if_bce.c revision 210522
1/*-
2 * Copyright (c) 2006-2010 Broadcom Corporation
3 *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written consent.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/bce/if_bce.c 210522 2010-07-26 23:24:42Z jkim $");
33
34/*
35 * The following controllers are supported by this driver:
36 *   BCM5706C A2, A3
37 *   BCM5706S A2, A3
38 *   BCM5708C B1, B2
39 *   BCM5708S B1, B2
40 *   BCM5709C A1, C0
41 *   BCM5709S A1, C0
42 *   BCM5716C C0
43 *   BCM5716S C0
44 *
45 * The following controllers are not supported by this driver:
46 *   BCM5706C A0, A1 (pre-production)
47 *   BCM5706S A0, A1 (pre-production)
48 *   BCM5708C A0, B0 (pre-production)
49 *   BCM5708S A0, B0 (pre-production)
50 *   BCM5709C A0  B0, B1, B2 (pre-production)
51 *   BCM5709S A0, B0, B1, B2 (pre-production)
52 */
53
54#include "opt_bce.h"
55
56#include <dev/bce/if_bcereg.h>
57#include <dev/bce/if_bcefw.h>
58
59/****************************************************************************/
60/* BCE Debug Options                                                        */
61/****************************************************************************/
62#ifdef BCE_DEBUG
63	u32 bce_debug = BCE_WARN;
64
65	/*          0 = Never              */
66	/*          1 = 1 in 2,147,483,648 */
67	/*        256 = 1 in     8,388,608 */
68	/*       2048 = 1 in     1,048,576 */
69	/*      65536 = 1 in        32,768 */
70	/*    1048576 = 1 in         2,048 */
71	/*  268435456 =	1 in             8 */
72	/*  536870912 = 1 in             4 */
73	/* 1073741824 = 1 in             2 */
74
75	/* Controls how often the l2_fhdr frame error check will fail. */
76	int l2fhdr_error_sim_control = 0;
77
78	/* Controls how often the unexpected attention check will fail. */
79	int unexpected_attention_sim_control = 0;
80
81	/* Controls how often to simulate an mbuf allocation failure. */
82	int mbuf_alloc_failed_sim_control = 0;
83
84	/* Controls how often to simulate a DMA mapping failure. */
85	int dma_map_addr_failed_sim_control = 0;
86
87	/* Controls how often to simulate a bootcode failure. */
88	int bootcode_running_failure_sim_control = 0;
89#endif
90
91/****************************************************************************/
92/* BCE Build Time Options                                                   */
93/****************************************************************************/
94/* #define BCE_NVRAM_WRITE_SUPPORT 1 */
95
96
97/****************************************************************************/
98/* PCI Device ID Table                                                      */
99/*                                                                          */
100/* Used by bce_probe() to identify the devices supported by this driver.    */
101/****************************************************************************/
102#define BCE_DEVDESC_MAX		64
103
104static struct bce_type bce_devs[] = {
105	/* BCM5706C Controllers and OEM boards. */
106	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
107		"HP NC370T Multifunction Gigabit Server Adapter" },
108	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
109		"HP NC370i Multifunction Gigabit Server Adapter" },
110	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
111		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
112	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
113		"HP NC371i Multifunction Gigabit Server Adapter" },
114	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
115		"Broadcom NetXtreme II BCM5706 1000Base-T" },
116
117	/* BCM5706S controllers and OEM boards. */
118	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
119		"HP NC370F Multifunction Gigabit Server Adapter" },
120	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
121		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
122
123	/* BCM5708C controllers and OEM boards. */
124	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
125		"HP NC373T PCIe Multifunction Gig Server Adapter" },
126	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
127		"HP NC373i Multifunction Gigabit Server Adapter" },
128	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
129		"HP NC374m PCIe Multifunction Adapter" },
130	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
131		"Broadcom NetXtreme II BCM5708 1000Base-T" },
132
133	/* BCM5708S controllers and OEM boards. */
134	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
135		"HP NC373m Multifunction Gigabit Server Adapter" },
136	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
137		"HP NC373i Multifunction Gigabit Server Adapter" },
138	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
139		"HP NC373F PCIe Multifunc Giga Server Adapter" },
140	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
141		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
142
143	/* BCM5709C controllers and OEM boards. */
144	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
145		"HP NC382i DP Multifunction Gigabit Server Adapter" },
146	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
147		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
148	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
149		"Broadcom NetXtreme II BCM5709 1000Base-T" },
150
151	/* BCM5709S controllers and OEM boards. */
152	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
153		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
154	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
155		"HP NC382i DP Multifunction Gigabit Server Adapter" },
156	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
157		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
158
159	/* BCM5716 controllers and OEM boards. */
160	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
161		"Broadcom NetXtreme II BCM5716 1000Base-T" },
162
163	{ 0, 0, 0, 0, NULL }
164};
165
166
167/****************************************************************************/
168/* Supported Flash NVRAM device data.                                       */
169/****************************************************************************/
170static struct flash_spec flash_table[] =
171{
172#define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
173#define NONBUFFERED_FLAGS	(BCE_NV_WREN)
174
175	/* Slow EEPROM */
176	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
177	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
178	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
179	 "EEPROM - slow"},
180	/* Expansion entry 0001 */
181	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
182	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
184	 "Entry 0001"},
185	/* Saifun SA25F010 (non-buffered flash) */
186	/* strap, cfg1, & write1 need updates */
187	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
188	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
190	 "Non-buffered flash (128kB)"},
191	/* Saifun SA25F020 (non-buffered flash) */
192	/* strap, cfg1, & write1 need updates */
193	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
194	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
196	 "Non-buffered flash (256kB)"},
197	/* Expansion entry 0100 */
198	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
199	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
201	 "Entry 0100"},
202	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
203	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
204	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
205	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
206	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
207	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
208	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
209	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
210	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
211	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
212	/* Saifun SA25F005 (non-buffered flash) */
213	/* strap, cfg1, & write1 need updates */
214	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
215	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
217	 "Non-buffered flash (64kB)"},
218	/* Fast EEPROM */
219	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
220	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
221	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
222	 "EEPROM - fast"},
223	/* Expansion entry 1001 */
224	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
225	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
227	 "Entry 1001"},
228	/* Expansion entry 1010 */
229	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
230	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232	 "Entry 1010"},
233	/* ATMEL AT45DB011B (buffered flash) */
234	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
235	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
236	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
237	 "Buffered flash (128kB)"},
238	/* Expansion entry 1100 */
239	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
240	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
241	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
242	 "Entry 1100"},
243	/* Expansion entry 1101 */
244	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
245	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
246	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
247	 "Entry 1101"},
248	/* Ateml Expansion entry 1110 */
249	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
250	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
251	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
252	 "Entry 1110 (Atmel)"},
253	/* ATMEL AT45DB021B (buffered flash) */
254	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
255	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
256	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
257	 "Buffered flash (256kB)"},
258};
259
260/*
261 * The BCM5709 controllers transparently handle the
262 * differences between Atmel 264 byte pages and all
263 * flash devices which use 256 byte pages, so no
264 * logical-to-physical mapping is required in the
265 * driver.
266 */
267static struct flash_spec flash_5709 = {
268	.flags		= BCE_NV_BUFFERED,
269	.page_bits	= BCM5709_FLASH_PAGE_BITS,
270	.page_size	= BCM5709_FLASH_PAGE_SIZE,
271	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
272	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
273	.name		= "5709/5716 buffered flash (256kB)",
274};
275
276
277/****************************************************************************/
278/* FreeBSD device entry points.                                             */
279/****************************************************************************/
280static int  bce_probe			(device_t);
281static int  bce_attach			(device_t);
282static int  bce_detach			(device_t);
283static int  bce_shutdown		(device_t);
284
285
286/****************************************************************************/
287/* BCE Debug Data Structure Dump Routines                                   */
288/****************************************************************************/
289#ifdef BCE_DEBUG
290static u32  bce_reg_rd			(struct bce_softc *, u32);
291static void bce_reg_wr			(struct bce_softc *, u32, u32);
292static void bce_reg_wr16		(struct bce_softc *, u32, u16);
293static u32  bce_ctx_rd			(struct bce_softc *, u32, u32);
294static void bce_dump_enet		(struct bce_softc *, struct mbuf *);
295static void bce_dump_mbuf		(struct bce_softc *, struct mbuf *);
296static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
297static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
298#ifdef BCE_JUMBO_HDRSPLIT
299static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
300#endif
301static void bce_dump_txbd		(struct bce_softc *,
302    int, struct tx_bd *);
303static void bce_dump_rxbd		(struct bce_softc *,
304    int, struct rx_bd *);
305#ifdef BCE_JUMBO_HDRSPLIT
306static void bce_dump_pgbd		(struct bce_softc *,
307    int, struct rx_bd *);
308#endif
309static void bce_dump_l2fhdr		(struct bce_softc *,
310    int, struct l2_fhdr *);
311static void bce_dump_ctx		(struct bce_softc *, u16);
312static void bce_dump_ftqs		(struct bce_softc *);
313static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
314static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
315#ifdef BCE_JUMBO_HDRSPLIT
316static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
317#endif
318static void bce_dump_status_block	(struct bce_softc *);
319static void bce_dump_stats_block	(struct bce_softc *);
320static void bce_dump_driver_state	(struct bce_softc *);
321static void bce_dump_hw_state		(struct bce_softc *);
322static void bce_dump_mq_regs		(struct bce_softc *);
323static void bce_dump_bc_state		(struct bce_softc *);
324static void bce_dump_txp_state		(struct bce_softc *, int);
325static void bce_dump_rxp_state		(struct bce_softc *, int);
326static void bce_dump_tpat_state		(struct bce_softc *, int);
327static void bce_dump_cp_state		(struct bce_softc *, int);
328static void bce_dump_com_state		(struct bce_softc *, int);
329static void bce_dump_rv2p_state		(struct bce_softc *);
330static void bce_breakpoint		(struct bce_softc *);
331#endif
332
333
334/****************************************************************************/
335/* BCE Register/Memory Access Routines                                      */
336/****************************************************************************/
337static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
338static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
339static void bce_shmem_wr		(struct bce_softc *, u32, u32);
340static u32  bce_shmem_rd		(struct bce_softc *, u32);
341static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
342static int  bce_miibus_read_reg		(device_t, int, int);
343static int  bce_miibus_write_reg	(device_t, int, int, int);
344static void bce_miibus_statchg		(device_t);
345
346
347/****************************************************************************/
348/* BCE NVRAM Access Routines                                                */
349/****************************************************************************/
350static int  bce_acquire_nvram_lock	(struct bce_softc *);
351static int  bce_release_nvram_lock	(struct bce_softc *);
352static void bce_enable_nvram_access	(struct bce_softc *);
353static void bce_disable_nvram_access	(struct bce_softc *);
354static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
355static int  bce_init_nvram		(struct bce_softc *);
356static int  bce_nvram_read		(struct bce_softc *, u32, u8 *, int);
357static int  bce_nvram_test		(struct bce_softc *);
358#ifdef BCE_NVRAM_WRITE_SUPPORT
359static int  bce_enable_nvram_write	(struct bce_softc *);
360static void bce_disable_nvram_write	(struct bce_softc *);
361static int  bce_nvram_erase_page	(struct bce_softc *, u32);
362static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
363static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
364#endif
365
366/****************************************************************************/
367/*                                                                          */
368/****************************************************************************/
369static void bce_get_media		(struct bce_softc *);
370static void bce_init_media		(struct bce_softc *);
371static void bce_dma_map_addr		(void *,
372    bus_dma_segment_t *, int, int);
373static int  bce_dma_alloc		(device_t);
374static void bce_dma_free		(struct bce_softc *);
375static void bce_release_resources	(struct bce_softc *);
376
377/****************************************************************************/
378/* BCE Firmware Synchronization and Load                                    */
379/****************************************************************************/
380static int  bce_fw_sync			(struct bce_softc *, u32);
381static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
382static void bce_load_cpu_fw		(struct bce_softc *,
383    struct cpu_reg *, struct fw_info *);
384static void bce_start_cpu		(struct bce_softc *, struct cpu_reg *);
385static void bce_halt_cpu		(struct bce_softc *, struct cpu_reg *);
386static void bce_start_rxp_cpu		(struct bce_softc *);
387static void bce_init_rxp_cpu		(struct bce_softc *);
388static void bce_init_txp_cpu 		(struct bce_softc *);
389static void bce_init_tpat_cpu		(struct bce_softc *);
390static void bce_init_cp_cpu	  	(struct bce_softc *);
391static void bce_init_com_cpu	  	(struct bce_softc *);
392static void bce_init_cpus		(struct bce_softc *);
393
394static void	bce_print_adapter_info	(struct bce_softc *);
395static void bce_probe_pci_caps		(device_t, struct bce_softc *);
396static void bce_stop			(struct bce_softc *);
397static int  bce_reset			(struct bce_softc *, u32);
398static int  bce_chipinit 		(struct bce_softc *);
399static int  bce_blockinit 		(struct bce_softc *);
400
401static int  bce_init_tx_chain		(struct bce_softc *);
402static void bce_free_tx_chain		(struct bce_softc *);
403
404static int  bce_get_rx_buf		(struct bce_softc *,
405    struct mbuf *, u16 *, u16 *, u32 *);
406static int  bce_init_rx_chain		(struct bce_softc *);
407static void bce_fill_rx_chain		(struct bce_softc *);
408static void bce_free_rx_chain		(struct bce_softc *);
409
410#ifdef BCE_JUMBO_HDRSPLIT
411static int  bce_get_pg_buf		(struct bce_softc *,
412    struct mbuf *, u16 *, u16 *);
413static int  bce_init_pg_chain		(struct bce_softc *);
414static void bce_fill_pg_chain		(struct bce_softc *);
415static void bce_free_pg_chain		(struct bce_softc *);
416#endif
417
418static struct mbuf *bce_tso_setup	(struct bce_softc *,
419    struct mbuf **, u16 *);
420static int  bce_tx_encap		(struct bce_softc *, struct mbuf **);
421static void bce_start_locked		(struct ifnet *);
422static void bce_start			(struct ifnet *);
423static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
424static void bce_watchdog		(struct bce_softc *);
425static int  bce_ifmedia_upd		(struct ifnet *);
426static int  bce_ifmedia_upd_locked	(struct ifnet *);
427static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
428static void bce_init_locked		(struct bce_softc *);
429static void bce_init			(void *);
430static void bce_mgmt_init_locked	(struct bce_softc *sc);
431
432static int  bce_init_ctx		(struct bce_softc *);
433static void bce_get_mac_addr		(struct bce_softc *);
434static void bce_set_mac_addr		(struct bce_softc *);
435static void bce_phy_intr		(struct bce_softc *);
436static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
437static void bce_rx_intr			(struct bce_softc *);
438static void bce_tx_intr			(struct bce_softc *);
439static void bce_disable_intr		(struct bce_softc *);
440static void bce_enable_intr		(struct bce_softc *, int);
441
442static void bce_intr			(void *);
443static void bce_set_rx_mode		(struct bce_softc *);
444static void bce_stats_update		(struct bce_softc *);
445static void bce_tick			(void *);
446static void bce_pulse			(void *);
447static void bce_add_sysctls		(struct bce_softc *);
448
449
450/****************************************************************************/
451/* FreeBSD device dispatch table.                                           */
452/****************************************************************************/
453static device_method_t bce_methods[] = {
454	/* Device interface (device_if.h) */
455	DEVMETHOD(device_probe,		bce_probe),
456	DEVMETHOD(device_attach,	bce_attach),
457	DEVMETHOD(device_detach,	bce_detach),
458	DEVMETHOD(device_shutdown,	bce_shutdown),
459/* Supported by device interface but not used here. */
460/*	DEVMETHOD(device_identify,	bce_identify),      */
461/*	DEVMETHOD(device_suspend,	bce_suspend),       */
462/*	DEVMETHOD(device_resume,	bce_resume),        */
463/*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
464
465	/* Bus interface (bus_if.h) */
466	DEVMETHOD(bus_print_child,	bus_generic_print_child),
467	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
468
469	/* MII interface (miibus_if.h) */
470	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
471	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
472	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
473/* Supported by MII interface but not used here.       */
474/*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
475/*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
476
477	{ 0, 0 }
478};
479
480static driver_t bce_driver = {
481	"bce",
482	bce_methods,
483	sizeof(struct bce_softc)
484};
485
486static devclass_t bce_devclass;
487
488MODULE_DEPEND(bce, pci, 1, 1, 1);
489MODULE_DEPEND(bce, ether, 1, 1, 1);
490MODULE_DEPEND(bce, miibus, 1, 1, 1);
491
492DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
493DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
494
495
496/****************************************************************************/
497/* Tunable device values                                                    */
498/****************************************************************************/
499SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
500
501/* Allowable values are TRUE or FALSE */
502static int bce_tso_enable = TRUE;
503TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
504SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
505"TSO Enable/Disable");
506
507/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
508/* ToDo: Add MSI-X support. */
509static int bce_msi_enable = 1;
510TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
511SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
512"MSI-X|MSI|INTx selector");
513
514/* ToDo: Add tunable to enable/disable strict MTU handling. */
515/* Currently allows "loose" RX MTU checking (i.e. sets the  */
516/* H/W RX MTU to the size of the largest receive buffer, or */
517/* 2048 bytes). This will cause a UNH failure but is more   */
518/* desireable from a functional perspective.                */
519
520
521/****************************************************************************/
522/* Device probe function.                                                   */
523/*                                                                          */
524/* Compares the device to the driver's list of supported devices and        */
525/* reports back to the OS whether this is the right driver for the device.  */
526/*                                                                          */
527/* Returns:                                                                 */
528/*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
529/****************************************************************************/
530static int
531bce_probe(device_t dev)
532{
533	struct bce_type *t;
534	struct bce_softc *sc;
535	char *descbuf;
536	u16 vid = 0, did = 0, svid = 0, sdid = 0;
537
538	t = bce_devs;
539
540	sc = device_get_softc(dev);
541	bzero(sc, sizeof(struct bce_softc));
542	sc->bce_unit = device_get_unit(dev);
543	sc->bce_dev = dev;
544
545	/* Get the data for the device to be probed. */
546	vid  = pci_get_vendor(dev);
547	did  = pci_get_device(dev);
548	svid = pci_get_subvendor(dev);
549	sdid = pci_get_subdevice(dev);
550
551	DBPRINT(sc, BCE_EXTREME_LOAD,
552	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
553	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
554
555	/* Look through the list of known devices for a match. */
556	while(t->bce_name != NULL) {
557
558		if ((vid == t->bce_vid) && (did == t->bce_did) &&
559		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
560		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
561
562			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
563
564			if (descbuf == NULL)
565				return(ENOMEM);
566
567			/* Print out the device identity. */
568			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
569			    t->bce_name, (((pci_read_config(dev,
570			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
571			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
572
573			device_set_desc_copy(dev, descbuf);
574			free(descbuf, M_TEMP);
575			return(BUS_PROBE_DEFAULT);
576		}
577		t++;
578	}
579
580	return(ENXIO);
581}
582
583
584/****************************************************************************/
585/* PCI Capabilities Probe Function.                                         */
586/*                                                                          */
587/* Walks the PCI capabiites list for the device to find what features are   */
588/* supported.                                                               */
589/*                                                                          */
590/* Returns:                                                                 */
591/*   None.                                                                  */
592/****************************************************************************/
593static void
594bce_print_adapter_info(struct bce_softc *sc)
595{
596	int i = 0;
597
598	DBENTER(BCE_VERBOSE_LOAD);
599
600	if (bootverbose) {
601		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
602		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
603		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
604
605
606		/* Bus info. */
607		if (sc->bce_flags & BCE_PCIE_FLAG) {
608			printf("Bus (PCIe x%d, ", sc->link_width);
609			switch (sc->link_speed) {
610			case 1: printf("2.5Gbps); "); break;
611			case 2:	printf("5Gbps); "); break;
612			default: printf("Unknown link speed); ");
613			}
614		} else {
615			printf("Bus (PCI%s, %s, %dMHz); ",
616			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
617			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
618			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
619		}
620
621		/* Firmware version and device features. */
622		printf("B/C (%s); Flags (", sc->bce_bc_ver);
623
624	#ifdef BCE_JUMBO_HDRSPLIT
625		printf("SPLT");
626		i++;
627	#endif
628
629		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
630			if (i > 0) printf("|");
631			printf("MSI"); i++;
632		}
633
634		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
635			if (i > 0) printf("|");
636			printf("MSI-X"); i++;
637		}
638
639		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
640			if (i > 0) printf("|");
641			printf("2.5G"); i++;
642		}
643
644		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
645			if (i > 0) printf("|");
646			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
647		} else {
648			printf(")\n");
649		}
650	}
651
652	DBEXIT(BCE_VERBOSE_LOAD);
653}
654
655
656/****************************************************************************/
657/* PCI Capabilities Probe Function.                                         */
658/*                                                                          */
659/* Walks the PCI capabiites list for the device to find what features are   */
660/* supported.                                                               */
661/*                                                                          */
662/* Returns:                                                                 */
663/*   None.                                                                  */
664/****************************************************************************/
665static void
666bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
667{
668	u32 reg;
669
670	DBENTER(BCE_VERBOSE_LOAD);
671
672	/* Check if PCI-X capability is enabled. */
673	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
674		if (reg != 0)
675			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
676	}
677
678	/* Check if PCIe capability is enabled. */
679	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
680		if (reg != 0) {
681			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
682			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
683			    "0x%08X\n",	link_status);
684			sc->link_speed = link_status & 0xf;
685			sc->link_width = (link_status >> 4) & 0x3f;
686			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
687			sc->bce_flags |= BCE_PCIE_FLAG;
688		}
689	}
690
691	/* Check if MSI capability is enabled. */
692	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
693		if (reg != 0)
694			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
695	}
696
697	/* Check if MSI-X capability is enabled. */
698	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
699		if (reg != 0)
700			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
701	}
702
703	DBEXIT(BCE_VERBOSE_LOAD);
704}
705
706
707/****************************************************************************/
708/* Device attach function.                                                  */
709/*                                                                          */
710/* Allocates device resources, performs secondary chip identification,      */
711/* resets and initializes the hardware, and initializes driver instance     */
712/* variables.                                                               */
713/*                                                                          */
714/* Returns:                                                                 */
715/*   0 on success, positive value on failure.                               */
716/****************************************************************************/
717static int
718bce_attach(device_t dev)
719{
720	struct bce_softc *sc;
721	struct ifnet *ifp;
722	u32 val;
723	int error, rid, rc = 0;
724
725	sc = device_get_softc(dev);
726	sc->bce_dev = dev;
727
728	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
729
730	sc->bce_unit = device_get_unit(dev);
731
732	/* Set initial device and PHY flags */
733	sc->bce_flags = 0;
734	sc->bce_phy_flags = 0;
735
736	pci_enable_busmaster(dev);
737
738	/* Allocate PCI memory resources. */
739	rid = PCIR_BAR(0);
740	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
741		&rid, RF_ACTIVE);
742
743	if (sc->bce_res_mem == NULL) {
744		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
745		    __FILE__, __LINE__);
746		rc = ENXIO;
747		goto bce_attach_fail;
748	}
749
750	/* Get various resource handles. */
751	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
752	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
753	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
754
755	bce_probe_pci_caps(dev, sc);
756
757	rid = 1;
758#if 0
759	/* Try allocating MSI-X interrupts. */
760	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
761		(bce_msi_enable >= 2) &&
762		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
763		&rid, RF_ACTIVE)) != NULL)) {
764
765		msi_needed = sc->bce_msi_count = 1;
766
767		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
768			(sc->bce_msi_count != msi_needed)) {
769			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
770				"Received = %d, error = %d\n", __FILE__, __LINE__,
771				msi_needed, sc->bce_msi_count, error);
772			sc->bce_msi_count = 0;
773			pci_release_msi(dev);
774			bus_release_resource(dev, SYS_RES_MEMORY, rid,
775				sc->bce_res_irq);
776			sc->bce_res_irq = NULL;
777		} else {
778			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
779				__FUNCTION__);
780			sc->bce_flags |= BCE_USING_MSIX_FLAG;
781			sc->bce_intr = bce_intr;
782		}
783	}
784#endif
785
786	/* Try allocating a MSI interrupt. */
787	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
788		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
789		sc->bce_msi_count = 1;
790		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
791			BCE_PRINTF("%s(%d): MSI allocation failed! "
792			    "error = %d\n", __FILE__, __LINE__, error);
793			sc->bce_msi_count = 0;
794			pci_release_msi(dev);
795		} else {
796			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
797			    "interrupt.\n", __FUNCTION__);
798			sc->bce_flags |= BCE_USING_MSI_FLAG;
799			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
800				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
801				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
802			sc->bce_irq_rid = 1;
803			sc->bce_intr = bce_intr;
804		}
805	}
806
807	/* Try allocating a legacy interrupt. */
808	if (sc->bce_msi_count == 0) {
809		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
810			__FUNCTION__);
811		rid = 0;
812		sc->bce_intr = bce_intr;
813	}
814
815	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
816	    &rid, RF_SHAREABLE | RF_ACTIVE);
817
818	sc->bce_irq_rid = rid;
819
820	/* Report any IRQ allocation errors. */
821	if (sc->bce_res_irq == NULL) {
822		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
823		    __FILE__, __LINE__);
824		rc = ENXIO;
825		goto bce_attach_fail;
826	}
827
828	/* Initialize mutex for the current device instance. */
829	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
830
831	/*
832	 * Configure byte swap and enable indirect register access.
833	 * Rely on CPU to do target byte swapping on big endian systems.
834	 * Access to registers outside of PCI configurtion space are not
835	 * valid until this is done.
836	 */
837	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
838	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
839	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
840
841	/* Save ASIC revsion info. */
842	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
843
844	/* Weed out any non-production controller revisions. */
845	switch(BCE_CHIP_ID(sc)) {
846	case BCE_CHIP_ID_5706_A0:
847	case BCE_CHIP_ID_5706_A1:
848	case BCE_CHIP_ID_5708_A0:
849	case BCE_CHIP_ID_5708_B0:
850	case BCE_CHIP_ID_5709_A0:
851	case BCE_CHIP_ID_5709_B0:
852	case BCE_CHIP_ID_5709_B1:
853	case BCE_CHIP_ID_5709_B2:
854		BCE_PRINTF("%s(%d): Unsupported controller "
855		    "revision (%c%d)!\n", __FILE__, __LINE__,
856		    (((pci_read_config(dev, PCIR_REVID, 4) &
857		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
858		    PCIR_REVID, 4) & 0xf));
859		rc = ENODEV;
860		goto bce_attach_fail;
861	}
862
863	/*
864	 * The embedded PCIe to PCI-X bridge (EPB)
865	 * in the 5708 cannot address memory above
866	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
867	 */
868	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
869		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
870	else
871		sc->max_bus_addr = BUS_SPACE_MAXADDR;
872
873	/*
874	 * Find the base address for shared memory access.
875	 * Newer versions of bootcode use a signature and offset
876	 * while older versions use a fixed address.
877	 */
878	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
879	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
880		/* Multi-port devices use different offsets in shared memory. */
881		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
882		    (pci_get_function(sc->bce_dev) << 2));
883	else
884		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
885
886	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
887	    __FUNCTION__, sc->bce_shmem_base);
888
889	/* Fetch the bootcode revision. */
890	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
891	for (int i = 0, j = 0; i < 3; i++) {
892		u8 num;
893
894		num = (u8) (val >> (24 - (i * 8)));
895		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
896			if (num >= k || !skip0 || k == 1) {
897				sc->bce_bc_ver[j++] = (num / k) + '0';
898				skip0 = 0;
899			}
900		}
901
902		if (i != 2)
903			sc->bce_bc_ver[j++] = '.';
904	}
905
906	/* Check if any management firwmare is enabled. */
907	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
908	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
909		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
910
911		/* Allow time for firmware to enter the running state. */
912		for (int i = 0; i < 30; i++) {
913			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
914			if (val & BCE_CONDITION_MFW_RUN_MASK)
915				break;
916			DELAY(10000);
917		}
918
919		/* Check if management firmware is running. */
920		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
921		val &= BCE_CONDITION_MFW_RUN_MASK;
922		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
923		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
924			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
925			int i = 0;
926
927			/* Read the management firmware version string. */
928			for (int j = 0; j < 3; j++) {
929				val = bce_reg_rd_ind(sc, addr + j * 4);
930				val = bswap32(val);
931				memcpy(&sc->bce_mfw_ver[i], &val, 4);
932				i += 4;
933			}
934		} else {
935			/* May cause firmware synchronization timeouts. */
936			BCE_PRINTF("%s(%d): Management firmware enabled "
937			    "but not running!\n", __FILE__, __LINE__);
938			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
939
940			/* ToDo: Any action the driver should take? */
941		}
942	}
943
944	/* Get PCI bus information (speed and type). */
945	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
946	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
947		u32 clkreg;
948
949		sc->bce_flags |= BCE_PCIX_FLAG;
950
951		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
952
953		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
954		switch (clkreg) {
955		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
956			sc->bus_speed_mhz = 133;
957			break;
958
959		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
960			sc->bus_speed_mhz = 100;
961			break;
962
963		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
964		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
965			sc->bus_speed_mhz = 66;
966			break;
967
968		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
969		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
970			sc->bus_speed_mhz = 50;
971			break;
972
973		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
974		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
975		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
976			sc->bus_speed_mhz = 33;
977			break;
978		}
979	} else {
980		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
981			sc->bus_speed_mhz = 66;
982		else
983			sc->bus_speed_mhz = 33;
984	}
985
986	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
987		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
988
989	/* Reset controller and announce to bootcode that driver is present. */
990	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
991		BCE_PRINTF("%s(%d): Controller reset failed!\n",
992		    __FILE__, __LINE__);
993		rc = ENXIO;
994		goto bce_attach_fail;
995	}
996
997	/* Initialize the controller. */
998	if (bce_chipinit(sc)) {
999		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1000		    __FILE__, __LINE__);
1001		rc = ENXIO;
1002		goto bce_attach_fail;
1003	}
1004
1005	/* Perform NVRAM test. */
1006	if (bce_nvram_test(sc)) {
1007		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1008		    __FILE__, __LINE__);
1009		rc = ENXIO;
1010		goto bce_attach_fail;
1011	}
1012
1013	/* Fetch the permanent Ethernet MAC address. */
1014	bce_get_mac_addr(sc);
1015
1016	/*
1017	 * Trip points control how many BDs
1018	 * should be ready before generating an
1019	 * interrupt while ticks control how long
1020	 * a BD can sit in the chain before
1021	 * generating an interrupt.  Set the default
1022	 * values for the RX and TX chains.
1023	 */
1024
1025#ifdef BCE_DEBUG
1026	/* Force more frequent interrupts. */
1027	sc->bce_tx_quick_cons_trip_int = 1;
1028	sc->bce_tx_quick_cons_trip     = 1;
1029	sc->bce_tx_ticks_int           = 0;
1030	sc->bce_tx_ticks               = 0;
1031
1032	sc->bce_rx_quick_cons_trip_int = 1;
1033	sc->bce_rx_quick_cons_trip     = 1;
1034	sc->bce_rx_ticks_int           = 0;
1035	sc->bce_rx_ticks               = 0;
1036#else
1037	/* Improve throughput at the expense of increased latency. */
1038	sc->bce_tx_quick_cons_trip_int = 20;
1039	sc->bce_tx_quick_cons_trip     = 20;
1040	sc->bce_tx_ticks_int           = 80;
1041	sc->bce_tx_ticks               = 80;
1042
1043	sc->bce_rx_quick_cons_trip_int = 6;
1044	sc->bce_rx_quick_cons_trip     = 6;
1045	sc->bce_rx_ticks_int           = 18;
1046	sc->bce_rx_ticks               = 18;
1047#endif
1048
1049	/* Not used for L2. */
1050	sc->bce_comp_prod_trip_int = 0;
1051	sc->bce_comp_prod_trip = 0;
1052	sc->bce_com_ticks_int = 0;
1053	sc->bce_com_ticks = 0;
1054	sc->bce_cmd_ticks_int = 0;
1055	sc->bce_cmd_ticks = 0;
1056
1057	/* Update statistics once every second. */
1058	sc->bce_stats_ticks = 1000000 & 0xffff00;
1059
1060	/* Find the media type for the adapter. */
1061	bce_get_media(sc);
1062
1063	/* Store data needed by PHY driver for backplane applications */
1064	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1065	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1066
1067	/* Allocate DMA memory resources. */
1068	if (bce_dma_alloc(dev)) {
1069		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1070		    __FILE__, __LINE__);
1071		rc = ENXIO;
1072		goto bce_attach_fail;
1073	}
1074
1075	/* Allocate an ifnet structure. */
1076	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1077	if (ifp == NULL) {
1078		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1079		    __FILE__, __LINE__);
1080		rc = ENXIO;
1081		goto bce_attach_fail;
1082	}
1083
1084	/* Initialize the ifnet interface. */
1085	ifp->if_softc	= sc;
1086	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1087	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1088	ifp->if_ioctl	= bce_ioctl;
1089	ifp->if_start	= bce_start;
1090	ifp->if_init	= bce_init;
1091	ifp->if_mtu	= ETHERMTU;
1092
1093	if (bce_tso_enable) {
1094		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1095		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1096		    IFCAP_VLAN_HWTSO;
1097	} else {
1098		ifp->if_hwassist = BCE_IF_HWASSIST;
1099		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1100	}
1101
1102	ifp->if_capenable = ifp->if_capabilities;
1103
1104	/*
1105	 * Assume standard mbuf sizes for buffer allocation.
1106	 * This may change later if the MTU size is set to
1107	 * something other than 1500.
1108	 */
1109#ifdef BCE_JUMBO_HDRSPLIT
1110	sc->rx_bd_mbuf_alloc_size = MHLEN;
1111	/* Make sure offset is 16 byte aligned for hardware. */
1112	sc->rx_bd_mbuf_align_pad =
1113	    roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
1114	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1115	    sc->rx_bd_mbuf_align_pad;
1116	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1117#else
1118	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1119	sc->rx_bd_mbuf_align_pad =
1120	    roundup2(MCLBYTES, 16) - MCLBYTES;
1121	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1122	    sc->rx_bd_mbuf_align_pad;
1123#endif
1124
1125	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1126	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1127	IFQ_SET_READY(&ifp->if_snd);
1128
1129	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1130		ifp->if_baudrate = IF_Mbps(2500ULL);
1131	else
1132		ifp->if_baudrate = IF_Mbps(1000);
1133
1134	/* Handle any special PHY initialization for SerDes PHYs. */
1135	bce_init_media(sc);
1136
1137	/* MII child bus by probing the PHY. */
1138	if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1139		bce_ifmedia_sts)) {
1140		BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1141		    __FILE__, __LINE__);
1142		rc = ENXIO;
1143		goto bce_attach_fail;
1144	}
1145
1146	/* Attach to the Ethernet interface list. */
1147	ether_ifattach(ifp, sc->eaddr);
1148
1149#if __FreeBSD_version < 500000
1150	callout_init(&sc->bce_tick_callout);
1151	callout_init(&sc->bce_pulse_callout);
1152#else
1153	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1154	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1155#endif
1156
1157	/* Hookup IRQ last. */
1158	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1159		NULL, bce_intr, sc, &sc->bce_intrhand);
1160
1161	if (rc) {
1162		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1163		    __FILE__, __LINE__);
1164		bce_detach(dev);
1165		goto bce_attach_exit;
1166	}
1167
1168	/*
1169	 * At this point we've acquired all the resources
1170	 * we need to run so there's no turning back, we're
1171	 * cleared for launch.
1172	 */
1173
1174	/* Print some important debugging info. */
1175	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1176
1177	/* Add the supported sysctls to the kernel. */
1178	bce_add_sysctls(sc);
1179
1180	BCE_LOCK(sc);
1181
1182	/*
1183	 * The chip reset earlier notified the bootcode that
1184	 * a driver is present.  We now need to start our pulse
1185	 * routine so that the bootcode is reminded that we're
1186	 * still running.
