if_an.c revision 106937
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/an/if_an.c 106937 2002-11-14 23:54:55Z sam $
33 */
34
35/*
36 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
45 * This driver supports all three device types (PCI devices are supported
46 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
47 * supported either using hard-coded IO port/IRQ settings or via Plug
48 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
49 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
50 *
51 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
52 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
53 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
54 * a couple of important differences though:
55 *
56 * - Lucent ISA card looks to the host like a PCMCIA controller with
57 *   a PCMCIA WaveLAN card inserted. This means that even desktop
58 *   machines need to be configured with PCMCIA support in order to
59 *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
60 *   actually look like normal ISA and PCI devices to the host, so
61 *   no PCMCIA controller support is needed
62 *
63 * The latter point results in a small gotcha. The Aironet PCMCIA
64 * cards can be configured for one of two operating modes depending
65 * on how the Vpp1 and Vpp2 programming voltages are set when the
66 * card is activated. In order to put the card in proper PCMCIA
67 * operation (where the CIS table is visible and the interface is
68 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
69 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
70 * which leaves the card in ISA/PCI mode, which prevents it from
71 * being activated as an PCMCIA device.
72 *
73 * Note that some PCMCIA controller software packages for Windows NT
74 * fail to set the voltages as well.
75 *
76 * The Aironet devices can operate in both station mode and access point
77 * mode. Typically, when programmed for station mode, the card can be set
78 * to automatically perform encapsulation/decapsulation of Ethernet II
79 * and 802.3 frames within 802.11 frames so that the host doesn't have
80 * to do it itself. This driver doesn't program the card that way: the
81 * driver handles all of the encapsulation/decapsulation itself.
82 */
83
84#include "opt_inet.h"
85
86#ifdef INET
87#define ANCACHE			/* enable signal strength cache */
88#endif
89
90#include <sys/param.h>
91#include <sys/systm.h>
92#include <sys/sockio.h>
93#include <sys/mbuf.h>
94#include <sys/proc.h>
95#include <sys/kernel.h>
96#include <sys/socket.h>
97#ifdef ANCACHE
98#include <sys/syslog.h>
99#include <sys/sysctl.h>
100#endif
101
102#include <sys/module.h>
103#include <sys/sysctl.h>
104#include <sys/bus.h>
105#include <machine/bus.h>
106#include <sys/rman.h>
107#include <sys/lock.h>
108#include <sys/mutex.h>
109#include <machine/resource.h>
110
111#include <net/if.h>
112#include <net/if_arp.h>
113#include <net/ethernet.h>
114#include <net/if_dl.h>
115#include <net/if_types.h>
116#include <net/if_ieee80211.h>
117#include <net/if_media.h>
118
119#ifdef INET
120#include <netinet/in.h>
121#include <netinet/in_systm.h>
122#include <netinet/in_var.h>
123#include <netinet/ip.h>
124#endif
125
126#include <net/bpf.h>
127
128#include <machine/md_var.h>
129
130#include <dev/an/if_aironet_ieee.h>
131#include <dev/an/if_anreg.h>
132
133#if !defined(lint)
134static const char rcsid[] =
135  "$FreeBSD: head/sys/dev/an/if_an.c 106937 2002-11-14 23:54:55Z sam $";
136#endif
137
138/* These are global because we need them in sys/pci/if_an_p.c. */
139static void an_reset		(struct an_softc *);
140static int an_ioctl		(struct ifnet *, u_long, caddr_t);
141static void an_init		(void *);
142static int an_init_tx_ring	(struct an_softc *);
143static void an_start		(struct ifnet *);
144static void an_watchdog		(struct ifnet *);
145static void an_rxeof		(struct an_softc *);
146static void an_txeof		(struct an_softc *, int);
147
148static void an_promisc		(struct an_softc *, int);
149static int an_cmd		(struct an_softc *, int, int);
150static int an_read_record	(struct an_softc *, struct an_ltv_gen *);
151static int an_write_record	(struct an_softc *, struct an_ltv_gen *);
152static int an_read_data		(struct an_softc *, int, int, caddr_t, int);
153static int an_write_data	(struct an_softc *, int, int, caddr_t, int);
154static int an_seek		(struct an_softc *, int, int, int);
155static int an_alloc_nicmem	(struct an_softc *, int, int *);
156static void an_stats_update	(void *);
157static void an_setdef		(struct an_softc *, struct an_req *);
158#ifdef ANCACHE
159static void an_cache_store	(struct an_softc *, struct ether_header *,
160					struct mbuf *, unsigned short);
161#endif
162
163/* function definitions for use with the Cisco's Linux configuration
164   utilities
165*/
166
167static int readrids(struct ifnet*, struct aironet_ioctl*);
168static int writerids(struct ifnet*, struct aironet_ioctl*);
169static int flashcard(struct ifnet*, struct aironet_ioctl*);
170
171static int cmdreset(struct ifnet *);
172static int setflashmode(struct ifnet *);
173static int flashgchar(struct ifnet *,int,int);
174static int flashpchar(struct ifnet *,int,int);
175static int flashputbuf(struct ifnet *);
176static int flashrestart(struct ifnet *);
177static int WaitBusy(struct ifnet *, int);
178static int unstickbusy(struct ifnet *);
179
180static void an_dump_record	(struct an_softc *,struct an_ltv_gen *,
181				    char *);
182
183static int an_media_change	(struct ifnet *);
184static void an_media_status	(struct ifnet *, struct ifmediareq *);
185
186static int	an_dump = 0;
187
188static char an_conf[256];
189
190/* sysctl vars */
191SYSCTL_NODE(_machdep, OID_AUTO, an, CTLFLAG_RD, 0, "dump RID");
192
193/* XXX violate ethernet/netgraph callback hooks */
194extern	void	(*ng_ether_attach_p)(struct ifnet *ifp);
195extern	void	(*ng_ether_detach_p)(struct ifnet *ifp);
196
197static int
198sysctl_an_dump(SYSCTL_HANDLER_ARGS)
199{
200	int	error, r, last;
201	char 	*s = an_conf;
202
203	last = an_dump;
204	bzero(an_conf, sizeof(an_conf));
205
206	switch (an_dump) {
207	case 0:
208		strcat(an_conf, "off");
209		break;
210	case 1:
211		strcat(an_conf, "type");
212		break;
213	case 2:
214		strcat(an_conf, "dump");
215		break;
216	default:
217		snprintf(an_conf, 5, "%x", an_dump);
218		break;
219	}
220
221	error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
222
223	if (strncmp(an_conf,"off", 4) == 0) {
224		an_dump = 0;
225 	}
226	if (strncmp(an_conf,"dump", 4) == 0) {
227		an_dump = 1;
228	}
229	if (strncmp(an_conf,"type", 4) == 0) {
230		an_dump = 2;
231	}
232	if (*s == 'f') {
233		r = 0;
234		for (;;s++) {
235			if ((*s >= '0') && (*s <= '9')) {
236				r = r * 16 + (*s - '0');
237			} else if ((*s >= 'a') && (*s <= 'f')) {
238				r = r * 16 + (*s - 'a' + 10);
239			} else {
240				break;
241			}
242		}
243		an_dump = r;
244	}
245	if (an_dump != last)
246		printf("Sysctl changed for Aironet driver\n");
247
248	return error;
249}
250
251SYSCTL_PROC(_machdep, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
252            0, sizeof(an_conf), sysctl_an_dump, "A", "");
253
254/*
255 * We probe for an Aironet 4500/4800 card by attempting to
256 * read the default SSID list. On reset, the first entry in
257 * the SSID list will contain the name "tsunami." If we don't
258 * find this, then there's no card present.
259 */
260int
261an_probe(dev)
262	device_t		dev;
263{
264        struct an_softc *sc = device_get_softc(dev);
265	struct an_ltv_ssidlist	ssid;
266	int	error;
267
268	bzero((char *)&ssid, sizeof(ssid));
269
270	error = an_alloc_port(dev, 0, AN_IOSIZ);
271	if (error != 0)
272		return (0);
273
274	/* can't do autoprobing */
275	if (rman_get_start(sc->port_res) == -1)
276		return(0);
277
278	/*
279	 * We need to fake up a softc structure long enough
280	 * to be able to issue commands and call some of the
281	 * other routines.
282	 */
283	sc->an_bhandle = rman_get_bushandle(sc->port_res);
284	sc->an_btag = rman_get_bustag(sc->port_res);
285	sc->an_unit = device_get_unit(dev);
286
287	ssid.an_len = sizeof(ssid);
288	ssid.an_type = AN_RID_SSIDLIST;
289
290        /* Make sure interrupts are disabled. */
291        CSR_WRITE_2(sc, AN_INT_EN, 0);
292        CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF);
293
294	an_reset(sc);
295
296	if (an_cmd(sc, AN_CMD_READCFG, 0))
297		return(0);
298
299	if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
300		return(0);
301
302	/* See if the ssid matches what we expect ... but doesn't have to */
303	if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
304		return(0);
305
306	return(AN_IOSIZ);
307}
308
309/*
310 * Allocate a port resource with the given resource id.
311 */
312int
313an_alloc_port(dev, rid, size)
314	device_t dev;
315	int rid;
316	int size;
317{
318	struct an_softc *sc = device_get_softc(dev);
319	struct resource *res;
320
321	res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
322				 0ul, ~0ul, size, RF_ACTIVE);
323	if (res) {
324		sc->port_rid = rid;
325		sc->port_res = res;
326		return (0);
327	} else {
328		return (ENOENT);
329	}
330}
331
332/*
333 * Allocate an irq resource with the given resource id.
