if_bce.c revision 206268
1/*-
2 * Copyright (c) 2006-2010 Broadcom Corporation
3 *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written consent.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/bce/if_bce.c 206268 2010-04-06 12:44:28Z davidch $");
33
34/*
35 * The following controllers are supported by this driver:
36 *   BCM5706C A2, A3
37 *   BCM5706S A2, A3
38 *   BCM5708C B1, B2
39 *   BCM5708S B1, B2
40 *   BCM5709C A1, C0
41 *   BCM5709S A1, C0
42 *   BCM5716C C0
43 *   BCM5716S C0
44 *
45 * The following controllers are not supported by this driver:
46 *   BCM5706C A0, A1 (pre-production)
47 *   BCM5706S A0, A1 (pre-production)
48 *   BCM5708C A0, B0 (pre-production)
49 *   BCM5708S A0, B0 (pre-production)
50 *   BCM5709C A0  B0, B1, B2 (pre-production)
51 *   BCM5709S A0, B0, B1, B2 (pre-production)
52 */
53
54#include "opt_bce.h"
55
56#include <dev/bce/if_bcereg.h>
57#include <dev/bce/if_bcefw.h>
58
59/****************************************************************************/
60/* BCE Debug Options                                                        */
61/****************************************************************************/
62#ifdef BCE_DEBUG
63	u32 bce_debug = BCE_WARN;
64
65	/*          0 = Never              */
66	/*          1 = 1 in 2,147,483,648 */
67	/*        256 = 1 in     8,388,608 */
68	/*       2048 = 1 in     1,048,576 */
69	/*      65536 = 1 in        32,768 */
70	/*    1048576 = 1 in         2,048 */
71	/*  268435456 =	1 in             8 */
72	/*  536870912 = 1 in             4 */
73	/* 1073741824 = 1 in             2 */
74
75	/* Controls how often the l2_fhdr frame error check will fail. */
76	int l2fhdr_error_sim_control = 0;
77
78	/* Controls how often the unexpected attention check will fail. */
79	int unexpected_attention_sim_control = 0;
80
81	/* Controls how often to simulate an mbuf allocation failure. */
82	int mbuf_alloc_failed_sim_control = 0;
83
84	/* Controls how often to simulate a DMA mapping failure. */
85	int dma_map_addr_failed_sim_control = 0;
86
87	/* Controls how often to simulate a bootcode failure. */
88	int bootcode_running_failure_sim_control = 0;
89#endif
90
91/****************************************************************************/
92/* BCE Build Time Options                                                   */
93/****************************************************************************/
94/* #define BCE_NVRAM_WRITE_SUPPORT 1 */
95
96
97/****************************************************************************/
98/* PCI Device ID Table                                                      */
99/*                                                                          */
100/* Used by bce_probe() to identify the devices supported by this driver.    */
101/****************************************************************************/
102#define BCE_DEVDESC_MAX		64
103
104static struct bce_type bce_devs[] = {
105	/* BCM5706C Controllers and OEM boards. */
106	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
107		"HP NC370T Multifunction Gigabit Server Adapter" },
108	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
109		"HP NC370i Multifunction Gigabit Server Adapter" },
110	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
111		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
112	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
113		"HP NC371i Multifunction Gigabit Server Adapter" },
114	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
115		"Broadcom NetXtreme II BCM5706 1000Base-T" },
116
117	/* BCM5706S controllers and OEM boards. */
118	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
119		"HP NC370F Multifunction Gigabit Server Adapter" },
120	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
121		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
122
123	/* BCM5708C controllers and OEM boards. */
124	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
125		"HP NC373T PCIe Multifunction Gig Server Adapter" },
126	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
127		"HP NC373i Multifunction Gigabit Server Adapter" },
128	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
129		"HP NC374m PCIe Multifunction Adapter" },
130	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
131		"Broadcom NetXtreme II BCM5708 1000Base-T" },
132
133	/* BCM5708S controllers and OEM boards. */
134	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
135		"HP NC373m Multifunction Gigabit Server Adapter" },
136	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
137		"HP NC373i Multifunction Gigabit Server Adapter" },
138	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
139		"HP NC373F PCIe Multifunc Giga Server Adapter" },
140	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
141		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
142
143	/* BCM5709C controllers and OEM boards. */
144	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
145		"HP NC382i DP Multifunction Gigabit Server Adapter" },
146	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
147		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
148	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
149		"Broadcom NetXtreme II BCM5709 1000Base-T" },
150
151	/* BCM5709S controllers and OEM boards. */
152	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
153		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
154	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
155		"HP NC382i DP Multifunction Gigabit Server Adapter" },
156	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
157		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
158
159	/* BCM5716 controllers and OEM boards. */
160	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
161		"Broadcom NetXtreme II BCM5716 1000Base-T" },
162
163	{ 0, 0, 0, 0, NULL }
164};
165
166
167/****************************************************************************/
168/* Supported Flash NVRAM device data.                                       */
169/****************************************************************************/
170static struct flash_spec flash_table[] =
171{
172#define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
173#define NONBUFFERED_FLAGS	(BCE_NV_WREN)
174
175	/* Slow EEPROM */
176	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
177	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
178	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
179	 "EEPROM - slow"},
180	/* Expansion entry 0001 */
181	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
182	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
184	 "Entry 0001"},
185	/* Saifun SA25F010 (non-buffered flash) */
186	/* strap, cfg1, & write1 need updates */
187	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
188	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
190	 "Non-buffered flash (128kB)"},
191	/* Saifun SA25F020 (non-buffered flash) */
192	/* strap, cfg1, & write1 need updates */
193	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
194	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
196	 "Non-buffered flash (256kB)"},
197	/* Expansion entry 0100 */
198	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
199	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
201	 "Entry 0100"},
202	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
203	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
204	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
205	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
206	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
207	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
208	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
209	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
210	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
211	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
212	/* Saifun SA25F005 (non-buffered flash) */
213	/* strap, cfg1, & write1 need updates */
214	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
215	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
217	 "Non-buffered flash (64kB)"},
218	/* Fast EEPROM */
219	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
220	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
221	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
222	 "EEPROM - fast"},
223	/* Expansion entry 1001 */
224	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
225	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
227	 "Entry 1001"},
228	/* Expansion entry 1010 */
229	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
230	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232	 "Entry 1010"},
233	/* ATMEL AT45DB011B (buffered flash) */
234	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
235	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
236	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
237	 "Buffered flash (128kB)"},
238	/* Expansion entry 1100 */
239	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
240	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
241	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
242	 "Entry 1100"},
243	/* Expansion entry 1101 */
244	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
245	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
246	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
247	 "Entry 1101"},
248	/* Ateml Expansion entry 1110 */
249	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
250	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
251	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
252	 "Entry 1110 (Atmel)"},
253	/* ATMEL AT45DB021B (buffered flash) */
254	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
255	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
256	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
257	 "Buffered flash (256kB)"},
258};
259
260/*
261 * The BCM5709 controllers transparently handle the
262 * differences between Atmel 264 byte pages and all
263 * flash devices which use 256 byte pages, so no
264 * logical-to-physical mapping is required in the
265 * driver.
266 */
267static struct flash_spec flash_5709 = {
268	.flags		= BCE_NV_BUFFERED,
269	.page_bits	= BCM5709_FLASH_PAGE_BITS,
270	.page_size	= BCM5709_FLASH_PAGE_SIZE,
271	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
272	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
273	.name		= "5709/5716 buffered flash (256kB)",
274};
275
276
277/****************************************************************************/
278/* FreeBSD device entry points.                                             */
279/****************************************************************************/
280static int  bce_probe			(device_t);
281static int  bce_attach			(device_t);
282static int  bce_detach			(device_t);
283static int  bce_shutdown		(device_t);
284
285
286/****************************************************************************/
287/* BCE Debug Data Structure Dump Routines                                   */
288/****************************************************************************/
289#ifdef BCE_DEBUG
290static u32  bce_reg_rd			(struct bce_softc *, u32);
291static void bce_reg_wr			(struct bce_softc *, u32, u32);
292static void bce_reg_wr16		(struct bce_softc *, u32, u16);
293static u32  bce_ctx_rd			(struct bce_softc *, u32, u32);
294static void bce_dump_enet		(struct bce_softc *, struct mbuf *);
295static void bce_dump_mbuf		(struct bce_softc *, struct mbuf *);
296static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
297static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
298#ifdef BCE_JUMBO_HDRSPLIT
299static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
300#endif
301static void bce_dump_txbd		(struct bce_softc *,
302    int, struct tx_bd *);
303static void bce_dump_rxbd		(struct bce_softc *,
304    int, struct rx_bd *);
305#ifdef BCE_JUMBO_HDRSPLIT
306static void bce_dump_pgbd		(struct bce_softc *,
307    int, struct rx_bd *);
308#endif
309static void bce_dump_l2fhdr		(struct bce_softc *,
310    int, struct l2_fhdr *);
311static void bce_dump_ctx		(struct bce_softc *, u16);
312static void bce_dump_ftqs		(struct bce_softc *);
313static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
314static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
315#ifdef BCE_JUMBO_HDRSPLIT
316static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
317#endif
318static void bce_dump_status_block	(struct bce_softc *);
319static void bce_dump_stats_block	(struct bce_softc *);
320static void bce_dump_driver_state	(struct bce_softc *);
321static void bce_dump_hw_state		(struct bce_softc *);
322static void bce_dump_mq_regs		(struct bce_softc *);
323static void bce_dump_bc_state		(struct bce_softc *);
324static void bce_dump_txp_state		(struct bce_softc *, int);
325static void bce_dump_rxp_state		(struct bce_softc *, int);
326static void bce_dump_tpat_state		(struct bce_softc *, int);
327static void bce_dump_cp_state		(struct bce_softc *, int);
328static void bce_dump_com_state		(struct bce_softc *, int);
329static void bce_dump_rv2p_state		(struct bce_softc *);
330static void bce_breakpoint		(struct bce_softc *);
331#endif
332
333
334/****************************************************************************/
335/* BCE Register/Memory Access Routines                                      */
336/****************************************************************************/
337static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
338static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
339static void bce_shmem_wr		(struct bce_softc *, u32, u32);
340static u32  bce_shmem_rd		(struct bce_softc *, u32);
341static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
342static int  bce_miibus_read_reg		(device_t, int, int);
343static int  bce_miibus_write_reg	(device_t, int, int, int);
344static void bce_miibus_statchg		(device_t);
345
346
347/****************************************************************************/
348/* BCE NVRAM Access Routines                                                */
349/****************************************************************************/
350static int  bce_acquire_nvram_lock	(struct bce_softc *);
351static int  bce_release_nvram_lock	(struct bce_softc *);
352static void bce_enable_nvram_access	(struct bce_softc *);
353static void bce_disable_nvram_access	(struct bce_softc *);
354static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
355static int  bce_init_nvram		(struct bce_softc *);
356static int  bce_nvram_read		(struct bce_softc *, u32, u8 *, int);
357static int  bce_nvram_test		(struct bce_softc *);
358#ifdef BCE_NVRAM_WRITE_SUPPORT
359static int  bce_enable_nvram_write	(struct bce_softc *);
360static void bce_disable_nvram_write	(struct bce_softc *);
361static int  bce_nvram_erase_page	(struct bce_softc *, u32);
362static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
363static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
364#endif
365
366/****************************************************************************/
367/*                                                                          */
368/****************************************************************************/
369static void bce_get_media		(struct bce_softc *);
370static void bce_init_media		(struct bce_softc *);
371static void bce_dma_map_addr		(void *,
372    bus_dma_segment_t *, int, int);
373static int  bce_dma_alloc		(device_t);
374static void bce_dma_free		(struct bce_softc *);
375static void bce_release_resources	(struct bce_softc *);
376
377/****************************************************************************/
378/* BCE Firmware Synchronization and Load                                    */
379/****************************************************************************/
380static int  bce_fw_sync			(struct bce_softc *, u32);
381static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
382static void bce_load_cpu_fw		(struct bce_softc *,
383    struct cpu_reg *, struct fw_info *);
384static void bce_start_cpu		(struct bce_softc *, struct cpu_reg *);
385static void bce_halt_cpu		(struct bce_softc *, struct cpu_reg *);
386static void bce_start_rxp_cpu		(struct bce_softc *);
387static void bce_init_rxp_cpu		(struct bce_softc *);
388static void bce_init_txp_cpu 		(struct bce_softc *);
389static void bce_init_tpat_cpu		(struct bce_softc *);
390static void bce_init_cp_cpu	  	(struct bce_softc *);
391static void bce_init_com_cpu	  	(struct bce_softc *);
392static void bce_init_cpus		(struct bce_softc *);
393
394static void	bce_print_adapter_info	(struct bce_softc *);
395static void bce_probe_pci_caps		(device_t, struct bce_softc *);
396static void bce_stop			(struct bce_softc *);
397static int  bce_reset			(struct bce_softc *, u32);
398static int  bce_chipinit 		(struct bce_softc *);
399static int  bce_blockinit 		(struct bce_softc *);
400
401static int  bce_init_tx_chain		(struct bce_softc *);
402static void bce_free_tx_chain		(struct bce_softc *);
403
404static int  bce_get_rx_buf		(struct bce_softc *,
405    struct mbuf *, u16 *, u16 *, u32 *);
406static int  bce_init_rx_chain		(struct bce_softc *);
407static void bce_fill_rx_chain		(struct bce_softc *);
408static void bce_free_rx_chain		(struct bce_softc *);
409
410#ifdef BCE_JUMBO_HDRSPLIT
411static int  bce_get_pg_buf		(struct bce_softc *,
412    struct mbuf *, u16 *, u16 *);
413static int  bce_init_pg_chain		(struct bce_softc *);
414static void bce_fill_pg_chain		(struct bce_softc *);
415static void bce_free_pg_chain		(struct bce_softc *);
416#endif
417
418static struct mbuf *bce_tso_setup	(struct bce_softc *,
419    struct mbuf **, u16 *);
420static int  bce_tx_encap		(struct bce_softc *, struct mbuf **);
421static void bce_start_locked		(struct ifnet *);
422static void bce_start			(struct ifnet *);
423static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
424static void bce_watchdog		(struct bce_softc *);
425static int  bce_ifmedia_upd		(struct ifnet *);
426static void bce_ifmedia_upd_locked	(struct ifnet *);
427static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
428static void bce_init_locked		(struct bce_softc *);
429static void bce_init			(void *);
430static void bce_mgmt_init_locked	(struct bce_softc *sc);
431
432static void bce_init_ctx		(struct bce_softc *);
433static void bce_get_mac_addr		(struct bce_softc *);
434static void bce_set_mac_addr		(struct bce_softc *);
435static void bce_phy_intr		(struct bce_softc *);
436static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
437static void bce_rx_intr			(struct bce_softc *);
438static void bce_tx_intr			(struct bce_softc *);
439static void bce_disable_intr		(struct bce_softc *);
440static void bce_enable_intr		(struct bce_softc *, int);
441
442static void bce_intr			(void *);
443static void bce_set_rx_mode		(struct bce_softc *);
444static void bce_stats_update		(struct bce_softc *);
445static void bce_tick			(void *);
446static void bce_pulse			(void *);
447static void bce_add_sysctls		(struct bce_softc *);
448
449
450/****************************************************************************/
451/* FreeBSD device dispatch table.                                           */
452/****************************************************************************/
453static device_method_t bce_methods[] = {
454	/* Device interface (device_if.h) */
455	DEVMETHOD(device_probe,		bce_probe),
456	DEVMETHOD(device_attach,	bce_attach),
457	DEVMETHOD(device_detach,	bce_detach),
458	DEVMETHOD(device_shutdown,	bce_shutdown),
459/* Supported by device interface but not used here. */
460/*	DEVMETHOD(device_identify,	bce_identify),      */
461/*	DEVMETHOD(device_suspend,	bce_suspend),       */
462/*	DEVMETHOD(device_resume,	bce_resume),        */
463/*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
464
465	/* Bus interface (bus_if.h) */
466	DEVMETHOD(bus_print_child,	bus_generic_print_child),
467	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
468
469	/* MII interface (miibus_if.h) */
470	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
471	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
472	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
473/* Supported by MII interface but not used here.       */
474/*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
475/*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
476
477	{ 0, 0 }
478};
479
480static driver_t bce_driver = {
481	"bce",
482	bce_methods,
483	sizeof(struct bce_softc)
484};
485
486static devclass_t bce_devclass;
487
488MODULE_DEPEND(bce, pci, 1, 1, 1);
489MODULE_DEPEND(bce, ether, 1, 1, 1);
490MODULE_DEPEND(bce, miibus, 1, 1, 1);
491
492DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
493DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
494
495
496/****************************************************************************/
497/* Tunable device values                                                    */
498/****************************************************************************/
499SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
500
501/* Allowable values are TRUE or FALSE */
502static int bce_tso_enable = TRUE;
503TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
504SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
505"TSO Enable/Disable");
506
507/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
508/* ToDo: Add MSI-X support. */
509static int bce_msi_enable = 1;
510TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
511SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
512"MSI-X|MSI|INTx selector");
513
514/* ToDo: Add tunable to enable/disable strict MTU handling. */
515/* Currently allows "loose" RX MTU checking (i.e. sets the  */
516/* H/W RX MTU to the size of the largest receive buffer, or */
517/* 2048 bytes). This will cause a UNH failure but is more   */
518/* desireable from a functional perspective.                */
519
520
521/****************************************************************************/
522/* Device probe function.                                                   */
523/*                                                                          */
524/* Compares the device to the driver's list of supported devices and        */
525/* reports back to the OS whether this is the right driver for the device.  */
526/*                                                                          */
527/* Returns:                                                                 */
528/*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
529/****************************************************************************/
530static int
531bce_probe(device_t dev)
532{
533	struct bce_type *t;
534	struct bce_softc *sc;
535	char *descbuf;
536	u16 vid = 0, did = 0, svid = 0, sdid = 0;
537
538	t = bce_devs;
539
540	sc = device_get_softc(dev);
541	bzero(sc, sizeof(struct bce_softc));
542	sc->bce_unit = device_get_unit(dev);
543	sc->bce_dev = dev;
544
545	/* Get the data for the device to be probed. */
546	vid  = pci_get_vendor(dev);
547	did  = pci_get_device(dev);
548	svid = pci_get_subvendor(dev);
549	sdid = pci_get_subdevice(dev);
550
551	DBPRINT(sc, BCE_EXTREME_LOAD,
552	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
553	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
554
555	/* Look through the list of known devices for a match. */
556	while(t->bce_name != NULL) {
557
558		if ((vid == t->bce_vid) && (did == t->bce_did) &&
559		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
560		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
561
562			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
563
564			if (descbuf == NULL)
565				return(ENOMEM);
566
567			/* Print out the device identity. */
568			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
569			    t->bce_name, (((pci_read_config(dev,
570			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
571			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
572
573			device_set_desc_copy(dev, descbuf);
574			free(descbuf, M_TEMP);
575			return(BUS_PROBE_DEFAULT);
576		}
577		t++;
578	}
579
580	return(ENXIO);
581}
582
583
584/****************************************************************************/
585/* PCI Capabilities Probe Function.                                         */
586/*                                                                          */
587/* Walks the PCI capabiites list for the device to find what features are   */
588/* supported.                                                               */
589/*                                                                          */
590/* Returns:                                                                 */
591/*   None.                                                                  */
592/****************************************************************************/
593static void
594bce_print_adapter_info(struct bce_softc *sc)
595{
596    int i = 0;
597
598	DBENTER(BCE_VERBOSE_LOAD);
599
600	BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
601	printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
602	    ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
603
604	/* Bus info. */
605	if (sc->bce_flags & BCE_PCIE_FLAG) {
606		printf("Bus (PCIe x%d, ", sc->link_width);
607		switch (sc->link_speed) {
608		case 1: printf("2.5Gbps); "); break;
609		case 2:	printf("5Gbps); "); break;
610		default: printf("Unknown link speed); ");
611		}
612	} else {
613		printf("Bus (PCI%s, %s, %dMHz); ",
614		    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
615		    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
616		    "32-bit" : "64-bit"), sc->bus_speed_mhz);
617	}
618
619	/* Firmware version and device features. */
620	printf("B/C (%s); Flags (", sc->bce_bc_ver);
621
622#ifdef BCE_JUMBO_HDRSPLIT
623	printf("SPLT");
624	i++;
625#endif
626
627	if (sc->bce_flags & BCE_USING_MSI_FLAG) {
628		if (i > 0) printf("|");
629		printf("MSI"); i++;
630	}
631
632	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
633		if (i > 0) printf("|");
634		printf("MSI-X"); i++;
635	}
636
637	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
638		if (i > 0) printf("|");
639		printf("2.5G"); i++;
640	}
641
642	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
643		if (i > 0) printf("|");
644		printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
645	} else {
646		printf(")\n");
647	}
648
649	DBEXIT(BCE_VERBOSE_LOAD);
650}
651
652
653/****************************************************************************/
654/* PCI Capabilities Probe Function.                                         */
655/*                                                                          */
656/* Walks the PCI capabiites list for the device to find what features are   */
657/* supported.                                                               */
658/*                                                                          */
659/* Returns:                                                                 */
660/*   None.                                                                  */
661/****************************************************************************/
662static void
663bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
664{
665	u32 reg;
666
667	DBENTER(BCE_VERBOSE_LOAD);
668
669	/* Check if PCI-X capability is enabled. */
670	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
671		if (reg != 0)
672			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
673	}
674
675	/* Check if PCIe capability is enabled. */
676	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
677		if (reg != 0) {
678			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
679			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
680			    "0x%08X\n",	link_status);
681			sc->link_speed = link_status & 0xf;
682			sc->link_width = (link_status >> 4) & 0x3f;
683			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
684			sc->bce_flags |= BCE_PCIE_FLAG;
685		}
686	}
687
688	/* Check if MSI capability is enabled. */
689	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
690		if (reg != 0)
691			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
692	}
693
694	/* Check if MSI-X capability is enabled. */
695	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
696		if (reg != 0)
697			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
698	}
699
700	DBEXIT(BCE_VERBOSE_LOAD);
701}
702
703
704/****************************************************************************/
705/* Device attach function.                                                  */
706/*                                                                          */
707/* Allocates device resources, performs secondary chip identification,      */
708/* resets and initializes the hardware, and initializes driver instance     */
709/* variables.                                                               */
710/*                                                                          */
711/* Returns:                                                                 */
712/*   0 on success, positive value on failure.                               */
713/****************************************************************************/
714static int
715bce_attach(device_t dev)
716{
717	struct bce_softc *sc;
718	struct ifnet *ifp;
719	u32 val;
720	int error, rid, rc = 0;
721
722	sc = device_get_softc(dev);
723	sc->bce_dev = dev;
724
725	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
726
727	sc->bce_unit = device_get_unit(dev);
728
729	/* Set initial device and PHY flags */
730	sc->bce_flags = 0;
731	sc->bce_phy_flags = 0;
732
733	pci_enable_busmaster(dev);
734
735	/* Allocate PCI memory resources. */
736	rid = PCIR_BAR(0);
737	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
738		&rid, RF_ACTIVE);
739
740	if (sc->bce_res_mem == NULL) {
741		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
742		    __FILE__, __LINE__);
743		rc = ENXIO;
744		goto bce_attach_fail;
745	}
746
747	/* Get various resource handles. */
748	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
749	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
750	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
751
752	bce_probe_pci_caps(dev, sc);
753
754	rid = 1;
755#if 0
756	/* Try allocating MSI-X interrupts. */
757	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
758		(bce_msi_enable >= 2) &&
759		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
760		&rid, RF_ACTIVE)) != NULL)) {
761
762		msi_needed = sc->bce_msi_count = 1;
763
764		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
765			(sc->bce_msi_count != msi_needed)) {
766			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
767				"Received = %d, error = %d\n", __FILE__, __LINE__,
768				msi_needed, sc->bce_msi_count, error);
769			sc->bce_msi_count = 0;
770			pci_release_msi(dev);
771			bus_release_resource(dev, SYS_RES_MEMORY, rid,
772				sc->bce_res_irq);
773			sc->bce_res_irq = NULL;
774		} else {
775			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
776				__FUNCTION__);
777			sc->bce_flags |= BCE_USING_MSIX_FLAG;
778			sc->bce_intr = bce_intr;
779		}
780	}
781#endif
782
783	/* Try allocating a MSI interrupt. */
784	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
785		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
786		sc->bce_msi_count = 1;
787		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
788			BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n",
789				__FILE__, __LINE__, error);
790			sc->bce_msi_count = 0;
791			pci_release_msi(dev);
792		} else {
793			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n",
794				__FUNCTION__);
795			sc->bce_flags |= BCE_USING_MSI_FLAG;
796			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
797				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
798				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
799			sc->bce_irq_rid = 1;
800			sc->bce_intr = bce_intr;
801		}
802	}
803
804	/* Try allocating a legacy interrupt. */
805	if (sc->bce_msi_count == 0) {
806		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
807			__FUNCTION__);
808		rid = 0;
809		sc->bce_intr = bce_intr;
810	}
811
812	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
813	    &rid, RF_SHAREABLE | RF_ACTIVE);
814
815	sc->bce_irq_rid = rid;
816
817	/* Report any IRQ allocation errors. */
818	if (sc->bce_res_irq == NULL) {
819		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
820		    __FILE__, __LINE__);
821		rc = ENXIO;
822		goto bce_attach_fail;
823	}
824
825	/* Initialize mutex for the current device instance. */
826	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
827
828	/*
829	 * Configure byte swap and enable indirect register access.
830	 * Rely on CPU to do target byte swapping on big endian systems.
831	 * Access to registers outside of PCI configurtion space are not
832	 * valid until this is done.
833	 */
834	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
835	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
836	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
837
838	/* Save ASIC revsion info. */
839	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
840
841	/* Weed out any non-production controller revisions. */
842	switch(BCE_CHIP_ID(sc)) {
843	case BCE_CHIP_ID_5706_A0:
844	case BCE_CHIP_ID_5706_A1:
845	case BCE_CHIP_ID_5708_A0:
846	case BCE_CHIP_ID_5708_B0:
847	case BCE_CHIP_ID_5709_A0:
848	case BCE_CHIP_ID_5709_B0:
849	case BCE_CHIP_ID_5709_B1:
850	case BCE_CHIP_ID_5709_B2:
851		BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n",
852		    __FILE__, __LINE__,
853		    (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
854		    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
855		rc = ENODEV;
856		goto bce_attach_fail;
857	}
858
859	/*
860	 * The embedded PCIe to PCI-X bridge (EPB)
861	 * in the 5708 cannot address memory above
862	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
863	 */
864	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
865		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
866	else
867		sc->max_bus_addr = BUS_SPACE_MAXADDR;
868
869	/*
870	 * Find the base address for shared memory access.
871	 * Newer versions of bootcode use a signature and offset
872	 * while older versions use a fixed address.
873	 */
874	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
875	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
876		/* Multi-port devices use different offsets in shared memory. */
877		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
878		    (pci_get_function(sc->bce_dev) << 2));
879	else
880		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
881
882	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
883	    __FUNCTION__, sc->bce_shmem_base);
884
885	/* Fetch the bootcode revision. */
886	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
887	for (int i = 0, j = 0; i < 3; i++) {
888		u8 num;
889
890		num = (u8) (val >> (24 - (i * 8)));
891		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
892			if (num >= k || !skip0 || k == 1) {
893				sc->bce_bc_ver[j++] = (num / k) + '0';
894				skip0 = 0;
895			}
896		}
897
898		if (i != 2)
899			sc->bce_bc_ver[j++] = '.';
900	}
901
902	/* Check if any management firwmare is enabled. */
903	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
904	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
905		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
906
907		/* Allow time for firmware to enter the running state. */
908		for (int i = 0; i < 30; i++) {
909			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
910			if (val & BCE_CONDITION_MFW_RUN_MASK)
911				break;
912			DELAY(10000);
913		}
914
915		/* Check if management firmware is running. */
916		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
917		val &= BCE_CONDITION_MFW_RUN_MASK;
918		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
919		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
920			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
921			int i = 0;
922
923			/* Read the management firmware version string. */
924			for (int j = 0; j < 3; j++) {
925				val = bce_reg_rd_ind(sc, addr + j * 4);
926				val = bswap32(val);
927				memcpy(&sc->bce_mfw_ver[i], &val, 4);
928				i += 4;
929			}
930		} else {
931			/* May cause firmware synchronization timeouts. */
932			BCE_PRINTF("%s(%d): Management firmware enabled "
933			    "but not running!\n", __FILE__, __LINE__);
934			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
935
936			/* ToDo: Any action the driver should take? */
937		}
938	}
939
940	/* Get PCI bus information (speed and type). */
941	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
942	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
943		u32 clkreg;
944
945		sc->bce_flags |= BCE_PCIX_FLAG;
946
947		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
948
949		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
950		switch (clkreg) {
951		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
952			sc->bus_speed_mhz = 133;
953			break;
954
955		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
956			sc->bus_speed_mhz = 100;
957			break;
958
959		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
960		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
961			sc->bus_speed_mhz = 66;
962			break;
963
964		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
965		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
966			sc->bus_speed_mhz = 50;
967			break;
968
969		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
970		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
971		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
972			sc->bus_speed_mhz = 33;
973			break;
974		}
975	} else {
976		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
977			sc->bus_speed_mhz = 66;
978		else
979			sc->bus_speed_mhz = 33;
980	}
981
982	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
983		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
984
985	/* Reset controller and announce to bootcode that driver is present. */
986	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
987		BCE_PRINTF("%s(%d): Controller reset failed!\n",
988		    __FILE__, __LINE__);
989		rc = ENXIO;
990		goto bce_attach_fail;
991	}
992
993	/* Initialize the controller. */
994	if (bce_chipinit(sc)) {
995		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
996		    __FILE__, __LINE__);
997		rc = ENXIO;
998		goto bce_attach_fail;
999	}
1000
1001	/* Perform NVRAM test. */
1002	if (bce_nvram_test(sc)) {
1003		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1004		    __FILE__, __LINE__);
1005		rc = ENXIO;
1006		goto bce_attach_fail;
1007	}
1008
1009	/* Fetch the permanent Ethernet MAC address. */
1010	bce_get_mac_addr(sc);
1011
1012	/*
1013	 * Trip points control how many BDs
1014	 * should be ready before generating an
1015	 * interrupt while ticks control how long
1016	 * a BD can sit in the chain before
1017	 * generating an interrupt.  Set the default
1018	 * values for the RX and TX chains.
1019	 */
1020
1021#ifdef BCE_DEBUG
1022	/* Force more frequent interrupts. */
1023	sc->bce_tx_quick_cons_trip_int = 1;
1024	sc->bce_tx_quick_cons_trip     = 1;
1025	sc->bce_tx_ticks_int           = 0;
1026	sc->bce_tx_ticks               = 0;
1027
1028	sc->bce_rx_quick_cons_trip_int = 1;
1029	sc->bce_rx_quick_cons_trip     = 1;
1030	sc->bce_rx_ticks_int           = 0;
1031	sc->bce_rx_ticks               = 0;
1032#else
1033	/* Improve throughput at the expense of increased latency. */
1034	sc->bce_tx_quick_cons_trip_int = 20;
1035	sc->bce_tx_quick_cons_trip     = 20;
1036	sc->bce_tx_ticks_int           = 80;
1037	sc->bce_tx_ticks               = 80;
1038
1039	sc->bce_rx_quick_cons_trip_int = 6;
1040	sc->bce_rx_quick_cons_trip     = 6;
1041	sc->bce_rx_ticks_int           = 18;
1042	sc->bce_rx_ticks               = 18;
1043#endif
1044
1045	/* Not used for L2. */
1046	sc->bce_comp_prod_trip_int = 0;
1047	sc->bce_comp_prod_trip = 0;
1048	sc->bce_com_ticks_int = 0;
1049	sc->bce_com_ticks = 0;
1050	sc->bce_cmd_ticks_int = 0;
1051	sc->bce_cmd_ticks = 0;
1052
1053	/* Update statistics once every second. */
1054	sc->bce_stats_ticks = 1000000 & 0xffff00;
1055
1056	/* Find the media type for the adapter. */
1057	bce_get_media(sc);
1058
1059	/* Store data needed by PHY driver for backplane applications */
1060	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1061	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1062
1063	/* Allocate DMA memory resources. */
1064	if (bce_dma_alloc(dev)) {
1065		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1066		    __FILE__, __LINE__);
1067		rc = ENXIO;
1068		goto bce_attach_fail;
1069	}
1070
1071	/* Allocate an ifnet structure. */
1072	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1073	if (ifp == NULL) {
1074		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1075			__FILE__, __LINE__);
1076		rc = ENXIO;
1077		goto bce_attach_fail;
1078	}
1079
1080	/* Initialize the ifnet interface. */
1081	ifp->if_softc        = sc;
1082	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1083	ifp->if_flags        = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1084	ifp->if_ioctl        = bce_ioctl;
1085	ifp->if_start        = bce_start;
1086	ifp->if_init         = bce_init;
1087	ifp->if_mtu          = ETHERMTU;
1088
1089	if (bce_tso_enable) {
1090		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1091		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1092		    IFCAP_VLAN_HWTSO;
1093	} else {
1094		ifp->if_hwassist = BCE_IF_HWASSIST;
1095		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1096	}
1097
1098	ifp->if_capenable    = ifp->if_capabilities;
1099
1100	/*
1101	 * Assume standard mbuf sizes for buffer allocation.
1102	 * This may change later if the MTU size is set to
1103	 * something other than 1500.
1104	 */
1105#ifdef BCE_JUMBO_HDRSPLIT
1106	sc->rx_bd_mbuf_alloc_size = MHLEN;
1107	/* Make sure offset is 16 byte aligned for hardware. */
1108	sc->rx_bd_mbuf_align_pad  = roundup2((MSIZE - MHLEN), 16) -
1109		(MSIZE - MHLEN);
1110	sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
1111		sc->rx_bd_mbuf_align_pad;
1112	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1113#else
1114	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1115	sc->rx_bd_mbuf_align_pad  = roundup2(MCLBYTES, 16) - MCLBYTES;
1116	sc->rx_bd_mbuf_data_len   = sc->rx_bd_mbuf_alloc_size -
1117		sc->rx_bd_mbuf_align_pad;
1118#endif
1119
1120	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1121	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1122	IFQ_SET_READY(&ifp->if_snd);
1123
1124	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1125		ifp->if_baudrate = IF_Mbps(2500ULL);
1126	else
1127		ifp->if_baudrate = IF_Mbps(1000);
1128
1129    /* Handle any special PHY initialization for SerDes PHYs. */
1130    bce_init_media(sc);
1131
1132	/* MII child bus by probing the PHY. */
1133	if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1134		bce_ifmedia_sts)) {
1135		BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1136			__FILE__, __LINE__);
1137		rc = ENXIO;
1138		goto bce_attach_fail;
1139	}
1140
1141	/* Attach to the Ethernet interface list. */
1142	ether_ifattach(ifp, sc->eaddr);
1143
1144#if __FreeBSD_version < 500000
1145	callout_init(&sc->bce_tick_callout);
1146	callout_init(&sc->bce_pulse_callout);
1147#else
1148	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1149	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1150#endif
1151
1152	/* Hookup IRQ last. */
1153	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1154		NULL, bce_intr, sc, &sc->bce_intrhand);
1155
1156	if (rc) {
1157		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1158			__FILE__, __LINE__);
1159		bce_detach(dev);
1160		goto bce_attach_exit;
1161	}
1162
1163	/*
1164	 * At this point we've acquired all the resources
1165	 * we need to run so there's no turning back, we're
1166	 * cleared for launch.
1167	 */
1168
1169	/* Print some important debugging info. */
1170	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1171
1172	/* Add the supported sysctls to the kernel. */
1173	bce_add_sysctls(sc);
1174
1175	BCE_LOCK(sc);
1176
1177	/*
1178	 * The chip reset earlier notified the bootcode that
1179	 * a driver is present.  We now need to start our pulse
1180	 * routine so that the bootcode is reminded that we're
1181	 * still running.
