1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19
20/*
21 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22 * supports only 2Ghz operation.
23 */
24
25#include "opt_ah.h"
26
27#include "ah.h"
28#include "ah_internal.h"
29#include "ah_devid.h"
30
31#include "ah_eeprom_v14.h"
32#include "ah_eeprom_v4k.h"
33
34#include "ar9002/ar9285.h"
35#include "ar5416/ar5416.h"
36#include "ar5416/ar5416reg.h"
37#include "ar5416/ar5416phy.h"
38#include "ar9002/ar9002phy.h"
39#include "ar9002/ar9285phy.h"
40#include "ar9002/ar9285an.h"
41#include "ar9002/ar9285_diversity.h"
42
43/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
44#define	EEP_MINOR(_ah) \
45	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
46#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
47#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
48
49/* Additional Time delay to wait after activiting the Base band */
50#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
51#define PLL_SETTLE_DELAY	300	/* 300 usec */
52#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
53
54static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
55	struct ar5416eeprom_4k *pEepData,
56	const struct ieee80211_channel *chan, int16_t *ratesArray,
57	uint16_t cfgCtl, uint16_t AntennaReduction,
58	uint16_t twiceMaxRegulatoryPower,
59	uint16_t powerLimit);
60static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
61	struct ar5416eeprom_4k *pEepData,
62	const struct ieee80211_channel *chan,
63	int16_t *pTxPowerIndexOffset);
64static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
65	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
66	uint8_t * bChans, uint16_t availPiers,
67	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
68	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
69	uint16_t numXpdGains);
70
71HAL_BOOL
72ar9285SetTransmitPower(struct ath_hal *ah,
73	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
74{
75#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
76#define N(a)            (sizeof (a) / sizeof (a[0]))
77
78    MODAL_EEP4K_HEADER	*pModal;
79    struct ath_hal_5212 *ahp = AH5212(ah);
80    int16_t		txPowerIndexOffset = 0;
81    int			i;
82
83    uint16_t		cfgCtl;
84    uint16_t		powerLimit;
85    uint16_t		twiceAntennaReduction;
86    uint16_t		twiceMaxRegulatoryPower;
87    int16_t		maxPower;
88    HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
89    struct ar5416eeprom_4k *pEepData = &ee->ee_base;
90
91    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
92
93    AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
94
95    /* Setup info for the actual eeprom */
96    OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
97    cfgCtl = ath_hal_getctl(ah, chan);
98    powerLimit = chan->ic_maxregpower * 2;
99    twiceAntennaReduction = chan->ic_maxantgain;
100    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
101    pModal = &pEepData->modalHeader;
102    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
103	__func__,chan->ic_freq, cfgCtl );
104
105    if (IS_EEP_MINOR_V2(ah)) {
106        AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
107    }
108
109    if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
110                                    &AH5416(ah)->ah_ratesArray[0],cfgCtl,
111                                    twiceAntennaReduction,
112				    twiceMaxRegulatoryPower, powerLimit)) {
113        HALDEBUG(ah, HAL_DEBUG_ANY,
114	    "%s: unable to set tx power per rate table\n", __func__);
115        return AH_FALSE;
116    }
117
118    if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
119        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
120	    __func__);
121        return AH_FALSE;
122    }
123
124    maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
125      AH5416(ah)->ah_ratesArray[rateHt20_0]);
126    maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
127
128    if (IEEE80211_IS_CHAN_HT40(chan)) {
129        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
130    }
131
132    ahp->ah_tx6PowerInHalfDbm = maxPower;
133    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
134    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
135
136    /*
137     * txPowerIndexOffset is set by the SetPowerTable() call -
138     *  adjust the rate table (0 offset if rates EEPROM not loaded)
139     */
140    for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
141        AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
142	/* -5 dBm offset for Merlin and later; this includes Kite */
143	AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
144        if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
145            AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
146	if (AH5416(ah)->ah_ratesArray[i] < 0)
147		AH5416(ah)->ah_ratesArray[i] = 0;
148    }
149
150#ifdef AH_EEPROM_DUMP
151    ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
152#endif
153
154    /*
155     * Adjust the HT40 power to meet the correct target TX power
156     * for 40MHz mode, based on TX power curves that are established
157     * for 20MHz mode.
