if_ale.c revision 295735
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ale/if_ale.c 295735 2016-02-18 01:24:10Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/module.h>
41#include <sys/rman.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_var.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_llc.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57#include <net/if_vlan_var.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/ip.h>
62#include <netinet/tcp.h>
63
64#include <dev/mii/mii.h>
65#include <dev/mii/miivar.h>
66
67#include <dev/pci/pcireg.h>
68#include <dev/pci/pcivar.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72
73#include <dev/ale/if_alereg.h>
74#include <dev/ale/if_alevar.h>
75
76/* "device miibus" required.  See GENERIC if you get errors here. */
77#include "miibus_if.h"
78
79/* For more information about Tx checksum offload issues see ale_encap(). */
80#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(ale, pci, 1, 1, 1);
83MODULE_DEPEND(ale, ether, 1, 1, 1);
84MODULE_DEPEND(ale, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
90TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static const struct ale_dev {
96	uint16_t	ale_vendorid;
97	uint16_t	ale_deviceid;
98	const char	*ale_name;
99} ale_devs[] = {
100    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
101    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
102};
103
104static int	ale_attach(device_t);
105static int	ale_check_boundary(struct ale_softc *);
106static int	ale_detach(device_t);
107static int	ale_dma_alloc(struct ale_softc *);
108static void	ale_dma_free(struct ale_softc *);
109static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
110static int	ale_encap(struct ale_softc *, struct mbuf **);
111static void	ale_get_macaddr(struct ale_softc *);
112static void	ale_init(void *);
113static void	ale_init_locked(struct ale_softc *);
114static void	ale_init_rx_pages(struct ale_softc *);
115static void	ale_init_tx_ring(struct ale_softc *);
116static void	ale_int_task(void *, int);
117static int	ale_intr(void *);
118static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
119static void	ale_mac_config(struct ale_softc *);
120static int	ale_miibus_readreg(device_t, int, int);
121static void	ale_miibus_statchg(device_t);
122static int	ale_miibus_writereg(device_t, int, int, int);
123static int	ale_mediachange(struct ifnet *);
124static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
125static void	ale_phy_reset(struct ale_softc *);
126static int	ale_probe(device_t);
127static void	ale_reset(struct ale_softc *);
128static int	ale_resume(device_t);
129static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
130    uint32_t, uint32_t *);
131static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
132static int	ale_rxeof(struct ale_softc *sc, int);
133static void	ale_rxfilter(struct ale_softc *);
134static void	ale_rxvlan(struct ale_softc *);
135static void	ale_setlinkspeed(struct ale_softc *);
136static void	ale_setwol(struct ale_softc *);
137static int	ale_shutdown(device_t);
138static void	ale_start(struct ifnet *);
139static void	ale_start_locked(struct ifnet *);
140static void	ale_stats_clear(struct ale_softc *);
141static void	ale_stats_update(struct ale_softc *);
142static void	ale_stop(struct ale_softc *);
143static void	ale_stop_mac(struct ale_softc *);
144static int	ale_suspend(device_t);
145static void	ale_sysctl_node(struct ale_softc *);
146static void	ale_tick(void *);
147static void	ale_txeof(struct ale_softc *);
148static void	ale_watchdog(struct ale_softc *);
149static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
151static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
152
153static device_method_t ale_methods[] = {
154	/* Device interface. */
155	DEVMETHOD(device_probe,		ale_probe),
156	DEVMETHOD(device_attach,	ale_attach),
157	DEVMETHOD(device_detach,	ale_detach),
158	DEVMETHOD(device_shutdown,	ale_shutdown),
159	DEVMETHOD(device_suspend,	ale_suspend),
160	DEVMETHOD(device_resume,	ale_resume),
161
162	/* MII interface. */
163	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
164	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
165	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
166
167	DEVMETHOD_END
168};
169
170static driver_t ale_driver = {
171	"ale",
172	ale_methods,
173	sizeof(struct ale_softc)
174};
175
176static devclass_t ale_devclass;
177
178DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
179DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
180
181static struct resource_spec ale_res_spec_mem[] = {
182	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
183	{ -1,			0,		0 }
184};
185
186static struct resource_spec ale_irq_spec_legacy[] = {
187	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
188	{ -1,			0,		0 }
189};
190
191static struct resource_spec ale_irq_spec_msi[] = {
192	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
193	{ -1,			0,		0 }
194};
195
196static struct resource_spec ale_irq_spec_msix[] = {
197	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198	{ -1,			0,		0 }
199};
200
201static int
202ale_miibus_readreg(device_t dev, int phy, int reg)
203{
204	struct ale_softc *sc;
205	uint32_t v;
206	int i;
207
208	sc = device_get_softc(dev);
209
210	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
213		DELAY(5);
214		v = CSR_READ_4(sc, ALE_MDIO);
215		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216			break;
217	}
218
219	if (i == 0) {
220		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
221		return (0);
222	}
223
224	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225}
226
227static int
228ale_miibus_writereg(device_t dev, int phy, int reg, int val)
229{
230	struct ale_softc *sc;
231	uint32_t v;
232	int i;
233
234	sc = device_get_softc(dev);
235
236	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
237	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
238	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
239	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
240		DELAY(5);
241		v = CSR_READ_4(sc, ALE_MDIO);
242		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
243			break;
244	}
245
246	if (i == 0)
247		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
248
249	return (0);
250}
251
252static void
253ale_miibus_statchg(device_t dev)
254{
255	struct ale_softc *sc;
256	struct mii_data *mii;
257	struct ifnet *ifp;
258	uint32_t reg;
259
260	sc = device_get_softc(dev);
261	mii = device_get_softc(sc->ale_miibus);
262	ifp = sc->ale_ifp;
263	if (mii == NULL || ifp == NULL ||
264	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
265		return;
266
267	sc->ale_flags &= ~ALE_FLAG_LINK;
268	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
269	    (IFM_ACTIVE | IFM_AVALID)) {
270		switch (IFM_SUBTYPE(mii->mii_media_active)) {
271		case IFM_10_T:
272		case IFM_100_TX:
273			sc->ale_flags |= ALE_FLAG_LINK;
274			break;
275		case IFM_1000_T:
276			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
277				sc->ale_flags |= ALE_FLAG_LINK;
278			break;
279		default:
280			break;
281		}
282	}
283
284	/* Stop Rx/Tx MACs. */
285	ale_stop_mac(sc);
286
287	/* Program MACs with resolved speed/duplex/flow-control. */
288	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
289		ale_mac_config(sc);
290		/* Reenable Tx/Rx MACs. */
291		reg = CSR_READ_4(sc, ALE_MAC_CFG);
292		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
293		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
294	}
295}
296
297static void
298ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
299{
300	struct ale_softc *sc;
301	struct mii_data *mii;
302
303	sc = ifp->if_softc;
304	ALE_LOCK(sc);
305	if ((ifp->if_flags & IFF_UP) == 0) {
306		ALE_UNLOCK(sc);
307		return;
308	}
309	mii = device_get_softc(sc->ale_miibus);
310
311	mii_pollstat(mii);
312	ifmr->ifm_status = mii->mii_media_status;
313	ifmr->ifm_active = mii->mii_media_active;
314	ALE_UNLOCK(sc);
315}
316
317static int
318ale_mediachange(struct ifnet *ifp)
319{
320	struct ale_softc *sc;
321	struct mii_data *mii;
322	struct mii_softc *miisc;
323	int error;
324
325	sc = ifp->if_softc;
326	ALE_LOCK(sc);
327	mii = device_get_softc(sc->ale_miibus);
328	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
329		PHY_RESET(miisc);
330	error = mii_mediachg(mii);
331	ALE_UNLOCK(sc);
332
333	return (error);
334}
335
336static int
337ale_probe(device_t dev)
338{
339	const struct ale_dev *sp;
340	int i;
341	uint16_t vendor, devid;
342
343	vendor = pci_get_vendor(dev);
344	devid = pci_get_device(dev);
345	sp = ale_devs;
346	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
347		if (vendor == sp->ale_vendorid &&
348		    devid == sp->ale_deviceid) {
349			device_set_desc(dev, sp->ale_name);
350			return (BUS_PROBE_DEFAULT);
351		}
352		sp++;
353	}
354
355	return (ENXIO);
356}
357
358static void
359ale_get_macaddr(struct ale_softc *sc)
360{
361	uint32_t ea[2], reg;
362	int i, vpdc;
363
364	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
365	if ((reg & SPI_VPD_ENB) != 0) {
366		reg &= ~SPI_VPD_ENB;
367		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
368	}
369
370	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
371		/*
372		 * PCI VPD capability found, let TWSI reload EEPROM.
373		 * This will set ethernet address of controller.
374		 */
375		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
376		    TWSI_CTRL_SW_LD_START);
377		for (i = 100; i > 0; i--) {
378			DELAY(1000);
379			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
380			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
381				break;
382		}
383		if (i == 0)
384			device_printf(sc->ale_dev,
385			    "reloading EEPROM timeout!\n");
386	} else {
387		if (bootverbose)
388			device_printf(sc->ale_dev,
389			    "PCI VPD capability not found!\n");
390	}
391
392	ea[0] = CSR_READ_4(sc, ALE_PAR0);
393	ea[1] = CSR_READ_4(sc, ALE_PAR1);
394	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
395	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
396	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
397	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
398	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
399	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
400}
401
402static void
403ale_phy_reset(struct ale_softc *sc)
404{
405
406	/* Reset magic from Linux. */
407	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
408	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
409	    GPHY_CTRL_PHY_PLL_ON);
410	DELAY(1000);
411	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
412	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
413	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
414	DELAY(1000);
415
416#define	ATPHY_DBG_ADDR		0x1D
417#define	ATPHY_DBG_DATA		0x1E
418
419	/* Enable hibernation mode. */
420	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
421	    ATPHY_DBG_ADDR, 0x0B);
422	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
423	    ATPHY_DBG_DATA, 0xBC00);
424	/* Set Class A/B for all modes. */
425	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
426	    ATPHY_DBG_ADDR, 0x00);
427	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
428	    ATPHY_DBG_DATA, 0x02EF);
429	/* Enable 10BT power saving. */
430	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
431	    ATPHY_DBG_ADDR, 0x12);
432	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
433	    ATPHY_DBG_DATA, 0x4C04);
434	/* Adjust 1000T power. */
435	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
436	    ATPHY_DBG_ADDR, 0x04);
437	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
438	    ATPHY_DBG_ADDR, 0x8BBB);
439	/* 10BT center tap voltage. */
440	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
441	    ATPHY_DBG_ADDR, 0x05);
442	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
443	    ATPHY_DBG_ADDR, 0x2C46);
444
445#undef	ATPHY_DBG_ADDR
446#undef	ATPHY_DBG_DATA
447	DELAY(1000);
448}
449
450static int
451ale_attach(device_t dev)
452{
453	struct ale_softc *sc;
454	struct ifnet *ifp;
455	uint16_t burst;
456	int error, i, msic, msixc, pmc;
457	uint32_t rxf_len, txf_len;
458
459	error = 0;
460	sc = device_get_softc(dev);
461	sc->ale_dev = dev;
462
463	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
464	    MTX_DEF);
465	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
466	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
467
468	/* Map the device. */
469	pci_enable_busmaster(dev);
470	sc->ale_res_spec = ale_res_spec_mem;
471	sc->ale_irq_spec = ale_irq_spec_legacy;
472	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
473	if (error != 0) {
474		device_printf(dev, "cannot allocate memory resources.\n");
475		goto fail;
476	}
477
478	/* Set PHY address. */
479	sc->ale_phyaddr = ALE_PHY_ADDR;
480
481	/* Reset PHY. */
482	ale_phy_reset(sc);
483
484	/* Reset the ethernet controller. */
485	ale_reset(sc);
486
487	/* Get PCI and chip id/revision. */
488	sc->ale_rev = pci_get_revid(dev);
489	if (sc->ale_rev >= 0xF0) {
490		/* L2E Rev. B. AR8114 */
491		sc->ale_flags |= ALE_FLAG_FASTETHER;
492	} else {
493		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
494			/* L1E AR8121 */
495			sc->ale_flags |= ALE_FLAG_JUMBO;
496		} else {
497			/* L2E Rev. A. AR8113 */
498			sc->ale_flags |= ALE_FLAG_FASTETHER;
499		}
500	}
501	/*
502	 * All known controllers seems to require 4 bytes alignment
503	 * of Tx buffers to make Tx checksum offload with custom
504	 * checksum generation method work.
