adwlib.c revision 57679
1/*
2 * Low level routines for Second Generation
3 * Advanced Systems Inc. SCSI controllers chips
4 *
5 * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/advansys/adwlib.c 57679 2000-03-02 00:08:35Z gibbs $
33 */
34/*
35 * Ported from:
36 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37 *
38 * Copyright (c) 1995-1998 Advanced System Products, Inc.
39 * All Rights Reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that redistributions of source
43 * code retain the above copyright notice and this comment without
44 * modification.
45 */
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bus.h>
50
51#include <machine/bus_pio.h>
52#include <machine/bus_memio.h>
53#include <machine/bus.h>
54#include <machine/clock.h>
55
56#include <cam/cam.h>
57#include <cam/scsi/scsi_all.h>
58
59#include <dev/advansys/adwlib.h>
60
61const struct adw_eeprom adw_asc3550_default_eeprom =
62{
63	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
64	0x0000,				/* cfg_msw */
65	0xFFFF,				/* disc_enable */
66	0xFFFF,				/* wdtr_able */
67	{ 0xFFFF },			/* sdtr_able */
68	0xFFFF,				/* start_motor */
69	0xFFFF,				/* tagqng_able */
70	0xFFFF,				/* bios_scan */
71	0,				/* scam_tolerant */
72	7,				/* adapter_scsi_id */
73	0,				/* bios_boot_delay */
74	3,				/* scsi_reset_delay */
75	0,				/* bios_id_lun */
76	0,				/* termination */
77	0,				/* reserved1 */
78	0xFFE7,				/* bios_ctrl */
79	{ 0xFFFF },			/* ultra_able */
80	{ 0 },				/* reserved2 */
81	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
82	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
83	0,				/* dvc_cntl */
84	{ 0 },				/* bug_fix */
85	{ 0, 0, 0 },			/* serial_number */
86	0,				/* check_sum */
87	{				/* oem_name[16] */
88	  0, 0, 0, 0, 0, 0, 0, 0,
89	  0, 0, 0, 0, 0, 0, 0, 0
90	},
91	0,				/* dvc_err_code */
92	0,				/* adv_err_code */
93	0,				/* adv_err_addr */
94	0,				/* saved_dvc_err_code */
95	0,				/* saved_adv_err_code */
96	0				/* saved_adv_err_addr */
97};
98
99const struct adw_eeprom adw_asc38C0800_default_eeprom =
100{
101	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
102	0x0000,				/* 01 cfg_msw */
103	0xFFFF,				/* 02 disc_enable */
104	0xFFFF,				/* 03 wdtr_able */
105	{ 0x4444 },			/* 04 sdtr_speed1 */
106	0xFFFF,				/* 05 start_motor */
107	0xFFFF,				/* 06 tagqng_able */
108	0xFFFF,				/* 07 bios_scan */
109	0,				/* 08 scam_tolerant */
110	7,				/* 09 adapter_scsi_id */
111	0,				/*    bios_boot_delay */
112	3,				/* 10 scsi_reset_delay */
113	0,				/*    bios_id_lun */
114	0,				/* 11 termination_se */
115	0,				/*    termination_lvd */
116	0xFFE7,				/* 12 bios_ctrl */
117	{ 0x4444 },			/* 13 sdtr_speed2 */
118	{ 0x4444 },			/* 14 sdtr_speed3 */
119	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
120	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
121	0,				/* 16 dvc_cntl */
122	{ 0x4444 } ,			/* 17 sdtr_speed4 */
123	{ 0, 0, 0 },			/* 18-20 serial_number */
124	0,				/* 21 check_sum */
125	{				/* 22-29 oem_name[16] */
126	  0, 0, 0, 0, 0, 0, 0, 0,
127	  0, 0, 0, 0, 0, 0, 0, 0
128	},
129	0,				/* 30 dvc_err_code */
130	0,				/* 31 adv_err_code */
131	0,				/* 32 adv_err_addr */
132	0,				/* 33 saved_dvc_err_code */
133	0,				/* 34 saved_adv_err_code */
134	0,				/* 35 saved_adv_err_addr */
135	{				/* 36 - 55 reserved */
136	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
137	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
138	},
139	0,				/* 56 cisptr_lsw */
140	0,				/* 57 cisprt_msw */
141					/* 58-59 sub-id */
142	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
143};
144
145#define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
146#define ADW_MC_SDTR_OFFSET_ULTRA2	1
147#define ADW_MC_SDTR_OFFSET_ULTRA	2
148const struct adw_syncrate adw_syncrates[] =
149{
150	/*   mc_sdtr		  period      rate */
151	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
152	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
153	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
154	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
155	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
156	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
157};
158
159const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
160
161static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
162static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
163					    u_int data);
164static void		adw_eeprom_wait(struct adw_softc *adw);
165
166int
167adw_find_signature(struct adw_softc *adw)
168{
169	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
170	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
171		return (1);
172	return (0);
173}
174
175/*
176 * Reset Chip.
