ar5210_misc.c revision 185521
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5210_misc.c,v 1.6 2008/11/27 22:29:37 sam Exp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30#define	AR_NUM_GPIO	6		/* 6 GPIO bits */
31#define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
32
33void
34ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35{
36	struct ath_hal_5210 *ahp = AH5210(ah);
37
38	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39}
40
41HAL_BOOL
42ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43{
44	struct ath_hal_5210 *ahp = AH5210(ah);
45
46	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47	return AH_TRUE;
48}
49
50void
51ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52{
53	static const uint8_t ones[IEEE80211_ADDR_LEN] =
54		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56}
57
58HAL_BOOL
59ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60{
61	return AH_FALSE;
62}
63
64/*
65 * Read 16 bits of data from the specified EEPROM offset.
66 */
67HAL_BOOL
68ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69{
70	(void) OS_REG_READ(ah, AR_EP_AIR(off));	/* activate read op */
71	if (!ath_hal_wait(ah, AR_EP_STA,
72	    AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74		    __func__, AR_EP_AIR(off));
75		return AH_FALSE;
76	}
77	*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78	return AH_TRUE;
79}
80
81#ifdef AH_SUPPORT_WRITE_EEPROM
82/*
83 * Write 16 bits of data to the specified EEPROM offset.
84 */
85HAL_BOOL
86ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87{
88	return AH_FALSE;
89}
90#endif /* AH_SUPPORT_WRITE_EEPROM */
91
92/*
93 * Attempt to change the cards operating regulatory domain to the given value
94 */
95HAL_BOOL
96ar5210SetRegulatoryDomain(struct ath_hal *ah,
97	uint16_t regDomain, HAL_STATUS *status)
98{
99	HAL_STATUS ecode;
100
101	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102		ecode = HAL_EINVAL;
103		goto bad;
104	}
105	/*
106	 * Check if EEPROM is configured to allow this; must
107	 * be a proper version and the protection bits must
108	 * permit re-writing that segment of the EEPROM.
109	 */
110	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111		ecode = HAL_EEWRITE;
112		goto bad;
113	}
114	ecode = HAL_EIO;		/* disallow all writes */
115bad:
116	if (status)
117		*status = ecode;
118	return AH_FALSE;
119}
120
121/*
122 * Return the wireless modes (a,b,g,t) supported by hardware.
123 *
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
126 *
127 */
128u_int
129ar5210GetWirelessModes(struct ath_hal *ah)
130{
131	/* XXX could enable turbo mode but can't do all rates */
132	return HAL_MODE_11A;
133}
134
135/*
136 * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
138 */
139void
140ar5210EnableRfKill(struct ath_hal *ah)
141{
142	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145
146	/*
147	 * If radio disable switch connection to GPIO bit 0 is enabled
148	 * program GPIO interrupt.
149	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150	 * verified that it is a later version of eeprom, it has a place for
151	 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152	 * connection is present.
153	 */
154	ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155}
156
157/*
158 * Configure GPIO Output lines
159 */
160HAL_BOOL
161ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio)
162{
163	HALASSERT(gpio < AR_NUM_GPIO);
164
165	OS_REG_WRITE(ah, AR_GPIOCR,
166		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167		| AR_GPIOCR_OUT1(gpio));
168
169	return AH_TRUE;
170}
171
172/*
173 * Configure GPIO Input lines
174 */
175HAL_BOOL
176ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177{
178	HALASSERT(gpio < AR_NUM_GPIO);
179
180	OS_REG_WRITE(ah, AR_GPIOCR,
181		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182		| AR_GPIOCR_IN(gpio));
183
184	return AH_TRUE;
185}
186
187/*
188 * Once configured for I/O - set output lines
189 */
190HAL_BOOL
191ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192{
193	uint32_t reg;
194
195	HALASSERT(gpio < AR_NUM_GPIO);
196
197	reg =  OS_REG_READ(ah, AR_GPIODO);
198	reg &= ~(1 << gpio);
199	reg |= (val&1) << gpio;
200
201	OS_REG_WRITE(ah, AR_GPIODO, reg);
202	return AH_TRUE;
203}
204
205/*
206 * Once configured for I/O - get input lines
207 */
208uint32_t
209ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210{
211	if (gpio < AR_NUM_GPIO) {
212		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214		return val;
215	} else  {
216		return 0xffffffff;
217	}
218}
219
220/*
221 * Set the GPIO 0 Interrupt
222 */
223void
224ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225{
226	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227
228	/* Clear the bits that we will modify. */
229	val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230			AR_GPIOCR_ALL(gpio));
231
232	val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233	if (ilevel)
234		val |= AR_GPIOCR_INT_SELH;
235
236	/* Don't need to change anything for low level interrupt. */
237	OS_REG_WRITE(ah, AR_GPIOCR, val);
238
239	/* Change the interrupt mask. */
240	ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241}
242
243/*
244 * Change the LED blinking pattern to correspond to the connectivity
245 */
246void
247ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248{
249	uint32_t val;
250
251	val = OS_REG_READ(ah, AR_PCICFG);
252	switch (state) {
253	case HAL_LED_INIT:
254		val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255		break;
256	case HAL_LED_RUN:
257		/* normal blink when connected */
258		val &= ~AR_PCICFG_LED_PEND;
259		val |= AR_PCICFG_LED_ACT;
260		break;
261	default:
262		val |= AR_PCICFG_LED_PEND;
263		val &= ~AR_PCICFG_LED_ACT;
264		break;
265	}
266	OS_REG_WRITE(ah, AR_PCICFG, val);
267}
268
269/*
270 * Return 1 or 2 for the corresponding antenna that is in use
271 */
272u_int
273ar5210GetDefAntenna(struct ath_hal *ah)
274{
275	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276	return (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1);
277}
278
279void
280ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281{
282	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283
284	if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1)) {
285		/*
286		 * Antenna change requested, force a toggle of the default.
