if_bce.c revision 207761
1/*-
2 * Copyright (c) 2006-2010 Broadcom Corporation
3 *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written consent.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/bce/if_bce.c 207761 2010-05-07 22:09:17Z fabient $");
33
34/*
35 * The following controllers are supported by this driver:
36 *   BCM5706C A2, A3
37 *   BCM5706S A2, A3
38 *   BCM5708C B1, B2
39 *   BCM5708S B1, B2
40 *   BCM5709C A1, C0
41 *   BCM5709S A1, C0
42 *   BCM5716C C0
43 *   BCM5716S C0
44 *
45 * The following controllers are not supported by this driver:
46 *   BCM5706C A0, A1 (pre-production)
47 *   BCM5706S A0, A1 (pre-production)
48 *   BCM5708C A0, B0 (pre-production)
49 *   BCM5708S A0, B0 (pre-production)
50 *   BCM5709C A0  B0, B1, B2 (pre-production)
51 *   BCM5709S A0, B0, B1, B2 (pre-production)
52 */
53
54#include "opt_bce.h"
55
56#include <dev/bce/if_bcereg.h>
57#include <dev/bce/if_bcefw.h>
58
59/****************************************************************************/
60/* BCE Debug Options                                                        */
61/****************************************************************************/
62#ifdef BCE_DEBUG
63	u32 bce_debug = BCE_WARN;
64
65	/*          0 = Never              */
66	/*          1 = 1 in 2,147,483,648 */
67	/*        256 = 1 in     8,388,608 */
68	/*       2048 = 1 in     1,048,576 */
69	/*      65536 = 1 in        32,768 */
70	/*    1048576 = 1 in         2,048 */
71	/*  268435456 =	1 in             8 */
72	/*  536870912 = 1 in             4 */
73	/* 1073741824 = 1 in             2 */
74
75	/* Controls how often the l2_fhdr frame error check will fail. */
76	int l2fhdr_error_sim_control = 0;
77
78	/* Controls how often the unexpected attention check will fail. */
79	int unexpected_attention_sim_control = 0;
80
81	/* Controls how often to simulate an mbuf allocation failure. */
82	int mbuf_alloc_failed_sim_control = 0;
83
84	/* Controls how often to simulate a DMA mapping failure. */
85	int dma_map_addr_failed_sim_control = 0;
86
87	/* Controls how often to simulate a bootcode failure. */
88	int bootcode_running_failure_sim_control = 0;
89#endif
90
91/****************************************************************************/
92/* BCE Build Time Options                                                   */
93/****************************************************************************/
94/* #define BCE_NVRAM_WRITE_SUPPORT 1 */
95
96
97/****************************************************************************/
98/* PCI Device ID Table                                                      */
99/*                                                                          */
100/* Used by bce_probe() to identify the devices supported by this driver.    */
101/****************************************************************************/
102#define BCE_DEVDESC_MAX		64
103
104static struct bce_type bce_devs[] = {
105	/* BCM5706C Controllers and OEM boards. */
106	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
107		"HP NC370T Multifunction Gigabit Server Adapter" },
108	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
109		"HP NC370i Multifunction Gigabit Server Adapter" },
110	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
111		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
112	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
113		"HP NC371i Multifunction Gigabit Server Adapter" },
114	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
115		"Broadcom NetXtreme II BCM5706 1000Base-T" },
116
117	/* BCM5706S controllers and OEM boards. */
118	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
119		"HP NC370F Multifunction Gigabit Server Adapter" },
120	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
121		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
122
123	/* BCM5708C controllers and OEM boards. */
124	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
125		"HP NC373T PCIe Multifunction Gig Server Adapter" },
126	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
127		"HP NC373i Multifunction Gigabit Server Adapter" },
128	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
129		"HP NC374m PCIe Multifunction Adapter" },
130	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
131		"Broadcom NetXtreme II BCM5708 1000Base-T" },
132
133	/* BCM5708S controllers and OEM boards. */
134	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
135		"HP NC373m Multifunction Gigabit Server Adapter" },
136	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
137		"HP NC373i Multifunction Gigabit Server Adapter" },
138	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
139		"HP NC373F PCIe Multifunc Giga Server Adapter" },
140	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
141		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
142
143	/* BCM5709C controllers and OEM boards. */
144	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
145		"HP NC382i DP Multifunction Gigabit Server Adapter" },
146	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
147		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
148	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
149		"Broadcom NetXtreme II BCM5709 1000Base-T" },
150
151	/* BCM5709S controllers and OEM boards. */
152	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
153		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
154	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
155		"HP NC382i DP Multifunction Gigabit Server Adapter" },
156	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
157		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
158
159	/* BCM5716 controllers and OEM boards. */
160	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
161		"Broadcom NetXtreme II BCM5716 1000Base-T" },
162
163	{ 0, 0, 0, 0, NULL }
164};
165
166
167/****************************************************************************/
168/* Supported Flash NVRAM device data.                                       */
169/****************************************************************************/
170static struct flash_spec flash_table[] =
171{
172#define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
173#define NONBUFFERED_FLAGS	(BCE_NV_WREN)
174
175	/* Slow EEPROM */
176	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
177	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
178	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
179	 "EEPROM - slow"},
180	/* Expansion entry 0001 */
181	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
182	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
184	 "Entry 0001"},
185	/* Saifun SA25F010 (non-buffered flash) */
186	/* strap, cfg1, & write1 need updates */
187	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
188	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
190	 "Non-buffered flash (128kB)"},
191	/* Saifun SA25F020 (non-buffered flash) */
192	/* strap, cfg1, & write1 need updates */
193	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
194	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
196	 "Non-buffered flash (256kB)"},
197	/* Expansion entry 0100 */
198	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
199	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
201	 "Entry 0100"},
202	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
203	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
204	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
205	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
206	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
207	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
208	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
209	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
210	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
211	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
212	/* Saifun SA25F005 (non-buffered flash) */
213	/* strap, cfg1, & write1 need updates */
214	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
215	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
217	 "Non-buffered flash (64kB)"},
218	/* Fast EEPROM */
219	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
220	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
221	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
222	 "EEPROM - fast"},
223	/* Expansion entry 1001 */
224	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
225	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
227	 "Entry 1001"},
228	/* Expansion entry 1010 */
229	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
230	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232	 "Entry 1010"},
233	/* ATMEL AT45DB011B (buffered flash) */
234	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
235	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
236	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
237	 "Buffered flash (128kB)"},
238	/* Expansion entry 1100 */
239	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
240	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
241	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
242	 "Entry 1100"},
243	/* Expansion entry 1101 */
244	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
245	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
246	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
247	 "Entry 1101"},
248	/* Ateml Expansion entry 1110 */
249	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
250	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
251	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
252	 "Entry 1110 (Atmel)"},
253	/* ATMEL AT45DB021B (buffered flash) */
254	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
255	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
256	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
257	 "Buffered flash (256kB)"},
258};
259
260/*
261 * The BCM5709 controllers transparently handle the
262 * differences between Atmel 264 byte pages and all
263 * flash devices which use 256 byte pages, so no
264 * logical-to-physical mapping is required in the
265 * driver.
266 */
267static struct flash_spec flash_5709 = {
268	.flags		= BCE_NV_BUFFERED,
269	.page_bits	= BCM5709_FLASH_PAGE_BITS,
270	.page_size	= BCM5709_FLASH_PAGE_SIZE,
271	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
272	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
273	.name		= "5709/5716 buffered flash (256kB)",
274};
275
276
277/****************************************************************************/
278/* FreeBSD device entry points.                                             */
279/****************************************************************************/
280static int  bce_probe			(device_t);
281static int  bce_attach			(device_t);
282static int  bce_detach			(device_t);
283static int  bce_shutdown		(device_t);
284
285
286/****************************************************************************/
287/* BCE Debug Data Structure Dump Routines                                   */
288/****************************************************************************/
289#ifdef BCE_DEBUG
290static u32  bce_reg_rd			(struct bce_softc *, u32);
291static void bce_reg_wr			(struct bce_softc *, u32, u32);
292static void bce_reg_wr16		(struct bce_softc *, u32, u16);
293static u32  bce_ctx_rd			(struct bce_softc *, u32, u32);
294static void bce_dump_enet		(struct bce_softc *, struct mbuf *);
295static void bce_dump_mbuf		(struct bce_softc *, struct mbuf *);
296static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
297static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
298#ifdef BCE_JUMBO_HDRSPLIT
299static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
300#endif
301static void bce_dump_txbd		(struct bce_softc *,
302    int, struct tx_bd *);
303static void bce_dump_rxbd		(struct bce_softc *,
304    int, struct rx_bd *);
305#ifdef BCE_JUMBO_HDRSPLIT
306static void bce_dump_pgbd		(struct bce_softc *,
307    int, struct rx_bd *);
308#endif
309static void bce_dump_l2fhdr		(struct bce_softc *,
310    int, struct l2_fhdr *);
311static void bce_dump_ctx		(struct bce_softc *, u16);
312static void bce_dump_ftqs		(struct bce_softc *);
313static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
314static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
315#ifdef BCE_JUMBO_HDRSPLIT
316static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
317#endif
318static void bce_dump_status_block	(struct bce_softc *);
319static void bce_dump_stats_block	(struct bce_softc *);
320static void bce_dump_driver_state	(struct bce_softc *);
321static void bce_dump_hw_state		(struct bce_softc *);
322static void bce_dump_mq_regs		(struct bce_softc *);
323static void bce_dump_bc_state		(struct bce_softc *);
324static void bce_dump_txp_state		(struct bce_softc *, int);
325static void bce_dump_rxp_state		(struct bce_softc *, int);
326static void bce_dump_tpat_state		(struct bce_softc *, int);
327static void bce_dump_cp_state		(struct bce_softc *, int);
328static void bce_dump_com_state		(struct bce_softc *, int);
329static void bce_dump_rv2p_state		(struct bce_softc *);
330static void bce_breakpoint		(struct bce_softc *);
331#endif
332
333
334/****************************************************************************/
335/* BCE Register/Memory Access Routines                                      */
336/****************************************************************************/
337static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
338static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
339static void bce_shmem_wr		(struct bce_softc *, u32, u32);
340static u32  bce_shmem_rd		(struct bce_softc *, u32);
341static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
342static int  bce_miibus_read_reg		(device_t, int, int);
343static int  bce_miibus_write_reg	(device_t, int, int, int);
344static void bce_miibus_statchg		(device_t);
345
346
347/****************************************************************************/
348/* BCE NVRAM Access Routines                                                */
349/****************************************************************************/
350static int  bce_acquire_nvram_lock	(struct bce_softc *);
351static int  bce_release_nvram_lock	(struct bce_softc *);
352static void bce_enable_nvram_access	(struct bce_softc *);
353static void bce_disable_nvram_access	(struct bce_softc *);
354static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
355static int  bce_init_nvram		(struct bce_softc *);
356static int  bce_nvram_read		(struct bce_softc *, u32, u8 *, int);
357static int  bce_nvram_test		(struct bce_softc *);
358#ifdef BCE_NVRAM_WRITE_SUPPORT
359static int  bce_enable_nvram_write	(struct bce_softc *);
360static void bce_disable_nvram_write	(struct bce_softc *);
361static int  bce_nvram_erase_page	(struct bce_softc *, u32);
362static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
363static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
364#endif
365
366/****************************************************************************/
367/*                                                                          */
368/****************************************************************************/
369static void bce_get_media		(struct bce_softc *);
370static void bce_init_media		(struct bce_softc *);
371static void bce_dma_map_addr		(void *,
372    bus_dma_segment_t *, int, int);
373static int  bce_dma_alloc		(device_t);
374static void bce_dma_free		(struct bce_softc *);
375static void bce_release_resources	(struct bce_softc *);
376
377/****************************************************************************/
378/* BCE Firmware Synchronization and Load                                    */
379/****************************************************************************/
380static int  bce_fw_sync			(struct bce_softc *, u32);
381static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
382static void bce_load_cpu_fw		(struct bce_softc *,
383    struct cpu_reg *, struct fw_info *);
384static void bce_start_cpu		(struct bce_softc *, struct cpu_reg *);
385static void bce_halt_cpu		(struct bce_softc *, struct cpu_reg *);
386static void bce_start_rxp_cpu		(struct bce_softc *);
387static void bce_init_rxp_cpu		(struct bce_softc *);
388static void bce_init_txp_cpu 		(struct bce_softc *);
389static void bce_init_tpat_cpu		(struct bce_softc *);
390static void bce_init_cp_cpu	  	(struct bce_softc *);
391static void bce_init_com_cpu	  	(struct bce_softc *);
392static void bce_init_cpus		(struct bce_softc *);
393
394static void	bce_print_adapter_info	(struct bce_softc *);
395static void bce_probe_pci_caps		(device_t, struct bce_softc *);
396static void bce_stop			(struct bce_softc *);
397static int  bce_reset			(struct bce_softc *, u32);
398static int  bce_chipinit 		(struct bce_softc *);
399static int  bce_blockinit 		(struct bce_softc *);
400
401static int  bce_init_tx_chain		(struct bce_softc *);
402static void bce_free_tx_chain		(struct bce_softc *);
403
404static int  bce_get_rx_buf		(struct bce_softc *,
405    struct mbuf *, u16 *, u16 *, u32 *);
406static int  bce_init_rx_chain		(struct bce_softc *);
407static void bce_fill_rx_chain		(struct bce_softc *);
408static void bce_free_rx_chain		(struct bce_softc *);
409
410#ifdef BCE_JUMBO_HDRSPLIT
411static int  bce_get_pg_buf		(struct bce_softc *,
412    struct mbuf *, u16 *, u16 *);
413static int  bce_init_pg_chain		(struct bce_softc *);
414static void bce_fill_pg_chain		(struct bce_softc *);
415static void bce_free_pg_chain		(struct bce_softc *);
416#endif
417
418static struct mbuf *bce_tso_setup	(struct bce_softc *,
419    struct mbuf **, u16 *);
420static int  bce_tx_encap		(struct bce_softc *, struct mbuf **);
421static void bce_start_locked		(struct ifnet *);
422static void bce_start			(struct ifnet *);
423static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
424static void bce_watchdog		(struct bce_softc *);
425static int  bce_ifmedia_upd		(struct ifnet *);
426static void bce_ifmedia_upd_locked	(struct ifnet *);
427static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
428static void bce_init_locked		(struct bce_softc *);
429static void bce_init			(void *);
430static void bce_mgmt_init_locked	(struct bce_softc *sc);
431
432static void bce_init_ctx		(struct bce_softc *);
433static void bce_get_mac_addr		(struct bce_softc *);
434static void bce_set_mac_addr		(struct bce_softc *);
435static void bce_phy_intr		(struct bce_softc *);
436static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
437static void bce_rx_intr			(struct bce_softc *);
438static void bce_tx_intr			(struct bce_softc *);
439static void bce_disable_intr		(struct bce_softc *);
440static void bce_enable_intr		(struct bce_softc *, int);
441
442static void bce_intr			(void *);
443static void bce_set_rx_mode		(struct bce_softc *);
444static void bce_stats_update		(struct bce_softc *);
445static void bce_tick			(void *);
446static void bce_pulse			(void *);
447static void bce_add_sysctls		(struct bce_softc *);
448
449
450/****************************************************************************/
451/* FreeBSD device dispatch table.                                           */
452/****************************************************************************/
453static device_method_t bce_methods[] = {
454	/* Device interface (device_if.h) */
455	DEVMETHOD(device_probe,		bce_probe),
456	DEVMETHOD(device_attach,	bce_attach),
457	DEVMETHOD(device_detach,	bce_detach),
458	DEVMETHOD(device_shutdown,	bce_shutdown),
459/* Supported by device interface but not used here. */
460/*	DEVMETHOD(device_identify,	bce_identify),      */
461/*	DEVMETHOD(device_suspend,	bce_suspend),       */
462/*	DEVMETHOD(device_resume,	bce_resume),        */
463/*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
464
465	/* Bus interface (bus_if.h) */
466	DEVMETHOD(bus_print_child,	bus_generic_print_child),
467	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
468
469	/* MII interface (miibus_if.h) */
470	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
471	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
472	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
473/* Supported by MII interface but not used here.       */
474/*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
475/*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
476
477	{ 0, 0 }
478};
479
480static driver_t bce_driver = {
481	"bce",
482	bce_methods,
483	sizeof(struct bce_softc)
484};
485
486static devclass_t bce_devclass;
487
488MODULE_DEPEND(bce, pci, 1, 1, 1);
489MODULE_DEPEND(bce, ether, 1, 1, 1);
490MODULE_DEPEND(bce, miibus, 1, 1, 1);
491
492DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
493DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
494
495
496/****************************************************************************/
497/* Tunable device values                                                    */
498/****************************************************************************/
499SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
500
501/* Allowable values are TRUE or FALSE */
502static int bce_tso_enable = TRUE;
503TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
504SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
505"TSO Enable/Disable");
506
507/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
508/* ToDo: Add MSI-X support. */
509static int bce_msi_enable = 1;
510TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
511SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
512"MSI-X|MSI|INTx selector");
513
514/* ToDo: Add tunable to enable/disable strict MTU handling. */
515/* Currently allows "loose" RX MTU checking (i.e. sets the  */
516/* H/W RX MTU to the size of the largest receive buffer, or */
517/* 2048 bytes). This will cause a UNH failure but is more   */
518/* desireable from a functional perspective.                */
519
520
521/****************************************************************************/
522/* Device probe function.                                                   */
523/*                                                                          */
524/* Compares the device to the driver's list of supported devices and        */
525/* reports back to the OS whether this is the right driver for the device.  */
526/*                                                                          */
527/* Returns:                                                                 */
528/*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
529/****************************************************************************/
530static int
531bce_probe(device_t dev)
532{
533	struct bce_type *t;
534	struct bce_softc *sc;
535	char *descbuf;
536	u16 vid = 0, did = 0, svid = 0, sdid = 0;
537
538	t = bce_devs;
539
540	sc = device_get_softc(dev);
541	bzero(sc, sizeof(struct bce_softc));
542	sc->bce_unit = device_get_unit(dev);
543	sc->bce_dev = dev;
544
545	/* Get the data for the device to be probed. */
546	vid  = pci_get_vendor(dev);
547	did  = pci_get_device(dev);
548	svid = pci_get_subvendor(dev);
549	sdid = pci_get_subdevice(dev);
550
551	DBPRINT(sc, BCE_EXTREME_LOAD,
552	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
553	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
554
555	/* Look through the list of known devices for a match. */
556	while(t->bce_name != NULL) {
557
558		if ((vid == t->bce_vid) && (did == t->bce_did) &&
559		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
560		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
561
562			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
563
564			if (descbuf == NULL)
565				return(ENOMEM);
566
567			/* Print out the device identity. */
568			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
569			    t->bce_name, (((pci_read_config(dev,
570			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
571			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
572
573			device_set_desc_copy(dev, descbuf);
574			free(descbuf, M_TEMP);
575			return(BUS_PROBE_DEFAULT);
576		}
577		t++;
578	}
579
580	return(ENXIO);
581}
582
583
584/****************************************************************************/
585/* PCI Capabilities Probe Function.                                         */
586/*                                                                          */
587/* Walks the PCI capabiites list for the device to find what features are   */
588/* supported.                                                               */
589/*                                                                          */
590/* Returns:                                                                 */
591/*   None.                                                                  */
592/****************************************************************************/
593static void
594bce_print_adapter_info(struct bce_softc *sc)
595{
596	int i = 0;
597
598	DBENTER(BCE_VERBOSE_LOAD);
599
600	if (bootverbose) {
601		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
602		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
603		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
604
605
606		/* Bus info. */
607		if (sc->bce_flags & BCE_PCIE_FLAG) {
608			printf("Bus (PCIe x%d, ", sc->link_width);
609			switch (sc->link_speed) {
610			case 1: printf("2.5Gbps); "); break;
611			case 2:	printf("5Gbps); "); break;
612			default: printf("Unknown link speed); ");
613			}
614		} else {
615			printf("Bus (PCI%s, %s, %dMHz); ",
616			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
617			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
618			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
619		}
620
621		/* Firmware version and device features. */
622		printf("B/C (%s); Flags (", sc->bce_bc_ver);
623
624	#ifdef BCE_JUMBO_HDRSPLIT
625		printf("SPLT");
626		i++;
627	#endif
628
629		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
630			if (i > 0) printf("|");
631			printf("MSI"); i++;
632		}
633
634		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
635			if (i > 0) printf("|");
636			printf("MSI-X"); i++;
637		}
638
639		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
640			if (i > 0) printf("|");
641			printf("2.5G"); i++;
642		}
643
644		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
645			if (i > 0) printf("|");
646			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
647		} else {
648			printf(")\n");
649		}
650	}
651
652	DBEXIT(BCE_VERBOSE_LOAD);
653}
654
655
656/****************************************************************************/
657/* PCI Capabilities Probe Function.                                         */
658/*                                                                          */
659/* Walks the PCI capabiites list for the device to find what features are   */
660/* supported.                                                               */
661/*                                                                          */
662/* Returns:                                                                 */
663/*   None.                                                                  */
664/****************************************************************************/
665static void
666bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
667{
668	u32 reg;
669
670	DBENTER(BCE_VERBOSE_LOAD);
671
672	/* Check if PCI-X capability is enabled. */
673	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
674		if (reg != 0)
675			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
676	}
677
678	/* Check if PCIe capability is enabled. */
679	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
680		if (reg != 0) {
681			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
682			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
683			    "0x%08X\n",	link_status);
684			sc->link_speed = link_status & 0xf;
685			sc->link_width = (link_status >> 4) & 0x3f;
686			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
687			sc->bce_flags |= BCE_PCIE_FLAG;
688		}
689	}
690
691	/* Check if MSI capability is enabled. */
692	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
693		if (reg != 0)
694			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
695	}
696
697	/* Check if MSI-X capability is enabled. */
698	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
699		if (reg != 0)
700			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
701	}
702
703	DBEXIT(BCE_VERBOSE_LOAD);
704}
705
706
707/****************************************************************************/
708/* Device attach function.                                                  */
709/*                                                                          */
710/* Allocates device resources, performs secondary chip identification,      */
711/* resets and initializes the hardware, and initializes driver instance     */
712/* variables.                                                               */
713/*                                                                          */
714/* Returns:                                                                 */
715/*   0 on success, positive value on failure.                               */
716/****************************************************************************/
717static int
718bce_attach(device_t dev)
719{
720	struct bce_softc *sc;
721	struct ifnet *ifp;
722	u32 val;
723	int error, rid, rc = 0;
724
725	sc = device_get_softc(dev);
726	sc->bce_dev = dev;
727
728	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
729
730	sc->bce_unit = device_get_unit(dev);
731
732	/* Set initial device and PHY flags */
733	sc->bce_flags = 0;
734	sc->bce_phy_flags = 0;
735
736	pci_enable_busmaster(dev);
737
738	/* Allocate PCI memory resources. */
739	rid = PCIR_BAR(0);
740	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
741		&rid, RF_ACTIVE);
742
743	if (sc->bce_res_mem == NULL) {
744		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
745		    __FILE__, __LINE__);
746		rc = ENXIO;
747		goto bce_attach_fail;
748	}
749
750	/* Get various resource handles. */
751	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
752	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
753	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
754
755	bce_probe_pci_caps(dev, sc);
756
757	rid = 1;
758#if 0
759	/* Try allocating MSI-X interrupts. */
760	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
761		(bce_msi_enable >= 2) &&
762		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
763		&rid, RF_ACTIVE)) != NULL)) {
764
765		msi_needed = sc->bce_msi_count = 1;
766
767		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
768			(sc->bce_msi_count != msi_needed)) {
769			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
770				"Received = %d, error = %d\n", __FILE__, __LINE__,
771				msi_needed, sc->bce_msi_count, error);
772			sc->bce_msi_count = 0;
773			pci_release_msi(dev);
774			bus_release_resource(dev, SYS_RES_MEMORY, rid,
775				sc->bce_res_irq);
776			sc->bce_res_irq = NULL;
777		} else {
778			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
779				__FUNCTION__);
780			sc->bce_flags |= BCE_USING_MSIX_FLAG;
781			sc->bce_intr = bce_intr;
782		}
783	}
784#endif
785
786	/* Try allocating a MSI interrupt. */
787	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
788		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
789		sc->bce_msi_count = 1;
790		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
791			BCE_PRINTF("%s(%d): MSI allocation failed! "
792			    "error = %d\n", __FILE__, __LINE__, error);
793			sc->bce_msi_count = 0;
794			pci_release_msi(dev);
795		} else {
796			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
797			    "interrupt.\n", __FUNCTION__);
798			sc->bce_flags |= BCE_USING_MSI_FLAG;
799			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
800				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
801				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
802			sc->bce_irq_rid = 1;
803			sc->bce_intr = bce_intr;
804		}
805	}
806
807	/* Try allocating a legacy interrupt. */
808	if (sc->bce_msi_count == 0) {
809		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
810			__FUNCTION__);
811		rid = 0;
812		sc->bce_intr = bce_intr;
813	}
814
815	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
816	    &rid, RF_SHAREABLE | RF_ACTIVE);
817
818	sc->bce_irq_rid = rid;
819
820	/* Report any IRQ allocation errors. */
821	if (sc->bce_res_irq == NULL) {
822		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
823		    __FILE__, __LINE__);
824		rc = ENXIO;
825		goto bce_attach_fail;
826	}
827
828	/* Initialize mutex for the current device instance. */
829	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
830
831	/*
832	 * Configure byte swap and enable indirect register access.
833	 * Rely on CPU to do target byte swapping on big endian systems.
834	 * Access to registers outside of PCI configurtion space are not
835	 * valid until this is done.
836	 */
837	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
838	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
839	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
840
841	/* Save ASIC revsion info. */
842	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
843
844	/* Weed out any non-production controller revisions. */
845	switch(BCE_CHIP_ID(sc)) {
846	case BCE_CHIP_ID_5706_A0:
847	case BCE_CHIP_ID_5706_A1:
848	case BCE_CHIP_ID_5708_A0:
849	case BCE_CHIP_ID_5708_B0:
850	case BCE_CHIP_ID_5709_A0:
851	case BCE_CHIP_ID_5709_B0:
852	case BCE_CHIP_ID_5709_B1:
853	case BCE_CHIP_ID_5709_B2:
854		BCE_PRINTF("%s(%d): Unsupported controller "
855		    "revision (%c%d)!\n", __FILE__, __LINE__,
856		    (((pci_read_config(dev, PCIR_REVID, 4) &
857		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
858		    PCIR_REVID, 4) & 0xf));
859		rc = ENODEV;
860		goto bce_attach_fail;
861	}
862
863	/*
864	 * The embedded PCIe to PCI-X bridge (EPB)
865	 * in the 5708 cannot address memory above
866	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
867	 */
868	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
869		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
870	else
871		sc->max_bus_addr = BUS_SPACE_MAXADDR;
872
873	/*
874	 * Find the base address for shared memory access.
875	 * Newer versions of bootcode use a signature and offset
876	 * while older versions use a fixed address.
877	 */
878	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
879	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
880		/* Multi-port devices use different offsets in shared memory. */
881		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
882		    (pci_get_function(sc->bce_dev) << 2));
883	else
884		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
885
886	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
887	    __FUNCTION__, sc->bce_shmem_base);
888
889	/* Fetch the bootcode revision. */
890	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
891	for (int i = 0, j = 0; i < 3; i++) {
892		u8 num;
893
894		num = (u8) (val >> (24 - (i * 8)));
895		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
896			if (num >= k || !skip0 || k == 1) {
897				sc->bce_bc_ver[j++] = (num / k) + '0';
898				skip0 = 0;
899			}
900		}
901
902		if (i != 2)
903			sc->bce_bc_ver[j++] = '.';
904	}
905
906	/* Check if any management firwmare is enabled. */
907	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
908	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
909		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
910
911		/* Allow time for firmware to enter the running state. */
912		for (int i = 0; i < 30; i++) {
913			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
914			if (val & BCE_CONDITION_MFW_RUN_MASK)
915				break;
916			DELAY(10000);
917		}
918
919		/* Check if management firmware is running. */
920		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
921		val &= BCE_CONDITION_MFW_RUN_MASK;
922		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
923		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
924			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
925			int i = 0;
926
927			/* Read the management firmware version string. */
928			for (int j = 0; j < 3; j++) {
929				val = bce_reg_rd_ind(sc, addr + j * 4);
930				val = bswap32(val);
931				memcpy(&sc->bce_mfw_ver[i], &val, 4);
932				i += 4;
933			}
934		} else {
935			/* May cause firmware synchronization timeouts. */
936			BCE_PRINTF("%s(%d): Management firmware enabled "
937			    "but not running!\n", __FILE__, __LINE__);
938			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
939
940			/* ToDo: Any action the driver should take? */
941		}
942	}
943
944	/* Get PCI bus information (speed and type). */
945	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
946	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
947		u32 clkreg;
948
949		sc->bce_flags |= BCE_PCIX_FLAG;
950
951		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
952
953		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
954		switch (clkreg) {
955		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
956			sc->bus_speed_mhz = 133;
957			break;
958
959		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
960			sc->bus_speed_mhz = 100;
961			break;
962
963		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
964		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
965			sc->bus_speed_mhz = 66;
966			break;
967
968		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
969		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
970			sc->bus_speed_mhz = 50;
971			break;
972
973		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
974		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
975		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
976			sc->bus_speed_mhz = 33;
977			break;
978		}
979	} else {
980		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
981			sc->bus_speed_mhz = 66;
982		else
983			sc->bus_speed_mhz = 33;
984	}
985
986	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
987		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
988
989	/* Reset controller and announce to bootcode that driver is present. */
990	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
991		BCE_PRINTF("%s(%d): Controller reset failed!\n",
992		    __FILE__, __LINE__);
993		rc = ENXIO;
994		goto bce_attach_fail;
995	}
996
997	/* Initialize the controller. */
998	if (bce_chipinit(sc)) {
999		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1000		    __FILE__, __LINE__);
1001		rc = ENXIO;
1002		goto bce_attach_fail;
1003	}
1004
1005	/* Perform NVRAM test. */
1006	if (bce_nvram_test(sc)) {
1007		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1008		    __FILE__, __LINE__);
1009		rc = ENXIO;
1010		goto bce_attach_fail;
1011	}
1012
1013	/* Fetch the permanent Ethernet MAC address. */
1014	bce_get_mac_addr(sc);
1015
1016	/*
1017	 * Trip points control how many BDs
1018	 * should be ready before generating an
1019	 * interrupt while ticks control how long
1020	 * a BD can sit in the chain before
1021	 * generating an interrupt.  Set the default
1022	 * values for the RX and TX chains.
1023	 */
1024
1025#ifdef BCE_DEBUG
1026	/* Force more frequent interrupts. */
1027	sc->bce_tx_quick_cons_trip_int = 1;
1028	sc->bce_tx_quick_cons_trip     = 1;
1029	sc->bce_tx_ticks_int           = 0;
1030	sc->bce_tx_ticks               = 0;
1031
1032	sc->bce_rx_quick_cons_trip_int = 1;
1033	sc->bce_rx_quick_cons_trip     = 1;
1034	sc->bce_rx_ticks_int           = 0;
1035	sc->bce_rx_ticks               = 0;
1036#else
1037	/* Improve throughput at the expense of increased latency. */
1038	sc->bce_tx_quick_cons_trip_int = 20;
1039	sc->bce_tx_quick_cons_trip     = 20;
1040	sc->bce_tx_ticks_int           = 80;
1041	sc->bce_tx_ticks               = 80;
1042
1043	sc->bce_rx_quick_cons_trip_int = 6;
1044	sc->bce_rx_quick_cons_trip     = 6;
1045	sc->bce_rx_ticks_int           = 18;
1046	sc->bce_rx_ticks               = 18;
1047#endif
1048
1049	/* Not used for L2. */
1050	sc->bce_comp_prod_trip_int = 0;
1051	sc->bce_comp_prod_trip = 0;
1052	sc->bce_com_ticks_int = 0;
1053	sc->bce_com_ticks = 0;
1054	sc->bce_cmd_ticks_int = 0;
1055	sc->bce_cmd_ticks = 0;
1056
1057	/* Update statistics once every second. */
1058	sc->bce_stats_ticks = 1000000 & 0xffff00;
1059
1060	/* Find the media type for the adapter. */
1061	bce_get_media(sc);
1062
1063	/* Store data needed by PHY driver for backplane applications */
1064	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1065	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1066
1067	/* Allocate DMA memory resources. */
1068	if (bce_dma_alloc(dev)) {
1069		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1070		    __FILE__, __LINE__);
1071		rc = ENXIO;
1072		goto bce_attach_fail;
1073	}
1074
1075	/* Allocate an ifnet structure. */
1076	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1077	if (ifp == NULL) {
1078		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1079		    __FILE__, __LINE__);
1080		rc = ENXIO;
1081		goto bce_attach_fail;
1082	}
1083
1084	/* Initialize the ifnet interface. */
1085	ifp->if_softc	= sc;
1086	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1087	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1088	ifp->if_ioctl	= bce_ioctl;
1089	ifp->if_start	= bce_start;
1090	ifp->if_init	= bce_init;
1091	ifp->if_mtu	= ETHERMTU;
1092
1093	if (bce_tso_enable) {
1094		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1095		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1096		    IFCAP_VLAN_HWTSO;
1097	} else {
1098		ifp->if_hwassist = BCE_IF_HWASSIST;
1099		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1100	}
1101
1102	ifp->if_capenable = ifp->if_capabilities;
1103
1104	/*
1105	 * Assume standard mbuf sizes for buffer allocation.
1106	 * This may change later if the MTU size is set to
1107	 * something other than 1500.
1108	 */
1109#ifdef BCE_JUMBO_HDRSPLIT
1110	sc->rx_bd_mbuf_alloc_size = MHLEN;
1111	/* Make sure offset is 16 byte aligned for hardware. */
1112	sc->rx_bd_mbuf_align_pad =
1113	    roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
1114	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1115	    sc->rx_bd_mbuf_align_pad;
1116	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1117#else
1118	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1119	sc->rx_bd_mbuf_align_pad =
1120	    roundup2(MCLBYTES, 16) - MCLBYTES;
1121	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1122	    sc->rx_bd_mbuf_align_pad;
1123#endif
1124
1125	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1126	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1127	IFQ_SET_READY(&ifp->if_snd);
1128
1129	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1130		ifp->if_baudrate = IF_Mbps(2500ULL);
1131	else
1132		ifp->if_baudrate = IF_Mbps(1000);
1133
1134	/* Handle any special PHY initialization for SerDes PHYs. */
1135	bce_init_media(sc);
1136
1137	/* MII child bus by probing the PHY. */
1138	if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1139		bce_ifmedia_sts)) {
1140		BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1141		    __FILE__, __LINE__);
1142		rc = ENXIO;
1143		goto bce_attach_fail;
1144	}
1145
1146	/* Attach to the Ethernet interface list. */
1147	ether_ifattach(ifp, sc->eaddr);
1148
1149#if __FreeBSD_version < 500000
1150	callout_init(&sc->bce_tick_callout);
1151	callout_init(&sc->bce_pulse_callout);
1152#else
1153	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1154	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1155#endif
1156
1157	/* Hookup IRQ last. */
1158	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1159		NULL, bce_intr, sc, &sc->bce_intrhand);
1160
1161	if (rc) {
1162		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1163		    __FILE__, __LINE__);
1164		bce_detach(dev);
1165		goto bce_attach_exit;
1166	}
1167
1168	/*
1169	 * At this point we've acquired all the resources
1170	 * we need to run so there's no turning back, we're
1171	 * cleared for launch.
1172	 */
1173
1174	/* Print some important debugging info. */
1175	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1176
1177	/* Add the supported sysctls to the kernel. */
1178	bce_add_sysctls(sc);
1179
1180	BCE_LOCK(sc);
1181
1182	/*
1183	 * The chip reset earlier notified the bootcode that
1184	 * a driver is present.  We now need to start our pulse
1185	 * routine so that the bootcode is reminded that we're
1186	 * still running.
