1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ah_eeprom_v3.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#define AH_5212_5413
31#include "ar5212/ar5212.ini"
32
33#define	N(a)	(sizeof(a)/sizeof(a[0]))
34
35struct ar5413State {
36	RF_HAL_FUNCS	base;		/* public state, must be first */
37	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38
39	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
40	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
41	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
42	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
43	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
44
45	/*
46	 * Private state for reduced stack usage.
47	 */
48	/* filled out Vpd table for all pdGains (chanL) */
49	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50			    [MAX_PWR_RANGE_IN_HALF_DB];
51	/* filled out Vpd table for all pdGains (chanR) */
52	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53			    [MAX_PWR_RANGE_IN_HALF_DB];
54	/* filled out Vpd table for all pdGains (interpolated) */
55	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56			    [MAX_PWR_RANGE_IN_HALF_DB];
57};
58#define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
59
60extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61		uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63static void
64ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65	int writes)
66{
67	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70}
71
72/*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77static HAL_BOOL
78ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79{
80	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81	uint32_t channelSel  = 0;
82	uint32_t bModeSynth  = 0;
83	uint32_t aModeRefSel = 0;
84	uint32_t reg32       = 0;
85
86	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88	if (freq < 4800) {
89		uint32_t txctl;
90
91		if (((freq - 2192) % 5) == 0) {
92			channelSel = ((freq - 672) * 2 - 3040)/10;
93			bModeSynth = 0;
94		} else if (((freq - 2224) % 5) == 0) {
95			channelSel = ((freq - 704) * 2 - 3040) / 10;
96			bModeSynth = 1;
97		} else {
98			HALDEBUG(ah, HAL_DEBUG_ANY,
99			    "%s: invalid channel %u MHz\n",
100			    __func__, freq);
101			return AH_FALSE;
102		}
103
104		channelSel = (channelSel << 2) & 0xff;
105		channelSel = ath_hal_reverseBits(channelSel, 8);
106
107		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108		if (freq == 2484) {
109			/* Enable channel spreading for channel 14 */
110			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112		} else {
113			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115		}
116	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117		freq = freq - 2; /* Align to even 5MHz raster */
118		channelSel = ath_hal_reverseBits(
119			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120            	aModeRefSel = ath_hal_reverseBits(0, 2);
121	} else if ((freq % 20) == 0 && freq >= 5120) {
122		channelSel = ath_hal_reverseBits(
123			((freq - 4800) / 20 << 2), 8);
124		aModeRefSel = ath_hal_reverseBits(1, 2);
125	} else if ((freq % 10) == 0) {
126		channelSel = ath_hal_reverseBits(
127			((freq - 4800) / 10 << 1), 8);
128		aModeRefSel = ath_hal_reverseBits(1, 2);
129	} else if ((freq % 5) == 0) {
130		channelSel = ath_hal_reverseBits(
131			(freq - 4800) / 5, 8);
132		aModeRefSel = ath_hal_reverseBits(1, 2);
133	} else {
134		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135		    __func__, freq);
136		return AH_FALSE;
137	}
138
139	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140			(1 << 12) | 0x1;
141	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143	reg32 >>= 8;
144	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146	AH_PRIVATE(ah)->ah_curchan = chan;
147	return AH_TRUE;
148}
149
150/*
151 * Reads EEPROM header info from device structure and programs
152 * all rf registers
153 *
154 * REQUIRES: Access to the analog rf device
155 */
156static HAL_BOOL
157ar5413SetRfRegs(struct ath_hal *ah,
158	const struct ieee80211_channel *chan,
159	uint16_t modesIndex, uint16_t *rfXpdGain)
160{