505	 */
506	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
507	/*
508	 * All known controllers seems to have issues on Rx checksum
509	 * offload for fragmented IP datagrams.
510	 */
511	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
512	/*
513	 * Don't use Tx CMB. It is known to cause RRS update failure
514	 * under certain circumstances. Typical phenomenon of the
515	 * issue would be unexpected sequence number encountered in
516	 * Rx handler.
517	 */
518	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
519	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
520	    MASTER_CHIP_REV_SHIFT;
521	if (bootverbose) {
522		device_printf(dev, "PCI device revision : 0x%04x\n",
523		    sc->ale_rev);
524		device_printf(dev, "Chip id/revision : 0x%04x\n",
525		    sc->ale_chip_rev);
526	}
527	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
528	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
529	/*
530	 * Uninitialized hardware returns an invalid chip id/revision
531	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
532	 */
533	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
534	    rxf_len == 0xFFFFFFF) {
535		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
536		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
537		    txf_len, rxf_len);
538		error = ENXIO;
539		goto fail;
540	}
541	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
542
543	/* Allocate IRQ resources. */
544	msixc = pci_msix_count(dev);
545	msic = pci_msi_count(dev);
546	if (bootverbose) {
547		device_printf(dev, "MSIX count : %d\n", msixc);
548		device_printf(dev, "MSI count : %d\n", msic);
549	}
550
551	/* Prefer MSIX over MSI. */
552	if (msix_disable == 0 || msi_disable == 0) {
553		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
554		    pci_alloc_msix(dev, &msixc) == 0) {
555			if (msixc == ALE_MSIX_MESSAGES) {
556				device_printf(dev, "Using %d MSIX messages.\n",
557				    msixc);
558				sc->ale_flags |= ALE_FLAG_MSIX;
559				sc->ale_irq_spec = ale_irq_spec_msix;
560			} else
561				pci_release_msi(dev);
562		}
563		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
564		    msic == ALE_MSI_MESSAGES &&
565		    pci_alloc_msi(dev, &msic) == 0) {
566			if (msic == ALE_MSI_MESSAGES) {
567				device_printf(dev, "Using %d MSI messages.\n",
568				    msic);
569				sc->ale_flags |= ALE_FLAG_MSI;
570				sc->ale_irq_spec = ale_irq_spec_msi;
571			} else
572				pci_release_msi(dev);
573		}
574	}
575
576	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
577	if (error != 0) {
578		device_printf(dev, "cannot allocate IRQ resources.\n");
579		goto fail;
580	}
581
582	/* Get DMA parameters from PCIe device control register. */
583	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
584		sc->ale_flags |= ALE_FLAG_PCIE;
585		burst = pci_read_config(dev, i + 0x08, 2);
586		/* Max read request size. */
587		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
588		    DMA_CFG_RD_BURST_SHIFT;
589		/* Max payload size. */
590		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
591		    DMA_CFG_WR_BURST_SHIFT;
592		if (bootverbose) {
593			device_printf(dev, "Read request size : %d bytes.\n",
594			    128 << ((burst >> 12) & 0x07));
595			device_printf(dev, "TLP payload size : %d bytes.\n",
596			    128 << ((burst >> 5) & 0x07));
597		}
598	} else {
599		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
600		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
601	}
602
603	/* Create device sysctl node. */
604	ale_sysctl_node(sc);
605
606	if ((error = ale_dma_alloc(sc)) != 0)
607		goto fail;
608
609	/* Load station address. */
610	ale_get_macaddr(sc);
611
612	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
613	if (ifp == NULL) {
614		device_printf(dev, "cannot allocate ifnet structure.\n");
615		error = ENXIO;
616		goto fail;
617	}
618
619	ifp->if_softc = sc;
620	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
621	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
622	ifp->if_ioctl = ale_ioctl;
623	ifp->if_start = ale_start;
624	ifp->if_init = ale_init;
625	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
626	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
627	IFQ_SET_READY(&ifp->if_snd);
628	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
629	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
630	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
631		sc->ale_flags |= ALE_FLAG_PMCAP;
632		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
633	}
634	ifp->if_capenable = ifp->if_capabilities;
635
636	/* Set up MII bus. */
637	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
638	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
639	    MIIF_DOPAUSE);
640	if (error != 0) {
641		device_printf(dev, "attaching PHYs failed\n");
642		goto fail;
643	}
644
645	ether_ifattach(ifp, sc->ale_eaddr);
646
647	/* VLAN capability setup. */
648	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
649	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
650	ifp->if_capenable = ifp->if_capabilities;
651	/*
652	 * Even though controllers supported by ale(3) have Rx checksum
653	 * offload bug the workaround for fragmented frames seemed to
654	 * work so far. However it seems Rx checksum offload does not
655	 * work under certain conditions. So disable Rx checksum offload
656	 * until I find more clue about it but allow users to override it.
657	 */
658	ifp->if_capenable &= ~IFCAP_RXCSUM;
659
660	/* Tell the upper layer(s) we support long frames. */
661	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
662
663	/* Create local taskq. */
664	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
665	    taskqueue_thread_enqueue, &sc->ale_tq);
666	if (sc->ale_tq == NULL) {
667		device_printf(dev, "could not create taskqueue.\n");
668		ether_ifdetach(ifp);
669		error = ENXIO;
670		goto fail;
671	}
672	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
673	    device_get_nameunit(sc->ale_dev));
674
675	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
676		msic = ALE_MSIX_MESSAGES;
677	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
678		msic = ALE_MSI_MESSAGES;
679	else
680		msic = 1;
681	for (i = 0; i < msic; i++) {
682		error = bus_setup_intr(dev, sc->ale_irq[i],
683		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
684		    &sc->ale_intrhand[i]);
685		if (error != 0)
686			break;
687	}
688	if (error != 0) {
689		device_printf(dev, "could not set up interrupt handler.\n");
690		taskqueue_free(sc->ale_tq);
691		sc->ale_tq = NULL;
692		ether_ifdetach(ifp);
693		goto fail;
694	}
695
696fail:
697	if (error != 0)
698		ale_detach(dev);
699
700	return (error);
701}
702
703static int
704ale_detach(device_t dev)
705{
706	struct ale_softc *sc;
707	struct ifnet *ifp;
708	int i, msic;
709
710	sc = device_get_softc(dev);
711
712	ifp = sc->ale_ifp;
713	if (device_is_attached(dev)) {
714		ether_ifdetach(ifp);
715		ALE_LOCK(sc);
716		ale_stop(sc);
717		ALE_UNLOCK(sc);
718		callout_drain(&sc->ale_tick_ch);
719		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
720	}
721
722	if (sc->ale_tq != NULL) {
723		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
724		taskqueue_free(sc->ale_tq);
725		sc->ale_tq = NULL;
726	}
727
728	if (sc->ale_miibus != NULL) {
729		device_delete_child(dev, sc->ale_miibus);
730		sc->ale_miibus = NULL;
731	}
732	bus_generic_detach(dev);
733	ale_dma_free(sc);
734
735	if (ifp != NULL) {
736		if_free(ifp);
737		sc->ale_ifp = NULL;
738	}
739
740	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
741		msic = ALE_MSIX_MESSAGES;
742	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
743		msic = ALE_MSI_MESSAGES;
744	else
745		msic = 1;
746	for (i = 0; i < msic; i++) {
747		if (sc->ale_intrhand[i] != NULL) {
748			bus_teardown_intr(dev, sc->ale_irq[i],
749			    sc->ale_intrhand[i]);
750			sc->ale_intrhand[i] = NULL;
751		}
752	}
753
754	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
755	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
756		pci_release_msi(dev);
757	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
758	mtx_destroy(&sc->ale_mtx);
759
760	return (0);
761}
762
763#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
764	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
765
766#if __FreeBSD_version >= 900030
767#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
768	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
769#elif __FreeBSD_version > 800000
770#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
771	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
772#else
773#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
774	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
775#endif
776
777static void
778ale_sysctl_node(struct ale_softc *sc)
779{
780	struct sysctl_ctx_list *ctx;
781	struct sysctl_oid_list *child, *parent;
782	struct sysctl_oid *tree;
783	struct ale_hw_stats *stats;
784	int error;
785
786	stats = &sc->ale_stats;
787	ctx = device_get_sysctl_ctx(sc->ale_dev);
788	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
789
790	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
791	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
792	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
793	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
794	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
795	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
796	/* Pull in device tunables. */
797	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
798	error = resource_int_value(device_get_name(sc->ale_dev),
799	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
800	if (error == 0) {
801		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
802		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
803			device_printf(sc->ale_dev, "int_rx_mod value out of "
804			    "range; using default: %d\n",
805			    ALE_IM_RX_TIMER_DEFAULT);
806			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
807		}
808	}
809	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
810	error = resource_int_value(device_get_name(sc->ale_dev),
811	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
812	if (error == 0) {
813		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
814		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
815			device_printf(sc->ale_dev, "int_tx_mod value out of "
816			    "range; using default: %d\n",
817			    ALE_IM_TX_TIMER_DEFAULT);
818			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
819		}
820	}
821	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
822	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
823	    sysctl_hw_ale_proc_limit, "I",
824	    "max number of Rx events to process");
825	/* Pull in device tunables. */
826	sc->ale_process_limit = ALE_PROC_DEFAULT;
827	error = resource_int_value(device_get_name(sc->ale_dev),
828	    device_get_unit(sc->ale_dev), "process_limit",
829	    &sc->ale_process_limit);
830	if (error == 0) {
831		if (sc->ale_process_limit < ALE_PROC_MIN ||
832		    sc->ale_process_limit > ALE_PROC_MAX) {
833			device_printf(sc->ale_dev,
834			    "process_limit value out of range; "
835			    "using default: %d\n", ALE_PROC_DEFAULT);
836			sc->ale_process_limit = ALE_PROC_DEFAULT;
837		}
838	}
839
840	/* Misc statistics. */
841	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
842	    &stats->reset_brk_seq,
843	    "Controller resets due to broken Rx sequnce number");
844
845	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
846	    NULL, "ATE statistics");
847	parent = SYSCTL_CHILDREN(tree);
848
849	/* Rx statistics. */
850	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
851	    NULL, "Rx MAC statistics");
852	child = SYSCTL_CHILDREN(tree);
853	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
854	    &stats->rx_frames, "Good frames");
855	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
856	    &stats->rx_bcast_frames, "Good broadcast frames");
857	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
858	    &stats->rx_mcast_frames, "Good multicast frames");
859	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
860	    &stats->rx_pause_frames, "Pause control frames");
861	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
862	    &stats->rx_control_frames, "Control frames");
863	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
864	    &stats->rx_crcerrs, "CRC errors");
865	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
866	    &stats->rx_lenerrs, "Frames with length mismatched");
867	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
868	    &stats->rx_bytes, "Good octets");
869	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
870	    &stats->rx_bcast_bytes, "Good broadcast octets");
871	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
872	    &stats->rx_mcast_bytes, "Good multicast octets");
873	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
874	    &stats->rx_runts, "Too short frames");
875	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
876	    &stats->rx_fragments, "Fragmented frames");
877	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
878	    &stats->rx_pkts_64, "64 bytes frames");
879	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
880	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
881	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
882	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
883	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
884	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
885	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
886	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
887	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
888	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
889	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