1187	 */
1188	bce_pulse(sc);
1189
1190	bce_mgmt_init_locked(sc);
1191	BCE_UNLOCK(sc);
1192
1193	/* Finally, print some useful adapter info */
1194	bce_print_adapter_info(sc);
1195	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1196		__FUNCTION__, sc);
1197
1198	goto bce_attach_exit;
1199
1200bce_attach_fail:
1201	bce_release_resources(sc);
1202
1203bce_attach_exit:
1204
1205	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1206
1207	return(rc);
1208}
1209
1210
1211/****************************************************************************/
1212/* Device detach function.                                                  */
1213/*                                                                          */
1214/* Stops the controller, resets the controller, and releases resources.     */
1215/*                                                                          */
1216/* Returns:                                                                 */
1217/*   0 on success, positive value on failure.                               */
1218/****************************************************************************/
1219static int
1220bce_detach(device_t dev)
1221{
1222	struct bce_softc *sc = device_get_softc(dev);
1223	struct ifnet *ifp;
1224	u32 msg;
1225
1226	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1227
1228	ifp = sc->bce_ifp;
1229
1230	/* Stop and reset the controller. */
1231	BCE_LOCK(sc);
1232
1233	/* Stop the pulse so the bootcode can go to driver absent state. */
1234	callout_stop(&sc->bce_pulse_callout);
1235
1236	bce_stop(sc);
1237	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1238		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1239	else
1240		msg = BCE_DRV_MSG_CODE_UNLOAD;
1241	bce_reset(sc, msg);
1242
1243	BCE_UNLOCK(sc);
1244
1245	ether_ifdetach(ifp);
1246
1247	/* If we have a child device on the MII bus remove it too. */
1248	bus_generic_detach(dev);
1249	device_delete_child(dev, sc->bce_miibus);
1250
1251	/* Release all remaining resources. */
1252	bce_release_resources(sc);
1253
1254	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1255
1256	return(0);
1257}
1258
1259
1260/****************************************************************************/
1261/* Device shutdown function.                                                */
1262/*                                                                          */
1263/* Stops and resets the controller.                                         */
1264/*                                                                          */
1265/* Returns:                                                                 */
1266/*   0 on success, positive value on failure.                               */
1267/****************************************************************************/
1268static int
1269bce_shutdown(device_t dev)
1270{
1271	struct bce_softc *sc = device_get_softc(dev);
1272	u32 msg;
1273
1274	DBENTER(BCE_VERBOSE);
1275
1276	BCE_LOCK(sc);
1277	bce_stop(sc);
1278	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1279		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1280	else
1281		msg = BCE_DRV_MSG_CODE_UNLOAD;
1282	bce_reset(sc, msg);
1283	BCE_UNLOCK(sc);
1284
1285	DBEXIT(BCE_VERBOSE);
1286
1287	return (0);
1288}
1289
1290
1291#ifdef BCE_DEBUG
1292/****************************************************************************/
1293/* Register read.                                                           */
1294/*                                                                          */
1295/* Returns:                                                                 */
1296/*   The value of the register.                                             */
1297/****************************************************************************/
1298static u32
1299bce_reg_rd(struct bce_softc *sc, u32 offset)
1300{
1301	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1302	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1303		__FUNCTION__, offset, val);
1304	return val;
1305}
1306
1307
1308/****************************************************************************/
1309/* Register write (16 bit).                                                 */
1310/*                                                                          */
1311/* Returns:                                                                 */
1312/*   Nothing.                                                               */
1313/****************************************************************************/
1314static void
1315bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1316{
1317	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1318		__FUNCTION__, offset, val);
1319	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1320}
1321
1322
1323/****************************************************************************/
1324/* Register write.                                                          */
1325/*                                                                          */
1326/* Returns:                                                                 */
1327/*   Nothing.                                                               */
1328/****************************************************************************/
1329static void
1330bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1331{
1332	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1333		__FUNCTION__, offset, val);
1334	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1335}
1336#endif
1337
1338/****************************************************************************/
1339/* Indirect register read.                                                  */
1340/*                                                                          */
1341/* Reads NetXtreme II registers using an index/data register pair in PCI    */
1342/* configuration space.  Using this mechanism avoids issues with posted     */
1343/* reads but is much slower than memory-mapped I/O.                         */
1344/*                                                                          */
1345/* Returns:                                                                 */
1346/*   The value of the register.                                             */
1347/****************************************************************************/
1348static u32
1349bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1350{
1351	device_t dev;
1352	dev = sc->bce_dev;
1353
1354	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1355#ifdef BCE_DEBUG
1356	{
1357		u32 val;
1358		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1359		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1360			__FUNCTION__, offset, val);
1361		return val;
1362	}
1363#else
1364	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1365#endif
1366}
1367
1368
1369/****************************************************************************/
1370/* Indirect register write.                                                 */
1371/*                                                                          */
1372/* Writes NetXtreme II registers using an index/data register pair in PCI   */
1373/* configuration space.  Using this mechanism avoids issues with posted     */
1374/* writes but is muchh slower than memory-mapped I/O.                       */
1375/*                                                                          */
1376/* Returns:                                                                 */
1377/*   Nothing.                                                               */
1378/****************************************************************************/
1379static void
1380bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1381{
1382	device_t dev;
1383	dev = sc->bce_dev;
1384
1385	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1386		__FUNCTION__, offset, val);
1387
1388	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1389	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1390}
1391
1392
1393/****************************************************************************/
1394/* Shared memory write.                                                     */
1395/*                                                                          */
1396/* Writes NetXtreme II shared memory region.                                */
1397/*                                                                          */
1398/* Returns:                                                                 */
1399/*   Nothing.                                                               */
1400/****************************************************************************/
1401static void
1402bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1403{
1404	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1405	    "0x%08X\n",	__FUNCTION__, val, offset);
1406
1407	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1408}
1409
1410
1411/****************************************************************************/
1412/* Shared memory read.                                                      */
1413/*                                                                          */
1414/* Reads NetXtreme II shared memory region.                                 */
1415/*                                                                          */
1416/* Returns:                                                                 */
1417/*   The 32 bit value read.                                                 */
1418/****************************************************************************/
1419static u32
1420bce_shmem_rd(struct bce_softc *sc, u32 offset)
1421{
1422	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1423
1424	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1425	    "0x%08X\n",	__FUNCTION__, val, offset);
1426
1427	return val;
1428}
1429
1430
1431#ifdef BCE_DEBUG
1432/****************************************************************************/
1433/* Context memory read.                                                     */
1434/*                                                                          */
1435/* The NetXtreme II controller uses context memory to track connection      */
1436/* information for L2 and higher network protocols.                         */
1437/*                                                                          */
1438/* Returns:                                                                 */
1439/*   The requested 32 bit value of context memory.                          */
1440/****************************************************************************/
1441static u32
1442bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1443{
1444	u32 idx, offset, retry_cnt = 5, val;
1445
1446	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1447	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1448	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1449
1450	offset = ctx_offset + cid_addr;
1451
1452	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1453		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1454
1455		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1456
1457		for (idx = 0; idx < retry_cnt; idx++) {
1458			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1459			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1460				break;
1461			DELAY(5);
1462		}
1463
1464		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1465			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1466			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1467			    __FILE__, __LINE__, cid_addr, ctx_offset);
1468
1469		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1470	} else {
1471		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1472		val = REG_RD(sc, BCE_CTX_DATA);
1473	}
1474
1475	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1476		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1477
1478	return(val);
1479}
1480#endif
1481
1482
1483/****************************************************************************/
1484/* Context memory write.                                                    */
1485/*                                                                          */
1486/* The NetXtreme II controller uses context memory to track connection      */
1487/* information for L2 and higher network protocols.                         */
1488/*                                                                          */
1489/* Returns:                                                                 */
1490/*   Nothing.                                                               */
1491/****************************************************************************/
1492static void
1493bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1494{
1495	u32 idx, offset = ctx_offset + cid_addr;
1496	u32 val, retry_cnt = 5;
1497
1498	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1499		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1500
1501	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1502		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1503		    __FUNCTION__, cid_addr));
1504
1505	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1506		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1507
1508		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1509		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1510
1511		for (idx = 0; idx < retry_cnt; idx++) {
1512			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1513			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1514				break;
1515			DELAY(5);
1516		}
1517
1518		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1519			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1520			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1521			    __FILE__, __LINE__, cid_addr, ctx_offset);
1522
1523	} else {
1524		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1525		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1526	}
1527}
1528
1529
1530/****************************************************************************/
1531/* PHY register read.                                                       */
1532/*                                                                          */
1533/* Implements register reads on the MII bus.                                */
1534/*                                                                          */
1535/* Returns:                                                                 */
1536/*   The value of the register.                                             */
1537/****************************************************************************/
1538static int
1539bce_miibus_read_reg(device_t dev, int phy, int reg)
1540{
1541	struct bce_softc *sc;
1542	u32 val;
1543	int i;
1544
1545	sc = device_get_softc(dev);
1546
1547	/* Make sure we are accessing the correct PHY address. */
1548	if (phy != sc->bce_phy_addr) {
1549		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1550		    "for PHY read!\n", phy);
1551		return(0);
1552	}
1553
1554    /*
1555     * The 5709S PHY is an IEEE Clause 45 PHY
1556     * with special mappings to work with IEEE
1557     * Clause 22 register accesses.
1558     */
1559	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1560		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1561			reg += 0x10;
1562	}
1563
1564    if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1565		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1566		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1567
1568		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1569		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1570
1571		DELAY(40);
1572	}
1573
1574
1575	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1576	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1577	    BCE_EMAC_MDIO_COMM_START_BUSY;
1578	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1579
1580	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1581		DELAY(10);
1582
1583		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1584		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1585			DELAY(5);
1586
1587			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1588			val &= BCE_EMAC_MDIO_COMM_DATA;
1589
1590			break;
1591		}
1592	}
1593
1594	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1595		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1596		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1597		val = 0x0;
1598	} else {
1599		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1600	}
1601
1602
1603	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1604		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1605		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1606
1607		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1608		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1609
1610		DELAY(40);
1611	}
1612
1613	DB_PRINT_PHY_REG(reg, val);
1614	return (val & 0xffff);
1615
1616}
1617
1618
1619/****************************************************************************/
1620/* PHY register write.                                                      */
1621/*                                                                          */
1622/* Implements register writes on the MII bus.                               */
1623/*                                                                          */
1624/* Returns:                                                                 */
1625/*   The value of the register.                                             */
1626/****************************************************************************/
1627static int
1628bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1629{
1630	struct bce_softc *sc;
1631	u32 val1;
1632	int i;
1633
1634	sc = device_get_softc(dev);
1635
1636	/* Make sure we are accessing the correct PHY address. */
1637	if (phy != sc->bce_phy_addr) {
1638		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1639		    "for PHY write!\n", phy);
1640		return(0);
1641	}
1642
1643	DB_PRINT_PHY_REG(reg, val);
1644
1645	/*
1646	 * The 5709S PHY is an IEEE Clause 45 PHY
1647	 * with special mappings to work with IEEE
1648	 * Clause 22 register accesses.
1649	 */
1650	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1651		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1652			reg += 0x10;
1653	}
1654
1655	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1656		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1657		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1658
1659		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1660		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1661
1662		DELAY(40);
1663	}
1664
1665	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1666	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1667	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1668	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1669
1670	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1671		DELAY(10);
1672
1673		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1674		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1675			DELAY(5);
1676			break;
1677		}
1678	}
1679
1680	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1681		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1682		    __FILE__, __LINE__);
1683
1684	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1685		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1686		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1687
1688		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1689		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1690
1691		DELAY(40);
1692	}
1693
1694	return 0;
1695}
1696
1697
1698/****************************************************************************/
1699/* MII bus status change.                                                   */
1700/*                                                                          */
1701/* Called by the MII bus driver when the PHY establishes link to set the    */
1702/* MAC interface registers.                                                 */
1703/*                                                                          */
1704/* Returns:                                                                 */
1705/*   Nothing.                                                               */
1706/****************************************************************************/
1707static void
1708bce_miibus_statchg(device_t dev)
1709{
1710	struct bce_softc *sc;
1711	struct mii_data *mii;
1712	int val;
1713
1714	sc = device_get_softc(dev);
1715
1716	DBENTER(BCE_VERBOSE_PHY);
1717
1718	mii = device_get_softc(sc->bce_miibus);
1719
1720	val = REG_RD(sc, BCE_EMAC_MODE);
1721	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1722	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1723	    BCE_EMAC_MODE_25G);
1724
1725	/* Set MII or GMII interface based on the PHY speed. */
1726	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1727	case IFM_10_T:
1728		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1729			DBPRINT(sc, BCE_INFO_PHY,
1730			    "Enabling 10Mb interface.\n");
1731			val |= BCE_EMAC_MODE_PORT_MII_10;
1732			break;
1733		}
1734		/* fall-through */
1735	case IFM_100_TX:
1736		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
1737		val |= BCE_EMAC_MODE_PORT_MII;
1738		break;
1739	case IFM_2500_SX:
1740		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
1741		val |= BCE_EMAC_MODE_25G;
1742		/* fall-through */
1743	case IFM_1000_T:
1744	case IFM_1000_SX:
1745		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
1746		val |= BCE_EMAC_MODE_PORT_GMII;
1747		break;
1748	default:
1749		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
1750		    "default GMII interface.\n");
1751		val |= BCE_EMAC_MODE_PORT_GMII;
1752	}
1753
1754	/* Set half or full duplex based on PHY settings. */
1755	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1756		DBPRINT(sc, BCE_INFO_PHY,
1757		    "Setting Half-Duplex interface.\n");
1758		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1759	} else
1760		DBPRINT(sc, BCE_INFO_PHY,
1761		    "Setting Full-Duplex interface.\n");
1762
1763	REG_WR(sc, BCE_EMAC_MODE, val);
1764
1765	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1766 	if (mii->mii_media_active & IFM_FLAG0) {
1767		DBPRINT(sc, BCE_INFO_PHY,
1768		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
1769		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1770	} else {
1771		DBPRINT(sc, BCE_INFO_PHY,
1772		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
1773		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1774	}
1775
1776 	if (mii->mii_media_active & IFM_FLAG1) {
1777		DBPRINT(sc, BCE_INFO_PHY,
1778		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
1779		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1780		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
1781	} else {
1782		DBPRINT(sc, BCE_INFO_PHY,
1783		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
1784		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1785		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
1786	}
1787
1788	/* ToDo: Update watermarks in bce_init_rx_context(). */
1789
1790	DBEXIT(BCE_VERBOSE_PHY);
1791}
1792
1793
1794/****************************************************************************/
1795/* Acquire NVRAM lock.                                                      */
1796/*                                                                          */
1797/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1798/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1799/* for use by the driver.                                                   */
1800/*                                                                          */
1801/* Returns:                                                                 */
1802/*   0 on success, positive value on failure.                               */
1803/****************************************************************************/
1804static int
1805bce_acquire_nvram_lock(struct bce_softc *sc)
1806{
1807	u32 val;
1808	int j, rc = 0;
1809
1810	DBENTER(BCE_VERBOSE_NVRAM);
1811
1812	/* Request access to the flash interface. */
1813	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1814	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1815		val = REG_RD(sc, BCE_NVM_SW_ARB);
1816		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1817			break;
1818
1819		DELAY(5);
1820	}
1821
1822	if (j >= NVRAM_TIMEOUT_COUNT) {
1823		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1824		rc = EBUSY;
1825	}
1826
1827	DBEXIT(BCE_VERBOSE_NVRAM);
1828	return (rc);
1829}
1830
1831
1832/****************************************************************************/
1833/* Release NVRAM lock.                                                      */
1834/*                                                                          */
1835/* When the caller is finished accessing NVRAM the lock must be released.   */
1836/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1837/* for use by the driver.                                                   */
1838/*                                                                          */
1839/* Returns:                                                                 */
1840/*   0 on success, positive value on failure.                               */
1841/****************************************************************************/
1842static int
1843bce_release_nvram_lock(struct bce_softc *sc)
1844{
1845	u32 val;
1846	int j, rc = 0;
1847
1848	DBENTER(BCE_VERBOSE_NVRAM);
1849
1850	/*
1851	 * Relinquish nvram interface.
1852	 */
1853	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1854
1855	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1856		val = REG_RD(sc, BCE_NVM_SW_ARB);
1857		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1858			break;
1859
1860		DELAY(5);
1861	}
1862
1863	if (j >= NVRAM_TIMEOUT_COUNT) {
1864		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1865		rc = EBUSY;
1866	}
1867
1868	DBEXIT(BCE_VERBOSE_NVRAM);
1869	return (rc);
1870}
1871
1872
1873#ifdef BCE_NVRAM_WRITE_SUPPORT
1874/****************************************************************************/
1875/* Enable NVRAM write access.                                               */
1876/*                                                                          */
1877/* Before writing to NVRAM the caller must enable NVRAM writes.             */
1878/*                                                                          */
1879/* Returns:                                                                 */
1880/*   0 on success, positive value on failure.                               */
1881/****************************************************************************/
1882static int
1883bce_enable_nvram_write(struct bce_softc *sc)
1884{
1885	u32 val;
1886	int rc = 0;
1887
1888	DBENTER(BCE_VERBOSE_NVRAM);
1889
1890	val = REG_RD(sc, BCE_MISC_CFG);
1891	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1892
1893	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1894		int j;
1895
1896		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1897		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1898
1899		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1900			DELAY(5);
1901
1902			val = REG_RD(sc, BCE_NVM_COMMAND);
1903			if (val & BCE_NVM_COMMAND_DONE)
1904				break;
1905		}
1906
1907		if (j >= NVRAM_TIMEOUT_COUNT) {
1908			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1909			rc = EBUSY;
1910		}
1911	}
1912
1913	DBENTER(BCE_VERBOSE_NVRAM);
1914	return (rc);
1915}
1916
1917
1918/****************************************************************************/
1919/* Disable NVRAM write access.                                              */
1920/*                                                                          */
1921/* When the caller is finished writing to NVRAM write access must be        */
1922/* disabled.                                                                */
1923/*                                                                          */
1924/* Returns:                                                                 */
1925/*   Nothing.                                                               */
1926/****************************************************************************/
1927static void
1928bce_disable_nvram_write(struct bce_softc *sc)
1929{
1930	u32 val;
1931
1932	DBENTER(BCE_VERBOSE_NVRAM);
1933
1934	val = REG_RD(sc, BCE_MISC_CFG);
1935	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1936
1937	DBEXIT(BCE_VERBOSE_NVRAM);
1938
1939}
1940#endif
1941
1942
1943/****************************************************************************/
1944/* Enable NVRAM access.                                                     */
1945/*                                                                          */
1946/* Before accessing NVRAM for read or write operations the caller must      */
1947/* enabled NVRAM access.                                                    */
1948/*                                                                          */
1949/* Returns:                                                                 */
1950/*   Nothing.                                                               */
1951/****************************************************************************/
1952static void
1953bce_enable_nvram_access(struct bce_softc *sc)
1954{
1955	u32 val;
1956
1957	DBENTER(BCE_VERBOSE_NVRAM);
1958
1959	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1960	/* Enable both bits, even on read. */
1961	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
1962	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1963
1964	DBEXIT(BCE_VERBOSE_NVRAM);
1965}
1966
1967
1968/****************************************************************************/
1969/* Disable NVRAM access.                                                    */
1970/*                                                                          */
1971/* When the caller is finished accessing NVRAM access must be disabled.     */
1972/*                                                                          */
1973/* Returns:                                                                 */
1974/*   Nothing.                                                               */
1975/****************************************************************************/
1976static void
1977bce_disable_nvram_access(struct bce_softc *sc)
1978{
1979	u32 val;
1980
1981	DBENTER(BCE_VERBOSE_NVRAM);
1982
1983	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1984
1985	/* Disable both bits, even after read. */
1986	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
1987	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1988
1989	DBEXIT(BCE_VERBOSE_NVRAM);
1990}
1991
1992
1993#ifdef BCE_NVRAM_WRITE_SUPPORT
1994/****************************************************************************/
1995/* Erase NVRAM page before writing.                                         */
1996/*                                                                          */
1997/* Non-buffered flash parts require that a page be erased before it is      */
1998/* written.                                                                 */
1999/*                                                                          */
2000/* Returns:                                                                 */
2001/*   0 on success, positive value on failure.                               */
2002/****************************************************************************/
2003static int
2004bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2005{
2006	u32 cmd;
2007	int j, rc = 0;
2008
2009	DBENTER(BCE_VERBOSE_NVRAM);
2010
2011	/* Buffered flash doesn't require an erase. */
2012	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2013		goto bce_nvram_erase_page_exit;
2014
2015	/* Build an erase command. */
2016	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2017	    BCE_NVM_COMMAND_DOIT;
2018
2019	/*
2020	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2021	 * and issue the erase command.
2022	 */
2023	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2024	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2025	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2026
2027	/* Wait for completion. */
2028	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2029		u32 val;
2030
2031		DELAY(5);
2032
2033		val = REG_RD(sc, BCE_NVM_COMMAND);
2034		if (val & BCE_NVM_COMMAND_DONE)
2035			break;
2036	}
2037
2038	if (j >= NVRAM_TIMEOUT_COUNT) {
2039		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2040		rc = EBUSY;
2041	}
2042
2043bce_nvram_erase_page_exit:
2044	DBEXIT(BCE_VERBOSE_NVRAM);
2045	return (rc);
2046}
2047#endif /* BCE_NVRAM_WRITE_SUPPORT */
2048
2049
2050/****************************************************************************/
2051/* Read a dword (32 bits) from NVRAM.                                       */
2052/*                                                                          */
2053/* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2054/* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2055/*                                                                          */
2056/* Returns:                                                                 */
2057/*   0 on success and the 32 bit value read, positive value on failure.     */
2058/****************************************************************************/
2059static int
2060bce_nvram_read_dword(struct bce_softc *sc,
2061    u32 offset, u8 *ret_val, u32 cmd_flags)
2062{
2063	u32 cmd;
2064	int i, rc = 0;
2065
2066	DBENTER(BCE_EXTREME_NVRAM);
2067
2068	/* Build the command word. */
2069	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2070
2071	/* Calculate the offset for buffered flash if translation is used. */
2072	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2073		offset = ((offset / sc->bce_flash_info->page_size) <<
2074		    sc->bce_flash_info->page_bits) +
2075		    (offset % sc->bce_flash_info->page_size);
2076	}
2077
2078	/*
2079	 * Clear the DONE bit separately, set the address to read,
2080	 * and issue the read.
2081	 */
2082	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2083	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2084	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2085
2086	/* Wait for completion. */
2087	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2088		u32 val;
2089
2090		DELAY(5);
2091
2092		val = REG_RD(sc, BCE_NVM_COMMAND);
2093		if (val & BCE_NVM_COMMAND_DONE) {
2094			val = REG_RD(sc, BCE_NVM_READ);
2095
2096			val = bce_be32toh(val);
2097			memcpy(ret_val, &val, 4);
2098			break;
2099		}
2100	}
2101
2102	/* Check for errors. */
2103	if (i >= NVRAM_TIMEOUT_COUNT) {
2104		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2105		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2106		rc = EBUSY;
2107	}
2108
2109	DBEXIT(BCE_EXTREME_NVRAM);
2110	return(rc);
2111}
2112
2113
2114#ifdef BCE_NVRAM_WRITE_SUPPORT
2115/****************************************************************************/
2116/* Write a dword (32 bits) to NVRAM.                                        */
2117/*                                                                          */
2118/* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2119/* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2120/* enabled NVRAM write access.                                              */
2121/*                                                                          */
2122/* Returns:                                                                 */
2123/*   0 on success, positive value on failure.                               */
2124/****************************************************************************/
2125static int
2126bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2127	u32 cmd_flags)
2128{
2129	u32 cmd, val32;
2130	int j, rc = 0;
2131
2132	DBENTER(BCE_VERBOSE_NVRAM);
2133
2134	/* Build the command word. */
2135	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2136
2137	/* Calculate the offset for buffered flash if translation is used. */
2138	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2139		offset = ((offset / sc->bce_flash_info->page_size) <<
2140		    sc->bce_flash_info->page_bits) +
2141		    (offset % sc->bce_flash_info->page_size);
2142	}
2143
2144	/*
2145	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2146	 * set the NVRAM address to write, and issue the write command
2147	 */
2148	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2149	memcpy(&val32, val, 4);
2150	val32 = htobe32(val32);
2151	REG_WR(sc, BCE_NVM_WRITE, val32);
2152	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2153	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2154
2155	/* Wait for completion. */
2156	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2157		DELAY(5);
2158
2159		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2160			break;
2161	}
2162	if (j >= NVRAM_TIMEOUT_COUNT) {
2163		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2164		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2165		rc = EBUSY;
2166	}
2167
2168	DBEXIT(BCE_VERBOSE_NVRAM);
2169	return (rc);
2170}
2171#endif /* BCE_NVRAM_WRITE_SUPPORT */
2172
2173
2174/****************************************************************************/
2175/* Initialize NVRAM access.                                                 */
2176/*                                                                          */
2177/* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2178/* access that device.                                                      */
2179/*                                                                          */
2180/* Returns:                                                                 */
2181/*   0 on success, positive value on failure.                               */
2182/****************************************************************************/
2183static int
2184bce_init_nvram(struct bce_softc *sc)
2185{
2186	u32 val;
2187	int j, entry_count, rc = 0;
2188	struct flash_spec *flash;
2189
2190	DBENTER(BCE_VERBOSE_NVRAM);
2191
2192	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2193		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2194		sc->bce_flash_info = &flash_5709;
2195		goto bce_init_nvram_get_flash_size;
2196	}
2197
2198	/* Determine the selected interface. */
2199	val = REG_RD(sc, BCE_NVM_CFG1);
2200
2201	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2202
2203	/*
2204	 * Flash reconfiguration is required to support additional
2205	 * NVRAM devices not directly supported in hardware.
2206	 * Check if the flash interface was reconfigured
2207	 * by the bootcode.
2208	 */
2209
2210	if (val & 0x40000000) {
2211		/* Flash interface reconfigured by bootcode. */
2212
2213		DBPRINT(sc,BCE_INFO_LOAD,
2214			"bce_init_nvram(): Flash WAS reconfigured.\n");
2215
2216		for (j = 0, flash = &flash_table[0]; j < entry_count;
2217		     j++, flash++) {
2218			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2219			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2220				sc->bce_flash_info = flash;
2221				break;
2222			}
2223		}
2224	} else {
2225		/* Flash interface not yet reconfigured. */
2226		u32 mask;
2227
2228		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2229			__FUNCTION__);
2230
2231		if (val & (1 << 23))
2232			mask = FLASH_BACKUP_STRAP_MASK;
2233		else
2234			mask = FLASH_STRAP_MASK;
2235
2236		/* Look for the matching NVRAM device configuration data. */
2237		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2238
2239			/* Check if the device matches any of the known devices. */
2240			if ((val & mask) == (flash->strapping & mask)) {
2241				/* Found a device match. */
2242				sc->bce_flash_info = flash;
2243
2244				/* Request access to the flash interface. */
2245				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2246					return rc;
2247
2248				/* Reconfigure the flash interface. */
2249				bce_enable_nvram_access(sc);
2250				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2251				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2252				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2253				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2254				bce_disable_nvram_access(sc);
2255				bce_release_nvram_lock(sc);
2256
2257				break;
2258			}
2259		}
2260	}
2261
2262	/* Check if a matching device was found. */
2263	if (j == entry_count) {
2264		sc->bce_flash_info = NULL;
2265		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2266		    __FILE__, __LINE__);
2267		rc = ENODEV;
2268	}
2269
2270bce_init_nvram_get_flash_size:
2271	/* Write the flash config data to the shared memory interface. */
2272	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2273	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2274	if (val)
2275		sc->bce_flash_size = val;
2276	else
2277		sc->bce_flash_size = sc->bce_flash_info->total_size;
2278
2279	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2280	    __FUNCTION__, sc->bce_flash_info->name,
2281	    sc->bce_flash_info->total_size);
2282
2283	DBEXIT(BCE_VERBOSE_NVRAM);
2284	return rc;
2285}
2286
2287
2288/****************************************************************************/
2289/* Read an arbitrary range of data from NVRAM.                              */
2290/*                                                                          */
2291/* Prepares the NVRAM interface for access and reads the requested data     */
2292/* into the supplied buffer.                                                */
2293/*                                                                          */
2294/* Returns:                                                                 */
2295/*   0 on success and the data read, positive value on failure.             */
2296/****************************************************************************/
2297static int
2298bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2299	int buf_size)
2300{
2301	int rc = 0;
2302	u32 cmd_flags, offset32, len32, extra;
2303
2304	DBENTER(BCE_VERBOSE_NVRAM);
2305
2306	if (buf_size == 0)
2307		goto bce_nvram_read_exit;
2308
2309	/* Request access to the flash interface. */
2310	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2311		goto bce_nvram_read_exit;
2312
2313	/* Enable access to flash interface */
2314	bce_enable_nvram_access(sc);
2315
2316	len32 = buf_size;
2317	offset32 = offset;
2318	extra = 0;
2319
2320	cmd_flags = 0;
2321
2322	if (offset32 & 3) {
2323		u8 buf[4];
2324		u32 pre_len;
2325
2326		offset32 &= ~3;
2327		pre_len = 4 - (offset & 3);
2328
2329		if (pre_len >= len32) {
2330			pre_len = len32;
2331			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2332		}
2333		else {
2334			cmd_flags = BCE_NVM_COMMAND_FIRST;
2335		}
2336
2337		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2338
2339		if (rc)
2340			return rc;
2341
2342		memcpy(ret_buf, buf + (offset & 3), pre_len);
2343
2344		offset32 += 4;
2345		ret_buf += pre_len;
2346		len32 -= pre_len;
2347	}
2348
2349	if (len32 & 3) {
2350		extra = 4 - (len32 & 3);
2351		len32 = (len32 + 4) & ~3;
2352	}
2353
2354	if (len32 == 4) {
2355		u8 buf[4];
2356
2357		if (cmd_flags)
2358			cmd_flags = BCE_NVM_COMMAND_LAST;
2359		else
2360			cmd_flags = BCE_NVM_COMMAND_FIRST |
2361				    BCE_NVM_COMMAND_LAST;
2362
2363		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2364
2365		memcpy(ret_buf, buf, 4 - extra);
2366	}
2367	else if (len32 > 0) {
2368		u8 buf[4];
2369
2370		/* Read the first word. */
2371		if (cmd_flags)
2372			cmd_flags = 0;
2373		else
2374			cmd_flags = BCE_NVM_COMMAND_FIRST;
2375
2376		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2377
2378		/* Advance to the next dword. */
2379		offset32 += 4;
2380		ret_buf += 4;
2381		len32 -= 4;
2382
2383		while (len32 > 4 && rc == 0) {
2384			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2385
2386			/* Advance to the next dword. */
2387			offset32 += 4;
2388			ret_buf += 4;
2389			len32 -= 4;
2390		}
2391
2392		if (rc)
2393			goto bce_nvram_read_locked_exit;
2394
2395		cmd_flags = BCE_NVM_COMMAND_LAST;
2396		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2397
2398		memcpy(ret_buf, buf, 4 - extra);
2399	}
2400
2401bce_nvram_read_locked_exit:
2402	/* Disable access to flash interface and release the lock. */
2403	bce_disable_nvram_access(sc);
2404	bce_release_nvram_lock(sc);
2405
2406bce_nvram_read_exit:
2407	DBEXIT(BCE_VERBOSE_NVRAM);
2408	return rc;
2409}
2410
2411
2412#ifdef BCE_NVRAM_WRITE_SUPPORT
2413/****************************************************************************/
2414/* Write an arbitrary range of data from NVRAM.                             */
2415/*                                                                          */
2416/* Prepares the NVRAM interface for write access and writes the requested   */
2417/* data from the supplied buffer.  The caller is responsible for            */
2418/* calculating any appropriate CRCs.                                        */
2419/*                                                                          */
2420/* Returns:                                                                 */
2421/*   0 on success, positive value on failure.                               */
2422/****************************************************************************/
2423static int
2424bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2425	int buf_size)
2426{
2427	u32 written, offset32, len32;
2428	u8 *buf, start[4], end[4];
2429	int rc = 0;
2430	int align_start, align_end;
2431
2432	DBENTER(BCE_VERBOSE_NVRAM);
2433
2434	buf = data_buf;
2435	offset32 = offset;
2436	len32 = buf_size;
2437	align_start = align_end = 0;
2438
2439	if ((align_start = (offset32 & 3))) {
2440		offset32 &= ~3;
2441		len32 += align_start;
2442		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2443			goto bce_nvram_write_exit;
2444	}
2445
2446	if (len32 & 3) {
2447	       	if ((len32 > 4) || !align_start) {
2448			align_end = 4 - (len32 & 3);
2449			len32 += align_end;
2450			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2451				end, 4))) {
2452				goto bce_nvram_write_exit;
2453			}
2454		}
2455	}
2456
2457	if (align_start || align_end) {
2458		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2459		if (buf == 0) {
2460			rc = ENOMEM;
2461			goto bce_nvram_write_exit;
2462		}
2463
2464		if (align_start) {
2465			memcpy(buf, start, 4);
2466		}
2467
2468		if (align_end) {
2469			memcpy(buf + len32 - 4, end, 4);
2470		}
2471		memcpy(buf + align_start, data_buf, buf_size);
2472	}
2473
2474	written = 0;
2475	while ((written < len32) && (rc == 0)) {
2476		u32 page_start, page_end, data_start, data_end;
2477		u32 addr, cmd_flags;
2478		int i;
2479		u8 flash_buffer[264];
2480
2481	    /* Find the page_start addr */
2482		page_start = offset32 + written;
2483		page_start -= (page_start % sc->bce_flash_info->page_size);
2484		/* Find the page_end addr */
2485		page_end = page_start + sc->bce_flash_info->page_size;
2486		/* Find the data_start addr */
2487		data_start = (written == 0) ? offset32 : page_start;
2488		/* Find the data_end addr */
2489		data_end = (page_end > offset32 + len32) ?
2490			(offset32 + len32) : page_end;
2491
2492		/* Request access to the flash interface. */
2493		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2494			goto bce_nvram_write_exit;
2495
2496		/* Enable access to flash interface */
2497		bce_enable_nvram_access(sc);
2498
2499		cmd_flags = BCE_NVM_COMMAND_FIRST;
2500		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2501			int j;
2502
2503			/* Read the whole page into the buffer
2504			 * (non-buffer flash only) */
2505			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2506				if (j == (sc->bce_flash_info->page_size - 4)) {
2507					cmd_flags |= BCE_NVM_COMMAND_LAST;
2508				}
2509				rc = bce_nvram_read_dword(sc,
2510					page_start + j,
2511					&flash_buffer[j],
2512					cmd_flags);
2513
2514				if (rc)
2515					goto bce_nvram_write_locked_exit;
2516
2517				cmd_flags = 0;
2518			}
2519		}
2520
2521		/* Enable writes to flash interface (unlock write-protect) */
2522		if ((rc = bce_enable_nvram_write(sc)) != 0)
2523			goto bce_nvram_write_locked_exit;
2524
2525		/* Erase the page */
2526		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2527			goto bce_nvram_write_locked_exit;
2528
2529		/* Re-enable the write again for the actual write */
2530		bce_enable_nvram_write(sc);
2531
2532		/* Loop to write back the buffer data from page_start to
2533		 * data_start */
2534		i = 0;
2535		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2536			for (addr = page_start; addr < data_start;
2537				addr += 4, i += 4) {
2538
2539				rc = bce_nvram_write_dword(sc, addr,
2540					&flash_buffer[i], cmd_flags);
2541
2542				if (rc != 0)
2543					goto bce_nvram_write_locked_exit;
2544
2545				cmd_flags = 0;
2546			}
2547		}
2548
2549		/* Loop to write the new data from data_start to data_end */
2550		for (addr = data_start; addr < data_end; addr += 4, i++) {
2551			if ((addr == page_end - 4) ||
2552				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2553				(addr == data_end - 4))) {
2554
2555				cmd_flags |= BCE_NVM_COMMAND_LAST;
2556			}
2557			rc = bce_nvram_write_dword(sc, addr, buf,
2558				cmd_flags);
2559
2560			if (rc != 0)
2561				goto bce_nvram_write_locked_exit;
2562
2563			cmd_flags = 0;
2564			buf += 4;
2565		}
2566
2567		/* Loop to write back the buffer data from data_end
2568		 * to page_end */
2569		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2570			for (addr = data_end; addr < page_end;
2571				addr += 4, i += 4) {
2572
2573				if (addr == page_end-4) {
2574					cmd_flags = BCE_NVM_COMMAND_LAST;
2575                		}
2576				rc = bce_nvram_write_dword(sc, addr,
2577					&flash_buffer[i], cmd_flags);
2578
2579				if (rc != 0)
2580					goto bce_nvram_write_locked_exit;
2581
2582				cmd_flags = 0;
2583			}
2584		}
2585
2586		/* Disable writes to flash interface (lock write-protect) */
2587		bce_disable_nvram_write(sc);
2588
2589		/* Disable access to flash interface */
2590		bce_disable_nvram_access(sc);
2591		bce_release_nvram_lock(sc);
2592
2593		/* Increment written */
2594		written += data_end - data_start;
2595	}
2596
2597	goto bce_nvram_write_exit;
2598
2599bce_nvram_write_locked_exit:
2600		bce_disable_nvram_write(sc);
2601		bce_disable_nvram_access(sc);
2602		bce_release_nvram_lock(sc);
2603
2604bce_nvram_write_exit:
2605	if (align_start || align_end)
2606		free(buf, M_DEVBUF);
2607
2608	DBEXIT(BCE_VERBOSE_NVRAM);
2609	return (rc);
2610}
2611#endif /* BCE_NVRAM_WRITE_SUPPORT */
2612
2613
2614/****************************************************************************/
2615/* Verifies that NVRAM is accessible and contains valid data.               */
2616/*                                                                          */
2617/* Reads the configuration data from NVRAM and verifies that the CRC is     */
2618/* correct.                                                                 */
2619/*                                                                          */
2620/* Returns:                                                                 */
2621/*   0 on success, positive value on failure.                               */
2622/****************************************************************************/
2623static int
2624bce_nvram_test(struct bce_softc *sc)
2625{
2626	u32 buf[BCE_NVRAM_SIZE / 4];
2627	u8 *data = (u8 *) buf;
2628	int rc = 0;
2629	u32 magic, csum;
2630
2631	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2632
2633	/*
2634	 * Check that the device NVRAM is valid by reading
2635	 * the magic value at offset 0.
2636	 */
2637	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2638		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2639		    __FILE__, __LINE__);
2640		goto bce_nvram_test_exit;
2641	}
2642
2643	/*
2644	 * Verify that offset 0 of the NVRAM contains
2645	 * a valid magic number.
2646	 */
2647    magic = bce_be32toh(buf[0]);
2648	if (magic != BCE_NVRAM_MAGIC) {
2649		rc = ENODEV;
2650		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2651		    "Expected: 0x%08X, Found: 0x%08X\n",
2652		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2653		goto bce_nvram_test_exit;
2654	}
2655
2656	/*
2657	 * Verify that the device NVRAM includes valid
2658	 * configuration data.
2659	 */
2660	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2661		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2662		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2663		goto bce_nvram_test_exit;
2664	}
2665
2666	csum = ether_crc32_le(data, 0x100);
2667	if (csum != BCE_CRC32_RESIDUAL) {
2668		rc = ENODEV;
2669		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2670		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2671		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2672		goto bce_nvram_test_exit;
2673	}
2674
2675	csum = ether_crc32_le(data + 0x100, 0x100);
2676	if (csum != BCE_CRC32_RESIDUAL) {
2677		rc = ENODEV;
2678		BCE_PRINTF("%s(%d): Invalid feature configuration "
2679		    "information NVRAM CRC! Expected: 0x%08X, "
2680		    "Found: 08%08X\n", __FILE__, __LINE__,
2681		    BCE_CRC32_RESIDUAL, csum);
2682	}
2683
2684bce_nvram_test_exit:
2685	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2686	return rc;
2687}
2688
2689
2690/****************************************************************************/
2691/* Identifies the current media type of the controller and sets the PHY     */
2692/* address.                                                                 */
2693/*                                                                          */
2694/* Returns:                                                                 */
2695/*   Nothing.                                                               */
2696/****************************************************************************/
2697static void
2698bce_get_media(struct bce_softc *sc)
2699{
2700	u32 val;
2701
2702	DBENTER(BCE_VERBOSE_PHY);
2703
2704	/* Assume PHY address for copper controllers. */
2705	sc->bce_phy_addr = 1;
2706
2707	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2708 		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2709		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2710		u32 strap;
2711
2712		/*
2713		 * The BCM5709S is software configurable
2714		 * for Copper or SerDes operation.
