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16610}
16611
16612static void
16613bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16614                     uint8_t          func,
16615                     uint8_t          idu_sb_id,
16616                     uint8_t          is_pf)
16617{
16618    uint32_t data, ctl, cnt = 100;
16619    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16620    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16621    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16622    uint32_t sb_bit =  1 << (idu_sb_id%32);
16623    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16624    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16625
16626    /* Not supported in BC mode */
16627    if (CHIP_INT_MODE_IS_BC(sc)) {
16628        return;
16629    }
16630
16631    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16632             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16633            IGU_REGULAR_CLEANUP_SET |
16634            IGU_REGULAR_BCLEANUP);
16635
16636    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16637           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16638           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16639
16640    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16641            data, igu_addr_data);
16642    REG_WR(sc, igu_addr_data, data);
16643
16644    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16645                      BUS_SPACE_BARRIER_WRITE);
16646    mb();
16647
16648    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16649            ctl, igu_addr_ctl);
16650    REG_WR(sc, igu_addr_ctl, ctl);
16651
16652    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16653                      BUS_SPACE_BARRIER_WRITE);
16654    mb();
16655
16656    /* wait for clean up to finish */
16657    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16658        DELAY(20000);
16659    }
16660
16661    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16662        BLOGD(sc, DBG_LOAD,
16663              "Unable to finish IGU cleanup: "
16664              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16665              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16666    }
16667}
16668
16669static void
16670bxe_igu_clear_sb(struct bxe_softc *sc,
16671                 uint8_t          idu_sb_id)
16672{
16673    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16674}
16675
16676
16677
16678
16679
16680
16681
16682/*******************/
16683/* ECORE CALLBACKS */
16684/*******************/
16685
16686static void
16687bxe_reset_common(struct bxe_softc *sc)
16688{
16689    uint32_t val = 0x1400;
16690
16691    /* reset_common */
16692    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16693
16694    if (CHIP_IS_E3(sc)) {
16695        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16696        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16697    }
16698
16699    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16700}
16701
16702static void
16703bxe_common_init_phy(struct bxe_softc *sc)
16704{
16705    uint32_t shmem_base[2];
16706    uint32_t shmem2_base[2];
16707
16708    /* Avoid common init in case MFW supports LFA */
16709    if (SHMEM2_RD(sc, size) >
16710        (uint32_t)offsetof(struct shmem2_region,
16711                           lfa_host_addr[SC_PORT(sc)])) {
16712        return;
16713    }
16714
16715    shmem_base[0]  = sc->devinfo.shmem_base;
16716    shmem2_base[0] = sc->devinfo.shmem2_base;
16717
16718    if (!CHIP_IS_E1x(sc)) {
16719        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16720        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16721    }
16722
16723    BXE_PHY_LOCK(sc);
16724    elink_common_init_phy(sc, shmem_base, shmem2_base,
16725                          sc->devinfo.chip_id, 0);
16726    BXE_PHY_UNLOCK(sc);
16727}
16728
16729static void
16730bxe_pf_disable(struct bxe_softc *sc)
16731{
16732    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16733
16734    val &= ~IGU_PF_CONF_FUNC_EN;
16735
16736    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16737    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16738    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16739}
16740
16741static void
16742bxe_init_pxp(struct bxe_softc *sc)
16743{
16744    uint16_t devctl;
16745    int r_order, w_order;
16746
16747    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16748
16749    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16750
16751    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16752
16753    if (sc->mrrs == -1) {
16754        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16755    } else {
16756        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16757        r_order = sc->mrrs;
16758    }
16759
16760    ecore_init_pxp_arb(sc, r_order, w_order);
16761}
16762
16763static uint32_t
16764bxe_get_pretend_reg(struct bxe_softc *sc)
16765{
16766    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16767    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16768    return (base + (SC_ABS_FUNC(sc)) * stride);
16769}
16770
16771/*
16772 * Called only on E1H or E2.
16773 * When pretending to be PF, the pretend value is the function number 0..7.
16774 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16775 * combination.
16776 */
16777static int
16778bxe_pretend_func(struct bxe_softc *sc,
16779                 uint16_t         pretend_func_val)
16780{
16781    uint32_t pretend_reg;
16782
16783    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16784        return (-1);
16785    }
16786
16787    /* get my own pretend register */
16788    pretend_reg = bxe_get_pretend_reg(sc);
16789    REG_WR(sc, pretend_reg, pretend_func_val);
16790    REG_RD(sc, pretend_reg);
16791    return (0);
16792}
16793
16794static void
16795bxe_iov_init_dmae(struct bxe_softc *sc)
16796{
16797    return;
16798#if 0
16799    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16800
16801    if (!IS_SRIOV(sc)) {
16802        return;
16803    }
16804
16805    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16806#endif
16807}
16808
16809#if 0
16810static int
16811bxe_iov_init_ilt(struct bxe_softc *sc,
16812                 uint16_t         line)
16813{
16814    return (line);
16815#if 0
16816    int i;
16817    struct ecore_ilt* ilt = sc->ilt;
16818
16819    if (!IS_SRIOV(sc)) {
16820        return (line);
16821    }
16822
16823    /* set vfs ilt lines */
16824    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16825        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16826        ilt->lines[line+i].page = hw_cxt->addr;
16827        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16828        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16829    }
16830    return (line+i);
16831#endif
16832}
16833#endif
16834
16835static void
16836bxe_iov_init_dq(struct bxe_softc *sc)
16837{
16838    return;
16839#if 0
16840    if (!IS_SRIOV(sc)) {
16841        return;
16842    }
16843
16844    /* Set the DQ such that the CID reflect the abs_vfid */
16845    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16846    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16847
16848    /*
16849     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16850     * the PF L2 queues
16851     */
16852    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16853
16854    /* The VF window size is the log2 of the max number of CIDs per VF */
16855    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16856
16857    /*
16858     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16859     * the Pf doorbell size although the 2 are independent.
16860     */
16861    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16862           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16863
16864    /*
16865     * No security checks for now -
16866     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16867     * CID range 0 - 0x1ffff
16868     */
16869    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16870    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16871    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16872    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16873
16874    /* set the number of VF alllowed doorbells to the full DQ range */
16875    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16876
16877    /* set the VF doorbell threshold */
16878    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16879#endif
16880}
16881
16882/* send a NIG loopback debug packet */
16883static void
16884bxe_lb_pckt(struct bxe_softc *sc)
16885{
16886    uint32_t wb_write[3];
16887
16888    /* Ethernet source and destination addresses */
16889    wb_write[0] = 0x55555555;
16890    wb_write[1] = 0x55555555;
16891    wb_write[2] = 0x20;     /* SOP */
16892    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16893
16894    /* NON-IP protocol */
16895    wb_write[0] = 0x09000000;
16896    wb_write[1] = 0x55555555;
16897    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16898    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16899}
16900
16901/*
16902 * Some of the internal memories are not directly readable from the driver.
16903 * To test them we send debug packets.
