cvmx-usb.c revision 210311
1161689Sru/***********************license start***************
2161689Sru *  Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
3161689Sru *  reserved.
4161689Sru *
5161689Sru *
6161689Sru *  Redistribution and use in source and binary forms, with or without
7161689Sru *  modification, are permitted provided that the following conditions are
8161689Sru *  met:
9161689Sru *
10161689Sru *      * Redistributions of source code must retain the above copyright
11161689Sru *        notice, this list of conditions and the following disclaimer.
12 *
13 *      * Redistributions in binary form must reproduce the above
14 *        copyright notice, this list of conditions and the following
15 *        disclaimer in the documentation and/or other materials provided
16 *        with the distribution.
17 *
18 *      * Neither the name of Cavium Networks nor the names of
19 *        its contributors may be used to endorse or promote products
20 *        derived from this software without specific prior written
21 *        permission.
22 *
23 *  TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
24 *  AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
25 *  OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
26 *  RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
27 *  REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
28 *  DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
29 *  OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
30 *  PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
31 *  POSSESSION OR CORRESPONDENCE TO DESCRIPTION.  THE ENTIRE RISK ARISING OUT
32 *  OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
33 *
34 *
35 *  For any questions regarding licensing please contact marketing@caviumnetworks.com
36 *
37 ***********************license end**************************************/
38
39/**
40 * @file
41 *
42 * "cvmx-usb.c" defines a set of low level USB functions to help
43 * developers create Octeon USB drivers for various operating
44 * systems. These functions provide a generic API to the Octeon
45 * USB blocks, hiding the internal hardware specific
46 * operations.
47 *
48 * <hr>$Revision: 32636 $<hr>
49 */
50#include "cvmx.h"
51#include "cvmx-sysinfo.h"
52#include "cvmx-usb.h"
53#include "cvmx-helper.h"
54#include "cvmx-helper-board.h"
55#include "cvmx-csr-db.h"
56#include "cvmx-swap.h"
57
58#define MAX_RETRIES         3   /* Maximum number of times to retry failed transactions */
59#define MAX_PIPES           32  /* Maximum number of pipes that can be open at once */
60#define MAX_TRANSACTIONS    256 /* Maximum number of outstanding transactions across all pipes */
61#define MAX_CHANNELS        8   /* Maximum number of hardware channels supported by the USB block */
62#define MAX_USB_ADDRESS     127 /* The highest valid USB device address */
63#define MAX_USB_ENDPOINT    15  /* The highest valid USB endpoint number */
64#define MAX_USB_HUB_PORT    15  /* The highest valid port number on a hub */
65#define ALLOW_CSR_DECODES   0   /* CSR decoding when CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS is set
66                                    enlarges the code a lot. This define overrides the ability to do CSR
67                                    decoding since it isn't necessary 99% of the time. Change this to a
68                                    one if you need CSR decoding */
69
70/* These defines disable the normal read and write csr. This is so I can add
71    extra debug stuff to the usb specific version and I won't use the normal
72    version by mistake */
73#define cvmx_read_csr use_cvmx_usb_read_csr64_instead_of_cvmx_read_csr
74#define cvmx_write_csr use_cvmx_usb_write_csr64_instead_of_cvmx_write_csr
75
76typedef enum
77{
78    __CVMX_USB_TRANSACTION_FLAGS_IN_USE = 1<<16,
79} cvmx_usb_transaction_flags_t;
80
81/**
82 * Logical transactions may take numerous low level
83 * transactions, especially when splits are concerned. This
84 * enum represents all of the possible stages a transaction can
85 * be in. Note that split completes are always even. This is so
86 * the NAK handler can backup to the previous low level
87 * transaction with a simple clearing of bit 0.
88 */
89typedef enum
90{
91    CVMX_USB_STAGE_NON_CONTROL,
92    CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
93    CVMX_USB_STAGE_SETUP,
94    CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
95    CVMX_USB_STAGE_DATA,
96    CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
97    CVMX_USB_STAGE_STATUS,
98    CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
99} cvmx_usb_stage_t;
100
101/**
102 * This structure describes each pending USB transaction
103 * regardless of type. These are linked together to form a list
104 * of pending requests for a pipe.
105 */
106typedef struct cvmx_usb_transaction
107{
108    struct cvmx_usb_transaction *prev;  /**< Transaction before this one in the pipe */
109    struct cvmx_usb_transaction *next;  /**< Transaction after this one in the pipe */
110    cvmx_usb_transfer_t type;           /**< Type of transaction, duplicated of the pipe */
111    cvmx_usb_transaction_flags_t flags; /**< State flags for this transaction */
112    uint64_t buffer;                    /**< User's physical buffer address to read/write */
113    int buffer_length;                  /**< Size of the user's buffer in bytes */
114    uint64_t control_header;            /**< For control transactions, physical address of the 8 byte standard header */
115    int iso_start_frame;                /**< For ISO transactions, the starting frame number */
116    int iso_number_packets;             /**< For ISO transactions, the number of packets in the request */
117    cvmx_usb_iso_packet_t *iso_packets; /**< For ISO transactions, the sub packets in the request */
118    int xfersize;
119    int pktcnt;
120    int retries;
121    int actual_bytes;                   /**< Actual bytes transfer for this transaction */
122    cvmx_usb_stage_t stage;             /**< For control transactions, the current stage */
123    cvmx_usb_callback_func_t callback;  /**< User's callback function when complete */
124    void *callback_data;                /**< User's data */
125} cvmx_usb_transaction_t;
126
127/**
128 * A pipe represents a virtual connection between Octeon and some
129 * USB device. It contains a list of pending request to the device.
130 */
131typedef struct cvmx_usb_pipe
132{
133    struct cvmx_usb_pipe *prev;         /**< Pipe before this one in the list */
134    struct cvmx_usb_pipe *next;         /**< Pipe after this one in the list */
135    cvmx_usb_transaction_t *head;       /**< The first pending transaction */
136    cvmx_usb_transaction_t *tail;       /**< The last pending transaction */
137    uint64_t interval;                  /**< For periodic pipes, the interval between packets in cycles */
138    uint64_t next_tx_cycle;             /**< The next cycle this pipe is allowed to transmit on */
139    cvmx_usb_pipe_flags_t flags;        /**< State flags for this pipe */
140    cvmx_usb_speed_t device_speed;      /**< Speed of device connected to this pipe */
141    cvmx_usb_transfer_t transfer_type;  /**< Type of transaction supported by this pipe */
142    cvmx_usb_direction_t transfer_dir;  /**< IN or OUT. Ignored for Control */
143    int multi_count;                    /**< Max packet in a row for the device */
144    uint16_t max_packet;                /**< The device's maximum packet size in bytes */
145    uint8_t device_addr;                /**< USB device address at other end of pipe */
146    uint8_t endpoint_num;               /**< USB endpoint number at other end of pipe */
147    uint8_t hub_device_addr;            /**< Hub address this device is connected to */
148    uint8_t hub_port;                   /**< Hub port this device is connected to */
149    uint8_t pid_toggle;                 /**< This toggles between 0/1 on every packet send to track the data pid needed */
150    uint8_t channel;                    /**< Hardware DMA channel for this pipe */
151    int8_t  split_sc_frame;             /**< The low order bits of the frame number the split complete should be sent on */
152} cvmx_usb_pipe_t;
153
154typedef struct
155{
156    cvmx_usb_pipe_t *head;              /**< Head of the list, or NULL if empty */
157    cvmx_usb_pipe_t *tail;              /**< Tail if the list, or NULL if empty */
158} cvmx_usb_pipe_list_t;
159
160/**
161 * The state of the USB block is stored in this structure
162 */
163typedef struct
164{
165    int init_flags;                     /**< Flags passed to initialize */
166    int index;                          /**< Which USB block this is for */
167    int idle_hardware_channels;         /**< Bit set for every idle hardware channel */
168    int active_transactions;            /**< Number of active transactions across all pipes */
169    cvmx_usbcx_hprt_t usbcx_hprt;       /**< Stored port status so we don't need to read a CSR to determine splits */
170    cvmx_usb_pipe_t *pipe_for_channel[MAX_CHANNELS];    /**< Map channels to pipes */
171    cvmx_usb_transaction_t *free_transaction_head;      /**< List of free transactions head */
172    cvmx_usb_transaction_t *free_transaction_tail;      /**< List of free transactions tail */
173    cvmx_usb_pipe_t pipe[MAX_PIPES];                    /**< Storage for pipes */
174    cvmx_usb_transaction_t transaction[MAX_TRANSACTIONS];       /**< Storage for transactions */
175    cvmx_usb_callback_func_t callback[__CVMX_USB_CALLBACK_END]; /**< User global callbacks */
176    void *callback_data[__CVMX_USB_CALLBACK_END];               /**< User data for each callback */
177    int indent;                         /**< Used by debug output to indent functions */
178    cvmx_usb_port_status_t port_status; /**< Last port status used for change notification */
179    cvmx_usb_pipe_list_t free_pipes;    /**< List of all pipes that are currently closed */
180    cvmx_usb_pipe_list_t idle_pipes;    /**< List of open pipes that have no transactions */
181    cvmx_usb_pipe_list_t active_pipes[4]; /**< Active pipes indexed by transfer type */
182} cvmx_usb_internal_state_t;
183
184/* This macro logs out whenever a function is called if debugging is on */
185#define CVMX_USB_LOG_CALLED() \
186    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
187        cvmx_dprintf("%*s%s: called\n", 2*usb->indent++, "", __FUNCTION__);
188
189/* This macro logs out each function parameter if debugging is on */
190#define CVMX_USB_LOG_PARAM(format, param) \
191    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
192        cvmx_dprintf("%*s%s: param %s = " format "\n", 2*usb->indent, "", __FUNCTION__, #param, param);
193
194/* This macro logs out when a function returns a value */
195#define CVMX_USB_RETURN(v)                                              \
196    do {                                                                \
197        __typeof(v) r = v;                                              \
198        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS))    \
199            cvmx_dprintf("%*s%s: returned %s(%d)\n", 2*--usb->indent, "", __FUNCTION__, #v, r); \
200        return r;                                                       \
201    } while (0);
202
203/* This macro logs out when a function doesn't return a value */
204#define CVMX_USB_RETURN_NOTHING()                                       \
205    do {                                                                \
206        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS))    \
207            cvmx_dprintf("%*s%s: returned\n", 2*--usb->indent, "", __FUNCTION__); \
208        return;                                                         \
209    } while (0);
210
211/* This macro spins on a field waiting for it to reach a value */
212#define CVMX_WAIT_FOR_FIELD32(address, type, field, op, value, timeout_usec)\
213    ({int result;                                                       \
214    do {                                                                \
215        uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec *     \
216                           cvmx_sysinfo_get()->cpu_clock_hz / 1000000;  \
217        type c;                                                         \
218        while (1)                                                       \
219        {                                                               \
220            c.u32 = __cvmx_usb_read_csr32(usb, address);                \
221            if (c.s.field op (value)) {                                 \
222                result = 0;                                             \
223                break;                                                  \
224            } else if (cvmx_get_cycle() > done) {                       \
225                result = -1;                                            \
226                break;                                                  \
227            } else                                                      \
228                cvmx_wait(100);                                         \
229        }                                                               \
230    } while (0);                                                        \
231    result;})
232
233/* This macro logically sets a single field in a CSR. It does the sequence
234    read, modify, and write */
235#define USB_SET_FIELD32(address, type, field, value)\
236    do {                                            \
237        type c;                                     \
238        c.u32 = __cvmx_usb_read_csr32(usb, address);\
239        c.s.field = value;                          \
240        __cvmx_usb_write_csr32(usb, address, c.u32);\
241    } while (0)
242
243
244/**
245 * @INTERNAL
246 * Read a USB 32bit CSR. It performs the necessary address swizzle
247 * for 32bit CSRs and logs the value in a readable format if
248 * debugging is on.
249 *
250 * @param usb     USB block this access is for
251 * @param address 64bit address to read
252 *
253 * @return Result of the read
254 */
255static inline uint32_t __cvmx_usb_read_csr32(cvmx_usb_internal_state_t *usb,
256                                             uint64_t address)
257{
258    uint32_t result = cvmx_read64_uint32(address ^ 4);
259#if ALLOW_CSR_DECODES
260    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
261    {
262        cvmx_dprintf("Read: ");
263        cvmx_csr_db_decode(cvmx_get_proc_id(), address, result);
264    }
265#endif
266    return result;
267}
268
269
270/**
271 * @INTERNAL
272 * Write a USB 32bit CSR. It performs the necessary address
273 * swizzle for 32bit CSRs and logs the value in a readable format
274 * if debugging is on.
275 *
276 * @param usb     USB block this access is for
277 * @param address 64bit address to write
278 * @param value   Value to write
279 */
280static inline void __cvmx_usb_write_csr32(cvmx_usb_internal_state_t *usb,
281                                          uint64_t address, uint32_t value)
282{
283#if ALLOW_CSR_DECODES
284    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
285    {
286        cvmx_dprintf("Write: ");
287        cvmx_csr_db_decode(cvmx_get_proc_id(), address, value);
288    }
289#endif
290    cvmx_write64_uint32(address ^ 4, value);
291}
292
293
294/**
295 * @INTERNAL
296 * Read a USB 64bit CSR. It logs the value in a readable format if
297 * debugging is on.