2715		 */
2716		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2717			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2718			    "for copper.\n");
2719			goto bce_get_media_exit;
2720		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2721			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2722			    "for dual media.\n");
2723			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2724			goto bce_get_media_exit;
2725		}
2726
2727		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2728			strap = (val &
2729			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2730		else
2731			strap = (val &
2732			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2733
2734		if (pci_get_function(sc->bce_dev) == 0) {
2735			switch (strap) {
2736			case 0x4:
2737			case 0x5:
2738			case 0x6:
2739				DBPRINT(sc, BCE_INFO_LOAD,
2740				    "BCM5709 s/w configured for SerDes.\n");
2741				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2742				break;
2743			default:
2744				DBPRINT(sc, BCE_INFO_LOAD,
2745				    "BCM5709 s/w configured for Copper.\n");
2746				break;
2747			}
2748		} else {
2749			switch (strap) {
2750			case 0x1:
2751			case 0x2:
2752			case 0x4:
2753				DBPRINT(sc, BCE_INFO_LOAD,
2754				    "BCM5709 s/w configured for SerDes.\n");
2755				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2756				break;
2757			default:
2758				DBPRINT(sc, BCE_INFO_LOAD,
2759				    "BCM5709 s/w configured for Copper.\n");
2760				break;
2761			}
2762		}
2763
2764	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2765		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2766
2767	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2768
2769		sc->bce_flags |= BCE_NO_WOL_FLAG;
2770
2771		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
2772			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
2773
2774		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2775			/* 5708S/09S/16S use a separate PHY for SerDes. */
2776			sc->bce_phy_addr = 2;
2777
2778			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2779			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2780				sc->bce_phy_flags |=
2781				    BCE_PHY_2_5G_CAPABLE_FLAG;
2782				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
2783				    "capable adapter\n");
2784			}
2785		}
2786	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2787	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2788		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2789
2790bce_get_media_exit:
2791	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2792		"Using PHY address %d.\n", sc->bce_phy_addr);
2793
2794	DBEXIT(BCE_VERBOSE_PHY);
2795}
2796
2797
2798/****************************************************************************/
2799/* Performs PHY initialization required before MII drivers access the       */
2800/* device.                                                                  */
2801/*                                                                          */
2802/* Returns:                                                                 */
2803/*   Nothing.                                                               */
2804/****************************************************************************/
2805static void
2806bce_init_media(struct bce_softc *sc)
2807{
2808	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
2809		/*
2810		 * Configure 5709S/5716S PHYs to use traditional IEEE
2811		 * Clause 22 method. Otherwise we have no way to attach
2812		 * the PHY in mii(4) layer. PHY specific configuration
2813		 * is done in mii layer.
2814		 */
2815
2816		/* Select auto-negotiation MMD of the PHY. */
2817		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2818		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2819		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2820		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2821
2822		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
2823		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2824		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2825	}
2826}
2827
2828
2829/****************************************************************************/
2830/* Free any DMA memory owned by the driver.                                 */
2831/*                                                                          */
2832/* Scans through each data structre that requires DMA memory and frees      */
2833/* the memory if allocated.                                                 */
2834/*                                                                          */
2835/* Returns:                                                                 */
2836/*   Nothing.                                                               */
2837/****************************************************************************/
2838static void
2839bce_dma_free(struct bce_softc *sc)
2840{
2841	int i;
2842
2843	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2844
2845	/* Free, unmap, and destroy the status block. */
2846	if (sc->status_block != NULL) {
2847		bus_dmamem_free(
2848		   sc->status_tag,
2849		    sc->status_block,
2850		    sc->status_map);
2851		sc->status_block = NULL;
2852	}
2853
2854	if (sc->status_map != NULL) {
2855		bus_dmamap_unload(
2856		    sc->status_tag,
2857		    sc->status_map);
2858		bus_dmamap_destroy(sc->status_tag,
2859		    sc->status_map);
2860		sc->status_map = NULL;
2861	}
2862
2863	if (sc->status_tag != NULL) {
2864		bus_dma_tag_destroy(sc->status_tag);
2865		sc->status_tag = NULL;
2866	}
2867
2868
2869	/* Free, unmap, and destroy the statistics block. */
2870	if (sc->stats_block != NULL) {
2871		bus_dmamem_free(
2872		    sc->stats_tag,
2873		    sc->stats_block,
2874		    sc->stats_map);
2875		sc->stats_block = NULL;
2876	}
2877
2878	if (sc->stats_map != NULL) {
2879		bus_dmamap_unload(
2880		    sc->stats_tag,
2881		    sc->stats_map);
2882		bus_dmamap_destroy(sc->stats_tag,
2883		    sc->stats_map);
2884		sc->stats_map = NULL;
2885	}
2886
2887	if (sc->stats_tag != NULL) {
2888		bus_dma_tag_destroy(sc->stats_tag);
2889		sc->stats_tag = NULL;
2890	}
2891
2892
2893	/* Free, unmap and destroy all context memory pages. */
2894	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2895		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2896		for (i = 0; i < sc->ctx_pages; i++ ) {
2897			if (sc->ctx_block[i] != NULL) {
2898				bus_dmamem_free(
2899				    sc->ctx_tag,
2900				    sc->ctx_block[i],
2901				    sc->ctx_map[i]);
2902				sc->ctx_block[i] = NULL;
2903			}
2904
2905			if (sc->ctx_map[i] != NULL) {
2906				bus_dmamap_unload(
2907				    sc->ctx_tag,
2908				    sc->ctx_map[i]);
2909				bus_dmamap_destroy(
2910				    sc->ctx_tag,
2911				    sc->ctx_map[i]);
2912				sc->ctx_map[i] = NULL;
2913			}
2914		}
2915
2916		/* Destroy the context memory tag. */
2917		if (sc->ctx_tag != NULL) {
2918			bus_dma_tag_destroy(sc->ctx_tag);
2919			sc->ctx_tag = NULL;
2920		}
2921	}
2922
2923
2924	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2925	for (i = 0; i < TX_PAGES; i++ ) {
2926		if (sc->tx_bd_chain[i] != NULL) {
2927			bus_dmamem_free(
2928			    sc->tx_bd_chain_tag,
2929			    sc->tx_bd_chain[i],
2930			    sc->tx_bd_chain_map[i]);
2931			sc->tx_bd_chain[i] = NULL;
2932		}
2933
2934		if (sc->tx_bd_chain_map[i] != NULL) {
2935			bus_dmamap_unload(
2936			    sc->tx_bd_chain_tag,
2937			    sc->tx_bd_chain_map[i]);
2938			bus_dmamap_destroy(
2939			    sc->tx_bd_chain_tag,
2940			    sc->tx_bd_chain_map[i]);
2941			sc->tx_bd_chain_map[i] = NULL;
2942		}
2943	}
2944
2945	/* Destroy the TX buffer descriptor tag. */
2946	if (sc->tx_bd_chain_tag != NULL) {
2947		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2948		sc->tx_bd_chain_tag = NULL;
2949	}
2950
2951
2952	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2953	for (i = 0; i < RX_PAGES; i++ ) {
2954		if (sc->rx_bd_chain[i] != NULL) {
2955			bus_dmamem_free(
2956			    sc->rx_bd_chain_tag,
2957			    sc->rx_bd_chain[i],
2958			    sc->rx_bd_chain_map[i]);
2959			sc->rx_bd_chain[i] = NULL;
2960		}
2961
2962		if (sc->rx_bd_chain_map[i] != NULL) {
2963			bus_dmamap_unload(
2964			    sc->rx_bd_chain_tag,
2965			    sc->rx_bd_chain_map[i]);
2966			bus_dmamap_destroy(
2967			    sc->rx_bd_chain_tag,
2968			    sc->rx_bd_chain_map[i]);
2969			sc->rx_bd_chain_map[i] = NULL;
2970		}
2971	}
2972
2973	/* Destroy the RX buffer descriptor tag. */
2974	if (sc->rx_bd_chain_tag != NULL) {
2975		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2976		sc->rx_bd_chain_tag = NULL;
2977	}
2978
2979
2980#ifdef BCE_JUMBO_HDRSPLIT
2981	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2982	for (i = 0; i < PG_PAGES; i++ ) {
2983		if (sc->pg_bd_chain[i] != NULL) {
2984			bus_dmamem_free(
2985			    sc->pg_bd_chain_tag,
2986			    sc->pg_bd_chain[i],
2987			    sc->pg_bd_chain_map[i]);
2988			sc->pg_bd_chain[i] = NULL;
2989		}
2990
2991		if (sc->pg_bd_chain_map[i] != NULL) {
2992			bus_dmamap_unload(
2993			    sc->pg_bd_chain_tag,
2994			    sc->pg_bd_chain_map[i]);
2995			bus_dmamap_destroy(
2996			    sc->pg_bd_chain_tag,
2997			    sc->pg_bd_chain_map[i]);
2998			sc->pg_bd_chain_map[i] = NULL;
2999		}
3000	}
3001
3002	/* Destroy the page buffer descriptor tag. */
3003	if (sc->pg_bd_chain_tag != NULL) {
3004		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3005		sc->pg_bd_chain_tag = NULL;
3006	}
3007#endif
3008
3009
3010	/* Unload and destroy the TX mbuf maps. */
3011	for (i = 0; i < TOTAL_TX_BD; i++) {
3012		if (sc->tx_mbuf_map[i] != NULL) {
3013			bus_dmamap_unload(sc->tx_mbuf_tag,
3014			    sc->tx_mbuf_map[i]);
3015			bus_dmamap_destroy(sc->tx_mbuf_tag,
3016	 		    sc->tx_mbuf_map[i]);
3017			sc->tx_mbuf_map[i] = NULL;
3018		}
3019	}
3020
3021	/* Destroy the TX mbuf tag. */
3022	if (sc->tx_mbuf_tag != NULL) {
3023		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3024		sc->tx_mbuf_tag = NULL;
3025	}
3026
3027	/* Unload and destroy the RX mbuf maps. */
3028	for (i = 0; i < TOTAL_RX_BD; i++) {
3029		if (sc->rx_mbuf_map[i] != NULL) {
3030			bus_dmamap_unload(sc->rx_mbuf_tag,
3031			    sc->rx_mbuf_map[i]);
3032			bus_dmamap_destroy(sc->rx_mbuf_tag,
3033	 		    sc->rx_mbuf_map[i]);
3034			sc->rx_mbuf_map[i] = NULL;
3035		}
3036	}
3037
3038	/* Destroy the RX mbuf tag. */
3039	if (sc->rx_mbuf_tag != NULL) {
3040		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3041		sc->rx_mbuf_tag = NULL;
3042	}
3043
3044#ifdef BCE_JUMBO_HDRSPLIT
3045	/* Unload and destroy the page mbuf maps. */
3046	for (i = 0; i < TOTAL_PG_BD; i++) {
3047		if (sc->pg_mbuf_map[i] != NULL) {
3048			bus_dmamap_unload(sc->pg_mbuf_tag,
3049			    sc->pg_mbuf_map[i]);
3050			bus_dmamap_destroy(sc->pg_mbuf_tag,
3051	 		    sc->pg_mbuf_map[i]);
3052			sc->pg_mbuf_map[i] = NULL;
3053		}
3054	}
3055
3056	/* Destroy the page mbuf tag. */
3057	if (sc->pg_mbuf_tag != NULL) {
3058		bus_dma_tag_destroy(sc->pg_mbuf_tag);
3059		sc->pg_mbuf_tag = NULL;
3060	}
3061#endif
3062
3063	/* Destroy the parent tag */
3064	if (sc->parent_tag != NULL) {
3065		bus_dma_tag_destroy(sc->parent_tag);
3066		sc->parent_tag = NULL;
3067	}
3068
3069	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3070}
3071
3072
3073/****************************************************************************/
3074/* Get DMA memory from the OS.                                              */
3075/*                                                                          */
3076/* Validates that the OS has provided DMA buffers in response to a          */
3077/* bus_dmamap_load() call and saves the physical address of those buffers.  */
3078/* When the callback is used the OS will return 0 for the mapping function  */
3079/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3080/* failures back to the caller.                                             */
3081/*                                                                          */
3082/* Returns:                                                                 */
3083/*   Nothing.                                                               */
3084/****************************************************************************/
3085static void
3086bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3087{
3088	bus_addr_t *busaddr = arg;
3089
3090	/* Simulate a mapping failure. */
3091	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3092	    error = ENOMEM);
3093
3094	/* ToDo: How to increment debug sim_count variable here? */
3095
3096	/* Check for an error and signal the caller that an error occurred. */
3097	if (error) {
3098		*busaddr = 0;
3099	} else {
3100		*busaddr = segs->ds_addr;
3101	}
3102
3103	return;
3104}
3105
3106
3107/****************************************************************************/
3108/* Allocate any DMA memory needed by the driver.                            */
3109/*                                                                          */
3110/* Allocates DMA memory needed for the various global structures needed by  */
3111/* hardware.                                                                */
3112/*                                                                          */
3113/* Memory alignment requirements:                                           */
3114/* +-----------------+----------+----------+----------+----------+          */
3115/* |                 |   5706   |   5708   |   5709   |   5716   |          */
3116/* +-----------------+----------+----------+----------+----------+          */
3117/* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3118/* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3119/* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3120/* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3121/* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3122/* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3123/* |Context Memory   |          |          |          |          |          */
3124/* +-----------------+----------+----------+----------+----------+          */
3125/*                                                                          */
3126/* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3127/*                                                                          */
3128/* Returns:                                                                 */
3129/*   0 for success, positive value for failure.                             */
3130/****************************************************************************/
3131static int
3132bce_dma_alloc(device_t dev)
3133{
3134	struct bce_softc *sc;
3135	int i, error, rc = 0;
3136	bus_size_t max_size, max_seg_size;
3137	int max_segments;
3138
3139	sc = device_get_softc(dev);
3140
3141	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3142
3143	/*
3144	 * Allocate the parent bus DMA tag appropriate for PCI.
3145	 */
3146	if (bus_dma_tag_create(NULL, 1,	BCE_DMA_BOUNDARY,
3147	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3148	    MAXBSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE_32BIT,
3149	    0, NULL, NULL, &sc->parent_tag)) {
3150		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3151		    __FILE__, __LINE__);
3152		rc = ENOMEM;
3153		goto bce_dma_alloc_exit;
3154	}
3155
3156	/*
3157	 * Create a DMA tag for the status block, allocate and clear the
3158	 * memory, map the memory into DMA space, and fetch the physical
3159	 * address of the block.
3160	 */
3161	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3162	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3163	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3164	    0, NULL, NULL, &sc->status_tag)) {
3165		BCE_PRINTF("%s(%d): Could not allocate status block "
3166		    "DMA tag!\n", __FILE__, __LINE__);
3167		rc = ENOMEM;
3168		goto bce_dma_alloc_exit;
3169	}
3170
3171	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3172	    BUS_DMA_NOWAIT, &sc->status_map)) {
3173		BCE_PRINTF("%s(%d): Could not allocate status block "
3174		    "DMA memory!\n", __FILE__, __LINE__);
3175		rc = ENOMEM;
3176		goto bce_dma_alloc_exit;
3177	}
3178
3179	bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
3180
3181	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3182	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3183	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3184
3185	if (error) {
3186		BCE_PRINTF("%s(%d): Could not map status block "
3187		    "DMA memory!\n", __FILE__, __LINE__);
3188		rc = ENOMEM;
3189		goto bce_dma_alloc_exit;
3190	}
3191
3192	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3193	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3194
3195	/*
3196	 * Create a DMA tag for the statistics block, allocate and clear the
3197	 * memory, map the memory into DMA space, and fetch the physical
3198	 * address of the block.
3199	 */
3200	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3201	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3202	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3203	    0, NULL, NULL, &sc->stats_tag)) {
3204		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3205		    "DMA tag!\n", __FILE__, __LINE__);
3206		rc = ENOMEM;
3207		goto bce_dma_alloc_exit;
3208	}
3209
3210	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3211	    BUS_DMA_NOWAIT,	&sc->stats_map)) {
3212		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3213		    "DMA memory!\n", __FILE__, __LINE__);
3214		rc = ENOMEM;
3215		goto bce_dma_alloc_exit;
3216	}
3217
3218	bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
3219
3220	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3221	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3222	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3223
3224	if(error) {
3225		BCE_PRINTF("%s(%d): Could not map statistics block "
3226		    "DMA memory!\n", __FILE__, __LINE__);
3227		rc = ENOMEM;
3228		goto bce_dma_alloc_exit;
3229	}
3230
3231	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3232	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3233
3234	/* BCM5709 uses host memory as cache for context memory. */
3235	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3236	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3237		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3238		if (sc->ctx_pages == 0)
3239			sc->ctx_pages = 1;
3240
3241		DBRUNIF((sc->ctx_pages > 512),
3242		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3243		    __FILE__, __LINE__, sc->ctx_pages));
3244
3245		/*
3246		 * Create a DMA tag for the context pages,
3247		 * allocate and clear the memory, map the
3248		 * memory into DMA space, and fetch the
3249		 * physical address of the block.
3250		 */
3251		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3252		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3253		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3254		    0, NULL, NULL, &sc->ctx_tag)) {
3255			BCE_PRINTF("%s(%d): Could not allocate CTX "
3256			    "DMA tag!\n", __FILE__, __LINE__);
3257			rc = ENOMEM;
3258			goto bce_dma_alloc_exit;
3259		}
3260
3261		for (i = 0; i < sc->ctx_pages; i++) {
3262
3263			if(bus_dmamem_alloc(sc->ctx_tag,
3264			    (void **)&sc->ctx_block[i],
3265			    BUS_DMA_NOWAIT,
3266			    &sc->ctx_map[i])) {
3267				BCE_PRINTF("%s(%d): Could not allocate CTX "
3268				    "DMA memory!\n", __FILE__, __LINE__);
3269				rc = ENOMEM;
3270				goto bce_dma_alloc_exit;
3271			}
3272
3273			bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE);
3274
3275			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3276			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3277			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3278
3279			if (error) {
3280				BCE_PRINTF("%s(%d): Could not map CTX "
3281				    "DMA memory!\n", __FILE__, __LINE__);
3282				rc = ENOMEM;
3283				goto bce_dma_alloc_exit;
3284			}
3285
3286			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3287			    "= 0x%jX\n", __FUNCTION__, i,
3288			    (uintmax_t) sc->ctx_paddr[i]);
3289		}
3290	}
3291
3292	/*
3293	 * Create a DMA tag for the TX buffer descriptor chain,
3294	 * allocate and clear the  memory, and fetch the
3295	 * physical address of the block.
3296	 */
3297	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3298	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3299	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3300	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3301		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3302		    "chain DMA tag!\n", __FILE__, __LINE__);
3303		rc = ENOMEM;
3304		goto bce_dma_alloc_exit;
3305	}
3306
3307	for (i = 0; i < TX_PAGES; i++) {
3308
3309		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3310		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT,
3311		    &sc->tx_bd_chain_map[i])) {
3312			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3313			    "chain DMA memory!\n", __FILE__, __LINE__);
3314			rc = ENOMEM;
3315			goto bce_dma_alloc_exit;
3316		}
3317
3318		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3319		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3320		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3321		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3322
3323		if (error) {
3324			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3325			    "chain DMA memory!\n", __FILE__, __LINE__);
3326			rc = ENOMEM;
3327			goto bce_dma_alloc_exit;
3328		}
3329
3330		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3331		    "0x%jX\n", __FUNCTION__, i,
3332		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3333	}
3334
3335	/* Check the required size before mapping to conserve resources. */
3336	if (bce_tso_enable) {
3337		max_size     = BCE_TSO_MAX_SIZE;
3338		max_segments = BCE_MAX_SEGMENTS;
3339		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3340	} else {
3341		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3342		max_segments = BCE_MAX_SEGMENTS;
3343		max_seg_size = MCLBYTES;
3344	}
3345
3346	/* Create a DMA tag for TX mbufs. */
3347	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3348	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3349	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3350		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3351		    __FILE__, __LINE__);
3352		rc = ENOMEM;
3353		goto bce_dma_alloc_exit;
3354	}
3355
3356	/* Create DMA maps for the TX mbufs clusters. */
3357	for (i = 0; i < TOTAL_TX_BD; i++) {
3358		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3359			&sc->tx_mbuf_map[i])) {
3360			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3361			    "map!\n", __FILE__, __LINE__);
3362			rc = ENOMEM;
3363			goto bce_dma_alloc_exit;
3364		}
3365	}
3366
3367	/*
3368	 * Create a DMA tag for the RX buffer descriptor chain,
3369	 * allocate and clear the memory, and fetch the physical
3370	 * address of the blocks.
3371	 */
3372	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3373			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3374			sc->max_bus_addr, NULL, NULL,
3375			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3376			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3377		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3378		    "DMA tag!\n", __FILE__, __LINE__);
3379		rc = ENOMEM;
3380		goto bce_dma_alloc_exit;
3381	}
3382
3383	for (i = 0; i < RX_PAGES; i++) {
3384
3385		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3386		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT,
3387		    &sc->rx_bd_chain_map[i])) {
3388			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3389			    "chain DMA memory!\n", __FILE__, __LINE__);
3390			rc = ENOMEM;
3391			goto bce_dma_alloc_exit;
3392		}
3393
3394		bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
3395
3396		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3397		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3398		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3399		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3400
3401		if (error) {
3402			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3403			    "chain DMA memory!\n", __FILE__, __LINE__);
3404			rc = ENOMEM;
3405			goto bce_dma_alloc_exit;
3406		}
3407
3408		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3409		    "0x%jX\n", __FUNCTION__, i,
3410		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3411	}
3412
3413	/*
3414	 * Create a DMA tag for RX mbufs.
3415	 */
3416#ifdef BCE_JUMBO_HDRSPLIT
3417	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3418		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3419#else
3420	max_size = max_seg_size = MJUM9BYTES;
3421#endif
3422	max_segments = 1;
3423
3424	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3425	    "(max size = 0x%jX max segments = %d, max segment "
3426	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3427	     max_segments, (uintmax_t) max_seg_size);
3428
3429	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3430	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3431	   max_segments, max_seg_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3432		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3433		    __FILE__, __LINE__);
3434		rc = ENOMEM;
3435		goto bce_dma_alloc_exit;
3436	}
3437
3438	/* Create DMA maps for the RX mbuf clusters. */
3439	for (i = 0; i < TOTAL_RX_BD; i++) {
3440		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3441		    &sc->rx_mbuf_map[i])) {
3442			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3443			    "DMA map!\n", __FILE__, __LINE__);
3444			rc = ENOMEM;
3445			goto bce_dma_alloc_exit;
3446		}
3447	}
3448
3449#ifdef BCE_JUMBO_HDRSPLIT
3450	/*
3451	 * Create a DMA tag for the page buffer descriptor chain,
3452	 * allocate and clear the memory, and fetch the physical
3453	 * address of the blocks.
3454	 */
3455	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3456	    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3457	    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3458	    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3459		BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3460		    "chain DMA tag!\n",	__FILE__, __LINE__);
3461		rc = ENOMEM;
3462		goto bce_dma_alloc_exit;
3463	}
3464
3465	for (i = 0; i < PG_PAGES; i++) {
3466
3467		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3468		    (void **)&sc->pg_bd_chain[i], BUS_DMA_NOWAIT,
3469		    &sc->pg_bd_chain_map[i])) {
3470			BCE_PRINTF("%s(%d): Could not allocate page "
3471			    "descriptor chain DMA memory!\n",
3472			    __FILE__, __LINE__);
3473			rc = ENOMEM;
3474			goto bce_dma_alloc_exit;
3475		}
3476
3477		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
3478
3479		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3480		    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3481		    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3482		    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3483
3484		if (error) {
3485			BCE_PRINTF("%s(%d): Could not map page descriptor "
3486			    "chain DMA memory!\n", __FILE__, __LINE__);
3487			rc = ENOMEM;
3488			goto bce_dma_alloc_exit;
3489		}
3490
3491		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3492		    "0x%jX\n", __FUNCTION__, i,
3493		    (uintmax_t) sc->pg_bd_chain_paddr[i]);
3494	}
3495
3496	/*
3497	 * Create a DMA tag for page mbufs.
3498	 */
3499	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3500	    MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3501
3502	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3503	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3504	    max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3505		BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3506		    "DMA tag!\n", __FILE__, __LINE__);
3507		rc = ENOMEM;
3508		goto bce_dma_alloc_exit;
3509	}
3510
3511	/* Create DMA maps for the page mbuf clusters. */
3512	for (i = 0; i < TOTAL_PG_BD; i++) {
3513		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3514		    &sc->pg_mbuf_map[i])) {
3515			BCE_PRINTF("%s(%d): Unable to create page mbuf "
3516			    "DMA map!\n", __FILE__, __LINE__);
3517			rc = ENOMEM;
3518			goto bce_dma_alloc_exit;
3519		}
3520	}
3521#endif
3522
3523bce_dma_alloc_exit:
3524	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3525	return(rc);
3526}
3527
3528
3529/****************************************************************************/
3530/* Release all resources used by the driver.                                */
3531/*                                                                          */
3532/* Releases all resources acquired by the driver including interrupts,      */
3533/* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3534/*                                                                          */
3535/* Returns:                                                                 */
3536/*   Nothing.                                                               */
3537/****************************************************************************/
3538static void
3539bce_release_resources(struct bce_softc *sc)
3540{
3541	device_t dev;
3542
3543	DBENTER(BCE_VERBOSE_RESET);
3544
3545	dev = sc->bce_dev;
3546
3547	bce_dma_free(sc);
3548
3549	if (sc->bce_intrhand != NULL) {
3550		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3551		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3552	}
3553
3554	if (sc->bce_res_irq != NULL) {
3555		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3556		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3557		    sc->bce_res_irq);
3558	}
3559
3560	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3561		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3562		pci_release_msi(dev);
3563	}
3564
3565	if (sc->bce_res_mem != NULL) {
3566		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3567		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3568		    sc->bce_res_mem);
3569	}
3570
3571	if (sc->bce_ifp != NULL) {
3572		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3573		if_free(sc->bce_ifp);
3574	}
3575
3576	if (mtx_initialized(&sc->bce_mtx))
3577		BCE_LOCK_DESTROY(sc);
3578
3579	DBEXIT(BCE_VERBOSE_RESET);
3580}
3581
3582
3583/****************************************************************************/
3584/* Firmware synchronization.                                                */
3585/*                                                                          */
3586/* Before performing certain events such as a chip reset, synchronize with  */
3587/* the firmware first.                                                      */
3588/*                                                                          */
3589/* Returns:                                                                 */
3590/*   0 for success, positive value for failure.                             */
3591/****************************************************************************/
3592static int
3593bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3594{
3595	int i, rc = 0;
3596	u32 val;
3597
3598	DBENTER(BCE_VERBOSE_RESET);
3599
3600	/* Don't waste any time if we've timed out before. */
3601	if (sc->bce_fw_timed_out == TRUE) {
3602		rc = EBUSY;
3603		goto bce_fw_sync_exit;
3604	}
3605
3606	/* Increment the message sequence number. */
3607	sc->bce_fw_wr_seq++;
3608	msg_data |= sc->bce_fw_wr_seq;
3609
3610 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3611	    "0x%08X\n",	msg_data);
3612
3613	/* Send the message to the bootcode driver mailbox. */
3614	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3615
3616	/* Wait for the bootcode to acknowledge the message. */
3617	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3618		/* Check for a response in the bootcode firmware mailbox. */
3619		val = bce_shmem_rd(sc, BCE_FW_MB);
3620		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3621			break;
3622		DELAY(1000);
3623	}
3624
3625	/* If we've timed out, tell bootcode that we've stopped waiting. */
3626	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3627	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3628
3629		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3630		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3631
3632		msg_data &= ~BCE_DRV_MSG_CODE;
3633		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3634
3635		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3636
3637		sc->bce_fw_timed_out = TRUE;
3638		rc = EBUSY;
3639	}
3640
3641bce_fw_sync_exit:
3642	DBEXIT(BCE_VERBOSE_RESET);
3643	return (rc);
3644}
3645
3646
3647/****************************************************************************/
3648/* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3649/*                                                                          */
3650/* Returns:                                                                 */
3651/*   Nothing.                                                               */
3652/****************************************************************************/
3653static void
3654bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3655	u32 rv2p_code_len, u32 rv2p_proc)
3656{
3657	int i;
3658	u32 val;
3659
3660	DBENTER(BCE_VERBOSE_RESET);
3661
3662	/* Set the page size used by RV2P. */
3663	if (rv2p_proc == RV2P_PROC2) {
3664		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3665	}
3666
3667	for (i = 0; i < rv2p_code_len; i += 8) {
3668		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3669		rv2p_code++;
3670		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3671		rv2p_code++;
3672
3673		if (rv2p_proc == RV2P_PROC1) {
3674			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3675			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3676		}
3677		else {
3678			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3679			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3680		}
3681	}
3682
3683	/* Reset the processor, un-stall is done later. */
3684	if (rv2p_proc == RV2P_PROC1) {
3685		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3686	}
3687	else {
3688		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3689	}
3690
3691	DBEXIT(BCE_VERBOSE_RESET);
3692}
3693
3694
3695/****************************************************************************/
3696/* Load RISC processor firmware.                                            */
3697/*                                                                          */
3698/* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3699/* associated with a particular processor.                                  */
3700/*                                                                          */
3701/* Returns:                                                                 */
3702/*   Nothing.                                                               */
3703/****************************************************************************/
3704static void
3705bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3706	struct fw_info *fw)
3707{
3708	u32 offset;
3709
3710	DBENTER(BCE_VERBOSE_RESET);
3711
3712    bce_halt_cpu(sc, cpu_reg);
3713
3714	/* Load the Text area. */
3715	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3716	if (fw->text) {
3717		int j;
3718
3719		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3720			REG_WR_IND(sc, offset, fw->text[j]);
3721	        }
3722	}
3723
3724	/* Load the Data area. */
3725	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3726	if (fw->data) {
3727		int j;
3728
3729		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3730			REG_WR_IND(sc, offset, fw->data[j]);
3731		}
3732	}
3733
3734	/* Load the SBSS area. */
3735	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3736	if (fw->sbss) {
3737		int j;
3738
3739		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3740			REG_WR_IND(sc, offset, fw->sbss[j]);
3741		}
3742	}
3743
3744	/* Load the BSS area. */
3745	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3746	if (fw->bss) {
3747		int j;
3748
3749		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3750			REG_WR_IND(sc, offset, fw->bss[j]);
3751		}
3752	}
3753
3754	/* Load the Read-Only area. */
3755	offset = cpu_reg->spad_base +
3756		(fw->rodata_addr - cpu_reg->mips_view_base);
3757	if (fw->rodata) {
3758		int j;
3759
3760		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3761			REG_WR_IND(sc, offset, fw->rodata[j]);
3762		}
3763	}
3764
3765	/* Clear the pre-fetch instruction and set the FW start address. */
3766	REG_WR_IND(sc, cpu_reg->inst, 0);
3767	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3768
3769	DBEXIT(BCE_VERBOSE_RESET);
3770}
3771
3772
3773/****************************************************************************/
3774/* Starts the RISC processor.                                               */
3775/*                                                                          */
3776/* Assumes the CPU starting address has already been set.                   */
3777/*                                                                          */
3778/* Returns:                                                                 */
3779/*   Nothing.                                                               */
3780/****************************************************************************/
3781static void
3782bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3783{
3784	u32 val;
3785
3786	DBENTER(BCE_VERBOSE_RESET);
3787
3788	/* Start the CPU. */
3789	val = REG_RD_IND(sc, cpu_reg->mode);
3790	val &= ~cpu_reg->mode_value_halt;
3791	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3792	REG_WR_IND(sc, cpu_reg->mode, val);
3793
3794	DBEXIT(BCE_VERBOSE_RESET);
3795}
3796
3797
3798/****************************************************************************/
3799/* Halts the RISC processor.                                                */
3800/*                                                                          */
3801/* Returns:                                                                 */
3802/*   Nothing.                                                               */
3803/****************************************************************************/
3804static void
3805bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3806{
3807	u32 val;
3808
3809	DBENTER(BCE_VERBOSE_RESET);
3810
3811	/* Halt the CPU. */
3812	val = REG_RD_IND(sc, cpu_reg->mode);
3813	val |= cpu_reg->mode_value_halt;
3814	REG_WR_IND(sc, cpu_reg->mode, val);
3815	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3816
3817	DBEXIT(BCE_VERBOSE_RESET);
3818}
3819
3820
3821/****************************************************************************/
3822/* Initialize the RX CPU.                                                   */
3823/*                                                                          */
3824/* Returns:                                                                 */
3825/*   Nothing.                                                               */
3826/****************************************************************************/
3827static void
3828bce_start_rxp_cpu(struct bce_softc *sc)
3829{
3830	struct cpu_reg cpu_reg;
3831
3832	DBENTER(BCE_VERBOSE_RESET);
3833
3834	cpu_reg.mode = BCE_RXP_CPU_MODE;
3835	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3836	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3837	cpu_reg.state = BCE_RXP_CPU_STATE;
3838	cpu_reg.state_value_clear = 0xffffff;
3839	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3840	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3841	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3842	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3843	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3844	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3845	cpu_reg.mips_view_base = 0x8000000;
3846
3847	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
3848	bce_start_cpu(sc, &cpu_reg);
3849
3850	DBEXIT(BCE_VERBOSE_RESET);
3851}
3852
3853
3854/****************************************************************************/
3855/* Initialize the RX CPU.                                                   */
3856/*                                                                          */
3857/* Returns:                                                                 */
3858/*   Nothing.                                                               */
3859/****************************************************************************/
3860static void
3861bce_init_rxp_cpu(struct bce_softc *sc)
3862{
3863	struct cpu_reg cpu_reg;
3864	struct fw_info fw;
3865
3866	DBENTER(BCE_VERBOSE_RESET);
3867
3868	cpu_reg.mode = BCE_RXP_CPU_MODE;
3869	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3870	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3871	cpu_reg.state = BCE_RXP_CPU_STATE;
3872	cpu_reg.state_value_clear = 0xffffff;
3873	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3874	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3875	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3876	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3877	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3878	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3879	cpu_reg.mips_view_base = 0x8000000;
3880
3881	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3882		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3883 		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3884		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3885		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3886		fw.start_addr = bce_RXP_b09FwStartAddr;
3887
3888		fw.text_addr = bce_RXP_b09FwTextAddr;
3889		fw.text_len = bce_RXP_b09FwTextLen;
3890		fw.text_index = 0;
3891		fw.text = bce_RXP_b09FwText;
3892
3893		fw.data_addr = bce_RXP_b09FwDataAddr;
3894		fw.data_len = bce_RXP_b09FwDataLen;
3895		fw.data_index = 0;
3896		fw.data = bce_RXP_b09FwData;
3897
3898		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3899		fw.sbss_len = bce_RXP_b09FwSbssLen;
3900		fw.sbss_index = 0;
3901		fw.sbss = bce_RXP_b09FwSbss;
3902
3903		fw.bss_addr = bce_RXP_b09FwBssAddr;
3904		fw.bss_len = bce_RXP_b09FwBssLen;
3905		fw.bss_index = 0;
3906		fw.bss = bce_RXP_b09FwBss;
3907
3908		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3909		fw.rodata_len = bce_RXP_b09FwRodataLen;
3910		fw.rodata_index = 0;
3911		fw.rodata = bce_RXP_b09FwRodata;
3912	} else {
3913		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3914		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3915		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3916		fw.start_addr = bce_RXP_b06FwStartAddr;
3917
3918		fw.text_addr = bce_RXP_b06FwTextAddr;
3919		fw.text_len = bce_RXP_b06FwTextLen;
3920		fw.text_index = 0;
3921		fw.text = bce_RXP_b06FwText;
3922
3923		fw.data_addr = bce_RXP_b06FwDataAddr;
3924		fw.data_len = bce_RXP_b06FwDataLen;
3925		fw.data_index = 0;
3926		fw.data = bce_RXP_b06FwData;
3927
3928		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3929		fw.sbss_len = bce_RXP_b06FwSbssLen;
3930		fw.sbss_index = 0;
3931		fw.sbss = bce_RXP_b06FwSbss;
3932
3933		fw.bss_addr = bce_RXP_b06FwBssAddr;
3934		fw.bss_len = bce_RXP_b06FwBssLen;
3935		fw.bss_index = 0;
3936		fw.bss = bce_RXP_b06FwBss;
3937
3938		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3939		fw.rodata_len = bce_RXP_b06FwRodataLen;
3940		fw.rodata_index = 0;
3941		fw.rodata = bce_RXP_b06FwRodata;
3942	}
3943
3944	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3945	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3946
3947    /* Delay RXP start until initialization is complete. */
3948
3949	DBEXIT(BCE_VERBOSE_RESET);
3950}
3951
3952
3953/****************************************************************************/
3954/* Initialize the TX CPU.                                                   */
3955/*                                                                          */
3956/* Returns:                                                                 */
3957/*   Nothing.                                                               */
3958/****************************************************************************/
3959static void
3960bce_init_txp_cpu(struct bce_softc *sc)
3961{
3962	struct cpu_reg cpu_reg;
3963	struct fw_info fw;
3964
3965	DBENTER(BCE_VERBOSE_RESET);
3966
3967	cpu_reg.mode = BCE_TXP_CPU_MODE;
3968	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3969	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3970	cpu_reg.state = BCE_TXP_CPU_STATE;
3971	cpu_reg.state_value_clear = 0xffffff;
3972	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3973	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3974	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3975	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3976	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3977	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3978	cpu_reg.mips_view_base = 0x8000000;
3979
3980	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3981		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3982		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3983		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3984		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3985		fw.start_addr = bce_TXP_b09FwStartAddr;
3986
3987		fw.text_addr = bce_TXP_b09FwTextAddr;
3988		fw.text_len = bce_TXP_b09FwTextLen;
3989		fw.text_index = 0;
3990		fw.text = bce_TXP_b09FwText;
3991
3992		fw.data_addr = bce_TXP_b09FwDataAddr;
3993		fw.data_len = bce_TXP_b09FwDataLen;
3994		fw.data_index = 0;
3995		fw.data = bce_TXP_b09FwData;
3996
3997		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3998		fw.sbss_len = bce_TXP_b09FwSbssLen;
3999		fw.sbss_index = 0;
4000		fw.sbss = bce_TXP_b09FwSbss;
4001
4002		fw.bss_addr = bce_TXP_b09FwBssAddr;
4003		fw.bss_len = bce_TXP_b09FwBssLen;
4004		fw.bss_index = 0;
4005		fw.bss = bce_TXP_b09FwBss;
4006
4007		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4008		fw.rodata_len = bce_TXP_b09FwRodataLen;
4009		fw.rodata_index = 0;
4010		fw.rodata = bce_TXP_b09FwRodata;
4011	} else {
4012		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4013		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4014		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4015		fw.start_addr = bce_TXP_b06FwStartAddr;
4016
4017		fw.text_addr = bce_TXP_b06FwTextAddr;
4018		fw.text_len = bce_TXP_b06FwTextLen;
4019		fw.text_index = 0;
4020		fw.text = bce_TXP_b06FwText;
4021
4022		fw.data_addr = bce_TXP_b06FwDataAddr;
4023		fw.data_len = bce_TXP_b06FwDataLen;
4024		fw.data_index = 0;
4025		fw.data = bce_TXP_b06FwData;
4026
4027		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4028		fw.sbss_len = bce_TXP_b06FwSbssLen;
4029		fw.sbss_index = 0;
4030		fw.sbss = bce_TXP_b06FwSbss;
4031
4032		fw.bss_addr = bce_TXP_b06FwBssAddr;
4033		fw.bss_len = bce_TXP_b06FwBssLen;
4034		fw.bss_index = 0;
4035		fw.bss = bce_TXP_b06FwBss;
4036
4037		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4038		fw.rodata_len = bce_TXP_b06FwRodataLen;
4039		fw.rodata_index = 0;
4040		fw.rodata = bce_TXP_b06FwRodata;
4041	}
4042