1182	 */
1183	bce_pulse(sc);
1184
1185	bce_mgmt_init_locked(sc);
1186	BCE_UNLOCK(sc);
1187
1188	/* Finally, print some useful adapter info */
1189	bce_print_adapter_info(sc);
1190	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1191		__FUNCTION__, sc);
1192
1193	goto bce_attach_exit;
1194
1195bce_attach_fail:
1196	bce_release_resources(sc);
1197
1198bce_attach_exit:
1199
1200	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1201
1202	return(rc);
1203}
1204
1205
1206/****************************************************************************/
1207/* Device detach function.                                                  */
1208/*                                                                          */
1209/* Stops the controller, resets the controller, and releases resources.     */
1210/*                                                                          */
1211/* Returns:                                                                 */
1212/*   0 on success, positive value on failure.                               */
1213/****************************************************************************/
1214static int
1215bce_detach(device_t dev)
1216{
1217	struct bce_softc *sc = device_get_softc(dev);
1218	struct ifnet *ifp;
1219	u32 msg;
1220
1221	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1222
1223	ifp = sc->bce_ifp;
1224
1225	/* Stop and reset the controller. */
1226	BCE_LOCK(sc);
1227
1228	/* Stop the pulse so the bootcode can go to driver absent state. */
1229	callout_stop(&sc->bce_pulse_callout);
1230
1231	bce_stop(sc);
1232	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1233		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1234	else
1235		msg = BCE_DRV_MSG_CODE_UNLOAD;
1236	bce_reset(sc, msg);
1237
1238	BCE_UNLOCK(sc);
1239
1240	ether_ifdetach(ifp);
1241
1242	/* If we have a child device on the MII bus remove it too. */
1243	bus_generic_detach(dev);
1244	device_delete_child(dev, sc->bce_miibus);
1245
1246	/* Release all remaining resources. */
1247	bce_release_resources(sc);
1248
1249	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1250
1251	return(0);
1252}
1253
1254
1255/****************************************************************************/
1256/* Device shutdown function.                                                */
1257/*                                                                          */
1258/* Stops and resets the controller.                                         */
1259/*                                                                          */
1260/* Returns:                                                                 */
1261/*   0 on success, positive value on failure.                               */
1262/****************************************************************************/
1263static int
1264bce_shutdown(device_t dev)
1265{
1266	struct bce_softc *sc = device_get_softc(dev);
1267	u32 msg;
1268
1269	DBENTER(BCE_VERBOSE);
1270
1271	BCE_LOCK(sc);
1272	bce_stop(sc);
1273	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1274		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1275	else
1276		msg = BCE_DRV_MSG_CODE_UNLOAD;
1277	bce_reset(sc, msg);
1278	BCE_UNLOCK(sc);
1279
1280	DBEXIT(BCE_VERBOSE);
1281
1282	return (0);
1283}
1284
1285
1286#ifdef BCE_DEBUG
1287/****************************************************************************/
1288/* Register read.                                                           */
1289/*                                                                          */
1290/* Returns:                                                                 */
1291/*   The value of the register.                                             */
1292/****************************************************************************/
1293static u32
1294bce_reg_rd(struct bce_softc *sc, u32 offset)
1295{
1296	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1297	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1298		__FUNCTION__, offset, val);
1299	return val;
1300}
1301
1302
1303/****************************************************************************/
1304/* Register write (16 bit).                                                 */
1305/*                                                                          */
1306/* Returns:                                                                 */
1307/*   Nothing.                                                               */
1308/****************************************************************************/
1309static void
1310bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1311{
1312	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1313		__FUNCTION__, offset, val);
1314	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1315}
1316
1317
1318/****************************************************************************/
1319/* Register write.                                                          */
1320/*                                                                          */
1321/* Returns:                                                                 */
1322/*   Nothing.                                                               */
1323/****************************************************************************/
1324static void
1325bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1326{
1327	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1328		__FUNCTION__, offset, val);
1329	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1330}
1331#endif
1332
1333/****************************************************************************/
1334/* Indirect register read.                                                  */
1335/*                                                                          */
1336/* Reads NetXtreme II registers using an index/data register pair in PCI    */
1337/* configuration space.  Using this mechanism avoids issues with posted     */
1338/* reads but is much slower than memory-mapped I/O.                         */
1339/*                                                                          */
1340/* Returns:                                                                 */
1341/*   The value of the register.                                             */
1342/****************************************************************************/
1343static u32
1344bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1345{
1346	device_t dev;
1347	dev = sc->bce_dev;
1348
1349	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1350#ifdef BCE_DEBUG
1351	{
1352		u32 val;
1353		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1354		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1355			__FUNCTION__, offset, val);
1356		return val;
1357	}
1358#else
1359	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1360#endif
1361}
1362
1363
1364/****************************************************************************/
1365/* Indirect register write.                                                 */
1366/*                                                                          */
1367/* Writes NetXtreme II registers using an index/data register pair in PCI   */
1368/* configuration space.  Using this mechanism avoids issues with posted     */
1369/* writes but is muchh slower than memory-mapped I/O.                       */
1370/*                                                                          */
1371/* Returns:                                                                 */
1372/*   Nothing.                                                               */
1373/****************************************************************************/
1374static void
1375bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1376{
1377	device_t dev;
1378	dev = sc->bce_dev;
1379
1380	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1381		__FUNCTION__, offset, val);
1382
1383	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1384	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1385}
1386
1387
1388/****************************************************************************/
1389/* Shared memory write.                                                     */
1390/*                                                                          */
1391/* Writes NetXtreme II shared memory region.                                */
1392/*                                                                          */
1393/* Returns:                                                                 */
1394/*   Nothing.                                                               */
1395/****************************************************************************/
1396static void
1397bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1398{
1399	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1400}
1401
1402
1403/****************************************************************************/
1404/* Shared memory read.                                                      */
1405/*                                                                          */
1406/* Reads NetXtreme II shared memory region.                                 */
1407/*                                                                          */
1408/* Returns:                                                                 */
1409/*   The 32 bit value read.                                                 */
1410/****************************************************************************/
1411static u32
1412bce_shmem_rd(struct bce_softc *sc, u32 offset)
1413{
1414	return (bce_reg_rd_ind(sc, sc->bce_shmem_base + offset));
1415}
1416
1417
1418#ifdef BCE_DEBUG
1419/****************************************************************************/
1420/* Context memory read.                                                     */
1421/*                                                                          */
1422/* The NetXtreme II controller uses context memory to track connection      */
1423/* information for L2 and higher network protocols.                         */
1424/*                                                                          */
1425/* Returns:                                                                 */
1426/*   The requested 32 bit value of context memory.                          */
1427/****************************************************************************/
1428static u32
1429bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1430{
1431	u32 idx, offset, retry_cnt = 5, val;
1432
1433	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1434		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1435			__FUNCTION__, cid_addr));
1436
1437	offset = ctx_offset + cid_addr;
1438
1439	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1440		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1441
1442		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1443
1444		for (idx = 0; idx < retry_cnt; idx++) {
1445			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1446			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1447				break;
1448			DELAY(5);
1449		}
1450
1451		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1452			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1453				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1454				__FILE__, __LINE__, cid_addr, ctx_offset);
1455
1456		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1457	} else {
1458		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1459		val = REG_RD(sc, BCE_CTX_DATA);
1460	}
1461
1462	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1463		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1464
1465	return(val);
1466}
1467#endif
1468
1469
1470/****************************************************************************/
1471/* Context memory write.                                                    */
1472/*                                                                          */
1473/* The NetXtreme II controller uses context memory to track connection      */
1474/* information for L2 and higher network protocols.                         */
1475/*                                                                          */
1476/* Returns:                                                                 */
1477/*   Nothing.                                                               */
1478/****************************************************************************/
1479static void
1480bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1481{
1482	u32 idx, offset = ctx_offset + cid_addr;
1483	u32 val, retry_cnt = 5;
1484
1485	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1486		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1487
1488	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1489		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1490			__FUNCTION__, cid_addr));
1491
1492	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1493		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1494
1495		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1496		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1497
1498		for (idx = 0; idx < retry_cnt; idx++) {
1499			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1500			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1501				break;
1502			DELAY(5);
1503		}
1504
1505		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1506			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1507				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1508				__FILE__, __LINE__, cid_addr, ctx_offset);
1509
1510	} else {
1511		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1512		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1513	}
1514}
1515
1516
1517/****************************************************************************/
1518/* PHY register read.                                                       */
1519/*                                                                          */
1520/* Implements register reads on the MII bus.                                */
1521/*                                                                          */
1522/* Returns:                                                                 */
1523/*   The value of the register.                                             */
1524/****************************************************************************/
1525static int
1526bce_miibus_read_reg(device_t dev, int phy, int reg)
1527{
1528	struct bce_softc *sc;
1529	u32 val;
1530	int i;
1531
1532	sc = device_get_softc(dev);
1533
1534	/* Make sure we are accessing the correct PHY address. */
1535	if (phy != sc->bce_phy_addr) {
1536		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1537		    "for PHY read!\n", phy);
1538		return(0);
1539	}
1540
1541    /*
1542     * The 5709S PHY is an IEEE Clause 45 PHY
1543     * with special mappings to work with IEEE
1544     * Clause 22 register accesses.
1545     */
1546	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1547		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1548			reg += 0x10;
1549	}
1550
1551    if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1552		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1553		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1554
1555		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1556		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1557
1558		DELAY(40);
1559	}
1560
1561
1562	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1563	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1564	    BCE_EMAC_MDIO_COMM_START_BUSY;
1565	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1566
1567	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1568		DELAY(10);
1569
1570		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1571		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1572			DELAY(5);
1573
1574			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1575			val &= BCE_EMAC_MDIO_COMM_DATA;
1576
1577			break;
1578		}
1579	}
1580
1581	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1582		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1583		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1584		val = 0x0;
1585	} else {
1586		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1587	}
1588
1589
1590	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1591		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1592		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1593
1594		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1595		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1596
1597		DELAY(40);
1598	}
1599
1600	DB_PRINT_PHY_REG(reg, val);
1601	return (val & 0xffff);
1602
1603}
1604
1605
1606/****************************************************************************/
1607/* PHY register write.                                                      */
1608/*                                                                          */
1609/* Implements register writes on the MII bus.                               */
1610/*                                                                          */
1611/* Returns:                                                                 */
1612/*   The value of the register.                                             */
1613/****************************************************************************/
1614static int
1615bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1616{
1617	struct bce_softc *sc;
1618	u32 val1;
1619	int i;
1620
1621	sc = device_get_softc(dev);
1622
1623	/* Make sure we are accessing the correct PHY address. */
1624	if (phy != sc->bce_phy_addr) {
1625		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1626		    "for PHY write!\n", phy);
1627		return(0);
1628	}
1629
1630	DB_PRINT_PHY_REG(reg, val);
1631
1632	/*
1633	 * The 5709S PHY is an IEEE Clause 45 PHY
1634	 * with special mappings to work with IEEE
1635	 * Clause 22 register accesses.
1636	 */
1637	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1638		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1639			reg += 0x10;
1640	}
1641
1642	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1643		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1644		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1645
1646		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1647		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1648
1649		DELAY(40);
1650	}
1651
1652	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1653	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1654	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1655	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1656
1657	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1658		DELAY(10);
1659
1660		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1661		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1662			DELAY(5);
1663			break;
1664		}
1665	}
1666
1667	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1668		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1669		    __FILE__, __LINE__);
1670
1671	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1672		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1673		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1674
1675		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1676		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1677
1678		DELAY(40);
1679	}
1680
1681	return 0;
1682}
1683
1684
1685/****************************************************************************/
1686/* MII bus status change.                                                   */
1687/*                                                                          */
1688/* Called by the MII bus driver when the PHY establishes link to set the    */
1689/* MAC interface registers.                                                 */
1690/*                                                                          */
1691/* Returns:                                                                 */
1692/*   Nothing.                                                               */
1693/****************************************************************************/
1694static void
1695bce_miibus_statchg(device_t dev)
1696{
1697	struct bce_softc *sc;
1698	struct mii_data *mii;
1699	int val;
1700
1701	sc = device_get_softc(dev);
1702
1703	DBENTER(BCE_VERBOSE_PHY);
1704
1705	mii = device_get_softc(sc->bce_miibus);
1706
1707	val = REG_RD(sc, BCE_EMAC_MODE);
1708	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1709		BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1710		BCE_EMAC_MODE_25G);
1711
1712	/* Set MII or GMII interface based on the speed negotiated by the PHY. */
1713	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1714	case IFM_10_T:
1715		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1716			DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n");
1717			val |= BCE_EMAC_MODE_PORT_MII_10;
1718			break;
1719		}
1720		/* fall-through */
1721	case IFM_100_TX:
1722		DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n");
1723		val |= BCE_EMAC_MODE_PORT_MII;
1724		break;
1725	case IFM_2500_SX:
1726		DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n");
1727		val |= BCE_EMAC_MODE_25G;
1728		/* fall-through */
1729	case IFM_1000_T:
1730	case IFM_1000_SX:
1731		DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n");
1732		val |= BCE_EMAC_MODE_PORT_GMII;
1733		break;
1734	default:
1735		DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII "
1736			"interface.\n");
1737		val |= BCE_EMAC_MODE_PORT_GMII;
1738	}
1739
1740	/* Set half or full duplex based on the duplicity negotiated by the PHY. */
1741	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1742		DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1743		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1744	} else
1745		DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1746
1747	REG_WR(sc, BCE_EMAC_MODE, val);
1748
1749#if 0
1750	/* ToDo: Enable flow control support in brgphy and bge. */
1751	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1752	if (mii->mii_media_active & IFM_FLAG0)
1753		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1754	if (mii->mii_media_active & IFM_FLAG1)
1755		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1756#endif
1757
1758	DBEXIT(BCE_VERBOSE_PHY);
1759}
1760
1761
1762/****************************************************************************/
1763/* Acquire NVRAM lock.                                                      */
1764/*                                                                          */
1765/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1766/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1767/* for use by the driver.                                                   */
1768/*                                                                          */
1769/* Returns:                                                                 */
1770/*   0 on success, positive value on failure.                               */
1771/****************************************************************************/
1772static int
1773bce_acquire_nvram_lock(struct bce_softc *sc)
1774{
1775	u32 val;
1776	int j, rc = 0;
1777
1778	DBENTER(BCE_VERBOSE_NVRAM);
1779
1780	/* Request access to the flash interface. */
1781	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1782	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1783		val = REG_RD(sc, BCE_NVM_SW_ARB);
1784		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1785			break;
1786
1787		DELAY(5);
1788	}
1789
1790	if (j >= NVRAM_TIMEOUT_COUNT) {
1791		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1792		rc = EBUSY;
1793	}
1794
1795	DBEXIT(BCE_VERBOSE_NVRAM);
1796	return (rc);
1797}
1798
1799
1800/****************************************************************************/
1801/* Release NVRAM lock.                                                      */
1802/*                                                                          */
1803/* When the caller is finished accessing NVRAM the lock must be released.   */
1804/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1805/* for use by the driver.                                                   */
1806/*                                                                          */
1807/* Returns:                                                                 */
1808/*   0 on success, positive value on failure.                               */
1809/****************************************************************************/
1810static int
1811bce_release_nvram_lock(struct bce_softc *sc)
1812{
1813	u32 val;
1814	int j, rc = 0;
1815
1816	DBENTER(BCE_VERBOSE_NVRAM);
1817
1818	/*
1819	 * Relinquish nvram interface.
1820	 */
1821	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1822
1823	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1824		val = REG_RD(sc, BCE_NVM_SW_ARB);
1825		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1826			break;
1827
1828		DELAY(5);
1829	}
1830
1831	if (j >= NVRAM_TIMEOUT_COUNT) {
1832		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1833		rc = EBUSY;
1834	}
1835
1836	DBEXIT(BCE_VERBOSE_NVRAM);
1837	return (rc);
1838}
1839
1840
1841#ifdef BCE_NVRAM_WRITE_SUPPORT
1842/****************************************************************************/
1843/* Enable NVRAM write access.                                               */
1844/*                                                                          */
1845/* Before writing to NVRAM the caller must enable NVRAM writes.             */
1846/*                                                                          */
1847/* Returns:                                                                 */
1848/*   0 on success, positive value on failure.                               */
1849/****************************************************************************/
1850static int
1851bce_enable_nvram_write(struct bce_softc *sc)
1852{
1853	u32 val;
1854	int rc = 0;
1855
1856	DBENTER(BCE_VERBOSE_NVRAM);
1857
1858	val = REG_RD(sc, BCE_MISC_CFG);
1859	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1860
1861	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1862		int j;
1863
1864		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1865		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1866
1867		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1868			DELAY(5);
1869
1870			val = REG_RD(sc, BCE_NVM_COMMAND);
1871			if (val & BCE_NVM_COMMAND_DONE)
1872				break;
1873		}
1874
1875		if (j >= NVRAM_TIMEOUT_COUNT) {
1876			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1877			rc = EBUSY;
1878		}
1879	}
1880
1881	DBENTER(BCE_VERBOSE_NVRAM);
1882	return (rc);
1883}
1884
1885
1886/****************************************************************************/
1887/* Disable NVRAM write access.                                              */
1888/*                                                                          */
1889/* When the caller is finished writing to NVRAM write access must be        */
1890/* disabled.                                                                */
1891/*                                                                          */
1892/* Returns:                                                                 */
1893/*   Nothing.                                                               */
1894/****************************************************************************/
1895static void
1896bce_disable_nvram_write(struct bce_softc *sc)
1897{
1898	u32 val;
1899
1900	DBENTER(BCE_VERBOSE_NVRAM);
1901
1902	val = REG_RD(sc, BCE_MISC_CFG);
1903	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1904
1905	DBEXIT(BCE_VERBOSE_NVRAM);
1906
1907}
1908#endif
1909
1910
1911/****************************************************************************/
1912/* Enable NVRAM access.                                                     */
1913/*                                                                          */
1914/* Before accessing NVRAM for read or write operations the caller must      */
1915/* enabled NVRAM access.                                                    */
1916/*                                                                          */
1917/* Returns:                                                                 */
1918/*   Nothing.                                                               */
1919/****************************************************************************/
1920static void
1921bce_enable_nvram_access(struct bce_softc *sc)
1922{
1923	u32 val;
1924
1925	DBENTER(BCE_VERBOSE_NVRAM);
1926
1927	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1928	/* Enable both bits, even on read. */
1929	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1930	       val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1931
1932	DBEXIT(BCE_VERBOSE_NVRAM);
1933}
1934
1935
1936/****************************************************************************/
1937/* Disable NVRAM access.                                                    */
1938/*                                                                          */
1939/* When the caller is finished accessing NVRAM access must be disabled.     */
1940/*                                                                          */
1941/* Returns:                                                                 */
1942/*   Nothing.                                                               */
1943/****************************************************************************/
1944static void
1945bce_disable_nvram_access(struct bce_softc *sc)
1946{
1947	u32 val;
1948
1949	DBENTER(BCE_VERBOSE_NVRAM);
1950
1951	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1952
1953	/* Disable both bits, even after read. */
1954	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1955		val & ~(BCE_NVM_ACCESS_ENABLE_EN |
1956			BCE_NVM_ACCESS_ENABLE_WR_EN));
1957
1958	DBEXIT(BCE_VERBOSE_NVRAM);
1959}
1960
1961
1962#ifdef BCE_NVRAM_WRITE_SUPPORT
1963/****************************************************************************/
1964/* Erase NVRAM page before writing.                                         */
1965/*                                                                          */
1966/* Non-buffered flash parts require that a page be erased before it is      */
1967/* written.                                                                 */
1968/*                                                                          */
1969/* Returns:                                                                 */
1970/*   0 on success, positive value on failure.                               */
1971/****************************************************************************/
1972static int
1973bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
1974{
1975	u32 cmd;
1976	int j, rc = 0;
1977
1978	DBENTER(BCE_VERBOSE_NVRAM);
1979
1980	/* Buffered flash doesn't require an erase. */
1981	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
1982		goto bce_nvram_erase_page_exit;
1983
1984	/* Build an erase command. */
1985	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
1986	      BCE_NVM_COMMAND_DOIT;
1987
1988	/*
1989	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1990	 * and issue the erase command.
1991	 */
1992	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1993	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1994	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1995
1996	/* Wait for completion. */
1997	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1998		u32 val;
1999
2000		DELAY(5);
2001
2002		val = REG_RD(sc, BCE_NVM_COMMAND);
2003		if (val & BCE_NVM_COMMAND_DONE)
2004			break;
2005	}
2006
2007	if (j >= NVRAM_TIMEOUT_COUNT) {
2008		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2009		rc = EBUSY;
2010	}
2011
2012bce_nvram_erase_page_exit:
2013	DBEXIT(BCE_VERBOSE_NVRAM);
2014	return (rc);
2015}
2016#endif /* BCE_NVRAM_WRITE_SUPPORT */
2017
2018
2019/****************************************************************************/
2020/* Read a dword (32 bits) from NVRAM.                                       */
2021/*                                                                          */
2022/* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2023/* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2024/*                                                                          */
2025/* Returns:                                                                 */
2026/*   0 on success and the 32 bit value read, positive value on failure.     */
2027/****************************************************************************/
2028static int
2029bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val,
2030							u32 cmd_flags)
2031{
2032	u32 cmd;
2033	int i, rc = 0;
2034
2035	DBENTER(BCE_EXTREME_NVRAM);
2036
2037	/* Build the command word. */
2038	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2039
2040	/* Calculate the offset for buffered flash if translation is used. */
2041	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2042		offset = ((offset / sc->bce_flash_info->page_size) <<
2043			   sc->bce_flash_info->page_bits) +
2044			  (offset % sc->bce_flash_info->page_size);
2045	}
2046
2047	/*
2048	 * Clear the DONE bit separately, set the address to read,
2049	 * and issue the read.
2050	 */
2051	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2052	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2053	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2054
2055	/* Wait for completion. */
2056	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2057		u32 val;
2058
2059		DELAY(5);
2060
2061		val = REG_RD(sc, BCE_NVM_COMMAND);
2062		if (val & BCE_NVM_COMMAND_DONE) {
2063			val = REG_RD(sc, BCE_NVM_READ);
2064
2065			val = bce_be32toh(val);
2066			memcpy(ret_val, &val, 4);
2067			break;
2068		}
2069	}
2070
2071	/* Check for errors. */
2072	if (i >= NVRAM_TIMEOUT_COUNT) {
2073		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n",
2074			__FILE__, __LINE__, offset);
2075		rc = EBUSY;
2076	}
2077
2078	DBEXIT(BCE_EXTREME_NVRAM);
2079	return(rc);
2080}
2081
2082
2083#ifdef BCE_NVRAM_WRITE_SUPPORT
2084/****************************************************************************/
2085/* Write a dword (32 bits) to NVRAM.                                        */
2086/*                                                                          */
2087/* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2088/* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2089/* enabled NVRAM write access.                                              */
2090/*                                                                          */
2091/* Returns:                                                                 */
2092/*   0 on success, positive value on failure.                               */
2093/****************************************************************************/
2094static int
2095bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2096	u32 cmd_flags)
2097{
2098	u32 cmd, val32;
2099	int j, rc = 0;
2100
2101	DBENTER(BCE_VERBOSE_NVRAM);
2102
2103	/* Build the command word. */
2104	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2105
2106	/* Calculate the offset for buffered flash if translation is used. */
2107	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2108		offset = ((offset / sc->bce_flash_info->page_size) <<
2109			  sc->bce_flash_info->page_bits) +
2110			 (offset % sc->bce_flash_info->page_size);
2111	}
2112
2113	/*
2114	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2115	 * set the NVRAM address to write, and issue the write command
2116	 */
2117	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2118	memcpy(&val32, val, 4);
2119	val32 = htobe32(val32);
2120	REG_WR(sc, BCE_NVM_WRITE, val32);
2121	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2122	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2123
2124	/* Wait for completion. */
2125	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2126		DELAY(5);
2127
2128		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2129			break;
2130	}
2131	if (j >= NVRAM_TIMEOUT_COUNT) {
2132		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n",
2133			__FILE__, __LINE__, offset);
2134		rc = EBUSY;
2135	}
2136
2137	DBEXIT(BCE_VERBOSE_NVRAM);
2138	return (rc);
2139}
2140#endif /* BCE_NVRAM_WRITE_SUPPORT */
2141
2142
2143/****************************************************************************/
2144/* Initialize NVRAM access.                                                 */
2145/*                                                                          */
2146/* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2147/* access that device.                                                      */
2148/*                                                                          */
2149/* Returns:                                                                 */
2150/*   0 on success, positive value on failure.                               */
2151/****************************************************************************/
2152static int
2153bce_init_nvram(struct bce_softc *sc)
2154{
2155	u32 val;
2156	int j, entry_count, rc = 0;
2157	struct flash_spec *flash;
2158
2159	DBENTER(BCE_VERBOSE_NVRAM);
2160
2161	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2162		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2163		sc->bce_flash_info = &flash_5709;
2164		goto bce_init_nvram_get_flash_size;
2165	}
2166
2167	/* Determine the selected interface. */
2168	val = REG_RD(sc, BCE_NVM_CFG1);
2169
2170	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2171
2172	/*
2173	 * Flash reconfiguration is required to support additional
2174	 * NVRAM devices not directly supported in hardware.
2175	 * Check if the flash interface was reconfigured
2176	 * by the bootcode.
2177	 */
2178
2179	if (val & 0x40000000) {
2180		/* Flash interface reconfigured by bootcode. */
2181
2182		DBPRINT(sc,BCE_INFO_LOAD,
2183			"bce_init_nvram(): Flash WAS reconfigured.\n");
2184
2185		for (j = 0, flash = &flash_table[0]; j < entry_count;
2186		     j++, flash++) {
2187			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2188			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2189				sc->bce_flash_info = flash;
2190				break;
2191			}
2192		}
2193	} else {
2194		/* Flash interface not yet reconfigured. */
2195		u32 mask;
2196
2197		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2198			__FUNCTION__);
2199
2200		if (val & (1 << 23))
2201			mask = FLASH_BACKUP_STRAP_MASK;
2202		else
2203			mask = FLASH_STRAP_MASK;
2204
2205		/* Look for the matching NVRAM device configuration data. */
2206		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2207
2208			/* Check if the device matches any of the known devices. */
2209			if ((val & mask) == (flash->strapping & mask)) {
2210				/* Found a device match. */
2211				sc->bce_flash_info = flash;
2212
2213				/* Request access to the flash interface. */
2214				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2215					return rc;
2216
2217				/* Reconfigure the flash interface. */
2218				bce_enable_nvram_access(sc);
2219				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2220				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2221				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2222				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2223				bce_disable_nvram_access(sc);
2224				bce_release_nvram_lock(sc);
2225
2226				break;
2227			}
2228		}
2229	}
2230
2231	/* Check if a matching device was found. */
2232	if (j == entry_count) {
2233		sc->bce_flash_info = NULL;
2234		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2235			__FILE__, __LINE__);
2236		rc = ENODEV;
2237	}
2238
2239bce_init_nvram_get_flash_size:
2240	/* Write the flash config data to the shared memory interface. */
2241	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2242	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2243	if (val)
2244		sc->bce_flash_size = val;
2245	else
2246		sc->bce_flash_size = sc->bce_flash_info->total_size;
2247
2248	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2249		__FUNCTION__, sc->bce_flash_info->name,
2250		sc->bce_flash_info->total_size);
2251
2252	DBEXIT(BCE_VERBOSE_NVRAM);
2253	return rc;
2254}
2255
2256
2257/****************************************************************************/
2258/* Read an arbitrary range of data from NVRAM.                              */
2259/*                                                                          */
2260/* Prepares the NVRAM interface for access and reads the requested data     */
2261/* into the supplied buffer.                                                */
2262/*                                                                          */
2263/* Returns:                                                                 */
2264/*   0 on success and the data read, positive value on failure.             */
2265/****************************************************************************/
2266static int
2267bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2268	int buf_size)
2269{
2270	int rc = 0;
2271	u32 cmd_flags, offset32, len32, extra;
2272
2273	DBENTER(BCE_VERBOSE_NVRAM);
2274
2275	if (buf_size == 0)
2276		goto bce_nvram_read_exit;
2277
2278	/* Request access to the flash interface. */
2279	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2280		goto bce_nvram_read_exit;
2281
2282	/* Enable access to flash interface */
2283	bce_enable_nvram_access(sc);
2284
2285	len32 = buf_size;
2286	offset32 = offset;
2287	extra = 0;
2288
2289	cmd_flags = 0;
2290
2291	if (offset32 & 3) {
2292		u8 buf[4];
2293		u32 pre_len;
2294
2295		offset32 &= ~3;
2296		pre_len = 4 - (offset & 3);
2297
2298		if (pre_len >= len32) {
2299			pre_len = len32;
2300			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2301		}
2302		else {
2303			cmd_flags = BCE_NVM_COMMAND_FIRST;
2304		}
2305
2306		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2307
2308		if (rc)
2309			return rc;
2310
2311		memcpy(ret_buf, buf + (offset & 3), pre_len);
2312
2313		offset32 += 4;
2314		ret_buf += pre_len;
2315		len32 -= pre_len;
2316	}
2317
2318	if (len32 & 3) {
2319		extra = 4 - (len32 & 3);
2320		len32 = (len32 + 4) & ~3;
2321	}
2322
2323	if (len32 == 4) {
2324		u8 buf[4];
2325
2326		if (cmd_flags)
2327			cmd_flags = BCE_NVM_COMMAND_LAST;
2328		else
2329			cmd_flags = BCE_NVM_COMMAND_FIRST |
2330				    BCE_NVM_COMMAND_LAST;
2331
2332		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2333
2334		memcpy(ret_buf, buf, 4 - extra);
2335	}
2336	else if (len32 > 0) {
2337		u8 buf[4];
2338
2339		/* Read the first word. */
2340		if (cmd_flags)
2341			cmd_flags = 0;
2342		else
2343			cmd_flags = BCE_NVM_COMMAND_FIRST;
2344
2345		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2346
2347		/* Advance to the next dword. */
2348		offset32 += 4;
2349		ret_buf += 4;
2350		len32 -= 4;
2351
2352		while (len32 > 4 && rc == 0) {
2353			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2354
2355			/* Advance to the next dword. */
2356			offset32 += 4;
2357			ret_buf += 4;
2358			len32 -= 4;
2359		}
2360
2361		if (rc)
2362			goto bce_nvram_read_locked_exit;
2363
2364		cmd_flags = BCE_NVM_COMMAND_LAST;
2365		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2366
2367		memcpy(ret_buf, buf, 4 - extra);
2368	}
2369
2370bce_nvram_read_locked_exit:
2371	/* Disable access to flash interface and release the lock. */
2372	bce_disable_nvram_access(sc);
2373	bce_release_nvram_lock(sc);
2374
2375bce_nvram_read_exit:
2376	DBEXIT(BCE_VERBOSE_NVRAM);
2377	return rc;
2378}
2379
2380
2381#ifdef BCE_NVRAM_WRITE_SUPPORT
2382/****************************************************************************/
2383/* Write an arbitrary range of data from NVRAM.                             */
2384/*                                                                          */
2385/* Prepares the NVRAM interface for write access and writes the requested   */
2386/* data from the supplied buffer.  The caller is responsible for            */
2387/* calculating any appropriate CRCs.                                        */
2388/*                                                                          */
2389/* Returns:                                                                 */
2390/*   0 on success, positive value on failure.                               */
2391/****************************************************************************/
2392static int
2393bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2394	int buf_size)
2395{
2396	u32 written, offset32, len32;
2397	u8 *buf, start[4], end[4];
2398	int rc = 0;
2399	int align_start, align_end;
2400
2401	DBENTER(BCE_VERBOSE_NVRAM);
2402
2403	buf = data_buf;
2404	offset32 = offset;
2405	len32 = buf_size;
2406	align_start = align_end = 0;
2407
2408	if ((align_start = (offset32 & 3))) {
2409		offset32 &= ~3;
2410		len32 += align_start;
2411		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2412			goto bce_nvram_write_exit;
2413	}
2414
2415	if (len32 & 3) {
2416	       	if ((len32 > 4) || !align_start) {
2417			align_end = 4 - (len32 & 3);
2418			len32 += align_end;
2419			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2420				end, 4))) {
2421				goto bce_nvram_write_exit;
2422			}
2423		}
2424	}
2425
2426	if (align_start || align_end) {
2427		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2428		if (buf == 0) {
2429			rc = ENOMEM;
2430			goto bce_nvram_write_exit;
2431		}
2432
2433		if (align_start) {
2434			memcpy(buf, start, 4);
2435		}
2436
2437		if (align_end) {
2438			memcpy(buf + len32 - 4, end, 4);
2439		}
2440		memcpy(buf + align_start, data_buf, buf_size);
2441	}
2442
2443	written = 0;
2444	while ((written < len32) && (rc == 0)) {
2445		u32 page_start, page_end, data_start, data_end;
2446		u32 addr, cmd_flags;
2447		int i;
2448		u8 flash_buffer[264];
2449
2450	    /* Find the page_start addr */
2451		page_start = offset32 + written;
2452		page_start -= (page_start % sc->bce_flash_info->page_size);
2453		/* Find the page_end addr */
2454		page_end = page_start + sc->bce_flash_info->page_size;
2455		/* Find the data_start addr */
2456		data_start = (written == 0) ? offset32 : page_start;
2457		/* Find the data_end addr */
2458		data_end = (page_end > offset32 + len32) ?
2459			(offset32 + len32) : page_end;
2460
2461		/* Request access to the flash interface. */
2462		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2463			goto bce_nvram_write_exit;
2464
2465		/* Enable access to flash interface */
2466		bce_enable_nvram_access(sc);
2467
2468		cmd_flags = BCE_NVM_COMMAND_FIRST;
2469		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2470			int j;
2471
2472			/* Read the whole page into the buffer
2473			 * (non-buffer flash only) */
2474			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2475				if (j == (sc->bce_flash_info->page_size - 4)) {
2476					cmd_flags |= BCE_NVM_COMMAND_LAST;
2477				}
2478				rc = bce_nvram_read_dword(sc,
2479					page_start + j,
2480					&flash_buffer[j],
2481					cmd_flags);
2482
2483				if (rc)
2484					goto bce_nvram_write_locked_exit;
2485
2486				cmd_flags = 0;
2487			}
2488		}
2489
2490		/* Enable writes to flash interface (unlock write-protect) */
2491		if ((rc = bce_enable_nvram_write(sc)) != 0)
2492			goto bce_nvram_write_locked_exit;
2493
2494		/* Erase the page */
2495		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2496			goto bce_nvram_write_locked_exit;
2497
2498		/* Re-enable the write again for the actual write */
2499		bce_enable_nvram_write(sc);
2500
2501		/* Loop to write back the buffer data from page_start to
2502		 * data_start */
2503		i = 0;
2504		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2505			for (addr = page_start; addr < data_start;
2506				addr += 4, i += 4) {
2507
2508				rc = bce_nvram_write_dword(sc, addr,
2509					&flash_buffer[i], cmd_flags);
2510
2511				if (rc != 0)
2512					goto bce_nvram_write_locked_exit;
2513
2514				cmd_flags = 0;
2515			}
2516		}
2517
2518		/* Loop to write the new data from data_start to data_end */
2519		for (addr = data_start; addr < data_end; addr += 4, i++) {
2520			if ((addr == page_end - 4) ||
2521				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2522				(addr == data_end - 4))) {
2523
2524				cmd_flags |= BCE_NVM_COMMAND_LAST;
2525			}
2526			rc = bce_nvram_write_dword(sc, addr, buf,
2527				cmd_flags);
2528
2529			if (rc != 0)
2530				goto bce_nvram_write_locked_exit;
2531
2532			cmd_flags = 0;
2533			buf += 4;
2534		}
2535
2536		/* Loop to write back the buffer data from data_end
2537		 * to page_end */
2538		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2539			for (addr = data_end; addr < page_end;
2540				addr += 4, i += 4) {
2541
2542				if (addr == page_end-4) {
2543					cmd_flags = BCE_NVM_COMMAND_LAST;
2544                		}
2545				rc = bce_nvram_write_dword(sc, addr,
2546					&flash_buffer[i], cmd_flags);
2547
2548				if (rc != 0)
2549					goto bce_nvram_write_locked_exit;
2550
2551				cmd_flags = 0;
2552			}
2553		}
2554
2555		/* Disable writes to flash interface (lock write-protect) */
2556		bce_disable_nvram_write(sc);
2557
2558		/* Disable access to flash interface */
2559		bce_disable_nvram_access(sc);
2560		bce_release_nvram_lock(sc);
2561
2562		/* Increment written */
2563		written += data_end - data_start;
2564	}
2565
2566	goto bce_nvram_write_exit;
2567
2568bce_nvram_write_locked_exit:
2569		bce_disable_nvram_write(sc);
2570		bce_disable_nvram_access(sc);
2571		bce_release_nvram_lock(sc);
2572
2573bce_nvram_write_exit:
2574	if (align_start || align_end)
2575		free(buf, M_DEVBUF);
2576
2577	DBEXIT(BCE_VERBOSE_NVRAM);
2578	return (rc);
2579}
2580#endif /* BCE_NVRAM_WRITE_SUPPORT */
2581
2582
2583/****************************************************************************/
2584/* Verifies that NVRAM is accessible and contains valid data.               */
2585/*                                                                          */
2586/* Reads the configuration data from NVRAM and verifies that the CRC is     */
2587/* correct.                                                                 */
2588/*                                                                          */
2589/* Returns:                                                                 */
2590/*   0 on success, positive value on failure.                               */
2591/****************************************************************************/
2592static int
2593bce_nvram_test(struct bce_softc *sc)
2594{
2595	u32 buf[BCE_NVRAM_SIZE / 4];
2596	u8 *data = (u8 *) buf;
2597	int rc = 0;
2598	u32 magic, csum;
2599
2600	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2601
2602	/*
2603	 * Check that the device NVRAM is valid by reading
2604	 * the magic value at offset 0.
2605	 */
2606	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2607		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__);
2608		goto bce_nvram_test_exit;
2609	}
2610
2611	/*
2612	 * Verify that offset 0 of the NVRAM contains
2613	 * a valid magic number.
2614	 */
2615    magic = bce_be32toh(buf[0]);
2616	if (magic != BCE_NVRAM_MAGIC) {
2617		rc = ENODEV;
2618		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, "
2619			"Found: 0x%08X\n",
2620			__FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2621		goto bce_nvram_test_exit;
2622	}
2623
2624	/*
2625	 * Verify that the device NVRAM includes valid
2626	 * configuration data.
2627	 */
2628	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2629		BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from "
2630			"NVRAM!\n", __FILE__, __LINE__);
2631		goto bce_nvram_test_exit;
2632	}
2633
2634	csum = ether_crc32_le(data, 0x100);
2635	if (csum != BCE_CRC32_RESIDUAL) {
2636		rc = ENODEV;
2637		BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! "
2638			"Expected: 0x%08X, Found: 0x%08X\n",
2639			__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2640		goto bce_nvram_test_exit;
2641	}
2642
2643	csum = ether_crc32_le(data + 0x100, 0x100);
2644	if (csum != BCE_CRC32_RESIDUAL) {
2645		rc = ENODEV;
2646		BCE_PRINTF("%s(%d): Invalid Feature Configuration Information "
2647			"NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2648			__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2649	}
2650
2651bce_nvram_test_exit:
2652	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2653	return rc;
2654}
2655
2656
2657/****************************************************************************/
2658/* Identifies the current media type of the controller and sets the PHY     */
2659/* address.                                                                 */
2660/*                                                                          */
2661/* Returns:                                                                 */
2662/*   Nothing.                                                               */
2663/****************************************************************************/
2664static void
2665bce_get_media(struct bce_softc *sc)
2666{
2667	u32 val;
2668
2669	DBENTER(BCE_VERBOSE);
2670
2671	/* Assume PHY address for copper controllers. */
2672	sc->bce_phy_addr = 1;
2673
2674	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2675 		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2676		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2677		u32 strap;
2678
2679		/*
2680		 * The BCM5709S is software configurable
2681		 * for Copper or SerDes operation.