334 */
335int
336an_alloc_irq(dev, rid, flags)
337	device_t dev;
338	int rid;
339	int flags;
340{
341	struct an_softc *sc = device_get_softc(dev);
342	struct resource *res;
343
344	res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
345				 0ul, ~0ul, 1, (RF_ACTIVE | flags));
346	if (res) {
347		sc->irq_rid = rid;
348		sc->irq_res = res;
349		return (0);
350	} else {
351		return (ENOENT);
352	}
353}
354
355/*
356 * Release all resources
357 */
358void
359an_release_resources(dev)
360	device_t dev;
361{
362	struct an_softc *sc = device_get_softc(dev);
363
364	if (sc->port_res) {
365		bus_release_resource(dev, SYS_RES_IOPORT,
366				     sc->port_rid, sc->port_res);
367		sc->port_res = 0;
368	}
369	if (sc->irq_res) {
370		bus_release_resource(dev, SYS_RES_IRQ,
371				     sc->irq_rid, sc->irq_res);
372		sc->irq_res = 0;
373	}
374}
375
376int
377an_attach(sc, unit, flags)
378	struct an_softc *sc;
379	int unit;
380	int flags;
381{
382	struct ifnet		*ifp = &sc->arpcom.ac_if;
383
384	mtx_init(&sc->an_mtx, device_get_nameunit(sc->an_dev), MTX_NETWORK_LOCK,
385	    MTX_DEF | MTX_RECURSE);
386	AN_LOCK(sc);
387
388	sc->an_gone = 0;
389	sc->an_associated = 0;
390	sc->an_monitor = 0;
391	sc->an_was_monitor = 0;
392
393	/* Reset the NIC. */
394	an_reset(sc);
395
396	/* Load factory config */
397	if (an_cmd(sc, AN_CMD_READCFG, 0)) {
398		printf("an%d: failed to load config data\n", sc->an_unit);
399		AN_UNLOCK(sc);
400		mtx_destroy(&sc->an_mtx);
401		return(EIO);
402	}
403
404	/* Read the current configuration */
405	sc->an_config.an_type = AN_RID_GENCONFIG;
406	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
407	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
408		printf("an%d: read record failed\n", sc->an_unit);
409		AN_UNLOCK(sc);
410		mtx_destroy(&sc->an_mtx);
411		return(EIO);
412	}
413
414	/* Read the card capabilities */
415	sc->an_caps.an_type = AN_RID_CAPABILITIES;
416	sc->an_caps.an_len = sizeof(struct an_ltv_caps);
417	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
418		printf("an%d: read record failed\n", sc->an_unit);
419		AN_UNLOCK(sc);
420		mtx_destroy(&sc->an_mtx);
421		return(EIO);
422	}
423
424	/* Read ssid list */
425	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
426	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
427	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
428		printf("an%d: read record failed\n", sc->an_unit);
429		AN_UNLOCK(sc);
430		mtx_destroy(&sc->an_mtx);
431		return(EIO);
432	}
433
434	/* Read AP list */
435	sc->an_aplist.an_type = AN_RID_APLIST;
436	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
437	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
438		printf("an%d: read record failed\n", sc->an_unit);
439		AN_UNLOCK(sc);
440		mtx_destroy(&sc->an_mtx);
441		return(EIO);
442	}
443
444	bcopy((char *)&sc->an_caps.an_oemaddr,
445	   (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
446
447	printf("an%d: Ethernet address: %6D\n", sc->an_unit,
448	    sc->arpcom.ac_enaddr, ":");
449
450	ifp->if_softc = sc;
451	ifp->if_unit = sc->an_unit = unit;
452	ifp->if_name = "an";
453	ifp->if_mtu = ETHERMTU;
454	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
455	ifp->if_ioctl = an_ioctl;
456	ifp->if_output = ether_output;
457	ifp->if_start = an_start;
458	ifp->if_watchdog = an_watchdog;
459	ifp->if_init = an_init;
460	ifp->if_baudrate = 10000000;
461	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
462
463	bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
464	bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
465	    sizeof(AN_DEFAULT_NODENAME) - 1);
466
467	bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
468	bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
469	    sizeof(AN_DEFAULT_NETNAME) - 1);
470	sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
471
472	sc->an_config.an_opmode =
473	    AN_OPMODE_INFRASTRUCTURE_STATION;
474
475	sc->an_tx_rate = 0;
476	bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
477
478	ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
479#define	ADD(m, c)	ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
480	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
481	    IFM_IEEE80211_ADHOC, 0), 0);
482	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
483	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
484	    IFM_IEEE80211_ADHOC, 0), 0);
485	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
486	if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
487		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
488		    IFM_IEEE80211_ADHOC, 0), 0);
489		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
490	}
491	if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
492		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
493		    IFM_IEEE80211_ADHOC, 0), 0);
494		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
495	}
496	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
497	    IFM_IEEE80211_ADHOC, 0), 0);
498	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
499#undef	ADD
500	ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
501	    0, 0));
502
503	/*
504	 * Call MI attach routine.
505	 */
506	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
507	callout_handle_init(&sc->an_stat_ch);
508	AN_UNLOCK(sc);
509
510	return(0);
511}
512
513static void
514an_rxeof(sc)
515	struct an_softc *sc;
516{
517	struct ifnet   *ifp;
518	struct ether_header *eh;
519	struct ieee80211_frame *ih;
520	struct an_rxframe rx_frame;
521	struct an_rxframe_802_3 rx_frame_802_3;
522	struct mbuf    *m;
523	int             len, id, error = 0;
524	int             ieee80211_header_len;
525	u_char          *bpf_buf;
526	u_short         fc1;
527
528	ifp = &sc->arpcom.ac_if;
529
530	id = CSR_READ_2(sc, AN_RX_FID);
531
532	if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
533		/* read raw 802.11 packet */
534	        bpf_buf = sc->buf_802_11;
535
536		/* read header */
537		if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
538				 sizeof(rx_frame))) {
539			ifp->if_ierrors++;
540			return;
541		}
542
543		/*
544		 * skip beacon by default since this increases the
545		 * system load a lot
546		 */
547
548		if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
549		    (rx_frame.an_frame_ctl & IEEE80211_FC0_SUBTYPE_BEACON)) {
550			return;
551		}
552
553		if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
554			len = rx_frame.an_rx_payload_len
555				+ sizeof(rx_frame);
556			/* Check for insane frame length */
557			if (len > sizeof(sc->buf_802_11)) {
558				printf("an%d: oversized packet received (%d, %d)\n",
559				       sc->an_unit, len, MCLBYTES);
560				ifp->if_ierrors++;
561				return;
562			}
563
564			bcopy((char *)&rx_frame,
565			      bpf_buf, sizeof(rx_frame));
566
567			error = an_read_data(sc, id, sizeof(rx_frame),
568					     (caddr_t)bpf_buf+sizeof(rx_frame),
569					     rx_frame.an_rx_payload_len);
570		} else {
571			fc1=rx_frame.an_frame_ctl >> 8;
572			ieee80211_header_len = sizeof(struct ieee80211_frame);
573			if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
574			    (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
575				ieee80211_header_len += ETHER_ADDR_LEN;
576			}
577
578			len = rx_frame.an_rx_payload_len
579				+ ieee80211_header_len;
580			/* Check for insane frame length */
581			if (len > sizeof(sc->buf_802_11)) {
582				printf("an%d: oversized packet received (%d, %d)\n",
583				       sc->an_unit, len, MCLBYTES);
584				ifp->if_ierrors++;
585				return;
586			}
587
588			ih = (struct ieee80211_frame *)bpf_buf;
589
590			bcopy((char *)&rx_frame.an_frame_ctl,
591			      (char *)ih, ieee80211_header_len);
592
593			error = an_read_data(sc, id, sizeof(rx_frame) +
594					     rx_frame.an_gaplen,
595					     (caddr_t)ih +ieee80211_header_len,
596					     rx_frame.an_rx_payload_len);
597		}
598		/* dump raw 802.11 packet to bpf and skip ip stack */
599		BPF_TAP(ifp, bpf_buf, len);
600	} else {
601		MGETHDR(m, M_DONTWAIT, MT_DATA);
602		if (m == NULL) {
603			ifp->if_ierrors++;
604			return;
605		}
606		MCLGET(m, M_DONTWAIT);
607		if (!(m->m_flags & M_EXT)) {
608			m_freem(m);
609			ifp->if_ierrors++;
610			return;
611		}
612		m->m_pkthdr.rcvif = ifp;
613		/* Read Ethernet encapsulated packet */
614
615#ifdef ANCACHE
616		/* Read NIC frame header */
617		if (an_read_data(sc, id, 0, (caddr_t) & rx_frame, sizeof(rx_frame))) {
618			ifp->if_ierrors++;
619			return;
620		}
621#endif
622		/* Read in the 802_3 frame header */
623		if (an_read_data(sc, id, 0x34, (caddr_t) & rx_frame_802_3,
624				 sizeof(rx_frame_802_3))) {
625			ifp->if_ierrors++;
626			return;
627		}
628		if (rx_frame_802_3.an_rx_802_3_status != 0) {
629			ifp->if_ierrors++;
630			return;
631		}
632		/* Check for insane frame length */
633		if (rx_frame_802_3.an_rx_802_3_payload_len > MCLBYTES) {
634			ifp->if_ierrors++;
635			return;
636		}
637		m->m_pkthdr.len = m->m_len =
638			rx_frame_802_3.an_rx_802_3_payload_len + 12;
639
640		eh = mtod(m, struct ether_header *);
641
642		bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
643		      (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
644		bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
645		      (char *)&eh->ether_shost, ETHER_ADDR_LEN);
646
647		/* in mbuf header type is just before payload */
648		error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type),
649				     rx_frame_802_3.an_rx_802_3_payload_len);
650
651		if (error) {
652			m_freem(m);
653			ifp->if_ierrors++;
654			return;
655		}
656		ifp->if_ipackets++;
657
658		/* Receive packet. */
659#ifdef ANCACHE
660		an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength);
661#endif
662		(*ifp->if_input)(ifp, m);
663	}
664}
665
666static void
667an_txeof(sc, status)
668	struct an_softc		*sc;
669	int			status;
670{
671	struct ifnet		*ifp;
672	int			id, i;
673
674	ifp = &sc->arpcom.ac_if;
675
676	ifp->if_timer = 0;
677	ifp->if_flags &= ~IFF_OACTIVE;
678
679	id = CSR_READ_2(sc, AN_TX_CMP_FID);
680
681	if (status & AN_EV_TX_EXC) {
682		ifp->if_oerrors++;
683	} else
684		ifp->if_opackets++;
685
686	for (i = 0; i < AN_TX_RING_CNT; i++) {
687		if (id == sc->an_rdata.an_tx_ring[i]) {
688			sc->an_rdata.an_tx_ring[i] = 0;
689			break;
690		}
691	}
692
693	AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
694
695	return;
696}
697
698/*
699 * We abuse the stats updater to check the current NIC status. This
700 * is important because we don't want to allow transmissions until
701 * the NIC has synchronized to the current cell (either as the master
702 * in an ad-hoc group, or as a station connected to an access point).