4043	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4044	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4045    bce_start_cpu(sc, &cpu_reg);
4046
4047	DBEXIT(BCE_VERBOSE_RESET);
4048}
4049
4050
4051/****************************************************************************/
4052/* Initialize the TPAT CPU.                                                 */
4053/*                                                                          */
4054/* Returns:                                                                 */
4055/*   Nothing.                                                               */
4056/****************************************************************************/
4057static void
4058bce_init_tpat_cpu(struct bce_softc *sc)
4059{
4060	struct cpu_reg cpu_reg;
4061	struct fw_info fw;
4062
4063	DBENTER(BCE_VERBOSE_RESET);
4064
4065	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4066	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4067	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4068	cpu_reg.state = BCE_TPAT_CPU_STATE;
4069	cpu_reg.state_value_clear = 0xffffff;
4070	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4071	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4072	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4073	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4074	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4075	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4076	cpu_reg.mips_view_base = 0x8000000;
4077
4078	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4079		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4080		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4081		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4082		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4083		fw.start_addr = bce_TPAT_b09FwStartAddr;
4084
4085		fw.text_addr = bce_TPAT_b09FwTextAddr;
4086		fw.text_len = bce_TPAT_b09FwTextLen;
4087		fw.text_index = 0;
4088		fw.text = bce_TPAT_b09FwText;
4089
4090		fw.data_addr = bce_TPAT_b09FwDataAddr;
4091		fw.data_len = bce_TPAT_b09FwDataLen;
4092		fw.data_index = 0;
4093		fw.data = bce_TPAT_b09FwData;
4094
4095		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4096		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4097		fw.sbss_index = 0;
4098		fw.sbss = bce_TPAT_b09FwSbss;
4099
4100		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4101		fw.bss_len = bce_TPAT_b09FwBssLen;
4102		fw.bss_index = 0;
4103		fw.bss = bce_TPAT_b09FwBss;
4104
4105		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4106		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4107		fw.rodata_index = 0;
4108		fw.rodata = bce_TPAT_b09FwRodata;
4109	} else {
4110		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4111		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4112		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4113		fw.start_addr = bce_TPAT_b06FwStartAddr;
4114
4115		fw.text_addr = bce_TPAT_b06FwTextAddr;
4116		fw.text_len = bce_TPAT_b06FwTextLen;
4117		fw.text_index = 0;
4118		fw.text = bce_TPAT_b06FwText;
4119
4120		fw.data_addr = bce_TPAT_b06FwDataAddr;
4121		fw.data_len = bce_TPAT_b06FwDataLen;
4122		fw.data_index = 0;
4123		fw.data = bce_TPAT_b06FwData;
4124
4125		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4126		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4127		fw.sbss_index = 0;
4128		fw.sbss = bce_TPAT_b06FwSbss;
4129
4130		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4131		fw.bss_len = bce_TPAT_b06FwBssLen;
4132		fw.bss_index = 0;
4133		fw.bss = bce_TPAT_b06FwBss;
4134
4135		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4136		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4137		fw.rodata_index = 0;
4138		fw.rodata = bce_TPAT_b06FwRodata;
4139	}
4140
4141	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4142	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4143	bce_start_cpu(sc, &cpu_reg);
4144
4145	DBEXIT(BCE_VERBOSE_RESET);
4146}
4147
4148
4149/****************************************************************************/
4150/* Initialize the CP CPU.                                                   */
4151/*                                                                          */
4152/* Returns:                                                                 */
4153/*   Nothing.                                                               */
4154/****************************************************************************/
4155static void
4156bce_init_cp_cpu(struct bce_softc *sc)
4157{
4158	struct cpu_reg cpu_reg;
4159	struct fw_info fw;
4160
4161	DBENTER(BCE_VERBOSE_RESET);
4162
4163	cpu_reg.mode = BCE_CP_CPU_MODE;
4164	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4165	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4166	cpu_reg.state = BCE_CP_CPU_STATE;
4167	cpu_reg.state_value_clear = 0xffffff;
4168	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4169	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4170	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4171	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4172	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4173	cpu_reg.spad_base = BCE_CP_SCRATCH;
4174	cpu_reg.mips_view_base = 0x8000000;
4175
4176	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4177		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4178		fw.ver_major = bce_CP_b09FwReleaseMajor;
4179		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4180		fw.ver_fix = bce_CP_b09FwReleaseFix;
4181		fw.start_addr = bce_CP_b09FwStartAddr;
4182
4183		fw.text_addr = bce_CP_b09FwTextAddr;
4184		fw.text_len = bce_CP_b09FwTextLen;
4185		fw.text_index = 0;
4186		fw.text = bce_CP_b09FwText;
4187
4188		fw.data_addr = bce_CP_b09FwDataAddr;
4189		fw.data_len = bce_CP_b09FwDataLen;
4190		fw.data_index = 0;
4191		fw.data = bce_CP_b09FwData;
4192
4193		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4194		fw.sbss_len = bce_CP_b09FwSbssLen;
4195		fw.sbss_index = 0;
4196		fw.sbss = bce_CP_b09FwSbss;
4197
4198		fw.bss_addr = bce_CP_b09FwBssAddr;
4199		fw.bss_len = bce_CP_b09FwBssLen;
4200		fw.bss_index = 0;
4201		fw.bss = bce_CP_b09FwBss;
4202
4203		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4204		fw.rodata_len = bce_CP_b09FwRodataLen;
4205		fw.rodata_index = 0;
4206		fw.rodata = bce_CP_b09FwRodata;
4207	} else {
4208		fw.ver_major = bce_CP_b06FwReleaseMajor;
4209		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4210		fw.ver_fix = bce_CP_b06FwReleaseFix;
4211		fw.start_addr = bce_CP_b06FwStartAddr;
4212
4213		fw.text_addr = bce_CP_b06FwTextAddr;
4214		fw.text_len = bce_CP_b06FwTextLen;
4215		fw.text_index = 0;
4216		fw.text = bce_CP_b06FwText;
4217
4218		fw.data_addr = bce_CP_b06FwDataAddr;
4219		fw.data_len = bce_CP_b06FwDataLen;
4220		fw.data_index = 0;
4221		fw.data = bce_CP_b06FwData;
4222
4223		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4224		fw.sbss_len = bce_CP_b06FwSbssLen;
4225		fw.sbss_index = 0;
4226		fw.sbss = bce_CP_b06FwSbss;
4227
4228		fw.bss_addr = bce_CP_b06FwBssAddr;
4229		fw.bss_len = bce_CP_b06FwBssLen;
4230		fw.bss_index = 0;
4231		fw.bss = bce_CP_b06FwBss;
4232
4233		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4234		fw.rodata_len = bce_CP_b06FwRodataLen;
4235		fw.rodata_index = 0;
4236		fw.rodata = bce_CP_b06FwRodata;
4237	}
4238
4239	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4240	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4241	bce_start_cpu(sc, &cpu_reg);
4242
4243	DBEXIT(BCE_VERBOSE_RESET);
4244}
4245
4246
4247/****************************************************************************/
4248/* Initialize the COM CPU.                                                 */
4249/*                                                                          */
4250/* Returns:                                                                 */
4251/*   Nothing.                                                               */
4252/****************************************************************************/
4253static void
4254bce_init_com_cpu(struct bce_softc *sc)
4255{
4256	struct cpu_reg cpu_reg;
4257	struct fw_info fw;
4258
4259	DBENTER(BCE_VERBOSE_RESET);
4260
4261	cpu_reg.mode = BCE_COM_CPU_MODE;
4262	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4263	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4264	cpu_reg.state = BCE_COM_CPU_STATE;
4265	cpu_reg.state_value_clear = 0xffffff;
4266	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4267	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4268	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4269	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4270	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4271	cpu_reg.spad_base = BCE_COM_SCRATCH;
4272	cpu_reg.mips_view_base = 0x8000000;
4273
4274	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4275		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4276		fw.ver_major = bce_COM_b09FwReleaseMajor;
4277		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4278		fw.ver_fix = bce_COM_b09FwReleaseFix;
4279		fw.start_addr = bce_COM_b09FwStartAddr;
4280
4281		fw.text_addr = bce_COM_b09FwTextAddr;
4282		fw.text_len = bce_COM_b09FwTextLen;
4283		fw.text_index = 0;
4284		fw.text = bce_COM_b09FwText;
4285
4286		fw.data_addr = bce_COM_b09FwDataAddr;
4287		fw.data_len = bce_COM_b09FwDataLen;
4288		fw.data_index = 0;
4289		fw.data = bce_COM_b09FwData;
4290
4291		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4292		fw.sbss_len = bce_COM_b09FwSbssLen;
4293		fw.sbss_index = 0;
4294		fw.sbss = bce_COM_b09FwSbss;
4295
4296		fw.bss_addr = bce_COM_b09FwBssAddr;
4297		fw.bss_len = bce_COM_b09FwBssLen;
4298		fw.bss_index = 0;
4299		fw.bss = bce_COM_b09FwBss;
4300
4301		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4302		fw.rodata_len = bce_COM_b09FwRodataLen;
4303		fw.rodata_index = 0;
4304		fw.rodata = bce_COM_b09FwRodata;
4305	} else {
4306		fw.ver_major = bce_COM_b06FwReleaseMajor;
4307		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4308		fw.ver_fix = bce_COM_b06FwReleaseFix;
4309		fw.start_addr = bce_COM_b06FwStartAddr;
4310
4311		fw.text_addr = bce_COM_b06FwTextAddr;
4312		fw.text_len = bce_COM_b06FwTextLen;
4313		fw.text_index = 0;
4314		fw.text = bce_COM_b06FwText;
4315
4316		fw.data_addr = bce_COM_b06FwDataAddr;
4317		fw.data_len = bce_COM_b06FwDataLen;
4318		fw.data_index = 0;
4319		fw.data = bce_COM_b06FwData;
4320
4321		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4322		fw.sbss_len = bce_COM_b06FwSbssLen;
4323		fw.sbss_index = 0;
4324		fw.sbss = bce_COM_b06FwSbss;
4325
4326		fw.bss_addr = bce_COM_b06FwBssAddr;
4327		fw.bss_len = bce_COM_b06FwBssLen;
4328		fw.bss_index = 0;
4329		fw.bss = bce_COM_b06FwBss;
4330
4331		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4332		fw.rodata_len = bce_COM_b06FwRodataLen;
4333		fw.rodata_index = 0;
4334		fw.rodata = bce_COM_b06FwRodata;
4335	}
4336
4337	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4338	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4339	bce_start_cpu(sc, &cpu_reg);
4340
4341	DBEXIT(BCE_VERBOSE_RESET);
4342}
4343
4344
4345/****************************************************************************/
4346/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4347/*                                                                          */
4348/* Loads the firmware for each CPU and starts the CPU.                      */
4349/*                                                                          */
4350/* Returns:                                                                 */
4351/*   Nothing.                                                               */
4352/****************************************************************************/
4353static void
4354bce_init_cpus(struct bce_softc *sc)
4355{
4356	DBENTER(BCE_VERBOSE_RESET);
4357
4358	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4359		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4360
4361		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4362			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4363			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4364			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4365			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4366		} else {
4367			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4368			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4369			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4370			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4371		}
4372
4373	} else {
4374		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4375		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4376		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4377		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4378	}
4379
4380	bce_init_rxp_cpu(sc);
4381	bce_init_txp_cpu(sc);
4382	bce_init_tpat_cpu(sc);
4383	bce_init_com_cpu(sc);
4384	bce_init_cp_cpu(sc);
4385
4386	DBEXIT(BCE_VERBOSE_RESET);
4387}
4388
4389
4390/****************************************************************************/
4391/* Initialize context memory.                                               */
4392/*                                                                          */
4393/* Clears the memory associated with each Context ID (CID).                 */
4394/*                                                                          */
4395/* Returns:                                                                 */
4396/*   Nothing.                                                               */
4397/****************************************************************************/
4398static void
4399bce_init_ctx(struct bce_softc *sc)
4400{
4401
4402	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4403
4404	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4405	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4406		int i, retry_cnt = CTX_INIT_RETRY_COUNT;
4407		u32 val;
4408
4409		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4410
4411		/*
4412		 * BCM5709 context memory may be cached
4413		 * in host memory so prepare the host memory
4414		 * for access.
4415		 */
4416		val = BCE_CTX_COMMAND_ENABLED |
4417		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4418		val |= (BCM_PAGE_BITS - 8) << 16;
4419		REG_WR(sc, BCE_CTX_COMMAND, val);
4420
4421		/* Wait for mem init command to complete. */
4422		for (i = 0; i < retry_cnt; i++) {
4423			val = REG_RD(sc, BCE_CTX_COMMAND);
4424			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4425				break;
4426			DELAY(2);
4427		}
4428
4429		/* ToDo: Consider returning an error here. */
4430		DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT),
4431		    BCE_PRINTF("%s(): Context memory initialization "
4432		    "failed!\n", __FUNCTION__));
4433
4434		for (i = 0; i < sc->ctx_pages; i++) {
4435			int j;
4436
4437			/* Set the physical address of the context memory. */
4438			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4439			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4440			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4441			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4442			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4443			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4444			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4445
4446			/* Verify the context memory write was successful. */
4447			for (j = 0; j < retry_cnt; j++) {
4448				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4449				if ((val &
4450				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4451					break;
4452				DELAY(5);
4453			}
4454
4455			/* ToDo: Consider returning an error here. */
4456			DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ),
4457			    BCE_PRINTF("%s(): Failed to initialize "
4458			    "context page %d!\n", __FUNCTION__, i));
4459		}
4460	} else {
4461		u32 vcid_addr, offset;
4462
4463		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4464
4465		/*
4466		 * For the 5706/5708, context memory is local to
4467		 * the controller, so initialize the controller
4468		 * context memory.
4469		 */
4470
4471		vcid_addr = GET_CID_ADDR(96);
4472		while (vcid_addr) {
4473
4474			vcid_addr -= PHY_CTX_SIZE;
4475
4476			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4477			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4478
4479			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4480				CTX_WR(sc, 0x00, offset, 0);
4481			}
4482
4483			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4484			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4485		}
4486
4487	}
4488	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4489}
4490
4491
4492/****************************************************************************/
4493/* Fetch the permanent MAC address of the controller.                       */
4494/*                                                                          */
4495/* Returns:                                                                 */
4496/*   Nothing.                                                               */
4497/****************************************************************************/
4498static void
4499bce_get_mac_addr(struct bce_softc *sc)
4500{
4501	u32 mac_lo = 0, mac_hi = 0;
4502
4503	DBENTER(BCE_VERBOSE_RESET);
4504
4505	/*
4506	 * The NetXtreme II bootcode populates various NIC
4507	 * power-on and runtime configuration items in a
4508	 * shared memory area.  The factory configured MAC
4509	 * address is available from both NVRAM and the
4510	 * shared memory area so we'll read the value from
4511	 * shared memory for speed.
4512	 */
4513
4514	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4515	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4516
4517	if ((mac_lo == 0) && (mac_hi == 0)) {
4518		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4519		    __FILE__, __LINE__);
4520	} else {
4521		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4522		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4523		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4524		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4525		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4526		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4527	}
4528
4529	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4530	    "address = %6D\n", sc->eaddr, ":");
4531	DBEXIT(BCE_VERBOSE_RESET);
4532}
4533
4534
4535/****************************************************************************/
4536/* Program the MAC address.                                                 */
4537/*                                                                          */
4538/* Returns:                                                                 */
4539/*   Nothing.                                                               */
4540/****************************************************************************/
4541static void
4542bce_set_mac_addr(struct bce_softc *sc)
4543{
4544	u32 val;
4545	u8 *mac_addr = sc->eaddr;
4546
4547	/* ToDo: Add support for setting multiple MAC addresses. */
4548
4549	DBENTER(BCE_VERBOSE_RESET);
4550	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4551	    "%6D\n", sc->eaddr, ":");
4552
4553	val = (mac_addr[0] << 8) | mac_addr[1];
4554
4555	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4556
4557	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4558	    (mac_addr[4] << 8) | mac_addr[5];
4559
4560	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4561
4562	DBEXIT(BCE_VERBOSE_RESET);
4563}
4564
4565
4566/****************************************************************************/
4567/* Stop the controller.                                                     */
4568/*                                                                          */
4569/* Returns:                                                                 */
4570/*   Nothing.                                                               */
4571/****************************************************************************/
4572static void
4573bce_stop(struct bce_softc *sc)
4574{
4575	struct ifnet *ifp;
4576	struct ifmedia_entry *ifm;
4577	struct mii_data *mii = NULL;
4578	int mtmp, itmp;
4579
4580	DBENTER(BCE_VERBOSE_RESET);
4581
4582	BCE_LOCK_ASSERT(sc);
4583
4584	ifp = sc->bce_ifp;
4585
4586	mii = device_get_softc(sc->bce_miibus);
4587
4588	callout_stop(&sc->bce_tick_callout);
4589
4590	/* Disable the transmit/receive blocks. */
4591	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4592	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4593	DELAY(20);
4594
4595	bce_disable_intr(sc);
4596
4597	/* Free RX buffers. */
4598#ifdef BCE_JUMBO_HDRSPLIT
4599	bce_free_pg_chain(sc);
4600#endif
4601	bce_free_rx_chain(sc);
4602
4603	/* Free TX buffers. */
4604	bce_free_tx_chain(sc);
4605
4606	/*
4607	 * Isolate/power down the PHY, but leave the media selection
4608	 * unchanged so that things will be put back to normal when
4609	 * we bring the interface back up.
4610	 */
4611
4612	itmp = ifp->if_flags;
4613	ifp->if_flags |= IFF_UP;
4614
4615	/* If we are called from bce_detach(), mii is already NULL. */
4616	if (mii != NULL) {
4617		ifm = mii->mii_media.ifm_cur;
4618		mtmp = ifm->ifm_media;
4619		ifm->ifm_media = IFM_ETHER | IFM_NONE;
4620		mii_mediachg(mii);
4621		ifm->ifm_media = mtmp;
4622	}
4623
4624	ifp->if_flags = itmp;
4625	sc->watchdog_timer = 0;
4626
4627	sc->bce_link_up = FALSE;
4628
4629	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4630
4631	DBEXIT(BCE_VERBOSE_RESET);
4632}
4633
4634
4635static int
4636bce_reset(struct bce_softc *sc, u32 reset_code)
4637{
4638	u32 val;
4639	int i, rc = 0;
4640
4641	DBENTER(BCE_VERBOSE_RESET);
4642
4643	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4644	    __FUNCTION__, reset_code);
4645
4646	/* Wait for pending PCI transactions to complete. */
4647	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4648	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4649	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4650	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4651	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4652	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4653	DELAY(5);
4654
4655	/* Disable DMA */
4656	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4657	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4658		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4659		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4660		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4661	}
4662
4663	/* Assume bootcode is running. */
4664	sc->bce_fw_timed_out = FALSE;
4665	sc->bce_drv_cardiac_arrest = FALSE;
4666
4667	/* Give the firmware a chance to prepare for the reset. */
4668	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4669	if (rc)
4670		goto bce_reset_exit;
4671
4672	/* Set a firmware reminder that this is a soft reset. */
4673	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4674
4675	/* Dummy read to force the chip to complete all current transactions. */
4676	val = REG_RD(sc, BCE_MISC_ID);
4677
4678	/* Chip reset. */
4679	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4680	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4681		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4682		REG_RD(sc, BCE_MISC_COMMAND);
4683		DELAY(5);
4684
4685		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4686		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4687
4688		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4689	} else {
4690		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4691		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4692		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4693		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4694
4695		/* Allow up to 30us for reset to complete. */
4696		for (i = 0; i < 10; i++) {
4697			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4698			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4699			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4700				break;
4701			}
4702			DELAY(10);
4703		}
4704
4705		/* Check that reset completed successfully. */
4706		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4707		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4708			BCE_PRINTF("%s(%d): Reset failed!\n",
4709			    __FILE__, __LINE__);
4710			rc = EBUSY;
4711			goto bce_reset_exit;
4712		}
4713	}
4714
4715	/* Make sure byte swapping is properly configured. */
4716	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4717	if (val != 0x01020304) {
4718		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4719		    __FILE__, __LINE__);
4720		rc = ENODEV;
4721		goto bce_reset_exit;
4722	}
4723
4724	/* Just completed a reset, assume that firmware is running again. */
4725	sc->bce_fw_timed_out = FALSE;
4726	sc->bce_drv_cardiac_arrest = FALSE;
4727
4728	/* Wait for the firmware to finish its initialization. */
4729	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4730	if (rc)
4731		BCE_PRINTF("%s(%d): Firmware did not complete "
4732		    "initialization!\n", __FILE__, __LINE__);
4733
4734bce_reset_exit:
4735	DBEXIT(BCE_VERBOSE_RESET);
4736	return (rc);
4737}
4738
4739
4740static int
4741bce_chipinit(struct bce_softc *sc)
4742{
4743	u32 val;
4744	int rc = 0;
4745
4746	DBENTER(BCE_VERBOSE_RESET);
4747
4748	bce_disable_intr(sc);
4749
4750	/*
4751	 * Initialize DMA byte/word swapping, configure the number of DMA
4752	 * channels and PCI clock compensation delay.
4753	 */
4754	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4755	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4756#if BYTE_ORDER == BIG_ENDIAN
4757	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4758#endif
4759	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4760	    DMA_READ_CHANS << 12 |
4761	    DMA_WRITE_CHANS << 16;
4762
4763	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4764
4765	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4766		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4767
4768	/*
4769	 * This setting resolves a problem observed on certain Intel PCI
4770	 * chipsets that cannot handle multiple outstanding DMA operations.
4771	 * See errata E9_5706A1_65.
4772	 */
4773	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4774	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4775	    !(sc->bce_flags & BCE_PCIX_FLAG))
4776		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4777
4778	REG_WR(sc, BCE_DMA_CONFIG, val);
4779
4780	/* Enable the RX_V2P and Context state machines before access. */
4781	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4782	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4783	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4784	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4785
4786	/* Initialize context mapping and zero out the quick contexts. */
4787	bce_init_ctx(sc);
4788
4789	/* Initialize the on-boards CPUs */
4790	bce_init_cpus(sc);
4791
4792	/* Enable management frames (NC-SI) to flow to the MCP. */
4793	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4794		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4795		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4796	}
4797
4798	/* Prepare NVRAM for access. */
4799	if (bce_init_nvram(sc)) {
4800		rc = ENODEV;
4801		goto bce_chipinit_exit;
4802	}
4803
4804	/* Set the kernel bypass block size */
4805	val = REG_RD(sc, BCE_MQ_CONFIG);
4806	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4807	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4808
4809	/* Enable bins used on the 5709. */
4810	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4811	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4812		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4813		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4814			val |= BCE_MQ_CONFIG_HALT_DIS;
4815	}
4816
4817	REG_WR(sc, BCE_MQ_CONFIG, val);
4818
4819	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4820	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4821	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4822
4823	/* Set the page size and clear the RV2P processor stall bits. */
4824	val = (BCM_PAGE_BITS - 8) << 24;
4825	REG_WR(sc, BCE_RV2P_CONFIG, val);
4826
4827	/* Configure page size. */
4828	val = REG_RD(sc, BCE_TBDR_CONFIG);
4829	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4830	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4831	REG_WR(sc, BCE_TBDR_CONFIG, val);
4832
4833	/* Set the perfect match control register to default. */
4834	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4835
4836bce_chipinit_exit:
4837	DBEXIT(BCE_VERBOSE_RESET);
4838
4839	return(rc);
4840}
4841
4842
4843/****************************************************************************/
4844/* Initialize the controller in preparation to send/receive traffic.        */
4845/*                                                                          */
4846/* Returns:                                                                 */
4847/*   0 for success, positive value for failure.                             */
4848/****************************************************************************/
4849static int
4850bce_blockinit(struct bce_softc *sc)
4851{
4852	u32 reg, val;
4853	int rc = 0;
4854
4855	DBENTER(BCE_VERBOSE_RESET);
4856
4857	/* Load the hardware default MAC address. */
4858	bce_set_mac_addr(sc);
4859
4860	/* Set the Ethernet backoff seed value */
4861	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4862	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4863	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4864	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4865
4866	sc->last_status_idx = 0;
4867	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4868
4869	/* Set up link change interrupt generation. */
4870	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4871
4872	/* Program the physical address of the status block. */
4873	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4874	    BCE_ADDR_LO(sc->status_block_paddr));
4875	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4876	    BCE_ADDR_HI(sc->status_block_paddr));
4877
4878	/* Program the physical address of the statistics block. */
4879	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4880	    BCE_ADDR_LO(sc->stats_block_paddr));
4881	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4882	    BCE_ADDR_HI(sc->stats_block_paddr));
4883
4884	/* Program various host coalescing parameters. */
4885	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4886	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4887	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4888	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4889	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4890	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4891	REG_WR(sc, BCE_HC_TX_TICKS,
4892	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4893	REG_WR(sc, BCE_HC_RX_TICKS,
4894	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4895	REG_WR(sc, BCE_HC_COM_TICKS,
4896	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4897	REG_WR(sc, BCE_HC_CMD_TICKS,
4898	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4899	REG_WR(sc, BCE_HC_STATS_TICKS,
4900	    (sc->bce_stats_ticks & 0xffff00));
4901	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4902
4903	/* Configure the Host Coalescing block. */
4904	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4905	    BCE_HC_CONFIG_COLLECT_STATS;
4906
4907#if 0
4908	/* ToDo: Add MSI-X support. */
4909	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4910		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4911		    BCE_HC_SB_CONFIG_1;
4912
4913		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4914
4915		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4916		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
4917
4918		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4919		    (sc->tx_quick_cons_trip_int << 16) |
4920		     sc->tx_quick_cons_trip);
4921
4922		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4923		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
4924
4925		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4926	}
4927
4928	/*
4929	 * Tell the HC block to automatically set the
4930	 * INT_MASK bit after an MSI/MSI-X interrupt
4931	 * is generated so the driver doesn't have to.
4932	 */
4933	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4934		val |= BCE_HC_CONFIG_ONE_SHOT;
4935
4936	/* Set the MSI-X status blocks to 128 byte boundaries. */
4937	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4938		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4939#endif
4940
4941	REG_WR(sc, BCE_HC_CONFIG, val);
4942
4943	/* Clear the internal statistics counters. */
4944	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4945
4946	/* Verify that bootcode is running. */
4947	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4948
4949	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4950	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4951	    __FILE__, __LINE__);
4952	    reg = 0);
4953
4954	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4955	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4956		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4957		    "Expected: 08%08X\n", __FILE__, __LINE__,
4958		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4959		    BCE_DEV_INFO_SIGNATURE_MAGIC);
4960		rc = ENODEV;
4961		goto bce_blockinit_exit;
4962	}
4963
4964	/* Enable DMA */
4965	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4966	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4967		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4968		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4969		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4970	}
4971
4972	/* Allow bootcode to apply additional fixes before enabling MAC. */
4973	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
4974	    BCE_DRV_MSG_CODE_RESET);
4975
4976	/* Enable link state change interrupt generation. */
4977	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4978
4979	/* Enable the RXP. */
4980	bce_start_rxp_cpu(sc);
4981
4982	/* Disable management frames (NC-SI) from flowing to the MCP. */
4983	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4984		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
4985		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4986		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4987	}
4988
4989	/* Enable all remaining blocks in the MAC. */
4990	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4991	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4992		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4993		    BCE_MISC_ENABLE_DEFAULT_XI);
4994	else
4995		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4996		    BCE_MISC_ENABLE_DEFAULT);
4997
4998	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4999	DELAY(20);
5000
5001	/* Save the current host coalescing block settings. */
5002	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5003
5004bce_blockinit_exit:
5005	DBEXIT(BCE_VERBOSE_RESET);
5006
5007	return (rc);
5008}
5009
5010
5011/****************************************************************************/
5012/* Encapsulate an mbuf into the rx_bd chain.                                */
5013/*                                                                          */
5014/* Returns:                                                                 */
5015/*   0 for success, positive value for failure.                             */
5016/****************************************************************************/
5017static int
5018bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5019    u16 *chain_prod, u32 *prod_bseq)
5020{
5021	bus_dmamap_t map;
5022	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5023	struct mbuf *m_new = NULL;
5024	struct rx_bd *rxbd;
5025	int nsegs, error, rc = 0;
5026#ifdef BCE_DEBUG
5027	u16 debug_chain_prod = *chain_prod;
5028#endif
5029
5030	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5031
5032	/* Make sure the inputs are valid. */
5033	DBRUNIF((*chain_prod > MAX_RX_BD),
5034	    BCE_PRINTF("%s(%d): RX producer out of range: "
5035	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5036	    *chain_prod, (u16) MAX_RX_BD));
5037
5038	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5039	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5040	    *prod, *chain_prod, *prod_bseq);
5041
5042	/* Update some debug statistic counters */
5043	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5044	    sc->rx_low_watermark = sc->free_rx_bd);
5045	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5046	    sc->rx_empty_count++);
5047
5048	/* Check whether this is a new mbuf allocation. */
5049	if (m == NULL) {
5050
5051		/* Simulate an mbuf allocation failure. */
5052		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5053		    sc->mbuf_alloc_failed_count++;
5054		    sc->mbuf_alloc_failed_sim_count++;
5055		    rc = ENOBUFS;
5056		    goto bce_get_rx_buf_exit);
5057
5058		/* This is a new mbuf allocation. */
5059#ifdef BCE_JUMBO_HDRSPLIT
5060		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5061#else
5062		m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5063		    sc->rx_bd_mbuf_alloc_size);
5064#endif
5065
5066		if (m_new == NULL) {
5067			sc->mbuf_alloc_failed_count++;
5068			rc = ENOBUFS;
5069			goto bce_get_rx_buf_exit;
5070		}
5071
5072		DBRUN(sc->debug_rx_mbuf_alloc++);
5073	} else {
5074		/* Reuse an existing mbuf. */
5075		m_new = m;
5076	}
5077
5078	/* Make sure we have a valid packet header. */
5079	M_ASSERTPKTHDR(m_new);
5080
5081	/* Initialize the mbuf size and pad if necessary for alignment. */
5082	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5083	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5084
5085	/* ToDo: Consider calling m_fragment() to test error handling. */
5086
5087	/* Map the mbuf cluster into device memory. */
5088	map = sc->rx_mbuf_map[*chain_prod];
5089	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5090	    segs, &nsegs, BUS_DMA_NOWAIT);
5091
5092	/* Handle any mapping errors. */
5093	if (error) {
5094		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5095		    "chain (%d)!\n", __FILE__, __LINE__, error);
5096
5097		sc->dma_map_addr_rx_failed_count++;
5098		m_freem(m_new);
5099
5100		DBRUN(sc->debug_rx_mbuf_alloc--);
5101
5102		rc = ENOBUFS;
5103		goto bce_get_rx_buf_exit;
5104	}
5105
5106	/* All mbufs must map to a single segment. */
5107	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5108	    __FUNCTION__, nsegs));
5109
5110	/* Setup the rx_bd for the segment. */
5111	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5112
5113	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5114	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5115	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5116	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5117	*prod_bseq += segs[0].ds_len;
5118
5119	/* Save the mbuf and update our counter. */
5120	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5121	sc->free_rx_bd -= nsegs;
5122
5123	DBRUNMSG(BCE_INSANE_RECV,
5124	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5125
5126	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5127	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5128	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5129
5130bce_get_rx_buf_exit:
5131	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5132
5133	return(rc);
5134}
5135
5136
5137#ifdef BCE_JUMBO_HDRSPLIT
5138/****************************************************************************/
5139/* Encapsulate an mbuf cluster into the page chain.                         */
5140/*                                                                          */
5141/* Returns:                                                                 */
5142/*   0 for success, positive value for failure.                             */
5143/****************************************************************************/
5144static int
5145bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5146	u16 *prod_idx)
5147{
5148	bus_dmamap_t map;
5149	bus_addr_t busaddr;
5150	struct mbuf *m_new = NULL;
5151	struct rx_bd *pgbd;
5152	int error, rc = 0;
5153#ifdef BCE_DEBUG
5154	u16 debug_prod_idx = *prod_idx;
5155#endif
5156
5157	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5158
5159	/* Make sure the inputs are valid. */
5160	DBRUNIF((*prod_idx > MAX_PG_BD),
5161	    BCE_PRINTF("%s(%d): page producer out of range: "
5162	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5163	    *prod_idx, (u16) MAX_PG_BD));
5164
5165	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5166	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5167
5168	/* Update counters if we've hit a new low or run out of pages. */
5169	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5170	    sc->pg_low_watermark = sc->free_pg_bd);
5171	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5172
5173	/* Check whether this is a new mbuf allocation. */
5174	if (m == NULL) {
5175
5176		/* Simulate an mbuf allocation failure. */
5177		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5178		    sc->mbuf_alloc_failed_count++;
5179		    sc->mbuf_alloc_failed_sim_count++;
5180		    rc = ENOBUFS;
5181		    goto bce_get_pg_buf_exit);
5182
5183		/* This is a new mbuf allocation. */
5184		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5185		if (m_new == NULL) {
5186			sc->mbuf_alloc_failed_count++;
5187			rc = ENOBUFS;
5188			goto bce_get_pg_buf_exit;
5189		}
5190
5191		DBRUN(sc->debug_pg_mbuf_alloc++);
5192	} else {
5193		/* Reuse an existing mbuf. */
5194		m_new = m;
5195		m_new->m_data = m_new->m_ext.ext_buf;
5196	}
5197
5198	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5199
5200	/* ToDo: Consider calling m_fragment() to test error handling. */
5201
5202	/* Map the mbuf cluster into device memory. */
5203	map = sc->pg_mbuf_map[*prod_idx];
5204	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5205	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5206	    &busaddr, BUS_DMA_NOWAIT);
5207
5208	/* Handle any mapping errors. */
5209	if (error) {
5210		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5211		    __FILE__, __LINE__);
5212
5213		m_freem(m_new);
5214		DBRUN(sc->debug_pg_mbuf_alloc--);
5215
5216		rc = ENOBUFS;
5217		goto bce_get_pg_buf_exit;
5218	}
5219
5220	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5221
5222	/*
5223	 * The page chain uses the same rx_bd data structure
5224	 * as the receive chain but doesn't require a byte sequence (bseq).
5225	 */
5226	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5227
5228	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5229	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5230	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5231	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5232
5233	/* Save the mbuf and update our counter. */
5234	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5235	sc->free_pg_bd--;
5236
5237	DBRUNMSG(BCE_INSANE_RECV,
5238	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5239
5240	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5241	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5242
5243bce_get_pg_buf_exit:
5244	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5245
5246	return(rc);
5247}
5248#endif /* BCE_JUMBO_HDRSPLIT */
5249
5250
5251/****************************************************************************/
5252/* Initialize the TX context memory.                                        */
5253/*                                                                          */
5254/* Returns:                                                                 */
5255/*   Nothing                                                                */
5256/****************************************************************************/
5257static void
5258bce_init_tx_context(struct bce_softc *sc)
5259{
5260	u32 val;
5261
5262	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5263
5264	/* Initialize the context ID for an L2 TX chain. */
5265	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5266		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5267		/* Set the CID type to support an L2 connection. */
5268		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5269		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5270		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5271		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5272		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5273		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5274
5275		/* Point the hardware to the first page in the chain. */
5276		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5277		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5278		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5279		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5280		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5281		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5282	} else {
5283		/* Set the CID type to support an L2 connection. */
5284		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5285		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5286		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5287		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5288
5289		/* Point the hardware to the first page in the chain. */
5290		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5291		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5292		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5293		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5294		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5295		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5296	}
5297
5298	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5299}
5300
5301
5302/****************************************************************************/
5303/* Allocate memory and initialize the TX data structures.                   */
5304/*                                                                          */
5305/* Returns:                                                                 */
5306/*   0 for success, positive value for failure.                             */
5307/****************************************************************************/
5308static int
5309bce_init_tx_chain(struct bce_softc *sc)
5310{
5311	struct tx_bd *txbd;
5312	int i, rc = 0;
5313
5314	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5315
5316	/* Set the initial TX producer/consumer indices. */
5317	sc->tx_prod        = 0;
5318	sc->tx_cons        = 0;
5319	sc->tx_prod_bseq   = 0;
5320	sc->used_tx_bd     = 0;
5321	sc->max_tx_bd      = USABLE_TX_BD;
5322	DBRUN(sc->tx_hi_watermark = 0);
5323	DBRUN(sc->tx_full_count = 0);
5324
5325	/*
5326	 * The NetXtreme II supports a linked-list structre called
5327	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5328	 * consists of a series of 1 or more chain pages, each of which
5329	 * consists of a fixed number of BD entries.
