adwlib.c revision 67164
1/*
2 * Low level routines for Second Generation
3 * Advanced Systems Inc. SCSI controllers chips
4 *
5 * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/advansys/adwlib.c 67164 2000-10-15 14:19:01Z phk $
33 */
34/*
35 * Ported from:
36 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37 *
38 * Copyright (c) 1995-1998 Advanced System Products, Inc.
39 * All Rights Reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that redistributions of source
43 * code retain the above copyright notice and this comment without
44 * modification.
45 */
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bus.h>
50
51#include <machine/bus_pio.h>
52#include <machine/bus_memio.h>
53#include <machine/bus.h>
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_sim.h>
58#include <cam/cam_xpt_sim.h>
59#include <cam/scsi/scsi_all.h>
60
61#include <dev/advansys/adwlib.h>
62
63const struct adw_eeprom adw_asc3550_default_eeprom =
64{
65	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
66	0x0000,				/* cfg_msw */
67	0xFFFF,				/* disc_enable */
68	0xFFFF,				/* wdtr_able */
69	{ 0xFFFF },			/* sdtr_able */
70	0xFFFF,				/* start_motor */
71	0xFFFF,				/* tagqng_able */
72	0xFFFF,				/* bios_scan */
73	0,				/* scam_tolerant */
74	7,				/* adapter_scsi_id */
75	0,				/* bios_boot_delay */
76	3,				/* scsi_reset_delay */
77	0,				/* bios_id_lun */
78	0,				/* termination */
79	0,				/* reserved1 */
80	0xFFE7,				/* bios_ctrl */
81	{ 0xFFFF },			/* ultra_able */
82	{ 0 },				/* reserved2 */
83	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
84	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
85	0,				/* dvc_cntl */
86	{ 0 },				/* bug_fix */
87	{ 0, 0, 0 },			/* serial_number */
88	0,				/* check_sum */
89	{				/* oem_name[16] */
90	  0, 0, 0, 0, 0, 0, 0, 0,
91	  0, 0, 0, 0, 0, 0, 0, 0
92	},
93	0,				/* dvc_err_code */
94	0,				/* adv_err_code */
95	0,				/* adv_err_addr */
96	0,				/* saved_dvc_err_code */
97	0,				/* saved_adv_err_code */
98	0				/* saved_adv_err_addr */
99};
100
101const struct adw_eeprom adw_asc38C0800_default_eeprom =
102{
103	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
104	0x0000,				/* 01 cfg_msw */
105	0xFFFF,				/* 02 disc_enable */
106	0xFFFF,				/* 03 wdtr_able */
107	{ 0x4444 },			/* 04 sdtr_speed1 */
108	0xFFFF,				/* 05 start_motor */
109	0xFFFF,				/* 06 tagqng_able */
110	0xFFFF,				/* 07 bios_scan */
111	0,				/* 08 scam_tolerant */
112	7,				/* 09 adapter_scsi_id */
113	0,				/*    bios_boot_delay */
114	3,				/* 10 scsi_reset_delay */
115	0,				/*    bios_id_lun */
116	0,				/* 11 termination_se */
117	0,				/*    termination_lvd */
118	0xFFE7,				/* 12 bios_ctrl */
119	{ 0x4444 },			/* 13 sdtr_speed2 */
120	{ 0x4444 },			/* 14 sdtr_speed3 */
121	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
122	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
123	0,				/* 16 dvc_cntl */
124	{ 0x4444 } ,			/* 17 sdtr_speed4 */
125	{ 0, 0, 0 },			/* 18-20 serial_number */
126	0,				/* 21 check_sum */
127	{				/* 22-29 oem_name[16] */
128	  0, 0, 0, 0, 0, 0, 0, 0,
129	  0, 0, 0, 0, 0, 0, 0, 0
130	},
131	0,				/* 30 dvc_err_code */
132	0,				/* 31 adv_err_code */
133	0,				/* 32 adv_err_addr */
134	0,				/* 33 saved_dvc_err_code */
135	0,				/* 34 saved_adv_err_code */
136	0,				/* 35 saved_adv_err_addr */
137	{				/* 36 - 55 reserved */
138	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
139	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
140	},
141	0,				/* 56 cisptr_lsw */
142	0,				/* 57 cisprt_msw */
143					/* 58-59 sub-id */
144	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
145};
146
147#define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
148#define ADW_MC_SDTR_OFFSET_ULTRA2	1
149#define ADW_MC_SDTR_OFFSET_ULTRA	2
150const struct adw_syncrate adw_syncrates[] =
151{
152	/*   mc_sdtr		  period      rate */
153	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
154	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
155	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
156	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
157	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
158	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
159};
160
161const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
162
163static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
164static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
165					    u_int data);
166static void		adw_eeprom_wait(struct adw_softc *adw);
167
168int
169adw_find_signature(struct adw_softc *adw)
170{
171	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
172	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
173		return (1);
174	return (0);
175}
176
177/*
178 * Reset Chip.
