ar9285_reset.c revision 220539
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c 220539 2011-04-11 11:15:34Z adrian $
18 */
19
20/*
21 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22 * supports only 2Ghz operation.
23 */
24
25#include "opt_ah.h"
26
27#include "ah.h"
28#include "ah_internal.h"
29#include "ah_devid.h"
30
31#include "ah_eeprom_v14.h"
32#include "ah_eeprom_v4k.h"
33
34#include "ar9002/ar9285.h"
35#include "ar5416/ar5416.h"
36#include "ar5416/ar5416reg.h"
37#include "ar5416/ar5416phy.h"
38
39#include "ar9002/ar9285phy.h"
40
41/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
42#define	EEP_MINOR(_ah) \
43	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
44#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
45#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
46
47/* Additional Time delay to wait after activiting the Base band */
48#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
49#define PLL_SETTLE_DELAY	300	/* 300 usec */
50#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
51
52static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
53	struct ar5416eeprom_4k *pEepData,
54	const struct ieee80211_channel *chan, int16_t *ratesArray,
55	uint16_t cfgCtl, uint16_t AntennaReduction,
56	uint16_t twiceMaxRegulatoryPower,
57	uint16_t powerLimit);
58static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
59	struct ar5416eeprom_4k *pEepData,
60	const struct ieee80211_channel *chan,
61	int16_t *pTxPowerIndexOffset);
62static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
63	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
64	uint8_t * bChans, uint16_t availPiers,
65	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
66	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
67	uint16_t numXpdGains);
68static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);
69
70HAL_BOOL
71ar9285SetTransmitPower(struct ath_hal *ah,
72	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
73{
74#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
75#define N(a)            (sizeof (a) / sizeof (a[0]))
76
77    MODAL_EEP4K_HEADER	*pModal;
78    struct ath_hal_5212 *ahp = AH5212(ah);
79    int16_t		ratesArray[Ar5416RateSize];
80    int16_t		txPowerIndexOffset = 0;
81    uint8_t		ht40PowerIncForPdadc = 2;
82    int			i;
83
84    uint16_t		cfgCtl;
85    uint16_t		powerLimit;
86    uint16_t		twiceAntennaReduction;
87    uint16_t		twiceMaxRegulatoryPower;
88    int16_t		maxPower;
89    HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
90    struct ar5416eeprom_4k *pEepData = &ee->ee_base;
91
92    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
93
94    /* Setup info for the actual eeprom */
95    OS_MEMZERO(ratesArray, sizeof(ratesArray));
96    cfgCtl = ath_hal_getctl(ah, chan);
97    powerLimit = chan->ic_maxregpower * 2;
98    twiceAntennaReduction = chan->ic_maxantgain;
99    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
100    pModal = &pEepData->modalHeader;
101    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
102	__func__,chan->ic_freq, cfgCtl );
103
104    if (IS_EEP_MINOR_V2(ah)) {
105        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
106    }
107
108    if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
109                                    &ratesArray[0],cfgCtl,
110                                    twiceAntennaReduction,
111				    twiceMaxRegulatoryPower, powerLimit)) {
112        HALDEBUG(ah, HAL_DEBUG_ANY,
113	    "%s: unable to set tx power per rate table\n", __func__);
114        return AH_FALSE;
115    }
116
117    if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
118        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
119	    __func__);
120        return AH_FALSE;
121    }
122
123    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
124    maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
125
126    if (IEEE80211_IS_CHAN_HT40(chan)) {
127        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
128    }
129
130    ahp->ah_tx6PowerInHalfDbm = maxPower;
131    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
132    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
133
134    /*
135     * txPowerIndexOffset is set by the SetPowerTable() call -
136     *  adjust the rate table (0 offset if rates EEPROM not loaded)
137     */
138    for (i = 0; i < N(ratesArray); i++) {
139        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
140	/* -5 dBm offset for Merlin and later; this includes Kite */
141	ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
142        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
143            ratesArray[i] = AR5416_MAX_RATE_POWER;
144	if (ratesArray[i] < 0)
145		ratesArray[i] = 0;
146    }
147
148#ifdef AH_EEPROM_DUMP
149    ar5416PrintPowerPerRate(ah, ratesArray);
150#endif
151
152    /* Write the OFDM power per rate set */
153    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
154        POW_SM(ratesArray[rate18mb], 24)
155          | POW_SM(ratesArray[rate12mb], 16)
156          | POW_SM(ratesArray[rate9mb], 8)
157          | POW_SM(ratesArray[rate6mb], 0)
158    );
159    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
160        POW_SM(ratesArray[rate54mb], 24)
161          | POW_SM(ratesArray[rate48mb], 16)
162          | POW_SM(ratesArray[rate36mb], 8)
163          | POW_SM(ratesArray[rate24mb], 0)
164    );
165
166    /* Write the CCK power per rate set */
167    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
168        POW_SM(ratesArray[rate2s], 24)
169          | POW_SM(ratesArray[rate2l],  16)
170          | POW_SM(ratesArray[rateXr],  8) /* XR target power */
171          | POW_SM(ratesArray[rate1l],   0)
172    );
173    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
174        POW_SM(ratesArray[rate11s], 24)
175          | POW_SM(ratesArray[rate11l], 16)
176          | POW_SM(ratesArray[rate5_5s], 8)
177          | POW_SM(ratesArray[rate5_5l], 0)
178    );
179    HALDEBUG(ah, HAL_DEBUG_RESET,
180	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
181	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
182	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
183
184    /* Write the HT20 power per rate set */