1187	 */
1188	bce_pulse(sc);
1189
1190	bce_mgmt_init_locked(sc);
1191	BCE_UNLOCK(sc);
1192
1193	/* Finally, print some useful adapter info */
1194	bce_print_adapter_info(sc);
1195	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1196		__FUNCTION__, sc);
1197
1198	goto bce_attach_exit;
1199
1200bce_attach_fail:
1201	bce_release_resources(sc);
1202
1203bce_attach_exit:
1204
1205	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1206
1207	return(rc);
1208}
1209
1210
1211/****************************************************************************/
1212/* Device detach function.                                                  */
1213/*                                                                          */
1214/* Stops the controller, resets the controller, and releases resources.     */
1215/*                                                                          */
1216/* Returns:                                                                 */
1217/*   0 on success, positive value on failure.                               */
1218/****************************************************************************/
1219static int
1220bce_detach(device_t dev)
1221{
1222	struct bce_softc *sc = device_get_softc(dev);
1223	struct ifnet *ifp;
1224	u32 msg;
1225
1226	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1227
1228	ifp = sc->bce_ifp;
1229
1230	/* Stop and reset the controller. */
1231	BCE_LOCK(sc);
1232
1233	/* Stop the pulse so the bootcode can go to driver absent state. */
1234	callout_stop(&sc->bce_pulse_callout);
1235
1236	bce_stop(sc);
1237	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1238		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1239	else
1240		msg = BCE_DRV_MSG_CODE_UNLOAD;
1241	bce_reset(sc, msg);
1242
1243	BCE_UNLOCK(sc);
1244
1245	ether_ifdetach(ifp);
1246
1247	/* If we have a child device on the MII bus remove it too. */
1248	bus_generic_detach(dev);
1249	device_delete_child(dev, sc->bce_miibus);
1250
1251	/* Release all remaining resources. */
1252	bce_release_resources(sc);
1253
1254	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1255
1256	return(0);
1257}
1258
1259
1260/****************************************************************************/
1261/* Device shutdown function.                                                */
1262/*                                                                          */
1263/* Stops and resets the controller.                                         */
1264/*                                                                          */
1265/* Returns:                                                                 */
1266/*   0 on success, positive value on failure.                               */
1267/****************************************************************************/
1268static int
1269bce_shutdown(device_t dev)
1270{
1271	struct bce_softc *sc = device_get_softc(dev);
1272	u32 msg;
1273
1274	DBENTER(BCE_VERBOSE);
1275
1276	BCE_LOCK(sc);
1277	bce_stop(sc);
1278	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1279		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1280	else
1281		msg = BCE_DRV_MSG_CODE_UNLOAD;
1282	bce_reset(sc, msg);
1283	BCE_UNLOCK(sc);
1284
1285	DBEXIT(BCE_VERBOSE);
1286
1287	return (0);
1288}
1289
1290
1291#ifdef BCE_DEBUG
1292/****************************************************************************/
1293/* Register read.                                                           */
1294/*                                                                          */
1295/* Returns:                                                                 */
1296/*   The value of the register.                                             */
1297/****************************************************************************/
1298static u32
1299bce_reg_rd(struct bce_softc *sc, u32 offset)
1300{
1301	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1302	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1303		__FUNCTION__, offset, val);
1304	return val;
1305}
1306
1307
1308/****************************************************************************/
1309/* Register write (16 bit).                                                 */
1310/*                                                                          */
1311/* Returns:                                                                 */
1312/*   Nothing.                                                               */
1313/****************************************************************************/
1314static void
1315bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1316{
1317	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1318		__FUNCTION__, offset, val);
1319	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1320}
1321
1322
1323/****************************************************************************/
1324/* Register write.                                                          */
1325/*                                                                          */
1326/* Returns:                                                                 */
1327/*   Nothing.                                                               */
1328/****************************************************************************/
1329static void
1330bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1331{
1332	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1333		__FUNCTION__, offset, val);
1334	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1335}
1336#endif
1337
1338/****************************************************************************/
1339/* Indirect register read.                                                  */
1340/*                                                                          */
1341/* Reads NetXtreme II registers using an index/data register pair in PCI    */
1342/* configuration space.  Using this mechanism avoids issues with posted     */
1343/* reads but is much slower than memory-mapped I/O.                         */
1344/*                                                                          */
1345/* Returns:                                                                 */
1346/*   The value of the register.                                             */
1347/****************************************************************************/
1348static u32
1349bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1350{
1351	device_t dev;
1352	dev = sc->bce_dev;
1353
1354	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1355#ifdef BCE_DEBUG
1356	{
1357		u32 val;
1358		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1359		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1360			__FUNCTION__, offset, val);
1361		return val;
1362	}
1363#else
1364	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1365#endif
1366}
1367
1368
1369/****************************************************************************/
1370/* Indirect register write.                                                 */
1371/*                                                                          */
1372/* Writes NetXtreme II registers using an index/data register pair in PCI   */
1373/* configuration space.  Using this mechanism avoids issues with posted     */
1374/* writes but is muchh slower than memory-mapped I/O.                       */
1375/*                                                                          */
1376/* Returns:                                                                 */
1377/*   Nothing.                                                               */
1378/****************************************************************************/
1379static void
1380bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1381{
1382	device_t dev;
1383	dev = sc->bce_dev;
1384
1385	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1386		__FUNCTION__, offset, val);
1387
1388	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1389	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1390}
1391
1392
1393/****************************************************************************/
1394/* Shared memory write.                                                     */
1395/*                                                                          */
1396/* Writes NetXtreme II shared memory region.                                */
1397/*                                                                          */
1398/* Returns:                                                                 */
1399/*   Nothing.                                                               */
1400/****************************************************************************/
1401static void
1402bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1403{
1404	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1405	    "0x%08X\n",	__FUNCTION__, val, offset);
1406
1407	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1408}
1409
1410
1411/****************************************************************************/
1412/* Shared memory read.                                                      */
1413/*                                                                          */
1414/* Reads NetXtreme II shared memory region.                                 */
1415/*                                                                          */
1416/* Returns:                                                                 */
1417/*   The 32 bit value read.                                                 */
1418/****************************************************************************/
1419static u32
1420bce_shmem_rd(struct bce_softc *sc, u32 offset)
1421{
1422	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1423
1424	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1425	    "0x%08X\n",	__FUNCTION__, val, offset);
1426
1427	return val;
1428}
1429
1430
1431#ifdef BCE_DEBUG
1432/****************************************************************************/
1433/* Context memory read.                                                     */
1434/*                                                                          */
1435/* The NetXtreme II controller uses context memory to track connection      */
1436/* information for L2 and higher network protocols.                         */
1437/*                                                                          */
1438/* Returns:                                                                 */
1439/*   The requested 32 bit value of context memory.                          */
1440/****************************************************************************/
1441static u32
1442bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1443{
1444	u32 idx, offset, retry_cnt = 5, val;
1445
1446	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1447	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1448	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1449
1450	offset = ctx_offset + cid_addr;
1451
1452	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1453		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1454
1455		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1456
1457		for (idx = 0; idx < retry_cnt; idx++) {
1458			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1459			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1460				break;
1461			DELAY(5);
1462		}
1463
1464		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1465			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1466			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1467			    __FILE__, __LINE__, cid_addr, ctx_offset);
1468
1469		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1470	} else {
1471		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1472		val = REG_RD(sc, BCE_CTX_DATA);
1473	}
1474
1475	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1476		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1477
1478	return(val);
1479}
1480#endif
1481
1482
1483/****************************************************************************/
1484/* Context memory write.                                                    */
1485/*                                                                          */
1486/* The NetXtreme II controller uses context memory to track connection      */
1487/* information for L2 and higher network protocols.                         */
1488/*                                                                          */
1489/* Returns:                                                                 */
1490/*   Nothing.                                                               */
1491/****************************************************************************/
1492static void
1493bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1494{
1495	u32 idx, offset = ctx_offset + cid_addr;
1496	u32 val, retry_cnt = 5;
1497
1498	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1499		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1500
1501	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1502		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1503		    __FUNCTION__, cid_addr));
1504
1505	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1506		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1507
1508		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1509		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1510
1511		for (idx = 0; idx < retry_cnt; idx++) {
1512			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1513			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1514				break;
1515			DELAY(5);
1516		}
1517
1518		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1519			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1520			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1521			    __FILE__, __LINE__, cid_addr, ctx_offset);
1522
1523	} else {
1524		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1525		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1526	}
1527}
1528
1529
1530/****************************************************************************/
1531/* PHY register read.                                                       */
1532/*                                                                          */
1533/* Implements register reads on the MII bus.                                */
1534/*                                                                          */
1535/* Returns:                                                                 */
1536/*   The value of the register.                                             */
1537/****************************************************************************/
1538static int
1539bce_miibus_read_reg(device_t dev, int phy, int reg)
1540{
1541	struct bce_softc *sc;
1542	u32 val;
1543	int i;
1544
1545	sc = device_get_softc(dev);
1546
1547	/* Make sure we are accessing the correct PHY address. */
1548	if (phy != sc->bce_phy_addr) {
1549		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1550		    "for PHY read!\n", phy);
1551		return(0);
1552	}
1553
1554    /*
1555     * The 5709S PHY is an IEEE Clause 45 PHY
1556     * with special mappings to work with IEEE
1557     * Clause 22 register accesses.
1558     */
1559	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1560		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1561			reg += 0x10;
1562	}
1563
1564    if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1565		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1566		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1567
1568		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1569		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1570
1571		DELAY(40);
1572	}
1573
1574
1575	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1576	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1577	    BCE_EMAC_MDIO_COMM_START_BUSY;
1578	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1579
1580	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1581		DELAY(10);
1582
1583		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1584		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1585			DELAY(5);
1586
1587			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1588			val &= BCE_EMAC_MDIO_COMM_DATA;
1589
1590			break;
1591		}
1592	}
1593
1594	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1595		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1596		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1597		val = 0x0;
1598	} else {
1599		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1600	}
1601
1602
1603	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1604		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1605		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1606
1607		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1608		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1609
1610		DELAY(40);
1611	}
1612
1613	DB_PRINT_PHY_REG(reg, val);
1614	return (val & 0xffff);
1615
1616}
1617
1618
1619/****************************************************************************/
1620/* PHY register write.                                                      */
1621/*                                                                          */
1622/* Implements register writes on the MII bus.                               */
1623/*                                                                          */
1624/* Returns:                                                                 */
1625/*   The value of the register.                                             */
1626/****************************************************************************/
1627static int
1628bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1629{
1630	struct bce_softc *sc;
1631	u32 val1;
1632	int i;
1633
1634	sc = device_get_softc(dev);
1635
1636	/* Make sure we are accessing the correct PHY address. */
1637	if (phy != sc->bce_phy_addr) {
1638		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1639		    "for PHY write!\n", phy);
1640		return(0);
1641	}
1642
1643	DB_PRINT_PHY_REG(reg, val);
1644
1645	/*
1646	 * The 5709S PHY is an IEEE Clause 45 PHY
1647	 * with special mappings to work with IEEE
1648	 * Clause 22 register accesses.
1649	 */
1650	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1651		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1652			reg += 0x10;
1653	}
1654
1655	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1656		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1657		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1658
1659		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1660		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1661
1662		DELAY(40);
1663	}
1664
1665	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1666	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1667	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1668	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1669
1670	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1671		DELAY(10);
1672
1673		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1674		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1675			DELAY(5);
1676			break;
1677		}
1678	}
1679
1680	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1681		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1682		    __FILE__, __LINE__);
1683
1684	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1685		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1686		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1687
1688		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1689		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1690
1691		DELAY(40);
1692	}
1693
1694	return 0;
1695}
1696
1697
1698/****************************************************************************/
1699/* MII bus status change.                                                   */
1700/*                                                                          */
1701/* Called by the MII bus driver when the PHY establishes link to set the    */
1702/* MAC interface registers.                                                 */
1703/*                                                                          */
1704/* Returns:                                                                 */
1705/*   Nothing.                                                               */
1706/****************************************************************************/
1707static void
1708bce_miibus_statchg(device_t dev)
1709{
1710	struct bce_softc *sc;
1711	struct mii_data *mii;
1712	int val;
1713
1714	sc = device_get_softc(dev);
1715
1716	DBENTER(BCE_VERBOSE_PHY);
1717
1718	mii = device_get_softc(sc->bce_miibus);
1719
1720	val = REG_RD(sc, BCE_EMAC_MODE);
1721	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1722	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1723	    BCE_EMAC_MODE_25G);
1724
1725	/* Set MII or GMII interface based on the PHY speed. */
1726	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1727	case IFM_10_T:
1728		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1729			DBPRINT(sc, BCE_INFO_PHY,
1730			    "Enabling 10Mb interface.\n");
1731			val |= BCE_EMAC_MODE_PORT_MII_10;
1732			break;
1733		}
1734		/* fall-through */
1735	case IFM_100_TX:
1736		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
1737		val |= BCE_EMAC_MODE_PORT_MII;
1738		break;
1739	case IFM_2500_SX:
1740		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
1741		val |= BCE_EMAC_MODE_25G;
1742		/* fall-through */
1743	case IFM_1000_T:
1744	case IFM_1000_SX:
1745		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
1746		val |= BCE_EMAC_MODE_PORT_GMII;
1747		break;
1748	default:
1749		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
1750		    "default GMII interface.\n");
1751		val |= BCE_EMAC_MODE_PORT_GMII;
1752	}
1753
1754	/* Set half or full duplex based on PHY settings. */
1755	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1756		DBPRINT(sc, BCE_INFO_PHY,
1757		    "Setting Half-Duplex interface.\n");
1758		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1759	} else
1760		DBPRINT(sc, BCE_INFO_PHY,
1761		    "Setting Full-Duplex interface.\n");
1762
1763	REG_WR(sc, BCE_EMAC_MODE, val);
1764
1765	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1766 	if (mii->mii_media_active & IFM_FLAG0) {
1767		DBPRINT(sc, BCE_INFO_PHY,
1768		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
1769		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1770	} else {
1771		DBPRINT(sc, BCE_INFO_PHY,
1772		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
1773		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1774	}
1775
1776 	if (mii->mii_media_active & IFM_FLAG1) {
1777		DBPRINT(sc, BCE_INFO_PHY,
1778		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
1779		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1780		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
1781	} else {
1782		DBPRINT(sc, BCE_INFO_PHY,
1783		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
1784		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1785		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
1786	}
1787
1788	/* ToDo: Update watermarks in bce_init_rx_context(). */
1789
1790	DBEXIT(BCE_VERBOSE_PHY);
1791}
1792
1793
1794/****************************************************************************/
1795/* Acquire NVRAM lock.                                                      */
1796/*                                                                          */
1797/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1798/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1799/* for use by the driver.                                                   */
1800/*                                                                          */
1801/* Returns:                                                                 */
1802/*   0 on success, positive value on failure.                               */
1803/****************************************************************************/
1804static int
1805bce_acquire_nvram_lock(struct bce_softc *sc)
1806{
1807	u32 val;
1808	int j, rc = 0;
1809
1810	DBENTER(BCE_VERBOSE_NVRAM);
1811
1812	/* Request access to the flash interface. */
1813	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1814	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1815		val = REG_RD(sc, BCE_NVM_SW_ARB);
1816		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1817			break;
1818
1819		DELAY(5);
1820	}
1821
1822	if (j >= NVRAM_TIMEOUT_COUNT) {
1823		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1824		rc = EBUSY;
1825	}
1826
1827	DBEXIT(BCE_VERBOSE_NVRAM);
1828	return (rc);
1829}
1830
1831
1832/****************************************************************************/
1833/* Release NVRAM lock.                                                      */
1834/*                                                                          */
1835/* When the caller is finished accessing NVRAM the lock must be released.   */
1836/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1837/* for use by the driver.                                                   */
1838/*                                                                          */
1839/* Returns:                                                                 */
1840/*   0 on success, positive value on failure.                               */
1841/****************************************************************************/
1842static int
1843bce_release_nvram_lock(struct bce_softc *sc)
1844{
1845	u32 val;
1846	int j, rc = 0;
1847
1848	DBENTER(BCE_VERBOSE_NVRAM);
1849
1850	/*
1851	 * Relinquish nvram interface.
1852	 */
1853	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1854
1855	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1856		val = REG_RD(sc, BCE_NVM_SW_ARB);
1857		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1858			break;
1859
1860		DELAY(5);
1861	}
1862
1863	if (j >= NVRAM_TIMEOUT_COUNT) {
1864		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1865		rc = EBUSY;
1866	}
1867
1868	DBEXIT(BCE_VERBOSE_NVRAM);
1869	return (rc);
1870}
1871
1872
1873#ifdef BCE_NVRAM_WRITE_SUPPORT
1874/****************************************************************************/
1875/* Enable NVRAM write access.                                               */
1876/*                                                                          */
1877/* Before writing to NVRAM the caller must enable NVRAM writes.             */
1878/*                                                                          */
1879/* Returns:                                                                 */
1880/*   0 on success, positive value on failure.                               */
1881/****************************************************************************/
1882static int
1883bce_enable_nvram_write(struct bce_softc *sc)
1884{
1885	u32 val;
1886	int rc = 0;
1887
1888	DBENTER(BCE_VERBOSE_NVRAM);
1889
1890	val = REG_RD(sc, BCE_MISC_CFG);
1891	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1892
1893	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1894		int j;
1895
1896		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1897		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1898
1899		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1900			DELAY(5);
1901
1902			val = REG_RD(sc, BCE_NVM_COMMAND);
1903			if (val & BCE_NVM_COMMAND_DONE)
1904				break;
1905		}
1906
1907		if (j >= NVRAM_TIMEOUT_COUNT) {
1908			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1909			rc = EBUSY;
1910		}
1911	}
1912
1913	DBENTER(BCE_VERBOSE_NVRAM);
1914	return (rc);
1915}
1916
1917
1918/****************************************************************************/
1919/* Disable NVRAM write access.                                              */
1920/*                                                                          */
1921/* When the caller is finished writing to NVRAM write access must be        */
1922/* disabled.                                                                */
1923/*                                                                          */
1924/* Returns:                                                                 */
1925/*   Nothing.                                                               */
1926/****************************************************************************/
1927static void
1928bce_disable_nvram_write(struct bce_softc *sc)
1929{
1930	u32 val;
1931
1932	DBENTER(BCE_VERBOSE_NVRAM);
1933
1934	val = REG_RD(sc, BCE_MISC_CFG);
1935	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1936
1937	DBEXIT(BCE_VERBOSE_NVRAM);
1938
1939}
1940#endif
1941
1942
1943/****************************************************************************/
1944/* Enable NVRAM access.                                                     */
1945/*                                                                          */
1946/* Before accessing NVRAM for read or write operations the caller must      */
1947/* enabled NVRAM access.                                                    */
1948/*                                                                          */
1949/* Returns:                                                                 */
1950/*   Nothing.                                                               */
1951/****************************************************************************/
1952static void
1953bce_enable_nvram_access(struct bce_softc *sc)
1954{
1955	u32 val;
1956
1957	DBENTER(BCE_VERBOSE_NVRAM);
1958
1959	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1960	/* Enable both bits, even on read. */
1961	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
1962	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1963
1964	DBEXIT(BCE_VERBOSE_NVRAM);
1965}
1966
1967
1968/****************************************************************************/
1969/* Disable NVRAM access.                                                    */
1970/*                                                                          */
1971/* When the caller is finished accessing NVRAM access must be disabled.     */
1972/*                                                                          */
1973/* Returns:                                                                 */
1974/*   Nothing.                                                               */
1975/****************************************************************************/
1976static void
1977bce_disable_nvram_access(struct bce_softc *sc)
1978{
1979	u32 val;
1980
1981	DBENTER(BCE_VERBOSE_NVRAM);
1982
1983	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1984
1985	/* Disable both bits, even after read. */
1986	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
1987	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1988
1989	DBEXIT(BCE_VERBOSE_NVRAM);
1990}
1991
1992
1993#ifdef BCE_NVRAM_WRITE_SUPPORT
1994/****************************************************************************/
1995/* Erase NVRAM page before writing.                                         */
1996/*                                                                          */
1997/* Non-buffered flash parts require that a page be erased before it is      */
1998/* written.                                                                 */
1999/*                                                                          */
2000/* Returns:                                                                 */
2001/*   0 on success, positive value on failure.                               */
2002/****************************************************************************/
2003static int
2004bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2005{
2006	u32 cmd;
2007	int j, rc = 0;
2008
2009	DBENTER(BCE_VERBOSE_NVRAM);
2010
2011	/* Buffered flash doesn't require an erase. */
2012	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2013		goto bce_nvram_erase_page_exit;
2014
2015	/* Build an erase command. */
2016	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2017	    BCE_NVM_COMMAND_DOIT;
2018
2019	/*
2020	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2021	 * and issue the erase command.
2022	 */
2023	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2024	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2025	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2026
2027	/* Wait for completion. */
2028	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2029		u32 val;
2030
2031		DELAY(5);
2032
2033		val = REG_RD(sc, BCE_NVM_COMMAND);
2034		if (val & BCE_NVM_COMMAND_DONE)
2035			break;
2036	}
2037
2038	if (j >= NVRAM_TIMEOUT_COUNT) {
2039		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2040		rc = EBUSY;
2041	}
2042
2043bce_nvram_erase_page_exit:
2044	DBEXIT(BCE_VERBOSE_NVRAM);
2045	return (rc);
2046}
2047#endif /* BCE_NVRAM_WRITE_SUPPORT */
2048
2049
2050/****************************************************************************/
2051/* Read a dword (32 bits) from NVRAM.                                       */
2052/*                                                                          */
2053/* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2054/* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2055/*                                                                          */
2056/* Returns:                                                                 */
2057/*   0 on success and the 32 bit value read, positive value on failure.     */
2058/****************************************************************************/
2059static int
2060bce_nvram_read_dword(struct bce_softc *sc,
2061    u32 offset, u8 *ret_val, u32 cmd_flags)
2062{
2063	u32 cmd;
2064	int i, rc = 0;
2065
2066	DBENTER(BCE_EXTREME_NVRAM);
2067
2068	/* Build the command word. */
2069	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2070
2071	/* Calculate the offset for buffered flash if translation is used. */
2072	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2073		offset = ((offset / sc->bce_flash_info->page_size) <<
2074		    sc->bce_flash_info->page_bits) +
2075		    (offset % sc->bce_flash_info->page_size);
2076	}
2077
2078	/*
2079	 * Clear the DONE bit separately, set the address to read,
2080	 * and issue the read.
2081	 */
2082	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2083	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2084	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2085
2086	/* Wait for completion. */
2087	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2088		u32 val;
2089
2090		DELAY(5);
2091
2092		val = REG_RD(sc, BCE_NVM_COMMAND);
2093		if (val & BCE_NVM_COMMAND_DONE) {
2094			val = REG_RD(sc, BCE_NVM_READ);
2095
2096			val = bce_be32toh(val);
2097			memcpy(ret_val, &val, 4);
2098			break;
2099		}
2100	}
2101
2102	/* Check for errors. */
2103	if (i >= NVRAM_TIMEOUT_COUNT) {
2104		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2105		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2106		rc = EBUSY;
2107	}
2108
2109	DBEXIT(BCE_EXTREME_NVRAM);
2110	return(rc);
2111}
2112
2113
2114#ifdef BCE_NVRAM_WRITE_SUPPORT
2115/****************************************************************************/
2116/* Write a dword (32 bits) to NVRAM.                                        */
2117/*                                                                          */
2118/* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2119/* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2120/* enabled NVRAM write access.                                              */
2121/*                                                                          */
2122/* Returns:                                                                 */
2123/*   0 on success, positive value on failure.                               */
2124/****************************************************************************/
2125static int
2126bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2127	u32 cmd_flags)
2128{
2129	u32 cmd, val32;
2130	int j, rc = 0;
2131
2132	DBENTER(BCE_VERBOSE_NVRAM);
2133
2134	/* Build the command word. */
2135	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2136
2137	/* Calculate the offset for buffered flash if translation is used. */
2138	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2139		offset = ((offset / sc->bce_flash_info->page_size) <<
2140		    sc->bce_flash_info->page_bits) +
2141		    (offset % sc->bce_flash_info->page_size);
2142	}
2143
2144	/*
2145	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2146	 * set the NVRAM address to write, and issue the write command
2147	 */
2148	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2149	memcpy(&val32, val, 4);
2150	val32 = htobe32(val32);
2151	REG_WR(sc, BCE_NVM_WRITE, val32);
2152	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2153	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2154
2155	/* Wait for completion. */
2156	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2157		DELAY(5);
2158
2159		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2160			break;
2161	}
2162	if (j >= NVRAM_TIMEOUT_COUNT) {
2163		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2164		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2165		rc = EBUSY;
2166	}
2167
2168	DBEXIT(BCE_VERBOSE_NVRAM);
2169	return (rc);
2170}
2171#endif /* BCE_NVRAM_WRITE_SUPPORT */
2172
2173
2174/****************************************************************************/
2175/* Initialize NVRAM access.                                                 */
2176/*                                                                          */
2177/* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2178/* access that device.                                                      */
2179/*                                                                          */
2180/* Returns:                                                                 */
2181/*   0 on success, positive value on failure.                               */
2182/****************************************************************************/
2183static int
2184bce_init_nvram(struct bce_softc *sc)
2185{
2186	u32 val;
2187	int j, entry_count, rc = 0;
2188	struct flash_spec *flash;
2189
2190	DBENTER(BCE_VERBOSE_NVRAM);
2191
2192	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2193		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2194		sc->bce_flash_info = &flash_5709;
2195		goto bce_init_nvram_get_flash_size;
2196	}
2197
2198	/* Determine the selected interface. */
2199	val = REG_RD(sc, BCE_NVM_CFG1);
2200
2201	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2202
2203	/*
2204	 * Flash reconfiguration is required to support additional
2205	 * NVRAM devices not directly supported in hardware.
2206	 * Check if the flash interface was reconfigured
2207	 * by the bootcode.
2208	 */
2209
2210	if (val & 0x40000000) {
2211		/* Flash interface reconfigured by bootcode. */
2212
2213		DBPRINT(sc,BCE_INFO_LOAD,
2214			"bce_init_nvram(): Flash WAS reconfigured.\n");
2215
2216		for (j = 0, flash = &flash_table[0]; j < entry_count;
2217		     j++, flash++) {
2218			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2219			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2220				sc->bce_flash_info = flash;
2221				break;
2222			}
2223		}
2224	} else {
2225		/* Flash interface not yet reconfigured. */
2226		u32 mask;
2227
2228		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2229			__FUNCTION__);
2230
2231		if (val & (1 << 23))
2232			mask = FLASH_BACKUP_STRAP_MASK;
2233		else
2234			mask = FLASH_STRAP_MASK;
2235
2236		/* Look for the matching NVRAM device configuration data. */
2237		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2238
2239			/* Check if the device matches any of the known devices. */
2240			if ((val & mask) == (flash->strapping & mask)) {
2241				/* Found a device match. */
2242				sc->bce_flash_info = flash;
2243
2244				/* Request access to the flash interface. */
2245				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2246					return rc;
2247
2248				/* Reconfigure the flash interface. */
2249				bce_enable_nvram_access(sc);
2250				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2251				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2252				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2253				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2254				bce_disable_nvram_access(sc);
2255				bce_release_nvram_lock(sc);
2256
2257				break;
2258			}
2259		}
2260	}
2261
2262	/* Check if a matching device was found. */
2263	if (j == entry_count) {
2264		sc->bce_flash_info = NULL;
2265		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2266		    __FILE__, __LINE__);
2267		DBEXIT(BCE_VERBOSE_NVRAM);
2268		return (ENODEV);
2269	}
2270
2271bce_init_nvram_get_flash_size:
2272	/* Write the flash config data to the shared memory interface. */
2273	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2274	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2275	if (val)
2276		sc->bce_flash_size = val;
2277	else
2278		sc->bce_flash_size = sc->bce_flash_info->total_size;
2279
2280	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2281	    __FUNCTION__, sc->bce_flash_info->name,
2282	    sc->bce_flash_info->total_size);
2283
2284	DBEXIT(BCE_VERBOSE_NVRAM);
2285	return rc;
2286}
2287
2288
2289/****************************************************************************/
2290/* Read an arbitrary range of data from NVRAM.                              */
2291/*                                                                          */
2292/* Prepares the NVRAM interface for access and reads the requested data     */
2293/* into the supplied buffer.                                                */
2294/*                                                                          */
2295/* Returns:                                                                 */
2296/*   0 on success and the data read, positive value on failure.             */
2297/****************************************************************************/
2298static int
2299bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2300	int buf_size)
2301{
2302	int rc = 0;
2303	u32 cmd_flags, offset32, len32, extra;
2304
2305	DBENTER(BCE_VERBOSE_NVRAM);
2306
2307	if (buf_size == 0)
2308		goto bce_nvram_read_exit;
2309
2310	/* Request access to the flash interface. */
2311	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2312		goto bce_nvram_read_exit;
2313
2314	/* Enable access to flash interface */
2315	bce_enable_nvram_access(sc);
2316
2317	len32 = buf_size;
2318	offset32 = offset;
2319	extra = 0;
2320
2321	cmd_flags = 0;
2322
2323	if (offset32 & 3) {
2324		u8 buf[4];
2325		u32 pre_len;
2326
2327		offset32 &= ~3;
2328		pre_len = 4 - (offset & 3);
2329
2330		if (pre_len >= len32) {
2331			pre_len = len32;
2332			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2333		}
2334		else {
2335			cmd_flags = BCE_NVM_COMMAND_FIRST;
2336		}
2337
2338		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2339
2340		if (rc)
2341			return rc;
2342
2343		memcpy(ret_buf, buf + (offset & 3), pre_len);
2344
2345		offset32 += 4;
2346		ret_buf += pre_len;
2347		len32 -= pre_len;
2348	}
2349
2350	if (len32 & 3) {
2351		extra = 4 - (len32 & 3);
2352		len32 = (len32 + 4) & ~3;
2353	}
2354
2355	if (len32 == 4) {
2356		u8 buf[4];
2357
2358		if (cmd_flags)
2359			cmd_flags = BCE_NVM_COMMAND_LAST;
2360		else
2361			cmd_flags = BCE_NVM_COMMAND_FIRST |
2362				    BCE_NVM_COMMAND_LAST;
2363
2364		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2365
2366		memcpy(ret_buf, buf, 4 - extra);
2367	}
2368	else if (len32 > 0) {
2369		u8 buf[4];
2370
2371		/* Read the first word. */
2372		if (cmd_flags)
2373			cmd_flags = 0;
2374		else
2375			cmd_flags = BCE_NVM_COMMAND_FIRST;
2376
2377		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2378
2379		/* Advance to the next dword. */
2380		offset32 += 4;
2381		ret_buf += 4;
2382		len32 -= 4;
2383
2384		while (len32 > 4 && rc == 0) {
2385			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2386
2387			/* Advance to the next dword. */
2388			offset32 += 4;
2389			ret_buf += 4;
2390			len32 -= 4;
2391		}
2392
2393		if (rc)
2394			goto bce_nvram_read_locked_exit;
2395
2396		cmd_flags = BCE_NVM_COMMAND_LAST;
2397		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2398
2399		memcpy(ret_buf, buf, 4 - extra);
2400	}
2401
2402bce_nvram_read_locked_exit:
2403	/* Disable access to flash interface and release the lock. */
2404	bce_disable_nvram_access(sc);
2405	bce_release_nvram_lock(sc);
2406
2407bce_nvram_read_exit:
2408	DBEXIT(BCE_VERBOSE_NVRAM);
2409	return rc;
2410}
2411
2412
2413#ifdef BCE_NVRAM_WRITE_SUPPORT
2414/****************************************************************************/
2415/* Write an arbitrary range of data from NVRAM.                             */
2416/*                                                                          */
2417/* Prepares the NVRAM interface for write access and writes the requested   */
2418/* data from the supplied buffer.  The caller is responsible for            */
2419/* calculating any appropriate CRCs.                                        */
2420/*                                                                          */
2421/* Returns:                                                                 */
2422/*   0 on success, positive value on failure.                               */
2423/****************************************************************************/
2424static int
2425bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2426	int buf_size)
2427{
2428	u32 written, offset32, len32;
2429	u8 *buf, start[4], end[4];
2430	int rc = 0;
2431	int align_start, align_end;
2432
2433	DBENTER(BCE_VERBOSE_NVRAM);
2434
2435	buf = data_buf;
2436	offset32 = offset;
2437	len32 = buf_size;
2438	align_start = align_end = 0;
2439
2440	if ((align_start = (offset32 & 3))) {
2441		offset32 &= ~3;
2442		len32 += align_start;
2443		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2444			goto bce_nvram_write_exit;
2445	}
2446
2447	if (len32 & 3) {
2448	       	if ((len32 > 4) || !align_start) {
2449			align_end = 4 - (len32 & 3);
2450			len32 += align_end;
2451			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2452				end, 4))) {
2453				goto bce_nvram_write_exit;
2454			}
2455		}
2456	}
2457
2458	if (align_start || align_end) {
2459		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2460		if (buf == 0) {
2461			rc = ENOMEM;
2462			goto bce_nvram_write_exit;
2463		}
2464
2465		if (align_start) {
2466			memcpy(buf, start, 4);
2467		}
2468
2469		if (align_end) {
2470			memcpy(buf + len32 - 4, end, 4);
2471		}
2472		memcpy(buf + align_start, data_buf, buf_size);
2473	}
2474
2475	written = 0;
2476	while ((written < len32) && (rc == 0)) {
2477		u32 page_start, page_end, data_start, data_end;
2478		u32 addr, cmd_flags;
2479		int i;
2480		u8 flash_buffer[264];
2481
2482	    /* Find the page_start addr */
2483		page_start = offset32 + written;
2484		page_start -= (page_start % sc->bce_flash_info->page_size);
2485		/* Find the page_end addr */
2486		page_end = page_start + sc->bce_flash_info->page_size;
2487		/* Find the data_start addr */
2488		data_start = (written == 0) ? offset32 : page_start;
2489		/* Find the data_end addr */
2490		data_end = (page_end > offset32 + len32) ?
2491			(offset32 + len32) : page_end;
2492
2493		/* Request access to the flash interface. */
2494		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2495			goto bce_nvram_write_exit;
2496
2497		/* Enable access to flash interface */
2498		bce_enable_nvram_access(sc);
2499
2500		cmd_flags = BCE_NVM_COMMAND_FIRST;
2501		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2502			int j;
2503
2504			/* Read the whole page into the buffer
2505			 * (non-buffer flash only) */
2506			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2507				if (j == (sc->bce_flash_info->page_size - 4)) {
2508					cmd_flags |= BCE_NVM_COMMAND_LAST;
2509				}
2510				rc = bce_nvram_read_dword(sc,
2511					page_start + j,
2512					&flash_buffer[j],
2513					cmd_flags);
2514
2515				if (rc)
2516					goto bce_nvram_write_locked_exit;
2517
2518				cmd_flags = 0;
2519			}
2520		}
2521
2522		/* Enable writes to flash interface (unlock write-protect) */
2523		if ((rc = bce_enable_nvram_write(sc)) != 0)
2524			goto bce_nvram_write_locked_exit;
2525
2526		/* Erase the page */
2527		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2528			goto bce_nvram_write_locked_exit;
2529
2530		/* Re-enable the write again for the actual write */
2531		bce_enable_nvram_write(sc);
2532
2533		/* Loop to write back the buffer data from page_start to
2534		 * data_start */
2535		i = 0;
2536		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2537			for (addr = page_start; addr < data_start;
2538				addr += 4, i += 4) {
2539
2540				rc = bce_nvram_write_dword(sc, addr,
2541					&flash_buffer[i], cmd_flags);
2542
2543				if (rc != 0)
2544					goto bce_nvram_write_locked_exit;
2545
2546				cmd_flags = 0;
2547			}
2548		}
2549
2550		/* Loop to write the new data from data_start to data_end */
2551		for (addr = data_start; addr < data_end; addr += 4, i++) {
2552			if ((addr == page_end - 4) ||
2553				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2554				(addr == data_end - 4))) {
2555
2556				cmd_flags |= BCE_NVM_COMMAND_LAST;
2557			}
2558			rc = bce_nvram_write_dword(sc, addr, buf,
2559				cmd_flags);
2560
2561			if (rc != 0)
2562				goto bce_nvram_write_locked_exit;
2563
2564			cmd_flags = 0;
2565			buf += 4;
2566		}
2567
2568		/* Loop to write back the buffer data from data_end
2569		 * to page_end */
2570		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2571			for (addr = data_end; addr < page_end;
2572				addr += 4, i += 4) {
2573
2574				if (addr == page_end-4) {
2575					cmd_flags = BCE_NVM_COMMAND_LAST;
2576                		}
2577				rc = bce_nvram_write_dword(sc, addr,
2578					&flash_buffer[i], cmd_flags);
2579
2580				if (rc != 0)
2581					goto bce_nvram_write_locked_exit;
2582
2583				cmd_flags = 0;
2584			}
2585		}
2586
2587		/* Disable writes to flash interface (lock write-protect) */
2588		bce_disable_nvram_write(sc);
2589
2590		/* Disable access to flash interface */
2591		bce_disable_nvram_access(sc);
2592		bce_release_nvram_lock(sc);
2593
2594		/* Increment written */
2595		written += data_end - data_start;
2596	}
2597
2598	goto bce_nvram_write_exit;
2599
2600bce_nvram_write_locked_exit:
2601		bce_disable_nvram_write(sc);
2602		bce_disable_nvram_access(sc);
2603		bce_release_nvram_lock(sc);
2604
2605bce_nvram_write_exit:
2606	if (align_start || align_end)
2607		free(buf, M_DEVBUF);
2608
2609	DBEXIT(BCE_VERBOSE_NVRAM);
2610	return (rc);
2611}
2612#endif /* BCE_NVRAM_WRITE_SUPPORT */
2613
2614
2615/****************************************************************************/
2616/* Verifies that NVRAM is accessible and contains valid data.               */
2617/*                                                                          */
2618/* Reads the configuration data from NVRAM and verifies that the CRC is     */
2619/* correct.                                                                 */
2620/*                                                                          */
2621/* Returns:                                                                 */
2622/*   0 on success, positive value on failure.                               */
2623/****************************************************************************/
2624static int
2625bce_nvram_test(struct bce_softc *sc)
2626{
2627	u32 buf[BCE_NVRAM_SIZE / 4];
2628	u8 *data = (u8 *) buf;
2629	int rc = 0;
2630	u32 magic, csum;
2631
2632	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2633
2634	/*
2635	 * Check that the device NVRAM is valid by reading
2636	 * the magic value at offset 0.
2637	 */
2638	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2639		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2640		    __FILE__, __LINE__);
2641		goto bce_nvram_test_exit;
2642	}
2643
2644	/*
2645	 * Verify that offset 0 of the NVRAM contains
2646	 * a valid magic number.
2647	 */
2648    magic = bce_be32toh(buf[0]);
2649	if (magic != BCE_NVRAM_MAGIC) {
2650		rc = ENODEV;
2651		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2652		    "Expected: 0x%08X, Found: 0x%08X\n",
2653		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2654		goto bce_nvram_test_exit;
2655	}
2656
2657	/*
2658	 * Verify that the device NVRAM includes valid
2659	 * configuration data.
2660	 */
2661	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2662		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2663		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2664		goto bce_nvram_test_exit;
2665	}
2666
2667	csum = ether_crc32_le(data, 0x100);
2668	if (csum != BCE_CRC32_RESIDUAL) {
2669		rc = ENODEV;
2670		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2671		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2672		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2673		goto bce_nvram_test_exit;
2674	}
2675
2676	csum = ether_crc32_le(data + 0x100, 0x100);
2677	if (csum != BCE_CRC32_RESIDUAL) {
2678		rc = ENODEV;
2679		BCE_PRINTF("%s(%d): Invalid feature configuration "
2680		    "information NVRAM CRC! Expected: 0x%08X, "
2681		    "Found: 08%08X\n", __FILE__, __LINE__,
2682		    BCE_CRC32_RESIDUAL, csum);
2683	}
2684
2685bce_nvram_test_exit:
2686	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2687	return rc;
2688}
2689
2690
2691/****************************************************************************/
2692/* Identifies the current media type of the controller and sets the PHY     */
2693/* address.                                                                 */
2694/*                                                                          */
2695/* Returns:                                                                 */
2696/*   Nothing.                                                               */
2697/****************************************************************************/
2698static void
2699bce_get_media(struct bce_softc *sc)
2700{
2701	u32 val;
2702
2703	DBENTER(BCE_VERBOSE_PHY);
2704
2705	/* Assume PHY address for copper controllers. */
2706	sc->bce_phy_addr = 1;
2707
2708	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2709 		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2710		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2711		u32 strap;
2712
2713		/*
2714		 * The BCM5709S is software configurable
2715		 * for Copper or SerDes operation.