179 */
180void
181adw_reset_chip(struct adw_softc *adw)
182{
183	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
184	DELAY(1000 * 100);
185	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
186
187	/*
188	 * Initialize Chip registers.
189	 */
190	adw_outw(adw, ADW_SCSI_CFG1,
191		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
192}
193
194/*
195 * Reset the SCSI bus.
196 */
197int
198adw_reset_bus(struct adw_softc *adw)
199{
200	adw_idle_cmd_status_t status;
201
202	status =
203	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
204	if (status != ADW_IDLE_CMD_SUCCESS) {
205		xpt_print_path(adw->path);
206		printf("Bus Reset start attempt failed\n");
207		return (1);
208	}
209	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
210	status =
211	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
212	if (status != ADW_IDLE_CMD_SUCCESS) {
213		xpt_print_path(adw->path);
214		printf("Bus Reset end attempt failed\n");
215		return (1);
216	}
217	return (0);
218}
219
220/*
221 * Read the specified EEPROM location
222 */
223static u_int16_t
224adw_eeprom_read_16(struct adw_softc *adw, int addr)
225{
226	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
227	adw_eeprom_wait(adw);
228	return (adw_inw(adw, ADW_EEP_DATA));
229}
230
231static void
232adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
233{
234	adw_outw(adw, ADW_EEP_DATA, data);
235	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
236	adw_eeprom_wait(adw);
237}
238
239/*
240 * Wait for and EEPROM command to complete
241 */
242static void
243adw_eeprom_wait(struct adw_softc *adw)
244{
245	int i;
246
247	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
248		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
249            		break;
250		DELAY(1000);
251    	}
252	if (i == ADW_EEP_DELAY_MS)
253		panic("%s: Timedout Reading EEPROM", adw_name(adw));
254}
255
256/*
257 * Read EEPROM configuration into the specified buffer.
258 *
259 * Return a checksum based on the EEPROM configuration read.
260 */
261u_int16_t
262adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
263{
264	u_int16_t *wbuf;
265	u_int16_t  wval;
266	u_int16_t  chksum;
267	int	   eep_addr;
268
269	wbuf = (u_int16_t *)eep_buf;
270	chksum = 0;
271
272	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
273	     eep_addr < ADW_EEP_DVC_CFG_END;
274	     eep_addr++, wbuf++) {
275		wval = adw_eeprom_read_16(adw, eep_addr);
276		chksum += wval;
277		*wbuf = wval;
278	}
279
280	/* checksum field is not counted in the checksum */
281	*wbuf = adw_eeprom_read_16(adw, eep_addr);
282	wbuf++;
283
284	/* Driver seeprom variables are not included in the checksum */
285	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
286	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
287	     eep_addr++, wbuf++)
288		*wbuf = adw_eeprom_read_16(adw, eep_addr);
289
290	return (chksum);
291}
292
293void
294adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
295{
296	u_int16_t *wbuf;
297	u_int16_t  addr;
298	u_int16_t  chksum;
299
300	wbuf = (u_int16_t *)eep_buf;
301	chksum = 0;
302
303	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
304	adw_eeprom_wait(adw);
305
306	/*
307	 * Write EEPROM until checksum.