16904 */
16905static int
16906bxe_int_mem_test(struct bxe_softc *sc)
16907{
16908    int factor;
16909    int count, i;
16910    uint32_t val = 0;
16911
16912    if (CHIP_REV_IS_FPGA(sc)) {
16913        factor = 120;
16914    } else if (CHIP_REV_IS_EMUL(sc)) {
16915        factor = 200;
16916    } else {
16917        factor = 1;
16918    }
16919
16920    /* disable inputs of parser neighbor blocks */
16921    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16922    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16923    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16924    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16925
16926    /*  write 0 to parser credits for CFC search request */
16927    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16928
16929    /* send Ethernet packet */
16930    bxe_lb_pckt(sc);
16931
16932    /* TODO do i reset NIG statistic? */
16933    /* Wait until NIG register shows 1 packet of size 0x10 */
16934    count = 1000 * factor;
16935    while (count) {
16936        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16937        val = *BXE_SP(sc, wb_data[0]);
16938        if (val == 0x10) {
16939            break;
16940        }
16941
16942        DELAY(10000);
16943        count--;
16944    }
16945
16946    if (val != 0x10) {
16947        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16948        return (-1);
16949    }
16950
16951    /* wait until PRS register shows 1 packet */
16952    count = (1000 * factor);
16953    while (count) {
16954        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16955        if (val == 1) {
16956            break;
16957        }
16958
16959        DELAY(10000);
16960        count--;
16961    }
16962
16963    if (val != 0x1) {
16964        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16965        return (-2);
16966    }
16967
16968    /* Reset and init BRB, PRS */
16969    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16970    DELAY(50000);
16971    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16972    DELAY(50000);
16973    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16974    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16975
16976    /* Disable inputs of parser neighbor blocks */
16977    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16978    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16979    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16980    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16981
16982    /* Write 0 to parser credits for CFC search request */
16983    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16984
16985    /* send 10 Ethernet packets */
16986    for (i = 0; i < 10; i++) {
16987        bxe_lb_pckt(sc);
16988    }
16989
16990    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16991    count = (1000 * factor);
16992    while (count) {
16993        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16994        val = *BXE_SP(sc, wb_data[0]);
16995        if (val == 0xb0) {
16996            break;
16997        }
16998
16999        DELAY(10000);
17000        count--;
17001    }
17002
17003    if (val != 0xb0) {
17004        BLOGE(sc, "NIG timeout val=0x%x\n", val);
17005        return (-3);
17006    }
17007
17008    /* Wait until PRS register shows 2 packets */
17009    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17010    if (val != 2) {
17011        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17012    }
17013
17014    /* Write 1 to parser credits for CFC search request */
17015    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17016
17017    /* Wait until PRS register shows 3 packets */
17018    DELAY(10000 * factor);
17019
17020    /* Wait until NIG register shows 1 packet of size 0x10 */
17021    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17022    if (val != 3) {
17023        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17024    }
17025
17026    /* clear NIG EOP FIFO */
17027    for (i = 0; i < 11; i++) {
17028        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17029    }
17030
17031    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17032    if (val != 1) {
17033        BLOGE(sc, "clear of NIG failed\n");
17034        return (-4);
17035    }
17036
17037    /* Reset and init BRB, PRS, NIG */
17038    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17039    DELAY(50000);
17040    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17041    DELAY(50000);
17042    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17043    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17044    if (!CNIC_SUPPORT(sc)) {
17045        /* set NIC mode */
17046        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17047    }
17048
17049    /* Enable inputs of parser neighbor blocks */
17050    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17051    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17052    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17053    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17054
17055    return (0);
17056}
17057
17058static void
17059bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17060{
17061    int is_required;
17062    uint32_t val;
17063    int port;
17064
17065    is_required = 0;
17066    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17067           SHARED_HW_CFG_FAN_FAILURE_MASK);
17068
17069    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17070        is_required = 1;
17071    }
17072    /*
17073     * The fan failure mechanism is usually related to the PHY type since
17074     * the power consumption of the board is affected by the PHY. Currently,
17075     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17076     */
17077    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17078        for (port = PORT_0; port < PORT_MAX; port++) {
17079            is_required |= elink_fan_failure_det_req(sc,
17080                                                     sc->devinfo.shmem_base,
17081                                                     sc->devinfo.shmem2_base,
17082                                                     port);
17083        }
17084    }
17085
17086    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17087
17088    if (is_required == 0) {
17089        return;
17090    }
17091
17092    /* Fan failure is indicated by SPIO 5 */
17093    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17094
17095    /* set to active low mode */
17096    val = REG_RD(sc, MISC_REG_SPIO_INT);
17097    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17098    REG_WR(sc, MISC_REG_SPIO_INT, val);
17099
17100    /* enable interrupt to signal the IGU */
17101    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17102    val |= MISC_SPIO_SPIO5;
17103    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17104}
17105
17106static void
17107bxe_enable_blocks_attention(struct bxe_softc *sc)
17108{
17109    uint32_t val;
17110
17111    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17112    if (!CHIP_IS_E1x(sc)) {
17113        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17114    } else {
17115        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17116    }
17117    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17118    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17119    /*
17120     * mask read length error interrupts in brb for parser
17121     * (parsing unit and 'checksum and crc' unit)
17122     * these errors are legal (PU reads fixed length and CAC can cause
17123     * read length error on truncated packets)
17124     */
17125    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17126    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17127    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17128    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17129    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17130    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17131/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17132/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17133    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17134    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17135    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17136/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17137/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17138    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17139    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17140    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17141    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17142/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17143/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17144
17145    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17146           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17147           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17148    if (!CHIP_IS_E1x(sc)) {
17149        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17150                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17151    }
17152    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17153
17154    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17155    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17156    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17157/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17158
17159    if (!CHIP_IS_E1x(sc)) {
17160        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17161        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17162    }
17163
17164    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17165    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17166/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17167    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17168}
17169
17170/**
17171 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17172 *
17173 * @sc:     driver handle
17174 */
17175static int
17176bxe_init_hw_common(struct bxe_softc *sc)
17177{
17178    uint8_t abs_func_id;
17179    uint32_t val;
17180
17181    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17182          SC_ABS_FUNC(sc));
17183
17184    /*
17185     * take the RESET lock to protect undi_unload flow from accessing
17186     * registers while we are resetting the chip
17187     */
17188    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17189
17190    bxe_reset_common(sc);
17191
17192    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17193
17194    val = 0xfffc;
17195    if (CHIP_IS_E3(sc)) {
17196        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17197        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17198    }
17199
17200    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17201
17202    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17203
17204    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17205    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17206
17207    if (!CHIP_IS_E1x(sc)) {
17208        /*
17209         * 4-port mode or 2-port mode we need to turn off master-enable for
17210         * everyone. After that we turn it back on for self. So, we disregard
17211         * multi-function, and always disable all functions on the given path,
17212         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17213         */
17214        for (abs_func_id = SC_PATH(sc);
17215             abs_func_id < (E2_FUNC_MAX * 2);
17216             abs_func_id += 2) {
17217            if (abs_func_id == SC_ABS_FUNC(sc)) {
17218                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17219                continue;
17220            }
17221
17222            bxe_pretend_func(sc, abs_func_id);
17223
17224            /* clear pf enable */
17225            bxe_pf_disable(sc);
17226
17227            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17228        }
17229    }
17230
17231    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17232
17233    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17234
17235    if (CHIP_IS_E1(sc)) {
17236        /*
17237         * enable HW interrupt from PXP on USDM overflow
17238         * bit 16 on INT_MASK_0
17239         */
17240        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17241    }
17242
17243    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17244    bxe_init_pxp(sc);
17245
17246#ifdef __BIG_ENDIAN
17247    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17248    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17249    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17250    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17251    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17252    /* make sure this value is 0 */
17253    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17254
17255    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17256    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17257    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17258    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17259    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17260#endif
17261
17262    ecore_ilt_init_page_size(sc, INITOP_SET);
17263
17264    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17265        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17266    }
17267
17268    /* let the HW do it's magic... */
17269    DELAY(100000);
17270
17271    /* finish PXP init */
17272    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17273    if (val != 1) {
17274        BLOGE(sc, "PXP2 CFG failed\n");
17275        return (-1);
17276    }
17277    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17278    if (val != 1) {
17279        BLOGE(sc, "PXP2 RD_INIT failed\n");
17280        return (-1);
17281    }
17282
17283    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17284
17285    /*
17286     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17287     * entries with value "0" and valid bit on. This needs to be done by the
17288     * first PF that is loaded in a path (i.e. common phase)
17289     */
17290    if (!CHIP_IS_E1x(sc)) {
17291/*
17292 * In E2 there is a bug in the timers block that can cause function 6 / 7
17293 * (i.e. vnic3) to start even if it is marked as "scan-off".
