if_bge.c revision 331722
1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/11/sys/dev/bge/if_bge.c 331722 2018-03-29 02:50:57Z eadler $");
36
37/*
38 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39 *
40 * The Broadcom BCM5700 is based on technology originally developed by
41 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45 * frames, highly configurable RX filtering, and 16 RX and TX queues
46 * (which, along with RX filter rules, can be used for QOS applications).
47 * Other features, such as TCP segmentation, may be available as part
48 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49 * firmware images can be stored in hardware and need not be compiled
50 * into the driver.
51 *
52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54 *
55 * The BCM5701 is a single-chip solution incorporating both the BCM5700
56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57 * does not support external SSRAM.
58 *
59 * Broadcom also produces a variation of the BCM5700 under the "Altima"
60 * brand name, which is functionally similar but lacks PCI-X support.
61 *
62 * Without external SSRAM, you can only have at most 4 TX rings,
63 * and the use of the mini RX ring is disabled. This seems to imply
64 * that these features are simply not available on the BCM5701. As a
65 * result, this driver does not implement any support for the mini RX
66 * ring.
67 */
68
69#ifdef HAVE_KERNEL_OPTION_HEADERS
70#include "opt_device_polling.h"
71#endif
72
73#include <sys/param.h>
74#include <sys/endian.h>
75#include <sys/systm.h>
76#include <sys/sockio.h>
77#include <sys/mbuf.h>
78#include <sys/malloc.h>
79#include <sys/kernel.h>
80#include <sys/module.h>
81#include <sys/socket.h>
82#include <sys/sysctl.h>
83#include <sys/taskqueue.h>
84
85#include <net/if.h>
86#include <net/if_var.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91
92#include <net/bpf.h>
93
94#include <net/if_types.h>
95#include <net/if_vlan_var.h>
96
97#include <netinet/in_systm.h>
98#include <netinet/in.h>
99#include <netinet/ip.h>
100#include <netinet/tcp.h>
101
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109#include "miidevs.h"
110#include <dev/mii/brgphyreg.h>
111
112#ifdef __sparc64__
113#include <dev/ofw/ofw_bus.h>
114#include <dev/ofw/openfirm.h>
115#include <machine/ofw_machdep.h>
116#include <machine/ver.h>
117#endif
118
119#include <dev/pci/pcireg.h>
120#include <dev/pci/pcivar.h>
121
122#include <dev/bge/if_bgereg.h>
123
124#define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125#define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126
127MODULE_DEPEND(bge, pci, 1, 1, 1);
128MODULE_DEPEND(bge, ether, 1, 1, 1);
129MODULE_DEPEND(bge, miibus, 1, 1, 1);
130
131/* "device miibus" required.  See GENERIC if you get errors here. */
132#include "miibus_if.h"
133
134/*
135 * Various supported device vendors/types and their names. Note: the
136 * spec seems to indicate that the hardware still has Alteon's vendor
137 * ID burned into it, though it will always be overriden by the vendor
138 * ID in the EEPROM. Just to be safe, we cover all possibilities.
139 */
140static const struct bge_type {
141	uint16_t	bge_vid;
142	uint16_t	bge_did;
143} bge_devs[] = {
144	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146
147	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150
151	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152
153	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
175	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
176	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
177	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
178	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
179	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
180	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
181	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
182	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
183	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
184	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
185	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
186	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
187	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
188	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
189	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
190	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
191	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
192	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
193	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
194	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
195	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
196	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
197	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
198	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
199	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
200	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
201	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
202	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
203	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
204	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
205	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
206	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
207	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
208	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
209	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
210	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
211	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
212	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
213	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
214	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
215	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
216	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
217	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
218	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
219	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
220	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
221	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
222	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
223	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
224	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
225	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
226	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
227	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
228	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
229	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
230	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
231	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
232	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
233	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
234	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
235	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
236	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
237	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
238	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
239
240	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
241
242	{ TC_VENDORID,		TC_DEVICEID_3C996 },
243
244	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
245	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
246	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
247
248	{ 0, 0 }
249};
250
251static const struct bge_vendor {
252	uint16_t	v_id;
253	const char	*v_name;
254} bge_vendors[] = {
255	{ ALTEON_VENDORID,	"Alteon" },
256	{ ALTIMA_VENDORID,	"Altima" },
257	{ APPLE_VENDORID,	"Apple" },
258	{ BCOM_VENDORID,	"Broadcom" },
259	{ SK_VENDORID,		"SysKonnect" },
260	{ TC_VENDORID,		"3Com" },
261	{ FJTSU_VENDORID,	"Fujitsu" },
262
263	{ 0, NULL }
264};
265
266static const struct bge_revision {
267	uint32_t	br_chipid;
268	const char	*br_name;
269} bge_revisions[] = {
270	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
271	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
272	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
273	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
274	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
275	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
276	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
277	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
278	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
279	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
280	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
281	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
282	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
283	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
284	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
285	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
286	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
287	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
288	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
289	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
290	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
291	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
292	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
293	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
294	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
295	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
296	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
297	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
298	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
299	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
300	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
301	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
302	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
303	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
304	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
305	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
306	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
307	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
308	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
309	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
310	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
311	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
312	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
313	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
314	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
315	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
316	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
317	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
318	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
319	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
320	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
321	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
322	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
323	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
324	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
325	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
326	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
327	/* 5754 and 5787 share the same ASIC ID */
328	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
329	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
330	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
331	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
332	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
333	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
334	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
335	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
336	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
337
338	{ 0, NULL }
339};
340
341/*
342 * Some defaults for major revisions, so that newer steppings
343 * that we don't know about have a shot at working.
344 */
345static const struct bge_revision bge_majorrevs[] = {
346	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
347	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
348	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
349	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
350	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
351	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
352	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
353	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
354	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
355	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
356	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
357	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
358	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
359	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
360	/* 5754 and 5787 share the same ASIC ID */
361	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
362	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
363	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
364	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
365	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
366	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
367	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
368	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
369	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
370
371	{ 0, NULL }
372};
373
374#define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
375#define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
376#define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
377#define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
378#define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
379#define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
380#define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
381#define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
382
383static uint32_t bge_chipid(device_t);
384static const struct bge_vendor * bge_lookup_vendor(uint16_t);
385static const struct bge_revision * bge_lookup_rev(uint32_t);
386
387typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
388
389static int bge_probe(device_t);
390static int bge_attach(device_t);
391static int bge_detach(device_t);
392static int bge_suspend(device_t);
393static int bge_resume(device_t);
394static void bge_release_resources(struct bge_softc *);
395static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
396static int bge_dma_alloc(struct bge_softc *);
397static void bge_dma_free(struct bge_softc *);
398static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
399    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
400
401static void bge_devinfo(struct bge_softc *);
402static int bge_mbox_reorder(struct bge_softc *);
403
404static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
405static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
406static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
407static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
408static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
409
410static void bge_txeof(struct bge_softc *, uint16_t);
411static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
412static int bge_rxeof(struct bge_softc *, uint16_t, int);
413
414static void bge_asf_driver_up (struct bge_softc *);
415static void bge_tick(void *);
416static void bge_stats_clear_regs(struct bge_softc *);
417static void bge_stats_update(struct bge_softc *);
418static void bge_stats_update_regs(struct bge_softc *);
419static struct mbuf *bge_check_short_dma(struct mbuf *);
420static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
421    uint16_t *, uint16_t *);
422static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
423
424static void bge_intr(void *);
425static int bge_msi_intr(void *);
426static void bge_intr_task(void *, int);
427static void bge_start_locked(if_t);
428static void bge_start(if_t);
429static int bge_ioctl(if_t, u_long, caddr_t);
430static void bge_init_locked(struct bge_softc *);
431static void bge_init(void *);
432static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
433static void bge_stop(struct bge_softc *);
434static void bge_watchdog(struct bge_softc *);
435static int bge_shutdown(device_t);
436static int bge_ifmedia_upd_locked(if_t);
437static int bge_ifmedia_upd(if_t);
438static void bge_ifmedia_sts(if_t, struct ifmediareq *);
439static uint64_t bge_get_counter(if_t, ift_counter);
440
441static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
442static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
443
444static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
445static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
446
447static void bge_setpromisc(struct bge_softc *);
448static void bge_setmulti(struct bge_softc *);
449static void bge_setvlan(struct bge_softc *);
450
451static __inline void bge_rxreuse_std(struct bge_softc *, int);
452static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
453static int bge_newbuf_std(struct bge_softc *, int);
454static int bge_newbuf_jumbo(struct bge_softc *, int);
455static int bge_init_rx_ring_std(struct bge_softc *);
456static void bge_free_rx_ring_std(struct bge_softc *);
457static int bge_init_rx_ring_jumbo(struct bge_softc *);
458static void bge_free_rx_ring_jumbo(struct bge_softc *);
459static void bge_free_tx_ring(struct bge_softc *);
460static int bge_init_tx_ring(struct bge_softc *);
461
462static int bge_chipinit(struct bge_softc *);
463static int bge_blockinit(struct bge_softc *);
464static uint32_t bge_dma_swap_options(struct bge_softc *);
465
466static int bge_has_eaddr(struct bge_softc *);
467static uint32_t bge_readmem_ind(struct bge_softc *, int);
468static void bge_writemem_ind(struct bge_softc *, int, int);
469static void bge_writembx(struct bge_softc *, int, int);
470#ifdef notdef
471static uint32_t bge_readreg_ind(struct bge_softc *, int);
472#endif
473static void bge_writemem_direct(struct bge_softc *, int, int);
474static void bge_writereg_ind(struct bge_softc *, int, int);
475
476static int bge_miibus_readreg(device_t, int, int);
477static int bge_miibus_writereg(device_t, int, int, int);
478static void bge_miibus_statchg(device_t);
479#ifdef DEVICE_POLLING
480static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
481#endif
482
483#define	BGE_RESET_SHUTDOWN	0
484#define	BGE_RESET_START		1
485#define	BGE_RESET_SUSPEND	2
486static void bge_sig_post_reset(struct bge_softc *, int);
487static void bge_sig_legacy(struct bge_softc *, int);
488static void bge_sig_pre_reset(struct bge_softc *, int);
489static void bge_stop_fw(struct bge_softc *);
490static int bge_reset(struct bge_softc *);
491static void bge_link_upd(struct bge_softc *);
492
493static void bge_ape_lock_init(struct bge_softc *);
494static void bge_ape_read_fw_ver(struct bge_softc *);
495static int bge_ape_lock(struct bge_softc *, int);
496static void bge_ape_unlock(struct bge_softc *, int);
497static void bge_ape_send_event(struct bge_softc *, uint32_t);
498static void bge_ape_driver_state_change(struct bge_softc *, int);
499
500/*
501 * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
502 * leak information to untrusted users.  It is also known to cause alignment
503 * traps on certain architectures.
504 */
505#ifdef BGE_REGISTER_DEBUG
506static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
507static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
508static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
509static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
510#endif
511static void bge_add_sysctls(struct bge_softc *);
512static void bge_add_sysctl_stats_regs(struct bge_softc *,
513    struct sysctl_ctx_list *, struct sysctl_oid_list *);
514static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
515    struct sysctl_oid_list *);
516static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
517
518static device_method_t bge_methods[] = {
519	/* Device interface */
520	DEVMETHOD(device_probe,		bge_probe),
521	DEVMETHOD(device_attach,	bge_attach),
522	DEVMETHOD(device_detach,	bge_detach),
523	DEVMETHOD(device_shutdown,	bge_shutdown),
524	DEVMETHOD(device_suspend,	bge_suspend),
525	DEVMETHOD(device_resume,	bge_resume),
526
527	/* MII interface */
528	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
529	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
530	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
531
532	DEVMETHOD_END
533};
534
535static driver_t bge_driver = {
536	"bge",
537	bge_methods,
538	sizeof(struct bge_softc)
539};
540
541static devclass_t bge_devclass;
542
543DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
544DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
545
546static int bge_allow_asf = 1;
547
548static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
549SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
550	"Allow ASF mode if available");
551
552#define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
553#define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
554#define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
555#define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
556#define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
557
558static int
559bge_has_eaddr(struct bge_softc *sc)
560{
561#ifdef __sparc64__
562	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
563	device_t dev;
564	uint32_t subvendor;
565
566	dev = sc->bge_dev;
567
568	/*
569	 * The on-board BGEs found in sun4u machines aren't fitted with
570	 * an EEPROM which means that we have to obtain the MAC address
571	 * via OFW and that some tests will always fail.  We distinguish
572	 * such BGEs by the subvendor ID, which also has to be obtained
573	 * from OFW instead of the PCI configuration space as the latter
574	 * indicates Broadcom as the subvendor of the netboot interface.
575	 * For early Blade 1500 and 2500 we even have to check the OFW
576	 * device path as the subvendor ID always defaults to Broadcom
577	 * there.
578	 */
579	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
580	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
581	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
582		return (0);
583	memset(buf, 0, sizeof(buf));
584	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
585		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
586		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
587			return (0);
588		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
589		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
590			return (0);
591	}
592#endif
593	return (1);
594}
595
596static uint32_t
597bge_readmem_ind(struct bge_softc *sc, int off)
598{
599	device_t dev;
600	uint32_t val;
601
602	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
603	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
604		return (0);
605
606	dev = sc->bge_dev;
607
608	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
609	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
610	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
611	return (val);
612}
613
614static void
615bge_writemem_ind(struct bge_softc *sc, int off, int val)
616{
617	device_t dev;
618
619	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
620	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
621		return;
622
623	dev = sc->bge_dev;
624
625	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
626	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
627	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
628}
629
630#ifdef notdef
631static uint32_t
632bge_readreg_ind(struct bge_softc *sc, int off)
633{
634	device_t dev;
635
636	dev = sc->bge_dev;
637
638	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
639	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
640}
641#endif
642
643static void
644bge_writereg_ind(struct bge_softc *sc, int off, int val)
645{
646	device_t dev;
647
648	dev = sc->bge_dev;
649
650	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
651	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
652}
653
654static void
655bge_writemem_direct(struct bge_softc *sc, int off, int val)
656{
657	CSR_WRITE_4(sc, off, val);
658}
659
660static void
661bge_writembx(struct bge_softc *sc, int off, int val)
662{
663	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
664		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
665
666	CSR_WRITE_4(sc, off, val);
667	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
668		CSR_READ_4(sc, off);
669}
670
671/*
672 * Clear all stale locks and select the lock for this driver instance.
673 */
674static void
675bge_ape_lock_init(struct bge_softc *sc)
676{
677	uint32_t bit, regbase;
678	int i;
679
680	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
681		regbase = BGE_APE_LOCK_GRANT;
682	else
683		regbase = BGE_APE_PER_LOCK_GRANT;
684
685	/* Clear any stale locks. */
686	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
687		switch (i) {
688		case BGE_APE_LOCK_PHY0:
689		case BGE_APE_LOCK_PHY1:
690		case BGE_APE_LOCK_PHY2:
691		case BGE_APE_LOCK_PHY3:
692			bit = BGE_APE_LOCK_GRANT_DRIVER0;
693			break;
694		default:
695			if (sc->bge_func_addr == 0)
696				bit = BGE_APE_LOCK_GRANT_DRIVER0;
697			else
698				bit = (1 << sc->bge_func_addr);
699		}
700		APE_WRITE_4(sc, regbase + 4 * i, bit);
701	}
702
703	/* Select the PHY lock based on the device's function number. */
704	switch (sc->bge_func_addr) {
705	case 0:
706		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
707		break;
708	case 1:
709		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
710		break;
711	case 2:
712		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
713		break;
714	case 3:
715		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
716		break;
717	default:
718		device_printf(sc->bge_dev,
719		    "PHY lock not supported on this function\n");
720	}
721}
722
723/*
724 * Check for APE firmware, set flags, and print version info.
725 */
726static void
727bge_ape_read_fw_ver(struct bge_softc *sc)
728{
729	const char *fwtype;
730	uint32_t apedata, features;
731
732	/* Check for a valid APE signature in shared memory. */
733	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
734	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
735		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
736		return;
737	}
738
739	/* Check if APE firmware is running. */
740	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
741	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
742		device_printf(sc->bge_dev, "APE signature found "
743		    "but FW status not ready! 0x%08x\n", apedata);
744		return;
745	}
746
747	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
748
749	/* Fetch the APE firwmare type and version. */
750	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
751	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
752	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
753		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
754		fwtype = "NCSI";
755	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
756		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
757		fwtype = "DASH";
758	} else
759		fwtype = "UNKN";
760
761	/* Print the APE firmware version. */
762	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
763	    fwtype,
764	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
765	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
766	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
767	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
768}
769
770static int
771bge_ape_lock(struct bge_softc *sc, int locknum)
772{
773	uint32_t bit, gnt, req, status;
774	int i, off;
775
776	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
777		return (0);
778
779	/* Lock request/grant registers have different bases. */
780	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
781		req = BGE_APE_LOCK_REQ;
782		gnt = BGE_APE_LOCK_GRANT;
783	} else {
784		req = BGE_APE_PER_LOCK_REQ;
785		gnt = BGE_APE_PER_LOCK_GRANT;
786	}
787
788	off = 4 * locknum;
789
790	switch (locknum) {
791	case BGE_APE_LOCK_GPIO:
792		/* Lock required when using GPIO. */
793		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
794			return (0);
795		if (sc->bge_func_addr == 0)
796			bit = BGE_APE_LOCK_REQ_DRIVER0;
797		else
798			bit = (1 << sc->bge_func_addr);
799		break;
800	case BGE_APE_LOCK_GRC:
801		/* Lock required to reset the device. */
802		if (sc->bge_func_addr == 0)
803			bit = BGE_APE_LOCK_REQ_DRIVER0;
804		else
805			bit = (1 << sc->bge_func_addr);
806		break;
807	case BGE_APE_LOCK_MEM:
808		/* Lock required when accessing certain APE memory. */
809		if (sc->bge_func_addr == 0)
810			bit = BGE_APE_LOCK_REQ_DRIVER0;
811		else
812			bit = (1 << sc->bge_func_addr);
813		break;
814	case BGE_APE_LOCK_PHY0:
815	case BGE_APE_LOCK_PHY1:
816	case BGE_APE_LOCK_PHY2:
817	case BGE_APE_LOCK_PHY3:
818		/* Lock required when accessing PHYs. */
819		bit = BGE_APE_LOCK_REQ_DRIVER0;
820		break;
821	default:
822		return (EINVAL);
823	}
824
825	/* Request a lock. */
826	APE_WRITE_4(sc, req + off, bit);
827
828	/* Wait up to 1 second to acquire lock. */
829	for (i = 0; i < 20000; i++) {
830		status = APE_READ_4(sc, gnt + off);
831		if (status == bit)
832			break;
833		DELAY(50);
834	}
835
836	/* Handle any errors. */
837	if (status != bit) {
838		device_printf(sc->bge_dev, "APE lock %d request failed! "
839		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
840		    locknum, req + off, bit & 0xFFFF, gnt + off,
841		    status & 0xFFFF);
842		/* Revoke the lock request. */
843		APE_WRITE_4(sc, gnt + off, bit);
844		return (EBUSY);
845	}
846
847	return (0);
848}
849
850static void
851bge_ape_unlock(struct bge_softc *sc, int locknum)
852{
853	uint32_t bit, gnt;
854	int off;
855
856	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
857		return;
858
859	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
860		gnt = BGE_APE_LOCK_GRANT;
861	else
862		gnt = BGE_APE_PER_LOCK_GRANT;
863
864	off = 4 * locknum;
865
866	switch (locknum) {
867	case BGE_APE_LOCK_GPIO:
868		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
869			return;
870		if (sc->bge_func_addr == 0)
871			bit = BGE_APE_LOCK_GRANT_DRIVER0;
872		else
873			bit = (1 << sc->bge_func_addr);
874		break;
875	case BGE_APE_LOCK_GRC:
876		if (sc->bge_func_addr == 0)
877			bit = BGE_APE_LOCK_GRANT_DRIVER0;
878		else
879			bit = (1 << sc->bge_func_addr);
880		break;
881	case BGE_APE_LOCK_MEM:
882		if (sc->bge_func_addr == 0)
883			bit = BGE_APE_LOCK_GRANT_DRIVER0;
884		else
885			bit = (1 << sc->bge_func_addr);
886		break;
887	case BGE_APE_LOCK_PHY0:
888	case BGE_APE_LOCK_PHY1:
889	case BGE_APE_LOCK_PHY2:
890	case BGE_APE_LOCK_PHY3:
891		bit = BGE_APE_LOCK_GRANT_DRIVER0;
892		break;
893	default:
894		return;
895	}
896
897	APE_WRITE_4(sc, gnt + off, bit);
898}
899
900/*
901 * Send an event to the APE firmware.
902 */
903static void
904bge_ape_send_event(struct bge_softc *sc, uint32_t event)
905{
906	uint32_t apedata;
907	int i;
908
909	/* NCSI does not support APE events. */
910	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
911		return;
912
913	/* Wait up to 1ms for APE to service previous event. */
914	for (i = 10; i > 0; i--) {
915		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
916			break;
917		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
918		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
919			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
920			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
921			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
922			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
923			break;
924		}
925		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
926		DELAY(100);
927	}
928	if (i == 0)
929		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
930		    event);
931}
932
933static void
934bge_ape_driver_state_change(struct bge_softc *sc, int kind)
935{
936	uint32_t apedata, event;
937
938	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
939		return;
940
941	switch (kind) {
942	case BGE_RESET_START:
943		/* If this is the first load, clear the load counter. */
944		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
945		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
946			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
947		else {
948			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
949			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
950		}
951		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
952		    BGE_APE_HOST_SEG_SIG_MAGIC);
953		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
954		    BGE_APE_HOST_SEG_LEN_MAGIC);
955
956		/* Add some version info if bge(4) supports it. */
957		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
958		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
959		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
960		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
961		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
962		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
963		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
964		    BGE_APE_HOST_DRVR_STATE_START);
965		event = BGE_APE_EVENT_STATUS_STATE_START;
966		break;
967	case BGE_RESET_SHUTDOWN:
968		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
969		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
970		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
971		break;
972	case BGE_RESET_SUSPEND:
973		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
974		break;
975	default:
976		return;
977	}
978
979	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
980	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
981}
982
983/*
984 * Map a single buffer address.