298 *
299 * @param usb     USB block this access is for
300 * @param address 64bit address to read
301 *
302 * @return Result of the read
303 */
304static inline uint64_t __cvmx_usb_read_csr64(cvmx_usb_internal_state_t *usb,
305                                             uint64_t address)
306{
307    uint64_t result = cvmx_read64_uint64(address);
308#if ALLOW_CSR_DECODES
309    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
310    {
311        cvmx_dprintf("Read: ");
312        cvmx_csr_db_decode(cvmx_get_proc_id(), address, result);
313    }
314#endif
315    return result;
316}
317
318
319/**
320 * @INTERNAL
321 * Write a USB 64bit CSR. It logs the value in a readable format
322 * if debugging is on.
323 *
324 * @param usb     USB block this access is for
325 * @param address 64bit address to write
326 * @param value   Value to write
327 */
328static inline void __cvmx_usb_write_csr64(cvmx_usb_internal_state_t *usb,
329                                          uint64_t address, uint64_t value)
330{
331#if ALLOW_CSR_DECODES
332    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
333    {
334        cvmx_dprintf("Write: ");
335        cvmx_csr_db_decode(cvmx_get_proc_id(), address, value);
336    }
337#endif
338    cvmx_write64_uint64(address, value);
339}
340
341
342/**
343 * @INTERNAL
344 * Uitility function to convert complete codes into strings
345 *
346 * @param complete_code
347 *               Code to convert
348 *
349 * @return Human readable string
350 */
351static const char *__cvmx_usb_complete_to_string(cvmx_usb_complete_t complete_code)
352{
353    switch (complete_code)
354    {
355        case CVMX_USB_COMPLETE_SUCCESS: return "SUCCESS";
356        case CVMX_USB_COMPLETE_SHORT:   return "SHORT";
357        case CVMX_USB_COMPLETE_CANCEL:  return "CANCEL";
358        case CVMX_USB_COMPLETE_ERROR:   return "ERROR";
359        case CVMX_USB_COMPLETE_STALL:   return "STALL";
360        case CVMX_USB_COMPLETE_XACTERR: return "XACTERR";
361        case CVMX_USB_COMPLETE_DATATGLERR: return "DATATGLERR";
362        case CVMX_USB_COMPLETE_BABBLEERR: return "BABBLEERR";
363        case CVMX_USB_COMPLETE_FRAMEERR: return "FRAMEERR";
364    }
365    return "Update __cvmx_usb_complete_to_string";
366}
367
368
369/**
370 * @INTERNAL
371 * Return non zero if this pipe connects to a non HIGH speed
372 * device through a high speed hub.
373 *
374 * @param usb    USB block this access is for
375 * @param pipe   Pipe to check
376 *
377 * @return Non zero if we need to do split transactions
378 */
379static inline int __cvmx_usb_pipe_needs_split(cvmx_usb_internal_state_t *usb, cvmx_usb_pipe_t *pipe)
380{
381    return ((pipe->device_speed != CVMX_USB_SPEED_HIGH) && (usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH));
382}
383
384
385/**
386 * @INTERNAL
387 * Trivial utility function to return the correct PID for a pipe
388 *
389 * @param pipe   pipe to check
390 *
391 * @return PID for pipe
392 */
393static inline int __cvmx_usb_get_data_pid(cvmx_usb_pipe_t *pipe)
394{
395    if (pipe->pid_toggle)
396        return 2; /* Data1 */
397    else
398        return 0; /* Data0 */
399}
400
401
402/**
403 * Return the number of USB ports supported by this Octeon
404 * chip. If the chip doesn't support USB, or is not supported
405 * by this API, a zero will be returned. Most Octeon chips
406 * support one usb port, but some support two ports.
407 * cvmx_usb_initialize() must be called on independent
408 * cvmx_usb_state_t structures.
409 *
410 * This utilizes cvmx_helper_board_usb_get_num_ports()
411 * to get any board specific variatons.
412 *
413 * @return Number of port, zero if usb isn't supported
414 */
415int cvmx_usb_get_num_ports(void)
416{
417    int arch_ports = 0;
418
419    if (OCTEON_IS_MODEL(OCTEON_CN52XX))
420        arch_ports = 2;
421    else if (OCTEON_IS_MODEL(OCTEON_CN31XX))
422        arch_ports = 0; /* This chip has USB but it doesn't support DMA */
423    else if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))
424        arch_ports = 0;
425    else
426        arch_ports = 1;
427
428    return __cvmx_helper_board_usb_get_num_ports(arch_ports);
429}
430
431
432/**
433 * @INTERNAL
434 * Allocate a usb transaction for use
435 *
436 * @param usb    USB device state populated by
437 *               cvmx_usb_initialize().
438 *
439 * @return Transaction or NULL
440 */
441static inline cvmx_usb_transaction_t *__cvmx_usb_alloc_transaction(cvmx_usb_internal_state_t *usb)
442{
443    cvmx_usb_transaction_t *t;
444    t = usb->free_transaction_head;
445    if (t)
446    {
447        usb->free_transaction_head = t->next;
448        if (!usb->free_transaction_head)
449            usb->free_transaction_tail = NULL;
450    }
451    else if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
452        cvmx_dprintf("%s: Failed to allocate a transaction\n", __FUNCTION__);
453    if (t)
454    {
455        memset(t, 0, sizeof(*t));
456        t->flags = __CVMX_USB_TRANSACTION_FLAGS_IN_USE;
457    }
458    return t;
459}
460
461
462/**
463 * @INTERNAL
464 * Free a usb transaction
465 *
466 * @param usb    USB device state populated by
467 *               cvmx_usb_initialize().
468 * @param transaction
469 *               Transaction to free
470 */
471static inline void __cvmx_usb_free_transaction(cvmx_usb_internal_state_t *usb,
472                                        cvmx_usb_transaction_t *transaction)
473{
474    transaction->flags = 0;
475    transaction->prev = NULL;
476    transaction->next = NULL;
477    if (usb->free_transaction_tail)
478        usb->free_transaction_tail->next = transaction;
479    else
480        usb->free_transaction_head = transaction;
481    usb->free_transaction_tail = transaction;
482}
483
484
485/**
486 * @INTERNAL
487 * Add a pipe to the tail of a list
488 * @param list   List to add pipe to
489 * @param pipe   Pipe to add
490 */
491static inline void __cvmx_usb_append_pipe(cvmx_usb_pipe_list_t *list, cvmx_usb_pipe_t *pipe)
492{
493    pipe->next = NULL;
494    pipe->prev = list->tail;
495    if (list->tail)
496        list->tail->next = pipe;
497    else
498        list->head = pipe;
499    list->tail = pipe;
500}
501
502
503/**
504 * @INTERNAL
505 * Remove a pipe from a list
506 * @param list   List to remove pipe from
507 * @param pipe   Pipe to remove
508 */
509static inline void __cvmx_usb_remove_pipe(cvmx_usb_pipe_list_t *list, cvmx_usb_pipe_t *pipe)
510{
511    if (list->head == pipe)
512    {
513        list->head = pipe->next;
514        pipe->next = NULL;
515        if (list->head)
516            list->head->prev = NULL;
517        else
518            list->tail = NULL;
519    }
520    else if (list->tail == pipe)
521    {
522        list->tail = pipe->prev;
523        list->tail->next = NULL;
524        pipe->prev = NULL;
525    }
526    else
527    {
528        pipe->prev->next = pipe->next;
529        pipe->next->prev = pipe->prev;
530        pipe->prev = NULL;
531        pipe->next = NULL;
532    }
533}
534
535
536/**
537 * @INTERNAL
538 * Perfrom USB device mode initialization after a reset completes.
539 * This should be called after USBC0/1_GINTSTS[USBRESET] and
540 * coresponds to section 22.6.1.1, "Initialization on USB Reset",
541 * in the manual.
542 *
543 * @param usb    USB device state populated by
544 *               cvmx_usb_initialize().
545 *
546 * @return CVMX_USB_SUCCESS or a negative error code defined in
547 *         cvmx_usb_status_t.
548 */
549static cvmx_usb_status_t __cvmx_usb_device_reset_complete(cvmx_usb_internal_state_t *usb)
550{
551    cvmx_usbcx_ghwcfg3_t usbcx_ghwcfg3;
552    int i;
553
554    CVMX_USB_LOG_CALLED();
555    CVMX_USB_LOG_PARAM("%p", usb);
556
557    /* 1. Set USBC0/1_DOEPCTLn[SNAK] = 1 (for all OUT endpoints, n = 0-4). */
558    for (i=0; i<5; i++)
559    {
560        USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(i, usb->index),
561                        cvmx_usbcx_doepctlx_t, snak, 1);
562    }
563
564    /* 2. Unmask the following interrupt bits:
565        USBC0/1_DAINTMSK[INEPMSK] = 1 (control 0 IN endpoint)
566        USBC0/1_DAINTMSK[OUTEPMSK] = 1 (control 0 OUT endpoint)
567        USBC0/1_DOEPMSK[SETUPMSK] = 1
568        USBC0/1_DOEPMSK[XFERCOMPLMSK] = 1
569        USBC0/1_DIEPMSK[XFERCOMPLMSK] = 1
570        USBC0/1_DIEPMSK[TIMEOUTMSK] = 1 */
571    USB_SET_FIELD32(CVMX_USBCX_DAINTMSK(usb->index), cvmx_usbcx_daintmsk_t,
572                    inepmsk, 1);
573    USB_SET_FIELD32(CVMX_USBCX_DAINTMSK(usb->index), cvmx_usbcx_daintmsk_t,
574                    outepmsk, 1);
575    USB_SET_FIELD32(CVMX_USBCX_DOEPMSK(usb->index), cvmx_usbcx_doepmsk_t,
576                    setupmsk, 1);
577    USB_SET_FIELD32(CVMX_USBCX_DOEPMSK(usb->index), cvmx_usbcx_doepmsk_t,
578                    xfercomplmsk, 1);
579    USB_SET_FIELD32(CVMX_USBCX_DIEPMSK(usb->index), cvmx_usbcx_diepmsk_t,
580                    xfercomplmsk, 1);
581    USB_SET_FIELD32(CVMX_USBCX_DIEPMSK(usb->index), cvmx_usbcx_diepmsk_t,
582                    timeoutmsk, 1);
583
584    /* 3. To transmit or receive data, the device must initialize more
585        registers as specified in Section 22.6.1.7 */
586    /* Nothing needed */
587
588    /* 4. Set up the data FIFO RAM for each of the FIFOs:
589        Program USBC0/1_GRXFSIZ to be able to receive control OUT data and
590        SETUP data. This must equal at least one maximum packet size of
591        control endpoint 0 + 2 Dwords (for the status of the control OUT
592        data packet) + 10 Dwords (for SETUP packets).
593        Program USBC0/1_GNPTXFSIZ to be able to transmit control IN data. This
594        must equal at least one maximum packet size of control endpoint 0. */
595
596    /* Read the HWCFG3 register so we know how much space is in the FIFO */
597    usbcx_ghwcfg3.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index));
598
599    {
600        cvmx_usbcx_gnptxfsiz_t gnptxfsiz;
601        int fifo_space = usbcx_ghwcfg3.s.dfifodepth;
602        int i;
603
604        /* Start at the top of the FIFO and assign space for each periodic
605            fifo */
606        for (i=4;i>0;i--)
607        {
608            cvmx_usbcx_dptxfsizx_t siz;
609            siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index));
610            fifo_space -= siz.s.dptxfsize;
611            siz.s.dptxfstaddr = fifo_space;
612            __cvmx_usb_write_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index), siz.u32);
613        }
614
615        /* Assign half the leftover space to the non periodic tx fifo */
616        gnptxfsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
617        gnptxfsiz.s.nptxfdep = fifo_space / 2;
618        fifo_space -= gnptxfsiz.s.nptxfdep;
619        gnptxfsiz.s.nptxfstaddr = fifo_space;
620        __cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), gnptxfsiz.u32);
621
622        /* Assign the remain space to the RX fifo */
623        USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz_t,
624                        rxfdep, fifo_space);
625    }
626
627    /* 5. Program the following fields in the endpoint-specific registers for
628        control OUT endpoint 0 to receive a SETUP packet
629        USBC0/1_DOEPTSIZ0[SUPCNT] = 0x3 (to receive up to three back-to-back
630        SETUP packets)
631        In DMA mode, USBC0/1_DOEPDMA0 register with a memory address to
632        store any SETUP packets received */
633    USB_SET_FIELD32(CVMX_USBCX_DOEPTSIZX(0, usb->index),
634                    cvmx_usbcx_doeptsizx_t, mc, 3);
635    // FIXME
636
637    /* At this point, all initialization required to receive SETUP packets is
638        done. */
639
640    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
641}
642
643
644/**
645 * Initialize a USB port for use. This must be called before any
646 * other access to the Octeon USB port is made. The port starts
647 * off in the disabled state.
648 *
649 * @param state  Pointer to an empty cvmx_usb_state_t structure
650 *               that will be populated by the initialize call.
651 *               This structure is then passed to all other USB
652 *               functions.
653 * @param usb_port_number
654 *               Which Octeon USB port to initialize.