17294 * This occurs when a different function (func2,3) is being marked
17295 * as "scan-off". Real-life scenario for example: if a driver is being
17296 * load-unloaded while func6,7 are down. This will cause the timer to access
17297 * the ilt, translate to a logical address and send a request to read/write.
17298 * Since the ilt for the function that is down is not valid, this will cause
17299 * a translation error which is unrecoverable.
17300 * The Workaround is intended to make sure that when this happens nothing
17301 * fatal will occur. The workaround:
17302 *  1.  First PF driver which loads on a path will:
17303 *      a.  After taking the chip out of reset, by using pretend,
17304 *          it will write "0" to the following registers of
17305 *          the other vnics.
17306 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17307 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17308 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17309 *          And for itself it will write '1' to
17310 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17311 *          dmae-operations (writing to pram for example.)
17312 *          note: can be done for only function 6,7 but cleaner this
17313 *            way.
17314 *      b.  Write zero+valid to the entire ILT.
17315 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17316 *          VNIC3 (of that port). The range allocated will be the
17317 *          entire ILT. This is needed to prevent  ILT range error.
17318 *  2.  Any PF driver load flow:
17319 *      a.  ILT update with the physical addresses of the allocated
17320 *          logical pages.
17321 *      b.  Wait 20msec. - note that this timeout is needed to make
17322 *          sure there are no requests in one of the PXP internal
17323 *          queues with "old" ILT addresses.
17324 *      c.  PF enable in the PGLC.
17325 *      d.  Clear the was_error of the PF in the PGLC. (could have
17326 *          occurred while driver was down)
17327 *      e.  PF enable in the CFC (WEAK + STRONG)
17328 *      f.  Timers scan enable
17329 *  3.  PF driver unload flow:
17330 *      a.  Clear the Timers scan_en.
17331 *      b.  Polling for scan_on=0 for that PF.
17332 *      c.  Clear the PF enable bit in the PXP.
17333 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17334 *      e.  Write zero+valid to all ILT entries (The valid bit must
17335 *          stay set)
17336 *      f.  If this is VNIC 3 of a port then also init
17337 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17338 *          to the last enrty in the ILT.
17339 *
17340 *      Notes:
17341 *      Currently the PF error in the PGLC is non recoverable.
17342 *      In the future the there will be a recovery routine for this error.
17343 *      Currently attention is masked.
17344 *      Having an MCP lock on the load/unload process does not guarantee that
17345 *      there is no Timer disable during Func6/7 enable. This is because the
17346 *      Timers scan is currently being cleared by the MCP on FLR.
17347 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17348 *      there is error before clearing it. But the flow above is simpler and
17349 *      more general.
17350 *      All ILT entries are written by zero+valid and not just PF6/7
17351 *      ILT entries since in the future the ILT entries allocation for
17352 *      PF-s might be dynamic.
17353 */
17354        struct ilt_client_info ilt_cli;
17355        struct ecore_ilt ilt;
17356
17357        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17358        memset(&ilt, 0, sizeof(struct ecore_ilt));
17359
17360        /* initialize dummy TM client */
17361        ilt_cli.start      = 0;
17362        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17363        ilt_cli.client_num = ILT_CLIENT_TM;
17364
17365        /*
17366         * Step 1: set zeroes to all ilt page entries with valid bit on
17367         * Step 2: set the timers first/last ilt entry to point
17368         * to the entire range to prevent ILT range error for 3rd/4th
17369         * vnic (this code assumes existence of the vnic)
17370         *
17371         * both steps performed by call to ecore_ilt_client_init_op()
17372         * with dummy TM client
17373         *
17374         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17375         * and his brother are split registers
17376         */
17377
17378        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17379        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17380        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17381
17382        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17383        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17384        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17385    }
17386
17387    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17388    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17389
17390    if (!CHIP_IS_E1x(sc)) {
17391        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17392                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17393
17394        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17395        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17396
17397        /* let the HW do it's magic... */
17398        do {
17399            DELAY(200000);
17400            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17401        } while (factor-- && (val != 1));
17402
17403        if (val != 1) {
17404            BLOGE(sc, "ATC_INIT failed\n");
17405            return (-1);
17406        }
17407    }
17408
17409    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17410
17411    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17412
17413    bxe_iov_init_dmae(sc);
17414
17415    /* clean the DMAE memory */
17416    sc->dmae_ready = 1;
17417    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17418
17419    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17420
17421    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17422
17423    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17424
17425    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17426
17427    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17428    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17429    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17430    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17431
17432    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17433
17434    /* QM queues pointers table */
17435    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17436
17437    /* soft reset pulse */
17438    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17439    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17440
17441    if (CNIC_SUPPORT(sc))
17442        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17443
17444    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17445    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17446    if (!CHIP_REV_IS_SLOW(sc)) {
17447        /* enable hw interrupt from doorbell Q */
17448        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17449    }
17450
17451    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17452
17453    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17454    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17455
17456    if (!CHIP_IS_E1(sc)) {
17457        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17458    }
17459
17460    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17461        if (IS_MF_AFEX(sc)) {
17462            /*
17463             * configure that AFEX and VLAN headers must be
17464             * received in AFEX mode
17465             */
17466            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17467            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17468            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17469            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17470            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17471        } else {
17472            /*
17473             * Bit-map indicating which L2 hdrs may appear
17474             * after the basic Ethernet header
17475             */
17476            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17477                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17478        }
17479    }
17480
17481    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17482    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17483    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17484    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17485
17486    if (!CHIP_IS_E1x(sc)) {
17487        /* reset VFC memories */
17488        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17489               VFC_MEMORIES_RST_REG_CAM_RST |
17490               VFC_MEMORIES_RST_REG_RAM_RST);
17491        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17492               VFC_MEMORIES_RST_REG_CAM_RST |
17493               VFC_MEMORIES_RST_REG_RAM_RST);
17494
17495        DELAY(20000);
17496    }
17497
17498    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17499    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17500    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17501    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17502
17503    /* sync semi rtc */
17504    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17505           0x80000000);
17506    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17507           0x80000000);
17508
17509    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17510    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17511    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17512