5330	 * The last BD entry on each page is a pointer to the next page
5331	 * in the chain, and the last pointer in the BD chain
5332	 * points back to the beginning of the chain.
5333	 */
5334
5335	/* Set the TX next pointer chain entries. */
5336	for (i = 0; i < TX_PAGES; i++) {
5337		int j;
5338
5339		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5340
5341		/* Check if we've reached the last page. */
5342		if (i == (TX_PAGES - 1))
5343			j = 0;
5344		else
5345			j = i + 1;
5346
5347		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5348		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5349	}
5350
5351	bce_init_tx_context(sc);
5352
5353	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5354	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5355
5356	return(rc);
5357}
5358
5359
5360/****************************************************************************/
5361/* Free memory and clear the TX data structures.                            */
5362/*                                                                          */
5363/* Returns:                                                                 */
5364/*   Nothing.                                                               */
5365/****************************************************************************/
5366static void
5367bce_free_tx_chain(struct bce_softc *sc)
5368{
5369	int i;
5370
5371	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5372
5373	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5374	for (i = 0; i < TOTAL_TX_BD; i++) {
5375		if (sc->tx_mbuf_ptr[i] != NULL) {
5376			if (sc->tx_mbuf_map[i] != NULL)
5377				bus_dmamap_sync(sc->tx_mbuf_tag,
5378				    sc->tx_mbuf_map[i],
5379				    BUS_DMASYNC_POSTWRITE);
5380			m_freem(sc->tx_mbuf_ptr[i]);
5381			sc->tx_mbuf_ptr[i] = NULL;
5382			DBRUN(sc->debug_tx_mbuf_alloc--);
5383		}
5384	}
5385
5386	/* Clear each TX chain page. */
5387	for (i = 0; i < TX_PAGES; i++)
5388		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5389
5390	sc->used_tx_bd = 0;
5391
5392	/* Check if we lost any mbufs in the process. */
5393	DBRUNIF((sc->debug_tx_mbuf_alloc),
5394	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5395	    "from tx chain!\n",	__FILE__, __LINE__,
5396	    sc->debug_tx_mbuf_alloc));
5397
5398	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5399}
5400
5401
5402/****************************************************************************/
5403/* Initialize the RX context memory.                                        */
5404/*                                                                          */
5405/* Returns:                                                                 */
5406/*   Nothing                                                                */
5407/****************************************************************************/
5408static void
5409bce_init_rx_context(struct bce_softc *sc)
5410{
5411	u32 val;
5412
5413	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5414
5415	/* Init the type, size, and BD cache levels for the RX context. */
5416	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5417	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5418	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5419
5420	/*
5421	 * Set the level for generating pause frames
5422	 * when the number of available rx_bd's gets
5423	 * too low (the low watermark) and the level
5424	 * when pause frames can be stopped (the high
5425	 * watermark).
5426	 */
5427	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5428	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5429		u32 lo_water, hi_water;
5430
5431		if (sc->bce_flags && BCE_USING_TX_FLOW_CONTROL) {
5432			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5433		} else {
5434			lo_water = 0;
5435		}
5436
5437		if (lo_water >= USABLE_RX_BD) {
5438			lo_water = 0;
5439		}
5440
5441		hi_water = USABLE_RX_BD / 4;
5442
5443		if (hi_water <= lo_water) {
5444			lo_water = 0;
5445		}
5446
5447		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5448		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5449
5450		if (hi_water > 0xf)
5451			hi_water = 0xf;
5452		else if (hi_water == 0)
5453			lo_water = 0;
5454
5455		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5456		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5457	}
5458
5459	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5460
5461	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5462	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5463	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5464		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5465		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5466	}
5467
5468	/* Point the hardware to the first page in the chain. */
5469	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5470	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5471	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5472	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5473
5474	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5475}
5476
5477
5478/****************************************************************************/
5479/* Allocate memory and initialize the RX data structures.                   */
5480/*                                                                          */
5481/* Returns:                                                                 */
5482/*   0 for success, positive value for failure.                             */
5483/****************************************************************************/
5484static int
5485bce_init_rx_chain(struct bce_softc *sc)
5486{
5487	struct rx_bd *rxbd;
5488	int i, rc = 0;
5489
5490	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5491	    BCE_VERBOSE_CTX);
5492
5493	/* Initialize the RX producer and consumer indices. */
5494	sc->rx_prod        = 0;
5495	sc->rx_cons        = 0;
5496	sc->rx_prod_bseq   = 0;
5497	sc->free_rx_bd     = USABLE_RX_BD;
5498	sc->max_rx_bd      = USABLE_RX_BD;
5499
5500	/* Initialize the RX next pointer chain entries. */
5501	for (i = 0; i < RX_PAGES; i++) {
5502		int j;
5503
5504		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5505
5506		/* Check if we've reached the last page. */
5507		if (i == (RX_PAGES - 1))
5508			j = 0;
5509		else
5510			j = i + 1;
5511
5512		/* Setup the chain page pointers. */
5513		rxbd->rx_bd_haddr_hi =
5514		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5515		rxbd->rx_bd_haddr_lo =
5516		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5517	}
5518
5519	/* Fill up the RX chain. */
5520	bce_fill_rx_chain(sc);
5521
5522	DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
5523	DBRUN(sc->rx_empty_count = 0);
5524	for (i = 0; i < RX_PAGES; i++) {
5525		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5526		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5527	}
5528
5529	bce_init_rx_context(sc);
5530
5531	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
5532	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5533	    BCE_VERBOSE_CTX);
5534
5535	/* ToDo: Are there possible failure modes here? */
5536
5537	return(rc);
5538}
5539
5540
5541/****************************************************************************/
5542/* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5543/* occurs.                                                                  */
5544/*                                                                          */
5545/* Returns:                                                                 */
5546/*   Nothing                                                                */
5547/****************************************************************************/
5548static void
5549bce_fill_rx_chain(struct bce_softc *sc)
5550{
5551	u16 prod, prod_idx;
5552	u32 prod_bseq;
5553
5554	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5555	    BCE_VERBOSE_CTX);
5556
5557	/* Get the RX chain producer indices. */
5558	prod      = sc->rx_prod;
5559	prod_bseq = sc->rx_prod_bseq;
5560
5561	/* Keep filling the RX chain until it's full. */
5562	while (sc->free_rx_bd > 0) {
5563		prod_idx = RX_CHAIN_IDX(prod);
5564		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5565			/* Bail out if we can't add an mbuf to the chain. */
5566			break;
5567		}
5568		prod = NEXT_RX_BD(prod);
5569	}
5570
5571	/* Save the RX chain producer indices. */
5572	sc->rx_prod      = prod;
5573	sc->rx_prod_bseq = prod_bseq;
5574
5575	/* We should never end up pointing to a next page pointer. */
5576	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5577	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5578	    __FUNCTION__, sc->rx_prod));
5579
5580	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5581	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5582	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5583	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5584	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5585
5586	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5587	    BCE_VERBOSE_CTX);
5588}
5589
5590
5591/****************************************************************************/
5592/* Free memory and clear the RX data structures.                            */
5593/*                                                                          */
5594/* Returns:                                                                 */
5595/*   Nothing.                                                               */
5596/****************************************************************************/
5597static void
5598bce_free_rx_chain(struct bce_softc *sc)
5599{
5600	int i;
5601
5602	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5603
5604	/* Free any mbufs still in the RX mbuf chain. */
5605	for (i = 0; i < TOTAL_RX_BD; i++) {
5606		if (sc->rx_mbuf_ptr[i] != NULL) {
5607			if (sc->rx_mbuf_map[i] != NULL)
5608				bus_dmamap_sync(sc->rx_mbuf_tag,
5609				    sc->rx_mbuf_map[i],
5610				    BUS_DMASYNC_POSTREAD);
5611			m_freem(sc->rx_mbuf_ptr[i]);
5612			sc->rx_mbuf_ptr[i] = NULL;
5613			DBRUN(sc->debug_rx_mbuf_alloc--);
5614		}
5615	}
5616
5617	/* Clear each RX chain page. */
5618	for (i = 0; i < RX_PAGES; i++)
5619		if (sc->rx_bd_chain[i] != NULL) {
5620			bzero((char *)sc->rx_bd_chain[i],
5621			    BCE_RX_CHAIN_PAGE_SZ);
5622		}
5623
5624	sc->free_rx_bd = sc->max_rx_bd;
5625
5626	/* Check if we lost any mbufs in the process. */
5627	DBRUNIF((sc->debug_rx_mbuf_alloc),
5628	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5629	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5630
5631	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5632}
5633
5634
5635#ifdef BCE_JUMBO_HDRSPLIT
5636/****************************************************************************/
5637/* Allocate memory and initialize the page data structures.                 */
5638/* Assumes that bce_init_rx_chain() has not already been called.            */
5639/*                                                                          */
5640/* Returns:                                                                 */
5641/*   0 for success, positive value for failure.                             */
5642/****************************************************************************/
5643static int
5644bce_init_pg_chain(struct bce_softc *sc)
5645{
5646	struct rx_bd *pgbd;
5647	int i, rc = 0;
5648	u32 val;
5649
5650	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5651		BCE_VERBOSE_CTX);
5652
5653	/* Initialize the page producer and consumer indices. */
5654	sc->pg_prod        = 0;
5655	sc->pg_cons        = 0;
5656	sc->free_pg_bd     = USABLE_PG_BD;
5657	sc->max_pg_bd      = USABLE_PG_BD;
5658	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5659	DBRUN(sc->pg_empty_count = 0);
5660
5661	/* Initialize the page next pointer chain entries. */
5662	for (i = 0; i < PG_PAGES; i++) {
5663		int j;
5664
5665		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5666
5667		/* Check if we've reached the last page. */
5668		if (i == (PG_PAGES - 1))
5669			j = 0;
5670		else
5671			j = i + 1;
5672
5673		/* Setup the chain page pointers. */
5674		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5675		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5676	}
5677
5678	/* Setup the MQ BIN mapping for host_pg_bidx. */
5679	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5680		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5681		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5682
5683	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5684
5685	/* Configure the rx_bd and page chain mbuf cluster size. */
5686	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5687	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5688
5689	/* Configure the context reserved for jumbo support. */
5690	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5691		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5692
5693	/* Point the hardware to the first page in the page chain. */
5694	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5695	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5696	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5697	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5698
5699	/* Fill up the page chain. */
5700	bce_fill_pg_chain(sc);
5701
5702	for (i = 0; i < PG_PAGES; i++) {
5703		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5704		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5705	}
5706
5707	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5708	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5709		BCE_VERBOSE_CTX);
5710	return(rc);
5711}
5712
5713
5714/****************************************************************************/
5715/* Add mbufs to the page chain until its full or an mbuf allocation error   */
5716/* occurs.                                                                  */
5717/*                                                                          */
5718/* Returns:                                                                 */
5719/*   Nothing                                                                */
5720/****************************************************************************/
5721static void
5722bce_fill_pg_chain(struct bce_softc *sc)
5723{
5724	u16 prod, prod_idx;
5725
5726	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5727	    BCE_VERBOSE_CTX);
5728
5729	/* Get the page chain prodcuer index. */
5730	prod = sc->pg_prod;
5731
5732	/* Keep filling the page chain until it's full. */
5733	while (sc->free_pg_bd > 0) {
5734		prod_idx = PG_CHAIN_IDX(prod);
5735		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5736			/* Bail out if we can't add an mbuf to the chain. */
5737			break;
5738		}
5739		prod = NEXT_PG_BD(prod);
5740	}
5741
5742	/* Save the page chain producer index. */
5743	sc->pg_prod = prod;
5744
5745	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5746	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5747	    __FUNCTION__, sc->pg_prod));
5748
5749	/*
5750	 * Write the mailbox and tell the chip about
5751	 * the new rx_bd's in the page chain.
5752	 */
5753	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5754	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
5755
5756	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5757	    BCE_VERBOSE_CTX);
5758}
5759
5760
5761/****************************************************************************/
5762/* Free memory and clear the RX data structures.                            */
5763/*                                                                          */
5764/* Returns:                                                                 */
5765/*   Nothing.                                                               */
5766/****************************************************************************/
5767static void
5768bce_free_pg_chain(struct bce_softc *sc)
5769{
5770	int i;
5771
5772	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5773
5774	/* Free any mbufs still in the mbuf page chain. */
5775	for (i = 0; i < TOTAL_PG_BD; i++) {
5776		if (sc->pg_mbuf_ptr[i] != NULL) {
5777			if (sc->pg_mbuf_map[i] != NULL)
5778				bus_dmamap_sync(sc->pg_mbuf_tag,
5779				    sc->pg_mbuf_map[i],
5780				    BUS_DMASYNC_POSTREAD);
5781			m_freem(sc->pg_mbuf_ptr[i]);
5782			sc->pg_mbuf_ptr[i] = NULL;
5783			DBRUN(sc->debug_pg_mbuf_alloc--);
5784		}
5785	}
5786
5787	/* Clear each page chain pages. */
5788	for (i = 0; i < PG_PAGES; i++)
5789		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5790
5791	sc->free_pg_bd = sc->max_pg_bd;
5792
5793	/* Check if we lost any mbufs in the process. */
5794	DBRUNIF((sc->debug_pg_mbuf_alloc),
5795	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5796	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5797
5798	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5799}
5800#endif /* BCE_JUMBO_HDRSPLIT */
5801
5802
5803/****************************************************************************/
5804/* Set media options.                                                       */
5805/*                                                                          */
5806/* Returns:                                                                 */
5807/*   0 for success, positive value for failure.                             */
5808/****************************************************************************/
5809static int
5810bce_ifmedia_upd(struct ifnet *ifp)
5811{
5812	struct bce_softc *sc = ifp->if_softc;
5813
5814	DBENTER(BCE_VERBOSE);
5815
5816	BCE_LOCK(sc);
5817	bce_ifmedia_upd_locked(ifp);
5818	BCE_UNLOCK(sc);
5819
5820	DBEXIT(BCE_VERBOSE);
5821	return (0);
5822}
5823
5824
5825/****************************************************************************/
5826/* Set media options.                                                       */
5827/*                                                                          */
5828/* Returns:                                                                 */
5829/*   Nothing.                                                               */
5830/****************************************************************************/
5831static void
5832bce_ifmedia_upd_locked(struct ifnet *ifp)
5833{
5834	struct bce_softc *sc = ifp->if_softc;
5835	struct mii_data *mii;
5836
5837	DBENTER(BCE_VERBOSE_PHY);
5838
5839	BCE_LOCK_ASSERT(sc);
5840
5841	mii = device_get_softc(sc->bce_miibus);
5842
5843	/* Make sure the MII bus has been enumerated. */
5844	if (mii) {
5845		sc->bce_link_up = FALSE;
5846		if (mii->mii_instance) {
5847			struct mii_softc *miisc;
5848
5849			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5850			    mii_phy_reset(miisc);
5851		}
5852		mii_mediachg(mii);
5853	}
5854
5855	DBEXIT(BCE_VERBOSE_PHY);
5856}
5857
5858
5859/****************************************************************************/
5860/* Reports current media status.                                            */
5861/*                                                                          */
5862/* Returns:                                                                 */
5863/*   Nothing.                                                               */
5864/****************************************************************************/
5865static void
5866bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5867{
5868	struct bce_softc *sc = ifp->if_softc;
5869	struct mii_data *mii;
5870
5871	DBENTER(BCE_VERBOSE_PHY);
5872
5873	BCE_LOCK(sc);
5874
5875	mii = device_get_softc(sc->bce_miibus);
5876
5877	mii_pollstat(mii);
5878	ifmr->ifm_active = mii->mii_media_active;
5879	ifmr->ifm_status = mii->mii_media_status;
5880
5881	BCE_UNLOCK(sc);
5882
5883	DBEXIT(BCE_VERBOSE_PHY);
5884}
5885
5886
5887/****************************************************************************/
5888/* Handles PHY generated interrupt events.                                  */
5889/*                                                                          */
5890/* Returns:                                                                 */
5891/*   Nothing.                                                               */
5892/****************************************************************************/
5893static void
5894bce_phy_intr(struct bce_softc *sc)
5895{
5896	u32 new_link_state, old_link_state;
5897
5898	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5899
5900	DBRUN(sc->phy_interrupts++);
5901
5902	new_link_state = sc->status_block->status_attn_bits &
5903	    STATUS_ATTN_BITS_LINK_STATE;
5904	old_link_state = sc->status_block->status_attn_bits_ack &
5905	    STATUS_ATTN_BITS_LINK_STATE;
5906
5907	/* Handle any changes if the link state has changed. */
5908	if (new_link_state != old_link_state) {
5909
5910		/* Update the status_attn_bits_ack field. */
5911		if (new_link_state) {
5912			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5913			    STATUS_ATTN_BITS_LINK_STATE);
5914			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5915			    __FUNCTION__);
5916		}
5917		else {
5918			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5919			    STATUS_ATTN_BITS_LINK_STATE);
5920			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5921			    __FUNCTION__);
5922		}
5923
5924		/*
5925		 * Assume link is down and allow
5926		 * tick routine to update the state
5927		 * based on the actual media state.
5928		 */
5929		sc->bce_link_up = FALSE;
5930		callout_stop(&sc->bce_tick_callout);
5931		bce_tick(sc);
5932	}
5933
5934	/* Acknowledge the link change interrupt. */
5935	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5936
5937	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5938}
5939
5940
5941/****************************************************************************/
5942/* Reads the receive consumer value from the status block (skipping over    */
5943/* chain page pointer if necessary).                                        */
5944/*                                                                          */
5945/* Returns:                                                                 */
5946/*   hw_cons                                                                */
5947/****************************************************************************/
5948static inline u16
5949bce_get_hw_rx_cons(struct bce_softc *sc)
5950{
5951	u16 hw_cons;
5952
5953	rmb();
5954	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5955	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5956		hw_cons++;
5957
5958	return hw_cons;
5959}
5960
5961/****************************************************************************/
5962/* Handles received frame interrupt events.                                 */
5963/*                                                                          */
5964/* Returns:                                                                 */
5965/*   Nothing.                                                               */
5966/****************************************************************************/
5967static void
5968bce_rx_intr(struct bce_softc *sc)
5969{
5970	struct ifnet *ifp = sc->bce_ifp;
5971	struct l2_fhdr *l2fhdr;
5972	struct ether_vlan_header *vh;
5973	unsigned int pkt_len;
5974	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5975	u32 status;
5976#ifdef BCE_JUMBO_HDRSPLIT
5977	unsigned int rem_len;
5978	u16 sw_pg_cons, sw_pg_cons_idx;
5979#endif
5980
5981	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5982	DBRUN(sc->interrupts_rx++);
5983	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5984	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5985	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5986
5987	/* Prepare the RX chain pages to be accessed by the host CPU. */
5988	for (int i = 0; i < RX_PAGES; i++)
5989		bus_dmamap_sync(sc->rx_bd_chain_tag,
5990		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5991
5992#ifdef BCE_JUMBO_HDRSPLIT
5993	/* Prepare the page chain pages to be accessed by the host CPU. */
5994	for (int i = 0; i < PG_PAGES; i++)
5995		bus_dmamap_sync(sc->pg_bd_chain_tag,
5996		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5997#endif
5998
5999	/* Get the hardware's view of the RX consumer index. */
6000	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6001
6002	/* Get working copies of the driver's view of the consumer indices. */
6003	sw_rx_cons = sc->rx_cons;
6004
6005#ifdef BCE_JUMBO_HDRSPLIT
6006	sw_pg_cons = sc->pg_cons;
6007#endif
6008
6009	/* Update some debug statistics counters */
6010	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6011	    sc->rx_low_watermark = sc->free_rx_bd);
6012	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6013	    sc->rx_empty_count++);
6014
6015	/* Scan through the receive chain as long as there is work to do */
6016	/* ToDo: Consider setting a limit on the number of packets processed. */
6017	rmb();
6018	while (sw_rx_cons != hw_rx_cons) {
6019		struct mbuf *m0;
6020
6021		/* Convert the producer/consumer indices to an actual rx_bd index. */
6022		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6023
6024		/* Unmap the mbuf from DMA space. */
6025		bus_dmamap_sync(sc->rx_mbuf_tag,
6026		    sc->rx_mbuf_map[sw_rx_cons_idx],
6027		    BUS_DMASYNC_POSTREAD);
6028		bus_dmamap_unload(sc->rx_mbuf_tag,
6029		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6030
6031		/* Remove the mbuf from the RX chain. */
6032		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6033		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6034		DBRUN(sc->debug_rx_mbuf_alloc--);
6035		sc->free_rx_bd++;
6036
6037		if(m0 == NULL) {
6038			DBPRINT(sc, BCE_EXTREME_RECV,
6039			    "%s(): Oops! Empty mbuf pointer "
6040			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6041			    __FUNCTION__, sw_rx_cons_idx);
6042			goto bce_rx_int_next_rx;
6043		}
6044
6045		/*
6046 		 * Frames received on the NetXteme II are prepended
6047 		 * with an l2_fhdr structure which provides status
6048 		 * information about the received frame (including
6049 		 * VLAN tags and checksum info).  The frames are
6050		 * also automatically adjusted to align the IP
6051 		 * header (i.e. two null bytes are inserted before
6052 		 * the Ethernet	header).  As a result the data
6053 		 * DMA'd by the controller into	the mbuf looks
6054		 * like this:
6055		 *
6056		 * +---------+-----+---------------------+-----+
6057		 * | l2_fhdr | pad | packet data         | FCS |
6058		 * +---------+-----+---------------------+-----+
6059		 *
6060 		 * The l2_fhdr needs to be checked and skipped and
6061 		 * the FCS needs to be stripped before sending the
6062		 * packet up the stack.
6063		 */
6064		l2fhdr  = mtod(m0, struct l2_fhdr *);
6065
6066		/* Get the packet data + FCS length and the status. */
6067		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6068		status  = l2fhdr->l2_fhdr_status;
6069
6070		/*
6071		 * Skip over the l2_fhdr and pad, resulting in the
6072		 * following data in the mbuf:
6073		 * +---------------------+-----+
6074		 * | packet data         | FCS |
6075		 * +---------------------+-----+
6076		 */
6077		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6078
6079#ifdef BCE_JUMBO_HDRSPLIT
6080		/*
6081		 * Check whether the received frame fits in a single
6082		 * mbuf or not (i.e. packet data + FCS <=
6083		 * sc->rx_bd_mbuf_data_len bytes).
6084		 */
6085		if (pkt_len > m0->m_len) {
6086			/*
6087			 * The received frame is larger than a single mbuf.
6088			 * If the frame was a TCP frame then only the TCP
6089			 * header is placed in the mbuf, the remaining
6090			 * payload (including FCS) is placed in the page
6091			 * chain, the SPLIT flag is set, and the header
6092			 * length is placed in the IP checksum field.
6093			 * If the frame is not a TCP frame then the mbuf
6094			 * is filled and the remaining bytes are placed
6095			 * in the page chain.
6096			 */
6097
6098			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6099			    "packet.\n", __FUNCTION__);
6100
6101			/*
6102			 * When the page chain is enabled and the TCP
6103			 * header has been split from the TCP payload,
6104			 * the ip_xsum structure will reflect the length
6105			 * of the TCP header, not the IP checksum.  Set
6106			 * the packet length of the mbuf accordingly.
6107			 */
6108		 	if (status & L2_FHDR_STATUS_SPLIT)
6109				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6110
6111			rem_len = pkt_len - m0->m_len;
6112
6113			/* Pull mbufs off the page chain for the remaining data. */
6114			while (rem_len > 0) {
6115				struct mbuf *m_pg;
6116
6117				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6118
6119				/* Remove the mbuf from the page chain. */
6120				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6121				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6122				DBRUN(sc->debug_pg_mbuf_alloc--);
6123				sc->free_pg_bd++;
6124
6125				/* Unmap the page chain mbuf from DMA space. */
6126				bus_dmamap_sync(sc->pg_mbuf_tag,
6127				    sc->pg_mbuf_map[sw_pg_cons_idx],
6128				    BUS_DMASYNC_POSTREAD);
6129				bus_dmamap_unload(sc->pg_mbuf_tag,
6130				    sc->pg_mbuf_map[sw_pg_cons_idx]);
6131
6132				/* Adjust the mbuf length. */
6133				if (rem_len < m_pg->m_len) {
6134					/* The mbuf chain is complete. */
6135					m_pg->m_len = rem_len;
6136					rem_len = 0;
6137				} else {
6138					/* More packet data is waiting. */
6139					rem_len -= m_pg->m_len;
6140				}
6141
6142				/* Concatenate the mbuf cluster to the mbuf. */
6143				m_cat(m0, m_pg);
6144
6145				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6146			}
6147
6148			/* Set the total packet length. */
6149			m0->m_pkthdr.len = pkt_len;
6150
6151		} else {
6152			/*
6153			 * The received packet is small and fits in a
6154			 * single mbuf (i.e. the l2_fhdr + pad + packet +
6155			 * FCS <= MHLEN).  In other words, the packet is
6156			 * 154 bytes or less in size.
6157			 */
6158
6159			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6160			    "packet.\n", __FUNCTION__);
6161
6162			/* Set the total packet length. */
6163			m0->m_pkthdr.len = m0->m_len = pkt_len;
6164		}
6165#else
6166		/* Set the total packet length. */
6167		m0->m_pkthdr.len = m0->m_len = pkt_len;
6168#endif
6169
6170		/* Remove the trailing Ethernet FCS. */
6171		m_adj(m0, -ETHER_CRC_LEN);
6172
6173		/* Check that the resulting mbuf chain is valid. */
6174		DBRUN(m_sanity(m0, FALSE));
6175		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6176		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6177		     BCE_PRINTF("Invalid Ethernet frame size!\n");
6178		     m_print(m0, 128));
6179
6180		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6181		    sc->l2fhdr_error_sim_count++;
6182		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6183
6184		/* Check the received frame for errors. */
6185		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6186		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6187		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6188
6189			/* Log the error and release the mbuf. */
6190			ifp->if_ierrors++;
6191			sc->l2fhdr_error_count++;
6192
6193			m_freem(m0);
6194			m0 = NULL;
6195			goto bce_rx_int_next_rx;
6196		}
6197
6198		/* Send the packet to the appropriate interface. */
6199		m0->m_pkthdr.rcvif = ifp;
6200
6201		/* Assume no hardware checksum. */
6202		m0->m_pkthdr.csum_flags = 0;
6203
6204		/* Validate the checksum if offload enabled. */
6205		if (ifp->if_capenable & IFCAP_RXCSUM) {
6206
6207			/* Check for an IP datagram. */
6208		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6209			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6210				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6211				DBRUN(sc->csum_offload_ip++);
6212				/* Check if the IP checksum is valid. */
6213				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6214					m0->m_pkthdr.csum_flags |=
6215					    CSUM_IP_VALID;
6216			}
6217
6218			/* Check for a valid TCP/UDP frame. */
6219			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6220			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6221
6222				/* Check for a good TCP/UDP checksum. */
6223				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6224				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6225					DBRUN(sc->csum_offload_tcp_udp++);
6226					m0->m_pkthdr.csum_data =
6227					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6228					m0->m_pkthdr.csum_flags |=
6229					    (CSUM_DATA_VALID
6230					    | CSUM_PSEUDO_HDR);
6231				}
6232			}
6233		}
6234
6235		/* Attach the VLAN tag.	*/
6236		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6237			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6238#if __FreeBSD_version < 700000
6239				VLAN_INPUT_TAG(ifp, m0,
6240				    l2fhdr->l2_fhdr_vlan_tag, continue);
6241#else
6242				m0->m_pkthdr.ether_vtag =
6243				    l2fhdr->l2_fhdr_vlan_tag;
6244				m0->m_flags |= M_VLANTAG;
6245#endif
6246			} else {
6247				/*
6248				 * bce(4) controllers can't disable VLAN
6249				 * tag stripping if management firmware
6250				 * (ASF/IPMI/UMP) is running. So we always
6251				 * strip VLAN tag and manually reconstruct
6252				 * the VLAN frame by appending stripped
6253				 * VLAN tag in driver if VLAN tag stripping
6254				 * was disabled.
6255				 *
6256				 * TODO: LLC SNAP handling.
6257				 */
6258				bcopy(mtod(m0, uint8_t *),
6259				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6260				    ETHER_ADDR_LEN * 2);
6261				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6262				vh = mtod(m0, struct ether_vlan_header *);
6263				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6264				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6265				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6266				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6267			}
6268		}
6269
6270		/* Increment received packet statistics. */
6271		ifp->if_ipackets++;
6272
6273bce_rx_int_next_rx:
6274		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6275
6276		/* If we have a packet, pass it up the stack */
6277		if (m0) {
6278			/* Make sure we don't lose our place when we release the lock. */
6279			sc->rx_cons = sw_rx_cons;
6280#ifdef BCE_JUMBO_HDRSPLIT
6281			sc->pg_cons = sw_pg_cons;
6282#endif
6283
6284			BCE_UNLOCK(sc);
6285			(*ifp->if_input)(ifp, m0);
6286			BCE_LOCK(sc);
6287
6288			/* Recover our place. */
6289			sw_rx_cons = sc->rx_cons;
6290#ifdef BCE_JUMBO_HDRSPLIT
6291			sw_pg_cons = sc->pg_cons;
6292#endif
6293		}
6294
6295		/* Refresh hw_cons to see if there's new work */
6296		if (sw_rx_cons == hw_rx_cons)
6297			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6298	}
6299
6300#ifdef BCE_JUMBO_HDRSPLIT
6301	/* No new packets.  Refill the page chain. */
6302	sc->pg_cons = sw_pg_cons;
6303	bce_fill_pg_chain(sc);
6304#endif
6305
6306	/* No new packets.  Refill the RX chain. */
6307	sc->rx_cons = sw_rx_cons;
6308	bce_fill_rx_chain(sc);
6309
6310	/* Prepare the page chain pages to be accessed by the NIC. */
6311	for (int i = 0; i < RX_PAGES; i++)
6312		bus_dmamap_sync(sc->rx_bd_chain_tag,
6313		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6314
6315#ifdef BCE_JUMBO_HDRSPLIT
6316	for (int i = 0; i < PG_PAGES; i++)
6317		bus_dmamap_sync(sc->pg_bd_chain_tag,
6318		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6319#endif
6320
6321	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6322	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6323	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6324	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6325}
6326
6327
6328/****************************************************************************/
6329/* Reads the transmit consumer value from the status block (skipping over   */
6330/* chain page pointer if necessary).                                        */
6331/*                                                                          */
6332/* Returns:                                                                 */
6333/*   hw_cons                                                                */
6334/****************************************************************************/
6335static inline u16
6336bce_get_hw_tx_cons(struct bce_softc *sc)
6337{
6338	u16 hw_cons;
6339
6340	mb();
6341	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6342	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6343		hw_cons++;
6344
6345	return hw_cons;
6346}
6347
6348
6349/****************************************************************************/
6350/* Handles transmit completion interrupt events.                            */
6351/*                                                                          */
6352/* Returns:                                                                 */
6353/*   Nothing.                                                               */
6354/****************************************************************************/
6355static void
6356bce_tx_intr(struct bce_softc *sc)
6357{
6358	struct ifnet *ifp = sc->bce_ifp;
6359	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6360
6361	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6362	DBRUN(sc->interrupts_tx++);
6363	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6364	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6365	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6366
6367	BCE_LOCK_ASSERT(sc);
6368
6369	/* Get the hardware's view of the TX consumer index. */
6370	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6371	sw_tx_cons = sc->tx_cons;
6372
6373	/* Prevent speculative reads of the status block. */
6374	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6375	    BUS_SPACE_BARRIER_READ);
6376
6377	/* Cycle through any completed TX chain page entries. */
6378	while (sw_tx_cons != hw_tx_cons) {
6379#ifdef BCE_DEBUG
6380		struct tx_bd *txbd = NULL;
6381#endif
6382		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6383
6384		DBPRINT(sc, BCE_INFO_SEND,
6385		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6386		    "sw_tx_chain_cons = 0x%04X\n",
6387		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6388
6389		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6390		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6391		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6392		    (int) MAX_TX_BD);
6393		    bce_breakpoint(sc));
6394
6395		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6396		    [TX_IDX(sw_tx_chain_cons)]);
6397
6398		DBRUNIF((txbd == NULL),
6399		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6400		    __FILE__, __LINE__, sw_tx_chain_cons);
6401		    bce_breakpoint(sc));
6402
6403		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6404		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6405
6406		/*
6407		 * Free the associated mbuf. Remember
6408		 * that only the last tx_bd of a packet
6409		 * has an mbuf pointer and DMA map.
6410		 */
6411		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6412
6413			/* Validate that this is the last tx_bd. */
6414			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6415			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6416			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6417			    bce_breakpoint(sc));
6418
6419			DBRUNMSG(BCE_INFO_SEND,
6420			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6421			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6422			    sw_tx_chain_cons));
6423
6424			/* Unmap the mbuf. */
6425			bus_dmamap_unload(sc->tx_mbuf_tag,
6426			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6427
6428			/* Free the mbuf. */
6429			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6430			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6431			DBRUN(sc->debug_tx_mbuf_alloc--);
6432
6433			ifp->if_opackets++;
6434		}
6435
6436		sc->used_tx_bd--;
6437		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6438
6439		/* Refresh hw_cons to see if there's new work. */
6440		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6441
6442		/* Prevent speculative reads of the status block. */
6443		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6444		    BUS_SPACE_BARRIER_READ);
6445	}
6446
6447	/* Clear the TX timeout timer. */
6448	sc->watchdog_timer = 0;
6449
6450	/* Clear the tx hardware queue full flag. */
6451	if (sc->used_tx_bd < sc->max_tx_bd) {
6452		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6453		    DBPRINT(sc, BCE_INFO_SEND,
6454		    "%s(): Open TX chain! %d/%d (used/total)\n",
6455		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6456		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6457	}
6458
6459	sc->tx_cons = sw_tx_cons;
6460
6461	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6462	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6463	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6464	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6465}
6466
6467
6468/****************************************************************************/
6469/* Disables interrupt generation.                                           */
6470/*                                                                          */
6471/* Returns:                                                                 */
6472/*   Nothing.                                                               */
6473/****************************************************************************/
6474static void
6475bce_disable_intr(struct bce_softc *sc)
6476{
6477	DBENTER(BCE_VERBOSE_INTR);
6478
6479	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6480	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6481
6482	DBEXIT(BCE_VERBOSE_INTR);
6483}
6484
6485
6486/****************************************************************************/
6487/* Enables interrupt generation.                                            */
6488/*                                                                          */
6489/* Returns:                                                                 */
6490/*   Nothing.                                                               */
6491/****************************************************************************/
6492static void
6493bce_enable_intr(struct bce_softc *sc, int coal_now)
6494{
6495	DBENTER(BCE_VERBOSE_INTR);
6496
6497	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6498	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6499	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6500
6501	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6502	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6503
6504	/* Force an immediate interrupt (whether there is new data or not). */
6505	if (coal_now)
6506		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6507
6508	DBEXIT(BCE_VERBOSE_INTR);
6509}
6510
6511
6512/****************************************************************************/
6513/* Handles controller initialization.                                       */
6514/*                                                                          */
6515/* Returns:                                                                 */
6516/*   Nothing.                                                               */
6517/****************************************************************************/
6518static void
6519bce_init_locked(struct bce_softc *sc)
6520{
6521	struct ifnet *ifp;
6522	u32 ether_mtu = 0;
6523
6524	DBENTER(BCE_VERBOSE_RESET);
6525
6526	BCE_LOCK_ASSERT(sc);
6527
6528	ifp = sc->bce_ifp;
6529
6530	/* Check if the driver is still running and bail out if it is. */
6531	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6532		goto bce_init_locked_exit;
6533
6534	bce_stop(sc);
6535
6536	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6537		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6538		    __FILE__, __LINE__);
6539		goto bce_init_locked_exit;
6540	}
6541
6542	if (bce_chipinit(sc)) {
6543		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6544		    __FILE__, __LINE__);
6545		goto bce_init_locked_exit;
6546	}
6547
6548	if (bce_blockinit(sc)) {
6549		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6550		    __FILE__, __LINE__);
6551		goto bce_init_locked_exit;
6552	}
6553
6554	/* Load our MAC address. */
6555	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6556	bce_set_mac_addr(sc);
6557
6558	/*
6559	 * Calculate and program the hardware Ethernet MTU
6560	 * size. Be generous on the receive if we have room.