703 */
704static void
705an_stats_update(xsc)
706	void			*xsc;
707{
708	struct an_softc		*sc;
709	struct ifnet		*ifp;
710
711	sc = xsc;
712	AN_LOCK(sc);
713	ifp = &sc->arpcom.ac_if;
714
715	sc->an_status.an_type = AN_RID_STATUS;
716	sc->an_status.an_len = sizeof(struct an_ltv_status);
717	an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
718
719	if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
720		sc->an_associated = 1;
721	else
722		sc->an_associated = 0;
723
724	/* Don't do this while we're transmitting */
725	if (ifp->if_flags & IFF_OACTIVE) {
726		sc->an_stat_ch = timeout(an_stats_update, sc, hz);
727		AN_UNLOCK(sc);
728		return;
729	}
730
731	sc->an_stats.an_len = sizeof(struct an_ltv_stats);
732	sc->an_stats.an_type = AN_RID_32BITS_CUM;
733	an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
734
735	sc->an_stat_ch = timeout(an_stats_update, sc, hz);
736	AN_UNLOCK(sc);
737
738	return;
739}
740
741void
742an_intr(xsc)
743	void			*xsc;
744{
745	struct an_softc		*sc;
746	struct ifnet		*ifp;
747	u_int16_t		status;
748
749	sc = (struct an_softc*)xsc;
750
751	AN_LOCK(sc);
752
753	if (sc->an_gone) {
754		AN_UNLOCK(sc);
755		return;
756	}
757
758	ifp = &sc->arpcom.ac_if;
759
760	/* Disable interrupts. */
761	CSR_WRITE_2(sc, AN_INT_EN, 0);
762
763	status = CSR_READ_2(sc, AN_EVENT_STAT);
764	CSR_WRITE_2(sc, AN_EVENT_ACK, ~AN_INTRS);
765
766	if (status & AN_EV_AWAKE) {
767		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_AWAKE);
768	}
769
770	if (status & AN_EV_LINKSTAT) {
771		if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED)
772			sc->an_associated = 1;
773		else
774			sc->an_associated = 0;
775		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
776	}
777
778	if (status & AN_EV_RX) {
779		an_rxeof(sc);
780		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
781	}
782
783	if (status & AN_EV_TX) {
784		an_txeof(sc, status);
785		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX);
786	}
787
788	if (status & AN_EV_TX_EXC) {
789		an_txeof(sc, status);
790		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX_EXC);
791	}
792
793	if (status & AN_EV_ALLOC)
794		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
795
796	/* Re-enable interrupts. */
797	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
798
799	if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL))
800		an_start(ifp);
801
802	AN_UNLOCK(sc);
803
804	return;
805}
806
807static int
808an_cmd(sc, cmd, val)
809	struct an_softc		*sc;
810	int			cmd;
811	int			val;
812{
813	int			i, s = 0;
814
815	CSR_WRITE_2(sc, AN_PARAM0, val);
816	CSR_WRITE_2(sc, AN_PARAM1, 0);
817	CSR_WRITE_2(sc, AN_PARAM2, 0);
818	CSR_WRITE_2(sc, AN_COMMAND, cmd);
819
820	for (i = 0; i < AN_TIMEOUT; i++) {
821		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
822			break;
823		else {
824			if (CSR_READ_2(sc, AN_COMMAND) == cmd)
825				CSR_WRITE_2(sc, AN_COMMAND, cmd);
826		}
827	}
828
829	for (i = 0; i < AN_TIMEOUT; i++) {
830		CSR_READ_2(sc, AN_RESP0);
831		CSR_READ_2(sc, AN_RESP1);
832		CSR_READ_2(sc, AN_RESP2);
833		s = CSR_READ_2(sc, AN_STATUS);
834		if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
835			break;
836	}
837
838	/* Ack the command */
839	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
840
841	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
842		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
843
844	if (i == AN_TIMEOUT)
845		return(ETIMEDOUT);
846
847	return(0);
848}
849
850/*
851 * This reset sequence may look a little strange, but this is the
852 * most reliable method I've found to really kick the NIC in the
853 * head and force it to reboot correctly.
854 */
855static void
856an_reset(sc)
857	struct an_softc		*sc;
858{
859	if (sc->an_gone)
860		return;
861
862	an_cmd(sc, AN_CMD_ENABLE, 0);
863	an_cmd(sc, AN_CMD_FW_RESTART, 0);
864	an_cmd(sc, AN_CMD_NOOP2, 0);
865
866	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
867		printf("an%d: reset failed\n", sc->an_unit);
868
869	an_cmd(sc, AN_CMD_DISABLE, 0);
870
871	return;
872}
873
874/*
875 * Read an LTV record from the NIC.
876 */
877static int
878an_read_record(sc, ltv)
879	struct an_softc		*sc;
880	struct an_ltv_gen	*ltv;
881{
882	u_int16_t		*ptr;
883	u_int8_t		*ptr2;
884	int			i, len;
885
886	if (ltv->an_len < 4 || ltv->an_type == 0)
887		return(EINVAL);
888
889	/* Tell the NIC to enter record read mode. */
890	if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
891		printf("an%d: RID access failed\n", sc->an_unit);
892		return(EIO);
893	}
894
895	/* Seek to the record. */
896	if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
897		printf("an%d: seek to record failed\n", sc->an_unit);
898		return(EIO);
899	}
900
901	/*
902	 * Read the length and record type and make sure they
903	 * match what we expect (this verifies that we have enough
904	 * room to hold all of the returned data).
905	 * Length includes type but not length.
906	 */
907	len = CSR_READ_2(sc, AN_DATA1);
908	if (len > (ltv->an_len - 2)) {
909		printf("an%d: record length mismatch -- expected %d, "
910		    "got %d for Rid %x\n", sc->an_unit,
911		    ltv->an_len - 2, len, ltv->an_type);
912		len = ltv->an_len - 2;
913	} else {
914		ltv->an_len = len + 2;
915	}
916
917	/* Now read the data. */
918	len -= 2;	/* skip the type */
919	ptr = &ltv->an_val;
920	for (i = len; i > 1; i -= 2)
921		*ptr++ = CSR_READ_2(sc, AN_DATA1);
922	if (i) {
923		ptr2 = (u_int8_t *)ptr;
924		*ptr2 = CSR_READ_1(sc, AN_DATA1);
925	}
926	if (an_dump)
927		an_dump_record(sc, ltv, "Read");
928
929	return(0);
930}
931
932/*
933 * Same as read, except we inject data instead of reading it.
934 */
935static int
936an_write_record(sc, ltv)
937	struct an_softc		*sc;
938	struct an_ltv_gen	*ltv;
939{
940	u_int16_t		*ptr;
941	u_int8_t		*ptr2;
942	int			i, len;
943
944	if (an_dump)
945		an_dump_record(sc, ltv, "Write");
946
947	if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
948		return(EIO);
949
950	if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
951		return(EIO);
952
953	/*
954	 * Length includes type but not length.
955	 */
956	len = ltv->an_len - 2;
957	CSR_WRITE_2(sc, AN_DATA1, len);
958
959	len -= 2;	/* skip the type */
960	ptr = &ltv->an_val;
961	for (i = len; i > 1; i -= 2)
962		CSR_WRITE_2(sc, AN_DATA1, *ptr++);
963	if (i) {
964		ptr2 = (u_int8_t *)ptr;
965		CSR_WRITE_1(sc, AN_DATA0, *ptr2);
966	}
967
968	if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
969		return(EIO);
970
971	return(0);
972}
973
974static void
975an_dump_record(sc, ltv, string)
976	struct an_softc		*sc;
977	struct an_ltv_gen	*ltv;
978	char			*string;
979{
980	u_int8_t		*ptr2;
981	int			len;
982	int			i;
983	int			count = 0;
984	char			buf[17], temp;
985
986	len = ltv->an_len - 4;
987	printf("an%d: RID %4x, Length %4d, Mode %s\n",
988		sc->an_unit, ltv->an_type, ltv->an_len - 4, string);
989
990	if (an_dump == 1 || (an_dump == ltv->an_type)) {
991		printf("an%d:\t", sc->an_unit);
992		bzero(buf,sizeof(buf));
993
994		ptr2 = (u_int8_t *)&ltv->an_val;
995		for (i = len; i > 0; i--) {
996			printf("%02x ", *ptr2);
997
998			temp = *ptr2++;
999			if (temp >= ' ' && temp <= '~')
1000				buf[count] = temp;
1001			else if (temp >= 'A' && temp <= 'Z')
1002				buf[count] = temp;
1003			else
1004				buf[count] = '.';
1005			if (++count == 16) {
1006				count = 0;
1007				printf("%s\n",buf);
1008				printf("an%d:\t", sc->an_unit);
1009				bzero(buf,sizeof(buf));
1010			}
1011		}
1012		for (; count != 16; count++) {
1013			printf("   ");
1014		}
1015		printf(" %s\n",buf);
1016	}
1017}
1018
1019static int
1020an_seek(sc, id, off, chan)
1021	struct an_softc		*sc;
1022	int			id, off, chan;
1023{
1024	int			i;
1025	int			selreg, offreg;
1026
1027	switch (chan) {
1028	case AN_BAP0:
1029		selreg = AN_SEL0;
1030		offreg = AN_OFF0;
1031		break;
1032	case AN_BAP1:
1033		selreg = AN_SEL1;
1034		offreg = AN_OFF1;
1035		break;
1036	default:
1037		printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
1038		return(EIO);
1039	}
1040
1041	CSR_WRITE_2(sc, selreg, id);
1042	CSR_WRITE_2(sc, offreg, off);
1043
1044	for (i = 0; i < AN_TIMEOUT; i++) {
1045		if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1046			break;
1047	}
1048
1049	if (i == AN_TIMEOUT)
1050		return(ETIMEDOUT);
1051
1052	return(0);
1053}
1054
1055static int
1056an_read_data(sc, id, off, buf, len)
1057	struct an_softc		*sc;
1058	int			id, off;
1059	caddr_t			buf;
1060	int			len;
1061{
1062	int			i;
1063	u_int16_t		*ptr;
1064	u_int8_t		*ptr2;
1065
1066	if (off != -1) {
1067		if (an_seek(sc, id, off, AN_BAP1))
1068			return(EIO);
1069	}
1070
1071	ptr = (u_int16_t *)buf;
1072	for (i = len; i > 1; i -= 2)
1073		*ptr++ = CSR_READ_2(sc, AN_DATA1);
1074	if (i) {
1075		ptr2 = (u_int8_t *)ptr;
1076		*ptr2 = CSR_READ_1(sc, AN_DATA1);
1077	}
1078
1079	return(0);
1080}
1081
1082static int
1083an_write_data(sc, id, off, buf, len)
1084	struct an_softc		*sc;
1085	int			id, off;
1086	caddr_t			buf;
1087	int			len;
1088{
1089	int			i;
1090	u_int16_t		*ptr;
1091	u_int8_t		*ptr2;
1092
1093	if (off != -1) {
1094		if (an_seek(sc, id, off, AN_BAP0))
1095			return(EIO);
1096	}
1097
1098	ptr = (u_int16_t *)buf;
1099	for (i = len; i > 1; i -= 2)
1100		CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1101	if (i) {
1102	        ptr2 = (u_int8_t *)ptr;
1103	        CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1104	}
1105
1106	return(0);
1107}
1108
1109/*
1110 * Allocate a region of memory inside the NIC and zero
1111 * it out.