890	    &stats->rx_pkts_1519_max, "1519 to max frames");
891	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
892	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
893	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
894	    &stats->rx_fifo_oflows, "FIFO overflows");
895	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
896	    &stats->rx_rrs_errs, "Return status write-back errors");
897	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
898	    &stats->rx_alignerrs, "Alignment errors");
899	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
900	    &stats->rx_pkts_filtered,
901	    "Frames dropped due to address filtering");
902
903	/* Tx statistics. */
904	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
905	    NULL, "Tx MAC statistics");
906	child = SYSCTL_CHILDREN(tree);
907	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
908	    &stats->tx_frames, "Good frames");
909	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
910	    &stats->tx_bcast_frames, "Good broadcast frames");
911	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
912	    &stats->tx_mcast_frames, "Good multicast frames");
913	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
914	    &stats->tx_pause_frames, "Pause control frames");
915	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
916	    &stats->tx_control_frames, "Control frames");
917	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
918	    &stats->tx_excess_defer, "Frames with excessive derferrals");
919	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
920	    &stats->tx_excess_defer, "Frames with derferrals");
921	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
922	    &stats->tx_bytes, "Good octets");
923	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
924	    &stats->tx_bcast_bytes, "Good broadcast octets");
925	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
926	    &stats->tx_mcast_bytes, "Good multicast octets");
927	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
928	    &stats->tx_pkts_64, "64 bytes frames");
929	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
930	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
931	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
932	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
933	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
934	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
935	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
936	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
937	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
938	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
939	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
940	    &stats->tx_pkts_1519_max, "1519 to max frames");
941	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
942	    &stats->tx_single_colls, "Single collisions");
943	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
944	    &stats->tx_multi_colls, "Multiple collisions");
945	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
946	    &stats->tx_late_colls, "Late collisions");
947	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
948	    &stats->tx_excess_colls, "Excessive collisions");
949	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
950	    &stats->tx_underrun, "FIFO underruns");
951	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
952	    &stats->tx_desc_underrun, "Descriptor write-back errors");
953	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
954	    &stats->tx_lenerrs, "Frames with length mismatched");
955	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
956	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
957}
958
959#undef ALE_SYSCTL_STAT_ADD32
960#undef ALE_SYSCTL_STAT_ADD64
961
962struct ale_dmamap_arg {
963	bus_addr_t	ale_busaddr;
964};
965
966static void
967ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
968{
969	struct ale_dmamap_arg *ctx;
970
971	if (error != 0)
972		return;
973
974	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
975
976	ctx = (struct ale_dmamap_arg *)arg;
977	ctx->ale_busaddr = segs[0].ds_addr;
978}
979
980/*
981 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
982 * which specifies high address region of DMA blocks. Therefore these
983 * blocks should have the same high address of given 4GB address
984 * space(i.e. crossing 4GB boundary is not allowed).
985 */
986static int
987ale_check_boundary(struct ale_softc *sc)
988{
989	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
990	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
991
992	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
993	    sc->ale_pagesize;
994	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
995	    sc->ale_pagesize;
996	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
997	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
998	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
999	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
1000
1001	if ((ALE_ADDR_HI(tx_ring_end) !=
1002	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
1003	    (ALE_ADDR_HI(rx_page_end[0]) !=
1004	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
1005	    (ALE_ADDR_HI(rx_page_end[1]) !=
1006	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1007	    (ALE_ADDR_HI(tx_cmb_end) !=
1008	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1009	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1010	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1011	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1012	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1013		return (EFBIG);
1014
1015	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1016	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1017	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1018	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1019	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1020		return (EFBIG);
1021
1022	return (0);
1023}
1024
1025static int
1026ale_dma_alloc(struct ale_softc *sc)
1027{
1028	struct ale_txdesc *txd;
1029	bus_addr_t lowaddr;
1030	struct ale_dmamap_arg ctx;
1031	int error, guard_size, i;
1032
1033	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1034		guard_size = ALE_JUMBO_FRAMELEN;
1035	else
1036		guard_size = ALE_MAX_FRAMELEN;
1037	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1038	    ALE_RX_PAGE_ALIGN);
1039	lowaddr = BUS_SPACE_MAXADDR;
1040again:
1041	/* Create parent DMA tag. */
1042	error = bus_dma_tag_create(
1043	    bus_get_dma_tag(sc->ale_dev), /* parent */
1044	    1, 0,			/* alignment, boundary */
1045	    lowaddr,			/* lowaddr */
1046	    BUS_SPACE_MAXADDR,		/* highaddr */
1047	    NULL, NULL,			/* filter, filterarg */
1048	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1049	    0,				/* nsegments */
1050	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1051	    0,				/* flags */
1052	    NULL, NULL,			/* lockfunc, lockarg */
1053	    &sc->ale_cdata.ale_parent_tag);
1054	if (error != 0) {
1055		device_printf(sc->ale_dev,
1056		    "could not create parent DMA tag.\n");
1057		goto fail;
1058	}
1059
1060	/* Create DMA tag for Tx descriptor ring. */
1061	error = bus_dma_tag_create(
1062	    sc->ale_cdata.ale_parent_tag, /* parent */
1063	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1064	    BUS_SPACE_MAXADDR,		/* lowaddr */
1065	    BUS_SPACE_MAXADDR,		/* highaddr */
1066	    NULL, NULL,			/* filter, filterarg */
1067	    ALE_TX_RING_SZ,		/* maxsize */
1068	    1,				/* nsegments */
1069	    ALE_TX_RING_SZ,		/* maxsegsize */
1070	    0,				/* flags */
1071	    NULL, NULL,			/* lockfunc, lockarg */
1072	    &sc->ale_cdata.ale_tx_ring_tag);
1073	if (error != 0) {
1074		device_printf(sc->ale_dev,
1075		    "could not create Tx ring DMA tag.\n");
1076		goto fail;
1077	}
1078
1079	/* Create DMA tag for Rx pages. */
1080	for (i = 0; i < ALE_RX_PAGES; i++) {
1081		error = bus_dma_tag_create(
1082		    sc->ale_cdata.ale_parent_tag, /* parent */
1083		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1084		    BUS_SPACE_MAXADDR,		/* lowaddr */
1085		    BUS_SPACE_MAXADDR,		/* highaddr */
1086		    NULL, NULL,			/* filter, filterarg */
1087		    sc->ale_pagesize,		/* maxsize */
1088		    1,				/* nsegments */
1089		    sc->ale_pagesize,		/* maxsegsize */
1090		    0,				/* flags */
1091		    NULL, NULL,			/* lockfunc, lockarg */
1092		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1093		if (error != 0) {
1094			device_printf(sc->ale_dev,
1095			    "could not create Rx page %d DMA tag.\n", i);
1096			goto fail;
1097		}
1098	}
1099
1100	/* Create DMA tag for Tx coalescing message block. */
1101	error = bus_dma_tag_create(
1102	    sc->ale_cdata.ale_parent_tag, /* parent */
1103	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1104	    BUS_SPACE_MAXADDR,		/* lowaddr */
1105	    BUS_SPACE_MAXADDR,		/* highaddr */
1106	    NULL, NULL,			/* filter, filterarg */
1107	    ALE_TX_CMB_SZ,		/* maxsize */
1108	    1,				/* nsegments */
1109	    ALE_TX_CMB_SZ,		/* maxsegsize */
1110	    0,				/* flags */
1111	    NULL, NULL,			/* lockfunc, lockarg */
1112	    &sc->ale_cdata.ale_tx_cmb_tag);
1113	if (error != 0) {
1114		device_printf(sc->ale_dev,
1115		    "could not create Tx CMB DMA tag.\n");
1116		goto fail;
1117	}
1118
1119	/* Create DMA tag for Rx coalescing message block. */
1120	for (i = 0; i < ALE_RX_PAGES; i++) {
1121		error = bus_dma_tag_create(
1122		    sc->ale_cdata.ale_parent_tag, /* parent */
1123		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1124		    BUS_SPACE_MAXADDR,		/* lowaddr */
1125		    BUS_SPACE_MAXADDR,		/* highaddr */
1126		    NULL, NULL,			/* filter, filterarg */
1127		    ALE_RX_CMB_SZ,		/* maxsize */
1128		    1,				/* nsegments */
1129		    ALE_RX_CMB_SZ,		/* maxsegsize */
1130		    0,				/* flags */
1131		    NULL, NULL,			/* lockfunc, lockarg */
1132		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1133		if (error != 0) {
1134			device_printf(sc->ale_dev,
1135			    "could not create Rx page %d CMB DMA tag.\n", i);
1136			goto fail;
1137		}
1138	}
1139
1140	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1141	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1142	    (void **)&sc->ale_cdata.ale_tx_ring,
1143	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1144	    &sc->ale_cdata.ale_tx_ring_map);
1145	if (error != 0) {
1146		device_printf(sc->ale_dev,
1147		    "could not allocate DMA'able memory for Tx ring.\n");
1148		goto fail;
1149	}
1150	ctx.ale_busaddr = 0;
1151	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1152	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1153	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1154	if (error != 0 || ctx.ale_busaddr == 0) {
1155		device_printf(sc->ale_dev,
1156		    "could not load DMA'able memory for Tx ring.\n");
1157		goto fail;
1158	}
1159	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1160
1161	/* Rx pages. */
1162	for (i = 0; i < ALE_RX_PAGES; i++) {
1163		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1164		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1165		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1166		    &sc->ale_cdata.ale_rx_page[i].page_map);
1167		if (error != 0) {
1168			device_printf(sc->ale_dev,
1169			    "could not allocate DMA'able memory for "
1170			    "Rx page %d.\n", i);
1171			goto fail;
1172		}
1173		ctx.ale_busaddr = 0;
1174		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1175		    sc->ale_cdata.ale_rx_page[i].page_map,
1176		    sc->ale_cdata.ale_rx_page[i].page_addr,
1177		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1178		if (error != 0 || ctx.ale_busaddr == 0) {
1179			device_printf(sc->ale_dev,
1180			    "could not load DMA'able memory for "
1181			    "Rx page %d.\n", i);
1182			goto fail;
1183		}
1184		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1185	}
1186
1187	/* Tx CMB. */
1188	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1189	    (void **)&sc->ale_cdata.ale_tx_cmb,
1190	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1191	    &sc->ale_cdata.ale_tx_cmb_map);
1192	if (error != 0) {
1193		device_printf(sc->ale_dev,
1194		    "could not allocate DMA'able memory for Tx CMB.\n");
1195		goto fail;
1196	}
1197	ctx.ale_busaddr = 0;
1198	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1199	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1200	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1201	if (error != 0 || ctx.ale_busaddr == 0) {
1202		device_printf(sc->ale_dev,
1203		    "could not load DMA'able memory for Tx CMB.\n");
1204		goto fail;
1205	}
1206	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1207
1208	/* Rx CMB. */
1209	for (i = 0; i < ALE_RX_PAGES; i++) {
1210		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1211		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1212		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1213		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1214		if (error != 0) {
1215			device_printf(sc->ale_dev, "could not allocate "
1216			    "DMA'able memory for Rx page %d CMB.\n", i);
1217			goto fail;
1218		}
1219		ctx.ale_busaddr = 0;
1220		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1221		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1222		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1223		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1224		if (error != 0 || ctx.ale_busaddr == 0) {
1225			device_printf(sc->ale_dev, "could not load DMA'able "
1226			    "memory for Rx page %d CMB.\n", i);
1227			goto fail;
1228		}
1229		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1230	}
1231
1232	/*
1233	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1234	 * high address region of 64bit DMA address space.