177 */
178void
179adw_reset_chip(struct adw_softc *adw)
180{
181	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
182	DELAY(1000 * 100);
183	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
184
185	/*
186	 * Initialize Chip registers.
187	 */
188	adw_outw(adw, ADW_SCSI_CFG1,
189		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
190}
191
192/*
193 * Reset the SCSI bus.
194 */
195int
196adw_reset_bus(struct adw_softc *adw)
197{
198	adw_idle_cmd_status_t status;
199
200	status =
201	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
202	if (status != ADW_IDLE_CMD_SUCCESS) {
203		xpt_print_path(adw->path);
204		printf("Bus Reset start attempt failed\n");
205		return (1);
206	}
207	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
208	status =
209	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
210	if (status != ADW_IDLE_CMD_SUCCESS) {
211		xpt_print_path(adw->path);
212		printf("Bus Reset end attempt failed\n");
213		return (1);
214	}
215	return (0);
216}
217
218/*
219 * Read the specified EEPROM location
220 */
221static u_int16_t
222adw_eeprom_read_16(struct adw_softc *adw, int addr)
223{
224	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
225	adw_eeprom_wait(adw);
226	return (adw_inw(adw, ADW_EEP_DATA));
227}
228
229static void
230adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
231{
232	adw_outw(adw, ADW_EEP_DATA, data);
233	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
234	adw_eeprom_wait(adw);
235}
236
237/*
238 * Wait for and EEPROM command to complete
239 */
240static void
241adw_eeprom_wait(struct adw_softc *adw)
242{
243	int i;
244
245	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
246		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
247            		break;
248		DELAY(1000);
249    	}
250	if (i == ADW_EEP_DELAY_MS)
251		panic("%s: Timedout Reading EEPROM", adw_name(adw));
252}
253
254/*
255 * Read EEPROM configuration into the specified buffer.
256 *
257 * Return a checksum based on the EEPROM configuration read.
258 */
259u_int16_t
260adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
261{
262	u_int16_t *wbuf;
263	u_int16_t  wval;
264	u_int16_t  chksum;
265	int	   eep_addr;
266
267	wbuf = (u_int16_t *)eep_buf;
268	chksum = 0;
269
270	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
271	     eep_addr < ADW_EEP_DVC_CFG_END;
272	     eep_addr++, wbuf++) {
273		wval = adw_eeprom_read_16(adw, eep_addr);
274		chksum += wval;
275		*wbuf = wval;
276	}
277
278	/* checksum field is not counted in the checksum */
279	*wbuf = adw_eeprom_read_16(adw, eep_addr);
280	wbuf++;
281
282	/* Driver seeprom variables are not included in the checksum */
283	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
284	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
285	     eep_addr++, wbuf++)
286		*wbuf = adw_eeprom_read_16(adw, eep_addr);
287
288	return (chksum);
289}
290
291void
292adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
293{
294	u_int16_t *wbuf;
295	u_int16_t  addr;
296	u_int16_t  chksum;
297
298	wbuf = (u_int16_t *)eep_buf;
299	chksum = 0;
300
301	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
302	adw_eeprom_wait(adw);
303
304	/*
305	 * Write EEPROM until checksum.