1112 */
1113static int
1114an_alloc_nicmem(sc, len, id)
1115	struct an_softc		*sc;
1116	int			len;
1117	int			*id;
1118{
1119	int			i;
1120
1121	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1122		printf("an%d: failed to allocate %d bytes on NIC\n",
1123		    sc->an_unit, len);
1124		return(ENOMEM);
1125	}
1126
1127	for (i = 0; i < AN_TIMEOUT; i++) {
1128		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
1129			break;
1130	}
1131
1132	if (i == AN_TIMEOUT)
1133		return(ETIMEDOUT);
1134
1135	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
1136	*id = CSR_READ_2(sc, AN_ALLOC_FID);
1137
1138	if (an_seek(sc, *id, 0, AN_BAP0))
1139		return(EIO);
1140
1141	for (i = 0; i < len / 2; i++)
1142		CSR_WRITE_2(sc, AN_DATA0, 0);
1143
1144	return(0);
1145}
1146
1147static void
1148an_setdef(sc, areq)
1149	struct an_softc		*sc;
1150	struct an_req		*areq;
1151{
1152	struct sockaddr_dl	*sdl;
1153	struct ifaddr		*ifa;
1154	struct ifnet		*ifp;
1155	struct an_ltv_genconfig	*cfg;
1156	struct an_ltv_ssidlist	*ssid;
1157	struct an_ltv_aplist	*ap;
1158	struct an_ltv_gen	*sp;
1159
1160	ifp = &sc->arpcom.ac_if;
1161
1162	switch (areq->an_type) {
1163	case AN_RID_GENCONFIG:
1164		cfg = (struct an_ltv_genconfig *)areq;
1165
1166		ifa = ifaddr_byindex(ifp->if_index);
1167		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1168		bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1169		    ETHER_ADDR_LEN);
1170		bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
1171
1172		bcopy((char *)cfg, (char *)&sc->an_config,
1173			sizeof(struct an_ltv_genconfig));
1174		break;
1175	case AN_RID_SSIDLIST:
1176		ssid = (struct an_ltv_ssidlist *)areq;
1177		bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1178			sizeof(struct an_ltv_ssidlist));
1179		break;
1180	case AN_RID_APLIST:
1181		ap = (struct an_ltv_aplist *)areq;
1182		bcopy((char *)ap, (char *)&sc->an_aplist,
1183			sizeof(struct an_ltv_aplist));
1184		break;
1185	case AN_RID_TX_SPEED:
1186		sp = (struct an_ltv_gen *)areq;
1187		sc->an_tx_rate = sp->an_val;
1188		break;
1189	case AN_RID_WEP_TEMP:
1190	case AN_RID_WEP_PERM:
1191	case AN_RID_LEAPUSERNAME:
1192	case AN_RID_LEAPPASSWORD:
1193		/* Disable the MAC. */
1194		an_cmd(sc, AN_CMD_DISABLE, 0);
1195
1196		/* Write the key */
1197		an_write_record(sc, (struct an_ltv_gen *)areq);
1198
1199		/* Turn the MAC back on. */
1200		an_cmd(sc, AN_CMD_ENABLE, 0);
1201
1202		break;
1203	case AN_RID_MONITOR_MODE:
1204		cfg = (struct an_ltv_genconfig *)areq;
1205		bpfdetach(ifp);
1206		if (ng_ether_detach_p != NULL)
1207			(*ng_ether_detach_p) (ifp);
1208		sc->an_monitor = cfg->an_len;
1209
1210		if (sc->an_monitor & AN_MONITOR) {
1211			if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1212				bpfattach(ifp, DLT_AIRONET_HEADER,
1213					sizeof(struct ether_header));
1214			} else {
1215				bpfattach(ifp, DLT_IEEE802_11,
1216					sizeof(struct ether_header));
1217			}
1218		} else {
1219			bpfattach(ifp, DLT_EN10MB,
1220				  sizeof(struct ether_header));
1221			if (ng_ether_attach_p != NULL)
1222				(*ng_ether_attach_p) (ifp);
1223		}
1224		break;
1225	default:
1226		printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
1227		return;
1228		break;
1229	}
1230
1231
1232	/* Reinitialize the card. */
1233	if (ifp->if_flags)
1234		an_init(sc);
1235
1236	return;
1237}
1238
1239/*
1240 * Derived from Linux driver to enable promiscious mode.
1241 */
1242
1243static void
1244an_promisc(sc, promisc)
1245	struct an_softc		*sc;
1246	int			promisc;
1247{
1248	if (sc->an_was_monitor)
1249		an_reset(sc);
1250	if (sc->an_monitor || sc->an_was_monitor)
1251		an_init(sc);
1252
1253	sc->an_was_monitor = sc->an_monitor;
1254	an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1255
1256	return;
1257}
1258
1259static int
1260an_ioctl(ifp, command, data)
1261	struct ifnet		*ifp;
1262	u_long			command;
1263	caddr_t			data;
1264{
1265	int			error = 0;
1266	int			len;
1267	int			i;
1268	struct an_softc		*sc;
1269	struct ifreq		*ifr;
1270	struct thread		*td = curthread;
1271	struct ieee80211req	*ireq;
1272	u_int8_t		tmpstr[IEEE80211_NWID_LEN*2];
1273	u_int8_t		*tmpptr;
1274	struct an_ltv_genconfig	*config;
1275	struct an_ltv_key	*key;
1276	struct an_ltv_status	*status;
1277	struct an_ltv_ssidlist	*ssids;
1278	int			mode;
1279	struct aironet_ioctl	l_ioctl;
1280
1281	sc = ifp->if_softc;
1282	AN_LOCK(sc);
1283	ifr = (struct ifreq *)data;
1284	ireq = (struct ieee80211req *)data;
1285
1286	config = (struct an_ltv_genconfig *)&sc->areq;
1287	key = (struct an_ltv_key *)&sc->areq;
1288	status = (struct an_ltv_status *)&sc->areq;
1289	ssids = (struct an_ltv_ssidlist *)&sc->areq;
1290
1291	if (sc->an_gone) {
1292		error = ENODEV;
1293		goto out;
1294	}
1295
1296	switch (command) {
1297	case SIOCSIFFLAGS:
1298		if (ifp->if_flags & IFF_UP) {
1299			if (ifp->if_flags & IFF_RUNNING &&
1300			    ifp->if_flags & IFF_PROMISC &&
1301			    !(sc->an_if_flags & IFF_PROMISC)) {
1302				an_promisc(sc, 1);
1303			} else if (ifp->if_flags & IFF_RUNNING &&
1304			    !(ifp->if_flags & IFF_PROMISC) &&
1305			    sc->an_if_flags & IFF_PROMISC) {
1306				an_promisc(sc, 0);
1307			} else
1308				an_init(sc);
1309		} else {
1310			if (ifp->if_flags & IFF_RUNNING)
1311				an_stop(sc);
1312		}
1313		sc->an_if_flags = ifp->if_flags;
1314		error = 0;
1315		break;
1316	case SIOCSIFMEDIA:
1317	case SIOCGIFMEDIA:
1318		error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1319		break;
1320	case SIOCADDMULTI:
1321	case SIOCDELMULTI:
1322		/* The Aironet has no multicast filter. */
1323		error = 0;
1324		break;
1325	case SIOCGAIRONET:
1326		error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1327		if (error != 0)
1328			break;
1329#ifdef ANCACHE
1330		if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1331			sc->an_sigitems = sc->an_nextitem = 0;
1332			break;
1333		} else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1334			char *pt = (char *)&sc->areq.an_val;
1335			bcopy((char *)&sc->an_sigitems, (char *)pt,
1336			    sizeof(int));
1337			pt += sizeof(int);
1338			sc->areq.an_len = sizeof(int) / 2;
1339			bcopy((char *)&sc->an_sigcache, (char *)pt,
1340			    sizeof(struct an_sigcache) * sc->an_sigitems);
1341			sc->areq.an_len += ((sizeof(struct an_sigcache) *
1342			    sc->an_sigitems) / 2) + 1;
1343		} else
1344#endif
1345		if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1346			error = EINVAL;
1347			break;
1348		}
1349		error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1350		break;
1351	case SIOCSAIRONET:
1352		if ((error = suser(td)))
1353			goto out;
1354		error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1355		if (error != 0)
1356			break;
1357		an_setdef(sc, &sc->areq);
1358		break;
1359	case SIOCGPRIVATE_0:              /* used by Cisco client utility */
1360		if ((error = suser(td)))
1361			goto out;
1362		copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1363		mode = l_ioctl.command;
1364
1365		if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1366			error = readrids(ifp, &l_ioctl);
1367		}else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1368			error = writerids(ifp, &l_ioctl);
1369		}else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1370			error = flashcard(ifp, &l_ioctl);
1371		}else{
1372			error =-1;
1373		}
1374
1375		/* copy out the updated command info */
1376		copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1377
1378		break;
1379	case SIOCGPRIVATE_1:              /* used by Cisco client utility */
1380		if ((error = suser(td)))
1381			goto out;
1382		copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1383		l_ioctl.command = 0;
1384		error = AIROMAGIC;
1385		copyout(&error, l_ioctl.data, sizeof(error));
1386	        error = 0;
1387		break;
1388	case SIOCG80211:
1389		sc->areq.an_len = sizeof(sc->areq);
1390		/* was that a good idea DJA we are doing a short-cut */
1391		switch (ireq->i_type) {
1392		case IEEE80211_IOC_SSID:
1393			if (ireq->i_val == -1) {
1394				sc->areq.an_type = AN_RID_STATUS;
1395				if (an_read_record(sc,
1396				    (struct an_ltv_gen *)&sc->areq)) {
1397					error = EINVAL;
1398					break;
1399				}
1400				len = status->an_ssidlen;
1401				tmpptr = status->an_ssid;
1402			} else if (ireq->i_val >= 0) {
1403				sc->areq.an_type = AN_RID_SSIDLIST;
1404				if (an_read_record(sc,
1405				    (struct an_ltv_gen *)&sc->areq)) {
1406					error = EINVAL;
1407					break;
1408				}
1409				if (ireq->i_val == 0) {
1410					len = ssids->an_ssid1_len;
1411					tmpptr = ssids->an_ssid1;
1412				} else if (ireq->i_val == 1) {
1413					len = ssids->an_ssid2_len;
1414					tmpptr = ssids->an_ssid2;
1415				} else if (ireq->i_val == 2) {
1416					len = ssids->an_ssid3_len;
1417					tmpptr = ssids->an_ssid3;
1418				} else {
1419					error = EINVAL;
1420					break;
1421				}
1422			} else {
1423				error = EINVAL;
1424				break;
1425			}
1426			if (len > IEEE80211_NWID_LEN) {
1427				error = EINVAL;
1428				break;
1429			}
1430			ireq->i_len = len;
1431			bzero(tmpstr, IEEE80211_NWID_LEN);
1432			bcopy(tmpptr, tmpstr, len);
1433			error = copyout(tmpstr, ireq->i_data,
1434			    IEEE80211_NWID_LEN);
1435			break;
1436		case IEEE80211_IOC_NUMSSIDS:
1437			ireq->i_val = 3;
1438			break;
1439		case IEEE80211_IOC_WEP:
1440			sc->areq.an_type = AN_RID_ACTUALCFG;
1441			if (an_read_record(sc,
1442			    (struct an_ltv_gen *)&sc->areq)) {
1443				error = EINVAL;
1444				break;
1445			}
1446			if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
1447				if (config->an_authtype &
1448				    AN_AUTHTYPE_ALLOW_UNENCRYPTED)
1449					ireq->i_val = IEEE80211_WEP_MIXED;
1450				else
1451					ireq->i_val = IEEE80211_WEP_ON;
1452			} else {
1453				ireq->i_val = IEEE80211_WEP_OFF;
1454			}
1455			break;
1456		case IEEE80211_IOC_WEPKEY:
1457			/*
1458			 * XXX: I'm not entierly convinced this is
1459			 * correct, but it's what is implemented in
1460			 * ancontrol so it will have to do until we get
1461			 * access to actual Cisco code.
