ar9287_reset.c revision 222424
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c 222424 2011-05-28 15:43:56Z adrian $
18 */
19
20#include "opt_ah.h"
21
22#include "ah.h"
23#include "ah_internal.h"
24#include "ah_devid.h"
25
26#include "ah_eeprom_v14.h"
27#include "ah_eeprom_9287.h"
28
29#include "ar5416/ar5416.h"
30#include "ar5416/ar5416reg.h"
31#include "ar5416/ar5416phy.h"
32
33#include "ar9002/ar9287phy.h"
34#include "ar9002/ar9287an.h"
35
36#include "ar9002/ar9287_olc.h"
37#include "ar9002/ar9287_reset.h"
38
39/*
40 * Set the TX power calibration table per-chain.
41 *
42 * This only supports open-loop TX power control for the AR9287.
43 */
44static void
45ar9287SetPowerCalTable(struct ath_hal *ah,
46    const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
47{
48        struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
49        uint8_t *pCalBChans = NULL;
50        uint16_t pdGainOverlap_t2;
51        uint16_t numPiers = 0, i;
52        uint16_t numXpdGain, xpdMask;
53        uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
54        uint32_t regChainOffset;
55	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
56        struct ar9287_eeprom *pEepData = &ee->ee_base;
57
58        xpdMask = pEepData->modalHeader.xpdGain;
59
60        if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
61            AR9287_EEP_MINOR_VER_2)
62                pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
63        else
64                pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
65                                            AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
66
67	/* Note: Kiwi should only be 2ghz.. */
68        if (IEEE80211_IS_CHAN_2GHZ(chan)) {
69                pCalBChans = pEepData->calFreqPier2G;
70                numPiers = AR9287_NUM_2G_CAL_PIERS;
71                pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
72                AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
73        }
74        numXpdGain = 0;
75
76        /* Calculate the value of xpdgains from the xpdGain Mask */
77        for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
78                if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
79                        if (numXpdGain >= AR5416_NUM_PD_GAINS)
80                                break;
81                        xpdGainValues[numXpdGain] =
82                                (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
83                        numXpdGain++;
84                }
85        }
86
87        OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
88                      (numXpdGain - 1) & 0x3);
89        OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
90                      xpdGainValues[0]);
91        OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
92                      xpdGainValues[1]);
93        OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
94                      xpdGainValues[2]);
95
96        for (i = 0; i < AR9287_MAX_CHAINS; i++) {
97                regChainOffset = i * 0x1000;
98
99                if (pEepData->baseEepHeader.txMask & (1 << i)) {
100                        int8_t txPower;
101                        pRawDatasetOpenLoop =
102                        (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
103                                ar9287olcGetTxGainIndex(ah, chan,
104                                    pRawDatasetOpenLoop,
105                                    pCalBChans, numPiers,
106                                    &txPower);
107                                ar9287olcSetPDADCs(ah, txPower, i);
108                }
109        }
110
111        *pTxPowerIndexOffset = 0;
112}
113
114
115/* XXX hard-coded values? */
116#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
117
118/*
119 * ar9287SetPowerPerRateTable
120 *
121 * Sets the transmit power in the baseband for the given
122 * operating channel and mode.
123 *
124 * This is like the v14 EEPROM table except the 5GHz code.
125 */
126static HAL_BOOL
127ar9287SetPowerPerRateTable(struct ath_hal *ah,
128    struct ar9287_eeprom *pEepData,
129    const struct ieee80211_channel *chan,
130    int16_t *ratesArray, uint16_t cfgCtl,
131    uint16_t AntennaReduction,
132    uint16_t twiceMaxRegulatoryPower,
133    uint16_t powerLimit)
134{
135#define	N(a)	(sizeof(a)/sizeof(a[0]))
136/* Local defines to distinguish between extension and control CTL's */
137#define EXT_ADDITIVE (0x8000)
138#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
139#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
140#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
141
142	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
143	int i;
144	int16_t  twiceLargestAntenna;
145	struct cal_ctl_data_ar9287 *rep;
146	CAL_TARGET_POWER_LEG targetPowerOfdm;
147	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
148	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
149	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
150	CAL_TARGET_POWER_HT  targetPowerHt20;
151	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
152	int16_t scaledPower, minCtlPower;
153
154#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
155	static const uint16_t ctlModesFor11g[] = {
156	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
157	};
158	const uint16_t *pCtlMode;
159	uint16_t numCtlModes, ctlMode, freq;
160	CHAN_CENTERS centers;
161
162	ar5416GetChannelCenters(ah,  chan, &centers);
163
164	/* Compute TxPower reduction due to Antenna Gain */
165
166	twiceLargestAntenna = AH_MAX(
167	    pEepData->modalHeader.antennaGainCh[0],
168	    pEepData->modalHeader.antennaGainCh[1]);
169
170	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
171
172	/* XXX setup for 5212 use (really used?) */
173	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
174
175	/*
176	 * scaledPower is the minimum of the user input power level and
177	 * the regulatory allowed power level
178	 */
179	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
180
181	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
182	/* TODO: better value than these? */
183	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
184	case 1:
185		break;
186	case 2:
187		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
188		break;
189	default:
190		return AH_FALSE; /* Unsupported number of chains */
191	}
192
193	scaledPower = AH_MAX(0, scaledPower);
194
195	/* Get target powers from EEPROM - our baseline for TX Power */
196	/* XXX assume channel is 2ghz */
197	if (1) {
198		/* Setup for CTL modes */
199		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
200		pCtlMode = ctlModesFor11g;
201
202		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
203				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
204		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
205				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
206		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
207				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
208
209		if (IEEE80211_IS_CHAN_HT40(chan)) {
210			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
211
212			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
213				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
214			/* Get target powers for extension channels */
215			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
216				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
217			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
218				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
219		}
220	}
221
222	/*
223	 * For MIMO, need to apply regulatory caps individually across dynamically
224	 * running modes: CCK, OFDM, HT20, HT40
225	 *
226	 * The outer loop walks through each possible applicable runtime mode.