2716		 */
2717		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2718			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2719			    "for copper.\n");
2720			goto bce_get_media_exit;
2721		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2722			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2723			    "for dual media.\n");
2724			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2725			goto bce_get_media_exit;
2726		}
2727
2728		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2729			strap = (val &
2730			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2731		else
2732			strap = (val &
2733			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2734
2735		if (pci_get_function(sc->bce_dev) == 0) {
2736			switch (strap) {
2737			case 0x4:
2738			case 0x5:
2739			case 0x6:
2740				DBPRINT(sc, BCE_INFO_LOAD,
2741				    "BCM5709 s/w configured for SerDes.\n");
2742				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2743				break;
2744			default:
2745				DBPRINT(sc, BCE_INFO_LOAD,
2746				    "BCM5709 s/w configured for Copper.\n");
2747				break;
2748			}
2749		} else {
2750			switch (strap) {
2751			case 0x1:
2752			case 0x2:
2753			case 0x4:
2754				DBPRINT(sc, BCE_INFO_LOAD,
2755				    "BCM5709 s/w configured for SerDes.\n");
2756				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2757				break;
2758			default:
2759				DBPRINT(sc, BCE_INFO_LOAD,
2760				    "BCM5709 s/w configured for Copper.\n");
2761				break;
2762			}
2763		}
2764
2765	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2766		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2767
2768	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2769
2770		sc->bce_flags |= BCE_NO_WOL_FLAG;
2771
2772		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
2773			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
2774
2775		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2776			/* 5708S/09S/16S use a separate PHY for SerDes. */
2777			sc->bce_phy_addr = 2;
2778
2779			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2780			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2781				sc->bce_phy_flags |=
2782				    BCE_PHY_2_5G_CAPABLE_FLAG;
2783				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
2784				    "capable adapter\n");
2785			}
2786		}
2787	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2788	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2789		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2790
2791bce_get_media_exit:
2792	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2793		"Using PHY address %d.\n", sc->bce_phy_addr);
2794
2795	DBEXIT(BCE_VERBOSE_PHY);
2796}
2797
2798
2799/****************************************************************************/
2800/* Performs PHY initialization required before MII drivers access the       */
2801/* device.                                                                  */
2802/*                                                                          */
2803/* Returns:                                                                 */
2804/*   Nothing.                                                               */
2805/****************************************************************************/
2806static void
2807bce_init_media(struct bce_softc *sc)
2808{
2809	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
2810		/*
2811		 * Configure 5709S/5716S PHYs to use traditional IEEE
2812		 * Clause 22 method. Otherwise we have no way to attach
2813		 * the PHY in mii(4) layer. PHY specific configuration
2814		 * is done in mii layer.
2815		 */
2816
2817		/* Select auto-negotiation MMD of the PHY. */
2818		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2819		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2820		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2821		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2822
2823		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
2824		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2825		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2826	}
2827}
2828
2829
2830/****************************************************************************/
2831/* Free any DMA memory owned by the driver.                                 */
2832/*                                                                          */
2833/* Scans through each data structre that requires DMA memory and frees      */
2834/* the memory if allocated.                                                 */
2835/*                                                                          */
2836/* Returns:                                                                 */
2837/*   Nothing.                                                               */
2838/****************************************************************************/
2839static void
2840bce_dma_free(struct bce_softc *sc)
2841{
2842	int i;
2843
2844	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2845
2846	/* Free, unmap, and destroy the status block. */
2847	if (sc->status_block != NULL) {
2848		bus_dmamem_free(
2849		   sc->status_tag,
2850		    sc->status_block,
2851		    sc->status_map);
2852		sc->status_block = NULL;
2853	}
2854
2855	if (sc->status_map != NULL) {
2856		bus_dmamap_unload(
2857		    sc->status_tag,
2858		    sc->status_map);
2859		bus_dmamap_destroy(sc->status_tag,
2860		    sc->status_map);
2861		sc->status_map = NULL;
2862	}
2863
2864	if (sc->status_tag != NULL) {
2865		bus_dma_tag_destroy(sc->status_tag);
2866		sc->status_tag = NULL;
2867	}
2868
2869
2870	/* Free, unmap, and destroy the statistics block. */
2871	if (sc->stats_block != NULL) {
2872		bus_dmamem_free(
2873		    sc->stats_tag,
2874		    sc->stats_block,
2875		    sc->stats_map);
2876		sc->stats_block = NULL;
2877	}
2878
2879	if (sc->stats_map != NULL) {
2880		bus_dmamap_unload(
2881		    sc->stats_tag,
2882		    sc->stats_map);
2883		bus_dmamap_destroy(sc->stats_tag,
2884		    sc->stats_map);
2885		sc->stats_map = NULL;
2886	}
2887
2888	if (sc->stats_tag != NULL) {
2889		bus_dma_tag_destroy(sc->stats_tag);
2890		sc->stats_tag = NULL;
2891	}
2892
2893
2894	/* Free, unmap and destroy all context memory pages. */
2895	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2896		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2897		for (i = 0; i < sc->ctx_pages; i++ ) {
2898			if (sc->ctx_block[i] != NULL) {
2899				bus_dmamem_free(
2900				    sc->ctx_tag,
2901				    sc->ctx_block[i],
2902				    sc->ctx_map[i]);
2903				sc->ctx_block[i] = NULL;
2904			}
2905
2906			if (sc->ctx_map[i] != NULL) {
2907				bus_dmamap_unload(
2908				    sc->ctx_tag,
2909				    sc->ctx_map[i]);
2910				bus_dmamap_destroy(
2911				    sc->ctx_tag,
2912				    sc->ctx_map[i]);
2913				sc->ctx_map[i] = NULL;
2914			}
2915		}
2916
2917		/* Destroy the context memory tag. */
2918		if (sc->ctx_tag != NULL) {
2919			bus_dma_tag_destroy(sc->ctx_tag);
2920			sc->ctx_tag = NULL;
2921		}
2922	}
2923
2924
2925	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2926	for (i = 0; i < TX_PAGES; i++ ) {
2927		if (sc->tx_bd_chain[i] != NULL) {
2928			bus_dmamem_free(
2929			    sc->tx_bd_chain_tag,
2930			    sc->tx_bd_chain[i],
2931			    sc->tx_bd_chain_map[i]);
2932			sc->tx_bd_chain[i] = NULL;
2933		}
2934
2935		if (sc->tx_bd_chain_map[i] != NULL) {
2936			bus_dmamap_unload(
2937			    sc->tx_bd_chain_tag,
2938			    sc->tx_bd_chain_map[i]);
2939			bus_dmamap_destroy(
2940			    sc->tx_bd_chain_tag,
2941			    sc->tx_bd_chain_map[i]);
2942			sc->tx_bd_chain_map[i] = NULL;
2943		}
2944	}
2945
2946	/* Destroy the TX buffer descriptor tag. */
2947	if (sc->tx_bd_chain_tag != NULL) {
2948		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2949		sc->tx_bd_chain_tag = NULL;
2950	}
2951
2952
2953	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2954	for (i = 0; i < RX_PAGES; i++ ) {
2955		if (sc->rx_bd_chain[i] != NULL) {
2956			bus_dmamem_free(
2957			    sc->rx_bd_chain_tag,
2958			    sc->rx_bd_chain[i],
2959			    sc->rx_bd_chain_map[i]);
2960			sc->rx_bd_chain[i] = NULL;
2961		}
2962
2963		if (sc->rx_bd_chain_map[i] != NULL) {
2964			bus_dmamap_unload(
2965			    sc->rx_bd_chain_tag,
2966			    sc->rx_bd_chain_map[i]);
2967			bus_dmamap_destroy(
2968			    sc->rx_bd_chain_tag,
2969			    sc->rx_bd_chain_map[i]);
2970			sc->rx_bd_chain_map[i] = NULL;
2971		}
2972	}
2973
2974	/* Destroy the RX buffer descriptor tag. */
2975	if (sc->rx_bd_chain_tag != NULL) {
2976		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2977		sc->rx_bd_chain_tag = NULL;
2978	}
2979
2980
2981#ifdef BCE_JUMBO_HDRSPLIT
2982	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2983	for (i = 0; i < PG_PAGES; i++ ) {
2984		if (sc->pg_bd_chain[i] != NULL) {
2985			bus_dmamem_free(
2986			    sc->pg_bd_chain_tag,
2987			    sc->pg_bd_chain[i],
2988			    sc->pg_bd_chain_map[i]);
2989			sc->pg_bd_chain[i] = NULL;
2990		}
2991
2992		if (sc->pg_bd_chain_map[i] != NULL) {
2993			bus_dmamap_unload(
2994			    sc->pg_bd_chain_tag,
2995			    sc->pg_bd_chain_map[i]);
2996			bus_dmamap_destroy(
2997			    sc->pg_bd_chain_tag,
2998			    sc->pg_bd_chain_map[i]);
2999			sc->pg_bd_chain_map[i] = NULL;
3000		}
3001	}
3002
3003	/* Destroy the page buffer descriptor tag. */
3004	if (sc->pg_bd_chain_tag != NULL) {
3005		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3006		sc->pg_bd_chain_tag = NULL;
3007	}
3008#endif
3009
3010
3011	/* Unload and destroy the TX mbuf maps. */
3012	for (i = 0; i < TOTAL_TX_BD; i++) {
3013		if (sc->tx_mbuf_map[i] != NULL) {
3014			bus_dmamap_unload(sc->tx_mbuf_tag,
3015			    sc->tx_mbuf_map[i]);
3016			bus_dmamap_destroy(sc->tx_mbuf_tag,
3017	 		    sc->tx_mbuf_map[i]);
3018			sc->tx_mbuf_map[i] = NULL;
3019		}
3020	}
3021
3022	/* Destroy the TX mbuf tag. */
3023	if (sc->tx_mbuf_tag != NULL) {
3024		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3025		sc->tx_mbuf_tag = NULL;
3026	}
3027
3028	/* Unload and destroy the RX mbuf maps. */
3029	for (i = 0; i < TOTAL_RX_BD; i++) {
3030		if (sc->rx_mbuf_map[i] != NULL) {
3031			bus_dmamap_unload(sc->rx_mbuf_tag,
3032			    sc->rx_mbuf_map[i]);
3033			bus_dmamap_destroy(sc->rx_mbuf_tag,
3034	 		    sc->rx_mbuf_map[i]);
3035			sc->rx_mbuf_map[i] = NULL;
3036		}
3037	}
3038
3039	/* Destroy the RX mbuf tag. */
3040	if (sc->rx_mbuf_tag != NULL) {
3041		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3042		sc->rx_mbuf_tag = NULL;
3043	}
3044
3045#ifdef BCE_JUMBO_HDRSPLIT
3046	/* Unload and destroy the page mbuf maps. */
3047	for (i = 0; i < TOTAL_PG_BD; i++) {
3048		if (sc->pg_mbuf_map[i] != NULL) {
3049			bus_dmamap_unload(sc->pg_mbuf_tag,
3050			    sc->pg_mbuf_map[i]);
3051			bus_dmamap_destroy(sc->pg_mbuf_tag,
3052	 		    sc->pg_mbuf_map[i]);
3053			sc->pg_mbuf_map[i] = NULL;
3054		}
3055	}
3056
3057	/* Destroy the page mbuf tag. */
3058	if (sc->pg_mbuf_tag != NULL) {
3059		bus_dma_tag_destroy(sc->pg_mbuf_tag);
3060		sc->pg_mbuf_tag = NULL;
3061	}
3062#endif
3063
3064	/* Destroy the parent tag */
3065	if (sc->parent_tag != NULL) {
3066		bus_dma_tag_destroy(sc->parent_tag);
3067		sc->parent_tag = NULL;
3068	}
3069
3070	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3071}
3072
3073
3074/****************************************************************************/
3075/* Get DMA memory from the OS.                                              */
3076/*                                                                          */
3077/* Validates that the OS has provided DMA buffers in response to a          */
3078/* bus_dmamap_load() call and saves the physical address of those buffers.  */
3079/* When the callback is used the OS will return 0 for the mapping function  */
3080/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3081/* failures back to the caller.                                             */
3082/*                                                                          */
3083/* Returns:                                                                 */
3084/*   Nothing.                                                               */
3085/****************************************************************************/
3086static void
3087bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3088{
3089	bus_addr_t *busaddr = arg;
3090
3091	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3092	    __FUNCTION__, nseg));
3093	/* Simulate a mapping failure. */
3094	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3095	    error = ENOMEM);
3096
3097	/* ToDo: How to increment debug sim_count variable here? */
3098
3099	/* Check for an error and signal the caller that an error occurred. */
3100	if (error) {
3101		*busaddr = 0;
3102	} else {
3103		*busaddr = segs->ds_addr;
3104	}
3105
3106	return;
3107}
3108
3109
3110/****************************************************************************/
3111/* Allocate any DMA memory needed by the driver.                            */
3112/*                                                                          */
3113/* Allocates DMA memory needed for the various global structures needed by  */
3114/* hardware.                                                                */
3115/*                                                                          */
3116/* Memory alignment requirements:                                           */
3117/* +-----------------+----------+----------+----------+----------+          */
3118/* |                 |   5706   |   5708   |   5709   |   5716   |          */
3119/* +-----------------+----------+----------+----------+----------+          */
3120/* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3121/* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3122/* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3123/* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3124/* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3125/* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3126/* |Context Memory   |          |          |          |          |          */
3127/* +-----------------+----------+----------+----------+----------+          */
3128/*                                                                          */
3129/* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3130/*                                                                          */
3131/* Returns:                                                                 */
3132/*   0 for success, positive value for failure.                             */
3133/****************************************************************************/
3134static int
3135bce_dma_alloc(device_t dev)
3136{
3137	struct bce_softc *sc;
3138	int i, error, rc = 0;
3139	bus_size_t max_size, max_seg_size;
3140	int max_segments;
3141
3142	sc = device_get_softc(dev);
3143
3144	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3145
3146	/*
3147	 * Allocate the parent bus DMA tag appropriate for PCI.
3148	 */
3149	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3150	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3151	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3152	    &sc->parent_tag)) {
3153		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3154		    __FILE__, __LINE__);
3155		rc = ENOMEM;
3156		goto bce_dma_alloc_exit;
3157	}
3158
3159	/*
3160	 * Create a DMA tag for the status block, allocate and clear the
3161	 * memory, map the memory into DMA space, and fetch the physical
3162	 * address of the block.
3163	 */
3164	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3165	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3166	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3167	    0, NULL, NULL, &sc->status_tag)) {
3168		BCE_PRINTF("%s(%d): Could not allocate status block "
3169		    "DMA tag!\n", __FILE__, __LINE__);
3170		rc = ENOMEM;
3171		goto bce_dma_alloc_exit;
3172	}
3173
3174	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3175	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3176	    &sc->status_map)) {
3177		BCE_PRINTF("%s(%d): Could not allocate status block "
3178		    "DMA memory!\n", __FILE__, __LINE__);
3179		rc = ENOMEM;
3180		goto bce_dma_alloc_exit;
3181	}
3182
3183	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3184	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3185	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3186
3187	if (error) {
3188		BCE_PRINTF("%s(%d): Could not map status block "
3189		    "DMA memory!\n", __FILE__, __LINE__);
3190		rc = ENOMEM;
3191		goto bce_dma_alloc_exit;
3192	}
3193
3194	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3195	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3196
3197	/*
3198	 * Create a DMA tag for the statistics block, allocate and clear the
3199	 * memory, map the memory into DMA space, and fetch the physical
3200	 * address of the block.
3201	 */
3202	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3203	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3204	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3205	    0, NULL, NULL, &sc->stats_tag)) {
3206		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3207		    "DMA tag!\n", __FILE__, __LINE__);
3208		rc = ENOMEM;
3209		goto bce_dma_alloc_exit;
3210	}
3211
3212	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3213	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3214		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3215		    "DMA memory!\n", __FILE__, __LINE__);
3216		rc = ENOMEM;
3217		goto bce_dma_alloc_exit;
3218	}
3219
3220	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3221	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3222	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3223
3224	if(error) {
3225		BCE_PRINTF("%s(%d): Could not map statistics block "
3226		    "DMA memory!\n", __FILE__, __LINE__);
3227		rc = ENOMEM;
3228		goto bce_dma_alloc_exit;
3229	}
3230
3231	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3232	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3233
3234	/* BCM5709 uses host memory as cache for context memory. */
3235	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3236	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3237		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3238		if (sc->ctx_pages == 0)
3239			sc->ctx_pages = 1;
3240
3241		DBRUNIF((sc->ctx_pages > 512),
3242		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3243		    __FILE__, __LINE__, sc->ctx_pages));
3244
3245		/*
3246		 * Create a DMA tag for the context pages,
3247		 * allocate and clear the memory, map the
3248		 * memory into DMA space, and fetch the
3249		 * physical address of the block.
3250		 */
3251		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3252		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3253		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3254		    0, NULL, NULL, &sc->ctx_tag)) {
3255			BCE_PRINTF("%s(%d): Could not allocate CTX "
3256			    "DMA tag!\n", __FILE__, __LINE__);
3257			rc = ENOMEM;
3258			goto bce_dma_alloc_exit;
3259		}
3260
3261		for (i = 0; i < sc->ctx_pages; i++) {
3262
3263			if(bus_dmamem_alloc(sc->ctx_tag,
3264			    (void **)&sc->ctx_block[i],
3265			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3266			    &sc->ctx_map[i])) {
3267				BCE_PRINTF("%s(%d): Could not allocate CTX "
3268				    "DMA memory!\n", __FILE__, __LINE__);
3269				rc = ENOMEM;
3270				goto bce_dma_alloc_exit;
3271			}
3272
3273			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3274			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3275			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3276
3277			if (error) {
3278				BCE_PRINTF("%s(%d): Could not map CTX "
3279				    "DMA memory!\n", __FILE__, __LINE__);
3280				rc = ENOMEM;
3281				goto bce_dma_alloc_exit;
3282			}
3283
3284			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3285			    "= 0x%jX\n", __FUNCTION__, i,
3286			    (uintmax_t) sc->ctx_paddr[i]);
3287		}
3288	}
3289
3290	/*
3291	 * Create a DMA tag for the TX buffer descriptor chain,
3292	 * allocate and clear the  memory, and fetch the
3293	 * physical address of the block.
3294	 */
3295	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3296	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3297	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3298	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3299		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3300		    "chain DMA tag!\n", __FILE__, __LINE__);
3301		rc = ENOMEM;
3302		goto bce_dma_alloc_exit;
3303	}
3304
3305	for (i = 0; i < TX_PAGES; i++) {
3306
3307		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3308		    (void **)&sc->tx_bd_chain[i],
3309		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3310		    &sc->tx_bd_chain_map[i])) {
3311			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3312			    "chain DMA memory!\n", __FILE__, __LINE__);
3313			rc = ENOMEM;
3314			goto bce_dma_alloc_exit;
3315		}
3316
3317		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3318		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3319		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3320		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3321
3322		if (error) {
3323			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3324			    "chain DMA memory!\n", __FILE__, __LINE__);
3325			rc = ENOMEM;
3326			goto bce_dma_alloc_exit;
3327		}
3328
3329		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3330		    "0x%jX\n", __FUNCTION__, i,
3331		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3332	}
3333
3334	/* Check the required size before mapping to conserve resources. */
3335	if (bce_tso_enable) {
3336		max_size     = BCE_TSO_MAX_SIZE;
3337		max_segments = BCE_MAX_SEGMENTS;
3338		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3339	} else {
3340		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3341		max_segments = BCE_MAX_SEGMENTS;
3342		max_seg_size = MCLBYTES;
3343	}
3344
3345	/* Create a DMA tag for TX mbufs. */
3346	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3347	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3348	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3349		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3350		    __FILE__, __LINE__);
3351		rc = ENOMEM;
3352		goto bce_dma_alloc_exit;
3353	}
3354
3355	/* Create DMA maps for the TX mbufs clusters. */
3356	for (i = 0; i < TOTAL_TX_BD; i++) {
3357		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3358			&sc->tx_mbuf_map[i])) {
3359			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3360			    "map!\n", __FILE__, __LINE__);
3361			rc = ENOMEM;
3362			goto bce_dma_alloc_exit;
3363		}
3364	}
3365
3366	/*
3367	 * Create a DMA tag for the RX buffer descriptor chain,
3368	 * allocate and clear the memory, and fetch the physical
3369	 * address of the blocks.
3370	 */
3371	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3372			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3373			sc->max_bus_addr, NULL, NULL,
3374			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3375			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3376		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3377		    "DMA tag!\n", __FILE__, __LINE__);
3378		rc = ENOMEM;
3379		goto bce_dma_alloc_exit;
3380	}
3381
3382	for (i = 0; i < RX_PAGES; i++) {
3383
3384		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3385		    (void **)&sc->rx_bd_chain[i],
3386		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3387		    &sc->rx_bd_chain_map[i])) {
3388			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3389			    "chain DMA memory!\n", __FILE__, __LINE__);
3390			rc = ENOMEM;
3391			goto bce_dma_alloc_exit;
3392		}
3393
3394		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3395		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3396		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3397		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3398
3399		if (error) {
3400			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3401			    "chain DMA memory!\n", __FILE__, __LINE__);
3402			rc = ENOMEM;
3403			goto bce_dma_alloc_exit;
3404		}
3405
3406		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3407		    "0x%jX\n", __FUNCTION__, i,
3408		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3409	}
3410
3411	/*
3412	 * Create a DMA tag for RX mbufs.
3413	 */
3414#ifdef BCE_JUMBO_HDRSPLIT
3415	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3416		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3417#else
3418	max_size = max_seg_size = MJUM9BYTES;
3419#endif
3420	max_segments = 1;
3421
3422	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3423	    "(max size = 0x%jX max segments = %d, max segment "
3424	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3425	     max_segments, (uintmax_t) max_seg_size);
3426
3427	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3428	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3429	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3430	    &sc->rx_mbuf_tag)) {
3431		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3432		    __FILE__, __LINE__);
3433		rc = ENOMEM;
3434		goto bce_dma_alloc_exit;
3435	}
3436
3437	/* Create DMA maps for the RX mbuf clusters. */
3438	for (i = 0; i < TOTAL_RX_BD; i++) {
3439		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3440		    &sc->rx_mbuf_map[i])) {
3441			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3442			    "DMA map!\n", __FILE__, __LINE__);
3443			rc = ENOMEM;
3444			goto bce_dma_alloc_exit;
3445		}
3446	}
3447
3448#ifdef BCE_JUMBO_HDRSPLIT
3449	/*
3450	 * Create a DMA tag for the page buffer descriptor chain,
3451	 * allocate and clear the memory, and fetch the physical
3452	 * address of the blocks.
3453	 */
3454	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3455	    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3456	    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3457	    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3458		BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3459		    "chain DMA tag!\n",	__FILE__, __LINE__);
3460		rc = ENOMEM;
3461		goto bce_dma_alloc_exit;
3462	}
3463
3464	for (i = 0; i < PG_PAGES; i++) {
3465
3466		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3467		    (void **)&sc->pg_bd_chain[i],
3468		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3469		    &sc->pg_bd_chain_map[i])) {
3470			BCE_PRINTF("%s(%d): Could not allocate page "
3471			    "descriptor chain DMA memory!\n",
3472			    __FILE__, __LINE__);
3473			rc = ENOMEM;
3474			goto bce_dma_alloc_exit;
3475		}
3476
3477		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3478		    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3479		    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3480		    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3481
3482		if (error) {
3483			BCE_PRINTF("%s(%d): Could not map page descriptor "
3484			    "chain DMA memory!\n", __FILE__, __LINE__);
3485			rc = ENOMEM;
3486			goto bce_dma_alloc_exit;
3487		}
3488
3489		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3490		    "0x%jX\n", __FUNCTION__, i,
3491		    (uintmax_t) sc->pg_bd_chain_paddr[i]);
3492	}
3493
3494	/*
3495	 * Create a DMA tag for page mbufs.
3496	 */
3497	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3498	    MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3499
3500	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3501	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3502	    max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3503		BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3504		    "DMA tag!\n", __FILE__, __LINE__);
3505		rc = ENOMEM;
3506		goto bce_dma_alloc_exit;
3507	}
3508
3509	/* Create DMA maps for the page mbuf clusters. */
3510	for (i = 0; i < TOTAL_PG_BD; i++) {
3511		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3512		    &sc->pg_mbuf_map[i])) {
3513			BCE_PRINTF("%s(%d): Unable to create page mbuf "
3514			    "DMA map!\n", __FILE__, __LINE__);
3515			rc = ENOMEM;
3516			goto bce_dma_alloc_exit;
3517		}
3518	}
3519#endif
3520
3521bce_dma_alloc_exit:
3522	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3523	return(rc);
3524}
3525
3526
3527/****************************************************************************/
3528/* Release all resources used by the driver.                                */
3529/*                                                                          */
3530/* Releases all resources acquired by the driver including interrupts,      */
3531/* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3532/*                                                                          */
3533/* Returns:                                                                 */
3534/*   Nothing.                                                               */
3535/****************************************************************************/
3536static void
3537bce_release_resources(struct bce_softc *sc)
3538{
3539	device_t dev;
3540
3541	DBENTER(BCE_VERBOSE_RESET);
3542
3543	dev = sc->bce_dev;
3544
3545	bce_dma_free(sc);
3546
3547	if (sc->bce_intrhand != NULL) {
3548		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3549		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3550	}
3551
3552	if (sc->bce_res_irq != NULL) {
3553		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3554		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3555		    sc->bce_res_irq);
3556	}
3557
3558	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3559		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3560		pci_release_msi(dev);
3561	}
3562
3563	if (sc->bce_res_mem != NULL) {
3564		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3565		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3566		    sc->bce_res_mem);
3567	}
3568
3569	if (sc->bce_ifp != NULL) {
3570		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3571		if_free(sc->bce_ifp);
3572	}
3573
3574	if (mtx_initialized(&sc->bce_mtx))
3575		BCE_LOCK_DESTROY(sc);
3576
3577	DBEXIT(BCE_VERBOSE_RESET);
3578}
3579
3580
3581/****************************************************************************/
3582/* Firmware synchronization.                                                */
3583/*                                                                          */
3584/* Before performing certain events such as a chip reset, synchronize with  */
3585/* the firmware first.                                                      */
3586/*                                                                          */
3587/* Returns:                                                                 */
3588/*   0 for success, positive value for failure.                             */
3589/****************************************************************************/
3590static int
3591bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3592{
3593	int i, rc = 0;
3594	u32 val;
3595
3596	DBENTER(BCE_VERBOSE_RESET);
3597
3598	/* Don't waste any time if we've timed out before. */
3599	if (sc->bce_fw_timed_out == TRUE) {
3600		rc = EBUSY;
3601		goto bce_fw_sync_exit;
3602	}
3603
3604	/* Increment the message sequence number. */
3605	sc->bce_fw_wr_seq++;
3606	msg_data |= sc->bce_fw_wr_seq;
3607
3608 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3609	    "0x%08X\n",	msg_data);
3610
3611	/* Send the message to the bootcode driver mailbox. */
3612	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3613
3614	/* Wait for the bootcode to acknowledge the message. */
3615	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3616		/* Check for a response in the bootcode firmware mailbox. */
3617		val = bce_shmem_rd(sc, BCE_FW_MB);
3618		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3619			break;
3620		DELAY(1000);
3621	}
3622
3623	/* If we've timed out, tell bootcode that we've stopped waiting. */
3624	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3625	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3626
3627		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3628		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3629
3630		msg_data &= ~BCE_DRV_MSG_CODE;
3631		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3632
3633		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3634
3635		sc->bce_fw_timed_out = TRUE;
3636		rc = EBUSY;
3637	}
3638
3639bce_fw_sync_exit:
3640	DBEXIT(BCE_VERBOSE_RESET);
3641	return (rc);
3642}
3643
3644
3645/****************************************************************************/
3646/* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3647/*                                                                          */
3648/* Returns:                                                                 */
3649/*   Nothing.                                                               */
3650/****************************************************************************/
3651static void
3652bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3653	u32 rv2p_code_len, u32 rv2p_proc)
3654{
3655	int i;
3656	u32 val;
3657
3658	DBENTER(BCE_VERBOSE_RESET);
3659
3660	/* Set the page size used by RV2P. */
3661	if (rv2p_proc == RV2P_PROC2) {
3662		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3663	}
3664
3665	for (i = 0; i < rv2p_code_len; i += 8) {
3666		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3667		rv2p_code++;
3668		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3669		rv2p_code++;
3670
3671		if (rv2p_proc == RV2P_PROC1) {
3672			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3673			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3674		}
3675		else {
3676			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3677			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3678		}
3679	}
3680
3681	/* Reset the processor, un-stall is done later. */
3682	if (rv2p_proc == RV2P_PROC1) {
3683		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3684	}
3685	else {
3686		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3687	}
3688
3689	DBEXIT(BCE_VERBOSE_RESET);
3690}
3691
3692
3693/****************************************************************************/
3694/* Load RISC processor firmware.                                            */
3695/*                                                                          */
3696/* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3697/* associated with a particular processor.                                  */
3698/*                                                                          */
3699/* Returns:                                                                 */
3700/*   Nothing.                                                               */
3701/****************************************************************************/
3702static void
3703bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3704	struct fw_info *fw)
3705{
3706	u32 offset;
3707
3708	DBENTER(BCE_VERBOSE_RESET);
3709
3710    bce_halt_cpu(sc, cpu_reg);
3711
3712	/* Load the Text area. */
3713	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3714	if (fw->text) {
3715		int j;
3716
3717		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3718			REG_WR_IND(sc, offset, fw->text[j]);
3719	        }
3720	}
3721
3722	/* Load the Data area. */
3723	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3724	if (fw->data) {
3725		int j;
3726
3727		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3728			REG_WR_IND(sc, offset, fw->data[j]);
3729		}
3730	}
3731
3732	/* Load the SBSS area. */
3733	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3734	if (fw->sbss) {
3735		int j;
3736
3737		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3738			REG_WR_IND(sc, offset, fw->sbss[j]);
3739		}
3740	}
3741
3742	/* Load the BSS area. */
3743	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3744	if (fw->bss) {
3745		int j;
3746
3747		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3748			REG_WR_IND(sc, offset, fw->bss[j]);
3749		}
3750	}
3751
3752	/* Load the Read-Only area. */
3753	offset = cpu_reg->spad_base +
3754		(fw->rodata_addr - cpu_reg->mips_view_base);
3755	if (fw->rodata) {
3756		int j;
3757
3758		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3759			REG_WR_IND(sc, offset, fw->rodata[j]);
3760		}
3761	}
3762
3763	/* Clear the pre-fetch instruction and set the FW start address. */
3764	REG_WR_IND(sc, cpu_reg->inst, 0);
3765	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3766
3767	DBEXIT(BCE_VERBOSE_RESET);
3768}
3769
3770
3771/****************************************************************************/
3772/* Starts the RISC processor.                                               */
3773/*                                                                          */
3774/* Assumes the CPU starting address has already been set.                   */
3775/*                                                                          */
3776/* Returns:                                                                 */
3777/*   Nothing.                                                               */
3778/****************************************************************************/
3779static void
3780bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3781{
3782	u32 val;
3783
3784	DBENTER(BCE_VERBOSE_RESET);
3785
3786	/* Start the CPU. */
3787	val = REG_RD_IND(sc, cpu_reg->mode);
3788	val &= ~cpu_reg->mode_value_halt;
3789	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3790	REG_WR_IND(sc, cpu_reg->mode, val);
3791
3792	DBEXIT(BCE_VERBOSE_RESET);
3793}
3794
3795
3796/****************************************************************************/
3797/* Halts the RISC processor.                                                */
3798/*                                                                          */
3799/* Returns:                                                                 */
3800/*   Nothing.                                                               */
3801/****************************************************************************/
3802static void
3803bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3804{
3805	u32 val;
3806
3807	DBENTER(BCE_VERBOSE_RESET);
3808
3809	/* Halt the CPU. */
3810	val = REG_RD_IND(sc, cpu_reg->mode);
3811	val |= cpu_reg->mode_value_halt;
3812	REG_WR_IND(sc, cpu_reg->mode, val);
3813	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3814
3815	DBEXIT(BCE_VERBOSE_RESET);
3816}
3817
3818
3819/****************************************************************************/
3820/* Initialize the RX CPU.                                                   */
3821/*                                                                          */
3822/* Returns:                                                                 */
3823/*   Nothing.                                                               */
3824/****************************************************************************/
3825static void
3826bce_start_rxp_cpu(struct bce_softc *sc)
3827{
3828	struct cpu_reg cpu_reg;
3829
3830	DBENTER(BCE_VERBOSE_RESET);
3831
3832	cpu_reg.mode = BCE_RXP_CPU_MODE;
3833	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3834	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3835	cpu_reg.state = BCE_RXP_CPU_STATE;
3836	cpu_reg.state_value_clear = 0xffffff;
3837	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3838	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3839	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3840	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3841	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3842	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3843	cpu_reg.mips_view_base = 0x8000000;
3844
3845	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
3846	bce_start_cpu(sc, &cpu_reg);
3847
3848	DBEXIT(BCE_VERBOSE_RESET);
3849}
3850
3851
3852/****************************************************************************/
3853/* Initialize the RX CPU.                                                   */
3854/*                                                                          */
3855/* Returns:                                                                 */
3856/*   Nothing.                                                               */
3857/****************************************************************************/
3858static void
3859bce_init_rxp_cpu(struct bce_softc *sc)
3860{
3861	struct cpu_reg cpu_reg;
3862	struct fw_info fw;
3863
3864	DBENTER(BCE_VERBOSE_RESET);
3865
3866	cpu_reg.mode = BCE_RXP_CPU_MODE;
3867	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3868	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3869	cpu_reg.state = BCE_RXP_CPU_STATE;
3870	cpu_reg.state_value_clear = 0xffffff;
3871	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3872	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3873	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3874	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3875	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3876	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3877	cpu_reg.mips_view_base = 0x8000000;
3878
3879	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3880		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3881 		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3882		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3883		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3884		fw.start_addr = bce_RXP_b09FwStartAddr;
3885
3886		fw.text_addr = bce_RXP_b09FwTextAddr;
3887		fw.text_len = bce_RXP_b09FwTextLen;
3888		fw.text_index = 0;
3889		fw.text = bce_RXP_b09FwText;
3890
3891		fw.data_addr = bce_RXP_b09FwDataAddr;
3892		fw.data_len = bce_RXP_b09FwDataLen;
3893		fw.data_index = 0;
3894		fw.data = bce_RXP_b09FwData;
3895
3896		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3897		fw.sbss_len = bce_RXP_b09FwSbssLen;
3898		fw.sbss_index = 0;
3899		fw.sbss = bce_RXP_b09FwSbss;
3900
3901		fw.bss_addr = bce_RXP_b09FwBssAddr;
3902		fw.bss_len = bce_RXP_b09FwBssLen;
3903		fw.bss_index = 0;
3904		fw.bss = bce_RXP_b09FwBss;
3905
3906		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3907		fw.rodata_len = bce_RXP_b09FwRodataLen;
3908		fw.rodata_index = 0;
3909		fw.rodata = bce_RXP_b09FwRodata;
3910	} else {
3911		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3912		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3913		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3914		fw.start_addr = bce_RXP_b06FwStartAddr;
3915
3916		fw.text_addr = bce_RXP_b06FwTextAddr;
3917		fw.text_len = bce_RXP_b06FwTextLen;
3918		fw.text_index = 0;
3919		fw.text = bce_RXP_b06FwText;
3920
3921		fw.data_addr = bce_RXP_b06FwDataAddr;
3922		fw.data_len = bce_RXP_b06FwDataLen;
3923		fw.data_index = 0;
3924		fw.data = bce_RXP_b06FwData;
3925
3926		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3927		fw.sbss_len = bce_RXP_b06FwSbssLen;
3928		fw.sbss_index = 0;
3929		fw.sbss = bce_RXP_b06FwSbss;
3930
3931		fw.bss_addr = bce_RXP_b06FwBssAddr;
3932		fw.bss_len = bce_RXP_b06FwBssLen;
3933		fw.bss_index = 0;
3934		fw.bss = bce_RXP_b06FwBss;
3935
3936		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3937		fw.rodata_len = bce_RXP_b06FwRodataLen;
3938		fw.rodata_index = 0;
3939		fw.rodata = bce_RXP_b06FwRodata;
3940	}
3941
3942	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3943	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3944
3945    /* Delay RXP start until initialization is complete. */
3946
3947	DBEXIT(BCE_VERBOSE_RESET);
3948}
3949
3950
3951/****************************************************************************/
3952/* Initialize the TX CPU.                                                   */
3953/*                                                                          */
3954/* Returns:                                                                 */
3955/*   Nothing.                                                               */
3956/****************************************************************************/
3957static void
3958bce_init_txp_cpu(struct bce_softc *sc)
3959{
3960	struct cpu_reg cpu_reg;
3961	struct fw_info fw;
3962
3963	DBENTER(BCE_VERBOSE_RESET);
3964
3965	cpu_reg.mode = BCE_TXP_CPU_MODE;
3966	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3967	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3968	cpu_reg.state = BCE_TXP_CPU_STATE;
3969	cpu_reg.state_value_clear = 0xffffff;
3970	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3971	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3972	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3973	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3974	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3975	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3976	cpu_reg.mips_view_base = 0x8000000;
3977
3978	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3979		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3980		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3981		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3982		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3983		fw.start_addr = bce_TXP_b09FwStartAddr;
3984
3985		fw.text_addr = bce_TXP_b09FwTextAddr;
3986		fw.text_len = bce_TXP_b09FwTextLen;
3987		fw.text_index = 0;
3988		fw.text = bce_TXP_b09FwText;
3989
3990		fw.data_addr = bce_TXP_b09FwDataAddr;
3991		fw.data_len = bce_TXP_b09FwDataLen;
3992		fw.data_index = 0;
3993		fw.data = bce_TXP_b09FwData;
3994
3995		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3996		fw.sbss_len = bce_TXP_b09FwSbssLen;
3997		fw.sbss_index = 0;
3998		fw.sbss = bce_TXP_b09FwSbss;
3999
4000		fw.bss_addr = bce_TXP_b09FwBssAddr;
4001		fw.bss_len = bce_TXP_b09FwBssLen;
4002		fw.bss_index = 0;
4003		fw.bss = bce_TXP_b09FwBss;
4004
4005		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4006		fw.rodata_len = bce_TXP_b09FwRodataLen;
4007		fw.rodata_index = 0;
4008		fw.rodata = bce_TXP_b09FwRodata;
4009	} else {
4010		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4011		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4012		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4013		fw.start_addr = bce_TXP_b06FwStartAddr;
4014
4015		fw.text_addr = bce_TXP_b06FwTextAddr;
4016		fw.text_len = bce_TXP_b06FwTextLen;
4017		fw.text_index = 0;
4018		fw.text = bce_TXP_b06FwText;
4019
4020		fw.data_addr = bce_TXP_b06FwDataAddr;
4021		fw.data_len = bce_TXP_b06FwDataLen;
4022		fw.data_index = 0;
4023		fw.data = bce_TXP_b06FwData;
4024
4025		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4026		fw.sbss_len = bce_TXP_b06FwSbssLen;
4027		fw.sbss_index = 0;
4028		fw.sbss = bce_TXP_b06FwSbss;
4029
4030		fw.bss_addr = bce_TXP_b06FwBssAddr;
4031		fw.bss_len = bce_TXP_b06FwBssLen;
4032		fw.bss_index = 0;