985 */
986
987static void
988bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
989{
990	struct bge_dmamap_arg *ctx;
991
992	if (error)
993		return;
994
995	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
996
997	ctx = arg;
998	ctx->bge_busaddr = segs->ds_addr;
999}
1000
1001static uint8_t
1002bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1003{
1004	uint32_t access, byte = 0;
1005	int i;
1006
1007	/* Lock. */
1008	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1009	for (i = 0; i < 8000; i++) {
1010		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1011			break;
1012		DELAY(20);
1013	}
1014	if (i == 8000)
1015		return (1);
1016
1017	/* Enable access. */
1018	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1019	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1020
1021	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1022	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1023	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1024		DELAY(10);
1025		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1026			DELAY(10);
1027			break;
1028		}
1029	}
1030
1031	if (i == BGE_TIMEOUT * 10) {
1032		if_printf(sc->bge_ifp, "nvram read timed out\n");
1033		return (1);
1034	}
1035
1036	/* Get result. */
1037	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1038
1039	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1040
1041	/* Disable access. */
1042	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1043
1044	/* Unlock. */
1045	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1046	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1047
1048	return (0);
1049}
1050
1051/*
1052 * Read a sequence of bytes from NVRAM.
1053 */
1054static int
1055bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1056{
1057	int err = 0, i;
1058	uint8_t byte = 0;
1059
1060	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1061		return (1);
1062
1063	for (i = 0; i < cnt; i++) {
1064		err = bge_nvram_getbyte(sc, off + i, &byte);
1065		if (err)
1066			break;
1067		*(dest + i) = byte;
1068	}
1069
1070	return (err ? 1 : 0);
1071}
1072
1073/*
1074 * Read a byte of data stored in the EEPROM at address 'addr.' The
1075 * BCM570x supports both the traditional bitbang interface and an
1076 * auto access interface for reading the EEPROM. We use the auto
1077 * access method.
1078 */
1079static uint8_t
1080bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1081{
1082	int i;
1083	uint32_t byte = 0;
1084
1085	/*
1086	 * Enable use of auto EEPROM access so we can avoid
1087	 * having to use the bitbang method.
1088	 */
1089	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1090
1091	/* Reset the EEPROM, load the clock period. */
1092	CSR_WRITE_4(sc, BGE_EE_ADDR,
1093	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1094	DELAY(20);
1095
1096	/* Issue the read EEPROM command. */
1097	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1098
1099	/* Wait for completion */
1100	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1101		DELAY(10);
1102		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1103			break;
1104	}
1105
1106	if (i == BGE_TIMEOUT * 10) {
1107		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1108		return (1);
1109	}
1110
1111	/* Get result. */
1112	byte = CSR_READ_4(sc, BGE_EE_DATA);
1113
1114	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1115
1116	return (0);
1117}
1118
1119/*
1120 * Read a sequence of bytes from the EEPROM.
1121 */
1122static int
1123bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1124{
1125	int i, error = 0;
1126	uint8_t byte = 0;
1127
1128	for (i = 0; i < cnt; i++) {
1129		error = bge_eeprom_getbyte(sc, off + i, &byte);
1130		if (error)
1131			break;
1132		*(dest + i) = byte;
1133	}
1134
1135	return (error ? 1 : 0);
1136}
1137
1138static int
1139bge_miibus_readreg(device_t dev, int phy, int reg)
1140{
1141	struct bge_softc *sc;
1142	uint32_t val;
1143	int i;
1144
1145	sc = device_get_softc(dev);
1146
1147	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148		return (0);
1149
1150	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1151	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1152		CSR_WRITE_4(sc, BGE_MI_MODE,
1153		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1154		DELAY(80);
1155	}
1156
1157	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1158	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1159
1160	/* Poll for the PHY register access to complete. */
1161	for (i = 0; i < BGE_TIMEOUT; i++) {
1162		DELAY(10);
1163		val = CSR_READ_4(sc, BGE_MI_COMM);
1164		if ((val & BGE_MICOMM_BUSY) == 0) {
1165			DELAY(5);
1166			val = CSR_READ_4(sc, BGE_MI_COMM);
1167			break;
1168		}
1169	}
1170
1171	if (i == BGE_TIMEOUT) {
1172		device_printf(sc->bge_dev,
1173		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1174		    phy, reg, val);
1175		val = 0;
1176	}
1177
1178	/* Restore the autopoll bit if necessary. */
1179	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1180		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1181		DELAY(80);
1182	}
1183
1184	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1185
1186	if (val & BGE_MICOMM_READFAIL)
1187		return (0);
1188
1189	return (val & 0xFFFF);
1190}
1191
1192static int
1193bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1194{
1195	struct bge_softc *sc;
1196	int i;
1197
1198	sc = device_get_softc(dev);
1199
1200	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1201	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1202		return (0);
1203
1204	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1205		return (0);
1206
1207	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1208	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1209		CSR_WRITE_4(sc, BGE_MI_MODE,
1210		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1211		DELAY(80);
1212	}
1213
1214	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1215	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1216
1217	for (i = 0; i < BGE_TIMEOUT; i++) {
1218		DELAY(10);
1219		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1220			DELAY(5);
1221			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1222			break;
1223		}
1224	}
1225
1226	/* Restore the autopoll bit if necessary. */
1227	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1228		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1229		DELAY(80);
1230	}
1231
1232	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1233
1234	if (i == BGE_TIMEOUT)
1235		device_printf(sc->bge_dev,
1236		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1237		    phy, reg, val);
1238
1239	return (0);
1240}
1241
1242static void
1243bge_miibus_statchg(device_t dev)
1244{
1245	struct bge_softc *sc;
1246	struct mii_data *mii;
1247	uint32_t mac_mode, rx_mode, tx_mode;
1248
1249	sc = device_get_softc(dev);
1250	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1251		return;
1252	mii = device_get_softc(sc->bge_miibus);
1253
1254	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1255	    (IFM_ACTIVE | IFM_AVALID)) {
1256		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1257		case IFM_10_T:
1258		case IFM_100_TX:
1259			sc->bge_link = 1;
1260			break;
1261		case IFM_1000_T:
1262		case IFM_1000_SX:
1263		case IFM_2500_SX:
1264			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1265				sc->bge_link = 1;
1266			else
1267				sc->bge_link = 0;
1268			break;
1269		default:
1270			sc->bge_link = 0;
1271			break;
1272		}
1273	} else
1274		sc->bge_link = 0;
1275	if (sc->bge_link == 0)
1276		return;
1277
1278	/*
1279	 * APE firmware touches these registers to keep the MAC
1280	 * connected to the outside world.  Try to keep the
1281	 * accesses atomic.
1282	 */
1283
1284	/* Set the port mode (MII/GMII) to match the link speed. */
1285	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1286	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1287	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1288	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1289
1290	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1291	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1292		mac_mode |= BGE_PORTMODE_GMII;
1293	else
1294		mac_mode |= BGE_PORTMODE_MII;
1295
1296	/* Set MAC flow control behavior to match link flow control settings. */
1297	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1298	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1299	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1300		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1301			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1302		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1303			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1304	} else
1305		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1306
1307	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1308	DELAY(40);
1309	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1310	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1311}
1312
1313/*
1314 * Intialize a standard receive ring descriptor.
1315 */
1316static int
1317bge_newbuf_std(struct bge_softc *sc, int i)
1318{
1319	struct mbuf *m;
1320	struct bge_rx_bd *r;
1321	bus_dma_segment_t segs[1];
1322	bus_dmamap_t map;
1323	int error, nsegs;
1324
1325	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1326	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1327	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1328		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1329		if (m == NULL)
1330			return (ENOBUFS);
1331		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1332	} else {
1333		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1334		if (m == NULL)
1335			return (ENOBUFS);
1336		m->m_len = m->m_pkthdr.len = MCLBYTES;
1337	}
1338	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1339		m_adj(m, ETHER_ALIGN);
1340
1341	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1342	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1343	if (error != 0) {
1344		m_freem(m);
1345		return (error);
1346	}
1347	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1348		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1349		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1350		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1351		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1352	}
1353	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1354	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1355	sc->bge_cdata.bge_rx_std_sparemap = map;
1356	sc->bge_cdata.bge_rx_std_chain[i] = m;
1357	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1358	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1359	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1360	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1361	r->bge_flags = BGE_RXBDFLAG_END;
1362	r->bge_len = segs[0].ds_len;
1363	r->bge_idx = i;
1364
1365	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1366	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1367
1368	return (0);
1369}
1370
1371/*
1372 * Initialize a jumbo receive ring descriptor. This allocates
1373 * a jumbo buffer from the pool managed internally by the driver.
1374 */
1375static int
1376bge_newbuf_jumbo(struct bge_softc *sc, int i)
1377{
1378	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1379	bus_dmamap_t map;
1380	struct bge_extrx_bd *r;
1381	struct mbuf *m;
1382	int error, nsegs;
1383
1384	MGETHDR(m, M_NOWAIT, MT_DATA);
1385	if (m == NULL)
1386		return (ENOBUFS);
1387
1388	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1389		m_freem(m);
1390		return (ENOBUFS);
1391	}
1392	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1393	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1394		m_adj(m, ETHER_ALIGN);
1395
1396	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1397	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1398	if (error != 0) {
1399		m_freem(m);
1400		return (error);
1401	}
1402
1403	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1404		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1405		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1406		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1407		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1408	}
1409	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1410	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1411	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1412	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1413	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1414	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1415	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1416	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1417	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1418
1419	/*
1420	 * Fill in the extended RX buffer descriptor.
1421	 */
1422	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1423	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1424	r->bge_idx = i;
1425	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1426	switch (nsegs) {
1427	case 4:
1428		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1429		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1430		r->bge_len3 = segs[3].ds_len;
1431		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1432	case 3:
1433		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1434		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1435		r->bge_len2 = segs[2].ds_len;
1436		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1437	case 2:
1438		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1439		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1440		r->bge_len1 = segs[1].ds_len;
1441		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1442	case 1:
1443		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1444		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1445		r->bge_len0 = segs[0].ds_len;
1446		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1447		break;
1448	default:
1449		panic("%s: %d segments\n", __func__, nsegs);
1450	}
1451
1452	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1453	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1454
1455	return (0);
1456}
1457
1458static int
1459bge_init_rx_ring_std(struct bge_softc *sc)
1460{
1461	int error, i;
1462
1463	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1464	sc->bge_std = 0;
1465	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1466		if ((error = bge_newbuf_std(sc, i)) != 0)
1467			return (error);
1468		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1469	}
1470
1471	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1472	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1473
1474	sc->bge_std = 0;
1475	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1476
1477	return (0);
1478}
1479
1480static void
1481bge_free_rx_ring_std(struct bge_softc *sc)
1482{
1483	int i;
1484
1485	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1486		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1487			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1488			    sc->bge_cdata.bge_rx_std_dmamap[i],
1489			    BUS_DMASYNC_POSTREAD);
1490			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1491			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1492			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1493			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1494		}
1495		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1496		    sizeof(struct bge_rx_bd));
1497	}
1498}
1499
1500static int
1501bge_init_rx_ring_jumbo(struct bge_softc *sc)
1502{
1503	struct bge_rcb *rcb;
1504	int error, i;
1505
1506	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1507	sc->bge_jumbo = 0;
1508	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1509		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1510			return (error);
1511		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1512	}
1513
1514	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1515	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1516
1517	sc->bge_jumbo = 0;
1518
1519	/* Enable the jumbo receive producer ring. */
1520	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1521	rcb->bge_maxlen_flags =
1522	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1523	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1524
1525	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1526
1527	return (0);
1528}
1529
1530static void
1531bge_free_rx_ring_jumbo(struct bge_softc *sc)
1532{
1533	int i;
1534
1535	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1536		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1537			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1538			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1539			    BUS_DMASYNC_POSTREAD);
1540			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1541			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1542			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1543			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1544		}
1545		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1546		    sizeof(struct bge_extrx_bd));
1547	}
1548}
1549
1550static void
1551bge_free_tx_ring(struct bge_softc *sc)
1552{
1553	int i;
1554
1555	if (sc->bge_ldata.bge_tx_ring == NULL)
1556		return;
1557
1558	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1559		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1560			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1561			    sc->bge_cdata.bge_tx_dmamap[i],
1562			    BUS_DMASYNC_POSTWRITE);
1563			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1564			    sc->bge_cdata.bge_tx_dmamap[i]);
1565			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1566			sc->bge_cdata.bge_tx_chain[i] = NULL;
1567		}
1568		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1569		    sizeof(struct bge_tx_bd));
1570	}
1571}
1572
1573static int
1574bge_init_tx_ring(struct bge_softc *sc)
1575{
1576	sc->bge_txcnt = 0;
1577	sc->bge_tx_saved_considx = 0;
1578
1579	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1580	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1581	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1582
1583	/* Initialize transmit producer index for host-memory send ring. */
1584	sc->bge_tx_prodidx = 0;
1585	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1586
1587	/* 5700 b2 errata */
1588	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1589		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1590
1591	/* NIC-memory send ring not used; initialize to zero. */
1592	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1593	/* 5700 b2 errata */
1594	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1595		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1596
1597	return (0);
1598}
1599
1600static void
1601bge_setpromisc(struct bge_softc *sc)
1602{
1603	if_t ifp;
1604
1605	BGE_LOCK_ASSERT(sc);
1606
1607	ifp = sc->bge_ifp;
1608
1609	/* Enable or disable promiscuous mode as needed. */
1610	if (if_getflags(ifp) & IFF_PROMISC)
1611		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612	else
1613		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1614}
1615
1616static void
1617bge_setmulti(struct bge_softc *sc)
1618{
1619	if_t ifp;
1620	int mc_count = 0;
1621	uint32_t hashes[4] = { 0, 0, 0, 0 };
1622	int h, i, mcnt;
1623	unsigned char *mta;
1624
1625	BGE_LOCK_ASSERT(sc);
1626
1627	ifp = sc->bge_ifp;
1628
1629	mc_count = if_multiaddr_count(ifp, -1);
1630	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1631	    mc_count, M_DEVBUF, M_NOWAIT);
1632
1633	if(mta == NULL) {
1634		device_printf(sc->bge_dev,
1635		    "Failed to allocated temp mcast list\n");
1636		return;
1637	}
1638
1639	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1640		for (i = 0; i < 4; i++)
1641			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1642		free(mta, M_DEVBUF);
1643		return;
1644	}
1645
1646	/* First, zot all the existing filters. */
1647	for (i = 0; i < 4; i++)
1648		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1649
1650	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1651	for(i = 0; i < mcnt; i++) {
1652		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1653		    ETHER_ADDR_LEN) & 0x7F;
1654		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1655	}
1656
1657	for (i = 0; i < 4; i++)
1658		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1659
1660	free(mta, M_DEVBUF);
1661}
1662
1663static void
1664bge_setvlan(struct bge_softc *sc)
1665{
1666	if_t ifp;
1667
1668	BGE_LOCK_ASSERT(sc);
1669
1670	ifp = sc->bge_ifp;
1671
1672	/* Enable or disable VLAN tag stripping as needed. */
1673	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1674		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1675	else
1676		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1677}
1678
1679static void
1680bge_sig_pre_reset(struct bge_softc *sc, int type)
1681{
1682
1683	/*
1684	 * Some chips don't like this so only do this if ASF is enabled
1685	 */
1686	if (sc->bge_asf_mode)
1687		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1688
1689	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1690		switch (type) {
1691		case BGE_RESET_START:
1692			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1693			    BGE_FW_DRV_STATE_START);
1694			break;
1695		case BGE_RESET_SHUTDOWN:
1696			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1697			    BGE_FW_DRV_STATE_UNLOAD);
1698			break;
1699		case BGE_RESET_SUSPEND:
1700			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701			    BGE_FW_DRV_STATE_SUSPEND);
1702			break;
1703		}
1704	}
1705
1706	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1707		bge_ape_driver_state_change(sc, type);
1708}
1709
1710static void
1711bge_sig_post_reset(struct bge_softc *sc, int type)
1712{
1713
1714	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1715		switch (type) {
1716		case BGE_RESET_START:
1717			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1718			    BGE_FW_DRV_STATE_START_DONE);
1719			/* START DONE */
1720			break;
1721		case BGE_RESET_SHUTDOWN:
1722			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1723			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1724			break;
1725		}
1726	}
1727	if (type == BGE_RESET_SHUTDOWN)
1728		bge_ape_driver_state_change(sc, type);
1729}
1730
1731static void
1732bge_sig_legacy(struct bge_softc *sc, int type)
1733{
1734
1735	if (sc->bge_asf_mode) {
1736		switch (type) {
1737		case BGE_RESET_START:
1738			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1739			    BGE_FW_DRV_STATE_START);
1740			break;
1741		case BGE_RESET_SHUTDOWN:
1742			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1743			    BGE_FW_DRV_STATE_UNLOAD);
1744			break;
1745		}
1746	}
1747}
1748
1749static void
1750bge_stop_fw(struct bge_softc *sc)
1751{
1752	int i;
1753
1754	if (sc->bge_asf_mode) {
1755		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1756		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1757		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1758
1759		for (i = 0; i < 100; i++ ) {
1760			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1761			    BGE_RX_CPU_DRV_EVENT))
1762				break;
1763			DELAY(10);
1764		}
1765	}
1766}
1767
1768static uint32_t
1769bge_dma_swap_options(struct bge_softc *sc)
1770{
1771	uint32_t dma_options;
1772
1773	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1774	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1775#if BYTE_ORDER == BIG_ENDIAN
1776	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1777#endif
1778	return (dma_options);
1779}
1780
1781/*
1782 * Do endian, PCI and DMA initialization.
1783 */
1784static int
1785bge_chipinit(struct bge_softc *sc)
1786{
1787	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1788	uint16_t val;
1789	int i;
1790
1791	/* Set endianness before we access any non-PCI registers. */
1792	misc_ctl = BGE_INIT;
1793	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1794		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1795	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1796
1797	/*
1798	 * Clear the MAC statistics block in the NIC's
1799	 * internal memory.
1800	 */
1801	for (i = BGE_STATS_BLOCK;
1802	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1803		BGE_MEMWIN_WRITE(sc, i, 0);
1804
1805	for (i = BGE_STATUS_BLOCK;
1806	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1807		BGE_MEMWIN_WRITE(sc, i, 0);
1808
1809	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1810		/*
1811		 *  Fix data corruption caused by non-qword write with WB.
1812		 *  Fix master abort in PCI mode.
1813		 *  Fix PCI latency timer.
1814		 */
1815		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1816		val |= (1 << 10) | (1 << 12) | (1 << 13);
1817		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1818	}
1819
1820	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1821	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1822		/*
1823		 * For the 57766 and non Ax versions of 57765, bootcode
1824		 * needs to setup the PCIE Fast Training Sequence (FTS)
1825		 * value to prevent transmit hangs.
1826		 */
1827		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1828			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1829			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1830			    BGE_CPMU_PADRNG_CTL_RDIV2);
1831		}
1832	}
1833
1834	/*
1835	 * Set up the PCI DMA control register.
1836	 */
1837	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1838	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1839	if (sc->bge_flags & BGE_FLAG_PCIE) {
1840		if (sc->bge_mps >= 256)
1841			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1842		else
1843			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1844	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1845		if (BGE_IS_5714_FAMILY(sc)) {
1846			/* 256 bytes for read and write. */
1847			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1848			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1849			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1850			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1851			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1852		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1853			/*
1854			 * In the BCM5703, the DMA read watermark should
1855			 * be set to less than or equal to the maximum
1856			 * memory read byte count of the PCI-X command
1857			 * register.
1858			 */
1859			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1860			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1861		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1862			/* 1536 bytes for read, 384 bytes for write. */
1863			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1864			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1865		} else {
1866			/* 384 bytes for read and write. */
1867			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1868			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1869			    0x0F;
1870		}
1871		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1872		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1873			uint32_t tmp;
1874
1875			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1876			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1877			if (tmp == 6 || tmp == 7)
1878				dma_rw_ctl |=
1879				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1880
1881			/* Set PCI-X DMA write workaround. */
1882			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1883		}
1884	} else {
1885		/* Conventional PCI bus: 256 bytes for read and write. */
1886		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1887		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1888
1889		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1890		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1891			dma_rw_ctl |= 0x0F;
1892	}
1893	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1894	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1895		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1896		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1897	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1898	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1899		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1900	if (BGE_IS_5717_PLUS(sc)) {
1901		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1902		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1903			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1904		/*
1905		 * Enable HW workaround for controllers that misinterpret
1906		 * a status tag update and leave interrupts permanently
1907		 * disabled.
1908		 */
1909		if (!BGE_IS_57765_PLUS(sc) &&
1910		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1911		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1912			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1913	}
1914	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1915
1916	/*
1917	 * Set up general mode register.
1918	 */
1919	mode_ctl = bge_dma_swap_options(sc);
1920	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1921	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1922		/* Retain Host-2-BMC settings written by APE firmware. */
1923		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1924		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1925		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1926		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1927	}
1928	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1929	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1930
1931	/*
1932	 * BCM5701 B5 have a bug causing data corruption when using
1933	 * 64-bit DMA reads, which can be terminated early and then
1934	 * completed later as 32-bit accesses, in combination with
1935	 * certain bridges.
1936	 */
1937	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1938	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1939		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1940
1941	/*
1942	 * Tell the firmware the driver is running
1943	 */
1944	if (sc->bge_asf_mode & ASF_STACKUP)
1945		mode_ctl |= BGE_MODECTL_STACKUP;
1946
1947	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1948
1949	/*
1950	 * Disable memory write invalidate.  Apparently it is not supported
1951	 * properly by these devices.