308	 */
309	for (addr = ADW_EEP_DVC_CFG_BEGIN;
310	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
311		chksum += *wbuf;
312		adw_eeprom_write_16(adw, addr, *wbuf);
313	}
314
315	/*
316	 * Write calculated EEPROM checksum
317	 */
318	adw_eeprom_write_16(adw, addr, chksum);
319
320	/* skip over buffer's checksum */
321	wbuf++;
322
323	/*
324	 * Write the rest.
325	 */
326	for (addr = ADW_EEP_DVC_CTL_BEGIN;
327	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
328		adw_eeprom_write_16(adw, addr, *wbuf);
329
330	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
331	adw_eeprom_wait(adw);
332}
333
334int
335adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
336{
337	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
338	const u_int16_t    *word_table;
339	const u_int8_t     *byte_codes;
340	const u_int8_t     *byte_codes_end;
341	u_int		    bios_sig;
342	u_int		    bytes_downloaded;
343	u_int		    addr;
344	u_int		    end_addr;
345	u_int		    checksum;
346	u_int		    scsicfg1;
347	u_int		    tid;
348
349	/*
350	 * Save the RISC memory BIOS region before writing the microcode.
351	 * The BIOS may already be loaded and using its RISC LRAM region
352	 * so its region must be saved and restored.
353	 */
354	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
355		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
356
357	/*
358	 * Save current per TID negotiated values if the BIOS has been
359	 * loaded (BIOS signature is present).  These will be used if
360	 * we cannot get information from the EEPROM.
361	 */
362	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
363	bios_sig = biosmem[addr]
364		 | (biosmem[addr + 1] << 8);
365	if (bios_sig == 0x55AA
366	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
367		u_int major_ver;
368		u_int minor_ver;
369		u_int sdtr_able;
370
371		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
372		minor_ver = biosmem[addr + 1] & 0xF;
373		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
374		if ((adw->chip == ADW_CHIP_ASC3550)
375		 && (major_ver <= 3
376		  || (major_ver == 3 && minor_ver == 1))) {
377			/*
378			 * BIOS 3.1 and earlier location of
379			 * 'wdtr_able' variable.
380			 */
381			adw->user_wdtr =
382			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
383		} else {
384			adw->user_wdtr =
385			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
386		}
387		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
388		for (tid = 0; tid < ADW_MAX_TID; tid++) {
389			u_int tid_mask;
390			u_int mc_sdtr;
391
392			tid_mask = 0x1 << tid;
393			if ((sdtr_able & tid_mask) == 0)
394				mc_sdtr = ADW_MC_SDTR_ASYNC;
395			else if ((adw->features & ADW_DT) != 0)
396				mc_sdtr = ADW_MC_SDTR_80;
397			else if ((adw->features & ADW_ULTRA2) != 0)
398				mc_sdtr = ADW_MC_SDTR_40;
399			else
400				mc_sdtr = ADW_MC_SDTR_20;
401			adw_set_user_sdtr(adw, tid, mc_sdtr);
402		}
403		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
404	}
405
406	/*
407	 * Load the Microcode.
408	 *
409	 * Assume the following compressed format of the microcode buffer:
410	 *
411	 *	253 word (506 byte) table indexed by byte code followed
412	 *	by the following byte codes:
413	 *
414	 *	1-Byte Code:
415	 *		00: Emit word 0 in table.
416	 *		01: Emit word 1 in table.
417	 *		.
418	 *		FD: Emit word 253 in table.
419	 *
420	 *	Multi-Byte Code:
421	 *		FD RESEVED
422	 *
423	 *		FE WW WW: (3 byte code)
424	 *			Word to emit is the next word WW WW.
425	 *		FF BB WW WW: (4 byte code)
426	 *			Emit BB count times next word WW WW.