4033		fw.bss = bce_TXP_b06FwBss;
4034
4035		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4036		fw.rodata_len = bce_TXP_b06FwRodataLen;
4037		fw.rodata_index = 0;
4038		fw.rodata = bce_TXP_b06FwRodata;
4039	}
4040
4041	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4042	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4043    bce_start_cpu(sc, &cpu_reg);
4044
4045	DBEXIT(BCE_VERBOSE_RESET);
4046}
4047
4048
4049/****************************************************************************/
4050/* Initialize the TPAT CPU.                                                 */
4051/*                                                                          */
4052/* Returns:                                                                 */
4053/*   Nothing.                                                               */
4054/****************************************************************************/
4055static void
4056bce_init_tpat_cpu(struct bce_softc *sc)
4057{
4058	struct cpu_reg cpu_reg;
4059	struct fw_info fw;
4060
4061	DBENTER(BCE_VERBOSE_RESET);
4062
4063	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4064	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4065	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4066	cpu_reg.state = BCE_TPAT_CPU_STATE;
4067	cpu_reg.state_value_clear = 0xffffff;
4068	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4069	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4070	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4071	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4072	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4073	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4074	cpu_reg.mips_view_base = 0x8000000;
4075
4076	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4077		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4078		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4079		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4080		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4081		fw.start_addr = bce_TPAT_b09FwStartAddr;
4082
4083		fw.text_addr = bce_TPAT_b09FwTextAddr;
4084		fw.text_len = bce_TPAT_b09FwTextLen;
4085		fw.text_index = 0;
4086		fw.text = bce_TPAT_b09FwText;
4087
4088		fw.data_addr = bce_TPAT_b09FwDataAddr;
4089		fw.data_len = bce_TPAT_b09FwDataLen;
4090		fw.data_index = 0;
4091		fw.data = bce_TPAT_b09FwData;
4092
4093		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4094		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4095		fw.sbss_index = 0;
4096		fw.sbss = bce_TPAT_b09FwSbss;
4097
4098		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4099		fw.bss_len = bce_TPAT_b09FwBssLen;
4100		fw.bss_index = 0;
4101		fw.bss = bce_TPAT_b09FwBss;
4102
4103		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4104		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4105		fw.rodata_index = 0;
4106		fw.rodata = bce_TPAT_b09FwRodata;
4107	} else {
4108		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4109		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4110		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4111		fw.start_addr = bce_TPAT_b06FwStartAddr;
4112
4113		fw.text_addr = bce_TPAT_b06FwTextAddr;
4114		fw.text_len = bce_TPAT_b06FwTextLen;
4115		fw.text_index = 0;
4116		fw.text = bce_TPAT_b06FwText;
4117
4118		fw.data_addr = bce_TPAT_b06FwDataAddr;
4119		fw.data_len = bce_TPAT_b06FwDataLen;
4120		fw.data_index = 0;
4121		fw.data = bce_TPAT_b06FwData;
4122
4123		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4124		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4125		fw.sbss_index = 0;
4126		fw.sbss = bce_TPAT_b06FwSbss;
4127
4128		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4129		fw.bss_len = bce_TPAT_b06FwBssLen;
4130		fw.bss_index = 0;
4131		fw.bss = bce_TPAT_b06FwBss;
4132
4133		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4134		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4135		fw.rodata_index = 0;
4136		fw.rodata = bce_TPAT_b06FwRodata;
4137	}
4138
4139	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4140	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4141	bce_start_cpu(sc, &cpu_reg);
4142
4143	DBEXIT(BCE_VERBOSE_RESET);
4144}
4145
4146
4147/****************************************************************************/
4148/* Initialize the CP CPU.                                                   */
4149/*                                                                          */
4150/* Returns:                                                                 */
4151/*   Nothing.                                                               */
4152/****************************************************************************/
4153static void
4154bce_init_cp_cpu(struct bce_softc *sc)
4155{
4156	struct cpu_reg cpu_reg;
4157	struct fw_info fw;
4158
4159	DBENTER(BCE_VERBOSE_RESET);
4160
4161	cpu_reg.mode = BCE_CP_CPU_MODE;
4162	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4163	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4164	cpu_reg.state = BCE_CP_CPU_STATE;
4165	cpu_reg.state_value_clear = 0xffffff;
4166	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4167	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4168	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4169	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4170	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4171	cpu_reg.spad_base = BCE_CP_SCRATCH;
4172	cpu_reg.mips_view_base = 0x8000000;
4173
4174	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4175		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4176		fw.ver_major = bce_CP_b09FwReleaseMajor;
4177		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4178		fw.ver_fix = bce_CP_b09FwReleaseFix;
4179		fw.start_addr = bce_CP_b09FwStartAddr;
4180
4181		fw.text_addr = bce_CP_b09FwTextAddr;
4182		fw.text_len = bce_CP_b09FwTextLen;
4183		fw.text_index = 0;
4184		fw.text = bce_CP_b09FwText;
4185
4186		fw.data_addr = bce_CP_b09FwDataAddr;
4187		fw.data_len = bce_CP_b09FwDataLen;
4188		fw.data_index = 0;
4189		fw.data = bce_CP_b09FwData;
4190
4191		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4192		fw.sbss_len = bce_CP_b09FwSbssLen;
4193		fw.sbss_index = 0;
4194		fw.sbss = bce_CP_b09FwSbss;
4195
4196		fw.bss_addr = bce_CP_b09FwBssAddr;
4197		fw.bss_len = bce_CP_b09FwBssLen;
4198		fw.bss_index = 0;
4199		fw.bss = bce_CP_b09FwBss;
4200
4201		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4202		fw.rodata_len = bce_CP_b09FwRodataLen;
4203		fw.rodata_index = 0;
4204		fw.rodata = bce_CP_b09FwRodata;
4205	} else {
4206		fw.ver_major = bce_CP_b06FwReleaseMajor;
4207		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4208		fw.ver_fix = bce_CP_b06FwReleaseFix;
4209		fw.start_addr = bce_CP_b06FwStartAddr;
4210
4211		fw.text_addr = bce_CP_b06FwTextAddr;
4212		fw.text_len = bce_CP_b06FwTextLen;
4213		fw.text_index = 0;
4214		fw.text = bce_CP_b06FwText;
4215
4216		fw.data_addr = bce_CP_b06FwDataAddr;
4217		fw.data_len = bce_CP_b06FwDataLen;
4218		fw.data_index = 0;
4219		fw.data = bce_CP_b06FwData;
4220
4221		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4222		fw.sbss_len = bce_CP_b06FwSbssLen;
4223		fw.sbss_index = 0;
4224		fw.sbss = bce_CP_b06FwSbss;
4225
4226		fw.bss_addr = bce_CP_b06FwBssAddr;
4227		fw.bss_len = bce_CP_b06FwBssLen;
4228		fw.bss_index = 0;
4229		fw.bss = bce_CP_b06FwBss;
4230
4231		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4232		fw.rodata_len = bce_CP_b06FwRodataLen;
4233		fw.rodata_index = 0;
4234		fw.rodata = bce_CP_b06FwRodata;
4235	}
4236
4237	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4238	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4239	bce_start_cpu(sc, &cpu_reg);
4240
4241	DBEXIT(BCE_VERBOSE_RESET);
4242}
4243
4244
4245/****************************************************************************/
4246/* Initialize the COM CPU.                                                 */
4247/*                                                                          */
4248/* Returns:                                                                 */
4249/*   Nothing.                                                               */
4250/****************************************************************************/
4251static void
4252bce_init_com_cpu(struct bce_softc *sc)
4253{
4254	struct cpu_reg cpu_reg;
4255	struct fw_info fw;
4256
4257	DBENTER(BCE_VERBOSE_RESET);
4258
4259	cpu_reg.mode = BCE_COM_CPU_MODE;
4260	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4261	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4262	cpu_reg.state = BCE_COM_CPU_STATE;
4263	cpu_reg.state_value_clear = 0xffffff;
4264	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4265	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4266	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4267	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4268	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4269	cpu_reg.spad_base = BCE_COM_SCRATCH;
4270	cpu_reg.mips_view_base = 0x8000000;
4271
4272	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4273		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4274		fw.ver_major = bce_COM_b09FwReleaseMajor;
4275		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4276		fw.ver_fix = bce_COM_b09FwReleaseFix;
4277		fw.start_addr = bce_COM_b09FwStartAddr;
4278
4279		fw.text_addr = bce_COM_b09FwTextAddr;
4280		fw.text_len = bce_COM_b09FwTextLen;
4281		fw.text_index = 0;
4282		fw.text = bce_COM_b09FwText;
4283
4284		fw.data_addr = bce_COM_b09FwDataAddr;
4285		fw.data_len = bce_COM_b09FwDataLen;
4286		fw.data_index = 0;
4287		fw.data = bce_COM_b09FwData;
4288
4289		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4290		fw.sbss_len = bce_COM_b09FwSbssLen;
4291		fw.sbss_index = 0;
4292		fw.sbss = bce_COM_b09FwSbss;
4293
4294		fw.bss_addr = bce_COM_b09FwBssAddr;
4295		fw.bss_len = bce_COM_b09FwBssLen;
4296		fw.bss_index = 0;
4297		fw.bss = bce_COM_b09FwBss;
4298
4299		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4300		fw.rodata_len = bce_COM_b09FwRodataLen;
4301		fw.rodata_index = 0;
4302		fw.rodata = bce_COM_b09FwRodata;
4303	} else {
4304		fw.ver_major = bce_COM_b06FwReleaseMajor;
4305		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4306		fw.ver_fix = bce_COM_b06FwReleaseFix;
4307		fw.start_addr = bce_COM_b06FwStartAddr;
4308
4309		fw.text_addr = bce_COM_b06FwTextAddr;
4310		fw.text_len = bce_COM_b06FwTextLen;
4311		fw.text_index = 0;
4312		fw.text = bce_COM_b06FwText;
4313
4314		fw.data_addr = bce_COM_b06FwDataAddr;
4315		fw.data_len = bce_COM_b06FwDataLen;
4316		fw.data_index = 0;
4317		fw.data = bce_COM_b06FwData;
4318
4319		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4320		fw.sbss_len = bce_COM_b06FwSbssLen;
4321		fw.sbss_index = 0;
4322		fw.sbss = bce_COM_b06FwSbss;
4323
4324		fw.bss_addr = bce_COM_b06FwBssAddr;
4325		fw.bss_len = bce_COM_b06FwBssLen;
4326		fw.bss_index = 0;
4327		fw.bss = bce_COM_b06FwBss;
4328
4329		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4330		fw.rodata_len = bce_COM_b06FwRodataLen;
4331		fw.rodata_index = 0;
4332		fw.rodata = bce_COM_b06FwRodata;
4333	}
4334
4335	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4336	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4337	bce_start_cpu(sc, &cpu_reg);
4338
4339	DBEXIT(BCE_VERBOSE_RESET);
4340}
4341
4342
4343/****************************************************************************/
4344/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4345/*                                                                          */
4346/* Loads the firmware for each CPU and starts the CPU.                      */
4347/*                                                                          */
4348/* Returns:                                                                 */
4349/*   Nothing.                                                               */
4350/****************************************************************************/
4351static void
4352bce_init_cpus(struct bce_softc *sc)
4353{
4354	DBENTER(BCE_VERBOSE_RESET);
4355
4356	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4357		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4358
4359		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4360			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4361			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4362			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4363			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4364		} else {
4365			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4366			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4367			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4368			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4369		}
4370
4371	} else {
4372		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4373		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4374		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4375		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4376	}
4377
4378	bce_init_rxp_cpu(sc);
4379	bce_init_txp_cpu(sc);
4380	bce_init_tpat_cpu(sc);
4381	bce_init_com_cpu(sc);
4382	bce_init_cp_cpu(sc);
4383
4384	DBEXIT(BCE_VERBOSE_RESET);
4385}
4386
4387
4388/****************************************************************************/
4389/* Initialize context memory.                                               */
4390/*                                                                          */
4391/* Clears the memory associated with each Context ID (CID).                 */
4392/*                                                                          */
4393/* Returns:                                                                 */
4394/*   Nothing.                                                               */
4395/****************************************************************************/
4396static int
4397bce_init_ctx(struct bce_softc *sc)
4398{
4399	u32 offset, val, vcid_addr;
4400	int i, j, rc, retry_cnt;
4401
4402	rc = 0;
4403	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4404
4405	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4406	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4407		retry_cnt = CTX_INIT_RETRY_COUNT;
4408
4409		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4410
4411		/*
4412		 * BCM5709 context memory may be cached
4413		 * in host memory so prepare the host memory
4414		 * for access.
4415		 */
4416		val = BCE_CTX_COMMAND_ENABLED |
4417		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4418		val |= (BCM_PAGE_BITS - 8) << 16;
4419		REG_WR(sc, BCE_CTX_COMMAND, val);
4420
4421		/* Wait for mem init command to complete. */
4422		for (i = 0; i < retry_cnt; i++) {
4423			val = REG_RD(sc, BCE_CTX_COMMAND);
4424			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4425				break;
4426			DELAY(2);
4427		}
4428		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4429			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4430			    __FUNCTION__);
4431			rc = EBUSY;
4432			goto init_ctx_fail;
4433		}
4434
4435		for (i = 0; i < sc->ctx_pages; i++) {
4436			/* Set the physical address of the context memory. */
4437			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4438			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4439			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4440			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4441			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4442			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4443			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4444
4445			/* Verify the context memory write was successful. */
4446			for (j = 0; j < retry_cnt; j++) {
4447				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4448				if ((val &
4449				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4450					break;
4451				DELAY(5);
4452			}
4453			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4454				BCE_PRINTF("%s(): Failed to initialize "
4455				    "context page %d!\n", __FUNCTION__, i);
4456				rc = EBUSY;
4457				goto init_ctx_fail;
4458			}
4459		}
4460	} else {
4461
4462		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4463
4464		/*
4465		 * For the 5706/5708, context memory is local to
4466		 * the controller, so initialize the controller
4467		 * context memory.
4468		 */
4469
4470		vcid_addr = GET_CID_ADDR(96);
4471		while (vcid_addr) {
4472
4473			vcid_addr -= PHY_CTX_SIZE;
4474
4475			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4476			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4477
4478			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4479				CTX_WR(sc, 0x00, offset, 0);
4480			}
4481
4482			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4483			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4484		}
4485
4486	}
4487init_ctx_fail:
4488	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4489	return (rc);
4490}
4491
4492
4493/****************************************************************************/
4494/* Fetch the permanent MAC address of the controller.                       */
4495/*                                                                          */
4496/* Returns:                                                                 */
4497/*   Nothing.                                                               */
4498/****************************************************************************/
4499static void
4500bce_get_mac_addr(struct bce_softc *sc)
4501{
4502	u32 mac_lo = 0, mac_hi = 0;
4503
4504	DBENTER(BCE_VERBOSE_RESET);
4505
4506	/*
4507	 * The NetXtreme II bootcode populates various NIC
4508	 * power-on and runtime configuration items in a
4509	 * shared memory area.  The factory configured MAC
4510	 * address is available from both NVRAM and the
4511	 * shared memory area so we'll read the value from
4512	 * shared memory for speed.
4513	 */
4514
4515	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4516	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4517
4518	if ((mac_lo == 0) && (mac_hi == 0)) {
4519		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4520		    __FILE__, __LINE__);
4521	} else {
4522		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4523		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4524		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4525		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4526		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4527		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4528	}
4529
4530	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4531	    "address = %6D\n", sc->eaddr, ":");
4532	DBEXIT(BCE_VERBOSE_RESET);
4533}
4534
4535
4536/****************************************************************************/
4537/* Program the MAC address.                                                 */
4538/*                                                                          */
4539/* Returns:                                                                 */
4540/*   Nothing.                                                               */
4541/****************************************************************************/
4542static void
4543bce_set_mac_addr(struct bce_softc *sc)
4544{
4545	u32 val;
4546	u8 *mac_addr = sc->eaddr;
4547
4548	/* ToDo: Add support for setting multiple MAC addresses. */
4549
4550	DBENTER(BCE_VERBOSE_RESET);
4551	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4552	    "%6D\n", sc->eaddr, ":");
4553
4554	val = (mac_addr[0] << 8) | mac_addr[1];
4555
4556	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4557
4558	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4559	    (mac_addr[4] << 8) | mac_addr[5];
4560
4561	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4562
4563	DBEXIT(BCE_VERBOSE_RESET);
4564}
4565
4566
4567/****************************************************************************/
4568/* Stop the controller.                                                     */
4569/*                                                                          */
4570/* Returns:                                                                 */
4571/*   Nothing.                                                               */
4572/****************************************************************************/
4573static void
4574bce_stop(struct bce_softc *sc)
4575{
4576	struct ifnet *ifp;
4577
4578	DBENTER(BCE_VERBOSE_RESET);
4579
4580	BCE_LOCK_ASSERT(sc);
4581
4582	ifp = sc->bce_ifp;
4583
4584	callout_stop(&sc->bce_tick_callout);
4585
4586	/* Disable the transmit/receive blocks. */
4587	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4588	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4589	DELAY(20);
4590
4591	bce_disable_intr(sc);
4592
4593	/* Free RX buffers. */
4594#ifdef BCE_JUMBO_HDRSPLIT
4595	bce_free_pg_chain(sc);
4596#endif
4597	bce_free_rx_chain(sc);
4598
4599	/* Free TX buffers. */
4600	bce_free_tx_chain(sc);
4601
4602	sc->watchdog_timer = 0;
4603
4604	sc->bce_link_up = FALSE;
4605
4606	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4607
4608	DBEXIT(BCE_VERBOSE_RESET);
4609}
4610
4611
4612static int
4613bce_reset(struct bce_softc *sc, u32 reset_code)
4614{
4615	u32 val;
4616	int i, rc = 0;
4617
4618	DBENTER(BCE_VERBOSE_RESET);
4619
4620	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4621	    __FUNCTION__, reset_code);
4622
4623	/* Wait for pending PCI transactions to complete. */
4624	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4625	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4626	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4627	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4628	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4629	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4630	DELAY(5);
4631
4632	/* Disable DMA */
4633	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4634	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4635		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4636		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4637		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4638	}
4639
4640	/* Assume bootcode is running. */
4641	sc->bce_fw_timed_out = FALSE;
4642	sc->bce_drv_cardiac_arrest = FALSE;
4643
4644	/* Give the firmware a chance to prepare for the reset. */
4645	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4646	if (rc)
4647		goto bce_reset_exit;
4648
4649	/* Set a firmware reminder that this is a soft reset. */
4650	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4651
4652	/* Dummy read to force the chip to complete all current transactions. */
4653	val = REG_RD(sc, BCE_MISC_ID);
4654
4655	/* Chip reset. */
4656	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4657	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4658		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4659		REG_RD(sc, BCE_MISC_COMMAND);
4660		DELAY(5);
4661
4662		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4663		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4664
4665		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4666	} else {
4667		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4668		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4669		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4670		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4671
4672		/* Allow up to 30us for reset to complete. */
4673		for (i = 0; i < 10; i++) {
4674			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4675			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4676			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4677				break;
4678			}
4679			DELAY(10);
4680		}
4681
4682		/* Check that reset completed successfully. */
4683		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4684		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4685			BCE_PRINTF("%s(%d): Reset failed!\n",
4686			    __FILE__, __LINE__);
4687			rc = EBUSY;
4688			goto bce_reset_exit;
4689		}
4690	}
4691
4692	/* Make sure byte swapping is properly configured. */
4693	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4694	if (val != 0x01020304) {
4695		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4696		    __FILE__, __LINE__);
4697		rc = ENODEV;
4698		goto bce_reset_exit;
4699	}
4700
4701	/* Just completed a reset, assume that firmware is running again. */
4702	sc->bce_fw_timed_out = FALSE;
4703	sc->bce_drv_cardiac_arrest = FALSE;
4704
4705	/* Wait for the firmware to finish its initialization. */
4706	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4707	if (rc)
4708		BCE_PRINTF("%s(%d): Firmware did not complete "
4709		    "initialization!\n", __FILE__, __LINE__);
4710
4711bce_reset_exit:
4712	DBEXIT(BCE_VERBOSE_RESET);
4713	return (rc);
4714}
4715
4716
4717static int
4718bce_chipinit(struct bce_softc *sc)
4719{
4720	u32 val;
4721	int rc = 0;
4722
4723	DBENTER(BCE_VERBOSE_RESET);
4724
4725	bce_disable_intr(sc);
4726
4727	/*
4728	 * Initialize DMA byte/word swapping, configure the number of DMA
4729	 * channels and PCI clock compensation delay.
4730	 */
4731	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4732	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4733#if BYTE_ORDER == BIG_ENDIAN
4734	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4735#endif
4736	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4737	    DMA_READ_CHANS << 12 |
4738	    DMA_WRITE_CHANS << 16;
4739
4740	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4741
4742	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4743		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4744
4745	/*
4746	 * This setting resolves a problem observed on certain Intel PCI
4747	 * chipsets that cannot handle multiple outstanding DMA operations.
4748	 * See errata E9_5706A1_65.
4749	 */
4750	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4751	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4752	    !(sc->bce_flags & BCE_PCIX_FLAG))
4753		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4754
4755	REG_WR(sc, BCE_DMA_CONFIG, val);
4756
4757	/* Enable the RX_V2P and Context state machines before access. */
4758	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4759	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4760	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4761	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4762
4763	/* Initialize context mapping and zero out the quick contexts. */
4764	if ((rc = bce_init_ctx(sc)) != 0)
4765		goto bce_chipinit_exit;
4766
4767	/* Initialize the on-boards CPUs */
4768	bce_init_cpus(sc);
4769
4770	/* Enable management frames (NC-SI) to flow to the MCP. */
4771	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4772		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4773		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4774	}
4775
4776	/* Prepare NVRAM for access. */
4777	if ((rc = bce_init_nvram(sc)) != 0)
4778		goto bce_chipinit_exit;
4779
4780	/* Set the kernel bypass block size */
4781	val = REG_RD(sc, BCE_MQ_CONFIG);
4782	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4783	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4784
4785	/* Enable bins used on the 5709. */
4786	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4787	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4788		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4789		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4790			val |= BCE_MQ_CONFIG_HALT_DIS;
4791	}
4792
4793	REG_WR(sc, BCE_MQ_CONFIG, val);
4794
4795	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4796	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4797	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4798
4799	/* Set the page size and clear the RV2P processor stall bits. */
4800	val = (BCM_PAGE_BITS - 8) << 24;
4801	REG_WR(sc, BCE_RV2P_CONFIG, val);
4802
4803	/* Configure page size. */
4804	val = REG_RD(sc, BCE_TBDR_CONFIG);
4805	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4806	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4807	REG_WR(sc, BCE_TBDR_CONFIG, val);
4808
4809	/* Set the perfect match control register to default. */
4810	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4811
4812bce_chipinit_exit:
4813	DBEXIT(BCE_VERBOSE_RESET);
4814
4815	return(rc);
4816}
4817
4818
4819/****************************************************************************/
4820/* Initialize the controller in preparation to send/receive traffic.        */
4821/*                                                                          */
4822/* Returns:                                                                 */
4823/*   0 for success, positive value for failure.                             */
4824/****************************************************************************/
4825static int
4826bce_blockinit(struct bce_softc *sc)
4827{
4828	u32 reg, val;
4829	int rc = 0;
4830
4831	DBENTER(BCE_VERBOSE_RESET);
4832
4833	/* Load the hardware default MAC address. */
4834	bce_set_mac_addr(sc);
4835
4836	/* Set the Ethernet backoff seed value */
4837	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4838	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4839	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4840	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4841
4842	sc->last_status_idx = 0;
4843	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4844
4845	/* Set up link change interrupt generation. */
4846	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4847
4848	/* Program the physical address of the status block. */
4849	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4850	    BCE_ADDR_LO(sc->status_block_paddr));
4851	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4852	    BCE_ADDR_HI(sc->status_block_paddr));
4853
4854	/* Program the physical address of the statistics block. */
4855	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4856	    BCE_ADDR_LO(sc->stats_block_paddr));
4857	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4858	    BCE_ADDR_HI(sc->stats_block_paddr));
4859
4860	/* Program various host coalescing parameters. */
4861	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4862	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4863	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4864	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4865	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4866	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4867	REG_WR(sc, BCE_HC_TX_TICKS,
4868	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4869	REG_WR(sc, BCE_HC_RX_TICKS,
4870	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4871	REG_WR(sc, BCE_HC_COM_TICKS,
4872	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4873	REG_WR(sc, BCE_HC_CMD_TICKS,
4874	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4875	REG_WR(sc, BCE_HC_STATS_TICKS,
4876	    (sc->bce_stats_ticks & 0xffff00));
4877	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4878
4879	/* Configure the Host Coalescing block. */
4880	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4881	    BCE_HC_CONFIG_COLLECT_STATS;
4882
4883#if 0
4884	/* ToDo: Add MSI-X support. */
4885	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4886		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4887		    BCE_HC_SB_CONFIG_1;
4888
4889		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4890
4891		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4892		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
4893
4894		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4895		    (sc->tx_quick_cons_trip_int << 16) |
4896		     sc->tx_quick_cons_trip);
4897
4898		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4899		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
4900
4901		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4902	}
4903
4904	/*
4905	 * Tell the HC block to automatically set the
4906	 * INT_MASK bit after an MSI/MSI-X interrupt
4907	 * is generated so the driver doesn't have to.
4908	 */
4909	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4910		val |= BCE_HC_CONFIG_ONE_SHOT;
4911
4912	/* Set the MSI-X status blocks to 128 byte boundaries. */
4913	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4914		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4915#endif
4916
4917	REG_WR(sc, BCE_HC_CONFIG, val);
4918
4919	/* Clear the internal statistics counters. */
4920	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4921
4922	/* Verify that bootcode is running. */
4923	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4924
4925	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4926	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4927	    __FILE__, __LINE__);
4928	    reg = 0);
4929
4930	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4931	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4932		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4933		    "Expected: 08%08X\n", __FILE__, __LINE__,
4934		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4935		    BCE_DEV_INFO_SIGNATURE_MAGIC);
4936		rc = ENODEV;
4937		goto bce_blockinit_exit;
4938	}
4939
4940	/* Enable DMA */
4941	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4942	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4943		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4944		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4945		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4946	}
4947
4948	/* Allow bootcode to apply additional fixes before enabling MAC. */
4949	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
4950	    BCE_DRV_MSG_CODE_RESET);
4951
4952	/* Enable link state change interrupt generation. */
4953	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4954
4955	/* Enable the RXP. */
4956	bce_start_rxp_cpu(sc);
4957
4958	/* Disable management frames (NC-SI) from flowing to the MCP. */
4959	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4960		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
4961		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4962		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4963	}
4964
4965	/* Enable all remaining blocks in the MAC. */
4966	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4967	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4968		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4969		    BCE_MISC_ENABLE_DEFAULT_XI);
4970	else
4971		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4972		    BCE_MISC_ENABLE_DEFAULT);
4973
4974	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4975	DELAY(20);
4976
4977	/* Save the current host coalescing block settings. */
4978	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4979
4980bce_blockinit_exit:
4981	DBEXIT(BCE_VERBOSE_RESET);
4982
4983	return (rc);
4984}
4985
4986
4987/****************************************************************************/
4988/* Encapsulate an mbuf into the rx_bd chain.                                */
4989/*                                                                          */
4990/* Returns:                                                                 */
4991/*   0 for success, positive value for failure.                             */
4992/****************************************************************************/
4993static int
4994bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4995    u16 *chain_prod, u32 *prod_bseq)
4996{
4997	bus_dmamap_t map;
4998	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4999	struct mbuf *m_new = NULL;
5000	struct rx_bd *rxbd;
5001	int nsegs, error, rc = 0;
5002#ifdef BCE_DEBUG
5003	u16 debug_chain_prod = *chain_prod;
5004#endif
5005
5006	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5007
5008	/* Make sure the inputs are valid. */
5009	DBRUNIF((*chain_prod > MAX_RX_BD),
5010	    BCE_PRINTF("%s(%d): RX producer out of range: "
5011	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5012	    *chain_prod, (u16) MAX_RX_BD));
5013
5014	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5015	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5016	    *prod, *chain_prod, *prod_bseq);
5017
5018	/* Update some debug statistic counters */
5019	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5020	    sc->rx_low_watermark = sc->free_rx_bd);
5021	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5022	    sc->rx_empty_count++);
5023
5024	/* Check whether this is a new mbuf allocation. */
5025	if (m == NULL) {
5026
5027		/* Simulate an mbuf allocation failure. */
5028		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5029		    sc->mbuf_alloc_failed_count++;
5030		    sc->mbuf_alloc_failed_sim_count++;
5031		    rc = ENOBUFS;
5032		    goto bce_get_rx_buf_exit);
5033
5034		/* This is a new mbuf allocation. */
5035#ifdef BCE_JUMBO_HDRSPLIT
5036		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5037#else
5038		m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5039		    sc->rx_bd_mbuf_alloc_size);
5040#endif
5041
5042		if (m_new == NULL) {
5043			sc->mbuf_alloc_failed_count++;
5044			rc = ENOBUFS;
5045			goto bce_get_rx_buf_exit;
5046		}
5047
5048		DBRUN(sc->debug_rx_mbuf_alloc++);
5049	} else {
5050		/* Reuse an existing mbuf. */
5051		m_new = m;
5052	}
5053
5054	/* Make sure we have a valid packet header. */
5055	M_ASSERTPKTHDR(m_new);
5056
5057	/* Initialize the mbuf size and pad if necessary for alignment. */
5058	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5059	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5060
5061	/* ToDo: Consider calling m_fragment() to test error handling. */
5062
5063	/* Map the mbuf cluster into device memory. */
5064	map = sc->rx_mbuf_map[*chain_prod];
5065	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5066	    segs, &nsegs, BUS_DMA_NOWAIT);
5067
5068	/* Handle any mapping errors. */
5069	if (error) {
5070		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5071		    "chain (%d)!\n", __FILE__, __LINE__, error);
5072
5073		sc->dma_map_addr_rx_failed_count++;
5074		m_freem(m_new);
5075
5076		DBRUN(sc->debug_rx_mbuf_alloc--);
5077
5078		rc = ENOBUFS;
5079		goto bce_get_rx_buf_exit;
5080	}
5081
5082	/* All mbufs must map to a single segment. */
5083	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5084	    __FUNCTION__, nsegs));
5085
5086	/* Setup the rx_bd for the segment. */
5087	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5088
5089	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5090	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5091	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5092	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5093	*prod_bseq += segs[0].ds_len;
5094
5095	/* Save the mbuf and update our counter. */
5096	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5097	sc->free_rx_bd -= nsegs;
5098
5099	DBRUNMSG(BCE_INSANE_RECV,
5100	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5101
5102	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5103	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5104	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5105
5106bce_get_rx_buf_exit:
5107	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5108
5109	return(rc);
5110}
5111
5112
5113#ifdef BCE_JUMBO_HDRSPLIT
5114/****************************************************************************/
5115/* Encapsulate an mbuf cluster into the page chain.                         */
5116/*                                                                          */
5117/* Returns:                                                                 */
5118/*   0 for success, positive value for failure.                             */
5119/****************************************************************************/
5120static int
5121bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5122	u16 *prod_idx)
5123{
5124	bus_dmamap_t map;
5125	bus_addr_t busaddr;
5126	struct mbuf *m_new = NULL;
5127	struct rx_bd *pgbd;
5128	int error, rc = 0;
5129#ifdef BCE_DEBUG
5130	u16 debug_prod_idx = *prod_idx;
5131#endif
5132
5133	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5134
5135	/* Make sure the inputs are valid. */
5136	DBRUNIF((*prod_idx > MAX_PG_BD),
5137	    BCE_PRINTF("%s(%d): page producer out of range: "
5138	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5139	    *prod_idx, (u16) MAX_PG_BD));
5140
5141	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5142	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5143
5144	/* Update counters if we've hit a new low or run out of pages. */
5145	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5146	    sc->pg_low_watermark = sc->free_pg_bd);
5147	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5148
5149	/* Check whether this is a new mbuf allocation. */
5150	if (m == NULL) {
5151
5152		/* Simulate an mbuf allocation failure. */
5153		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5154		    sc->mbuf_alloc_failed_count++;
5155		    sc->mbuf_alloc_failed_sim_count++;
5156		    rc = ENOBUFS;
5157		    goto bce_get_pg_buf_exit);
5158
5159		/* This is a new mbuf allocation. */
5160		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5161		if (m_new == NULL) {
5162			sc->mbuf_alloc_failed_count++;
5163			rc = ENOBUFS;
5164			goto bce_get_pg_buf_exit;
5165		}
5166
5167		DBRUN(sc->debug_pg_mbuf_alloc++);
5168	} else {
5169		/* Reuse an existing mbuf. */
5170		m_new = m;
5171		m_new->m_data = m_new->m_ext.ext_buf;
5172	}
5173
5174	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5175
5176	/* ToDo: Consider calling m_fragment() to test error handling. */
5177
5178	/* Map the mbuf cluster into device memory. */
5179	map = sc->pg_mbuf_map[*prod_idx];
5180	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5181	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5182	    &busaddr, BUS_DMA_NOWAIT);
5183
5184	/* Handle any mapping errors. */
5185	if (error) {
5186		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5187		    __FILE__, __LINE__);
5188
5189		m_freem(m_new);
5190		DBRUN(sc->debug_pg_mbuf_alloc--);
5191
5192		rc = ENOBUFS;
5193		goto bce_get_pg_buf_exit;
5194	}
5195
5196	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5197
5198	/*
5199	 * The page chain uses the same rx_bd data structure
5200	 * as the receive chain but doesn't require a byte sequence (bseq).
5201	 */
5202	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5203
5204	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5205	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5206	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5207	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5208
5209	/* Save the mbuf and update our counter. */
5210	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5211	sc->free_pg_bd--;
5212
5213	DBRUNMSG(BCE_INSANE_RECV,
5214	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5215
5216	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5217	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5218
5219bce_get_pg_buf_exit:
5220	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5221
5222	return(rc);
5223}
5224#endif /* BCE_JUMBO_HDRSPLIT */
5225
5226
5227/****************************************************************************/
5228/* Initialize the TX context memory.                                        */
5229/*                                                                          */
5230/* Returns:                                                                 */
5231/*   Nothing                                                                */
5232/****************************************************************************/
5233static void
5234bce_init_tx_context(struct bce_softc *sc)
5235{
5236	u32 val;
5237
5238	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5239
5240	/* Initialize the context ID for an L2 TX chain. */
5241	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5242		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5243		/* Set the CID type to support an L2 connection. */
5244		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5245		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5246		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5247		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5248		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5249		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5250
5251		/* Point the hardware to the first page in the chain. */
5252		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5253		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5254		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5255		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5256		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5257		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5258	} else {
5259		/* Set the CID type to support an L2 connection. */
5260		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5261		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5262		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5263		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5264
5265		/* Point the hardware to the first page in the chain. */
5266		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5267		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5268		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5269		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5270		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5271		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5272	}
5273
5274	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5275}
5276
5277
5278/****************************************************************************/
5279/* Allocate memory and initialize the TX data structures.                   */
5280/*                                                                          */
5281/* Returns:                                                                 */
5282/*   0 for success, positive value for failure.                             */
5283/****************************************************************************/
5284static int
5285bce_init_tx_chain(struct bce_softc *sc)
5286{
5287	struct tx_bd *txbd;
5288	int i, rc = 0;
5289
5290	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5291
5292	/* Set the initial TX producer/consumer indices. */
5293	sc->tx_prod        = 0;
5294	sc->tx_cons        = 0;
5295	sc->tx_prod_bseq   = 0;
5296	sc->used_tx_bd     = 0;
5297	sc->max_tx_bd      = USABLE_TX_BD;
5298	DBRUN(sc->tx_hi_watermark = 0);
5299	DBRUN(sc->tx_full_count = 0);
5300
5301	/*
5302	 * The NetXtreme II supports a linked-list structre called
5303	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5304	 * consists of a series of 1 or more chain pages, each of which
5305	 * consists of a fixed number of BD entries.