1952	 */
1953	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1954
1955	/* Set the timer prescaler (always 66 MHz). */
1956	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1957
1958	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1959	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1960		DELAY(40);	/* XXX */
1961
1962		/* Put PHY into ready state */
1963		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1964		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1965		DELAY(40);
1966	}
1967
1968	return (0);
1969}
1970
1971static int
1972bge_blockinit(struct bge_softc *sc)
1973{
1974	struct bge_rcb *rcb;
1975	bus_size_t vrcb;
1976	bge_hostaddr taddr;
1977	uint32_t dmactl, rdmareg, val;
1978	int i, limit;
1979
1980	/*
1981	 * Initialize the memory window pointer register so that
1982	 * we can access the first 32K of internal NIC RAM. This will
1983	 * allow us to set up the TX send ring RCBs and the RX return
1984	 * ring RCBs, plus other things which live in NIC memory.
1985	 */
1986	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1987
1988	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1989
1990	if (!(BGE_IS_5705_PLUS(sc))) {
1991		/* Configure mbuf memory pool */
1992		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1993		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1994			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1995		else
1996			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1997
1998		/* Configure DMA resource pool */
1999		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2000		    BGE_DMA_DESCRIPTORS);
2001		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2002	}
2003
2004	/* Configure mbuf pool watermarks */
2005	if (BGE_IS_5717_PLUS(sc)) {
2006		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2007		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2008			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2009			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2010		} else {
2011			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2012			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2013		}
2014	} else if (!BGE_IS_5705_PLUS(sc)) {
2015		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2016		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2017		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2019		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2020		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2021		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2022	} else {
2023		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2024		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2025		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026	}
2027
2028	/* Configure DMA resource watermarks */
2029	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2030	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2031
2032	/* Enable buffer manager */
2033	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2034	/*
2035	 * Change the arbitration algorithm of TXMBUF read request to
2036	 * round-robin instead of priority based for BCM5719.  When
2037	 * TXFIFO is almost empty, RDMA will hold its request until
2038	 * TXFIFO is not almost empty.
2039	 */
2040	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2041		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2042	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2043
2044	/* Poll for buffer manager start indication */
2045	for (i = 0; i < BGE_TIMEOUT; i++) {
2046		DELAY(10);
2047		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2048			break;
2049	}
2050
2051	if (i == BGE_TIMEOUT) {
2052		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2053		return (ENXIO);
2054	}
2055
2056	/* Enable flow-through queues */
2057	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2058	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2059
2060	/* Wait until queue initialization is complete */
2061	for (i = 0; i < BGE_TIMEOUT; i++) {
2062		DELAY(10);
2063		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2064			break;
2065	}
2066
2067	if (i == BGE_TIMEOUT) {
2068		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2069		return (ENXIO);
2070	}
2071
2072	/*
2073	 * Summary of rings supported by the controller:
2074	 *
2075	 * Standard Receive Producer Ring
2076	 * - This ring is used to feed receive buffers for "standard"
2077	 *   sized frames (typically 1536 bytes) to the controller.
2078	 *
2079	 * Jumbo Receive Producer Ring
2080	 * - This ring is used to feed receive buffers for jumbo sized
2081	 *   frames (i.e. anything bigger than the "standard" frames)
2082	 *   to the controller.
2083	 *
2084	 * Mini Receive Producer Ring
2085	 * - This ring is used to feed receive buffers for "mini"
2086	 *   sized frames to the controller.
2087	 * - This feature required external memory for the controller
2088	 *   but was never used in a production system.  Should always
2089	 *   be disabled.
2090	 *
2091	 * Receive Return Ring
2092	 * - After the controller has placed an incoming frame into a
2093	 *   receive buffer that buffer is moved into a receive return
2094	 *   ring.  The driver is then responsible to passing the
2095	 *   buffer up to the stack.  Many versions of the controller
2096	 *   support multiple RR rings.
2097	 *
2098	 * Send Ring
2099	 * - This ring is used for outgoing frames.  Many versions of
2100	 *   the controller support multiple send rings.
2101	 */
2102
2103	/* Initialize the standard receive producer ring control block. */
2104	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2105	rcb->bge_hostaddr.bge_addr_lo =
2106	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2107	rcb->bge_hostaddr.bge_addr_hi =
2108	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2109	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2110	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2111	if (BGE_IS_5717_PLUS(sc)) {
2112		/*
2113		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2114		 * Bits 15-2 : Maximum RX frame size
2115		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2116		 * Bit 0     : Reserved
2117		 */
2118		rcb->bge_maxlen_flags =
2119		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2120	} else if (BGE_IS_5705_PLUS(sc)) {
2121		/*
2122		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2123		 * Bits 15-2 : Reserved (should be 0)
2124		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2125		 * Bit 0     : Reserved
2126		 */
2127		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2128	} else {
2129		/*
2130		 * Ring size is always XXX entries
2131		 * Bits 31-16: Maximum RX frame size
2132		 * Bits 15-2 : Reserved (should be 0)
2133		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2134		 * Bit 0     : Reserved
2135		 */
2136		rcb->bge_maxlen_flags =
2137		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2138	}
2139	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2140	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2141	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2142		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2143	else
2144		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2145	/* Write the standard receive producer ring control block. */
2146	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2147	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2148	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2149	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2150
2151	/* Reset the standard receive producer ring producer index. */
2152	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2153
2154	/*
2155	 * Initialize the jumbo RX producer ring control
2156	 * block.  We set the 'ring disabled' bit in the
2157	 * flags field until we're actually ready to start
2158	 * using this ring (i.e. once we set the MTU
2159	 * high enough to require it).
2160	 */
2161	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2162		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2163		/* Get the jumbo receive producer ring RCB parameters. */
2164		rcb->bge_hostaddr.bge_addr_lo =
2165		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2166		rcb->bge_hostaddr.bge_addr_hi =
2167		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2168		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2169		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2170		    BUS_DMASYNC_PREREAD);
2171		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2172		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2173		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2174		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2175		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2176			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2177		else
2178			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2179		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2180		    rcb->bge_hostaddr.bge_addr_hi);
2181		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2182		    rcb->bge_hostaddr.bge_addr_lo);
2183		/* Program the jumbo receive producer ring RCB parameters. */
2184		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2185		    rcb->bge_maxlen_flags);
2186		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2187		/* Reset the jumbo receive producer ring producer index. */
2188		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2189	}
2190
2191	/* Disable the mini receive producer ring RCB. */
2192	if (BGE_IS_5700_FAMILY(sc)) {
2193		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2194		rcb->bge_maxlen_flags =
2195		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2196		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2197		    rcb->bge_maxlen_flags);
2198		/* Reset the mini receive producer ring producer index. */
2199		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2200	}
2201
2202	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2203	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2204		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2205		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2206		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2207			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2208			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2209	}
2210	/*
2211	 * The BD ring replenish thresholds control how often the
2212	 * hardware fetches new BD's from the producer rings in host
2213	 * memory.  Setting the value too low on a busy system can
2214	 * starve the hardware and recue the throughpout.
2215	 *
2216	 * Set the BD ring replentish thresholds. The recommended
2217	 * values are 1/8th the number of descriptors allocated to
2218	 * each ring.
2219	 * XXX The 5754 requires a lower threshold, so it might be a
2220	 * requirement of all 575x family chips.  The Linux driver sets
2221	 * the lower threshold for all 5705 family chips as well, but there
2222	 * are reports that it might not need to be so strict.
2223	 *
2224	 * XXX Linux does some extra fiddling here for the 5906 parts as
2225	 * well.
2226	 */
2227	if (BGE_IS_5705_PLUS(sc))
2228		val = 8;
2229	else
2230		val = BGE_STD_RX_RING_CNT / 8;
2231	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2232	if (BGE_IS_JUMBO_CAPABLE(sc))
2233		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2234		    BGE_JUMBO_RX_RING_CNT/8);
2235	if (BGE_IS_5717_PLUS(sc)) {
2236		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2237		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2238	}
2239
2240	/*
2241	 * Disable all send rings by setting the 'ring disabled' bit
2242	 * in the flags field of all the TX send ring control blocks,
2243	 * located in NIC memory.
2244	 */
2245	if (!BGE_IS_5705_PLUS(sc))
2246		/* 5700 to 5704 had 16 send rings. */
2247		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2248	else if (BGE_IS_57765_PLUS(sc) ||
2249	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2250		limit = 2;
2251	else if (BGE_IS_5717_PLUS(sc))
2252		limit = 4;
2253	else
2254		limit = 1;
2255	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2256	for (i = 0; i < limit; i++) {
2257		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2258		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2259		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2260		vrcb += sizeof(struct bge_rcb);
2261	}
2262
2263	/* Configure send ring RCB 0 (we use only the first ring) */
2264	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2265	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2266	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2267	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2268	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2269	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2270	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2271		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2272	else
2273		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2274		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2275	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2276	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2277
2278	/*
2279	 * Disable all receive return rings by setting the
2280	 * 'ring diabled' bit in the flags field of all the receive
2281	 * return ring control blocks, located in NIC memory.
2282	 */
2283	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2284	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2285	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2286		/* Should be 17, use 16 until we get an SRAM map. */
2287		limit = 16;
2288	} else if (!BGE_IS_5705_PLUS(sc))
2289		limit = BGE_RX_RINGS_MAX;
2290	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2291	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2292	    BGE_IS_57765_PLUS(sc))
2293		limit = 4;
2294	else
2295		limit = 1;
2296	/* Disable all receive return rings. */
2297	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2298	for (i = 0; i < limit; i++) {
2299		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2300		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2301		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2302		    BGE_RCB_FLAG_RING_DISABLED);
2303		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2304		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2305		    (i * (sizeof(uint64_t))), 0);
2306		vrcb += sizeof(struct bge_rcb);
2307	}
2308
2309	/*
2310	 * Set up receive return ring 0.  Note that the NIC address
2311	 * for RX return rings is 0x0.  The return rings live entirely
2312	 * within the host, so the nicaddr field in the RCB isn't used.
2313	 */
2314	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2315	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2316	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2317	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2318	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2319	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2320	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2321
2322	/* Set random backoff seed for TX */
2323	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2324	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2325	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2326	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2327	    BGE_TX_BACKOFF_SEED_MASK);
2328
2329	/* Set inter-packet gap */
2330	val = 0x2620;
2331	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2332	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2333		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2334		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2335	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2336
2337	/*
2338	 * Specify which ring to use for packets that don't match
2339	 * any RX rules.
2340	 */
2341	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2342
2343	/*
2344	 * Configure number of RX lists. One interrupt distribution
2345	 * list, sixteen active lists, one bad frames class.
2346	 */
2347	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2348
2349	/* Inialize RX list placement stats mask. */
2350	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2351	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2352
2353	/* Disable host coalescing until we get it set up */
2354	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2355
2356	/* Poll to make sure it's shut down. */
2357	for (i = 0; i < BGE_TIMEOUT; i++) {
2358		DELAY(10);
2359		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2360			break;
2361	}
2362
2363	if (i == BGE_TIMEOUT) {
2364		device_printf(sc->bge_dev,
2365		    "host coalescing engine failed to idle\n");
2366		return (ENXIO);
2367	}
2368
2369	/* Set up host coalescing defaults */
2370	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2371	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2372	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2373	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2374	if (!(BGE_IS_5705_PLUS(sc))) {
2375		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2376		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2377	}
2378	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2379	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2380
2381	/* Set up address of statistics block */
2382	if (!(BGE_IS_5705_PLUS(sc))) {
2383		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2384		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2385		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2386		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2387		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2388		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2389		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2390	}
2391
2392	/* Set up address of status block */
2393	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2394	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2395	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2396	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2397
2398	/* Set up status block size. */
2399	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2400	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2401		val = BGE_STATBLKSZ_FULL;
2402		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2403	} else {
2404		val = BGE_STATBLKSZ_32BYTE;
2405		bzero(sc->bge_ldata.bge_status_block, 32);
2406	}
2407	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2408	    sc->bge_cdata.bge_status_map,
2409	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2410
2411	/* Turn on host coalescing state machine */
2412	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2413
2414	/* Turn on RX BD completion state machine and enable attentions */
2415	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2416	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2417
2418	/* Turn on RX list placement state machine */
2419	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2420
2421	/* Turn on RX list selector state machine. */
2422	if (!(BGE_IS_5705_PLUS(sc)))
2423		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2424
2425	/* Turn on DMA, clear stats. */
2426	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2427	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2428	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2429	    BGE_MACMODE_FRMHDR_DMA_ENB;
2430
2431	if (sc->bge_flags & BGE_FLAG_TBI)
2432		val |= BGE_PORTMODE_TBI;
2433	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2434		val |= BGE_PORTMODE_GMII;
2435	else
2436		val |= BGE_PORTMODE_MII;
2437
2438	/* Allow APE to send/receive frames. */
2439	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2440		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2441
2442	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2443	DELAY(40);
2444
2445	/* Set misc. local control, enable interrupts on attentions */
2446	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2447
2448#ifdef notdef
2449	/* Assert GPIO pins for PHY reset */
2450	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2451	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2452	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2453	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2454#endif
2455
2456	/* Turn on DMA completion state machine */
2457	if (!(BGE_IS_5705_PLUS(sc)))
2458		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2459
2460	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2461
2462	/* Enable host coalescing bug fix. */
2463	if (BGE_IS_5755_PLUS(sc))
2464		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2465
2466	/* Request larger DMA burst size to get better performance. */
2467	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2468		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2469
2470	/* Turn on write DMA state machine */
2471	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2472	DELAY(40);
2473
2474	/* Turn on read DMA state machine */
2475	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2476
2477	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2478		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2479
2480	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2481	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2482	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2483		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2484		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2485		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2486	if (sc->bge_flags & BGE_FLAG_PCIE)
2487		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2488	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2489		val |= BGE_RDMAMODE_TSO4_ENABLE;
2490		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2491		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2492		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2493			val |= BGE_RDMAMODE_TSO6_ENABLE;
2494	}
2495
2496	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2497	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2498		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2499			BGE_RDMAMODE_H2BNC_VLAN_DET;
2500		/*
2501		 * Allow multiple outstanding read requests from
2502		 * non-LSO read DMA engine.
2503		 */
2504		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2505	}
2506
2507	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2508	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2509	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2510	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2511	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2512		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2513			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2514		else
2515			rdmareg = BGE_RDMA_RSRVCTRL;
2516		dmactl = CSR_READ_4(sc, rdmareg);
2517		/*
2518		 * Adjust tx margin to prevent TX data corruption and
2519		 * fix internal FIFO overflow.
2520		 */
2521		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2522		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2523			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2524			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2525			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2526			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2527			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2528			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2529		}
2530		/*
2531		 * Enable fix for read DMA FIFO overruns.
2532		 * The fix is to limit the number of RX BDs
2533		 * the hardware would fetch at a fime.
2534		 */
2535		CSR_WRITE_4(sc, rdmareg, dmactl |
2536		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2537	}
2538
2539	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2540		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2541		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2542		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2543		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2544	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2545		/*
2546		 * Allow 4KB burst length reads for non-LSO frames.
2547		 * Enable 512B burst length reads for buffer descriptors.
2548		 */
2549		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2550		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2551		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2552		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2553	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2554		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2555		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2556		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2557		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2558	}
2559
2560	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2561	DELAY(40);
2562
2563	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2564		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2565			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2566			if ((val & 0xFFFF) > BGE_FRAMELEN)
2567				break;
2568			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2569				break;
2570		}
2571		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2572			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2573			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2574				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2575			else
2576				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2577			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2578		}
2579	}
2580
2581	/* Turn on RX data completion state machine */
2582	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2583
2584	/* Turn on RX BD initiator state machine */
2585	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2586
2587	/* Turn on RX data and RX BD initiator state machine */
2588	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2589
2590	/* Turn on Mbuf cluster free state machine */
2591	if (!(BGE_IS_5705_PLUS(sc)))
2592		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2593
2594	/* Turn on send BD completion state machine */
2595	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2596
2597	/* Turn on send data completion state machine */
2598	val = BGE_SDCMODE_ENABLE;
2599	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2600		val |= BGE_SDCMODE_CDELAY;
2601	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2602
2603	/* Turn on send data initiator state machine */
2604	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2605		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2606		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2607	else
2608		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2609
2610	/* Turn on send BD initiator state machine */
2611	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2612
2613	/* Turn on send BD selector state machine */
2614	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2615
2616	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2617	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2618	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2619
2620	/* ack/clear link change events */
2621	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2622	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2623	    BGE_MACSTAT_LINK_CHANGED);
2624	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2625
2626	/*
2627	 * Enable attention when the link has changed state for
2628	 * devices that use auto polling.
2629	 */
2630	if (sc->bge_flags & BGE_FLAG_TBI) {
2631		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2632	} else {
2633		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2634			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2635			DELAY(80);
2636		}
2637		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2638		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2639			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2640			    BGE_EVTENB_MI_INTERRUPT);
2641	}
2642
2643	/*
2644	 * Clear any pending link state attention.
2645	 * Otherwise some link state change events may be lost until attention
2646	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2647	 * It's not necessary on newer BCM chips - perhaps enabling link
2648	 * state change attentions implies clearing pending attention.
2649	 */
2650	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2651	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2652	    BGE_MACSTAT_LINK_CHANGED);
2653
2654	/* Enable link state change attentions. */
2655	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2656
2657	return (0);
2658}
2659
2660static const struct bge_revision *
2661bge_lookup_rev(uint32_t chipid)
2662{
2663	const struct bge_revision *br;
2664
2665	for (br = bge_revisions; br->br_name != NULL; br++) {
2666		if (br->br_chipid == chipid)
2667			return (br);
2668	}
2669
2670	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2671		if (br->br_chipid == BGE_ASICREV(chipid))
2672			return (br);
2673	}
2674
2675	return (NULL);
2676}
2677
2678static const struct bge_vendor *
2679bge_lookup_vendor(uint16_t vid)
2680{
2681	const struct bge_vendor *v;
2682
2683	for (v = bge_vendors; v->v_name != NULL; v++)
2684		if (v->v_id == vid)
2685			return (v);
2686
2687	return (NULL);
2688}
2689
2690static uint32_t
2691bge_chipid(device_t dev)
2692{
2693	uint32_t id;
2694
2695	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2696	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2697	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2698		/*
2699		 * Find the ASCI revision.  Different chips use different
2700		 * registers.
2701		 */
2702		switch (pci_get_device(dev)) {
2703		case BCOM_DEVICEID_BCM5717C:
2704			/* 5717 C0 seems to belong to 5720 line. */
2705			id = BGE_CHIPID_BCM5720_A0;
2706			break;
2707		case BCOM_DEVICEID_BCM5717:
2708		case BCOM_DEVICEID_BCM5718:
2709		case BCOM_DEVICEID_BCM5719:
2710		case BCOM_DEVICEID_BCM5720:
2711		case BCOM_DEVICEID_BCM5725:
2712		case BCOM_DEVICEID_BCM5727:
2713		case BCOM_DEVICEID_BCM5762:
2714		case BCOM_DEVICEID_BCM57764:
2715		case BCOM_DEVICEID_BCM57767:
2716		case BCOM_DEVICEID_BCM57787:
2717			id = pci_read_config(dev,
2718			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2719			break;
2720		case BCOM_DEVICEID_BCM57761:
2721		case BCOM_DEVICEID_BCM57762:
2722		case BCOM_DEVICEID_BCM57765:
2723		case BCOM_DEVICEID_BCM57766:
2724		case BCOM_DEVICEID_BCM57781:
2725		case BCOM_DEVICEID_BCM57782:
2726		case BCOM_DEVICEID_BCM57785:
2727		case BCOM_DEVICEID_BCM57786:
2728		case BCOM_DEVICEID_BCM57791:
2729		case BCOM_DEVICEID_BCM57795:
2730			id = pci_read_config(dev,
2731			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2732			break;
2733		default:
2734			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2735		}
2736	}
2737	return (id);
2738}
2739
2740/*
2741 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2742 * against our list and return its name if we find a match.
2743 *
2744 * Note that since the Broadcom controller contains VPD support, we
2745 * try to get the device name string from the controller itself instead
2746 * of the compiled-in string. It guarantees we'll always announce the
2747 * right product name. We fall back to the compiled-in string when
2748 * VPD is unavailable or corrupt.
