adwlib.c revision 146734
1/*-
2 * Low level routines for Second Generation
3 * Advanced Systems Inc. SCSI controllers chips
4 *
5 * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32/*-
33 * Ported from:
34 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
35 *
36 * Copyright (c) 1995-1998 Advanced System Products, Inc.
37 * All Rights Reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that redistributions of source
41 * code retain the above copyright notice and this comment without
42 * modification.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: head/sys/dev/advansys/adwlib.c 146734 2005-05-29 04:42:30Z nyan $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bus.h>
51
52#include <machine/bus.h>
53
54#include <cam/cam.h>
55#include <cam/cam_ccb.h>
56#include <cam/cam_sim.h>
57#include <cam/cam_xpt_sim.h>
58#include <cam/scsi/scsi_all.h>
59
60#include <dev/advansys/adwlib.h>
61
62const struct adw_eeprom adw_asc3550_default_eeprom =
63{
64	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
65	0x0000,				/* cfg_msw */
66	0xFFFF,				/* disc_enable */
67	0xFFFF,				/* wdtr_able */
68	{ 0xFFFF },			/* sdtr_able */
69	0xFFFF,				/* start_motor */
70	0xFFFF,				/* tagqng_able */
71	0xFFFF,				/* bios_scan */
72	0,				/* scam_tolerant */
73	7,				/* adapter_scsi_id */
74	0,				/* bios_boot_delay */
75	3,				/* scsi_reset_delay */
76	0,				/* bios_id_lun */
77	0,				/* termination */
78	0,				/* reserved1 */
79	0xFFE7,				/* bios_ctrl */
80	{ 0xFFFF },			/* ultra_able */
81	{ 0 },				/* reserved2 */
82	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
83	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
84	0,				/* dvc_cntl */
85	{ 0 },				/* bug_fix */
86	{ 0, 0, 0 },			/* serial_number */
87	0,				/* check_sum */
88	{				/* oem_name[16] */
89	  0, 0, 0, 0, 0, 0, 0, 0,
90	  0, 0, 0, 0, 0, 0, 0, 0
91	},
92	0,				/* dvc_err_code */
93	0,				/* adv_err_code */
94	0,				/* adv_err_addr */
95	0,				/* saved_dvc_err_code */
96	0,				/* saved_adv_err_code */
97	0				/* saved_adv_err_addr */
98};
99
100const struct adw_eeprom adw_asc38C0800_default_eeprom =
101{
102	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
103	0x0000,				/* 01 cfg_msw */
104	0xFFFF,				/* 02 disc_enable */
105	0xFFFF,				/* 03 wdtr_able */
106	{ 0x4444 },			/* 04 sdtr_speed1 */
107	0xFFFF,				/* 05 start_motor */
108	0xFFFF,				/* 06 tagqng_able */
109	0xFFFF,				/* 07 bios_scan */
110	0,				/* 08 scam_tolerant */
111	7,				/* 09 adapter_scsi_id */
112	0,				/*    bios_boot_delay */
113	3,				/* 10 scsi_reset_delay */
114	0,				/*    bios_id_lun */
115	0,				/* 11 termination_se */
116	0,				/*    termination_lvd */
117	0xFFE7,				/* 12 bios_ctrl */
118	{ 0x4444 },			/* 13 sdtr_speed2 */
119	{ 0x4444 },			/* 14 sdtr_speed3 */
120	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
121	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
122	0,				/* 16 dvc_cntl */
123	{ 0x4444 } ,			/* 17 sdtr_speed4 */
124	{ 0, 0, 0 },			/* 18-20 serial_number */
125	0,				/* 21 check_sum */
126	{				/* 22-29 oem_name[16] */
127	  0, 0, 0, 0, 0, 0, 0, 0,
128	  0, 0, 0, 0, 0, 0, 0, 0
129	},
130	0,				/* 30 dvc_err_code */
131	0,				/* 31 adv_err_code */
132	0,				/* 32 adv_err_addr */
133	0,				/* 33 saved_dvc_err_code */
134	0,				/* 34 saved_adv_err_code */
135	0,				/* 35 saved_adv_err_addr */
136	{				/* 36 - 55 reserved */
137	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
138	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
139	},
140	0,				/* 56 cisptr_lsw */
141	0,				/* 57 cisprt_msw */
142					/* 58-59 sub-id */
143	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
144};
145
146#define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
147#define ADW_MC_SDTR_OFFSET_ULTRA2	1
148#define ADW_MC_SDTR_OFFSET_ULTRA	2
149const struct adw_syncrate adw_syncrates[] =
150{
151	/*   mc_sdtr		  period      rate */
152	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
153	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
154	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
155	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
156	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
157	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
158};
159
160const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
161
162static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
163static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
164					    u_int data);
165static void		adw_eeprom_wait(struct adw_softc *adw);
166
167int
168adw_find_signature(struct adw_softc *adw)
169{
170	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
171	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
172		return (1);
173	return (0);
174}
175
176/*
177 * Reset Chip.