161#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
162	int i;								    \
163	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
164		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165} while (0)
166	struct ath_hal_5212 *ahp = AH5212(ah);
167	uint16_t freq = ath_hal_gethwchannel(ah, chan);
168	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169	uint16_t ob5GHz = 0, db5GHz = 0;
170	uint16_t ob2GHz = 0, db2GHz = 0;
171	struct ar5413State *priv = AR5413(ah);
172	int regWrites = 0;
173
174	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176
177	HALASSERT(priv != AH_NULL);
178
179	/* Setup rf parameters */
180	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181	case IEEE80211_CHAN_A:
182		if (freq > 4000 && freq < 5260) {
183			ob5GHz = ee->ee_ob1;
184			db5GHz = ee->ee_db1;
185		} else if (freq >= 5260 && freq < 5500) {
186			ob5GHz = ee->ee_ob2;
187			db5GHz = ee->ee_db2;
188		} else if (freq >= 5500 && freq < 5725) {
189			ob5GHz = ee->ee_ob3;
190			db5GHz = ee->ee_db3;
191		} else if (freq >= 5725) {
192			ob5GHz = ee->ee_ob4;
193			db5GHz = ee->ee_db4;
194		} else {
195			/* XXX else */
196		}
197		break;
198	case IEEE80211_CHAN_B:
199		ob2GHz = ee->ee_obFor24;
200		db2GHz = ee->ee_dbFor24;
201		break;
202	case IEEE80211_CHAN_G:
203	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
204		ob2GHz = ee->ee_obFor24g;
205		db2GHz = ee->ee_dbFor24g;
206		break;
207	default:
208		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209		    __func__, chan->ic_flags);
210		return AH_FALSE;
211	}
212
213	/* Bank 1 Write */
214	RF_BANK_SETUP(priv, 1, 1);
215
216	/* Bank 2 Write */
217	RF_BANK_SETUP(priv, 2, modesIndex);
218
219	/* Bank 3 Write */
220	RF_BANK_SETUP(priv, 3, modesIndex);
221
222	/* Bank 6 Write */
223	RF_BANK_SETUP(priv, 6, modesIndex);
224
225    	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227        	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228        	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229
230			/* TODO - only for Eagle 1.0 2GHz - remove for production */
231			/* XXX: but without this bit G doesn't work. */
232			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233
234			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235			if (AH_PRIVATE(ah)->ah_ispcie) {
236				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237						 3, 131, 3);
238			}
239	} else {
240        	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241        	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242
243	}
244
245	/* Bank 7 Setup */
246	RF_BANK_SETUP(priv, 7, modesIndex);
247
248	/* Write Analog registers */
249	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
250	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
251	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
252	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
253	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
254
255	/* Now that we have reprogrammed rfgain value, clear the flag. */
256	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
257
258	return AH_TRUE;
259#undef	RF_BANK_SETUP
260}
261
262/*
263 * Return a reference to the requested RF Bank.
264 */
265static uint32_t *
266ar5413GetRfBank(struct ath_hal *ah, int bank)
267{
268	struct ar5413State *priv = AR5413(ah);
269
270	HALASSERT(priv != AH_NULL);
271	switch (bank) {
272	case 1: return priv->Bank1Data;
273	case 2: return priv->Bank2Data;
274	case 3: return priv->Bank3Data;
275	case 6: return priv->Bank6Data;
276	case 7: return priv->Bank7Data;
277	}
278	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
279	    __func__, bank);
280	return AH_NULL;
281}
282
283/*
284 * Return indices surrounding the value in sorted integer lists.
285 *
286 * NB: the input list is assumed to be sorted in ascending order
287 */
288static void
289GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
290                          uint32_t *vlo, uint32_t *vhi)
291{
292	int16_t target = v;
293	const uint16_t *ep = lp+listSize;
294	const uint16_t *tp;
295
296	/*
297	 * Check first and last elements for out-of-bounds conditions.