158     *
159     * XXX handle overflow/too high power level?
160     */
161    if (IEEE80211_IS_CHAN_HT40(chan)) {
162        AH5416(ah)->ah_ratesArray[rateHt40_0] +=
163          AH5416(ah)->ah_ht40PowerIncForPdadc;
164        AH5416(ah)->ah_ratesArray[rateHt40_1] +=
165          AH5416(ah)->ah_ht40PowerIncForPdadc;
166        AH5416(ah)->ah_ratesArray[rateHt40_2] +=
167          AH5416(ah)->ah_ht40PowerIncForPdadc;
168        AH5416(ah)->ah_ratesArray[rateHt40_3] +=
169          AH5416(ah)->ah_ht40PowerIncForPdadc;
170        AH5416(ah)->ah_ratesArray[rateHt40_4] +=
171          AH5416(ah)->ah_ht40PowerIncForPdadc;
172        AH5416(ah)->ah_ratesArray[rateHt40_5] +=
173          AH5416(ah)->ah_ht40PowerIncForPdadc;
174        AH5416(ah)->ah_ratesArray[rateHt40_6] +=
175          AH5416(ah)->ah_ht40PowerIncForPdadc;
176        AH5416(ah)->ah_ratesArray[rateHt40_7] +=
177          AH5416(ah)->ah_ht40PowerIncForPdadc;
178    }
179
180    /* Write the TX power rate registers */
181    ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
182
183    return AH_TRUE;
184#undef POW_SM
185#undef N
186}
187
188static void
189ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
190    const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
191{
192	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
193		  pModal->antCtrlChain[0]);
194
195	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
196		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
197		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
198		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
199		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
200		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
201
202	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
203	    AR5416_EEP_MINOR_VER_3) {
204		txRxAttenLocal = pModal->txRxAttenCh[0];
205
206		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
207		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
208		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
210		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
212		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
214
215		/* Set the block 1 value to block 0 value */
216		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
217		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
218		      pModal->bswMargin[0]);
219		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
220		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
221		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
223		      pModal->xatten2Margin[0]);
224		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
225		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
226	}
227
228	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
229		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
230	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
232
233	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
234		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
235	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
237}
238
239/*
240 * Read EEPROM header info and program the device for correct operation
241 * given the channel value.
242 */
243HAL_BOOL
244ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
245{
246	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
247	const struct ar5416eeprom_4k *eep = &ee->ee_base;
248	const MODAL_EEP4K_HEADER *pModal;
249	uint8_t txRxAttenLocal;
250	uint8_t ob[5], db1[5], db2[5];
251
252	pModal = &eep->modalHeader;
253	txRxAttenLocal = 23;
254
255	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
256
257	/* Single chain for 4K EEPROM*/
258	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
259
260	/* Initialize Ant Diversity settings if supported */
261	(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
262
263	/* Configure TX power calibration */
264	if (pModal->version >= 2) {
265		ob[0] = pModal->ob_0;
266		ob[1] = pModal->ob_1;
267		ob[2] = pModal->ob_2;
268		ob[3] = pModal->ob_3;
269		ob[4] = pModal->ob_4;
270
271		db1[0] = pModal->db1_0;
272		db1[1] = pModal->db1_1;
273		db1[2] = pModal->db1_2;
274		db1[3] = pModal->db1_3;
275		db1[4] = pModal->db1_4;
276
277		db2[0] = pModal->db2_0;
278		db2[1] = pModal->db2_1;
279		db2[2] = pModal->db2_2;
280		db2[3] = pModal->db2_3;
281		db2[4] = pModal->db2_4;
282	} else if (pModal->version == 1) {
283		ob[0] = pModal->ob_0;
284		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
285		db1[0] = pModal->db1_0;
286		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
287		db2[0] = pModal->db2_0;
288		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
289	} else {
290		int i;
291
292		for (i = 0; i < 5; i++) {
293			ob[i] = pModal->ob_0;
294			db1[i] = pModal->db1_0;
295			db2[i] = pModal->db1_0;
296		}
297	}
298
299	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
300	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
301	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
302	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
303	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
304
305	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
306	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
307	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
308	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
309	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
310
311	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
312	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
313	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
314	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
315	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
316
317	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
318		      pModal->switchSettling);
319	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
320		      pModal->adcDesiredSize);
321
322	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
323		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
324		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
325		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
326		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
327
328	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
329		      pModal->txEndToRxOn);
330
331	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
332		      pModal->thresh62);
333	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
334		      pModal->thresh62);
335
336	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
337	    AR5416_EEP_MINOR_VER_2) {
338		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
339		    pModal->txFrameToDataStart);
340		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
341		    pModal->txFrameToPaOn);
342	}
343
344	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
345	    AR5416_EEP_MINOR_VER_3) {
346		if (IEEE80211_IS_CHAN_HT40(chan))
347			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
348			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
349	}
350
351	/*
352	 * Program the CCK TX gain factor appropriately if needed.