2749 */
2750static int
2751bge_probe(device_t dev)
2752{
2753	char buf[96];
2754	char model[64];
2755	const struct bge_revision *br;
2756	const char *pname;
2757	struct bge_softc *sc;
2758	const struct bge_type *t = bge_devs;
2759	const struct bge_vendor *v;
2760	uint32_t id;
2761	uint16_t did, vid;
2762
2763	sc = device_get_softc(dev);
2764	sc->bge_dev = dev;
2765	vid = pci_get_vendor(dev);
2766	did = pci_get_device(dev);
2767	while(t->bge_vid != 0) {
2768		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2769			id = bge_chipid(dev);
2770			br = bge_lookup_rev(id);
2771			if (bge_has_eaddr(sc) &&
2772			    pci_get_vpd_ident(dev, &pname) == 0)
2773				snprintf(model, sizeof(model), "%s", pname);
2774			else {
2775				v = bge_lookup_vendor(vid);
2776				snprintf(model, sizeof(model), "%s %s",
2777				    v != NULL ? v->v_name : "Unknown",
2778				    br != NULL ? br->br_name :
2779				    "NetXtreme/NetLink Ethernet Controller");
2780			}
2781			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2782			    model, br != NULL ? "" : "unknown ", id);
2783			device_set_desc_copy(dev, buf);
2784			return (BUS_PROBE_DEFAULT);
2785		}
2786		t++;
2787	}
2788
2789	return (ENXIO);
2790}
2791
2792static void
2793bge_dma_free(struct bge_softc *sc)
2794{
2795	int i;
2796
2797	/* Destroy DMA maps for RX buffers. */
2798	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2799		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2800			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2801			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2802	}
2803	if (sc->bge_cdata.bge_rx_std_sparemap)
2804		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2805		    sc->bge_cdata.bge_rx_std_sparemap);
2806
2807	/* Destroy DMA maps for jumbo RX buffers. */
2808	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2809		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2810			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2811			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2812	}
2813	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2814		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2815		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2816
2817	/* Destroy DMA maps for TX buffers. */
2818	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2819		if (sc->bge_cdata.bge_tx_dmamap[i])
2820			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2821			    sc->bge_cdata.bge_tx_dmamap[i]);
2822	}
2823
2824	if (sc->bge_cdata.bge_rx_mtag)
2825		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2826	if (sc->bge_cdata.bge_mtag_jumbo)
2827		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2828	if (sc->bge_cdata.bge_tx_mtag)
2829		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2830
2831	/* Destroy standard RX ring. */
2832	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2833		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2834		    sc->bge_cdata.bge_rx_std_ring_map);
2835	if (sc->bge_ldata.bge_rx_std_ring)
2836		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2837		    sc->bge_ldata.bge_rx_std_ring,
2838		    sc->bge_cdata.bge_rx_std_ring_map);
2839
2840	if (sc->bge_cdata.bge_rx_std_ring_tag)
2841		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2842
2843	/* Destroy jumbo RX ring. */
2844	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2845		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2846		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2847
2848	if (sc->bge_ldata.bge_rx_jumbo_ring)
2849		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2850		    sc->bge_ldata.bge_rx_jumbo_ring,
2851		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2852
2853	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2854		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2855
2856	/* Destroy RX return ring. */
2857	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2858		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2859		    sc->bge_cdata.bge_rx_return_ring_map);
2860
2861	if (sc->bge_ldata.bge_rx_return_ring)
2862		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2863		    sc->bge_ldata.bge_rx_return_ring,
2864		    sc->bge_cdata.bge_rx_return_ring_map);
2865
2866	if (sc->bge_cdata.bge_rx_return_ring_tag)
2867		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2868
2869	/* Destroy TX ring. */
2870	if (sc->bge_ldata.bge_tx_ring_paddr)
2871		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2872		    sc->bge_cdata.bge_tx_ring_map);
2873
2874	if (sc->bge_ldata.bge_tx_ring)
2875		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2876		    sc->bge_ldata.bge_tx_ring,
2877		    sc->bge_cdata.bge_tx_ring_map);
2878
2879	if (sc->bge_cdata.bge_tx_ring_tag)
2880		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2881
2882	/* Destroy status block. */
2883	if (sc->bge_ldata.bge_status_block_paddr)
2884		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2885		    sc->bge_cdata.bge_status_map);
2886
2887	if (sc->bge_ldata.bge_status_block)
2888		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2889		    sc->bge_ldata.bge_status_block,
2890		    sc->bge_cdata.bge_status_map);
2891
2892	if (sc->bge_cdata.bge_status_tag)
2893		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2894
2895	/* Destroy statistics block. */
2896	if (sc->bge_ldata.bge_stats_paddr)
2897		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2898		    sc->bge_cdata.bge_stats_map);
2899
2900	if (sc->bge_ldata.bge_stats)
2901		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2902		    sc->bge_ldata.bge_stats,
2903		    sc->bge_cdata.bge_stats_map);
2904
2905	if (sc->bge_cdata.bge_stats_tag)
2906		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2907
2908	if (sc->bge_cdata.bge_buffer_tag)
2909		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2910
2911	/* Destroy the parent tag. */
2912	if (sc->bge_cdata.bge_parent_tag)
2913		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2914}
2915
2916static int
2917bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2918    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2919    bus_addr_t *paddr, const char *msg)
2920{
2921	struct bge_dmamap_arg ctx;
2922	int error;
2923
2924	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2925	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2926	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2927	if (error != 0) {
2928		device_printf(sc->bge_dev,
2929		    "could not create %s dma tag\n", msg);
2930		return (ENOMEM);
2931	}
2932	/* Allocate DMA'able memory for ring. */
2933	error = bus_dmamem_alloc(*tag, (void **)ring,
2934	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2935	if (error != 0) {
2936		device_printf(sc->bge_dev,
2937		    "could not allocate DMA'able memory for %s\n", msg);
2938		return (ENOMEM);
2939	}
2940	/* Load the address of the ring. */
2941	ctx.bge_busaddr = 0;
2942	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2943	    &ctx, BUS_DMA_NOWAIT);
2944	if (error != 0) {
2945		device_printf(sc->bge_dev,
2946		    "could not load DMA'able memory for %s\n", msg);
2947		return (ENOMEM);
2948	}
2949	*paddr = ctx.bge_busaddr;
2950	return (0);
2951}
2952
2953static int
2954bge_dma_alloc(struct bge_softc *sc)
2955{
2956	bus_addr_t lowaddr;
2957	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2958	int i, error;
2959
2960	lowaddr = BUS_SPACE_MAXADDR;
2961	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2962		lowaddr = BGE_DMA_MAXADDR;
2963	/*
2964	 * Allocate the parent bus DMA tag appropriate for PCI.
2965	 */
2966	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2967	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2968	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2969	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2970	if (error != 0) {
2971		device_printf(sc->bge_dev,
2972		    "could not allocate parent dma tag\n");
2973		return (ENOMEM);
2974	}
2975
2976	/* Create tag for standard RX ring. */
2977	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2978	    &sc->bge_cdata.bge_rx_std_ring_tag,
2979	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2980	    &sc->bge_cdata.bge_rx_std_ring_map,
2981	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2982	if (error)
2983		return (error);
2984
2985	/* Create tag for RX return ring. */
2986	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2987	    &sc->bge_cdata.bge_rx_return_ring_tag,
2988	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2989	    &sc->bge_cdata.bge_rx_return_ring_map,
2990	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2991	if (error)
2992		return (error);
2993
2994	/* Create tag for TX ring. */
2995	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2996	    &sc->bge_cdata.bge_tx_ring_tag,
2997	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2998	    &sc->bge_cdata.bge_tx_ring_map,
2999	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3000	if (error)
3001		return (error);
3002
3003	/*
3004	 * Create tag for status block.
3005	 * Because we only use single Tx/Rx/Rx return ring, use
3006	 * minimum status block size except BCM5700 AX/BX which
3007	 * seems to want to see full status block size regardless
3008	 * of configured number of ring.
3009	 */
3010	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3011	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3012		sbsz = BGE_STATUS_BLK_SZ;
3013	else
3014		sbsz = 32;
3015	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3016	    &sc->bge_cdata.bge_status_tag,
3017	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3018	    &sc->bge_cdata.bge_status_map,
3019	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3020	if (error)
3021		return (error);
3022
3023	/* Create tag for statistics block. */
3024	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3025	    &sc->bge_cdata.bge_stats_tag,
3026	    (uint8_t **)&sc->bge_ldata.bge_stats,
3027	    &sc->bge_cdata.bge_stats_map,
3028	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3029	if (error)
3030		return (error);
3031
3032	/* Create tag for jumbo RX ring. */
3033	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3034		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3035		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3036		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3037		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3038		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3039		if (error)
3040			return (error);
3041	}
3042
3043	/* Create parent tag for buffers. */
3044	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3045		/*
3046		 * XXX
3047		 * watchdog timeout issue was observed on BCM5704 which
3048		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3049		 * Both limiting DMA address space to 32bits and flushing
3050		 * mailbox write seem to address the issue.
3051		 */
3052		if (sc->bge_pcixcap != 0)
3053			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3054	}
3055	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3056	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3057	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3058	    &sc->bge_cdata.bge_buffer_tag);
3059	if (error != 0) {
3060		device_printf(sc->bge_dev,
3061		    "could not allocate buffer dma tag\n");
3062		return (ENOMEM);
3063	}
3064	/* Create tag for Tx mbufs. */
3065	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3066		txsegsz = BGE_TSOSEG_SZ;
3067		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3068	} else {
3069		txsegsz = MCLBYTES;
3070		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3071	}
3072	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3073	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3074	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3075	    &sc->bge_cdata.bge_tx_mtag);
3076
3077	if (error) {
3078		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3079		return (ENOMEM);
3080	}
3081
3082	/* Create tag for Rx mbufs. */
3083	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3084		rxmaxsegsz = MJUM9BYTES;
3085	else
3086		rxmaxsegsz = MCLBYTES;
3087	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3088	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3089	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3090
3091	if (error) {
3092		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3093		return (ENOMEM);
3094	}
3095
3096	/* Create DMA maps for RX buffers. */
3097	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3098	    &sc->bge_cdata.bge_rx_std_sparemap);
3099	if (error) {
3100		device_printf(sc->bge_dev,
3101		    "can't create spare DMA map for RX\n");
3102		return (ENOMEM);
3103	}
3104	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3105		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3106			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3107		if (error) {
3108			device_printf(sc->bge_dev,
3109			    "can't create DMA map for RX\n");
3110			return (ENOMEM);
3111		}
3112	}
3113
3114	/* Create DMA maps for TX buffers. */
3115	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3116		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3117			    &sc->bge_cdata.bge_tx_dmamap[i]);
3118		if (error) {
3119			device_printf(sc->bge_dev,
3120			    "can't create DMA map for TX\n");
3121			return (ENOMEM);
3122		}
3123	}
3124
3125	/* Create tags for jumbo RX buffers. */
3126	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3127		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3128		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3129		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3130		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3131		if (error) {
3132			device_printf(sc->bge_dev,
3133			    "could not allocate jumbo dma tag\n");
3134			return (ENOMEM);
3135		}
3136		/* Create DMA maps for jumbo RX buffers. */
3137		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3138		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3139		if (error) {
3140			device_printf(sc->bge_dev,
3141			    "can't create spare DMA map for jumbo RX\n");
3142			return (ENOMEM);
3143		}
3144		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3145			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3146				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3147			if (error) {
3148				device_printf(sc->bge_dev,
3149				    "can't create DMA map for jumbo RX\n");
3150				return (ENOMEM);
3151			}
3152		}
3153	}
3154
3155	return (0);
3156}
3157
3158/*
3159 * Return true if this device has more than one port.
3160 */
3161static int
3162bge_has_multiple_ports(struct bge_softc *sc)
3163{
3164	device_t dev = sc->bge_dev;
3165	u_int b, d, f, fscan, s;
3166
3167	d = pci_get_domain(dev);
3168	b = pci_get_bus(dev);
3169	s = pci_get_slot(dev);
3170	f = pci_get_function(dev);
3171	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3172		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3173			return (1);
3174	return (0);
3175}
3176
3177/*
3178 * Return true if MSI can be used with this device.
3179 */
3180static int
3181bge_can_use_msi(struct bge_softc *sc)
3182{
3183	int can_use_msi = 0;
3184
3185	if (sc->bge_msi == 0)
3186		return (0);
3187
3188	/* Disable MSI for polling(4). */
3189#ifdef DEVICE_POLLING
3190	return (0);
3191#endif
3192	switch (sc->bge_asicrev) {
3193	case BGE_ASICREV_BCM5714_A0:
3194	case BGE_ASICREV_BCM5714:
3195		/*
3196		 * Apparently, MSI doesn't work when these chips are
3197		 * configured in single-port mode.
3198		 */
3199		if (bge_has_multiple_ports(sc))
3200			can_use_msi = 1;
3201		break;
3202	case BGE_ASICREV_BCM5750:
3203		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3204		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3205			can_use_msi = 1;
3206		break;
3207	default:
3208		if (BGE_IS_575X_PLUS(sc))
3209			can_use_msi = 1;
3210	}
3211	return (can_use_msi);
3212}
3213
3214static int
3215bge_mbox_reorder(struct bge_softc *sc)
3216{
3217	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3218	static const struct mbox_reorder {
3219		const uint16_t vendor;
3220		const uint16_t device;
3221		const char *desc;
3222	} mbox_reorder_lists[] = {
3223		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3224	};
3225	devclass_t pci, pcib;
3226	device_t bus, dev;
3227	int i;
3228
3229	pci = devclass_find("pci");
3230	pcib = devclass_find("pcib");
3231	dev = sc->bge_dev;
3232	bus = device_get_parent(dev);
3233	for (;;) {
3234		dev = device_get_parent(bus);
3235		bus = device_get_parent(dev);
3236		if (device_get_devclass(dev) != pcib)
3237			break;
3238		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3239			if (pci_get_vendor(dev) ==
3240			    mbox_reorder_lists[i].vendor &&
3241			    pci_get_device(dev) ==
3242			    mbox_reorder_lists[i].device) {
3243				device_printf(sc->bge_dev,
3244				    "enabling MBOX workaround for %s\n",
3245				    mbox_reorder_lists[i].desc);
3246				return (1);
3247			}
3248		}
3249		if (device_get_devclass(bus) != pci)
3250			break;
3251	}
3252	return (0);
3253}
3254
3255static void
3256bge_devinfo(struct bge_softc *sc)
3257{
3258	uint32_t cfg, clk;
3259
3260	device_printf(sc->bge_dev,
3261	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3262	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3263	if (sc->bge_flags & BGE_FLAG_PCIE)
3264		printf("PCI-E\n");
3265	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3266		printf("PCI-X ");
3267		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3268		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3269			clk = 133;
3270		else {
3271			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3272			switch (clk) {
3273			case 0:
3274				clk = 33;
3275				break;
3276			case 2:
3277				clk = 50;
3278				break;
3279			case 4:
3280				clk = 66;
3281				break;
3282			case 6:
3283				clk = 100;
3284				break;
3285			case 7:
3286				clk = 133;
3287				break;
3288			}
3289		}
3290		printf("%u MHz\n", clk);
3291	} else {
3292		if (sc->bge_pcixcap != 0)
3293			printf("PCI on PCI-X ");
3294		else
3295			printf("PCI ");
3296		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3297		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3298			clk = 66;
3299		else
3300			clk = 33;
3301		if (cfg & BGE_PCISTATE_32BIT_BUS)
3302			printf("%u MHz; 32bit\n", clk);
3303		else
3304			printf("%u MHz; 64bit\n", clk);
3305	}
3306}
3307
3308static int
3309bge_attach(device_t dev)
3310{
3311	if_t ifp;
3312	struct bge_softc *sc;
3313	uint32_t hwcfg = 0, misccfg, pcistate;
3314	u_char eaddr[ETHER_ADDR_LEN];
3315	int capmask, error, reg, rid, trys;
3316
3317	sc = device_get_softc(dev);
3318	sc->bge_dev = dev;
3319
3320	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3321	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3322	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3323
3324	pci_enable_busmaster(dev);
3325
3326	/*
3327	 * Allocate control/status registers.
3328	 */
3329	rid = PCIR_BAR(0);
3330	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3331	    RF_ACTIVE);
3332
3333	if (sc->bge_res == NULL) {
3334		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3335		error = ENXIO;
3336		goto fail;
3337	}
3338
3339	/* Save various chip information. */
3340	sc->bge_func_addr = pci_get_function(dev);
3341	sc->bge_chipid = bge_chipid(dev);
3342	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3343	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3344
3345	/* Set default PHY address. */
3346	sc->bge_phy_addr = 1;
3347	 /*
3348	  * PHY address mapping for various devices.
3349	  *
3350	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3351	  * ---------+-------+-------+-------+-------+
3352	  * BCM57XX  |   1   |   X   |   X   |   X   |
3353	  * BCM5704  |   1   |   X   |   1   |   X   |
3354	  * BCM5717  |   1   |   8   |   2   |   9   |
3355	  * BCM5719  |   1   |   8   |   2   |   9   |
3356	  * BCM5720  |   1   |   8   |   2   |   9   |
3357	  *
3358	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3359	  * ---------+-------+-------+-------+-------+
3360	  * BCM57XX  |   X   |   X   |   X   |   X   |
3361	  * BCM5704  |   X   |   X   |   X   |   X   |
3362	  * BCM5717  |   X   |   X   |   X   |   X   |
3363	  * BCM5719  |   3   |   10  |   4   |   11  |
3364	  * BCM5720  |   X   |   X   |   X   |   X   |
3365	  *
3366	  * Other addresses may respond but they are not
3367	  * IEEE compliant PHYs and should be ignored.
3368	  */
3369	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3370	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3371	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3372		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3373			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3374			    BGE_SGDIGSTS_IS_SERDES)
3375				sc->bge_phy_addr = sc->bge_func_addr + 8;
3376			else
3377				sc->bge_phy_addr = sc->bge_func_addr + 1;
3378		} else {
3379			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3380			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3381				sc->bge_phy_addr = sc->bge_func_addr + 8;
3382			else
3383				sc->bge_phy_addr = sc->bge_func_addr + 1;
3384		}
3385	}
3386
3387	if (bge_has_eaddr(sc))
3388		sc->bge_flags |= BGE_FLAG_EADDR;
3389
3390	/* Save chipset family. */
3391	switch (sc->bge_asicrev) {
3392	case BGE_ASICREV_BCM5762:
3393	case BGE_ASICREV_BCM57765:
3394	case BGE_ASICREV_BCM57766:
3395		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3396		/* FALLTHROUGH */
3397	case BGE_ASICREV_BCM5717:
3398	case BGE_ASICREV_BCM5719:
3399	case BGE_ASICREV_BCM5720:
3400		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3401		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3402		    BGE_FLAG_JUMBO_FRAME;
3403		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3404		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3405			/*
3406			 * Enable work around for DMA engine miscalculation
3407			 * of TXMBUF available space.
3408			 */
3409			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3410			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3411			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3412				/* Jumbo frame on BCM5719 A0 does not work. */
3413				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3414			}
3415		}
3416		break;
3417	case BGE_ASICREV_BCM5755:
3418	case BGE_ASICREV_BCM5761:
3419	case BGE_ASICREV_BCM5784:
3420	case BGE_ASICREV_BCM5785:
3421	case BGE_ASICREV_BCM5787:
3422	case BGE_ASICREV_BCM57780:
3423		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3424		    BGE_FLAG_5705_PLUS;
3425		break;
3426	case BGE_ASICREV_BCM5700:
3427	case BGE_ASICREV_BCM5701:
3428	case BGE_ASICREV_BCM5703:
3429	case BGE_ASICREV_BCM5704:
3430		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3431		break;
3432	case BGE_ASICREV_BCM5714_A0:
3433	case BGE_ASICREV_BCM5780:
3434	case BGE_ASICREV_BCM5714:
3435		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3436		/* FALLTHROUGH */
3437	case BGE_ASICREV_BCM5750:
3438	case BGE_ASICREV_BCM5752:
3439	case BGE_ASICREV_BCM5906:
3440		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3441		/* FALLTHROUGH */
3442	case BGE_ASICREV_BCM5705:
3443		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3444		break;
3445	}
3446
3447	/* Identify chips with APE processor. */
3448	switch (sc->bge_asicrev) {
3449	case BGE_ASICREV_BCM5717:
3450	case BGE_ASICREV_BCM5719:
3451	case BGE_ASICREV_BCM5720:
3452	case BGE_ASICREV_BCM5761:
3453	case BGE_ASICREV_BCM5762:
3454		sc->bge_flags |= BGE_FLAG_APE;
3455		break;
3456	}
3457
3458	/* Chips with APE need BAR2 access for APE registers/memory. */
3459	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3460		rid = PCIR_BAR(2);
3461		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3462		    RF_ACTIVE);
3463		if (sc->bge_res2 == NULL) {
3464			device_printf (sc->bge_dev,
3465			    "couldn't map BAR2 memory\n");
3466			error = ENXIO;
3467			goto fail;
3468		}
3469
3470		/* Enable APE register/memory access by host driver. */
3471		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3472		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3473		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3474		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3475		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3476
3477		bge_ape_lock_init(sc);
3478		bge_ape_read_fw_ver(sc);
3479	}
3480
3481	/* Add SYSCTLs, requires the chipset family to be set. */
3482	bge_add_sysctls(sc);
3483
3484	/* Identify the chips that use an CPMU. */
3485	if (BGE_IS_5717_PLUS(sc) ||
3486	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3487	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3488	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3489	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3490		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3491	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3492		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3493	else
3494		sc->bge_mi_mode = BGE_MIMODE_BASE;
3495	/* Enable auto polling for BCM570[0-5]. */
3496	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3497		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3498
3499	/*
3500	 * All Broadcom controllers have 4GB boundary DMA bug.
3501	 * Whenever an address crosses a multiple of the 4GB boundary
3502	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3503	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3504	 * state machine will lockup and cause the device to hang.
3505	 */
3506	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3507
3508	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3509	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3510		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3511
3512	/*
3513	 * BCM5719 cannot handle DMA requests for DMA segments that
3514	 * have larger than 4KB in size.  However the maximum DMA
3515	 * segment size created in DMA tag is 4KB for TSO, so we
3516	 * wouldn't encounter the issue here.
3517	 */
3518	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3519		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3520
3521	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3522	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3523		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3524		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3525			sc->bge_flags |= BGE_FLAG_5788;
3526	}
3527
3528	capmask = BMSR_DEFCAPMASK;
3529	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3530	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3531	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3532	    pci_get_vendor(dev) == BCOM_VENDORID &&
3533	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3534	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3535	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3536	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3537	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3538	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3539	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3540	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3541	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3542	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3543	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3544		/* These chips are 10/100 only. */
3545		capmask &= ~BMSR_EXTSTAT;
3546		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3547	}
3548
3549	/*
3550	 * Some controllers seem to require a special firmware to use
3551	 * TSO. But the firmware is not available to FreeBSD and Linux
3552	 * claims that the TSO performed by the firmware is slower than
3553	 * hardware based TSO. Moreover the firmware based TSO has one
3554	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3555	 * header is greater than 80 bytes. A workaround for the TSO
3556	 * bug exist but it seems it's too expensive than not using
3557	 * TSO at all. Some hardwares also have the TSO bug so limit
3558	 * the TSO to the controllers that are not affected TSO issues
3559	 * (e.g. 5755 or higher).
3560	 */
3561	if (BGE_IS_5717_PLUS(sc)) {
3562		/* BCM5717 requires different TSO configuration. */
3563		sc->bge_flags |= BGE_FLAG_TSO3;
3564		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3565		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3566			/* TSO on BCM5719 A0 does not work. */
3567			sc->bge_flags &= ~BGE_FLAG_TSO3;
3568		}
3569	} else if (BGE_IS_5755_PLUS(sc)) {
3570		/*
3571		 * BCM5754 and BCM5787 shares the same ASIC id so
3572		 * explicit device id check is required.