298	 */
299	if (target < lp[0]) {
300		*vlo = *vhi = 0;
301		return;
302	}
303	if (target >= ep[-1]) {
304		*vlo = *vhi = listSize - 1;
305		return;
306	}
307
308	/* look for value being near or between 2 values in list */
309	for (tp = lp; tp < ep; tp++) {
310		/*
311		 * If value is close to the current value of the list
312		 * then target is not between values, it is one of the values
313		 */
314		if (*tp == target) {
315			*vlo = *vhi = tp - (const uint16_t *) lp;
316			return;
317		}
318		/*
319		 * Look for value being between current value and next value
320		 * if so return these 2 values
321		 */
322		if (target < tp[1]) {
323			*vlo = tp - (const uint16_t *) lp;
324			*vhi = *vlo + 1;
325			return;
326		}
327	}
328}
329
330/*
331 * Fill the Vpdlist for indices Pmax-Pmin
332 */
333static HAL_BOOL
334ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
335		   const int16_t *pwrList, const uint16_t *VpdList,
336		   uint16_t numIntercepts,
337		   uint16_t retVpdList[][64])
338{
339	uint16_t ii, jj, kk;
340	int16_t currPwr = (int16_t)(2*Pmin);
341	/* since Pmin is pwr*2 and pwrList is 4*pwr */
342	uint32_t  idxL, idxR;
343
344	ii = 0;
345	jj = 0;
346
347	if (numIntercepts < 2)
348		return AH_FALSE;
349
350	while (ii <= (uint16_t)(Pmax - Pmin)) {
351		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
352				   numIntercepts, &(idxL), &(idxR));
353		if (idxR < 1)
354			idxR = 1;			/* extrapolate below */
355		if (idxL == (uint32_t)(numIntercepts - 1))
356			idxL = numIntercepts - 2;	/* extrapolate above */
357		if (pwrList[idxL] == pwrList[idxR])
358			kk = VpdList[idxL];
359		else
360			kk = (uint16_t)
361				(((currPwr - pwrList[idxL])*VpdList[idxR]+
362				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
363				 (pwrList[idxR] - pwrList[idxL]));
364		retVpdList[pdGainIdx][ii] = kk;
365		ii++;
366		currPwr += 2;				/* half dB steps */
367	}
368
369	return AH_TRUE;
370}
371
372/*
373 * Returns interpolated or the scaled up interpolated value
374 */
375static int16_t
376interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
377	int16_t targetLeft, int16_t targetRight)
378{
379	int16_t rv;
380
381	if (srcRight != srcLeft) {
382		rv = ((target - srcLeft)*targetRight +
383		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
384	} else {
385		rv = targetLeft;
386	}
387	return rv;
388}
389
390/*
391 * Uses the data points read from EEPROM to reconstruct the pdadc power table
392 * Called by ar5413SetPowerTable()
393 */
394static int
395ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
396		const RAW_DATA_STRUCT_2413 *pRawDataset,
397		uint16_t pdGainOverlap_t2,
398		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
399		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
400{
401	struct ar5413State *priv = AR5413(ah);
402#define	VpdTable_L	priv->vpdTable_L
403#define	VpdTable_R	priv->vpdTable_R
404#define	VpdTable_I	priv->vpdTable_I
405	uint32_t ii, jj, kk;
406	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
407	uint32_t idxL, idxR;
408	uint32_t numPdGainsUsed = 0;
409	/*
410	 * If desired to support -ve power levels in future, just
411	 * change pwr_I_0 to signed 5-bits.
412	 */
413	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
414	/* to accommodate -ve power levels later on. */
415	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
416	/* to accommodate -ve power levels later on */
417	uint16_t numVpd = 0;
418	uint16_t Vpd_step;
419	int16_t tmpVal ;
420	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
421
422	/* Get upper lower index */
423	GetLowerUpperIndex(channel, pRawDataset->pChannels,
424				 pRawDataset->numChannels, &(idxL), &(idxR));
425
426	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
427		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
428		/* work backwards 'cause highest pdGain for lowest power */
429		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
430		if (numVpd > 0) {
431			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
432			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
433			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
434				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
435			}
436			Pmin_t2[numPdGainsUsed] = (int16_t)
437				(Pmin_t2[numPdGainsUsed] / 2);
438			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
439			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
440				Pmax_t2[numPdGainsUsed] =
441					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
442			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
443			ar5413FillVpdTable(
444					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
445					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
446					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
447					   );
448			ar5413FillVpdTable(
449					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
450					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
451					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
452					   );
453			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
454				VpdTable_I[numPdGainsUsed][kk] =
455					interpolate_signed(
456							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
457							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
458			}
459			/* fill VpdTable_I for this pdGain */
460			numPdGainsUsed++;
461		}
462		/* if this pdGain is used */
463	}
464
465	*pMinCalPower = Pmin_t2[0];
466	kk = 0; /* index for the final table */
467	for (ii = 0; ii < numPdGainsUsed; ii++) {
468		if (ii == (numPdGainsUsed - 1))
469			pPdGainBoundaries[ii] = Pmax_t2[ii] +
470				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
471		else
472			pPdGainBoundaries[ii] = (uint16_t)
473				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
474		if (pPdGainBoundaries[ii] > 63) {
475			HALDEBUG(ah, HAL_DEBUG_ANY,
476			    "%s: clamp pPdGainBoundaries[%d] %d\n",
477			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
478			pPdGainBoundaries[ii] = 63;
479		}
480
481		/* Find starting index for this pdGain */
482		if (ii == 0)
483			ss = 0; /* for the first pdGain, start from index 0 */
484		else
485			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
486				pdGainOverlap_t2;
487		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
488		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
489		/*
490		 *-ve ss indicates need to extrapolate data below for this pdGain
491		 */
492		while (ss < 0) {
493			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
494			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
495			ss++;
496		}
497
498		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
499		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
500		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
501
502		while (ss < (int16_t)maxIndex)
503			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
504
505		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
506				       VpdTable_I[ii][sizeCurrVpdTable-2]);
507		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
508		/*
509		 * for last gain, pdGainBoundary == Pmax_t2, so will
510		 * have to extrapolate
511		 */
512		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
513			while(ss < (int16_t)tgtIndex) {
514				tmpVal = (uint16_t)
515					(VpdTable_I[ii][sizeCurrVpdTable-1] +
516					 (ss-maxIndex)*Vpd_step);
517				pPDADCValues[kk++] = (tmpVal > 127) ?