353	 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
354	 * for CCK versus OFDM rates; other chips deal with this
355	 * differently.
356	 *
357	 * The mask/shift/multiply hackery is done so place the same
358	 * value (bb_desired_scale) into multiple 5-bit fields.
359	 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
360	 * to three fields: (0..4), (5..9) and (10..14).
361	 */
362	if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
363		uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
364		if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
365			ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
366			uint32_t pwrctrl, mask, clr;
367
368			mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
369			pwrctrl = mask * bb_desired_scale;
370			clr = mask * 0x1f;
371			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
372			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
373			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
374
375			mask = (1<<0) | (1<<5) | (1<<15);
376			pwrctrl = mask * bb_desired_scale;
377			clr = mask * 0x1f;
378			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
379
380			mask = (1<<0) | (1<<5);
381			pwrctrl = mask * bb_desired_scale;
382			clr = mask * 0x1f;
383			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
384			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
385		}
386	}
387
388	return AH_TRUE;
389}
390
391/*
392 * Helper functions common for AP/CB/XB
393 */
394
395static HAL_BOOL
396ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
397                           const struct ieee80211_channel *chan,
398                           int16_t *ratesArray, uint16_t cfgCtl,
399                           uint16_t AntennaReduction,
400                           uint16_t twiceMaxRegulatoryPower,
401                           uint16_t powerLimit)
402{
403#define	N(a)	(sizeof(a)/sizeof(a[0]))
404/* Local defines to distinguish between extension and control CTL's */
405#define EXT_ADDITIVE (0x8000)
406#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
407#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
408
409	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
410	int i;
411	int16_t  twiceLargestAntenna;
412	CAL_CTL_DATA_4K *rep;
413	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
414	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
415	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
416	int16_t scaledPower, minCtlPower;
417
418#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
419	static const uint16_t ctlModesFor11g[] = {
420	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
421	};
422	const uint16_t *pCtlMode;
423	uint16_t numCtlModes, ctlMode, freq;
424	CHAN_CENTERS centers;
425
426	ar5416GetChannelCenters(ah,  chan, &centers);
427
428	/* Compute TxPower reduction due to Antenna Gain */
429
430	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
431	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
432
433	/* XXX setup for 5212 use (really used?) */
434	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
435
436	/*
437	 * scaledPower is the minimum of the user input power level and
438	 * the regulatory allowed power level
439	 */
440	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
441
442	/* Get target powers from EEPROM - our baseline for TX Power */
443	/* Setup for CTL modes */
444	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
445	pCtlMode = ctlModesFor11g;
446
447	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
448			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
449	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
450			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
451	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
452			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
453
454	if (IEEE80211_IS_CHAN_HT40(chan)) {
455		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
456
457		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
458			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
459		/* Get target powers for extension channels */
460		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
461			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
462		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
463			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
464	}
465
466	/*
467	 * For MIMO, need to apply regulatory caps individually across dynamically
468	 * running modes: CCK, OFDM, HT20, HT40
469	 *
470	 * The outer loop walks through each possible applicable runtime mode.
471	 * The inner loop walks through each ctlIndex entry in EEPROM.