1235	 */
1236	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1237	    (error = ale_check_boundary(sc)) != 0) {
1238		device_printf(sc->ale_dev, "4GB boundary crossed, "
1239		    "switching to 32bit DMA addressing mode.\n");
1240		ale_dma_free(sc);
1241		/*
1242		 * Limit max allowable DMA address space to 32bit
1243		 * and try again.
1244		 */
1245		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1246		goto again;
1247	}
1248
1249	/*
1250	 * Create Tx buffer parent tag.
1251	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1252	 * needs separate parent DMA tag as parent DMA address space
1253	 * could be restricted to be within 32bit address space by
1254	 * 4GB boundary crossing.
1255	 */
1256	error = bus_dma_tag_create(
1257	    bus_get_dma_tag(sc->ale_dev), /* parent */
1258	    1, 0,			/* alignment, boundary */
1259	    BUS_SPACE_MAXADDR,		/* lowaddr */
1260	    BUS_SPACE_MAXADDR,		/* highaddr */
1261	    NULL, NULL,			/* filter, filterarg */
1262	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1263	    0,				/* nsegments */
1264	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1265	    0,				/* flags */
1266	    NULL, NULL,			/* lockfunc, lockarg */
1267	    &sc->ale_cdata.ale_buffer_tag);
1268	if (error != 0) {
1269		device_printf(sc->ale_dev,
1270		    "could not create parent buffer DMA tag.\n");
1271		goto fail;
1272	}
1273
1274	/* Create DMA tag for Tx buffers. */
1275	error = bus_dma_tag_create(
1276	    sc->ale_cdata.ale_buffer_tag, /* parent */
1277	    1, 0,			/* alignment, boundary */
1278	    BUS_SPACE_MAXADDR,		/* lowaddr */
1279	    BUS_SPACE_MAXADDR,		/* highaddr */
1280	    NULL, NULL,			/* filter, filterarg */
1281	    ALE_TSO_MAXSIZE,		/* maxsize */
1282	    ALE_MAXTXSEGS,		/* nsegments */
1283	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1284	    0,				/* flags */
1285	    NULL, NULL,			/* lockfunc, lockarg */
1286	    &sc->ale_cdata.ale_tx_tag);
1287	if (error != 0) {
1288		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1289		goto fail;
1290	}
1291
1292	/* Create DMA maps for Tx buffers. */
1293	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1294		txd = &sc->ale_cdata.ale_txdesc[i];
1295		txd->tx_m = NULL;
1296		txd->tx_dmamap = NULL;
1297		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1298		    &txd->tx_dmamap);
1299		if (error != 0) {
1300			device_printf(sc->ale_dev,
1301			    "could not create Tx dmamap.\n");
1302			goto fail;
1303		}
1304	}
1305
1306fail:
1307	return (error);
1308}
1309
1310static void
1311ale_dma_free(struct ale_softc *sc)
1312{
1313	struct ale_txdesc *txd;
1314	int i;
1315
1316	/* Tx buffers. */
1317	if (sc->ale_cdata.ale_tx_tag != NULL) {
1318		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1319			txd = &sc->ale_cdata.ale_txdesc[i];
1320			if (txd->tx_dmamap != NULL) {
1321				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1322				    txd->tx_dmamap);
1323				txd->tx_dmamap = NULL;
1324			}
1325		}
1326		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1327		sc->ale_cdata.ale_tx_tag = NULL;
1328	}
1329	/* Tx descriptor ring. */
1330	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1331		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1332			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1333			    sc->ale_cdata.ale_tx_ring_map);
1334		if (sc->ale_cdata.ale_tx_ring != NULL)
1335			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1336			    sc->ale_cdata.ale_tx_ring,
1337			    sc->ale_cdata.ale_tx_ring_map);
1338		sc->ale_cdata.ale_tx_ring_paddr = 0;
1339		sc->ale_cdata.ale_tx_ring = NULL;
1340		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1341		sc->ale_cdata.ale_tx_ring_tag = NULL;
1342	}
1343	/* Rx page block. */
1344	for (i = 0; i < ALE_RX_PAGES; i++) {
1345		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1346			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1347				bus_dmamap_unload(
1348				    sc->ale_cdata.ale_rx_page[i].page_tag,
1349				    sc->ale_cdata.ale_rx_page[i].page_map);
1350			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1351				bus_dmamem_free(
1352				    sc->ale_cdata.ale_rx_page[i].page_tag,
1353				    sc->ale_cdata.ale_rx_page[i].page_addr,
1354				    sc->ale_cdata.ale_rx_page[i].page_map);
1355			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1356			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1357			bus_dma_tag_destroy(
1358			    sc->ale_cdata.ale_rx_page[i].page_tag);
1359			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1360		}
1361	}
1362	/* Rx CMB. */
1363	for (i = 0; i < ALE_RX_PAGES; i++) {
1364		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1365			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1366				bus_dmamap_unload(
1367				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1368				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1369			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1370				bus_dmamem_free(
1371				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1372				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1373				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1374			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1375			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1376			bus_dma_tag_destroy(
1377			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1378			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1379		}
1380	}
1381	/* Tx CMB. */
1382	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1383		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1384			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1385			    sc->ale_cdata.ale_tx_cmb_map);
1386		if (sc->ale_cdata.ale_tx_cmb != NULL)
1387			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1388			    sc->ale_cdata.ale_tx_cmb,
1389			    sc->ale_cdata.ale_tx_cmb_map);
1390		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1391		sc->ale_cdata.ale_tx_cmb = NULL;
1392		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1393		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1394	}
1395	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1396		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1397		sc->ale_cdata.ale_buffer_tag = NULL;
1398	}
1399	if (sc->ale_cdata.ale_parent_tag != NULL) {
1400		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1401		sc->ale_cdata.ale_parent_tag = NULL;
1402	}
1403}
1404
1405static int
1406ale_shutdown(device_t dev)
1407{
1408
1409	return (ale_suspend(dev));
1410}
1411
1412/*
1413 * Note, this driver resets the link speed to 10/100Mbps by
1414 * restarting auto-negotiation in suspend/shutdown phase but we
1415 * don't know whether that auto-negotiation would succeed or not
1416 * as driver has no control after powering off/suspend operation.
1417 * If the renegotiation fail WOL may not work. Running at 1Gbps
1418 * will draw more power than 375mA at 3.3V which is specified in
1419 * PCI specification and that would result in complete
1420 * shutdowning power to ethernet controller.
1421 *
1422 * TODO
1423 * Save current negotiated media speed/duplex/flow-control to
1424 * softc and restore the same link again after resuming. PHY
1425 * handling such as power down/resetting to 100Mbps may be better
1426 * handled in suspend method in phy driver.
1427 */
1428static void
1429ale_setlinkspeed(struct ale_softc *sc)
1430{
1431	struct mii_data *mii;
1432	int aneg, i;
1433
1434	mii = device_get_softc(sc->ale_miibus);
1435	mii_pollstat(mii);
1436	aneg = 0;
1437	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1438	    (IFM_ACTIVE | IFM_AVALID)) {
1439		switch IFM_SUBTYPE(mii->mii_media_active) {
1440		case IFM_10_T:
1441		case IFM_100_TX:
1442			return;
1443		case IFM_1000_T:
1444			aneg++;
1445			break;
1446		default:
1447			break;
1448		}
1449	}
1450	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1451	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1452	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1453	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1454	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1455	DELAY(1000);
1456	if (aneg != 0) {
1457		/*
1458		 * Poll link state until ale(4) get a 10/100Mbps link.
1459		 */
1460		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1461			mii_pollstat(mii);
1462			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1463			    == (IFM_ACTIVE | IFM_AVALID)) {
1464				switch (IFM_SUBTYPE(
1465				    mii->mii_media_active)) {
1466				case IFM_10_T:
1467				case IFM_100_TX:
1468					ale_mac_config(sc);
1469					return;
1470				default:
1471					break;
1472				}
1473			}
1474			ALE_UNLOCK(sc);
1475			pause("alelnk", hz);
1476			ALE_LOCK(sc);
1477		}
1478		if (i == MII_ANEGTICKS_GIGE)
1479			device_printf(sc->ale_dev,
1480			    "establishing a link failed, WOL may not work!");
1481	}
1482	/*
1483	 * No link, force MAC to have 100Mbps, full-duplex link.
1484	 * This is the last resort and may/may not work.