227	 * The inner loop walks through each ctlIndex entry in EEPROM.
228	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
229	 *
230	 */
231	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
232		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
233		    (pCtlMode[ctlMode] == CTL_2GHT40);
234		if (isHt40CtlMode) {
235			freq = centers.ctl_center;
236		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
237			freq = centers.ext_center;
238		} else {
239			freq = centers.ctl_center;
240		}
241
242		/* walk through each CTL index stored in EEPROM */
243		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
244			uint16_t twiceMinEdgePower;
245
246			/* compare test group from regulatory channel list with test mode from pCtlMode list */
247			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
248				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
249				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
250				rep = &(pEepData->ctlData[i]);
251				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
252							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
253							IEEE80211_IS_CHAN_2GHZ(chan));
254				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
255					/* Find the minimum of all CTL edge powers that apply to this channel */
256					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
257				} else {
258					/* specific */
259					twiceMaxEdgePower = twiceMinEdgePower;
260					break;
261				}
262			}
263		}
264		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
265		/* Apply ctl mode to correct target power set */
266		switch(pCtlMode[ctlMode]) {
267		case CTL_11B:
268			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
269				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
270			}
271			break;
272		case CTL_11A:
273		case CTL_11G:
274			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
275				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
276			}
277			break;
278		case CTL_5GHT20:
279		case CTL_2GHT20:
280			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
281				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
282			}
283			break;
284		case CTL_11B_EXT:
285			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
286			break;
287		case CTL_11A_EXT:
288		case CTL_11G_EXT:
289			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
290			break;
291		case CTL_5GHT40:
292		case CTL_2GHT40:
293			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
294				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
295			}
296			break;
297		default:
298			return AH_FALSE;
299			break;
300		}
301	} /* end ctl mode checking */
302
303	/* Set rates Array from collected data */
304	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
305	    &targetPowerCck,
306	    &targetPowerCckExt,
307	    &targetPowerOfdm,
308	    &targetPowerOfdmExt,
309	    &targetPowerHt20,
310	    &targetPowerHt40);
311	return AH_TRUE;
312#undef EXT_ADDITIVE
313#undef CTL_11A_EXT
314#undef CTL_11G_EXT
315#undef CTL_11B_EXT
316#undef SUB_NUM_CTL_MODES_AT_5G_40
317#undef SUB_NUM_CTL_MODES_AT_2G_40
318#undef N
319}
320
321#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
322
323/*
324 * This is based off of the AR5416/AR9285 code and likely could
325 * be unified in the future.
326 */
327HAL_BOOL
328ar9287SetTransmitPower(struct ath_hal *ah,
329	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
330{
331#define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
332#define	N(a)            (sizeof (a) / sizeof (a[0]))
333
334	const struct modal_eep_ar9287_header *pModal;
335	struct ath_hal_5212 *ahp = AH5212(ah);
336	int16_t             ratesArray[Ar5416RateSize];
337	int16_t             txPowerIndexOffset = 0;
338	uint8_t             ht40PowerIncForPdadc = 2;
339	int                 i;
340
341	uint16_t            cfgCtl;
342	uint16_t            powerLimit;
343	uint16_t            twiceAntennaReduction;
344	uint16_t            twiceMaxRegulatoryPower;
345	int16_t             maxPower;
346	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
347	struct ar9287_eeprom *pEepData = &ee->ee_base;
348
349	/* Setup info for the actual eeprom */
350	OS_MEMZERO(ratesArray, sizeof(ratesArray));
351	cfgCtl = ath_hal_getctl(ah, chan);
352	powerLimit = chan->ic_maxregpower * 2;
353	twiceAntennaReduction = chan->ic_maxantgain;
354	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
355	pModal = &pEepData->modalHeader;
356	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
357	    __func__,chan->ic_freq, cfgCtl );
358
359	/* XXX Assume Minor is v2 or later */
360	ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
361
362	/* Fetch per-rate power table for the given channel */
363	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
364            &ratesArray[0],cfgCtl,
365            twiceAntennaReduction,
366            twiceMaxRegulatoryPower, powerLimit)) {
367		HALDEBUG(ah, HAL_DEBUG_ANY,
368		    "%s: unable to set tx power per rate table\n", __func__);
369		return AH_FALSE;
370	}
371
372	/* Set TX power control calibration curves for each TX chain */
373	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
374
375	/* Calculate maximum power level */
376	maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
377	maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
378
379	if (IEEE80211_IS_CHAN_HT40(chan))
380		maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
381
382	ahp->ah_tx6PowerInHalfDbm = maxPower;
383	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
384	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
385
386	/*
387	 * txPowerIndexOffset is set by the SetPowerTable() call -
388	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
389	 */
390	/* XXX what about the pwrTableOffset? */
391	for (i = 0; i < N(ratesArray); i++) {
392		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
393		/* -5 dBm offset for Merlin and later; this includes Kiwi */
394		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
395		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
396			ratesArray[i] = AR5416_MAX_RATE_POWER;
397		if (ratesArray[i] < 0)
398			ratesArray[i] = 0;
399	}
400
401#ifdef AH_EEPROM_DUMP
402	ar5416PrintPowerPerRate(ah, ratesArray);
403#endif
404
405	/*
406	 * Adjust the HT40 power to meet the correct target TX power
407	 * for 40MHz mode, based on TX power curves that are established
408	 * for 20MHz mode.