306	 */
307	for (addr = ADW_EEP_DVC_CFG_BEGIN;
308	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
309		chksum += *wbuf;
310		adw_eeprom_write_16(adw, addr, *wbuf);
311	}
312
313	/*
314	 * Write calculated EEPROM checksum
315	 */
316	adw_eeprom_write_16(adw, addr, chksum);
317
318	/* skip over buffer's checksum */
319	wbuf++;
320
321	/*
322	 * Write the rest.
323	 */
324	for (addr = ADW_EEP_DVC_CTL_BEGIN;
325	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
326		adw_eeprom_write_16(adw, addr, *wbuf);
327
328	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
329	adw_eeprom_wait(adw);
330}
331
332int
333adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
334{
335	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
336	const u_int16_t    *word_table;
337	const u_int8_t     *byte_codes;
338	const u_int8_t     *byte_codes_end;
339	u_int		    bios_sig;
340	u_int		    bytes_downloaded;
341	u_int		    addr;
342	u_int		    end_addr;
343	u_int		    checksum;
344	u_int		    scsicfg1;
345	u_int		    tid;
346
347	/*
348	 * Save the RISC memory BIOS region before writing the microcode.
349	 * The BIOS may already be loaded and using its RISC LRAM region
350	 * so its region must be saved and restored.
351	 */
352	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
353		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
354
355	/*
356	 * Save current per TID negotiated values if the BIOS has been
357	 * loaded (BIOS signature is present).  These will be used if
358	 * we cannot get information from the EEPROM.
359	 */
360	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
361	bios_sig = biosmem[addr]
362		 | (biosmem[addr + 1] << 8);
363	if (bios_sig == 0x55AA
364	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
365		u_int major_ver;
366		u_int minor_ver;
367		u_int sdtr_able;
368
369		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
370		minor_ver = biosmem[addr + 1] & 0xF;
371		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
372		if ((adw->chip == ADW_CHIP_ASC3550)
373		 && (major_ver <= 3
374		  || (major_ver == 3 && minor_ver == 1))) {
375			/*
376			 * BIOS 3.1 and earlier location of
377			 * 'wdtr_able' variable.
378			 */
379			adw->user_wdtr =
380			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
381		} else {
382			adw->user_wdtr =
383			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
384		}
385		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
386		for (tid = 0; tid < ADW_MAX_TID; tid++) {
387			u_int tid_mask;
388			u_int mc_sdtr;
389
390			tid_mask = 0x1 << tid;
391			if ((sdtr_able & tid_mask) == 0)
392				mc_sdtr = ADW_MC_SDTR_ASYNC;
393			else if ((adw->features & ADW_DT) != 0)
394				mc_sdtr = ADW_MC_SDTR_80;
395			else if ((adw->features & ADW_ULTRA2) != 0)
396				mc_sdtr = ADW_MC_SDTR_40;
397			else
398				mc_sdtr = ADW_MC_SDTR_20;
399			adw_set_user_sdtr(adw, tid, mc_sdtr);
400		}
401		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
402	}
403
404	/*
405	 * Load the Microcode.
406	 *
407	 * Assume the following compressed format of the microcode buffer:
408	 *
409	 *	253 word (506 byte) table indexed by byte code followed
410	 *	by the following byte codes:
411	 *
412	 *	1-Byte Code:
413	 *		00: Emit word 0 in table.
414	 *		01: Emit word 1 in table.
415	 *		.
416	 *		FD: Emit word 253 in table.
417	 *
418	 *	Multi-Byte Code:
419	 *		FD RESEVED
420	 *
421	 *		FE WW WW: (3 byte code)
422	 *			Word to emit is the next word WW WW.
423	 *		FF BB WW WW: (4 byte code)
424	 *			Emit BB count times next word WW WW.