1485	 */
1486	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1487	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1488	ale_mac_config(sc);
1489}
1490
1491static void
1492ale_setwol(struct ale_softc *sc)
1493{
1494	struct ifnet *ifp;
1495	uint32_t reg, pmcs;
1496	uint16_t pmstat;
1497	int pmc;
1498
1499	ALE_LOCK_ASSERT(sc);
1500
1501	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1502		/* Disable WOL. */
1503		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1504		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1505		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1506		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1507		/* Force PHY power down. */
1508		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1509		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1510		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1511		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1512		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1513		return;
1514	}
1515
1516	ifp = sc->ale_ifp;
1517	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1518		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1519			ale_setlinkspeed(sc);
1520	}
1521
1522	pmcs = 0;
1523	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1524		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1525	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1526	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1527	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1528	    MAC_CFG_BCAST);
1529	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1530		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1531	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1532		reg |= MAC_CFG_RX_ENB;
1533	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1534
1535	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1536		/* WOL disabled, PHY power down. */
1537		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1538		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1539		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1540		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1541		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1542		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1543		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1544		    GPHY_CTRL_PWDOWN_HW);
1545	}
1546	/* Request PME. */
1547	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1548	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1549	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1550		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1551	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1552}
1553
1554static int
1555ale_suspend(device_t dev)
1556{
1557	struct ale_softc *sc;
1558
1559	sc = device_get_softc(dev);
1560
1561	ALE_LOCK(sc);
1562	ale_stop(sc);
1563	ale_setwol(sc);
1564	ALE_UNLOCK(sc);
1565
1566	return (0);
1567}
1568
1569static int
1570ale_resume(device_t dev)
1571{
1572	struct ale_softc *sc;
1573	struct ifnet *ifp;
1574	int pmc;
1575	uint16_t pmstat;
1576
1577	sc = device_get_softc(dev);
1578
1579	ALE_LOCK(sc);
1580	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1581		/* Disable PME and clear PME status. */
1582		pmstat = pci_read_config(sc->ale_dev,
1583		    pmc + PCIR_POWER_STATUS, 2);
1584		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1585			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1586			pci_write_config(sc->ale_dev,
1587			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1588		}
1589	}
1590	/* Reset PHY. */
1591	ale_phy_reset(sc);
1592	ifp = sc->ale_ifp;
1593	if ((ifp->if_flags & IFF_UP) != 0) {
1594		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1595		ale_init_locked(sc);
1596	}
1597	ALE_UNLOCK(sc);
1598
1599	return (0);
1600}
1601
1602static int
1603ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1604{
1605	struct ale_txdesc *txd, *txd_last;
1606	struct tx_desc *desc;
1607	struct mbuf *m;
1608	struct ip *ip;
1609	struct tcphdr *tcp;
1610	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1611	bus_dmamap_t map;
1612	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1613	int error, i, nsegs, prod, si;
1614
1615	ALE_LOCK_ASSERT(sc);
1616
1617	M_ASSERTPKTHDR((*m_head));
1618
1619	m = *m_head;
1620	ip = NULL;
1621	tcp = NULL;
1622	cflags = vtag = 0;
1623	ip_off = poff = 0;
1624	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1625		/*
1626		 * AR81xx requires offset of TCP/UDP payload in its Tx
1627		 * descriptor to perform hardware Tx checksum offload.
1628		 * Additionally, TSO requires IP/TCP header size and
1629		 * modification of IP/TCP header in order to make TSO
1630		 * engine work. This kind of operation takes many CPU
1631		 * cycles on FreeBSD so fast host CPU is required to
1632		 * get smooth TSO performance.
1633		 */
1634		struct ether_header *eh;
1635
1636		if (M_WRITABLE(m) == 0) {
1637			/* Get a writable copy. */
1638			m = m_dup(*m_head, M_NOWAIT);
1639			/* Release original mbufs. */
1640			m_freem(*m_head);
1641			if (m == NULL) {
1642				*m_head = NULL;
1643				return (ENOBUFS);
1644			}
1645			*m_head = m;
1646		}
1647
1648		/*
1649		 * Buggy-controller requires 4 byte aligned Tx buffer
1650		 * to make custom checksum offload work.
1651		 */
1652		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1653		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1654		    (mtod(m, intptr_t) & 3) != 0) {
1655			m = m_defrag(*m_head, M_NOWAIT);
1656			if (m == NULL) {
1657				m_freem(*m_head);
1658				*m_head = NULL;
1659				return (ENOBUFS);
1660			}
1661			*m_head = m;
1662		}
1663
1664		ip_off = sizeof(struct ether_header);
1665		m = m_pullup(m, ip_off);
1666		if (m == NULL) {
1667			*m_head = NULL;
1668			return (ENOBUFS);
1669		}
1670		eh = mtod(m, struct ether_header *);
1671		/*
1672		 * Check if hardware VLAN insertion is off.
1673		 * Additional check for LLC/SNAP frame?
1674		 */
1675		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1676			ip_off = sizeof(struct ether_vlan_header);
1677			m = m_pullup(m, ip_off);
1678			if (m == NULL) {
1679				*m_head = NULL;
1680				return (ENOBUFS);
1681			}
1682		}
1683		m = m_pullup(m, ip_off + sizeof(struct ip));
1684		if (m == NULL) {
1685			*m_head = NULL;
1686			return (ENOBUFS);
1687		}
1688		ip = (struct ip *)(mtod(m, char *) + ip_off);
1689		poff = ip_off + (ip->ip_hl << 2);
1690		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1691			/*
1692			 * XXX
1693			 * AR81xx requires the first descriptor should
1694			 * not include any TCP playload for TSO case.
1695			 * (i.e. ethernet header + IP + TCP header only)
1696			 * m_pullup(9) above will ensure this too.
1697			 * However it's not correct if the first mbuf
1698			 * of the chain does not use cluster.
1699			 */
1700			m = m_pullup(m, poff + sizeof(struct tcphdr));
1701			if (m == NULL) {
1702				*m_head = NULL;
1703				return (ENOBUFS);
1704			}
1705			ip = (struct ip *)(mtod(m, char *) + ip_off);
1706			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1707			m = m_pullup(m, poff + (tcp->th_off << 2));
1708			if (m == NULL) {
1709				*m_head = NULL;
1710				return (ENOBUFS);
1711			}
1712			/*
1713			 * AR81xx requires IP/TCP header size and offset as
1714			 * well as TCP pseudo checksum which complicates
1715			 * TSO configuration. I guess this comes from the
1716			 * adherence to Microsoft NDIS Large Send
1717			 * specification which requires insertion of
1718			 * pseudo checksum by upper stack. The pseudo
1719			 * checksum that NDIS refers to doesn't include
1720			 * TCP payload length so ale(4) should recompute
1721			 * the pseudo checksum here. Hopefully this wouldn't
1722			 * be much burden on modern CPUs.
1723			 * Reset IP checksum and recompute TCP pseudo
1724			 * checksum as NDIS specification said.
1725			 */
1726			ip->ip_sum = 0;
1727			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1728			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1729		}
1730		*m_head = m;
1731	}
1732
1733	si = prod = sc->ale_cdata.ale_tx_prod;
1734	txd = &sc->ale_cdata.ale_txdesc[prod];
1735	txd_last = txd;
1736	map = txd->tx_dmamap;
1737
1738	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1739	    *m_head, txsegs, &nsegs, 0);
1740	if (error == EFBIG) {
1741		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1742		if (m == NULL) {
1743			m_freem(*m_head);
1744			*m_head = NULL;
1745			return (ENOMEM);
1746		}
1747		*m_head = m;
1748		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1749		    *m_head, txsegs, &nsegs, 0);
1750		if (error != 0) {
1751			m_freem(*m_head);
1752			*m_head = NULL;
1753			return (error);
1754		}
1755	} else if (error != 0)
1756		return (error);
1757	if (nsegs == 0) {
1758		m_freem(*m_head);
1759		*m_head = NULL;
1760		return (EIO);
1761	}
1762
1763	/* Check descriptor overrun. */
1764	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1765		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1766		return (ENOBUFS);
1767	}
1768	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1769
1770	m = *m_head;
1771	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1772		/* Request TSO and set MSS. */
1773		cflags |= ALE_TD_TSO;
1774		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1775		/* Set IP/TCP header size. */
1776		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1777		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1778	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1779		/*
1780		 * AR81xx supports Tx custom checksum offload feature
1781		 * that offloads single 16bit checksum computation.
1782		 * So you can choose one among IP, TCP and UDP.
1783		 * Normally driver sets checksum start/insertion
1784		 * position from the information of TCP/UDP frame as
1785		 * TCP/UDP checksum takes more time than that of IP.
1786		 * However it seems that custom checksum offload
1787		 * requires 4 bytes aligned Tx buffers due to hardware
1788		 * bug.
1789		 * AR81xx also supports explicit Tx checksum computation
1790		 * if it is told that the size of IP header and TCP
1791		 * header(for UDP, the header size does not matter
1792		 * because it's fixed length). However with this scheme
1793		 * TSO does not work so you have to choose one either
1794		 * TSO or explicit Tx checksum offload. I chosen TSO
1795		 * plus custom checksum offload with work-around which
1796		 * will cover most common usage for this consumer
1797		 * ethernet controller. The work-around takes a lot of
1798		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1799		 * boundary, though.
1800		 */
1801		cflags |= ALE_TD_CXSUM;
1802		/* Set checksum start offset. */
1803		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1804		/* Set checksum insertion position of TCP/UDP. */
1805		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1806		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1807	}
1808
1809	/* Configure VLAN hardware tag insertion. */
1810	if ((m->m_flags & M_VLANTAG) != 0) {
1811		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1812		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1813		cflags |= ALE_TD_INSERT_VLAN_TAG;
1814	}
1815
1816	i = 0;
1817	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1818		/*
1819		 * Make sure the first fragment contains
1820		 * only ethernet and IP/TCP header with options.
1821		 */
1822		hdrlen =  poff + (tcp->th_off << 2);
1823		desc = &sc->ale_cdata.ale_tx_ring[prod];
1824		desc->addr = htole64(txsegs[i].ds_addr);
1825		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1826		desc->flags = htole32(cflags);
1827		sc->ale_cdata.ale_tx_cnt++;
1828		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1829		if (m->m_len - hdrlen > 0) {
1830			/* Handle remaining payload of the first fragment. */
1831			desc = &sc->ale_cdata.ale_tx_ring[prod];
1832			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1833			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1834			    vtag);
1835			desc->flags = htole32(cflags);
1836			sc->ale_cdata.ale_tx_cnt++;
1837			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1838		}
1839		i = 1;
1840	}
1841	for (; i < nsegs; i++) {
1842		desc = &sc->ale_cdata.ale_tx_ring[prod];
1843		desc->addr = htole64(txsegs[i].ds_addr);
1844		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1845		desc->flags = htole32(cflags);
1846		sc->ale_cdata.ale_tx_cnt++;
1847		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1848	}
1849	/* Update producer index. */
1850	sc->ale_cdata.ale_tx_prod = prod;
1851	/* Set TSO header on the first descriptor. */
1852	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1853		desc = &sc->ale_cdata.ale_tx_ring[si];
1854		desc->flags |= htole32(ALE_TD_TSO_HDR);
1855	}
1856
1857	/* Finally set EOP on the last descriptor. */
1858	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1859	desc = &sc->ale_cdata.ale_tx_ring[prod];
1860	desc->flags |= htole32(ALE_TD_EOP);
1861
1862	/* Swap dmamap of the first and the last. */
1863	txd = &sc->ale_cdata.ale_txdesc[prod];
1864	map = txd_last->tx_dmamap;
1865	txd_last->tx_dmamap = txd->tx_dmamap;
1866	txd->tx_dmamap = map;
1867	txd->tx_m = m;
1868
1869	/* Sync descriptors. */
1870	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1871	    sc->ale_cdata.ale_tx_ring_map,
1872	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1873
1874	return (0);
1875}
1876
1877static void
1878ale_start(struct ifnet *ifp)
1879{
1880        struct ale_softc *sc;
1881
1882	sc = ifp->if_softc;
1883	ALE_LOCK(sc);
1884	ale_start_locked(ifp);
1885	ALE_UNLOCK(sc);
1886}
1887
1888static void
1889ale_start_locked(struct ifnet *ifp)
1890{
1891        struct ale_softc *sc;
1892        struct mbuf *m_head;
1893	int enq;
1894
1895	sc = ifp->if_softc;
1896
1897	ALE_LOCK_ASSERT(sc);
1898
1899	/* Reclaim transmitted frames. */
1900	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1901		ale_txeof(sc);
1902
1903	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1904	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1905		return;
1906
1907	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1908		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1909		if (m_head == NULL)
1910			break;
1911		/*
1912		 * Pack the data into the transmit ring. If we
1913		 * don't have room, set the OACTIVE flag and wait
1914		 * for the NIC to drain the ring.