518					127 : tmpVal;
519				ss++;
520			}
521		}				/* extrapolated above */
522	}					/* for all pdGainUsed */
523
524	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
525		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
526		ii++;
527	}
528	while (kk < 128) {
529		pPDADCValues[kk] = pPDADCValues[kk-1];
530		kk++;
531	}
532
533	return numPdGainsUsed;
534#undef VpdTable_L
535#undef VpdTable_R
536#undef VpdTable_I
537}
538
539static HAL_BOOL
540ar5413SetPowerTable(struct ath_hal *ah,
541	int16_t *minPower, int16_t *maxPower,
542	const struct ieee80211_channel *chan,
543	uint16_t *rfXpdGain)
544{
545	struct ath_hal_5212 *ahp = AH5212(ah);
546	uint16_t freq = ath_hal_gethwchannel(ah, chan);
547	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
548	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
549	uint16_t pdGainOverlap_t2;
550	int16_t minCalPower5413_t2;
551	uint16_t *pdadcValues = ahp->ah_pcdacTable;
552	uint16_t gainBoundaries[4];
553	uint32_t reg32, regoffset;
554	int i, numPdGainsUsed;
555#ifndef AH_USE_INIPDGAIN
556	uint32_t tpcrg1;
557#endif
558
559	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
560	    __func__, chan->ic_freq, chan->ic_flags);
561
562	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
563		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
564	else if (IEEE80211_IS_CHAN_B(chan))
565		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
566	else {
567		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
568		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
569	}
570
571	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
572					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
573
574	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
575		freq, pRawDataset, pdGainOverlap_t2,
576		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
577	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
578
579#ifdef AH_USE_INIPDGAIN
580	/*
581	 * Use pd_gains curve from eeprom; Atheros always uses
582	 * the default curve from the ini file but some vendors
583	 * (e.g. Zcomax) want to override this curve and not
584	 * honoring their settings results in tx power 5dBm low.
585	 */
586	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
587			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
588#else
589	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
590	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
591		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
592	switch (numPdGainsUsed) {
593	case 3:
594		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
595		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
596		/* fall thru... */
597	case 2:
598		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
599		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
600		/* fall thru... */
601	case 1:
602		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
603		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
604		break;
605	}
606#ifdef AH_DEBUG
607	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
608		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
609		    "pd_gains (default 0x%x, calculated 0x%x)\n",
610		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
611#endif
612	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
613#endif
614
615	/*
616	 * Note the pdadc table may not start at 0 dBm power, could be
617	 * negative or greater than 0.  Need to offset the power
618	 * values by the amount of minPower for griffin
619	 */
620	if (minCalPower5413_t2 != 0)
621		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
622	else
623		ahp->ah_txPowerIndexOffset = 0;
624
625	/* Finally, write the power values into the baseband power table */
626	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
627	for (i = 0; i < 32; i++) {
628		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
629			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
630			((pdadcValues[4*i + 2] & 0xFF) << 16) |
631			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
632		OS_REG_WRITE(ah, regoffset, reg32);
633		regoffset += 4;
634	}
635
636	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
637		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
638		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
639		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
640		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
641		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
642
643	return AH_TRUE;
644}
645
646static int16_t
647ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
648{
649	uint32_t ii,jj;
650	uint16_t Pmin=0,numVpd;
651
652	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