425	 *
426	 */
427	bytes_downloaded = 0;
428	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
429	byte_codes = (const u_int8_t *)&word_table[253];
430	byte_codes_end = adw->mcode_data->mcode_buf
431		       + adw->mcode_data->mcode_size;
432	adw_outw(adw, ADW_RAM_ADDR, 0);
433	while (byte_codes < byte_codes_end) {
434		if (*byte_codes == 0xFF) {
435			u_int16_t value;
436
437			value = byte_codes[2]
438			      | byte_codes[3] << 8;
439			adw_set_multi_2(adw, ADW_RAM_DATA,
440					value, byte_codes[1]);
441			bytes_downloaded += byte_codes[1];
442			byte_codes += 4;
443		} else if (*byte_codes == 0xFE) {
444			u_int16_t value;
445
446			value = byte_codes[1]
447			      | byte_codes[2] << 8;
448			adw_outw(adw, ADW_RAM_DATA, value);
449			bytes_downloaded++;
450			byte_codes += 3;
451		} else {
452			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
453			bytes_downloaded++;
454			byte_codes++;
455		}
456	}
457	/* Convert from words to bytes */
458	bytes_downloaded *= 2;
459
460	/*
461	 * Clear the rest of LRAM.
462	 */
463	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
464		adw_outw(adw, ADW_RAM_DATA, 0);
465
466	/*
467	 * Verify the microcode checksum.
468	 */
469	checksum = 0;
470	adw_outw(adw, ADW_RAM_ADDR, 0);
471	for (addr = 0; addr < bytes_downloaded; addr += 2)
472		checksum += adw_inw(adw, ADW_RAM_DATA);
473
474	if (checksum != adw->mcode_data->mcode_chksum) {
475		printf("%s: Firmware load failed!\n", adw_name(adw));
476		return (EIO);
477	}
478
479	/*
480	 * Restore the RISC memory BIOS region.
481	 */
482	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
483		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
484
485	/*
486	 * Calculate and write the microcode code checksum to
487	 * the microcode code checksum location.
488	 */
489	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
490	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
491	checksum = 0;
492	adw_outw(adw, ADW_RAM_ADDR, addr);
493	for (; addr < end_addr; addr += 2)
494		checksum += adw_inw(adw, ADW_RAM_DATA);
495	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
496
497	/*
498	 * Tell the microcode what kind of chip it's running on.
499	 */
500	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
501
502	/*
503	 * Leave WDTR and SDTR negotiation disabled until the XPT has
504	 * informed us of device capabilities, but do set the desired
505	 * user rates in case we receive an SDTR request from the target
506	 * before we negotiate.  We turn on tagged queuing at the microcode
507	 * level for all devices, and modulate this on a per command basis.
508	 */
509	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
510	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
511	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
512	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
513	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
514	for (tid = 0; tid < ADW_MAX_TID; tid++) {
515		/* Cam limits the maximum number of commands for us */
516		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
517				 adw->max_acbs);
518	}
519	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
520
521	/*
522	 * Set SCSI_CFG0 Microcode Default Value.
523	 *
524	 * The microcode will set the SCSI_CFG0 register using this value
525	 * after it is started.
526	 */
527	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
528			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
529			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
530
531	/*
532	 * Tell the MC about the memory size that
533	 * was setup by the probe code.
534	 */
535	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
536			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
537
538	/*
539	 * Determine SCSI_CFG1 Microcode Default Value.
540	 *
541	 * The microcode will set the SCSI_CFG1 register using this value
542	 * after it is started below.
543	 */
544	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
545
546	/*
547	 * If the internal narrow cable is reversed all of the SCSI_CTRL
548	 * register signals will be set. Check for and return an error if
549	 * this condition is found.
550	 */
551	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
552		printf("%s: Illegal Cable Config!\n", adw_name(adw));
553		printf("%s: Internal cable is reversed!\n", adw_name(adw));
554		return (EIO);
555	}
556
557	/*
558	 * If this is a differential board and a single-ended device
559	 * is attached to one of the connectors, return an error.