2682		 */
2683		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2684			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2685			    "for copper.\n");
2686			goto bce_get_media_exit;
2687		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2688			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2689			    "for dual media.\n");
2690			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2691			goto bce_get_media_exit;
2692		}
2693
2694		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2695			strap = (val &
2696			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2697		else
2698			strap = (val &
2699			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2700
2701		if (pci_get_function(sc->bce_dev) == 0) {
2702			switch (strap) {
2703			case 0x4:
2704			case 0x5:
2705			case 0x6:
2706				DBPRINT(sc, BCE_INFO_LOAD,
2707				    "BCM5709 s/w configured for SerDes.\n");
2708				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2709				break;
2710			default:
2711				DBPRINT(sc, BCE_INFO_LOAD,
2712				    "BCM5709 s/w configured for Copper.\n");
2713				break;
2714			}
2715		} else {
2716			switch (strap) {
2717			case 0x1:
2718			case 0x2:
2719			case 0x4:
2720				DBPRINT(sc, BCE_INFO_LOAD,
2721				    "BCM5709 s/w configured for SerDes.\n");
2722				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2723				break;
2724			default:
2725				DBPRINT(sc, BCE_INFO_LOAD,
2726				    "BCM5709 s/w configured for Copper.\n");
2727				break;
2728			}
2729		}
2730
2731	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2732		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2733
2734	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2735
2736		sc->bce_flags |= BCE_NO_WOL_FLAG;
2737
2738		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
2739			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
2740
2741		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2742			/* 5708S/09S/16S use a separate PHY for SerDes. */
2743			sc->bce_phy_addr = 2;
2744
2745			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2746			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2747				sc->bce_phy_flags |=
2748				    BCE_PHY_2_5G_CAPABLE_FLAG;
2749				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
2750				    "capable adapter\n");
2751			}
2752		}
2753	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2754	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2755		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2756
2757bce_get_media_exit:
2758	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2759		"Using PHY address %d.\n", sc->bce_phy_addr);
2760
2761	DBEXIT(BCE_VERBOSE);
2762}
2763
2764
2765/****************************************************************************/
2766/* Performs PHY initialization required before MII drivers access the       */
2767/* device.                                                                  */
2768/*                                                                          */
2769/* Returns:                                                                 */
2770/*   Nothing.                                                               */
2771/****************************************************************************/
2772static void
2773bce_init_media(struct bce_softc *sc)
2774{
2775	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
2776		/*
2777		 * Configure 5709S/5716S PHYs to use traditional IEEE
2778		 * Clause 22 method. Otherwise we have no way to attach
2779		 * the PHY in mii(4) layer. PHY specific configuration
2780		 * is done in mii layer.
2781		 */
2782
2783		/* Select auto-negotiation MMD of the PHY. */
2784		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2785		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2786		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2787		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2788
2789		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
2790		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2791		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2792	}
2793}
2794
2795
2796/****************************************************************************/
2797/* Free any DMA memory owned by the driver.                                 */
2798/*                                                                          */
2799/* Scans through each data structre that requires DMA memory and frees      */
2800/* the memory if allocated.                                                 */
2801/*                                                                          */
2802/* Returns:                                                                 */
2803/*   Nothing.                                                               */
2804/****************************************************************************/
2805static void
2806bce_dma_free(struct bce_softc *sc)
2807{
2808	int i;
2809
2810	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2811
2812	/* Free, unmap, and destroy the status block. */
2813	if (sc->status_block != NULL) {
2814		bus_dmamem_free(
2815		   sc->status_tag,
2816		    sc->status_block,
2817		    sc->status_map);
2818		sc->status_block = NULL;
2819	}
2820
2821	if (sc->status_map != NULL) {
2822		bus_dmamap_unload(
2823		    sc->status_tag,
2824		    sc->status_map);
2825		bus_dmamap_destroy(sc->status_tag,
2826		    sc->status_map);
2827		sc->status_map = NULL;
2828	}
2829
2830	if (sc->status_tag != NULL) {
2831		bus_dma_tag_destroy(sc->status_tag);
2832		sc->status_tag = NULL;
2833	}
2834
2835
2836	/* Free, unmap, and destroy the statistics block. */
2837	if (sc->stats_block != NULL) {
2838		bus_dmamem_free(
2839		    sc->stats_tag,
2840		    sc->stats_block,
2841		    sc->stats_map);
2842		sc->stats_block = NULL;
2843	}
2844
2845	if (sc->stats_map != NULL) {
2846		bus_dmamap_unload(
2847		    sc->stats_tag,
2848		    sc->stats_map);
2849		bus_dmamap_destroy(sc->stats_tag,
2850		    sc->stats_map);
2851		sc->stats_map = NULL;
2852	}
2853
2854	if (sc->stats_tag != NULL) {
2855		bus_dma_tag_destroy(sc->stats_tag);
2856		sc->stats_tag = NULL;
2857	}
2858
2859
2860	/* Free, unmap and destroy all context memory pages. */
2861	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2862		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2863		for (i = 0; i < sc->ctx_pages; i++ ) {
2864			if (sc->ctx_block[i] != NULL) {
2865				bus_dmamem_free(
2866				    sc->ctx_tag,
2867				    sc->ctx_block[i],
2868				    sc->ctx_map[i]);
2869				sc->ctx_block[i] = NULL;
2870			}
2871
2872			if (sc->ctx_map[i] != NULL) {
2873				bus_dmamap_unload(
2874				    sc->ctx_tag,
2875				    sc->ctx_map[i]);
2876				bus_dmamap_destroy(
2877				    sc->ctx_tag,
2878				    sc->ctx_map[i]);
2879				sc->ctx_map[i] = NULL;
2880			}
2881		}
2882
2883		/* Destroy the context memory tag. */
2884		if (sc->ctx_tag != NULL) {
2885			bus_dma_tag_destroy(sc->ctx_tag);
2886			sc->ctx_tag = NULL;
2887		}
2888	}
2889
2890
2891	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2892	for (i = 0; i < TX_PAGES; i++ ) {
2893		if (sc->tx_bd_chain[i] != NULL) {
2894			bus_dmamem_free(
2895			    sc->tx_bd_chain_tag,
2896			    sc->tx_bd_chain[i],
2897			    sc->tx_bd_chain_map[i]);
2898			sc->tx_bd_chain[i] = NULL;
2899		}
2900
2901		if (sc->tx_bd_chain_map[i] != NULL) {
2902			bus_dmamap_unload(
2903			    sc->tx_bd_chain_tag,
2904			    sc->tx_bd_chain_map[i]);
2905			bus_dmamap_destroy(
2906			    sc->tx_bd_chain_tag,
2907			    sc->tx_bd_chain_map[i]);
2908			sc->tx_bd_chain_map[i] = NULL;
2909		}
2910	}
2911
2912	/* Destroy the TX buffer descriptor tag. */
2913	if (sc->tx_bd_chain_tag != NULL) {
2914		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2915		sc->tx_bd_chain_tag = NULL;
2916	}
2917
2918
2919	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2920	for (i = 0; i < RX_PAGES; i++ ) {
2921		if (sc->rx_bd_chain[i] != NULL) {
2922			bus_dmamem_free(
2923			    sc->rx_bd_chain_tag,
2924			    sc->rx_bd_chain[i],
2925			    sc->rx_bd_chain_map[i]);
2926			sc->rx_bd_chain[i] = NULL;
2927		}
2928
2929		if (sc->rx_bd_chain_map[i] != NULL) {
2930			bus_dmamap_unload(
2931			    sc->rx_bd_chain_tag,
2932			    sc->rx_bd_chain_map[i]);
2933			bus_dmamap_destroy(
2934			    sc->rx_bd_chain_tag,
2935			    sc->rx_bd_chain_map[i]);
2936			sc->rx_bd_chain_map[i] = NULL;
2937		}
2938	}
2939
2940	/* Destroy the RX buffer descriptor tag. */
2941	if (sc->rx_bd_chain_tag != NULL) {
2942		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2943		sc->rx_bd_chain_tag = NULL;
2944	}
2945
2946
2947#ifdef BCE_JUMBO_HDRSPLIT
2948	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2949	for (i = 0; i < PG_PAGES; i++ ) {
2950		if (sc->pg_bd_chain[i] != NULL) {
2951			bus_dmamem_free(
2952			    sc->pg_bd_chain_tag,
2953			    sc->pg_bd_chain[i],
2954			    sc->pg_bd_chain_map[i]);
2955			sc->pg_bd_chain[i] = NULL;
2956		}
2957
2958		if (sc->pg_bd_chain_map[i] != NULL) {
2959			bus_dmamap_unload(
2960			    sc->pg_bd_chain_tag,
2961			    sc->pg_bd_chain_map[i]);
2962			bus_dmamap_destroy(
2963			    sc->pg_bd_chain_tag,
2964			    sc->pg_bd_chain_map[i]);
2965			sc->pg_bd_chain_map[i] = NULL;
2966		}
2967	}
2968
2969	/* Destroy the page buffer descriptor tag. */
2970	if (sc->pg_bd_chain_tag != NULL) {
2971		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
2972		sc->pg_bd_chain_tag = NULL;
2973	}
2974#endif
2975
2976
2977	/* Unload and destroy the TX mbuf maps. */
2978	for (i = 0; i < TOTAL_TX_BD; i++) {
2979		if (sc->tx_mbuf_map[i] != NULL) {
2980			bus_dmamap_unload(sc->tx_mbuf_tag,
2981			    sc->tx_mbuf_map[i]);
2982			bus_dmamap_destroy(sc->tx_mbuf_tag,
2983	 		    sc->tx_mbuf_map[i]);
2984			sc->tx_mbuf_map[i] = NULL;
2985		}
2986	}
2987
2988	/* Destroy the TX mbuf tag. */
2989	if (sc->tx_mbuf_tag != NULL) {
2990		bus_dma_tag_destroy(sc->tx_mbuf_tag);
2991		sc->tx_mbuf_tag = NULL;
2992	}
2993
2994	/* Unload and destroy the RX mbuf maps. */
2995	for (i = 0; i < TOTAL_RX_BD; i++) {
2996		if (sc->rx_mbuf_map[i] != NULL) {
2997			bus_dmamap_unload(sc->rx_mbuf_tag,
2998			    sc->rx_mbuf_map[i]);
2999			bus_dmamap_destroy(sc->rx_mbuf_tag,
3000	 		    sc->rx_mbuf_map[i]);
3001			sc->rx_mbuf_map[i] = NULL;
3002		}
3003	}
3004
3005	/* Destroy the RX mbuf tag. */
3006	if (sc->rx_mbuf_tag != NULL) {
3007		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3008		sc->rx_mbuf_tag = NULL;
3009	}
3010
3011#ifdef BCE_JUMBO_HDRSPLIT
3012	/* Unload and destroy the page mbuf maps. */
3013	for (i = 0; i < TOTAL_PG_BD; i++) {
3014		if (sc->pg_mbuf_map[i] != NULL) {
3015			bus_dmamap_unload(sc->pg_mbuf_tag,
3016			    sc->pg_mbuf_map[i]);
3017			bus_dmamap_destroy(sc->pg_mbuf_tag,
3018	 		    sc->pg_mbuf_map[i]);
3019			sc->pg_mbuf_map[i] = NULL;
3020		}
3021	}
3022
3023	/* Destroy the page mbuf tag. */
3024	if (sc->pg_mbuf_tag != NULL) {
3025		bus_dma_tag_destroy(sc->pg_mbuf_tag);
3026		sc->pg_mbuf_tag = NULL;
3027	}
3028#endif
3029
3030	/* Destroy the parent tag */
3031	if (sc->parent_tag != NULL) {
3032		bus_dma_tag_destroy(sc->parent_tag);
3033		sc->parent_tag = NULL;
3034	}
3035
3036	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3037}
3038
3039
3040/****************************************************************************/
3041/* Get DMA memory from the OS.                                              */
3042/*                                                                          */
3043/* Validates that the OS has provided DMA buffers in response to a          */
3044/* bus_dmamap_load() call and saves the physical address of those buffers.  */
3045/* When the callback is used the OS will return 0 for the mapping function  */
3046/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3047/* failures back to the caller.                                             */
3048/*                                                                          */
3049/* Returns:                                                                 */
3050/*   Nothing.                                                               */
3051/****************************************************************************/
3052static void
3053bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3054{
3055	bus_addr_t *busaddr = arg;
3056
3057	/* Simulate a mapping failure. */
3058	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3059		error = ENOMEM);
3060
3061	/* Check for an error and signal the caller that an error occurred. */
3062	if (error) {
3063		*busaddr = 0;
3064	} else {
3065		*busaddr = segs->ds_addr;
3066	}
3067
3068	return;
3069}
3070
3071
3072/****************************************************************************/
3073/* Allocate any DMA memory needed by the driver.                            */
3074/*                                                                          */
3075/* Allocates DMA memory needed for the various global structures needed by  */
3076/* hardware.                                                                */
3077/*                                                                          */
3078/* Memory alignment requirements:                                           */
3079/* +-----------------+----------+----------+----------+----------+          */
3080/* |                 |   5706   |   5708   |   5709   |   5716   |          */
3081/* +-----------------+----------+----------+----------+----------+          */
3082/* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3083/* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3084/* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3085/* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3086/* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3087/* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3088/* |Context Memory   |          |          |          |          |          */
3089/* +-----------------+----------+----------+----------+----------+          */
3090/*                                                                          */
3091/* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3092/*                                                                          */
3093/* Returns:                                                                 */
3094/*   0 for success, positive value for failure.                             */
3095/****************************************************************************/
3096static int
3097bce_dma_alloc(device_t dev)
3098{
3099	struct bce_softc *sc;
3100	int i, error, rc = 0;
3101	bus_size_t max_size, max_seg_size;
3102	int max_segments;
3103
3104	sc = device_get_softc(dev);
3105
3106	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3107
3108	/*
3109	 * Allocate the parent bus DMA tag appropriate for PCI.
3110	 */
3111	if (bus_dma_tag_create(NULL, 1,	BCE_DMA_BOUNDARY,
3112	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3113	    MAXBSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE_32BIT,
3114	    0, NULL, NULL, &sc->parent_tag)) {
3115		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3116		    __FILE__, __LINE__);
3117		rc = ENOMEM;
3118		goto bce_dma_alloc_exit;
3119	}
3120
3121	/*
3122	 * Create a DMA tag for the status block, allocate and clear the
3123	 * memory, map the memory into DMA space, and fetch the physical
3124	 * address of the block.
3125	 */
3126	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3127	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3128	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3129	    0, NULL, NULL, &sc->status_tag)) {
3130		BCE_PRINTF("%s(%d): Could not allocate status block "
3131		    "DMA tag!\n", __FILE__, __LINE__);
3132		rc = ENOMEM;
3133		goto bce_dma_alloc_exit;
3134	}
3135
3136	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3137	    BUS_DMA_NOWAIT, &sc->status_map)) {
3138		BCE_PRINTF("%s(%d): Could not allocate status block "
3139		    "DMA memory!\n", __FILE__, __LINE__);
3140		rc = ENOMEM;
3141		goto bce_dma_alloc_exit;
3142	}
3143
3144	bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
3145
3146	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3147	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3148	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3149
3150	if (error) {
3151		BCE_PRINTF("%s(%d): Could not map status block "
3152		    "DMA memory!\n", __FILE__, __LINE__);
3153		rc = ENOMEM;
3154		goto bce_dma_alloc_exit;
3155	}
3156
3157	DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n",
3158	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3159
3160	/*
3161	 * Create a DMA tag for the statistics block, allocate and clear the
3162	 * memory, map the memory into DMA space, and fetch the physical
3163	 * address of the block.
3164	 */
3165	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3166	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3167	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3168	    0, NULL, NULL, &sc->stats_tag)) {
3169		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3170		    "DMA tag!\n", __FILE__, __LINE__);
3171		rc = ENOMEM;
3172		goto bce_dma_alloc_exit;
3173	}
3174
3175	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3176	    BUS_DMA_NOWAIT,	&sc->stats_map)) {
3177		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3178		    "DMA memory!\n", __FILE__, __LINE__);
3179		rc = ENOMEM;
3180		goto bce_dma_alloc_exit;
3181	}
3182
3183	bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
3184
3185	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3186	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3187	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3188
3189	if(error) {
3190		BCE_PRINTF("%s(%d): Could not map statistics block "
3191		    "DMA memory!\n", __FILE__, __LINE__);
3192		rc = ENOMEM;
3193		goto bce_dma_alloc_exit;
3194	}
3195
3196	DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n",
3197	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3198
3199	/* BCM5709 uses host memory as cache for context memory. */
3200	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3201	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3202		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3203		if (sc->ctx_pages == 0)
3204			sc->ctx_pages = 1;
3205
3206		DBRUNIF((sc->ctx_pages > 512),
3207		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3208		    __FILE__, __LINE__, sc->ctx_pages));
3209
3210		/*
3211		 * Create a DMA tag for the context pages,
3212		 * allocate and clear the memory, map the
3213		 * memory into DMA space, and fetch the
3214		 * physical address of the block.
3215		 */
3216		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3217		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3218		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3219		    0, NULL, NULL, &sc->ctx_tag)) {
3220			BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n",
3221			    __FILE__, __LINE__);
3222			rc = ENOMEM;
3223			goto bce_dma_alloc_exit;
3224		}
3225
3226		for (i = 0; i < sc->ctx_pages; i++) {
3227
3228			if(bus_dmamem_alloc(sc->ctx_tag,
3229			    (void **)&sc->ctx_block[i],
3230			    BUS_DMA_NOWAIT,
3231			    &sc->ctx_map[i])) {
3232				BCE_PRINTF("%s(%d): Could not allocate CTX "
3233				    "DMA memory!\n", __FILE__, __LINE__);
3234				rc = ENOMEM;
3235				goto bce_dma_alloc_exit;
3236			}
3237
3238			bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE);
3239
3240			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3241			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3242			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3243
3244			if (error) {
3245				BCE_PRINTF("%s(%d): Could not map CTX "
3246				    "DMA memory!\n", __FILE__, __LINE__);
3247				rc = ENOMEM;
3248				goto bce_dma_alloc_exit;
3249			}
3250
3251			DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n",
3252			    __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]);
3253		}
3254	}
3255
3256	/*
3257	 * Create a DMA tag for the TX buffer descriptor chain,
3258	 * allocate and clear the  memory, and fetch the
3259	 * physical address of the block.
3260	 */
3261	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3262	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3263	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3264	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3265		BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain "
3266		    "DMA tag!\n", __FILE__, __LINE__);
3267		rc = ENOMEM;
3268		goto bce_dma_alloc_exit;
3269	}
3270
3271	for (i = 0; i < TX_PAGES; i++) {
3272
3273		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3274		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT,
3275		    &sc->tx_bd_chain_map[i])) {
3276			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3277			    "chain DMA memory!\n", __FILE__, __LINE__);
3278			rc = ENOMEM;
3279			goto bce_dma_alloc_exit;
3280		}
3281
3282		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3283		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3284		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3285		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3286
3287		if (error) {
3288			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3289			    "chain DMA memory!\n", __FILE__, __LINE__);
3290			rc = ENOMEM;
3291			goto bce_dma_alloc_exit;
3292		}
3293
3294		DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n",
3295		    __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]);
3296	}
3297
3298	/* Check the required size before mapping to conserve resources. */
3299	if (bce_tso_enable) {
3300		max_size     = BCE_TSO_MAX_SIZE;
3301		max_segments = BCE_MAX_SEGMENTS;
3302		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3303	} else {
3304		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3305		max_segments = BCE_MAX_SEGMENTS;
3306		max_seg_size = MCLBYTES;
3307	}
3308
3309	/* Create a DMA tag for TX mbufs. */
3310	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3311	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3312	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3313		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3314		    __FILE__, __LINE__);
3315		rc = ENOMEM;
3316		goto bce_dma_alloc_exit;
3317	}
3318
3319	/* Create DMA maps for the TX mbufs clusters. */
3320	for (i = 0; i < TOTAL_TX_BD; i++) {
3321		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3322			&sc->tx_mbuf_map[i])) {
3323			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3324			    "map!\n", __FILE__, __LINE__);
3325			rc = ENOMEM;
3326			goto bce_dma_alloc_exit;
3327		}
3328	}
3329
3330	/*
3331	 * Create a DMA tag for the RX buffer descriptor chain,
3332	 * allocate and clear the memory, and fetch the physical
3333	 * address of the blocks.
3334	 */
3335	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3336			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3337			sc->max_bus_addr, NULL, NULL,
3338			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3339			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3340		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3341		    "DMA tag!\n", __FILE__, __LINE__);
3342		rc = ENOMEM;
3343		goto bce_dma_alloc_exit;
3344	}
3345
3346	for (i = 0; i < RX_PAGES; i++) {
3347
3348		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3349		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT,
3350		    &sc->rx_bd_chain_map[i])) {
3351			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3352			    "chain DMA memory!\n", __FILE__, __LINE__);
3353			rc = ENOMEM;
3354			goto bce_dma_alloc_exit;
3355		}
3356
3357		bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
3358
3359		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3360		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3361		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3362		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3363
3364		if (error) {
3365			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3366			    "chain DMA memory!\n", __FILE__, __LINE__);
3367			rc = ENOMEM;
3368			goto bce_dma_alloc_exit;
3369		}
3370
3371		DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n",
3372		    __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]);
3373	}
3374
3375	/*
3376	 * Create a DMA tag for RX mbufs.
3377	 */
3378#ifdef BCE_JUMBO_HDRSPLIT
3379	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3380		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3381#else
3382	max_size = max_seg_size = MJUM9BYTES;
3383#endif
3384	max_segments = 1;
3385
3386	DBPRINT(sc, BCE_INFO, "%s(): Creating rx_mbuf_tag (max size = 0x%jX "
3387	    "max segments = %d, max segment size = 0x%jX)\n", __FUNCTION__,
3388	    (uintmax_t) max_size, max_segments, (uintmax_t) max_seg_size);
3389
3390	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3391	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3392	   max_segments, max_seg_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3393		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3394		    __FILE__, __LINE__);
3395		rc = ENOMEM;
3396		goto bce_dma_alloc_exit;
3397	}
3398
3399	/* Create DMA maps for the RX mbuf clusters. */
3400	for (i = 0; i < TOTAL_RX_BD; i++) {
3401		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3402		    &sc->rx_mbuf_map[i])) {
3403			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3404			    "DMA map!\n", __FILE__, __LINE__);
3405			rc = ENOMEM;
3406			goto bce_dma_alloc_exit;
3407		}
3408	}
3409
3410#ifdef BCE_JUMBO_HDRSPLIT
3411	/*
3412	 * Create a DMA tag for the page buffer descriptor chain,
3413	 * allocate and clear the memory, and fetch the physical
3414	 * address of the blocks.
3415	 */
3416	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3417	    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3418	    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3419	    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3420		BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3421		    "chain DMA tag!\n",	__FILE__, __LINE__);
3422		rc = ENOMEM;
3423		goto bce_dma_alloc_exit;
3424	}
3425
3426	for (i = 0; i < PG_PAGES; i++) {
3427
3428		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3429		    (void **)&sc->pg_bd_chain[i], BUS_DMA_NOWAIT,
3430		    &sc->pg_bd_chain_map[i])) {
3431			BCE_PRINTF("%s(%d): Could not allocate page "
3432			    "descriptor chain DMA memory!\n",
3433			    __FILE__, __LINE__);
3434			rc = ENOMEM;
3435			goto bce_dma_alloc_exit;
3436		}
3437
3438		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
3439
3440		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3441		    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3442		    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3443		    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3444
3445		if (error) {
3446			BCE_PRINTF("%s(%d): Could not map page descriptor "
3447			    "chain DMA memory!\n", __FILE__, __LINE__);
3448			rc = ENOMEM;
3449			goto bce_dma_alloc_exit;
3450		}
3451
3452		DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n",
3453		    __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]);
3454	}
3455
3456	/*
3457	 * Create a DMA tag for page mbufs.
3458	 */
3459	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3460	    MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3461
3462	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3463	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3464	    max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3465		BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3466		    "DMA tag!\n", __FILE__, __LINE__);
3467		rc = ENOMEM;
3468		goto bce_dma_alloc_exit;
3469	}
3470
3471	/* Create DMA maps for the page mbuf clusters. */
3472	for (i = 0; i < TOTAL_PG_BD; i++) {
3473		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3474		    &sc->pg_mbuf_map[i])) {
3475			BCE_PRINTF("%s(%d): Unable to create page mbuf "
3476			    "DMA map!\n", __FILE__, __LINE__);
3477			rc = ENOMEM;
3478			goto bce_dma_alloc_exit;
3479		}
3480	}
3481#endif
3482
3483bce_dma_alloc_exit:
3484	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3485	return(rc);
3486}
3487
3488
3489/****************************************************************************/
3490/* Release all resources used by the driver.                                */
3491/*                                                                          */
3492/* Releases all resources acquired by the driver including interrupts,      */
3493/* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3494/*                                                                          */
3495/* Returns:                                                                 */
3496/*   Nothing.                                                               */
3497/****************************************************************************/
3498static void
3499bce_release_resources(struct bce_softc *sc)
3500{
3501	device_t dev;
3502
3503	DBENTER(BCE_VERBOSE_RESET);
3504
3505	dev = sc->bce_dev;
3506
3507	bce_dma_free(sc);
3508
3509	if (sc->bce_intrhand != NULL) {
3510		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3511		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3512	}
3513
3514	if (sc->bce_res_irq != NULL) {
3515		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3516		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3517		    sc->bce_res_irq);
3518	}
3519
3520	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3521		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3522		pci_release_msi(dev);
3523	}
3524
3525	if (sc->bce_res_mem != NULL) {
3526		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3527		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3528		    sc->bce_res_mem);
3529	}
3530
3531	if (sc->bce_ifp != NULL) {
3532		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3533		if_free(sc->bce_ifp);
3534	}
3535
3536	if (mtx_initialized(&sc->bce_mtx))
3537		BCE_LOCK_DESTROY(sc);
3538
3539	DBEXIT(BCE_VERBOSE_RESET);
3540}
3541
3542
3543/****************************************************************************/
3544/* Firmware synchronization.                                                */
3545/*                                                                          */
3546/* Before performing certain events such as a chip reset, synchronize with  */
3547/* the firmware first.                                                      */
3548/*                                                                          */
3549/* Returns:                                                                 */
3550/*   0 for success, positive value for failure.                             */
3551/****************************************************************************/
3552static int
3553bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3554{
3555	int i, rc = 0;
3556	u32 val;
3557
3558	DBENTER(BCE_VERBOSE_RESET);
3559
3560	/* Don't waste any time if we've timed out before. */
3561	if (sc->bce_fw_timed_out == TRUE) {
3562		rc = EBUSY;
3563		goto bce_fw_sync_exit;
3564	}
3565
3566	/* Increment the message sequence number. */
3567	sc->bce_fw_wr_seq++;
3568	msg_data |= sc->bce_fw_wr_seq;
3569
3570 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3571	    "0x%08X\n",	msg_data);
3572
3573	/* Send the message to the bootcode driver mailbox. */
3574	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3575
3576	/* Wait for the bootcode to acknowledge the message. */
3577	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3578		/* Check for a response in the bootcode firmware mailbox. */
3579		val = bce_shmem_rd(sc, BCE_FW_MB);
3580		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3581			break;
3582		DELAY(1000);
3583	}
3584
3585	/* If we've timed out, tell the bootcode that we've stopped waiting. */
3586	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3587	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3588
3589		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3590		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3591
3592		msg_data &= ~BCE_DRV_MSG_CODE;
3593		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3594
3595		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3596
3597		sc->bce_fw_timed_out = TRUE;
3598		rc = EBUSY;
3599	}
3600
3601bce_fw_sync_exit:
3602	DBEXIT(BCE_VERBOSE_RESET);
3603	return (rc);
3604}
3605
3606
3607/****************************************************************************/
3608/* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3609/*                                                                          */
3610/* Returns:                                                                 */
3611/*   Nothing.                                                               */
3612/****************************************************************************/
3613static void
3614bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3615	u32 rv2p_code_len, u32 rv2p_proc)
3616{
3617	int i;
3618	u32 val;
3619
3620	DBENTER(BCE_VERBOSE_RESET);
3621
3622	/* Set the page size used by RV2P. */
3623	if (rv2p_proc == RV2P_PROC2) {
3624		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3625	}
3626
3627	for (i = 0; i < rv2p_code_len; i += 8) {
3628		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3629		rv2p_code++;
3630		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3631		rv2p_code++;
3632
3633		if (rv2p_proc == RV2P_PROC1) {
3634			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3635			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3636		}
3637		else {
3638			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3639			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3640		}
3641	}
3642
3643	/* Reset the processor, un-stall is done later. */
3644	if (rv2p_proc == RV2P_PROC1) {
3645		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3646	}
3647	else {
3648		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3649	}
3650
3651	DBEXIT(BCE_VERBOSE_RESET);
3652}
3653
3654
3655/****************************************************************************/
3656/* Load RISC processor firmware.                                            */
3657/*                                                                          */
3658/* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3659/* associated with a particular processor.                                  */
3660/*                                                                          */
3661/* Returns:                                                                 */
3662/*   Nothing.                                                               */
3663/****************************************************************************/
3664static void
3665bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3666	struct fw_info *fw)
3667{
3668	u32 offset;
3669
3670	DBENTER(BCE_VERBOSE_RESET);
3671
3672    bce_halt_cpu(sc, cpu_reg);
3673
3674	/* Load the Text area. */
3675	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3676	if (fw->text) {
3677		int j;
3678
3679		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3680			REG_WR_IND(sc, offset, fw->text[j]);
3681	        }
3682	}
3683
3684	/* Load the Data area. */
3685	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3686	if (fw->data) {
3687		int j;
3688
3689		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3690			REG_WR_IND(sc, offset, fw->data[j]);
3691		}
3692	}
3693
3694	/* Load the SBSS area. */
3695	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3696	if (fw->sbss) {
3697		int j;
3698
3699		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3700			REG_WR_IND(sc, offset, fw->sbss[j]);
3701		}
3702	}
3703
3704	/* Load the BSS area. */
3705	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3706	if (fw->bss) {
3707		int j;
3708
3709		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3710			REG_WR_IND(sc, offset, fw->bss[j]);
3711		}
3712	}
3713
3714	/* Load the Read-Only area. */
3715	offset = cpu_reg->spad_base +
3716		(fw->rodata_addr - cpu_reg->mips_view_base);
3717	if (fw->rodata) {
3718		int j;
3719
3720		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3721			REG_WR_IND(sc, offset, fw->rodata[j]);
3722		}
3723	}
3724
3725	/* Clear the pre-fetch instruction and set the FW start address. */
3726	REG_WR_IND(sc, cpu_reg->inst, 0);
3727	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3728
3729	DBEXIT(BCE_VERBOSE_RESET);
3730}
3731
3732
3733/****************************************************************************/
3734/* Starts the RISC processor.                                               */
3735/*                                                                          */
3736/* Assumes the CPU starting address has already been set.                   */
3737/*                                                                          */
3738/* Returns:                                                                 */
3739/*   Nothing.                                                               */
3740/****************************************************************************/
3741static void
3742bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3743{
3744	u32 val;
3745
3746	DBENTER(BCE_VERBOSE_RESET);
3747
3748	/* Start the CPU. */
3749	val = REG_RD_IND(sc, cpu_reg->mode);
3750	val &= ~cpu_reg->mode_value_halt;
3751	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3752	REG_WR_IND(sc, cpu_reg->mode, val);
3753
3754	DBEXIT(BCE_VERBOSE_RESET);
3755}
3756
3757
3758/****************************************************************************/
3759/* Halts the RISC processor.                                                */
3760/*                                                                          */
3761/* Returns:                                                                 */
3762/*   Nothing.                                                               */
3763/****************************************************************************/
3764static void
3765bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3766{
3767	u32 val;
3768
3769	DBENTER(BCE_VERBOSE_RESET);
3770
3771	/* Halt the CPU. */
3772	val = REG_RD_IND(sc, cpu_reg->mode);
3773	val |= cpu_reg->mode_value_halt;
3774	REG_WR_IND(sc, cpu_reg->mode, val);
3775	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3776
3777	DBEXIT(BCE_VERBOSE_RESET);
3778}
3779
3780
3781/****************************************************************************/
3782/* Initialize the RX CPU.                                                   */
3783/*                                                                          */
3784/* Returns:                                                                 */
3785/*   Nothing.                                                               */
3786/****************************************************************************/
3787static void
3788bce_start_rxp_cpu(struct bce_softc *sc)
3789{
3790	struct cpu_reg cpu_reg;
3791
3792	DBENTER(BCE_VERBOSE_RESET);
3793
3794	cpu_reg.mode = BCE_RXP_CPU_MODE;
3795	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3796	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3797	cpu_reg.state = BCE_RXP_CPU_STATE;
3798	cpu_reg.state_value_clear = 0xffffff;
3799	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3800	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3801	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3802	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3803	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3804	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3805	cpu_reg.mips_view_base = 0x8000000;
3806
3807	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
3808	bce_start_cpu(sc, &cpu_reg);
3809
3810	DBEXIT(BCE_VERBOSE_RESET);
3811}
3812
3813
3814/****************************************************************************/
3815/* Initialize the RX CPU.                                                   */
3816/*                                                                          */
3817/* Returns:                                                                 */
3818/*   Nothing.                                                               */
3819/****************************************************************************/
3820static void
3821bce_init_rxp_cpu(struct bce_softc *sc)
3822{
3823	struct cpu_reg cpu_reg;
3824	struct fw_info fw;
3825
3826	DBENTER(BCE_VERBOSE_RESET);
3827
3828	cpu_reg.mode = BCE_RXP_CPU_MODE;
3829	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3830	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3831	cpu_reg.state = BCE_RXP_CPU_STATE;
3832	cpu_reg.state_value_clear = 0xffffff;
3833	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3834	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3835	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3836	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3837	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3838	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3839	cpu_reg.mips_view_base = 0x8000000;
3840
3841	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3842		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3843 		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3844		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3845		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3846		fw.start_addr = bce_RXP_b09FwStartAddr;
3847
3848		fw.text_addr = bce_RXP_b09FwTextAddr;
3849		fw.text_len = bce_RXP_b09FwTextLen;
3850		fw.text_index = 0;
3851		fw.text = bce_RXP_b09FwText;
3852
3853		fw.data_addr = bce_RXP_b09FwDataAddr;
3854		fw.data_len = bce_RXP_b09FwDataLen;
3855		fw.data_index = 0;
3856		fw.data = bce_RXP_b09FwData;
3857
3858		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3859		fw.sbss_len = bce_RXP_b09FwSbssLen;
3860		fw.sbss_index = 0;
3861		fw.sbss = bce_RXP_b09FwSbss;
3862
3863		fw.bss_addr = bce_RXP_b09FwBssAddr;
3864		fw.bss_len = bce_RXP_b09FwBssLen;
3865		fw.bss_index = 0;
3866		fw.bss = bce_RXP_b09FwBss;
3867
3868		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3869		fw.rodata_len = bce_RXP_b09FwRodataLen;
3870		fw.rodata_index = 0;
3871		fw.rodata = bce_RXP_b09FwRodata;
3872	} else {
3873		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3874		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3875		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3876		fw.start_addr = bce_RXP_b06FwStartAddr;
3877
3878		fw.text_addr = bce_RXP_b06FwTextAddr;
3879		fw.text_len = bce_RXP_b06FwTextLen;
3880		fw.text_index = 0;
3881		fw.text = bce_RXP_b06FwText;
3882
3883		fw.data_addr = bce_RXP_b06FwDataAddr;
3884		fw.data_len = bce_RXP_b06FwDataLen;
3885		fw.data_index = 0;
3886		fw.data = bce_RXP_b06FwData;
3887
3888		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3889		fw.sbss_len = bce_RXP_b06FwSbssLen;
3890		fw.sbss_index = 0;
3891		fw.sbss = bce_RXP_b06FwSbss;
3892
3893		fw.bss_addr = bce_RXP_b06FwBssAddr;
3894		fw.bss_len = bce_RXP_b06FwBssLen;
3895		fw.bss_index = 0;
3896		fw.bss = bce_RXP_b06FwBss;
3897
3898		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3899		fw.rodata_len = bce_RXP_b06FwRodataLen;
3900		fw.rodata_index = 0;
3901		fw.rodata = bce_RXP_b06FwRodata;
3902	}
3903
3904	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3905	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3906
3907    /* Delay RXP start until initialization is complete. */
3908
3909	DBEXIT(BCE_VERBOSE_RESET);
3910}
3911
3912
3913/****************************************************************************/
3914/* Initialize the TX CPU.                                                   */
3915/*                                                                          */
3916/* Returns:                                                                 */
3917/*   Nothing.                                                               */
3918/****************************************************************************/
3919static void
3920bce_init_txp_cpu(struct bce_softc *sc)
3921{
3922	struct cpu_reg cpu_reg;
3923	struct fw_info fw;
3924
3925	DBENTER(BCE_VERBOSE_RESET);
3926
3927	cpu_reg.mode = BCE_TXP_CPU_MODE;
3928	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3929	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3930	cpu_reg.state = BCE_TXP_CPU_STATE;
3931	cpu_reg.state_value_clear = 0xffffff;
3932	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3933	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3934	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3935	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3936	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3937	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3938	cpu_reg.mips_view_base = 0x8000000;
3939