472	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
473	 *
474	 */
475	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
476		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
477		    (pCtlMode[ctlMode] == CTL_2GHT40);
478		if (isHt40CtlMode) {
479			freq = centers.ctl_center;
480		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
481			freq = centers.ext_center;
482		} else {
483			freq = centers.ctl_center;
484		}
485
486		/* walk through each CTL index stored in EEPROM */
487		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
488			uint16_t twiceMinEdgePower;
489
490			/* compare test group from regulatory channel list with test mode from pCtlMode list */
491			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
492				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
493				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
494				rep = &(pEepData->ctlData[i]);
495				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
496							rep->ctlEdges[
497							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
498				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
499					/* Find the minimum of all CTL edge powers that apply to this channel */
500					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
501				} else {
502					/* specific */
503					twiceMaxEdgePower = twiceMinEdgePower;
504					break;
505				}
506			}
507		}
508		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
509		/* Apply ctl mode to correct target power set */
510		switch(pCtlMode[ctlMode]) {
511		case CTL_11B:
512			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
513				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
514			}
515			break;
516		case CTL_11A:
517		case CTL_11G:
518			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
519				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
520			}
521			break;
522		case CTL_5GHT20:
523		case CTL_2GHT20:
524			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
525				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
526			}
527			break;
528		case CTL_11B_EXT:
529			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
530			break;
531		case CTL_11G_EXT:
532			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
533			break;
534		case CTL_5GHT40:
535		case CTL_2GHT40:
536			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
537				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
538			}
539			break;
540		default:
541			return AH_FALSE;
542			break;
543		}
544	} /* end ctl mode checking */
545
546        /* Set rates Array from collected data */
547	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
548	    &targetPowerCck,
549	    &targetPowerCckExt,
550	    &targetPowerOfdm,
551	    &targetPowerOfdmExt,
552	    &targetPowerHt20,
553	    &targetPowerHt40);
554
555	return AH_TRUE;
556#undef EXT_ADDITIVE
557#undef CTL_11G_EXT
558#undef CTL_11B_EXT
559#undef SUB_NUM_CTL_MODES_AT_2G_40
560#undef N
561}
562
563static HAL_BOOL
564ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
565	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
566{
567    CAL_DATA_PER_FREQ_4K *pRawDataset;
568    uint8_t  *pCalBChans = AH_NULL;
569    uint16_t pdGainOverlap_t2;
570    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
571    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
572    uint16_t numPiers, i;
573    int16_t  tMinCalPower;
574    uint16_t numXpdGain, xpdMask;
575    uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
576    uint32_t regChainOffset;
577
578    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
579
580    xpdMask = pEepData->modalHeader.xpdGain;
581
582    if (IS_EEP_MINOR_V2(ah)) {
583        pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
584    } else {
585    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
586    }
587
588    pCalBChans = pEepData->calFreqPier2G;
589    numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
590    numXpdGain = 0;
591
592    /* Calculate the value of xpdgains from the xpdGain Mask */
593    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
594        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
595            if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
596                HALASSERT(0);
597                break;
598            }
599            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
600            numXpdGain++;
601        }
602    }
603
604    /* Write the detector gain biases and their number */
605    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
606
607    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
608	regChainOffset = ar5416GetRegChainOffset(ah, i);
609        if (pEepData->baseEepHeader.txMask & (1 << i)) {
610            pRawDataset = pEepData->calPierData2G[i];
611
612            ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
613                                             pCalBChans, numPiers,
614                                             pdGainOverlap_t2,
615                                             &tMinCalPower, gainBoundaries,
616                                             pdadcValues, numXpdGain);
617
618            if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
619                /*
620                 * Note the pdadc table may not start at 0 dBm power, could be
621                 * negative or greater than 0.  Need to offset the power
622                 * values by the amount of minPower for griffin
623                 */
624		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
625            }
626
627            /* Write the power values into the baseband power table */
628	    ar5416WritePdadcValues(ah, i, pdadcValues);
629        }
630    }
631    *pTxPowerIndexOffset = 0;
632
633    return AH_TRUE;
634}
635
636static void
637ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
638                                 const struct ieee80211_channel *chan,
639				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
640                                 uint8_t * bChans,  uint16_t availPiers,
641                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
642                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
643{
644
645    int       i, j, k;
646    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
647    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
648