178 */
179void
180adw_reset_chip(struct adw_softc *adw)
181{
182	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
183	DELAY(1000 * 100);
184	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
185
186	/*
187	 * Initialize Chip registers.
188	 */
189	adw_outw(adw, ADW_SCSI_CFG1,
190		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
191}
192
193/*
194 * Reset the SCSI bus.
195 */
196int
197adw_reset_bus(struct adw_softc *adw)
198{
199	adw_idle_cmd_status_t status;
200
201	status =
202	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
203	if (status != ADW_IDLE_CMD_SUCCESS) {
204		xpt_print_path(adw->path);
205		printf("Bus Reset start attempt failed\n");
206		return (1);
207	}
208	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
209	status =
210	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
211	if (status != ADW_IDLE_CMD_SUCCESS) {
212		xpt_print_path(adw->path);
213		printf("Bus Reset end attempt failed\n");
214		return (1);
215	}
216	return (0);
217}
218
219/*
220 * Read the specified EEPROM location
221 */
222static u_int16_t
223adw_eeprom_read_16(struct adw_softc *adw, int addr)
224{
225	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
226	adw_eeprom_wait(adw);
227	return (adw_inw(adw, ADW_EEP_DATA));
228}
229
230static void
231adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
232{
233	adw_outw(adw, ADW_EEP_DATA, data);
234	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
235	adw_eeprom_wait(adw);
236}
237
238/*
239 * Wait for and EEPROM command to complete
240 */
241static void
242adw_eeprom_wait(struct adw_softc *adw)
243{
244	int i;
245
246	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
247		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
248            		break;
249		DELAY(1000);
250    	}
251	if (i == ADW_EEP_DELAY_MS)
252		panic("%s: Timedout Reading EEPROM", adw_name(adw));
253}
254
255/*
256 * Read EEPROM configuration into the specified buffer.
257 *
258 * Return a checksum based on the EEPROM configuration read.
259 */
260u_int16_t
261adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
262{
263	u_int16_t *wbuf;
264	u_int16_t  wval;
265	u_int16_t  chksum;
266	int	   eep_addr;
267
268	wbuf = (u_int16_t *)eep_buf;
269	chksum = 0;
270
271	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
272	     eep_addr < ADW_EEP_DVC_CFG_END;
273	     eep_addr++, wbuf++) {
274		wval = adw_eeprom_read_16(adw, eep_addr);
275		chksum += wval;
276		*wbuf = wval;
277	}
278
279	/* checksum field is not counted in the checksum */
280	*wbuf = adw_eeprom_read_16(adw, eep_addr);
281	wbuf++;
282
283	/* Driver seeprom variables are not included in the checksum */
284	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
285	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
286	     eep_addr++, wbuf++)
287		*wbuf = adw_eeprom_read_16(adw, eep_addr);
288
289	return (chksum);
290}
291
292void
293adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
294{
295	u_int16_t *wbuf;
296	u_int16_t  addr;
297	u_int16_t  chksum;
298
299	wbuf = (u_int16_t *)eep_buf;
300	chksum = 0;
301
302	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
303	adw_eeprom_wait(adw);
304
305	/*
306	 * Write EEPROM until checksum.