17513    if (!CHIP_IS_E1x(sc)) {
17514        if (IS_MF_AFEX(sc)) {
17515            /*
17516             * configure that AFEX and VLAN headers must be
17517             * sent in AFEX mode
17518             */
17519            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17520            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17521            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17522            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17523            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17524        } else {
17525            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17526                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17527        }
17528    }
17529
17530    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17531
17532    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17533
17534    if (CNIC_SUPPORT(sc)) {
17535        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17536        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17537        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17538        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17539        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17540        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17541        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17542        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17543        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17544        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17545    }
17546    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17547
17548    if (sizeof(union cdu_context) != 1024) {
17549        /* we currently assume that a context is 1024 bytes */
17550        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17551              (long)sizeof(union cdu_context));
17552    }
17553
17554    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17555    val = (4 << 24) + (0 << 12) + 1024;
17556    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17557
17558    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17559
17560    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17561    /* enable context validation interrupt from CFC */
17562    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17563
17564    /* set the thresholds to prevent CFC/CDU race */
17565    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17566    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17567
17568    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17569        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17570    }
17571
17572    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17573    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17574
17575    /* Reset PCIE errors for debug */
17576    REG_WR(sc, 0x2814, 0xffffffff);
17577    REG_WR(sc, 0x3820, 0xffffffff);
17578
17579    if (!CHIP_IS_E1x(sc)) {
17580        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17581               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17582                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17583        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17584               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17585                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17586                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17587        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17588               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17589                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17590                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17591    }
17592
17593    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17594
17595    if (!CHIP_IS_E1(sc)) {
17596        /* in E3 this done in per-port section */
17597        if (!CHIP_IS_E3(sc))
17598            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17599    }
17600
17601    if (CHIP_IS_E1H(sc)) {
17602        /* not applicable for E2 (and above ...) */
17603        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17604    }
17605
17606    if (CHIP_REV_IS_SLOW(sc)) {
17607        DELAY(200000);
17608    }
17609
17610    /* finish CFC init */
17611    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17612    if (val != 1) {
17613        BLOGE(sc, "CFC LL_INIT failed\n");
17614        return (-1);
17615    }
17616    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17617    if (val != 1) {
17618        BLOGE(sc, "CFC AC_INIT failed\n");
17619        return (-1);
17620    }
17621    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17622    if (val != 1) {
17623        BLOGE(sc, "CFC CAM_INIT failed\n");
17624        return (-1);
17625    }
17626    REG_WR(sc, CFC_REG_DEBUG0, 0);
17627
17628    if (CHIP_IS_E1(sc)) {
17629        /* read NIG statistic to see if this is our first up since powerup */
17630        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17631        val = *BXE_SP(sc, wb_data[0]);
17632
17633        /* do internal memory self test */
17634        if ((val == 0) && bxe_int_mem_test(sc)) {
17635            BLOGE(sc, "internal mem self test failed\n");
17636            return (-1);
17637        }
17638    }
17639
17640    bxe_setup_fan_failure_detection(sc);
17641
17642    /* clear PXP2 attentions */
17643    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17644
17645    bxe_enable_blocks_attention(sc);
17646
17647    if (!CHIP_REV_IS_SLOW(sc)) {
17648        ecore_enable_blocks_parity(sc);
17649    }
17650
17651    if (!BXE_NOMCP(sc)) {
17652        if (CHIP_IS_E1x(sc)) {
17653            bxe_common_init_phy(sc);
17654        }
17655    }
17656
17657    return (0);
17658}
17659
17660/**
17661 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17662 *
17663 * @sc:     driver handle
17664 */
17665static int
17666bxe_init_hw_common_chip(struct bxe_softc *sc)
17667{
17668    int rc = bxe_init_hw_common(sc);
17669
17670    if (rc) {
17671        return (rc);
17672    }
17673
17674    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17675    if (!BXE_NOMCP(sc)) {
17676        bxe_common_init_phy(sc);
17677    }
17678
17679    return (0);
17680}
17681
17682static int
17683bxe_init_hw_port(struct bxe_softc *sc)
17684{
17685    int port = SC_PORT(sc);
17686    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17687    uint32_t low, high;
17688    uint32_t val;
17689
17690    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17691
17692    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17693
17694    ecore_init_block(sc, BLOCK_MISC, init_phase);
17695    ecore_init_block(sc, BLOCK_PXP, init_phase);
17696    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17697
17698    /*
17699     * Timers bug workaround: disables the pf_master bit in pglue at
17700     * common phase, we need to enable it here before any dmae access are
17701     * attempted. Therefore we manually added the enable-master to the
17702     * port phase (it also happens in the function phase)
17703     */
17704    if (!CHIP_IS_E1x(sc)) {
17705        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17706    }
17707
17708    ecore_init_block(sc, BLOCK_ATC, init_phase);
17709    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17710    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17711    ecore_init_block(sc, BLOCK_QM, init_phase);
17712
17713    ecore_init_block(sc, BLOCK_TCM, init_phase);
17714    ecore_init_block(sc, BLOCK_UCM, init_phase);
17715    ecore_init_block(sc, BLOCK_CCM, init_phase);
17716    ecore_init_block(sc, BLOCK_XCM, init_phase);
17717
17718    /* QM cid (connection) count */
17719    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17720
17721    if (CNIC_SUPPORT(sc)) {
17722        ecore_init_block(sc, BLOCK_TM, init_phase);
17723        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17724        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17725    }
17726
17727    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17728
17729    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17730
17731    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17732        if (IS_MF(sc)) {
17733            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17734        } else if (sc->mtu > 4096) {
17735            if (BXE_ONE_PORT(sc)) {
17736                low = 160;
17737            } else {
17738                val = sc->mtu;
17739                /* (24*1024 + val*4)/256 */
17740                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17741            }
17742        } else {
17743            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17744        }
17745        high = (low + 56); /* 14*1024/256 */
17746        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17747        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17748    }
17749
17750    if (CHIP_IS_MODE_4_PORT(sc)) {
17751        REG_WR(sc, SC_PORT(sc) ?
17752               BRB1_REG_MAC_GUARANTIED_1 :
17753               BRB1_REG_MAC_GUARANTIED_0, 40);
17754    }
17755
17756    ecore_init_block(sc, BLOCK_PRS, init_phase);
17757    if (CHIP_IS_E3B0(sc)) {
17758        if (IS_MF_AFEX(sc)) {
17759            /* configure headers for AFEX mode */
17760            REG_WR(sc, SC_PORT(sc) ?
17761                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17762                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17763            REG_WR(sc, SC_PORT(sc) ?
17764                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17765                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17766            REG_WR(sc, SC_PORT(sc) ?