427	 *
428	 */
429	bytes_downloaded = 0;
430	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
431	byte_codes = (const u_int8_t *)&word_table[253];
432	byte_codes_end = adw->mcode_data->mcode_buf
433		       + adw->mcode_data->mcode_size;
434	adw_outw(adw, ADW_RAM_ADDR, 0);
435	while (byte_codes < byte_codes_end) {
436		if (*byte_codes == 0xFF) {
437			u_int16_t value;
438
439			value = byte_codes[2]
440			      | byte_codes[3] << 8;
441			adw_set_multi_2(adw, ADW_RAM_DATA,
442					value, byte_codes[1]);
443			bytes_downloaded += byte_codes[1];
444			byte_codes += 4;
445		} else if (*byte_codes == 0xFE) {
446			u_int16_t value;
447
448			value = byte_codes[1]
449			      | byte_codes[2] << 8;
450			adw_outw(adw, ADW_RAM_DATA, value);
451			bytes_downloaded++;
452			byte_codes += 3;
453		} else {
454			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
455			bytes_downloaded++;
456			byte_codes++;
457		}
458	}
459	/* Convert from words to bytes */
460	bytes_downloaded *= 2;
461
462	/*
463	 * Clear the rest of LRAM.
464	 */
465	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
466		adw_outw(adw, ADW_RAM_DATA, 0);
467
468	/*
469	 * Verify the microcode checksum.
470	 */
471	checksum = 0;
472	adw_outw(adw, ADW_RAM_ADDR, 0);
473	for (addr = 0; addr < bytes_downloaded; addr += 2)
474		checksum += adw_inw(adw, ADW_RAM_DATA);
475
476	if (checksum != adw->mcode_data->mcode_chksum) {
477		printf("%s: Firmware load failed!\n", adw_name(adw));
478		return (EIO);
479	}
480
481	/*
482	 * Restore the RISC memory BIOS region.
483	 */
484	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
485		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
486
487	/*
488	 * Calculate and write the microcode code checksum to
489	 * the microcode code checksum location.
490	 */
491	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
492	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
493	checksum = 0;
494	adw_outw(adw, ADW_RAM_ADDR, addr);
495	for (; addr < end_addr; addr += 2)
496		checksum += adw_inw(adw, ADW_RAM_DATA);
497	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
498
499	/*
500	 * Tell the microcode what kind of chip it's running on.
501	 */
502	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
503
504	/*
505	 * Leave WDTR and SDTR negotiation disabled until the XPT has
506	 * informed us of device capabilities, but do set the desired
507	 * user rates in case we receive an SDTR request from the target
508	 * before we negotiate.  We turn on tagged queuing at the microcode
509	 * level for all devices, and modulate this on a per command basis.
510	 */
511	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
512	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
513	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
514	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
515	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
516	for (tid = 0; tid < ADW_MAX_TID; tid++) {
517		/* Cam limits the maximum number of commands for us */
518		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
519				 adw->max_acbs);
520	}
521	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
522
523	/*
524	 * Set SCSI_CFG0 Microcode Default Value.
525	 *
526	 * The microcode will set the SCSI_CFG0 register using this value
527	 * after it is started.
528	 */
529	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
530			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
531			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
532
533	/*
534	 * Tell the MC about the memory size that
535	 * was setup by the probe code.
536	 */
537	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
538			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
539
540	/*
541	 * Determine SCSI_CFG1 Microcode Default Value.
542	 *
543	 * The microcode will set the SCSI_CFG1 register using this value
544	 * after it is started below.
545	 */
546	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
547
548	/*
549	 * If the internal narrow cable is reversed all of the SCSI_CTRL
550	 * register signals will be set. Check for and return an error if
551	 * this condition is found.
552	 */
553	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
554		printf("%s: Illegal Cable Config!\n", adw_name(adw));
555		printf("%s: Internal cable is reversed!\n", adw_name(adw));
556		return (EIO);
557	}
558
559	/*
560	 * If this is a differential board and a single-ended device
561	 * is attached to one of the connectors, return an error.