1915		 */
1916		if (ale_encap(sc, &m_head)) {
1917			if (m_head == NULL)
1918				break;
1919			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1920			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1921			break;
1922		}
1923
1924		enq++;
1925		/*
1926		 * If there's a BPF listener, bounce a copy of this frame
1927		 * to him.
1928		 */
1929		ETHER_BPF_MTAP(ifp, m_head);
1930	}
1931
1932	if (enq > 0) {
1933		/* Kick. */
1934		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1935		    sc->ale_cdata.ale_tx_prod);
1936		/* Set a timeout in case the chip goes out to lunch. */
1937		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1938	}
1939}
1940
1941static void
1942ale_watchdog(struct ale_softc *sc)
1943{
1944	struct ifnet *ifp;
1945
1946	ALE_LOCK_ASSERT(sc);
1947
1948	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1949		return;
1950
1951	ifp = sc->ale_ifp;
1952	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1953		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1954		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1955		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1956		ale_init_locked(sc);
1957		return;
1958	}
1959	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1960	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1961	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1962	ale_init_locked(sc);
1963	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1964		ale_start_locked(ifp);
1965}
1966
1967static int
1968ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1969{
1970	struct ale_softc *sc;
1971	struct ifreq *ifr;
1972	struct mii_data *mii;
1973	int error, mask;
1974
1975	sc = ifp->if_softc;
1976	ifr = (struct ifreq *)data;
1977	error = 0;
1978	switch (cmd) {
1979	case SIOCSIFMTU:
1980		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1981		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1982		    ifr->ifr_mtu > ETHERMTU))
1983			error = EINVAL;
1984		else if (ifp->if_mtu != ifr->ifr_mtu) {
1985			ALE_LOCK(sc);
1986			ifp->if_mtu = ifr->ifr_mtu;
1987			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1988				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1989				ale_init_locked(sc);
1990			}
1991			ALE_UNLOCK(sc);
1992		}
1993		break;
1994	case SIOCSIFFLAGS:
1995		ALE_LOCK(sc);
1996		if ((ifp->if_flags & IFF_UP) != 0) {
1997			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1998				if (((ifp->if_flags ^ sc->ale_if_flags)
1999				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2000					ale_rxfilter(sc);
2001			} else {
2002				ale_init_locked(sc);
2003			}
2004		} else {
2005			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2006				ale_stop(sc);
2007		}
2008		sc->ale_if_flags = ifp->if_flags;
2009		ALE_UNLOCK(sc);
2010		break;
2011	case SIOCADDMULTI:
2012	case SIOCDELMULTI:
2013		ALE_LOCK(sc);
2014		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2015			ale_rxfilter(sc);
2016		ALE_UNLOCK(sc);
2017		break;
2018	case SIOCSIFMEDIA:
2019	case SIOCGIFMEDIA:
2020		mii = device_get_softc(sc->ale_miibus);
2021		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2022		break;
2023	case SIOCSIFCAP:
2024		ALE_LOCK(sc);
2025		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2026		if ((mask & IFCAP_TXCSUM) != 0 &&
2027		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2028			ifp->if_capenable ^= IFCAP_TXCSUM;
2029			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2030				ifp->if_hwassist |= ALE_CSUM_FEATURES;
2031			else
2032				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2033		}
2034		if ((mask & IFCAP_RXCSUM) != 0 &&
2035		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2036			ifp->if_capenable ^= IFCAP_RXCSUM;
2037		if ((mask & IFCAP_TSO4) != 0 &&
2038		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2039			ifp->if_capenable ^= IFCAP_TSO4;
2040			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2041				ifp->if_hwassist |= CSUM_TSO;
2042			else
2043				ifp->if_hwassist &= ~CSUM_TSO;
2044		}
2045
2046		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2047		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2048			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2049		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2050		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2051			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2052		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2053		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2054			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2055		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2056		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2057			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2058		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2059		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2060			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2061			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2062				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2063			ale_rxvlan(sc);
2064		}
2065		ALE_UNLOCK(sc);
2066		VLAN_CAPABILITIES(ifp);
2067		break;
2068	default:
2069		error = ether_ioctl(ifp, cmd, data);
2070		break;
2071	}
2072
2073	return (error);
2074}
2075
2076static void
2077ale_mac_config(struct ale_softc *sc)
2078{
2079	struct mii_data *mii;
2080	uint32_t reg;
2081
2082	ALE_LOCK_ASSERT(sc);
2083
2084	mii = device_get_softc(sc->ale_miibus);
2085	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2086	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2087	    MAC_CFG_SPEED_MASK);
2088	/* Reprogram MAC with resolved speed/duplex. */
2089	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2090	case IFM_10_T:
2091	case IFM_100_TX:
2092		reg |= MAC_CFG_SPEED_10_100;
2093		break;
2094	case IFM_1000_T:
2095		reg |= MAC_CFG_SPEED_1000;
2096		break;
2097	}
2098	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2099		reg |= MAC_CFG_FULL_DUPLEX;
2100		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2101			reg |= MAC_CFG_TX_FC;
2102		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2103			reg |= MAC_CFG_RX_FC;
2104	}
2105	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2106}
2107
2108static void
2109ale_stats_clear(struct ale_softc *sc)
2110{
2111	struct smb sb;
2112	uint32_t *reg;
2113	int i;
2114
2115	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2116		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2117		i += sizeof(uint32_t);
2118	}
2119	/* Read Tx statistics. */
2120	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2121		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2122		i += sizeof(uint32_t);
2123	}
2124}
2125
2126static void
2127ale_stats_update(struct ale_softc *sc)
2128{
2129	struct ale_hw_stats *stat;
2130	struct smb sb, *smb;
2131	struct ifnet *ifp;
2132	uint32_t *reg;
2133	int i;
2134
2135	ALE_LOCK_ASSERT(sc);
2136
2137	ifp = sc->ale_ifp;
2138	stat = &sc->ale_stats;
2139	smb = &sb;
2140
2141	/* Read Rx statistics. */
2142	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2143		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2144		i += sizeof(uint32_t);
2145	}
2146	/* Read Tx statistics. */
2147	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2148		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2149		i += sizeof(uint32_t);
2150	}
2151
2152	/* Rx stats. */
2153	stat->rx_frames += smb->rx_frames;
2154	stat->rx_bcast_frames += smb->rx_bcast_frames;
2155	stat->rx_mcast_frames += smb->rx_mcast_frames;
2156	stat->rx_pause_frames += smb->rx_pause_frames;
2157	stat->rx_control_frames += smb->rx_control_frames;
2158	stat->rx_crcerrs += smb->rx_crcerrs;
2159	stat->rx_lenerrs += smb->rx_lenerrs;
2160	stat->rx_bytes += smb->rx_bytes;
2161	stat->rx_runts += smb->rx_runts;
2162	stat->rx_fragments += smb->rx_fragments;
2163	stat->rx_pkts_64 += smb->rx_pkts_64;
2164	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2165	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2166	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2167	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2168	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2169	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2170	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2171	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2172	stat->rx_rrs_errs += smb->rx_rrs_errs;
2173	stat->rx_alignerrs += smb->rx_alignerrs;
2174	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2175	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2176	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2177
2178	/* Tx stats. */
2179	stat->tx_frames += smb->tx_frames;
2180	stat->tx_bcast_frames += smb->tx_bcast_frames;
2181	stat->tx_mcast_frames += smb->tx_mcast_frames;
2182	stat->tx_pause_frames += smb->tx_pause_frames;
2183	stat->tx_excess_defer += smb->tx_excess_defer;
2184	stat->tx_control_frames += smb->tx_control_frames;
2185	stat->tx_deferred += smb->tx_deferred;
2186	stat->tx_bytes += smb->tx_bytes;
2187	stat->tx_pkts_64 += smb->tx_pkts_64;
2188	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2189	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2190	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2191	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2192	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2193	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2194	stat->tx_single_colls += smb->tx_single_colls;
2195	stat->tx_multi_colls += smb->tx_multi_colls;
2196	stat->tx_late_colls += smb->tx_late_colls;
2197	stat->tx_excess_colls += smb->tx_excess_colls;
2198	stat->tx_underrun += smb->tx_underrun;
2199	stat->tx_desc_underrun += smb->tx_desc_underrun;
2200	stat->tx_lenerrs += smb->tx_lenerrs;
2201	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2202	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2203	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2204
2205	/* Update counters in ifnet. */
2206	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2207
2208	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2209	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2210	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2211
2212	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2213	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2214
2215	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2216
2217	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2218	    smb->rx_crcerrs + smb->rx_lenerrs +
2219	    smb->rx_runts + smb->rx_pkts_truncated +
2220	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2221	    smb->rx_alignerrs);
2222}
2223
2224static int
2225ale_intr(void *arg)
2226{
2227	struct ale_softc *sc;
2228	uint32_t status;
2229
2230	sc = (struct ale_softc *)arg;
2231
2232	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2233	if ((status & ALE_INTRS) == 0)
2234		return (FILTER_STRAY);
2235	/* Disable interrupts. */
2236	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2237	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2238
2239	return (FILTER_HANDLED);
2240}
2241
2242static void
2243ale_int_task(void *arg, int pending)
2244{
2245	struct ale_softc *sc;
2246	struct ifnet *ifp;
2247	uint32_t status;
2248	int more;
2249
2250	sc = (struct ale_softc *)arg;
2251
2252	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2253	ALE_LOCK(sc);
2254	if (sc->ale_morework != 0)
2255		status |= INTR_RX_PKT;
2256	if ((status & ALE_INTRS) == 0)
2257		goto done;
2258
2259	/* Acknowledge interrupts but still disable interrupts. */
2260	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2261
2262	ifp = sc->ale_ifp;
2263	more = 0;
2264	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2265		more = ale_rxeof(sc, sc->ale_process_limit);
2266		if (more == EAGAIN)
2267			sc->ale_morework = 1;
2268		else if (more == EIO) {
2269			sc->ale_stats.reset_brk_seq++;
2270			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2271			ale_init_locked(sc);
2272			ALE_UNLOCK(sc);
2273			return;
2274		}
2275
2276		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2277			if ((status & INTR_DMA_RD_TO_RST) != 0)
2278				device_printf(sc->ale_dev,
2279				    "DMA read error! -- resetting\n");
2280			if ((status & INTR_DMA_WR_TO_RST) != 0)
2281				device_printf(sc->ale_dev,
2282				    "DMA write error! -- resetting\n");
2283			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2284			ale_init_locked(sc);
2285			ALE_UNLOCK(sc);
2286			return;
2287		}
2288		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2289			ale_start_locked(ifp);
2290	}
2291
2292	if (more == EAGAIN ||
2293	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2294		ALE_UNLOCK(sc);
2295		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2296		return;
2297	}
2298
2299done:
2300	ALE_UNLOCK(sc);
2301
2302	/* Re-enable interrupts. */
2303	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2304}
2305
2306static void
2307ale_txeof(struct ale_softc *sc)
2308{
2309	struct ifnet *ifp;
2310	struct ale_txdesc *txd;
2311	uint32_t cons, prod;
2312	int prog;
2313
2314	ALE_LOCK_ASSERT(sc);
2315
2316	ifp = sc->ale_ifp;
2317
2318	if (sc->ale_cdata.ale_tx_cnt == 0)
2319		return;
2320
2321	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2322	    sc->ale_cdata.ale_tx_ring_map,
2323	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2324	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2325		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2326		    sc->ale_cdata.ale_tx_cmb_map,
2327		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2328		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2329	} else
2330		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2331	cons = sc->ale_cdata.ale_tx_cons;
2332	/*
2333	 * Go through our Tx list and free mbufs for those
2334	 * frames which have been transmitted.