1462			 */
1463			if (ireq->i_val < 0 || ireq->i_val > 8) {
1464				error = EINVAL;
1465				break;
1466			}
1467			len = 0;
1468			if (ireq->i_val < 5) {
1469				sc->areq.an_type = AN_RID_WEP_TEMP;
1470				for (i = 0; i < 5; i++) {
1471					if (an_read_record(sc,
1472					    (struct an_ltv_gen *)&sc->areq)) {
1473						error = EINVAL;
1474						break;
1475					}
1476					if (key->kindex == 0xffff)
1477						break;
1478					if (key->kindex == ireq->i_val)
1479						len = key->klen;
1480					/* Required to get next entry */
1481					sc->areq.an_type = AN_RID_WEP_PERM;
1482				}
1483				if (error != 0)
1484					break;
1485			}
1486			/* We aren't allowed to read the value of the
1487			 * key from the card so we just output zeros
1488			 * like we would if we could read the card, but
1489			 * denied the user access.
1490			 */
1491			bzero(tmpstr, len);
1492			ireq->i_len = len;
1493			error = copyout(tmpstr, ireq->i_data, len);
1494			break;
1495		case IEEE80211_IOC_NUMWEPKEYS:
1496			ireq->i_val = 9; /* include home key */
1497			break;
1498		case IEEE80211_IOC_WEPTXKEY:
1499			/*
1500			 * For some strange reason, you have to read all
1501			 * keys before you can read the txkey.
1502			 */
1503			sc->areq.an_type = AN_RID_WEP_TEMP;
1504			for (i = 0; i < 5; i++) {
1505				if (an_read_record(sc,
1506				    (struct an_ltv_gen *) &sc->areq)) {
1507					error = EINVAL;
1508					break;
1509				}
1510				if (key->kindex == 0xffff)
1511					break;
1512				/* Required to get next entry */
1513				sc->areq.an_type = AN_RID_WEP_PERM;
1514			}
1515			if (error != 0)
1516				break;
1517
1518			sc->areq.an_type = AN_RID_WEP_PERM;
1519			key->kindex = 0xffff;
1520			if (an_read_record(sc,
1521			    (struct an_ltv_gen *)&sc->areq)) {
1522				error = EINVAL;
1523				break;
1524			}
1525			ireq->i_val = key->mac[0];
1526			/*
1527			 * Check for home mode.  Map home mode into
1528			 * 5th key since that is how it is stored on
1529			 * the card
1530			 */
1531			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
1532			sc->areq.an_type = AN_RID_GENCONFIG;
1533			if (an_read_record(sc,
1534			    (struct an_ltv_gen *)&sc->areq)) {
1535				error = EINVAL;
1536				break;
1537			}
1538			if (config->an_home_product & AN_HOME_NETWORK)
1539				ireq->i_val = 4;
1540			break;
1541		case IEEE80211_IOC_AUTHMODE:
1542			sc->areq.an_type = AN_RID_ACTUALCFG;
1543			if (an_read_record(sc,
1544			    (struct an_ltv_gen *)&sc->areq)) {
1545				error = EINVAL;
1546				break;
1547			}
1548			if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
1549			    AN_AUTHTYPE_NONE) {
1550			    ireq->i_val = IEEE80211_AUTH_NONE;
1551			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
1552			    AN_AUTHTYPE_OPEN) {
1553			    ireq->i_val = IEEE80211_AUTH_OPEN;
1554			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
1555			    AN_AUTHTYPE_SHAREDKEY) {
1556			    ireq->i_val = IEEE80211_AUTH_SHARED;
1557			} else
1558				error = EINVAL;
1559			break;
1560		case IEEE80211_IOC_STATIONNAME:
1561			sc->areq.an_type = AN_RID_ACTUALCFG;
1562			if (an_read_record(sc,
1563			    (struct an_ltv_gen *)&sc->areq)) {
1564				error = EINVAL;
1565				break;
1566			}
1567			ireq->i_len = sizeof(config->an_nodename);
1568			tmpptr = config->an_nodename;
1569			bzero(tmpstr, IEEE80211_NWID_LEN);
1570			bcopy(tmpptr, tmpstr, ireq->i_len);
1571			error = copyout(tmpstr, ireq->i_data,
1572			    IEEE80211_NWID_LEN);
1573			break;
1574		case IEEE80211_IOC_CHANNEL:
1575			sc->areq.an_type = AN_RID_STATUS;
1576			if (an_read_record(sc,
1577			    (struct an_ltv_gen *)&sc->areq)) {
1578				error = EINVAL;
1579				break;
1580			}
1581			ireq->i_val = status->an_cur_channel;
1582			break;
1583		case IEEE80211_IOC_POWERSAVE:
1584			sc->areq.an_type = AN_RID_ACTUALCFG;
1585			if (an_read_record(sc,
1586			    (struct an_ltv_gen *)&sc->areq)) {
1587				error = EINVAL;
1588				break;
1589			}
1590			if (config->an_psave_mode == AN_PSAVE_NONE) {
1591				ireq->i_val = IEEE80211_POWERSAVE_OFF;
1592			} else if (config->an_psave_mode == AN_PSAVE_CAM) {
1593				ireq->i_val = IEEE80211_POWERSAVE_CAM;
1594			} else if (config->an_psave_mode == AN_PSAVE_PSP) {
1595				ireq->i_val = IEEE80211_POWERSAVE_PSP;
1596			} else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
1597				ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
1598			} else
1599				error = EINVAL;
1600			break;
1601		case IEEE80211_IOC_POWERSAVESLEEP:
1602			sc->areq.an_type = AN_RID_ACTUALCFG;
1603			if (an_read_record(sc,
1604			    (struct an_ltv_gen *)&sc->areq)) {
1605				error = EINVAL;
1606				break;
1607			}
1608			ireq->i_val = config->an_listen_interval;
1609			break;
1610		}
1611		break;
1612	case SIOCS80211:
1613		if ((error = suser(td)))
1614			goto out;
1615		sc->areq.an_len = sizeof(sc->areq);
1616		/*
1617		 * We need a config structure for everything but the WEP
1618		 * key management and SSIDs so we get it now so avoid
1619		 * duplicating this code every time.
1620		 */
1621		if (ireq->i_type != IEEE80211_IOC_SSID &&
1622		    ireq->i_type != IEEE80211_IOC_WEPKEY &&
1623		    ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
1624			sc->areq.an_type = AN_RID_GENCONFIG;
1625			if (an_read_record(sc,
1626			    (struct an_ltv_gen *)&sc->areq)) {
1627				error = EINVAL;
1628				break;
1629			}
1630		}
1631		switch (ireq->i_type) {
1632		case IEEE80211_IOC_SSID:
1633			sc->areq.an_type = AN_RID_SSIDLIST;
1634			if (an_read_record(sc,
1635			    (struct an_ltv_gen *)&sc->areq)) {
1636				error = EINVAL;
1637				break;
1638			}
1639			if (ireq->i_len > IEEE80211_NWID_LEN) {
1640				error = EINVAL;
1641				break;
1642			}
1643			switch (ireq->i_val) {
1644			case 0:
1645				error = copyin(ireq->i_data,
1646				    ssids->an_ssid1, ireq->i_len);
1647				ssids->an_ssid1_len = ireq->i_len;
1648				break;
1649			case 1:
1650				error = copyin(ireq->i_data,
1651				    ssids->an_ssid2, ireq->i_len);
1652				ssids->an_ssid2_len = ireq->i_len;
1653				break;
1654			case 2:
1655				error = copyin(ireq->i_data,
1656				    ssids->an_ssid3, ireq->i_len);
1657				ssids->an_ssid3_len = ireq->i_len;
1658				break;
1659			default:
1660				error = EINVAL;
1661				break;
1662			}
1663			break;
1664		case IEEE80211_IOC_WEP:
1665			switch (ireq->i_val) {
1666			case IEEE80211_WEP_OFF:
1667				config->an_authtype &=
1668				    ~(AN_AUTHTYPE_PRIVACY_IN_USE |
1669				    AN_AUTHTYPE_ALLOW_UNENCRYPTED);
1670				break;
1671			case IEEE80211_WEP_ON:
1672				config->an_authtype |=
1673				    AN_AUTHTYPE_PRIVACY_IN_USE;
1674				config->an_authtype &=
1675				    ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1676				break;
1677			case IEEE80211_WEP_MIXED:
1678				config->an_authtype |=
1679				    AN_AUTHTYPE_PRIVACY_IN_USE |
1680				    AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1681				break;
1682			default:
1683				error = EINVAL;
1684				break;
1685			}
1686			break;
1687		case IEEE80211_IOC_WEPKEY:
1688			if (ireq->i_val < 0 || ireq->i_val > 7 ||
1689			    ireq->i_len > 13) {
1690				error = EINVAL;
1691				break;
1692			}
1693			error = copyin(ireq->i_data, tmpstr, 13);
1694			if (error != 0)
1695				break;
1696			bzero(&sc->areq, sizeof(struct an_ltv_key));
1697			sc->areq.an_len = sizeof(struct an_ltv_key);
1698			key->mac[0] = 1;	/* The others are 0. */
1699			key->kindex = ireq->i_val % 4;
1700			if (ireq->i_val < 4)
1701				sc->areq.an_type = AN_RID_WEP_TEMP;
1702			else
1703				sc->areq.an_type = AN_RID_WEP_PERM;
1704			key->klen = ireq->i_len;
1705			bcopy(tmpstr, key->key, key->klen);
1706			break;
1707		case IEEE80211_IOC_WEPTXKEY:
1708			/*
1709			 * Map the 5th key into the home mode
1710			 * since that is how it is stored on
1711			 * the card
1712			 */
1713			if (ireq->i_val < 0 || ireq->i_val > 4) {
1714				error = EINVAL;
1715				break;
1716			}
1717			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
1718			sc->areq.an_type = AN_RID_ACTUALCFG;
1719			if (an_read_record(sc,
1720	       		    (struct an_ltv_gen *)&sc->areq)) {
1721	       			error = EINVAL;
1722				break;
1723			}
1724			if (ireq->i_val ==  4) {
1725				config->an_home_product |= AN_HOME_NETWORK;
1726				ireq->i_val = 0;
1727			} else {
1728				config->an_home_product &= ~AN_HOME_NETWORK;
1729			}
1730
1731			sc->an_config.an_home_product
1732				= config->an_home_product;
1733			an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
1734
1735			bzero(&sc->areq, sizeof(struct an_ltv_key));
1736			sc->areq.an_len = sizeof(struct an_ltv_key);
1737			sc->areq.an_type = AN_RID_WEP_PERM;
1738			key->kindex = 0xffff;
1739			key->mac[0] = ireq->i_val;
1740			break;
1741		case IEEE80211_IOC_AUTHMODE:
1742			switch (ireq->i_val) {
1743			case IEEE80211_AUTH_NONE:
1744				config->an_authtype = AN_AUTHTYPE_NONE |
1745				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
1746				break;
1747			case IEEE80211_AUTH_OPEN:
1748				config->an_authtype = AN_AUTHTYPE_OPEN |
1749				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
1750				break;
1751			case IEEE80211_AUTH_SHARED:
1752				config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
1753				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
1754				break;
1755			default:
1756				error = EINVAL;
1757			}
1758			break;
1759		case IEEE80211_IOC_STATIONNAME:
1760			if (ireq->i_len > 16) {
1761				error = EINVAL;
1762				break;
1763			}
1764			bzero(config->an_nodename, 16);
1765			error = copyin(ireq->i_data,
1766			    config->an_nodename, ireq->i_len);
1767			break;
1768		case IEEE80211_IOC_CHANNEL:
1769			/*
1770			 * The actual range is 1-14, but if you set it
1771			 * to 0 you get the default so we let that work
1772			 * too.