17767                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17768                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17769        } else {
17770            /* Ovlan exists only if we are in multi-function +
17771             * switch-dependent mode, in switch-independent there
17772             * is no ovlan headers
17773             */
17774            REG_WR(sc, SC_PORT(sc) ?
17775                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17776                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17777                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17778        }
17779    }
17780
17781    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17782    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17783    ecore_init_block(sc, BLOCK_USDM, init_phase);
17784    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17785
17786    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17787    ecore_init_block(sc, BLOCK_USEM, init_phase);
17788    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17789    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17790
17791    ecore_init_block(sc, BLOCK_UPB, init_phase);
17792    ecore_init_block(sc, BLOCK_XPB, init_phase);
17793
17794    ecore_init_block(sc, BLOCK_PBF, init_phase);
17795
17796    if (CHIP_IS_E1x(sc)) {
17797        /* configure PBF to work without PAUSE mtu 9000 */
17798        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17799
17800        /* update threshold */
17801        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17802        /* update init credit */
17803        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17804
17805        /* probe changes */
17806        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17807        DELAY(50);
17808        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17809    }
17810
17811    if (CNIC_SUPPORT(sc)) {
17812        ecore_init_block(sc, BLOCK_SRC, init_phase);
17813    }
17814
17815    ecore_init_block(sc, BLOCK_CDU, init_phase);
17816    ecore_init_block(sc, BLOCK_CFC, init_phase);
17817
17818    if (CHIP_IS_E1(sc)) {
17819        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17820        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17821    }
17822    ecore_init_block(sc, BLOCK_HC, init_phase);
17823
17824    ecore_init_block(sc, BLOCK_IGU, init_phase);
17825
17826    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17827    /* init aeu_mask_attn_func_0/1:
17828     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17829     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17830     *             bits 4-7 are used for "per vn group attention" */
17831    val = IS_MF(sc) ? 0xF7 : 0x7;
17832    /* Enable DCBX attention for all but E1 */
17833    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17834    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17835
17836    ecore_init_block(sc, BLOCK_NIG, init_phase);
17837
17838    if (!CHIP_IS_E1x(sc)) {
17839        /* Bit-map indicating which L2 hdrs may appear after the
17840         * basic Ethernet header
17841         */
17842        if (IS_MF_AFEX(sc)) {
17843            REG_WR(sc, SC_PORT(sc) ?
17844                   NIG_REG_P1_HDRS_AFTER_BASIC :
17845                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17846        } else {
17847            REG_WR(sc, SC_PORT(sc) ?
17848                   NIG_REG_P1_HDRS_AFTER_BASIC :
17849                   NIG_REG_P0_HDRS_AFTER_BASIC,
17850                   IS_MF_SD(sc) ? 7 : 6);
17851        }
17852
17853        if (CHIP_IS_E3(sc)) {
17854            REG_WR(sc, SC_PORT(sc) ?
17855                   NIG_REG_LLH1_MF_MODE :
17856                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17857        }
17858    }
17859    if (!CHIP_IS_E3(sc)) {
17860        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17861    }
17862
17863    if (!CHIP_IS_E1(sc)) {
17864        /* 0x2 disable mf_ov, 0x1 enable */
17865        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17866               (IS_MF_SD(sc) ? 0x1 : 0x2));
17867
17868        if (!CHIP_IS_E1x(sc)) {
17869            val = 0;
17870            switch (sc->devinfo.mf_info.mf_mode) {
17871            case MULTI_FUNCTION_SD:
17872                val = 1;
17873                break;
17874            case MULTI_FUNCTION_SI:
17875            case MULTI_FUNCTION_AFEX:
17876                val = 2;
17877                break;
17878            }
17879
17880            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17881                        NIG_REG_LLH0_CLS_TYPE), val);
17882        }
17883        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17884        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17885        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17886    }
17887
17888    /* If SPIO5 is set to generate interrupts, enable it for this port */
17889    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17890    if (val & MISC_SPIO_SPIO5) {
17891        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17892                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17893        val = REG_RD(sc, reg_addr);
17894        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17895        REG_WR(sc, reg_addr, val);
17896    }
17897
17898    return (0);
17899}
17900
17901static uint32_t
17902bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17903                       uint32_t         reg,
17904                       uint32_t         expected,
17905                       uint32_t         poll_count)
17906{
17907    uint32_t cur_cnt = poll_count;
17908    uint32_t val;
17909
17910    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17911        DELAY(FLR_WAIT_INTERVAL);
17912    }
17913
17914    return (val);
17915}
17916
17917static int
17918bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17919                              uint32_t         reg,
17920                              char             *msg,
17921                              uint32_t         poll_cnt)
17922{
17923    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17924
17925    if (val != 0) {
17926        BLOGE(sc, "%s usage count=%d\n", msg, val);
17927        return (1);
17928    }
17929
17930    return (0);
17931}
17932
17933/* Common routines with VF FLR cleanup */
17934static uint32_t
17935bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17936{
17937    /* adjust polling timeout */
17938    if (CHIP_REV_IS_EMUL(sc)) {
17939        return (FLR_POLL_CNT * 2000);
17940    }
17941
17942    if (CHIP_REV_IS_FPGA(sc)) {
17943        return (FLR_POLL_CNT * 120);
17944    }
17945
17946    return (FLR_POLL_CNT);
17947}
17948
17949static int
17950bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17951                           uint32_t         poll_cnt)
17952{
17953    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17954    if (bxe_flr_clnup_poll_hw_counter(sc,
17955                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17956                                      "CFC PF usage counter timed out",
17957                                      poll_cnt)) {
17958        return (1);
17959    }
17960
17961    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17962    if (bxe_flr_clnup_poll_hw_counter(sc,
17963                                      DORQ_REG_PF_USAGE_CNT,
17964                                      "DQ PF usage counter timed out",
17965                                      poll_cnt)) {
17966        return (1);
17967    }
17968
17969    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17970    if (bxe_flr_clnup_poll_hw_counter(sc,
17971                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17972                                      "QM PF usage counter timed out",
17973                                      poll_cnt)) {
17974        return (1);
17975    }
17976
17977    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17978    if (bxe_flr_clnup_poll_hw_counter(sc,
17979                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17980                                      "Timers VNIC usage counter timed out",
17981                                      poll_cnt)) {
17982        return (1);
17983    }
17984
17985    if (bxe_flr_clnup_poll_hw_counter(sc,
17986                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17987                                      "Timers NUM_SCANS usage counter timed out",
17988                                      poll_cnt)) {
17989        return (1);
17990    }
17991
17992    /* Wait DMAE PF usage counter to zero */
17993    if (bxe_flr_clnup_poll_hw_counter(sc,
17994                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17995                                      "DMAE dommand register timed out",
17996                                      poll_cnt)) {
17997        return (1);
17998    }
17999
18000    return (0);
18001}
18002
18003#define OP_GEN_PARAM(param)                                            \
18004    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18005#define OP_GEN_TYPE(type)                                           \
18006    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18007#define OP_GEN_AGG_VECT(index)                                             \
18008    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18009
18010static int
18011bxe_send_final_clnup(struct bxe_softc *sc,
18012                     uint8_t          clnup_func,
18013                     uint32_t         poll_cnt)
18014{
18015    uint32_t op_gen_command = 0;
18016    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18017                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18018    int ret = 0;
18019
18020    if (REG_RD(sc, comp_addr)) {
18021        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18022        return (1);
18023    }
18024
18025    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18026    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18027    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18028    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18029
18030    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18031    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18032
18033    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18034        BLOGE(sc, "FW final cleanup did not succeed\n");
18035        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18036              (REG_RD(sc, comp_addr)));
18037        bxe_panic(sc, ("FLR cleanup failed\n"));
18038        return (1);
18039    }
18040
18041    /* Zero completion for nxt FLR */
18042    REG_WR(sc, comp_addr, 0);
18043
18044    return (ret);
18045}
18046
18047static void
18048bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18049                       struct pbf_pN_buf_regs *regs,
18050                       uint32_t               poll_count)
18051{
18052    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18053    uint32_t cur_cnt = poll_count;
18054
18055    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18056    crd = crd_start = REG_RD(sc, regs->crd);
18057    init_crd = REG_RD(sc, regs->init_crd);
18058
18059    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18060    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18061    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18062
18063    while ((crd != init_crd) &&
18064           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18065            (init_crd - crd_start))) {
18066        if (cur_cnt--) {
18067            DELAY(FLR_WAIT_INTERVAL);
18068            crd = REG_RD(sc, regs->crd);
18069            crd_freed = REG_RD(sc, regs->crd_freed);
18070        } else {
18071            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18072            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18073            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18074            break;
18075        }
18076    }
18077
18078    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18079          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18080}
18081
18082static void
18083bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18084                       struct pbf_pN_cmd_regs *regs,
18085                       uint32_t               poll_count)
18086{
18087    uint32_t occup, to_free, freed, freed_start;
18088    uint32_t cur_cnt = poll_count;
18089
18090    occup = to_free = REG_RD(sc, regs->lines_occup);
18091    freed = freed_start = REG_RD(sc, regs->lines_freed);
18092
18093    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18094    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18095
18096    while (occup &&
18097           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18098        if (cur_cnt--) {
18099            DELAY(FLR_WAIT_INTERVAL);
18100            occup = REG_RD(sc, regs->lines_occup);
18101            freed = REG_RD(sc, regs->lines_freed);
18102        } else {
18103            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18104            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18105            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18106            break;
18107        }
18108    }
18109
18110    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18111          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18112}
18113
18114static void
18115bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18116{
18117    struct pbf_pN_cmd_regs cmd_regs[] = {
18118        {0, (CHIP_IS_E3B0(sc)) ?