655 * @param flags  Flags to control hardware initialization. See
656 *               cvmx_usb_initialize_flags_t for the flag
657 *               definitions. Some flags are mandatory.
658 *
659 * @return CVMX_USB_SUCCESS or a negative error code defined in
660 *         cvmx_usb_status_t.
661 */
662cvmx_usb_status_t cvmx_usb_initialize(cvmx_usb_state_t *state,
663                                      int usb_port_number,
664                                      cvmx_usb_initialize_flags_t flags)
665{
666    cvmx_usbnx_clk_ctl_t usbn_clk_ctl;
667    cvmx_usbnx_usbp_ctl_status_t usbn_usbp_ctl_status;
668    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
669
670    usb->init_flags = flags;
671    CVMX_USB_LOG_CALLED();
672    CVMX_USB_LOG_PARAM("%p", state);
673    CVMX_USB_LOG_PARAM("%d", usb_port_number);
674    CVMX_USB_LOG_PARAM("0x%x", flags);
675
676    /* Make sure that state is large enough to store the internal state */
677    if (sizeof(*state) < sizeof(*usb))
678        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
679    /* At first allow 0-1 for the usb port number */
680    if ((usb_port_number < 0) || (usb_port_number > 1))
681        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
682    /* For all chips except 52XX there is only one port */
683    if (!OCTEON_IS_MODEL(OCTEON_CN52XX) && (usb_port_number > 0))
684        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
685    /* Try to determine clock type automatically */
686    if ((flags & (CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI |
687                  CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)) == 0)
688    {
689        if (__cvmx_helper_board_usb_get_clock_type() == USB_CLOCK_TYPE_CRYSTAL_12)
690            flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;  /* Only 12 MHZ crystals are supported */
691        else
692            flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
693    }
694
695    if (flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)
696    {
697        /* Check for auto ref clock frequency */
698        if (!(flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK))
699            switch (__cvmx_helper_board_usb_get_clock_type())
700            {
701                case USB_CLOCK_TYPE_REF_12:
702                    flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
703                    break;
704                case USB_CLOCK_TYPE_REF_24:
705                    flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
706                    break;
707                case USB_CLOCK_TYPE_REF_48:
708                    flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
709                    break;
710                default:
711                    CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
712                    break;
713            }
714    }
715
716    memset(usb, 0, sizeof(usb));
717    usb->init_flags = flags;
718
719    /* Initialize the USB state structure */
720    {
721        int i;
722        usb->index = usb_port_number;
723
724        /* Initialize the transaction double linked list */
725        usb->free_transaction_head = NULL;
726        usb->free_transaction_tail = NULL;
727        for (i=0; i<MAX_TRANSACTIONS; i++)
728            __cvmx_usb_free_transaction(usb, usb->transaction + i);
729        for (i=0; i<MAX_PIPES; i++)
730            __cvmx_usb_append_pipe(&usb->free_pipes, usb->pipe + i);
731    }
732
733    /* Power On Reset and PHY Initialization */
734
735    /* 1. Wait for DCOK to assert (nothing to do) */
736    /* 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
737        USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 */
738    usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
739    usbn_clk_ctl.s.por = 1;
740    usbn_clk_ctl.s.hrst = 0;
741    usbn_clk_ctl.s.prst = 0;
742    usbn_clk_ctl.s.hclk_rst = 0;
743    usbn_clk_ctl.s.enable = 0;
744    /* 2b. Select the USB reference clock/crystal parameters by writing
745        appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] */
746    if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)
747    {
748        /* The USB port uses 12/24/48MHz 2.5V board clock
749            source at USB_XO. USB_XI should be tied to GND.
750            Most Octeon evaluation boards require this setting */
751        if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
752        {
753            usbn_clk_ctl.cn31xx.p_rclk  = 1; /* From CN31XX,CN30XX manual */
754            usbn_clk_ctl.cn31xx.p_xenbn = 0;
755        }
756        else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX))
757            usbn_clk_ctl.cn56xx.p_rtype = 2; /* From CN56XX,CN50XX manual */
758        else
759            usbn_clk_ctl.cn52xx.p_rtype = 1; /* From CN52XX manual */
760
761        switch (flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK)
762        {
763            case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
764                usbn_clk_ctl.s.p_c_sel = 0;
765                break;
766            case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
767                usbn_clk_ctl.s.p_c_sel = 1;
768                break;
769            case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
770                usbn_clk_ctl.s.p_c_sel = 2;
771                break;
772        }
773    }
774    else
775    {
776        /* The USB port uses a 12MHz crystal as clock source
777            at USB_XO and USB_XI */
778        if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
779        {
780            usbn_clk_ctl.cn31xx.p_rclk  = 1; /* From CN31XX,CN30XX manual */
781            usbn_clk_ctl.cn31xx.p_xenbn = 1;
782        }
783        else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX))
784            usbn_clk_ctl.cn56xx.p_rtype = 0; /* From CN56XX,CN50XX manual */
785        else
786            usbn_clk_ctl.cn52xx.p_rtype = 0; /* From CN52XX manual */
787
788        usbn_clk_ctl.s.p_c_sel = 0;
789    }
790    /* 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
791        setting USBN0/1_CLK_CTL[ENABLE] = 1.  Divide the core clock down such
792        that USB is as close as possible to 125Mhz */
793    {
794        int divisor = (cvmx_sysinfo_get()->cpu_clock_hz+125000000-1)/125000000;
795        if (divisor < 4)  /* Lower than 4 doesn't seem to work properly */
796            divisor = 4;
797        usbn_clk_ctl.s.divide = divisor;
798        usbn_clk_ctl.s.divide2 = 0;
799    }
800    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
801                           usbn_clk_ctl.u64);
802    /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
803    usbn_clk_ctl.s.hclk_rst = 1;
804    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
805                           usbn_clk_ctl.u64);
806    /* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
807    cvmx_wait(64);
808    /* 3. Program the power-on reset field in the USBN clock-control register:
809        USBN_CLK_CTL[POR] = 0 */
810    usbn_clk_ctl.s.por = 0;
811    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
812                           usbn_clk_ctl.u64);
813    /* 4. Wait 1 ms for PHY clock to start */
814    cvmx_wait_usec(1000);
815    /* 5. Program the Reset input from automatic test equipment field in the
816        USBP control and status register: USBN_USBP_CTL_STATUS[ATE_RESET] = 1 */
817    usbn_usbp_ctl_status.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index));
818    usbn_usbp_ctl_status.s.ate_reset = 1;
819    __cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
820                           usbn_usbp_ctl_status.u64);
821    /* 6. Wait 10 cycles */
822    cvmx_wait(10);
823    /* 7. Clear ATE_RESET field in the USBN clock-control register:
824        USBN_USBP_CTL_STATUS[ATE_RESET] = 0 */
825    usbn_usbp_ctl_status.s.ate_reset = 0;
826    __cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
827                           usbn_usbp_ctl_status.u64);
828    /* 8. Program the PHY reset field in the USBN clock-control register:
829        USBN_CLK_CTL[PRST] = 1 */
830    usbn_clk_ctl.s.prst = 1;
831    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
832                           usbn_clk_ctl.u64);
833    /* 9. Program the USBP control and status register to select host or
834        device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
835        device */
836    if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
837    {
838        usbn_usbp_ctl_status.s.hst_mode = 1;
839        usbn_usbp_ctl_status.s.dm_pulld = 0;
840        usbn_usbp_ctl_status.s.dp_pulld = 0;
841    }
842    else
843    {
844        usbn_usbp_ctl_status.s.hst_mode = 0;
845    }
846    __cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
847                           usbn_usbp_ctl_status.u64);
848    /* 10. Wait 1 �s */
849    cvmx_wait_usec(1);
850    /* 11. Program the hreset_n field in the USBN clock-control register:
851        USBN_CLK_CTL[HRST] = 1 */
852    usbn_clk_ctl.s.hrst = 1;
853    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
854                           usbn_clk_ctl.u64);
855    /* 12. Proceed to USB core initialization */
856    usbn_clk_ctl.s.enable = 1;
857    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
858                           usbn_clk_ctl.u64);
859    cvmx_wait_usec(1);
860
861    /* USB Core Initialization */
862
863    /* 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
864        determine USB core configuration parameters. */
865    /* Nothing needed */
866    /* 2. Program the following fields in the global AHB configuration
867        register (USBC_GAHBCFG)
868        DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
869        Burst length, USBC_GAHBCFG[HBSTLEN] = 0
870        Nonperiodic TxFIFO empty level (slave mode only),
871        USBC_GAHBCFG[NPTXFEMPLVL]
872        Periodic TxFIFO empty level (slave mode only),
873        USBC_GAHBCFG[PTXFEMPLVL]
874        Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 */
875    {
876        cvmx_usbcx_gahbcfg_t usbcx_gahbcfg;
877        usbcx_gahbcfg.u32 = 0;
878        usbcx_gahbcfg.s.dmaen = !OCTEON_IS_MODEL(OCTEON_CN31XX);
879        /* If we are using DMA, start off with 8 idle channels. Without
880            DMA we emulate a single channel */
881        if (usbcx_gahbcfg.s.dmaen)
882            usb->idle_hardware_channels = 0xff;
883        else
884            usb->idle_hardware_channels = 0x1;
885        usbcx_gahbcfg.s.hbstlen = 0;
886        usbcx_gahbcfg.s.nptxfemplvl = 1;
887        usbcx_gahbcfg.s.ptxfemplvl = 1;
888        usbcx_gahbcfg.s.glblintrmsk = 1;
889        __cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
890                               usbcx_gahbcfg.u32);
891    }
892    /* 3. Program the following fields in USBC_GUSBCFG register.
893        HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
894        ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
895        USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
896        PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 */
897    {
898        cvmx_usbcx_gusbcfg_t usbcx_gusbcfg;
899        usbcx_gusbcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index));
900        usbcx_gusbcfg.s.toutcal = 0;
901        usbcx_gusbcfg.s.ddrsel = 0;
902        usbcx_gusbcfg.s.usbtrdtim = 0x5;
903        usbcx_gusbcfg.s.phylpwrclksel = 0;
904        __cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
905                               usbcx_gusbcfg.u32);
906    }
907    /* 4. The software must unmask the following bits in the USBC_GINTMSK
908        register.
909        OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
910        Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 */
911    {
912        cvmx_usbcx_gintmsk_t usbcx_gintmsk;
913        cvmx_usbcx_hcintmskx_t usbc_hcintmsk;
914        cvmx_usbcx_haintmsk_t usbc_haintmsk;
915        int channel;
916
917        usbcx_gintmsk.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index));
918        usbcx_gintmsk.s.otgintmsk = 1;
919        usbcx_gintmsk.s.modemismsk = 1;
920        usbcx_gintmsk.s.hchintmsk = 1;
921        usbcx_gintmsk.s.sofmsk = 0;
922        __cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
923                               usbcx_gintmsk.u32);
924
925        /* Enable the channel halt interrupt */
926        usbc_hcintmsk.u32 = 0;
927        usbc_hcintmsk.s.chhltdmsk = 1;
928        for (channel=0; channel<8; channel++)
929            if (usb->idle_hardware_channels & (1<<channel))
930                __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), usbc_hcintmsk.u32);
931
932        /* Enable the channel interrupt to propagate */
933        usbc_haintmsk.u32 = 0;
934        usbc_haintmsk.s.haintmsk = usb->idle_hardware_channels;
935        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), usbc_haintmsk.u32);
936    }
937
938    if ((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0)
939    {
940        /* Host Port Initialization */
941        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
942            cvmx_dprintf("%s: USB%d is in host mode\n", __FUNCTION__, usb->index);
943
944        /* 1. Program the host-port interrupt-mask field to unmask,
945            USBC_GINTMSK[PRTINT] = 1 */
946        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
947                        prtintmsk, 1);
948        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
949                        disconnintmsk, 1);
950        /* 2. Program the USBC_HCFG register to select full-speed host or
951            high-speed host. */
952        {
953            cvmx_usbcx_hcfg_t usbcx_hcfg;
954            usbcx_hcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
955            usbcx_hcfg.s.fslssupp = 0;
956            usbcx_hcfg.s.fslspclksel = 0;
957            __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
958        }
959        /* 3. Program the port power bit to drive VBUS on the USB,
960            USBC_HPRT[PRTPWR] = 1 */
961        USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtpwr, 1);
962
963        /* Steps 4-15 from the manual are done later in the port enable */
964    }
965    else
966    {
967        /* Device Port Initialization */
968        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
969            cvmx_dprintf("%s: USB%d is in device mode\n", __FUNCTION__, usb->index);
970
971        /* 1. Program the following fields in the USBC0/1_DCFG register:
972            Device speed, USBC0/1_DCFG[DEVSPD] = 0 (high speed)
973            Non-zero-length status OUT handshake, USBC0/1_DCFG[NZSTSOUTHSHK]=0
974            Periodic frame interval (if periodic endpoints are supported),
975            USBC0/1_DCFG[PERFRINT] = 1 */
976        USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
977                        devspd, 0);
978        USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
979                        nzstsouthshk, 0);
980        USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
981                        perfrint, 1);
982
983        /* 2. Program the USBC0/1_GINTMSK register to unmask the following
984            interrupts:
985            USB Reset, USBC0/1_GINTMSK[USBRSTMSK] = 1
986            Enumeration done, USBC0/1_GINTMSK[ENUMDONEMSK] = 1
987            SOF, USBC0/1_GINTMSK[SOFMSK] = 1 */
988        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
989                        usbrstmsk, 1);
990        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
991                        enumdonemsk, 1);
992        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
993                        sofmsk, 1);
994
995        /* 3. Wait for the USBC0/1_GINTSTS[USBRESET] interrupt, which
996            indicates a reset has been detected on the USB and lasts for
997            about 10 ms. On receiving this interrupt, the application must
998            perform the steps listed in Section 22.6.1.1, "Initialization on
999            USB Reset". */
1000        /* Handled in cvmx_poll() usbc_gintsts.s.usbrst processing */
1001
1002        /* 4. Wait for the USBC0/1_GINTSTS[ENUMERATIONDONE] interrupt, which
1003            indicates the end of reset on the USB. On receiving this interrupt,
1004            the application must read the USBC0/1_DSTS register to determine
1005            the enumeration speed and perform the steps listed in Section
1006            22.6.1.2, "Initialization on Enumeration Completion". */
1007        /* Handled in cvmx_poll() usbc_gintsts.s.enumdone processing */
1008    }
1009
1010    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
1011}
1012
1013
1014/**
1015 * Shutdown a USB port after a call to cvmx_usb_initialize().