3573		 * Due to unknown reason TSO does not work on BCM5755M.
3574		 */
3575		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3576		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3577		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3578			sc->bge_flags |= BGE_FLAG_TSO;
3579	}
3580
3581	/*
3582	 * Check if this is a PCI-X or PCI Express device.
3583	 */
3584	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3585		/*
3586		 * Found a PCI Express capabilities register, this
3587		 * must be a PCI Express device.
3588		 */
3589		sc->bge_flags |= BGE_FLAG_PCIE;
3590		sc->bge_expcap = reg;
3591		/* Extract supported maximum payload size. */
3592		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3593		    PCIER_DEVICE_CAP, 2);
3594		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3595		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3596		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3597			sc->bge_expmrq = 2048;
3598		else
3599			sc->bge_expmrq = 4096;
3600		pci_set_max_read_req(dev, sc->bge_expmrq);
3601	} else {
3602		/*
3603		 * Check if the device is in PCI-X Mode.
3604		 * (This bit is not valid on PCI Express controllers.)
3605		 */
3606		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3607			sc->bge_pcixcap = reg;
3608		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3609		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3610			sc->bge_flags |= BGE_FLAG_PCIX;
3611	}
3612
3613	/*
3614	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3615	 * not actually a MAC controller bug but an issue with the embedded
3616	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3617	 */
3618	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3619		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3620	/*
3621	 * Some PCI-X bridges are known to trigger write reordering to
3622	 * the mailbox registers. Typical phenomena is watchdog timeouts
3623	 * caused by out-of-order TX completions.  Enable workaround for
3624	 * PCI-X devices that live behind these bridges.
3625	 * Note, PCI-X controllers can run in PCI mode so we can't use
3626	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3627	 */
3628	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3629		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3630	/*
3631	 * Allocate the interrupt, using MSI if possible.  These devices
3632	 * support 8 MSI messages, but only the first one is used in
3633	 * normal operation.
3634	 */
3635	rid = 0;
3636	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3637		sc->bge_msicap = reg;
3638		reg = 1;
3639		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3640			rid = 1;
3641			sc->bge_flags |= BGE_FLAG_MSI;
3642		}
3643	}
3644
3645	/*
3646	 * All controllers except BCM5700 supports tagged status but
3647	 * we use tagged status only for MSI case on BCM5717. Otherwise
3648	 * MSI on BCM5717 does not work.
3649	 */
3650#ifndef DEVICE_POLLING
3651	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3652		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3653#endif
3654
3655	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3656	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3657
3658	if (sc->bge_irq == NULL) {
3659		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3660		error = ENXIO;
3661		goto fail;
3662	}
3663
3664	bge_devinfo(sc);
3665
3666	sc->bge_asf_mode = 0;
3667	/* No ASF if APE present. */
3668	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3669		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3670		    BGE_SRAM_DATA_SIG_MAGIC)) {
3671			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3672			    BGE_HWCFG_ASF) {
3673				sc->bge_asf_mode |= ASF_ENABLE;
3674				sc->bge_asf_mode |= ASF_STACKUP;
3675				if (BGE_IS_575X_PLUS(sc))
3676					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3677			}
3678		}
3679	}
3680
3681	bge_stop_fw(sc);
3682	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3683	if (bge_reset(sc)) {
3684		device_printf(sc->bge_dev, "chip reset failed\n");
3685		error = ENXIO;
3686		goto fail;
3687	}
3688
3689	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3690	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3691
3692	if (bge_chipinit(sc)) {
3693		device_printf(sc->bge_dev, "chip initialization failed\n");
3694		error = ENXIO;
3695		goto fail;
3696	}
3697
3698	error = bge_get_eaddr(sc, eaddr);
3699	if (error) {
3700		device_printf(sc->bge_dev,
3701		    "failed to read station address\n");
3702		error = ENXIO;
3703		goto fail;
3704	}
3705
3706	/* 5705 limits RX return ring to 512 entries. */
3707	if (BGE_IS_5717_PLUS(sc))
3708		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3709	else if (BGE_IS_5705_PLUS(sc))
3710		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3711	else
3712		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3713
3714	if (bge_dma_alloc(sc)) {
3715		device_printf(sc->bge_dev,
3716		    "failed to allocate DMA resources\n");
3717		error = ENXIO;
3718		goto fail;
3719	}
3720
3721	/* Set default tuneable values. */
3722	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3723	sc->bge_rx_coal_ticks = 150;
3724	sc->bge_tx_coal_ticks = 150;
3725	sc->bge_rx_max_coal_bds = 10;
3726	sc->bge_tx_max_coal_bds = 10;
3727
3728	/* Initialize checksum features to use. */
3729	sc->bge_csum_features = BGE_CSUM_FEATURES;
3730	if (sc->bge_forced_udpcsum != 0)
3731		sc->bge_csum_features |= CSUM_UDP;
3732
3733	/* Set up ifnet structure */
3734	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3735	if (ifp == NULL) {
3736		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3737		error = ENXIO;
3738		goto fail;
3739	}
3740	if_setsoftc(ifp, sc);
3741	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3742	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3743	if_setioctlfn(ifp, bge_ioctl);
3744	if_setstartfn(ifp, bge_start);
3745	if_setinitfn(ifp, bge_init);
3746	if_setgetcounterfn(ifp, bge_get_counter);
3747	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3748	if_setsendqready(ifp);
3749	if_sethwassist(ifp, sc->bge_csum_features);
3750	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3751	    IFCAP_VLAN_MTU);
3752	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3753		if_sethwassistbits(ifp, CSUM_TSO, 0);
3754		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3755	}
3756#ifdef IFCAP_VLAN_HWCSUM
3757	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3758#endif
3759	if_setcapenable(ifp, if_getcapabilities(ifp));
3760#ifdef DEVICE_POLLING
3761	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3762#endif
3763
3764	/*
3765	 * 5700 B0 chips do not support checksumming correctly due
3766	 * to hardware bugs.
3767	 */
3768	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3769		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3770		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3771		if_sethwassist(ifp, 0);
3772	}
3773
3774	/*
3775	 * Figure out what sort of media we have by checking the
3776	 * hardware config word in the first 32k of NIC internal memory,
3777	 * or fall back to examining the EEPROM if necessary.
3778	 * Note: on some BCM5700 cards, this value appears to be unset.
3779	 * If that's the case, we have to rely on identifying the NIC
3780	 * by its PCI subsystem ID, as we do below for the SysKonnect
3781	 * SK-9D41.
3782	 */
3783	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3784		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3785	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3786	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3787		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3788		    sizeof(hwcfg))) {
3789			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3790			error = ENXIO;
3791			goto fail;
3792		}
3793		hwcfg = ntohl(hwcfg);
3794	}
3795
3796	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3797	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3798	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3799		if (BGE_IS_5705_PLUS(sc)) {
3800			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3801			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3802		} else
3803			sc->bge_flags |= BGE_FLAG_TBI;
3804	}
3805
3806	/* Set various PHY bug flags. */
3807	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3808	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3809		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3810	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3811	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3812		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3813	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3814		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3815	if (pci_get_subvendor(dev) == DELL_VENDORID)
3816		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3817	if ((BGE_IS_5705_PLUS(sc)) &&
3818	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3819	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3820	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3821	    !BGE_IS_5717_PLUS(sc)) {
3822		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3823		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3824		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3825		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3826			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3827			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3828				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3829			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3830				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3831		} else
3832			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3833	}
3834
3835	/*
3836	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3837	 * 5705 A0 and A1 chips.
3838	 */
3839	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3840	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3841	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3842	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3843		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3844
3845	if (sc->bge_flags & BGE_FLAG_TBI) {
3846		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3847		    bge_ifmedia_sts);
3848		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3849		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3850		    0, NULL);
3851		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3852		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3853		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3854	} else {
3855		/*
3856		 * Do transceiver setup and tell the firmware the
3857		 * driver is down so we can try to get access the
3858		 * probe if ASF is running.  Retry a couple of times
3859		 * if we get a conflict with the ASF firmware accessing
3860		 * the PHY.
3861		 */
3862		trys = 0;
3863		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3864again:
3865		bge_asf_driver_up(sc);
3866
3867		error = mii_attach(dev, &sc->bge_miibus, ifp,
3868		    (ifm_change_cb_t)bge_ifmedia_upd,
3869		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3870		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3871		if (error != 0) {
3872			if (trys++ < 4) {
3873				device_printf(sc->bge_dev, "Try again\n");
3874				bge_miibus_writereg(sc->bge_dev,
3875				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3876				goto again;
3877			}
3878			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3879			goto fail;
3880		}
3881
3882		/*
3883		 * Now tell the firmware we are going up after probing the PHY
3884		 */
3885		if (sc->bge_asf_mode & ASF_STACKUP)
3886			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3887	}
3888
3889	/*
3890	 * When using the BCM5701 in PCI-X mode, data corruption has
3891	 * been observed in the first few bytes of some received packets.
3892	 * Aligning the packet buffer in memory eliminates the corruption.
3893	 * Unfortunately, this misaligns the packet payloads.  On platforms
3894	 * which do not support unaligned accesses, we will realign the
3895	 * payloads by copying the received packets.
3896	 */
3897	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3898	    sc->bge_flags & BGE_FLAG_PCIX)
3899                sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3900
3901	/*
3902	 * Call MI attach routine.
3903	 */
3904	ether_ifattach(ifp, eaddr);
3905
3906	/* Tell upper layer we support long frames. */
3907	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3908
3909	/*
3910	 * Hookup IRQ last.
3911	 */
3912	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3913		/* Take advantage of single-shot MSI. */
3914		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3915		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3916		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3917		    taskqueue_thread_enqueue, &sc->bge_tq);
3918		if (sc->bge_tq == NULL) {
3919			device_printf(dev, "could not create taskqueue.\n");
3920			ether_ifdetach(ifp);
3921			error = ENOMEM;
3922			goto fail;
3923		}
3924		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3925		    "%s taskq", device_get_nameunit(sc->bge_dev));
3926		if (error != 0) {
3927			device_printf(dev, "could not start threads.\n");
3928			ether_ifdetach(ifp);
3929			goto fail;
3930		}
3931		error = bus_setup_intr(dev, sc->bge_irq,
3932		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3933		    &sc->bge_intrhand);
3934	} else
3935		error = bus_setup_intr(dev, sc->bge_irq,
3936		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3937		    &sc->bge_intrhand);
3938
3939	if (error) {
3940		ether_ifdetach(ifp);
3941		device_printf(sc->bge_dev, "couldn't set up irq\n");
3942	}
3943
3944fail:
3945	if (error)
3946		bge_detach(dev);
3947	return (error);
3948}
3949
3950static int
3951bge_detach(device_t dev)
3952{
3953	struct bge_softc *sc;
3954	if_t ifp;
3955
3956	sc = device_get_softc(dev);
3957	ifp = sc->bge_ifp;
3958
3959#ifdef DEVICE_POLLING
3960	if (if_getcapenable(ifp) & IFCAP_POLLING)
3961		ether_poll_deregister(ifp);
3962#endif
3963
3964	if (device_is_attached(dev)) {
3965		ether_ifdetach(ifp);
3966		BGE_LOCK(sc);
3967		bge_stop(sc);
3968		BGE_UNLOCK(sc);
3969		callout_drain(&sc->bge_stat_ch);
3970	}
3971
3972	if (sc->bge_tq)
3973		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3974
3975	if (sc->bge_flags & BGE_FLAG_TBI)
3976		ifmedia_removeall(&sc->bge_ifmedia);
3977	else if (sc->bge_miibus != NULL) {
3978		bus_generic_detach(dev);
3979		device_delete_child(dev, sc->bge_miibus);
3980	}
3981
3982	bge_release_resources(sc);
3983
3984	return (0);
3985}
3986
3987static void
3988bge_release_resources(struct bge_softc *sc)
3989{
3990	device_t dev;
3991
3992	dev = sc->bge_dev;
3993
3994	if (sc->bge_tq != NULL)
3995		taskqueue_free(sc->bge_tq);
3996
3997	if (sc->bge_intrhand != NULL)
3998		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3999
4000	if (sc->bge_irq != NULL) {
4001		bus_release_resource(dev, SYS_RES_IRQ,
4002		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4003		pci_release_msi(dev);
4004	}
4005
4006	if (sc->bge_res != NULL)
4007		bus_release_resource(dev, SYS_RES_MEMORY,
4008		    rman_get_rid(sc->bge_res), sc->bge_res);
4009
4010	if (sc->bge_res2 != NULL)
4011		bus_release_resource(dev, SYS_RES_MEMORY,
4012		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4013
4014	if (sc->bge_ifp != NULL)
4015		if_free(sc->bge_ifp);
4016
4017	bge_dma_free(sc);
4018
4019	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4020		BGE_LOCK_DESTROY(sc);
4021}
4022
4023static int
4024bge_reset(struct bge_softc *sc)
4025{
4026	device_t dev;
4027	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4028	void (*write_op)(struct bge_softc *, int, int);
4029	uint16_t devctl;
4030	int i;
4031
4032	dev = sc->bge_dev;
4033
4034	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4035	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4036		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4037	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4038
4039	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4040	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4041		if (sc->bge_flags & BGE_FLAG_PCIE)
4042			write_op = bge_writemem_direct;
4043		else
4044			write_op = bge_writemem_ind;
4045	} else
4046		write_op = bge_writereg_ind;
4047
4048	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4049	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4050		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4051		for (i = 0; i < 8000; i++) {
4052			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4053			    BGE_NVRAMSWARB_GNT1)
4054				break;
4055			DELAY(20);
4056		}
4057		if (i == 8000) {
4058			if (bootverbose)
4059				device_printf(dev, "NVRAM lock timedout!\n");
4060		}
4061	}
4062	/* Take APE lock when performing reset. */
4063	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4064
4065	/* Save some important PCI state. */
4066	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4067	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4068
4069	pci_write_config(dev, BGE_PCI_MISC_CTL,
4070	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4071	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4072
4073	/* Disable fastboot on controllers that support it. */
4074	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4075	    BGE_IS_5755_PLUS(sc)) {
4076		if (bootverbose)
4077			device_printf(dev, "Disabling fastboot\n");
4078		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4079	}
4080
4081	/*
4082	 * Write the magic number to SRAM at offset 0xB50.
4083	 * When firmware finishes its initialization it will
4084	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4085	 */
4086	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4087
4088	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4089
4090	/* XXX: Broadcom Linux driver. */
4091	if (sc->bge_flags & BGE_FLAG_PCIE) {
4092		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4093		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4094			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4095				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4096		}
4097		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4098			/* Prevent PCIE link training during global reset */
4099			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4100			reset |= 1 << 29;
4101		}
4102	}
4103
4104	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4105		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4106		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4107		    val | BGE_VCPU_STATUS_DRV_RESET);
4108		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4109		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4110		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4111	}
4112
4113	/*
4114	 * Set GPHY Power Down Override to leave GPHY
4115	 * powered up in D0 uninitialized.
4116	 */
4117	if (BGE_IS_5705_PLUS(sc) &&
4118	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4119		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4120
4121	/* Issue global reset */
4122	write_op(sc, BGE_MISC_CFG, reset);
4123
4124	if (sc->bge_flags & BGE_FLAG_PCIE)
4125		DELAY(100 * 1000);
4126	else
4127		DELAY(1000);
4128
4129	/* XXX: Broadcom Linux driver. */
4130	if (sc->bge_flags & BGE_FLAG_PCIE) {
4131		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4132			DELAY(500000); /* wait for link training to complete */
4133			val = pci_read_config(dev, 0xC4, 4);
4134			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4135		}
4136		devctl = pci_read_config(dev,
4137		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4138		/* Clear enable no snoop and disable relaxed ordering. */
4139		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4140		    PCIEM_CTL_NOSNOOP_ENABLE);
4141		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4142		    devctl, 2);
4143		pci_set_max_read_req(dev, sc->bge_expmrq);
4144		/* Clear error status. */
4145		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4146		    PCIEM_STA_CORRECTABLE_ERROR |
4147		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4148		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4149	}
4150
4151	/* Reset some of the PCI state that got zapped by reset. */
4152	pci_write_config(dev, BGE_PCI_MISC_CTL,
4153	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4154	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4155	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4156	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4157	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4158		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4159	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4160		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4161		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4162		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4163	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4164	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4165	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4166	/*
4167	 * Disable PCI-X relaxed ordering to ensure status block update
4168	 * comes first then packet buffer DMA. Otherwise driver may
4169	 * read stale status block.
4170	 */
4171	if (sc->bge_flags & BGE_FLAG_PCIX) {
4172		devctl = pci_read_config(dev,
4173		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4174		devctl &= ~PCIXM_COMMAND_ERO;
4175		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4176			devctl &= ~PCIXM_COMMAND_MAX_READ;
4177			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4178		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4179			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4180			    PCIXM_COMMAND_MAX_READ);
4181			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4182		}
4183		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4184		    devctl, 2);
4185	}
4186	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4187	if (BGE_IS_5714_FAMILY(sc)) {
4188		/* This chip disables MSI on reset. */
4189		if (sc->bge_flags & BGE_FLAG_MSI) {
4190			val = pci_read_config(dev,
4191			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4192			pci_write_config(dev,
4193			    sc->bge_msicap + PCIR_MSI_CTRL,
4194			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4195			val = CSR_READ_4(sc, BGE_MSI_MODE);
4196			CSR_WRITE_4(sc, BGE_MSI_MODE,
4197			    val | BGE_MSIMODE_ENABLE);
4198		}
4199		val = CSR_READ_4(sc, BGE_MARB_MODE);
4200		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4201	} else
4202		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4203
4204	/* Fix up byte swapping. */
4205	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4206
4207	val = CSR_READ_4(sc, BGE_MAC_MODE);
4208	val = (val & ~mac_mode_mask) | mac_mode;
4209	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4210	DELAY(40);
4211
4212	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4213
4214	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4215		for (i = 0; i < BGE_TIMEOUT; i++) {
4216			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4217			if (val & BGE_VCPU_STATUS_INIT_DONE)
4218				break;
4219			DELAY(100);
4220		}
4221		if (i == BGE_TIMEOUT) {
4222			device_printf(dev, "reset timed out\n");
4223			return (1);
4224		}
4225	} else {
4226		/*
4227		 * Poll until we see the 1's complement of the magic number.
4228		 * This indicates that the firmware initialization is complete.
4229		 * We expect this to fail if no chip containing the Ethernet
4230		 * address is fitted though.
4231		 */
4232		for (i = 0; i < BGE_TIMEOUT; i++) {
4233			DELAY(10);
4234			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4235			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4236				break;
4237		}
4238
4239		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4240			device_printf(dev,
4241			    "firmware handshake timed out, found 0x%08x\n",
4242			    val);
4243		/* BCM57765 A0 needs additional time before accessing. */
4244		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4245			DELAY(10 * 1000);	/* XXX */
4246	}
4247
4248	/*
4249	 * The 5704 in TBI mode apparently needs some special
4250	 * adjustment to insure the SERDES drive level is set
4251	 * to 1.2V.
4252	 */
4253	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4254	    sc->bge_flags & BGE_FLAG_TBI) {
4255		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4256		val = (val & ~0xFFF) | 0x880;
4257		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4258	}
4259
4260	/* XXX: Broadcom Linux driver. */
4261	if (sc->bge_flags & BGE_FLAG_PCIE &&
4262	    !BGE_IS_5717_PLUS(sc) &&
4263	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4264	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4265		/* Enable Data FIFO protection. */
4266		val = CSR_READ_4(sc, 0x7C00);
4267		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4268	}
4269
4270	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4271		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4272		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4273
4274	return (0);
4275}
4276
4277static __inline void
4278bge_rxreuse_std(struct bge_softc *sc, int i)
4279{
4280	struct bge_rx_bd *r;
4281
4282	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4283	r->bge_flags = BGE_RXBDFLAG_END;
4284	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4285	r->bge_idx = i;
4286	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4287}
4288
4289static __inline void
4290bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4291{
4292	struct bge_extrx_bd *r;
4293
4294	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4295	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4296	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4297	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4298	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4299	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4300	r->bge_idx = i;
4301	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4302}
4303
4304/*
4305 * Frame reception handling. This is called if there's a frame
4306 * on the receive return list.
4307 *
4308 * Note: we have to be able to handle two possibilities here:
4309 * 1) the frame is from the jumbo receive ring
4310 * 2) the frame is from the standard receive ring
4311 */
4312
4313static int
4314bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4315{
4316	if_t ifp;
4317	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4318	uint16_t rx_cons;
4319
4320	rx_cons = sc->bge_rx_saved_considx;
4321
4322	/* Nothing to do. */
4323	if (rx_cons == rx_prod)
4324		return (rx_npkts);
4325
4326	ifp = sc->bge_ifp;
4327
4328	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4329	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4330	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4331	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4332	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4333	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4334	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4335		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4336		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4337
4338	while (rx_cons != rx_prod) {
4339		struct bge_rx_bd	*cur_rx;
4340		uint32_t		rxidx;
4341		struct mbuf		*m = NULL;
4342		uint16_t		vlan_tag = 0;
4343		int			have_tag = 0;
4344
4345#ifdef DEVICE_POLLING
4346		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4347			if (sc->rxcycles <= 0)
4348				break;
4349			sc->rxcycles--;
4350		}
4351#endif
4352
4353		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4354
4355		rxidx = cur_rx->bge_idx;
4356		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4357
4358		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4359		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4360			have_tag = 1;
4361			vlan_tag = cur_rx->bge_vlan_tag;
4362		}
4363
4364		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4365			jumbocnt++;
4366			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4367			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4368				bge_rxreuse_jumbo(sc, rxidx);
4369				continue;
4370			}
4371			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4372				bge_rxreuse_jumbo(sc, rxidx);
4373				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4374				continue;
4375			}
4376			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4377		} else {
4378			stdcnt++;
4379			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4380			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4381				bge_rxreuse_std(sc, rxidx);
4382				continue;
4383			}
4384			if (bge_newbuf_std(sc, rxidx) != 0) {
4385				bge_rxreuse_std(sc, rxidx);
4386				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4387				continue;
4388			}
4389			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4390		}
4391
4392		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4393#ifndef __NO_STRICT_ALIGNMENT
4394		/*
4395		 * For architectures with strict alignment we must make sure
4396		 * the payload is aligned.