562	 */
563	if ((adw->features & ADW_ULTRA) != 0)  {
564		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
565		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
566			printf("%s: A Single Ended Device is attached to our "
567			       "differential bus!\n", adw_name(adw));
568		        return (EIO);
569		}
570	} else {
571		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
572			printf("%s: A High Voltage Differential Device "
573			       "is attached to this controller.\n",
574			       adw_name(adw));
575			printf("%s: HVD devices are not supported.\n",
576			       adw_name(adw));
577		        return (EIO);
578		}
579	}
580
581	/*
582	 * Perform automatic termination control if desired.
583	 */
584	if ((adw->features & ADW_ULTRA2) != 0) {
585		u_int cable_det;
586
587		/*
588		 * Ultra2 Chips require termination disabled to
589		 * detect cable presence.
590		 */
591		adw_outw(adw, ADW_SCSI_CFG1,
592			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
593		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
594		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
595
596		/* SE Termination first if auto-term has been specified */
597		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
598
599			/*
600			 * For all SE cable configurations, high byte
601			 * termination is enabled.
602			 */
603			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
604			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
605			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
606				/*
607				 * If either cable is not present, the
608				 * low byte must be terminated as well.
609				 */
610				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
611			}
612		}
613
614		/* LVD auto-term */
615		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
616		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
617			/*
618			 * If both cables are installed, termination
619			 * is disabled.  Otherwise it is enabled.
620			 */
621			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
622			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
623
624				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
625			}
626		}
627		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
628	} else {
629		/* Ultra Controller Termination */
630		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
631			int cable_count;
632			int wide_cable_count;
633
634			cable_count = 0;
635			wide_cable_count = 0;
636			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
637				cable_count++;
638				wide_cable_count++;
639			}
640			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
641				cable_count++;
642
643			/* There is only one external port */
644			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
645				cable_count++;
646				wide_cable_count++;
647			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
648				cable_count++;
649
650			if (cable_count == 3) {
651				printf("%s: Illegal Cable Config!\n",
652				       adw_name(adw));
653				printf("%s: Only Two Ports may be used at "
654				       "a time!\n", adw_name(adw));
655			} else if (cable_count <= 1) {
656				/*
657				 * At least two out of three cables missing.
658				 * Terminate both bytes.
659				 */
660				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
661					      |  ADW_SCSI_CFG1_TERM_CTL_L;
662			} else if (wide_cable_count <= 1) {
663				/* No two 16bit cables present.  High on. */
664				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
665			}
666		}
667        }
668
669	/* Tell the user about our decission */
670	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
671	case ADW_SCSI_CFG1_TERM_CTL_MASK:
672		printf("High & Low SE Term Enabled, ");
673		break;
674	case ADW_SCSI_CFG1_TERM_CTL_H:
675		printf("High SE Termination Enabled, ");
676		break;
677	case ADW_SCSI_CFG1_TERM_CTL_L:
678		printf("Low SE Term Enabled, ");
679		break;
680	default:
681		break;
682	}
683
684	if ((adw->features & ADW_ULTRA2) != 0
685	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
686		printf("LVD Term Enabled, ");
687
688	/*
689	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
690	 * set 'scsicfg1'. The TERM_POL bit does not need to be
691	 * referenced, because the hardware internally inverts
692	 * the Termination High and Low bits if TERM_POL is set.
693	 */
694	if ((adw->features & ADW_ULTRA2) != 0) {
695		term_scsicfg1 = ~term_scsicfg1;
696		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
697			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
698		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
699			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
700			     |ADW_SCSI_CFG1_BIG_ENDIAN
701			     |ADW_SCSI_CFG1_TERM_POL
702			     |ADW2_SCSI_CFG1_DEV_DETECT);
703		scsicfg1 |= term_scsicfg1;
704	} else {
705		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
706		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
707		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
708		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
709	}
710
711	/*
712	 * Set SCSI_CFG1 Microcode Default Value
713	 *
714	 * The microcode will set the SCSI_CFG1 register using this value
715	 * after it is started below.