6561	 */
6562#ifdef BCE_JUMBO_HDRSPLIT
6563	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6564	    sc->pg_bd_mbuf_alloc_size))
6565		ether_mtu = sc->rx_bd_mbuf_data_len +
6566		    sc->pg_bd_mbuf_alloc_size;
6567#else
6568	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6569		ether_mtu = sc->rx_bd_mbuf_data_len;
6570#endif
6571	else
6572		ether_mtu = ifp->if_mtu;
6573
6574	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6575
6576	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6577	    __FUNCTION__, ether_mtu);
6578
6579	/* Program the mtu, enabling jumbo frame support if necessary. */
6580	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6581		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6582		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6583		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6584	else
6585		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6586
6587	DBPRINT(sc, BCE_INFO_LOAD,
6588	    "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6589	    "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6590	    sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6591	    sc->rx_bd_mbuf_align_pad);
6592
6593	/* Program appropriate promiscuous/multicast filtering. */
6594	bce_set_rx_mode(sc);
6595
6596#ifdef BCE_JUMBO_HDRSPLIT
6597	DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6598	    __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6599
6600	/* Init page buffer descriptor chain. */
6601	bce_init_pg_chain(sc);
6602#endif
6603
6604	/* Init RX buffer descriptor chain. */
6605	bce_init_rx_chain(sc);
6606
6607	/* Init TX buffer descriptor chain. */
6608	bce_init_tx_chain(sc);
6609
6610	/* Enable host interrupts. */
6611	bce_enable_intr(sc, 1);
6612
6613	bce_ifmedia_upd_locked(ifp);
6614
6615	/* Let the OS know the driver is up and running. */
6616	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6617	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6618
6619	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6620
6621bce_init_locked_exit:
6622	DBEXIT(BCE_VERBOSE_RESET);
6623}
6624
6625
6626/****************************************************************************/
6627/* Initialize the controller just enough so that any management firmware    */
6628/* running on the device will continue to operate correctly.                */
6629/*                                                                          */
6630/* Returns:                                                                 */
6631/*   Nothing.                                                               */
6632/****************************************************************************/
6633static void
6634bce_mgmt_init_locked(struct bce_softc *sc)
6635{
6636	struct ifnet *ifp;
6637
6638	DBENTER(BCE_VERBOSE_RESET);
6639
6640	BCE_LOCK_ASSERT(sc);
6641
6642	/* Bail out if management firmware is not running. */
6643	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6644		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6645		    "No management firmware running...\n");
6646		goto bce_mgmt_init_locked_exit;
6647	}
6648
6649	ifp = sc->bce_ifp;
6650
6651	/* Enable all critical blocks in the MAC. */
6652	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6653	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6654	DELAY(20);
6655
6656	bce_ifmedia_upd_locked(ifp);
6657
6658bce_mgmt_init_locked_exit:
6659	DBEXIT(BCE_VERBOSE_RESET);
6660}
6661
6662
6663/****************************************************************************/
6664/* Handles controller initialization when called from an unlocked routine.  */
6665/*                                                                          */
6666/* Returns:                                                                 */
6667/*   Nothing.                                                               */
6668/****************************************************************************/
6669static void
6670bce_init(void *xsc)
6671{
6672	struct bce_softc *sc = xsc;
6673
6674	DBENTER(BCE_VERBOSE_RESET);
6675
6676	BCE_LOCK(sc);
6677	bce_init_locked(sc);
6678	BCE_UNLOCK(sc);
6679
6680	DBEXIT(BCE_VERBOSE_RESET);
6681}
6682
6683
6684/****************************************************************************/
6685/* Modifies an mbuf for TSO on the hardware.                                */
6686/*                                                                          */
6687/* Returns:                                                                 */
6688/*   Pointer to a modified mbuf.                                            */
6689/****************************************************************************/
6690static struct mbuf *
6691bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6692{
6693	struct mbuf *m;
6694	struct ether_header *eh;
6695	struct ip *ip;
6696	struct tcphdr *th;
6697	u16 etype;
6698	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6699
6700	DBRUN(sc->tso_frames_requested++);
6701
6702	/* Controller may modify mbuf chains. */
6703	if (M_WRITABLE(*m_head) == 0) {
6704		m = m_dup(*m_head, M_DONTWAIT);
6705		m_freem(*m_head);
6706		if (m == NULL) {
6707			sc->mbuf_alloc_failed_count++;
6708			*m_head = NULL;
6709			return (NULL);
6710		}
6711		*m_head = m;
6712	}
6713
6714	/*
6715	 * For TSO the controller needs two pieces of info,
6716	 * the MSS and the IP+TCP options length.
6717	 */
6718	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
6719	if (m == NULL) {
6720		*m_head = NULL;
6721		return (NULL);
6722	}
6723	eh = mtod(m, struct ether_header *);
6724	etype = ntohs(eh->ether_type);
6725
6726	/* Check for supported TSO Ethernet types (only IPv4 for now) */
6727	switch (etype) {
6728	case ETHERTYPE_IP:
6729		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6730		/* TSO only supported for TCP protocol. */
6731		if (ip->ip_p != IPPROTO_TCP) {
6732			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6733			    __FILE__, __LINE__);
6734			m_freem(*m_head);
6735			*m_head = NULL;
6736			return (NULL);
6737		}
6738
6739		/* Get IP header length in bytes (min 20) */
6740		ip_hlen = ip->ip_hl << 2;
6741		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
6742		    sizeof(struct tcphdr));
6743		if (m == NULL) {
6744			*m_head = NULL;
6745			return (NULL);
6746		}
6747
6748		/* Get the TCP header length in bytes (min 20) */
6749		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6750		tcp_hlen = (th->th_off << 2);
6751
6752		/* Make sure all IP/TCP options live in the same buffer. */
6753		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
6754		    tcp_hlen);
6755		if (m == NULL) {
6756			*m_head = NULL;
6757			return (NULL);
6758		}
6759
6760		/* IP header length and checksum will be calc'd by hardware */
6761		ip_len = ip->ip_len;
6762		ip->ip_len = 0;
6763		ip->ip_sum = 0;
6764		break;
6765	case ETHERTYPE_IPV6:
6766		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6767		    __FILE__, __LINE__);
6768		m_freem(*m_head);
6769		*m_head = NULL;
6770		return (NULL);
6771		/* NOT REACHED */
6772	default:
6773		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6774		    __FILE__, __LINE__);
6775		m_freem(*m_head);
6776		*m_head = NULL;
6777		return (NULL);
6778	}
6779
6780	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
6781
6782	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
6783	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6784	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
6785	    tcp_hlen, ip_len);
6786
6787	/* Set the LSO flag in the TX BD */
6788	*flags |= TX_BD_FLAGS_SW_LSO;
6789
6790	/* Set the length of IP + TCP options (in 32 bit words) */
6791	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
6792	    sizeof(struct tcphdr)) >> 2) << 8);
6793
6794	DBRUN(sc->tso_frames_completed++);
6795	return (*m_head);
6796}
6797
6798
6799/****************************************************************************/
6800/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6801/* memory visible to the controller.                                        */
6802/*                                                                          */
6803/* Returns:                                                                 */
6804/*   0 for success, positive value for failure.                             */
6805/* Modified:                                                                */
6806/*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6807/****************************************************************************/
6808static int
6809bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6810{
6811	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6812	bus_dmamap_t map;
6813	struct tx_bd *txbd = NULL;
6814	struct mbuf *m0;
6815	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
6816	u32 prod_bseq;
6817
6818#ifdef BCE_DEBUG
6819	u16 debug_prod;
6820#endif
6821
6822	int i, error, nsegs, rc = 0;
6823
6824	DBENTER(BCE_VERBOSE_SEND);
6825
6826	/* Make sure we have room in the TX chain. */
6827	if (sc->used_tx_bd >= sc->max_tx_bd)
6828		goto bce_tx_encap_exit;
6829
6830	/* Transfer any checksum offload flags to the bd. */
6831	m0 = *m_head;
6832	if (m0->m_pkthdr.csum_flags) {
6833		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6834			m0 = bce_tso_setup(sc, m_head, &flags);
6835			if (m0 == NULL) {
6836				DBRUN(sc->tso_frames_failed++);
6837				goto bce_tx_encap_exit;
6838			}
6839			mss = htole16(m0->m_pkthdr.tso_segsz);
6840		} else {
6841			if (m0->m_pkthdr.csum_flags & CSUM_IP)
6842				flags |= TX_BD_FLAGS_IP_CKSUM;
6843			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6844				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6845		}
6846	}
6847
6848	/* Transfer any VLAN tags to the bd. */
6849	if (m0->m_flags & M_VLANTAG) {
6850		flags |= TX_BD_FLAGS_VLAN_TAG;
6851		vlan_tag = m0->m_pkthdr.ether_vtag;
6852	}
6853
6854	/* Map the mbuf into DMAable memory. */
6855	prod = sc->tx_prod;
6856	chain_prod = TX_CHAIN_IDX(prod);
6857	map = sc->tx_mbuf_map[chain_prod];
6858
6859	/* Map the mbuf into our DMA address space. */
6860	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6861	    segs, &nsegs, BUS_DMA_NOWAIT);
6862
6863	/* Check if the DMA mapping was successful */
6864	if (error == EFBIG) {
6865		sc->mbuf_frag_count++;
6866
6867		/* Try to defrag the mbuf. */
6868		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
6869		if (m0 == NULL) {
6870			/* Defrag was unsuccessful */
6871			m_freem(*m_head);
6872			*m_head = NULL;
6873			sc->mbuf_alloc_failed_count++;
6874			rc = ENOBUFS;
6875			goto bce_tx_encap_exit;
6876		}
6877
6878		/* Defrag was successful, try mapping again */
6879		*m_head = m0;
6880		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
6881		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
6882
6883		/* Still getting an error after a defrag. */
6884		if (error == ENOMEM) {
6885			/* Insufficient DMA buffers available. */
6886			sc->dma_map_addr_tx_failed_count++;
6887			rc = error;
6888			goto bce_tx_encap_exit;
6889		} else if (error != 0) {
6890			/* Release it and return an error. */
6891			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
6892			    "TX chain!\n", __FILE__, __LINE__);
6893			m_freem(m0);
6894			*m_head = NULL;
6895			sc->dma_map_addr_tx_failed_count++;
6896			rc = ENOBUFS;
6897			goto bce_tx_encap_exit;
6898		}
6899	} else if (error == ENOMEM) {
6900		/* Insufficient DMA buffers available. */
6901		sc->dma_map_addr_tx_failed_count++;
6902		rc = error;
6903		goto bce_tx_encap_exit;
6904	} else if (error != 0) {
6905		m_freem(m0);
6906		*m_head = NULL;
6907		sc->dma_map_addr_tx_failed_count++;
6908		rc = error;
6909		goto bce_tx_encap_exit;
6910	}
6911
6912	/* Make sure there's room in the chain */
6913	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6914		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6915		rc = ENOBUFS;
6916		goto bce_tx_encap_exit;
6917	}
6918
6919	/* prod points to an empty tx_bd at this point. */
6920	prod_bseq  = sc->tx_prod_bseq;
6921
6922#ifdef BCE_DEBUG
6923	debug_prod = chain_prod;
6924#endif
6925
6926	DBPRINT(sc, BCE_INFO_SEND,
6927	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6928	    "prod_bseq = 0x%08X\n",
6929	    __FUNCTION__, prod, chain_prod, prod_bseq);
6930
6931	/*
6932	 * Cycle through each mbuf segment that makes up
6933	 * the outgoing frame, gathering the mapping info
6934	 * for that segment and creating a tx_bd for
6935	 * the mbuf.
6936	 */
6937	for (i = 0; i < nsegs ; i++) {
6938
6939		chain_prod = TX_CHAIN_IDX(prod);
6940		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
6941		    [TX_IDX(chain_prod)];
6942
6943		txbd->tx_bd_haddr_lo =
6944		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
6945		txbd->tx_bd_haddr_hi =
6946		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
6947		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
6948		    htole16(segs[i].ds_len);
6949		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6950		txbd->tx_bd_flags = htole16(flags);
6951		prod_bseq += segs[i].ds_len;
6952		if (i == 0)
6953			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6954		prod = NEXT_TX_BD(prod);
6955	}
6956
6957	/* Set the END flag on the last TX buffer descriptor. */
6958	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6959
6960	DBRUNMSG(BCE_EXTREME_SEND,
6961	    bce_dump_tx_chain(sc, debug_prod, nsegs));
6962
6963	/*
6964	 * Ensure that the mbuf pointer for this transmission
6965	 * is placed at the array index of the last
6966	 * descriptor in this chain.  This is done
6967	 * because a single map is used for all
6968	 * segments of the mbuf and we don't want to
6969	 * unload the map before all of the segments
6970	 * have been freed.
6971	 */
6972	sc->tx_mbuf_ptr[chain_prod] = m0;
6973	sc->used_tx_bd += nsegs;
6974
6975	/* Update some debug statistic counters */
6976	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6977	    sc->tx_hi_watermark = sc->used_tx_bd);
6978	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6979	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6980
6981	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6982
6983	/* prod points to the next free tx_bd at this point. */
6984	sc->tx_prod = prod;
6985	sc->tx_prod_bseq = prod_bseq;
6986
6987	/* Tell the chip about the waiting TX frames. */
6988	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
6989	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6990	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
6991	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6992
6993bce_tx_encap_exit:
6994	DBEXIT(BCE_VERBOSE_SEND);
6995	return(rc);
6996}
6997
6998
6999/****************************************************************************/
7000/* Main transmit routine when called from another routine with a lock.      */
7001/*                                                                          */
7002/* Returns:                                                                 */
7003/*   Nothing.                                                               */
7004/****************************************************************************/
7005static void
7006bce_start_locked(struct ifnet *ifp)
7007{
7008	struct bce_softc *sc = ifp->if_softc;
7009	struct mbuf *m_head = NULL;
7010	int count = 0;
7011	u16 tx_prod, tx_chain_prod;
7012
7013	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7014
7015	BCE_LOCK_ASSERT(sc);
7016
7017	/* prod points to the next free tx_bd. */
7018	tx_prod = sc->tx_prod;
7019	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7020
7021	DBPRINT(sc, BCE_INFO_SEND,
7022	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7023	    "tx_prod_bseq = 0x%08X\n",
7024	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7025
7026	/* If there's no link or the transmit queue is empty then just exit. */
7027	if (sc->bce_link_up == FALSE) {
7028		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7029		    __FUNCTION__);
7030		goto bce_start_locked_exit;
7031	}
7032
7033	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7034		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7035		    __FUNCTION__);
7036		goto bce_start_locked_exit;
7037	}
7038
7039	/*
7040	 * Keep adding entries while there is space in the ring.
7041	 */
7042	while (sc->used_tx_bd < sc->max_tx_bd) {
7043
7044		/* Check for any frames to send. */
7045		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7046
7047		/* Stop when the transmit queue is empty. */
7048		if (m_head == NULL)
7049			break;
7050
7051		/*
7052		 * Pack the data into the transmit ring. If we
7053		 * don't have room, place the mbuf back at the
7054		 * head of the queue and set the OACTIVE flag
7055		 * to wait for the NIC to drain the chain.
7056		 */
7057		if (bce_tx_encap(sc, &m_head)) {
7058			if (m_head != NULL)
7059				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7060			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7061			DBPRINT(sc, BCE_INFO_SEND,
7062			    "TX chain is closed for business! Total "
7063			    "tx_bd used = %d\n", sc->used_tx_bd);
7064			break;
7065		}
7066
7067		count++;
7068
7069		/* Send a copy of the frame to any BPF listeners. */
7070		ETHER_BPF_MTAP(ifp, m_head);
7071	}
7072
7073	/* Exit if no packets were dequeued. */
7074	if (count == 0) {
7075		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7076		    "dequeued\n", __FUNCTION__);
7077		goto bce_start_locked_exit;
7078	}
7079
7080	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7081	    "send queue.\n", __FUNCTION__, count);
7082
7083	/* Set the tx timeout. */
7084	sc->watchdog_timer = BCE_TX_TIMEOUT;
7085
7086	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7087	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7088
7089bce_start_locked_exit:
7090	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7091	return;
7092}
7093
7094
7095/****************************************************************************/
7096/* Main transmit routine when called from another routine without a lock.   */
7097/*                                                                          */
7098/* Returns:                                                                 */
7099/*   Nothing.                                                               */
7100/****************************************************************************/
7101static void
7102bce_start(struct ifnet *ifp)
7103{
7104	struct bce_softc *sc = ifp->if_softc;
7105
7106	DBENTER(BCE_VERBOSE_SEND);
7107
7108	BCE_LOCK(sc);
7109	bce_start_locked(ifp);
7110	BCE_UNLOCK(sc);
7111
7112	DBEXIT(BCE_VERBOSE_SEND);
7113}
7114
7115
7116/****************************************************************************/
7117/* Handles any IOCTL calls from the operating system.                       */
7118/*                                                                          */
7119/* Returns:                                                                 */
7120/*   0 for success, positive value for failure.                             */
7121/****************************************************************************/
7122static int
7123bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7124{
7125	struct bce_softc *sc = ifp->if_softc;
7126	struct ifreq *ifr = (struct ifreq *) data;
7127	struct mii_data *mii;
7128	int mask, error = 0, reinit;
7129
7130	DBENTER(BCE_VERBOSE_MISC);
7131
7132	switch(command) {
7133
7134	/* Set the interface MTU. */
7135	case SIOCSIFMTU:
7136		/* Check that the MTU setting is supported. */
7137		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7138			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7139			error = EINVAL;
7140			break;
7141		}
7142
7143		DBPRINT(sc, BCE_INFO_MISC,
7144		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7145		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7146
7147		BCE_LOCK(sc);
7148		ifp->if_mtu = ifr->ifr_mtu;
7149		reinit = 0;
7150		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7151			/*
7152			 * Because allocation size is used in RX
7153			 * buffer allocation, stop controller if
7154			 * it is already running.
7155			 */
7156			bce_stop(sc);
7157			reinit = 1;
7158		}
7159#ifdef BCE_JUMBO_HDRSPLIT
7160		/* No buffer allocation size changes are necessary. */
7161#else
7162		/* Recalculate our buffer allocation sizes. */
7163		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
7164		     ETHER_CRC_LEN) > MCLBYTES) {
7165			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
7166			sc->rx_bd_mbuf_align_pad  =
7167			    roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
7168			sc->rx_bd_mbuf_data_len =
7169			    sc->rx_bd_mbuf_alloc_size -
7170			    sc->rx_bd_mbuf_align_pad;
7171		} else {
7172			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
7173			sc->rx_bd_mbuf_align_pad  =
7174			    roundup2(MCLBYTES, 16) - MCLBYTES;
7175			sc->rx_bd_mbuf_data_len =
7176			    sc->rx_bd_mbuf_alloc_size -
7177			    sc->rx_bd_mbuf_align_pad;
7178		}
7179#endif
7180
7181		if (reinit != 0)
7182			bce_init_locked(sc);
7183		BCE_UNLOCK(sc);
7184		break;
7185
7186	/* Set interface flags. */
7187	case SIOCSIFFLAGS:
7188		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7189
7190		BCE_LOCK(sc);
7191
7192		/* Check if the interface is up. */
7193		if (ifp->if_flags & IFF_UP) {
7194			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7195				/* Change promiscuous/multicast flags as necessary. */
7196				bce_set_rx_mode(sc);
7197			} else {
7198				/* Start the HW */
7199				bce_init_locked(sc);
7200			}
7201		} else {
7202			/* The interface is down, check if driver is running. */
7203			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7204				bce_stop(sc);
7205
7206				/* If MFW is running, restart the controller a bit. */
7207				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7208					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7209					bce_chipinit(sc);
7210					bce_mgmt_init_locked(sc);
7211				}
7212			}
7213		}
7214
7215		BCE_UNLOCK(sc);
7216		break;
7217
7218	/* Add/Delete multicast address */
7219	case SIOCADDMULTI:
7220	case SIOCDELMULTI:
7221		DBPRINT(sc, BCE_VERBOSE_MISC,
7222		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7223
7224		BCE_LOCK(sc);
7225		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7226			bce_set_rx_mode(sc);
7227		BCE_UNLOCK(sc);
7228
7229		break;
7230
7231	/* Set/Get Interface media */
7232	case SIOCSIFMEDIA:
7233	case SIOCGIFMEDIA:
7234		DBPRINT(sc, BCE_VERBOSE_MISC,
7235		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7236
7237		mii = device_get_softc(sc->bce_miibus);
7238		error = ifmedia_ioctl(ifp, ifr,
7239		    &mii->mii_media, command);
7240		break;
7241
7242	/* Set interface capability */
7243	case SIOCSIFCAP:
7244		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7245		DBPRINT(sc, BCE_INFO_MISC,
7246		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7247
7248		/* Toggle the TX checksum capabilities enable flag. */
7249		if (mask & IFCAP_TXCSUM &&
7250		    ifp->if_capabilities & IFCAP_TXCSUM) {
7251			ifp->if_capenable ^= IFCAP_TXCSUM;
7252			if (IFCAP_TXCSUM & ifp->if_capenable)
7253				ifp->if_hwassist |= BCE_IF_HWASSIST;
7254			else
7255				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7256		}
7257
7258		/* Toggle the RX checksum capabilities enable flag. */
7259		if (mask & IFCAP_RXCSUM &&
7260		    ifp->if_capabilities & IFCAP_RXCSUM)
7261			ifp->if_capenable ^= IFCAP_RXCSUM;
7262
7263		/* Toggle the TSO capabilities enable flag. */
7264		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7265		    ifp->if_capabilities & IFCAP_TSO4) {
7266			ifp->if_capenable ^= IFCAP_TSO4;
7267			if (IFCAP_TSO4 & ifp->if_capenable)
7268				ifp->if_hwassist |= CSUM_TSO;
7269			else
7270				ifp->if_hwassist &= ~CSUM_TSO;
7271		}
7272
7273		if (mask & IFCAP_VLAN_HWCSUM &&
7274		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7275			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7276
7277		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7278		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7279			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7280		/*
7281		 * Don't actually disable VLAN tag stripping as
7282		 * management firmware (ASF/IPMI/UMP) requires the
7283		 * feature. If VLAN tag stripping is disabled driver
7284		 * will manually reconstruct the VLAN frame by
7285		 * appending stripped VLAN tag.
7286		 */
7287		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7288		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7289			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7290			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7291			    == 0)
7292				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7293		}
7294		VLAN_CAPABILITIES(ifp);
7295		break;
7296	default:
7297		/* We don't know how to handle the IOCTL, pass it on. */
7298		error = ether_ioctl(ifp, command, data);
7299		break;
7300	}
7301
7302	DBEXIT(BCE_VERBOSE_MISC);
7303	return(error);
7304}
7305
7306
7307/****************************************************************************/
7308/* Transmit timeout handler.                                                */
7309/*                                                                          */
7310/* Returns:                                                                 */
7311/*   Nothing.                                                               */
7312/****************************************************************************/
7313static void
7314bce_watchdog(struct bce_softc *sc)
7315{
7316	DBENTER(BCE_EXTREME_SEND);
7317
7318	BCE_LOCK_ASSERT(sc);
7319
7320	/* If the watchdog timer hasn't expired then just exit. */
7321	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7322		goto bce_watchdog_exit;
7323
7324	/* If pause frames are active then don't reset the hardware. */
7325	/* ToDo: Should we reset the timer here? */
7326	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7327		goto bce_watchdog_exit;
7328
7329	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7330	    __FILE__, __LINE__);
7331
7332	DBRUNMSG(BCE_INFO,
7333	    bce_dump_driver_state(sc);
7334	    bce_dump_status_block(sc);
7335	    bce_dump_stats_block(sc);
7336	    bce_dump_ftqs(sc);
7337	    bce_dump_txp_state(sc, 0);
7338	    bce_dump_rxp_state(sc, 0);
7339	    bce_dump_tpat_state(sc, 0);
7340	    bce_dump_cp_state(sc, 0);
7341	    bce_dump_com_state(sc, 0));
7342
7343	DBRUN(bce_breakpoint(sc));
7344
7345	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7346
7347	bce_init_locked(sc);
7348	sc->bce_ifp->if_oerrors++;
7349
7350bce_watchdog_exit:
7351	DBEXIT(BCE_EXTREME_SEND);
7352}
7353
7354
7355/*
7356 * Interrupt handler.
7357 */
7358/****************************************************************************/
7359/* Main interrupt entry point.  Verifies that the controller generated the  */
7360/* interrupt and then calls a separate routine for handle the various       */
7361/* interrupt causes (PHY, TX, RX).                                          */
7362/*                                                                          */
7363/* Returns:                                                                 */
7364/*   0 for success, positive value for failure.                             */
7365/****************************************************************************/
7366static void
7367bce_intr(void *xsc)
7368{
7369	struct bce_softc *sc;
7370	struct ifnet *ifp;
7371	u32 status_attn_bits;
7372	u16 hw_rx_cons, hw_tx_cons;
7373
7374	sc = xsc;
7375	ifp = sc->bce_ifp;
7376
7377	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7378	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7379	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7380
7381	BCE_LOCK(sc);
7382
7383	DBRUN(sc->interrupts_generated++);
7384
7385	/* Synchnorize before we read from interface's status block */
7386	bus_dmamap_sync(sc->status_tag, sc->status_map,
7387	    BUS_DMASYNC_POSTREAD);
7388
7389	/*
7390	 * If the hardware status block index
7391	 * matches the last value read by the
7392	 * driver and we haven't asserted our
7393	 * interrupt then there's nothing to do.
7394	 */
7395	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7396	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7397	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7398		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7399		    __FUNCTION__);
7400		goto bce_intr_exit;
7401	}
7402
7403	/* Ack the interrupt and stop others from occuring. */
7404	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7405	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7406	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7407
7408	/* Check if the hardware has finished any work. */
7409	hw_rx_cons = bce_get_hw_rx_cons(sc);
7410	hw_tx_cons = bce_get_hw_tx_cons(sc);
7411
7412	/* Keep processing data as long as there is work to do. */
7413	for (;;) {
7414
7415		status_attn_bits = sc->status_block->status_attn_bits;
7416
7417		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7418		    BCE_PRINTF("Simulating unexpected status attention "
7419		    "bit set.");
7420		    sc->unexpected_attention_sim_count++;
7421		    status_attn_bits = status_attn_bits |
7422		    STATUS_ATTN_BITS_PARITY_ERROR);
7423
7424		/* Was it a link change interrupt? */
7425		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7426		    (sc->status_block->status_attn_bits_ack &
7427		     STATUS_ATTN_BITS_LINK_STATE)) {
7428			bce_phy_intr(sc);
7429
7430			/* Clear transient updates during link state change. */
7431			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7432			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7433			REG_RD(sc, BCE_HC_COMMAND);
7434		}
7435
7436		/* If any other attention is asserted, the chip is toast. */
7437		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7438		    (sc->status_block->status_attn_bits_ack &
7439		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7440
7441			sc->unexpected_attention_count++;
7442
7443			BCE_PRINTF("%s(%d): Fatal attention detected: "
7444			    "0x%08X\n",	__FILE__, __LINE__,
7445			    sc->status_block->status_attn_bits);
7446
7447			DBRUNMSG(BCE_FATAL,
7448			    if (unexpected_attention_sim_control == 0)
7449				bce_breakpoint(sc));
7450
7451			bce_init_locked(sc);
7452			goto bce_intr_exit;
7453		}
7454
7455		/* Check for any completed RX frames. */
7456		if (hw_rx_cons != sc->hw_rx_cons)
7457			bce_rx_intr(sc);
7458
7459		/* Check for any completed TX frames. */
7460		if (hw_tx_cons != sc->hw_tx_cons)
7461			bce_tx_intr(sc);
7462
7463		/* Save status block index value for the next interrupt. */
7464		sc->last_status_idx = sc->status_block->status_idx;
7465
7466 		/*
7467 		 * Prevent speculative reads from getting
7468 		 * ahead of the status block.
7469		 */
7470		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7471		    BUS_SPACE_BARRIER_READ);
7472
7473 		/*
7474 		 * If there's no work left then exit the
7475 		 * interrupt service routine.
7476		 */
7477		hw_rx_cons = bce_get_hw_rx_cons(sc);
7478		hw_tx_cons = bce_get_hw_tx_cons(sc);
7479
7480		if ((hw_rx_cons == sc->hw_rx_cons) &&
7481		    (hw_tx_cons == sc->hw_tx_cons))
7482			break;
7483
7484	}
7485
7486	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7487	    BUS_DMASYNC_PREREAD);
7488
7489	/* Re-enable interrupts. */
7490	bce_enable_intr(sc, 0);
7491
7492	/* Handle any frames that arrived while handling the interrupt. */
7493	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7494	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7495		bce_start_locked(ifp);
7496
7497bce_intr_exit:
7498	BCE_UNLOCK(sc);
7499
7500	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7501}
7502
7503
7504/****************************************************************************/
7505/* Programs the various packet receive modes (broadcast and multicast).     */
7506/*                                                                          */
7507/* Returns:                                                                 */
7508/*   Nothing.                                                               */
7509/****************************************************************************/
7510static void
7511bce_set_rx_mode(struct bce_softc *sc)
7512{
7513	struct ifnet *ifp;
7514	struct ifmultiaddr *ifma;
7515	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7516	u32 rx_mode, sort_mode;
7517	int h, i;
7518
7519	DBENTER(BCE_VERBOSE_MISC);
7520
7521	BCE_LOCK_ASSERT(sc);
7522
7523	ifp = sc->bce_ifp;
7524
7525	/* Initialize receive mode default settings. */
7526	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7527	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7528	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7529
7530	/*
7531	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7532	 * be enbled.
7533	 */
7534	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7535	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7536		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7537
7538	/*
7539	 * Check for promiscuous, all multicast, or selected
7540	 * multicast address filtering.
7541	 */
7542	if (ifp->if_flags & IFF_PROMISC) {
7543		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7544
7545		/* Enable promiscuous mode. */
7546		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7547		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7548	} else if (ifp->if_flags & IFF_ALLMULTI) {
7549		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7550
7551		/* Enable all multicast addresses. */
7552		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7553			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7554       	}
7555		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7556	} else {
7557		/* Accept one or more multicast(s). */
7558		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7559
7560		if_maddr_rlock(ifp);
7561		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7562			if (ifma->ifma_addr->sa_family != AF_LINK)
7563				continue;
7564			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7565			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7566			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7567		}
7568		if_maddr_runlock(ifp);
7569
7570		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7571			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7572
7573		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7574	}
7575
7576	/* Only make changes if the recive mode has actually changed. */
7577	if (rx_mode != sc->rx_mode) {
7578		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7579		    "0x%08X\n", rx_mode);
7580
7581		sc->rx_mode = rx_mode;
7582		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7583	}
7584
7585	/* Disable and clear the exisitng sort before enabling a new sort. */
7586	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7587	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7588	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7589
7590	DBEXIT(BCE_VERBOSE_MISC);
7591}
7592
7593
7594/****************************************************************************/
7595/* Called periodically to updates statistics from the controllers           */
7596/* statistics block.                                                        */
7597/*                                                                          */
7598/* Returns:                                                                 */
7599/*   Nothing.                                                               */
7600/****************************************************************************/
7601static void
7602bce_stats_update(struct bce_softc *sc)
7603{
7604	struct ifnet *ifp;
7605	struct statistics_block *stats;
7606
7607	DBENTER(BCE_EXTREME_MISC);
7608
7609	ifp = sc->bce_ifp;
7610
7611	stats = (struct statistics_block *) sc->stats_block;
7612
7613	/*
7614	 * Certain controllers don't report
7615	 * carrier sense errors correctly.
7616	 * See errata E11_5708CA0_1165.
7617	 */
7618	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7619	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7620		ifp->if_oerrors +=
7621		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7622
7623	/*
7624	 * Update the sysctl statistics from the
7625	 * hardware statistics.
7626	 */
7627	sc->stat_IfHCInOctets =
7628	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7629	     (u64) stats->stat_IfHCInOctets_lo;
7630
7631	sc->stat_IfHCInBadOctets =
7632	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7633	     (u64) stats->stat_IfHCInBadOctets_lo;
7634
7635	sc->stat_IfHCOutOctets =
7636	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7637	     (u64) stats->stat_IfHCOutOctets_lo;
7638
7639	sc->stat_IfHCOutBadOctets =
7640	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7641	     (u64) stats->stat_IfHCOutBadOctets_lo;
7642
7643	sc->stat_IfHCInUcastPkts =
7644	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7645	     (u64) stats->stat_IfHCInUcastPkts_lo;
7646
7647	sc->stat_IfHCInMulticastPkts =
7648	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7649	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7650
7651	sc->stat_IfHCInBroadcastPkts =
7652	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7653	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7654
7655	sc->stat_IfHCOutUcastPkts =
7656	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7657	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7658
7659	sc->stat_IfHCOutMulticastPkts =
7660	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7661	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7662
7663	sc->stat_IfHCOutBroadcastPkts =
7664	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7665	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7666
7667	/* ToDo: Preserve counters beyond 32 bits? */
7668	/* ToDo: Read the statistics from auto-clear regs? */
7669
7670	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7671	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7672
7673	sc->stat_Dot3StatsCarrierSenseErrors =
7674	    stats->stat_Dot3StatsCarrierSenseErrors;
7675
7676	sc->stat_Dot3StatsFCSErrors =
7677	    stats->stat_Dot3StatsFCSErrors;
7678
7679	sc->stat_Dot3StatsAlignmentErrors =
7680	    stats->stat_Dot3StatsAlignmentErrors;
7681
7682	sc->stat_Dot3StatsSingleCollisionFrames =
7683	    stats->stat_Dot3StatsSingleCollisionFrames;
7684
7685	sc->stat_Dot3StatsMultipleCollisionFrames =
7686	    stats->stat_Dot3StatsMultipleCollisionFrames;
7687
7688	sc->stat_Dot3StatsDeferredTransmissions =
7689	    stats->stat_Dot3StatsDeferredTransmissions;
7690
7691	sc->stat_Dot3StatsExcessiveCollisions =
7692	    stats->stat_Dot3StatsExcessiveCollisions;
7693
7694	sc->stat_Dot3StatsLateCollisions =
7695	    stats->stat_Dot3StatsLateCollisions;
7696
7697	sc->stat_EtherStatsCollisions =
7698	    stats->stat_EtherStatsCollisions;
7699
7700	sc->stat_EtherStatsFragments =
7701	    stats->stat_EtherStatsFragments;
7702
7703	sc->stat_EtherStatsJabbers =
7704	    stats->stat_EtherStatsJabbers;
7705
7706	sc->stat_EtherStatsUndersizePkts =
7707	    stats->stat_EtherStatsUndersizePkts;
7708
7709	sc->stat_EtherStatsOversizePkts =
7710	     stats->stat_EtherStatsOversizePkts;
7711
7712	sc->stat_EtherStatsPktsRx64Octets =
7713	    stats->stat_EtherStatsPktsRx64Octets;
7714
7715	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7716	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7717
7718	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7719	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7720
7721	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7722	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7723
7724	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7725	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7726
7727	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7728	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7729
7730	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7731	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7732
7733	sc->stat_EtherStatsPktsTx64Octets =
7734	    stats->stat_EtherStatsPktsTx64Octets;
7735
7736	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7737	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7738
7739	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7740	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7741
7742	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7743	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7744
7745	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7746	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7747
7748	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7749	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7750
7751	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7752	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7753
7754	sc->stat_XonPauseFramesReceived =
7755	    stats->stat_XonPauseFramesReceived;
7756
7757	sc->stat_XoffPauseFramesReceived =
7758	    stats->stat_XoffPauseFramesReceived;
7759
7760	sc->stat_OutXonSent =
7761	    stats->stat_OutXonSent;
7762
7763	sc->stat_OutXoffSent =
7764	    stats->stat_OutXoffSent;
7765
7766	sc->stat_FlowControlDone =
7767	    stats->stat_FlowControlDone;
7768
7769	sc->stat_MacControlFramesReceived =
7770	    stats->stat_MacControlFramesReceived;
7771
7772	sc->stat_XoffStateEntered =
7773	    stats->stat_XoffStateEntered;
7774
7775	sc->stat_IfInFramesL2FilterDiscards =
7776	    stats->stat_IfInFramesL2FilterDiscards;
7777
7778	sc->stat_IfInRuleCheckerDiscards =
7779	    stats->stat_IfInRuleCheckerDiscards;
7780
7781	sc->stat_IfInFTQDiscards =
7782	    stats->stat_IfInFTQDiscards;
7783
7784	sc->stat_IfInMBUFDiscards =
7785	    stats->stat_IfInMBUFDiscards;
7786
7787	sc->stat_IfInRuleCheckerP4Hit =
7788	    stats->stat_IfInRuleCheckerP4Hit;
7789
7790	sc->stat_CatchupInRuleCheckerDiscards =
7791	    stats->stat_CatchupInRuleCheckerDiscards;
7792
7793	sc->stat_CatchupInFTQDiscards =
7794	    stats->stat_CatchupInFTQDiscards;
7795
7796	sc->stat_CatchupInMBUFDiscards =
7797	    stats->stat_CatchupInMBUFDiscards;
7798
7799	sc->stat_CatchupInRuleCheckerP4Hit =
7800	    stats->stat_CatchupInRuleCheckerP4Hit;
7801
7802	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7803
7804	/*
7805	 * Update the interface statistics from the
7806	 * hardware statistics.
7807	 */
7808	ifp->if_collisions =
7809	    (u_long) sc->stat_EtherStatsCollisions;
7810
7811	/* ToDo: This method loses soft errors. */
7812	ifp->if_ierrors =
7813	    (u_long) sc->stat_EtherStatsUndersizePkts +
7814	    (u_long) sc->stat_EtherStatsOversizePkts +
7815	    (u_long) sc->stat_IfInMBUFDiscards +
7816	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
7817	    (u_long) sc->stat_Dot3StatsFCSErrors +
7818	    (u_long) sc->stat_IfInRuleCheckerDiscards +
7819	    (u_long) sc->stat_IfInFTQDiscards +
7820	    (u_long) sc->com_no_buffers;
7821
7822	/* ToDo: This method loses soft errors. */
7823	ifp->if_oerrors =
7824	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7825	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7826	    (u_long) sc->stat_Dot3StatsLateCollisions;
7827
7828	/* ToDo: Add additional statistics? */
7829
7830	DBEXIT(BCE_EXTREME_MISC);
7831}
7832
7833
7834/****************************************************************************/
7835/* Periodic function to notify the bootcode that the driver is still        */
7836/* present.                                                                 */
7837/*                                                                          */
7838/* Returns:                                                                 */
7839/*   Nothing.                                                               */
7840/****************************************************************************/
7841static void
7842bce_pulse(void *xsc)
7843{
7844	struct bce_softc *sc = xsc;
7845	u32 msg;
7846
7847	DBENTER(BCE_EXTREME_MISC);
7848
7849	BCE_LOCK_ASSERT(sc);
7850
7851	/* Tell the firmware that the driver is still running. */
7852	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7853	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7854
7855	/* Update the bootcode condition. */
7856	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
7857
7858	/* Report whether the bootcode still knows the driver is running. */
7859	if (bootverbose) {
7860		if (sc->bce_drv_cardiac_arrest == FALSE) {
7861			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
7862				sc->bce_drv_cardiac_arrest = TRUE;
7863				BCE_PRINTF("%s(): Warning: bootcode "
7864				    "thinks driver is absent! "
7865				    "(bc_state = 0x%08X)\n",
7866				    __FUNCTION__, sc->bc_state);
7867			}
7868		} else {
7869			/*
7870			 * Not supported by all bootcode versions.