4397		 */
4398		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4399			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4400			    cur_rx->bge_len);
4401			m->m_data += ETHER_ALIGN;
4402		}
4403#endif
4404		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4405		m->m_pkthdr.rcvif = ifp;
4406
4407		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4408			bge_rxcsum(sc, cur_rx, m);
4409
4410		/*
4411		 * If we received a packet with a vlan tag,
4412		 * attach that information to the packet.
4413		 */
4414		if (have_tag) {
4415			m->m_pkthdr.ether_vtag = vlan_tag;
4416			m->m_flags |= M_VLANTAG;
4417		}
4418
4419		if (holdlck != 0) {
4420			BGE_UNLOCK(sc);
4421			if_input(ifp, m);
4422			BGE_LOCK(sc);
4423		} else
4424			if_input(ifp, m);
4425		rx_npkts++;
4426
4427		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4428			return (rx_npkts);
4429	}
4430
4431	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4432	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4433	if (stdcnt > 0)
4434		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4435		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4436
4437	if (jumbocnt > 0)
4438		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4439		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4440
4441	sc->bge_rx_saved_considx = rx_cons;
4442	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4443	if (stdcnt)
4444		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4445		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4446	if (jumbocnt)
4447		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4448		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4449#ifdef notyet
4450	/*
4451	 * This register wraps very quickly under heavy packet drops.
4452	 * If you need correct statistics, you can enable this check.
4453	 */
4454	if (BGE_IS_5705_PLUS(sc))
4455		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4456#endif
4457	return (rx_npkts);
4458}
4459
4460static void
4461bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4462{
4463
4464	if (BGE_IS_5717_PLUS(sc)) {
4465		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4466			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4467				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4468				if ((cur_rx->bge_error_flag &
4469				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4470					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4471			}
4472			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4473				m->m_pkthdr.csum_data =
4474				    cur_rx->bge_tcp_udp_csum;
4475				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4476				    CSUM_PSEUDO_HDR;
4477			}
4478		}
4479	} else {
4480		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4481			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4482			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4483				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4484		}
4485		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4486		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4487			m->m_pkthdr.csum_data =
4488			    cur_rx->bge_tcp_udp_csum;
4489			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4490			    CSUM_PSEUDO_HDR;
4491		}
4492	}
4493}
4494
4495static void
4496bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4497{
4498	struct bge_tx_bd *cur_tx;
4499	if_t ifp;
4500
4501	BGE_LOCK_ASSERT(sc);
4502
4503	/* Nothing to do. */
4504	if (sc->bge_tx_saved_considx == tx_cons)
4505		return;
4506
4507	ifp = sc->bge_ifp;
4508
4509	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4510	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4511	/*
4512	 * Go through our tx ring and free mbufs for those
4513	 * frames that have been sent.
4514	 */
4515	while (sc->bge_tx_saved_considx != tx_cons) {
4516		uint32_t		idx;
4517
4518		idx = sc->bge_tx_saved_considx;
4519		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4520		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4521			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4522		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4523			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4524			    sc->bge_cdata.bge_tx_dmamap[idx],
4525			    BUS_DMASYNC_POSTWRITE);
4526			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4527			    sc->bge_cdata.bge_tx_dmamap[idx]);
4528			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4529			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4530		}
4531		sc->bge_txcnt--;
4532		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4533	}
4534
4535	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4536	if (sc->bge_txcnt == 0)
4537		sc->bge_timer = 0;
4538}
4539
4540#ifdef DEVICE_POLLING
4541static int
4542bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4543{
4544	struct bge_softc *sc = if_getsoftc(ifp);
4545	uint16_t rx_prod, tx_cons;
4546	uint32_t statusword;
4547	int rx_npkts = 0;
4548
4549	BGE_LOCK(sc);
4550	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4551		BGE_UNLOCK(sc);
4552		return (rx_npkts);
4553	}
4554
4555	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4556	    sc->bge_cdata.bge_status_map,
4557	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4558	/* Fetch updates from the status block. */
4559	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4560	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4561
4562	statusword = sc->bge_ldata.bge_status_block->bge_status;
4563	/* Clear the status so the next pass only sees the changes. */
4564	sc->bge_ldata.bge_status_block->bge_status = 0;
4565
4566	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4567	    sc->bge_cdata.bge_status_map,
4568	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4569
4570	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4571	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4572		sc->bge_link_evt++;
4573
4574	if (cmd == POLL_AND_CHECK_STATUS)
4575		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4576		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4577		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4578			bge_link_upd(sc);
4579
4580	sc->rxcycles = count;
4581	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4582	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4583		BGE_UNLOCK(sc);
4584		return (rx_npkts);
4585	}
4586	bge_txeof(sc, tx_cons);
4587	if (!if_sendq_empty(ifp))
4588		bge_start_locked(ifp);
4589
4590	BGE_UNLOCK(sc);
4591	return (rx_npkts);
4592}
4593#endif /* DEVICE_POLLING */
4594
4595static int
4596bge_msi_intr(void *arg)
4597{
4598	struct bge_softc *sc;
4599
4600	sc = (struct bge_softc *)arg;
4601	/*
4602	 * This interrupt is not shared and controller already
4603	 * disabled further interrupt.
4604	 */
4605	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4606	return (FILTER_HANDLED);
4607}
4608
4609static void
4610bge_intr_task(void *arg, int pending)
4611{
4612	struct bge_softc *sc;
4613	if_t ifp;
4614	uint32_t status, status_tag;
4615	uint16_t rx_prod, tx_cons;
4616
4617	sc = (struct bge_softc *)arg;
4618	ifp = sc->bge_ifp;
4619
4620	BGE_LOCK(sc);
4621	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4622		BGE_UNLOCK(sc);
4623		return;
4624	}
4625
4626	/* Get updated status block. */
4627	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4628	    sc->bge_cdata.bge_status_map,
4629	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4630
4631	/* Save producer/consumer indices. */
4632	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4633	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4634	status = sc->bge_ldata.bge_status_block->bge_status;
4635	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4636	/* Dirty the status flag. */
4637	sc->bge_ldata.bge_status_block->bge_status = 0;
4638	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4639	    sc->bge_cdata.bge_status_map,
4640	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4641	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4642		status_tag = 0;
4643
4644	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4645		bge_link_upd(sc);
4646
4647	/* Let controller work. */
4648	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4649
4650	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4651	    sc->bge_rx_saved_considx != rx_prod) {
4652		/* Check RX return ring producer/consumer. */
4653		BGE_UNLOCK(sc);
4654		bge_rxeof(sc, rx_prod, 0);
4655		BGE_LOCK(sc);
4656	}
4657	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4658		/* Check TX ring producer/consumer. */
4659		bge_txeof(sc, tx_cons);
4660		if (!if_sendq_empty(ifp))
4661			bge_start_locked(ifp);
4662	}
4663	BGE_UNLOCK(sc);
4664}
4665
4666static void
4667bge_intr(void *xsc)
4668{
4669	struct bge_softc *sc;
4670	if_t ifp;
4671	uint32_t statusword;
4672	uint16_t rx_prod, tx_cons;
4673
4674	sc = xsc;
4675
4676	BGE_LOCK(sc);
4677
4678	ifp = sc->bge_ifp;
4679
4680#ifdef DEVICE_POLLING
4681	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4682		BGE_UNLOCK(sc);
4683		return;
4684	}
4685#endif
4686
4687	/*
4688	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4689	 * disable interrupts by writing nonzero like we used to, since with
4690	 * our current organization this just gives complications and
4691	 * pessimizations for re-enabling interrupts.  We used to have races
4692	 * instead of the necessary complications.  Disabling interrupts
4693	 * would just reduce the chance of a status update while we are
4694	 * running (by switching to the interrupt-mode coalescence
4695	 * parameters), but this chance is already very low so it is more
4696	 * efficient to get another interrupt than prevent it.
4697	 *
4698	 * We do the ack first to ensure another interrupt if there is a
4699	 * status update after the ack.  We don't check for the status
4700	 * changing later because it is more efficient to get another
4701	 * interrupt than prevent it, not quite as above (not checking is
4702	 * a smaller optimization than not toggling the interrupt enable,
4703	 * since checking doesn't involve PCI accesses and toggling require
4704	 * the status check).  So toggling would probably be a pessimization
4705	 * even with MSI.  It would only be needed for using a task queue.
4706	 */
4707	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4708
4709	/*
4710	 * Do the mandatory PCI flush as well as get the link status.
4711	 */
4712	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4713
4714	/* Make sure the descriptor ring indexes are coherent. */
4715	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4716	    sc->bge_cdata.bge_status_map,
4717	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4718	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4719	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4720	sc->bge_ldata.bge_status_block->bge_status = 0;
4721	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4722	    sc->bge_cdata.bge_status_map,
4723	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4724
4725	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4726	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4727	    statusword || sc->bge_link_evt)
4728		bge_link_upd(sc);
4729
4730	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4731		/* Check RX return ring producer/consumer. */
4732		bge_rxeof(sc, rx_prod, 1);
4733	}
4734
4735	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4736		/* Check TX ring producer/consumer. */
4737		bge_txeof(sc, tx_cons);
4738	}
4739
4740	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4741	    !if_sendq_empty(ifp))
4742		bge_start_locked(ifp);
4743
4744	BGE_UNLOCK(sc);
4745}
4746
4747static void
4748bge_asf_driver_up(struct bge_softc *sc)
4749{
4750	if (sc->bge_asf_mode & ASF_STACKUP) {
4751		/* Send ASF heartbeat aprox. every 2s */
4752		if (sc->bge_asf_count)
4753			sc->bge_asf_count --;
4754		else {
4755			sc->bge_asf_count = 2;
4756			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4757			    BGE_FW_CMD_DRV_ALIVE);
4758			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4759			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4760			    BGE_FW_HB_TIMEOUT_SEC);
4761			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4762			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4763			    BGE_RX_CPU_DRV_EVENT);
4764		}
4765	}
4766}
4767
4768static void
4769bge_tick(void *xsc)
4770{
4771	struct bge_softc *sc = xsc;
4772	struct mii_data *mii = NULL;
4773
4774	BGE_LOCK_ASSERT(sc);
4775
4776	/* Synchronize with possible callout reset/stop. */
4777	if (callout_pending(&sc->bge_stat_ch) ||
4778	    !callout_active(&sc->bge_stat_ch))
4779		return;
4780
4781	if (BGE_IS_5705_PLUS(sc))
4782		bge_stats_update_regs(sc);
4783	else
4784		bge_stats_update(sc);
4785
4786	/* XXX Add APE heartbeat check here? */
4787
4788	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4789		mii = device_get_softc(sc->bge_miibus);
4790		/*
4791		 * Do not touch PHY if we have link up. This could break
4792		 * IPMI/ASF mode or produce extra input errors
4793		 * (extra errors was reported for bcm5701 & bcm5704).
4794		 */
4795		if (!sc->bge_link)
4796			mii_tick(mii);
4797	} else {
4798		/*
4799		 * Since in TBI mode auto-polling can't be used we should poll
4800		 * link status manually. Here we register pending link event
4801		 * and trigger interrupt.
4802		 */
4803#ifdef DEVICE_POLLING
4804		/* In polling mode we poll link state in bge_poll(). */
4805		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4806#endif
4807		{
4808		sc->bge_link_evt++;
4809		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4810		    sc->bge_flags & BGE_FLAG_5788)
4811			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4812		else
4813			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4814		}
4815	}
4816
4817	bge_asf_driver_up(sc);
4818	bge_watchdog(sc);
4819
4820	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4821}
4822
4823static void
4824bge_stats_update_regs(struct bge_softc *sc)
4825{
4826	if_t ifp;
4827	struct bge_mac_stats *stats;
4828	uint32_t val;
4829
4830	ifp = sc->bge_ifp;
4831	stats = &sc->bge_mac_stats;
4832
4833	stats->ifHCOutOctets +=
4834	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4835	stats->etherStatsCollisions +=
4836	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4837	stats->outXonSent +=
4838	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4839	stats->outXoffSent +=
4840	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4841	stats->dot3StatsInternalMacTransmitErrors +=
4842	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4843	stats->dot3StatsSingleCollisionFrames +=
4844	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4845	stats->dot3StatsMultipleCollisionFrames +=
4846	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4847	stats->dot3StatsDeferredTransmissions +=
4848	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4849	stats->dot3StatsExcessiveCollisions +=
4850	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4851	stats->dot3StatsLateCollisions +=
4852	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4853	stats->ifHCOutUcastPkts +=
4854	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4855	stats->ifHCOutMulticastPkts +=
4856	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4857	stats->ifHCOutBroadcastPkts +=
4858	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4859
4860	stats->ifHCInOctets +=
4861	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4862	stats->etherStatsFragments +=
4863	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4864	stats->ifHCInUcastPkts +=
4865	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4866	stats->ifHCInMulticastPkts +=
4867	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4868	stats->ifHCInBroadcastPkts +=
4869	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4870	stats->dot3StatsFCSErrors +=
4871	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4872	stats->dot3StatsAlignmentErrors +=
4873	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4874	stats->xonPauseFramesReceived +=
4875	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4876	stats->xoffPauseFramesReceived +=
4877	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4878	stats->macControlFramesReceived +=
4879	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4880	stats->xoffStateEntered +=
4881	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4882	stats->dot3StatsFramesTooLong +=
4883	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4884	stats->etherStatsJabbers +=
4885	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4886	stats->etherStatsUndersizePkts +=
4887	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4888
4889	stats->FramesDroppedDueToFilters +=
4890	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4891	stats->DmaWriteQueueFull +=
4892	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4893	stats->DmaWriteHighPriQueueFull +=
4894	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4895	stats->NoMoreRxBDs +=
4896	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4897	/*
4898	 * XXX
4899	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4900	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4901	 * includes number of unwanted multicast frames.  This comes
4902	 * from silicon bug and known workaround to get rough(not
4903	 * exact) counter is to enable interrupt on MBUF low water
4904	 * attention.  This can be accomplished by setting
4905	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4906	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4907	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4908	 * However that change would generate more interrupts and
4909	 * there are still possibilities of losing multiple frames
4910	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4911	 * Given that the workaround still would not get correct
4912	 * counter I don't think it's worth to implement it.  So
4913	 * ignore reading the counter on controllers that have the
4914	 * silicon bug.
4915	 */
4916	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4917	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4918	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4919		stats->InputDiscards +=
4920		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4921	stats->InputErrors +=
4922	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4923	stats->RecvThresholdHit +=
4924	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4925
4926	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4927		/*
4928		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4929		 * frames, it's safe to disable workaround for DMA engine's
4930		 * miscalculation of TXMBUF space.
4931		 */
4932		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4933		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4934			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4935			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4936				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4937			else
4938				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4939			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4940			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4941		}
4942	}
4943}
4944
4945static void
4946bge_stats_clear_regs(struct bge_softc *sc)
4947{
4948
4949	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4950	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4951	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4952	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4953	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4954	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4955	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4956	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4957	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4958	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4959	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4960	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4961	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4962
4963	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4964	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4965	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4966	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4967	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4968	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4969	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4970	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4971	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4972	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4973	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4974	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4975	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4976	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4977
4978	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4979	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4980	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4981	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4982	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4983	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4984	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4985}
4986
4987static void
4988bge_stats_update(struct bge_softc *sc)
4989{
4990	if_t ifp;
4991	bus_size_t stats;
4992	uint32_t cnt;	/* current register value */
4993
4994	ifp = sc->bge_ifp;
4995
4996	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4997
4998#define	READ_STAT(sc, stats, stat) \
4999	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5000
5001	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5002	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5003	sc->bge_tx_collisions = cnt;
5004
5005	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5006	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5007	sc->bge_rx_nobds = cnt;
5008	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5009	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5010	sc->bge_rx_inerrs = cnt;
5011	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5012	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5013	sc->bge_rx_discards = cnt;
5014
5015	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5016	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5017	sc->bge_tx_discards = cnt;
5018
5019#undef	READ_STAT
5020}
5021
5022/*
5023 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5024 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5025 * but when such padded frames employ the bge IP/TCP checksum offload,
5026 * the hardware checksum assist gives incorrect results (possibly
5027 * from incorporating its own padding into the UDP/TCP checksum; who knows).
5028 * If we pad such runts with zeros, the onboard checksum comes out correct.
5029 */
5030static __inline int
5031bge_cksum_pad(struct mbuf *m)
5032{
5033	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5034	struct mbuf *last;
5035
5036	/* If there's only the packet-header and we can pad there, use it. */
5037	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5038	    M_TRAILINGSPACE(m) >= padlen) {
5039		last = m;
5040	} else {
5041		/*
5042		 * Walk packet chain to find last mbuf. We will either
5043		 * pad there, or append a new mbuf and pad it.
5044		 */
5045		for (last = m; last->m_next != NULL; last = last->m_next);
5046		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5047			/* Allocate new empty mbuf, pad it. Compact later. */
5048			struct mbuf *n;
5049
5050			MGET(n, M_NOWAIT, MT_DATA);
5051			if (n == NULL)
5052				return (ENOBUFS);
5053			n->m_len = 0;
5054			last->m_next = n;
5055			last = n;
5056		}
5057	}
5058
5059	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5060	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5061	last->m_len += padlen;
5062	m->m_pkthdr.len += padlen;
5063
5064	return (0);
5065}
5066
5067static struct mbuf *
5068bge_check_short_dma(struct mbuf *m)
5069{
5070	struct mbuf *n;
5071	int found;
5072
5073	/*
5074	 * If device receive two back-to-back send BDs with less than
5075	 * or equal to 8 total bytes then the device may hang.  The two
5076	 * back-to-back send BDs must in the same frame for this failure
5077	 * to occur.  Scan mbuf chains and see whether two back-to-back
5078	 * send BDs are there. If this is the case, allocate new mbuf
5079	 * and copy the frame to workaround the silicon bug.
5080	 */
5081	for (n = m, found = 0; n != NULL; n = n->m_next) {
5082		if (n->m_len < 8) {
5083			found++;
5084			if (found > 1)
5085				break;
5086			continue;
5087		}
5088		found = 0;
5089	}
5090
5091	if (found > 1) {
5092		n = m_defrag(m, M_NOWAIT);
5093		if (n == NULL)
5094			m_freem(m);
5095	} else
5096		n = m;
5097	return (n);
5098}
5099
5100static struct mbuf *
5101bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5102    uint16_t *flags)
5103{
5104	struct ip *ip;
5105	struct tcphdr *tcp;
5106	struct mbuf *n;
5107	uint16_t hlen;
5108	uint32_t poff;
5109
5110	if (M_WRITABLE(m) == 0) {
5111		/* Get a writable copy. */
5112		n = m_dup(m, M_NOWAIT);
5113		m_freem(m);
5114		if (n == NULL)
5115			return (NULL);
5116		m = n;
5117	}
5118	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5119	if (m == NULL)
5120		return (NULL);
5121	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5122	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5123	m = m_pullup(m, poff + sizeof(struct tcphdr));
5124	if (m == NULL)
5125		return (NULL);
5126	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5127	m = m_pullup(m, poff + (tcp->th_off << 2));
5128	if (m == NULL)
5129		return (NULL);
5130	/*
5131	 * It seems controller doesn't modify IP length and TCP pseudo
5132	 * checksum. These checksum computed by upper stack should be 0.
5133	 */
5134	*mss = m->m_pkthdr.tso_segsz;
5135	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5136	ip->ip_sum = 0;
5137	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5138	/* Clear pseudo checksum computed by TCP stack. */
5139	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5140	tcp->th_sum = 0;
5141	/*
5142	 * Broadcom controllers uses different descriptor format for
5143	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5144	 * license issue and lower performance of firmware based TSO
5145	 * we only support hardware based TSO.
5146	 */
5147	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5148	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5149	if (sc->bge_flags & BGE_FLAG_TSO3) {
5150		/*
5151		 * For BCM5717 and newer controllers, hardware based TSO
5152		 * uses the 14 lower bits of the bge_mss field to store the
5153		 * MSS and the upper 2 bits to store the lowest 2 bits of
5154		 * the IP/TCP header length.  The upper 6 bits of the header
5155		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5156		 * frames are supported.
5157		 */
5158		*mss |= ((hlen & 0x3) << 14);
5159		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5160	} else {
5161		/*
5162		 * For BCM5755 and newer controllers, hardware based TSO uses
5163		 * the lower 11	bits to store the MSS and the upper 5 bits to
5164		 * store the IP/TCP header length. Jumbo frames are not
5165		 * supported.
5166		 */
5167		*mss |= (hlen << 11);
5168	}
5169	return (m);
5170}
5171
5172/*
5173 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5174 * pointers to descriptors.
5175 */
5176static int
5177bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5178{
5179	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5180	bus_dmamap_t		map;
5181	struct bge_tx_bd	*d;
5182	struct mbuf		*m = *m_head;
5183	uint32_t		idx = *txidx;
5184	uint16_t		csum_flags, mss, vlan_tag;
5185	int			nsegs, i, error;
5186
5187	csum_flags = 0;
5188	mss = 0;
5189	vlan_tag = 0;
5190	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5191	    m->m_next != NULL) {
5192		*m_head = bge_check_short_dma(m);
5193		if (*m_head == NULL)
5194			return (ENOBUFS);
5195		m = *m_head;
5196	}
5197	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5198		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5199		if (*m_head == NULL)
5200			return (ENOBUFS);
5201		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5202		    BGE_TXBDFLAG_CPU_POST_DMA;
5203	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5204		if (m->m_pkthdr.csum_flags & CSUM_IP)
5205			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5206		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5207			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5208			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5209			    (error = bge_cksum_pad(m)) != 0) {
5210				m_freem(m);
5211				*m_head = NULL;
5212				return (error);
5213			}
5214		}
5215	}
5216
5217	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5218		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5219		    m->m_pkthdr.len > ETHER_MAX_LEN)
5220			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5221		if (sc->bge_forced_collapse > 0 &&
5222		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5223			/*
5224			 * Forcedly collapse mbuf chains to overcome hardware
5225			 * limitation which only support a single outstanding
5226			 * DMA read operation.