560	 */
561	if ((adw->features & ADW_ULTRA) != 0)  {
562		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
563		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
564			printf("%s: A Single Ended Device is attached to our "
565			       "differential bus!\n", adw_name(adw));
566		        return (EIO);
567		}
568	} else {
569		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
570			printf("%s: A High Voltage Differential Device "
571			       "is attached to this controller.\n",
572			       adw_name(adw));
573			printf("%s: HVD devices are not supported.\n",
574			       adw_name(adw));
575		        return (EIO);
576		}
577	}
578
579	/*
580	 * Perform automatic termination control if desired.
581	 */
582	if ((adw->features & ADW_ULTRA2) != 0) {
583		u_int cable_det;
584
585		/*
586		 * Ultra2 Chips require termination disabled to
587		 * detect cable presence.
588		 */
589		adw_outw(adw, ADW_SCSI_CFG1,
590			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
591		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
592		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
593
594		/* SE Termination first if auto-term has been specified */
595		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
596
597			/*
598			 * For all SE cable configurations, high byte
599			 * termination is enabled.
600			 */
601			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
602			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
603			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
604				/*
605				 * If either cable is not present, the
606				 * low byte must be terminated as well.
607				 */
608				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
609			}
610		}
611
612		/* LVD auto-term */
613		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
614		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
615			/*
616			 * If both cables are installed, termination
617			 * is disabled.  Otherwise it is enabled.
618			 */
619			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
620			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
621
622				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
623			}
624		}
625		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
626	} else {
627		/* Ultra Controller Termination */
628		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
629			int cable_count;
630			int wide_cable_count;
631
632			cable_count = 0;
633			wide_cable_count = 0;
634			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
635				cable_count++;
636				wide_cable_count++;
637			}
638			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
639				cable_count++;
640
641			/* There is only one external port */
642			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
643				cable_count++;
644				wide_cable_count++;
645			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
646				cable_count++;
647
648			if (cable_count == 3) {
649				printf("%s: Illegal Cable Config!\n",
650				       adw_name(adw));
651				printf("%s: Only Two Ports may be used at "
652				       "a time!\n", adw_name(adw));
653			} else if (cable_count <= 1) {
654				/*
655				 * At least two out of three cables missing.
656				 * Terminate both bytes.
657				 */
658				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
659					      |  ADW_SCSI_CFG1_TERM_CTL_L;
660			} else if (wide_cable_count <= 1) {
661				/* No two 16bit cables present.  High on. */
662				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
663			}
664		}
665        }
666
667	/* Tell the user about our decission */
668	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
669	case ADW_SCSI_CFG1_TERM_CTL_MASK:
670		printf("High & Low SE Term Enabled, ");
671		break;
672	case ADW_SCSI_CFG1_TERM_CTL_H:
673		printf("High SE Termination Enabled, ");
674		break;
675	case ADW_SCSI_CFG1_TERM_CTL_L:
676		printf("Low SE Term Enabled, ");
677		break;
678	default:
679		break;
680	}
681
682	if ((adw->features & ADW_ULTRA2) != 0
683	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
684		printf("LVD Term Enabled, ");
685
686	/*
687	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
688	 * set 'scsicfg1'. The TERM_POL bit does not need to be
689	 * referenced, because the hardware internally inverts
690	 * the Termination High and Low bits if TERM_POL is set.
691	 */
692	if ((adw->features & ADW_ULTRA2) != 0) {
693		term_scsicfg1 = ~term_scsicfg1;
694		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
695			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
696		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
697			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
698			     |ADW_SCSI_CFG1_BIG_ENDIAN
699			     |ADW_SCSI_CFG1_TERM_POL
700			     |ADW2_SCSI_CFG1_DEV_DETECT);
701		scsicfg1 |= term_scsicfg1;
702	} else {
703		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
704		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
705		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
706		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
707	}
708
709	/*
710	 * Set SCSI_CFG1 Microcode Default Value
711	 *
712	 * The microcode will set the SCSI_CFG1 register using this value
713	 * after it is started below.