18119            PBF_REG_TQ_OCCUPANCY_Q0 :
18120            PBF_REG_P0_TQ_OCCUPANCY,
18121            (CHIP_IS_E3B0(sc)) ?
18122            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18123            PBF_REG_P0_TQ_LINES_FREED_CNT},
18124        {1, (CHIP_IS_E3B0(sc)) ?
18125            PBF_REG_TQ_OCCUPANCY_Q1 :
18126            PBF_REG_P1_TQ_OCCUPANCY,
18127            (CHIP_IS_E3B0(sc)) ?
18128            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18129            PBF_REG_P1_TQ_LINES_FREED_CNT},
18130        {4, (CHIP_IS_E3B0(sc)) ?
18131            PBF_REG_TQ_OCCUPANCY_LB_Q :
18132            PBF_REG_P4_TQ_OCCUPANCY,
18133            (CHIP_IS_E3B0(sc)) ?
18134            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18135            PBF_REG_P4_TQ_LINES_FREED_CNT}
18136    };
18137
18138    struct pbf_pN_buf_regs buf_regs[] = {
18139        {0, (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_INIT_CRD_Q0 :
18141            PBF_REG_P0_INIT_CRD ,
18142            (CHIP_IS_E3B0(sc)) ?
18143            PBF_REG_CREDIT_Q0 :
18144            PBF_REG_P0_CREDIT,
18145            (CHIP_IS_E3B0(sc)) ?
18146            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18147            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18148        {1, (CHIP_IS_E3B0(sc)) ?
18149            PBF_REG_INIT_CRD_Q1 :
18150            PBF_REG_P1_INIT_CRD,
18151            (CHIP_IS_E3B0(sc)) ?
18152            PBF_REG_CREDIT_Q1 :
18153            PBF_REG_P1_CREDIT,
18154            (CHIP_IS_E3B0(sc)) ?
18155            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18156            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18157        {4, (CHIP_IS_E3B0(sc)) ?
18158            PBF_REG_INIT_CRD_LB_Q :
18159            PBF_REG_P4_INIT_CRD,
18160            (CHIP_IS_E3B0(sc)) ?
18161            PBF_REG_CREDIT_LB_Q :
18162            PBF_REG_P4_CREDIT,
18163            (CHIP_IS_E3B0(sc)) ?
18164            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18165            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18166    };
18167
18168    int i;
18169
18170    /* Verify the command queues are flushed P0, P1, P4 */
18171    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18172        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18173    }
18174
18175    /* Verify the transmission buffers are flushed P0, P1, P4 */
18176    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18177        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18178    }
18179}
18180
18181static void
18182bxe_hw_enable_status(struct bxe_softc *sc)
18183{
18184    uint32_t val;
18185
18186    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18187    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18188
18189    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18190    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18191
18192    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18193    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18194
18195    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18196    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18197
18198    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18199    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18200
18201    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18202    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18203
18204    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18205    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18206
18207    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18208    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18209}
18210
18211static int
18212bxe_pf_flr_clnup(struct bxe_softc *sc)
18213{
18214    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18215
18216    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18217
18218    /* Re-enable PF target read access */
18219    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18220
18221    /* Poll HW usage counters */
18222    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18223    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18224        return (-1);
18225    }
18226
18227    /* Zero the igu 'trailing edge' and 'leading edge' */
18228
18229    /* Send the FW cleanup command */
18230    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18231        return (-1);
18232    }
18233
18234    /* ATC cleanup */
18235
18236    /* Verify TX hw is flushed */
18237    bxe_tx_hw_flushed(sc, poll_cnt);
18238
18239    /* Wait 100ms (not adjusted according to platform) */
18240    DELAY(100000);
18241
18242    /* Verify no pending pci transactions */
18243    if (bxe_is_pcie_pending(sc)) {
18244        BLOGE(sc, "PCIE Transactions still pending\n");
18245    }
18246
18247    /* Debug */
18248    bxe_hw_enable_status(sc);
18249
18250    /*
18251     * Master enable - Due to WB DMAE writes performed before this
18252     * register is re-initialized as part of the regular function init
18253     */
18254    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18255
18256    return (0);
18257}
18258
18259#if 0
18260static void
18261bxe_init_searcher(struct bxe_softc *sc)
18262{
18263    int port = SC_PORT(sc);
18264    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18265    /* T1 hash bits value determines the T1 number of entries */
18266    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18267}
18268#endif
18269
18270static int
18271bxe_init_hw_func(struct bxe_softc *sc)
18272{
18273    int port = SC_PORT(sc);
18274    int func = SC_FUNC(sc);
18275    int init_phase = PHASE_PF0 + func;
18276    struct ecore_ilt *ilt = sc->ilt;
18277    uint16_t cdu_ilt_start;
18278    uint32_t addr, val;
18279    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18280    int i, main_mem_width, rc;
18281
18282    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18283
18284    /* FLR cleanup */
18285    if (!CHIP_IS_E1x(sc)) {
18286        rc = bxe_pf_flr_clnup(sc);
18287        if (rc) {
18288            BLOGE(sc, "FLR cleanup failed!\n");
18289            // XXX bxe_fw_dump(sc);
18290            // XXX bxe_idle_chk(sc);
18291            return (rc);
18292        }
18293    }
18294
18295    /* set MSI reconfigure capability */
18296    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18297        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18298        val = REG_RD(sc, addr);
18299        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18300        REG_WR(sc, addr, val);
18301    }
18302
18303    ecore_init_block(sc, BLOCK_PXP, init_phase);
18304    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18305
18306    ilt = sc->ilt;
18307    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18308
18309#if 0
18310    if (IS_SRIOV(sc)) {
18311        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18312    }
18313    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18314
18315#if (BXE_FIRST_VF_CID > 0)
18316    /*
18317     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18318     * those of the VFs, so start line should be reset
18319     */
18320    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18321#endif
18322#endif
18323
18324    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18325        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18326        ilt->lines[cdu_ilt_start + i].page_mapping =
18327            sc->context[i].vcxt_dma.paddr;
18328        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18329    }
18330    ecore_ilt_init_op(sc, INITOP_SET);
18331
18332#if 0
18333    if (!CONFIGURE_NIC_MODE(sc)) {
18334        bxe_init_searcher(sc);
18335        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18336        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18337    } else
18338#endif
18339    {
18340        /* Set NIC mode */
18341        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18342        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18343    }
18344
18345    if (!CHIP_IS_E1x(sc)) {
18346        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18347
18348        /* Turn on a single ISR mode in IGU if driver is going to use
18349         * INT#x or MSI
18350         */
18351        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18352            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18353        }
18354
18355        /*
18356         * Timers workaround bug: function init part.