649    /* filled out Vpd table for all pdGains (chanL) */
650    static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
651
652    /* filled out Vpd table for all pdGains (chanR) */
653    static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
654
655    /* filled out Vpd table for all pdGains (interpolated) */
656    static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
657
658    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
659    uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
660    uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
661    int16_t   vpdStep;
662    int16_t   tmpVal;
663    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
664    HAL_BOOL    match;
665    int16_t  minDelta = 0;
666    CHAN_CENTERS centers;
667
668    ar5416GetChannelCenters(ah, chan, &centers);
669
670    /* Trim numPiers for the number of populated channel Piers */
671    for (numPiers = 0; numPiers < availPiers; numPiers++) {
672        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
673            break;
674        }
675    }
676
677    /* Find pier indexes around the current channel */
678    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
679      IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
680
681    if (match) {
682        /* Directly fill both vpd tables from the matching index */
683        for (i = 0; i < numXpdGains; i++) {
684            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
685            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
686            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
687			       pRawDataSet[idxL].pwrPdg[i],
688                               pRawDataSet[idxL].vpdPdg[i],
689			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
690        }
691    } else {
692        for (i = 0; i < numXpdGains; i++) {
693            pVpdL = pRawDataSet[idxL].vpdPdg[i];
694            pPwrL = pRawDataSet[idxL].pwrPdg[i];
695            pVpdR = pRawDataSet[idxR].vpdPdg[i];
696            pPwrR = pRawDataSet[idxR].pwrPdg[i];
697
698            /* Start Vpd interpolation from the max of the minimum powers */
699            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
700
701            /* End Vpd interpolation from the min of the max powers */
702            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
703            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
704
705            /* Fill pier Vpds */
706            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
707			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
708            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
709			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
710
711            /* Interpolate the final vpd */
712            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
713                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
714                    IEEE80211_IS_CHAN_2GHZ(chan)),
715                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
716            }
717        }
718    }
719    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
720
721    k = 0; /* index for the final table */
722    for (i = 0; i < numXpdGains; i++) {
723        if (i == (numXpdGains - 1)) {
724            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
725        } else {
726            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
727        }
728
729        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
730
731	/* NB: only applies to owl 1.0 */
732        if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
733	    /*
734             * fix the gain delta, but get a delta that can be applied to min to
735             * keep the upper power values accurate, don't think max needs to
736             * be adjusted because should not be at that area of the table?
737	     */
738            minDelta = pPdGainBoundaries[0] - 23;
739            pPdGainBoundaries[0] = 23;
740        }
741        else {
742            minDelta = 0;
743        }
744
745        /* Find starting index for this pdGain */
746        if (i == 0) {
747            if (AR_SREV_MERLIN_20_OR_LATER(ah))
748                ss = (int16_t)(0 - (minPwrT4[i] / 2));
749            else
750                ss = 0; /* for the first pdGain, start from index 0 */
751        } else {
752	    /* need overlap entries extrapolated below. */
753            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
754        }
755        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
756        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
757        /*
758         *-ve ss indicates need to extrapolate data below for this pdGain
759         */
760        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
761            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
762            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
763            ss++;
764        }
765
766        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
767        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
768        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
769
770        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
771            pPDADCValues[k++] = vpdTableI[i][ss++];
772        }
773
774        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
775        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
776        /*
777         * for last gain, pdGainBoundary == Pmax_t2, so will
778         * have to extrapolate
779         */
780        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
781            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
782                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
783                          (ss - maxIndex +1) * vpdStep));
784                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
785                ss++;
786            }
787        }               /* extrapolated above */
788    }                   /* for all pdGainUsed */
789
790    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
791    while (i < AR5416_PD_GAINS_IN_MASK) {
792        pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
793        i++;
794    }
795
796    while (k < AR5416_NUM_PDADC_VALUES) {
797        pPDADCValues[k] = pPDADCValues[k-1];
798        k++;
799    }
800    return;
801}
802