1773			 */
1774			if (ireq->i_val < 0 || ireq->i_val >14) {
1775				error = EINVAL;
1776				break;
1777			}
1778			config->an_ds_channel = ireq->i_val;
1779			break;
1780		case IEEE80211_IOC_POWERSAVE:
1781			switch (ireq->i_val) {
1782			case IEEE80211_POWERSAVE_OFF:
1783				config->an_psave_mode = AN_PSAVE_NONE;
1784				break;
1785			case IEEE80211_POWERSAVE_CAM:
1786				config->an_psave_mode = AN_PSAVE_CAM;
1787				break;
1788			case IEEE80211_POWERSAVE_PSP:
1789				config->an_psave_mode = AN_PSAVE_PSP;
1790				break;
1791			case IEEE80211_POWERSAVE_PSP_CAM:
1792				config->an_psave_mode = AN_PSAVE_PSP_CAM;
1793				break;
1794			default:
1795				error = EINVAL;
1796				break;
1797			}
1798			break;
1799		case IEEE80211_IOC_POWERSAVESLEEP:
1800			config->an_listen_interval = ireq->i_val;
1801			break;
1802		}
1803
1804		if (!error)
1805			an_setdef(sc, &sc->areq);
1806		break;
1807	default:
1808		error = ether_ioctl(ifp, command, data);
1809		break;
1810	}
1811out:
1812	AN_UNLOCK(sc);
1813
1814	return(error != 0);
1815}
1816
1817static int
1818an_init_tx_ring(sc)
1819	struct an_softc		*sc;
1820{
1821	int			i;
1822	int			id;
1823
1824	if (sc->an_gone)
1825		return (0);
1826
1827	for (i = 0; i < AN_TX_RING_CNT; i++) {
1828		if (an_alloc_nicmem(sc, 1518 +
1829		    0x44, &id))
1830			return(ENOMEM);
1831		sc->an_rdata.an_tx_fids[i] = id;
1832		sc->an_rdata.an_tx_ring[i] = 0;
1833	}
1834
1835	sc->an_rdata.an_tx_prod = 0;
1836	sc->an_rdata.an_tx_cons = 0;
1837
1838	return(0);
1839}
1840
1841static void
1842an_init(xsc)
1843	void			*xsc;
1844{
1845	struct an_softc		*sc = xsc;
1846	struct ifnet		*ifp = &sc->arpcom.ac_if;
1847
1848	AN_LOCK(sc);
1849
1850	if (sc->an_gone) {
1851		AN_UNLOCK(sc);
1852		return;
1853	}
1854
1855	if (ifp->if_flags & IFF_RUNNING)
1856		an_stop(sc);
1857
1858	sc->an_associated = 0;
1859
1860	/* Allocate the TX buffers */
1861	if (an_init_tx_ring(sc)) {
1862		an_reset(sc);
1863		if (an_init_tx_ring(sc)) {
1864			printf("an%d: tx buffer allocation "
1865			    "failed\n", sc->an_unit);
1866			AN_UNLOCK(sc);
1867			return;
1868		}
1869	}
1870
1871	/* Set our MAC address. */
1872	bcopy((char *)&sc->arpcom.ac_enaddr,
1873	    (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
1874
1875	if (ifp->if_flags & IFF_BROADCAST)
1876		sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
1877	else
1878		sc->an_config.an_rxmode = AN_RXMODE_ADDR;
1879
1880	if (ifp->if_flags & IFF_MULTICAST)
1881		sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
1882
1883	if (ifp->if_flags & IFF_PROMISC) {
1884		if (sc->an_monitor & AN_MONITOR) {
1885			if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
1886				sc->an_config.an_rxmode |=
1887				    AN_RXMODE_80211_MONITOR_ANYBSS |
1888				    AN_RXMODE_NO_8023_HEADER;
1889			} else {
1890				sc->an_config.an_rxmode |=
1891				    AN_RXMODE_80211_MONITOR_CURBSS |
1892				    AN_RXMODE_NO_8023_HEADER;
1893			}
1894		}
1895	}
1896
1897	/* Set the ssid list */
1898	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
1899	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
1900	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
1901		printf("an%d: failed to set ssid list\n", sc->an_unit);
1902		AN_UNLOCK(sc);
1903		return;
1904	}
1905
1906	/* Set the AP list */
1907	sc->an_aplist.an_type = AN_RID_APLIST;
1908	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
1909	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
1910		printf("an%d: failed to set AP list\n", sc->an_unit);
1911		AN_UNLOCK(sc);
1912		return;
1913	}
1914
1915	/* Set the configuration in the NIC */
1916	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1917	sc->an_config.an_type = AN_RID_GENCONFIG;
1918	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
1919		printf("an%d: failed to set configuration\n", sc->an_unit);
1920		AN_UNLOCK(sc);
1921		return;
1922	}
1923
1924	/* Enable the MAC */
1925	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
1926		printf("an%d: failed to enable MAC\n", sc->an_unit);
1927		AN_UNLOCK(sc);
1928		return;
1929	}
1930
1931	if (ifp->if_flags & IFF_PROMISC)
1932		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
1933
1934	/* enable interrupts */
1935	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
1936
1937	ifp->if_flags |= IFF_RUNNING;
1938	ifp->if_flags &= ~IFF_OACTIVE;
1939
1940	sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1941	AN_UNLOCK(sc);
1942
1943	return;
1944}
1945
1946static void
1947an_start(ifp)
1948	struct ifnet		*ifp;
1949{
1950	struct an_softc		*sc;
1951	struct mbuf		*m0 = NULL;
1952	struct an_txframe_802_3	tx_frame_802_3;
1953	struct ether_header	*eh;
1954	int			id;
1955	int			idx;
1956	unsigned char           txcontrol;
1957
1958	sc = ifp->if_softc;
1959
1960	if (sc->an_gone)
1961		return;
1962
1963	if (ifp->if_flags & IFF_OACTIVE)
1964		return;
1965
1966	if (!sc->an_associated)
1967		return;
1968
1969	/* We can't send in monitor mode so toss any attempts. */
1970	if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
1971		for (;;) {
1972			IF_DEQUEUE(&ifp->if_snd, m0);
1973			if (m0 == NULL)
1974				break;
1975			m_freem(m0);
1976		}
1977		return;
1978	}
1979
1980	idx = sc->an_rdata.an_tx_prod;
1981	bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
1982
1983	while (sc->an_rdata.an_tx_ring[idx] == 0) {
1984		IF_DEQUEUE(&ifp->if_snd, m0);
1985		if (m0 == NULL)
1986			break;
1987
1988		id = sc->an_rdata.an_tx_fids[idx];
1989		eh = mtod(m0, struct ether_header *);
1990
1991		bcopy((char *)&eh->ether_dhost,
1992		    (char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN);
1993		bcopy((char *)&eh->ether_shost,
1994		    (char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN);
1995
1996		tx_frame_802_3.an_tx_802_3_payload_len =
1997		  m0->m_pkthdr.len - 12;  /* minus src/dest mac & type */
1998
1999                m_copydata(m0, sizeof(struct ether_header) - 2 ,
2000                    tx_frame_802_3.an_tx_802_3_payload_len,
2001                    (caddr_t)&sc->an_txbuf);
2002
2003		txcontrol = AN_TXCTL_8023;
2004		/* write the txcontrol only */
2005		an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2006			      sizeof(txcontrol));
2007
2008		/* 802_3 header */
2009		an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2010			      sizeof(struct an_txframe_802_3));
2011
2012		/* in mbuf header type is just before payload */
2013		an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2014			    tx_frame_802_3.an_tx_802_3_payload_len);
2015
2016		/*
2017		 * If there's a BPF listner, bounce a copy of
2018		 * this frame to him.
2019		 */
2020		BPF_MTAP(ifp, m0);
2021
2022		m_freem(m0);
2023		m0 = NULL;
2024
2025		sc->an_rdata.an_tx_ring[idx] = id;
2026		if (an_cmd(sc, AN_CMD_TX, id))
2027			printf("an%d: xmit failed\n", sc->an_unit);
2028
2029		AN_INC(idx, AN_TX_RING_CNT);
2030	}
2031
2032	if (m0 != NULL)
2033		ifp->if_flags |= IFF_OACTIVE;
2034
2035	sc->an_rdata.an_tx_prod = idx;
2036
2037	/*
2038	 * Set a timeout in case the chip goes out to lunch.
2039	 */
2040	ifp->if_timer = 5;
2041
2042	return;
2043}
2044
2045void
2046an_stop(sc)
2047	struct an_softc		*sc;
2048{
2049	struct ifnet		*ifp;
2050	int			i;
2051
2052	AN_LOCK(sc);
2053
2054	if (sc->an_gone) {
2055		AN_UNLOCK(sc);
2056		return;
2057	}
2058
2059	ifp = &sc->arpcom.ac_if;
2060
2061	an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2062	CSR_WRITE_2(sc, AN_INT_EN, 0);
2063	an_cmd(sc, AN_CMD_DISABLE, 0);
2064
2065	for (i = 0; i < AN_TX_RING_CNT; i++)
2066		an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2067
2068	untimeout(an_stats_update, sc, sc->an_stat_ch);
2069
2070	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2071
2072	AN_UNLOCK(sc);
2073
2074	return;
2075}
2076
2077static void
2078an_watchdog(ifp)
2079	struct ifnet		*ifp;
2080{
2081	struct an_softc		*sc;
2082
2083	sc = ifp->if_softc;
2084	AN_LOCK(sc);
2085
2086	if (sc->an_gone) {
2087		AN_UNLOCK(sc);
2088		return;
2089	}
2090
2091	printf("an%d: device timeout\n", sc->an_unit);
2092
2093	an_reset(sc);
2094	an_init(sc);
2095
2096	ifp->if_oerrors++;
2097	AN_UNLOCK(sc);
2098
2099	return;
2100}
2101
2102void
2103an_shutdown(dev)
2104	device_t		dev;
2105{
2106	struct an_softc		*sc;
2107
2108	sc = device_get_softc(dev);
2109	an_stop(sc);
2110
2111	return;
2112}
2113
2114#ifdef ANCACHE
2115/* Aironet signal strength cache code.
2116 * store signal/noise/quality on per MAC src basis in
2117 * a small fixed cache.  The cache wraps if > MAX slots
2118 * used.  The cache may be zeroed out to start over.
2119 * Two simple filters exist to reduce computation:
2120 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2121 * to ignore some packets.  It defaults to ip only.
2122 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2123 * 2. multicast/broadcast only.  This may be used to
2124 * ignore unicast packets and only cache signal strength
2125 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2126 * beacons and not unicast traffic.
2127 *
2128 * The cache stores (MAC src(index), IP src (major clue), signal,
2129 *	quality, noise)
2130 *
2131 * No apologies for storing IP src here.  It's easy and saves much
2132 * trouble elsewhere.  The cache is assumed to be INET dependent,
2133 * although it need not be.