185    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
186        POW_SM(ratesArray[rateHt20_3], 24)
187          | POW_SM(ratesArray[rateHt20_2], 16)
188          | POW_SM(ratesArray[rateHt20_1], 8)
189          | POW_SM(ratesArray[rateHt20_0], 0)
190    );
191    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
192        POW_SM(ratesArray[rateHt20_7], 24)
193          | POW_SM(ratesArray[rateHt20_6], 16)
194          | POW_SM(ratesArray[rateHt20_5], 8)
195          | POW_SM(ratesArray[rateHt20_4], 0)
196    );
197
198    if (IEEE80211_IS_CHAN_HT40(chan)) {
199        /* Write the HT40 power per rate set */
200	/* Correct PAR difference between HT40 and HT20/LEGACY */
201        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
202            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
203              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
204              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
205              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
206        );
207        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
208            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
209              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
210              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
211              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
212        );
213        /* Write the Dup/Ext 40 power per rate set */
214        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
215            POW_SM(ratesArray[rateExtOfdm], 24)
216              | POW_SM(ratesArray[rateExtCck], 16)
217              | POW_SM(ratesArray[rateDupOfdm], 8)
218              | POW_SM(ratesArray[rateDupCck], 0)
219        );
220    }
221
222    return AH_TRUE;
223#undef POW_SM
224#undef N
225}
226
227static void
228ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
229    const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
230{
231	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
232		  pModal->antCtrlChain[0]);
233
234	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
235		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
236		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
237		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
238		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
239		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
240
241	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
242	    AR5416_EEP_MINOR_VER_3) {
243		txRxAttenLocal = pModal->txRxAttenCh[0];
244
245		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
246		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
247		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
248		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
249		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
250		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
251		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
252		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
253
254		/* Set the block 1 value to block 0 value */
255		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
256		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
257		      pModal->bswMargin[0]);
258		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
259		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
260		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
261		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
262		      pModal->xatten2Margin[0]);
263		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
264		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
265	}
266
267	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
268		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
269	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
270		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
271
272	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
273		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
274	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
275		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
276}
277
278/*
279 * Read EEPROM header info and program the device for correct operation
280 * given the channel value.
281 */
282HAL_BOOL
283ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
284{
285	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
286	const struct ar5416eeprom_4k *eep = &ee->ee_base;
287	const MODAL_EEP4K_HEADER *pModal;
288	uint8_t txRxAttenLocal;
289	uint8_t ob[5], db1[5], db2[5];
290	uint8_t ant_div_control1, ant_div_control2;
291	uint32_t regVal;
292
293	pModal = &eep->modalHeader;
294	txRxAttenLocal = 23;
295
296	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
297
298	/* Single chain for 4K EEPROM*/
299	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
300
301	/* Initialize Ant Diversity settings from EEPROM */
302	if (pModal->version >= 3) {
303		ant_div_control1 = pModal->antdiv_ctl1;
304		ant_div_control2 = pModal->antdiv_ctl2;
305
306		regVal = OS_REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
307		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
308
309		regVal |= SM(ant_div_control1,
310			     AR_PHY_9285_ANT_DIV_CTL);
311		regVal |= SM(ant_div_control2,
312			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
313		regVal |= SM((ant_div_control2 >> 2),
314			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
315		regVal |= SM((ant_div_control1 >> 1),
316			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
317		regVal |= SM((ant_div_control1 >> 2),
318			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
319
320		OS_REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
321		regVal = OS_REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
322		regVal = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
323		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
324		regVal |= SM((ant_div_control1 >> 3),
325			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
326
327		OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
328		regVal = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
329	}
330
331	if (pModal->version >= 2) {
332		ob[0] = pModal->ob_0;
333		ob[1] = pModal->ob_1;
334		ob[2] = pModal->ob_2;