18357         * Need to wait 20msec after initializing ILT,
18358         * needed to make sure there are no requests in
18359         * one of the PXP internal queues with "old" ILT addresses
18360         */
18361        DELAY(20000);
18362
18363        /*
18364         * Master enable - Due to WB DMAE writes performed before this
18365         * register is re-initialized as part of the regular function
18366         * init
18367         */
18368        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18369        /* Enable the function in IGU */
18370        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18371    }
18372
18373    sc->dmae_ready = 1;
18374
18375    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18376
18377    if (!CHIP_IS_E1x(sc))
18378        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18379
18380    ecore_init_block(sc, BLOCK_ATC, init_phase);
18381    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18382    ecore_init_block(sc, BLOCK_NIG, init_phase);
18383    ecore_init_block(sc, BLOCK_SRC, init_phase);
18384    ecore_init_block(sc, BLOCK_MISC, init_phase);
18385    ecore_init_block(sc, BLOCK_TCM, init_phase);
18386    ecore_init_block(sc, BLOCK_UCM, init_phase);
18387    ecore_init_block(sc, BLOCK_CCM, init_phase);
18388    ecore_init_block(sc, BLOCK_XCM, init_phase);
18389    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18390    ecore_init_block(sc, BLOCK_USEM, init_phase);
18391    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18392    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18393
18394    if (!CHIP_IS_E1x(sc))
18395        REG_WR(sc, QM_REG_PF_EN, 1);
18396
18397    if (!CHIP_IS_E1x(sc)) {
18398        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18399        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18400        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18401        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18402    }
18403    ecore_init_block(sc, BLOCK_QM, init_phase);
18404
18405    ecore_init_block(sc, BLOCK_TM, init_phase);
18406    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18407
18408    bxe_iov_init_dq(sc);
18409
18410    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18411    ecore_init_block(sc, BLOCK_PRS, init_phase);
18412    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18413    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18414    ecore_init_block(sc, BLOCK_USDM, init_phase);
18415    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18416    ecore_init_block(sc, BLOCK_UPB, init_phase);
18417    ecore_init_block(sc, BLOCK_XPB, init_phase);
18418    ecore_init_block(sc, BLOCK_PBF, init_phase);
18419    if (!CHIP_IS_E1x(sc))
18420        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18421
18422    ecore_init_block(sc, BLOCK_CDU, init_phase);
18423
18424    ecore_init_block(sc, BLOCK_CFC, init_phase);
18425
18426    if (!CHIP_IS_E1x(sc))
18427        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18428
18429    if (IS_MF(sc)) {
18430        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18431        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18432    }
18433
18434    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18435
18436    /* HC init per function */
18437    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18438        if (CHIP_IS_E1H(sc)) {
18439            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18440
18441            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18442            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18443        }
18444        ecore_init_block(sc, BLOCK_HC, init_phase);
18445
18446    } else {
18447        int num_segs, sb_idx, prod_offset;
18448
18449        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18450
18451        if (!CHIP_IS_E1x(sc)) {
18452            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18453            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18454        }
18455
18456        ecore_init_block(sc, BLOCK_IGU, init_phase);
18457
18458        if (!CHIP_IS_E1x(sc)) {
18459            int dsb_idx = 0;
18460            /**
18461             * Producer memory:
18462             * E2 mode: address 0-135 match to the mapping memory;
18463             * 136 - PF0 default prod; 137 - PF1 default prod;
18464             * 138 - PF2 default prod; 139 - PF3 default prod;
18465             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18466             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18467             * 144-147 reserved.
18468             *
18469             * E1.5 mode - In backward compatible mode;
18470             * for non default SB; each even line in the memory
18471             * holds the U producer and each odd line hold
18472             * the C producer. The first 128 producers are for
18473             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18474             * producers are for the DSB for each PF.
18475             * Each PF has five segments: (the order inside each
18476             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18477             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18478             * 144-147 attn prods;
18479             */
18480            /* non-default-status-blocks */
18481            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18482                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18483            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18484                prod_offset = (sc->igu_base_sb + sb_idx) *
18485                    num_segs;
18486
18487                for (i = 0; i < num_segs; i++) {
18488                    addr = IGU_REG_PROD_CONS_MEMORY +
18489                            (prod_offset + i) * 4;
18490                    REG_WR(sc, addr, 0);
18491                }
18492                /* send consumer update with value 0 */
18493                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18494                           USTORM_ID, 0, IGU_INT_NOP, 1);
18495                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18496            }
18497
18498            /* default-status-blocks */
18499            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18500                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18501
18502            if (CHIP_IS_MODE_4_PORT(sc))
18503                dsb_idx = SC_FUNC(sc);
18504            else
18505                dsb_idx = SC_VN(sc);
18506
18507            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18508                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18509                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18510
18511            /*
18512             * igu prods come in chunks of E1HVN_MAX (4) -
18513             * does not matters what is the current chip mode
18514             */
18515            for (i = 0; i < (num_segs * E1HVN_MAX);
18516                 i += E1HVN_MAX) {
18517                addr = IGU_REG_PROD_CONS_MEMORY +
18518                            (prod_offset + i)*4;
18519                REG_WR(sc, addr, 0);
18520            }
18521            /* send consumer update with 0 */
18522            if (CHIP_INT_MODE_IS_BC(sc)) {
18523                bxe_ack_sb(sc, sc->igu_dsb_id,
18524                           USTORM_ID, 0, IGU_INT_NOP, 1);
18525                bxe_ack_sb(sc, sc->igu_dsb_id,
18526                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18527                bxe_ack_sb(sc, sc->igu_dsb_id,
18528                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18529                bxe_ack_sb(sc, sc->igu_dsb_id,
18530                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18531                bxe_ack_sb(sc, sc->igu_dsb_id,
18532                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18533            } else {
18534                bxe_ack_sb(sc, sc->igu_dsb_id,
18535                           USTORM_ID, 0, IGU_INT_NOP, 1);
18536                bxe_ack_sb(sc, sc->igu_dsb_id,
18537                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18538            }
18539            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18540
18541            /* !!! these should become driver const once
18542               rf-tool supports split-68 const */
18543            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18544            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18545            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18546            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18547            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18548            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18549        }
18550    }
18551
18552    /* Reset PCIE errors for debug */
18553    REG_WR(sc, 0x2114, 0xffffffff);
18554    REG_WR(sc, 0x2120, 0xffffffff);
18555
18556    if (CHIP_IS_E1x(sc)) {