5227			 */
5228			if (sc->bge_forced_collapse == 1)
5229				m = m_defrag(m, M_NOWAIT);
5230			else
5231				m = m_collapse(m, M_NOWAIT,
5232				    sc->bge_forced_collapse);
5233			if (m == NULL)
5234				m = *m_head;
5235			*m_head = m;
5236		}
5237	}
5238
5239	map = sc->bge_cdata.bge_tx_dmamap[idx];
5240	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5241	    &nsegs, BUS_DMA_NOWAIT);
5242	if (error == EFBIG) {
5243		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5244		if (m == NULL) {
5245			m_freem(*m_head);
5246			*m_head = NULL;
5247			return (ENOBUFS);
5248		}
5249		*m_head = m;
5250		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5251		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5252		if (error) {
5253			m_freem(m);
5254			*m_head = NULL;
5255			return (error);
5256		}
5257	} else if (error != 0)
5258		return (error);
5259
5260	/* Check if we have enough free send BDs. */
5261	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5262		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5263		return (ENOBUFS);
5264	}
5265
5266	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5267
5268	if (m->m_flags & M_VLANTAG) {
5269		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5270		vlan_tag = m->m_pkthdr.ether_vtag;
5271	}
5272
5273	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5274	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5275		/*
5276		 * 5725 family of devices corrupts TSO packets when TSO DMA
5277		 * buffers cross into regions which are within MSS bytes of
5278		 * a 4GB boundary.  If we encounter the condition, drop the
5279		 * packet.
5280		 */
5281		for (i = 0; ; i++) {
5282			d = &sc->bge_ldata.bge_tx_ring[idx];
5283			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5284			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5285			d->bge_len = segs[i].ds_len;
5286			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5287			    d->bge_addr.bge_addr_lo)
5288				break;
5289			d->bge_flags = csum_flags;
5290			d->bge_vlan_tag = vlan_tag;
5291			d->bge_mss = mss;
5292			if (i == nsegs - 1)
5293				break;
5294			BGE_INC(idx, BGE_TX_RING_CNT);
5295		}
5296		if (i != nsegs - 1) {
5297			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5298			    BUS_DMASYNC_POSTWRITE);
5299			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5300			m_freem(*m_head);
5301			*m_head = NULL;
5302			return (EIO);
5303		}
5304	} else {
5305		for (i = 0; ; i++) {
5306			d = &sc->bge_ldata.bge_tx_ring[idx];
5307			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5308			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5309			d->bge_len = segs[i].ds_len;
5310			d->bge_flags = csum_flags;
5311			d->bge_vlan_tag = vlan_tag;
5312			d->bge_mss = mss;
5313			if (i == nsegs - 1)
5314				break;
5315			BGE_INC(idx, BGE_TX_RING_CNT);
5316		}
5317	}
5318
5319	/* Mark the last segment as end of packet... */
5320	d->bge_flags |= BGE_TXBDFLAG_END;
5321
5322	/*
5323	 * Insure that the map for this transmission
5324	 * is placed at the array index of the last descriptor
5325	 * in this chain.
5326	 */
5327	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5328	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5329	sc->bge_cdata.bge_tx_chain[idx] = m;
5330	sc->bge_txcnt += nsegs;
5331
5332	BGE_INC(idx, BGE_TX_RING_CNT);
5333	*txidx = idx;
5334
5335	return (0);
5336}
5337
5338/*
5339 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5340 * to the mbuf data regions directly in the transmit descriptors.
5341 */
5342static void
5343bge_start_locked(if_t ifp)
5344{
5345	struct bge_softc *sc;
5346	struct mbuf *m_head;
5347	uint32_t prodidx;
5348	int count;
5349
5350	sc = if_getsoftc(ifp);
5351	BGE_LOCK_ASSERT(sc);
5352
5353	if (!sc->bge_link ||
5354	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5355	    IFF_DRV_RUNNING)
5356		return;
5357
5358	prodidx = sc->bge_tx_prodidx;
5359
5360	for (count = 0; !if_sendq_empty(ifp);) {
5361		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5362			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5363			break;
5364		}
5365		m_head = if_dequeue(ifp);
5366		if (m_head == NULL)
5367			break;
5368
5369		/*
5370		 * Pack the data into the transmit ring. If we
5371		 * don't have room, set the OACTIVE flag and wait
5372		 * for the NIC to drain the ring.
5373		 */
5374		if (bge_encap(sc, &m_head, &prodidx)) {
5375			if (m_head == NULL)
5376				break;
5377			if_sendq_prepend(ifp, m_head);
5378			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5379			break;
5380		}
5381		++count;
5382
5383		/*
5384		 * If there's a BPF listener, bounce a copy of this frame
5385		 * to him.
5386		 */
5387		if_bpfmtap(ifp, m_head);
5388	}
5389
5390	if (count > 0) {
5391		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5392		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5393		/* Transmit. */
5394		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5395		/* 5700 b2 errata */
5396		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5397			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5398
5399		sc->bge_tx_prodidx = prodidx;
5400
5401		/*
5402		 * Set a timeout in case the chip goes out to lunch.
5403		 */
5404		sc->bge_timer = BGE_TX_TIMEOUT;
5405	}
5406}
5407
5408/*
5409 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5410 * to the mbuf data regions directly in the transmit descriptors.
5411 */
5412static void
5413bge_start(if_t ifp)
5414{
5415	struct bge_softc *sc;
5416
5417	sc = if_getsoftc(ifp);
5418	BGE_LOCK(sc);
5419	bge_start_locked(ifp);
5420	BGE_UNLOCK(sc);
5421}
5422
5423static void
5424bge_init_locked(struct bge_softc *sc)
5425{
5426	if_t ifp;
5427	uint16_t *m;
5428	uint32_t mode;
5429
5430	BGE_LOCK_ASSERT(sc);
5431
5432	ifp = sc->bge_ifp;
5433
5434	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5435		return;
5436
5437	/* Cancel pending I/O and flush buffers. */
5438	bge_stop(sc);
5439
5440	bge_stop_fw(sc);
5441	bge_sig_pre_reset(sc, BGE_RESET_START);
5442	bge_reset(sc);
5443	bge_sig_legacy(sc, BGE_RESET_START);
5444	bge_sig_post_reset(sc, BGE_RESET_START);
5445
5446	bge_chipinit(sc);
5447
5448	/*
5449	 * Init the various state machines, ring
5450	 * control blocks and firmware.
5451	 */
5452	if (bge_blockinit(sc)) {
5453		device_printf(sc->bge_dev, "initialization failure\n");
5454		return;
5455	}
5456
5457	ifp = sc->bge_ifp;
5458
5459	/* Specify MTU. */
5460	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5461	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5462	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5463
5464	/* Load our MAC address. */
5465	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5466	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5467	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5468
5469	/* Program promiscuous mode. */
5470	bge_setpromisc(sc);
5471
5472	/* Program multicast filter. */
5473	bge_setmulti(sc);
5474
5475	/* Program VLAN tag stripping. */
5476	bge_setvlan(sc);
5477
5478	/* Override UDP checksum offloading. */
5479	if (sc->bge_forced_udpcsum == 0)
5480		sc->bge_csum_features &= ~CSUM_UDP;
5481	else
5482		sc->bge_csum_features |= CSUM_UDP;
5483	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5484	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5485		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5486		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5487	}
5488
5489	/* Init RX ring. */
5490	if (bge_init_rx_ring_std(sc) != 0) {
5491		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5492		bge_stop(sc);
5493		return;
5494	}
5495
5496	/*
5497	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5498	 * memory to insure that the chip has in fact read the first
5499	 * entry of the ring.
5500	 */
5501	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5502		uint32_t		v, i;
5503		for (i = 0; i < 10; i++) {
5504			DELAY(20);
5505			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5506			if (v == (MCLBYTES - ETHER_ALIGN))
5507				break;
5508		}
5509		if (i == 10)
5510			device_printf (sc->bge_dev,
5511			    "5705 A0 chip failed to load RX ring\n");
5512	}
5513
5514	/* Init jumbo RX ring. */
5515	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5516	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5517     	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5518		if (bge_init_rx_ring_jumbo(sc) != 0) {
5519			device_printf(sc->bge_dev,
5520			    "no memory for jumbo Rx buffers.\n");
5521			bge_stop(sc);
5522			return;
5523		}
5524	}
5525
5526	/* Init our RX return ring index. */
5527	sc->bge_rx_saved_considx = 0;
5528
5529	/* Init our RX/TX stat counters. */
5530	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5531
5532	/* Init TX ring. */
5533	bge_init_tx_ring(sc);
5534
5535	/* Enable TX MAC state machine lockup fix. */
5536	mode = CSR_READ_4(sc, BGE_TX_MODE);
5537	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5538		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5539	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5540	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5541		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5542		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5543		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5544	}
5545	/* Turn on transmitter. */
5546	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5547	DELAY(100);
5548
5549	/* Turn on receiver. */
5550	mode = CSR_READ_4(sc, BGE_RX_MODE);
5551	if (BGE_IS_5755_PLUS(sc))
5552		mode |= BGE_RXMODE_IPV6_ENABLE;
5553	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5554		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5555	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5556	DELAY(10);
5557
5558	/*
5559	 * Set the number of good frames to receive after RX MBUF
5560	 * Low Watermark has been reached. After the RX MAC receives
5561	 * this number of frames, it will drop subsequent incoming
5562	 * frames until the MBUF High Watermark is reached.
5563	 */
5564	if (BGE_IS_57765_PLUS(sc))
5565		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5566	else
5567		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5568
5569	/* Clear MAC statistics. */
5570	if (BGE_IS_5705_PLUS(sc))
5571		bge_stats_clear_regs(sc);
5572
5573	/* Tell firmware we're alive. */
5574	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5575
5576#ifdef DEVICE_POLLING
5577	/* Disable interrupts if we are polling. */
5578	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5579		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5580		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5581		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5582	} else
5583#endif
5584
5585	/* Enable host interrupts. */
5586	{
5587	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5588	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5589	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5590	}
5591
5592	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5593	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5594
5595	bge_ifmedia_upd_locked(ifp);
5596
5597	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5598}
5599
5600static void
5601bge_init(void *xsc)
5602{
5603	struct bge_softc *sc = xsc;
5604
5605	BGE_LOCK(sc);
5606	bge_init_locked(sc);
5607	BGE_UNLOCK(sc);
5608}
5609
5610/*
5611 * Set media options.
5612 */
5613static int
5614bge_ifmedia_upd(if_t ifp)
5615{
5616	struct bge_softc *sc = if_getsoftc(ifp);
5617	int res;
5618
5619	BGE_LOCK(sc);
5620	res = bge_ifmedia_upd_locked(ifp);
5621	BGE_UNLOCK(sc);
5622
5623	return (res);
5624}
5625
5626static int
5627bge_ifmedia_upd_locked(if_t ifp)
5628{
5629	struct bge_softc *sc = if_getsoftc(ifp);
5630	struct mii_data *mii;
5631	struct mii_softc *miisc;
5632	struct ifmedia *ifm;
5633
5634	BGE_LOCK_ASSERT(sc);
5635
5636	ifm = &sc->bge_ifmedia;
5637
5638	/* If this is a 1000baseX NIC, enable the TBI port. */
5639	if (sc->bge_flags & BGE_FLAG_TBI) {
5640		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5641			return (EINVAL);
5642		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5643		case IFM_AUTO:
5644			/*
5645			 * The BCM5704 ASIC appears to have a special
5646			 * mechanism for programming the autoneg
5647			 * advertisement registers in TBI mode.
5648			 */
5649			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5650				uint32_t sgdig;
5651				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5652				if (sgdig & BGE_SGDIGSTS_DONE) {
5653					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5654					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5655					sgdig |= BGE_SGDIGCFG_AUTO |
5656					    BGE_SGDIGCFG_PAUSE_CAP |
5657					    BGE_SGDIGCFG_ASYM_PAUSE;
5658					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5659					    sgdig | BGE_SGDIGCFG_SEND);
5660					DELAY(5);
5661					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5662				}
5663			}
5664			break;
5665		case IFM_1000_SX:
5666			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5667				BGE_CLRBIT(sc, BGE_MAC_MODE,
5668				    BGE_MACMODE_HALF_DUPLEX);
5669			} else {
5670				BGE_SETBIT(sc, BGE_MAC_MODE,
5671				    BGE_MACMODE_HALF_DUPLEX);
5672			}
5673			DELAY(40);
5674			break;
5675		default:
5676			return (EINVAL);
5677		}
5678		return (0);
5679	}
5680
5681	sc->bge_link_evt++;
5682	mii = device_get_softc(sc->bge_miibus);
5683	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5684		PHY_RESET(miisc);
5685	mii_mediachg(mii);
5686
5687	/*
5688	 * Force an interrupt so that we will call bge_link_upd
5689	 * if needed and clear any pending link state attention.
5690	 * Without this we are not getting any further interrupts
5691	 * for link state changes and thus will not UP the link and
5692	 * not be able to send in bge_start_locked. The only
5693	 * way to get things working was to receive a packet and
5694	 * get an RX intr.
5695	 * bge_tick should help for fiber cards and we might not
5696	 * need to do this here if BGE_FLAG_TBI is set but as
5697	 * we poll for fiber anyway it should not harm.
5698	 */
5699	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5700	    sc->bge_flags & BGE_FLAG_5788)
5701		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5702	else
5703		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5704
5705	return (0);
5706}
5707
5708/*
5709 * Report current media status.
5710 */
5711static void
5712bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5713{
5714	struct bge_softc *sc = if_getsoftc(ifp);
5715	struct mii_data *mii;
5716
5717	BGE_LOCK(sc);
5718
5719	if ((if_getflags(ifp) & IFF_UP) == 0) {
5720		BGE_UNLOCK(sc);
5721		return;
5722	}
5723	if (sc->bge_flags & BGE_FLAG_TBI) {
5724		ifmr->ifm_status = IFM_AVALID;
5725		ifmr->ifm_active = IFM_ETHER;
5726		if (CSR_READ_4(sc, BGE_MAC_STS) &
5727		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5728			ifmr->ifm_status |= IFM_ACTIVE;
5729		else {
5730			ifmr->ifm_active |= IFM_NONE;
5731			BGE_UNLOCK(sc);
5732			return;
5733		}
5734		ifmr->ifm_active |= IFM_1000_SX;
5735		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5736			ifmr->ifm_active |= IFM_HDX;
5737		else
5738			ifmr->ifm_active |= IFM_FDX;
5739		BGE_UNLOCK(sc);
5740		return;
5741	}
5742
5743	mii = device_get_softc(sc->bge_miibus);
5744	mii_pollstat(mii);
5745	ifmr->ifm_active = mii->mii_media_active;
5746	ifmr->ifm_status = mii->mii_media_status;
5747
5748	BGE_UNLOCK(sc);
5749}
5750
5751static int
5752bge_ioctl(if_t ifp, u_long command, caddr_t data)
5753{
5754	struct bge_softc *sc = if_getsoftc(ifp);
5755	struct ifreq *ifr = (struct ifreq *) data;
5756	struct mii_data *mii;
5757	int flags, mask, error = 0;
5758
5759	switch (command) {
5760	case SIOCSIFMTU:
5761		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5762		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5763			if (ifr->ifr_mtu < ETHERMIN ||
5764			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5765				error = EINVAL;
5766				break;
5767			}
5768		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5769			error = EINVAL;
5770			break;
5771		}
5772		BGE_LOCK(sc);
5773		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5774			if_setmtu(ifp, ifr->ifr_mtu);
5775			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5776				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5777				bge_init_locked(sc);
5778			}
5779		}
5780		BGE_UNLOCK(sc);
5781		break;
5782	case SIOCSIFFLAGS:
5783		BGE_LOCK(sc);
5784		if (if_getflags(ifp) & IFF_UP) {
5785			/*
5786			 * If only the state of the PROMISC flag changed,
5787			 * then just use the 'set promisc mode' command
5788			 * instead of reinitializing the entire NIC. Doing
5789			 * a full re-init means reloading the firmware and
5790			 * waiting for it to start up, which may take a
5791			 * second or two.  Similarly for ALLMULTI.
5792			 */
5793			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5794				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5795				if (flags & IFF_PROMISC)
5796					bge_setpromisc(sc);
5797				if (flags & IFF_ALLMULTI)
5798					bge_setmulti(sc);
5799			} else
5800				bge_init_locked(sc);
5801		} else {
5802			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5803				bge_stop(sc);
5804			}
5805		}
5806		sc->bge_if_flags = if_getflags(ifp);
5807		BGE_UNLOCK(sc);
5808		error = 0;
5809		break;
5810	case SIOCADDMULTI:
5811	case SIOCDELMULTI:
5812		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5813			BGE_LOCK(sc);
5814			bge_setmulti(sc);
5815			BGE_UNLOCK(sc);
5816			error = 0;
5817		}
5818		break;
5819	case SIOCSIFMEDIA:
5820	case SIOCGIFMEDIA:
5821		if (sc->bge_flags & BGE_FLAG_TBI) {
5822			error = ifmedia_ioctl(ifp, ifr,
5823			    &sc->bge_ifmedia, command);
5824		} else {
5825			mii = device_get_softc(sc->bge_miibus);
5826			error = ifmedia_ioctl(ifp, ifr,
5827			    &mii->mii_media, command);
5828		}
5829		break;
5830	case SIOCSIFCAP:
5831		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5832#ifdef DEVICE_POLLING
5833		if (mask & IFCAP_POLLING) {
5834			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5835				error = ether_poll_register(bge_poll, ifp);
5836				if (error)
5837					return (error);
5838				BGE_LOCK(sc);
5839				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5840				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5841				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5842				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5843				BGE_UNLOCK(sc);
5844			} else {
5845				error = ether_poll_deregister(ifp);
5846				/* Enable interrupt even in error case */
5847				BGE_LOCK(sc);
5848				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5849				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5850				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5851				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5852				BGE_UNLOCK(sc);
5853			}
5854		}
5855#endif
5856		if ((mask & IFCAP_TXCSUM) != 0 &&
5857		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5858			if_togglecapenable(ifp, IFCAP_TXCSUM);
5859			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5860				if_sethwassistbits(ifp,
5861				    sc->bge_csum_features, 0);
5862			else
5863				if_sethwassistbits(ifp, 0,
5864				    sc->bge_csum_features);
5865		}
5866
5867		if ((mask & IFCAP_RXCSUM) != 0 &&
5868		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5869			if_togglecapenable(ifp, IFCAP_RXCSUM);
5870
5871		if ((mask & IFCAP_TSO4) != 0 &&
5872		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5873			if_togglecapenable(ifp, IFCAP_TSO4);
5874			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5875				if_sethwassistbits(ifp, CSUM_TSO, 0);
5876			else
5877				if_sethwassistbits(ifp, 0, CSUM_TSO);
5878		}
5879
5880		if (mask & IFCAP_VLAN_MTU) {
5881			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5882			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5883			bge_init(sc);
5884		}
5885
5886		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5887		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5888			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5889		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5890		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5891			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5892			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5893				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5894			BGE_LOCK(sc);
5895			bge_setvlan(sc);
5896			BGE_UNLOCK(sc);
5897		}
5898#ifdef VLAN_CAPABILITIES
5899		if_vlancap(ifp);
5900#endif
5901		break;
5902	default:
5903		error = ether_ioctl(ifp, command, data);
5904		break;
5905	}
5906
5907	return (error);
5908}
5909
5910static void
5911bge_watchdog(struct bge_softc *sc)
5912{
5913	if_t ifp;
5914	uint32_t status;
5915
5916	BGE_LOCK_ASSERT(sc);
5917
5918	if (sc->bge_timer == 0 || --sc->bge_timer)
5919		return;
5920
5921	/* If pause frames are active then don't reset the hardware. */
5922	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5923		status = CSR_READ_4(sc, BGE_RX_STS);
5924		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5925			/*
5926			 * If link partner has us in XOFF state then wait for
5927			 * the condition to clear.
5928			 */
5929			CSR_WRITE_4(sc, BGE_RX_STS, status);
5930			sc->bge_timer = BGE_TX_TIMEOUT;
5931			return;
5932		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5933		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5934			/*
5935			 * If link partner has us in XOFF state then wait for
5936			 * the condition to clear.
5937			 */
5938			CSR_WRITE_4(sc, BGE_RX_STS, status);
5939			sc->bge_timer = BGE_TX_TIMEOUT;
5940			return;
5941		}
5942		/*
5943		 * Any other condition is unexpected and the controller
5944		 * should be reset.
5945		 */
5946	}
5947
5948	ifp = sc->bge_ifp;
5949
5950	if_printf(ifp, "watchdog timeout -- resetting\n");
5951
5952	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5953	bge_init_locked(sc);
5954
5955	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5956}
5957
5958static void
5959bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5960{
5961	int i;
5962
5963	BGE_CLRBIT(sc, reg, bit);
5964
5965	for (i = 0; i < BGE_TIMEOUT; i++) {
5966		if ((CSR_READ_4(sc, reg) & bit) == 0)
5967			return;
5968		DELAY(100);
5969        }
5970}
5971
5972/*
5973 * Stop the adapter and free any mbufs allocated to the
5974 * RX and TX lists.
5975 */
5976static void
5977bge_stop(struct bge_softc *sc)
5978{
5979	if_t ifp;
5980
5981	BGE_LOCK_ASSERT(sc);
5982
5983	ifp = sc->bge_ifp;
5984
5985	callout_stop(&sc->bge_stat_ch);
5986
5987	/* Disable host interrupts. */
5988	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5989	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5990
5991	/*
5992	 * Tell firmware we're shutting down.