3940	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3941		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3942		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3943		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3944		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3945		fw.start_addr = bce_TXP_b09FwStartAddr;
3946
3947		fw.text_addr = bce_TXP_b09FwTextAddr;
3948		fw.text_len = bce_TXP_b09FwTextLen;
3949		fw.text_index = 0;
3950		fw.text = bce_TXP_b09FwText;
3951
3952		fw.data_addr = bce_TXP_b09FwDataAddr;
3953		fw.data_len = bce_TXP_b09FwDataLen;
3954		fw.data_index = 0;
3955		fw.data = bce_TXP_b09FwData;
3956
3957		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3958		fw.sbss_len = bce_TXP_b09FwSbssLen;
3959		fw.sbss_index = 0;
3960		fw.sbss = bce_TXP_b09FwSbss;
3961
3962		fw.bss_addr = bce_TXP_b09FwBssAddr;
3963		fw.bss_len = bce_TXP_b09FwBssLen;
3964		fw.bss_index = 0;
3965		fw.bss = bce_TXP_b09FwBss;
3966
3967		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
3968		fw.rodata_len = bce_TXP_b09FwRodataLen;
3969		fw.rodata_index = 0;
3970		fw.rodata = bce_TXP_b09FwRodata;
3971	} else {
3972		fw.ver_major = bce_TXP_b06FwReleaseMajor;
3973		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
3974		fw.ver_fix = bce_TXP_b06FwReleaseFix;
3975		fw.start_addr = bce_TXP_b06FwStartAddr;
3976
3977		fw.text_addr = bce_TXP_b06FwTextAddr;
3978		fw.text_len = bce_TXP_b06FwTextLen;
3979		fw.text_index = 0;
3980		fw.text = bce_TXP_b06FwText;
3981
3982		fw.data_addr = bce_TXP_b06FwDataAddr;
3983		fw.data_len = bce_TXP_b06FwDataLen;
3984		fw.data_index = 0;
3985		fw.data = bce_TXP_b06FwData;
3986
3987		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
3988		fw.sbss_len = bce_TXP_b06FwSbssLen;
3989		fw.sbss_index = 0;
3990		fw.sbss = bce_TXP_b06FwSbss;
3991
3992		fw.bss_addr = bce_TXP_b06FwBssAddr;
3993		fw.bss_len = bce_TXP_b06FwBssLen;
3994		fw.bss_index = 0;
3995		fw.bss = bce_TXP_b06FwBss;
3996
3997		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
3998		fw.rodata_len = bce_TXP_b06FwRodataLen;
3999		fw.rodata_index = 0;
4000		fw.rodata = bce_TXP_b06FwRodata;
4001	}
4002
4003	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4004	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4005    bce_start_cpu(sc, &cpu_reg);
4006
4007	DBEXIT(BCE_VERBOSE_RESET);
4008}
4009
4010
4011/****************************************************************************/
4012/* Initialize the TPAT CPU.                                                 */
4013/*                                                                          */
4014/* Returns:                                                                 */
4015/*   Nothing.                                                               */
4016/****************************************************************************/
4017static void
4018bce_init_tpat_cpu(struct bce_softc *sc)
4019{
4020	struct cpu_reg cpu_reg;
4021	struct fw_info fw;
4022
4023	DBENTER(BCE_VERBOSE_RESET);
4024
4025	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4026	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4027	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4028	cpu_reg.state = BCE_TPAT_CPU_STATE;
4029	cpu_reg.state_value_clear = 0xffffff;
4030	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4031	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4032	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4033	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4034	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4035	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4036	cpu_reg.mips_view_base = 0x8000000;
4037
4038	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4039		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4040		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4041		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4042		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4043		fw.start_addr = bce_TPAT_b09FwStartAddr;
4044
4045		fw.text_addr = bce_TPAT_b09FwTextAddr;
4046		fw.text_len = bce_TPAT_b09FwTextLen;
4047		fw.text_index = 0;
4048		fw.text = bce_TPAT_b09FwText;
4049
4050		fw.data_addr = bce_TPAT_b09FwDataAddr;
4051		fw.data_len = bce_TPAT_b09FwDataLen;
4052		fw.data_index = 0;
4053		fw.data = bce_TPAT_b09FwData;
4054
4055		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4056		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4057		fw.sbss_index = 0;
4058		fw.sbss = bce_TPAT_b09FwSbss;
4059
4060		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4061		fw.bss_len = bce_TPAT_b09FwBssLen;
4062		fw.bss_index = 0;
4063		fw.bss = bce_TPAT_b09FwBss;
4064
4065		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4066		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4067		fw.rodata_index = 0;
4068		fw.rodata = bce_TPAT_b09FwRodata;
4069	} else {
4070		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4071		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4072		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4073		fw.start_addr = bce_TPAT_b06FwStartAddr;
4074
4075		fw.text_addr = bce_TPAT_b06FwTextAddr;
4076		fw.text_len = bce_TPAT_b06FwTextLen;
4077		fw.text_index = 0;
4078		fw.text = bce_TPAT_b06FwText;
4079
4080		fw.data_addr = bce_TPAT_b06FwDataAddr;
4081		fw.data_len = bce_TPAT_b06FwDataLen;
4082		fw.data_index = 0;
4083		fw.data = bce_TPAT_b06FwData;
4084
4085		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4086		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4087		fw.sbss_index = 0;
4088		fw.sbss = bce_TPAT_b06FwSbss;
4089
4090		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4091		fw.bss_len = bce_TPAT_b06FwBssLen;
4092		fw.bss_index = 0;
4093		fw.bss = bce_TPAT_b06FwBss;
4094
4095		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4096		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4097		fw.rodata_index = 0;
4098		fw.rodata = bce_TPAT_b06FwRodata;
4099	}
4100
4101	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4102	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4103	bce_start_cpu(sc, &cpu_reg);
4104
4105	DBEXIT(BCE_VERBOSE_RESET);
4106}
4107
4108
4109/****************************************************************************/
4110/* Initialize the CP CPU.                                                   */
4111/*                                                                          */
4112/* Returns:                                                                 */
4113/*   Nothing.                                                               */
4114/****************************************************************************/
4115static void
4116bce_init_cp_cpu(struct bce_softc *sc)
4117{
4118	struct cpu_reg cpu_reg;
4119	struct fw_info fw;
4120
4121	DBENTER(BCE_VERBOSE_RESET);
4122
4123	cpu_reg.mode = BCE_CP_CPU_MODE;
4124	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4125	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4126	cpu_reg.state = BCE_CP_CPU_STATE;
4127	cpu_reg.state_value_clear = 0xffffff;
4128	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4129	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4130	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4131	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4132	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4133	cpu_reg.spad_base = BCE_CP_SCRATCH;
4134	cpu_reg.mips_view_base = 0x8000000;
4135
4136	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4137		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4138		fw.ver_major = bce_CP_b09FwReleaseMajor;
4139		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4140		fw.ver_fix = bce_CP_b09FwReleaseFix;
4141		fw.start_addr = bce_CP_b09FwStartAddr;
4142
4143		fw.text_addr = bce_CP_b09FwTextAddr;
4144		fw.text_len = bce_CP_b09FwTextLen;
4145		fw.text_index = 0;
4146		fw.text = bce_CP_b09FwText;
4147
4148		fw.data_addr = bce_CP_b09FwDataAddr;
4149		fw.data_len = bce_CP_b09FwDataLen;
4150		fw.data_index = 0;
4151		fw.data = bce_CP_b09FwData;
4152
4153		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4154		fw.sbss_len = bce_CP_b09FwSbssLen;
4155		fw.sbss_index = 0;
4156		fw.sbss = bce_CP_b09FwSbss;
4157
4158		fw.bss_addr = bce_CP_b09FwBssAddr;
4159		fw.bss_len = bce_CP_b09FwBssLen;
4160		fw.bss_index = 0;
4161		fw.bss = bce_CP_b09FwBss;
4162
4163		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4164		fw.rodata_len = bce_CP_b09FwRodataLen;
4165		fw.rodata_index = 0;
4166		fw.rodata = bce_CP_b09FwRodata;
4167	} else {
4168		fw.ver_major = bce_CP_b06FwReleaseMajor;
4169		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4170		fw.ver_fix = bce_CP_b06FwReleaseFix;
4171		fw.start_addr = bce_CP_b06FwStartAddr;
4172
4173		fw.text_addr = bce_CP_b06FwTextAddr;
4174		fw.text_len = bce_CP_b06FwTextLen;
4175		fw.text_index = 0;
4176		fw.text = bce_CP_b06FwText;
4177
4178		fw.data_addr = bce_CP_b06FwDataAddr;
4179		fw.data_len = bce_CP_b06FwDataLen;
4180		fw.data_index = 0;
4181		fw.data = bce_CP_b06FwData;
4182
4183		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4184		fw.sbss_len = bce_CP_b06FwSbssLen;
4185		fw.sbss_index = 0;
4186		fw.sbss = bce_CP_b06FwSbss;
4187
4188		fw.bss_addr = bce_CP_b06FwBssAddr;
4189		fw.bss_len = bce_CP_b06FwBssLen;
4190		fw.bss_index = 0;
4191		fw.bss = bce_CP_b06FwBss;
4192
4193		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4194		fw.rodata_len = bce_CP_b06FwRodataLen;
4195		fw.rodata_index = 0;
4196		fw.rodata = bce_CP_b06FwRodata;
4197	}
4198
4199	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4200	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4201	bce_start_cpu(sc, &cpu_reg);
4202
4203	DBEXIT(BCE_VERBOSE_RESET);
4204}
4205
4206
4207/****************************************************************************/
4208/* Initialize the COM CPU.                                                 */
4209/*                                                                          */
4210/* Returns:                                                                 */
4211/*   Nothing.                                                               */
4212/****************************************************************************/
4213static void
4214bce_init_com_cpu(struct bce_softc *sc)
4215{
4216	struct cpu_reg cpu_reg;
4217	struct fw_info fw;
4218
4219	DBENTER(BCE_VERBOSE_RESET);
4220
4221	cpu_reg.mode = BCE_COM_CPU_MODE;
4222	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4223	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4224	cpu_reg.state = BCE_COM_CPU_STATE;
4225	cpu_reg.state_value_clear = 0xffffff;
4226	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4227	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4228	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4229	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4230	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4231	cpu_reg.spad_base = BCE_COM_SCRATCH;
4232	cpu_reg.mips_view_base = 0x8000000;
4233
4234	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4235		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4236		fw.ver_major = bce_COM_b09FwReleaseMajor;
4237		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4238		fw.ver_fix = bce_COM_b09FwReleaseFix;
4239		fw.start_addr = bce_COM_b09FwStartAddr;
4240
4241		fw.text_addr = bce_COM_b09FwTextAddr;
4242		fw.text_len = bce_COM_b09FwTextLen;
4243		fw.text_index = 0;
4244		fw.text = bce_COM_b09FwText;
4245
4246		fw.data_addr = bce_COM_b09FwDataAddr;
4247		fw.data_len = bce_COM_b09FwDataLen;
4248		fw.data_index = 0;
4249		fw.data = bce_COM_b09FwData;
4250
4251		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4252		fw.sbss_len = bce_COM_b09FwSbssLen;
4253		fw.sbss_index = 0;
4254		fw.sbss = bce_COM_b09FwSbss;
4255
4256		fw.bss_addr = bce_COM_b09FwBssAddr;
4257		fw.bss_len = bce_COM_b09FwBssLen;
4258		fw.bss_index = 0;
4259		fw.bss = bce_COM_b09FwBss;
4260
4261		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4262		fw.rodata_len = bce_COM_b09FwRodataLen;
4263		fw.rodata_index = 0;
4264		fw.rodata = bce_COM_b09FwRodata;
4265	} else {
4266		fw.ver_major = bce_COM_b06FwReleaseMajor;
4267		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4268		fw.ver_fix = bce_COM_b06FwReleaseFix;
4269		fw.start_addr = bce_COM_b06FwStartAddr;
4270
4271		fw.text_addr = bce_COM_b06FwTextAddr;
4272		fw.text_len = bce_COM_b06FwTextLen;
4273		fw.text_index = 0;
4274		fw.text = bce_COM_b06FwText;
4275
4276		fw.data_addr = bce_COM_b06FwDataAddr;
4277		fw.data_len = bce_COM_b06FwDataLen;
4278		fw.data_index = 0;
4279		fw.data = bce_COM_b06FwData;
4280
4281		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4282		fw.sbss_len = bce_COM_b06FwSbssLen;
4283		fw.sbss_index = 0;
4284		fw.sbss = bce_COM_b06FwSbss;
4285
4286		fw.bss_addr = bce_COM_b06FwBssAddr;
4287		fw.bss_len = bce_COM_b06FwBssLen;
4288		fw.bss_index = 0;
4289		fw.bss = bce_COM_b06FwBss;
4290
4291		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4292		fw.rodata_len = bce_COM_b06FwRodataLen;
4293		fw.rodata_index = 0;
4294		fw.rodata = bce_COM_b06FwRodata;
4295	}
4296
4297	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4298	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4299	bce_start_cpu(sc, &cpu_reg);
4300
4301	DBEXIT(BCE_VERBOSE_RESET);
4302}
4303
4304
4305/****************************************************************************/
4306/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4307/*                                                                          */
4308/* Loads the firmware for each CPU and starts the CPU.                      */
4309/*                                                                          */
4310/* Returns:                                                                 */
4311/*   Nothing.                                                               */
4312/****************************************************************************/
4313static void
4314bce_init_cpus(struct bce_softc *sc)
4315{
4316	DBENTER(BCE_VERBOSE_RESET);
4317
4318	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4319		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4320
4321		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4322			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4323				sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4324			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4325				sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4326		} else {
4327			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4328				sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4329			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4330				sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4331		}
4332
4333	} else {
4334		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4335			sizeof(bce_rv2p_proc1),	RV2P_PROC1);
4336		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4337			sizeof(bce_rv2p_proc2),	RV2P_PROC2);
4338	}
4339
4340	bce_init_rxp_cpu(sc);
4341	bce_init_txp_cpu(sc);
4342	bce_init_tpat_cpu(sc);
4343	bce_init_com_cpu(sc);
4344	bce_init_cp_cpu(sc);
4345
4346	DBEXIT(BCE_VERBOSE_RESET);
4347}
4348
4349
4350/****************************************************************************/
4351/* Initialize context memory.                                               */
4352/*                                                                          */
4353/* Clears the memory associated with each Context ID (CID).                 */
4354/*                                                                          */
4355/* Returns:                                                                 */
4356/*   Nothing.                                                               */
4357/****************************************************************************/
4358static void
4359bce_init_ctx(struct bce_softc *sc)
4360{
4361
4362	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4363
4364	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4365	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4366		int i, retry_cnt = CTX_INIT_RETRY_COUNT;
4367		u32 val;
4368
4369		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4370
4371		/*
4372		 * BCM5709 context memory may be cached
4373		 * in host memory so prepare the host memory
4374		 * for access.
4375		 */
4376		val = BCE_CTX_COMMAND_ENABLED |
4377		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4378		val |= (BCM_PAGE_BITS - 8) << 16;
4379		REG_WR(sc, BCE_CTX_COMMAND, val);
4380
4381		/* Wait for mem init command to complete. */
4382		for (i = 0; i < retry_cnt; i++) {
4383			val = REG_RD(sc, BCE_CTX_COMMAND);
4384			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4385				break;
4386			DELAY(2);
4387		}
4388
4389		/* ToDo: Consider returning an error here. */
4390		DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT),
4391		    BCE_PRINTF("%s(): Context memory initialization "
4392		    "failed!\n", __FUNCTION__));
4393
4394		for (i = 0; i < sc->ctx_pages; i++) {
4395			int j;
4396
4397			/* Set the physical address of the context memory. */
4398			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4399			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4400			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4401			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4402			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4403			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4404			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4405
4406			/* Verify the context memory write was successful. */
4407			for (j = 0; j < retry_cnt; j++) {
4408				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4409				if ((val &
4410				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4411					break;
4412				DELAY(5);
4413			}
4414
4415			/* ToDo: Consider returning an error here. */
4416			DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ),
4417			    BCE_PRINTF("%s(): Failed to initialize "
4418			    "context page %d!\n", __FUNCTION__, i));
4419		}
4420	} else {
4421		u32 vcid_addr, offset;
4422
4423		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4424
4425		/*
4426		 * For the 5706/5708, context memory is local to
4427		 * the controller, so initialize the controller
4428		 * context memory.
4429		 */
4430
4431		vcid_addr = GET_CID_ADDR(96);
4432		while (vcid_addr) {
4433
4434			vcid_addr -= PHY_CTX_SIZE;
4435
4436			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4437			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4438
4439			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4440				CTX_WR(sc, 0x00, offset, 0);
4441			}
4442
4443			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4444			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4445		}
4446
4447	}
4448	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4449}
4450
4451
4452/****************************************************************************/
4453/* Fetch the permanent MAC address of the controller.                       */
4454/*                                                                          */
4455/* Returns:                                                                 */
4456/*   Nothing.                                                               */
4457/****************************************************************************/
4458static void
4459bce_get_mac_addr(struct bce_softc *sc)
4460{
4461	u32 mac_lo = 0, mac_hi = 0;
4462
4463	DBENTER(BCE_VERBOSE_RESET);
4464	/*
4465	 * The NetXtreme II bootcode populates various NIC
4466	 * power-on and runtime configuration items in a
4467	 * shared memory area.  The factory configured MAC
4468	 * address is available from both NVRAM and the
4469	 * shared memory area so we'll read the value from
4470	 * shared memory for speed.
4471	 */
4472
4473	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4474	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4475
4476	if ((mac_lo == 0) && (mac_hi == 0)) {
4477		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4478			__FILE__, __LINE__);
4479	} else {
4480		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4481		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4482		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4483		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4484		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4485		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4486	}
4487
4488	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
4489	DBEXIT(BCE_VERBOSE_RESET);
4490}
4491
4492
4493/****************************************************************************/
4494/* Program the MAC address.                                                 */
4495/*                                                                          */
4496/* Returns:                                                                 */
4497/*   Nothing.                                                               */
4498/****************************************************************************/
4499static void
4500bce_set_mac_addr(struct bce_softc *sc)
4501{
4502	u32 val;
4503	u8 *mac_addr = sc->eaddr;
4504
4505	/* ToDo: Add support for setting multiple MAC addresses. */
4506
4507	DBENTER(BCE_VERBOSE_RESET);
4508	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":");
4509
4510	val = (mac_addr[0] << 8) | mac_addr[1];
4511
4512	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4513
4514	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4515		(mac_addr[4] << 8) | mac_addr[5];
4516
4517	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4518
4519	DBEXIT(BCE_VERBOSE_RESET);
4520}
4521
4522
4523/****************************************************************************/
4524/* Stop the controller.                                                     */
4525/*                                                                          */
4526/* Returns:                                                                 */
4527/*   Nothing.                                                               */
4528/****************************************************************************/
4529static void
4530bce_stop(struct bce_softc *sc)
4531{
4532	struct ifnet *ifp;
4533	struct ifmedia_entry *ifm;
4534	struct mii_data *mii = NULL;
4535	int mtmp, itmp;
4536
4537	DBENTER(BCE_VERBOSE_RESET);
4538
4539	BCE_LOCK_ASSERT(sc);
4540
4541	ifp = sc->bce_ifp;
4542
4543	mii = device_get_softc(sc->bce_miibus);
4544
4545	callout_stop(&sc->bce_tick_callout);
4546
4547	/* Disable the transmit/receive blocks. */
4548	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4549	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4550	DELAY(20);
4551
4552	bce_disable_intr(sc);
4553
4554	/* Free RX buffers. */
4555#ifdef BCE_JUMBO_HDRSPLIT
4556	bce_free_pg_chain(sc);
4557#endif
4558	bce_free_rx_chain(sc);
4559
4560	/* Free TX buffers. */
4561	bce_free_tx_chain(sc);
4562
4563	/*
4564	 * Isolate/power down the PHY, but leave the media selection
4565	 * unchanged so that things will be put back to normal when
4566	 * we bring the interface back up.
4567	 */
4568
4569	itmp = ifp->if_flags;
4570	ifp->if_flags |= IFF_UP;
4571
4572	/* If we are called from bce_detach(), mii is already NULL. */
4573	if (mii != NULL) {
4574		ifm = mii->mii_media.ifm_cur;
4575		mtmp = ifm->ifm_media;
4576		ifm->ifm_media = IFM_ETHER | IFM_NONE;
4577		mii_mediachg(mii);
4578		ifm->ifm_media = mtmp;
4579	}
4580
4581	ifp->if_flags = itmp;
4582	sc->watchdog_timer = 0;
4583
4584	sc->bce_link_up = FALSE;
4585
4586	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4587
4588	DBEXIT(BCE_VERBOSE_RESET);
4589}
4590
4591
4592static int
4593bce_reset(struct bce_softc *sc, u32 reset_code)
4594{
4595	u32 val;
4596	int i, rc = 0;
4597
4598	DBENTER(BCE_VERBOSE_RESET);
4599
4600	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4601		__FUNCTION__, reset_code);
4602
4603	/* Wait for pending PCI transactions to complete. */
4604	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4605	       BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4606	       BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4607	       BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4608	       BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4609	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4610	DELAY(5);
4611
4612	/* Disable DMA */
4613	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4614		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4615		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4616		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4617		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4618	}
4619
4620	/* Assume bootcode is running. */
4621	sc->bce_fw_timed_out = FALSE;
4622	sc->bce_drv_cardiac_arrest = FALSE;
4623
4624	/* Give the firmware a chance to prepare for the reset. */
4625	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4626	if (rc)
4627		goto bce_reset_exit;
4628
4629	/* Set a firmware reminder that this is a soft reset. */
4630	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4631
4632	/* Dummy read to force the chip to complete all current transactions. */
4633	val = REG_RD(sc, BCE_MISC_ID);
4634
4635	/* Chip reset. */
4636	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4637		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4638		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4639		REG_RD(sc, BCE_MISC_COMMAND);
4640		DELAY(5);
4641
4642		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4643		      BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4644
4645		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4646	} else {
4647		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4648			BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4649			BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4650		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4651
4652		/* Allow up to 30us for reset to complete. */
4653		for (i = 0; i < 10; i++) {
4654			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4655			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4656				BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4657				break;
4658			}
4659			DELAY(10);
4660		}
4661
4662		/* Check that reset completed successfully. */
4663		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4664			BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4665			BCE_PRINTF("%s(%d): Reset failed!\n",
4666				__FILE__, __LINE__);
4667			rc = EBUSY;
4668			goto bce_reset_exit;
4669		}
4670	}
4671
4672	/* Make sure byte swapping is properly configured. */
4673	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4674	if (val != 0x01020304) {
4675		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4676			__FILE__, __LINE__);
4677		rc = ENODEV;
4678		goto bce_reset_exit;
4679	}
4680
4681	/* Just completed a reset, assume that firmware is running again. */
4682	sc->bce_fw_timed_out = FALSE;
4683	sc->bce_drv_cardiac_arrest = FALSE;
4684
4685	/* Wait for the firmware to finish its initialization. */
4686	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4687	if (rc)
4688		BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n",
4689			__FILE__, __LINE__);
4690
4691bce_reset_exit:
4692	DBEXIT(BCE_VERBOSE_RESET);
4693	return (rc);
4694}
4695
4696
4697static int
4698bce_chipinit(struct bce_softc *sc)
4699{
4700	u32 val;
4701	int rc = 0;
4702
4703	DBENTER(BCE_VERBOSE_RESET);
4704
4705	bce_disable_intr(sc);
4706
4707	/*
4708	 * Initialize DMA byte/word swapping, configure the number of DMA
4709	 * channels and PCI clock compensation delay.
4710	 */
4711	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4712	      BCE_DMA_CONFIG_DATA_WORD_SWAP |
4713#if BYTE_ORDER == BIG_ENDIAN
4714	      BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4715#endif
4716	      BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4717	      DMA_READ_CHANS << 12 |
4718	      DMA_WRITE_CHANS << 16;
4719
4720	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4721
4722	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4723		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4724
4725	/*
4726	 * This setting resolves a problem observed on certain Intel PCI
4727	 * chipsets that cannot handle multiple outstanding DMA operations.
4728	 * See errata E9_5706A1_65.
4729	 */
4730	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4731	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4732	    !(sc->bce_flags & BCE_PCIX_FLAG))
4733		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4734
4735	REG_WR(sc, BCE_DMA_CONFIG, val);
4736
4737	/* Enable the RX_V2P and Context state machines before access. */
4738	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4739	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4740	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4741	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4742
4743	/* Initialize context mapping and zero out the quick contexts. */
4744	bce_init_ctx(sc);
4745
4746	/* Initialize the on-boards CPUs */
4747	bce_init_cpus(sc);
4748
4749	/* Enable management frames (NC-SI) to flow to the MCP. */
4750	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4751		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4752		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4753	}
4754
4755	/* Prepare NVRAM for access. */
4756	if (bce_init_nvram(sc)) {
4757		rc = ENODEV;
4758		goto bce_chipinit_exit;
4759	}
4760
4761	/* Set the kernel bypass block size */
4762	val = REG_RD(sc, BCE_MQ_CONFIG);
4763	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4764	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4765
4766	/* Enable bins used on the 5709. */
4767	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4768		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4769		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4770		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4771			val |= BCE_MQ_CONFIG_HALT_DIS;
4772	}
4773
4774	REG_WR(sc, BCE_MQ_CONFIG, val);
4775
4776	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4777	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4778	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4779
4780	/* Set the page size and clear the RV2P processor stall bits. */
4781	val = (BCM_PAGE_BITS - 8) << 24;
4782	REG_WR(sc, BCE_RV2P_CONFIG, val);
4783
4784	/* Configure page size. */
4785	val = REG_RD(sc, BCE_TBDR_CONFIG);
4786	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4787	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4788	REG_WR(sc, BCE_TBDR_CONFIG, val);
4789
4790	/* Set the perfect match control register to default. */
4791	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4792
4793bce_chipinit_exit:
4794	DBEXIT(BCE_VERBOSE_RESET);
4795
4796	return(rc);
4797}
4798
4799
4800/****************************************************************************/
4801/* Initialize the controller in preparation to send/receive traffic.        */
4802/*                                                                          */
4803/* Returns:                                                                 */
4804/*   0 for success, positive value for failure.                             */
4805/****************************************************************************/
4806static int
4807bce_blockinit(struct bce_softc *sc)
4808{
4809	u32 reg, val;
4810	int rc = 0;
4811
4812	DBENTER(BCE_VERBOSE_RESET);
4813
4814	/* Load the hardware default MAC address. */
4815	bce_set_mac_addr(sc);
4816
4817	/* Set the Ethernet backoff seed value */
4818	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4819	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4820	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4821	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4822
4823	sc->last_status_idx = 0;
4824	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4825
4826	/* Set up link change interrupt generation. */
4827	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4828
4829	/* Program the physical address of the status block. */
4830	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4831	    BCE_ADDR_LO(sc->status_block_paddr));
4832	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4833	    BCE_ADDR_HI(sc->status_block_paddr));
4834
4835	/* Program the physical address of the statistics block. */
4836	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4837	    BCE_ADDR_LO(sc->stats_block_paddr));
4838	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4839	    BCE_ADDR_HI(sc->stats_block_paddr));
4840
4841	/* Program various host coalescing parameters. */
4842	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4843	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4844	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4845	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4846	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4847	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4848	REG_WR(sc, BCE_HC_TX_TICKS,
4849	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4850	REG_WR(sc, BCE_HC_RX_TICKS,
4851	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4852	REG_WR(sc, BCE_HC_COM_TICKS,
4853	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4854	REG_WR(sc, BCE_HC_CMD_TICKS,
4855	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4856	REG_WR(sc, BCE_HC_STATS_TICKS,
4857	    (sc->bce_stats_ticks & 0xffff00));
4858	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4859
4860	/* Configure the Host Coalescing block. */
4861	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4862	    BCE_HC_CONFIG_COLLECT_STATS;
4863
4864#if 0
4865	/* ToDo: Add MSI-X support. */
4866	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4867		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4868		    BCE_HC_SB_CONFIG_1;
4869
4870		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4871
4872		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4873		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
4874
4875		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4876		    (sc->tx_quick_cons_trip_int << 16) |
4877		     sc->tx_quick_cons_trip);
4878
4879		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4880		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
4881
4882		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4883	}
4884
4885	/*
4886	 * Tell the HC block to automatically set the
4887	 * INT_MASK bit after an MSI/MSI-X interrupt
4888	 * is generated so the driver doesn't have to.
4889	 */
4890	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4891		val |= BCE_HC_CONFIG_ONE_SHOT;
4892
4893	/* Set the MSI-X status blocks to 128 byte boundaries. */
4894	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4895		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4896#endif
4897
4898	REG_WR(sc, BCE_HC_CONFIG, val);
4899
4900	/* Clear the internal statistics counters. */
4901	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4902
4903	/* Verify that bootcode is running. */
4904	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4905
4906	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4907	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4908	    __FILE__, __LINE__);
4909	    reg = 0);
4910
4911	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4912	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4913		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4914		    "Expected: 08%08X\n", __FILE__, __LINE__,
4915		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4916		    BCE_DEV_INFO_SIGNATURE_MAGIC);
4917		rc = ENODEV;
4918		goto bce_blockinit_exit;
4919	}
4920
4921	/* Enable DMA */
4922	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4923	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4924		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4925		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4926		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4927	}
4928
4929	/* Allow bootcode to apply additional fixes before enabling MAC. */
4930	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
4931	    BCE_DRV_MSG_CODE_RESET);
4932
4933	/* Enable link state change interrupt generation. */
4934	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4935
4936	/* Enable the RXP. */
4937	bce_start_rxp_cpu(sc);
4938
4939	/* Disable management frames (NC-SI) from flowing to the MCP. */
4940	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4941		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
4942		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4943		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4944	}
4945
4946	/* Enable all remaining blocks in the MAC. */
4947	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4948	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4949		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4950		    BCE_MISC_ENABLE_DEFAULT_XI);
4951	else
4952		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4953		    BCE_MISC_ENABLE_DEFAULT);
4954
4955	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4956	DELAY(20);
4957
4958	/* Save the current host coalescing block settings. */
4959	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4960
4961bce_blockinit_exit:
4962	DBEXIT(BCE_VERBOSE_RESET);
4963
4964	return (rc);
4965}
4966
4967
4968/****************************************************************************/
4969/* Encapsulate an mbuf into the rx_bd chain.                                */
4970/*                                                                          */
4971/* Returns:                                                                 */
4972/*   0 for success, positive value for failure.                             */
4973/****************************************************************************/
4974static int
4975bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4976    u16 *chain_prod, u32 *prod_bseq)
4977{
4978	bus_dmamap_t map;
4979	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4980	struct mbuf *m_new = NULL;
4981	struct rx_bd *rxbd;
4982	int nsegs, error, rc = 0;
4983#ifdef BCE_DEBUG
4984	u16 debug_chain_prod = *chain_prod;
4985#endif
4986
4987	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
4988
4989	/* Make sure the inputs are valid. */
4990	DBRUNIF((*chain_prod > MAX_RX_BD),
4991		BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n",
4992		__FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD));
4993
4994	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
4995	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
4996	    *prod, *chain_prod, *prod_bseq);
4997
4998	/* Update some debug statistic counters */
4999	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5000		sc->rx_low_watermark = sc->free_rx_bd);
5001	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
5002
5003	/* Check whether this is a new mbuf allocation. */
5004	if (m == NULL) {
5005
5006		/* Simulate an mbuf allocation failure. */
5007		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5008		    sc->mbuf_alloc_failed_count++;
5009		    sc->mbuf_alloc_failed_sim_count++;
5010		    rc = ENOBUFS;
5011		    goto bce_get_rx_buf_exit);
5012
5013		/* This is a new mbuf allocation. */
5014#ifdef BCE_JUMBO_HDRSPLIT
5015		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5016#else
5017		if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES)
5018			m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
5019		else
5020			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5021			    sc->rx_bd_mbuf_alloc_size);
5022#endif
5023
5024		if (m_new == NULL) {
5025			sc->mbuf_alloc_failed_count++;
5026			rc = ENOBUFS;
5027			goto bce_get_rx_buf_exit;
5028		}
5029
5030		DBRUN(sc->debug_rx_mbuf_alloc++);
5031	} else {
5032		/* Reuse an existing mbuf. */
5033		m_new = m;
5034	}
5035
5036	/* Make sure we have a valid packet header. */
5037	M_ASSERTPKTHDR(m_new);
5038
5039	/* Initialize the mbuf size and pad if necessary for alignment. */
5040	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5041	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5042
5043	/* ToDo: Consider calling m_fragment() to test error handling. */
5044
5045	/* Map the mbuf cluster into device memory. */
5046	map = sc->rx_mbuf_map[*chain_prod];
5047	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5048	    segs, &nsegs, BUS_DMA_NOWAIT);
5049
5050	/* Handle any mapping errors. */
5051	if (error) {
5052		BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n",
5053		    __FILE__, __LINE__, error);
5054
5055		sc->dma_map_addr_rx_failed_count++;
5056		m_freem(m_new);
5057
5058		DBRUN(sc->debug_rx_mbuf_alloc--);
5059
5060		rc = ENOBUFS;
5061		goto bce_get_rx_buf_exit;
5062	}
5063
5064	/* All mbufs must map to a single segment. */
5065	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5066	    __FUNCTION__, nsegs));
5067
5068	/* Setup the rx_bd for the segment. */
5069	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5070
5071	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5072	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5073	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5074	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5075	*prod_bseq += segs[0].ds_len;
5076
5077	/* Save the mbuf and update our counter. */
5078	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5079	sc->free_rx_bd -= nsegs;
5080
5081	DBRUNMSG(BCE_INSANE_RECV,
5082	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5083
5084	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5085	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5086	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5087
5088bce_get_rx_buf_exit:
5089	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5090
5091	return(rc);
5092}
5093
5094
5095#ifdef BCE_JUMBO_HDRSPLIT
5096/****************************************************************************/
5097/* Encapsulate an mbuf cluster into the page chain.                         */
5098/*                                                                          */
5099/* Returns:                                                                 */
5100/*   0 for success, positive value for failure.                             */
5101/****************************************************************************/
5102static int
5103bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5104	u16 *prod_idx)
5105{
5106	bus_dmamap_t map;
5107	bus_addr_t busaddr;
5108	struct mbuf *m_new = NULL;
5109	struct rx_bd *pgbd;
5110	int error, rc = 0;
5111#ifdef BCE_DEBUG
5112	u16 debug_prod_idx = *prod_idx;
5113#endif
5114
5115	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5116
5117	/* Make sure the inputs are valid. */
5118	DBRUNIF((*prod_idx > MAX_PG_BD),
5119	    BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n",
5120	    __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD));
5121
5122	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5123	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5124
5125	/* Update counters if we've hit a new low or run out of pages. */
5126	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5127	    sc->pg_low_watermark = sc->free_pg_bd);
5128	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5129
5130	/* Check whether this is a new mbuf allocation. */
5131	if (m == NULL) {
5132
5133		/* Simulate an mbuf allocation failure. */
5134		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5135		    sc->mbuf_alloc_failed_count++;
5136		    sc->mbuf_alloc_failed_sim_count++;
5137		    rc = ENOBUFS;
5138		    goto bce_get_pg_buf_exit);
5139
5140		/* This is a new mbuf allocation. */
5141		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5142		if (m_new == NULL) {
5143			sc->mbuf_alloc_failed_count++;
5144			rc = ENOBUFS;
5145			goto bce_get_pg_buf_exit;
5146		}
5147
5148		DBRUN(sc->debug_pg_mbuf_alloc++);
5149	} else {
5150		/* Reuse an existing mbuf. */
5151		m_new = m;
5152		m_new->m_data = m_new->m_ext.ext_buf;
5153	}
5154
5155	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5156
5157	/* ToDo: Consider calling m_fragment() to test error handling. */
5158
5159	/* Map the mbuf cluster into device memory. */
5160	map = sc->pg_mbuf_map[*prod_idx];
5161	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5162	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5163	    &busaddr, BUS_DMA_NOWAIT);
5164
5165	/* Handle any mapping errors. */
5166	if (error) {
5167		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5168		    __FILE__, __LINE__);
5169
5170		m_freem(m_new);
5171		DBRUN(sc->debug_pg_mbuf_alloc--);
5172
5173		rc = ENOBUFS;
5174		goto bce_get_pg_buf_exit;
5175	}
5176
5177	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5178
5179	/*
5180	 * The page chain uses the same rx_bd data structure
5181	 * as the receive chain but doesn't require a byte sequence (bseq).