307	 */
308	for (addr = ADW_EEP_DVC_CFG_BEGIN;
309	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
310		chksum += *wbuf;
311		adw_eeprom_write_16(adw, addr, *wbuf);
312	}
313
314	/*
315	 * Write calculated EEPROM checksum
316	 */
317	adw_eeprom_write_16(adw, addr, chksum);
318
319	/* skip over buffer's checksum */
320	wbuf++;
321
322	/*
323	 * Write the rest.
324	 */
325	for (addr = ADW_EEP_DVC_CTL_BEGIN;
326	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
327		adw_eeprom_write_16(adw, addr, *wbuf);
328
329	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
330	adw_eeprom_wait(adw);
331}
332
333int
334adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
335{
336	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
337	const u_int16_t    *word_table;
338	const u_int8_t     *byte_codes;
339	const u_int8_t     *byte_codes_end;
340	u_int		    bios_sig;
341	u_int		    bytes_downloaded;
342	u_int		    addr;
343	u_int		    end_addr;
344	u_int		    checksum;
345	u_int		    scsicfg1;
346	u_int		    tid;
347
348	/*
349	 * Save the RISC memory BIOS region before writing the microcode.
350	 * The BIOS may already be loaded and using its RISC LRAM region
351	 * so its region must be saved and restored.
352	 */
353	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
354		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
355
356	/*
357	 * Save current per TID negotiated values if the BIOS has been
358	 * loaded (BIOS signature is present).  These will be used if
359	 * we cannot get information from the EEPROM.
360	 */
361	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
362	bios_sig = biosmem[addr]
363		 | (biosmem[addr + 1] << 8);
364	if (bios_sig == 0x55AA
365	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
366		u_int major_ver;
367		u_int minor_ver;
368		u_int sdtr_able;
369
370		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
371		minor_ver = biosmem[addr + 1] & 0xF;
372		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
373		if ((adw->chip == ADW_CHIP_ASC3550)
374		 && (major_ver <= 3
375		  || (major_ver == 3 && minor_ver <= 1))) {
376			/*
377			 * BIOS 3.1 and earlier location of
378			 * 'wdtr_able' variable.
379			 */
380			adw->user_wdtr =
381			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
382		} else {
383			adw->user_wdtr =
384			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
385		}
386		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
387		for (tid = 0; tid < ADW_MAX_TID; tid++) {
388			u_int tid_mask;
389			u_int mc_sdtr;
390
391			tid_mask = 0x1 << tid;
392			if ((sdtr_able & tid_mask) == 0)
393				mc_sdtr = ADW_MC_SDTR_ASYNC;
394			else if ((adw->features & ADW_DT) != 0)
395				mc_sdtr = ADW_MC_SDTR_80;
396			else if ((adw->features & ADW_ULTRA2) != 0)
397				mc_sdtr = ADW_MC_SDTR_40;
398			else
399				mc_sdtr = ADW_MC_SDTR_20;
400			adw_set_user_sdtr(adw, tid, mc_sdtr);
401		}
402		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
403	}
404
405	/*
406	 * Load the Microcode.
407	 *
408	 * Assume the following compressed format of the microcode buffer:
409	 *
410	 *	253 word (506 byte) table indexed by byte code followed
411	 *	by the following byte codes:
412	 *
413	 *	1-Byte Code:
414	 *		00: Emit word 0 in table.
415	 *		01: Emit word 1 in table.
416	 *		.
417	 *		FD: Emit word 253 in table.
418	 *
419	 *	Multi-Byte Code:
420	 *		FD RESEVED
421	 *
422	 *		FE WW WW: (3 byte code)
423	 *			Word to emit is the next word WW WW.
424	 *		FF BB WW WW: (4 byte code)
425	 *			Emit BB count times next word WW WW.