7871			 * (v5.0.11+ and v5.2.1+)  Older bootcode
7872			 * will require the driver to reset the
7873			 * controller to clear this condition.
7874			 */
7875			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
7876				sc->bce_drv_cardiac_arrest = FALSE;
7877				BCE_PRINTF("%s(): Bootcode found the "
7878				    "driver pulse! (bc_state = 0x%08X)\n",
7879				    __FUNCTION__, sc->bc_state);
7880			}
7881		}
7882	}
7883
7884
7885	/* Schedule the next pulse. */
7886	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7887
7888	DBEXIT(BCE_EXTREME_MISC);
7889}
7890
7891
7892/****************************************************************************/
7893/* Periodic function to perform maintenance tasks.                          */
7894/*                                                                          */
7895/* Returns:                                                                 */
7896/*   Nothing.                                                               */
7897/****************************************************************************/
7898static void
7899bce_tick(void *xsc)
7900{
7901	struct bce_softc *sc = xsc;
7902	struct mii_data *mii;
7903	struct ifnet *ifp;
7904
7905	ifp = sc->bce_ifp;
7906
7907	DBENTER(BCE_EXTREME_MISC);
7908
7909	BCE_LOCK_ASSERT(sc);
7910
7911	/* Schedule the next tick. */
7912	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7913
7914	/* Update the statistics from the hardware statistics block. */
7915	bce_stats_update(sc);
7916
7917	/* Top off the receive and page chains. */
7918#ifdef BCE_JUMBO_HDRSPLIT
7919	bce_fill_pg_chain(sc);
7920#endif
7921	bce_fill_rx_chain(sc);
7922
7923	/* Check that chip hasn't hung. */
7924	bce_watchdog(sc);
7925
7926	/* If link is up already up then we're done. */
7927	if (sc->bce_link_up == TRUE)
7928		goto bce_tick_exit;
7929
7930	/* Link is down.  Check what the PHY's doing. */
7931	mii = device_get_softc(sc->bce_miibus);
7932	mii_tick(mii);
7933
7934	/* Check if the link has come up. */
7935	if ((mii->mii_media_status & IFM_ACTIVE) &&
7936	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7937		DBPRINT(sc, BCE_VERBOSE_MISC,
7938		    "%s(): Link up!\n", __FUNCTION__);
7939		sc->bce_link_up = TRUE;
7940		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7941		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
7942		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
7943		    bootverbose)
7944			BCE_PRINTF("Gigabit link up!\n");
7945
7946		/* Now that link is up, handle any outstanding TX traffic. */
7947		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7948			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
7949			    "pending TX traffic.\n", __FUNCTION__);
7950			bce_start_locked(ifp);
7951		}
7952	}
7953
7954bce_tick_exit:
7955	DBEXIT(BCE_EXTREME_MISC);
7956	return;
7957}
7958
7959
7960#ifdef BCE_DEBUG
7961/****************************************************************************/
7962/* Allows the driver state to be dumped through the sysctl interface.       */
7963/*                                                                          */
7964/* Returns:                                                                 */
7965/*   0 for success, positive value for failure.                             */
7966/****************************************************************************/
7967static int
7968bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7969{
7970	int error;
7971	int result;
7972	struct bce_softc *sc;
7973
7974	result = -1;
7975	error = sysctl_handle_int(oidp, &result, 0, req);
7976
7977	if (error || !req->newptr)
7978		return (error);
7979
7980	if (result == 1) {
7981		sc = (struct bce_softc *)arg1;
7982		bce_dump_driver_state(sc);
7983	}
7984
7985	return error;
7986}
7987
7988
7989/****************************************************************************/
7990/* Allows the hardware state to be dumped through the sysctl interface.     */
7991/*                                                                          */
7992/* Returns:                                                                 */
7993/*   0 for success, positive value for failure.                             */
7994/****************************************************************************/
7995static int
7996bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7997{
7998	int error;
7999	int result;
8000	struct bce_softc *sc;
8001
8002	result = -1;
8003	error = sysctl_handle_int(oidp, &result, 0, req);
8004
8005	if (error || !req->newptr)
8006		return (error);
8007
8008	if (result == 1) {
8009		sc = (struct bce_softc *)arg1;
8010		bce_dump_hw_state(sc);
8011	}
8012
8013	return error;
8014}
8015
8016
8017/****************************************************************************/
8018/* Allows the status block to be dumped through the sysctl interface.       */
8019/*                                                                          */
8020/* Returns:                                                                 */
8021/*   0 for success, positive value for failure.                             */
8022/****************************************************************************/
8023static int
8024bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8025{
8026	int error;
8027	int result;
8028	struct bce_softc *sc;
8029
8030	result = -1;
8031	error = sysctl_handle_int(oidp, &result, 0, req);
8032
8033	if (error || !req->newptr)
8034		return (error);
8035
8036	if (result == 1) {
8037		sc = (struct bce_softc *)arg1;
8038		bce_dump_status_block(sc);
8039	}
8040
8041	return error;
8042}
8043
8044
8045/****************************************************************************/
8046/* Allows the stats block to be dumped through the sysctl interface.        */
8047/*                                                                          */
8048/* Returns:                                                                 */
8049/*   0 for success, positive value for failure.                             */
8050/****************************************************************************/
8051static int
8052bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8053{
8054	int error;
8055	int result;
8056	struct bce_softc *sc;
8057
8058	result = -1;
8059	error = sysctl_handle_int(oidp, &result, 0, req);
8060
8061	if (error || !req->newptr)
8062		return (error);
8063
8064	if (result == 1) {
8065		sc = (struct bce_softc *)arg1;
8066		bce_dump_stats_block(sc);
8067	}
8068
8069	return error;
8070}
8071
8072
8073/****************************************************************************/
8074/* Allows the stat counters to be cleared without unloading/reloading the   */
8075/* driver.                                                                  */
8076/*                                                                          */
8077/* Returns:                                                                 */
8078/*   0 for success, positive value for failure.                             */
8079/****************************************************************************/
8080static int
8081bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8082{
8083	int error;
8084	int result;
8085	struct bce_softc *sc;
8086
8087	result = -1;
8088	error = sysctl_handle_int(oidp, &result, 0, req);
8089
8090	if (error || !req->newptr)
8091		return (error);
8092
8093	if (result == 1) {
8094		sc = (struct bce_softc *)arg1;
8095
8096		/* Clear the internal H/W statistics counters. */
8097		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8098
8099		/* Reset the driver maintained statistics. */
8100		sc->interrupts_rx =
8101		    sc->interrupts_tx = 0;
8102		sc->tso_frames_requested =
8103		    sc->tso_frames_completed =
8104		    sc->tso_frames_failed = 0;
8105		sc->rx_empty_count =
8106		    sc->tx_full_count = 0;
8107		sc->rx_low_watermark = USABLE_RX_BD;
8108		sc->tx_hi_watermark = 0;
8109		sc->l2fhdr_error_count =
8110		    sc->l2fhdr_error_sim_count = 0;
8111		sc->mbuf_alloc_failed_count =
8112		    sc->mbuf_alloc_failed_sim_count = 0;
8113		sc->dma_map_addr_rx_failed_count =
8114		    sc->dma_map_addr_tx_failed_count = 0;
8115		sc->mbuf_frag_count = 0;
8116		sc->csum_offload_tcp_udp =
8117		   sc->csum_offload_ip = 0;
8118		sc->vlan_tagged_frames_rcvd =
8119		   sc->vlan_tagged_frames_stripped = 0;
8120
8121		/* Clear firmware maintained statistics. */
8122		REG_WR_IND(sc, 0x120084, 0);
8123	}
8124
8125	return error;
8126}
8127
8128
8129/****************************************************************************/
8130/* Allows the bootcode state to be dumped through the sysctl interface.     */
8131/*                                                                          */
8132/* Returns:                                                                 */
8133/*   0 for success, positive value for failure.                             */
8134/****************************************************************************/
8135static int
8136bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8137{
8138	int error;
8139	int result;
8140	struct bce_softc *sc;
8141
8142	result = -1;
8143	error = sysctl_handle_int(oidp, &result, 0, req);
8144
8145	if (error || !req->newptr)
8146		return (error);
8147
8148	if (result == 1) {
8149		sc = (struct bce_softc *)arg1;
8150		bce_dump_bc_state(sc);
8151	}
8152
8153	return error;
8154}
8155
8156
8157/****************************************************************************/
8158/* Provides a sysctl interface to allow dumping the RX BD chain.            */
8159/*                                                                          */
8160/* Returns:                                                                 */
8161/*   0 for success, positive value for failure.                             */
8162/****************************************************************************/
8163static int
8164bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8165{
8166	int error;
8167	int result;
8168	struct bce_softc *sc;
8169
8170	result = -1;
8171	error = sysctl_handle_int(oidp, &result, 0, req);
8172
8173	if (error || !req->newptr)
8174		return (error);
8175
8176	if (result == 1) {
8177		sc = (struct bce_softc *)arg1;
8178		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
8179	}
8180
8181	return error;
8182}
8183
8184
8185/****************************************************************************/
8186/* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8187/*                                                                          */
8188/* Returns:                                                                 */
8189/*   0 for success, positive value for failure.                             */
8190/****************************************************************************/
8191static int
8192bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8193{
8194	int error;
8195	int result;
8196	struct bce_softc *sc;
8197
8198	result = -1;
8199	error = sysctl_handle_int(oidp, &result, 0, req);
8200
8201	if (error || !req->newptr)
8202		return (error);
8203
8204	if (result == 1) {
8205		sc = (struct bce_softc *)arg1;
8206		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
8207	}
8208
8209	return error;
8210}
8211
8212
8213/****************************************************************************/
8214/* Provides a sysctl interface to allow dumping the TX chain.               */
8215/*                                                                          */
8216/* Returns:                                                                 */
8217/*   0 for success, positive value for failure.                             */
8218/****************************************************************************/
8219static int
8220bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8221{
8222	int error;
8223	int result;
8224	struct bce_softc *sc;
8225
8226	result = -1;
8227	error = sysctl_handle_int(oidp, &result, 0, req);
8228
8229	if (error || !req->newptr)
8230		return (error);
8231
8232	if (result == 1) {
8233		sc = (struct bce_softc *)arg1;
8234		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
8235	}
8236
8237	return error;
8238}
8239
8240
8241#ifdef BCE_JUMBO_HDRSPLIT
8242/****************************************************************************/
8243/* Provides a sysctl interface to allow dumping the page chain.             */
8244/*                                                                          */
8245/* Returns:                                                                 */
8246/*   0 for success, positive value for failure.                             */
8247/****************************************************************************/
8248static int
8249bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8250{
8251	int error;
8252	int result;
8253	struct bce_softc *sc;
8254
8255	result = -1;
8256	error = sysctl_handle_int(oidp, &result, 0, req);
8257
8258	if (error || !req->newptr)
8259		return (error);
8260
8261	if (result == 1) {
8262		sc = (struct bce_softc *)arg1;
8263		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
8264	}
8265
8266	return error;
8267}
8268#endif
8269
8270/****************************************************************************/
8271/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8272/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8273/*                                                                          */
8274/* Returns:                                                                 */
8275/*   0 for success, positive value for failure.                             */
8276/****************************************************************************/
8277static int
8278bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8279{
8280	struct bce_softc *sc = (struct bce_softc *)arg1;
8281	int error;
8282	u32 result;
8283	u32 val[1];
8284	u8 *data = (u8 *) val;
8285
8286	result = -1;
8287	error = sysctl_handle_int(oidp, &result, 0, req);
8288	if (error || (req->newptr == NULL))
8289		return (error);
8290
8291	bce_nvram_read(sc, result, data, 4);
8292	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8293
8294	return (error);
8295}
8296
8297
8298/****************************************************************************/
8299/* Provides a sysctl interface to allow reading arbitrary registers in the  */
8300/* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8301/*                                                                          */
8302/* Returns:                                                                 */
8303/*   0 for success, positive value for failure.                             */
8304/****************************************************************************/
8305static int
8306bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8307{
8308	struct bce_softc *sc = (struct bce_softc *)arg1;
8309	int error;
8310	u32 val, result;
8311
8312	result = -1;
8313	error = sysctl_handle_int(oidp, &result, 0, req);
8314	if (error || (req->newptr == NULL))
8315		return (error);
8316
8317	/* Make sure the register is accessible. */
8318	if (result < 0x8000) {
8319		val = REG_RD(sc, result);
8320		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8321	} else if (result < 0x0280000) {
8322		val = REG_RD_IND(sc, result);
8323		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8324	}
8325
8326	return (error);
8327}
8328
8329
8330/****************************************************************************/
8331/* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8332/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8333/*                                                                          */
8334/* Returns:                                                                 */
8335/*   0 for success, positive value for failure.                             */
8336/****************************************************************************/
8337static int
8338bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8339{
8340	struct bce_softc *sc;
8341	device_t dev;
8342	int error, result;
8343	u16 val;
8344
8345	result = -1;
8346	error = sysctl_handle_int(oidp, &result, 0, req);
8347	if (error || (req->newptr == NULL))
8348		return (error);
8349
8350	/* Make sure the register is accessible. */
8351	if (result < 0x20) {
8352		sc = (struct bce_softc *)arg1;
8353		dev = sc->bce_dev;
8354		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8355		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8356	}
8357	return (error);
8358}
8359
8360
8361/****************************************************************************/
8362/* Provides a sysctl interface to allow reading a CID.                      */
8363/*                                                                          */
8364/* Returns:                                                                 */
8365/*   0 for success, positive value for failure.                             */
8366/****************************************************************************/
8367static int
8368bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8369{
8370	struct bce_softc *sc;
8371	int error, result;
8372
8373	result = -1;
8374	error = sysctl_handle_int(oidp, &result, 0, req);
8375	if (error || (req->newptr == NULL))
8376		return (error);
8377
8378	/* Make sure the register is accessible. */
8379	if (result <= TX_CID) {
8380		sc = (struct bce_softc *)arg1;
8381		bce_dump_ctx(sc, result);
8382	}
8383
8384	return (error);
8385}
8386
8387
8388 /****************************************************************************/
8389/* Provides a sysctl interface to forcing the driver to dump state and      */
8390/* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8391/*                                                                          */
8392/* Returns:                                                                 */
8393/*   0 for success, positive value for failure.                             */
8394/****************************************************************************/
8395static int
8396bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8397{
8398	int error;
8399	int result;
8400	struct bce_softc *sc;
8401
8402	result = -1;
8403	error = sysctl_handle_int(oidp, &result, 0, req);
8404
8405	if (error || !req->newptr)
8406		return (error);
8407
8408	if (result == 1) {
8409		sc = (struct bce_softc *)arg1;
8410		bce_breakpoint(sc);
8411	}
8412
8413	return error;
8414}
8415#endif
8416
8417
8418/****************************************************************************/
8419/* Adds any sysctl parameters for tuning or debugging purposes.             */
8420/*                                                                          */
8421/* Returns:                                                                 */
8422/*   0 for success, positive value for failure.                             */
8423/****************************************************************************/
8424static void
8425bce_add_sysctls(struct bce_softc *sc)
8426{
8427	struct sysctl_ctx_list *ctx;
8428	struct sysctl_oid_list *children;
8429
8430	DBENTER(BCE_VERBOSE_MISC);
8431
8432	ctx = device_get_sysctl_ctx(sc->bce_dev);
8433	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8434
8435#ifdef BCE_DEBUG
8436	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8437	    "l2fhdr_error_sim_control",
8438	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8439	    0, "Debug control to force l2fhdr errors");
8440
8441	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8442	    "l2fhdr_error_sim_count",
8443	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8444	    0, "Number of simulated l2_fhdr errors");
8445#endif
8446
8447	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8448	    "l2fhdr_error_count",
8449	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8450	    0, "Number of l2_fhdr errors");
8451
8452#ifdef BCE_DEBUG
8453	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8454	    "mbuf_alloc_failed_sim_control",
8455	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8456	    0, "Debug control to force mbuf allocation failures");
8457
8458	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8459	    "mbuf_alloc_failed_sim_count",
8460	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8461	    0, "Number of simulated mbuf cluster allocation failures");
8462#endif
8463
8464	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8465	    "mbuf_alloc_failed_count",
8466	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8467	    0, "Number of mbuf allocation failures");
8468
8469	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8470	    "mbuf_frag_count",
8471	    CTLFLAG_RD, &sc->mbuf_frag_count,
8472	    0, "Number of fragmented mbufs");
8473
8474#ifdef BCE_DEBUG
8475	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8476	    "dma_map_addr_failed_sim_control",
8477	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8478	    0, "Debug control to force DMA mapping failures");
8479
8480	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8481	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8482	    "dma_map_addr_failed_sim_count",
8483	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8484	    0, "Number of simulated DMA mapping failures");
8485
8486#endif
8487
8488	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8489	    "dma_map_addr_rx_failed_count",
8490	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8491	    0, "Number of RX DMA mapping failures");
8492
8493	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8494	    "dma_map_addr_tx_failed_count",
8495	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8496	    0, "Number of TX DMA mapping failures");
8497
8498#ifdef BCE_DEBUG
8499	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8500	    "unexpected_attention_sim_control",
8501	    CTLFLAG_RW, &unexpected_attention_sim_control,
8502	    0, "Debug control to simulate unexpected attentions");
8503
8504	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8505	    "unexpected_attention_sim_count",
8506	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8507	    0, "Number of simulated unexpected attentions");
8508#endif
8509
8510	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8511	    "unexpected_attention_count",
8512	    CTLFLAG_RW, &sc->unexpected_attention_count,
8513	    0, "Number of unexpected attentions");
8514
8515#ifdef BCE_DEBUG
8516	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8517	    "debug_bootcode_running_failure",
8518	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8519	    0, "Debug control to force bootcode running failures");
8520
8521	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8522	    "rx_low_watermark",
8523	    CTLFLAG_RD, &sc->rx_low_watermark,
8524	    0, "Lowest level of free rx_bd's");
8525
8526	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8527	    "rx_empty_count",
8528	    CTLFLAG_RD, &sc->rx_empty_count,
8529	    0, "Number of times the RX chain was empty");
8530
8531	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8532	    "tx_hi_watermark",
8533	    CTLFLAG_RD, &sc->tx_hi_watermark,
8534	    0, "Highest level of used tx_bd's");
8535
8536	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8537	    "tx_full_count",
8538	    CTLFLAG_RD, &sc->tx_full_count,
8539	    0, "Number of times the TX chain was full");
8540
8541	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8542	    "tso_frames_requested",
8543	    CTLFLAG_RD, &sc->tso_frames_requested,
8544	    0, "Number of TSO frames requested");
8545
8546	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8547	    "tso_frames_completed",
8548	    CTLFLAG_RD, &sc->tso_frames_completed,
8549	    0, "Number of TSO frames completed");
8550
8551	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8552	    "tso_frames_failed",
8553	    CTLFLAG_RD, &sc->tso_frames_failed,
8554	    0, "Number of TSO frames failed");
8555
8556	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8557	    "csum_offload_ip",
8558	    CTLFLAG_RD, &sc->csum_offload_ip,
8559	    0, "Number of IP checksum offload frames");
8560
8561	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8562	    "csum_offload_tcp_udp",
8563	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8564	    0, "Number of TCP/UDP checksum offload frames");
8565
8566	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8567	    "vlan_tagged_frames_rcvd",
8568	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8569	    0, "Number of VLAN tagged frames received");
8570
8571	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8572	    "vlan_tagged_frames_stripped",
8573	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8574	    0, "Number of VLAN tagged frames stripped");
8575
8576	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8577	    "interrupts_rx",
8578	    CTLFLAG_RD, &sc->interrupts_rx,
8579	    0, "Number of RX interrupts");
8580
8581	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8582	    "interrupts_tx",
8583	    CTLFLAG_RD, &sc->interrupts_tx,
8584	    0, "Number of TX interrupts");
8585#endif
8586
8587	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8588	    "stat_IfHcInOctets",
8589	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8590	    "Bytes received");
8591
8592	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8593	    "stat_IfHCInBadOctets",
8594	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8595	    "Bad bytes received");
8596
8597	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8598	    "stat_IfHCOutOctets",
8599	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8600	    "Bytes sent");
8601
8602	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8603	    "stat_IfHCOutBadOctets",
8604	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8605	    "Bad bytes sent");
8606
8607	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8608	    "stat_IfHCInUcastPkts",
8609	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8610	    "Unicast packets received");
8611
8612	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8613	    "stat_IfHCInMulticastPkts",
8614	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8615	    "Multicast packets received");
8616
8617	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8618	    "stat_IfHCInBroadcastPkts",
8619	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8620	    "Broadcast packets received");
8621
8622	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8623	    "stat_IfHCOutUcastPkts",
8624	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8625	    "Unicast packets sent");
8626
8627	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8628	    "stat_IfHCOutMulticastPkts",
8629	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8630	    "Multicast packets sent");
8631
8632	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8633	    "stat_IfHCOutBroadcastPkts",
8634	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8635	    "Broadcast packets sent");
8636
8637	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8638	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8639	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8640	    0, "Internal MAC transmit errors");
8641
8642	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8643	    "stat_Dot3StatsCarrierSenseErrors",
8644	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8645	    0, "Carrier sense errors");
8646
8647	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8648	    "stat_Dot3StatsFCSErrors",
8649	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8650	    0, "Frame check sequence errors");
8651
8652	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8653	    "stat_Dot3StatsAlignmentErrors",
8654	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8655	    0, "Alignment errors");
8656
8657	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8658	    "stat_Dot3StatsSingleCollisionFrames",
8659	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8660	    0, "Single Collision Frames");
8661
8662	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8663	    "stat_Dot3StatsMultipleCollisionFrames",
8664	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8665	    0, "Multiple Collision Frames");
8666
8667	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8668	    "stat_Dot3StatsDeferredTransmissions",
8669	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8670	    0, "Deferred Transmissions");
8671
8672	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8673	    "stat_Dot3StatsExcessiveCollisions",
8674	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8675	    0, "Excessive Collisions");
8676
8677	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8678	    "stat_Dot3StatsLateCollisions",
8679	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8680	    0, "Late Collisions");
8681
8682	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8683	    "stat_EtherStatsCollisions",
8684	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8685	    0, "Collisions");
8686
8687	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8688	    "stat_EtherStatsFragments",
8689	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8690	    0, "Fragments");
8691
8692	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8693	    "stat_EtherStatsJabbers",
8694	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8695	    0, "Jabbers");
8696
8697	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8698	    "stat_EtherStatsUndersizePkts",
8699	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8700	    0, "Undersize packets");
8701
8702	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8703	    "stat_EtherStatsOversizePkts",
8704	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8705	    0, "stat_EtherStatsOversizePkts");
8706
8707	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8708	    "stat_EtherStatsPktsRx64Octets",
8709	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8710	    0, "Bytes received in 64 byte packets");
8711
8712	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8713	    "stat_EtherStatsPktsRx65Octetsto127Octets",
8714	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8715	    0, "Bytes received in 65 to 127 byte packets");
8716
8717	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8718	    "stat_EtherStatsPktsRx128Octetsto255Octets",
8719	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8720	    0, "Bytes received in 128 to 255 byte packets");
8721
8722	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8723	    "stat_EtherStatsPktsRx256Octetsto511Octets",
8724	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8725	    0, "Bytes received in 256 to 511 byte packets");
8726
8727	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8728	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
8729	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8730	    0, "Bytes received in 512 to 1023 byte packets");
8731
8732	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8733	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8734	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8735	    0, "Bytes received in 1024 t0 1522 byte packets");
8736
8737	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8738	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8739	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8740	    0, "Bytes received in 1523 to 9022 byte packets");
8741
8742	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8743	    "stat_EtherStatsPktsTx64Octets",
8744	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8745	    0, "Bytes sent in 64 byte packets");
8746
8747	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8748	    "stat_EtherStatsPktsTx65Octetsto127Octets",
8749	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8750	    0, "Bytes sent in 65 to 127 byte packets");
8751
8752	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8753	    "stat_EtherStatsPktsTx128Octetsto255Octets",
8754	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8755	    0, "Bytes sent in 128 to 255 byte packets");
8756
8757	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8758	    "stat_EtherStatsPktsTx256Octetsto511Octets",
8759	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8760	    0, "Bytes sent in 256 to 511 byte packets");
8761
8762	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8763	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
8764	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8765	    0, "Bytes sent in 512 to 1023 byte packets");
8766
8767	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8768	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8769	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8770	    0, "Bytes sent in 1024 to 1522 byte packets");
8771
8772	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8773	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8774	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8775	    0, "Bytes sent in 1523 to 9022 byte packets");
8776
8777	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8778	    "stat_XonPauseFramesReceived",
8779	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8780	    0, "XON pause frames receved");
8781
8782	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8783	    "stat_XoffPauseFramesReceived",
8784	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8785	    0, "XOFF pause frames received");
8786
8787	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8788	    "stat_OutXonSent",
8789	    CTLFLAG_RD, &sc->stat_OutXonSent,
8790	    0, "XON pause frames sent");
8791
8792	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8793	    "stat_OutXoffSent",
8794	    CTLFLAG_RD, &sc->stat_OutXoffSent,
8795	    0, "XOFF pause frames sent");
8796
8797	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8798	    "stat_FlowControlDone",
8799	    CTLFLAG_RD, &sc->stat_FlowControlDone,
8800	    0, "Flow control done");
8801
8802	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8803	    "stat_MacControlFramesReceived",
8804	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8805	    0, "MAC control frames received");
8806
8807	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8808	    "stat_XoffStateEntered",
8809	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
8810	    0, "XOFF state entered");
8811
8812	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8813	    "stat_IfInFramesL2FilterDiscards",
8814	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8815	    0, "Received L2 packets discarded");
8816
8817	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8818	    "stat_IfInRuleCheckerDiscards",
8819	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8820	    0, "Received packets discarded by rule");
8821
8822	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8823	    "stat_IfInFTQDiscards",
8824	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8825	    0, "Received packet FTQ discards");
8826
8827	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8828	    "stat_IfInMBUFDiscards",
8829	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8830	    0, "Received packets discarded due to lack "
8831	    "of controller buffer memory");
8832
8833	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8834	    "stat_IfInRuleCheckerP4Hit",
8835	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8836	    0, "Received packets rule checker hits");
8837
8838	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8839	    "stat_CatchupInRuleCheckerDiscards",
8840	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8841	    0, "Received packets discarded in Catchup path");
8842
8843	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8844	    "stat_CatchupInFTQDiscards",
8845	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8846	    0, "Received packets discarded in FTQ in Catchup path");
8847
8848	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8849	    "stat_CatchupInMBUFDiscards",
8850	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8851	    0, "Received packets discarded in controller "
8852	    "buffer memory in Catchup path");
8853
8854	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8855	    "stat_CatchupInRuleCheckerP4Hit",
8856	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8857	    0, "Received packets rule checker hits in Catchup path");
8858
8859	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8860	    "com_no_buffers",
8861	    CTLFLAG_RD, &sc->com_no_buffers,
8862	    0, "Valid packets received but no RX buffers available");
8863
8864#ifdef BCE_DEBUG
8865	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8866	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8867	    (void *)sc, 0,
8868	    bce_sysctl_driver_state, "I", "Drive state information");
8869
8870	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8871	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8872	    (void *)sc, 0,
8873	    bce_sysctl_hw_state, "I", "Hardware state information");
8874
8875	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8876	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
8877	    (void *)sc, 0,
8878	    bce_sysctl_status_block, "I", "Dump status block");
8879
8880	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8881	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
8882	    (void *)sc, 0,
8883	    bce_sysctl_stats_block, "I", "Dump statistics block");
8884
8885	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8886	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
8887	    (void *)sc, 0,
8888	    bce_sysctl_stats_clear, "I", "Clear statistics block");
8889
8890	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8891	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8892	    (void *)sc, 0,
8893	    bce_sysctl_bc_state, "I", "Bootcode state information");
8894
8895	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8896	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
8897	    (void *)sc, 0,
8898	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
8899
8900	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8901	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
8902	    (void *)sc, 0,
8903	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
8904
8905	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8906	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8907	    (void *)sc, 0,
8908	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8909
8910#ifdef BCE_JUMBO_HDRSPLIT
8911	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8912	    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8913	    (void *)sc, 0,
8914	    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8915#endif
8916	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8917	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8918	    (void *)sc, 0,
8919	    bce_sysctl_dump_ctx, "I", "Dump context memory");
8920
8921	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8922	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8923	    (void *)sc, 0,
8924	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
8925
8926	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8927	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8928	    (void *)sc, 0,
8929	    bce_sysctl_reg_read, "I", "Register read");
8930
8931	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8932	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8933	    (void *)sc, 0,
8934	    bce_sysctl_nvram_read, "I", "NVRAM read");
8935
8936	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8937	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8938	    (void *)sc, 0,
8939	    bce_sysctl_phy_read, "I", "PHY register read");
8940
8941#endif
8942
8943	DBEXIT(BCE_VERBOSE_MISC);
8944}
8945
8946
8947/****************************************************************************/
8948/* BCE Debug Routines                                                       */
8949/****************************************************************************/
8950#ifdef BCE_DEBUG
8951
8952/****************************************************************************/
8953/* Freezes the controller to allow for a cohesive state dump.               */
8954/*                                                                          */
8955/* Returns:                                                                 */
8956/*   Nothing.                                                               */
8957/****************************************************************************/
8958static __attribute__ ((noinline)) void
8959bce_freeze_controller(struct bce_softc *sc)
8960{
8961	u32 val;
8962	val = REG_RD(sc, BCE_MISC_COMMAND);
8963	val |= BCE_MISC_COMMAND_DISABLE_ALL;
8964	REG_WR(sc, BCE_MISC_COMMAND, val);
8965}
8966
8967
8968/****************************************************************************/
8969/* Unfreezes the controller after a freeze operation.  This may not always  */
8970/* work and the controller will require a reset!                            */
8971/*                                                                          */
8972/* Returns:                                                                 */
8973/*   Nothing.                                                               */
8974/****************************************************************************/
8975static __attribute__ ((noinline)) void
8976bce_unfreeze_controller(struct bce_softc *sc)
8977{
8978	u32 val;
8979	val = REG_RD(sc, BCE_MISC_COMMAND);
8980	val |= BCE_MISC_COMMAND_ENABLE_ALL;
8981	REG_WR(sc, BCE_MISC_COMMAND, val);
8982}
8983
8984
8985/****************************************************************************/
8986/* Prints out Ethernet frame information from an mbuf.                      */
8987/*                                                                          */
8988/* Partially decode an Ethernet frame to look at some important headers.    */
8989/*                                                                          */
8990/* Returns:                                                                 */
8991/*   Nothing.                                                               */
8992/****************************************************************************/
8993static __attribute__ ((noinline)) void
8994bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8995{
8996	struct ether_vlan_header *eh;
8997	u16 etype;
8998	int ehlen;
8999	struct ip *ip;
9000	struct tcphdr *th;
9001	struct udphdr *uh;
9002	struct arphdr *ah;
9003
9004	BCE_PRINTF(
9005	    "-----------------------------"
9006	    " Frame Decode "
9007	    "-----------------------------\n");
9008
9009	eh = mtod(m, struct ether_vlan_header *);
9010
9011	/* Handle VLAN encapsulation if present. */
9012	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9013		etype = ntohs(eh->evl_proto);
9014		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9015	} else {
9016		etype = ntohs(eh->evl_encap_proto);
9017		ehlen = ETHER_HDR_LEN;
9018	}
9019
9020	/* ToDo: Add VLAN output. */
9021	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9022	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9023
9024	switch (etype) {
9025	case ETHERTYPE_IP:
9026		ip = (struct ip *)(m->m_data + ehlen);
9027		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9028		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9029		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9030		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9031
9032		switch (ip->ip_p) {
9033		case IPPROTO_TCP:
9034			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9035			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9036			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9037			    ntohs(th->th_dport), ntohs(th->th_sport),
9038			    (th->th_off << 2), th->th_flags,
9039			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9040			    "\02SYN\01FIN", ntohs(th->th_sum));
9041			break;
9042		case IPPROTO_UDP:
9043			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9044			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9045			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9046			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9047			    ntohs(uh->uh_sum));
9048			break;
9049		case IPPROTO_ICMP:
9050			BCE_PRINTF("icmp:\n");
9051			break;
9052		default:
9053			BCE_PRINTF("----: Other IP protocol.\n");
9054			}
9055		break;
9056	case ETHERTYPE_IPV6:
9057		BCE_PRINTF("ipv6: No decode supported.\n");
9058		break;
9059	case ETHERTYPE_ARP:
9060		BCE_PRINTF("-arp: ");
9061		ah = (struct arphdr *) (m->m_data + ehlen);
9062		switch (ntohs(ah->ar_op)) {
9063		case ARPOP_REVREQUEST:
9064			printf("reverse ARP request\n");
9065			break;
9066		case ARPOP_REVREPLY:
9067			printf("reverse ARP reply\n");
9068			break;
9069		case ARPOP_REQUEST:
9070			printf("ARP request\n");
9071			break;
9072		case ARPOP_REPLY:
9073			printf("ARP reply\n");
9074			break;
9075		default:
9076			printf("other ARP operation\n");
9077		}
9078		break;
9079	default:
9080		BCE_PRINTF("----: Other protocol.\n");
9081	}
9082
9083	BCE_PRINTF(
9084		"-----------------------------"
9085		"--------------"
9086		"-----------------------------\n");
9087}
9088
9089
9090/****************************************************************************/
9091/* Prints out information about an mbuf.                                    */
9092/*                                                                          */
9093/* Returns:                                                                 */
9094/*   Nothing.                                                               */
9095/****************************************************************************/
9096static __attribute__ ((noinline)) void
9097bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9098{
9099	struct mbuf *mp = m;
9100
9101	if (m == NULL) {
9102		BCE_PRINTF("mbuf: null pointer\n");
9103		return;
9104	}
9105
9106	while (mp) {
9107		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9108		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9109		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9110
9111		if (mp->m_flags & M_PKTHDR) {
9112			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9113			    "csum_flags = %b\n", mp->m_pkthdr.len,
9114			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9115			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9116			    "\22M_PROMISC\23M_NOFREE",
9117			    mp->m_pkthdr.csum_flags,
9118			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9119			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9120			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9121			    "\14CSUM_PSEUDO_HDR");
9122		}
9123
9124		if (mp->m_flags & M_EXT) {
9125			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9126			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9127			switch (mp->m_ext.ext_type) {
9128			case EXT_CLUSTER:
9129				printf("EXT_CLUSTER\n"); break;
9130			case EXT_SFBUF:
9131				printf("EXT_SFBUF\n"); break;
9132			case EXT_JUMBO9:
9133				printf("EXT_JUMBO9\n"); break;
9134			case EXT_JUMBO16:
9135				printf("EXT_JUMBO16\n"); break;
9136			case EXT_PACKET:
9137				printf("EXT_PACKET\n"); break;
9138			case EXT_MBUF:
9139				printf("EXT_MBUF\n"); break;
9140			case EXT_NET_DRV:
9141				printf("EXT_NET_DRV\n"); break;
9142			case EXT_MOD_TYPE:
9143				printf("EXT_MDD_TYPE\n"); break;
9144			case EXT_DISPOSABLE:
9145				printf("EXT_DISPOSABLE\n"); break;
9146			case EXT_EXTREF:
9147				printf("EXT_EXTREF\n"); break;
9148			default:
9149				printf("UNKNOWN\n");
9150			}
9151		}
9152
9153		mp = mp->m_next;
9154	}
9155}
9156
9157
9158/****************************************************************************/
9159/* Prints out the mbufs in the TX mbuf chain.                               */
9160/*                                                                          */
9161/* Returns:                                                                 */
9162/*   Nothing.                                                               */
9163/****************************************************************************/
9164static __attribute__ ((noinline)) void
9165bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9166{
9167	struct mbuf *m;
9168
9169	BCE_PRINTF(
9170		"----------------------------"
9171		"  tx mbuf data  "
9172		"----------------------------\n");
9173
9174	for (int i = 0; i < count; i++) {
9175	 	m = sc->tx_mbuf_ptr[chain_prod];
9176		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9177		bce_dump_mbuf(sc, m);
9178		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9179	}
9180
9181	BCE_PRINTF(
9182		"----------------------------"
9183		"----------------"
9184		"----------------------------\n");
9185}
9186
9187
9188/****************************************************************************/
9189/* Prints out the mbufs in the RX mbuf chain.                               */
9190/*                                                                          */
9191/* Returns:                                                                 */
9192/*   Nothing.                                                               */
9193/****************************************************************************/
9194static __attribute__ ((noinline)) void
9195bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9196{
9197	struct mbuf *m;
9198
9199	BCE_PRINTF(
9200		"----------------------------"
9201		"  rx mbuf data  "
9202		"----------------------------\n");
9203
9204	for (int i = 0; i < count; i++) {
9205	 	m = sc->rx_mbuf_ptr[chain_prod];
9206		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9207		bce_dump_mbuf(sc, m);
9208		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9209	}
9210
9211
9212	BCE_PRINTF(
9213		"----------------------------"
9214		"----------------"
9215		"----------------------------\n");
9216}
9217
9218
9219#ifdef BCE_JUMBO_HDRSPLIT
9220/****************************************************************************/
9221/* Prints out the mbufs in the mbuf page chain.                             */
9222/*                                                                          */
9223/* Returns:                                                                 */
9224/*   Nothing.                                                               */
9225/****************************************************************************/
9226static __attribute__ ((noinline)) void
9227bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9228{
9229	struct mbuf *m;
9230
9231	BCE_PRINTF(
9232		"----------------------------"
9233		"  pg mbuf data  "
9234		"----------------------------\n");
9235
9236	for (int i = 0; i < count; i++) {
9237	 	m = sc->pg_mbuf_ptr[chain_prod];
9238		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9239		bce_dump_mbuf(sc, m);
9240		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9241	}
9242
9243
9244	BCE_PRINTF(
9245		"----------------------------"
9246		"----------------"
9247		"----------------------------\n");
9248}
9249#endif
9250
9251
9252/****************************************************************************/
9253/* Prints out a tx_bd structure.                                            */
9254/*                                                                          */
9255/* Returns:                                                                 */
9256/*   Nothing.                                                               */
9257/****************************************************************************/
9258static __attribute__ ((noinline)) void
9259bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9260{
9261	int i = 0;
9262
9263	if (idx > MAX_TX_BD)
9264		/* Index out of range. */
9265		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9266	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9267		/* TX Chain page pointer. */
9268		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9269		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9270		    txbd->tx_bd_haddr_lo);
9271	else {
9272		/* Normal tx_bd entry. */
9273		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9274		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9275		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9276		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9277		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9278
9279		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9280			if (i>0)
9281				printf("|");
9282			printf("CONN_FAULT");
9283			i++;
9284		}
9285
9286		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9287			if (i>0)
9288				printf("|");
9289			printf("TCP_UDP_CKSUM");
9290			i++;
9291		}
9292
9293		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9294			if (i>0)
9295				printf("|");
9296			printf("IP_CKSUM");
9297			i++;
9298		}
9299
9300		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9301			if (i>0)
9302				printf("|");
9303			printf("VLAN");
9304			i++;
9305		}
9306
9307		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9308			if (i>0)
9309				printf("|");
9310			printf("COAL_NOW");
9311			i++;
9312		}
9313
9314		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9315			if (i>0)
9316				printf("|");
9317			printf("DONT_GEN_CRC");
9318			i++;
9319		}
9320
9321		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9322			if (i>0)
9323				printf("|");
9324			printf("START");
9325			i++;
9326		}
9327
9328		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9329			if (i>0)
9330				printf("|");
9331			printf("END");
9332			i++;
9333		}
9334
9335		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9336			if (i>0)
9337				printf("|");
9338			printf("LSO");
9339			i++;
9340		}
9341
9342		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9343			if (i>0)
9344				printf("|");
9345			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9346			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9347		}
9348
9349		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9350			if (i>0)
9351				printf("|");
9352			printf("SW_FLAGS");
9353			i++;
9354		}
9355
9356		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9357			if (i>0)
9358				printf("|");
9359			printf("SNAP)");
9360		} else {
9361			printf(")\n");
9362		}
9363	}
9364}
9365
9366
9367/****************************************************************************/
9368/* Prints out a rx_bd structure.                                            */
9369/*                                                                          */
9370/* Returns:                                                                 */
9371/*   Nothing.                                                               */
9372/****************************************************************************/
9373static __attribute__ ((noinline)) void
9374bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9375{
9376	if (idx > MAX_RX_BD)
9377		/* Index out of range. */
9378		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9379	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9380		/* RX Chain page pointer. */
9381		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9382		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9383		    rxbd->rx_bd_haddr_lo);
9384	else
9385		/* Normal rx_bd entry. */
9386		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9387		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9388		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9389		    rxbd->rx_bd_flags);
9390}
9391
9392
9393#ifdef BCE_JUMBO_HDRSPLIT
9394/****************************************************************************/
9395/* Prints out a rx_bd structure in the page chain.                          */
9396/*                                                                          */
9397/* Returns:                                                                 */
9398/*   Nothing.                                                               */
9399/****************************************************************************/
9400static __attribute__ ((noinline)) void
9401bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9402{
9403	if (idx > MAX_PG_BD)
9404		/* Index out of range. */
9405		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9406	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9407		/* Page Chain page pointer. */
9408		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9409			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9410	else
9411		/* Normal rx_bd entry. */
9412		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9413			"flags = 0x%08X\n", idx,
9414			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9415			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9416}
9417#endif
9418
9419
9420/****************************************************************************/
9421/* Prints out a l2_fhdr structure.                                          */
9422/*                                                                          */
9423/* Returns:                                                                 */
9424/*   Nothing.                                                               */
9425/****************************************************************************/
9426static __attribute__ ((noinline)) void
9427bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9428{
9429	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9430		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9431		"tcp_udp_xsum = 0x%04X\n", idx,
9432		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9433		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9434		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9435}
9436
9437
9438/****************************************************************************/
9439/* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9440/*                                                                          */
9441/* Returns:                                                                 */
9442/*   Nothing.                                                               */
9443/****************************************************************************/
9444static __attribute__ ((noinline)) void
9445bce_dump_ctx(struct bce_softc *sc, u16 cid)
9446{
9447	if (cid > TX_CID) {