2134 *
2135 * Note: the Aironet only has a single byte of signal strength value
2136 * in the rx frame header, and it's not scaled to anything sensible.
2137 * This is kind of lame, but it's all we've got.
2138 */
2139
2140#ifdef documentation
2141
2142int an_sigitems;                                /* number of cached entries */
2143struct an_sigcache an_sigcache[MAXANCACHE];  /*  array of cache entries */
2144int an_nextitem;                                /*  index/# of entries */
2145
2146
2147#endif
2148
2149/* control variables for cache filtering.  Basic idea is
2150 * to reduce cost (e.g., to only Mobile-IP agent beacons
2151 * which are broadcast or multicast).  Still you might
2152 * want to measure signal strength anth unicast ping packets
2153 * on a pt. to pt. ant. setup.
2154 */
2155/* set true if you want to limit cache items to broadcast/mcast
2156 * only packets (not unicast).  Useful for mobile-ip beacons which
2157 * are broadcast/multicast at network layer.  Default is all packets
2158 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2159 */
2160static int an_cache_mcastonly = 0;
2161SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2162	&an_cache_mcastonly, 0, "");
2163
2164/* set true if you want to limit cache items to IP packets only
2165*/
2166static int an_cache_iponly = 1;
2167SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2168	&an_cache_iponly, 0, "");
2169
2170/*
2171 * an_cache_store, per rx packet store signal
2172 * strength in MAC (src) indexed cache.
2173 */
2174static void
2175an_cache_store (sc, eh, m, rx_quality)
2176	struct an_softc *sc;
2177	struct ether_header *eh;
2178	struct mbuf *m;
2179	unsigned short rx_quality;
2180{
2181	struct ip *ip = 0;
2182	int i;
2183	static int cache_slot = 0; 	/* use this cache entry */
2184	static int wrapindex = 0;       /* next "free" cache entry */
2185	int type_ipv4 = 0;
2186
2187	/* filters:
2188	 * 1. ip only
2189	 * 2. configurable filter to throw out unicast packets,
2190	 * keep multicast only.
2191	 */
2192
2193	if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2194		type_ipv4 = 1;
2195	}
2196
2197	/* filter for ip packets only
2198	*/
2199	if ( an_cache_iponly && !type_ipv4) {
2200		return;
2201	}
2202
2203	/* filter for broadcast/multicast only
2204	 */
2205	if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2206		return;
2207	}
2208
2209#ifdef SIGDEBUG
2210	printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
2211	    rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2212#endif
2213
2214	/* find the ip header.  we want to store the ip_src
2215	 * address.
2216	 */
2217	if (type_ipv4) {
2218		ip = mtod(m, struct ip *);
2219	}
2220
2221	/* do a linear search for a matching MAC address
2222	 * in the cache table
2223	 * . MAC address is 6 bytes,
2224	 * . var w_nextitem holds total number of entries already cached
2225	 */
2226	for (i = 0; i < sc->an_nextitem; i++) {
2227		if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
2228			/* Match!,
2229			 * so we already have this entry,
2230			 * update the data
2231			 */
2232			break;
2233		}
2234	}
2235
2236	/* did we find a matching mac address?
2237	 * if yes, then overwrite a previously existing cache entry
2238	 */
2239	if (i < sc->an_nextitem )   {
2240		cache_slot = i;
2241	}
2242	/* else, have a new address entry,so
2243	 * add this new entry,
2244	 * if table full, then we need to replace LRU entry
2245	 */
2246	else    {
2247
2248		/* check for space in cache table
2249		 * note: an_nextitem also holds number of entries
2250		 * added in the cache table
2251		 */
2252		if ( sc->an_nextitem < MAXANCACHE ) {
2253			cache_slot = sc->an_nextitem;
2254			sc->an_nextitem++;
2255			sc->an_sigitems = sc->an_nextitem;
2256		}
2257        	/* no space found, so simply wrap anth wrap index
2258		 * and "zap" the next entry
2259		 */
2260		else {
2261			if (wrapindex == MAXANCACHE) {
2262				wrapindex = 0;
2263			}
2264			cache_slot = wrapindex++;
2265		}
2266	}
2267
2268	/* invariant: cache_slot now points at some slot
2269	 * in cache.
2270	 */
2271	if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2272		log(LOG_ERR, "an_cache_store, bad index: %d of "
2273		    "[0..%d], gross cache error\n",
2274		    cache_slot, MAXANCACHE);
2275		return;
2276	}
2277
2278	/*  store items in cache
2279	 *  .ip source address
2280	 *  .mac src
2281	 *  .signal, etc.
2282	 */
2283	if (type_ipv4) {
2284		sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2285	}
2286	bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
2287
2288	sc->an_sigcache[cache_slot].signal = rx_quality;
2289
2290	return;
2291}
2292#endif
2293
2294static int
2295an_media_change(ifp)
2296	struct ifnet		*ifp;
2297{
2298	struct an_softc *sc = ifp->if_softc;
2299	int otype = sc->an_config.an_opmode;
2300	int orate = sc->an_tx_rate;
2301
2302	if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2303		sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
2304	else
2305		sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
2306
2307	switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
2308	case IFM_IEEE80211_DS1:
2309		sc->an_tx_rate = AN_RATE_1MBPS;
2310		break;
2311	case IFM_IEEE80211_DS2:
2312		sc->an_tx_rate = AN_RATE_2MBPS;
2313		break;
2314	case IFM_IEEE80211_DS5:
2315		sc->an_tx_rate = AN_RATE_5_5MBPS;
2316		break;
2317	case IFM_IEEE80211_DS11:
2318		sc->an_tx_rate = AN_RATE_11MBPS;
2319		break;
2320	case IFM_AUTO:
2321		sc->an_tx_rate = 0;
2322		break;
2323	}
2324
2325	if (otype != sc->an_config.an_opmode ||
2326	    orate != sc->an_tx_rate)
2327		an_init(sc);
2328
2329	return(0);
2330}
2331
2332static void
2333an_media_status(ifp, imr)
2334	struct ifnet		*ifp;
2335	struct ifmediareq	*imr;
2336{
2337	struct an_ltv_status	status;
2338	struct an_softc		*sc = ifp->if_softc;
2339
2340	status.an_len = sizeof(status);
2341	status.an_type = AN_RID_STATUS;
2342	if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
2343		/* If the status read fails, just lie. */
2344		imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
2345		imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2346	}
2347
2348	if (sc->an_tx_rate == 0) {
2349		imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2350		if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
2351			imr->ifm_active |= IFM_IEEE80211_ADHOC;
2352		switch (status.an_current_tx_rate) {
2353		case AN_RATE_1MBPS:
2354			imr->ifm_active |= IFM_IEEE80211_DS1;
2355			break;
2356		case AN_RATE_2MBPS:
2357			imr->ifm_active |= IFM_IEEE80211_DS2;
2358			break;
2359		case AN_RATE_5_5MBPS:
2360			imr->ifm_active |= IFM_IEEE80211_DS5;
2361			break;
2362		case AN_RATE_11MBPS:
2363			imr->ifm_active |= IFM_IEEE80211_DS11;
2364			break;
2365		}
2366	} else {
2367		imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
2368	}
2369
2370	imr->ifm_status = IFM_AVALID;
2371	if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
2372		imr->ifm_status |= IFM_ACTIVE;
2373}
2374
2375/********************** Cisco utility support routines *************/
2376
2377/*
2378 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
2379 * Linux driver
2380 */
2381
2382static int
2383readrids(ifp, l_ioctl)
2384	struct ifnet   *ifp;
2385	struct aironet_ioctl *l_ioctl;
2386{
2387	unsigned short  rid;
2388	struct an_softc *sc;
2389
2390	switch (l_ioctl->command) {
2391	case AIROGCAP:
2392		rid = AN_RID_CAPABILITIES;
2393		break;
2394	case AIROGCFG:
2395		rid = AN_RID_GENCONFIG;
2396		break;
2397	case AIROGSLIST:
2398		rid = AN_RID_SSIDLIST;
2399		break;
2400	case AIROGVLIST:
2401		rid = AN_RID_APLIST;
2402		break;
2403	case AIROGDRVNAM:
2404		rid = AN_RID_DRVNAME;
2405		break;
2406	case AIROGEHTENC:
2407		rid = AN_RID_ENCAPPROTO;
2408		break;
2409	case AIROGWEPKTMP:
2410		rid = AN_RID_WEP_TEMP;
2411		break;
2412	case AIROGWEPKNV:
2413		rid = AN_RID_WEP_PERM;
2414		break;
2415	case AIROGSTAT:
2416		rid = AN_RID_STATUS;
2417		break;
2418	case AIROGSTATSD32:
2419		rid = AN_RID_32BITS_DELTA;
2420		break;
2421	case AIROGSTATSC32:
2422		rid = AN_RID_32BITS_CUM;
2423		break;
2424	default:
2425		rid = 999;
2426		break;
2427	}
2428
2429	if (rid == 999)	/* Is bad command */
2430		return -EINVAL;
2431
2432	sc = ifp->if_softc;
2433	sc->areq.an_len  = AN_MAX_DATALEN;
2434	sc->areq.an_type = rid;
2435
2436	an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
2437
2438	l_ioctl->len = sc->areq.an_len - 4;	/* just data */
2439
2440	/* the data contains the length at first */
2441	if (copyout(&(sc->areq.an_len), l_ioctl->data,
2442		    sizeof(sc->areq.an_len))) {
2443		return -EFAULT;
2444	}
2445	/* Just copy the data back */
2446	if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
2447		    l_ioctl->len)) {
2448		return -EFAULT;
2449	}
2450	return 0;
2451}
2452
2453static int
2454writerids(ifp, l_ioctl)
2455	struct ifnet   *ifp;
2456	struct aironet_ioctl *l_ioctl;
2457{
2458	struct an_softc *sc;
2459	int             rid, command;
2460
2461	sc = ifp->if_softc;
2462	rid = 0;
2463	command = l_ioctl->command;
2464
2465	switch (command) {
2466	case AIROPSIDS:
2467		rid = AN_RID_SSIDLIST;
2468		break;
2469	case AIROPCAP:
2470		rid = AN_RID_CAPABILITIES;
2471		break;
2472	case AIROPAPLIST:
2473		rid = AN_RID_APLIST;
2474		break;
2475	case AIROPCFG:
2476		rid = AN_RID_GENCONFIG;
2477		break;
2478	case AIROPMACON:
2479		an_cmd(sc, AN_CMD_ENABLE, 0);
2480		return 0;
2481		break;
2482	case AIROPMACOFF:
2483		an_cmd(sc, AN_CMD_DISABLE, 0);
2484		return 0;
2485		break;
2486	case AIROPSTCLR:
2487		/*
2488		 * This command merely clears the counts does not actually
2489		 * store any data only reads rid. But as it changes the cards
2490		 * state, I put it in the writerid routines.