2335	 */
2336	for (prog = 0; cons != prod; prog++,
2337	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2338		if (sc->ale_cdata.ale_tx_cnt <= 0)
2339			break;
2340		prog++;
2341		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2342		sc->ale_cdata.ale_tx_cnt--;
2343		txd = &sc->ale_cdata.ale_txdesc[cons];
2344		if (txd->tx_m != NULL) {
2345			/* Reclaim transmitted mbufs. */
2346			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2347			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2348			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2349			    txd->tx_dmamap);
2350			m_freem(txd->tx_m);
2351			txd->tx_m = NULL;
2352		}
2353	}
2354
2355	if (prog > 0) {
2356		sc->ale_cdata.ale_tx_cons = cons;
2357		/*
2358		 * Unarm watchdog timer only when there is no pending
2359		 * Tx descriptors in queue.
2360		 */
2361		if (sc->ale_cdata.ale_tx_cnt == 0)
2362			sc->ale_watchdog_timer = 0;
2363	}
2364}
2365
2366static void
2367ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2368    uint32_t length, uint32_t *prod)
2369{
2370	struct ale_rx_page *rx_page;
2371
2372	rx_page = *page;
2373	/* Update consumer position. */
2374	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2375	    ALE_RX_PAGE_ALIGN);
2376	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2377		/*
2378		 * End of Rx page reached, let hardware reuse
2379		 * this page.
2380		 */
2381		rx_page->cons = 0;
2382		*rx_page->cmb_addr = 0;
2383		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2384		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2386		    RXF_VALID);
2387		/* Switch to alternate Rx page. */
2388		sc->ale_cdata.ale_rx_curp ^= 1;
2389		rx_page = *page =
2390		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2391		/* Page flipped, sync CMB and Rx page. */
2392		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2393		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2394		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2395		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2396		/* Sync completed, cache updated producer index. */
2397		*prod = *rx_page->cmb_addr;
2398	}
2399}
2400
2401
2402/*
2403 * It seems that AR81xx controller can compute partial checksum.
2404 * The partial checksum value can be used to accelerate checksum
2405 * computation for fragmented TCP/UDP packets. Upper network stack
2406 * already takes advantage of the partial checksum value in IP
2407 * reassembly stage. But I'm not sure the correctness of the
2408 * partial hardware checksum assistance due to lack of data sheet.
2409 * In addition, the Rx feature of controller that requires copying
2410 * for every frames effectively nullifies one of most nice offload
2411 * capability of controller.
2412 */
2413static void
2414ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2415{
2416	struct ifnet *ifp;
2417	struct ip *ip;
2418	char *p;
2419
2420	ifp = sc->ale_ifp;
2421	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2422	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2423		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2424
2425	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2426		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2427		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2428		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2429			m->m_pkthdr.csum_flags |=
2430			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2431			m->m_pkthdr.csum_data = 0xffff;
2432		}
2433	} else {
2434		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2435		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2436			p = mtod(m, char *);
2437			p += ETHER_HDR_LEN;
2438			if ((status & ALE_RD_802_3) != 0)
2439				p += LLC_SNAPFRAMELEN;
2440			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2441			    (status & ALE_RD_VLAN) != 0)
2442				p += ETHER_VLAN_ENCAP_LEN;
2443			ip = (struct ip *)p;
2444			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2445				return;
2446			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2447			    CSUM_PSEUDO_HDR;
2448			m->m_pkthdr.csum_data = 0xffff;
2449		}
2450	}
2451	/*
2452	 * Don't mark bad checksum for TCP/UDP frames
2453	 * as fragmented frames may always have set
2454	 * bad checksummed bit of frame status.
2455	 */
2456}
2457
2458/* Process received frames. */
2459static int
2460ale_rxeof(struct ale_softc *sc, int count)
2461{
2462	struct ale_rx_page *rx_page;
2463	struct rx_rs *rs;
2464	struct ifnet *ifp;
2465	struct mbuf *m;
2466	uint32_t length, prod, seqno, status, vtags;
2467	int prog;
2468
2469	ifp = sc->ale_ifp;
2470	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2471	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2472	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2473	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2474	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2475	/*
2476	 * Don't directly access producer index as hardware may
2477	 * update it while Rx handler is in progress. It would
2478	 * be even better if there is a way to let hardware
2479	 * know how far driver processed its received frames.
2480	 * Alternatively, hardware could provide a way to disable
2481	 * CMB updates until driver acknowledges the end of CMB
2482	 * access.
2483	 */
2484	prod = *rx_page->cmb_addr;
2485	for (prog = 0; prog < count; prog++) {
2486		if (rx_page->cons >= prod)
2487			break;
2488		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2489		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2490		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2491			/*
2492			 * Normally I believe this should not happen unless
2493			 * severe driver bug or corrupted memory. However
2494			 * it seems to happen under certain conditions which
2495			 * is triggered by abrupt Rx events such as initiation
2496			 * of bulk transfer of remote host. It's not easy to
2497			 * reproduce this and I doubt it could be related
2498			 * with FIFO overflow of hardware or activity of Tx
2499			 * CMB updates. I also remember similar behaviour
2500			 * seen on RealTek 8139 which uses resembling Rx
2501			 * scheme.
2502			 */
2503			if (bootverbose)
2504				device_printf(sc->ale_dev,
2505				    "garbled seq: %u, expected: %u -- "
2506				    "resetting!\n", seqno,
2507				    sc->ale_cdata.ale_rx_seqno);
2508			return (EIO);
2509		}
2510		/* Frame received. */
2511		sc->ale_cdata.ale_rx_seqno++;
2512		length = ALE_RX_BYTES(le32toh(rs->length));
2513		status = le32toh(rs->flags);
2514		if ((status & ALE_RD_ERROR) != 0) {
2515			/*
2516			 * We want to pass the following frames to upper
2517			 * layer regardless of error status of Rx return
2518			 * status.
2519			 *
2520			 *  o IP/TCP/UDP checksum is bad.
2521			 *  o frame length and protocol specific length
2522			 *     does not match.
2523			 */
2524			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2525			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2526			    ALE_RD_TRUNC)) != 0) {
2527				ale_rx_update_page(sc, &rx_page, length, &prod);
2528				continue;
2529			}
2530		}
2531		/*
2532		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2533		 * from hardware limitation). For jumbo frames we could
2534		 * get a slightly better performance if driver use
2535		 * m_getjcl(9) with proper buffer size argument. However
2536		 * that would make code more complicated and I don't
2537		 * think users would expect good Rx performance numbers
2538		 * on these low-end consumer ethernet controller.
2539		 */
2540		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2541		    ETHER_ALIGN, ifp, NULL);
2542		if (m == NULL) {
2543			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2544			ale_rx_update_page(sc, &rx_page, length, &prod);
2545			continue;
2546		}
2547		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2548		    (status & ALE_RD_IPV4) != 0)
2549			ale_rxcsum(sc, m, status);
2550		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2551		    (status & ALE_RD_VLAN) != 0) {
2552			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2553			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2554			m->m_flags |= M_VLANTAG;
2555		}
2556
2557		/* Pass it to upper layer. */
2558		ALE_UNLOCK(sc);
2559		(*ifp->if_input)(ifp, m);
2560		ALE_LOCK(sc);
2561
2562		ale_rx_update_page(sc, &rx_page, length, &prod);
2563	}
2564
2565	return (count > 0 ? 0 : EAGAIN);
2566}
2567
2568static void
2569ale_tick(void *arg)
2570{
2571	struct ale_softc *sc;
2572	struct mii_data *mii;
2573
2574	sc = (struct ale_softc *)arg;
2575
2576	ALE_LOCK_ASSERT(sc);
2577
2578	mii = device_get_softc(sc->ale_miibus);
2579	mii_tick(mii);
2580	ale_stats_update(sc);
2581	/*
2582	 * Reclaim Tx buffers that have been transferred. It's not
2583	 * needed here but it would release allocated mbuf chains
2584	 * faster and limit the maximum delay to a hz.
2585	 */
2586	ale_txeof(sc);
2587	ale_watchdog(sc);
2588	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2589}
2590
2591static void
2592ale_reset(struct ale_softc *sc)
2593{
2594	uint32_t reg;
2595	int i;
2596
2597	/* Initialize PCIe module. From Linux. */
2598	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2599
2600	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2601	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2602		DELAY(10);
2603		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2604			break;
2605	}
2606	if (i == 0)
2607		device_printf(sc->ale_dev, "master reset timeout!\n");
2608
2609	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2610		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2611			break;
2612		DELAY(10);
2613	}
2614
2615	if (i == 0)
2616		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2617}
2618
2619static void
2620ale_init(void *xsc)
2621{
2622	struct ale_softc *sc;
2623
2624	sc = (struct ale_softc *)xsc;
2625	ALE_LOCK(sc);
2626	ale_init_locked(sc);
2627	ALE_UNLOCK(sc);
2628}
2629
2630static void
2631ale_init_locked(struct ale_softc *sc)
2632{
2633	struct ifnet *ifp;
2634	struct mii_data *mii;
2635	uint8_t eaddr[ETHER_ADDR_LEN];
2636	bus_addr_t paddr;
2637	uint32_t reg, rxf_hi, rxf_lo;
2638
2639	ALE_LOCK_ASSERT(sc);
2640
2641	ifp = sc->ale_ifp;
2642	mii = device_get_softc(sc->ale_miibus);
2643
2644	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2645		return;
2646	/*
2647	 * Cancel any pending I/O.
2648	 */
2649	ale_stop(sc);
2650	/*
2651	 * Reset the chip to a known state.
2652	 */
2653	ale_reset(sc);
2654	/* Initialize Tx descriptors, DMA memory blocks. */
2655	ale_init_rx_pages(sc);
2656	ale_init_tx_ring(sc);
2657
2658	/* Reprogram the station address. */
2659	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2660	CSR_WRITE_4(sc, ALE_PAR0,
2661	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2662	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2663	/*
2664	 * Clear WOL status and disable all WOL feature as WOL
2665	 * would interfere Rx operation under normal environments.