5306	 * The last BD entry on each page is a pointer to the next page
5307	 * in the chain, and the last pointer in the BD chain
5308	 * points back to the beginning of the chain.
5309	 */
5310
5311	/* Set the TX next pointer chain entries. */
5312	for (i = 0; i < TX_PAGES; i++) {
5313		int j;
5314
5315		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5316
5317		/* Check if we've reached the last page. */
5318		if (i == (TX_PAGES - 1))
5319			j = 0;
5320		else
5321			j = i + 1;
5322
5323		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5324		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5325	}
5326
5327	bce_init_tx_context(sc);
5328
5329	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5330	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5331
5332	return(rc);
5333}
5334
5335
5336/****************************************************************************/
5337/* Free memory and clear the TX data structures.                            */
5338/*                                                                          */
5339/* Returns:                                                                 */
5340/*   Nothing.                                                               */
5341/****************************************************************************/
5342static void
5343bce_free_tx_chain(struct bce_softc *sc)
5344{
5345	int i;
5346
5347	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5348
5349	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5350	for (i = 0; i < TOTAL_TX_BD; i++) {
5351		if (sc->tx_mbuf_ptr[i] != NULL) {
5352			if (sc->tx_mbuf_map[i] != NULL)
5353				bus_dmamap_sync(sc->tx_mbuf_tag,
5354				    sc->tx_mbuf_map[i],
5355				    BUS_DMASYNC_POSTWRITE);
5356			m_freem(sc->tx_mbuf_ptr[i]);
5357			sc->tx_mbuf_ptr[i] = NULL;
5358			DBRUN(sc->debug_tx_mbuf_alloc--);
5359		}
5360	}
5361
5362	/* Clear each TX chain page. */
5363	for (i = 0; i < TX_PAGES; i++)
5364		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5365
5366	sc->used_tx_bd = 0;
5367
5368	/* Check if we lost any mbufs in the process. */
5369	DBRUNIF((sc->debug_tx_mbuf_alloc),
5370	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5371	    "from tx chain!\n",	__FILE__, __LINE__,
5372	    sc->debug_tx_mbuf_alloc));
5373
5374	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5375}
5376
5377
5378/****************************************************************************/
5379/* Initialize the RX context memory.                                        */
5380/*                                                                          */
5381/* Returns:                                                                 */
5382/*   Nothing                                                                */
5383/****************************************************************************/
5384static void
5385bce_init_rx_context(struct bce_softc *sc)
5386{
5387	u32 val;
5388
5389	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5390
5391	/* Init the type, size, and BD cache levels for the RX context. */
5392	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5393	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5394	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5395
5396	/*
5397	 * Set the level for generating pause frames
5398	 * when the number of available rx_bd's gets
5399	 * too low (the low watermark) and the level
5400	 * when pause frames can be stopped (the high
5401	 * watermark).
5402	 */
5403	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5404	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5405		u32 lo_water, hi_water;
5406
5407		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5408			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5409		} else {
5410			lo_water = 0;
5411		}
5412
5413		if (lo_water >= USABLE_RX_BD) {
5414			lo_water = 0;
5415		}
5416
5417		hi_water = USABLE_RX_BD / 4;
5418
5419		if (hi_water <= lo_water) {
5420			lo_water = 0;
5421		}
5422
5423		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5424		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5425
5426		if (hi_water > 0xf)
5427			hi_water = 0xf;
5428		else if (hi_water == 0)
5429			lo_water = 0;
5430
5431		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5432		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5433	}
5434
5435	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5436
5437	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5438	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5439	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5440		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5441		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5442	}
5443
5444	/* Point the hardware to the first page in the chain. */
5445	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5446	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5447	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5448	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5449
5450	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5451}
5452
5453
5454/****************************************************************************/
5455/* Allocate memory and initialize the RX data structures.                   */
5456/*                                                                          */
5457/* Returns:                                                                 */
5458/*   0 for success, positive value for failure.                             */
5459/****************************************************************************/
5460static int
5461bce_init_rx_chain(struct bce_softc *sc)
5462{
5463	struct rx_bd *rxbd;
5464	int i, rc = 0;
5465
5466	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5467	    BCE_VERBOSE_CTX);
5468
5469	/* Initialize the RX producer and consumer indices. */
5470	sc->rx_prod        = 0;
5471	sc->rx_cons        = 0;
5472	sc->rx_prod_bseq   = 0;
5473	sc->free_rx_bd     = USABLE_RX_BD;
5474	sc->max_rx_bd      = USABLE_RX_BD;
5475
5476	/* Initialize the RX next pointer chain entries. */
5477	for (i = 0; i < RX_PAGES; i++) {
5478		int j;
5479
5480		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5481
5482		/* Check if we've reached the last page. */
5483		if (i == (RX_PAGES - 1))
5484			j = 0;
5485		else
5486			j = i + 1;
5487
5488		/* Setup the chain page pointers. */
5489		rxbd->rx_bd_haddr_hi =
5490		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5491		rxbd->rx_bd_haddr_lo =
5492		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5493	}
5494
5495	/* Fill up the RX chain. */
5496	bce_fill_rx_chain(sc);
5497
5498	DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
5499	DBRUN(sc->rx_empty_count = 0);
5500	for (i = 0; i < RX_PAGES; i++) {
5501		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5502		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5503	}
5504
5505	bce_init_rx_context(sc);
5506
5507	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
5508	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5509	    BCE_VERBOSE_CTX);
5510
5511	/* ToDo: Are there possible failure modes here? */
5512
5513	return(rc);
5514}
5515
5516
5517/****************************************************************************/
5518/* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5519/* occurs.                                                                  */
5520/*                                                                          */
5521/* Returns:                                                                 */
5522/*   Nothing                                                                */
5523/****************************************************************************/
5524static void
5525bce_fill_rx_chain(struct bce_softc *sc)
5526{
5527	u16 prod, prod_idx;
5528	u32 prod_bseq;
5529
5530	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5531	    BCE_VERBOSE_CTX);
5532
5533	/* Get the RX chain producer indices. */
5534	prod      = sc->rx_prod;
5535	prod_bseq = sc->rx_prod_bseq;
5536
5537	/* Keep filling the RX chain until it's full. */
5538	while (sc->free_rx_bd > 0) {
5539		prod_idx = RX_CHAIN_IDX(prod);
5540		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5541			/* Bail out if we can't add an mbuf to the chain. */
5542			break;
5543		}
5544		prod = NEXT_RX_BD(prod);
5545	}
5546
5547	/* Save the RX chain producer indices. */
5548	sc->rx_prod      = prod;
5549	sc->rx_prod_bseq = prod_bseq;
5550
5551	/* We should never end up pointing to a next page pointer. */
5552	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5553	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5554	    __FUNCTION__, sc->rx_prod));
5555
5556	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5557	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5558	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5559	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5560	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5561
5562	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5563	    BCE_VERBOSE_CTX);
5564}
5565
5566
5567/****************************************************************************/
5568/* Free memory and clear the RX data structures.                            */
5569/*                                                                          */
5570/* Returns:                                                                 */
5571/*   Nothing.                                                               */
5572/****************************************************************************/
5573static void
5574bce_free_rx_chain(struct bce_softc *sc)
5575{
5576	int i;
5577
5578	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5579
5580	/* Free any mbufs still in the RX mbuf chain. */
5581	for (i = 0; i < TOTAL_RX_BD; i++) {
5582		if (sc->rx_mbuf_ptr[i] != NULL) {
5583			if (sc->rx_mbuf_map[i] != NULL)
5584				bus_dmamap_sync(sc->rx_mbuf_tag,
5585				    sc->rx_mbuf_map[i],
5586				    BUS_DMASYNC_POSTREAD);
5587			m_freem(sc->rx_mbuf_ptr[i]);
5588			sc->rx_mbuf_ptr[i] = NULL;
5589			DBRUN(sc->debug_rx_mbuf_alloc--);
5590		}
5591	}
5592
5593	/* Clear each RX chain page. */
5594	for (i = 0; i < RX_PAGES; i++)
5595		if (sc->rx_bd_chain[i] != NULL) {
5596			bzero((char *)sc->rx_bd_chain[i],
5597			    BCE_RX_CHAIN_PAGE_SZ);
5598		}
5599
5600	sc->free_rx_bd = sc->max_rx_bd;
5601
5602	/* Check if we lost any mbufs in the process. */
5603	DBRUNIF((sc->debug_rx_mbuf_alloc),
5604	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5605	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5606
5607	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5608}
5609
5610
5611#ifdef BCE_JUMBO_HDRSPLIT
5612/****************************************************************************/
5613/* Allocate memory and initialize the page data structures.                 */
5614/* Assumes that bce_init_rx_chain() has not already been called.            */
5615/*                                                                          */
5616/* Returns:                                                                 */
5617/*   0 for success, positive value for failure.                             */
5618/****************************************************************************/
5619static int
5620bce_init_pg_chain(struct bce_softc *sc)
5621{
5622	struct rx_bd *pgbd;
5623	int i, rc = 0;
5624	u32 val;
5625
5626	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5627		BCE_VERBOSE_CTX);
5628
5629	/* Initialize the page producer and consumer indices. */
5630	sc->pg_prod        = 0;
5631	sc->pg_cons        = 0;
5632	sc->free_pg_bd     = USABLE_PG_BD;
5633	sc->max_pg_bd      = USABLE_PG_BD;
5634	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5635	DBRUN(sc->pg_empty_count = 0);
5636
5637	/* Initialize the page next pointer chain entries. */
5638	for (i = 0; i < PG_PAGES; i++) {
5639		int j;
5640
5641		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5642
5643		/* Check if we've reached the last page. */
5644		if (i == (PG_PAGES - 1))
5645			j = 0;
5646		else
5647			j = i + 1;
5648
5649		/* Setup the chain page pointers. */
5650		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5651		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5652	}
5653
5654	/* Setup the MQ BIN mapping for host_pg_bidx. */
5655	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5656		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5657		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5658
5659	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5660
5661	/* Configure the rx_bd and page chain mbuf cluster size. */
5662	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5663	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5664
5665	/* Configure the context reserved for jumbo support. */
5666	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5667		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5668
5669	/* Point the hardware to the first page in the page chain. */
5670	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5671	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5672	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5673	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5674
5675	/* Fill up the page chain. */
5676	bce_fill_pg_chain(sc);
5677
5678	for (i = 0; i < PG_PAGES; i++) {
5679		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5680		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5681	}
5682
5683	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5684	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5685		BCE_VERBOSE_CTX);
5686	return(rc);
5687}
5688
5689
5690/****************************************************************************/
5691/* Add mbufs to the page chain until its full or an mbuf allocation error   */
5692/* occurs.                                                                  */
5693/*                                                                          */
5694/* Returns:                                                                 */
5695/*   Nothing                                                                */
5696/****************************************************************************/
5697static void
5698bce_fill_pg_chain(struct bce_softc *sc)
5699{
5700	u16 prod, prod_idx;
5701
5702	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5703	    BCE_VERBOSE_CTX);
5704
5705	/* Get the page chain prodcuer index. */
5706	prod = sc->pg_prod;
5707
5708	/* Keep filling the page chain until it's full. */
5709	while (sc->free_pg_bd > 0) {
5710		prod_idx = PG_CHAIN_IDX(prod);
5711		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5712			/* Bail out if we can't add an mbuf to the chain. */
5713			break;
5714		}
5715		prod = NEXT_PG_BD(prod);
5716	}
5717
5718	/* Save the page chain producer index. */
5719	sc->pg_prod = prod;
5720
5721	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5722	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5723	    __FUNCTION__, sc->pg_prod));
5724
5725	/*
5726	 * Write the mailbox and tell the chip about
5727	 * the new rx_bd's in the page chain.
5728	 */
5729	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5730	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
5731
5732	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5733	    BCE_VERBOSE_CTX);
5734}
5735
5736
5737/****************************************************************************/
5738/* Free memory and clear the RX data structures.                            */
5739/*                                                                          */
5740/* Returns:                                                                 */
5741/*   Nothing.                                                               */
5742/****************************************************************************/
5743static void
5744bce_free_pg_chain(struct bce_softc *sc)
5745{
5746	int i;
5747
5748	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5749
5750	/* Free any mbufs still in the mbuf page chain. */
5751	for (i = 0; i < TOTAL_PG_BD; i++) {
5752		if (sc->pg_mbuf_ptr[i] != NULL) {
5753			if (sc->pg_mbuf_map[i] != NULL)
5754				bus_dmamap_sync(sc->pg_mbuf_tag,
5755				    sc->pg_mbuf_map[i],
5756				    BUS_DMASYNC_POSTREAD);
5757			m_freem(sc->pg_mbuf_ptr[i]);
5758			sc->pg_mbuf_ptr[i] = NULL;
5759			DBRUN(sc->debug_pg_mbuf_alloc--);
5760		}
5761	}
5762
5763	/* Clear each page chain pages. */
5764	for (i = 0; i < PG_PAGES; i++)
5765		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5766
5767	sc->free_pg_bd = sc->max_pg_bd;
5768
5769	/* Check if we lost any mbufs in the process. */
5770	DBRUNIF((sc->debug_pg_mbuf_alloc),
5771	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5772	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5773
5774	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5775}
5776#endif /* BCE_JUMBO_HDRSPLIT */
5777
5778
5779/****************************************************************************/
5780/* Set media options.                                                       */
5781/*                                                                          */
5782/* Returns:                                                                 */
5783/*   0 for success, positive value for failure.                             */
5784/****************************************************************************/
5785static int
5786bce_ifmedia_upd(struct ifnet *ifp)
5787{
5788	struct bce_softc *sc = ifp->if_softc;
5789	int error;
5790
5791	DBENTER(BCE_VERBOSE);
5792
5793	BCE_LOCK(sc);
5794	error = bce_ifmedia_upd_locked(ifp);
5795	BCE_UNLOCK(sc);
5796
5797	DBEXIT(BCE_VERBOSE);
5798	return (error);
5799}
5800
5801
5802/****************************************************************************/
5803/* Set media options.                                                       */
5804/*                                                                          */
5805/* Returns:                                                                 */
5806/*   Nothing.                                                               */
5807/****************************************************************************/
5808static int
5809bce_ifmedia_upd_locked(struct ifnet *ifp)
5810{
5811	struct bce_softc *sc = ifp->if_softc;
5812	struct mii_data *mii;
5813	int error;
5814
5815	DBENTER(BCE_VERBOSE_PHY);
5816
5817	error = 0;
5818	BCE_LOCK_ASSERT(sc);
5819
5820	mii = device_get_softc(sc->bce_miibus);
5821
5822	/* Make sure the MII bus has been enumerated. */
5823	if (mii) {
5824		sc->bce_link_up = FALSE;
5825		if (mii->mii_instance) {
5826			struct mii_softc *miisc;
5827
5828			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5829			    mii_phy_reset(miisc);
5830		}
5831		error = mii_mediachg(mii);
5832	}
5833
5834	DBEXIT(BCE_VERBOSE_PHY);
5835	return (error);
5836}
5837
5838
5839/****************************************************************************/
5840/* Reports current media status.                                            */
5841/*                                                                          */
5842/* Returns:                                                                 */
5843/*   Nothing.                                                               */
5844/****************************************************************************/
5845static void
5846bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5847{
5848	struct bce_softc *sc = ifp->if_softc;
5849	struct mii_data *mii;
5850
5851	DBENTER(BCE_VERBOSE_PHY);
5852
5853	BCE_LOCK(sc);
5854
5855	if ((ifp->if_flags & IFF_UP) == 0) {
5856		BCE_UNLOCK(sc);
5857		return;
5858	}
5859	mii = device_get_softc(sc->bce_miibus);
5860
5861	mii_pollstat(mii);
5862	ifmr->ifm_active = mii->mii_media_active;
5863	ifmr->ifm_status = mii->mii_media_status;
5864
5865	BCE_UNLOCK(sc);
5866
5867	DBEXIT(BCE_VERBOSE_PHY);
5868}
5869
5870
5871/****************************************************************************/
5872/* Handles PHY generated interrupt events.                                  */
5873/*                                                                          */
5874/* Returns:                                                                 */
5875/*   Nothing.                                                               */
5876/****************************************************************************/
5877static void
5878bce_phy_intr(struct bce_softc *sc)
5879{
5880	u32 new_link_state, old_link_state;
5881
5882	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5883
5884	DBRUN(sc->phy_interrupts++);
5885
5886	new_link_state = sc->status_block->status_attn_bits &
5887	    STATUS_ATTN_BITS_LINK_STATE;
5888	old_link_state = sc->status_block->status_attn_bits_ack &
5889	    STATUS_ATTN_BITS_LINK_STATE;
5890
5891	/* Handle any changes if the link state has changed. */
5892	if (new_link_state != old_link_state) {
5893
5894		/* Update the status_attn_bits_ack field. */
5895		if (new_link_state) {
5896			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5897			    STATUS_ATTN_BITS_LINK_STATE);
5898			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5899			    __FUNCTION__);
5900		}
5901		else {
5902			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5903			    STATUS_ATTN_BITS_LINK_STATE);
5904			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5905			    __FUNCTION__);
5906		}
5907
5908		/*
5909		 * Assume link is down and allow
5910		 * tick routine to update the state
5911		 * based on the actual media state.
5912		 */
5913		sc->bce_link_up = FALSE;
5914		callout_stop(&sc->bce_tick_callout);
5915		bce_tick(sc);
5916	}
5917
5918	/* Acknowledge the link change interrupt. */
5919	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5920
5921	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5922}
5923
5924
5925/****************************************************************************/
5926/* Reads the receive consumer value from the status block (skipping over    */
5927/* chain page pointer if necessary).                                        */
5928/*                                                                          */
5929/* Returns:                                                                 */
5930/*   hw_cons                                                                */
5931/****************************************************************************/
5932static inline u16
5933bce_get_hw_rx_cons(struct bce_softc *sc)
5934{
5935	u16 hw_cons;
5936
5937	rmb();
5938	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5939	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5940		hw_cons++;
5941
5942	return hw_cons;
5943}
5944
5945/****************************************************************************/
5946/* Handles received frame interrupt events.                                 */
5947/*                                                                          */
5948/* Returns:                                                                 */
5949/*   Nothing.                                                               */
5950/****************************************************************************/
5951static void
5952bce_rx_intr(struct bce_softc *sc)
5953{
5954	struct ifnet *ifp = sc->bce_ifp;
5955	struct l2_fhdr *l2fhdr;
5956	struct ether_vlan_header *vh;
5957	unsigned int pkt_len;
5958	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5959	u32 status;
5960#ifdef BCE_JUMBO_HDRSPLIT
5961	unsigned int rem_len;
5962	u16 sw_pg_cons, sw_pg_cons_idx;
5963#endif
5964
5965	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5966	DBRUN(sc->interrupts_rx++);
5967	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5968	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5969	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5970
5971	/* Prepare the RX chain pages to be accessed by the host CPU. */
5972	for (int i = 0; i < RX_PAGES; i++)
5973		bus_dmamap_sync(sc->rx_bd_chain_tag,
5974		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5975
5976#ifdef BCE_JUMBO_HDRSPLIT
5977	/* Prepare the page chain pages to be accessed by the host CPU. */
5978	for (int i = 0; i < PG_PAGES; i++)
5979		bus_dmamap_sync(sc->pg_bd_chain_tag,
5980		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5981#endif
5982
5983	/* Get the hardware's view of the RX consumer index. */
5984	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5985
5986	/* Get working copies of the driver's view of the consumer indices. */
5987	sw_rx_cons = sc->rx_cons;
5988
5989#ifdef BCE_JUMBO_HDRSPLIT
5990	sw_pg_cons = sc->pg_cons;
5991#endif
5992
5993	/* Update some debug statistics counters */
5994	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5995	    sc->rx_low_watermark = sc->free_rx_bd);
5996	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5997	    sc->rx_empty_count++);
5998
5999	/* Scan through the receive chain as long as there is work to do */
6000	/* ToDo: Consider setting a limit on the number of packets processed. */
6001	rmb();
6002	while (sw_rx_cons != hw_rx_cons) {
6003		struct mbuf *m0;
6004
6005		/* Convert the producer/consumer indices to an actual rx_bd index. */
6006		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6007
6008		/* Unmap the mbuf from DMA space. */
6009		bus_dmamap_sync(sc->rx_mbuf_tag,
6010		    sc->rx_mbuf_map[sw_rx_cons_idx],
6011		    BUS_DMASYNC_POSTREAD);
6012		bus_dmamap_unload(sc->rx_mbuf_tag,
6013		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6014
6015		/* Remove the mbuf from the RX chain. */
6016		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6017		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6018		DBRUN(sc->debug_rx_mbuf_alloc--);
6019		sc->free_rx_bd++;
6020
6021		if(m0 == NULL) {
6022			DBPRINT(sc, BCE_EXTREME_RECV,
6023			    "%s(): Oops! Empty mbuf pointer "
6024			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6025			    __FUNCTION__, sw_rx_cons_idx);
6026			goto bce_rx_int_next_rx;
6027		}
6028
6029		/*
6030 		 * Frames received on the NetXteme II are prepended
6031 		 * with an l2_fhdr structure which provides status
6032 		 * information about the received frame (including
6033 		 * VLAN tags and checksum info).  The frames are
6034		 * also automatically adjusted to align the IP
6035 		 * header (i.e. two null bytes are inserted before
6036 		 * the Ethernet	header).  As a result the data
6037 		 * DMA'd by the controller into	the mbuf looks
6038		 * like this:
6039		 *
6040		 * +---------+-----+---------------------+-----+
6041		 * | l2_fhdr | pad | packet data         | FCS |
6042		 * +---------+-----+---------------------+-----+
6043		 *
6044 		 * The l2_fhdr needs to be checked and skipped and
6045 		 * the FCS needs to be stripped before sending the
6046		 * packet up the stack.
6047		 */
6048		l2fhdr  = mtod(m0, struct l2_fhdr *);
6049
6050		/* Get the packet data + FCS length and the status. */
6051		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6052		status  = l2fhdr->l2_fhdr_status;
6053
6054		/*
6055		 * Skip over the l2_fhdr and pad, resulting in the
6056		 * following data in the mbuf:
6057		 * +---------------------+-----+
6058		 * | packet data         | FCS |
6059		 * +---------------------+-----+
6060		 */
6061		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6062
6063#ifdef BCE_JUMBO_HDRSPLIT
6064		/*
6065		 * Check whether the received frame fits in a single
6066		 * mbuf or not (i.e. packet data + FCS <=
6067		 * sc->rx_bd_mbuf_data_len bytes).
6068		 */
6069		if (pkt_len > m0->m_len) {
6070			/*
6071			 * The received frame is larger than a single mbuf.
6072			 * If the frame was a TCP frame then only the TCP
6073			 * header is placed in the mbuf, the remaining
6074			 * payload (including FCS) is placed in the page
6075			 * chain, the SPLIT flag is set, and the header
6076			 * length is placed in the IP checksum field.
6077			 * If the frame is not a TCP frame then the mbuf
6078			 * is filled and the remaining bytes are placed
6079			 * in the page chain.
6080			 */
6081
6082			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6083			    "packet.\n", __FUNCTION__);
6084
6085			/*
6086			 * When the page chain is enabled and the TCP
6087			 * header has been split from the TCP payload,
6088			 * the ip_xsum structure will reflect the length
6089			 * of the TCP header, not the IP checksum.  Set
6090			 * the packet length of the mbuf accordingly.
6091			 */
6092		 	if (status & L2_FHDR_STATUS_SPLIT)
6093				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6094
6095			rem_len = pkt_len - m0->m_len;
6096
6097			/* Pull mbufs off the page chain for the remaining data. */
6098			while (rem_len > 0) {
6099				struct mbuf *m_pg;
6100
6101				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6102
6103				/* Remove the mbuf from the page chain. */
6104				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6105				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6106				DBRUN(sc->debug_pg_mbuf_alloc--);
6107				sc->free_pg_bd++;
6108
6109				/* Unmap the page chain mbuf from DMA space. */
6110				bus_dmamap_sync(sc->pg_mbuf_tag,
6111				    sc->pg_mbuf_map[sw_pg_cons_idx],
6112				    BUS_DMASYNC_POSTREAD);
6113				bus_dmamap_unload(sc->pg_mbuf_tag,
6114				    sc->pg_mbuf_map[sw_pg_cons_idx]);
6115
6116				/* Adjust the mbuf length. */
6117				if (rem_len < m_pg->m_len) {
6118					/* The mbuf chain is complete. */
6119					m_pg->m_len = rem_len;
6120					rem_len = 0;
6121				} else {
6122					/* More packet data is waiting. */
6123					rem_len -= m_pg->m_len;
6124				}
6125
6126				/* Concatenate the mbuf cluster to the mbuf. */
6127				m_cat(m0, m_pg);
6128
6129				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6130			}
6131
6132			/* Set the total packet length. */
6133			m0->m_pkthdr.len = pkt_len;
6134
6135		} else {
6136			/*
6137			 * The received packet is small and fits in a
6138			 * single mbuf (i.e. the l2_fhdr + pad + packet +
6139			 * FCS <= MHLEN).  In other words, the packet is
6140			 * 154 bytes or less in size.
6141			 */
6142
6143			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6144			    "packet.\n", __FUNCTION__);
6145
6146			/* Set the total packet length. */
6147			m0->m_pkthdr.len = m0->m_len = pkt_len;
6148		}
6149#else
6150		/* Set the total packet length. */
6151		m0->m_pkthdr.len = m0->m_len = pkt_len;
6152#endif
6153
6154		/* Remove the trailing Ethernet FCS. */
6155		m_adj(m0, -ETHER_CRC_LEN);
6156
6157		/* Check that the resulting mbuf chain is valid. */
6158		DBRUN(m_sanity(m0, FALSE));
6159		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6160		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6161		     BCE_PRINTF("Invalid Ethernet frame size!\n");
6162		     m_print(m0, 128));
6163
6164		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6165		    sc->l2fhdr_error_sim_count++;
6166		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6167
6168		/* Check the received frame for errors. */
6169		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6170		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6171		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6172
6173			/* Log the error and release the mbuf. */
6174			ifp->if_ierrors++;
6175			sc->l2fhdr_error_count++;
6176
6177			m_freem(m0);
6178			m0 = NULL;
6179			goto bce_rx_int_next_rx;
6180		}
6181
6182		/* Send the packet to the appropriate interface. */
6183		m0->m_pkthdr.rcvif = ifp;
6184
6185		/* Assume no hardware checksum. */
6186		m0->m_pkthdr.csum_flags = 0;
6187
6188		/* Validate the checksum if offload enabled. */
6189		if (ifp->if_capenable & IFCAP_RXCSUM) {
6190
6191			/* Check for an IP datagram. */
6192		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6193			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6194				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6195				DBRUN(sc->csum_offload_ip++);
6196				/* Check if the IP checksum is valid. */
6197				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6198					m0->m_pkthdr.csum_flags |=
6199					    CSUM_IP_VALID;
6200			}
6201
6202			/* Check for a valid TCP/UDP frame. */
6203			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6204			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6205
6206				/* Check for a good TCP/UDP checksum. */
6207				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6208				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6209					DBRUN(sc->csum_offload_tcp_udp++);
6210					m0->m_pkthdr.csum_data =
6211					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6212					m0->m_pkthdr.csum_flags |=
6213					    (CSUM_DATA_VALID
6214					    | CSUM_PSEUDO_HDR);
6215				}
6216			}
6217		}
6218
6219		/* Attach the VLAN tag.	*/
6220		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6221			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6222#if __FreeBSD_version < 700000
6223				VLAN_INPUT_TAG(ifp, m0,
6224				    l2fhdr->l2_fhdr_vlan_tag, continue);
6225#else
6226				m0->m_pkthdr.ether_vtag =
6227				    l2fhdr->l2_fhdr_vlan_tag;
6228				m0->m_flags |= M_VLANTAG;
6229#endif
6230			} else {
6231				/*
6232				 * bce(4) controllers can't disable VLAN
6233				 * tag stripping if management firmware
6234				 * (ASF/IPMI/UMP) is running. So we always
6235				 * strip VLAN tag and manually reconstruct
6236				 * the VLAN frame by appending stripped
6237				 * VLAN tag in driver if VLAN tag stripping
6238				 * was disabled.
6239				 *
6240				 * TODO: LLC SNAP handling.
6241				 */
6242				bcopy(mtod(m0, uint8_t *),
6243				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6244				    ETHER_ADDR_LEN * 2);
6245				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6246				vh = mtod(m0, struct ether_vlan_header *);
6247				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6248				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6249				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6250				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6251			}
6252		}
6253
6254		/* Increment received packet statistics. */
6255		ifp->if_ipackets++;
6256
6257bce_rx_int_next_rx:
6258		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6259
6260		/* If we have a packet, pass it up the stack */
6261		if (m0) {
6262			/* Make sure we don't lose our place when we release the lock. */
6263			sc->rx_cons = sw_rx_cons;
6264#ifdef BCE_JUMBO_HDRSPLIT
6265			sc->pg_cons = sw_pg_cons;
6266#endif
6267
6268			BCE_UNLOCK(sc);
6269			(*ifp->if_input)(ifp, m0);
6270			BCE_LOCK(sc);
6271
6272			/* Recover our place. */
6273			sw_rx_cons = sc->rx_cons;
6274#ifdef BCE_JUMBO_HDRSPLIT
6275			sw_pg_cons = sc->pg_cons;
6276#endif
6277		}
6278
6279		/* Refresh hw_cons to see if there's new work */
6280		if (sw_rx_cons == hw_rx_cons)
6281			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6282	}
6283
6284#ifdef BCE_JUMBO_HDRSPLIT
6285	/* No new packets.  Refill the page chain. */
6286	sc->pg_cons = sw_pg_cons;
6287	bce_fill_pg_chain(sc);
6288#endif
6289
6290	/* No new packets.  Refill the RX chain. */
6291	sc->rx_cons = sw_rx_cons;
6292	bce_fill_rx_chain(sc);
6293
6294	/* Prepare the page chain pages to be accessed by the NIC. */
6295	for (int i = 0; i < RX_PAGES; i++)
6296		bus_dmamap_sync(sc->rx_bd_chain_tag,
6297		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6298
6299#ifdef BCE_JUMBO_HDRSPLIT
6300	for (int i = 0; i < PG_PAGES; i++)
6301		bus_dmamap_sync(sc->pg_bd_chain_tag,
6302		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6303#endif
6304
6305	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6306	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6307	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6308	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6309}
6310
6311
6312/****************************************************************************/
6313/* Reads the transmit consumer value from the status block (skipping over   */
6314/* chain page pointer if necessary).                                        */
6315/*                                                                          */
6316/* Returns:                                                                 */
6317/*   hw_cons                                                                */
6318/****************************************************************************/
6319static inline u16
6320bce_get_hw_tx_cons(struct bce_softc *sc)
6321{
6322	u16 hw_cons;
6323
6324	mb();
6325	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6326	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6327		hw_cons++;
6328
6329	return hw_cons;
6330}
6331
6332
6333/****************************************************************************/
6334/* Handles transmit completion interrupt events.                            */
6335/*                                                                          */
6336/* Returns:                                                                 */
6337/*   Nothing.                                                               */
6338/****************************************************************************/
6339static void
6340bce_tx_intr(struct bce_softc *sc)
6341{
6342	struct ifnet *ifp = sc->bce_ifp;
6343	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6344
6345	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6346	DBRUN(sc->interrupts_tx++);
6347	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6348	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6349	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6350
6351	BCE_LOCK_ASSERT(sc);
6352
6353	/* Get the hardware's view of the TX consumer index. */
6354	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6355	sw_tx_cons = sc->tx_cons;
6356
6357	/* Prevent speculative reads of the status block. */
6358	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6359	    BUS_SPACE_BARRIER_READ);
6360
6361	/* Cycle through any completed TX chain page entries. */
6362	while (sw_tx_cons != hw_tx_cons) {
6363#ifdef BCE_DEBUG
6364		struct tx_bd *txbd = NULL;
6365#endif
6366		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6367
6368		DBPRINT(sc, BCE_INFO_SEND,
6369		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6370		    "sw_tx_chain_cons = 0x%04X\n",
6371		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6372
6373		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6374		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6375		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6376		    (int) MAX_TX_BD);
6377		    bce_breakpoint(sc));
6378
6379		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6380		    [TX_IDX(sw_tx_chain_cons)]);
6381
6382		DBRUNIF((txbd == NULL),
6383		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6384		    __FILE__, __LINE__, sw_tx_chain_cons);
6385		    bce_breakpoint(sc));
6386
6387		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6388		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6389
6390		/*
6391		 * Free the associated mbuf. Remember
6392		 * that only the last tx_bd of a packet
6393		 * has an mbuf pointer and DMA map.
6394		 */
6395		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6396
6397			/* Validate that this is the last tx_bd. */
6398			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6399			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6400			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6401			    bce_breakpoint(sc));
6402
6403			DBRUNMSG(BCE_INFO_SEND,
6404			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6405			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6406			    sw_tx_chain_cons));
6407
6408			/* Unmap the mbuf. */
6409			bus_dmamap_unload(sc->tx_mbuf_tag,
6410			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6411
6412			/* Free the mbuf. */
6413			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6414			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6415			DBRUN(sc->debug_tx_mbuf_alloc--);
6416
6417			ifp->if_opackets++;
6418		}
6419
6420		sc->used_tx_bd--;
6421		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6422
6423		/* Refresh hw_cons to see if there's new work. */
6424		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6425
6426		/* Prevent speculative reads of the status block. */
6427		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6428		    BUS_SPACE_BARRIER_READ);
6429	}
6430
6431	/* Clear the TX timeout timer. */
6432	sc->watchdog_timer = 0;
6433
6434	/* Clear the tx hardware queue full flag. */
6435	if (sc->used_tx_bd < sc->max_tx_bd) {
6436		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6437		    DBPRINT(sc, BCE_INFO_SEND,
6438		    "%s(): Open TX chain! %d/%d (used/total)\n",
6439		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6440		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6441	}
6442
6443	sc->tx_cons = sw_tx_cons;
6444
6445	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6446	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6447	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6448	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6449}
6450
6451
6452/****************************************************************************/
6453/* Disables interrupt generation.                                           */
6454/*                                                                          */
6455/* Returns:                                                                 */
6456/*   Nothing.                                                               */
6457/****************************************************************************/
6458static void
6459bce_disable_intr(struct bce_softc *sc)
6460{
6461	DBENTER(BCE_VERBOSE_INTR);
6462
6463	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6464	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6465
6466	DBEXIT(BCE_VERBOSE_INTR);
6467}
6468
6469
6470/****************************************************************************/
6471/* Enables interrupt generation.                                            */
6472/*                                                                          */
6473/* Returns:                                                                 */
6474/*   Nothing.                                                               */
6475/****************************************************************************/
6476static void
6477bce_enable_intr(struct bce_softc *sc, int coal_now)
6478{
6479	DBENTER(BCE_VERBOSE_INTR);
6480
6481	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6482	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6483	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6484
6485	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6486	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6487
6488	/* Force an immediate interrupt (whether there is new data or not). */
6489	if (coal_now)
6490		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6491
6492	DBEXIT(BCE_VERBOSE_INTR);
6493}
6494
6495
6496/****************************************************************************/
6497/* Handles controller initialization.                                       */
6498/*                                                                          */
6499/* Returns:                                                                 */
6500/*   Nothing.                                                               */
6501/****************************************************************************/
6502static void
6503bce_init_locked(struct bce_softc *sc)
6504{
6505	struct ifnet *ifp;
6506	u32 ether_mtu = 0;
6507
6508	DBENTER(BCE_VERBOSE_RESET);
6509
6510	BCE_LOCK_ASSERT(sc);
6511
6512	ifp = sc->bce_ifp;
6513
6514	/* Check if the driver is still running and bail out if it is. */
6515	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6516		goto bce_init_locked_exit;
6517
6518	bce_stop(sc);
6519
6520	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6521		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6522		    __FILE__, __LINE__);
6523		goto bce_init_locked_exit;
6524	}
6525
6526	if (bce_chipinit(sc)) {
6527		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6528		    __FILE__, __LINE__);
6529		goto bce_init_locked_exit;
6530	}
6531
6532	if (bce_blockinit(sc)) {
6533		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6534		    __FILE__, __LINE__);
6535		goto bce_init_locked_exit;
6536	}
6537
6538	/* Load our MAC address. */
6539	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6540	bce_set_mac_addr(sc);
6541
6542	/*
6543	 * Calculate and program the hardware Ethernet MTU
6544	 * size. Be generous on the receive if we have room.