714	 */
715	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
716
717	/*
718	 * Only accept selections on our initiator target id.
719	 * This may change in target mode scenarios...
720	 */
721	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
722			  (0x01 << adw->initiator_id));
723
724	/*
725	 * Tell the microcode where it can find our
726	 * Initiator Command Queue (ICQ).  It is
727	 * currently empty hence the "stopper" address.
728	 */
729	adw->commandq = adw->free_carriers;
730	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
731	adw->commandq->next_ba = ADW_CQ_STOPPER;
732	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
733
734	/*
735	 * Tell the microcode where it can find our
736	 * Initiator Response Queue (IRQ).  It too
737	 * is currently empty.
738	 */
739	adw->responseq = adw->free_carriers;
740	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
741	adw->responseq->next_ba = ADW_CQ_STOPPER;
742	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
743
744	adw_outb(adw, ADW_INTR_ENABLES,
745		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
746
747	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
748
749	return (0);
750}
751
752void
753adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
754{
755	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
756	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
757	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
758}
759
760u_int
761adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
762{
763	u_int mc_sdtr;
764
765	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
766	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
767	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
768	return (mc_sdtr);
769}
770
771void
772adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
773{
774	u_int mc_sdtr_offset;
775	u_int mc_sdtr;
776
777	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
778	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
779	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
780	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
781	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
782	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
783}
784
785u_int
786adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
787{
788	u_int mc_sdtr_offset;
789	u_int mc_sdtr;
790
791	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
792	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
793	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
794	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
795	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
796	return (mc_sdtr);
797}
798
799u_int
800adw_find_sdtr(struct adw_softc *adw, u_int period)
801{
802	int i;
803
804	i = 0;
805	if ((adw->features & ADW_DT) == 0)
806		i = ADW_MC_SDTR_OFFSET_ULTRA2;
807	if ((adw->features & ADW_ULTRA2) == 0)
808		i = ADW_MC_SDTR_OFFSET_ULTRA;
809	if (period == 0)
810		return ADW_MC_SDTR_ASYNC;
811
812	for (; i < adw_num_syncrates; i++) {
813		if (period <= adw_syncrates[i].period)
814			return (adw_syncrates[i].mc_sdtr);
815	}
816	return ADW_MC_SDTR_ASYNC;
817}
818
819u_int
820adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
821{
822	int i;
823
824	for (i = 0; i < adw_num_syncrates; i++) {
825		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
826			break;
827	}
828	return (adw_syncrates[i].period);
829}
830
831u_int
832adw_hshk_cfg_period_factor(u_int tinfo)
833{
834	tinfo &= ADW_HSHK_CFG_RATE_MASK;
835	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
836	if (tinfo == 0x11)
837		/* 80MHz/DT */
838		return (9);
839	else if (tinfo == 0x10)
840		/* 40MHz */
841		return (10);
842	else
843		return (((tinfo * 25) + 50) / 4);
844}
845
846/*
847 * Send an idle command to the chip and wait for completion.
848 */
849adw_idle_cmd_status_t
850adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
851{
852	u_int		      timeout;
853	adw_idle_cmd_status_t status;
854	int		      s;
855
856	s = splcam();
857
858	/*
859	 * Clear the idle command status which is set by the microcode
860	 * to a non-zero value to indicate when the command is completed.
861	 */
862	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
863
864	/*
865	 * Write the idle command value after the idle command parameter
866	 * has been written to avoid a race condition. If the order is not
867	 * followed, the microcode may process the idle command before the
868	 * parameters have been written to LRAM.
869	 */
870	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
871    	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
872
873	/*
874	 * Tickle the RISC to tell it to process the idle command.
875	 */
876	adw_tickle_risc(adw, ADW_TICKLE_B);
877
878	/* Wait for up to 10 seconds for the command to complete */
879	timeout = 5000000;
880	while (--timeout) {
881		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
882       		if (status != 0)
883			break;
884		DELAY(20);
885	}
886
887	if (timeout == 0)
888		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
889	splx(s);
890	return (status);
891}
892