335		ob[3] = pModal->ob_3;
336		ob[4] = pModal->ob_4;
337
338		db1[0] = pModal->db1_0;
339		db1[1] = pModal->db1_1;
340		db1[2] = pModal->db1_2;
341		db1[3] = pModal->db1_3;
342		db1[4] = pModal->db1_4;
343
344		db2[0] = pModal->db2_0;
345		db2[1] = pModal->db2_1;
346		db2[2] = pModal->db2_2;
347		db2[3] = pModal->db2_3;
348		db2[4] = pModal->db2_4;
349	} else if (pModal->version == 1) {
350		ob[0] = pModal->ob_0;
351		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
352		db1[0] = pModal->db1_0;
353		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
354		db2[0] = pModal->db2_0;
355		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
356	} else {
357		int i;
358
359		for (i = 0; i < 5; i++) {
360			ob[i] = pModal->ob_0;
361			db1[i] = pModal->db1_0;
362			db2[i] = pModal->db1_0;
363		}
364	}
365
366	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
367	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
368	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
369	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
370	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
371
372	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
373	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
374	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
375	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
376	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
377
378	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
379	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
380	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
381	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
382	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
383
384	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
385		      pModal->switchSettling);
386	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
387		      pModal->adcDesiredSize);
388
389	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
390		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
391		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
392		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
393		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
394
395	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
396		      pModal->txEndToRxOn);
397
398	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
399		      pModal->thresh62);
400	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
401		      pModal->thresh62);
402
403	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
404	    AR5416_EEP_MINOR_VER_2) {
405		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
406		    pModal->txFrameToDataStart);
407		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
408		    pModal->txFrameToPaOn);
409	}
410
411	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
412	    AR5416_EEP_MINOR_VER_3) {
413		if (IEEE80211_IS_CHAN_HT40(chan))
414			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
415			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
416	}
417
418	return AH_TRUE;
419}
420
421/*
422 * Helper functions common for AP/CB/XB
423 */
424
425static HAL_BOOL
426ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
427                           const struct ieee80211_channel *chan,
428                           int16_t *ratesArray, uint16_t cfgCtl,
429                           uint16_t AntennaReduction,
430                           uint16_t twiceMaxRegulatoryPower,
431                           uint16_t powerLimit)
432{
433#define	N(a)	(sizeof(a)/sizeof(a[0]))
434/* Local defines to distinguish between extension and control CTL's */
435#define EXT_ADDITIVE (0x8000)
436#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
437#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
438
439	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
440	int i;
441	int16_t  twiceLargestAntenna;
442	CAL_CTL_DATA_4K *rep;
443	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
444	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
445	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
446	int16_t scaledPower, minCtlPower;
447
448#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
449	static const uint16_t ctlModesFor11g[] = {
450	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
451	};
452	const uint16_t *pCtlMode;
453	uint16_t numCtlModes, ctlMode, freq;
454	CHAN_CENTERS centers;
455
456	ar5416GetChannelCenters(ah,  chan, &centers);
457
458	/* Compute TxPower reduction due to Antenna Gain */
459
460	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
461	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
462
463	/* XXX setup for 5212 use (really used?) */
464	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
465
466	/*
467	 * scaledPower is the minimum of the user input power level and
468	 * the regulatory allowed power level
469	 */
470	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
471
472	/* Get target powers from EEPROM - our baseline for TX Power */
473	/* Setup for CTL modes */
474	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
475	pCtlMode = ctlModesFor11g;
476
477	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
478			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
479	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
480			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
481	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
482			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
483
484	if (IEEE80211_IS_CHAN_HT40(chan)) {
485		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
486
487		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
488			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
489		/* Get target powers for extension channels */
490		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
491			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
492		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
493			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
494	}
495
496	/*
497	 * For MIMO, need to apply regulatory caps individually across dynamically
498	 * running modes: CCK, OFDM, HT20, HT40
499	 *
500	 * The outer loop walks through each possible applicable runtime mode.
501	 * The inner loop walks through each ctlIndex entry in EEPROM.