5182	 */
5183	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5184
5185	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5186	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5187	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5188	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5189
5190	/* Save the mbuf and update our counter. */
5191	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5192	sc->free_pg_bd--;
5193
5194	DBRUNMSG(BCE_INSANE_RECV,
5195	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5196
5197	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5198	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5199
5200bce_get_pg_buf_exit:
5201	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5202
5203	return(rc);
5204}
5205#endif /* BCE_JUMBO_HDRSPLIT */
5206
5207
5208/****************************************************************************/
5209/* Initialize the TX context memory.                                        */
5210/*                                                                          */
5211/* Returns:                                                                 */
5212/*   Nothing                                                                */
5213/****************************************************************************/
5214static void
5215bce_init_tx_context(struct bce_softc *sc)
5216{
5217	u32 val;
5218
5219	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5220
5221	/* Initialize the context ID for an L2 TX chain. */
5222	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5223		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5224		/* Set the CID type to support an L2 connection. */
5225		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5226		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5227		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5228		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5229		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5230		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5231
5232		/* Point the hardware to the first page in the chain. */
5233		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5234		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5235		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5236		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5237		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5238		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5239	} else {
5240		/* Set the CID type to support an L2 connection. */
5241		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5242		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5243		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5244		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5245
5246		/* Point the hardware to the first page in the chain. */
5247		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5248		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5249		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5250		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5251		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5252		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5253	}
5254
5255	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5256}
5257
5258
5259/****************************************************************************/
5260/* Allocate memory and initialize the TX data structures.                   */
5261/*                                                                          */
5262/* Returns:                                                                 */
5263/*   0 for success, positive value for failure.                             */
5264/****************************************************************************/
5265static int
5266bce_init_tx_chain(struct bce_softc *sc)
5267{
5268	struct tx_bd *txbd;
5269	int i, rc = 0;
5270
5271	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5272
5273	/* Set the initial TX producer/consumer indices. */
5274	sc->tx_prod        = 0;
5275	sc->tx_cons        = 0;
5276	sc->tx_prod_bseq   = 0;
5277	sc->used_tx_bd     = 0;
5278	sc->max_tx_bd      = USABLE_TX_BD;
5279	DBRUN(sc->tx_hi_watermark = 0);
5280	DBRUN(sc->tx_full_count = 0);
5281
5282	/*
5283	 * The NetXtreme II supports a linked-list structre called
5284	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5285	 * consists of a series of 1 or more chain pages, each of which
5286	 * consists of a fixed number of BD entries.
5287	 * The last BD entry on each page is a pointer to the next page
5288	 * in the chain, and the last pointer in the BD chain
5289	 * points back to the beginning of the chain.
5290	 */
5291
5292	/* Set the TX next pointer chain entries. */
5293	for (i = 0; i < TX_PAGES; i++) {
5294		int j;
5295
5296		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5297
5298		/* Check if we've reached the last page. */
5299		if (i == (TX_PAGES - 1))
5300			j = 0;
5301		else
5302			j = i + 1;
5303
5304		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5305		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5306	}
5307
5308	bce_init_tx_context(sc);
5309
5310	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5311	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5312
5313	return(rc);
5314}
5315
5316
5317/****************************************************************************/
5318/* Free memory and clear the TX data structures.                            */
5319/*                                                                          */
5320/* Returns:                                                                 */
5321/*   Nothing.                                                               */
5322/****************************************************************************/
5323static void
5324bce_free_tx_chain(struct bce_softc *sc)
5325{
5326	int i;
5327
5328	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5329
5330	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5331	for (i = 0; i < TOTAL_TX_BD; i++) {
5332		if (sc->tx_mbuf_ptr[i] != NULL) {
5333			if (sc->tx_mbuf_map[i] != NULL)
5334				bus_dmamap_sync(sc->tx_mbuf_tag,
5335				    sc->tx_mbuf_map[i],
5336				    BUS_DMASYNC_POSTWRITE);
5337			m_freem(sc->tx_mbuf_ptr[i]);
5338			sc->tx_mbuf_ptr[i] = NULL;
5339			DBRUN(sc->debug_tx_mbuf_alloc--);
5340		}
5341	}
5342
5343	/* Clear each TX chain page. */
5344	for (i = 0; i < TX_PAGES; i++)
5345		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5346
5347	sc->used_tx_bd = 0;
5348
5349	/* Check if we lost any mbufs in the process. */
5350	DBRUNIF((sc->debug_tx_mbuf_alloc),
5351	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5352	    "from tx chain!\n",	__FILE__, __LINE__,
5353	    sc->debug_tx_mbuf_alloc));
5354
5355	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5356}
5357
5358
5359/****************************************************************************/
5360/* Initialize the RX context memory.                                        */
5361/*                                                                          */
5362/* Returns:                                                                 */
5363/*   Nothing                                                                */
5364/****************************************************************************/
5365static void
5366bce_init_rx_context(struct bce_softc *sc)
5367{
5368	u32 val;
5369
5370	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5371
5372	/* Init the type, size, and BD cache levels for the RX context. */
5373	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5374	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5375	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5376
5377	/*
5378	 * Set the level for generating pause frames
5379	 * when the number of available rx_bd's gets
5380	 * too low (the low watermark) and the level
5381	 * when pause frames can be stopped (the high
5382	 * watermark).
5383	 */
5384	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5385	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5386		u32 lo_water, hi_water;
5387
5388		lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5389		hi_water = USABLE_RX_BD / 4;
5390
5391		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5392		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5393
5394		if (hi_water > 0xf)
5395			hi_water = 0xf;
5396		else if (hi_water == 0)
5397			lo_water = 0;
5398		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5399			(hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5400	}
5401
5402 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5403
5404	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5405	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5406	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5407		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5408		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5409	}
5410
5411	/* Point the hardware to the first page in the chain. */
5412	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5413	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5414	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5415	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5416
5417	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5418}
5419
5420
5421/****************************************************************************/
5422/* Allocate memory and initialize the RX data structures.                   */
5423/*                                                                          */
5424/* Returns:                                                                 */
5425/*   0 for success, positive value for failure.                             */
5426/****************************************************************************/
5427static int
5428bce_init_rx_chain(struct bce_softc *sc)
5429{
5430	struct rx_bd *rxbd;
5431	int i, rc = 0;
5432
5433	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5434	    BCE_VERBOSE_CTX);
5435
5436	/* Initialize the RX producer and consumer indices. */
5437	sc->rx_prod        = 0;
5438	sc->rx_cons        = 0;
5439	sc->rx_prod_bseq   = 0;
5440	sc->free_rx_bd     = USABLE_RX_BD;
5441	sc->max_rx_bd      = USABLE_RX_BD;
5442
5443	/* Initialize the RX next pointer chain entries. */
5444	for (i = 0; i < RX_PAGES; i++) {
5445		int j;
5446
5447		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5448
5449		/* Check if we've reached the last page. */
5450		if (i == (RX_PAGES - 1))
5451			j = 0;
5452		else
5453			j = i + 1;
5454
5455		/* Setup the chain page pointers. */
5456		rxbd->rx_bd_haddr_hi =
5457		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5458		rxbd->rx_bd_haddr_lo =
5459		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5460	}
5461
5462	/* Fill up the RX chain. */
5463	bce_fill_rx_chain(sc);
5464
5465	DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
5466	DBRUN(sc->rx_empty_count = 0);
5467	for (i = 0; i < RX_PAGES; i++) {
5468		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5469		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5470	}
5471
5472	bce_init_rx_context(sc);
5473
5474	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
5475	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5476	    BCE_VERBOSE_CTX);
5477
5478	/* ToDo: Are there possible failure modes here? */
5479
5480	return(rc);
5481}
5482
5483
5484/****************************************************************************/
5485/* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5486/* occurs.                                                                  */
5487/*                                                                          */
5488/* Returns:                                                                 */
5489/*   Nothing                                                                */
5490/****************************************************************************/
5491static void
5492bce_fill_rx_chain(struct bce_softc *sc)
5493{
5494	u16 prod, prod_idx;
5495	u32 prod_bseq;
5496
5497	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5498	    BCE_VERBOSE_CTX);
5499
5500	/* Get the RX chain producer indices. */
5501	prod      = sc->rx_prod;
5502	prod_bseq = sc->rx_prod_bseq;
5503
5504	/* Keep filling the RX chain until it's full. */
5505	while (sc->free_rx_bd > 0) {
5506		prod_idx = RX_CHAIN_IDX(prod);
5507		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5508			/* Bail out if we can't add an mbuf to the chain. */
5509			break;
5510		}
5511		prod = NEXT_RX_BD(prod);
5512	}
5513
5514	/* Save the RX chain producer indices. */
5515	sc->rx_prod      = prod;
5516	sc->rx_prod_bseq = prod_bseq;
5517
5518	/* We should never end up pointing to a next page pointer. */
5519	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5520		BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5521		__FUNCTION__, sc->rx_prod));
5522
5523	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5524	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
5525		sc->rx_prod);
5526	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
5527		sc->rx_prod_bseq);
5528
5529	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5530	    BCE_VERBOSE_CTX);
5531}
5532
5533
5534/****************************************************************************/
5535/* Free memory and clear the RX data structures.                            */
5536/*                                                                          */
5537/* Returns:                                                                 */
5538/*   Nothing.                                                               */
5539/****************************************************************************/
5540static void
5541bce_free_rx_chain(struct bce_softc *sc)
5542{
5543	int i;
5544
5545	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5546
5547	/* Free any mbufs still in the RX mbuf chain. */
5548	for (i = 0; i < TOTAL_RX_BD; i++) {
5549		if (sc->rx_mbuf_ptr[i] != NULL) {
5550			if (sc->rx_mbuf_map[i] != NULL)
5551				bus_dmamap_sync(sc->rx_mbuf_tag,
5552				    sc->rx_mbuf_map[i],
5553				    BUS_DMASYNC_POSTREAD);
5554			m_freem(sc->rx_mbuf_ptr[i]);
5555			sc->rx_mbuf_ptr[i] = NULL;
5556			DBRUN(sc->debug_rx_mbuf_alloc--);
5557		}
5558	}
5559
5560	/* Clear each RX chain page. */
5561	for (i = 0; i < RX_PAGES; i++)
5562		if (sc->rx_bd_chain[i] != NULL) {
5563			bzero((char *)sc->rx_bd_chain[i],
5564			    BCE_RX_CHAIN_PAGE_SZ);
5565		}
5566
5567	sc->free_rx_bd = sc->max_rx_bd;
5568
5569	/* Check if we lost any mbufs in the process. */
5570	DBRUNIF((sc->debug_rx_mbuf_alloc),
5571	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5572	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5573
5574	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5575}
5576
5577
5578#ifdef BCE_JUMBO_HDRSPLIT
5579/****************************************************************************/
5580/* Allocate memory and initialize the page data structures.                 */
5581/* Assumes that bce_init_rx_chain() has not already been called.            */
5582/*                                                                          */
5583/* Returns:                                                                 */
5584/*   0 for success, positive value for failure.                             */
5585/****************************************************************************/
5586static int
5587bce_init_pg_chain(struct bce_softc *sc)
5588{
5589	struct rx_bd *pgbd;
5590	int i, rc = 0;
5591	u32 val;
5592
5593	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5594		BCE_VERBOSE_CTX);
5595
5596	/* Initialize the page producer and consumer indices. */
5597	sc->pg_prod        = 0;
5598	sc->pg_cons        = 0;
5599	sc->free_pg_bd     = USABLE_PG_BD;
5600	sc->max_pg_bd      = USABLE_PG_BD;
5601	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5602	DBRUN(sc->pg_empty_count = 0);
5603
5604	/* Initialize the page next pointer chain entries. */
5605	for (i = 0; i < PG_PAGES; i++) {
5606		int j;
5607
5608		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5609
5610		/* Check if we've reached the last page. */
5611		if (i == (PG_PAGES - 1))
5612			j = 0;
5613		else
5614			j = i + 1;
5615
5616		/* Setup the chain page pointers. */
5617		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5618		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5619	}
5620
5621	/* Setup the MQ BIN mapping for host_pg_bidx. */
5622	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5623		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5624		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5625
5626	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5627
5628	/* Configure the rx_bd and page chain mbuf cluster size. */
5629	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5630	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5631
5632	/* Configure the context reserved for jumbo support. */
5633	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5634		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5635
5636	/* Point the hardware to the first page in the page chain. */
5637	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5638	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5639	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5640	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5641
5642	/* Fill up the page chain. */
5643	bce_fill_pg_chain(sc);
5644
5645	for (i = 0; i < PG_PAGES; i++) {
5646		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5647		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5648	}
5649
5650	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5651	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5652		BCE_VERBOSE_CTX);
5653	return(rc);
5654}
5655
5656
5657/****************************************************************************/
5658/* Add mbufs to the page chain until its full or an mbuf allocation error   */
5659/* occurs.                                                                  */
5660/*                                                                          */
5661/* Returns:                                                                 */
5662/*   Nothing                                                                */
5663/****************************************************************************/
5664static void
5665bce_fill_pg_chain(struct bce_softc *sc)
5666{
5667	u16 prod, prod_idx;
5668
5669	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5670		BCE_VERBOSE_CTX);
5671
5672	/* Get the page chain prodcuer index. */
5673	prod = sc->pg_prod;
5674
5675	/* Keep filling the page chain until it's full. */
5676	while (sc->free_pg_bd > 0) {
5677		prod_idx = PG_CHAIN_IDX(prod);
5678		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5679			/* Bail out if we can't add an mbuf to the chain. */
5680			break;
5681		}
5682		prod = NEXT_PG_BD(prod);
5683	}
5684
5685	/* Save the page chain producer index. */
5686	sc->pg_prod = prod;
5687
5688	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5689		BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5690		__FUNCTION__, sc->pg_prod));
5691
5692	/*
5693	 * Write the mailbox and tell the chip about
5694	 * the new rx_bd's in the page chain.
5695	 */
5696	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5697		sc->pg_prod);
5698
5699	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5700		BCE_VERBOSE_CTX);
5701}
5702
5703
5704/****************************************************************************/
5705/* Free memory and clear the RX data structures.                            */
5706/*                                                                          */
5707/* Returns:                                                                 */
5708/*   Nothing.                                                               */
5709/****************************************************************************/
5710static void
5711bce_free_pg_chain(struct bce_softc *sc)
5712{
5713	int i;
5714
5715	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5716
5717	/* Free any mbufs still in the mbuf page chain. */
5718	for (i = 0; i < TOTAL_PG_BD; i++) {
5719		if (sc->pg_mbuf_ptr[i] != NULL) {
5720			if (sc->pg_mbuf_map[i] != NULL)
5721				bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i],
5722					BUS_DMASYNC_POSTREAD);
5723			m_freem(sc->pg_mbuf_ptr[i]);
5724			sc->pg_mbuf_ptr[i] = NULL;
5725			DBRUN(sc->debug_pg_mbuf_alloc--);
5726		}
5727	}
5728
5729	/* Clear each page chain pages. */
5730	for (i = 0; i < PG_PAGES; i++)
5731		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5732
5733	sc->free_pg_bd = sc->max_pg_bd;
5734
5735	/* Check if we lost any mbufs in the process. */
5736	DBRUNIF((sc->debug_pg_mbuf_alloc),
5737		BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5738			__FUNCTION__, sc->debug_pg_mbuf_alloc));
5739
5740	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5741}
5742#endif /* BCE_JUMBO_HDRSPLIT */
5743
5744
5745/****************************************************************************/
5746/* Set media options.                                                       */
5747/*                                                                          */
5748/* Returns:                                                                 */
5749/*   0 for success, positive value for failure.                             */
5750/****************************************************************************/
5751static int
5752bce_ifmedia_upd(struct ifnet *ifp)
5753{
5754	struct bce_softc *sc = ifp->if_softc;
5755
5756	DBENTER(BCE_VERBOSE);
5757
5758	BCE_LOCK(sc);
5759	bce_ifmedia_upd_locked(ifp);
5760	BCE_UNLOCK(sc);
5761
5762	DBEXIT(BCE_VERBOSE);
5763	return (0);
5764}
5765
5766
5767/****************************************************************************/
5768/* Set media options.                                                       */
5769/*                                                                          */
5770/* Returns:                                                                 */
5771/*   Nothing.                                                               */
5772/****************************************************************************/
5773static void
5774bce_ifmedia_upd_locked(struct ifnet *ifp)
5775{
5776	struct bce_softc *sc = ifp->if_softc;
5777	struct mii_data *mii;
5778
5779	DBENTER(BCE_VERBOSE);
5780
5781	BCE_LOCK_ASSERT(sc);
5782
5783	mii = device_get_softc(sc->bce_miibus);
5784
5785	/* Make sure the MII bus has been enumerated. */
5786	if (mii) {
5787		sc->bce_link_up = FALSE;
5788		if (mii->mii_instance) {
5789			struct mii_softc *miisc;
5790
5791			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5792			    mii_phy_reset(miisc);
5793		}
5794		mii_mediachg(mii);
5795	}
5796
5797	DBEXIT(BCE_VERBOSE);
5798}
5799
5800
5801/****************************************************************************/
5802/* Reports current media status.                                            */
5803/*                                                                          */
5804/* Returns:                                                                 */
5805/*   Nothing.                                                               */
5806/****************************************************************************/
5807static void
5808bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5809{
5810	struct bce_softc *sc = ifp->if_softc;
5811	struct mii_data *mii;
5812
5813	DBENTER(BCE_VERBOSE);
5814
5815	BCE_LOCK(sc);
5816
5817	mii = device_get_softc(sc->bce_miibus);
5818
5819	mii_pollstat(mii);
5820	ifmr->ifm_active = mii->mii_media_active;
5821	ifmr->ifm_status = mii->mii_media_status;
5822
5823	BCE_UNLOCK(sc);
5824
5825	DBEXIT(BCE_VERBOSE);
5826}
5827
5828
5829/****************************************************************************/
5830/* Handles PHY generated interrupt events.                                  */
5831/*                                                                          */
5832/* Returns:                                                                 */
5833/*   Nothing.                                                               */
5834/****************************************************************************/
5835static void
5836bce_phy_intr(struct bce_softc *sc)
5837{
5838	u32 new_link_state, old_link_state;
5839
5840	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5841
5842	DBRUN(sc->phy_interrupts++);
5843
5844	new_link_state = sc->status_block->status_attn_bits &
5845	    STATUS_ATTN_BITS_LINK_STATE;
5846	old_link_state = sc->status_block->status_attn_bits_ack &
5847	    STATUS_ATTN_BITS_LINK_STATE;
5848
5849	/* Handle any changes if the link state has changed. */
5850	if (new_link_state != old_link_state) {
5851
5852		/* Update the status_attn_bits_ack field. */
5853		if (new_link_state) {
5854			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5855			    STATUS_ATTN_BITS_LINK_STATE);
5856			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5857			    __FUNCTION__);
5858		}
5859		else {
5860			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5861			    STATUS_ATTN_BITS_LINK_STATE);
5862			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5863			    __FUNCTION__);
5864		}
5865
5866		/*
5867		 * Assume link is down and allow
5868		 * tick routine to update the state
5869		 * based on the actual media state.
5870		 */
5871		sc->bce_link_up = FALSE;
5872		callout_stop(&sc->bce_tick_callout);
5873		bce_tick(sc);
5874	}
5875
5876	/* Acknowledge the link change interrupt. */
5877	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5878
5879	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5880}
5881
5882
5883/****************************************************************************/
5884/* Reads the receive consumer value from the status block (skipping over    */
5885/* chain page pointer if necessary).                                        */
5886/*                                                                          */
5887/* Returns:                                                                 */
5888/*   hw_cons                                                                */
5889/****************************************************************************/
5890static inline u16
5891bce_get_hw_rx_cons(struct bce_softc *sc)
5892{
5893	u16 hw_cons;
5894
5895	rmb();
5896	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5897	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5898		hw_cons++;
5899
5900	return hw_cons;
5901}
5902
5903/****************************************************************************/
5904/* Handles received frame interrupt events.                                 */
5905/*                                                                          */
5906/* Returns:                                                                 */
5907/*   Nothing.                                                               */
5908/****************************************************************************/
5909static void
5910bce_rx_intr(struct bce_softc *sc)
5911{
5912	struct ifnet *ifp = sc->bce_ifp;
5913	struct l2_fhdr *l2fhdr;
5914	struct ether_vlan_header *vh;
5915	unsigned int pkt_len;
5916	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5917	u32 status;
5918#ifdef BCE_JUMBO_HDRSPLIT
5919	unsigned int rem_len;
5920	u16 sw_pg_cons, sw_pg_cons_idx;
5921#endif
5922
5923	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5924	DBRUN(sc->rx_interrupts++);
5925	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5926	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5927	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5928
5929	/* Prepare the RX chain pages to be accessed by the host CPU. */
5930	for (int i = 0; i < RX_PAGES; i++)
5931		bus_dmamap_sync(sc->rx_bd_chain_tag,
5932		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5933
5934#ifdef BCE_JUMBO_HDRSPLIT
5935	/* Prepare the page chain pages to be accessed by the host CPU. */
5936	for (int i = 0; i < PG_PAGES; i++)
5937		bus_dmamap_sync(sc->pg_bd_chain_tag,
5938		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5939#endif
5940
5941	/* Get the hardware's view of the RX consumer index. */
5942	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5943
5944	/* Get working copies of the driver's view of the consumer indices. */
5945	sw_rx_cons = sc->rx_cons;
5946#ifdef BCE_JUMBO_HDRSPLIT
5947	sw_pg_cons = sc->pg_cons;
5948#endif
5949
5950	/* Update some debug statistics counters */
5951	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5952		sc->rx_low_watermark = sc->free_rx_bd);
5953	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
5954
5955	/* Scan through the receive chain as long as there is work to do */
5956	/* ToDo: Consider setting a limit on the number of packets processed. */
5957	rmb();
5958	while (sw_rx_cons != hw_rx_cons) {
5959		struct mbuf *m0;
5960
5961		/* Convert the producer/consumer indices to an actual rx_bd index. */
5962		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
5963
5964		/* Unmap the mbuf from DMA space. */
5965		bus_dmamap_sync(sc->rx_mbuf_tag,
5966		    sc->rx_mbuf_map[sw_rx_cons_idx],
5967		    BUS_DMASYNC_POSTREAD);
5968		bus_dmamap_unload(sc->rx_mbuf_tag,
5969		    sc->rx_mbuf_map[sw_rx_cons_idx]);
5970
5971		/* Remove the mbuf from the RX chain. */
5972		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
5973		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
5974		DBRUN(sc->debug_rx_mbuf_alloc--);
5975		sc->free_rx_bd++;
5976
5977		if(m0 == NULL) {
5978			DBPRINT(sc, BCE_EXTREME_RECV,
5979			    "%s(): Oops! Empty mbuf pointer "
5980			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
5981			    __FUNCTION__, sw_rx_cons_idx);
5982			goto bce_rx_int_next_rx;
5983		}
5984
5985		/*
5986		 * Frames received on the NetXteme II are prepended	with an
5987		 * l2_fhdr structure which provides status information about
5988		 * the received frame (including VLAN tags and checksum info).
5989		 * The frames are also automatically adjusted to align the IP
5990		 * header (i.e. two null bytes are inserted before the Ethernet
5991		 * header).  As a result the data DMA'd by the controller into
5992		 * the mbuf is as follows:
5993		 *
5994		 * +---------+-----+---------------------+-----+
5995		 * | l2_fhdr | pad | packet data         | FCS |
5996		 * +---------+-----+---------------------+-----+
5997		 *
5998		 * The l2_fhdr needs to be checked and skipped and the FCS needs
5999		 * to be stripped before sending the packet up the stack.
6000		 */
6001		l2fhdr  = mtod(m0, struct l2_fhdr *);
6002
6003		/* Get the packet data + FCS length and the status. */
6004		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6005		status  = l2fhdr->l2_fhdr_status;
6006
6007		/*
6008		 * Skip over the l2_fhdr and pad, resulting in the
6009		 * following data in the mbuf:
6010		 * +---------------------+-----+
6011		 * | packet data         | FCS |
6012		 * +---------------------+-----+
6013		 */
6014		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6015
6016#ifdef BCE_JUMBO_HDRSPLIT
6017		/*
6018		 * Check whether the received frame fits in a single
6019		 * mbuf or not (i.e. packet data + FCS <=
6020		 * sc->rx_bd_mbuf_data_len bytes).
6021		 */
6022		if (pkt_len > m0->m_len) {
6023			/*
6024			 * The received frame is larger than a single mbuf.
6025			 * If the frame was a TCP frame then only the TCP
6026			 * header is placed in the mbuf, the remaining
6027			 * payload (including FCS) is placed in the page
6028			 * chain, the SPLIT flag is set, and the header
6029			 * length is placed in the IP checksum field.
6030			 * If the frame is not a TCP frame then the mbuf
6031			 * is filled and the remaining bytes are placed
6032			 * in the page chain.
6033			 */
6034
6035			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6036			    "packet.\n", __FUNCTION__);
6037
6038			/*
6039			 * When the page chain is enabled and the TCP
6040			 * header has been split from the TCP payload,
6041			 * the ip_xsum structure will reflect the length
6042			 * of the TCP header, not the IP checksum.  Set
6043			 * the packet length of the mbuf accordingly.
6044			 */
6045		 	if (status & L2_FHDR_STATUS_SPLIT)
6046				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6047
6048			rem_len = pkt_len - m0->m_len;
6049
6050			/* Pull mbufs off the page chain for the remaining data. */
6051			while (rem_len > 0) {
6052				struct mbuf *m_pg;
6053
6054				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6055
6056				/* Remove the mbuf from the page chain. */
6057				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6058				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6059				DBRUN(sc->debug_pg_mbuf_alloc--);
6060				sc->free_pg_bd++;
6061
6062				/* Unmap the page chain mbuf from DMA space. */
6063				bus_dmamap_sync(sc->pg_mbuf_tag,
6064				    sc->pg_mbuf_map[sw_pg_cons_idx],
6065				    BUS_DMASYNC_POSTREAD);
6066				bus_dmamap_unload(sc->pg_mbuf_tag,
6067				    sc->pg_mbuf_map[sw_pg_cons_idx]);
6068
6069				/* Adjust the mbuf length. */
6070				if (rem_len < m_pg->m_len) {
6071					/* The mbuf chain is complete. */
6072					m_pg->m_len = rem_len;
6073					rem_len = 0;
6074				} else {
6075					/* More packet data is waiting. */
6076					rem_len -= m_pg->m_len;
6077				}
6078
6079				/* Concatenate the mbuf cluster to the mbuf. */
6080				m_cat(m0, m_pg);
6081
6082				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6083			}
6084
6085			/* Set the total packet length. */
6086			m0->m_pkthdr.len = pkt_len;
6087
6088		} else {
6089			/*
6090			 * The received packet is small and fits in a
6091			 * single mbuf (i.e. the l2_fhdr + pad + packet +
6092			 * FCS <= MHLEN).  In other words, the packet is
6093			 * 154 bytes or less in size.
6094			 */
6095
6096			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6097			    "packet.\n", __FUNCTION__);
6098
6099			/* Set the total packet length. */
6100			m0->m_pkthdr.len = m0->m_len = pkt_len;
6101		}
6102#else
6103        /* Set the total packet length. */
6104		m0->m_pkthdr.len = m0->m_len = pkt_len;
6105#endif
6106
6107		/* Remove the trailing Ethernet FCS. */
6108		m_adj(m0, -ETHER_CRC_LEN);
6109
6110		/* Check that the resulting mbuf chain is valid. */
6111		DBRUN(m_sanity(m0, FALSE));
6112		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6113		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6114		     BCE_PRINTF("Invalid Ethernet frame size!\n");
6115		     m_print(m0, 128));
6116
6117		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6118		    BCE_PRINTF("Simulating l2_fhdr status error.\n");
6119		    sc->l2fhdr_error_sim_count++;
6120		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6121
6122		/* Check the received frame for errors. */
6123		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6124		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6125		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6126
6127			/* Log the error and release the mbuf. */
6128			ifp->if_ierrors++;
6129			sc->l2fhdr_error_count++;
6130
6131			m_freem(m0);
6132			m0 = NULL;
6133			goto bce_rx_int_next_rx;
6134		}
6135
6136		/* Send the packet to the appropriate interface. */
6137		m0->m_pkthdr.rcvif = ifp;
6138
6139		/* Assume no hardware checksum. */
6140		m0->m_pkthdr.csum_flags = 0;
6141
6142		/* Validate the checksum if offload enabled. */
6143		if (ifp->if_capenable & IFCAP_RXCSUM) {
6144
6145			/* Check for an IP datagram. */
6146		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6147				(status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6148				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6149
6150				/* Check if the IP checksum is valid. */
6151				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6152					m0->m_pkthdr.csum_flags |=
6153					    CSUM_IP_VALID;
6154			}
6155
6156			/* Check for a valid TCP/UDP frame. */
6157			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6158			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6159
6160				/* Check for a good TCP/UDP checksum. */
6161				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6162				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6163					m0->m_pkthdr.csum_data =
6164					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6165					m0->m_pkthdr.csum_flags |=
6166					    (CSUM_DATA_VALID
6167					    | CSUM_PSEUDO_HDR);
6168				}
6169			}
6170		}
6171
6172		/* Attach the VLAN tag.	*/
6173		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6174			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6175#if __FreeBSD_version < 700000
6176				VLAN_INPUT_TAG(ifp, m0,
6177				    l2fhdr->l2_fhdr_vlan_tag, continue);
6178#else
6179				m0->m_pkthdr.ether_vtag =
6180				    l2fhdr->l2_fhdr_vlan_tag;
6181				m0->m_flags |= M_VLANTAG;
6182#endif
6183			} else {
6184				/*
6185				 * bce(4) controllers can't disable VLAN
6186				 * tag stripping if management firmware
6187				 * (ASF/IPMI/UMP) is running. So we always
6188				 * strip VLAN tag and manually reconstruct
6189				 * the VLAN frame by appending stripped
6190				 * VLAN tag in driver if VLAN tag stripping
6191				 * was disabled.
6192				 *
6193				 * TODO: LLC SNAP handling.
6194				 */
6195				bcopy(mtod(m0, uint8_t *),
6196				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6197				    ETHER_ADDR_LEN * 2);
6198				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6199				vh = mtod(m0, struct ether_vlan_header *);
6200				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6201				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6202				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6203				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6204			}
6205		}
6206
6207		/* Increment received packet statistics. */
6208		ifp->if_ipackets++;
6209
6210bce_rx_int_next_rx:
6211		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6212
6213		/* If we have a packet, pass it up the stack */
6214		if (m0) {
6215			/* Make sure we don't lose our place when we release the lock. */
6216			sc->rx_cons = sw_rx_cons;
6217#ifdef BCE_JUMBO_HDRSPLIT
6218			sc->pg_cons = sw_pg_cons;
6219#endif
6220
6221			BCE_UNLOCK(sc);
6222			(*ifp->if_input)(ifp, m0);
6223			BCE_LOCK(sc);
6224
6225			/* Recover our place. */
6226			sw_rx_cons = sc->rx_cons;
6227#ifdef BCE_JUMBO_HDRSPLIT
6228			sw_pg_cons = sc->pg_cons;
6229#endif
6230		}
6231
6232		/* Refresh hw_cons to see if there's new work */
6233		if (sw_rx_cons == hw_rx_cons)
6234			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6235	}
6236
6237	/* No new packets to process.  Refill the RX and page chains and exit. */
6238#ifdef BCE_JUMBO_HDRSPLIT
6239	sc->pg_cons = sw_pg_cons;
6240	bce_fill_pg_chain(sc);
6241#endif
6242
6243	sc->rx_cons = sw_rx_cons;
6244	bce_fill_rx_chain(sc);
6245
6246	/* Prepare the page chain pages to be accessed by the NIC. */
6247	for (int i = 0; i < RX_PAGES; i++)
6248		bus_dmamap_sync(sc->rx_bd_chain_tag,
6249		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6250
6251#ifdef BCE_JUMBO_HDRSPLIT
6252	for (int i = 0; i < PG_PAGES; i++)
6253		bus_dmamap_sync(sc->pg_bd_chain_tag,
6254		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6255#endif
6256
6257	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6258	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6259	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6260	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6261}
6262
6263
6264/****************************************************************************/
6265/* Reads the transmit consumer value from the status block (skipping over   */
6266/* chain page pointer if necessary).                                        */
6267/*                                                                          */
6268/* Returns:                                                                 */
6269/*   hw_cons                                                                */
6270/****************************************************************************/
6271static inline u16
6272bce_get_hw_tx_cons(struct bce_softc *sc)
6273{
6274	u16 hw_cons;
6275
6276	mb();
6277	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6278	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6279		hw_cons++;
6280
6281	return hw_cons;
6282}
6283
6284
6285/****************************************************************************/
6286/* Handles transmit completion interrupt events.                            */
6287/*                                                                          */
6288/* Returns:                                                                 */
6289/*   Nothing.                                                               */
6290/****************************************************************************/
6291static void
6292bce_tx_intr(struct bce_softc *sc)
6293{
6294	struct ifnet *ifp = sc->bce_ifp;
6295	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6296
6297	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6298	DBRUN(sc->tx_interrupts++);
6299	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6300	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6301	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6302
6303	BCE_LOCK_ASSERT(sc);
6304
6305	/* Get the hardware's view of the TX consumer index. */
6306	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6307	sw_tx_cons = sc->tx_cons;
6308
6309	/* Prevent speculative reads from getting ahead of the status block. */
6310	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6311	    BUS_SPACE_BARRIER_READ);
6312
6313	/* Cycle through any completed TX chain page entries. */
6314	while (sw_tx_cons != hw_tx_cons) {
6315#ifdef BCE_DEBUG
6316		struct tx_bd *txbd = NULL;
6317#endif
6318		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6319
6320		DBPRINT(sc, BCE_INFO_SEND,
6321		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6322		    "sw_tx_chain_cons = 0x%04X\n",
6323		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6324
6325		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6326		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6327		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6328		    (int) MAX_TX_BD);
6329		    bce_breakpoint(sc));
6330
6331		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6332		    [TX_IDX(sw_tx_chain_cons)]);
6333
6334		DBRUNIF((txbd == NULL),
6335		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6336		    __FILE__, __LINE__, sw_tx_chain_cons);
6337		    bce_breakpoint(sc));
6338
6339		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6340		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6341
6342		/*
6343		 * Free the associated mbuf. Remember
6344		 * that only the last tx_bd of a packet
6345		 * has an mbuf pointer and DMA map.
6346		 */
6347		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6348
6349			/* Validate that this is the last tx_bd. */
6350			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6351			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6352			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6353			    bce_breakpoint(sc));
6354
6355			DBRUNMSG(BCE_INFO_SEND,
6356			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6357			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6358			    sw_tx_chain_cons));
6359
6360			/* Unmap the mbuf. */
6361			bus_dmamap_unload(sc->tx_mbuf_tag,
6362			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6363
6364			/* Free the mbuf. */
6365			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6366			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6367			DBRUN(sc->debug_tx_mbuf_alloc--);
6368
6369			ifp->if_opackets++;
6370		}
6371
6372		sc->used_tx_bd--;
6373		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6374
6375		/* Refresh hw_cons to see if there's new work. */
6376		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6377
6378		/* Prevent speculative reads of the status block. */
6379		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6380		    BUS_SPACE_BARRIER_READ);
6381	}
6382
6383	/* Clear the TX timeout timer. */
6384	sc->watchdog_timer = 0;
6385
6386	/* Clear the tx hardware queue full flag. */
6387	if (sc->used_tx_bd < sc->max_tx_bd) {
6388		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6389		    DBPRINT(sc, BCE_INFO_SEND,
6390		    "%s(): Open TX chain! %d/%d (used/total)\n",
6391		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6392		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6393	}
6394
6395	sc->tx_cons = sw_tx_cons;
6396
6397	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6398	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6399	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6400	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6401}
6402
6403
6404/****************************************************************************/
6405/* Disables interrupt generation.                                           */
6406/*                                                                          */
6407/* Returns:                                                                 */
6408/*   Nothing.                                                               */
6409/****************************************************************************/
6410static void
6411bce_disable_intr(struct bce_softc *sc)
6412{
6413	DBENTER(BCE_VERBOSE_INTR);
6414
6415	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6416	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6417
6418	DBEXIT(BCE_VERBOSE_INTR);
6419}
6420
6421
6422/****************************************************************************/
6423/* Enables interrupt generation.                                            */
6424/*                                                                          */
6425/* Returns:                                                                 */
6426/*   Nothing.                                                               */
6427/****************************************************************************/
6428static void
6429bce_enable_intr(struct bce_softc *sc, int coal_now)
6430{
6431	DBENTER(BCE_VERBOSE_INTR);
6432
6433	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6434	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6435	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6436
6437	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6438	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6439
6440	/* Force an immediate interrupt (whether there is new data or not). */
6441	if (coal_now)
6442		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6443
6444	DBEXIT(BCE_VERBOSE_INTR);
6445}
6446
6447
6448/****************************************************************************/
6449/* Handles controller initialization.                                       */
6450/*                                                                          */
6451/* Returns:                                                                 */
6452/*   Nothing.                                                               */
6453/****************************************************************************/
6454static void
6455bce_init_locked(struct bce_softc *sc)
6456{
6457	struct ifnet *ifp;
6458	u32 ether_mtu = 0;
6459
6460	DBENTER(BCE_VERBOSE_RESET);
6461
6462	BCE_LOCK_ASSERT(sc);
6463
6464	ifp = sc->bce_ifp;
6465
6466	/* Check if the driver is still running and bail out if it is. */
6467	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6468		goto bce_init_locked_exit;
6469
6470	bce_stop(sc);
6471
6472	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6473		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6474		    __FILE__, __LINE__);
6475		goto bce_init_locked_exit;
6476	}
6477
6478	if (bce_chipinit(sc)) {
6479		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6480		    __FILE__, __LINE__);
6481		goto bce_init_locked_exit;
6482	}
6483
6484	if (bce_blockinit(sc)) {
6485		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6486		    __FILE__, __LINE__);
6487		goto bce_init_locked_exit;
6488	}
6489
6490	/* Load our MAC address. */
6491	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6492	bce_set_mac_addr(sc);
6493
6494	/*
6495	 * Calculate and program the hardware Ethernet MTU
6496	 * size. Be generous on the receive if we have room.