6545	 */
6546#ifdef BCE_JUMBO_HDRSPLIT
6547	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6548	    sc->pg_bd_mbuf_alloc_size))
6549		ether_mtu = sc->rx_bd_mbuf_data_len +
6550		    sc->pg_bd_mbuf_alloc_size;
6551#else
6552	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6553		ether_mtu = sc->rx_bd_mbuf_data_len;
6554#endif
6555	else
6556		ether_mtu = ifp->if_mtu;
6557
6558	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6559
6560	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6561	    __FUNCTION__, ether_mtu);
6562
6563	/* Program the mtu, enabling jumbo frame support if necessary. */
6564	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6565		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6566		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6567		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6568	else
6569		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6570
6571	DBPRINT(sc, BCE_INFO_LOAD,
6572	    "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6573	    "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6574	    sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6575	    sc->rx_bd_mbuf_align_pad);
6576
6577	/* Program appropriate promiscuous/multicast filtering. */
6578	bce_set_rx_mode(sc);
6579
6580#ifdef BCE_JUMBO_HDRSPLIT
6581	DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6582	    __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6583
6584	/* Init page buffer descriptor chain. */
6585	bce_init_pg_chain(sc);
6586#endif
6587
6588	/* Init RX buffer descriptor chain. */
6589	bce_init_rx_chain(sc);
6590
6591	/* Init TX buffer descriptor chain. */
6592	bce_init_tx_chain(sc);
6593
6594	/* Enable host interrupts. */
6595	bce_enable_intr(sc, 1);
6596
6597	bce_ifmedia_upd_locked(ifp);
6598
6599	/* Let the OS know the driver is up and running. */
6600	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6601	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6602
6603	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6604
6605bce_init_locked_exit:
6606	DBEXIT(BCE_VERBOSE_RESET);
6607}
6608
6609
6610/****************************************************************************/
6611/* Initialize the controller just enough so that any management firmware    */
6612/* running on the device will continue to operate correctly.                */
6613/*                                                                          */
6614/* Returns:                                                                 */
6615/*   Nothing.                                                               */
6616/****************************************************************************/
6617static void
6618bce_mgmt_init_locked(struct bce_softc *sc)
6619{
6620	struct ifnet *ifp;
6621
6622	DBENTER(BCE_VERBOSE_RESET);
6623
6624	BCE_LOCK_ASSERT(sc);
6625
6626	/* Bail out if management firmware is not running. */
6627	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6628		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6629		    "No management firmware running...\n");
6630		goto bce_mgmt_init_locked_exit;
6631	}
6632
6633	ifp = sc->bce_ifp;
6634
6635	/* Enable all critical blocks in the MAC. */
6636	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6637	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6638	DELAY(20);
6639
6640	bce_ifmedia_upd_locked(ifp);
6641
6642bce_mgmt_init_locked_exit:
6643	DBEXIT(BCE_VERBOSE_RESET);
6644}
6645
6646
6647/****************************************************************************/
6648/* Handles controller initialization when called from an unlocked routine.  */
6649/*                                                                          */
6650/* Returns:                                                                 */
6651/*   Nothing.                                                               */
6652/****************************************************************************/
6653static void
6654bce_init(void *xsc)
6655{
6656	struct bce_softc *sc = xsc;
6657
6658	DBENTER(BCE_VERBOSE_RESET);
6659
6660	BCE_LOCK(sc);
6661	bce_init_locked(sc);
6662	BCE_UNLOCK(sc);
6663
6664	DBEXIT(BCE_VERBOSE_RESET);
6665}
6666
6667
6668/****************************************************************************/
6669/* Modifies an mbuf for TSO on the hardware.                                */
6670/*                                                                          */
6671/* Returns:                                                                 */
6672/*   Pointer to a modified mbuf.                                            */
6673/****************************************************************************/
6674static struct mbuf *
6675bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6676{
6677	struct mbuf *m;
6678	struct ether_header *eh;
6679	struct ip *ip;
6680	struct tcphdr *th;
6681	u16 etype;
6682	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6683
6684	DBRUN(sc->tso_frames_requested++);
6685
6686	/* Controller may modify mbuf chains. */
6687	if (M_WRITABLE(*m_head) == 0) {
6688		m = m_dup(*m_head, M_DONTWAIT);
6689		m_freem(*m_head);
6690		if (m == NULL) {
6691			sc->mbuf_alloc_failed_count++;
6692			*m_head = NULL;
6693			return (NULL);
6694		}
6695		*m_head = m;
6696	}
6697
6698	/*
6699	 * For TSO the controller needs two pieces of info,
6700	 * the MSS and the IP+TCP options length.
6701	 */
6702	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
6703	if (m == NULL) {
6704		*m_head = NULL;
6705		return (NULL);
6706	}
6707	eh = mtod(m, struct ether_header *);
6708	etype = ntohs(eh->ether_type);
6709
6710	/* Check for supported TSO Ethernet types (only IPv4 for now) */
6711	switch (etype) {
6712	case ETHERTYPE_IP:
6713		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6714		/* TSO only supported for TCP protocol. */
6715		if (ip->ip_p != IPPROTO_TCP) {
6716			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6717			    __FILE__, __LINE__);
6718			m_freem(*m_head);
6719			*m_head = NULL;
6720			return (NULL);
6721		}
6722
6723		/* Get IP header length in bytes (min 20) */
6724		ip_hlen = ip->ip_hl << 2;
6725		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
6726		    sizeof(struct tcphdr));
6727		if (m == NULL) {
6728			*m_head = NULL;
6729			return (NULL);
6730		}
6731
6732		/* Get the TCP header length in bytes (min 20) */
6733		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6734		tcp_hlen = (th->th_off << 2);
6735
6736		/* Make sure all IP/TCP options live in the same buffer. */
6737		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
6738		    tcp_hlen);
6739		if (m == NULL) {
6740			*m_head = NULL;
6741			return (NULL);
6742		}
6743
6744		/* IP header length and checksum will be calc'd by hardware */
6745		ip_len = ip->ip_len;
6746		ip->ip_len = 0;
6747		ip->ip_sum = 0;
6748		break;
6749	case ETHERTYPE_IPV6:
6750		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6751		    __FILE__, __LINE__);
6752		m_freem(*m_head);
6753		*m_head = NULL;
6754		return (NULL);
6755		/* NOT REACHED */
6756	default:
6757		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6758		    __FILE__, __LINE__);
6759		m_freem(*m_head);
6760		*m_head = NULL;
6761		return (NULL);
6762	}
6763
6764	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
6765
6766	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
6767	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6768	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
6769	    tcp_hlen, ip_len);
6770
6771	/* Set the LSO flag in the TX BD */
6772	*flags |= TX_BD_FLAGS_SW_LSO;
6773
6774	/* Set the length of IP + TCP options (in 32 bit words) */
6775	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
6776	    sizeof(struct tcphdr)) >> 2) << 8);
6777
6778	DBRUN(sc->tso_frames_completed++);
6779	return (*m_head);
6780}
6781
6782
6783/****************************************************************************/
6784/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6785/* memory visible to the controller.                                        */
6786/*                                                                          */
6787/* Returns:                                                                 */
6788/*   0 for success, positive value for failure.                             */
6789/* Modified:                                                                */
6790/*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6791/****************************************************************************/
6792static int
6793bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6794{
6795	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6796	bus_dmamap_t map;
6797	struct tx_bd *txbd = NULL;
6798	struct mbuf *m0;
6799	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
6800	u32 prod_bseq;
6801
6802#ifdef BCE_DEBUG
6803	u16 debug_prod;
6804#endif
6805
6806	int i, error, nsegs, rc = 0;
6807
6808	DBENTER(BCE_VERBOSE_SEND);
6809
6810	/* Make sure we have room in the TX chain. */
6811	if (sc->used_tx_bd >= sc->max_tx_bd)
6812		goto bce_tx_encap_exit;
6813
6814	/* Transfer any checksum offload flags to the bd. */
6815	m0 = *m_head;
6816	if (m0->m_pkthdr.csum_flags) {
6817		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6818			m0 = bce_tso_setup(sc, m_head, &flags);
6819			if (m0 == NULL) {
6820				DBRUN(sc->tso_frames_failed++);
6821				goto bce_tx_encap_exit;
6822			}
6823			mss = htole16(m0->m_pkthdr.tso_segsz);
6824		} else {
6825			if (m0->m_pkthdr.csum_flags & CSUM_IP)
6826				flags |= TX_BD_FLAGS_IP_CKSUM;
6827			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6828				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6829		}
6830	}
6831
6832	/* Transfer any VLAN tags to the bd. */
6833	if (m0->m_flags & M_VLANTAG) {
6834		flags |= TX_BD_FLAGS_VLAN_TAG;
6835		vlan_tag = m0->m_pkthdr.ether_vtag;
6836	}
6837
6838	/* Map the mbuf into DMAable memory. */
6839	prod = sc->tx_prod;
6840	chain_prod = TX_CHAIN_IDX(prod);
6841	map = sc->tx_mbuf_map[chain_prod];
6842
6843	/* Map the mbuf into our DMA address space. */
6844	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6845	    segs, &nsegs, BUS_DMA_NOWAIT);
6846
6847	/* Check if the DMA mapping was successful */
6848	if (error == EFBIG) {
6849		sc->mbuf_frag_count++;
6850
6851		/* Try to defrag the mbuf. */
6852		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
6853		if (m0 == NULL) {
6854			/* Defrag was unsuccessful */
6855			m_freem(*m_head);
6856			*m_head = NULL;
6857			sc->mbuf_alloc_failed_count++;
6858			rc = ENOBUFS;
6859			goto bce_tx_encap_exit;
6860		}
6861
6862		/* Defrag was successful, try mapping again */
6863		*m_head = m0;
6864		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
6865		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
6866
6867		/* Still getting an error after a defrag. */
6868		if (error == ENOMEM) {
6869			/* Insufficient DMA buffers available. */
6870			sc->dma_map_addr_tx_failed_count++;
6871			rc = error;
6872			goto bce_tx_encap_exit;
6873		} else if (error != 0) {
6874			/* Release it and return an error. */
6875			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
6876			    "TX chain!\n", __FILE__, __LINE__);
6877			m_freem(m0);
6878			*m_head = NULL;
6879			sc->dma_map_addr_tx_failed_count++;
6880			rc = ENOBUFS;
6881			goto bce_tx_encap_exit;
6882		}
6883	} else if (error == ENOMEM) {
6884		/* Insufficient DMA buffers available. */
6885		sc->dma_map_addr_tx_failed_count++;
6886		rc = error;
6887		goto bce_tx_encap_exit;
6888	} else if (error != 0) {
6889		m_freem(m0);
6890		*m_head = NULL;
6891		sc->dma_map_addr_tx_failed_count++;
6892		rc = error;
6893		goto bce_tx_encap_exit;
6894	}
6895
6896	/* Make sure there's room in the chain */
6897	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6898		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6899		rc = ENOBUFS;
6900		goto bce_tx_encap_exit;
6901	}
6902
6903	/* prod points to an empty tx_bd at this point. */
6904	prod_bseq  = sc->tx_prod_bseq;
6905
6906#ifdef BCE_DEBUG
6907	debug_prod = chain_prod;
6908#endif
6909
6910	DBPRINT(sc, BCE_INFO_SEND,
6911	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6912	    "prod_bseq = 0x%08X\n",
6913	    __FUNCTION__, prod, chain_prod, prod_bseq);
6914
6915	/*
6916	 * Cycle through each mbuf segment that makes up
6917	 * the outgoing frame, gathering the mapping info
6918	 * for that segment and creating a tx_bd for
6919	 * the mbuf.
6920	 */
6921	for (i = 0; i < nsegs ; i++) {
6922
6923		chain_prod = TX_CHAIN_IDX(prod);
6924		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
6925		    [TX_IDX(chain_prod)];
6926
6927		txbd->tx_bd_haddr_lo =
6928		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
6929		txbd->tx_bd_haddr_hi =
6930		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
6931		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
6932		    htole16(segs[i].ds_len);
6933		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6934		txbd->tx_bd_flags = htole16(flags);
6935		prod_bseq += segs[i].ds_len;
6936		if (i == 0)
6937			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6938		prod = NEXT_TX_BD(prod);
6939	}
6940
6941	/* Set the END flag on the last TX buffer descriptor. */
6942	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6943
6944	DBRUNMSG(BCE_EXTREME_SEND,
6945	    bce_dump_tx_chain(sc, debug_prod, nsegs));
6946
6947	/*
6948	 * Ensure that the mbuf pointer for this transmission
6949	 * is placed at the array index of the last
6950	 * descriptor in this chain.  This is done
6951	 * because a single map is used for all
6952	 * segments of the mbuf and we don't want to
6953	 * unload the map before all of the segments
6954	 * have been freed.
6955	 */
6956	sc->tx_mbuf_ptr[chain_prod] = m0;
6957	sc->used_tx_bd += nsegs;
6958
6959	/* Update some debug statistic counters */
6960	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6961	    sc->tx_hi_watermark = sc->used_tx_bd);
6962	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6963	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6964
6965	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6966
6967	/* prod points to the next free tx_bd at this point. */
6968	sc->tx_prod = prod;
6969	sc->tx_prod_bseq = prod_bseq;
6970
6971	/* Tell the chip about the waiting TX frames. */
6972	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
6973	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6974	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
6975	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6976
6977bce_tx_encap_exit:
6978	DBEXIT(BCE_VERBOSE_SEND);
6979	return(rc);
6980}
6981
6982
6983/****************************************************************************/
6984/* Main transmit routine when called from another routine with a lock.      */
6985/*                                                                          */
6986/* Returns:                                                                 */
6987/*   Nothing.                                                               */
6988/****************************************************************************/
6989static void
6990bce_start_locked(struct ifnet *ifp)
6991{
6992	struct bce_softc *sc = ifp->if_softc;
6993	struct mbuf *m_head = NULL;
6994	int count = 0;
6995	u16 tx_prod, tx_chain_prod;
6996
6997	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6998
6999	BCE_LOCK_ASSERT(sc);
7000
7001	/* prod points to the next free tx_bd. */
7002	tx_prod = sc->tx_prod;
7003	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7004
7005	DBPRINT(sc, BCE_INFO_SEND,
7006	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7007	    "tx_prod_bseq = 0x%08X\n",
7008	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7009
7010	/* If there's no link or the transmit queue is empty then just exit. */
7011	if (sc->bce_link_up == FALSE) {
7012		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7013		    __FUNCTION__);
7014		goto bce_start_locked_exit;
7015	}
7016
7017	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7018		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7019		    __FUNCTION__);
7020		goto bce_start_locked_exit;
7021	}
7022
7023	/*
7024	 * Keep adding entries while there is space in the ring.
7025	 */
7026	while (sc->used_tx_bd < sc->max_tx_bd) {
7027
7028		/* Check for any frames to send. */
7029		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7030
7031		/* Stop when the transmit queue is empty. */
7032		if (m_head == NULL)
7033			break;
7034
7035		/*
7036		 * Pack the data into the transmit ring. If we
7037		 * don't have room, place the mbuf back at the
7038		 * head of the queue and set the OACTIVE flag
7039		 * to wait for the NIC to drain the chain.
7040		 */
7041		if (bce_tx_encap(sc, &m_head)) {
7042			if (m_head != NULL)
7043				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7044			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7045			DBPRINT(sc, BCE_INFO_SEND,
7046			    "TX chain is closed for business! Total "
7047			    "tx_bd used = %d\n", sc->used_tx_bd);
7048			break;
7049		}
7050
7051		count++;
7052
7053		/* Send a copy of the frame to any BPF listeners. */
7054		ETHER_BPF_MTAP(ifp, m_head);
7055	}
7056
7057	/* Exit if no packets were dequeued. */
7058	if (count == 0) {
7059		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7060		    "dequeued\n", __FUNCTION__);
7061		goto bce_start_locked_exit;
7062	}
7063
7064	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7065	    "send queue.\n", __FUNCTION__, count);
7066
7067	/* Set the tx timeout. */
7068	sc->watchdog_timer = BCE_TX_TIMEOUT;
7069
7070	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7071	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7072
7073bce_start_locked_exit:
7074	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7075	return;
7076}
7077
7078
7079/****************************************************************************/
7080/* Main transmit routine when called from another routine without a lock.   */
7081/*                                                                          */
7082/* Returns:                                                                 */
7083/*   Nothing.                                                               */
7084/****************************************************************************/
7085static void
7086bce_start(struct ifnet *ifp)
7087{
7088	struct bce_softc *sc = ifp->if_softc;
7089
7090	DBENTER(BCE_VERBOSE_SEND);
7091
7092	BCE_LOCK(sc);
7093	bce_start_locked(ifp);
7094	BCE_UNLOCK(sc);
7095
7096	DBEXIT(BCE_VERBOSE_SEND);
7097}
7098
7099
7100/****************************************************************************/
7101/* Handles any IOCTL calls from the operating system.                       */
7102/*                                                                          */
7103/* Returns:                                                                 */
7104/*   0 for success, positive value for failure.                             */
7105/****************************************************************************/
7106static int
7107bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7108{
7109	struct bce_softc *sc = ifp->if_softc;
7110	struct ifreq *ifr = (struct ifreq *) data;
7111	struct mii_data *mii;
7112	int mask, error = 0, reinit;
7113
7114	DBENTER(BCE_VERBOSE_MISC);
7115
7116	switch(command) {
7117
7118	/* Set the interface MTU. */
7119	case SIOCSIFMTU:
7120		/* Check that the MTU setting is supported. */
7121		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7122			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7123			error = EINVAL;
7124			break;
7125		}
7126
7127		DBPRINT(sc, BCE_INFO_MISC,
7128		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7129		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7130
7131		BCE_LOCK(sc);
7132		ifp->if_mtu = ifr->ifr_mtu;
7133		reinit = 0;
7134		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7135			/*
7136			 * Because allocation size is used in RX
7137			 * buffer allocation, stop controller if
7138			 * it is already running.
7139			 */
7140			bce_stop(sc);
7141			reinit = 1;
7142		}
7143#ifdef BCE_JUMBO_HDRSPLIT
7144		/* No buffer allocation size changes are necessary. */
7145#else
7146		/* Recalculate our buffer allocation sizes. */
7147		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
7148		     ETHER_CRC_LEN) > MCLBYTES) {
7149			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
7150			sc->rx_bd_mbuf_align_pad  =
7151			    roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
7152			sc->rx_bd_mbuf_data_len =
7153			    sc->rx_bd_mbuf_alloc_size -
7154			    sc->rx_bd_mbuf_align_pad;
7155		} else {
7156			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
7157			sc->rx_bd_mbuf_align_pad  =
7158			    roundup2(MCLBYTES, 16) - MCLBYTES;
7159			sc->rx_bd_mbuf_data_len =
7160			    sc->rx_bd_mbuf_alloc_size -
7161			    sc->rx_bd_mbuf_align_pad;
7162		}
7163#endif
7164
7165		if (reinit != 0)
7166			bce_init_locked(sc);
7167		BCE_UNLOCK(sc);
7168		break;
7169
7170	/* Set interface flags. */
7171	case SIOCSIFFLAGS:
7172		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7173
7174		BCE_LOCK(sc);
7175
7176		/* Check if the interface is up. */
7177		if (ifp->if_flags & IFF_UP) {
7178			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7179				/* Change promiscuous/multicast flags as necessary. */
7180				bce_set_rx_mode(sc);
7181			} else {
7182				/* Start the HW */
7183				bce_init_locked(sc);
7184			}
7185		} else {
7186			/* The interface is down, check if driver is running. */
7187			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7188				bce_stop(sc);
7189
7190				/* If MFW is running, restart the controller a bit. */
7191				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7192					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7193					bce_chipinit(sc);
7194					bce_mgmt_init_locked(sc);
7195				}
7196			}
7197		}
7198
7199		BCE_UNLOCK(sc);
7200		break;
7201
7202	/* Add/Delete multicast address */
7203	case SIOCADDMULTI:
7204	case SIOCDELMULTI:
7205		DBPRINT(sc, BCE_VERBOSE_MISC,
7206		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7207
7208		BCE_LOCK(sc);
7209		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7210			bce_set_rx_mode(sc);
7211		BCE_UNLOCK(sc);
7212
7213		break;
7214
7215	/* Set/Get Interface media */
7216	case SIOCSIFMEDIA:
7217	case SIOCGIFMEDIA:
7218		DBPRINT(sc, BCE_VERBOSE_MISC,
7219		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7220
7221		mii = device_get_softc(sc->bce_miibus);
7222		error = ifmedia_ioctl(ifp, ifr,
7223		    &mii->mii_media, command);
7224		break;
7225
7226	/* Set interface capability */
7227	case SIOCSIFCAP:
7228		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7229		DBPRINT(sc, BCE_INFO_MISC,
7230		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7231
7232		/* Toggle the TX checksum capabilities enable flag. */
7233		if (mask & IFCAP_TXCSUM &&
7234		    ifp->if_capabilities & IFCAP_TXCSUM) {
7235			ifp->if_capenable ^= IFCAP_TXCSUM;
7236			if (IFCAP_TXCSUM & ifp->if_capenable)
7237				ifp->if_hwassist |= BCE_IF_HWASSIST;
7238			else
7239				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7240		}
7241
7242		/* Toggle the RX checksum capabilities enable flag. */
7243		if (mask & IFCAP_RXCSUM &&
7244		    ifp->if_capabilities & IFCAP_RXCSUM)
7245			ifp->if_capenable ^= IFCAP_RXCSUM;
7246
7247		/* Toggle the TSO capabilities enable flag. */
7248		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7249		    ifp->if_capabilities & IFCAP_TSO4) {
7250			ifp->if_capenable ^= IFCAP_TSO4;
7251			if (IFCAP_TSO4 & ifp->if_capenable)
7252				ifp->if_hwassist |= CSUM_TSO;
7253			else
7254				ifp->if_hwassist &= ~CSUM_TSO;
7255		}
7256
7257		if (mask & IFCAP_VLAN_HWCSUM &&
7258		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7259			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7260
7261		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7262		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7263			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7264		/*
7265		 * Don't actually disable VLAN tag stripping as
7266		 * management firmware (ASF/IPMI/UMP) requires the
7267		 * feature. If VLAN tag stripping is disabled driver
7268		 * will manually reconstruct the VLAN frame by
7269		 * appending stripped VLAN tag.
7270		 */
7271		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7272		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7273			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7274			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7275			    == 0)
7276				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7277		}
7278		VLAN_CAPABILITIES(ifp);
7279		break;
7280	default:
7281		/* We don't know how to handle the IOCTL, pass it on. */
7282		error = ether_ioctl(ifp, command, data);
7283		break;
7284	}
7285
7286	DBEXIT(BCE_VERBOSE_MISC);
7287	return(error);
7288}
7289
7290
7291/****************************************************************************/
7292/* Transmit timeout handler.                                                */
7293/*                                                                          */
7294/* Returns:                                                                 */
7295/*   Nothing.                                                               */
7296/****************************************************************************/
7297static void
7298bce_watchdog(struct bce_softc *sc)
7299{
7300	DBENTER(BCE_EXTREME_SEND);
7301
7302	BCE_LOCK_ASSERT(sc);
7303
7304	/* If the watchdog timer hasn't expired then just exit. */
7305	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7306		goto bce_watchdog_exit;
7307
7308	/* If pause frames are active then don't reset the hardware. */
7309	/* ToDo: Should we reset the timer here? */
7310	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7311		goto bce_watchdog_exit;
7312
7313	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7314	    __FILE__, __LINE__);
7315
7316	DBRUNMSG(BCE_INFO,
7317	    bce_dump_driver_state(sc);
7318	    bce_dump_status_block(sc);
7319	    bce_dump_stats_block(sc);
7320	    bce_dump_ftqs(sc);
7321	    bce_dump_txp_state(sc, 0);
7322	    bce_dump_rxp_state(sc, 0);
7323	    bce_dump_tpat_state(sc, 0);
7324	    bce_dump_cp_state(sc, 0);
7325	    bce_dump_com_state(sc, 0));
7326
7327	DBRUN(bce_breakpoint(sc));
7328
7329	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7330
7331	bce_init_locked(sc);
7332	sc->bce_ifp->if_oerrors++;
7333
7334bce_watchdog_exit:
7335	DBEXIT(BCE_EXTREME_SEND);
7336}
7337
7338
7339/*
7340 * Interrupt handler.
7341 */
7342/****************************************************************************/
7343/* Main interrupt entry point.  Verifies that the controller generated the  */
7344/* interrupt and then calls a separate routine for handle the various       */
7345/* interrupt causes (PHY, TX, RX).                                          */
7346/*                                                                          */
7347/* Returns:                                                                 */
7348/*   0 for success, positive value for failure.                             */
7349/****************************************************************************/
7350static void
7351bce_intr(void *xsc)
7352{
7353	struct bce_softc *sc;
7354	struct ifnet *ifp;
7355	u32 status_attn_bits;
7356	u16 hw_rx_cons, hw_tx_cons;
7357
7358	sc = xsc;
7359	ifp = sc->bce_ifp;
7360
7361	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7362	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7363	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7364
7365	BCE_LOCK(sc);
7366
7367	DBRUN(sc->interrupts_generated++);
7368
7369	/* Synchnorize before we read from interface's status block */
7370	bus_dmamap_sync(sc->status_tag, sc->status_map,
7371	    BUS_DMASYNC_POSTREAD);
7372
7373	/*
7374	 * If the hardware status block index
7375	 * matches the last value read by the
7376	 * driver and we haven't asserted our
7377	 * interrupt then there's nothing to do.
7378	 */
7379	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7380	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7381	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7382		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7383		    __FUNCTION__);
7384		goto bce_intr_exit;
7385	}
7386
7387	/* Ack the interrupt and stop others from occuring. */
7388	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7389	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7390	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7391
7392	/* Check if the hardware has finished any work. */
7393	hw_rx_cons = bce_get_hw_rx_cons(sc);
7394	hw_tx_cons = bce_get_hw_tx_cons(sc);
7395
7396	/* Keep processing data as long as there is work to do. */
7397	for (;;) {
7398
7399		status_attn_bits = sc->status_block->status_attn_bits;
7400
7401		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7402		    BCE_PRINTF("Simulating unexpected status attention "
7403		    "bit set.");
7404		    sc->unexpected_attention_sim_count++;
7405		    status_attn_bits = status_attn_bits |
7406		    STATUS_ATTN_BITS_PARITY_ERROR);
7407
7408		/* Was it a link change interrupt? */
7409		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7410		    (sc->status_block->status_attn_bits_ack &
7411		     STATUS_ATTN_BITS_LINK_STATE)) {
7412			bce_phy_intr(sc);
7413
7414			/* Clear transient updates during link state change. */
7415			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7416			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7417			REG_RD(sc, BCE_HC_COMMAND);
7418		}
7419
7420		/* If any other attention is asserted, the chip is toast. */
7421		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7422		    (sc->status_block->status_attn_bits_ack &
7423		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7424
7425			sc->unexpected_attention_count++;
7426
7427			BCE_PRINTF("%s(%d): Fatal attention detected: "
7428			    "0x%08X\n",	__FILE__, __LINE__,
7429			    sc->status_block->status_attn_bits);
7430
7431			DBRUNMSG(BCE_FATAL,
7432			    if (unexpected_attention_sim_control == 0)
7433				bce_breakpoint(sc));
7434
7435			bce_init_locked(sc);
7436			goto bce_intr_exit;
7437		}
7438
7439		/* Check for any completed RX frames. */
7440		if (hw_rx_cons != sc->hw_rx_cons)
7441			bce_rx_intr(sc);
7442
7443		/* Check for any completed TX frames. */
7444		if (hw_tx_cons != sc->hw_tx_cons)
7445			bce_tx_intr(sc);
7446
7447		/* Save status block index value for the next interrupt. */
7448		sc->last_status_idx = sc->status_block->status_idx;
7449
7450 		/*
7451 		 * Prevent speculative reads from getting
7452 		 * ahead of the status block.
7453		 */
7454		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7455		    BUS_SPACE_BARRIER_READ);
7456
7457 		/*
7458 		 * If there's no work left then exit the
7459 		 * interrupt service routine.
7460		 */
7461		hw_rx_cons = bce_get_hw_rx_cons(sc);
7462		hw_tx_cons = bce_get_hw_tx_cons(sc);
7463
7464		if ((hw_rx_cons == sc->hw_rx_cons) &&
7465		    (hw_tx_cons == sc->hw_tx_cons))
7466			break;
7467
7468	}
7469
7470	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7471	    BUS_DMASYNC_PREREAD);
7472
7473	/* Re-enable interrupts. */
7474	bce_enable_intr(sc, 0);
7475
7476	/* Handle any frames that arrived while handling the interrupt. */
7477	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7478	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7479		bce_start_locked(ifp);
7480
7481bce_intr_exit:
7482	BCE_UNLOCK(sc);
7483
7484	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7485}
7486
7487
7488/****************************************************************************/
7489/* Programs the various packet receive modes (broadcast and multicast).     */
7490/*                                                                          */
7491/* Returns:                                                                 */
7492/*   Nothing.                                                               */
7493/****************************************************************************/
7494static void
7495bce_set_rx_mode(struct bce_softc *sc)
7496{
7497	struct ifnet *ifp;
7498	struct ifmultiaddr *ifma;
7499	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7500	u32 rx_mode, sort_mode;
7501	int h, i;
7502
7503	DBENTER(BCE_VERBOSE_MISC);
7504
7505	BCE_LOCK_ASSERT(sc);
7506
7507	ifp = sc->bce_ifp;
7508
7509	/* Initialize receive mode default settings. */
7510	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7511	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7512	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7513
7514	/*
7515	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7516	 * be enbled.
7517	 */
7518	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7519	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7520		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7521
7522	/*
7523	 * Check for promiscuous, all multicast, or selected
7524	 * multicast address filtering.
7525	 */
7526	if (ifp->if_flags & IFF_PROMISC) {
7527		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7528
7529		/* Enable promiscuous mode. */
7530		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7531		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7532	} else if (ifp->if_flags & IFF_ALLMULTI) {
7533		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7534
7535		/* Enable all multicast addresses. */
7536		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7537			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7538       	}
7539		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7540	} else {
7541		/* Accept one or more multicast(s). */
7542		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7543
7544		if_maddr_rlock(ifp);
7545		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7546			if (ifma->ifma_addr->sa_family != AF_LINK)
7547				continue;
7548			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7549			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7550			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7551		}
7552		if_maddr_runlock(ifp);
7553
7554		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7555			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7556
7557		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7558	}
7559
7560	/* Only make changes if the recive mode has actually changed. */
7561	if (rx_mode != sc->rx_mode) {
7562		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7563		    "0x%08X\n", rx_mode);
7564
7565		sc->rx_mode = rx_mode;
7566		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7567	}
7568
7569	/* Disable and clear the exisitng sort before enabling a new sort. */
7570	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7571	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7572	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7573
7574	DBEXIT(BCE_VERBOSE_MISC);
7575}
7576
7577
7578/****************************************************************************/
7579/* Called periodically to updates statistics from the controllers           */
7580/* statistics block.                                                        */
7581/*                                                                          */
7582/* Returns:                                                                 */
7583/*   Nothing.                                                               */
7584/****************************************************************************/
7585static void
7586bce_stats_update(struct bce_softc *sc)
7587{
7588	struct ifnet *ifp;
7589	struct statistics_block *stats;
7590
7591	DBENTER(BCE_EXTREME_MISC);
7592
7593	ifp = sc->bce_ifp;
7594
7595	stats = (struct statistics_block *) sc->stats_block;
7596
7597	/*
7598	 * Certain controllers don't report
7599	 * carrier sense errors correctly.
7600	 * See errata E11_5708CA0_1165.
7601	 */
7602	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7603	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7604		ifp->if_oerrors +=
7605		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7606
7607	/*
7608	 * Update the sysctl statistics from the
7609	 * hardware statistics.
7610	 */
7611	sc->stat_IfHCInOctets =
7612	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7613	     (u64) stats->stat_IfHCInOctets_lo;
7614
7615	sc->stat_IfHCInBadOctets =
7616	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7617	     (u64) stats->stat_IfHCInBadOctets_lo;
7618
7619	sc->stat_IfHCOutOctets =
7620	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7621	     (u64) stats->stat_IfHCOutOctets_lo;
7622
7623	sc->stat_IfHCOutBadOctets =
7624	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7625	     (u64) stats->stat_IfHCOutBadOctets_lo;
7626
7627	sc->stat_IfHCInUcastPkts =
7628	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7629	     (u64) stats->stat_IfHCInUcastPkts_lo;
7630
7631	sc->stat_IfHCInMulticastPkts =
7632	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7633	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7634
7635	sc->stat_IfHCInBroadcastPkts =
7636	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7637	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7638
7639	sc->stat_IfHCOutUcastPkts =
7640	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7641	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7642
7643	sc->stat_IfHCOutMulticastPkts =
7644	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7645	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7646
7647	sc->stat_IfHCOutBroadcastPkts =
7648	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7649	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7650
7651	/* ToDo: Preserve counters beyond 32 bits? */
7652	/* ToDo: Read the statistics from auto-clear regs? */
7653
7654	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7655	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7656
7657	sc->stat_Dot3StatsCarrierSenseErrors =
7658	    stats->stat_Dot3StatsCarrierSenseErrors;
7659
7660	sc->stat_Dot3StatsFCSErrors =
7661	    stats->stat_Dot3StatsFCSErrors;
7662
7663	sc->stat_Dot3StatsAlignmentErrors =
7664	    stats->stat_Dot3StatsAlignmentErrors;
7665
7666	sc->stat_Dot3StatsSingleCollisionFrames =
7667	    stats->stat_Dot3StatsSingleCollisionFrames;
7668
7669	sc->stat_Dot3StatsMultipleCollisionFrames =
7670	    stats->stat_Dot3StatsMultipleCollisionFrames;
7671
7672	sc->stat_Dot3StatsDeferredTransmissions =
7673	    stats->stat_Dot3StatsDeferredTransmissions;
7674
7675	sc->stat_Dot3StatsExcessiveCollisions =
7676	    stats->stat_Dot3StatsExcessiveCollisions;
7677
7678	sc->stat_Dot3StatsLateCollisions =
7679	    stats->stat_Dot3StatsLateCollisions;
7680
7681	sc->stat_EtherStatsCollisions =
7682	    stats->stat_EtherStatsCollisions;
7683
7684	sc->stat_EtherStatsFragments =
7685	    stats->stat_EtherStatsFragments;
7686
7687	sc->stat_EtherStatsJabbers =
7688	    stats->stat_EtherStatsJabbers;
7689
7690	sc->stat_EtherStatsUndersizePkts =
7691	    stats->stat_EtherStatsUndersizePkts;
7692
7693	sc->stat_EtherStatsOversizePkts =
7694	     stats->stat_EtherStatsOversizePkts;
7695
7696	sc->stat_EtherStatsPktsRx64Octets =
7697	    stats->stat_EtherStatsPktsRx64Octets;
7698
7699	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7700	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7701
7702	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7703	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7704
7705	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7706	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7707
7708	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7709	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7710
7711	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7712	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7713
7714	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7715	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7716
7717	sc->stat_EtherStatsPktsTx64Octets =
7718	    stats->stat_EtherStatsPktsTx64Octets;
7719
7720	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7721	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7722
7723	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7724	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7725
7726	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7727	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7728
7729	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7730	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7731
7732	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7733	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7734
7735	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7736	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7737
7738	sc->stat_XonPauseFramesReceived =
7739	    stats->stat_XonPauseFramesReceived;
7740
7741	sc->stat_XoffPauseFramesReceived =
7742	    stats->stat_XoffPauseFramesReceived;
7743
7744	sc->stat_OutXonSent =
7745	    stats->stat_OutXonSent;
7746
7747	sc->stat_OutXoffSent =
7748	    stats->stat_OutXoffSent;
7749
7750	sc->stat_FlowControlDone =
7751	    stats->stat_FlowControlDone;
7752
7753	sc->stat_MacControlFramesReceived =
7754	    stats->stat_MacControlFramesReceived;
7755
7756	sc->stat_XoffStateEntered =
7757	    stats->stat_XoffStateEntered;
7758
7759	sc->stat_IfInFramesL2FilterDiscards =
7760	    stats->stat_IfInFramesL2FilterDiscards;
7761
7762	sc->stat_IfInRuleCheckerDiscards =
7763	    stats->stat_IfInRuleCheckerDiscards;
7764
7765	sc->stat_IfInFTQDiscards =
7766	    stats->stat_IfInFTQDiscards;
7767
7768	sc->stat_IfInMBUFDiscards =
7769	    stats->stat_IfInMBUFDiscards;
7770
7771	sc->stat_IfInRuleCheckerP4Hit =
7772	    stats->stat_IfInRuleCheckerP4Hit;
7773
7774	sc->stat_CatchupInRuleCheckerDiscards =
7775	    stats->stat_CatchupInRuleCheckerDiscards;
7776
7777	sc->stat_CatchupInFTQDiscards =
7778	    stats->stat_CatchupInFTQDiscards;
7779
7780	sc->stat_CatchupInMBUFDiscards =
7781	    stats->stat_CatchupInMBUFDiscards;
7782
7783	sc->stat_CatchupInRuleCheckerP4Hit =
7784	    stats->stat_CatchupInRuleCheckerP4Hit;
7785
7786	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7787
7788	/*
7789	 * Update the interface statistics from the
7790	 * hardware statistics.
7791	 */
7792	ifp->if_collisions =
7793	    (u_long) sc->stat_EtherStatsCollisions;
7794
7795	/* ToDo: This method loses soft errors. */
7796	ifp->if_ierrors =
7797	    (u_long) sc->stat_EtherStatsUndersizePkts +
7798	    (u_long) sc->stat_EtherStatsOversizePkts +
7799	    (u_long) sc->stat_IfInMBUFDiscards +
7800	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
7801	    (u_long) sc->stat_Dot3StatsFCSErrors +
7802	    (u_long) sc->stat_IfInRuleCheckerDiscards +
7803	    (u_long) sc->stat_IfInFTQDiscards +
7804	    (u_long) sc->com_no_buffers;
7805
7806	/* ToDo: This method loses soft errors. */
7807	ifp->if_oerrors =
7808	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7809	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7810	    (u_long) sc->stat_Dot3StatsLateCollisions;
7811
7812	/* ToDo: Add additional statistics? */
7813
7814	DBEXIT(BCE_EXTREME_MISC);
7815}
7816
7817
7818/****************************************************************************/
7819/* Periodic function to notify the bootcode that the driver is still        */
7820/* present.                                                                 */
7821/*                                                                          */
7822/* Returns:                                                                 */
7823/*   Nothing.                                                               */
7824/****************************************************************************/
7825static void
7826bce_pulse(void *xsc)
7827{
7828	struct bce_softc *sc = xsc;
7829	u32 msg;
7830
7831	DBENTER(BCE_EXTREME_MISC);
7832
7833	BCE_LOCK_ASSERT(sc);
7834
7835	/* Tell the firmware that the driver is still running. */
7836	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7837	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7838
7839	/* Update the bootcode condition. */
7840	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
7841
7842	/* Report whether the bootcode still knows the driver is running. */
7843	if (bootverbose) {
7844		if (sc->bce_drv_cardiac_arrest == FALSE) {
7845			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
7846				sc->bce_drv_cardiac_arrest = TRUE;
7847				BCE_PRINTF("%s(): Warning: bootcode "
7848				    "thinks driver is absent! "
7849				    "(bc_state = 0x%08X)\n",
7850				    __FUNCTION__, sc->bc_state);
7851			}
7852		} else {
7853			/*
7854			 * Not supported by all bootcode versions.