1016 * The port should be disabled with all pipes closed when this
1017 * function is called.
1018 *
1019 * @param state  USB device state populated by
1020 *               cvmx_usb_initialize().
1021 *
1022 * @return CVMX_USB_SUCCESS or a negative error code defined in
1023 *         cvmx_usb_status_t.
1024 */
1025cvmx_usb_status_t cvmx_usb_shutdown(cvmx_usb_state_t *state)
1026{
1027    cvmx_usbnx_clk_ctl_t usbn_clk_ctl;
1028    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1029
1030    CVMX_USB_LOG_CALLED();
1031    CVMX_USB_LOG_PARAM("%p", state);
1032
1033    /* Make sure all pipes are closed */
1034    if (usb->idle_pipes.head ||
1035        usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS].head ||
1036        usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT].head ||
1037        usb->active_pipes[CVMX_USB_TRANSFER_CONTROL].head ||
1038        usb->active_pipes[CVMX_USB_TRANSFER_BULK].head)
1039        CVMX_USB_RETURN(CVMX_USB_BUSY);
1040
1041    /* Disable the clocks and put them in power on reset */
1042    usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
1043    usbn_clk_ctl.s.enable = 1;
1044    usbn_clk_ctl.s.por = 1;
1045    usbn_clk_ctl.s.hclk_rst = 1;
1046    usbn_clk_ctl.s.prst = 0;
1047    usbn_clk_ctl.s.hrst = 0;
1048    __cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
1049                           usbn_clk_ctl.u64);
1050    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
1051}
1052
1053
1054/**
1055 * Enable a USB port. After this call succeeds, the USB port is
1056 * online and servicing requests.
1057 *
1058 * @param state  USB device state populated by
1059 *               cvmx_usb_initialize().
1060 *
1061 * @return CVMX_USB_SUCCESS or a negative error code defined in
1062 *         cvmx_usb_status_t.
1063 */
1064cvmx_usb_status_t cvmx_usb_enable(cvmx_usb_state_t *state)
1065{
1066    cvmx_usbcx_ghwcfg3_t usbcx_ghwcfg3;
1067    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1068
1069    CVMX_USB_LOG_CALLED();
1070    CVMX_USB_LOG_PARAM("%p", state);
1071    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
1072        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
1073
1074    usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1075
1076    /* If the port is already enabled the just return. We don't need to do
1077        anything */
1078    if (usb->usbcx_hprt.s.prtena)
1079        CVMX_USB_RETURN(CVMX_USB_SUCCESS);
1080
1081    /* If there is nothing plugged into the port then fail immediately */
1082    if (!usb->usbcx_hprt.s.prtconnsts)
1083    {
1084        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
1085            cvmx_dprintf("%s: USB%d Nothing plugged into the port\n", __FUNCTION__, usb->index);
1086        CVMX_USB_RETURN(CVMX_USB_TIMEOUT);
1087    }
1088
1089    /* Program the port reset bit to start the reset process */
1090    USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtrst, 1);
1091
1092    /* Wait at least 50ms (high speed), or 10ms (full speed) for the reset
1093        process to complete. */
1094    cvmx_wait_usec(50000);
1095
1096    /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
1097    USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtrst, 0);
1098
1099    /* Wait for the USBC_HPRT[PRTENA]. */
1100    if (CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t,
1101                              prtena, ==, 1, 100000))
1102    {
1103        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
1104            cvmx_dprintf("%s: Timeout waiting for the port to finish reset\n",
1105                         __FUNCTION__);
1106        CVMX_USB_RETURN(CVMX_USB_TIMEOUT);
1107    }
1108
1109    /* Read the port speed field to get the enumerated speed, USBC_HPRT[PRTSPD]. */
1110    usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1111    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
1112        cvmx_dprintf("%s: USB%d is in %s speed mode\n", __FUNCTION__, usb->index,
1113                     (usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH) ? "high" :
1114                     (usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_FULL) ? "full" :
1115                     "low");
1116
1117    usbcx_ghwcfg3.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index));
1118
1119    /* 13. Program the USBC_GRXFSIZ register to select the size of the receive
1120        FIFO (25%). */
1121    USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz_t,
1122                    rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
1123    /* 14. Program the USBC_GNPTXFSIZ register to select the size and the
1124        start address of the non- periodic transmit FIFO for nonperiodic
1125        transactions (50%). */
1126    {
1127        cvmx_usbcx_gnptxfsiz_t siz;
1128        siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
1129        siz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
1130        siz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
1131        __cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), siz.u32);
1132    }
1133    /* 15. Program the USBC_HPTXFSIZ register to select the size and start
1134        address of the periodic transmit FIFO for periodic transactions (25%). */
1135    {
1136        cvmx_usbcx_hptxfsiz_t siz;
1137        siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
1138        siz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
1139        siz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
1140        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), siz.u32);
1141    }
1142    /* Flush all FIFOs */
1143    USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, txfnum, 0x10);
1144    USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, txfflsh, 1);
1145    CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t,
1146                          txfflsh, ==, 0, 100);
1147    USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, rxfflsh, 1);
1148    CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t,
1149                          rxfflsh, ==, 0, 100);
1150
1151    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
1152}
1153
1154
1155/**
1156 * Disable a USB port. After this call the USB port will not
1157 * generate data transfers and will not generate events.
1158 * Transactions in process will fail and call their
1159 * associated callbacks.
1160 *
1161 * @param state  USB device state populated by
1162 *               cvmx_usb_initialize().
1163 *
1164 * @return CVMX_USB_SUCCESS or a negative error code defined in
1165 *         cvmx_usb_status_t.
1166 */
1167cvmx_usb_status_t cvmx_usb_disable(cvmx_usb_state_t *state)
1168{
1169    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1170
1171    CVMX_USB_LOG_CALLED();
1172    CVMX_USB_LOG_PARAM("%p", state);
1173    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
1174        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
1175
1176    /* Disable the port */
1177    USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtena, 1);
1178    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
1179}
1180
1181
1182/**
1183 * Get the current state of the USB port. Use this call to
1184 * determine if the usb port has anything connected, is enabled,
1185 * or has some sort of error condition. The return value of this
1186 * call has "changed" bits to signal of the value of some fields
1187 * have changed between calls. These "changed" fields are based
1188 * on the last call to cvmx_usb_set_status(). In order to clear
1189 * them, you must update the status through cvmx_usb_set_status().
1190 *
1191 * @param state  USB device state populated by
1192 *               cvmx_usb_initialize().
1193 *
1194 * @return Port status information
1195 */
1196cvmx_usb_port_status_t cvmx_usb_get_status(cvmx_usb_state_t *state)
1197{
1198    cvmx_usbcx_hprt_t usbc_hprt;
1199    cvmx_usb_port_status_t result;
1200    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1201
1202    memset(&result, 0, sizeof(result));
1203
1204    CVMX_USB_LOG_CALLED();
1205    CVMX_USB_LOG_PARAM("%p", state);
1206
1207    usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1208    result.port_enabled = usbc_hprt.s.prtena;
1209    result.port_over_current = usbc_hprt.s.prtovrcurract;
1210    result.port_powered = usbc_hprt.s.prtpwr;
1211    result.port_speed = usbc_hprt.s.prtspd;
1212    result.connected = usbc_hprt.s.prtconnsts;
1213    result.connect_change = (result.connected != usb->port_status.connected);
1214
1215    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS))
1216        cvmx_dprintf("%*s%s: returned port enabled=%d, over_current=%d, powered=%d, speed=%d, connected=%d, connect_change=%d\n",
1217                     2*(--usb->indent), "", __FUNCTION__,
1218                     result.port_enabled,
1219                     result.port_over_current,
1220                     result.port_powered,
1221                     result.port_speed,
1222                     result.connected,
1223                     result.connect_change);
1224    return result;
1225}
1226
1227
1228/**
1229 * Set the current state of the USB port. The status is used as
1230 * a reference for the "changed" bits returned by
1231 * cvmx_usb_get_status(). Other than serving as a reference, the
1232 * status passed to this function is not used. No fields can be
1233 * changed through this call.
1234 *
1235 * @param state  USB device state populated by
1236 *               cvmx_usb_initialize().
1237 * @param port_status
1238 *               Port status to set, most like returned by cvmx_usb_get_status()
1239 */
1240void cvmx_usb_set_status(cvmx_usb_state_t *state, cvmx_usb_port_status_t port_status)
1241{
1242    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1243    CVMX_USB_LOG_CALLED();
1244    CVMX_USB_LOG_PARAM("%p", state);
1245    usb->port_status = port_status;
1246    CVMX_USB_RETURN_NOTHING();
1247}
1248
1249
1250/**
1251 * @INTERNAL
1252 * Convert a USB transaction into a handle
1253 *
1254 * @param usb    USB device state populated by
1255 *               cvmx_usb_initialize().
1256 * @param transaction
1257 *               Transaction to get handle for
1258 *
1259 * @return Handle
1260 */
1261static inline int __cvmx_usb_get_submit_handle(cvmx_usb_internal_state_t *usb,
1262                                        cvmx_usb_transaction_t *transaction)
1263{
1264    return ((unsigned long)transaction - (unsigned long)usb->transaction) /
1265            sizeof(*transaction);
1266}
1267
1268
1269/**
1270 * @INTERNAL
1271 * Convert a USB pipe into a handle
1272 *
1273 * @param usb    USB device state populated by
1274 *               cvmx_usb_initialize().
1275 * @param pipe   Pipe to get handle for
1276 *
1277 * @return Handle
1278 */
1279static inline int __cvmx_usb_get_pipe_handle(cvmx_usb_internal_state_t *usb,
1280                                        cvmx_usb_pipe_t *pipe)
1281{
1282    return ((unsigned long)pipe - (unsigned long)usb->pipe) / sizeof(*pipe);
1283}
1284
1285
1286/**
1287 * Open a virtual pipe between the host and a USB device. A pipe
1288 * must be opened before data can be transferred between a device
1289 * and Octeon.
1290 *
1291 * @param state      USB device state populated by
1292 *                   cvmx_usb_initialize().
1293 * @param flags      Optional pipe flags defined in
1294 *                   cvmx_usb_pipe_flags_t.
1295 * @param device_addr
1296 *                   USB device address to open the pipe to
1297 *                   (0-127).
1298 * @param endpoint_num
1299 *                   USB endpoint number to open the pipe to
1300 *                   (0-15).
1301 * @param device_speed
1302 *                   The speed of the device the pipe is going
1303 *                   to. This must match the device's speed,
1304 *                   which may be different than the port speed.
1305 * @param max_packet The maximum packet length the device can
1306 *                   transmit/receive (low speed=0-8, full
1307 *                   speed=0-1023, high speed=0-1024). This value
1308 *                   comes from the stadnard endpoint descriptor
1309 *                   field wMaxPacketSize bits <10:0>.
1310 * @param transfer_type
1311 *                   The type of transfer this pipe is for.
1312 * @param transfer_dir
1313 *                   The direction the pipe is in. This is not
1314 *                   used for control pipes.
1315 * @param interval   For ISOCHRONOUS and INTERRUPT transfers,
1316 *                   this is how often the transfer is scheduled
1317 *                   for. All other transfers should specify
1318 *                   zero. The units are in frames (8000/sec at
1319 *                   high speed, 1000/sec for full speed).
1320 * @param multi_count
1321 *                   For high speed devices, this is the maximum
1322 *                   allowed number of packet per microframe.
1323 *                   Specify zero for non high speed devices. This
1324 *                   value comes from the stadnard endpoint descriptor
1325 *                   field wMaxPacketSize bits <12:11>.
1326 * @param hub_device_addr
1327 *                   Hub device address this device is connected
1328 *                   to. Devices connected directly to Octeon
1329 *                   use zero. This is only used when the device
1330 *                   is full/low speed behind a high speed hub.
1331 *                   The address will be of the high speed hub,
1332 *                   not and full speed hubs after it.