409	 *
410	 * XXX handle overflow/too high power level?
411	 */
412	if (IEEE80211_IS_CHAN_HT40(chan)) {
413		ratesArray[rateHt40_0] += ht40PowerIncForPdadc;
414		ratesArray[rateHt40_1] += ht40PowerIncForPdadc;
415		ratesArray[rateHt40_2] += ht40PowerIncForPdadc;
416		ratesArray[rateHt40_3] += ht40PowerIncForPdadc;
417		ratesArray[rateHt40_4] += ht40PowerIncForPdadc;
418		ratesArray[rateHt40_5] += ht40PowerIncForPdadc;
419		ratesArray[rateHt40_6] += ht40PowerIncForPdadc;
420		ratesArray[rateHt40_7] += ht40PowerIncForPdadc;
421	}
422
423	/* Write the TX power rate registers */
424	ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray);
425
426	return AH_TRUE;
427#undef POW_SM
428#undef N
429}
430
431/*
432 * Read EEPROM header info and program the device for correct operation
433 * given the channel value.
434 */
435HAL_BOOL
436ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
437{
438	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
439	const struct ar9287_eeprom *eep = &ee->ee_base;
440	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
441	uint16_t antWrites[AR9287_ANT_16S];
442	uint32_t regChainOffset, regval;
443	uint8_t txRxAttenLocal;
444	int i, j, offset_num;
445
446	pModal = &eep->modalHeader;
447
448	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
449	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
450	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
451	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
452	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
453	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
454	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
455	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
456
457	offset_num = 8;
458
459	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
460		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
461		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
462		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
463		antWrites[j++] = 0;
464		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
465		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
466		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
467		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
468	}
469
470	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
471
472	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
473		regChainOffset = i * 0x1000;
474
475		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
476			  pModal->antCtrlChain[i]);
477
478		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
479			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset)
480			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
481			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
482			  SM(pModal->iqCalICh[i],
483			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
484			  SM(pModal->iqCalQCh[i],
485			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
486
487		txRxAttenLocal = pModal->txRxAttenCh[i];
488
489		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
490			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
491			      pModal->bswMargin[i]);
492		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
493			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
494			      pModal->bswAtten[i]);
495		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
496			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
497			      txRxAttenLocal);
498		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
499			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
500			      pModal->rxTxMarginCh[i]);
501	}
502
503
504	if (IEEE80211_IS_CHAN_HT40(chan))
505		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
506			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
507	else
508		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
509			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
510
511	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
512		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
513
514	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
515		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
516		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
517		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
518		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
519
520	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
521		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
522
523	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
524		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
525	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
526		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
527
528	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
529	regval &= ~(AR9287_AN_RF2G3_DB1 |
530		    AR9287_AN_RF2G3_DB2 |
531		    AR9287_AN_RF2G3_OB_CCK |
532		    AR9287_AN_RF2G3_OB_PSK |
533		    AR9287_AN_RF2G3_OB_QAM |
534		    AR9287_AN_RF2G3_OB_PAL_OFF);
535	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
536		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
537		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
538		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
539		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
540		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
541
542	OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
543	OS_DELAY(100);	/* analog write */
544
545	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
546	regval &= ~(AR9287_AN_RF2G3_DB1 |
547		    AR9287_AN_RF2G3_DB2 |
548		    AR9287_AN_RF2G3_OB_CCK |
549		    AR9287_AN_RF2G3_OB_PSK |
550		    AR9287_AN_RF2G3_OB_QAM |
551		    AR9287_AN_RF2G3_OB_PAL_OFF);
552	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
553		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
554		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
555		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
556		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
557		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558
559	OS_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
560	OS_DELAY(100);	/* analog write */
561
562	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
563	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
564	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
565	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
566
567	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
568	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
569
570	return AH_TRUE;
571}
572