6497	 */
6498#ifdef BCE_JUMBO_HDRSPLIT
6499	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6500	    sc->pg_bd_mbuf_alloc_size))
6501		ether_mtu = sc->rx_bd_mbuf_data_len +
6502		    sc->pg_bd_mbuf_alloc_size;
6503#else
6504	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6505		ether_mtu = sc->rx_bd_mbuf_data_len;
6506#endif
6507	else
6508		ether_mtu = ifp->if_mtu;
6509
6510	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6511
6512	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6513	    __FUNCTION__, ether_mtu);
6514
6515	/* Program the mtu, enabling jumbo frame support if necessary. */
6516	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6517		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6518		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6519		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6520	else
6521		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6522
6523	DBPRINT(sc, BCE_INFO_LOAD,
6524	    "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6525	    "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6526	    sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6527	    sc->rx_bd_mbuf_align_pad);
6528
6529	/* Program appropriate promiscuous/multicast filtering. */
6530	bce_set_rx_mode(sc);
6531
6532#ifdef BCE_JUMBO_HDRSPLIT
6533	DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6534	    __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6535
6536	/* Init page buffer descriptor chain. */
6537	bce_init_pg_chain(sc);
6538#endif
6539
6540	/* Init RX buffer descriptor chain. */
6541	bce_init_rx_chain(sc);
6542
6543	/* Init TX buffer descriptor chain. */
6544	bce_init_tx_chain(sc);
6545
6546	/* Enable host interrupts. */
6547	bce_enable_intr(sc, 1);
6548
6549	bce_ifmedia_upd_locked(ifp);
6550
6551	/* Let the OS know the driver is up and running. */
6552	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6553	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6554
6555	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6556
6557bce_init_locked_exit:
6558	DBEXIT(BCE_VERBOSE_RESET);
6559}
6560
6561
6562/****************************************************************************/
6563/* Initialize the controller just enough so that any management firmware    */
6564/* running on the device will continue to operate correctly.                */
6565/*                                                                          */
6566/* Returns:                                                                 */
6567/*   Nothing.                                                               */
6568/****************************************************************************/
6569static void
6570bce_mgmt_init_locked(struct bce_softc *sc)
6571{
6572	struct ifnet *ifp;
6573
6574	DBENTER(BCE_VERBOSE_RESET);
6575
6576	BCE_LOCK_ASSERT(sc);
6577
6578	/* Bail out if management firmware is not running. */
6579	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6580		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6581		    "No management firmware running...\n");
6582		goto bce_mgmt_init_locked_exit;
6583	}
6584
6585	ifp = sc->bce_ifp;
6586
6587	/* Enable all critical blocks in the MAC. */
6588	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6589	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6590	DELAY(20);
6591
6592	bce_ifmedia_upd_locked(ifp);
6593
6594bce_mgmt_init_locked_exit:
6595	DBEXIT(BCE_VERBOSE_RESET);
6596}
6597
6598
6599/****************************************************************************/
6600/* Handles controller initialization when called from an unlocked routine.  */
6601/*                                                                          */
6602/* Returns:                                                                 */
6603/*   Nothing.                                                               */
6604/****************************************************************************/
6605static void
6606bce_init(void *xsc)
6607{
6608	struct bce_softc *sc = xsc;
6609
6610	DBENTER(BCE_VERBOSE_RESET);
6611
6612	BCE_LOCK(sc);
6613	bce_init_locked(sc);
6614	BCE_UNLOCK(sc);
6615
6616	DBEXIT(BCE_VERBOSE_RESET);
6617}
6618
6619
6620static struct mbuf *
6621bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6622{
6623	struct mbuf *m;
6624	struct ether_header *eh;
6625	struct ip *ip;
6626	struct tcphdr *th;
6627	u16 etype;
6628	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6629
6630	DBRUN(sc->requested_tso_frames++);
6631	/* Controller requires to monify mbuf chains. */
6632	if (M_WRITABLE(*m_head) == 0) {
6633		m = m_dup(*m_head, M_DONTWAIT);
6634		m_freem(*m_head);
6635		if (m == NULL) {
6636			sc->mbuf_alloc_failed_count++;
6637			*m_head = NULL;
6638			return (NULL);
6639		}
6640		*m_head = m;
6641	}
6642	/*
6643	 * For TSO the controller needs two pieces of info,
6644	 * the MSS and the IP+TCP options length.
6645	 */
6646	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
6647	if (m == NULL) {
6648		*m_head = NULL;
6649		return (NULL);
6650	}
6651	eh = mtod(m, struct ether_header *);
6652	etype = ntohs(eh->ether_type);
6653
6654	/* Check for supported TSO Ethernet types (only IPv4 for now) */
6655	switch (etype) {
6656	case ETHERTYPE_IP:
6657		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6658		/* TSO only supported for TCP protocol. */
6659		if (ip->ip_p != IPPROTO_TCP) {
6660			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6661			    __FILE__, __LINE__);
6662			m_freem(*m_head);
6663			*m_head = NULL;
6664			return (NULL);
6665		}
6666
6667		/* Get IP header length in bytes (min 20) */
6668		ip_hlen = ip->ip_hl << 2;
6669		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
6670		    sizeof(struct tcphdr));
6671		if (m == NULL) {
6672			*m_head = NULL;
6673			return (NULL);
6674		}
6675
6676		/* Get the TCP header length in bytes (min 20) */
6677		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6678		tcp_hlen = (th->th_off << 2);
6679
6680		/* Make sure all IP/TCP options live in the same buffer. */
6681		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
6682		    tcp_hlen);
6683		if (m == NULL) {
6684			*m_head = NULL;
6685			return (NULL);
6686		}
6687
6688		/* IP header length and checksum will be calc'd by hardware */
6689		ip_len = ip->ip_len;
6690		ip->ip_len = 0;
6691		ip->ip_sum = 0;
6692		break;
6693	case ETHERTYPE_IPV6:
6694		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6695		    __FILE__, __LINE__);
6696		m_freem(*m_head);
6697		*m_head = NULL;
6698		return (NULL);
6699		/* NOT REACHED */
6700	default:
6701		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6702		    __FILE__, __LINE__);
6703		m_freem(*m_head);
6704		*m_head = NULL;
6705		return (NULL);
6706	}
6707
6708	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
6709
6710	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
6711	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6712	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
6713	    tcp_hlen, ip_len);
6714
6715	/* Set the LSO flag in the TX BD */
6716	*flags |= TX_BD_FLAGS_SW_LSO;
6717	/* Set the length of IP + TCP options (in 32 bit words) */
6718	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
6719	    sizeof(struct tcphdr)) >> 2) << 8);
6720	return (*m_head);
6721}
6722
6723
6724/****************************************************************************/
6725/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6726/* memory visible to the controller.                                        */
6727/*                                                                          */
6728/* Returns:                                                                 */
6729/*   0 for success, positive value for failure.                             */
6730/* Modified:                                                                */
6731/*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6732/****************************************************************************/
6733static int
6734bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6735{
6736	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6737	bus_dmamap_t map;
6738	struct tx_bd *txbd = NULL;
6739	struct mbuf *m0;
6740	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
6741	u32 prod_bseq;
6742
6743#ifdef BCE_DEBUG
6744	u16 debug_prod;
6745#endif
6746	int i, error, nsegs, rc = 0;
6747
6748	DBENTER(BCE_VERBOSE_SEND);
6749	DBPRINT(sc, BCE_INFO_SEND,
6750	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, "
6751	    "tx_prod_bseq = 0x%08X\n",
6752	    __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6753	    sc->tx_prod_bseq);
6754
6755	/* Transfer any checksum offload flags to the bd. */
6756	m0 = *m_head;
6757	if (m0->m_pkthdr.csum_flags) {
6758		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6759			m0 = bce_tso_setup(sc, m_head, &flags);
6760			if (m0 == NULL)
6761				goto bce_tx_encap_exit;
6762			mss = htole16(m0->m_pkthdr.tso_segsz);
6763		} else {
6764			if (m0->m_pkthdr.csum_flags & CSUM_IP)
6765				flags |= TX_BD_FLAGS_IP_CKSUM;
6766			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6767				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6768		}
6769	}
6770
6771	/* Transfer any VLAN tags to the bd. */
6772	if (m0->m_flags & M_VLANTAG) {
6773		flags |= TX_BD_FLAGS_VLAN_TAG;
6774		vlan_tag = m0->m_pkthdr.ether_vtag;
6775	}
6776
6777	/* Map the mbuf into DMAable memory. */
6778	prod = sc->tx_prod;
6779	chain_prod = TX_CHAIN_IDX(prod);
6780	map = sc->tx_mbuf_map[chain_prod];
6781
6782	/* Map the mbuf into our DMA address space. */
6783	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6784	    segs, &nsegs, BUS_DMA_NOWAIT);
6785
6786	/* Check if the DMA mapping was successful */
6787	if (error == EFBIG) {
6788
6789		sc->fragmented_mbuf_count++;
6790
6791		/* Try to defrag the mbuf. */
6792		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
6793		if (m0 == NULL) {
6794			/* Defrag was unsuccessful */
6795			m_freem(*m_head);
6796			*m_head = NULL;
6797			sc->mbuf_alloc_failed_count++;
6798			rc = ENOBUFS;
6799			goto bce_tx_encap_exit;
6800		}
6801
6802		/* Defrag was successful, try mapping again */
6803		*m_head = m0;
6804		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6805		    segs, &nsegs, BUS_DMA_NOWAIT);
6806
6807		/* Still getting an error after a defrag. */
6808		if (error == ENOMEM) {
6809			/* Insufficient DMA buffers available. */
6810			sc->dma_map_addr_tx_failed_count++;
6811			rc = error;
6812			goto bce_tx_encap_exit;
6813		} else if (error != 0) {
6814			/* Release it and return an error. */
6815			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
6816			    "TX chain!\n", __FILE__, __LINE__);
6817			m_freem(m0);
6818			*m_head = NULL;
6819			sc->dma_map_addr_tx_failed_count++;
6820			rc = ENOBUFS;
6821			goto bce_tx_encap_exit;
6822		}
6823	} else if (error == ENOMEM) {
6824		/* Insufficient DMA buffers available. */
6825		sc->dma_map_addr_tx_failed_count++;
6826		rc = error;
6827		goto bce_tx_encap_exit;
6828	} else if (error != 0) {
6829		m_freem(m0);
6830		*m_head = NULL;
6831		sc->dma_map_addr_tx_failed_count++;
6832		rc = error;
6833		goto bce_tx_encap_exit;
6834	}
6835
6836	/* Make sure there's room in the chain */
6837	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6838		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6839		rc = ENOBUFS;
6840		goto bce_tx_encap_exit;
6841	}
6842
6843	/* prod points to an empty tx_bd at this point. */
6844	prod_bseq  = sc->tx_prod_bseq;
6845
6846#ifdef BCE_DEBUG
6847	debug_prod = chain_prod;
6848#endif
6849
6850	DBPRINT(sc, BCE_INFO_SEND,
6851	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6852	    "prod_bseq = 0x%08X\n",
6853	    __FUNCTION__, prod, chain_prod, prod_bseq);
6854
6855	/*
6856	 * Cycle through each mbuf segment that makes up
6857	 * the outgoing frame, gathering the mapping info
6858	 * for that segment and creating a tx_bd for
6859	 * the mbuf.
6860	 */
6861	for (i = 0; i < nsegs ; i++) {
6862
6863		chain_prod = TX_CHAIN_IDX(prod);
6864		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
6865		    [TX_IDX(chain_prod)];
6866
6867		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
6868		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
6869		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
6870		    htole16(segs[i].ds_len);
6871		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6872		txbd->tx_bd_flags = htole16(flags);
6873		prod_bseq += segs[i].ds_len;
6874		if (i == 0)
6875			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6876		prod = NEXT_TX_BD(prod);
6877	}
6878
6879	/* Set the END flag on the last TX buffer descriptor. */
6880	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6881
6882	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs));
6883
6884	DBPRINT(sc, BCE_INFO_SEND,
6885	    "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, "
6886	    "prod_bseq = 0x%08X\n",
6887	    __FUNCTION__, prod, chain_prod, prod_bseq);
6888
6889	/*
6890	 * Ensure that the mbuf pointer for this transmission
6891	 * is placed at the array index of the last
6892	 * descriptor in this chain.  This is done
6893	 * because a single map is used for all
6894	 * segments of the mbuf and we don't want to
6895	 * unload the map before all of the segments
6896	 * have been freed.
6897	 */
6898	sc->tx_mbuf_ptr[chain_prod] = m0;
6899	sc->used_tx_bd += nsegs;
6900
6901	/* Update some debug statistic counters */
6902	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6903	    sc->tx_hi_watermark = sc->used_tx_bd);
6904	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6905	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6906
6907	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6908
6909	/* prod points to the next free tx_bd at this point. */
6910	sc->tx_prod = prod;
6911	sc->tx_prod_bseq = prod_bseq;
6912
6913	DBPRINT(sc, BCE_INFO_SEND,
6914	    "%s(exit): prod = 0x%04X, chain_prod = %04X, "
6915	    "prod_bseq = 0x%08X\n", __FUNCTION__,
6916	    sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod),
6917	    sc->tx_prod_bseq);
6918
6919bce_tx_encap_exit:
6920	DBEXIT(BCE_VERBOSE_SEND);
6921	return(rc);
6922}
6923
6924
6925/****************************************************************************/
6926/* Main transmit routine when called from another routine with a lock.      */
6927/*                                                                          */
6928/* Returns:                                                                 */
6929/*   Nothing.                                                               */
6930/****************************************************************************/
6931static void
6932bce_start_locked(struct ifnet *ifp)
6933{
6934	struct bce_softc *sc = ifp->if_softc;
6935	struct mbuf *m_head = NULL;
6936	int count = 0;
6937	u16 tx_prod, tx_chain_prod;
6938
6939	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6940
6941	BCE_LOCK_ASSERT(sc);
6942
6943	/* prod points to the next free tx_bd. */
6944	tx_prod = sc->tx_prod;
6945	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
6946
6947	DBPRINT(sc, BCE_INFO_SEND,
6948	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
6949	    "tx_prod_bseq = 0x%08X\n",
6950	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
6951
6952	/* If there's no link or the transmit queue is empty then just exit. */
6953	if (sc->bce_link_up == FALSE) {
6954		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
6955		    __FUNCTION__);
6956		goto bce_start_locked_exit;
6957	}
6958
6959	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
6960		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
6961		    __FUNCTION__);
6962		goto bce_start_locked_exit;
6963	}
6964
6965	/*
6966	 * Keep adding entries while there is space in the ring.
6967	 */
6968	while (sc->used_tx_bd < sc->max_tx_bd) {
6969
6970		/* Check for any frames to send. */
6971		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
6972
6973		/* Stop when the transmit queue is empty. */
6974		if (m_head == NULL)
6975			break;
6976
6977		/*
6978		 * Pack the data into the transmit ring. If we
6979		 * don't have room, place the mbuf back at the
6980		 * head of the queue and set the OACTIVE flag
6981		 * to wait for the NIC to drain the chain.
6982		 */
6983		if (bce_tx_encap(sc, &m_head)) {
6984			if (m_head != NULL)
6985				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
6986			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6987			DBPRINT(sc, BCE_INFO_SEND,
6988			    "TX chain is closed for business! Total "
6989			    "tx_bd used = %d\n", sc->used_tx_bd);
6990			break;
6991		}
6992
6993		count++;
6994
6995		/* Send a copy of the frame to any BPF listeners. */
6996		ETHER_BPF_MTAP(ifp, m_head);
6997	}
6998
6999	/* Exit if no packets were dequeued. */
7000	if (count == 0) {
7001		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7002		    "dequeued\n", __FUNCTION__);
7003		goto bce_start_locked_exit;
7004	}
7005
7006	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7007	    "send queue.\n", __FUNCTION__, count);
7008
7009	REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) |
7010	    BCE_MQ_COMMAND_NO_MAP_ERROR);
7011
7012	/* Write the mailbox and tell the chip about the waiting tx_bd's. */
7013	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = "
7014	    "0x%08X; BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n",
7015	    __FUNCTION__, MB_GET_CID_ADDR(TX_CID),
7016	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7017	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7018	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7019
7020	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = "
7021	    "0x%08X; BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = "
7022	    "0x%04X\n",	__FUNCTION__, MB_GET_CID_ADDR(TX_CID),
7023	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7024	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7025
7026	/* Set the tx timeout. */
7027	sc->watchdog_timer = BCE_TX_TIMEOUT;
7028
7029	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7030	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7031
7032bce_start_locked_exit:
7033	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7034	return;
7035}
7036
7037
7038/****************************************************************************/
7039/* Main transmit routine when called from another routine without a lock.   */
7040/*                                                                          */
7041/* Returns:                                                                 */
7042/*   Nothing.                                                               */
7043/****************************************************************************/
7044static void
7045bce_start(struct ifnet *ifp)
7046{
7047	struct bce_softc *sc = ifp->if_softc;
7048
7049	DBENTER(BCE_VERBOSE_SEND);
7050
7051	BCE_LOCK(sc);
7052	bce_start_locked(ifp);
7053	BCE_UNLOCK(sc);
7054
7055	DBEXIT(BCE_VERBOSE_SEND);
7056}
7057
7058
7059/****************************************************************************/
7060/* Handles any IOCTL calls from the operating system.                       */
7061/*                                                                          */
7062/* Returns:                                                                 */
7063/*   0 for success, positive value for failure.                             */
7064/****************************************************************************/
7065static int
7066bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7067{
7068	struct bce_softc *sc = ifp->if_softc;
7069	struct ifreq *ifr = (struct ifreq *) data;
7070	struct mii_data *mii;
7071	int mask, error = 0, reinit;
7072
7073	DBENTER(BCE_VERBOSE_MISC);
7074
7075	switch(command) {
7076
7077	/* Set the interface MTU. */
7078	case SIOCSIFMTU:
7079		/* Check that the MTU setting is supported. */
7080		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7081			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7082			error = EINVAL;
7083			break;
7084		}
7085
7086		DBPRINT(sc, BCE_INFO_MISC,
7087		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7088		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7089
7090		BCE_LOCK(sc);
7091		ifp->if_mtu = ifr->ifr_mtu;
7092		reinit = 0;
7093		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7094			/*
7095			 * Because allocation size is used in RX
7096			 * buffer allocation, stop controller if
7097			 * it is already running.
7098			 */
7099			bce_stop(sc);
7100			reinit = 1;
7101		}
7102#ifdef BCE_JUMBO_HDRSPLIT
7103		/* No buffer allocation size changes are necessary. */
7104#else
7105		/* Recalculate our buffer allocation sizes. */
7106		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
7107		     ETHER_CRC_LEN) > MCLBYTES) {
7108			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
7109			sc->rx_bd_mbuf_align_pad  =
7110			    roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
7111			sc->rx_bd_mbuf_data_len =
7112			    sc->rx_bd_mbuf_alloc_size -
7113			    sc->rx_bd_mbuf_align_pad;
7114		} else {
7115			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
7116			sc->rx_bd_mbuf_align_pad  =
7117			    roundup2(MCLBYTES, 16) - MCLBYTES;
7118			sc->rx_bd_mbuf_data_len =
7119			    sc->rx_bd_mbuf_alloc_size -
7120			    sc->rx_bd_mbuf_align_pad;
7121		}
7122#endif
7123
7124		if (reinit != 0)
7125			bce_init_locked(sc);
7126		BCE_UNLOCK(sc);
7127		break;
7128
7129	/* Set interface flags. */
7130	case SIOCSIFFLAGS:
7131		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7132
7133		BCE_LOCK(sc);
7134
7135		/* Check if the interface is up. */
7136		if (ifp->if_flags & IFF_UP) {
7137			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7138				/* Change promiscuous/multicast flags as necessary. */
7139				bce_set_rx_mode(sc);
7140			} else {
7141				/* Start the HW */
7142				bce_init_locked(sc);
7143			}
7144		} else {
7145			/* The interface is down, check if driver is running. */
7146			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7147				bce_stop(sc);
7148
7149				/* If MFW is running, restart the controller a bit. */
7150				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7151					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7152					bce_chipinit(sc);
7153					bce_mgmt_init_locked(sc);
7154				}
7155			}
7156		}
7157
7158		BCE_UNLOCK(sc);
7159		break;
7160
7161	/* Add/Delete multicast address */
7162	case SIOCADDMULTI:
7163	case SIOCDELMULTI:
7164		DBPRINT(sc, BCE_VERBOSE_MISC,
7165		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7166
7167		BCE_LOCK(sc);
7168		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7169			bce_set_rx_mode(sc);
7170		BCE_UNLOCK(sc);
7171
7172		break;
7173
7174	/* Set/Get Interface media */
7175	case SIOCSIFMEDIA:
7176	case SIOCGIFMEDIA:
7177		DBPRINT(sc, BCE_VERBOSE_MISC,
7178		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7179
7180		mii = device_get_softc(sc->bce_miibus);
7181		error = ifmedia_ioctl(ifp, ifr,
7182		    &mii->mii_media, command);
7183		break;
7184
7185	/* Set interface capability */
7186	case SIOCSIFCAP:
7187		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7188		DBPRINT(sc, BCE_INFO_MISC,
7189		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7190
7191		/* Toggle the TX checksum capabilities enable flag. */
7192		if (mask & IFCAP_TXCSUM &&
7193		    ifp->if_capabilities & IFCAP_TXCSUM) {
7194			ifp->if_capenable ^= IFCAP_TXCSUM;
7195			if (IFCAP_TXCSUM & ifp->if_capenable)
7196				ifp->if_hwassist |= BCE_IF_HWASSIST;
7197			else
7198				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7199		}
7200
7201		/* Toggle the RX checksum capabilities enable flag. */
7202		if (mask & IFCAP_RXCSUM &&
7203		    ifp->if_capabilities & IFCAP_RXCSUM)
7204			ifp->if_capenable ^= IFCAP_RXCSUM;
7205
7206		/* Toggle the TSO capabilities enable flag. */
7207		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7208		    ifp->if_capabilities & IFCAP_TSO4) {
7209			ifp->if_capenable ^= IFCAP_TSO4;
7210			if (IFCAP_TSO4 & ifp->if_capenable)
7211				ifp->if_hwassist |= CSUM_TSO;
7212			else
7213				ifp->if_hwassist &= ~CSUM_TSO;
7214		}
7215
7216		if (mask & IFCAP_VLAN_HWCSUM &&
7217		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7218			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7219
7220		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7221		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7222			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7223		/*
7224		 * Don't actually disable VLAN tag stripping as
7225		 * management firmware (ASF/IPMI/UMP) requires the
7226		 * feature. If VLAN tag stripping is disabled driver
7227		 * will manually reconstruct the VLAN frame by
7228		 * appending stripped VLAN tag.
7229		 */
7230		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7231		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7232			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7233			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7234			    == 0)
7235				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7236		}
7237		VLAN_CAPABILITIES(ifp);
7238		break;
7239	default:
7240		/* We don't know how to handle the IOCTL, pass it on. */
7241		error = ether_ioctl(ifp, command, data);
7242		break;
7243	}
7244
7245	DBEXIT(BCE_VERBOSE_MISC);
7246	return(error);
7247}
7248
7249
7250/****************************************************************************/
7251/* Transmit timeout handler.                                                */
7252/*                                                                          */
7253/* Returns:                                                                 */
7254/*   Nothing.                                                               */
7255/****************************************************************************/
7256static void
7257bce_watchdog(struct bce_softc *sc)
7258{
7259	DBENTER(BCE_EXTREME_SEND);
7260
7261	BCE_LOCK_ASSERT(sc);
7262
7263	/* If the watchdog timer hasn't expired then just exit. */
7264	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7265		goto bce_watchdog_exit;
7266
7267	/* If pause frames are active then don't reset the hardware. */
7268	/* ToDo: Should we reset the timer here? */
7269	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7270		goto bce_watchdog_exit;
7271
7272	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7273		__FILE__, __LINE__);
7274
7275	DBRUNMSG(BCE_INFO,
7276	    bce_dump_driver_state(sc);
7277	    bce_dump_status_block(sc);
7278	    bce_dump_stats_block(sc);
7279	    bce_dump_ftqs(sc);
7280	    bce_dump_txp_state(sc, 0);
7281	    bce_dump_rxp_state(sc, 0);
7282	    bce_dump_tpat_state(sc, 0);
7283	    bce_dump_cp_state(sc, 0);
7284	    bce_dump_com_state(sc, 0));
7285
7286	DBRUN(bce_breakpoint(sc));
7287
7288	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7289
7290	bce_init_locked(sc);
7291	sc->bce_ifp->if_oerrors++;
7292
7293bce_watchdog_exit:
7294	DBEXIT(BCE_EXTREME_SEND);
7295}
7296
7297
7298/*
7299 * Interrupt handler.
7300 */
7301/****************************************************************************/
7302/* Main interrupt entry point.  Verifies that the controller generated the  */
7303/* interrupt and then calls a separate routine for handle the various       */
7304/* interrupt causes (PHY, TX, RX).                                          */
7305/*                                                                          */
7306/* Returns:                                                                 */
7307/*   0 for success, positive value for failure.                             */
7308/****************************************************************************/
7309static void
7310bce_intr(void *xsc)
7311{
7312	struct bce_softc *sc;
7313	struct ifnet *ifp;
7314	u32 status_attn_bits;
7315	u16 hw_rx_cons, hw_tx_cons;
7316
7317	sc = xsc;
7318	ifp = sc->bce_ifp;
7319
7320	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7321	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7322	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7323
7324	BCE_LOCK(sc);
7325
7326	DBRUN(sc->interrupts_generated++);
7327
7328	/* Synchnorize before we read from interface's status block */
7329	bus_dmamap_sync(sc->status_tag, sc->status_map,
7330	    BUS_DMASYNC_POSTREAD);
7331
7332	/*
7333	 * If the hardware status block index
7334	 * matches the last value read by the
7335	 * driver and we haven't asserted our
7336	 * interrupt then there's nothing to do.
7337	 */
7338	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7339	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7340	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7341		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7342		    __FUNCTION__);
7343		goto bce_intr_exit;
7344	}
7345
7346	/* Ack the interrupt and stop others from occuring. */
7347	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7348	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7349	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7350
7351	/* Check if the hardware has finished any work. */
7352	hw_rx_cons = bce_get_hw_rx_cons(sc);
7353	hw_tx_cons = bce_get_hw_tx_cons(sc);
7354
7355	/* Keep processing data as long as there is work to do. */
7356	for (;;) {
7357
7358		status_attn_bits = sc->status_block->status_attn_bits;
7359
7360		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7361		    BCE_PRINTF("Simulating unexpected status attention "
7362		    "bit set.");
7363		    sc->unexpected_attention_sim_count++;
7364		    status_attn_bits = status_attn_bits |
7365		    STATUS_ATTN_BITS_PARITY_ERROR);
7366
7367		/* Was it a link change interrupt? */
7368		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7369		    (sc->status_block->status_attn_bits_ack &
7370		     STATUS_ATTN_BITS_LINK_STATE)) {
7371			bce_phy_intr(sc);
7372
7373			/* Clear transient updates during link state change. */
7374			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7375			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7376			REG_RD(sc, BCE_HC_COMMAND);
7377		}
7378
7379		/* If any other attention is asserted, the chip is toast. */
7380		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7381		    (sc->status_block->status_attn_bits_ack &
7382		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7383
7384			sc->unexpected_attention_count++;
7385
7386			BCE_PRINTF("%s(%d): Fatal attention detected: "
7387			    "0x%08X\n",	__FILE__, __LINE__,
7388			    sc->status_block->status_attn_bits);
7389
7390			DBRUNMSG(BCE_FATAL,
7391			    if (unexpected_attention_sim_control == 0)
7392				bce_breakpoint(sc));
7393
7394			bce_init_locked(sc);
7395			goto bce_intr_exit;
7396		}
7397
7398		/* Check for any completed RX frames. */
7399		if (hw_rx_cons != sc->hw_rx_cons)
7400			bce_rx_intr(sc);
7401
7402		/* Check for any completed TX frames. */
7403		if (hw_tx_cons != sc->hw_tx_cons)
7404			bce_tx_intr(sc);
7405
7406		/* Save status block index value for the next interrupt. */
7407		sc->last_status_idx = sc->status_block->status_idx;
7408
7409 		/*
7410 		 * Prevent speculative reads from getting
7411 		 * ahead of the status block.
7412		 */
7413		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7414		    BUS_SPACE_BARRIER_READ);
7415
7416 		/*
7417 		 * If there's no work left then exit the
7418 		 * interrupt service routine.
7419		 */
7420		hw_rx_cons = bce_get_hw_rx_cons(sc);
7421		hw_tx_cons = bce_get_hw_tx_cons(sc);
7422
7423		if ((hw_rx_cons == sc->hw_rx_cons) &&
7424		    (hw_tx_cons == sc->hw_tx_cons))
7425			break;
7426
7427	}
7428
7429	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7430	    BUS_DMASYNC_PREREAD);
7431
7432	/* Re-enable interrupts. */
7433	bce_enable_intr(sc, 0);
7434
7435	/* Handle any frames that arrived while handling the interrupt. */
7436	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7437	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7438		bce_start_locked(ifp);
7439
7440bce_intr_exit:
7441	BCE_UNLOCK(sc);
7442
7443	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7444}
7445
7446
7447/****************************************************************************/
7448/* Programs the various packet receive modes (broadcast and multicast).     */
7449/*                                                                          */
7450/* Returns:                                                                 */
7451/*   Nothing.                                                               */
7452/****************************************************************************/
7453static void
7454bce_set_rx_mode(struct bce_softc *sc)
7455{
7456	struct ifnet *ifp;
7457	struct ifmultiaddr *ifma;
7458	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7459	u32 rx_mode, sort_mode;
7460	int h, i;
7461
7462	DBENTER(BCE_VERBOSE_MISC);
7463
7464	BCE_LOCK_ASSERT(sc);
7465
7466	ifp = sc->bce_ifp;
7467
7468	/* Initialize receive mode default settings. */
7469	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7470	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7471	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7472
7473	/*
7474	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7475	 * be enbled.
7476	 */
7477	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7478	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7479		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7480
7481	/*
7482	 * Check for promiscuous, all multicast, or selected
7483	 * multicast address filtering.
7484	 */
7485	if (ifp->if_flags & IFF_PROMISC) {
7486		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7487
7488		/* Enable promiscuous mode. */
7489		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7490		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7491	} else if (ifp->if_flags & IFF_ALLMULTI) {
7492		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7493
7494		/* Enable all multicast addresses. */
7495		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7496			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7497       	}
7498		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7499	} else {
7500		/* Accept one or more multicast(s). */
7501		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7502
7503		if_maddr_rlock(ifp);
7504		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7505			if (ifma->ifma_addr->sa_family != AF_LINK)
7506				continue;
7507			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7508			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7509			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7510		}
7511		if_maddr_runlock(ifp);
7512
7513		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7514			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7515
7516		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7517	}
7518
7519	/* Only make changes if the recive mode has actually changed. */
7520	if (rx_mode != sc->rx_mode) {
7521		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7522		    "0x%08X\n", rx_mode);
7523
7524		sc->rx_mode = rx_mode;
7525		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7526	}
7527
7528	/* Disable and clear the exisitng sort before enabling a new sort. */
7529	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7530	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7531	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7532
7533	DBEXIT(BCE_VERBOSE_MISC);
7534}
7535
7536
7537/****************************************************************************/
7538/* Called periodically to updates statistics from the controllers           */
7539/* statistics block.                                                        */
7540/*                                                                          */
7541/* Returns:                                                                 */
7542/*   Nothing.                                                               */
7543/****************************************************************************/
7544static void
7545bce_stats_update(struct bce_softc *sc)
7546{
7547	struct ifnet *ifp;
7548	struct statistics_block *stats;
7549
7550	DBENTER(BCE_EXTREME_MISC);
7551
7552	ifp = sc->bce_ifp;
7553
7554	stats = (struct statistics_block *) sc->stats_block;
7555
7556	/*
7557	 * Certain controllers don't report
7558	 * carrier sense errors correctly.
7559	 * See errata E11_5708CA0_1165.
7560	 */
7561	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7562	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7563		ifp->if_oerrors +=
7564		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7565
7566	/*
7567	 * Update the sysctl statistics from the
7568	 * hardware statistics.
7569	 */
7570	sc->stat_IfHCInOctets =
7571	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7572	     (u64) stats->stat_IfHCInOctets_lo;
7573
7574	sc->stat_IfHCInBadOctets =
7575	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7576	     (u64) stats->stat_IfHCInBadOctets_lo;
7577
7578	sc->stat_IfHCOutOctets =
7579	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7580	     (u64) stats->stat_IfHCOutOctets_lo;
7581
7582	sc->stat_IfHCOutBadOctets =
7583	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7584	     (u64) stats->stat_IfHCOutBadOctets_lo;
7585
7586	sc->stat_IfHCInUcastPkts =
7587	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7588	     (u64) stats->stat_IfHCInUcastPkts_lo;
7589
7590	sc->stat_IfHCInMulticastPkts =
7591	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7592	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7593
7594	sc->stat_IfHCInBroadcastPkts =
7595	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7596	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7597
7598	sc->stat_IfHCOutUcastPkts =
7599	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7600	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7601
7602	sc->stat_IfHCOutMulticastPkts =
7603	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7604	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7605
7606	sc->stat_IfHCOutBroadcastPkts =
7607	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7608	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7609
7610	/* ToDo: Preserve counters beyond 32 bits? */
7611	/* ToDo: Read the statistics from auto-clear regs? */
7612
7613	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7614	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7615
7616	sc->stat_Dot3StatsCarrierSenseErrors =
7617	    stats->stat_Dot3StatsCarrierSenseErrors;
7618
7619	sc->stat_Dot3StatsFCSErrors =
7620	    stats->stat_Dot3StatsFCSErrors;
7621
7622	sc->stat_Dot3StatsAlignmentErrors =
7623	    stats->stat_Dot3StatsAlignmentErrors;
7624
7625	sc->stat_Dot3StatsSingleCollisionFrames =
7626	    stats->stat_Dot3StatsSingleCollisionFrames;
7627
7628	sc->stat_Dot3StatsMultipleCollisionFrames =
7629	    stats->stat_Dot3StatsMultipleCollisionFrames;
7630
7631	sc->stat_Dot3StatsDeferredTransmissions =
7632	    stats->stat_Dot3StatsDeferredTransmissions;
7633
7634	sc->stat_Dot3StatsExcessiveCollisions =
7635	    stats->stat_Dot3StatsExcessiveCollisions;
7636
7637	sc->stat_Dot3StatsLateCollisions =
7638	    stats->stat_Dot3StatsLateCollisions;
7639
7640	sc->stat_EtherStatsCollisions =
7641	    stats->stat_EtherStatsCollisions;
7642
7643	sc->stat_EtherStatsFragments =
7644	    stats->stat_EtherStatsFragments;
7645
7646	sc->stat_EtherStatsJabbers =
7647	    stats->stat_EtherStatsJabbers;
7648
7649	sc->stat_EtherStatsUndersizePkts =
7650	    stats->stat_EtherStatsUndersizePkts;
7651
7652	sc->stat_EtherStatsOversizePkts =
7653	     stats->stat_EtherStatsOversizePkts;
7654
7655	sc->stat_EtherStatsPktsRx64Octets =
7656	    stats->stat_EtherStatsPktsRx64Octets;
7657
7658	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7659	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7660
7661	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7662	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7663
7664	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7665	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7666
7667	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7668	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7669
7670	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7671	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7672
7673	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7674	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7675
7676	sc->stat_EtherStatsPktsTx64Octets =
7677	    stats->stat_EtherStatsPktsTx64Octets;
7678
7679	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7680	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7681
7682	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7683	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7684
7685	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7686	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7687
7688	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7689	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7690
7691	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7692	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7693
7694	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7695	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7696
7697	sc->stat_XonPauseFramesReceived =
7698	    stats->stat_XonPauseFramesReceived;
7699
7700	sc->stat_XoffPauseFramesReceived =
7701	    stats->stat_XoffPauseFramesReceived;
7702
7703	sc->stat_OutXonSent =
7704	    stats->stat_OutXonSent;
7705
7706	sc->stat_OutXoffSent =
7707	    stats->stat_OutXoffSent;
7708
7709	sc->stat_FlowControlDone =
7710	    stats->stat_FlowControlDone;
7711
7712	sc->stat_MacControlFramesReceived =
7713	    stats->stat_MacControlFramesReceived;
7714
7715	sc->stat_XoffStateEntered =
7716	    stats->stat_XoffStateEntered;
7717
7718	sc->stat_IfInFramesL2FilterDiscards =
7719	    stats->stat_IfInFramesL2FilterDiscards;
7720
7721	sc->stat_IfInRuleCheckerDiscards =
7722	    stats->stat_IfInRuleCheckerDiscards;
7723
7724	sc->stat_IfInFTQDiscards =
7725	    stats->stat_IfInFTQDiscards;
7726
7727	sc->stat_IfInMBUFDiscards =
7728	    stats->stat_IfInMBUFDiscards;
7729
7730	sc->stat_IfInRuleCheckerP4Hit =
7731	    stats->stat_IfInRuleCheckerP4Hit;
7732
7733	sc->stat_CatchupInRuleCheckerDiscards =
7734	    stats->stat_CatchupInRuleCheckerDiscards;
7735
7736	sc->stat_CatchupInFTQDiscards =
7737	    stats->stat_CatchupInFTQDiscards;
7738
7739	sc->stat_CatchupInMBUFDiscards =
7740	    stats->stat_CatchupInMBUFDiscards;
7741
7742	sc->stat_CatchupInRuleCheckerP4Hit =
7743	    stats->stat_CatchupInRuleCheckerP4Hit;
7744
7745	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7746
7747	/*
7748	 * Update the interface statistics from the
7749	 * hardware statistics.