7855			 * (v5.0.11+ and v5.2.1+)  Older bootcode
7856			 * will require the driver to reset the
7857			 * controller to clear this condition.
7858			 */
7859			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
7860				sc->bce_drv_cardiac_arrest = FALSE;
7861				BCE_PRINTF("%s(): Bootcode found the "
7862				    "driver pulse! (bc_state = 0x%08X)\n",
7863				    __FUNCTION__, sc->bc_state);
7864			}
7865		}
7866	}
7867
7868
7869	/* Schedule the next pulse. */
7870	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7871
7872	DBEXIT(BCE_EXTREME_MISC);
7873}
7874
7875
7876/****************************************************************************/
7877/* Periodic function to perform maintenance tasks.                          */
7878/*                                                                          */
7879/* Returns:                                                                 */
7880/*   Nothing.                                                               */
7881/****************************************************************************/
7882static void
7883bce_tick(void *xsc)
7884{
7885	struct bce_softc *sc = xsc;
7886	struct mii_data *mii;
7887	struct ifnet *ifp;
7888
7889	ifp = sc->bce_ifp;
7890
7891	DBENTER(BCE_EXTREME_MISC);
7892
7893	BCE_LOCK_ASSERT(sc);
7894
7895	/* Schedule the next tick. */
7896	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7897
7898	/* Update the statistics from the hardware statistics block. */
7899	bce_stats_update(sc);
7900
7901	/* Top off the receive and page chains. */
7902#ifdef BCE_JUMBO_HDRSPLIT
7903	bce_fill_pg_chain(sc);
7904#endif
7905	bce_fill_rx_chain(sc);
7906
7907	/* Check that chip hasn't hung. */
7908	bce_watchdog(sc);
7909
7910	/* If link is up already up then we're done. */
7911	if (sc->bce_link_up == TRUE)
7912		goto bce_tick_exit;
7913
7914	/* Link is down.  Check what the PHY's doing. */
7915	mii = device_get_softc(sc->bce_miibus);
7916	mii_tick(mii);
7917
7918	/* Check if the link has come up. */
7919	if ((mii->mii_media_status & IFM_ACTIVE) &&
7920	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7921		DBPRINT(sc, BCE_VERBOSE_MISC,
7922		    "%s(): Link up!\n", __FUNCTION__);
7923		sc->bce_link_up = TRUE;
7924		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7925		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
7926		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
7927		    bootverbose)
7928			BCE_PRINTF("Gigabit link up!\n");
7929
7930		/* Now that link is up, handle any outstanding TX traffic. */
7931		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7932			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
7933			    "pending TX traffic.\n", __FUNCTION__);
7934			bce_start_locked(ifp);
7935		}
7936	}
7937
7938bce_tick_exit:
7939	DBEXIT(BCE_EXTREME_MISC);
7940	return;
7941}
7942
7943
7944#ifdef BCE_DEBUG
7945/****************************************************************************/
7946/* Allows the driver state to be dumped through the sysctl interface.       */
7947/*                                                                          */
7948/* Returns:                                                                 */
7949/*   0 for success, positive value for failure.                             */
7950/****************************************************************************/
7951static int
7952bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7953{
7954	int error;
7955	int result;
7956	struct bce_softc *sc;
7957
7958	result = -1;
7959	error = sysctl_handle_int(oidp, &result, 0, req);
7960
7961	if (error || !req->newptr)
7962		return (error);
7963
7964	if (result == 1) {
7965		sc = (struct bce_softc *)arg1;
7966		bce_dump_driver_state(sc);
7967	}
7968
7969	return error;
7970}
7971
7972
7973/****************************************************************************/
7974/* Allows the hardware state to be dumped through the sysctl interface.     */
7975/*                                                                          */
7976/* Returns:                                                                 */
7977/*   0 for success, positive value for failure.                             */
7978/****************************************************************************/
7979static int
7980bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7981{
7982	int error;
7983	int result;
7984	struct bce_softc *sc;
7985
7986	result = -1;
7987	error = sysctl_handle_int(oidp, &result, 0, req);
7988
7989	if (error || !req->newptr)
7990		return (error);
7991
7992	if (result == 1) {
7993		sc = (struct bce_softc *)arg1;
7994		bce_dump_hw_state(sc);
7995	}
7996
7997	return error;
7998}
7999
8000
8001/****************************************************************************/
8002/* Allows the status block to be dumped through the sysctl interface.       */
8003/*                                                                          */
8004/* Returns:                                                                 */
8005/*   0 for success, positive value for failure.                             */
8006/****************************************************************************/
8007static int
8008bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8009{
8010	int error;
8011	int result;
8012	struct bce_softc *sc;
8013
8014	result = -1;
8015	error = sysctl_handle_int(oidp, &result, 0, req);
8016
8017	if (error || !req->newptr)
8018		return (error);
8019
8020	if (result == 1) {
8021		sc = (struct bce_softc *)arg1;
8022		bce_dump_status_block(sc);
8023	}
8024
8025	return error;
8026}
8027
8028
8029/****************************************************************************/
8030/* Allows the stats block to be dumped through the sysctl interface.        */
8031/*                                                                          */
8032/* Returns:                                                                 */
8033/*   0 for success, positive value for failure.                             */
8034/****************************************************************************/
8035static int
8036bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8037{
8038	int error;
8039	int result;
8040	struct bce_softc *sc;
8041
8042	result = -1;
8043	error = sysctl_handle_int(oidp, &result, 0, req);
8044
8045	if (error || !req->newptr)
8046		return (error);
8047
8048	if (result == 1) {
8049		sc = (struct bce_softc *)arg1;
8050		bce_dump_stats_block(sc);
8051	}
8052
8053	return error;
8054}
8055
8056
8057/****************************************************************************/
8058/* Allows the stat counters to be cleared without unloading/reloading the   */
8059/* driver.                                                                  */
8060/*                                                                          */
8061/* Returns:                                                                 */
8062/*   0 for success, positive value for failure.                             */
8063/****************************************************************************/
8064static int
8065bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8066{
8067	int error;
8068	int result;
8069	struct bce_softc *sc;
8070
8071	result = -1;
8072	error = sysctl_handle_int(oidp, &result, 0, req);
8073
8074	if (error || !req->newptr)
8075		return (error);
8076
8077	if (result == 1) {
8078		sc = (struct bce_softc *)arg1;
8079
8080		/* Clear the internal H/W statistics counters. */
8081		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8082
8083		/* Reset the driver maintained statistics. */
8084		sc->interrupts_rx =
8085		    sc->interrupts_tx = 0;
8086		sc->tso_frames_requested =
8087		    sc->tso_frames_completed =
8088		    sc->tso_frames_failed = 0;
8089		sc->rx_empty_count =
8090		    sc->tx_full_count = 0;
8091		sc->rx_low_watermark = USABLE_RX_BD;
8092		sc->tx_hi_watermark = 0;
8093		sc->l2fhdr_error_count =
8094		    sc->l2fhdr_error_sim_count = 0;
8095		sc->mbuf_alloc_failed_count =
8096		    sc->mbuf_alloc_failed_sim_count = 0;
8097		sc->dma_map_addr_rx_failed_count =
8098		    sc->dma_map_addr_tx_failed_count = 0;
8099		sc->mbuf_frag_count = 0;
8100		sc->csum_offload_tcp_udp =
8101		   sc->csum_offload_ip = 0;
8102		sc->vlan_tagged_frames_rcvd =
8103		   sc->vlan_tagged_frames_stripped = 0;
8104
8105		/* Clear firmware maintained statistics. */
8106		REG_WR_IND(sc, 0x120084, 0);
8107	}
8108
8109	return error;
8110}
8111
8112
8113/****************************************************************************/
8114/* Allows the bootcode state to be dumped through the sysctl interface.     */
8115/*                                                                          */
8116/* Returns:                                                                 */
8117/*   0 for success, positive value for failure.                             */
8118/****************************************************************************/
8119static int
8120bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8121{
8122	int error;
8123	int result;
8124	struct bce_softc *sc;
8125
8126	result = -1;
8127	error = sysctl_handle_int(oidp, &result, 0, req);
8128
8129	if (error || !req->newptr)
8130		return (error);
8131
8132	if (result == 1) {
8133		sc = (struct bce_softc *)arg1;
8134		bce_dump_bc_state(sc);
8135	}
8136
8137	return error;
8138}
8139
8140
8141/****************************************************************************/
8142/* Provides a sysctl interface to allow dumping the RX BD chain.            */
8143/*                                                                          */
8144/* Returns:                                                                 */
8145/*   0 for success, positive value for failure.                             */
8146/****************************************************************************/
8147static int
8148bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8149{
8150	int error;
8151	int result;
8152	struct bce_softc *sc;
8153
8154	result = -1;
8155	error = sysctl_handle_int(oidp, &result, 0, req);
8156
8157	if (error || !req->newptr)
8158		return (error);
8159
8160	if (result == 1) {
8161		sc = (struct bce_softc *)arg1;
8162		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
8163	}
8164
8165	return error;
8166}
8167
8168
8169/****************************************************************************/
8170/* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8171/*                                                                          */
8172/* Returns:                                                                 */
8173/*   0 for success, positive value for failure.                             */
8174/****************************************************************************/
8175static int
8176bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8177{
8178	int error;
8179	int result;
8180	struct bce_softc *sc;
8181
8182	result = -1;
8183	error = sysctl_handle_int(oidp, &result, 0, req);
8184
8185	if (error || !req->newptr)
8186		return (error);
8187
8188	if (result == 1) {
8189		sc = (struct bce_softc *)arg1;
8190		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
8191	}
8192
8193	return error;
8194}
8195
8196
8197/****************************************************************************/
8198/* Provides a sysctl interface to allow dumping the TX chain.               */
8199/*                                                                          */
8200/* Returns:                                                                 */
8201/*   0 for success, positive value for failure.                             */
8202/****************************************************************************/
8203static int
8204bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8205{
8206	int error;
8207	int result;
8208	struct bce_softc *sc;
8209
8210	result = -1;
8211	error = sysctl_handle_int(oidp, &result, 0, req);
8212
8213	if (error || !req->newptr)
8214		return (error);
8215
8216	if (result == 1) {
8217		sc = (struct bce_softc *)arg1;
8218		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
8219	}
8220
8221	return error;
8222}
8223
8224
8225#ifdef BCE_JUMBO_HDRSPLIT
8226/****************************************************************************/
8227/* Provides a sysctl interface to allow dumping the page chain.             */
8228/*                                                                          */
8229/* Returns:                                                                 */
8230/*   0 for success, positive value for failure.                             */
8231/****************************************************************************/
8232static int
8233bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8234{
8235	int error;
8236	int result;
8237	struct bce_softc *sc;
8238
8239	result = -1;
8240	error = sysctl_handle_int(oidp, &result, 0, req);
8241
8242	if (error || !req->newptr)
8243		return (error);
8244
8245	if (result == 1) {
8246		sc = (struct bce_softc *)arg1;
8247		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
8248	}
8249
8250	return error;
8251}
8252#endif
8253
8254/****************************************************************************/
8255/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8256/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8257/*                                                                          */
8258/* Returns:                                                                 */
8259/*   0 for success, positive value for failure.                             */
8260/****************************************************************************/
8261static int
8262bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8263{
8264	struct bce_softc *sc = (struct bce_softc *)arg1;
8265	int error;
8266	u32 result;
8267	u32 val[1];
8268	u8 *data = (u8 *) val;
8269
8270	result = -1;
8271	error = sysctl_handle_int(oidp, &result, 0, req);
8272	if (error || (req->newptr == NULL))
8273		return (error);
8274
8275	bce_nvram_read(sc, result, data, 4);
8276	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8277
8278	return (error);
8279}
8280
8281
8282/****************************************************************************/
8283/* Provides a sysctl interface to allow reading arbitrary registers in the  */
8284/* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8285/*                                                                          */
8286/* Returns:                                                                 */
8287/*   0 for success, positive value for failure.                             */
8288/****************************************************************************/
8289static int
8290bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8291{
8292	struct bce_softc *sc = (struct bce_softc *)arg1;
8293	int error;
8294	u32 val, result;
8295
8296	result = -1;
8297	error = sysctl_handle_int(oidp, &result, 0, req);
8298	if (error || (req->newptr == NULL))
8299		return (error);
8300
8301	/* Make sure the register is accessible. */
8302	if (result < 0x8000) {
8303		val = REG_RD(sc, result);
8304		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8305	} else if (result < 0x0280000) {
8306		val = REG_RD_IND(sc, result);
8307		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8308	}
8309
8310	return (error);
8311}
8312
8313
8314/****************************************************************************/
8315/* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8316/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8317/*                                                                          */
8318/* Returns:                                                                 */
8319/*   0 for success, positive value for failure.                             */
8320/****************************************************************************/
8321static int
8322bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8323{
8324	struct bce_softc *sc;
8325	device_t dev;
8326	int error, result;
8327	u16 val;
8328
8329	result = -1;
8330	error = sysctl_handle_int(oidp, &result, 0, req);
8331	if (error || (req->newptr == NULL))
8332		return (error);
8333
8334	/* Make sure the register is accessible. */
8335	if (result < 0x20) {
8336		sc = (struct bce_softc *)arg1;
8337		dev = sc->bce_dev;
8338		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8339		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8340	}
8341	return (error);
8342}
8343
8344
8345/****************************************************************************/
8346/* Provides a sysctl interface to allow reading a CID.                      */
8347/*                                                                          */
8348/* Returns:                                                                 */
8349/*   0 for success, positive value for failure.                             */
8350/****************************************************************************/
8351static int
8352bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8353{
8354	struct bce_softc *sc;
8355	int error, result;
8356
8357	result = -1;
8358	error = sysctl_handle_int(oidp, &result, 0, req);
8359	if (error || (req->newptr == NULL))
8360		return (error);
8361
8362	/* Make sure the register is accessible. */
8363	if (result <= TX_CID) {
8364		sc = (struct bce_softc *)arg1;
8365		bce_dump_ctx(sc, result);
8366	}
8367
8368	return (error);
8369}
8370
8371
8372 /****************************************************************************/
8373/* Provides a sysctl interface to forcing the driver to dump state and      */
8374/* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8375/*                                                                          */
8376/* Returns:                                                                 */
8377/*   0 for success, positive value for failure.                             */
8378/****************************************************************************/
8379static int
8380bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8381{
8382	int error;
8383	int result;
8384	struct bce_softc *sc;
8385
8386	result = -1;
8387	error = sysctl_handle_int(oidp, &result, 0, req);
8388
8389	if (error || !req->newptr)
8390		return (error);
8391
8392	if (result == 1) {
8393		sc = (struct bce_softc *)arg1;
8394		bce_breakpoint(sc);
8395	}
8396
8397	return error;
8398}
8399#endif
8400
8401
8402/****************************************************************************/
8403/* Adds any sysctl parameters for tuning or debugging purposes.             */
8404/*                                                                          */
8405/* Returns:                                                                 */
8406/*   0 for success, positive value for failure.                             */
8407/****************************************************************************/
8408static void
8409bce_add_sysctls(struct bce_softc *sc)
8410{
8411	struct sysctl_ctx_list *ctx;
8412	struct sysctl_oid_list *children;
8413
8414	DBENTER(BCE_VERBOSE_MISC);
8415
8416	ctx = device_get_sysctl_ctx(sc->bce_dev);
8417	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8418
8419#ifdef BCE_DEBUG
8420	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8421	    "l2fhdr_error_sim_control",
8422	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8423	    0, "Debug control to force l2fhdr errors");
8424
8425	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8426	    "l2fhdr_error_sim_count",
8427	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8428	    0, "Number of simulated l2_fhdr errors");
8429#endif
8430
8431	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8432	    "l2fhdr_error_count",
8433	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8434	    0, "Number of l2_fhdr errors");
8435
8436#ifdef BCE_DEBUG
8437	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8438	    "mbuf_alloc_failed_sim_control",
8439	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8440	    0, "Debug control to force mbuf allocation failures");
8441
8442	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8443	    "mbuf_alloc_failed_sim_count",
8444	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8445	    0, "Number of simulated mbuf cluster allocation failures");
8446#endif
8447
8448	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8449	    "mbuf_alloc_failed_count",
8450	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8451	    0, "Number of mbuf allocation failures");
8452
8453	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8454	    "mbuf_frag_count",
8455	    CTLFLAG_RD, &sc->mbuf_frag_count,
8456	    0, "Number of fragmented mbufs");
8457
8458#ifdef BCE_DEBUG
8459	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8460	    "dma_map_addr_failed_sim_control",
8461	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8462	    0, "Debug control to force DMA mapping failures");
8463
8464	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8465	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8466	    "dma_map_addr_failed_sim_count",
8467	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8468	    0, "Number of simulated DMA mapping failures");
8469
8470#endif
8471
8472	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8473	    "dma_map_addr_rx_failed_count",
8474	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8475	    0, "Number of RX DMA mapping failures");
8476
8477	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8478	    "dma_map_addr_tx_failed_count",
8479	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8480	    0, "Number of TX DMA mapping failures");
8481
8482#ifdef BCE_DEBUG
8483	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8484	    "unexpected_attention_sim_control",
8485	    CTLFLAG_RW, &unexpected_attention_sim_control,
8486	    0, "Debug control to simulate unexpected attentions");
8487
8488	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8489	    "unexpected_attention_sim_count",
8490	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8491	    0, "Number of simulated unexpected attentions");
8492#endif
8493
8494	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8495	    "unexpected_attention_count",
8496	    CTLFLAG_RW, &sc->unexpected_attention_count,
8497	    0, "Number of unexpected attentions");
8498
8499#ifdef BCE_DEBUG
8500	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8501	    "debug_bootcode_running_failure",
8502	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8503	    0, "Debug control to force bootcode running failures");
8504
8505	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8506	    "rx_low_watermark",
8507	    CTLFLAG_RD, &sc->rx_low_watermark,
8508	    0, "Lowest level of free rx_bd's");
8509
8510	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8511	    "rx_empty_count",
8512	    CTLFLAG_RD, &sc->rx_empty_count,
8513	    0, "Number of times the RX chain was empty");
8514
8515	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8516	    "tx_hi_watermark",
8517	    CTLFLAG_RD, &sc->tx_hi_watermark,
8518	    0, "Highest level of used tx_bd's");
8519
8520	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8521	    "tx_full_count",
8522	    CTLFLAG_RD, &sc->tx_full_count,
8523	    0, "Number of times the TX chain was full");
8524
8525	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8526	    "tso_frames_requested",
8527	    CTLFLAG_RD, &sc->tso_frames_requested,
8528	    0, "Number of TSO frames requested");
8529
8530	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8531	    "tso_frames_completed",
8532	    CTLFLAG_RD, &sc->tso_frames_completed,
8533	    0, "Number of TSO frames completed");
8534
8535	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8536	    "tso_frames_failed",
8537	    CTLFLAG_RD, &sc->tso_frames_failed,
8538	    0, "Number of TSO frames failed");
8539
8540	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8541	    "csum_offload_ip",
8542	    CTLFLAG_RD, &sc->csum_offload_ip,
8543	    0, "Number of IP checksum offload frames");
8544
8545	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8546	    "csum_offload_tcp_udp",
8547	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8548	    0, "Number of TCP/UDP checksum offload frames");
8549
8550	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8551	    "vlan_tagged_frames_rcvd",
8552	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8553	    0, "Number of VLAN tagged frames received");
8554
8555	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8556	    "vlan_tagged_frames_stripped",
8557	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8558	    0, "Number of VLAN tagged frames stripped");
8559
8560	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8561	    "interrupts_rx",
8562	    CTLFLAG_RD, &sc->interrupts_rx,
8563	    0, "Number of RX interrupts");
8564
8565	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8566	    "interrupts_tx",
8567	    CTLFLAG_RD, &sc->interrupts_tx,
8568	    0, "Number of TX interrupts");
8569#endif
8570
8571	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8572	    "stat_IfHcInOctets",
8573	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8574	    "Bytes received");
8575
8576	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8577	    "stat_IfHCInBadOctets",
8578	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8579	    "Bad bytes received");
8580
8581	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8582	    "stat_IfHCOutOctets",
8583	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8584	    "Bytes sent");
8585
8586	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8587	    "stat_IfHCOutBadOctets",
8588	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8589	    "Bad bytes sent");
8590
8591	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8592	    "stat_IfHCInUcastPkts",
8593	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8594	    "Unicast packets received");
8595
8596	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8597	    "stat_IfHCInMulticastPkts",
8598	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8599	    "Multicast packets received");
8600
8601	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8602	    "stat_IfHCInBroadcastPkts",
8603	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8604	    "Broadcast packets received");
8605
8606	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8607	    "stat_IfHCOutUcastPkts",
8608	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8609	    "Unicast packets sent");
8610
8611	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8612	    "stat_IfHCOutMulticastPkts",
8613	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8614	    "Multicast packets sent");
8615
8616	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8617	    "stat_IfHCOutBroadcastPkts",
8618	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8619	    "Broadcast packets sent");
8620
8621	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8622	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8623	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8624	    0, "Internal MAC transmit errors");
8625
8626	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8627	    "stat_Dot3StatsCarrierSenseErrors",
8628	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8629	    0, "Carrier sense errors");
8630
8631	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8632	    "stat_Dot3StatsFCSErrors",
8633	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8634	    0, "Frame check sequence errors");
8635
8636	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8637	    "stat_Dot3StatsAlignmentErrors",
8638	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8639	    0, "Alignment errors");
8640
8641	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8642	    "stat_Dot3StatsSingleCollisionFrames",
8643	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8644	    0, "Single Collision Frames");
8645
8646	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8647	    "stat_Dot3StatsMultipleCollisionFrames",
8648	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8649	    0, "Multiple Collision Frames");
8650
8651	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8652	    "stat_Dot3StatsDeferredTransmissions",
8653	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8654	    0, "Deferred Transmissions");
8655
8656	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8657	    "stat_Dot3StatsExcessiveCollisions",
8658	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8659	    0, "Excessive Collisions");
8660
8661	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8662	    "stat_Dot3StatsLateCollisions",
8663	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8664	    0, "Late Collisions");
8665
8666	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8667	    "stat_EtherStatsCollisions",
8668	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8669	    0, "Collisions");
8670
8671	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8672	    "stat_EtherStatsFragments",
8673	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8674	    0, "Fragments");
8675
8676	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8677	    "stat_EtherStatsJabbers",
8678	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8679	    0, "Jabbers");
8680
8681	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8682	    "stat_EtherStatsUndersizePkts",
8683	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8684	    0, "Undersize packets");
8685
8686	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8687	    "stat_EtherStatsOversizePkts",
8688	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8689	    0, "stat_EtherStatsOversizePkts");
8690
8691	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8692	    "stat_EtherStatsPktsRx64Octets",
8693	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8694	    0, "Bytes received in 64 byte packets");
8695
8696	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8697	    "stat_EtherStatsPktsRx65Octetsto127Octets",
8698	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8699	    0, "Bytes received in 65 to 127 byte packets");
8700
8701	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8702	    "stat_EtherStatsPktsRx128Octetsto255Octets",
8703	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8704	    0, "Bytes received in 128 to 255 byte packets");
8705
8706	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8707	    "stat_EtherStatsPktsRx256Octetsto511Octets",
8708	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8709	    0, "Bytes received in 256 to 511 byte packets");
8710
8711	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8712	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
8713	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8714	    0, "Bytes received in 512 to 1023 byte packets");
8715
8716	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8717	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8718	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8719	    0, "Bytes received in 1024 t0 1522 byte packets");
8720
8721	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8722	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8723	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8724	    0, "Bytes received in 1523 to 9022 byte packets");
8725
8726	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8727	    "stat_EtherStatsPktsTx64Octets",
8728	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8729	    0, "Bytes sent in 64 byte packets");
8730
8731	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8732	    "stat_EtherStatsPktsTx65Octetsto127Octets",
8733	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8734	    0, "Bytes sent in 65 to 127 byte packets");
8735
8736	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8737	    "stat_EtherStatsPktsTx128Octetsto255Octets",
8738	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8739	    0, "Bytes sent in 128 to 255 byte packets");
8740
8741	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8742	    "stat_EtherStatsPktsTx256Octetsto511Octets",
8743	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8744	    0, "Bytes sent in 256 to 511 byte packets");
8745
8746	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8747	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
8748	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8749	    0, "Bytes sent in 512 to 1023 byte packets");
8750
8751	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8752	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8753	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8754	    0, "Bytes sent in 1024 to 1522 byte packets");
8755
8756	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8757	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8758	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8759	    0, "Bytes sent in 1523 to 9022 byte packets");
8760
8761	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8762	    "stat_XonPauseFramesReceived",
8763	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8764	    0, "XON pause frames receved");
8765
8766	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8767	    "stat_XoffPauseFramesReceived",
8768	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8769	    0, "XOFF pause frames received");
8770
8771	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8772	    "stat_OutXonSent",
8773	    CTLFLAG_RD, &sc->stat_OutXonSent,
8774	    0, "XON pause frames sent");
8775
8776	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8777	    "stat_OutXoffSent",
8778	    CTLFLAG_RD, &sc->stat_OutXoffSent,
8779	    0, "XOFF pause frames sent");
8780
8781	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8782	    "stat_FlowControlDone",
8783	    CTLFLAG_RD, &sc->stat_FlowControlDone,
8784	    0, "Flow control done");
8785
8786	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8787	    "stat_MacControlFramesReceived",
8788	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8789	    0, "MAC control frames received");
8790
8791	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8792	    "stat_XoffStateEntered",
8793	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
8794	    0, "XOFF state entered");
8795
8796	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8797	    "stat_IfInFramesL2FilterDiscards",
8798	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8799	    0, "Received L2 packets discarded");
8800
8801	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8802	    "stat_IfInRuleCheckerDiscards",
8803	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8804	    0, "Received packets discarded by rule");
8805
8806	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8807	    "stat_IfInFTQDiscards",
8808	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8809	    0, "Received packet FTQ discards");
8810
8811	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8812	    "stat_IfInMBUFDiscards",
8813	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8814	    0, "Received packets discarded due to lack "
8815	    "of controller buffer memory");
8816
8817	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8818	    "stat_IfInRuleCheckerP4Hit",
8819	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8820	    0, "Received packets rule checker hits");
8821
8822	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8823	    "stat_CatchupInRuleCheckerDiscards",
8824	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8825	    0, "Received packets discarded in Catchup path");
8826
8827	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8828	    "stat_CatchupInFTQDiscards",
8829	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8830	    0, "Received packets discarded in FTQ in Catchup path");
8831
8832	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8833	    "stat_CatchupInMBUFDiscards",
8834	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8835	    0, "Received packets discarded in controller "
8836	    "buffer memory in Catchup path");
8837
8838	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8839	    "stat_CatchupInRuleCheckerP4Hit",
8840	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8841	    0, "Received packets rule checker hits in Catchup path");
8842
8843	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8844	    "com_no_buffers",
8845	    CTLFLAG_RD, &sc->com_no_buffers,
8846	    0, "Valid packets received but no RX buffers available");
8847
8848#ifdef BCE_DEBUG
8849	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8850	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8851	    (void *)sc, 0,
8852	    bce_sysctl_driver_state, "I", "Drive state information");
8853
8854	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8855	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8856	    (void *)sc, 0,
8857	    bce_sysctl_hw_state, "I", "Hardware state information");
8858
8859	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8860	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
8861	    (void *)sc, 0,
8862	    bce_sysctl_status_block, "I", "Dump status block");
8863
8864	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8865	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
8866	    (void *)sc, 0,
8867	    bce_sysctl_stats_block, "I", "Dump statistics block");
8868
8869	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8870	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
8871	    (void *)sc, 0,
8872	    bce_sysctl_stats_clear, "I", "Clear statistics block");
8873
8874	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8875	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8876	    (void *)sc, 0,
8877	    bce_sysctl_bc_state, "I", "Bootcode state information");
8878
8879	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8880	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
8881	    (void *)sc, 0,
8882	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
8883
8884	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8885	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
8886	    (void *)sc, 0,
8887	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
8888
8889	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8890	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8891	    (void *)sc, 0,
8892	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8893
8894#ifdef BCE_JUMBO_HDRSPLIT
8895	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8896	    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8897	    (void *)sc, 0,
8898	    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8899#endif
8900	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8901	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8902	    (void *)sc, 0,
8903	    bce_sysctl_dump_ctx, "I", "Dump context memory");
8904
8905	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8906	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8907	    (void *)sc, 0,
8908	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
8909
8910	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8911	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8912	    (void *)sc, 0,
8913	    bce_sysctl_reg_read, "I", "Register read");
8914
8915	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8916	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8917	    (void *)sc, 0,
8918	    bce_sysctl_nvram_read, "I", "NVRAM read");
8919
8920	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8921	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8922	    (void *)sc, 0,
8923	    bce_sysctl_phy_read, "I", "PHY register read");
8924
8925#endif
8926
8927	DBEXIT(BCE_VERBOSE_MISC);
8928}
8929
8930
8931/****************************************************************************/
8932/* BCE Debug Routines                                                       */
8933/****************************************************************************/
8934#ifdef BCE_DEBUG
8935
8936/****************************************************************************/
8937/* Freezes the controller to allow for a cohesive state dump.               */
8938/*                                                                          */
8939/* Returns:                                                                 */
8940/*   Nothing.                                                               */
8941/****************************************************************************/
8942static __attribute__ ((noinline)) void
8943bce_freeze_controller(struct bce_softc *sc)
8944{
8945	u32 val;
8946	val = REG_RD(sc, BCE_MISC_COMMAND);
8947	val |= BCE_MISC_COMMAND_DISABLE_ALL;
8948	REG_WR(sc, BCE_MISC_COMMAND, val);
8949}
8950
8951
8952/****************************************************************************/
8953/* Unfreezes the controller after a freeze operation.  This may not always  */
8954/* work and the controller will require a reset!                            */
8955/*                                                                          */
8956/* Returns:                                                                 */
8957/*   Nothing.                                                               */
8958/****************************************************************************/
8959static __attribute__ ((noinline)) void
8960bce_unfreeze_controller(struct bce_softc *sc)
8961{
8962	u32 val;
8963	val = REG_RD(sc, BCE_MISC_COMMAND);
8964	val |= BCE_MISC_COMMAND_ENABLE_ALL;
8965	REG_WR(sc, BCE_MISC_COMMAND, val);
8966}
8967
8968
8969/****************************************************************************/
8970/* Prints out Ethernet frame information from an mbuf.                      */
8971/*                                                                          */
8972/* Partially decode an Ethernet frame to look at some important headers.    */
8973/*                                                                          */
8974/* Returns:                                                                 */
8975/*   Nothing.                                                               */
8976/****************************************************************************/
8977static __attribute__ ((noinline)) void
8978bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8979{
8980	struct ether_vlan_header *eh;
8981	u16 etype;
8982	int ehlen;
8983	struct ip *ip;
8984	struct tcphdr *th;
8985	struct udphdr *uh;
8986	struct arphdr *ah;
8987
8988	BCE_PRINTF(
8989	    "-----------------------------"
8990	    " Frame Decode "
8991	    "-----------------------------\n");
8992
8993	eh = mtod(m, struct ether_vlan_header *);
8994
8995	/* Handle VLAN encapsulation if present. */
8996	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
8997		etype = ntohs(eh->evl_proto);
8998		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8999	} else {
9000		etype = ntohs(eh->evl_encap_proto);
9001		ehlen = ETHER_HDR_LEN;
9002	}
9003
9004	/* ToDo: Add VLAN output. */
9005	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9006	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9007
9008	switch (etype) {
9009	case ETHERTYPE_IP:
9010		ip = (struct ip *)(m->m_data + ehlen);
9011		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9012		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9013		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9014		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9015
9016		switch (ip->ip_p) {
9017		case IPPROTO_TCP:
9018			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9019			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9020			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9021			    ntohs(th->th_dport), ntohs(th->th_sport),
9022			    (th->th_off << 2), th->th_flags,
9023			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9024			    "\02SYN\01FIN", ntohs(th->th_sum));
9025			break;
9026		case IPPROTO_UDP:
9027			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9028			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9029			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9030			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9031			    ntohs(uh->uh_sum));
9032			break;
9033		case IPPROTO_ICMP:
9034			BCE_PRINTF("icmp:\n");
9035			break;
9036		default:
9037			BCE_PRINTF("----: Other IP protocol.\n");
9038			}
9039		break;
9040	case ETHERTYPE_IPV6:
9041		BCE_PRINTF("ipv6: No decode supported.\n");
9042		break;
9043	case ETHERTYPE_ARP:
9044		BCE_PRINTF("-arp: ");
9045		ah = (struct arphdr *) (m->m_data + ehlen);
9046		switch (ntohs(ah->ar_op)) {
9047		case ARPOP_REVREQUEST:
9048			printf("reverse ARP request\n");
9049			break;
9050		case ARPOP_REVREPLY:
9051			printf("reverse ARP reply\n");
9052			break;
9053		case ARPOP_REQUEST:
9054			printf("ARP request\n");
9055			break;
9056		case ARPOP_REPLY:
9057			printf("ARP reply\n");
9058			break;
9059		default:
9060			printf("other ARP operation\n");
9061		}
9062		break;
9063	default:
9064		BCE_PRINTF("----: Other protocol.\n");
9065	}
9066
9067	BCE_PRINTF(
9068		"-----------------------------"
9069		"--------------"
9070		"-----------------------------\n");
9071}
9072
9073
9074/****************************************************************************/
9075/* Prints out information about an mbuf.                                    */
9076/*                                                                          */
9077/* Returns:                                                                 */
9078/*   Nothing.                                                               */
9079/****************************************************************************/
9080static __attribute__ ((noinline)) void
9081bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9082{
9083	struct mbuf *mp = m;
9084
9085	if (m == NULL) {
9086		BCE_PRINTF("mbuf: null pointer\n");
9087		return;
9088	}
9089
9090	while (mp) {
9091		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9092		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9093		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9094
9095		if (mp->m_flags & M_PKTHDR) {
9096			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9097			    "csum_flags = %b\n", mp->m_pkthdr.len,
9098			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9099			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9100			    "\22M_PROMISC\23M_NOFREE",
9101			    mp->m_pkthdr.csum_flags,
9102			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9103			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9104			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9105			    "\14CSUM_PSEUDO_HDR");
9106		}
9107
9108		if (mp->m_flags & M_EXT) {
9109			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9110			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9111			switch (mp->m_ext.ext_type) {
9112			case EXT_CLUSTER:
9113				printf("EXT_CLUSTER\n"); break;
9114			case EXT_SFBUF:
9115				printf("EXT_SFBUF\n"); break;
9116			case EXT_JUMBO9:
9117				printf("EXT_JUMBO9\n"); break;
9118			case EXT_JUMBO16:
9119				printf("EXT_JUMBO16\n"); break;
9120			case EXT_PACKET:
9121				printf("EXT_PACKET\n"); break;
9122			case EXT_MBUF:
9123				printf("EXT_MBUF\n"); break;
9124			case EXT_NET_DRV:
9125				printf("EXT_NET_DRV\n"); break;
9126			case EXT_MOD_TYPE:
9127				printf("EXT_MDD_TYPE\n"); break;
9128			case EXT_DISPOSABLE:
9129				printf("EXT_DISPOSABLE\n"); break;
9130			case EXT_EXTREF:
9131				printf("EXT_EXTREF\n"); break;
9132			default:
9133				printf("UNKNOWN\n");
9134			}
9135		}
9136
9137		mp = mp->m_next;
9138	}
9139}
9140
9141
9142/****************************************************************************/
9143/* Prints out the mbufs in the TX mbuf chain.                               */
9144/*                                                                          */
9145/* Returns:                                                                 */
9146/*   Nothing.                                                               */
9147/****************************************************************************/
9148static __attribute__ ((noinline)) void
9149bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9150{
9151	struct mbuf *m;
9152
9153	BCE_PRINTF(
9154		"----------------------------"
9155		"  tx mbuf data  "
9156		"----------------------------\n");
9157
9158	for (int i = 0; i < count; i++) {
9159	 	m = sc->tx_mbuf_ptr[chain_prod];
9160		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9161		bce_dump_mbuf(sc, m);
9162		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9163	}
9164
9165	BCE_PRINTF(
9166		"----------------------------"
9167		"----------------"
9168		"----------------------------\n");
9169}
9170
9171
9172/****************************************************************************/
9173/* Prints out the mbufs in the RX mbuf chain.                               */
9174/*                                                                          */
9175/* Returns:                                                                 */
9176/*   Nothing.                                                               */
9177/****************************************************************************/
9178static __attribute__ ((noinline)) void
9179bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9180{
9181	struct mbuf *m;
9182
9183	BCE_PRINTF(
9184		"----------------------------"
9185		"  rx mbuf data  "
9186		"----------------------------\n");
9187
9188	for (int i = 0; i < count; i++) {
9189	 	m = sc->rx_mbuf_ptr[chain_prod];
9190		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9191		bce_dump_mbuf(sc, m);
9192		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9193	}
9194
9195
9196	BCE_PRINTF(
9197		"----------------------------"
9198		"----------------"
9199		"----------------------------\n");
9200}
9201
9202
9203#ifdef BCE_JUMBO_HDRSPLIT
9204/****************************************************************************/
9205/* Prints out the mbufs in the mbuf page chain.                             */
9206/*                                                                          */
9207/* Returns:                                                                 */
9208/*   Nothing.                                                               */
9209/****************************************************************************/
9210static __attribute__ ((noinline)) void
9211bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9212{
9213	struct mbuf *m;
9214
9215	BCE_PRINTF(
9216		"----------------------------"
9217		"  pg mbuf data  "
9218		"----------------------------\n");
9219
9220	for (int i = 0; i < count; i++) {
9221	 	m = sc->pg_mbuf_ptr[chain_prod];
9222		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9223		bce_dump_mbuf(sc, m);
9224		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9225	}
9226
9227
9228	BCE_PRINTF(
9229		"----------------------------"
9230		"----------------"
9231		"----------------------------\n");
9232}
9233#endif
9234
9235
9236/****************************************************************************/
9237/* Prints out a tx_bd structure.                                            */
9238/*                                                                          */
9239/* Returns:                                                                 */
9240/*   Nothing.                                                               */
9241/****************************************************************************/
9242static __attribute__ ((noinline)) void
9243bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9244{
9245	int i = 0;
9246
9247	if (idx > MAX_TX_BD)
9248		/* Index out of range. */
9249		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9250	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9251		/* TX Chain page pointer. */
9252		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9253		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9254		    txbd->tx_bd_haddr_lo);
9255	else {
9256		/* Normal tx_bd entry. */
9257		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9258		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9259		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9260		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9261		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9262
9263		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9264			if (i>0)
9265				printf("|");
9266			printf("CONN_FAULT");
9267			i++;
9268		}
9269
9270		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9271			if (i>0)
9272				printf("|");
9273			printf("TCP_UDP_CKSUM");
9274			i++;
9275		}
9276
9277		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9278			if (i>0)
9279				printf("|");
9280			printf("IP_CKSUM");
9281			i++;
9282		}
9283
9284		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9285			if (i>0)
9286				printf("|");
9287			printf("VLAN");
9288			i++;
9289		}
9290
9291		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9292			if (i>0)
9293				printf("|");
9294			printf("COAL_NOW");
9295			i++;
9296		}
9297
9298		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9299			if (i>0)
9300				printf("|");
9301			printf("DONT_GEN_CRC");
9302			i++;
9303		}
9304
9305		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9306			if (i>0)
9307				printf("|");
9308			printf("START");
9309			i++;
9310		}
9311
9312		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9313			if (i>0)
9314				printf("|");
9315			printf("END");
9316			i++;
9317		}
9318
9319		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9320			if (i>0)
9321				printf("|");
9322			printf("LSO");
9323			i++;
9324		}
9325
9326		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9327			if (i>0)
9328				printf("|");
9329			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9330			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9331		}
9332
9333		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9334			if (i>0)
9335				printf("|");
9336			printf("SW_FLAGS");
9337			i++;
9338		}
9339
9340		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9341			if (i>0)
9342				printf("|");
9343			printf("SNAP)");
9344		} else {
9345			printf(")\n");
9346		}
9347	}
9348}
9349
9350
9351/****************************************************************************/
9352/* Prints out a rx_bd structure.                                            */
9353/*                                                                          */
9354/* Returns:                                                                 */
9355/*   Nothing.                                                               */
9356/****************************************************************************/
9357static __attribute__ ((noinline)) void
9358bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9359{
9360	if (idx > MAX_RX_BD)
9361		/* Index out of range. */
9362		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9363	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9364		/* RX Chain page pointer. */
9365		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9366		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9367		    rxbd->rx_bd_haddr_lo);
9368	else
9369		/* Normal rx_bd entry. */
9370		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9371		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9372		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9373		    rxbd->rx_bd_flags);
9374}
9375
9376
9377#ifdef BCE_JUMBO_HDRSPLIT
9378/****************************************************************************/
9379/* Prints out a rx_bd structure in the page chain.                          */
9380/*                                                                          */
9381/* Returns:                                                                 */
9382/*   Nothing.                                                               */
9383/****************************************************************************/
9384static __attribute__ ((noinline)) void
9385bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9386{
9387	if (idx > MAX_PG_BD)
9388		/* Index out of range. */
9389		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9390	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9391		/* Page Chain page pointer. */
9392		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9393			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9394	else
9395		/* Normal rx_bd entry. */
9396		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9397			"flags = 0x%08X\n", idx,
9398			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9399			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9400}
9401#endif
9402
9403
9404/****************************************************************************/
9405/* Prints out a l2_fhdr structure.                                          */
9406/*                                                                          */
9407/* Returns:                                                                 */
9408/*   Nothing.                                                               */
9409/****************************************************************************/
9410static __attribute__ ((noinline)) void
9411bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9412{
9413	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9414		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9415		"tcp_udp_xsum = 0x%04X\n", idx,
9416		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9417		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9418		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9419}
9420
9421
9422/****************************************************************************/
9423/* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9424/*                                                                          */
9425/* Returns:                                                                 */
9426/*   Nothing.                                                               */
9427/****************************************************************************/
9428static __attribute__ ((noinline)) void
9429bce_dump_ctx(struct bce_softc *sc, u16 cid)
9430{
9431	if (cid > TX_CID) {