1333 * @param hub_port   Which port on the hub the device is
1334 *                   connected. Use zero for devices connected
1335 *                   directly to Octeon. Like hub_device_addr,
1336 *                   this is only used for full/low speed
1337 *                   devices behind a high speed hub.
1338 *
1339 * @return A non negative value is a pipe handle. Negative
1340 *         values are failure codes from cvmx_usb_status_t.
1341 */
1342int cvmx_usb_open_pipe(cvmx_usb_state_t *state, cvmx_usb_pipe_flags_t flags,
1343                       int device_addr, int endpoint_num,
1344                       cvmx_usb_speed_t device_speed, int max_packet,
1345                       cvmx_usb_transfer_t transfer_type,
1346                       cvmx_usb_direction_t transfer_dir, int interval,
1347                       int multi_count, int hub_device_addr, int hub_port)
1348{
1349    cvmx_usb_pipe_t *pipe;
1350    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
1351
1352    CVMX_USB_LOG_CALLED();
1353    CVMX_USB_LOG_PARAM("%p", state);
1354    CVMX_USB_LOG_PARAM("0x%x", flags);
1355    CVMX_USB_LOG_PARAM("%d", device_addr);
1356    CVMX_USB_LOG_PARAM("%d", endpoint_num);
1357    CVMX_USB_LOG_PARAM("%d", device_speed);
1358    CVMX_USB_LOG_PARAM("%d", max_packet);
1359    CVMX_USB_LOG_PARAM("%d", transfer_type);
1360    CVMX_USB_LOG_PARAM("%d", transfer_dir);
1361    CVMX_USB_LOG_PARAM("%d", interval);
1362    CVMX_USB_LOG_PARAM("%d", multi_count);
1363    CVMX_USB_LOG_PARAM("%d", hub_device_addr);
1364    CVMX_USB_LOG_PARAM("%d", hub_port);
1365
1366    if (cvmx_unlikely((device_addr < 0) || (device_addr > MAX_USB_ADDRESS)))
1367        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1368    if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > MAX_USB_ENDPOINT)))
1369        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1370    if (cvmx_unlikely(device_speed > CVMX_USB_SPEED_LOW))
1371        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1372    if (cvmx_unlikely((max_packet <= 0) || (max_packet > 1024)))
1373        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1374    if (cvmx_unlikely(transfer_type > CVMX_USB_TRANSFER_INTERRUPT))
1375        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1376    if (cvmx_unlikely((transfer_dir != CVMX_USB_DIRECTION_OUT) &&
1377        (transfer_dir != CVMX_USB_DIRECTION_IN)))
1378        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1379    if (cvmx_unlikely(interval < 0))
1380        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1381    if (cvmx_unlikely((transfer_type == CVMX_USB_TRANSFER_CONTROL) && interval))
1382        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1383    if (cvmx_unlikely(multi_count < 0))
1384        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1385    if (cvmx_unlikely((device_speed != CVMX_USB_SPEED_HIGH) &&
1386        (multi_count != 0)))
1387        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1388    if (cvmx_unlikely((hub_device_addr < 0) || (hub_device_addr > MAX_USB_ADDRESS)))
1389        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1390    if (cvmx_unlikely((hub_port < 0) || (hub_port > MAX_USB_HUB_PORT)))
1391        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
1392    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
1393        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
1394
1395    /* Find a free pipe */
1396    pipe = usb->free_pipes.head;
1397    if (!pipe)
1398        CVMX_USB_RETURN(CVMX_USB_NO_MEMORY);
1399    __cvmx_usb_remove_pipe(&usb->free_pipes, pipe);
1400    pipe->flags = flags | __CVMX_USB_PIPE_FLAGS_OPEN;
1401    if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1402        (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1403        (transfer_type == CVMX_USB_TRANSFER_BULK))
1404        pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
1405    pipe->device_addr = device_addr;
1406    pipe->endpoint_num = endpoint_num;
1407    pipe->device_speed = device_speed;
1408    pipe->max_packet = max_packet;
1409    pipe->transfer_type = transfer_type;
1410    pipe->transfer_dir = transfer_dir;
1411    /* All pipes use interval to rate limit NAK processing. Force an interval
1412        if one wasn't supplied */
1413    if (!interval)
1414        interval = 1;
1415    if (device_speed == CVMX_USB_SPEED_HIGH)
1416        pipe->interval = (uint64_t)interval * cvmx_sysinfo_get()->cpu_clock_hz / 8000;
1417    else
1418        pipe->interval = (uint64_t)interval * cvmx_sysinfo_get()->cpu_clock_hz / 1000;
1419    pipe->multi_count = multi_count;
1420    pipe->hub_device_addr = hub_device_addr;
1421    pipe->hub_port = hub_port;
1422    pipe->pid_toggle = 0;
1423    pipe->next_tx_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT) + pipe->interval;
1424    pipe->split_sc_frame = -1;
1425    __cvmx_usb_append_pipe(&usb->idle_pipes, pipe);
1426
1427    /* We don't need to tell the hardware about this pipe yet since
1428        it doesn't have any submitted requests */
1429
1430    CVMX_USB_RETURN(__cvmx_usb_get_pipe_handle(usb, pipe));
1431}
1432
1433
1434/**
1435 * @INTERNAL
1436 * Perform channel specific setup for Control transactions. All
1437 * the generic stuff will already have been done in
1438 * __cvmx_usb_start_channel()
1439 *
1440 * @param usb     USB device state populated by
1441 *                cvmx_usb_initialize().
1442 * @param channel Channel to setup
1443 * @param pipe    Pipe for control transaction
1444 */
1445static void __cvmx_usb_start_channel_control(cvmx_usb_internal_state_t *usb,
1446                                             int channel,
1447                                             cvmx_usb_pipe_t *pipe)
1448{
1449    cvmx_usb_transaction_t *transaction = pipe->head;
1450    cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
1451    int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
1452    cvmx_usbcx_hctsizx_t usbc_hctsiz;
1453
1454    CVMX_USB_LOG_CALLED();
1455    CVMX_USB_LOG_PARAM("%p", usb);
1456    CVMX_USB_LOG_PARAM("%d", channel);
1457    CVMX_USB_LOG_PARAM("%p", pipe);
1458
1459    usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
1460
1461    switch (transaction->stage)
1462    {
1463        case CVMX_USB_STAGE_NON_CONTROL:
1464        case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1465            cvmx_dprintf("%s: ERROR - Non control stage\n", __FUNCTION__);
1466            break;
1467        case CVMX_USB_STAGE_SETUP:
1468            usbc_hctsiz.s.pid = 3; /* Setup */
1469            usbc_hctsiz.s.xfersize = sizeof(*header);
1470            /* All Control operations start with a setup going OUT */
1471            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir, CVMX_USB_DIRECTION_OUT);
1472            /* Setup send the control header instead of the buffer data. The
1473                buffer data will be used in the next stage */
1474            __cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, transaction->control_header);
1475            break;
1476        case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1477            usbc_hctsiz.s.pid = 3; /* Setup */
1478            usbc_hctsiz.s.xfersize = 0;
1479            /* All Control operations start with a setup going OUT */
1480            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir, CVMX_USB_DIRECTION_OUT);
1481            USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
1482            break;
1483        case CVMX_USB_STAGE_DATA:
1484            usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
1485            if (__cvmx_usb_pipe_needs_split(usb, pipe))
1486            {
1487                usbc_hctsiz.s.xfersize = (header->s.request_type & 0x80) ? 0 : bytes_to_transfer;
1488                if (usbc_hctsiz.s.xfersize > pipe->max_packet)
1489                    usbc_hctsiz.s.xfersize = pipe->max_packet;
1490            }
1491            else
1492                usbc_hctsiz.s.xfersize = bytes_to_transfer;
1493            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1494                            cvmx_usbcx_hccharx_t, epdir,
1495                            ((header->s.request_type & 0x80) ?
1496                             CVMX_USB_DIRECTION_IN :
1497                             CVMX_USB_DIRECTION_OUT));
1498            break;
1499        case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1500            usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
1501            usbc_hctsiz.s.xfersize = (header->s.request_type & 0x80) ? bytes_to_transfer : 0;
1502            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1503                            cvmx_usbcx_hccharx_t, epdir,
1504                            ((header->s.request_type & 0x80) ?
1505                             CVMX_USB_DIRECTION_IN :
1506                             CVMX_USB_DIRECTION_OUT));
1507            USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
1508            break;
1509        case CVMX_USB_STAGE_STATUS:
1510            usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
1511            usbc_hctsiz.s.xfersize = 0;
1512            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir,
1513                            ((header->s.request_type & 0x80) ?
1514                             CVMX_USB_DIRECTION_OUT :
1515                             CVMX_USB_DIRECTION_IN));
1516            break;
1517        case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1518            usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
1519            usbc_hctsiz.s.xfersize = 0;
1520            USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir,
1521                            ((header->s.request_type & 0x80) ?
1522                             CVMX_USB_DIRECTION_OUT :
1523                             CVMX_USB_DIRECTION_IN));
1524            USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
1525            break;
1526    }
1527
1528    /* Set the number of packets needed for this transfer */
1529    usbc_hctsiz.s.pktcnt = (usbc_hctsiz.s.xfersize + pipe->max_packet - 1) / pipe->max_packet;
1530    if (!usbc_hctsiz.s.pktcnt)
1531        usbc_hctsiz.s.pktcnt = 1;
1532
1533    __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
1534    CVMX_USB_RETURN_NOTHING();
1535}
1536
1537
1538/**
1539 * @INTERNAL
1540 * Start a channel to perform the pipe's head transaction
1541 *
1542 * @param usb     USB device state populated by
1543 *                cvmx_usb_initialize().
1544 * @param channel Channel to setup
1545 * @param pipe    Pipe to start
1546 */
1547static void __cvmx_usb_start_channel(cvmx_usb_internal_state_t *usb,
1548                                     int channel,
1549                                     cvmx_usb_pipe_t *pipe)
1550{
1551    cvmx_usb_transaction_t *transaction = pipe->head;
1552    cvmx_usbcx_hfnum_t usbc_hfnum;
1553
1554    CVMX_USB_LOG_CALLED();
1555    CVMX_USB_LOG_PARAM("%p", usb);
1556    CVMX_USB_LOG_PARAM("%d", channel);
1557    CVMX_USB_LOG_PARAM("%p", pipe);
1558
1559    if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
1560        (pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
1561        cvmx_dprintf("%s: Channel %d started. Pipe %d transaction %d stage %d\n",
1562                     __FUNCTION__, channel, __cvmx_usb_get_pipe_handle(usb, pipe),
1563                     __cvmx_usb_get_submit_handle(usb, transaction),
1564                     transaction->stage);
1565
1566    /* Make sure all writes to the DMA region get flushed */
1567    CVMX_SYNCW;
1568
1569    /* Read the current frame number for use with split, INTERRUPT,  and ISO
1570        transactions */
1571    usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
1572
1573    /* Attach the channel to the pipe */
1574    usb->pipe_for_channel[channel] = pipe;
1575    pipe->channel = channel;
1576    pipe->flags |= __CVMX_USB_PIPE_FLAGS_SCHEDULED;
1577
1578    /* Mark this channel as in use */
1579    usb->idle_hardware_channels &= ~(1<<channel);
1580
1581    /* Enable the channel interrupt bits */
1582    {
1583        cvmx_usbcx_hcintx_t usbc_hcint;
1584
1585        /* Clear all channel status bits */
1586        usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
1587        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
1588    }
1589
1590    /* Setup the locations the DMA engines use  */
1591    {
1592        uint64_t dma_address = transaction->buffer + transaction->actual_bytes;
1593        if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594            dma_address = transaction->buffer + transaction->iso_packets[0].offset + transaction->actual_bytes;
1595        __cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, dma_address);
1596        __cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel*8, dma_address);
1597    }
1598
1599    /* Setup both the size of the transfer and the SPLIT characteristics */
1600    {
1601        cvmx_usbcx_hcspltx_t usbc_hcsplt = {.u32 = 0};
1602        cvmx_usbcx_hctsizx_t usbc_hctsiz = {.u32 = 0};
1603        int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
1604
1605        /* ISOCHRONOUS transactions store each individual transfer size in the
1606            packet structure, not the global buffer_length */
1607        if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1608            bytes_to_transfer = transaction->iso_packets[0].length - transaction->actual_bytes;
1609
1610        /* We need to do split transactions when we are talking to non high
1611            speed devices that are behind a high speed hub */
1612        if (__cvmx_usb_pipe_needs_split(usb, pipe))
1613        {
1614            /* On the start split phase (stage is even) record the frame number we
1615                will need to send the split complete. We only store the lower two bits
1616                since the time ahead can only be two frames */
1617            if ((transaction->stage&1) == 0)
1618            {
1619                if (transaction->type == CVMX_USB_TRANSFER_BULK)
1620                    pipe->split_sc_frame = (usbc_hfnum.s.frnum + 1) & 0x7f;
1621                else
1622                    pipe->split_sc_frame = (usbc_hfnum.s.frnum + 2) & 0x7f;
1623            }
1624            else
1625                pipe->split_sc_frame = -1;
1626
1627            usbc_hcsplt.s.spltena = 1;
1628            usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1629            usbc_hcsplt.s.prtaddr = pipe->hub_port;
1630            usbc_hcsplt.s.compsplt = (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1631
1632            /* SPLIT transactions can only ever transmit one data packet so
1633                limit the transfer size to the max packet size */
1634            if (bytes_to_transfer > pipe->max_packet)
1635                bytes_to_transfer = pipe->max_packet;
1636
1637            /* ISOCHRONOUS OUT splits are unique in that they limit
1638                data transfers to 188 byte chunks representing the
1639                begin/middle/end of the data or all */
1640            if (!usbc_hcsplt.s.compsplt &&
1641                (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1642                (pipe->transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS))
1643            {
1644                /* See if we've started this tranfer and sent data */
1645                if (transaction->actual_bytes == 0)
1646                {
1647                    /* Nothing sent yet, this is either a begin or the
1648                        entire payload */
1649                    if (bytes_to_transfer <= 188)
1650                        usbc_hcsplt.s.xactpos = 3; /* Entire payload in one go */
1651                    else
1652                        usbc_hcsplt.s.xactpos = 2; /* First part of payload */
1653                }
1654                else
1655                {
1656                    /* Continuing the previous data, we must either be
1657                        in the middle or at the end */
1658                    if (bytes_to_transfer <= 188)
1659                        usbc_hcsplt.s.xactpos = 1; /* End of payload */
1660                    else
1661                        usbc_hcsplt.s.xactpos = 0; /* Middle of payload */
1662                }
1663                /* Again, the transfer size is limited to 188 bytes */
1664                if (bytes_to_transfer > 188)
1665                    bytes_to_transfer = 188;
1666            }
1667        }
1668
1669        usbc_hctsiz.s.xfersize = bytes_to_transfer;
1670        usbc_hctsiz.s.pktcnt = (bytes_to_transfer + pipe->max_packet - 1) / pipe->max_packet;
1671        if (!usbc_hctsiz.s.pktcnt)
1672            usbc_hctsiz.s.pktcnt = 1;
1673
1674        /* Update the DATA0/DATA1 toggle */
1675        usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
1676        /* High speed pipes may need a hardware ping before they start */
1677        if (pipe->flags & __CVMX_USB_PIPE_FLAGS_NEED_PING)
1678            usbc_hctsiz.s.dopng = 1;
1679
1680        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index), usbc_hcsplt.u32);
1681        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
1682    }
1683
1684    /* Setup the Host Channel Characteristics Register */
1685    {
1686        cvmx_usbcx_hccharx_t usbc_hcchar = {.u32 = 0};
1687
1688        /* Make all transfers start on the next frame and not this one. This
1689            way the time we spend processing doesn't affect USB timing */
1690        usbc_hcchar.s.oddfrm = !(usbc_hfnum.s.frnum&1);
1691
1692        /* Set the number of back to back packets allowed by this endpoint.