7750	 */
7751	ifp->if_collisions =
7752	    (u_long) sc->stat_EtherStatsCollisions;
7753
7754	/* ToDo: This method loses soft errors. */
7755	ifp->if_ierrors =
7756	    (u_long) sc->stat_EtherStatsUndersizePkts +
7757	    (u_long) sc->stat_EtherStatsOversizePkts +
7758	    (u_long) sc->stat_IfInMBUFDiscards +
7759	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
7760	    (u_long) sc->stat_Dot3StatsFCSErrors +
7761	    (u_long) sc->stat_IfInRuleCheckerDiscards +
7762	    (u_long) sc->stat_IfInFTQDiscards +
7763	    (u_long) sc->com_no_buffers;
7764
7765	/* ToDo: This method loses soft errors. */
7766	ifp->if_oerrors =
7767	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7768	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7769	    (u_long) sc->stat_Dot3StatsLateCollisions;
7770
7771	/* ToDo: Add additional statistics? */
7772
7773	DBEXIT(BCE_EXTREME_MISC);
7774}
7775
7776
7777/****************************************************************************/
7778/* Periodic function to notify the bootcode that the driver is still        */
7779/* present.                                                                 */
7780/*                                                                          */
7781/* Returns:                                                                 */
7782/*   Nothing.                                                               */
7783/****************************************************************************/
7784static void
7785bce_pulse(void *xsc)
7786{
7787	struct bce_softc *sc = xsc;
7788	u32 msg;
7789
7790	DBENTER(BCE_EXTREME_MISC);
7791
7792	BCE_LOCK_ASSERT(sc);
7793
7794	/* Tell the firmware that the driver is still running. */
7795	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7796	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7797
7798	/* Update the bootcode condition. */
7799	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
7800
7801	/* Report whether the bootcode still knows the driver is running. */
7802	if (sc->bce_drv_cardiac_arrest == FALSE) {
7803		if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
7804			sc->bce_drv_cardiac_arrest = TRUE;
7805			BCE_PRINTF("%s(): Bootcode lost the driver pulse! "
7806			    "(bc_state = 0x%08X)\n", __FUNCTION__,
7807			    sc->bc_state);
7808		}
7809	} else {
7810 		/*
7811 		 * Not supported by all bootcode versions.
7812 		 * (v5.0.11+ and v5.2.1+)  Older bootcode
7813 		 * will require the driver to reset the
7814 		 * controller to clear this condition.
7815		 */
7816		if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
7817			sc->bce_drv_cardiac_arrest = FALSE;
7818			BCE_PRINTF("%s(): Bootcode found the driver pulse! "
7819			    "(bc_state = 0x%08X)\n", __FUNCTION__,
7820			    sc->bc_state);
7821		}
7822	}
7823
7824
7825	/* Schedule the next pulse. */
7826	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7827
7828	DBEXIT(BCE_EXTREME_MISC);
7829}
7830
7831
7832/****************************************************************************/
7833/* Periodic function to perform maintenance tasks.                          */
7834/*                                                                          */
7835/* Returns:                                                                 */
7836/*   Nothing.                                                               */
7837/****************************************************************************/
7838static void
7839bce_tick(void *xsc)
7840{
7841	struct bce_softc *sc = xsc;
7842	struct mii_data *mii;
7843	struct ifnet *ifp;
7844
7845	ifp = sc->bce_ifp;
7846
7847	DBENTER(BCE_EXTREME_MISC);
7848
7849	BCE_LOCK_ASSERT(sc);
7850
7851	/* Schedule the next tick. */
7852	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7853
7854	/* Update the statistics from the hardware statistics block. */
7855	bce_stats_update(sc);
7856
7857	/* Top off the receive and page chains. */
7858#ifdef BCE_JUMBO_HDRSPLIT
7859	bce_fill_pg_chain(sc);
7860#endif
7861	bce_fill_rx_chain(sc);
7862
7863	/* Check that chip hasn't hung. */
7864	bce_watchdog(sc);
7865
7866	/* If link is up already up then we're done. */
7867	if (sc->bce_link_up == TRUE)
7868		goto bce_tick_exit;
7869
7870	/* Link is down.  Check what the PHY's doing. */
7871	mii = device_get_softc(sc->bce_miibus);
7872	mii_tick(mii);
7873
7874	/* Check if the link has come up. */
7875	if ((mii->mii_media_status & IFM_ACTIVE) &&
7876	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7877		DBPRINT(sc, BCE_VERBOSE_MISC,
7878		    "%s(): Link up!\n", __FUNCTION__);
7879		sc->bce_link_up = TRUE;
7880		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7881		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
7882		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
7883		    bootverbose)
7884			BCE_PRINTF("Gigabit link up!\n");
7885
7886		/* Now that link is up, handle any outstanding TX traffic. */
7887		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7888			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
7889			    "pending TX traffic.\n", __FUNCTION__);
7890			bce_start_locked(ifp);
7891		}
7892	}
7893
7894bce_tick_exit:
7895	DBEXIT(BCE_EXTREME_MISC);
7896	return;
7897}
7898
7899
7900#ifdef BCE_DEBUG
7901/****************************************************************************/
7902/* Allows the driver state to be dumped through the sysctl interface.       */
7903/*                                                                          */
7904/* Returns:                                                                 */
7905/*   0 for success, positive value for failure.                             */
7906/****************************************************************************/
7907static int
7908bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7909{
7910	int error;
7911	int result;
7912	struct bce_softc *sc;
7913
7914	result = -1;
7915	error = sysctl_handle_int(oidp, &result, 0, req);
7916
7917	if (error || !req->newptr)
7918		return (error);
7919
7920	if (result == 1) {
7921		sc = (struct bce_softc *)arg1;
7922		bce_dump_driver_state(sc);
7923	}
7924
7925	return error;
7926}
7927
7928
7929/****************************************************************************/
7930/* Allows the hardware state to be dumped through the sysctl interface.     */
7931/*                                                                          */
7932/* Returns:                                                                 */
7933/*   0 for success, positive value for failure.                             */
7934/****************************************************************************/
7935static int
7936bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7937{
7938	int error;
7939	int result;
7940	struct bce_softc *sc;
7941
7942	result = -1;
7943	error = sysctl_handle_int(oidp, &result, 0, req);
7944
7945	if (error || !req->newptr)
7946		return (error);
7947
7948	if (result == 1) {
7949		sc = (struct bce_softc *)arg1;
7950		bce_dump_hw_state(sc);
7951	}
7952
7953	return error;
7954}
7955
7956
7957/****************************************************************************/
7958/* Allows the status block to be dumped through the sysctl interface.       */
7959/*                                                                          */
7960/* Returns:                                                                 */
7961/*   0 for success, positive value for failure.                             */
7962/****************************************************************************/
7963static int
7964bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
7965{
7966	int error;
7967	int result;
7968	struct bce_softc *sc;
7969
7970	result = -1;
7971	error = sysctl_handle_int(oidp, &result, 0, req);
7972
7973	if (error || !req->newptr)
7974		return (error);
7975
7976	if (result == 1) {
7977		sc = (struct bce_softc *)arg1;
7978		bce_dump_status_block(sc);
7979	}
7980
7981	return error;
7982}
7983
7984
7985/****************************************************************************/
7986/* Allows the stats block to be dumped through the sysctl interface.        */
7987/*                                                                          */
7988/* Returns:                                                                 */
7989/*   0 for success, positive value for failure.                             */
7990/****************************************************************************/
7991static int
7992bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
7993{
7994	int error;
7995	int result;
7996	struct bce_softc *sc;
7997
7998	result = -1;
7999	error = sysctl_handle_int(oidp, &result, 0, req);
8000
8001	if (error || !req->newptr)
8002		return (error);
8003
8004	if (result == 1) {
8005		sc = (struct bce_softc *)arg1;
8006		bce_dump_stats_block(sc);
8007	}
8008
8009	return error;
8010}
8011
8012
8013/****************************************************************************/
8014/* Allows the bootcode state to be dumped through the sysctl interface.     */
8015/*                                                                          */
8016/* Returns:                                                                 */
8017/*   0 for success, positive value for failure.                             */
8018/****************************************************************************/
8019static int
8020bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8021{
8022	int error;
8023	int result;
8024	struct bce_softc *sc;
8025
8026	result = -1;
8027	error = sysctl_handle_int(oidp, &result, 0, req);
8028
8029	if (error || !req->newptr)
8030		return (error);
8031
8032	if (result == 1) {
8033		sc = (struct bce_softc *)arg1;
8034		bce_dump_bc_state(sc);
8035	}
8036
8037	return error;
8038}
8039
8040
8041/****************************************************************************/
8042/* Provides a sysctl interface to allow dumping the RX BD chain.            */
8043/*                                                                          */
8044/* Returns:                                                                 */
8045/*   0 for success, positive value for failure.                             */
8046/****************************************************************************/
8047static int
8048bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8049{
8050	int error;
8051	int result;
8052	struct bce_softc *sc;
8053
8054	result = -1;
8055	error = sysctl_handle_int(oidp, &result, 0, req);
8056
8057	if (error || !req->newptr)
8058		return (error);
8059
8060	if (result == 1) {
8061		sc = (struct bce_softc *)arg1;
8062		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
8063	}
8064
8065	return error;
8066}
8067
8068
8069/****************************************************************************/
8070/* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8071/*                                                                          */
8072/* Returns:                                                                 */
8073/*   0 for success, positive value for failure.                             */
8074/****************************************************************************/
8075static int
8076bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8077{
8078	int error;
8079	int result;
8080	struct bce_softc *sc;
8081
8082	result = -1;
8083	error = sysctl_handle_int(oidp, &result, 0, req);
8084
8085	if (error || !req->newptr)
8086		return (error);
8087
8088	if (result == 1) {
8089		sc = (struct bce_softc *)arg1;
8090		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
8091	}
8092
8093	return error;
8094}
8095
8096
8097/****************************************************************************/
8098/* Provides a sysctl interface to allow dumping the TX chain.               */
8099/*                                                                          */
8100/* Returns:                                                                 */
8101/*   0 for success, positive value for failure.                             */
8102/****************************************************************************/
8103static int
8104bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8105{
8106	int error;
8107	int result;
8108	struct bce_softc *sc;
8109
8110	result = -1;
8111	error = sysctl_handle_int(oidp, &result, 0, req);
8112
8113	if (error || !req->newptr)
8114		return (error);
8115
8116	if (result == 1) {
8117		sc = (struct bce_softc *)arg1;
8118		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
8119	}
8120
8121	return error;
8122}
8123
8124
8125#ifdef BCE_JUMBO_HDRSPLIT
8126/****************************************************************************/
8127/* Provides a sysctl interface to allow dumping the page chain.             */
8128/*                                                                          */
8129/* Returns:                                                                 */
8130/*   0 for success, positive value for failure.                             */
8131/****************************************************************************/
8132static int
8133bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8134{
8135	int error;
8136	int result;
8137	struct bce_softc *sc;
8138
8139	result = -1;
8140	error = sysctl_handle_int(oidp, &result, 0, req);
8141
8142	if (error || !req->newptr)
8143		return (error);
8144
8145	if (result == 1) {
8146		sc = (struct bce_softc *)arg1;
8147		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
8148	}
8149
8150	return error;
8151}
8152#endif
8153
8154/****************************************************************************/
8155/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8156/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8157/*                                                                          */
8158/* Returns:                                                                 */
8159/*   0 for success, positive value for failure.                             */
8160/****************************************************************************/
8161static int
8162bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8163{
8164	struct bce_softc *sc = (struct bce_softc *)arg1;
8165	int error;
8166	u32 result;
8167	u32 val[1];
8168	u8 *data = (u8 *) val;
8169
8170	result = -1;
8171	error = sysctl_handle_int(oidp, &result, 0, req);
8172	if (error || (req->newptr == NULL))
8173		return (error);
8174
8175	bce_nvram_read(sc, result, data, 4);
8176	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8177
8178	return (error);
8179}
8180
8181
8182/****************************************************************************/
8183/* Provides a sysctl interface to allow reading arbitrary registers in the  */
8184/* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8185/*                                                                          */
8186/* Returns:                                                                 */
8187/*   0 for success, positive value for failure.                             */
8188/****************************************************************************/
8189static int
8190bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8191{
8192	struct bce_softc *sc = (struct bce_softc *)arg1;
8193	int error;
8194	u32 val, result;
8195
8196	result = -1;
8197	error = sysctl_handle_int(oidp, &result, 0, req);
8198	if (error || (req->newptr == NULL))
8199		return (error);
8200
8201	/* Make sure the register is accessible. */
8202	if (result < 0x8000) {
8203		val = REG_RD(sc, result);
8204		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8205	} else if (result < 0x0280000) {
8206		val = REG_RD_IND(sc, result);
8207		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8208	}
8209
8210	return (error);
8211}
8212
8213
8214/****************************************************************************/
8215/* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8216/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8217/*                                                                          */
8218/* Returns:                                                                 */
8219/*   0 for success, positive value for failure.                             */
8220/****************************************************************************/
8221static int
8222bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8223{
8224	struct bce_softc *sc;
8225	device_t dev;
8226	int error, result;
8227	u16 val;
8228
8229	result = -1;
8230	error = sysctl_handle_int(oidp, &result, 0, req);
8231	if (error || (req->newptr == NULL))
8232		return (error);
8233
8234	/* Make sure the register is accessible. */
8235	if (result < 0x20) {
8236		sc = (struct bce_softc *)arg1;
8237		dev = sc->bce_dev;
8238		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8239		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8240	}
8241	return (error);
8242}
8243
8244
8245/****************************************************************************/
8246/* Provides a sysctl interface to allow reading a CID.                      */
8247/*                                                                          */
8248/* Returns:                                                                 */
8249/*   0 for success, positive value for failure.                             */
8250/****************************************************************************/
8251static int
8252bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8253{
8254	struct bce_softc *sc;
8255	int error;
8256	u16 result;
8257
8258	result = -1;
8259	error = sysctl_handle_int(oidp, &result, 0, req);
8260	if (error || (req->newptr == NULL))
8261		return (error);
8262
8263	/* Make sure the register is accessible. */
8264	if (result <= TX_CID) {
8265		sc = (struct bce_softc *)arg1;
8266		bce_dump_ctx(sc, result);
8267	}
8268
8269	return (error);
8270}
8271
8272
8273 /****************************************************************************/
8274/* Provides a sysctl interface to forcing the driver to dump state and      */
8275/* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8276/*                                                                          */
8277/* Returns:                                                                 */
8278/*   0 for success, positive value for failure.                             */
8279/****************************************************************************/
8280static int
8281bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8282{
8283	int error;
8284	int result;
8285	struct bce_softc *sc;
8286
8287	result = -1;
8288	error = sysctl_handle_int(oidp, &result, 0, req);
8289
8290	if (error || !req->newptr)
8291		return (error);
8292
8293	if (result == 1) {
8294		sc = (struct bce_softc *)arg1;
8295		bce_breakpoint(sc);
8296	}
8297
8298	return error;
8299}
8300#endif
8301
8302
8303/****************************************************************************/
8304/* Adds any sysctl parameters for tuning or debugging purposes.             */
8305/*                                                                          */
8306/* Returns:                                                                 */
8307/*   0 for success, positive value for failure.                             */
8308/****************************************************************************/
8309static void
8310bce_add_sysctls(struct bce_softc *sc)
8311{
8312	struct sysctl_ctx_list *ctx;
8313	struct sysctl_oid_list *children;
8314
8315	DBENTER(BCE_VERBOSE_MISC);
8316
8317	ctx = device_get_sysctl_ctx(sc->bce_dev);
8318	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8319
8320#ifdef BCE_DEBUG
8321	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8322	    "l2fhdr_error_sim_control",
8323	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8324	    0, "Debug control to force l2fhdr errors");
8325
8326	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8327	    "l2fhdr_error_sim_count",
8328	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8329	    0, "Number of simulated l2_fhdr errors");
8330#endif
8331
8332	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8333	    "l2fhdr_error_count",
8334	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8335	    0, "Number of l2_fhdr errors");
8336
8337#ifdef BCE_DEBUG
8338	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8339	    "mbuf_alloc_failed_sim_control",
8340	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8341	    0, "Debug control to force mbuf allocation failures");
8342
8343	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8344	    "mbuf_alloc_failed_sim_count",
8345	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8346	    0, "Number of simulated mbuf cluster allocation failures");
8347#endif
8348
8349	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8350	    "mbuf_alloc_failed_count",
8351	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8352	    0, "Number of mbuf allocation failures");
8353
8354	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8355	    "fragmented_mbuf_count",
8356	    CTLFLAG_RD, &sc->fragmented_mbuf_count,
8357	    0, "Number of fragmented mbufs");
8358
8359#ifdef BCE_DEBUG
8360	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8361	    "dma_map_addr_failed_sim_control",
8362	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8363	    0, "Debug control to force DMA mapping failures");
8364
8365	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8366	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8367	    "dma_map_addr_failed_sim_count",
8368	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8369	    0, "Number of simulated DMA mapping failures");
8370
8371#endif
8372
8373	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8374	    "dma_map_addr_rx_failed_count",
8375	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8376	    0, "Number of RX DMA mapping failures");
8377
8378	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8379	    "dma_map_addr_tx_failed_count",
8380	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8381	    0, "Number of TX DMA mapping failures");
8382
8383#ifdef BCE_DEBUG
8384	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8385	    "unexpected_attention_sim_control",
8386	    CTLFLAG_RW, &unexpected_attention_sim_control,
8387	    0, "Debug control to simulate unexpected attentions");
8388
8389	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8390	    "unexpected_attention_sim_count",
8391	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8392	    0, "Number of simulated unexpected attentions");
8393#endif
8394
8395	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8396	    "unexpected_attention_count",
8397	    CTLFLAG_RW, &sc->unexpected_attention_count,
8398	    0, "Number of unexpected attentions");
8399
8400#ifdef BCE_DEBUG
8401	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8402	    "debug_bootcode_running_failure",
8403	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8404	    0, "Debug control to force bootcode running failures");
8405
8406	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8407	    "rx_low_watermark",
8408	    CTLFLAG_RD, &sc->rx_low_watermark,
8409	    0, "Lowest level of free rx_bd's");
8410
8411	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8412	    "rx_empty_count",
8413	    CTLFLAG_RD, &sc->rx_empty_count,
8414	    0, "Number of times the RX chain was empty");
8415
8416	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8417	    "tx_hi_watermark",
8418	    CTLFLAG_RD, &sc->tx_hi_watermark,
8419	    0, "Highest level of used tx_bd's");
8420
8421	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8422	    "tx_full_count",
8423	    CTLFLAG_RD, &sc->tx_full_count,
8424	    0, "Number of times the TX chain was full");
8425
8426	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8427	    "requested_tso_frames",
8428	    CTLFLAG_RD, &sc->requested_tso_frames,
8429	    0, "Number of TSO frames received");
8430
8431	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8432	    "rx_interrupts",
8433	    CTLFLAG_RD, &sc->rx_interrupts,
8434	    0, "Number of RX interrupts");
8435
8436	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8437	    "tx_interrupts",
8438	    CTLFLAG_RD, &sc->tx_interrupts,
8439	    0, "Number of TX interrupts");
8440#endif
8441
8442	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8443	    "stat_IfHcInOctets",
8444	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8445	    "Bytes received");
8446
8447	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8448	    "stat_IfHCInBadOctets",
8449	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8450	    "Bad bytes received");
8451
8452	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8453	    "stat_IfHCOutOctets",
8454	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8455	    "Bytes sent");
8456
8457	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8458	    "stat_IfHCOutBadOctets",
8459	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8460	    "Bad bytes sent");
8461
8462	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8463	    "stat_IfHCInUcastPkts",
8464	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8465	    "Unicast packets received");
8466
8467	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8468	    "stat_IfHCInMulticastPkts",
8469	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8470	    "Multicast packets received");
8471
8472	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8473	    "stat_IfHCInBroadcastPkts",
8474	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8475	    "Broadcast packets received");
8476
8477	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8478	    "stat_IfHCOutUcastPkts",
8479	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8480	    "Unicast packets sent");
8481
8482	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8483	    "stat_IfHCOutMulticastPkts",
8484	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8485	    "Multicast packets sent");
8486
8487	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8488	    "stat_IfHCOutBroadcastPkts",
8489	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8490	    "Broadcast packets sent");
8491
8492	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8493	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8494	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8495	    0, "Internal MAC transmit errors");
8496
8497	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8498	    "stat_Dot3StatsCarrierSenseErrors",
8499	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8500	    0, "Carrier sense errors");
8501
8502	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8503	    "stat_Dot3StatsFCSErrors",
8504	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8505	    0, "Frame check sequence errors");
8506
8507	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8508	    "stat_Dot3StatsAlignmentErrors",
8509	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8510	    0, "Alignment errors");
8511
8512	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8513	    "stat_Dot3StatsSingleCollisionFrames",
8514	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8515	    0, "Single Collision Frames");
8516
8517	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8518	    "stat_Dot3StatsMultipleCollisionFrames",
8519	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8520	    0, "Multiple Collision Frames");
8521
8522	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8523	    "stat_Dot3StatsDeferredTransmissions",
8524	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8525	    0, "Deferred Transmissions");
8526
8527	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8528	    "stat_Dot3StatsExcessiveCollisions",
8529	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8530	    0, "Excessive Collisions");
8531
8532	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8533	    "stat_Dot3StatsLateCollisions",
8534	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8535	    0, "Late Collisions");
8536
8537	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8538	    "stat_EtherStatsCollisions",
8539	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8540	    0, "Collisions");
8541
8542	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8543	    "stat_EtherStatsFragments",
8544	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8545	    0, "Fragments");
8546
8547	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8548	    "stat_EtherStatsJabbers",
8549	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8550	    0, "Jabbers");
8551
8552	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8553	    "stat_EtherStatsUndersizePkts",
8554	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8555	    0, "Undersize packets");
8556
8557	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8558	    "stat_EtherStatsOversizePkts",
8559	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8560	    0, "stat_EtherStatsOversizePkts");
8561
8562	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8563	    "stat_EtherStatsPktsRx64Octets",
8564	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8565	    0, "Bytes received in 64 byte packets");
8566
8567	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8568	    "stat_EtherStatsPktsRx65Octetsto127Octets",
8569	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8570	    0, "Bytes received in 65 to 127 byte packets");
8571
8572	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8573	    "stat_EtherStatsPktsRx128Octetsto255Octets",
8574	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8575	    0, "Bytes received in 128 to 255 byte packets");
8576
8577	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8578	    "stat_EtherStatsPktsRx256Octetsto511Octets",
8579	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8580	    0, "Bytes received in 256 to 511 byte packets");
8581
8582	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8583	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
8584	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8585	    0, "Bytes received in 512 to 1023 byte packets");
8586
8587	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8588	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8589	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8590	    0, "Bytes received in 1024 t0 1522 byte packets");
8591
8592	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8593	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8594	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8595	    0, "Bytes received in 1523 to 9022 byte packets");
8596
8597	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8598	    "stat_EtherStatsPktsTx64Octets",
8599	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8600	    0, "Bytes sent in 64 byte packets");
8601
8602	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8603	    "stat_EtherStatsPktsTx65Octetsto127Octets",
8604	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8605	    0, "Bytes sent in 65 to 127 byte packets");
8606
8607	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8608	    "stat_EtherStatsPktsTx128Octetsto255Octets",
8609	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8610	    0, "Bytes sent in 128 to 255 byte packets");
8611
8612	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8613	    "stat_EtherStatsPktsTx256Octetsto511Octets",
8614	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8615	    0, "Bytes sent in 256 to 511 byte packets");
8616
8617	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8618	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
8619	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8620	    0, "Bytes sent in 512 to 1023 byte packets");
8621
8622	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8623	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8624	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8625	    0, "Bytes sent in 1024 to 1522 byte packets");
8626
8627	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8628	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8629	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8630	    0, "Bytes sent in 1523 to 9022 byte packets");
8631
8632	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8633	    "stat_XonPauseFramesReceived",
8634	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8635	    0, "XON pause frames receved");
8636
8637	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8638	    "stat_XoffPauseFramesReceived",
8639	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8640	    0, "XOFF pause frames received");
8641
8642	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8643	    "stat_OutXonSent",
8644	    CTLFLAG_RD, &sc->stat_OutXonSent,
8645	    0, "XON pause frames sent");
8646
8647	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8648	    "stat_OutXoffSent",
8649	    CTLFLAG_RD, &sc->stat_OutXoffSent,
8650	    0, "XOFF pause frames sent");
8651
8652	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8653	    "stat_FlowControlDone",
8654	    CTLFLAG_RD, &sc->stat_FlowControlDone,
8655	    0, "Flow control done");
8656
8657	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8658	    "stat_MacControlFramesReceived",
8659	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8660	    0, "MAC control frames received");
8661
8662	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8663	    "stat_XoffStateEntered",
8664	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
8665	    0, "XOFF state entered");
8666
8667	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8668	    "stat_IfInFramesL2FilterDiscards",
8669	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8670	    0, "Received L2 packets discarded");
8671
8672	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8673	    "stat_IfInRuleCheckerDiscards",
8674	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8675	    0, "Received packets discarded by rule");
8676
8677	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8678	    "stat_IfInFTQDiscards",
8679	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8680	    0, "Received packet FTQ discards");
8681
8682	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8683	    "stat_IfInMBUFDiscards",
8684	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8685	    0, "Received packets discarded due to lack "
8686	    "of controller buffer memory");
8687
8688	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8689	    "stat_IfInRuleCheckerP4Hit",
8690	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8691	    0, "Received packets rule checker hits");
8692
8693	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8694	    "stat_CatchupInRuleCheckerDiscards",
8695	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8696	    0, "Received packets discarded in Catchup path");
8697
8698	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8699	    "stat_CatchupInFTQDiscards",
8700	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8701	    0, "Received packets discarded in FTQ in Catchup path");
8702
8703	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8704	    "stat_CatchupInMBUFDiscards",
8705	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8706	    0, "Received packets discarded in controller "
8707	    "buffer memory in Catchup path");
8708
8709	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8710	    "stat_CatchupInRuleCheckerP4Hit",
8711	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8712	    0, "Received packets rule checker hits in Catchup path");
8713
8714	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8715	    "com_no_buffers",
8716	    CTLFLAG_RD, &sc->com_no_buffers,
8717	    0, "Valid packets received but no RX buffers available");
8718
8719#ifdef BCE_DEBUG
8720	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8721	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8722	    (void *)sc, 0,
8723	    bce_sysctl_driver_state, "I", "Drive state information");
8724
8725	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8726	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8727	    (void *)sc, 0,
8728	    bce_sysctl_hw_state, "I", "Hardware state information");
8729
8730	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8731	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
8732	    (void *)sc, 0,
8733	    bce_sysctl_status_block, "I", "Status block");
8734
8735	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8736	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
8737	    (void *)sc, 0,
8738	    bce_sysctl_stats_block, "I", "Stats block");
8739
8740	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8741	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8742	    (void *)sc, 0,
8743	    bce_sysctl_bc_state, "I", "Bootcode state information");
8744
8745	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8746	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
8747	    (void *)sc, 0,
8748	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
8749
8750	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8751	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
8752	    (void *)sc, 0,
8753	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
8754
8755	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8756	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8757	    (void *)sc, 0,
8758	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8759
8760#ifdef BCE_JUMBO_HDRSPLIT
8761	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8762	    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8763	    (void *)sc, 0,
8764	    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8765#endif
8766	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8767	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8768	    (void *)sc, 0,
8769	    bce_sysctl_dump_ctx, "I", "Dump context memory");
8770
8771	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8772	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8773	    (void *)sc, 0,
8774	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
8775
8776	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8777	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8778	    (void *)sc, 0,
8779	    bce_sysctl_reg_read, "I", "Register read");
8780
8781	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8782	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8783	    (void *)sc, 0,
8784	    bce_sysctl_nvram_read, "I", "NVRAM read");
8785
8786	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8787	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8788	    (void *)sc, 0,
8789	    bce_sysctl_phy_read, "I", "PHY register read");
8790
8791#endif
8792
8793	DBEXIT(BCE_VERBOSE_MISC);
8794}
8795
8796
8797/****************************************************************************/
8798/* BCE Debug Routines                                                       */
8799/****************************************************************************/
8800#ifdef BCE_DEBUG
8801
8802/****************************************************************************/
8803/* Freezes the controller to allow for a cohesive state dump.               */
8804/*                                                                          */
8805/* Returns:                                                                 */
8806/*   Nothing.                                                               */
8807/****************************************************************************/
8808static __attribute__ ((noinline)) void
8809bce_freeze_controller(struct bce_softc *sc)
8810{
8811	u32 val;
8812	val = REG_RD(sc, BCE_MISC_COMMAND);
8813	val |= BCE_MISC_COMMAND_DISABLE_ALL;
8814	REG_WR(sc, BCE_MISC_COMMAND, val);
8815}
8816
8817
8818/****************************************************************************/
8819/* Unfreezes the controller after a freeze operation.  This may not always  */
8820/* work and the controller will require a reset!                            */
8821/*                                                                          */
8822/* Returns:                                                                 */
8823/*   Nothing.                                                               */
8824/****************************************************************************/
8825static __attribute__ ((noinline)) void
8826bce_unfreeze_controller(struct bce_softc *sc)
8827{
8828	u32 val;
8829	val = REG_RD(sc, BCE_MISC_COMMAND);
8830	val |= BCE_MISC_COMMAND_ENABLE_ALL;
8831	REG_WR(sc, BCE_MISC_COMMAND, val);
8832}
8833
8834
8835/****************************************************************************/
8836/* Prints out Ethernet frame information from an mbuf.                      */
8837/*                                                                          */
8838/* Partially decode an Ethernet frame to look at some important headers.    */
8839/*                                                                          */
8840/* Returns:                                                                 */
8841/*   Nothing.                                                               */
8842/****************************************************************************/
8843static __attribute__ ((noinline)) void
8844bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8845{
8846	struct ether_vlan_header *eh;
8847	u16 etype;
8848	int ehlen;
8849	struct ip *ip;
8850	struct tcphdr *th;
8851	struct udphdr *uh;
8852	struct arphdr *ah;
8853
8854	BCE_PRINTF(
8855	    "-----------------------------"
8856	    " Frame Decode "
8857	    "-----------------------------\n");
8858
8859	eh = mtod(m, struct ether_vlan_header *);
8860
8861	/* Handle VLAN encapsulation if present. */
8862	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
8863		etype = ntohs(eh->evl_proto);
8864		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8865	} else {
8866		etype = ntohs(eh->evl_encap_proto);
8867		ehlen = ETHER_HDR_LEN;
8868	}
8869
8870	/* ToDo: Add VLAN output. */
8871	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
8872	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
8873
8874	switch (etype) {
8875	case ETHERTYPE_IP:
8876		ip = (struct ip *)(m->m_data + ehlen);
8877		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
8878		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
8879		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
8880		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
8881
8882		switch (ip->ip_p) {
8883		case IPPROTO_TCP:
8884			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8885			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, "
8886			    "flags = 0x%b, csum = 0x%04X\n",
8887			    ntohs(th->th_dport), ntohs(th->th_sport),
8888			    (th->th_off << 2), th->th_flags,
8889			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
8890			    "\02SYN\01FIN", ntohs(th->th_sum));
8891			break;
8892		case IPPROTO_UDP:
8893			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
8894			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
8895			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
8896			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
8897			    ntohs(uh->uh_sum));
8898			break;
8899		case IPPROTO_ICMP:
8900			BCE_PRINTF("icmp:\n");
8901			break;
8902		default:
8903			BCE_PRINTF("----: Other IP protocol.\n");
8904			}
8905		break;
8906	case ETHERTYPE_IPV6:
8907		BCE_PRINTF("ipv6: No decode supported.\n");
8908		break;
8909	case ETHERTYPE_ARP:
8910		BCE_PRINTF("-arp: ");
8911		ah = (struct arphdr *) (m->m_data + ehlen);
8912		switch (ntohs(ah->ar_op)) {
8913		case ARPOP_REVREQUEST:
8914			printf("reverse ARP request\n");
8915			break;
8916		case ARPOP_REVREPLY:
8917			printf("reverse ARP reply\n");
8918			break;
8919		case ARPOP_REQUEST:
8920			printf("ARP request\n");
8921			break;
8922		case ARPOP_REPLY:
8923			printf("ARP reply\n");
8924			break;
8925		default:
8926			printf("other ARP operation\n");
8927		}
8928		break;
8929	default:
8930		BCE_PRINTF("----: Other protocol.\n");
8931	}
8932
8933	BCE_PRINTF(
8934		"-----------------------------"
8935		"--------------"
8936		"-----------------------------\n");
8937}
8938
8939
8940/****************************************************************************/
8941/* Prints out information about an mbuf.                                    */
8942/*                                                                          */
8943/* Returns:                                                                 */
8944/*   Nothing.                                                               */
8945/****************************************************************************/
8946static __attribute__ ((noinline)) void
8947bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
8948{
8949	struct mbuf *mp = m;
8950
8951	if (m == NULL) {
8952		BCE_PRINTF("mbuf: null pointer\n");
8953		return;
8954	}
8955
8956	while (mp) {
8957		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
8958		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
8959		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
8960
8961		if (mp->m_flags & M_PKTHDR) {
8962			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
8963			    "csum_flags = %b\n", mp->m_pkthdr.len,
8964			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
8965			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
8966			    "\22M_PROMISC\23M_NOFREE",
8967			    mp->m_pkthdr.csum_flags,
8968			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
8969			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
8970			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
8971			    "\14CSUM_PSEUDO_HDR");
8972		}
8973
8974		if (mp->m_flags & M_EXT) {
8975			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
8976			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
8977			switch (mp->m_ext.ext_type) {
8978			case EXT_CLUSTER:
8979				printf("EXT_CLUSTER\n"); break;
8980			case EXT_SFBUF:
8981				printf("EXT_SFBUF\n"); break;
8982			case EXT_JUMBO9:
8983				printf("EXT_JUMBO9\n"); break;
8984			case EXT_JUMBO16:
8985				printf("EXT_JUMBO16\n"); break;
8986			case EXT_PACKET:
8987				printf("EXT_PACKET\n"); break;
8988			case EXT_MBUF:
8989				printf("EXT_MBUF\n"); break;
8990			case EXT_NET_DRV:
8991				printf("EXT_NET_DRV\n"); break;
8992			case EXT_MOD_TYPE:
8993				printf("EXT_MDD_TYPE\n"); break;
8994			case EXT_DISPOSABLE:
8995				printf("EXT_DISPOSABLE\n"); break;
8996			case EXT_EXTREF:
8997				printf("EXT_EXTREF\n"); break;
8998			default:
8999				printf("UNKNOWN\n");
9000			}
9001		}
9002
9003		mp = mp->m_next;
9004	}
9005}
9006
9007
9008/****************************************************************************/
9009/* Prints out the mbufs in the TX mbuf chain.                               */
9010/*                                                                          */
9011/* Returns:                                                                 */
9012/*   Nothing.                                                               */
9013/****************************************************************************/
9014static __attribute__ ((noinline)) void
9015bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9016{
9017	struct mbuf *m;
9018
9019	BCE_PRINTF(
9020		"----------------------------"
9021		"  tx mbuf data  "
9022		"----------------------------\n");
9023
9024	for (int i = 0; i < count; i++) {
9025	 	m = sc->tx_mbuf_ptr[chain_prod];
9026		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9027		bce_dump_mbuf(sc, m);
9028		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9029	}
9030
9031	BCE_PRINTF(
9032		"----------------------------"
9033		"----------------"
9034		"----------------------------\n");
9035}
9036
9037
9038/****************************************************************************/
9039/* Prints out the mbufs in the RX mbuf chain.                               */
9040/*                                                                          */
9041/* Returns:                                                                 */
9042/*   Nothing.                                                               */
9043/****************************************************************************/
9044static __attribute__ ((noinline)) void
9045bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9046{
9047	struct mbuf *m;
9048
9049	BCE_PRINTF(
9050		"----------------------------"
9051		"  rx mbuf data  "
9052		"----------------------------\n");
9053
9054	for (int i = 0; i < count; i++) {
9055	 	m = sc->rx_mbuf_ptr[chain_prod];
9056		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9057		bce_dump_mbuf(sc, m);
9058		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9059	}
9060
9061
9062	BCE_PRINTF(
9063		"----------------------------"
9064		"----------------"
9065		"----------------------------\n");
9066}
9067
9068
9069#ifdef BCE_JUMBO_HDRSPLIT
9070/****************************************************************************/
9071/* Prints out the mbufs in the mbuf page chain.                             */
9072/*                                                                          */
9073/* Returns:                                                                 */
9074/*   Nothing.                                                               */
9075/****************************************************************************/
9076static __attribute__ ((noinline)) void
9077bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9078{
9079	struct mbuf *m;
9080
9081	BCE_PRINTF(
9082		"----------------------------"
9083		"  pg mbuf data  "
9084		"----------------------------\n");
9085
9086	for (int i = 0; i < count; i++) {
9087	 	m = sc->pg_mbuf_ptr[chain_prod];
9088		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9089		bce_dump_mbuf(sc, m);
9090		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9091	}
9092
9093
9094	BCE_PRINTF(
9095		"----------------------------"
9096		"----------------"
9097		"----------------------------\n");
9098}
9099#endif
9100
9101
9102/****************************************************************************/
9103/* Prints out a tx_bd structure.                                            */
9104/*                                                                          */
9105/* Returns:                                                                 */
9106/*   Nothing.                                                               */
9107/****************************************************************************/
9108static __attribute__ ((noinline)) void
9109bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9110{
9111	int i = 0;
9112
9113	if (idx > MAX_TX_BD)
9114		/* Index out of range. */
9115		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9116	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9117		/* TX Chain page pointer. */
9118		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9119		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9120		    txbd->tx_bd_haddr_lo);
9121	else {
9122		/* Normal tx_bd entry. */
9123		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9124		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9125		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9126		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9127		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9128
9129		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9130			if (i>0)
9131				printf("|");
9132			printf("CONN_FAULT");
9133			i++;
9134		}
9135
9136		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9137			if (i>0)
9138				printf("|");
9139			printf("TCP_UDP_CKSUM");
9140			i++;
9141		}
9142
9143		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9144			if (i>0)
9145				printf("|");
9146			printf("IP_CKSUM");
9147			i++;
9148		}
9149
9150		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9151			if (i>0)
9152				printf("|");
9153			printf("VLAN");
9154			i++;
9155		}
9156
9157		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9158			if (i>0)
9159				printf("|");
9160			printf("COAL_NOW");
9161			i++;
9162		}
9163
9164		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9165			if (i>0)
9166				printf("|");
9167			printf("DONT_GEN_CRC");
9168			i++;
9169		}
9170
9171		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9172			if (i>0)
9173				printf("|");
9174			printf("START");
9175			i++;
9176		}
9177
9178		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9179			if (i>0)
9180				printf("|");
9181			printf("END");
9182			i++;
9183		}
9184
9185		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9186			if (i>0)
9187				printf("|");
9188			printf("LSO");
9189			i++;
9190		}
9191
9192		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9193			if (i>0)
9194				printf("|");
9195			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9196			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9197		}
9198
9199		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9200			if (i>0)
9201				printf("|");
9202			printf("SW_FLAGS");
9203			i++;
9204		}
9205
9206		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9207			if (i>0)
9208				printf("|");
9209			printf("SNAP)");
9210		} else {
9211			printf(")\n");
9212		}
9213	}
9214}
9215
9216
9217/****************************************************************************/
9218/* Prints out a rx_bd structure.                                            */
9219/*                                                                          */
9220/* Returns:                                                                 */
9221/*   Nothing.                                                               */
9222/****************************************************************************/
9223static __attribute__ ((noinline)) void
9224bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9225{
9226	if (idx > MAX_RX_BD)
9227		/* Index out of range. */
9228		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9229	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9230		/* RX Chain page pointer. */
9231		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9232		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9233		    rxbd->rx_bd_haddr_lo);
9234	else
9235		/* Normal rx_bd entry. */
9236		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9237		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9238		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9239		    rxbd->rx_bd_flags);
9240}
9241
9242
9243#ifdef BCE_JUMBO_HDRSPLIT
9244/****************************************************************************/
9245/* Prints out a rx_bd structure in the page chain.                          */
9246/*                                                                          */
9247/* Returns:                                                                 */
9248/*   Nothing.                                                               */
9249/****************************************************************************/
9250static __attribute__ ((noinline)) void
9251bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9252{
9253	if (idx > MAX_PG_BD)
9254		/* Index out of range. */
9255		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9256	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9257		/* Page Chain page pointer. */
9258		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9259			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9260	else
9261		/* Normal rx_bd entry. */
9262		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9263			"flags = 0x%08X\n", idx,
9264			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9265			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9266}
9267#endif
9268
9269
9270/****************************************************************************/
9271/* Prints out a l2_fhdr structure.                                          */
9272/*                                                                          */
9273/* Returns:                                                                 */
9274/*   Nothing.                                                               */
9275/****************************************************************************/
9276static __attribute__ ((noinline)) void
9277bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9278{
9279	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9280		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9281		"tcp_udp_xsum = 0x%04X\n", idx,
9282		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9283		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9284		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9285}
9286
9287
9288/****************************************************************************/
9289/* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9290/*                                                                          */
9291/* Returns:                                                                 */
9292/*   Nothing.                                                               */
9293/****************************************************************************/
9294static __attribute__ ((noinline)) void
9295bce_dump_ctx(struct bce_softc *sc, u16 cid)
9296{
9297	if (cid > TX_CID) {
9298		BCE_PRINTF(" Unknown CID\n");
9299		return;
9300	}
9301
9302	BCE_PRINTF(
9303	    "----------------------------"
9304	    "    CTX Data    "
9305	    "----------------------------\n");
9306
9307	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9308
9309	if (cid == RX_CID) {
9310		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9311		   "producer index\n",