9432		BCE_PRINTF(" Unknown CID\n");
9433		return;
9434	}
9435
9436	BCE_PRINTF(
9437	    "----------------------------"
9438	    "    CTX Data    "
9439	    "----------------------------\n");
9440
9441	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9442
9443	if (cid == RX_CID) {
9444		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9445		   "producer index\n",
9446		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9447		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9448		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9449		    BCE_L2CTX_RX_HOST_BSEQ));
9450		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9451		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9452		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9453		    "descriptor address\n",
9454 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9455		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9456		    "descriptor address\n",
9457		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9458		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9459		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9460		    BCE_L2CTX_RX_NX_BDIDX));
9461		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9462		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9463		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9464		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9465		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9466		    BCE_L2CTX_RX_PG_BUF_SIZE));
9467		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9468		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9469		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9470		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9471		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9472		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9473		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9474		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9475		    BCE_L2CTX_RX_NX_PG_BDIDX));
9476	} else if (cid == TX_CID) {
9477		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9478		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9479			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9480			    CTX_RD(sc, GET_CID_ADDR(cid),
9481			    BCE_L2CTX_TX_TYPE_XI));
9482			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9483			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9484			    BCE_L2CTX_TX_CMD_TYPE_XI));
9485			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9486			    "h/w buffer descriptor address\n",
9487			    CTX_RD(sc, GET_CID_ADDR(cid),
9488			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9489			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9490			    "h/w buffer	descriptor address\n",
9491			    CTX_RD(sc, GET_CID_ADDR(cid),
9492			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9493			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9494			    "host producer index\n",
9495			    CTX_RD(sc, GET_CID_ADDR(cid),
9496			    BCE_L2CTX_TX_HOST_BIDX_XI));
9497			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9498			    "host byte sequence\n",
9499			    CTX_RD(sc, GET_CID_ADDR(cid),
9500			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9501		} else {
9502			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9503			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9504			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9505			    CTX_RD(sc, GET_CID_ADDR(cid),
9506			    BCE_L2CTX_TX_CMD_TYPE));
9507			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9508			    "h/w buffer	descriptor address\n",
9509			    CTX_RD(sc, GET_CID_ADDR(cid),
9510			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9511			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9512			    "h/w buffer	descriptor address\n",
9513			    CTX_RD(sc, GET_CID_ADDR(cid),
9514			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9515			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9516			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9517			    BCE_L2CTX_TX_HOST_BIDX));
9518			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9519			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9520			    BCE_L2CTX_TX_HOST_BSEQ));
9521		}
9522	}
9523
9524	BCE_PRINTF(
9525	   "----------------------------"
9526	   "    Raw CTX     "
9527	   "----------------------------\n");
9528
9529	for (int i = 0x0; i < 0x300; i += 0x10) {
9530		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9531		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9532		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9533		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9534		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9535	}
9536
9537
9538	BCE_PRINTF(
9539	   "----------------------------"
9540	   "----------------"
9541	   "----------------------------\n");
9542}
9543
9544
9545/****************************************************************************/
9546/* Prints out the FTQ data.                                                 */
9547/*                                                                          */
9548/* Returns:                                                                */
9549/*   Nothing.                                                               */
9550/****************************************************************************/
9551static __attribute__ ((noinline)) void
9552bce_dump_ftqs(struct bce_softc *sc)
9553{
9554	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9555
9556	BCE_PRINTF(
9557	    "----------------------------"
9558	    "    FTQ Data    "
9559	    "----------------------------\n");
9560
9561	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9562	    "Max_Depth  Valid_Cnt \n");
9563	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9564	    "---------- ----------\n");
9565
9566	/* Setup the generic statistic counters for the FTQ valid count. */
9567	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9568	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9569	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9570	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9571	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9572
9573	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9574	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9575	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9576	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9577	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9578
9579	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9580	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9581	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9582	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9583	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9584
9585	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9586	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9587	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9588	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9589	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9590
9591	/* Input queue to the Receive Lookup state machine */
9592	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9593	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9594	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9595	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9596	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9597	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9598	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9599
9600	/* Input queue to the Receive Processor */
9601	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9602	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9603	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9604	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9605	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9606	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9607	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9608
9609	/* Input queue to the Recevie Processor */
9610	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9611	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9612	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9613	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9614	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9615	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9616	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9617
9618	/* Input queue to the Receive Virtual to Physical state machine */
9619	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9620	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9621	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9622	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9623	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9624	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9625	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9626
9627	/* Input queue to the Recevie Virtual to Physical state machine */
9628	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9629	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9630	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9631	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9632	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9633	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9634	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9635
9636	/* Input queue to the Receive Virtual to Physical state machine */
9637	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9638	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9639	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9640	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9641	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9642	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9643	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9644
9645	/* Input queue to the Receive DMA state machine */
9646	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9647	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9648	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9649	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9650	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9651	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9652	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9653
9654	/* Input queue to the Transmit Scheduler state machine */
9655	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9656	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9657	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9658	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9659	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9660	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9661	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9662
9663	/* Input queue to the Transmit Buffer Descriptor state machine */
9664	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9665	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9666	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9667	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9668	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9669	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9670	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9671
9672	/* Input queue to the Transmit Processor */
9673	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9674	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9675	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9676	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9677	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9678	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9679	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9680
9681	/* Input queue to the Transmit DMA state machine */
9682	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9683	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9684	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9685	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9686	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9687	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9688	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9689
9690	/* Input queue to the Transmit Patch-Up Processor */
9691	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9692	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9693	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9694	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9695	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9696	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9697	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9698
9699	/* Input queue to the Transmit Assembler state machine */
9700	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9701	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9702	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9703	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9704	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9705	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9706	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9707
9708	/* Input queue to the Completion Processor */
9709	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9710	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9711	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9712	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9713	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9714	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9715	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9716
9717	/* Input queue to the Completion Processor */
9718	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9719	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9720	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9721	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9722	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9723	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9724	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9725
9726	/* Input queue to the Completion Processor */
9727	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9728	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9729	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9730	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9731	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9732	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9733	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9734
9735	/* Setup the generic statistic counters for the FTQ valid count. */
9736	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
9737	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
9738	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9739
9740	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9741	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9742		val = val |
9743		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
9744		     24);
9745	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9746
9747	/* Input queue to the Management Control Processor */
9748	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9749	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9750	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9751	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9752	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9753	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9754	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9755
9756	/* Input queue to the Command Processor */
9757	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9758	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9759	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9760	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9761	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9762	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9763	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9764
9765	/* Input queue to the Completion Scheduler state machine */
9766	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9767	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9768	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9769	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9770	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9771	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9772	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9773
9774	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9775	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9776		/* Input queue to the RV2P Command Scheduler */
9777		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9778		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9779		cur_depth = (ctl & 0xFFC00000) >> 22;
9780		max_depth = (ctl & 0x003FF000) >> 12;
9781		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9782		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9783		    cmd, ctl, cur_depth, max_depth, valid_cnt);
9784	}
9785
9786	BCE_PRINTF(
9787	    "----------------------------"
9788	    "----------------"
9789	    "----------------------------\n");
9790}
9791
9792
9793/****************************************************************************/
9794/* Prints out the TX chain.                                                 */
9795/*                                                                          */
9796/* Returns:                                                                 */
9797/*   Nothing.                                                               */
9798/****************************************************************************/
9799static __attribute__ ((noinline)) void
9800bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9801{
9802	struct tx_bd *txbd;
9803
9804	/* First some info about the tx_bd chain structure. */
9805	BCE_PRINTF(
9806	    "----------------------------"
9807	    "  tx_bd  chain  "
9808	    "----------------------------\n");
9809
9810	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9811	    (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9812	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9813	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9814	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9815
9816	BCE_PRINTF(
9817	    "----------------------------"
9818	    "   tx_bd data   "
9819	    "----------------------------\n");
9820
9821	/* Now print out a decoded list of TX buffer descriptors. */
9822	for (int i = 0; i < count; i++) {
9823	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9824		bce_dump_txbd(sc, tx_prod, txbd);
9825		tx_prod++;
9826	}
9827
9828	BCE_PRINTF(
9829	    "----------------------------"
9830	    "----------------"
9831	    "----------------------------\n");
9832}
9833
9834
9835/****************************************************************************/
9836/* Prints out the RX chain.                                                 */
9837/*                                                                          */
9838/* Returns:                                                                 */
9839/*   Nothing.                                                               */
9840/****************************************************************************/
9841static __attribute__ ((noinline)) void
9842bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
9843{
9844	struct rx_bd *rxbd;
9845
9846	/* First some info about the rx_bd chain structure. */
9847	BCE_PRINTF(
9848	    "----------------------------"
9849	    "  rx_bd  chain  "
9850	    "----------------------------\n");
9851
9852	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9853	    (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9854
9855	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9856	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9857
9858	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9859
9860	BCE_PRINTF(
9861	    "----------------------------"
9862	    "   rx_bd data   "
9863	    "----------------------------\n");
9864
9865	/* Now print out the rx_bd's themselves. */
9866	for (int i = 0; i < count; i++) {
9867		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9868		bce_dump_rxbd(sc, rx_prod, rxbd);
9869		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9870	}
9871
9872	BCE_PRINTF(
9873	    "----------------------------"
9874	    "----------------"
9875	    "----------------------------\n");
9876}
9877
9878
9879#ifdef BCE_JUMBO_HDRSPLIT
9880/****************************************************************************/
9881/* Prints out the page chain.                                               */
9882/*                                                                          */
9883/* Returns:                                                                 */
9884/*   Nothing.                                                               */
9885/****************************************************************************/
9886static __attribute__ ((noinline)) void
9887bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9888{
9889	struct rx_bd *pgbd;
9890
9891	/* First some info about the page chain structure. */
9892	BCE_PRINTF(
9893	    "----------------------------"
9894	    "   page chain   "
9895	    "----------------------------\n");
9896
9897	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9898	    (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9899
9900	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9901	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9902
9903	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9904	    (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9905
9906	BCE_PRINTF(
9907	    "----------------------------"
9908	    "   page data    "
9909	    "----------------------------\n");
9910
9911	/* Now print out the rx_bd's themselves. */
9912	for (int i = 0; i < count; i++) {
9913		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9914		bce_dump_pgbd(sc, pg_prod, pgbd);
9915		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9916	}
9917
9918	BCE_PRINTF(
9919	    "----------------------------"
9920	    "----------------"
9921	    "----------------------------\n");
9922}
9923#endif
9924
9925
9926#define BCE_PRINT_RX_CONS(arg)						\
9927if (sblk->status_rx_quick_consumer_index##arg)				\
9928	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
9929	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
9930	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
9931	    arg);
9932
9933
9934#define BCE_PRINT_TX_CONS(arg)						\
9935if (sblk->status_tx_quick_consumer_index##arg)				\
9936	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
9937	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
9938	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
9939	    arg);
9940
9941/****************************************************************************/
9942/* Prints out the status block from host memory.                            */
9943/*                                                                          */
9944/* Returns:                                                                 */
9945/*   Nothing.                                                               */
9946/****************************************************************************/
9947static __attribute__ ((noinline)) void
9948bce_dump_status_block(struct bce_softc *sc)
9949{
9950	struct status_block *sblk;
9951
9952	sblk = sc->status_block;
9953
9954	BCE_PRINTF(
9955	    "----------------------------"
9956	    "  Status Block  "
9957	    "----------------------------\n");
9958
9959	/* Theses indices are used for normal L2 drivers. */
9960	BCE_PRINTF("    0x%08X - attn_bits\n",
9961	    sblk->status_attn_bits);
9962
9963	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
9964	    sblk->status_attn_bits_ack);
9965
9966	BCE_PRINT_RX_CONS(0);
9967	BCE_PRINT_TX_CONS(0)
9968
9969	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
9970
9971	/* Theses indices are not used for normal L2 drivers. */
9972	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
9973	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
9974	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
9975	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
9976	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
9977
9978	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
9979
9980	if (sblk->status_completion_producer_index ||
9981	    sblk->status_cmd_consumer_index)
9982		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
9983		    sblk->status_completion_producer_index,
9984		    sblk->status_cmd_consumer_index);
9985
9986	BCE_PRINTF(
9987	    "----------------------------"
9988	    "----------------"
9989	    "----------------------------\n");
9990}
9991
9992
9993#define BCE_PRINT_64BIT_STAT(arg) 				\
9994if (sblk->arg##_lo || sblk->arg##_hi)				\
9995	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
9996	    sblk->arg##_lo, #arg);
9997
9998#define BCE_PRINT_32BIT_STAT(arg)				\
9999if (sblk->arg)							\
10000	BCE_PRINTF("         0x%08X : %s\n", 			\
10001	    sblk->arg, #arg);
10002
10003/****************************************************************************/
10004/* Prints out the statistics block from host memory.                        */
10005/*                                                                          */
10006/* Returns:                                                                 */
10007/*   Nothing.                                                               */
10008/****************************************************************************/
10009static __attribute__ ((noinline)) void
10010bce_dump_stats_block(struct bce_softc *sc)
10011{
10012	struct statistics_block *sblk;
10013
10014	sblk = sc->stats_block;
10015
10016	BCE_PRINTF(
10017	    "---------------"
10018	    " Stats Block  (All Stats Not Shown Are 0) "
10019	    "---------------\n");
10020
10021	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10022	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10023	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10024	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10025	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10026	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10027	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10028	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10029	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10030	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10031	BCE_PRINT_32BIT_STAT(
10032	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10033	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10034	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10035	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10036	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10037	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10038	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10039	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10040	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10041	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10042	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10043	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10044	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10045	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10046	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10047	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10048	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10049	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10050	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10051	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10052	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10053	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10054	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10055	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10056	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10057	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10058	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10059	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10060	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10061	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10062	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10063	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10064	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10065	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10066	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10067	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10068	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10069	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10070	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10071	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10072	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10073	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10074	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10075	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10076
10077	BCE_PRINTF(
10078	    "----------------------------"
10079	    "----------------"
10080	    "----------------------------\n");
10081}
10082
10083
10084/****************************************************************************/
10085/* Prints out a summary of the driver state.                                */
10086/*                                                                          */
10087/* Returns:                                                                 */
10088/*   Nothing.                                                               */
10089/****************************************************************************/
10090static __attribute__ ((noinline)) void
10091bce_dump_driver_state(struct bce_softc *sc)
10092{
10093	u32 val_hi, val_lo;
10094
10095	BCE_PRINTF(
10096	    "-----------------------------"
10097	    " Driver State "
10098	    "-----------------------------\n");
10099
10100	val_hi = BCE_ADDR_HI(sc);
10101	val_lo = BCE_ADDR_LO(sc);
10102	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10103	    "address\n", val_hi, val_lo);
10104
10105	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10106	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10107	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10108	    "address\n", val_hi, val_lo);
10109
10110	val_hi = BCE_ADDR_HI(sc->status_block);
10111	val_lo = BCE_ADDR_LO(sc->status_block);
10112	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10113	    "virtual address\n",	val_hi, val_lo);
10114
10115	val_hi = BCE_ADDR_HI(sc->stats_block);
10116	val_lo = BCE_ADDR_LO(sc->stats_block);
10117	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10118	    "virtual address\n", val_hi, val_lo);
10119
10120	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10121	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10122	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10123	    "virtual adddress\n", val_hi, val_lo);
10124
10125	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10126	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10127	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10128	    "virtual address\n", val_hi, val_lo);
10129
10130#ifdef BCE_JUMBO_HDRSPLIT
10131	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10132	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10133	BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10134	    "virtual address\n", val_hi, val_lo);
10135#endif
10136
10137	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10138	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10139	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10140	    "virtual address\n",	val_hi, val_lo);
10141
10142	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10143	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10144	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10145	    "virtual address\n", val_hi, val_lo);
10146
10147#ifdef BCE_JUMBO_HDRSPLIT
10148	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10149	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10150	BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10151	    "virtual address\n", val_hi, val_lo);
10152#endif
10153
10154	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10155	    "h/w intrs\n", sc->interrupts_generated);
10156
10157	BCE_PRINTF("         0x%08X - (sc->interrupts_rx) "
10158	    "rx interrupts handled\n", sc->interrupts_rx);
10159
10160	BCE_PRINTF("         0x%08X - (sc->interrupts_tx) "
10161	    "tx interrupts handled\n", sc->interrupts_tx);
10162
10163	BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10164	    "phy interrupts handled\n", sc->phy_interrupts);
10165
10166	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10167	    "status block index\n", sc->last_status_idx);
10168
10169	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10170	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10171
10172	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10173	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10174
10175	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10176	    "byte seq index\n",	sc->tx_prod_bseq);
10177
10178	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10179	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10180
10181	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10182	    "tx_bd's\n", sc->used_tx_bd);
10183
10184	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10185	    "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10186
10187	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10188	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10189
10190	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10191	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10192
10193	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10194	    "byte seq index\n",	sc->rx_prod_bseq);
10195
10196	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10197	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10198
10199	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10200	    "rx_bd's\n", sc->free_rx_bd);
10201
10202#ifdef BCE_JUMBO_HDRSPLIT
10203	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10204	    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10205
10206	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10207	    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10208
10209	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10210	    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10211
10212	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10213	    "rx_bd's\n", sc->free_pg_bd);
10214
10215	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10216	    "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10217#endif
10218
10219	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10220	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10221
10222	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10223	    "bce mac flags\n", sc->bce_flags);
10224
10225	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10226	    "bce phy flags\n", sc->bce_phy_flags);
10227
10228	BCE_PRINTF(
10229	    "----------------------------"
10230	    "----------------"
10231	    "----------------------------\n");
10232}
10233
10234
10235/****************************************************************************/
10236/* Prints out the hardware state through a summary of important register,   */
10237/* followed by a complete register dump.                                    */
10238/*                                                                          */
10239/* Returns:                                                                 */
10240/*   Nothing.                                                               */
10241/****************************************************************************/
10242static __attribute__ ((noinline)) void
10243bce_dump_hw_state(struct bce_softc *sc)
10244{
10245	u32 val;
10246
10247	BCE_PRINTF(
10248	    "----------------------------"
10249	    " Hardware State "
10250	    "----------------------------\n");
10251
10252	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10253
10254	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10255	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10256	    val, BCE_MISC_ENABLE_STATUS_BITS);
10257
10258	val = REG_RD(sc, BCE_DMA_STATUS);
10259	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10260	    val, BCE_DMA_STATUS);
10261
10262	val = REG_RD(sc, BCE_CTX_STATUS);
10263	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10264	    val, BCE_CTX_STATUS);
10265
10266	val = REG_RD(sc, BCE_EMAC_STATUS);
10267	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10268	    val, BCE_EMAC_STATUS);
10269
10270	val = REG_RD(sc, BCE_RPM_STATUS);
10271	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10272	    val, BCE_RPM_STATUS);
10273
10274	/* ToDo: Create a #define for this constant. */
10275	val = REG_RD(sc, 0x2004);
10276	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10277	    val, 0x2004);
10278
10279	val = REG_RD(sc, BCE_RV2P_STATUS);
10280	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10281	    val, BCE_RV2P_STATUS);
10282
10283	/* ToDo: Create a #define for this constant. */
10284	val = REG_RD(sc, 0x2c04);
10285	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10286	    val, 0x2c04);
10287
10288	val = REG_RD(sc, BCE_TBDR_STATUS);
10289	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10290	    val, BCE_TBDR_STATUS);
10291
10292	val = REG_RD(sc, BCE_TDMA_STATUS);
10293	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10294	    val, BCE_TDMA_STATUS);
10295
10296	val = REG_RD(sc, BCE_HC_STATUS);
10297	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10298	    val, BCE_HC_STATUS);
10299
10300	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10301	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10302	    val, BCE_TXP_CPU_STATE);
10303
10304	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10305	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10306	    val, BCE_TPAT_CPU_STATE);
10307
10308	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10309	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10310	    val, BCE_RXP_CPU_STATE);
10311
10312	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10313	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10314	    val, BCE_COM_CPU_STATE);
10315
10316	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10317	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10318	    val, BCE_MCP_CPU_STATE);
10319
10320	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10321	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10322	    val, BCE_CP_CPU_STATE);
10323
10324	BCE_PRINTF(
10325	    "----------------------------"
10326	    "----------------"
10327	    "----------------------------\n");
10328
10329	BCE_PRINTF(
10330	    "----------------------------"
10331	    " Register  Dump "
10332	    "----------------------------\n");
10333
10334	for (int i = 0x400; i < 0x8000; i += 0x10) {
10335		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10336		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10337		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10338	}
10339
10340	BCE_PRINTF(
10341	    "----------------------------"
10342	    "----------------"
10343	    "----------------------------\n");
10344}
10345
10346
10347/****************************************************************************/
10348/* Prints out the mailbox queue registers.                                  */
10349/*                                                                          */
10350/* Returns:                                                                 */
10351/*   Nothing.                                                               */
10352/****************************************************************************/
10353static __attribute__ ((noinline)) void
10354bce_dump_mq_regs(struct bce_softc *sc)
10355{
10356	BCE_PRINTF(
10357	    "----------------------------"
10358	    "    MQ Regs     "
10359	    "----------------------------\n");
10360
10361	BCE_PRINTF(
10362	    "----------------------------"
10363	    "----------------"
10364	    "----------------------------\n");
10365
10366	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10367		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10368		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10369		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10370	}
10371
10372	BCE_PRINTF(
10373	    "----------------------------"
10374	    "----------------"
10375	    "----------------------------\n");
10376}
10377
10378
10379/****************************************************************************/
10380/* Prints out the bootcode state.                                           */
10381/*                                                                          */
10382/* Returns:                                                                 */
10383/*   Nothing.                                                               */
10384/****************************************************************************/
10385static __attribute__ ((noinline)) void
10386bce_dump_bc_state(struct bce_softc *sc)
10387{
10388	u32 val;
10389
10390	BCE_PRINTF(
10391	    "----------------------------"
10392	    " Bootcode State "
10393	    "----------------------------\n");
10394
10395	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10396
10397	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10398	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10399	    val, BCE_BC_RESET_TYPE);
10400
10401	val = bce_shmem_rd(sc, BCE_BC_STATE);
10402	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10403	    val, BCE_BC_STATE);
10404
10405	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10406	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10407	    val, BCE_BC_STATE_CONDITION);
10408
10409	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10410	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10411	    val, BCE_BC_STATE_DEBUG_CMD);
10412
10413	BCE_PRINTF(
10414	    "----------------------------"
10415	    "----------------"
10416	    "----------------------------\n");
10417}
10418
10419
10420/****************************************************************************/
10421/* Prints out the TXP processor state.                                      */
10422/*                                                                          */
10423/* Returns:                                                                 */
10424/*   Nothing.                                                               */
10425/****************************************************************************/
10426static __attribute__ ((noinline)) void
10427bce_dump_txp_state(struct bce_softc *sc, int regs)
10428{
10429	u32 val;
10430	u32 fw_version[3];
10431
10432	BCE_PRINTF(
10433	    "----------------------------"
10434	    "   TXP  State   "
10435	    "----------------------------\n");
10436
10437	for (int i = 0; i < 3; i++)
10438		fw_version[i] = htonl(REG_RD_IND(sc,
10439		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10440	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10441
10442	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10443	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10444	    val, BCE_TXP_CPU_MODE);
10445
10446	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10447	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10448	    val, BCE_TXP_CPU_STATE);
10449
10450	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10451	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10452	    val, BCE_TXP_CPU_EVENT_MASK);
10453
10454	if (regs) {
10455		BCE_PRINTF(
10456		    "----------------------------"
10457		    " Register  Dump "
10458		    "----------------------------\n");
10459
10460		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10461			/* Skip the big blank spaces */
10462			if (i < 0x454000 && i > 0x5ffff)
10463				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10464				    "0x%08X 0x%08X\n", i,
10465				    REG_RD_IND(sc, i),
10466				    REG_RD_IND(sc, i + 0x4),
10467				    REG_RD_IND(sc, i + 0x8),
10468				    REG_RD_IND(sc, i + 0xC));
10469		}
10470	}
10471
10472	BCE_PRINTF(
10473	    "----------------------------"
10474	    "----------------"
10475	    "----------------------------\n");
10476}
10477
10478
10479/****************************************************************************/
10480/* Prints out the RXP processor state.                                      */
10481/*                                                                          */
10482/* Returns:                                                                 */
10483/*   Nothing.                                                               */
10484/****************************************************************************/
10485static __attribute__ ((noinline)) void
10486bce_dump_rxp_state(struct bce_softc *sc, int regs)
10487{
10488	u32 val;
10489	u32 fw_version[3];
10490
10491	BCE_PRINTF(
10492	    "----------------------------"
10493	    "   RXP  State   "
10494	    "----------------------------\n");
10495
10496	for (int i = 0; i < 3; i++)
10497		fw_version[i] = htonl(REG_RD_IND(sc,
10498		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10499
10500	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10501
10502	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10503	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10504	    val, BCE_RXP_CPU_MODE);
10505
10506	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10507	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10508	    val, BCE_RXP_CPU_STATE);
10509
10510	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10511	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10512	    val, BCE_RXP_CPU_EVENT_MASK);
10513
10514	if (regs) {
10515		BCE_PRINTF(
10516		    "----------------------------"
10517		    " Register  Dump "
10518		    "----------------------------\n");
10519
10520		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10521			/* Skip the big blank sapces */
10522			if (i < 0xc5400 && i > 0xdffff)
10523				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10524				    "0x%08X 0x%08X\n", i,
10525				    REG_RD_IND(sc, i),
10526				    REG_RD_IND(sc, i + 0x4),
10527				    REG_RD_IND(sc, i + 0x8),
10528				    REG_RD_IND(sc, i + 0xC));
10529		}
10530	}
10531
10532	BCE_PRINTF(
10533	    "----------------------------"
10534	    "----------------"
10535	    "----------------------------\n");
10536}
10537
10538
10539/****************************************************************************/
10540/* Prints out the TPAT processor state.                                     */
10541/*                                                                          */
10542/* Returns:                                                                 */
10543/*   Nothing.                                                               */
10544/****************************************************************************/
10545static __attribute__ ((noinline)) void
10546bce_dump_tpat_state(struct bce_softc *sc, int regs)
10547{
10548	u32 val;
10549	u32 fw_version[3];
10550
10551	BCE_PRINTF(
10552	    "----------------------------"
10553	    "   TPAT State   "
10554	    "----------------------------\n");
10555
10556	for (int i = 0; i < 3; i++)
10557		fw_version[i] = htonl(REG_RD_IND(sc,
10558		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10559
10560	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10561
10562	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10563	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10564	    val, BCE_TPAT_CPU_MODE);
10565
10566	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10567	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10568	    val, BCE_TPAT_CPU_STATE);
10569
10570	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10571	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10572	    val, BCE_TPAT_CPU_EVENT_MASK);
10573
10574	if (regs) {
10575		BCE_PRINTF(
10576		    "----------------------------"
10577		    " Register  Dump "
10578		    "----------------------------\n");
10579
10580		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10581			/* Skip the big blank spaces */
10582			if (i < 0x854000 && i > 0x9ffff)
10583				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10584				    "0x%08X 0x%08X\n", i,
10585				    REG_RD_IND(sc, i),
10586				    REG_RD_IND(sc, i + 0x4),
10587				    REG_RD_IND(sc, i + 0x8),
10588				    REG_RD_IND(sc, i + 0xC));
10589		}
10590	}
10591
10592	BCE_PRINTF(
10593		"----------------------------"
10594		"----------------"
10595		"----------------------------\n");
10596}
10597
10598
10599/****************************************************************************/
10600/* Prints out the Command Procesor (CP) state.                              */
10601/*                                                                          */
10602/* Returns:                                                                 */
10603/*   Nothing.                                                               */
10604/****************************************************************************/
10605static __attribute__ ((noinline)) void
10606bce_dump_cp_state(struct bce_softc *sc, int regs)
10607{
10608	u32 val;
10609	u32 fw_version[3];
10610
10611	BCE_PRINTF(
10612	    "----------------------------"
10613	    "    CP State    "
10614	    "----------------------------\n");
10615
10616	for (int i = 0; i < 3; i++)
10617		fw_version[i] = htonl(REG_RD_IND(sc,
10618		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
10619
10620	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10621
10622	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10623	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10624	    val, BCE_CP_CPU_MODE);
10625
10626	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10627	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10628	    val, BCE_CP_CPU_STATE);
10629
10630	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10631	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10632	    BCE_CP_CPU_EVENT_MASK);
10633
10634	if (regs) {
10635		BCE_PRINTF(
10636		    "----------------------------"
10637		    " Register  Dump "
10638		    "----------------------------\n");
10639
10640		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10641			/* Skip the big blank spaces */
10642			if (i < 0x185400 && i > 0x19ffff)
10643				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10644				    "0x%08X 0x%08X\n", i,
10645				    REG_RD_IND(sc, i),
10646				    REG_RD_IND(sc, i + 0x4),
10647				    REG_RD_IND(sc, i + 0x8),
10648				    REG_RD_IND(sc, i + 0xC));
10649		}
10650	}
10651
10652	BCE_PRINTF(
10653	    "----------------------------"
10654	    "----------------"
10655	    "----------------------------\n");
10656}
10657
10658
10659/****************************************************************************/
10660/* Prints out the Completion Procesor (COM) state.                          */
10661/*                                                                          */
10662/* Returns:                                                                 */
10663/*   Nothing.                                                               */
10664/****************************************************************************/
10665static __attribute__ ((noinline)) void
10666bce_dump_com_state(struct bce_softc *sc, int regs)
10667{
10668	u32 val;
10669	u32 fw_version[4];
10670
10671	BCE_PRINTF(
10672	    "----------------------------"
10673	    "   COM State    "
10674	    "----------------------------\n");
10675
10676	for (int i = 0; i < 3; i++)
10677		fw_version[i] = htonl(REG_RD_IND(sc,
10678		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
10679
10680	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10681
10682	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10683	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10684	    val, BCE_COM_CPU_MODE);
10685
10686	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10687	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10688	    val, BCE_COM_CPU_STATE);
10689
10690	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10691	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10692	    BCE_COM_CPU_EVENT_MASK);
10693
10694	if (regs) {
10695		BCE_PRINTF(
10696		    "----------------------------"
10697		    " Register  Dump "
10698		    "----------------------------\n");
10699
10700		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10701			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10702			    "0x%08X 0x%08X\n", i,
10703			    REG_RD_IND(sc, i),
10704			    REG_RD_IND(sc, i + 0x4),
10705			    REG_RD_IND(sc, i + 0x8),
10706			    REG_RD_IND(sc, i + 0xC));
10707		}
10708	}
10709
10710	BCE_PRINTF(
10711		"----------------------------"
10712		"----------------"
10713		"----------------------------\n");
10714}
10715
10716
10717/****************************************************************************/
10718/* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10719/*                                                                          */
10720/* Returns:                                                                 */
10721/*   Nothing.                                                               */
10722/****************************************************************************/
10723static __attribute__ ((noinline)) void
10724bce_dump_rv2p_state(struct bce_softc *sc)
10725{
10726	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10727
10728	BCE_PRINTF(
10729	    "----------------------------"
10730	    "   RV2P State   "
10731	    "----------------------------\n");
10732
10733	/* Stall the RV2P processors. */
10734	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10735	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10736	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10737
10738	/* Read the firmware version. */
10739	val = 0x00000001;
10740	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10741	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10742	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10743	    BCE_RV2P_INSTR_HIGH_HIGH;
10744	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10745	    fw_ver_high, fw_ver_low);
10746
10747	val = 0x00000001;
10748	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10749	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10750	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10751	    BCE_RV2P_INSTR_HIGH_HIGH;
10752	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10753	    fw_ver_high, fw_ver_low);
10754
10755	/* Resume the RV2P processors. */
10756	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10757	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10758	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10759
10760	/* Fetch the program counter value. */
10761	val = 0x68007800;
10762	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10763	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10764	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10765	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10766	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10767	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10768
10769	/* Fetch the program counter value again to see if it is advancing. */
10770	val = 0x68007800;
10771	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10772	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10773	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10774	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10775	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10776	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10777
10778	BCE_PRINTF(
10779	    "----------------------------"
10780	    "----------------"
10781	    "----------------------------\n");
10782}
10783
10784
10785/****************************************************************************/
10786/* Prints out the driver state and then enters the debugger.                */
10787/*                                                                          */
10788/* Returns:                                                                 */
10789/*   Nothing.                                                               */
10790/****************************************************************************/
10791static __attribute__ ((noinline)) void
10792bce_breakpoint(struct bce_softc *sc)
10793{
10794
10795	/*
10796	 * Unreachable code to silence compiler warnings
10797	 * about unused functions.
10798	 */
10799	if (0) {
10800		bce_freeze_controller(sc);
10801		bce_unfreeze_controller(sc);
10802		bce_dump_enet(sc, NULL);
10803		bce_dump_txbd(sc, 0, NULL);
10804		bce_dump_rxbd(sc, 0, NULL);
10805		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10806		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10807		bce_dump_l2fhdr(sc, 0, NULL);
10808		bce_dump_ctx(sc, RX_CID);
10809		bce_dump_ftqs(sc);
10810		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10811		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10812		bce_dump_status_block(sc);
10813		bce_dump_stats_block(sc);
10814		bce_dump_driver_state(sc);
10815		bce_dump_hw_state(sc);
10816		bce_dump_bc_state(sc);
10817		bce_dump_txp_state(sc, 0);
10818		bce_dump_rxp_state(sc, 0);
10819		bce_dump_tpat_state(sc, 0);
10820		bce_dump_cp_state(sc, 0);
10821		bce_dump_com_state(sc, 0);
10822		bce_dump_rv2p_state(sc);
10823
10824#ifdef BCE_JUMBO_HDRSPLIT
10825		bce_dump_pgbd(sc, 0, NULL);
10826		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10827		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10828#endif
10829	}
10830
10831	bce_dump_status_block(sc);
10832	bce_dump_driver_state(sc);
10833
10834	/* Call the debugger. */
10835	breakpoint();
10836
10837	return;
10838}
10839#endif
10840
10841