426	 *
427	 */
428	bytes_downloaded = 0;
429	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
430	byte_codes = (const u_int8_t *)&word_table[253];
431	byte_codes_end = adw->mcode_data->mcode_buf
432		       + adw->mcode_data->mcode_size;
433	adw_outw(adw, ADW_RAM_ADDR, 0);
434	while (byte_codes < byte_codes_end) {
435		if (*byte_codes == 0xFF) {
436			u_int16_t value;
437
438			value = byte_codes[2]
439			      | byte_codes[3] << 8;
440			adw_set_multi_2(adw, ADW_RAM_DATA,
441					value, byte_codes[1]);
442			bytes_downloaded += byte_codes[1];
443			byte_codes += 4;
444		} else if (*byte_codes == 0xFE) {
445			u_int16_t value;
446
447			value = byte_codes[1]
448			      | byte_codes[2] << 8;
449			adw_outw(adw, ADW_RAM_DATA, value);
450			bytes_downloaded++;
451			byte_codes += 3;
452		} else {
453			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
454			bytes_downloaded++;
455			byte_codes++;
456		}
457	}
458	/* Convert from words to bytes */
459	bytes_downloaded *= 2;
460
461	/*
462	 * Clear the rest of LRAM.
463	 */
464	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
465		adw_outw(adw, ADW_RAM_DATA, 0);
466
467	/*
468	 * Verify the microcode checksum.
469	 */
470	checksum = 0;
471	adw_outw(adw, ADW_RAM_ADDR, 0);
472	for (addr = 0; addr < bytes_downloaded; addr += 2)
473		checksum += adw_inw(adw, ADW_RAM_DATA);
474
475	if (checksum != adw->mcode_data->mcode_chksum) {
476		printf("%s: Firmware load failed!\n", adw_name(adw));
477		return (EIO);
478	}
479
480	/*
481	 * Restore the RISC memory BIOS region.
482	 */
483	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
484		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
485
486	/*
487	 * Calculate and write the microcode code checksum to
488	 * the microcode code checksum location.
489	 */
490	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
491	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
492	checksum = 0;
493	adw_outw(adw, ADW_RAM_ADDR, addr);
494	for (; addr < end_addr; addr += 2)
495		checksum += adw_inw(adw, ADW_RAM_DATA);
496	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
497
498	/*
499	 * Tell the microcode what kind of chip it's running on.
500	 */
501	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
502
503	/*
504	 * Leave WDTR and SDTR negotiation disabled until the XPT has
505	 * informed us of device capabilities, but do set the desired
506	 * user rates in case we receive an SDTR request from the target
507	 * before we negotiate.  We turn on tagged queuing at the microcode
508	 * level for all devices, and modulate this on a per command basis.
509	 */
510	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
511	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
512	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
513	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
514	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
515	for (tid = 0; tid < ADW_MAX_TID; tid++) {
516		/* Cam limits the maximum number of commands for us */
517		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
518				 adw->max_acbs);
519	}
520	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
521
522	/*
523	 * Set SCSI_CFG0 Microcode Default Value.
524	 *
525	 * The microcode will set the SCSI_CFG0 register using this value
526	 * after it is started.
527	 */
528	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
529			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
530			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
531
532	/*
533	 * Tell the MC about the memory size that
534	 * was setup by the probe code.
535	 */
536	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
537			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
538
539	/*
540	 * Determine SCSI_CFG1 Microcode Default Value.
541	 *
542	 * The microcode will set the SCSI_CFG1 register using this value
543	 * after it is started below.
544	 */
545	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
546
547	/*
548	 * If the internal narrow cable is reversed all of the SCSI_CTRL
549	 * register signals will be set. Check for and return an error if
550	 * this condition is found.
551	 */
552	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
553		printf("%s: Illegal Cable Config!\n", adw_name(adw));
554		printf("%s: Internal cable is reversed!\n", adw_name(adw));
555		return (EIO);
556	}
557
558	/*
559	 * If this is a differential board and a single-ended device
560	 * is attached to one of the connectors, return an error.