1693            Split transactions interpret "ec" as the number of immediate
1694            retries of failure. These retries happen too quickly, so we
1695            disable these entirely for splits */
1696        if (__cvmx_usb_pipe_needs_split(usb, pipe))
1697            usbc_hcchar.s.ec = 1;
1698        else if (pipe->multi_count < 1)
1699            usbc_hcchar.s.ec = 1;
1700        else if (pipe->multi_count > 3)
1701            usbc_hcchar.s.ec = 3;
1702        else
1703            usbc_hcchar.s.ec = pipe->multi_count;
1704
1705        /* Set the rest of the endpoint specific settings */
1706        usbc_hcchar.s.devaddr = pipe->device_addr;
1707        usbc_hcchar.s.eptype = transaction->type;
1708        usbc_hcchar.s.lspddev = (pipe->device_speed == CVMX_USB_SPEED_LOW);
1709        usbc_hcchar.s.epdir = pipe->transfer_dir;
1710        usbc_hcchar.s.epnum = pipe->endpoint_num;
1711        usbc_hcchar.s.mps = pipe->max_packet;
1712        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32);
1713    }
1714
1715    /* Do transaction type specific fixups as needed */
1716    switch (transaction->type)
1717    {
1718        case CVMX_USB_TRANSFER_CONTROL:
1719            __cvmx_usb_start_channel_control(usb, channel, pipe);
1720            break;
1721        case CVMX_USB_TRANSFER_BULK:
1722        case CVMX_USB_TRANSFER_INTERRUPT:
1723            break;
1724        case CVMX_USB_TRANSFER_ISOCHRONOUS:
1725            if (!__cvmx_usb_pipe_needs_split(usb, pipe))
1726            {
1727                /* ISO transactions require differnet PIDs depending on direction
1728                    and how many packets are needed */
1729                if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1730                {
1731                    if (pipe->multi_count < 2) /* Need DATA0 */
1732                        USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx_t, pid, 0);
1733                    else /* Need MDATA */
1734                        USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx_t, pid, 3);
1735                }
1736            }
1737            break;
1738    }
1739    {
1740        cvmx_usbcx_hctsizx_t usbc_hctsiz = {.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index))};
1741        transaction->xfersize = usbc_hctsiz.s.xfersize;
1742        transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1743    }
1744    USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, chena, 1);
1745    CVMX_USB_RETURN_NOTHING();
1746}
1747
1748
1749/**
1750 * @INTERNAL
1751 * Find a pipe that is ready to be scheduled to hardware.
1752 *
1753 * @param list       Pipe list to search
1754 * @param usbc_hfnum Current USB frame number
1755 * @param current_cycle
1756 *                   Cycle counter to use as a time reference.
1757 *
1758 * @return Pipe or NULL if none are ready
1759 */
1760static cvmx_usb_pipe_t *__cvmx_usb_find_ready_pipe(cvmx_usb_pipe_list_t *list, cvmx_usbcx_hfnum_t usbc_hfnum, uint64_t current_cycle)
1761{
1762    cvmx_usb_pipe_t *pipe = list->head;
1763    while (pipe)
1764    {
1765        if (!(pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED) && pipe->head &&
1766            (pipe->next_tx_cycle <= current_cycle) &&
1767            ((pipe->split_sc_frame == -1) || ((((int)usbc_hfnum.s.frnum - (int)pipe->split_sc_frame) & 0x7f) < 0x40)))
1768        {
1769            CVMX_PREFETCH(pipe, 128);
1770            CVMX_PREFETCH(pipe->head, 0);
1771            return pipe;
1772        }
1773        pipe = pipe->next;
1774    }
1775    return NULL;
1776}
1777
1778
1779/**
1780 * @INTERNAL
1781 * Called whenever a pipe might need to be scheduled to the
1782 * hardware.
1783 *
1784 * @param usb    USB device state populated by
1785 *               cvmx_usb_initialize().
1786 * @param is_sof True if this schedule was called on a SOF interrupt.
1787 */
1788static void __cvmx_usb_schedule(cvmx_usb_internal_state_t *usb, int is_sof)
1789{
1790    int channel;
1791    cvmx_usb_pipe_t *pipe;
1792    cvmx_usbcx_hfnum_t usbc_hfnum;
1793    uint64_t current_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT);
1794
1795    CVMX_USB_LOG_CALLED();
1796    CVMX_USB_LOG_PARAM("%p", usb);
1797
1798    usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
1799
1800    while (usb->idle_hardware_channels)
1801    {
1802        /* Find an idle channel */
1803        CVMX_CLZ(channel, usb->idle_hardware_channels);
1804        channel = 31 - channel;
1805        if (cvmx_unlikely(channel > 7))
1806        {
1807            if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
1808                cvmx_dprintf("%s: Idle hardware channels has a channel higher than 7. This is wrong\n", __FUNCTION__);
1809            break;
1810        }
1811
1812        /* Find a pipe needing service */
1813        pipe = NULL;
1814        if (is_sof)
1815        {
1816            /* Only process periodic pipes on SOF interrupts. This way we are
1817                sure that the periodic data is sent in the beginning of the
1818                frame */
1819            pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_ISOCHRONOUS, usbc_hfnum, current_cycle);
1820            if (cvmx_likely(!pipe))
1821                pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_INTERRUPT, usbc_hfnum, current_cycle);
1822        }
1823        if (cvmx_likely(!pipe))
1824        {
1825            pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_CONTROL, usbc_hfnum, current_cycle);
1826            if (cvmx_likely(!pipe))
1827                pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_BULK, usbc_hfnum, current_cycle);
1828        }
1829        if (!pipe)
1830            break;
1831
1832        CVMX_USB_LOG_PARAM("%d", channel);
1833        CVMX_USB_LOG_PARAM("%p", pipe);
1834
1835        if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
1836            (pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
1837        {
1838            cvmx_usb_transaction_t *transaction = pipe->head;
1839            const cvmx_usb_control_header_t *header = (transaction->control_header) ? cvmx_phys_to_ptr(transaction->control_header) : NULL;
1840            const char *dir = (pipe->transfer_dir == CVMX_USB_DIRECTION_IN) ? "IN" : "OUT";
1841            const char *type;
1842            switch (pipe->transfer_type)
1843            {
1844                case CVMX_USB_TRANSFER_CONTROL:
1845                    type = "SETUP";
1846                    dir = (header->s.request_type & 0x80) ? "IN" : "OUT";
1847                    break;
1848                case CVMX_USB_TRANSFER_ISOCHRONOUS:
1849                    type = "ISOCHRONOUS";
1850                    break;
1851                case CVMX_USB_TRANSFER_BULK:
1852                    type = "BULK";
1853                    break;
1854                default: /* CVMX_USB_TRANSFER_INTERRUPT */
1855                    type = "INTERRUPT";
1856                    break;
1857            }
1858            cvmx_dprintf("%s: Starting pipe %d, transaction %d on channel %d. %s %s len=%d header=0x%llx\n",
1859                         __FUNCTION__, __cvmx_usb_get_pipe_handle(usb, pipe),
1860                         __cvmx_usb_get_submit_handle(usb, transaction),
1861                         channel, type, dir,
1862                         transaction->buffer_length,
1863                         (header) ? (unsigned long long)header->u64 : 0ull);
1864        }
1865        __cvmx_usb_start_channel(usb, channel, pipe);
1866    }
1867    CVMX_USB_RETURN_NOTHING();
1868}
1869
1870
1871/**
1872 * @INTERNAL
1873 * Call a user's callback for a specific reason.
1874 *
1875 * @param usb    USB device state populated by
1876 *               cvmx_usb_initialize().
1877 * @param pipe   Pipe the callback is for or NULL
1878 * @param transaction
1879 *               Transaction the callback is for or NULL
1880 * @param reason Reason this callback is being called
1881 * @param complete_code
1882 *               Completion code for the transaction, if any
1883 */
1884static void __cvmx_usb_perform_callback(cvmx_usb_internal_state_t *usb,
1885                                        cvmx_usb_pipe_t *pipe,
1886                                        cvmx_usb_transaction_t *transaction,
1887                                        cvmx_usb_callback_t reason,
1888                                        cvmx_usb_complete_t complete_code)
1889{
1890    cvmx_usb_callback_func_t callback = usb->callback[reason];
1891    void *user_data = usb->callback_data[reason];
1892    int submit_handle = -1;
1893    int pipe_handle = -1;
1894    int bytes_transferred = 0;
1895
1896    if (pipe)
1897        pipe_handle = __cvmx_usb_get_pipe_handle(usb, pipe);
1898
1899    if (transaction)
1900    {
1901        submit_handle = __cvmx_usb_get_submit_handle(usb, transaction);
1902        bytes_transferred = transaction->actual_bytes;
1903        /* Transactions are allowed to override the default callback */
1904        if ((reason == CVMX_USB_CALLBACK_TRANSFER_COMPLETE) && transaction->callback)
1905        {
1906            callback = transaction->callback;
1907            user_data = transaction->callback_data;
1908        }
1909    }
1910
1911    if (!callback)
1912        return;
1913
1914    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLBACKS))
1915        cvmx_dprintf("%*s%s: calling callback %p(usb=%p, complete_code=%s, "
1916                     "pipe_handle=%d, submit_handle=%d, bytes_transferred=%d, user_data=%p);\n",
1917                     2*usb->indent, "", __FUNCTION__, callback, usb,
1918                     __cvmx_usb_complete_to_string(complete_code),
1919                     pipe_handle, submit_handle, bytes_transferred, user_data);
1920
1921    callback((cvmx_usb_state_t *)usb, reason, complete_code, pipe_handle, submit_handle,
1922             bytes_transferred, user_data);
1923
1924    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLBACKS))
1925        cvmx_dprintf("%*s%s: callback %p complete\n", 2*usb->indent, "",
1926                      __FUNCTION__, callback);
1927}
1928
1929
1930/**
1931 * @INTERNAL
1932 * Signal the completion of a transaction and free it. The
1933 * transaction will be removed from the pipe transaction list.
1934 *
1935 * @param usb    USB device state populated by
1936 *               cvmx_usb_initialize().