5993	 */
5994	bge_stop_fw(sc);
5995	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5996
5997	/*
5998	 * Disable all of the receiver blocks.
5999	 */
6000	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6001	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6002	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6003	if (BGE_IS_5700_FAMILY(sc))
6004		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6005	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6006	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6007	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6008
6009	/*
6010	 * Disable all of the transmit blocks.
6011	 */
6012	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6013	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6014	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6015	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6016	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6017	if (BGE_IS_5700_FAMILY(sc))
6018		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6019	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6020
6021	/*
6022	 * Shut down all of the memory managers and related
6023	 * state machines.
6024	 */
6025	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6026	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6027	if (BGE_IS_5700_FAMILY(sc))
6028		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6029
6030	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6031	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6032	if (!(BGE_IS_5705_PLUS(sc))) {
6033		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6034		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6035	}
6036	/* Update MAC statistics. */
6037	if (BGE_IS_5705_PLUS(sc))
6038		bge_stats_update_regs(sc);
6039
6040	bge_reset(sc);
6041	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6042	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6043
6044	/*
6045	 * Keep the ASF firmware running if up.
6046	 */
6047	if (sc->bge_asf_mode & ASF_STACKUP)
6048		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6049	else
6050		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6051
6052	/* Free the RX lists. */
6053	bge_free_rx_ring_std(sc);
6054
6055	/* Free jumbo RX list. */
6056	if (BGE_IS_JUMBO_CAPABLE(sc))
6057		bge_free_rx_ring_jumbo(sc);
6058
6059	/* Free TX buffers. */
6060	bge_free_tx_ring(sc);
6061
6062	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6063
6064	/* Clear MAC's link state (PHY may still have link UP). */
6065	if (bootverbose && sc->bge_link)
6066		if_printf(sc->bge_ifp, "link DOWN\n");
6067	sc->bge_link = 0;
6068
6069	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6070}
6071
6072/*
6073 * Stop all chip I/O so that the kernel's probe routines don't
6074 * get confused by errant DMAs when rebooting.
6075 */
6076static int
6077bge_shutdown(device_t dev)
6078{
6079	struct bge_softc *sc;
6080
6081	sc = device_get_softc(dev);
6082	BGE_LOCK(sc);
6083	bge_stop(sc);
6084	BGE_UNLOCK(sc);
6085
6086	return (0);
6087}
6088
6089static int
6090bge_suspend(device_t dev)
6091{
6092	struct bge_softc *sc;
6093
6094	sc = device_get_softc(dev);
6095	BGE_LOCK(sc);
6096	bge_stop(sc);
6097	BGE_UNLOCK(sc);
6098
6099	return (0);
6100}
6101
6102static int
6103bge_resume(device_t dev)
6104{
6105	struct bge_softc *sc;
6106	if_t ifp;
6107
6108	sc = device_get_softc(dev);
6109	BGE_LOCK(sc);
6110	ifp = sc->bge_ifp;
6111	if (if_getflags(ifp) & IFF_UP) {
6112		bge_init_locked(sc);
6113		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6114			bge_start_locked(ifp);
6115	}
6116	BGE_UNLOCK(sc);
6117
6118	return (0);
6119}
6120
6121static void
6122bge_link_upd(struct bge_softc *sc)
6123{
6124	struct mii_data *mii;
6125	uint32_t link, status;
6126
6127	BGE_LOCK_ASSERT(sc);
6128
6129	/* Clear 'pending link event' flag. */
6130	sc->bge_link_evt = 0;
6131
6132	/*
6133	 * Process link state changes.
6134	 * Grrr. The link status word in the status block does
6135	 * not work correctly on the BCM5700 rev AX and BX chips,
6136	 * according to all available information. Hence, we have
6137	 * to enable MII interrupts in order to properly obtain
6138	 * async link changes. Unfortunately, this also means that
6139	 * we have to read the MAC status register to detect link
6140	 * changes, thereby adding an additional register access to
6141	 * the interrupt handler.
6142	 *
6143	 * XXX: perhaps link state detection procedure used for
6144	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6145	 */
6146
6147	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6148	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6149		status = CSR_READ_4(sc, BGE_MAC_STS);
6150		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6151			mii = device_get_softc(sc->bge_miibus);
6152			mii_pollstat(mii);
6153			if (!sc->bge_link &&
6154			    mii->mii_media_status & IFM_ACTIVE &&
6155			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6156				sc->bge_link++;
6157				if (bootverbose)
6158					if_printf(sc->bge_ifp, "link UP\n");
6159			} else if (sc->bge_link &&
6160			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6161			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6162				sc->bge_link = 0;
6163				if (bootverbose)
6164					if_printf(sc->bge_ifp, "link DOWN\n");
6165			}
6166
6167			/* Clear the interrupt. */
6168			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6169			    BGE_EVTENB_MI_INTERRUPT);
6170			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6171			    BRGPHY_MII_ISR);
6172			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6173			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6174		}
6175		return;
6176	}
6177
6178	if (sc->bge_flags & BGE_FLAG_TBI) {
6179		status = CSR_READ_4(sc, BGE_MAC_STS);
6180		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6181			if (!sc->bge_link) {
6182				sc->bge_link++;
6183				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6184					BGE_CLRBIT(sc, BGE_MAC_MODE,
6185					    BGE_MACMODE_TBI_SEND_CFGS);
6186					DELAY(40);
6187				}
6188				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6189				if (bootverbose)
6190					if_printf(sc->bge_ifp, "link UP\n");
6191				if_link_state_change(sc->bge_ifp,
6192				    LINK_STATE_UP);
6193			}
6194		} else if (sc->bge_link) {
6195			sc->bge_link = 0;
6196			if (bootverbose)
6197				if_printf(sc->bge_ifp, "link DOWN\n");
6198			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6199		}
6200	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6201		/*
6202		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6203		 * in status word always set. Workaround this bug by reading
6204		 * PHY link status directly.
6205		 */
6206		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6207
6208		if (link != sc->bge_link ||
6209		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6210			mii = device_get_softc(sc->bge_miibus);
6211			mii_pollstat(mii);
6212			if (!sc->bge_link &&
6213			    mii->mii_media_status & IFM_ACTIVE &&
6214			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6215				sc->bge_link++;
6216				if (bootverbose)
6217					if_printf(sc->bge_ifp, "link UP\n");
6218			} else if (sc->bge_link &&
6219			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6220			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6221				sc->bge_link = 0;
6222				if (bootverbose)
6223					if_printf(sc->bge_ifp, "link DOWN\n");
6224			}
6225		}
6226	} else {
6227		/*
6228		 * For controllers that call mii_tick, we have to poll
6229		 * link status.
6230		 */
6231		mii = device_get_softc(sc->bge_miibus);
6232		mii_pollstat(mii);
6233		bge_miibus_statchg(sc->bge_dev);
6234	}
6235
6236	/* Disable MAC attention when link is up. */
6237	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6238	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6239	    BGE_MACSTAT_LINK_CHANGED);
6240}
6241
6242static void
6243bge_add_sysctls(struct bge_softc *sc)
6244{
6245	struct sysctl_ctx_list *ctx;
6246	struct sysctl_oid_list *children;
6247	int unit;
6248
6249	ctx = device_get_sysctl_ctx(sc->bge_dev);
6250	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6251
6252#ifdef BGE_REGISTER_DEBUG
6253	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6254	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6255	    "Debug Information");
6256
6257	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6258	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6259	    "MAC Register Read");
6260
6261	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6262	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6263	    "APE Register Read");
6264
6265	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6266	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6267	    "Memory Read");
6268
6269#endif
6270
6271	unit = device_get_unit(sc->bge_dev);
6272	/*
6273	 * A common design characteristic for many Broadcom client controllers
6274	 * is that they only support a single outstanding DMA read operation
6275	 * on the PCIe bus. This means that it will take twice as long to fetch
6276	 * a TX frame that is split into header and payload buffers as it does
6277	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6278	 * these controllers, coalescing buffers to reduce the number of memory
6279	 * reads is effective way to get maximum performance(about 940Mbps).
6280	 * Without collapsing TX buffers the maximum TCP bulk transfer
6281	 * performance is about 850Mbps. However forcing coalescing mbufs
6282	 * consumes a lot of CPU cycles, so leave it off by default.
6283	 */
6284	sc->bge_forced_collapse = 0;
6285	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6286	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6287	    "Number of fragmented TX buffers of a frame allowed before "
6288	    "forced collapsing");
6289
6290	sc->bge_msi = 1;
6291	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6292	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6293
6294	/*
6295	 * It seems all Broadcom controllers have a bug that can generate UDP
6296	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6297	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6298	 * Even though the probability of generating such UDP datagrams is
6299	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6300	 * into network so disable UDP checksum offloading by default.  Users
6301	 * still override this behavior by setting a sysctl variable,
6302	 * dev.bge.0.forced_udpcsum.
6303	 */
6304	sc->bge_forced_udpcsum = 0;
6305	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6306	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6307	    "Enable UDP checksum offloading even if controller can "
6308	    "generate UDP checksum value 0");
6309
6310	if (BGE_IS_5705_PLUS(sc))
6311		bge_add_sysctl_stats_regs(sc, ctx, children);
6312	else
6313		bge_add_sysctl_stats(sc, ctx, children);
6314}
6315
6316#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6317	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6318	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6319	    desc)
6320
6321static void
6322bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6323    struct sysctl_oid_list *parent)
6324{
6325	struct sysctl_oid *tree;
6326	struct sysctl_oid_list *children, *schildren;
6327
6328	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6329	    NULL, "BGE Statistics");
6330	schildren = children = SYSCTL_CHILDREN(tree);
6331	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6332	    children, COSFramesDroppedDueToFilters,
6333	    "FramesDroppedDueToFilters");
6334	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6335	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6336	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6337	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6338	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6339	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6340	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6341	    children, ifInDiscards, "InputDiscards");
6342	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6343	    children, ifInErrors, "InputErrors");
6344	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6345	    children, nicRecvThresholdHit, "RecvThresholdHit");
6346	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6347	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6348	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6349	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6350	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6351	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6352	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6353	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6354	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6355	    children, nicRingStatusUpdate, "RingStatusUpdate");
6356	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6357	    children, nicInterrupts, "Interrupts");
6358	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6359	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6360	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6361	    children, nicSendThresholdHit, "SendThresholdHit");
6362
6363	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6364	    NULL, "BGE RX Statistics");
6365	children = SYSCTL_CHILDREN(tree);
6366	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6367	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6368	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6369	    children, rxstats.etherStatsFragments, "Fragments");
6370	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6371	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6372	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6373	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6374	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6375	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6376	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6377	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6378	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6379	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6380	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6381	    children, rxstats.xoffPauseFramesReceived,
6382	    "xoffPauseFramesReceived");
6383	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6384	    children, rxstats.macControlFramesReceived,
6385	    "ControlFramesReceived");
6386	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6387	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6388	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6389	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6390	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6391	    children, rxstats.etherStatsJabbers, "Jabbers");
6392	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6393	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6394	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6395	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6396	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6397	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6398
6399	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6400	    NULL, "BGE TX Statistics");
6401	children = SYSCTL_CHILDREN(tree);
6402	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6403	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6404	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6405	    children, txstats.etherStatsCollisions, "Collisions");
6406	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6407	    children, txstats.outXonSent, "XonSent");
6408	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6409	    children, txstats.outXoffSent, "XoffSent");
6410	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6411	    children, txstats.flowControlDone, "flowControlDone");
6412	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6413	    children, txstats.dot3StatsInternalMacTransmitErrors,
6414	    "InternalMacTransmitErrors");
6415	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6416	    children, txstats.dot3StatsSingleCollisionFrames,
6417	    "SingleCollisionFrames");
6418	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6419	    children, txstats.dot3StatsMultipleCollisionFrames,
6420	    "MultipleCollisionFrames");
6421	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6422	    children, txstats.dot3StatsDeferredTransmissions,
6423	    "DeferredTransmissions");
6424	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6425	    children, txstats.dot3StatsExcessiveCollisions,
6426	    "ExcessiveCollisions");
6427	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6428	    children, txstats.dot3StatsLateCollisions,
6429	    "LateCollisions");
6430	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6431	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6432	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6433	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6434	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6435	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6436	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6437	    children, txstats.dot3StatsCarrierSenseErrors,
6438	    "CarrierSenseErrors");
6439	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6440	    children, txstats.ifOutDiscards, "Discards");
6441	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6442	    children, txstats.ifOutErrors, "Errors");
6443}
6444
6445#undef BGE_SYSCTL_STAT
6446
6447#define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6448	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6449
6450static void
6451bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6452    struct sysctl_oid_list *parent)
6453{
6454	struct sysctl_oid *tree;
6455	struct sysctl_oid_list *child, *schild;
6456	struct bge_mac_stats *stats;
6457
6458	stats = &sc->bge_mac_stats;
6459	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6460	    NULL, "BGE Statistics");
6461	schild = child = SYSCTL_CHILDREN(tree);
6462	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6463	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6464	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6465	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6466	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6467	    &stats->DmaWriteHighPriQueueFull,
6468	    "NIC DMA Write High Priority Queue Full");
6469	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6470	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6471	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6472	    &stats->InputDiscards, "Discarded Input Frames");
6473	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6474	    &stats->InputErrors, "Input Errors");
6475	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6476	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6477
6478	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6479	    NULL, "BGE RX Statistics");
6480	child = SYSCTL_CHILDREN(tree);
6481	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6482	    &stats->ifHCInOctets, "Inbound Octets");
6483	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6484	    &stats->etherStatsFragments, "Fragments");
6485	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6486	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6487	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6488	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6489	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6490	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6491	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6492	    &stats->dot3StatsFCSErrors, "FCS Errors");
6493	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6494	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6495	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6496	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6497	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6498	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6499	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6500	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6501	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6502	    &stats->xoffStateEntered, "XOFF State Entered");
6503	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6504	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6505	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6506	    &stats->etherStatsJabbers, "Jabbers");
6507	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6508	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6509
6510	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6511	    NULL, "BGE TX Statistics");
6512	child = SYSCTL_CHILDREN(tree);
6513	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6514	    &stats->ifHCOutOctets, "Outbound Octets");
6515	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6516	    &stats->etherStatsCollisions, "TX Collisions");
6517	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6518	    &stats->outXonSent, "XON Sent");
6519	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6520	    &stats->outXoffSent, "XOFF Sent");
6521	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6522	    &stats->dot3StatsInternalMacTransmitErrors,
6523	    "Internal MAC TX Errors");
6524	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6525	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6526	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6527	    &stats->dot3StatsMultipleCollisionFrames,
6528	    "Multiple Collision Frames");
6529	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6530	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6531	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6532	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6533	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6534	    &stats->dot3StatsLateCollisions, "Late Collisions");
6535	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6536	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6537	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6538	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6539	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6540	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6541}
6542
6543#undef	BGE_SYSCTL_STAT_ADD64
6544
6545static int
6546bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6547{
6548	struct bge_softc *sc;
6549	uint32_t result;
6550	int offset;
6551
6552	sc = (struct bge_softc *)arg1;
6553	offset = arg2;
6554	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6555	    offsetof(bge_hostaddr, bge_addr_lo));
6556	return (sysctl_handle_int(oidp, &result, 0, req));
6557}
6558
6559#ifdef BGE_REGISTER_DEBUG
6560static int
6561bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6562{
6563	struct bge_softc *sc;
6564	uint16_t *sbdata;
6565	int error, result, sbsz;
6566	int i, j;
6567
6568	result = -1;
6569	error = sysctl_handle_int(oidp, &result, 0, req);
6570	if (error || (req->newptr == NULL))
6571		return (error);
6572
6573	if (result == 1) {
6574		sc = (struct bge_softc *)arg1;
6575
6576		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6577		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6578			sbsz = BGE_STATUS_BLK_SZ;
6579		else
6580			sbsz = 32;
6581		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6582		printf("Status Block:\n");
6583		BGE_LOCK(sc);
6584		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6585		    sc->bge_cdata.bge_status_map,
6586		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6587		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6588			printf("%06x:", i);
6589			for (j = 0; j < 8; j++)
6590				printf(" %04x", sbdata[i++]);
6591			printf("\n");
6592		}
6593
6594		printf("Registers:\n");
6595		for (i = 0x800; i < 0xA00; ) {
6596			printf("%06x:", i);
6597			for (j = 0; j < 8; j++) {
6598				printf(" %08x", CSR_READ_4(sc, i));
6599				i += 4;
6600			}
6601			printf("\n");
6602		}
6603		BGE_UNLOCK(sc);
6604
6605		printf("Hardware Flags:\n");
6606		if (BGE_IS_5717_PLUS(sc))
6607			printf(" - 5717 Plus\n");
6608		if (BGE_IS_5755_PLUS(sc))
6609			printf(" - 5755 Plus\n");
6610		if (BGE_IS_575X_PLUS(sc))
6611			printf(" - 575X Plus\n");
6612		if (BGE_IS_5705_PLUS(sc))
6613			printf(" - 5705 Plus\n");
6614		if (BGE_IS_5714_FAMILY(sc))
6615			printf(" - 5714 Family\n");
6616		if (BGE_IS_5700_FAMILY(sc))
6617			printf(" - 5700 Family\n");
6618		if (sc->bge_flags & BGE_FLAG_JUMBO)
6619			printf(" - Supports Jumbo Frames\n");
6620		if (sc->bge_flags & BGE_FLAG_PCIX)
6621			printf(" - PCI-X Bus\n");
6622		if (sc->bge_flags & BGE_FLAG_PCIE)
6623			printf(" - PCI Express Bus\n");
6624		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6625			printf(" - No 3 LEDs\n");
6626		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6627			printf(" - RX Alignment Bug\n");
6628	}
6629
6630	return (error);
6631}
6632
6633static int
6634bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6635{
6636	struct bge_softc *sc;
6637	int error;
6638	uint16_t result;
6639	uint32_t val;
6640
6641	result = -1;
6642	error = sysctl_handle_int(oidp, &result, 0, req);
6643	if (error || (req->newptr == NULL))
6644		return (error);
6645
6646	if (result < 0x8000) {
6647		sc = (struct bge_softc *)arg1;
6648		val = CSR_READ_4(sc, result);
6649		printf("reg 0x%06X = 0x%08X\n", result, val);
6650	}
6651
6652	return (error);
6653}
6654
6655static int
6656bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6657{
6658	struct bge_softc *sc;
6659	int error;
6660	uint16_t result;
6661	uint32_t val;
6662
6663	result = -1;
6664	error = sysctl_handle_int(oidp, &result, 0, req);
6665	if (error || (req->newptr == NULL))
6666		return (error);
6667
6668	if (result < 0x8000) {
6669		sc = (struct bge_softc *)arg1;
6670		val = APE_READ_4(sc, result);
6671		printf("reg 0x%06X = 0x%08X\n", result, val);
6672	}
6673
6674	return (error);
6675}
6676
6677static int
6678bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6679{
6680	struct bge_softc *sc;
6681	int error;
6682	uint16_t result;
6683	uint32_t val;
6684
6685	result = -1;
6686	error = sysctl_handle_int(oidp, &result, 0, req);
6687	if (error || (req->newptr == NULL))
6688		return (error);
6689
6690	if (result < 0x8000) {
6691		sc = (struct bge_softc *)arg1;
6692		val = bge_readmem_ind(sc, result);
6693		printf("mem 0x%06X = 0x%08X\n", result, val);
6694	}
6695
6696	return (error);
6697}
6698#endif
6699
6700static int
6701bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6702{
6703
6704	if (sc->bge_flags & BGE_FLAG_EADDR)
6705		return (1);
6706
6707#ifdef __sparc64__
6708	OF_getetheraddr(sc->bge_dev, ether_addr);
6709	return (0);
6710#endif
6711	return (1);
6712}
6713
6714static int
6715bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6716{
6717	uint32_t mac_addr;
6718
6719	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6720	if ((mac_addr >> 16) == 0x484b) {
6721		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6722		ether_addr[1] = (uint8_t)mac_addr;
6723		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6724		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6725		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6726		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6727		ether_addr[5] = (uint8_t)mac_addr;
6728		return (0);
6729	}
6730	return (1);
6731}
6732
6733static int
6734bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6735{
6736	int mac_offset = BGE_EE_MAC_OFFSET;
6737
6738	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6739		mac_offset = BGE_EE_MAC_OFFSET_5906;
6740
6741	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6742	    ETHER_ADDR_LEN));
6743}
6744
6745static int
6746bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6747{
6748
6749	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6750		return (1);
6751
6752	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6753	   ETHER_ADDR_LEN));
6754}
6755
6756static int
6757bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6758{
6759	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6760		/* NOTE: Order is critical */
6761		bge_get_eaddr_fw,
6762		bge_get_eaddr_mem,
6763		bge_get_eaddr_nvram,
6764		bge_get_eaddr_eeprom,
6765		NULL
6766	};
6767	const bge_eaddr_fcn_t *func;
6768
6769	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6770		if ((*func)(sc, eaddr) == 0)
6771			break;
6772	}
6773	return (*func == NULL ? ENXIO : 0);
6774}
6775
6776static uint64_t
6777bge_get_counter(if_t ifp, ift_counter cnt)
6778{
6779	struct bge_softc *sc;
6780	struct bge_mac_stats *stats;
6781
6782	sc = if_getsoftc(ifp);
6783	if (!BGE_IS_5705_PLUS(sc))
6784		return (if_get_counter_default(ifp, cnt));
6785	stats = &sc->bge_mac_stats;
6786
6787	switch (cnt) {
6788	case IFCOUNTER_IERRORS:
6789		return (stats->NoMoreRxBDs + stats->InputDiscards +
6790		    stats->InputErrors);
6791	case IFCOUNTER_COLLISIONS:
6792		return (stats->etherStatsCollisions);
6793	default:
6794		return (if_get_counter_default(ifp, cnt));
6795	}
6796}
6797