561	 */
562	if ((adw->features & ADW_ULTRA) != 0)  {
563		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
564		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
565			printf("%s: A Single Ended Device is attached to our "
566			       "differential bus!\n", adw_name(adw));
567		        return (EIO);
568		}
569	} else {
570		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
571			printf("%s: A High Voltage Differential Device "
572			       "is attached to this controller.\n",
573			       adw_name(adw));
574			printf("%s: HVD devices are not supported.\n",
575			       adw_name(adw));
576		        return (EIO);
577		}
578	}
579
580	/*
581	 * Perform automatic termination control if desired.
582	 */
583	if ((adw->features & ADW_ULTRA2) != 0) {
584		u_int cable_det;
585
586		/*
587		 * Ultra2 Chips require termination disabled to
588		 * detect cable presence.
589		 */
590		adw_outw(adw, ADW_SCSI_CFG1,
591			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
592		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
593		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
594
595		/* SE Termination first if auto-term has been specified */
596		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
597
598			/*
599			 * For all SE cable configurations, high byte
600			 * termination is enabled.
601			 */
602			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
603			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
604			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
605				/*
606				 * If either cable is not present, the
607				 * low byte must be terminated as well.
608				 */
609				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
610			}
611		}
612
613		/* LVD auto-term */
614		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
615		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
616			/*
617			 * If both cables are installed, termination
618			 * is disabled.  Otherwise it is enabled.
619			 */
620			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
621			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
622
623				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
624			}
625		}
626		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
627	} else {
628		/* Ultra Controller Termination */
629		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
630			int cable_count;
631			int wide_cable_count;
632
633			cable_count = 0;
634			wide_cable_count = 0;
635			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
636				cable_count++;
637				wide_cable_count++;
638			}
639			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
640				cable_count++;
641
642			/* There is only one external port */
643			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
644				cable_count++;
645				wide_cable_count++;
646			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
647				cable_count++;
648
649			if (cable_count == 3) {
650				printf("%s: Illegal Cable Config!\n",
651				       adw_name(adw));
652				printf("%s: Only Two Ports may be used at "
653				       "a time!\n", adw_name(adw));
654			} else if (cable_count <= 1) {
655				/*
656				 * At least two out of three cables missing.
657				 * Terminate both bytes.
658				 */
659				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
660					      |  ADW_SCSI_CFG1_TERM_CTL_L;
661			} else if (wide_cable_count <= 1) {
662				/* No two 16bit cables present.  High on. */
663				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
664			}
665		}
666        }
667
668	/* Tell the user about our decission */
669	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
670	case ADW_SCSI_CFG1_TERM_CTL_MASK:
671		printf("High & Low SE Term Enabled, ");
672		break;
673	case ADW_SCSI_CFG1_TERM_CTL_H:
674		printf("High SE Termination Enabled, ");
675		break;
676	case ADW_SCSI_CFG1_TERM_CTL_L:
677		printf("Low SE Term Enabled, ");
678		break;
679	default:
680		break;
681	}
682
683	if ((adw->features & ADW_ULTRA2) != 0
684	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
685		printf("LVD Term Enabled, ");
686
687	/*
688	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
689	 * set 'scsicfg1'. The TERM_POL bit does not need to be
690	 * referenced, because the hardware internally inverts
691	 * the Termination High and Low bits if TERM_POL is set.
692	 */
693	if ((adw->features & ADW_ULTRA2) != 0) {
694		term_scsicfg1 = ~term_scsicfg1;
695		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
696			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
697		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
698			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
699			     |ADW_SCSI_CFG1_BIG_ENDIAN
700			     |ADW_SCSI_CFG1_TERM_POL
701			     |ADW2_SCSI_CFG1_DEV_DETECT);
702		scsicfg1 |= term_scsicfg1;
703	} else {
704		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
705		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
706		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
707		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
708	}
709
710	/*
711	 * Set SCSI_CFG1 Microcode Default Value
712	 *
713	 * The microcode will set the SCSI_CFG1 register using this value
714	 * after it is started below.