502	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
503	 *
504	 */
505	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
506		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
507		    (pCtlMode[ctlMode] == CTL_2GHT40);
508		if (isHt40CtlMode) {
509			freq = centers.ctl_center;
510		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
511			freq = centers.ext_center;
512		} else {
513			freq = centers.ctl_center;
514		}
515
516		/* walk through each CTL index stored in EEPROM */
517		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
518			uint16_t twiceMinEdgePower;
519
520			/* compare test group from regulatory channel list with test mode from pCtlMode list */
521			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
522				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
523				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
524				rep = &(pEepData->ctlData[i]);
525				twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
526							rep->ctlEdges[
527							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
528				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
529					/* Find the minimum of all CTL edge powers that apply to this channel */
530					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
531				} else {
532					/* specific */
533					twiceMaxEdgePower = twiceMinEdgePower;
534					break;
535				}
536			}
537		}
538		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
539		/* Apply ctl mode to correct target power set */
540		switch(pCtlMode[ctlMode]) {
541		case CTL_11B:
542			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
543				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
544			}
545			break;
546		case CTL_11A:
547		case CTL_11G:
548			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
549				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
550			}
551			break;
552		case CTL_5GHT20:
553		case CTL_2GHT20:
554			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
555				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
556			}
557			break;
558		case CTL_11B_EXT:
559			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
560			break;
561		case CTL_11G_EXT:
562			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
563			break;
564		case CTL_5GHT40:
565		case CTL_2GHT40:
566			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
567				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
568			}
569			break;
570		default:
571			return AH_FALSE;
572			break;
573		}
574	} /* end ctl mode checking */
575
576	/* Set rates Array from collected data */
577	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
578	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
579	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
580	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
581	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
582
583	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
584		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
585	}
586
587	ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
588	ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
589	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
590	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
591	if (IEEE80211_IS_CHAN_HT40(chan)) {
592		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
593			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
594		}
595		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
596		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
597		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
598		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
599			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
600		}
601	}
602	return AH_TRUE;
603#undef EXT_ADDITIVE
604#undef CTL_11G_EXT
605#undef CTL_11B_EXT
606#undef SUB_NUM_CTL_MODES_AT_2G_40
607#undef N
608}
609
610/**************************************************************************
611 * fbin2freq
612 *
613 * Get channel value from binary representation held in eeprom
614 * RETURNS: the frequency in MHz
615 */
616static uint16_t
617fbin2freq(uint8_t fbin)
618{
619    /*
620     * Reserved value 0xFF provides an empty definition both as
621     * an fbin and as a frequency - do not convert
622     */
623    if (fbin == AR5416_BCHAN_UNUSED) {
624        return fbin;
625    }
626
627    return (uint16_t)(2300 + fbin);
628}
629
630/*
631 * XXX almost the same as ar5416GetMaxEdgePower.
632 */
633static uint16_t
634ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
635{
636    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
637    int      i;
638
639    /* Get the edge power */
640    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
641        /*
642         * If there's an exact channel match or an inband flag set
643         * on the lower channel use the given rdEdgePower
644         */
645        if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
646            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
647            break;
648        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
649            if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
650                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
651            }
652            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
653            break;
654        }
655    }
656    HALASSERT(twiceMaxEdgePower > 0);
657    return twiceMaxEdgePower;
658}
659
660
661
662static HAL_BOOL
663ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
664	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
665{
666    CAL_DATA_PER_FREQ_4K *pRawDataset;
667    uint8_t  *pCalBChans = AH_NULL;
668    uint16_t pdGainOverlap_t2;
669    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
670    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
671    uint16_t numPiers, i;
672    int16_t  tMinCalPower;
673    uint16_t numXpdGain, xpdMask;
674    uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
675    uint32_t regChainOffset;
676
677    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
678
679    xpdMask = pEepData->modalHeader.xpdGain;
680
681    if (IS_EEP_MINOR_V2(ah)) {
682        pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
683    } else {
684    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
685    }
686
687    pCalBChans = pEepData->calFreqPier2G;
688    numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
689    numXpdGain = 0;
690
691    /* Calculate the value of xpdgains from the xpdGain Mask */
692    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
693        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
694            if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
695                HALASSERT(0);
696                break;
697            }
698            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
699            numXpdGain++;
700        }
701    }
702
703    /* Write the detector gain biases and their number */
704    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
705
706    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
707	regChainOffset = ar5416GetRegChainOffset(ah, i);
708        if (pEepData->baseEepHeader.txMask & (1 << i)) {
709            pRawDataset = pEepData->calPierData2G[i];
710
711            ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
712                                             pCalBChans, numPiers,
713                                             pdGainOverlap_t2,
714                                             &tMinCalPower, gainBoundaries,
715                                             pdadcValues, numXpdGain);