287		 */
288		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289	}
290}
291
292HAL_ANT_SETTING
293ar5210GetAntennaSwitch(struct ath_hal *ah)
294{
295	return HAL_ANT_VARIABLE;
296}
297
298HAL_BOOL
299ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300{
301	/* XXX not sure how to fix antenna */
302	return (settings == HAL_ANT_VARIABLE);
303}
304
305/*
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
310 */
311void
312ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313{
314	struct ath_hal_5210 *ahp = AH5210(ah);
315
316	/* XXX save bssid for possible re-use on reset */
317	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
319	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
320				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
321	if (assocId == 0)
322		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
323	else
324		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
325}
326
327/*
328 * Get the current hardware tsf for stamlme.
329 */
330uint64_t
331ar5210GetTsf64(struct ath_hal *ah)
332{
333	uint32_t low1, low2, u32;
334
335	/* sync multi-word read */
336	low1 = OS_REG_READ(ah, AR_TSF_L32);
337	u32 = OS_REG_READ(ah, AR_TSF_U32);
338	low2 = OS_REG_READ(ah, AR_TSF_L32);
339	if (low2 < low1) {	/* roll over */
340		/*
341		 * If we are not preempted this will work.  If we are
342		 * then we re-reading AR_TSF_U32 does no good as the
343		 * low bits will be meaningless.  Likewise reading
344		 * L32, U32, U32, then comparing the last two reads
345		 * to check for rollover doesn't help if preempted--so
346		 * we take this approach as it costs one less PCI
347		 * read which can be noticeable when doing things
348		 * like timestamping packets in monitor mode.
349		 */
350		u32++;
351	}
352	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
353}
354
355/*
356 * Get the current hardware tsf for stamlme.
357 */
358uint32_t
359ar5210GetTsf32(struct ath_hal *ah)
360{
361	return OS_REG_READ(ah, AR_TSF_L32);
362}
363
364/*
365 * Reset the current hardware tsf for stamlme
366 */
367void
368ar5210ResetTsf(struct ath_hal *ah)
369{
370	uint32_t val = OS_REG_READ(ah, AR_BEACON);
371
372	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
373}
374
375/*
376 * Grab a semi-random value from hardware registers - may not
377 * change often
378 */
379uint32_t
380ar5210GetRandomSeed(struct ath_hal *ah)
381{
382	uint32_t nf;
383
384	nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
385	if (nf & 0x100)
386		nf = 0 - ((nf ^ 0x1ff) + 1);
387	return (OS_REG_READ(ah, AR_TSF_U32) ^
388		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
389}
390
391/*
392 * Detect if our card is present
393 */
394HAL_BOOL
395ar5210DetectCardPresent(struct ath_hal *ah)
396{
397	/*
398	 * Read the Silicon Revision register and compare that
399	 * to what we read at attach time.  If the same, we say
400	 * a card/device is present.