2491		 */
2492
2493		rid = AN_RID_32BITS_DELTACLR;
2494		sc = ifp->if_softc;
2495		sc->areq.an_len = AN_MAX_DATALEN;
2496		sc->areq.an_type = rid;
2497
2498		an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
2499		l_ioctl->len = sc->areq.an_len - 4;	/* just data */
2500
2501		/* the data contains the length at first */
2502		if (copyout(&(sc->areq.an_len), l_ioctl->data,
2503			    sizeof(sc->areq.an_len))) {
2504			return -EFAULT;
2505		}
2506		/* Just copy the data */
2507		if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
2508			    l_ioctl->len)) {
2509			return -EFAULT;
2510		}
2511		return 0;
2512		break;
2513	case AIROPWEPKEY:
2514		rid = AN_RID_WEP_TEMP;
2515		break;
2516	case AIROPWEPKEYNV:
2517		rid = AN_RID_WEP_PERM;
2518		break;
2519	case AIROPLEAPUSR:
2520		rid = AN_RID_LEAPUSERNAME;
2521		break;
2522	case AIROPLEAPPWD:
2523		rid = AN_RID_LEAPPASSWORD;
2524		break;
2525	default:
2526		return -EOPNOTSUPP;
2527	}
2528
2529	if (rid) {
2530		if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
2531			return -EINVAL;
2532		sc->areq.an_len = l_ioctl->len + 4;	/* add type & length */
2533		sc->areq.an_type = rid;
2534
2535		/* Just copy the data back */
2536		copyin((l_ioctl->data) + 2, &sc->areq.an_val,
2537		       l_ioctl->len);
2538
2539		an_cmd(sc, AN_CMD_DISABLE, 0);
2540		an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
2541		an_cmd(sc, AN_CMD_ENABLE, 0);
2542		return 0;
2543	}
2544	return -EOPNOTSUPP;
2545}
2546
2547/*
2548 * General Flash utilities derived from Cisco driver additions to Ben Reed's
2549 * Linux driver
2550 */
2551
2552#define FLASH_DELAY(x) tsleep(ifp, PZERO, "flash", ((x) / hz) + 1);
2553
2554static int
2555unstickbusy(ifp)
2556	struct ifnet   *ifp;
2557{
2558	struct an_softc *sc = ifp->if_softc;
2559
2560	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
2561		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
2562		return 1;
2563	}
2564	return 0;
2565}
2566
2567/*
2568 * Wait for busy completion from card wait for delay uSec's Return true for
2569 * success meaning command reg is clear
2570 */
2571
2572static int
2573WaitBusy(ifp, uSec)
2574	struct ifnet   *ifp;
2575	int             uSec;
2576{
2577	int             statword = 0xffff;
2578	int             delay = 0;
2579	struct an_softc *sc = ifp->if_softc;
2580
2581	while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
2582		FLASH_DELAY(10);
2583		delay += 10;
2584		statword = CSR_READ_2(sc, AN_COMMAND);
2585
2586		if ((AN_CMD_BUSY & statword) && (delay % 200)) {
2587			unstickbusy(ifp);
2588		}
2589	}
2590
2591	return 0 == (AN_CMD_BUSY & statword);
2592}
2593
2594/*
2595 * STEP 1) Disable MAC and do soft reset on card.
2596 */
2597
2598static int
2599cmdreset(ifp)
2600	struct ifnet   *ifp;
2601{
2602	int             status;
2603	struct an_softc *sc = ifp->if_softc;
2604
2605	an_stop(sc);
2606
2607	an_cmd(sc, AN_CMD_DISABLE, 0);
2608
2609	if (!(status = WaitBusy(ifp, 600))) {
2610		printf("an%d: Waitbusy hang b4 RESET =%d\n",
2611		       sc->an_unit, status);
2612		return -EBUSY;
2613	}
2614	CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_FW_RESTART);
2615
2616	FLASH_DELAY(1000);	/* WAS 600 12/7/00 */
2617
2618
2619	if (!(status = WaitBusy(ifp, 100))) {
2620		printf("an%d: Waitbusy hang AFTER RESET =%d\n",
2621		       sc->an_unit, status);
2622		return -EBUSY;
2623	}
2624	return 0;
2625}
2626
2627/*
2628 * STEP 2) Put the card in legendary flash mode
2629 */
2630#define FLASH_COMMAND  0x7e7e
2631
2632static int
2633setflashmode(ifp)
2634	struct ifnet   *ifp;
2635{
2636	int             status;
2637	struct an_softc *sc = ifp->if_softc;
2638
2639	CSR_WRITE_2(sc, AN_SW0, FLASH_COMMAND);
2640	CSR_WRITE_2(sc, AN_SW1, FLASH_COMMAND);
2641	CSR_WRITE_2(sc, AN_SW0, FLASH_COMMAND);
2642	CSR_WRITE_2(sc, AN_COMMAND, FLASH_COMMAND);
2643
2644	/*
2645	 * mdelay(500); // 500ms delay
2646	 */
2647
2648	FLASH_DELAY(500);
2649
2650	if (!(status = WaitBusy(ifp, 600))) {
2651		printf("Waitbusy hang after setflash mode\n");
2652		return -EIO;
2653	}
2654	return 0;
2655}
2656
2657/*
2658 * Get a character from the card matching matchbyte Step 3)
2659 */
2660
2661static int
2662flashgchar(ifp, matchbyte, dwelltime)
2663	struct ifnet   *ifp;
2664	int             matchbyte;
2665	int             dwelltime;
2666{
2667	int             rchar;
2668	unsigned char   rbyte = 0;
2669	int             success = -1;
2670	struct an_softc *sc = ifp->if_softc;
2671
2672
2673	do {
2674		rchar = CSR_READ_2(sc, AN_SW1);
2675
2676		if (dwelltime && !(0x8000 & rchar)) {
2677			dwelltime -= 10;
2678			FLASH_DELAY(10);
2679			continue;
2680		}
2681		rbyte = 0xff & rchar;
2682
2683		if ((rbyte == matchbyte) && (0x8000 & rchar)) {
2684			CSR_WRITE_2(sc, AN_SW1, 0);
2685			success = 1;
2686			break;
2687		}
2688		if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
2689			break;
2690		CSR_WRITE_2(sc, AN_SW1, 0);
2691
2692	} while (dwelltime > 0);
2693	return success;
2694}
2695
2696/*
2697 * Put character to SWS0 wait for dwelltime x 50us for  echo .
2698 */
2699
2700static int
2701flashpchar(ifp, byte, dwelltime)
2702	struct ifnet   *ifp;
2703	int             byte;
2704	int             dwelltime;
2705{
2706	int             echo;
2707	int             pollbusy, waittime;
2708	struct an_softc *sc = ifp->if_softc;
2709
2710	byte |= 0x8000;
2711
2712	if (dwelltime == 0)
2713		dwelltime = 200;
2714
2715	waittime = dwelltime;
2716
2717	/*
2718	 * Wait for busy bit d15 to go false indicating buffer empty
2719	 */
2720	do {
2721		pollbusy = CSR_READ_2(sc, AN_SW0);
2722
2723		if (pollbusy & 0x8000) {
2724			FLASH_DELAY(50);
2725			waittime -= 50;
2726			continue;
2727		} else
2728			break;
2729	}
2730	while (waittime >= 0);
2731
2732	/* timeout for busy clear wait */
2733
2734	if (waittime <= 0) {
2735		printf("an%d: flash putchar busywait timeout! \n",
2736		       sc->an_unit);
2737		return -1;
2738	}
2739	/*
2740	 * Port is clear now write byte and wait for it to echo back
2741	 */
2742	do {
2743		CSR_WRITE_2(sc, AN_SW0, byte);
2744		FLASH_DELAY(50);
2745		dwelltime -= 50;
2746		echo = CSR_READ_2(sc, AN_SW1);
2747	} while (dwelltime >= 0 && echo != byte);
2748
2749
2750	CSR_WRITE_2(sc, AN_SW1, 0);
2751
2752	return echo == byte;
2753}
2754
2755/*
2756 * Transfer 32k of firmware data from user buffer to our buffer and send to
2757 * the card
2758 */
2759
2760static char     flashbuffer[1024 * 38];	/* RAW Buffer for flash will be
2761					 * dynamic next */
2762
2763static int
2764flashputbuf(ifp)
2765	struct ifnet   *ifp;
2766{
2767	unsigned short *bufp;
2768	int             nwords;
2769	struct an_softc *sc = ifp->if_softc;
2770
2771	/* Write stuff */
2772
2773	bufp = (unsigned short *)flashbuffer;
2774
2775	CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
2776	CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
2777
2778	for (nwords = 0; nwords != 16384; nwords++) {
2779		CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
2780	}
2781
2782	CSR_WRITE_2(sc, AN_SW0, 0x8000);
2783
2784	return 0;
2785}
2786
2787/*
2788 * After flashing restart the card.
2789 */
2790
2791static int
2792flashrestart(ifp)
2793	struct ifnet   *ifp;
2794{
2795	int             status = 0;
2796	struct an_softc *sc = ifp->if_softc;
2797
2798	FLASH_DELAY(1024);		/* Added 12/7/00 */
2799
2800	an_init(sc);
2801
2802	FLASH_DELAY(1024);		/* Added 12/7/00 */
2803	return status;
2804}
2805
2806/*
2807 * Entry point for flash ioclt.
2808 */
2809
2810static int
2811flashcard(ifp, l_ioctl)
2812	struct ifnet   *ifp;
2813	struct aironet_ioctl *l_ioctl;
2814{
2815	int             z = 0, status;
2816	struct an_softc	*sc;
2817
2818	sc = ifp->if_softc;
2819	status = l_ioctl->command;
2820
2821	switch (l_ioctl->command) {
2822	case AIROFLSHRST:
2823		return cmdreset(ifp);
2824		break;
2825	case AIROFLSHSTFL:
2826		return setflashmode(ifp);
2827		break;
2828	case AIROFLSHGCHR:	/* Get char from aux */
2829		copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
2830		z = *(int *)&sc->areq;
2831		if ((status = flashgchar(ifp, z, 8000)) == 1)
2832			return 0;
2833		else
2834			return -1;
2835		break;
2836	case AIROFLSHPCHR:	/* Send char to card. */
2837		copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
2838		z = *(int *)&sc->areq;
2839		if ((status = flashpchar(ifp, z, 8000)) == -1)
2840			return -EIO;
2841		else
2842			return 0;
2843		break;
2844	case AIROFLPUTBUF:	/* Send 32k to card */
2845		if (l_ioctl->len > sizeof(flashbuffer)) {
2846			printf("an%d: Buffer to big, %x %zx\n", sc->an_unit,
2847			       l_ioctl->len, sizeof(flashbuffer));
2848			return -EINVAL;
2849		}
2850		copyin(l_ioctl->data, &flashbuffer, l_ioctl->len);
2851
2852		if ((status = flashputbuf(ifp)) != 0)
2853			return -EIO;
2854		else
2855			return 0;
2856		break;
2857	case AIRORESTART:
2858		if ((status = flashrestart(ifp)) != 0) {
2859			printf("an%d: FLASHRESTART returned %d\n",
2860			       sc->an_unit, status);
2861			return -EIO;
2862		} else
2863			return 0;
2864
2865		break;
2866	default:
2867		return -EINVAL;
2868	}
2869
2870	return -EINVAL;
2871}
2872
2873