2666	 */
2667	CSR_READ_4(sc, ALE_WOL_CFG);
2668	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2669	/*
2670	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2671	 * the same high address part of DMAable region.
2672	 */
2673	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2674	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2675	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2676	CSR_WRITE_4(sc, ALE_TPD_CNT,
2677	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2678	/* Set Rx page base address, note we use single queue. */
2679	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2680	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2681	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2682	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2683	/* Set Tx/Rx CMB addresses. */
2684	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2685	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2686	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2687	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2688	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2689	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2690	/* Mark RXF0 is valid. */
2691	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2692	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2693	/*
2694	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2695	 * multi-queue yet.
2696	 */
2697
2698	/* Set Rx page size, excluding guard frame size. */
2699	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2700	/* Tell hardware that we're ready to load DMA blocks. */
2701	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2702
2703	/* Set Rx/Tx interrupt trigger threshold. */
2704	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2705	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2706	/*
2707	 * XXX
2708	 * Set interrupt trigger timer, its purpose and relation
2709	 * with interrupt moderation mechanism is not clear yet.
2710	 */
2711	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2712	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2713	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2714
2715	/* Configure interrupt moderation timer. */
2716	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2717	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2718	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2719	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2720	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2721	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2722	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2723		reg |= MASTER_IM_RX_TIMER_ENB;
2724	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2725		reg |= MASTER_IM_TX_TIMER_ENB;
2726	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2727	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2728
2729	/* Set Maximum frame size of controller. */
2730	if (ifp->if_mtu < ETHERMTU)
2731		sc->ale_max_frame_size = ETHERMTU;
2732	else
2733		sc->ale_max_frame_size = ifp->if_mtu;
2734	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2735	    ETHER_CRC_LEN;
2736	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2737	/* Configure IPG/IFG parameters. */
2738	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2739	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2740	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2741	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2742	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2743	/* Set parameters for half-duplex media. */
2744	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2745	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2746	    HDPX_CFG_LCOL_MASK) |
2747	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2748	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2749	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2750	    HDPX_CFG_ABEBT_MASK) |
2751	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2752	    HDPX_CFG_JAMIPG_MASK));
2753
2754	/* Configure Tx jumbo frame parameters. */
2755	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2756		if (ifp->if_mtu < ETHERMTU)
2757			reg = sc->ale_max_frame_size;
2758		else if (ifp->if_mtu < 6 * 1024)
2759			reg = (sc->ale_max_frame_size * 2) / 3;
2760		else
2761			reg = sc->ale_max_frame_size / 2;
2762		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2763		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2764		    TX_JUMBO_THRESH_UNIT_SHIFT);
2765	}
2766	/* Configure TxQ. */
2767	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2768	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2769	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2770	    TXQ_CFG_TPD_BURST_MASK;
2771	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2772
2773	/* Configure Rx jumbo frame & flow control parameters. */
2774	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2775		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2776		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2777		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2778		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2779		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2780		    RX_JUMBO_LKAH_MASK));
2781		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2782		rxf_hi = (reg * 7) / 10;
2783		rxf_lo = (reg * 3)/ 10;
2784		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2785		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2786		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2787		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2788		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2789	}
2790
2791	/* Disable RSS. */
2792	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2793	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2794
2795	/* Configure RxQ. */
2796	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2797	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2798
2799	/* Configure DMA parameters. */
2800	reg = 0;
2801	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2802		reg |= DMA_CFG_TXCMB_ENB;
2803	CSR_WRITE_4(sc, ALE_DMA_CFG,
2804	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2805	    sc->ale_dma_rd_burst | reg |
2806	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2807	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2808	    DMA_CFG_RD_DELAY_CNT_MASK) |
2809	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2810	    DMA_CFG_WR_DELAY_CNT_MASK));
2811
2812	/*
2813	 * Hardware can be configured to issue SMB interrupt based
2814	 * on programmed interval. Since there is a callout that is
2815	 * invoked for every hz in driver we use that instead of
2816	 * relying on periodic SMB interrupt.
2817	 */
2818	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2819	/* Clear MAC statistics. */
2820	ale_stats_clear(sc);
2821
2822	/*
2823	 * Configure Tx/Rx MACs.
2824	 *  - Auto-padding for short frames.
2825	 *  - Enable CRC generation.
2826	 *  Actual reconfiguration of MAC for resolved speed/duplex
2827	 *  is followed after detection of link establishment.
2828	 *  AR81xx always does checksum computation regardless of
2829	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2830	 *  cause Rx handling issue for fragmented IP datagrams due
2831	 *  to silicon bug.
2832	 */
2833	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2834	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2835	    MAC_CFG_PREAMBLE_MASK);
2836	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2837		reg |= MAC_CFG_SPEED_10_100;
2838	else
2839		reg |= MAC_CFG_SPEED_1000;
2840	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2841
2842	/* Set up the receive filter. */
2843	ale_rxfilter(sc);
2844	ale_rxvlan(sc);
2845
2846	/* Acknowledge all pending interrupts and clear it. */
2847	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2848	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2849	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2850
2851	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2852	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2853
2854	sc->ale_flags &= ~ALE_FLAG_LINK;
2855	/* Switch to the current media. */
2856	mii_mediachg(mii);
2857
2858	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2859}
2860
2861static void
2862ale_stop(struct ale_softc *sc)
2863{
2864	struct ifnet *ifp;
2865	struct ale_txdesc *txd;
2866	uint32_t reg;
2867	int i;
2868
2869	ALE_LOCK_ASSERT(sc);
2870	/*
2871	 * Mark the interface down and cancel the watchdog timer.
2872	 */
2873	ifp = sc->ale_ifp;
2874	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2875	sc->ale_flags &= ~ALE_FLAG_LINK;
2876	callout_stop(&sc->ale_tick_ch);
2877	sc->ale_watchdog_timer = 0;
2878	ale_stats_update(sc);
2879	/* Disable interrupts. */
2880	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2881	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2882	/* Disable queue processing and DMA. */
2883	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2884	reg &= ~TXQ_CFG_ENB;
2885	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2886	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2887	reg &= ~RXQ_CFG_ENB;
2888	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2889	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2890	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2891	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2892	DELAY(1000);
2893	/* Stop Rx/Tx MACs. */
2894	ale_stop_mac(sc);
2895	/* Disable interrupts which might be touched in taskq handler. */
2896	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2897
2898	/*
2899	 * Free TX mbufs still in the queues.
2900	 */
2901	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2902		txd = &sc->ale_cdata.ale_txdesc[i];
2903		if (txd->tx_m != NULL) {
2904			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2905			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2906			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2907			    txd->tx_dmamap);
2908			m_freem(txd->tx_m);
2909			txd->tx_m = NULL;
2910		}
2911        }
2912}
2913
2914static void
2915ale_stop_mac(struct ale_softc *sc)
2916{
2917	uint32_t reg;
2918	int i;
2919
2920	ALE_LOCK_ASSERT(sc);
2921
2922	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2923	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2924		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2925		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2926	}
2927
2928	for (i = ALE_TIMEOUT; i > 0; i--) {
2929		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2930		if (reg == 0)
2931			break;
2932		DELAY(10);
2933	}
2934	if (i == 0)
2935		device_printf(sc->ale_dev,
2936		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2937}
2938
2939static void
2940ale_init_tx_ring(struct ale_softc *sc)
2941{
2942	struct ale_txdesc *txd;
2943	int i;
2944
2945	ALE_LOCK_ASSERT(sc);
2946
2947	sc->ale_cdata.ale_tx_prod = 0;
2948	sc->ale_cdata.ale_tx_cons = 0;
2949	sc->ale_cdata.ale_tx_cnt = 0;
2950
2951	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2952	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2953	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2954		txd = &sc->ale_cdata.ale_txdesc[i];
2955		txd->tx_m = NULL;
2956	}
2957	*sc->ale_cdata.ale_tx_cmb = 0;
2958	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2959	    sc->ale_cdata.ale_tx_cmb_map,
2960	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2961	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2962	    sc->ale_cdata.ale_tx_ring_map,
2963	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2964}
2965
2966static void
2967ale_init_rx_pages(struct ale_softc *sc)
2968{
2969	struct ale_rx_page *rx_page;
2970	int i;
2971
2972	ALE_LOCK_ASSERT(sc);
2973
2974	sc->ale_morework = 0;
2975	sc->ale_cdata.ale_rx_seqno = 0;
2976	sc->ale_cdata.ale_rx_curp = 0;
2977
2978	for (i = 0; i < ALE_RX_PAGES; i++) {
2979		rx_page = &sc->ale_cdata.ale_rx_page[i];
2980		bzero(rx_page->page_addr, sc->ale_pagesize);
2981		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2982		rx_page->cons = 0;
2983		*rx_page->cmb_addr = 0;
2984		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2985		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2986		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2987		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988	}
2989}
2990
2991static void
2992ale_rxvlan(struct ale_softc *sc)
2993{
2994	struct ifnet *ifp;
2995	uint32_t reg;
2996
2997	ALE_LOCK_ASSERT(sc);
2998
2999	ifp = sc->ale_ifp;
3000	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3001	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3002	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3003		reg |= MAC_CFG_VLAN_TAG_STRIP;
3004	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3005}
3006
3007static void
3008ale_rxfilter(struct ale_softc *sc)
3009{
3010	struct ifnet *ifp;
3011	struct ifmultiaddr *ifma;
3012	uint32_t crc;
3013	uint32_t mchash[2];
3014	uint32_t rxcfg;
3015
3016	ALE_LOCK_ASSERT(sc);
3017
3018	ifp = sc->ale_ifp;
3019
3020	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3021	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3022	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3023		rxcfg |= MAC_CFG_BCAST;
3024	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3025		if ((ifp->if_flags & IFF_PROMISC) != 0)
3026			rxcfg |= MAC_CFG_PROMISC;
3027		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3028			rxcfg |= MAC_CFG_ALLMULTI;
3029		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3030		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3031		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3032		return;
3033	}
3034
3035	/* Program new filter. */
3036	bzero(mchash, sizeof(mchash));
3037
3038	if_maddr_rlock(ifp);
3039	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3040		if (ifma->ifma_addr->sa_family != AF_LINK)
3041			continue;
3042		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3043		    ifma->ifma_addr), ETHER_ADDR_LEN);
3044		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3045	}
3046	if_maddr_runlock(ifp);
3047
3048	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3049	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3050	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3051}
3052
3053static int
3054sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3055{
3056	int error, value;
3057
3058	if (arg1 == NULL)
3059		return (EINVAL);
3060	value = *(int *)arg1;
3061	error = sysctl_handle_int(oidp, &value, 0, req);
3062	if (error || req->newptr == NULL)
3063		return (error);
3064	if (value < low || value > high)
3065		return (EINVAL);
3066        *(int *)arg1 = value;
3067
3068        return (0);
3069}
3070
3071static int
3072sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3073{
3074	return (sysctl_int_range(oidp, arg1, arg2, req,
3075	    ALE_PROC_MIN, ALE_PROC_MAX));
3076}
3077
3078static int
3079sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3080{
3081
3082	return (sysctl_int_range(oidp, arg1, arg2, req,
3083	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3084}
3085