1937 * @param pipe   Pipe the transaction is on
1938 * @param transaction
1939 *               Transaction that completed
1940 * @param complete_code
1941 *               Completion code
1942 */
1943static void __cvmx_usb_perform_complete(cvmx_usb_internal_state_t * usb,
1944                                        cvmx_usb_pipe_t *pipe,
1945                                        cvmx_usb_transaction_t *transaction,
1946                                        cvmx_usb_complete_t complete_code)
1947{
1948    CVMX_USB_LOG_CALLED();
1949    CVMX_USB_LOG_PARAM("%p", usb);
1950    CVMX_USB_LOG_PARAM("%p", pipe);
1951    CVMX_USB_LOG_PARAM("%p", transaction);
1952    CVMX_USB_LOG_PARAM("%d", complete_code);
1953
1954    /* Isochronous transactions need extra processing as they might not be done
1955        after a single data transfer */
1956    if (cvmx_unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS))
1957    {
1958        /* Update the number of bytes transfered in this ISO packet */
1959        transaction->iso_packets[0].length = transaction->actual_bytes;
1960        transaction->iso_packets[0].status = complete_code;
1961
1962        /* If there are more ISOs pending and we suceeded, schedule the next
1963            one */
1964        if ((transaction->iso_number_packets > 1) && (complete_code == CVMX_USB_COMPLETE_SUCCESS))
1965        {
1966            transaction->actual_bytes = 0;      /* No bytes transfered for this packet as of yet */
1967            transaction->iso_number_packets--;  /* One less ISO waiting to transfer */
1968            transaction->iso_packets++;         /* Increment to the next location in our packet array */
1969            transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
1970            goto done;
1971        }
1972    }
1973
1974    /* Remove the transaction from the pipe list */
1975    if (transaction->next)
1976        transaction->next->prev = transaction->prev;
1977    else
1978        pipe->tail = transaction->prev;
1979    if (transaction->prev)
1980        transaction->prev->next = transaction->next;
1981    else
1982        pipe->head = transaction->next;
1983    if (!pipe->head)
1984    {
1985        __cvmx_usb_remove_pipe(usb->active_pipes + pipe->transfer_type, pipe);
1986        __cvmx_usb_append_pipe(&usb->idle_pipes, pipe);
1987
1988    }
1989    __cvmx_usb_perform_callback(usb, pipe, transaction,
1990                                CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
1991                                complete_code);
1992    __cvmx_usb_free_transaction(usb, transaction);
1993    /* Disable SOF interrupts if we don't have any pending transactions */
1994    usb->active_transactions--;
1995    if (usb->active_transactions == 0)
1996        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t, sofmsk, 0);
1997done:
1998    CVMX_USB_RETURN_NOTHING();
1999}
2000
2001
2002/**
2003 * @INTERNAL
2004 * Submit a usb transaction to a pipe. Called for all types
2005 * of transactions.
2006 *
2007 * @param usb
2008 * @param pipe_handle
2009 *                  Which pipe to submit to. Will be validated in this function.
2010 * @param type      Transaction type
2011 * @param flags     Flags for the transaction
2012 * @param buffer    User buffer for the transaction
2013 * @param buffer_length
2014 *                  User buffer's length in bytes
2015 * @param control_header
2016 *                  For control transactions, the 8 byte standard header
2017 * @param iso_start_frame
2018 *                  For ISO transactiosn, the start frame
2019 * @param iso_number_packets
2020 *                  For ISO, the number of packet in the transaction.
2021 * @param iso_packets
2022 *                  A description of each ISO packet
2023 * @param callback  User callback to call when the transaction completes
2024 * @param user_data User's data for the callback
2025 *
2026 * @return Submit handle or negative on failure. Matches the result
2027 *         in the external API.
2028 */
2029static int __cvmx_usb_submit_transaction(cvmx_usb_internal_state_t *usb,
2030                                         int pipe_handle,
2031                                         cvmx_usb_transfer_t type,
2032                                         int flags,
2033                                         uint64_t buffer,
2034                                         int buffer_length,
2035                                         uint64_t control_header,
2036                                         int iso_start_frame,
2037                                         int iso_number_packets,
2038                                         cvmx_usb_iso_packet_t *iso_packets,
2039                                         cvmx_usb_callback_func_t callback,
2040                                         void *user_data)
2041{
2042    int submit_handle;
2043    cvmx_usb_transaction_t *transaction;
2044    cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
2045
2046    CVMX_USB_LOG_CALLED();
2047    if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
2048        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2049    /* Fail if the pipe isn't open */
2050    if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
2051        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2052    if (cvmx_unlikely(pipe->transfer_type != type))
2053        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2054
2055    transaction = __cvmx_usb_alloc_transaction(usb);
2056    if (cvmx_unlikely(!transaction))
2057        CVMX_USB_RETURN(CVMX_USB_NO_MEMORY);
2058
2059    /* Enable SOF interrupts now that we have pending transactions */
2060    if (usb->active_transactions == 0)
2061        USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t, sofmsk, 1);
2062    usb->active_transactions++;
2063
2064    transaction->type = type;
2065    transaction->flags |= flags;
2066    transaction->buffer = buffer;
2067    transaction->buffer_length = buffer_length;
2068    transaction->control_header = control_header;
2069    transaction->iso_start_frame = iso_start_frame; // FIXME: This is not used, implement it
2070    transaction->iso_number_packets = iso_number_packets;
2071    transaction->iso_packets = iso_packets;
2072    transaction->callback = callback;
2073    transaction->callback_data = user_data;
2074    if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2075        transaction->stage = CVMX_USB_STAGE_SETUP;
2076    else
2077        transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2078
2079    transaction->next = NULL;
2080    if (pipe->tail)
2081    {
2082        transaction->prev = pipe->tail;
2083        transaction->prev->next = transaction;
2084    }
2085    else
2086    {
2087        transaction->prev = NULL;
2088        pipe->head = transaction;
2089        __cvmx_usb_remove_pipe(&usb->idle_pipes, pipe);
2090        __cvmx_usb_append_pipe(usb->active_pipes + pipe->transfer_type, pipe);
2091    }
2092    pipe->tail = transaction;
2093
2094    submit_handle = __cvmx_usb_get_submit_handle(usb, transaction);
2095
2096    /* We may need to schedule the pipe if this was the head of the pipe */
2097    if (!transaction->prev)
2098        __cvmx_usb_schedule(usb, 0);
2099
2100    CVMX_USB_RETURN(submit_handle);
2101}
2102
2103
2104/**
2105 * Call to submit a USB Bulk transfer to a pipe.
2106 *
2107 * @param state     USB device state populated by
2108 *                  cvmx_usb_initialize().
2109 * @param pipe_handle
2110 *                  Handle to the pipe for the transfer.
2111 * @param buffer    Physical address of the data buffer in
2112 *                  memory. Note that this is NOT A POINTER, but
2113 *                  the full 64bit physical address of the
2114 *                  buffer. This may be zero if buffer_length is
2115 *                  zero.
2116 * @param buffer_length
2117 *                  Length of buffer in bytes.
2118 * @param callback  Function to call when this transaction
2119 *                  completes. If the return value of this
2120 *                  function isn't an error, then this function
2121 *                  is guaranteed to be called when the
2122 *                  transaction completes. If this parameter is
2123 *                  NULL, then the generic callback registered
2124 *                  through cvmx_usb_register_callback is
2125 *                  called. If both are NULL, then there is no
2126 *                  way to know when a transaction completes.
2127 * @param user_data User supplied data returned when the
2128 *                  callback is called. This is only used if
2129 *                  callback in not NULL.
2130 *
2131 * @return A submitted transaction handle or negative on
2132 *         failure. Negative values are failure codes from
2133 *         cvmx_usb_status_t.
2134 */
2135int cvmx_usb_submit_bulk(cvmx_usb_state_t *state, int pipe_handle,
2136                                uint64_t buffer, int buffer_length,
2137                                cvmx_usb_callback_func_t callback,
2138                                void *user_data)
2139{
2140    int submit_handle;
2141    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2142
2143    CVMX_USB_LOG_CALLED();
2144    CVMX_USB_LOG_PARAM("%p", state);
2145    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2146    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
2147    CVMX_USB_LOG_PARAM("%d", buffer_length);
2148
2149    /* Pipe handle checking is done later in a common place */
2150    if (cvmx_unlikely(!buffer))
2151        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2152    if (cvmx_unlikely(buffer_length < 0))
2153        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2154    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2155        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2156
2157    submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
2158                                         CVMX_USB_TRANSFER_BULK,
2159                                         0, /* flags */
2160                                         buffer,
2161                                         buffer_length,
2162                                         0, /* control_header */
2163                                         0, /* iso_start_frame */
2164                                         0, /* iso_number_packets */
2165                                         NULL, /* iso_packets */
2166                                         callback,
2167                                         user_data);
2168    CVMX_USB_RETURN(submit_handle);
2169}
2170
2171
2172/**
2173 * Call to submit a USB Interrupt transfer to a pipe.
2174 *
2175 * @param state     USB device state populated by
2176 *                  cvmx_usb_initialize().
2177 * @param pipe_handle
2178 *                  Handle to the pipe for the transfer.
2179 * @param buffer    Physical address of the data buffer in
2180 *                  memory. Note that this is NOT A POINTER, but
2181 *                  the full 64bit physical address of the
2182 *                  buffer. This may be zero if buffer_length is
2183 *                  zero.
2184 * @param buffer_length
2185 *                  Length of buffer in bytes.
2186 * @param callback  Function to call when this transaction
2187 *                  completes. If the return value of this
2188 *                  function isn't an error, then this function
2189 *                  is guaranteed to be called when the
2190 *                  transaction completes. If this parameter is
2191 *                  NULL, then the generic callback registered
2192 *                  through cvmx_usb_register_callback is
2193 *                  called. If both are NULL, then there is no
2194 *                  way to know when a transaction completes.
2195 * @param user_data User supplied data returned when the
2196 *                  callback is called. This is only used if
2197 *                  callback in not NULL.
2198 *
2199 * @return A submitted transaction handle or negative on
2200 *         failure. Negative values are failure codes from
2201 *         cvmx_usb_status_t.
2202 */
2203int cvmx_usb_submit_interrupt(cvmx_usb_state_t *state, int pipe_handle,
2204                              uint64_t buffer, int buffer_length,
2205                              cvmx_usb_callback_func_t callback,
2206                              void *user_data)
2207{
2208    int submit_handle;
2209    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2210
2211    CVMX_USB_LOG_CALLED();
2212    CVMX_USB_LOG_PARAM("%p", state);
2213    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2214    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
2215    CVMX_USB_LOG_PARAM("%d", buffer_length);
2216
2217    /* Pipe handle checking is done later in a common place */
2218    if (cvmx_unlikely(!buffer))
2219        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2220    if (cvmx_unlikely(buffer_length < 0))
2221        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2222    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2223        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2224
2225    submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
2226                                         CVMX_USB_TRANSFER_INTERRUPT,
2227                                         0, /* flags */
2228                                         buffer,
2229                                         buffer_length,
2230                                         0, /* control_header */
2231                                         0, /* iso_start_frame */
2232                                         0, /* iso_number_packets */
2233                                         NULL, /* iso_packets */
2234                                         callback,
2235                                         user_data);
2236    CVMX_USB_RETURN(submit_handle);
2237}
2238
2239
2240/**
2241 * Call to submit a USB Control transfer to a pipe.
2242 *
2243 * @param state     USB device state populated by
2244 *                  cvmx_usb_initialize().
2245 * @param pipe_handle
2246 *                  Handle to the pipe for the transfer.
2247 * @param control_header
2248 *                  USB 8 byte control header physical address.
2249 *                  Note that this is NOT A POINTER, but the
2250 *                  full 64bit physical address of the buffer.
2251 * @param buffer    Physical address of the data buffer in
2252 *                  memory. Note that this is NOT A POINTER, but
2253 *                  the full 64bit physical address of the
2254 *                  buffer. This may be zero if buffer_length is
2255 *                  zero.
2256 * @param buffer_length
2257 *                  Length of buffer in bytes.
2258 * @param callback  Function to call when this transaction
2259 *                  completes. If the return value of this
2260 *                  function isn't an error, then this function
2261 *                  is guaranteed to be called when the
2262 *                  transaction completes. If this parameter is
2263 *                  NULL, then the generic callback registered
2264 *                  through cvmx_usb_register_callback is
2265 *                  called. If both are NULL, then there is no
2266 *                  way to know when a transaction completes.
2267 * @param user_data User supplied data returned when the
2268 *                  callback is called. This is only used if
2269 *                  callback in not NULL.
2270 *
2271 * @return A submitted transaction handle or negative on
2272 *         failure. Negative values are failure codes from
2273 *         cvmx_usb_status_t.
2274 */
2275int cvmx_usb_submit_control(cvmx_usb_state_t *state, int pipe_handle,
2276                            uint64_t control_header,
2277                            uint64_t buffer, int buffer_length,
2278                            cvmx_usb_callback_func_t callback,
2279                            void *user_data)
2280{
2281    int submit_handle;
2282    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2283    cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(control_header);
2284
2285    CVMX_USB_LOG_CALLED();
2286    CVMX_USB_LOG_PARAM("%p", state);
2287    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2288    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)control_header);
2289    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
2290    CVMX_USB_LOG_PARAM("%d", buffer_length);
2291
2292    /* Pipe handle checking is done later in a common place */
2293    if (cvmx_unlikely(!control_header))
2294        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2295    /* Some drivers send a buffer with a zero length. God only knows why */
2296    if (cvmx_unlikely(buffer && (buffer_length < 0)))
2297        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2298    if (cvmx_unlikely(!buffer && (buffer_length != 0)))
2299        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2300    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2301        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2302    if ((header->s.request_type & 0x80) == 0)
2303        buffer_length = cvmx_le16_to_cpu(header->s.length);
2304
2305    submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
2306                                         CVMX_USB_TRANSFER_CONTROL,
2307                                         0, /* flags */
2308                                         buffer,
2309                                         buffer_length,
2310                                         control_header,
2311                                         0, /* iso_start_frame */
2312                                         0, /* iso_number_packets */
2313                                         NULL, /* iso_packets */
2314                                         callback,
2315                                         user_data);
2316    CVMX_USB_RETURN(submit_handle);
2317}
2318
2319
2320/**
2321 * Call to submit a USB Isochronous transfer to a pipe.