401	 */
402	return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
403}
404
405/*
406 * Update MIB Counters
407 */
408void
409ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
410{
411	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
412	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
413	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
414	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
415	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
416}
417
418HAL_BOOL
419ar5210SetSifsTime(struct ath_hal *ah, u_int us)
420{
421	struct ath_hal_5210 *ahp = AH5210(ah);
422
423	if (us > ath_hal_mac_usec(ah, 0x7ff)) {
424		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
425		    __func__, us);
426		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
427		return AH_FALSE;
428	} else {
429		/* convert to system clocks */
430		OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
431		    ath_hal_mac_clks(ah, us));
432		ahp->ah_sifstime = us;
433		return AH_TRUE;
434	}
435}
436
437u_int
438ar5210GetSifsTime(struct ath_hal *ah)
439{
440	u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
441	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
442}
443
444HAL_BOOL
445ar5210SetSlotTime(struct ath_hal *ah, u_int us)
446{
447	struct ath_hal_5210 *ahp = AH5210(ah);
448
449	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
450		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
451		    __func__, us);
452		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
453		return AH_FALSE;
454	} else {
455		/* convert to system clocks */
456		OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
457		ahp->ah_slottime = us;
458		return AH_TRUE;
459	}
460}
461
462u_int
463ar5210GetSlotTime(struct ath_hal *ah)
464{
465	u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
466	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
467}
468
469HAL_BOOL
470ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
471{
472	struct ath_hal_5210 *ahp = AH5210(ah);
473
474	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
475		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
476		    __func__, us);
477		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
478		return AH_FALSE;
479	} else {
480		/* convert to system clocks */
481		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
482			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
483		ahp->ah_acktimeout = us;
484		return AH_TRUE;
485	}
486}
487
488u_int
489ar5210GetAckTimeout(struct ath_hal *ah)
490{
491	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
492	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
493}
494
495u_int
496ar5210GetAckCTSRate(struct ath_hal *ah)
497{
498	return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
499}
500
501HAL_BOOL
502ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
503{
504	struct ath_hal_5210 *ahp = AH5210(ah);
505
506	if (high) {
507		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
508		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
509	} else {
510		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
512	}
513	return AH_TRUE;
514}
515
516HAL_BOOL
517ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
518{
519	struct ath_hal_5210 *ahp = AH5210(ah);
520
521	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
522		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
523		    __func__, us);
524		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
525		return AH_FALSE;
526	} else {
527		/* convert to system clocks */
528		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
529			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
530		ahp->ah_ctstimeout = us;
531		return AH_TRUE;
532	}
533}
534
535u_int
536ar5210GetCTSTimeout(struct ath_hal *ah)
537{
538	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
539	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
540}
541
542HAL_BOOL
543ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
544{
545	/* nothing to do */
546        return AH_TRUE;
547}
548
549void
550ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
551{
552}
553
554/*
555 * Control Adaptive Noise Immunity Parameters
556 */
557HAL_BOOL
558ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
559{
560	return AH_FALSE;
561}
562
563void
564ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
565{
566}
567
568void
569ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
570{
571}
572
573#define	AR_DIAG_SW_DIS_CRYPTO	(AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
574
575HAL_STATUS
576ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
577	uint32_t capability, uint32_t *result)
578{
579
580	switch (type) {
581	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
582		return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
583	default:
584		return ath_hal_getcapability(ah, type, capability, result);
585	}
586}
587
588HAL_BOOL
589ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
590	uint32_t capability, uint32_t setting, HAL_STATUS *status)
591{
592
593	switch (type) {
594	case HAL_CAP_DIAG:		/* hardware diagnostic support */
595		/*
596		 * NB: could split this up into virtual capabilities,
597		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
598		 *     seems worth the additional complexity.
599		 */
600#ifdef AH_DEBUG
601		AH_PRIVATE(ah)->ah_diagreg = setting;
602#else
603		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
604#endif
605		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
606		return AH_TRUE;
607	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
608		return AH_FALSE;	/* NB: disallow */
609	default:
610		return ath_hal_setcapability(ah, type, capability,
611			setting, status);
612	}
613}
614
615HAL_BOOL
616ar5210GetDiagState(struct ath_hal *ah, int request,
617	const void *args, uint32_t argsize,
618	void **result, uint32_t *resultsize)
619{
620#ifdef AH_PRIVATE_DIAG
621	uint32_t pcicfg;
622	HAL_BOOL ok;
623
624	switch (request) {
625	case HAL_DIAG_EEPROM:
626		/* XXX */
627		break;
628	case HAL_DIAG_EEREAD:
629		if (argsize != sizeof(uint16_t))
630			return AH_FALSE;
631		pcicfg = OS_REG_READ(ah, AR_PCICFG);
632		OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
633		ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
634		OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
635		if (ok)
636			*resultsize = sizeof(uint16_t);
637		return ok;
638	}
639#endif
640	return ath_hal_getdiagstate(ah, request,
641		args, argsize, result, resultsize);
642}
643