9448		BCE_PRINTF(" Unknown CID\n");
9449		return;
9450	}
9451
9452	BCE_PRINTF(
9453	    "----------------------------"
9454	    "    CTX Data    "
9455	    "----------------------------\n");
9456
9457	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9458
9459	if (cid == RX_CID) {
9460		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9461		   "producer index\n",
9462		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9463		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9464		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9465		    BCE_L2CTX_RX_HOST_BSEQ));
9466		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9467		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9468		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9469		    "descriptor address\n",
9470 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9471		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9472		    "descriptor address\n",
9473		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9474		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9475		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9476		    BCE_L2CTX_RX_NX_BDIDX));
9477		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9478		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9479		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9480		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9481		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9482		    BCE_L2CTX_RX_PG_BUF_SIZE));
9483		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9484		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9485		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9486		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9487		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9488		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9489		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9490		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9491		    BCE_L2CTX_RX_NX_PG_BDIDX));
9492	} else if (cid == TX_CID) {
9493		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9494		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9495			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9496			    CTX_RD(sc, GET_CID_ADDR(cid),
9497			    BCE_L2CTX_TX_TYPE_XI));
9498			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9499			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9500			    BCE_L2CTX_TX_CMD_TYPE_XI));
9501			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9502			    "h/w buffer descriptor address\n",
9503			    CTX_RD(sc, GET_CID_ADDR(cid),
9504			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9505			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9506			    "h/w buffer	descriptor address\n",
9507			    CTX_RD(sc, GET_CID_ADDR(cid),
9508			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9509			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9510			    "host producer index\n",
9511			    CTX_RD(sc, GET_CID_ADDR(cid),
9512			    BCE_L2CTX_TX_HOST_BIDX_XI));
9513			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9514			    "host byte sequence\n",
9515			    CTX_RD(sc, GET_CID_ADDR(cid),
9516			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9517		} else {
9518			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9519			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9520			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9521			    CTX_RD(sc, GET_CID_ADDR(cid),
9522			    BCE_L2CTX_TX_CMD_TYPE));
9523			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9524			    "h/w buffer	descriptor address\n",
9525			    CTX_RD(sc, GET_CID_ADDR(cid),
9526			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9527			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9528			    "h/w buffer	descriptor address\n",
9529			    CTX_RD(sc, GET_CID_ADDR(cid),
9530			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9531			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9532			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9533			    BCE_L2CTX_TX_HOST_BIDX));
9534			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9535			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9536			    BCE_L2CTX_TX_HOST_BSEQ));
9537		}
9538	}
9539
9540	BCE_PRINTF(
9541	   "----------------------------"
9542	   "    Raw CTX     "
9543	   "----------------------------\n");
9544
9545	for (int i = 0x0; i < 0x300; i += 0x10) {
9546		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9547		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9548		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9549		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9550		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9551	}
9552
9553
9554	BCE_PRINTF(
9555	   "----------------------------"
9556	   "----------------"
9557	   "----------------------------\n");
9558}
9559
9560
9561/****************************************************************************/
9562/* Prints out the FTQ data.                                                 */
9563/*                                                                          */
9564/* Returns:                                                                */
9565/*   Nothing.                                                               */
9566/****************************************************************************/
9567static __attribute__ ((noinline)) void
9568bce_dump_ftqs(struct bce_softc *sc)
9569{
9570	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9571
9572	BCE_PRINTF(
9573	    "----------------------------"
9574	    "    FTQ Data    "
9575	    "----------------------------\n");
9576
9577	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9578	    "Max_Depth  Valid_Cnt \n");
9579	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9580	    "---------- ----------\n");
9581
9582	/* Setup the generic statistic counters for the FTQ valid count. */
9583	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9584	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9585	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9586	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9587	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9588
9589	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9590	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9591	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9592	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9593	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9594
9595	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9596	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9597	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9598	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9599	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9600
9601	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9602	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9603	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9604	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9605	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9606
9607	/* Input queue to the Receive Lookup state machine */
9608	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9609	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9610	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9611	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9612	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9613	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9614	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9615
9616	/* Input queue to the Receive Processor */
9617	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9618	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9619	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9620	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9621	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9622	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9623	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9624
9625	/* Input queue to the Recevie Processor */
9626	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9627	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9628	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9629	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9630	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9631	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9632	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9633
9634	/* Input queue to the Receive Virtual to Physical state machine */
9635	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9636	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9637	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9638	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9639	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9640	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9641	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9642
9643	/* Input queue to the Recevie Virtual to Physical state machine */
9644	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9645	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9646	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9647	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9648	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9649	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9650	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9651
9652	/* Input queue to the Receive Virtual to Physical state machine */
9653	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9654	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9655	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9656	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9657	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9658	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9659	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9660
9661	/* Input queue to the Receive DMA state machine */
9662	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9663	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9664	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9665	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9666	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9667	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9668	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9669
9670	/* Input queue to the Transmit Scheduler state machine */
9671	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9672	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9673	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9674	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9675	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9676	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9677	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9678
9679	/* Input queue to the Transmit Buffer Descriptor state machine */
9680	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9681	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9682	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9683	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9684	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9685	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9686	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9687
9688	/* Input queue to the Transmit Processor */
9689	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9690	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9691	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9692	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9693	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9694	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9695	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9696
9697	/* Input queue to the Transmit DMA state machine */
9698	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9699	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9700	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9701	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9702	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9703	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9704	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9705
9706	/* Input queue to the Transmit Patch-Up Processor */
9707	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9708	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9709	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9710	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9711	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9712	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9713	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9714
9715	/* Input queue to the Transmit Assembler state machine */
9716	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9717	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9718	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9719	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9720	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9721	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9722	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9723
9724	/* Input queue to the Completion Processor */
9725	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9726	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9727	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9728	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9729	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9730	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9731	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9732
9733	/* Input queue to the Completion Processor */
9734	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9735	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9736	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9737	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9738	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9739	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9740	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9741
9742	/* Input queue to the Completion Processor */
9743	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9744	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9745	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9746	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9747	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9748	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9749	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9750
9751	/* Setup the generic statistic counters for the FTQ valid count. */
9752	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
9753	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
9754	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9755
9756	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9757	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9758		val = val |
9759		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
9760		     24);
9761	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9762
9763	/* Input queue to the Management Control Processor */
9764	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9765	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9766	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9767	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9768	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9769	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9770	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9771
9772	/* Input queue to the Command Processor */
9773	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9774	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9775	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9776	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9777	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9778	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9779	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9780
9781	/* Input queue to the Completion Scheduler state machine */
9782	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9783	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9784	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9785	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9786	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9787	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9788	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9789
9790	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9791	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9792		/* Input queue to the RV2P Command Scheduler */
9793		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9794		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9795		cur_depth = (ctl & 0xFFC00000) >> 22;
9796		max_depth = (ctl & 0x003FF000) >> 12;
9797		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9798		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9799		    cmd, ctl, cur_depth, max_depth, valid_cnt);
9800	}
9801
9802	BCE_PRINTF(
9803	    "----------------------------"
9804	    "----------------"
9805	    "----------------------------\n");
9806}
9807
9808
9809/****************************************************************************/
9810/* Prints out the TX chain.                                                 */
9811/*                                                                          */
9812/* Returns:                                                                 */
9813/*   Nothing.                                                               */
9814/****************************************************************************/
9815static __attribute__ ((noinline)) void
9816bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9817{
9818	struct tx_bd *txbd;
9819
9820	/* First some info about the tx_bd chain structure. */
9821	BCE_PRINTF(
9822	    "----------------------------"
9823	    "  tx_bd  chain  "
9824	    "----------------------------\n");
9825
9826	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9827	    (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9828	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9829	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9830	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9831
9832	BCE_PRINTF(
9833	    "----------------------------"
9834	    "   tx_bd data   "
9835	    "----------------------------\n");
9836
9837	/* Now print out a decoded list of TX buffer descriptors. */
9838	for (int i = 0; i < count; i++) {
9839	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9840		bce_dump_txbd(sc, tx_prod, txbd);
9841		tx_prod++;
9842	}
9843
9844	BCE_PRINTF(
9845	    "----------------------------"
9846	    "----------------"
9847	    "----------------------------\n");
9848}
9849
9850
9851/****************************************************************************/
9852/* Prints out the RX chain.                                                 */
9853/*                                                                          */
9854/* Returns:                                                                 */
9855/*   Nothing.                                                               */
9856/****************************************************************************/
9857static __attribute__ ((noinline)) void
9858bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
9859{
9860	struct rx_bd *rxbd;
9861
9862	/* First some info about the rx_bd chain structure. */
9863	BCE_PRINTF(
9864	    "----------------------------"
9865	    "  rx_bd  chain  "
9866	    "----------------------------\n");
9867
9868	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9869	    (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9870
9871	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9872	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9873
9874	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9875
9876	BCE_PRINTF(
9877	    "----------------------------"
9878	    "   rx_bd data   "
9879	    "----------------------------\n");
9880
9881	/* Now print out the rx_bd's themselves. */
9882	for (int i = 0; i < count; i++) {
9883		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9884		bce_dump_rxbd(sc, rx_prod, rxbd);
9885		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9886	}
9887
9888	BCE_PRINTF(
9889	    "----------------------------"
9890	    "----------------"
9891	    "----------------------------\n");
9892}
9893
9894
9895#ifdef BCE_JUMBO_HDRSPLIT
9896/****************************************************************************/
9897/* Prints out the page chain.                                               */
9898/*                                                                          */
9899/* Returns:                                                                 */
9900/*   Nothing.                                                               */
9901/****************************************************************************/
9902static __attribute__ ((noinline)) void
9903bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9904{
9905	struct rx_bd *pgbd;
9906
9907	/* First some info about the page chain structure. */
9908	BCE_PRINTF(
9909	    "----------------------------"
9910	    "   page chain   "
9911	    "----------------------------\n");
9912
9913	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9914	    (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9915
9916	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9917	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9918
9919	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9920	    (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9921
9922	BCE_PRINTF(
9923	    "----------------------------"
9924	    "   page data    "
9925	    "----------------------------\n");
9926
9927	/* Now print out the rx_bd's themselves. */
9928	for (int i = 0; i < count; i++) {
9929		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9930		bce_dump_pgbd(sc, pg_prod, pgbd);
9931		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9932	}
9933
9934	BCE_PRINTF(
9935	    "----------------------------"
9936	    "----------------"
9937	    "----------------------------\n");
9938}
9939#endif
9940
9941
9942#define BCE_PRINT_RX_CONS(arg)						\
9943if (sblk->status_rx_quick_consumer_index##arg)				\
9944	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
9945	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
9946	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
9947	    arg);
9948
9949
9950#define BCE_PRINT_TX_CONS(arg)						\
9951if (sblk->status_tx_quick_consumer_index##arg)				\
9952	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
9953	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
9954	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
9955	    arg);
9956
9957/****************************************************************************/
9958/* Prints out the status block from host memory.                            */
9959/*                                                                          */
9960/* Returns:                                                                 */
9961/*   Nothing.                                                               */
9962/****************************************************************************/
9963static __attribute__ ((noinline)) void
9964bce_dump_status_block(struct bce_softc *sc)
9965{
9966	struct status_block *sblk;
9967
9968	sblk = sc->status_block;
9969
9970	BCE_PRINTF(
9971	    "----------------------------"
9972	    "  Status Block  "
9973	    "----------------------------\n");
9974
9975	/* Theses indices are used for normal L2 drivers. */
9976	BCE_PRINTF("    0x%08X - attn_bits\n",
9977	    sblk->status_attn_bits);
9978
9979	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
9980	    sblk->status_attn_bits_ack);
9981
9982	BCE_PRINT_RX_CONS(0);
9983	BCE_PRINT_TX_CONS(0)
9984
9985	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
9986
9987	/* Theses indices are not used for normal L2 drivers. */
9988	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
9989	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
9990	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
9991	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
9992	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
9993
9994	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
9995
9996	if (sblk->status_completion_producer_index ||
9997	    sblk->status_cmd_consumer_index)
9998		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
9999		    sblk->status_completion_producer_index,
10000		    sblk->status_cmd_consumer_index);
10001
10002	BCE_PRINTF(
10003	    "----------------------------"
10004	    "----------------"
10005	    "----------------------------\n");
10006}
10007
10008
10009#define BCE_PRINT_64BIT_STAT(arg) 				\
10010if (sblk->arg##_lo || sblk->arg##_hi)				\
10011	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10012	    sblk->arg##_lo, #arg);
10013
10014#define BCE_PRINT_32BIT_STAT(arg)				\
10015if (sblk->arg)							\
10016	BCE_PRINTF("         0x%08X : %s\n", 			\
10017	    sblk->arg, #arg);
10018
10019/****************************************************************************/
10020/* Prints out the statistics block from host memory.                        */
10021/*                                                                          */
10022/* Returns:                                                                 */
10023/*   Nothing.                                                               */
10024/****************************************************************************/
10025static __attribute__ ((noinline)) void
10026bce_dump_stats_block(struct bce_softc *sc)
10027{
10028	struct statistics_block *sblk;
10029
10030	sblk = sc->stats_block;
10031
10032	BCE_PRINTF(
10033	    "---------------"
10034	    " Stats Block  (All Stats Not Shown Are 0) "
10035	    "---------------\n");
10036
10037	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10038	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10039	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10040	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10041	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10042	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10043	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10044	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10045	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10046	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10047	BCE_PRINT_32BIT_STAT(
10048	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10049	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10050	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10051	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10052	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10053	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10054	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10055	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10056	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10057	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10058	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10059	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10060	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10061	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10062	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10063	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10064	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10065	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10066	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10067	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10068	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10069	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10070	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10071	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10072	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10073	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10074	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10075	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10076	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10077	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10078	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10079	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10080	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10081	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10082	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10083	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10084	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10085	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10086	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10087	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10088	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10089	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10090	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10091	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10092
10093	BCE_PRINTF(
10094	    "----------------------------"
10095	    "----------------"
10096	    "----------------------------\n");
10097}
10098
10099
10100/****************************************************************************/
10101/* Prints out a summary of the driver state.                                */
10102/*                                                                          */
10103/* Returns:                                                                 */
10104/*   Nothing.                                                               */
10105/****************************************************************************/
10106static __attribute__ ((noinline)) void
10107bce_dump_driver_state(struct bce_softc *sc)
10108{
10109	u32 val_hi, val_lo;
10110
10111	BCE_PRINTF(
10112	    "-----------------------------"
10113	    " Driver State "
10114	    "-----------------------------\n");
10115
10116	val_hi = BCE_ADDR_HI(sc);
10117	val_lo = BCE_ADDR_LO(sc);
10118	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10119	    "address\n", val_hi, val_lo);
10120
10121	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10122	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10123	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10124	    "address\n", val_hi, val_lo);
10125
10126	val_hi = BCE_ADDR_HI(sc->status_block);
10127	val_lo = BCE_ADDR_LO(sc->status_block);
10128	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10129	    "virtual address\n",	val_hi, val_lo);
10130
10131	val_hi = BCE_ADDR_HI(sc->stats_block);
10132	val_lo = BCE_ADDR_LO(sc->stats_block);
10133	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10134	    "virtual address\n", val_hi, val_lo);
10135
10136	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10137	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10138	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10139	    "virtual adddress\n", val_hi, val_lo);
10140
10141	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10142	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10143	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10144	    "virtual address\n", val_hi, val_lo);
10145
10146#ifdef BCE_JUMBO_HDRSPLIT
10147	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10148	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10149	BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10150	    "virtual address\n", val_hi, val_lo);
10151#endif
10152
10153	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10154	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10155	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10156	    "virtual address\n",	val_hi, val_lo);
10157
10158	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10159	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10160	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10161	    "virtual address\n", val_hi, val_lo);
10162
10163#ifdef BCE_JUMBO_HDRSPLIT
10164	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10165	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10166	BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10167	    "virtual address\n", val_hi, val_lo);
10168#endif
10169
10170	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10171	    "h/w intrs\n", sc->interrupts_generated);
10172
10173	BCE_PRINTF("         0x%08X - (sc->interrupts_rx) "
10174	    "rx interrupts handled\n", sc->interrupts_rx);
10175
10176	BCE_PRINTF("         0x%08X - (sc->interrupts_tx) "
10177	    "tx interrupts handled\n", sc->interrupts_tx);
10178
10179	BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10180	    "phy interrupts handled\n", sc->phy_interrupts);
10181
10182	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10183	    "status block index\n", sc->last_status_idx);
10184
10185	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10186	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10187
10188	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10189	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10190
10191	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10192	    "byte seq index\n",	sc->tx_prod_bseq);
10193
10194	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10195	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10196
10197	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10198	    "tx_bd's\n", sc->used_tx_bd);
10199
10200	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10201	    "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10202
10203	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10204	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10205
10206	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10207	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10208
10209	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10210	    "byte seq index\n",	sc->rx_prod_bseq);
10211
10212	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10213	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10214
10215	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10216	    "rx_bd's\n", sc->free_rx_bd);
10217
10218#ifdef BCE_JUMBO_HDRSPLIT
10219	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10220	    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10221
10222	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10223	    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10224
10225	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10226	    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10227
10228	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10229	    "rx_bd's\n", sc->free_pg_bd);
10230
10231	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10232	    "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10233#endif
10234
10235	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10236	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10237
10238	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10239	    "bce mac flags\n", sc->bce_flags);
10240
10241	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10242	    "bce phy flags\n", sc->bce_phy_flags);
10243
10244	BCE_PRINTF(
10245	    "----------------------------"
10246	    "----------------"
10247	    "----------------------------\n");
10248}
10249
10250
10251/****************************************************************************/
10252/* Prints out the hardware state through a summary of important register,   */
10253/* followed by a complete register dump.                                    */
10254/*                                                                          */
10255/* Returns:                                                                 */
10256/*   Nothing.                                                               */
10257/****************************************************************************/
10258static __attribute__ ((noinline)) void
10259bce_dump_hw_state(struct bce_softc *sc)
10260{
10261	u32 val;
10262
10263	BCE_PRINTF(
10264	    "----------------------------"
10265	    " Hardware State "
10266	    "----------------------------\n");
10267
10268	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10269
10270	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10271	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10272	    val, BCE_MISC_ENABLE_STATUS_BITS);
10273
10274	val = REG_RD(sc, BCE_DMA_STATUS);
10275	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10276	    val, BCE_DMA_STATUS);
10277
10278	val = REG_RD(sc, BCE_CTX_STATUS);
10279	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10280	    val, BCE_CTX_STATUS);
10281
10282	val = REG_RD(sc, BCE_EMAC_STATUS);
10283	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10284	    val, BCE_EMAC_STATUS);
10285
10286	val = REG_RD(sc, BCE_RPM_STATUS);
10287	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10288	    val, BCE_RPM_STATUS);
10289
10290	/* ToDo: Create a #define for this constant. */
10291	val = REG_RD(sc, 0x2004);
10292	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10293	    val, 0x2004);
10294
10295	val = REG_RD(sc, BCE_RV2P_STATUS);
10296	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10297	    val, BCE_RV2P_STATUS);
10298
10299	/* ToDo: Create a #define for this constant. */
10300	val = REG_RD(sc, 0x2c04);
10301	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10302	    val, 0x2c04);
10303
10304	val = REG_RD(sc, BCE_TBDR_STATUS);
10305	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10306	    val, BCE_TBDR_STATUS);
10307
10308	val = REG_RD(sc, BCE_TDMA_STATUS);
10309	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10310	    val, BCE_TDMA_STATUS);
10311
10312	val = REG_RD(sc, BCE_HC_STATUS);
10313	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10314	    val, BCE_HC_STATUS);
10315
10316	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10317	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10318	    val, BCE_TXP_CPU_STATE);
10319
10320	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10321	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10322	    val, BCE_TPAT_CPU_STATE);
10323
10324	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10325	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10326	    val, BCE_RXP_CPU_STATE);
10327
10328	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10329	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10330	    val, BCE_COM_CPU_STATE);
10331
10332	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10333	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10334	    val, BCE_MCP_CPU_STATE);
10335
10336	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10337	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10338	    val, BCE_CP_CPU_STATE);
10339
10340	BCE_PRINTF(
10341	    "----------------------------"
10342	    "----------------"
10343	    "----------------------------\n");
10344
10345	BCE_PRINTF(
10346	    "----------------------------"
10347	    " Register  Dump "
10348	    "----------------------------\n");
10349
10350	for (int i = 0x400; i < 0x8000; i += 0x10) {
10351		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10352		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10353		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10354	}
10355
10356	BCE_PRINTF(
10357	    "----------------------------"
10358	    "----------------"
10359	    "----------------------------\n");
10360}
10361
10362
10363/****************************************************************************/
10364/* Prints out the mailbox queue registers.                                  */
10365/*                                                                          */
10366/* Returns:                                                                 */
10367/*   Nothing.                                                               */
10368/****************************************************************************/
10369static __attribute__ ((noinline)) void
10370bce_dump_mq_regs(struct bce_softc *sc)
10371{
10372	BCE_PRINTF(
10373	    "----------------------------"
10374	    "    MQ Regs     "
10375	    "----------------------------\n");
10376
10377	BCE_PRINTF(
10378	    "----------------------------"
10379	    "----------------"
10380	    "----------------------------\n");
10381
10382	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10383		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10384		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10385		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10386	}
10387
10388	BCE_PRINTF(
10389	    "----------------------------"
10390	    "----------------"
10391	    "----------------------------\n");
10392}
10393
10394
10395/****************************************************************************/
10396/* Prints out the bootcode state.                                           */
10397/*                                                                          */
10398/* Returns:                                                                 */
10399/*   Nothing.                                                               */
10400/****************************************************************************/
10401static __attribute__ ((noinline)) void
10402bce_dump_bc_state(struct bce_softc *sc)
10403{
10404	u32 val;
10405
10406	BCE_PRINTF(
10407	    "----------------------------"
10408	    " Bootcode State "
10409	    "----------------------------\n");
10410
10411	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10412
10413	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10414	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10415	    val, BCE_BC_RESET_TYPE);
10416
10417	val = bce_shmem_rd(sc, BCE_BC_STATE);
10418	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10419	    val, BCE_BC_STATE);
10420
10421	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10422	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10423	    val, BCE_BC_STATE_CONDITION);
10424
10425	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10426	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10427	    val, BCE_BC_STATE_DEBUG_CMD);
10428
10429	BCE_PRINTF(
10430	    "----------------------------"
10431	    "----------------"
10432	    "----------------------------\n");
10433}
10434
10435
10436/****************************************************************************/
10437/* Prints out the TXP processor state.                                      */
10438/*                                                                          */
10439/* Returns:                                                                 */
10440/*   Nothing.                                                               */
10441/****************************************************************************/
10442static __attribute__ ((noinline)) void
10443bce_dump_txp_state(struct bce_softc *sc, int regs)
10444{
10445	u32 val;
10446	u32 fw_version[3];
10447
10448	BCE_PRINTF(
10449	    "----------------------------"
10450	    "   TXP  State   "
10451	    "----------------------------\n");
10452
10453	for (int i = 0; i < 3; i++)
10454		fw_version[i] = htonl(REG_RD_IND(sc,
10455		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10456	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10457
10458	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10459	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10460	    val, BCE_TXP_CPU_MODE);
10461
10462	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10463	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10464	    val, BCE_TXP_CPU_STATE);
10465
10466	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10467	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10468	    val, BCE_TXP_CPU_EVENT_MASK);
10469
10470	if (regs) {
10471		BCE_PRINTF(
10472		    "----------------------------"
10473		    " Register  Dump "
10474		    "----------------------------\n");
10475
10476		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10477			/* Skip the big blank spaces */
10478			if (i < 0x454000 && i > 0x5ffff)
10479				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10480				    "0x%08X 0x%08X\n", i,
10481				    REG_RD_IND(sc, i),
10482				    REG_RD_IND(sc, i + 0x4),
10483				    REG_RD_IND(sc, i + 0x8),
10484				    REG_RD_IND(sc, i + 0xC));
10485		}
10486	}
10487
10488	BCE_PRINTF(
10489	    "----------------------------"
10490	    "----------------"
10491	    "----------------------------\n");
10492}
10493
10494
10495/****************************************************************************/
10496/* Prints out the RXP processor state.                                      */
10497/*                                                                          */
10498/* Returns:                                                                 */
10499/*   Nothing.                                                               */
10500/****************************************************************************/
10501static __attribute__ ((noinline)) void
10502bce_dump_rxp_state(struct bce_softc *sc, int regs)
10503{
10504	u32 val;
10505	u32 fw_version[3];
10506
10507	BCE_PRINTF(
10508	    "----------------------------"
10509	    "   RXP  State   "
10510	    "----------------------------\n");
10511
10512	for (int i = 0; i < 3; i++)
10513		fw_version[i] = htonl(REG_RD_IND(sc,
10514		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10515
10516	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10517
10518	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10519	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10520	    val, BCE_RXP_CPU_MODE);
10521
10522	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10523	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10524	    val, BCE_RXP_CPU_STATE);
10525
10526	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10527	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10528	    val, BCE_RXP_CPU_EVENT_MASK);
10529
10530	if (regs) {
10531		BCE_PRINTF(
10532		    "----------------------------"
10533		    " Register  Dump "
10534		    "----------------------------\n");
10535
10536		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10537			/* Skip the big blank sapces */
10538			if (i < 0xc5400 && i > 0xdffff)
10539				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10540				    "0x%08X 0x%08X\n", i,
10541				    REG_RD_IND(sc, i),
10542				    REG_RD_IND(sc, i + 0x4),
10543				    REG_RD_IND(sc, i + 0x8),
10544				    REG_RD_IND(sc, i + 0xC));
10545		}
10546	}
10547
10548	BCE_PRINTF(
10549	    "----------------------------"
10550	    "----------------"
10551	    "----------------------------\n");
10552}
10553
10554
10555/****************************************************************************/
10556/* Prints out the TPAT processor state.                                     */
10557/*                                                                          */
10558/* Returns:                                                                 */
10559/*   Nothing.                                                               */
10560/****************************************************************************/
10561static __attribute__ ((noinline)) void
10562bce_dump_tpat_state(struct bce_softc *sc, int regs)
10563{
10564	u32 val;
10565	u32 fw_version[3];
10566
10567	BCE_PRINTF(
10568	    "----------------------------"
10569	    "   TPAT State   "
10570	    "----------------------------\n");
10571
10572	for (int i = 0; i < 3; i++)
10573		fw_version[i] = htonl(REG_RD_IND(sc,
10574		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10575
10576	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10577
10578	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10579	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10580	    val, BCE_TPAT_CPU_MODE);
10581
10582	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10583	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10584	    val, BCE_TPAT_CPU_STATE);
10585
10586	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10587	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10588	    val, BCE_TPAT_CPU_EVENT_MASK);
10589
10590	if (regs) {
10591		BCE_PRINTF(
10592		    "----------------------------"
10593		    " Register  Dump "
10594		    "----------------------------\n");
10595
10596		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10597			/* Skip the big blank spaces */
10598			if (i < 0x854000 && i > 0x9ffff)
10599				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10600				    "0x%08X 0x%08X\n", i,
10601				    REG_RD_IND(sc, i),
10602				    REG_RD_IND(sc, i + 0x4),
10603				    REG_RD_IND(sc, i + 0x8),
10604				    REG_RD_IND(sc, i + 0xC));
10605		}
10606	}
10607
10608	BCE_PRINTF(
10609		"----------------------------"
10610		"----------------"
10611		"----------------------------\n");
10612}
10613
10614
10615/****************************************************************************/
10616/* Prints out the Command Procesor (CP) state.                              */
10617/*                                                                          */
10618/* Returns:                                                                 */
10619/*   Nothing.                                                               */
10620/****************************************************************************/
10621static __attribute__ ((noinline)) void
10622bce_dump_cp_state(struct bce_softc *sc, int regs)
10623{
10624	u32 val;
10625	u32 fw_version[3];
10626
10627	BCE_PRINTF(
10628	    "----------------------------"
10629	    "    CP State    "
10630	    "----------------------------\n");
10631
10632	for (int i = 0; i < 3; i++)
10633		fw_version[i] = htonl(REG_RD_IND(sc,
10634		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
10635
10636	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10637
10638	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10639	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10640	    val, BCE_CP_CPU_MODE);
10641
10642	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10643	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10644	    val, BCE_CP_CPU_STATE);
10645
10646	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10647	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10648	    BCE_CP_CPU_EVENT_MASK);
10649
10650	if (regs) {
10651		BCE_PRINTF(
10652		    "----------------------------"
10653		    " Register  Dump "
10654		    "----------------------------\n");
10655
10656		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10657			/* Skip the big blank spaces */
10658			if (i < 0x185400 && i > 0x19ffff)
10659				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10660				    "0x%08X 0x%08X\n", i,
10661				    REG_RD_IND(sc, i),
10662				    REG_RD_IND(sc, i + 0x4),
10663				    REG_RD_IND(sc, i + 0x8),
10664				    REG_RD_IND(sc, i + 0xC));
10665		}
10666	}
10667
10668	BCE_PRINTF(
10669	    "----------------------------"
10670	    "----------------"
10671	    "----------------------------\n");
10672}
10673
10674
10675/****************************************************************************/
10676/* Prints out the Completion Procesor (COM) state.                          */
10677/*                                                                          */
10678/* Returns:                                                                 */
10679/*   Nothing.                                                               */
10680/****************************************************************************/
10681static __attribute__ ((noinline)) void
10682bce_dump_com_state(struct bce_softc *sc, int regs)
10683{
10684	u32 val;
10685	u32 fw_version[4];
10686
10687	BCE_PRINTF(
10688	    "----------------------------"
10689	    "   COM State    "
10690	    "----------------------------\n");
10691
10692	for (int i = 0; i < 3; i++)
10693		fw_version[i] = htonl(REG_RD_IND(sc,
10694		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
10695
10696	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10697
10698	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10699	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10700	    val, BCE_COM_CPU_MODE);
10701
10702	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10703	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10704	    val, BCE_COM_CPU_STATE);
10705
10706	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10707	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10708	    BCE_COM_CPU_EVENT_MASK);
10709
10710	if (regs) {
10711		BCE_PRINTF(
10712		    "----------------------------"
10713		    " Register  Dump "
10714		    "----------------------------\n");
10715
10716		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10717			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10718			    "0x%08X 0x%08X\n", i,
10719			    REG_RD_IND(sc, i),
10720			    REG_RD_IND(sc, i + 0x4),
10721			    REG_RD_IND(sc, i + 0x8),
10722			    REG_RD_IND(sc, i + 0xC));
10723		}
10724	}
10725
10726	BCE_PRINTF(
10727		"----------------------------"
10728		"----------------"
10729		"----------------------------\n");
10730}
10731
10732
10733/****************************************************************************/
10734/* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10735/*                                                                          */
10736/* Returns:                                                                 */
10737/*   Nothing.                                                               */
10738/****************************************************************************/
10739static __attribute__ ((noinline)) void
10740bce_dump_rv2p_state(struct bce_softc *sc)
10741{
10742	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10743
10744	BCE_PRINTF(
10745	    "----------------------------"
10746	    "   RV2P State   "
10747	    "----------------------------\n");
10748
10749	/* Stall the RV2P processors. */
10750	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10751	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10752	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10753
10754	/* Read the firmware version. */
10755	val = 0x00000001;
10756	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10757	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10758	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10759	    BCE_RV2P_INSTR_HIGH_HIGH;
10760	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10761	    fw_ver_high, fw_ver_low);
10762
10763	val = 0x00000001;
10764	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10765	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10766	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10767	    BCE_RV2P_INSTR_HIGH_HIGH;
10768	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10769	    fw_ver_high, fw_ver_low);
10770
10771	/* Resume the RV2P processors. */
10772	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10773	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10774	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10775
10776	/* Fetch the program counter value. */
10777	val = 0x68007800;
10778	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10779	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10780	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10781	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10782	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10783	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10784
10785	/* Fetch the program counter value again to see if it is advancing. */
10786	val = 0x68007800;
10787	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10788	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10789	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10790	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10791	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10792	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10793
10794	BCE_PRINTF(
10795	    "----------------------------"
10796	    "----------------"
10797	    "----------------------------\n");
10798}
10799
10800
10801/****************************************************************************/
10802/* Prints out the driver state and then enters the debugger.                */
10803/*                                                                          */
10804/* Returns:                                                                 */
10805/*   Nothing.                                                               */
10806/****************************************************************************/
10807static __attribute__ ((noinline)) void
10808bce_breakpoint(struct bce_softc *sc)
10809{
10810
10811	/*
10812	 * Unreachable code to silence compiler warnings
10813	 * about unused functions.
10814	 */
10815	if (0) {
10816		bce_freeze_controller(sc);
10817		bce_unfreeze_controller(sc);
10818		bce_dump_enet(sc, NULL);
10819		bce_dump_txbd(sc, 0, NULL);
10820		bce_dump_rxbd(sc, 0, NULL);
10821		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10822		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10823		bce_dump_l2fhdr(sc, 0, NULL);
10824		bce_dump_ctx(sc, RX_CID);
10825		bce_dump_ftqs(sc);
10826		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10827		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10828		bce_dump_status_block(sc);
10829		bce_dump_stats_block(sc);
10830		bce_dump_driver_state(sc);
10831		bce_dump_hw_state(sc);
10832		bce_dump_bc_state(sc);
10833		bce_dump_txp_state(sc, 0);
10834		bce_dump_rxp_state(sc, 0);
10835		bce_dump_tpat_state(sc, 0);
10836		bce_dump_cp_state(sc, 0);
10837		bce_dump_com_state(sc, 0);
10838		bce_dump_rv2p_state(sc);
10839
10840#ifdef BCE_JUMBO_HDRSPLIT
10841		bce_dump_pgbd(sc, 0, NULL);
10842		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10843		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10844#endif
10845	}
10846
10847	bce_dump_status_block(sc);
10848	bce_dump_driver_state(sc);
10849
10850	/* Call the debugger. */
10851	breakpoint();
10852
10853	return;
10854}
10855#endif
10856
10857