716	 */
717	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
718
719	/*
720	 * Only accept selections on our initiator target id.
721	 * This may change in target mode scenarios...
722	 */
723	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
724			  (0x01 << adw->initiator_id));
725
726	/*
727	 * Tell the microcode where it can find our
728	 * Initiator Command Queue (ICQ).  It is
729	 * currently empty hence the "stopper" address.
730	 */
731	adw->commandq = adw->free_carriers;
732	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
733	adw->commandq->next_ba = ADW_CQ_STOPPER;
734	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
735
736	/*
737	 * Tell the microcode where it can find our
738	 * Initiator Response Queue (IRQ).  It too
739	 * is currently empty.
740	 */
741	adw->responseq = adw->free_carriers;
742	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
743	adw->responseq->next_ba = ADW_CQ_STOPPER;
744	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
745
746	adw_outb(adw, ADW_INTR_ENABLES,
747		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
748
749	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
750
751	return (0);
752}
753
754void
755adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
756{
757	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
758	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
759	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
760}
761
762u_int
763adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
764{
765	u_int mc_sdtr;
766
767	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
768	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
769	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
770	return (mc_sdtr);
771}
772
773void
774adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
775{
776	u_int mc_sdtr_offset;
777	u_int mc_sdtr;
778
779	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
780	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
781	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
782	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
783	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
784	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
785}
786
787u_int
788adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
789{
790	u_int mc_sdtr_offset;
791	u_int mc_sdtr;
792
793	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
794	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
795	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
796	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
797	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
798	return (mc_sdtr);
799}
800
801u_int
802adw_find_sdtr(struct adw_softc *adw, u_int period)
803{
804	int i;
805
806	i = 0;
807	if ((adw->features & ADW_DT) == 0)
808		i = ADW_MC_SDTR_OFFSET_ULTRA2;
809	if ((adw->features & ADW_ULTRA2) == 0)
810		i = ADW_MC_SDTR_OFFSET_ULTRA;
811	if (period == 0)
812		return ADW_MC_SDTR_ASYNC;
813
814	for (; i < adw_num_syncrates; i++) {
815		if (period <= adw_syncrates[i].period)
816			return (adw_syncrates[i].mc_sdtr);
817	}
818	return ADW_MC_SDTR_ASYNC;
819}
820
821u_int
822adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
823{
824	int i;
825
826	for (i = 0; i < adw_num_syncrates; i++) {
827		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
828			break;
829	}
830	return (adw_syncrates[i].period);
831}
832
833u_int
834adw_hshk_cfg_period_factor(u_int tinfo)
835{
836	tinfo &= ADW_HSHK_CFG_RATE_MASK;
837	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
838	if (tinfo == 0x11)
839		/* 80MHz/DT */
840		return (9);
841	else if (tinfo == 0x10)
842		/* 40MHz */
843		return (10);
844	else
845		return (((tinfo * 25) + 50) / 4);
846}
847
848/*
849 * Send an idle command to the chip and wait for completion.
850 */
851adw_idle_cmd_status_t
852adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
853{
854	u_int		      timeout;
855	adw_idle_cmd_status_t status;
856	int		      s;
857
858	s = splcam();
859
860	/*
861	 * Clear the idle command status which is set by the microcode
862	 * to a non-zero value to indicate when the command is completed.
863	 */
864	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
865
866	/*
867	 * Write the idle command value after the idle command parameter
868	 * has been written to avoid a race condition. If the order is not
869	 * followed, the microcode may process the idle command before the
870	 * parameters have been written to LRAM.
871	 */
872	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
873    	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
874
875	/*
876	 * Tickle the RISC to tell it to process the idle command.
877	 */
878	adw_tickle_risc(adw, ADW_TICKLE_B);
879
880	/* Wait for up to 10 seconds for the command to complete */
881	timeout = 5000000;
882	while (--timeout) {
883		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
884       		if (status != 0)
885			break;
886		DELAY(20);
887	}
888
889	if (timeout == 0)
890		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
891	splx(s);
892	return (status);
893}
894