9312		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9313		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9314		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9315		    BCE_L2CTX_RX_HOST_BSEQ));
9316		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9317		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9318		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9319		    "descriptor address\n",
9320 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9321		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9322		    "descriptor address\n",
9323		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9324		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9325		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9326		    BCE_L2CTX_RX_NX_BDIDX));
9327		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9328		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9329		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9330		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9331		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9332		    BCE_L2CTX_RX_PG_BUF_SIZE));
9333		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9334		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9335		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9336		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9337		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9338		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9339		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9340		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9341		    BCE_L2CTX_RX_NX_PG_BDIDX));
9342	} else if (cid == TX_CID) {
9343		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9344		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9345			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9346			    CTX_RD(sc, GET_CID_ADDR(cid),
9347			    BCE_L2CTX_TX_TYPE_XI));
9348			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9349			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9350			    BCE_L2CTX_TX_CMD_TYPE_XI));
9351			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9352			    "h/w buffer descriptor address\n",
9353			    CTX_RD(sc, GET_CID_ADDR(cid),
9354			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9355			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9356			    "h/w buffer	descriptor address\n",
9357			    CTX_RD(sc, GET_CID_ADDR(cid),
9358			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9359			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9360			    "host producer index\n",
9361			    CTX_RD(sc, GET_CID_ADDR(cid),
9362			    BCE_L2CTX_TX_HOST_BIDX_XI));
9363			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9364			    "host byte sequence\n",
9365			    CTX_RD(sc, GET_CID_ADDR(cid),
9366			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9367		} else {
9368			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9369			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9370			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9371			    CTX_RD(sc, GET_CID_ADDR(cid),
9372			    BCE_L2CTX_TX_CMD_TYPE));
9373			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9374			    "h/w buffer	descriptor address\n",
9375			    CTX_RD(sc, GET_CID_ADDR(cid),
9376			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9377			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9378			    "h/w buffer	descriptor address\n",
9379			    CTX_RD(sc, GET_CID_ADDR(cid),
9380			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9381			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9382			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9383			    BCE_L2CTX_TX_HOST_BIDX));
9384			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9385			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9386			    BCE_L2CTX_TX_HOST_BSEQ));
9387		}
9388	}
9389
9390	BCE_PRINTF(
9391	   "----------------------------"
9392	   "    Raw CTX     "
9393	   "----------------------------\n");
9394
9395	for (int i = 0x0; i < 0x300; i += 0x10) {
9396		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9397		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9398		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9399		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9400		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9401	}
9402
9403
9404	BCE_PRINTF(
9405	   "----------------------------"
9406	   "----------------"
9407	   "----------------------------\n");
9408}
9409
9410
9411/****************************************************************************/
9412/* Prints out the FTQ data.                                                 */
9413/*                                                                          */
9414/* Returns:                                                                */
9415/*   Nothing.                                                               */
9416/****************************************************************************/
9417static __attribute__ ((noinline)) void
9418bce_dump_ftqs(struct bce_softc *sc)
9419{
9420	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9421
9422	BCE_PRINTF(
9423	    "----------------------------"
9424	    "    FTQ Data    "
9425	    "----------------------------\n");
9426
9427	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9428	    "Max_Depth  Valid_Cnt \n");
9429	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9430	    "---------- ----------\n");
9431
9432	/* Setup the generic statistic counters for the FTQ valid count. */
9433	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9434	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9435	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9436	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9437	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9438
9439	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9440	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9441	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9442	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9443	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9444
9445	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9446	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9447	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9448	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9449	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9450
9451	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9452	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9453	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9454	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9455	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9456
9457	/* Input queue to the Receive Lookup state machine */
9458	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9459	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9460	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9461	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9462	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9463	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9464	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9465
9466	/* Input queue to the Receive Processor */
9467	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9468	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9469	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9470	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9471	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9472	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9473	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9474
9475	/* Input queue to the Recevie Processor */
9476	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9477	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9478	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9479	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9480	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9481	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9482	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9483
9484	/* Input queue to the Receive Virtual to Physical state machine */
9485	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9486	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9487	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9488	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9489	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9490	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9491	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9492
9493	/* Input queue to the Recevie Virtual to Physical state machine */
9494	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9495	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9496	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9497	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9498	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9499	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9500	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9501
9502	/* Input queue to the Receive Virtual to Physical state machine */
9503	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9504	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9505	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9506	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9507	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9508	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9509	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9510
9511	/* Input queue to the Receive DMA state machine */
9512	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9513	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9514	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9515	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9516	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9517	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9518	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9519
9520	/* Input queue to the Transmit Scheduler state machine */
9521	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9522	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9523	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9524	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9525	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9526	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9527	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9528
9529	/* Input queue to the Transmit Buffer Descriptor state machine */
9530	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9531	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9532	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9533	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9534	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9535	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9536	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9537
9538	/* Input queue to the Transmit Processor */
9539	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9540	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9541	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9542	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9543	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9544	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9545	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9546
9547	/* Input queue to the Transmit DMA state machine */
9548	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9549	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9550	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9551	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9552	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9553	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9554	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9555
9556	/* Input queue to the Transmit Patch-Up Processor */
9557	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9558	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9559	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9560	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9561	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9562	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9563	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9564
9565	/* Input queue to the Transmit Assembler state machine */
9566	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9567	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9568	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9569	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9570	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9571	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9572	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9573
9574	/* Input queue to the Completion Processor */
9575	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9576	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9577	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9578	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9579	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9580	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9581	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9582
9583	/* Input queue to the Completion Processor */
9584	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9585	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9586	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9587	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9588	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9589	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9590	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9591
9592	/* Input queue to the Completion Processor */
9593	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9594	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9595	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9596	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9597	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9598	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9599	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9600
9601	/* Setup the generic statistic counters for the FTQ valid count. */
9602	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
9603	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
9604	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9605
9606	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9607	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9608		val = val |
9609		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
9610		     24);
9611	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9612
9613	/* Input queue to the Management Control Processor */
9614	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9615	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9616	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9617	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9618	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9619	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9620	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9621
9622	/* Input queue to the Command Processor */
9623	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9624	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9625	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9626	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9627	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9628	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9629	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9630
9631	/* Input queue to the Completion Scheduler state machine */
9632	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9633	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9634	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9635	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9636	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9637	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9638	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9639
9640	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9641	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9642		/* Input queue to the RV2P Command Scheduler */
9643		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9644		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9645		cur_depth = (ctl & 0xFFC00000) >> 22;
9646		max_depth = (ctl & 0x003FF000) >> 12;
9647		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9648		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9649		    cmd, ctl, cur_depth, max_depth, valid_cnt);
9650	}
9651
9652	BCE_PRINTF(
9653	    "----------------------------"
9654	    "----------------"
9655	    "----------------------------\n");
9656}
9657
9658
9659/****************************************************************************/
9660/* Prints out the TX chain.                                                 */
9661/*                                                                          */
9662/* Returns:                                                                 */
9663/*   Nothing.                                                               */
9664/****************************************************************************/
9665static __attribute__ ((noinline)) void
9666bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9667{
9668	struct tx_bd *txbd;
9669
9670	/* First some info about the tx_bd chain structure. */
9671	BCE_PRINTF(
9672	    "----------------------------"
9673	    "  tx_bd  chain  "
9674	    "----------------------------\n");
9675
9676	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9677	    (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9678	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9679	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9680	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9681
9682	BCE_PRINTF(
9683	    "----------------------------"
9684	    "   tx_bd data   "
9685	    "----------------------------\n");
9686
9687	/* Now print out a decoded list of TX buffer descriptors. */
9688	for (int i = 0; i < count; i++) {
9689	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9690		bce_dump_txbd(sc, tx_prod, txbd);
9691		tx_prod++;
9692	}
9693
9694	BCE_PRINTF(
9695	    "----------------------------"
9696	    "----------------"
9697	    "----------------------------\n");
9698}
9699
9700
9701/****************************************************************************/
9702/* Prints out the RX chain.                                                 */
9703/*                                                                          */
9704/* Returns:                                                                 */
9705/*   Nothing.                                                               */
9706/****************************************************************************/
9707static __attribute__ ((noinline)) void
9708bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
9709{
9710	struct rx_bd *rxbd;
9711
9712	/* First some info about the rx_bd chain structure. */
9713	BCE_PRINTF(
9714	    "----------------------------"
9715	    "  rx_bd  chain  "
9716	    "----------------------------\n");
9717
9718	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9719	    (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9720
9721	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9722	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9723
9724	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9725
9726	BCE_PRINTF(
9727	    "----------------------------"
9728	    "   rx_bd data   "
9729	    "----------------------------\n");
9730
9731	/* Now print out the rx_bd's themselves. */
9732	for (int i = 0; i < count; i++) {
9733		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9734		bce_dump_rxbd(sc, rx_prod, rxbd);
9735		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9736	}
9737
9738	BCE_PRINTF(
9739	    "----------------------------"
9740	    "----------------"
9741	    "----------------------------\n");
9742}
9743
9744
9745#ifdef BCE_JUMBO_HDRSPLIT
9746/****************************************************************************/
9747/* Prints out the page chain.                                               */
9748/*                                                                          */
9749/* Returns:                                                                 */
9750/*   Nothing.                                                               */
9751/****************************************************************************/
9752static __attribute__ ((noinline)) void
9753bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9754{
9755	struct rx_bd *pgbd;
9756
9757	/* First some info about the page chain structure. */
9758	BCE_PRINTF(
9759	    "----------------------------"
9760	    "   page chain   "
9761	    "----------------------------\n");
9762
9763	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9764	    (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9765
9766	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9767	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9768
9769	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9770	    (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9771
9772	BCE_PRINTF(
9773	    "----------------------------"
9774	    "   page data    "
9775	    "----------------------------\n");
9776
9777	/* Now print out the rx_bd's themselves. */
9778	for (int i = 0; i < count; i++) {
9779		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9780		bce_dump_pgbd(sc, pg_prod, pgbd);
9781		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9782	}
9783
9784	BCE_PRINTF(
9785	    "----------------------------"
9786	    "----------------"
9787	    "----------------------------\n");
9788}
9789#endif
9790
9791
9792#define BCE_PRINT_RX_CONS(arg)						\
9793if (sblk->status_rx_quick_consumer_index##arg)				\
9794	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
9795	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
9796	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
9797	    arg);
9798
9799
9800#define BCE_PRINT_TX_CONS(arg)						\
9801if (sblk->status_tx_quick_consumer_index##arg)				\
9802	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
9803	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
9804	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
9805	    arg);
9806
9807/****************************************************************************/
9808/* Prints out the status block from host memory.                            */
9809/*                                                                          */
9810/* Returns:                                                                 */
9811/*   Nothing.                                                               */
9812/****************************************************************************/
9813static __attribute__ ((noinline)) void
9814bce_dump_status_block(struct bce_softc *sc)
9815{
9816	struct status_block *sblk;
9817
9818	sblk = sc->status_block;
9819
9820	BCE_PRINTF(
9821	    "----------------------------"
9822	    "  Status Block  "
9823	    "----------------------------\n");
9824
9825	/* Theses indices are used for normal L2 drivers. */
9826	BCE_PRINTF("    0x%08X - attn_bits\n",
9827	    sblk->status_attn_bits);
9828
9829	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
9830	    sblk->status_attn_bits_ack);
9831
9832	BCE_PRINT_RX_CONS(0);
9833	BCE_PRINT_TX_CONS(0)
9834
9835	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
9836
9837	/* Theses indices are not used for normal L2 drivers. */
9838	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
9839	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
9840	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
9841	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
9842	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
9843
9844	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
9845
9846	if (sblk->status_completion_producer_index ||
9847	    sblk->status_cmd_consumer_index)
9848		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
9849		    sblk->status_completion_producer_index,
9850		    sblk->status_cmd_consumer_index);
9851
9852	BCE_PRINTF(
9853	    "----------------------------"
9854	    "----------------"
9855	    "----------------------------\n");
9856}
9857
9858
9859#define BCE_PRINT_64BIT_STAT(arg) 				\
9860if (sblk->arg##_lo || sblk->arg##_hi)				\
9861	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
9862	    sblk->arg##_lo, #arg);
9863
9864#define BCE_PRINT_32BIT_STAT(arg)				\
9865if (sblk->arg)							\
9866	BCE_PRINTF("         0x%08X : %s\n", 			\
9867	    sblk->arg, #arg);
9868
9869/****************************************************************************/
9870/* Prints out the statistics block from host memory.                        */
9871/*                                                                          */
9872/* Returns:                                                                 */
9873/*   Nothing.                                                               */
9874/****************************************************************************/
9875static __attribute__ ((noinline)) void
9876bce_dump_stats_block(struct bce_softc *sc)
9877{
9878	struct statistics_block *sblk;
9879
9880	sblk = sc->stats_block;
9881
9882	BCE_PRINTF(
9883	    "---------------"
9884	    " Stats Block  (All Stats Not Shown Are 0) "
9885	    "---------------\n");
9886
9887	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
9888	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
9889	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
9890	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
9891	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
9892	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
9893	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
9894	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
9895	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
9896	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
9897	BCE_PRINT_32BIT_STAT(
9898	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
9899	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
9900	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
9901	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
9902	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
9903	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
9904	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
9905	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
9906	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
9907	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
9908	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
9909	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
9910	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
9911	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
9912	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
9913	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
9914	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
9915	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
9916	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
9917	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
9918	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
9919	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
9920	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
9921	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
9922	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
9923	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
9924	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
9925	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
9926	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
9927	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
9928	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
9929	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
9930	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
9931	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
9932	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
9933	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
9934	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
9935	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
9936	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
9937	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
9938	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
9939	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
9940	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
9941	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
9942
9943	BCE_PRINTF(
9944	    "----------------------------"
9945	    "----------------"
9946	    "----------------------------\n");
9947}
9948
9949
9950/****************************************************************************/
9951/* Prints out a summary of the driver state.                                */
9952/*                                                                          */
9953/* Returns:                                                                 */
9954/*   Nothing.                                                               */
9955/****************************************************************************/
9956static __attribute__ ((noinline)) void
9957bce_dump_driver_state(struct bce_softc *sc)
9958{
9959	u32 val_hi, val_lo;
9960
9961	BCE_PRINTF(
9962	    "-----------------------------"
9963	    " Driver State "
9964	    "-----------------------------\n");
9965
9966	val_hi = BCE_ADDR_HI(sc);
9967	val_lo = BCE_ADDR_LO(sc);
9968	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
9969	    "address\n", val_hi, val_lo);
9970
9971	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
9972	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
9973	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
9974	    "address\n", val_hi, val_lo);
9975
9976	val_hi = BCE_ADDR_HI(sc->status_block);
9977	val_lo = BCE_ADDR_LO(sc->status_block);
9978	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
9979	    "virtual address\n",	val_hi, val_lo);
9980
9981	val_hi = BCE_ADDR_HI(sc->stats_block);
9982	val_lo = BCE_ADDR_LO(sc->stats_block);
9983	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
9984	    "virtual address\n", val_hi, val_lo);
9985
9986	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
9987	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
9988	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
9989	    "virtual adddress\n", val_hi, val_lo);
9990
9991	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
9992	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
9993	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
9994	    "virtual address\n", val_hi, val_lo);
9995
9996#ifdef BCE_JUMBO_HDRSPLIT
9997	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
9998	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
9999	BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10000	    "virtual address\n", val_hi, val_lo);
10001#endif
10002
10003	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10004	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10005	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10006	    "virtual address\n",	val_hi, val_lo);
10007
10008	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10009	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10010	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10011	    "virtual address\n", val_hi, val_lo);
10012
10013#ifdef BCE_JUMBO_HDRSPLIT
10014	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10015	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10016	BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10017	    "virtual address\n", val_hi, val_lo);
10018#endif
10019
10020	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10021	    "h/w intrs\n", sc->interrupts_generated);
10022
10023	BCE_PRINTF("         0x%08X - (sc->rx_interrupts) "
10024	    "rx interrupts handled\n", sc->rx_interrupts);
10025
10026	BCE_PRINTF("         0x%08X - (sc->tx_interrupts) "
10027	    "tx interrupts handled\n", sc->tx_interrupts);
10028
10029	BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10030	    "phy interrupts handled\n", sc->phy_interrupts);
10031
10032	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10033	    "status block index\n", sc->last_status_idx);
10034
10035	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10036	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10037
10038	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10039	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10040
10041	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10042	    "byte seq index\n",	sc->tx_prod_bseq);
10043
10044	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10045	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10046
10047	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10048	    "tx_bd's\n", sc->used_tx_bd);
10049
10050	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10051	    "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10052
10053	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10054	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10055
10056	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10057	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10058
10059	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10060	    "byte seq index\n",	sc->rx_prod_bseq);
10061
10062	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10063	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10064
10065	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10066	    "rx_bd's\n", sc->free_rx_bd);
10067
10068#ifdef BCE_JUMBO_HDRSPLIT
10069	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10070	    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10071
10072	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10073	    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10074
10075	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10076	    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10077
10078	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10079	    "rx_bd's\n", sc->free_pg_bd);
10080
10081	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10082	    "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10083#endif
10084
10085	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10086	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10087
10088	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10089	    "bce mac flags\n", sc->bce_flags);
10090
10091	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10092	    "bce phy flags\n", sc->bce_phy_flags);
10093
10094	BCE_PRINTF(
10095	    "----------------------------"
10096	    "----------------"
10097	    "----------------------------\n");
10098}
10099
10100
10101/****************************************************************************/
10102/* Prints out the hardware state through a summary of important register,   */
10103/* followed by a complete register dump.                                    */
10104/*                                                                          */
10105/* Returns:                                                                 */
10106/*   Nothing.                                                               */
10107/****************************************************************************/
10108static __attribute__ ((noinline)) void
10109bce_dump_hw_state(struct bce_softc *sc)
10110{
10111	u32 val;
10112
10113	BCE_PRINTF(
10114	    "----------------------------"
10115	    " Hardware State "
10116	    "----------------------------\n");
10117
10118	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10119
10120	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10121	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10122	    val, BCE_MISC_ENABLE_STATUS_BITS);
10123
10124	val = REG_RD(sc, BCE_DMA_STATUS);
10125	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10126	    val, BCE_DMA_STATUS);
10127
10128	val = REG_RD(sc, BCE_CTX_STATUS);
10129	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10130	    val, BCE_CTX_STATUS);
10131
10132	val = REG_RD(sc, BCE_EMAC_STATUS);
10133	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10134	    val, BCE_EMAC_STATUS);
10135
10136	val = REG_RD(sc, BCE_RPM_STATUS);
10137	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10138	    val, BCE_RPM_STATUS);
10139
10140	/* ToDo: Create a #define for this constant. */
10141	val = REG_RD(sc, 0x2004);
10142	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10143	    val, 0x2004);
10144
10145	val = REG_RD(sc, BCE_RV2P_STATUS);
10146	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10147	    val, BCE_RV2P_STATUS);
10148
10149	/* ToDo: Create a #define for this constant. */
10150	val = REG_RD(sc, 0x2c04);
10151	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10152	    val, 0x2c04);
10153
10154	val = REG_RD(sc, BCE_TBDR_STATUS);
10155	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10156	    val, BCE_TBDR_STATUS);
10157
10158	val = REG_RD(sc, BCE_TDMA_STATUS);
10159	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10160	    val, BCE_TDMA_STATUS);
10161
10162	val = REG_RD(sc, BCE_HC_STATUS);
10163	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10164	    val, BCE_HC_STATUS);
10165
10166	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10167	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10168	    val, BCE_TXP_CPU_STATE);
10169
10170	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10171	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10172	    val, BCE_TPAT_CPU_STATE);
10173
10174	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10175	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10176	    val, BCE_RXP_CPU_STATE);
10177
10178	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10179	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10180	    val, BCE_COM_CPU_STATE);
10181
10182	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10183	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10184	    val, BCE_MCP_CPU_STATE);
10185
10186	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10187	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10188	    val, BCE_CP_CPU_STATE);
10189
10190	BCE_PRINTF(
10191	    "----------------------------"
10192	    "----------------"
10193	    "----------------------------\n");
10194
10195	BCE_PRINTF(
10196	    "----------------------------"
10197	    " Register  Dump "
10198	    "----------------------------\n");
10199
10200	for (int i = 0x400; i < 0x8000; i += 0x10) {
10201		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10202		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10203		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10204	}
10205
10206	BCE_PRINTF(
10207	    "----------------------------"
10208	    "----------------"
10209	    "----------------------------\n");
10210}
10211
10212
10213/****************************************************************************/
10214/* Prints out the mailbox queue registers.                                  */
10215/*                                                                          */
10216/* Returns:                                                                 */
10217/*   Nothing.                                                               */
10218/****************************************************************************/
10219static __attribute__ ((noinline)) void
10220bce_dump_mq_regs(struct bce_softc *sc)
10221{
10222	BCE_PRINTF(
10223	    "----------------------------"
10224	    "    MQ Regs     "
10225	    "----------------------------\n");
10226
10227	BCE_PRINTF(
10228	    "----------------------------"
10229	    "----------------"
10230	    "----------------------------\n");
10231
10232	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10233		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10234		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10235		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10236	}
10237
10238	BCE_PRINTF(
10239	    "----------------------------"
10240	    "----------------"
10241	    "----------------------------\n");
10242}
10243
10244
10245/****************************************************************************/
10246/* Prints out the bootcode state.                                           */
10247/*                                                                          */
10248/* Returns:                                                                 */
10249/*   Nothing.                                                               */
10250/****************************************************************************/
10251static __attribute__ ((noinline)) void
10252bce_dump_bc_state(struct bce_softc *sc)
10253{
10254	u32 val;
10255
10256	BCE_PRINTF(
10257	    "----------------------------"
10258	    " Bootcode State "
10259	    "----------------------------\n");
10260
10261	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10262
10263	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10264	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10265	    val, BCE_BC_RESET_TYPE);
10266
10267	val = bce_shmem_rd(sc, BCE_BC_STATE);
10268	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10269	    val, BCE_BC_STATE);
10270
10271	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10272	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10273	    val, BCE_BC_STATE_CONDITION);
10274
10275	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10276	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10277	    val, BCE_BC_STATE_DEBUG_CMD);
10278
10279	BCE_PRINTF(
10280	    "----------------------------"
10281	    "----------------"
10282	    "----------------------------\n");
10283}
10284
10285
10286/****************************************************************************/
10287/* Prints out the TXP processor state.                                      */
10288/*                                                                          */
10289/* Returns:                                                                 */
10290/*   Nothing.                                                               */
10291/****************************************************************************/
10292static __attribute__ ((noinline)) void
10293bce_dump_txp_state(struct bce_softc *sc, int regs)
10294{
10295	u32 val;
10296	u32 fw_version[3];
10297
10298	BCE_PRINTF(
10299	    "----------------------------"
10300	    "   TXP  State   "
10301	    "----------------------------\n");
10302
10303	for (int i = 0; i < 3; i++)
10304		fw_version[i] = htonl(REG_RD_IND(sc,
10305		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10306	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10307
10308	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10309	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10310	    val, BCE_TXP_CPU_MODE);
10311
10312	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10313	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10314	    val, BCE_TXP_CPU_STATE);
10315
10316	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10317	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10318	    val, BCE_TXP_CPU_EVENT_MASK);
10319
10320	if (regs) {
10321		BCE_PRINTF(
10322		    "----------------------------"
10323		    " Register  Dump "
10324		    "----------------------------\n");
10325
10326		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10327			/* Skip the big blank spaces */
10328			if (i < 0x454000 && i > 0x5ffff)
10329				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10330				    "0x%08X 0x%08X\n", i,
10331				    REG_RD_IND(sc, i),
10332				    REG_RD_IND(sc, i + 0x4),
10333				    REG_RD_IND(sc, i + 0x8),
10334				    REG_RD_IND(sc, i + 0xC));
10335		}
10336	}
10337
10338	BCE_PRINTF(
10339	    "----------------------------"
10340	    "----------------"
10341	    "----------------------------\n");
10342}
10343
10344
10345/****************************************************************************/
10346/* Prints out the RXP processor state.                                      */
10347/*                                                                          */
10348/* Returns:                                                                 */
10349/*   Nothing.                                                               */
10350/****************************************************************************/
10351static __attribute__ ((noinline)) void
10352bce_dump_rxp_state(struct bce_softc *sc, int regs)
10353{
10354	u32 val;
10355	u32 fw_version[3];
10356
10357	BCE_PRINTF(
10358	    "----------------------------"
10359	    "   RXP  State   "
10360	    "----------------------------\n");
10361
10362	for (int i = 0; i < 3; i++)
10363		fw_version[i] = htonl(REG_RD_IND(sc,
10364		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10365
10366	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10367
10368	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10369	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10370	    val, BCE_RXP_CPU_MODE);
10371
10372	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10373	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10374	    val, BCE_RXP_CPU_STATE);
10375
10376	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10377	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10378	    val, BCE_RXP_CPU_EVENT_MASK);
10379
10380	if (regs) {
10381		BCE_PRINTF(
10382		    "----------------------------"
10383		    " Register  Dump "
10384		    "----------------------------\n");
10385
10386		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10387			/* Skip the big blank sapces */
10388			if (i < 0xc5400 && i > 0xdffff)
10389				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10390				    "0x%08X 0x%08X\n", i,
10391				    REG_RD_IND(sc, i),
10392				    REG_RD_IND(sc, i + 0x4),
10393				    REG_RD_IND(sc, i + 0x8),
10394				    REG_RD_IND(sc, i + 0xC));
10395		}
10396	}
10397
10398	BCE_PRINTF(
10399	    "----------------------------"
10400	    "----------------"
10401	    "----------------------------\n");
10402}
10403
10404
10405/****************************************************************************/
10406/* Prints out the TPAT processor state.                                     */
10407/*                                                                          */
10408/* Returns:                                                                 */
10409/*   Nothing.                                                               */
10410/****************************************************************************/
10411static __attribute__ ((noinline)) void
10412bce_dump_tpat_state(struct bce_softc *sc, int regs)
10413{
10414	u32 val;
10415	u32 fw_version[3];
10416
10417	BCE_PRINTF(
10418	    "----------------------------"
10419	    "   TPAT State   "
10420	    "----------------------------\n");
10421
10422	for (int i = 0; i < 3; i++)
10423		fw_version[i] = htonl(REG_RD_IND(sc,
10424		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10425
10426	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10427
10428	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10429	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10430	    val, BCE_TPAT_CPU_MODE);
10431
10432	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10433	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10434	    val, BCE_TPAT_CPU_STATE);
10435
10436	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10437	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10438	    val, BCE_TPAT_CPU_EVENT_MASK);
10439
10440	if (regs) {
10441		BCE_PRINTF(
10442		    "----------------------------"
10443		    " Register  Dump "
10444		    "----------------------------\n");
10445
10446		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10447			/* Skip the big blank spaces */
10448			if (i < 0x854000 && i > 0x9ffff)
10449				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10450				    "0x%08X 0x%08X\n", i,
10451				    REG_RD_IND(sc, i),
10452				    REG_RD_IND(sc, i + 0x4),
10453				    REG_RD_IND(sc, i + 0x8),
10454				    REG_RD_IND(sc, i + 0xC));
10455		}
10456	}
10457
10458	BCE_PRINTF(
10459		"----------------------------"
10460		"----------------"
10461		"----------------------------\n");
10462}
10463
10464
10465/****************************************************************************/
10466/* Prints out the Command Procesor (CP) state.                              */
10467/*                                                                          */
10468/* Returns:                                                                 */
10469/*   Nothing.                                                               */
10470/****************************************************************************/
10471static __attribute__ ((noinline)) void
10472bce_dump_cp_state(struct bce_softc *sc, int regs)
10473{
10474	u32 val;
10475	u32 fw_version[3];
10476
10477	BCE_PRINTF(
10478	    "----------------------------"
10479	    "    CP State    "
10480	    "----------------------------\n");
10481
10482	for (int i = 0; i < 3; i++)
10483		fw_version[i] = htonl(REG_RD_IND(sc,
10484		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
10485
10486	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10487
10488	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10489	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10490	    val, BCE_CP_CPU_MODE);
10491
10492	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10493	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10494	    val, BCE_CP_CPU_STATE);
10495
10496	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10497	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10498	    BCE_CP_CPU_EVENT_MASK);
10499
10500	if (regs) {
10501		BCE_PRINTF(
10502		    "----------------------------"
10503		    " Register  Dump "
10504		    "----------------------------\n");
10505
10506		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10507			/* Skip the big blank spaces */
10508			if (i < 0x185400 && i > 0x19ffff)
10509				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10510				    "0x%08X 0x%08X\n", i,
10511				    REG_RD_IND(sc, i),
10512				    REG_RD_IND(sc, i + 0x4),
10513				    REG_RD_IND(sc, i + 0x8),
10514				    REG_RD_IND(sc, i + 0xC));
10515		}
10516	}
10517
10518	BCE_PRINTF(
10519	    "----------------------------"
10520	    "----------------"
10521	    "----------------------------\n");
10522}
10523
10524
10525/****************************************************************************/
10526/* Prints out the Completion Procesor (COM) state.                          */
10527/*                                                                          */
10528/* Returns:                                                                 */
10529/*   Nothing.                                                               */
10530/****************************************************************************/
10531static __attribute__ ((noinline)) void
10532bce_dump_com_state(struct bce_softc *sc, int regs)
10533{
10534	u32 val;
10535	u32 fw_version[4];
10536
10537	BCE_PRINTF(
10538	    "----------------------------"
10539	    "   COM State    "
10540	    "----------------------------\n");
10541
10542	for (int i = 0; i < 3; i++)
10543		fw_version[i] = htonl(REG_RD_IND(sc,
10544		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
10545
10546	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10547
10548	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10549	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10550	    val, BCE_COM_CPU_MODE);
10551
10552	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10553	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10554	    val, BCE_COM_CPU_STATE);
10555
10556	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10557	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10558	    BCE_COM_CPU_EVENT_MASK);
10559
10560	if (regs) {
10561		BCE_PRINTF(
10562		    "----------------------------"
10563		    " Register  Dump "
10564		    "----------------------------\n");
10565
10566		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10567			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10568			    "0x%08X 0x%08X\n", i,
10569			    REG_RD_IND(sc, i),
10570			    REG_RD_IND(sc, i + 0x4),
10571			    REG_RD_IND(sc, i + 0x8),
10572			    REG_RD_IND(sc, i + 0xC));
10573		}
10574	}
10575
10576	BCE_PRINTF(
10577		"----------------------------"
10578		"----------------"
10579		"----------------------------\n");
10580}
10581
10582
10583/****************************************************************************/
10584/* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10585/*                                                                          */
10586/* Returns:                                                                 */
10587/*   Nothing.                                                               */
10588/****************************************************************************/
10589static __attribute__ ((noinline)) void
10590bce_dump_rv2p_state(struct bce_softc *sc)
10591{
10592	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10593
10594	BCE_PRINTF(
10595	    "----------------------------"
10596	    "   RV2P State   "
10597	    "----------------------------\n");
10598
10599	/* Stall the RV2P processors. */
10600	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10601	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10602	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10603
10604	/* Read the firmware version. */
10605	val = 0x00000001;
10606	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10607	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10608	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10609	    BCE_RV2P_INSTR_HIGH_HIGH;
10610	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10611	    fw_ver_high, fw_ver_low);
10612
10613	val = 0x00000001;
10614	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10615	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10616	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10617	    BCE_RV2P_INSTR_HIGH_HIGH;
10618	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10619	    fw_ver_high, fw_ver_low);
10620
10621	/* Resume the RV2P processors. */
10622	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10623	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10624	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10625
10626	/* Fetch the program counter value. */
10627	val = 0x68007800;
10628	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10629	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10630	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10631	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10632	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10633	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10634
10635	/* Fetch the program counter value again to see if it is advancing. */
10636	val = 0x68007800;
10637	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10638	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10639	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10640	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10641	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10642	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10643
10644	BCE_PRINTF(
10645	    "----------------------------"
10646	    "----------------"
10647	    "----------------------------\n");
10648}
10649
10650
10651/****************************************************************************/
10652/* Prints out the driver state and then enters the debugger.                */
10653/*                                                                          */
10654/* Returns:                                                                 */
10655/*   Nothing.                                                               */
10656/****************************************************************************/
10657static __attribute__ ((noinline)) void
10658bce_breakpoint(struct bce_softc *sc)
10659{
10660
10661	/*
10662	 * Unreachable code to silence compiler warnings
10663	 * about unused functions.
10664	 */
10665	if (0) {
10666		bce_freeze_controller(sc);
10667		bce_unfreeze_controller(sc);
10668		bce_dump_enet(sc, NULL);
10669		bce_dump_txbd(sc, 0, NULL);
10670		bce_dump_rxbd(sc, 0, NULL);
10671		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10672		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10673		bce_dump_l2fhdr(sc, 0, NULL);
10674		bce_dump_ctx(sc, RX_CID);
10675		bce_dump_ftqs(sc);
10676		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10677		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10678		bce_dump_status_block(sc);
10679		bce_dump_stats_block(sc);
10680		bce_dump_driver_state(sc);
10681		bce_dump_hw_state(sc);
10682		bce_dump_bc_state(sc);
10683		bce_dump_txp_state(sc, 0);
10684		bce_dump_rxp_state(sc, 0);
10685		bce_dump_tpat_state(sc, 0);
10686		bce_dump_cp_state(sc, 0);
10687		bce_dump_com_state(sc, 0);
10688		bce_dump_rv2p_state(sc);
10689
10690#ifdef BCE_JUMBO_HDRSPLIT
10691		bce_dump_pgbd(sc, 0, NULL);
10692		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10693		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10694#endif
10695	}
10696
10697	bce_dump_status_block(sc);
10698	bce_dump_driver_state(sc);
10699
10700	/* Call the debugger. */
10701	breakpoint();
10702
10703	return;
10704}
10705#endif
10706
10707