715	 */
716	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
717
718	/*
719	 * Only accept selections on our initiator target id.
720	 * This may change in target mode scenarios...
721	 */
722	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
723			  (0x01 << adw->initiator_id));
724
725	/*
726	 * Tell the microcode where it can find our
727	 * Initiator Command Queue (ICQ).  It is
728	 * currently empty hence the "stopper" address.
729	 */
730	adw->commandq = adw->free_carriers;
731	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
732	adw->commandq->next_ba = ADW_CQ_STOPPER;
733	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
734
735	/*
736	 * Tell the microcode where it can find our
737	 * Initiator Response Queue (IRQ).  It too
738	 * is currently empty.
739	 */
740	adw->responseq = adw->free_carriers;
741	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
742	adw->responseq->next_ba = ADW_CQ_STOPPER;
743	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
744
745	adw_outb(adw, ADW_INTR_ENABLES,
746		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
747
748	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
749
750	return (0);
751}
752
753void
754adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
755{
756	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
757	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
758	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
759}
760
761u_int
762adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
763{
764	u_int mc_sdtr;
765
766	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
767	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
768	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
769	return (mc_sdtr);
770}
771
772void
773adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
774{
775	u_int mc_sdtr_offset;
776	u_int mc_sdtr;
777
778	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
779	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
780	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
781	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
782	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
783	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
784}
785
786u_int
787adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
788{
789	u_int mc_sdtr_offset;
790	u_int mc_sdtr;
791
792	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
793	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
794	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
795	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
796	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
797	return (mc_sdtr);
798}
799
800u_int
801adw_find_sdtr(struct adw_softc *adw, u_int period)
802{
803	int i;
804
805	i = 0;
806	if ((adw->features & ADW_DT) == 0)
807		i = ADW_MC_SDTR_OFFSET_ULTRA2;
808	if ((adw->features & ADW_ULTRA2) == 0)
809		i = ADW_MC_SDTR_OFFSET_ULTRA;
810	if (period == 0)
811		return ADW_MC_SDTR_ASYNC;
812
813	for (; i < adw_num_syncrates; i++) {
814		if (period <= adw_syncrates[i].period)
815			return (adw_syncrates[i].mc_sdtr);
816	}
817	return ADW_MC_SDTR_ASYNC;
818}
819
820u_int
821adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
822{
823	int i;
824
825	for (i = 0; i < adw_num_syncrates; i++) {
826		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
827			break;
828	}
829	return (adw_syncrates[i].period);
830}
831
832u_int
833adw_hshk_cfg_period_factor(u_int tinfo)
834{
835	tinfo &= ADW_HSHK_CFG_RATE_MASK;
836	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
837	if (tinfo == 0x11)
838		/* 80MHz/DT */
839		return (9);
840	else if (tinfo == 0x10)
841		/* 40MHz */
842		return (10);
843	else
844		return (((tinfo * 25) + 50) / 4);
845}
846
847/*
848 * Send an idle command to the chip and wait for completion.
849 */
850adw_idle_cmd_status_t
851adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
852{
853	u_int		      timeout;
854	adw_idle_cmd_status_t status;
855	int		      s;
856
857	s = splcam();
858
859	/*
860	 * Clear the idle command status which is set by the microcode
861	 * to a non-zero value to indicate when the command is completed.
862	 */
863	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
864
865	/*
866	 * Write the idle command value after the idle command parameter
867	 * has been written to avoid a race condition. If the order is not
868	 * followed, the microcode may process the idle command before the
869	 * parameters have been written to LRAM.
870	 */
871	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
872    	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
873
874	/*
875	 * Tickle the RISC to tell it to process the idle command.
876	 */
877	adw_tickle_risc(adw, ADW_TICKLE_B);
878
879	/* Wait for up to 10 seconds for the command to complete */
880	timeout = 5000000;
881	while (--timeout) {
882		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
883       		if (status != 0)
884			break;
885		DELAY(20);
886	}
887
888	if (timeout == 0)
889		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
890	splx(s);
891	return (status);
892}
893