653		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
654		/* work backwards 'cause highest pdGain for lowest power */
655		numVpd = data->pDataPerPDGain[jj].numVpd;
656		if (numVpd > 0) {
657			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
658			return(Pmin);
659		}
660	}
661	return(Pmin);
662}
663
664static int16_t
665ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
666{
667	uint32_t ii;
668	uint16_t Pmax=0,numVpd;
669
670	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
671		/* work forwards cuase lowest pdGain for highest power */
672		numVpd = data->pDataPerPDGain[ii].numVpd;
673		if (numVpd > 0) {
674			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
675			return(Pmax);
676		}
677	}
678	return(Pmax);
679}
680
681static HAL_BOOL
682ar5413GetChannelMaxMinPower(struct ath_hal *ah,
683	const struct ieee80211_channel *chan,
684	int16_t *maxPow, int16_t *minPow)
685{
686	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
687	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
688	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
689	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
690	uint16_t numChannels;
691	int totalD,totalF, totalMin,last, i;
692
693	*maxPow = 0;
694
695	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
696		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
697	else if (IEEE80211_IS_CHAN_B(chan))
698		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
699	else {
700		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
701		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
702	}
703
704	numChannels = pRawDataset->numChannels;
705	data = pRawDataset->pDataPerChannel;
706
707	/* Make sure the channel is in the range of the TP values
708	 *  (freq piers)
709	 */
710	if (numChannels < 1)
711		return(AH_FALSE);
712
713	if ((freq < data[0].channelValue) ||
714	    (freq > data[numChannels-1].channelValue)) {
715		if (freq < data[0].channelValue) {
716			*maxPow = ar5413GetMaxPower(ah, &data[0]);
717			*minPow = ar5413GetMinPower(ah, &data[0]);
718			return(AH_TRUE);
719		} else {
720			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
721			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
722			return(AH_TRUE);
723		}
724	}
725
726	/* Linearly interpolate the power value now */
727	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
728	     last = i++);
729	totalD = data[i].channelValue - data[last].channelValue;
730	if (totalD > 0) {
731		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
732		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
733				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
734		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
735		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
736				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
737		return(AH_TRUE);
738	} else {
739		if (freq == data[i].channelValue) {
740			*maxPow = ar5413GetMaxPower(ah, &data[i]);
741			*minPow = ar5413GetMinPower(ah, &data[i]);
742			return(AH_TRUE);
743		} else
744			return(AH_FALSE);
745	}
746}
747
748/*
749 * Free memory for analog bank scratch buffers
750 */
751static void
752ar5413RfDetach(struct ath_hal *ah)
753{
754	struct ath_hal_5212 *ahp = AH5212(ah);
755
756	HALASSERT(ahp->ah_rfHal != AH_NULL);
757	ath_hal_free(ahp->ah_rfHal);
758	ahp->ah_rfHal = AH_NULL;
759}
760
761/*
762 * Allocate memory for analog bank scratch buffers
763 * Scratch Buffer will be reinitialized every reset so no need to zero now
764 */
765static HAL_BOOL
766ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
767{
768	struct ath_hal_5212 *ahp = AH5212(ah);
769	struct ar5413State *priv;
770
771	HALASSERT(ah->ah_magic == AR5212_MAGIC);
772
773	HALASSERT(ahp->ah_rfHal == AH_NULL);
774	priv = ath_hal_malloc(sizeof(struct ar5413State));
775	if (priv == AH_NULL) {
776		HALDEBUG(ah, HAL_DEBUG_ANY,
777		    "%s: cannot allocate private state\n", __func__);
778		*status = HAL_ENOMEM;		/* XXX */
779		return AH_FALSE;
780	}
781	priv->base.rfDetach		= ar5413RfDetach;
782	priv->base.writeRegs		= ar5413WriteRegs;
783	priv->base.getRfBank		= ar5413GetRfBank;
784	priv->base.setChannel		= ar5413SetChannel;
785	priv->base.setRfRegs		= ar5413SetRfRegs;
786	priv->base.setPowerTable	= ar5413SetPowerTable;
787	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
788	priv->base.getNfAdjust		= ar5212GetNfAdjust;
789
790	ahp->ah_pcdacTable = priv->pcdacTable;
791	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
792	ahp->ah_rfHal = &priv->base;
793
794	return AH_TRUE;
795}
796
797static HAL_BOOL
798ar5413Probe(struct ath_hal *ah)
799{
800	return IS_5413(ah);
801}
802AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
803