18557        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18558        main_mem_base = HC_REG_MAIN_MEMORY +
18559                SC_PORT(sc) * (main_mem_size * 4);
18560        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18561        main_mem_width = 8;
18562
18563        val = REG_RD(sc, main_mem_prty_clr);
18564        if (val) {
18565            BLOGD(sc, DBG_LOAD,
18566                  "Parity errors in HC block during function init (0x%x)!\n",
18567                  val);
18568        }
18569
18570        /* Clear "false" parity errors in MSI-X table */
18571        for (i = main_mem_base;
18572             i < main_mem_base + main_mem_size * 4;
18573             i += main_mem_width) {
18574            bxe_read_dmae(sc, i, main_mem_width / 4);
18575            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18576                           i, main_mem_width / 4);
18577        }
18578        /* Clear HC parity attention */
18579        REG_RD(sc, main_mem_prty_clr);
18580    }
18581
18582#if 1
18583    /* Enable STORMs SP logging */
18584    REG_WR8(sc, BAR_USTRORM_INTMEM +
18585           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18586    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18587           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18588    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18589           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18590    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18591           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18592#endif
18593
18594    elink_phy_probe(&sc->link_params);
18595
18596    return (0);
18597}
18598
18599static void
18600bxe_link_reset(struct bxe_softc *sc)
18601{
18602    if (!BXE_NOMCP(sc)) {
18603        BXE_PHY_LOCK(sc);
18604        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18605        BXE_PHY_UNLOCK(sc);
18606    } else {
18607        if (!CHIP_REV_IS_SLOW(sc)) {
18608            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18609        }
18610    }
18611}
18612
18613static void
18614bxe_reset_port(struct bxe_softc *sc)
18615{
18616    int port = SC_PORT(sc);
18617    uint32_t val;
18618
18619    /* reset physical Link */
18620    bxe_link_reset(sc);
18621
18622    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18623
18624    /* Do not rcv packets to BRB */
18625    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18626    /* Do not direct rcv packets that are not for MCP to the BRB */
18627    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18628               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18629
18630    /* Configure AEU */
18631    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18632
18633    DELAY(100000);
18634
18635    /* Check for BRB port occupancy */
18636    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18637    if (val) {
18638        BLOGD(sc, DBG_LOAD,
18639              "BRB1 is not empty, %d blocks are occupied\n", val);
18640    }
18641
18642    /* TODO: Close Doorbell port? */
18643}
18644
18645static void
18646bxe_ilt_wr(struct bxe_softc *sc,
18647           uint32_t         index,
18648           bus_addr_t       addr)
18649{
18650    int reg;
18651    uint32_t wb_write[2];
18652
18653    if (CHIP_IS_E1(sc)) {
18654        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18655    } else {
18656        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18657    }
18658
18659    wb_write[0] = ONCHIP_ADDR1(addr);
18660    wb_write[1] = ONCHIP_ADDR2(addr);
18661    REG_WR_DMAE(sc, reg, wb_write, 2);
18662}
18663
18664static void
18665bxe_clear_func_ilt(struct bxe_softc *sc,
18666                   uint32_t         func)
18667{
18668    uint32_t i, base = FUNC_ILT_BASE(func);
18669    for (i = base; i < base + ILT_PER_FUNC; i++) {
18670        bxe_ilt_wr(sc, i, 0);
18671    }
18672}
18673
18674static void
18675bxe_reset_func(struct bxe_softc *sc)
18676{
18677    struct bxe_fastpath *fp;
18678    int port = SC_PORT(sc);
18679    int func = SC_FUNC(sc);
18680    int i;
18681
18682    /* Disable the function in the FW */
18683    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18684    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18685    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18686    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18687
18688    /* FP SBs */
18689    FOR_EACH_ETH_QUEUE(sc, i) {
18690        fp = &sc->fp[i];
18691        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18692                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18693                SB_DISABLED);
18694    }
18695
18696#if 0
18697    if (CNIC_LOADED(sc)) {
18698        /* CNIC SB */
18699        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18700                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18701                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18702    }
18703#endif
18704
18705    /* SP SB */
18706    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18707            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18708            SB_DISABLED);
18709
18710    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18711        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18712    }
18713
18714    /* Configure IGU */
18715    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18716        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18717        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18718    } else {
18719        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18720        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18721    }
18722
18723    if (CNIC_LOADED(sc)) {
18724        /* Disable Timer scan */
18725        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18726        /*
18727         * Wait for at least 10ms and up to 2 second for the timers
18728         * scan to complete
18729         */
18730        for (i = 0; i < 200; i++) {
18731            DELAY(10000);
18732            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18733                break;
18734        }
18735    }
18736
18737    /* Clear ILT */
18738    bxe_clear_func_ilt(sc, func);
18739
18740    /*
18741     * Timers workaround bug for E2: if this is vnic-3,
18742     * we need to set the entire ilt range for this timers.
18743     */
18744    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18745        struct ilt_client_info ilt_cli;
18746        /* use dummy TM client */
18747        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18748        ilt_cli.start = 0;
18749        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18750        ilt_cli.client_num = ILT_CLIENT_TM;
18751
18752        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18753    }
18754
18755    /* this assumes that reset_port() called before reset_func()*/
18756    if (!CHIP_IS_E1x(sc)) {
18757        bxe_pf_disable(sc);
18758    }
18759
18760    sc->dmae_ready = 0;
18761}
18762
18763static int
18764bxe_gunzip_init(struct bxe_softc *sc)
18765{
18766    return (0);
18767}
18768
18769static void
18770bxe_gunzip_end(struct bxe_softc *sc)
18771{
18772    return;
18773}
18774
18775static int
18776bxe_init_firmware(struct bxe_softc *sc)
18777{
18778    if (CHIP_IS_E1(sc)) {
18779        ecore_init_e1_firmware(sc);
18780        sc->iro_array = e1_iro_arr;
18781    } else if (CHIP_IS_E1H(sc)) {
18782        ecore_init_e1h_firmware(sc);
18783        sc->iro_array = e1h_iro_arr;
18784    } else if (!CHIP_IS_E1x(sc)) {
18785        ecore_init_e2_firmware(sc);
18786        sc->iro_array = e2_iro_arr;
18787    } else {
18788        BLOGE(sc, "Unsupported chip revision\n");
18789        return (-1);
18790    }
18791
18792    return (0);
18793}
18794
18795static void
18796bxe_release_firmware(struct bxe_softc *sc)
18797{
18798    /* Do nothing */
18799    return;
18800}
18801
18802static int
18803ecore_gunzip(struct bxe_softc *sc,
18804             const uint8_t    *zbuf,
18805             int              len)
18806{
18807    /* XXX : Implement... */
18808    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18809    return (FALSE);
18810}
18811
18812static void
18813ecore_reg_wr_ind(struct bxe_softc *sc,
18814                 uint32_t         addr,
18815                 uint32_t         val)
18816{
18817    bxe_reg_wr_ind(sc, addr, val);
18818}
18819
18820static void
18821ecore_write_dmae_phys_len(struct bxe_softc *sc,
18822                          bus_addr_t       phys_addr,
18823                          uint32_t         addr,
18824                          uint32_t         len)
18825{
18826    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18827}
18828
18829void
18830ecore_storm_memset_struct(struct bxe_softc *sc,
18831                          uint32_t         addr,
18832                          size_t           size,
18833                          uint32_t         *data)
18834{
18835    uint8_t i;
18836    for (i = 0; i < size/4; i++) {
18837        REG_WR(sc, addr + (i * 4), data[i]);
18838    }
18839}
18840
18841