716
717            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
718                /*
719                 * Note the pdadc table may not start at 0 dBm power, could be
720                 * negative or greater than 0.  Need to offset the power
721                 * values by the amount of minPower for griffin
722                 */
723		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
724            }
725
726            /* Write the power values into the baseband power table */
727	    ar5416WritePdadcValues(ah, i, pdadcValues);
728        }
729    }
730    *pTxPowerIndexOffset = 0;
731
732    return AH_TRUE;
733}
734
735static void
736ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
737                                 const struct ieee80211_channel *chan,
738				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
739                                 uint8_t * bChans,  uint16_t availPiers,
740                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
741                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
742{
743
744    int       i, j, k;
745    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
746    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
747
748    /* filled out Vpd table for all pdGains (chanL) */
749    static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
750
751    /* filled out Vpd table for all pdGains (chanR) */
752    static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
753
754    /* filled out Vpd table for all pdGains (interpolated) */
755    static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
756
757    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
758    uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
759    uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
760    int16_t   vpdStep;
761    int16_t   tmpVal;
762    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
763    HAL_BOOL    match;
764    int16_t  minDelta = 0;
765    CHAN_CENTERS centers;
766
767    ar5416GetChannelCenters(ah, chan, &centers);
768
769    /* Trim numPiers for the number of populated channel Piers */
770    for (numPiers = 0; numPiers < availPiers; numPiers++) {
771        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
772            break;
773        }
774    }
775
776    /* Find pier indexes around the current channel */
777    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
778      IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
779
780    if (match) {
781        /* Directly fill both vpd tables from the matching index */
782        for (i = 0; i < numXpdGains; i++) {
783            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
784            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
785            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
786			       pRawDataSet[idxL].pwrPdg[i],
787                               pRawDataSet[idxL].vpdPdg[i],
788			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
789        }
790    } else {
791        for (i = 0; i < numXpdGains; i++) {
792            pVpdL = pRawDataSet[idxL].vpdPdg[i];
793            pPwrL = pRawDataSet[idxL].pwrPdg[i];
794            pVpdR = pRawDataSet[idxR].vpdPdg[i];
795            pPwrR = pRawDataSet[idxR].pwrPdg[i];
796
797            /* Start Vpd interpolation from the max of the minimum powers */
798            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
799
800            /* End Vpd interpolation from the min of the max powers */
801            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
802            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
803
804            /* Fill pier Vpds */
805            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
806			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
807            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
808			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
809
810            /* Interpolate the final vpd */
811            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
812                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
813                    IEEE80211_IS_CHAN_2GHZ(chan)),
814                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
815            }
816        }
817    }
818    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
819
820    k = 0; /* index for the final table */
821    for (i = 0; i < numXpdGains; i++) {
822        if (i == (numXpdGains - 1)) {
823            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
824        } else {
825            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
826        }
827
828        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
829
830	/* NB: only applies to owl 1.0 */
831        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
832	    /*
833             * fix the gain delta, but get a delta that can be applied to min to
834             * keep the upper power values accurate, don't think max needs to
835             * be adjusted because should not be at that area of the table?
836	     */
837            minDelta = pPdGainBoundaries[0] - 23;
838            pPdGainBoundaries[0] = 23;
839        }
840        else {
841            minDelta = 0;
842        }
843
844        /* Find starting index for this pdGain */
845        if (i == 0) {
846            if (AR_SREV_MERLIN_20_OR_LATER(ah))
847                ss = (int16_t)(0 - (minPwrT4[i] / 2));
848            else
849                ss = 0; /* for the first pdGain, start from index 0 */
850        } else {
851	    /* need overlap entries extrapolated below. */
852            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
853        }
854        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
855        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
856        /*
857         *-ve ss indicates need to extrapolate data below for this pdGain
858         */
859        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
860            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
861            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
862            ss++;
863        }
864
865        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
866        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
867        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
868
869        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
870            pPDADCValues[k++] = vpdTableI[i][ss++];
871        }
872
873        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
874        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
875        /*
876         * for last gain, pdGainBoundary == Pmax_t2, so will
877         * have to extrapolate
878         */
879        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
880            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
881                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
882                          (ss - maxIndex +1) * vpdStep));
883                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
884                ss++;
885            }
886        }               /* extrapolated above */
887    }                   /* for all pdGainUsed */
888
889    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
890    while (i < AR5416_PD_GAINS_IN_MASK) {
891        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
892        i++;
893    }
894
895    while (k < AR5416_NUM_PDADC_VALUES) {
896        pPDADCValues[k] = pPDADCValues[k-1];
897        k++;
898    }
899    return;
900}
901