2322 *
2323 * @param state     USB device state populated by
2324 *                  cvmx_usb_initialize().
2325 * @param pipe_handle
2326 *                  Handle to the pipe for the transfer.
2327 * @param start_frame
2328 *                  Number of frames into the future to schedule
2329 *                  this transaction.
2330 * @param flags     Flags to control the transfer. See
2331 *                  cvmx_usb_isochronous_flags_t for the flag
2332 *                  definitions.
2333 * @param number_packets
2334 *                  Number of sequential packets to transfer.
2335 *                  "packets" is a pointer to an array of this
2336 *                  many packet structures.
2337 * @param packets   Description of each transfer packet as
2338 *                  defined by cvmx_usb_iso_packet_t. The array
2339 *                  pointed to here must stay valid until the
2340 *                  complete callback is called.
2341 * @param buffer    Physical address of the data buffer in
2342 *                  memory. Note that this is NOT A POINTER, but
2343 *                  the full 64bit physical address of the
2344 *                  buffer. This may be zero if buffer_length is
2345 *                  zero.
2346 * @param buffer_length
2347 *                  Length of buffer in bytes.
2348 * @param callback  Function to call when this transaction
2349 *                  completes. If the return value of this
2350 *                  function isn't an error, then this function
2351 *                  is guaranteed to be called when the
2352 *                  transaction completes. If this parameter is
2353 *                  NULL, then the generic callback registered
2354 *                  through cvmx_usb_register_callback is
2355 *                  called. If both are NULL, then there is no
2356 *                  way to know when a transaction completes.
2357 * @param user_data User supplied data returned when the
2358 *                  callback is called. This is only used if
2359 *                  callback in not NULL.
2360 *
2361 * @return A submitted transaction handle or negative on
2362 *         failure. Negative values are failure codes from
2363 *         cvmx_usb_status_t.
2364 */
2365int cvmx_usb_submit_isochronous(cvmx_usb_state_t *state, int pipe_handle,
2366                                int start_frame, int flags,
2367                                int number_packets,
2368                                cvmx_usb_iso_packet_t packets[],
2369                                uint64_t buffer, int buffer_length,
2370                                cvmx_usb_callback_func_t callback,
2371                                void *user_data)
2372{
2373    int submit_handle;
2374    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2375
2376    CVMX_USB_LOG_CALLED();
2377    CVMX_USB_LOG_PARAM("%p", state);
2378    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2379    CVMX_USB_LOG_PARAM("%d", start_frame);
2380    CVMX_USB_LOG_PARAM("0x%x", flags);
2381    CVMX_USB_LOG_PARAM("%d", number_packets);
2382    CVMX_USB_LOG_PARAM("%p", packets);
2383    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
2384    CVMX_USB_LOG_PARAM("%d", buffer_length);
2385
2386    /* Pipe handle checking is done later in a common place */
2387    if (cvmx_unlikely(start_frame < 0))
2388        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2389    if (cvmx_unlikely(flags & ~(CVMX_USB_ISOCHRONOUS_FLAGS_ALLOW_SHORT | CVMX_USB_ISOCHRONOUS_FLAGS_ASAP)))
2390        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2391    if (cvmx_unlikely(number_packets < 1))
2392        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2393    if (cvmx_unlikely(!packets))
2394        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2395    if (cvmx_unlikely(!buffer))
2396        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2397    if (cvmx_unlikely(buffer_length < 0))
2398        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2399    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2400        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2401
2402    submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
2403                                         CVMX_USB_TRANSFER_ISOCHRONOUS,
2404                                         flags,
2405                                         buffer,
2406                                         buffer_length,
2407                                         0, /* control_header */
2408                                         start_frame,
2409                                         number_packets,
2410                                         packets,
2411                                         callback,
2412                                         user_data);
2413    CVMX_USB_RETURN(submit_handle);
2414}
2415
2416
2417/**
2418 * Cancel one outstanding request in a pipe. Canceling a request
2419 * can fail if the transaction has already completed before cancel
2420 * is called. Even after a successful cancel call, it may take
2421 * a frame or two for the cvmx_usb_poll() function to call the
2422 * associated callback.
2423 *
2424 * @param state  USB device state populated by
2425 *               cvmx_usb_initialize().
2426 * @param pipe_handle
2427 *               Pipe handle to cancel requests in.
2428 * @param submit_handle
2429 *               Handle to transaction to cancel, returned by the submit function.
2430 *
2431 * @return CVMX_USB_SUCCESS or a negative error code defined in
2432 *         cvmx_usb_status_t.
2433 */
2434cvmx_usb_status_t cvmx_usb_cancel(cvmx_usb_state_t *state, int pipe_handle,
2435                                  int submit_handle)
2436{
2437    cvmx_usb_transaction_t *transaction;
2438    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2439    cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
2440
2441    CVMX_USB_LOG_CALLED();
2442    CVMX_USB_LOG_PARAM("%p", state);
2443    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2444    CVMX_USB_LOG_PARAM("%d", submit_handle);
2445
2446    if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
2447        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2448    if (cvmx_unlikely((submit_handle < 0) || (submit_handle >= MAX_TRANSACTIONS)))
2449        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2450    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2451        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2452
2453    /* Fail if the pipe isn't open */
2454    if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
2455        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2456
2457    transaction = usb->transaction + submit_handle;
2458
2459    /* Fail if this transaction already completed */
2460    if (cvmx_unlikely((transaction->flags & __CVMX_USB_TRANSACTION_FLAGS_IN_USE) == 0))
2461        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2462
2463    /* If the transaction is the HEAD of the queue and scheduled. We need to
2464        treat it special */
2465    if ((pipe->head == transaction) &&
2466        (pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED))
2467    {
2468        cvmx_usbcx_hccharx_t usbc_hcchar;
2469
2470        usb->pipe_for_channel[pipe->channel] = NULL;
2471        pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
2472
2473        CVMX_SYNCW;
2474
2475        usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2476        /* If the channel isn't enabled then the transaction already completed */
2477        if (usbc_hcchar.s.chena)
2478        {
2479            usbc_hcchar.s.chdis = 1;
2480            __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index), usbc_hcchar.u32);
2481        }
2482    }
2483    __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_CANCEL);
2484    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
2485}
2486
2487
2488/**
2489 * Cancel all outstanding requests in a pipe. Logically all this
2490 * does is call cvmx_usb_cancel() in a loop.
2491 *
2492 * @param state  USB device state populated by
2493 *               cvmx_usb_initialize().
2494 * @param pipe_handle
2495 *               Pipe handle to cancel requests in.
2496 *
2497 * @return CVMX_USB_SUCCESS or a negative error code defined in
2498 *         cvmx_usb_status_t.
2499 */
2500cvmx_usb_status_t cvmx_usb_cancel_all(cvmx_usb_state_t *state, int pipe_handle)
2501{
2502    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2503    cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
2504
2505    CVMX_USB_LOG_CALLED();
2506    CVMX_USB_LOG_PARAM("%p", state);
2507    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2508    if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
2509        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2510    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2511        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2512
2513    /* Fail if the pipe isn't open */
2514    if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
2515        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2516
2517    /* Simply loop through and attempt to cancel each transaction */
2518    while (pipe->head)
2519    {
2520        cvmx_usb_status_t result = cvmx_usb_cancel(state, pipe_handle,
2521            __cvmx_usb_get_submit_handle(usb, pipe->head));
2522        if (cvmx_unlikely(result != CVMX_USB_SUCCESS))
2523            CVMX_USB_RETURN(result);
2524    }
2525    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
2526}
2527
2528
2529/**
2530 * Close a pipe created with cvmx_usb_open_pipe().
2531 *
2532 * @param state  USB device state populated by
2533 *               cvmx_usb_initialize().
2534 * @param pipe_handle
2535 *               Pipe handle to close.
2536 *
2537 * @return CVMX_USB_SUCCESS or a negative error code defined in
2538 *         cvmx_usb_status_t. CVMX_USB_BUSY is returned if the
2539 *         pipe has outstanding transfers.
2540 */
2541cvmx_usb_status_t cvmx_usb_close_pipe(cvmx_usb_state_t *state, int pipe_handle)
2542{
2543    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2544    cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
2545
2546    CVMX_USB_LOG_CALLED();
2547    CVMX_USB_LOG_PARAM("%p", state);
2548    CVMX_USB_LOG_PARAM("%d", pipe_handle);
2549    if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
2550        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2551    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2552        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
2553
2554    /* Fail if the pipe isn't open */
2555    if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
2556        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2557
2558    /* Fail if the pipe has pending transactions */
2559    if (cvmx_unlikely(pipe->head))
2560        CVMX_USB_RETURN(CVMX_USB_BUSY);
2561
2562    pipe->flags = 0;
2563    __cvmx_usb_remove_pipe(&usb->idle_pipes, pipe);
2564    __cvmx_usb_append_pipe(&usb->free_pipes, pipe);
2565
2566    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
2567}
2568
2569
2570/**
2571 * Register a function to be called when various USB events occur.
2572 *
2573 * @param state     USB device state populated by
2574 *                  cvmx_usb_initialize().
2575 * @param reason    Which event to register for.
2576 * @param callback  Function to call when the event occurs.
2577 * @param user_data User data parameter to the function.
2578 *
2579 * @return CVMX_USB_SUCCESS or a negative error code defined in
2580 *         cvmx_usb_status_t.
2581 */
2582cvmx_usb_status_t cvmx_usb_register_callback(cvmx_usb_state_t *state,
2583                                             cvmx_usb_callback_t reason,
2584                                             cvmx_usb_callback_func_t callback,
2585                                             void *user_data)
2586{
2587    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2588
2589    CVMX_USB_LOG_CALLED();
2590    CVMX_USB_LOG_PARAM("%p", state);
2591    CVMX_USB_LOG_PARAM("%d", reason);
2592    CVMX_USB_LOG_PARAM("%p", callback);
2593    CVMX_USB_LOG_PARAM("%p", user_data);
2594    if (cvmx_unlikely(reason >= __CVMX_USB_CALLBACK_END))
2595        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2596    if (cvmx_unlikely(!callback))
2597        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
2598
2599    usb->callback[reason] = callback;
2600    usb->callback_data[reason] = user_data;
2601
2602    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
2603}
2604
2605
2606/**
2607 * Get the current USB protocol level frame number. The frame
2608 * number is always in the range of 0-0x7ff.
2609 *
2610 * @param state  USB device state populated by
2611 *               cvmx_usb_initialize().
2612 *
2613 * @return USB frame number
2614 */
2615int cvmx_usb_get_frame_number(cvmx_usb_state_t *state)
2616{
2617    int frame_number;
2618    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
2619
2620    CVMX_USB_LOG_CALLED();
2621    CVMX_USB_LOG_PARAM("%p", state);
2622
2623    if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
2624    {
2625        cvmx_usbcx_dsts_t usbc_dsts;
2626        usbc_dsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DSTS(usb->index));
2627        frame_number = usbc_dsts.s.soffn;
2628    }
2629    else
2630    {
2631        cvmx_usbcx_hfnum_t usbc_hfnum;
2632        usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2633        frame_number = usbc_hfnum.s.frnum;
2634    }
2635
2636    CVMX_USB_RETURN(frame_number);
2637}
2638
2639
2640/**
2641 * @INTERNAL
2642 * Poll a channel for status
2643 *
2644 * @param usb     USB device
2645 * @param channel Channel to poll
2646 *
2647 * @return Zero on success
2648 */
2649static int __cvmx_usb_poll_channel(cvmx_usb_internal_state_t *usb, int channel)
2650{
2651    cvmx_usbcx_hcintx_t usbc_hcint;
2652    cvmx_usbcx_hctsizx_t usbc_hctsiz;
2653    cvmx_usbcx_hccharx_t usbc_hcchar;
2654    cvmx_usb_pipe_t *pipe;
2655    cvmx_usb_transaction_t *transaction;
2656    int bytes_this_transfer;
2657    int bytes_in_last_packet;
2658    int packets_processed;
2659    int buffer_space_left;
2660    CVMX_USB_LOG_CALLED();
2661    CVMX_USB_LOG_PARAM("%p", usb);
2662    CVMX_USB_LOG_PARAM("%d", channel);
2663
2664    /* Read the interrupt status bits for the channel */
2665    usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
2666
2667    /* We ignore any interrupts where the channel hasn't halted yet. These
2668        should be impossible since we don't enable any interrupts except for
2669        channel halted */
2670    if (!usbc_hcint.s.chhltd)
2671        CVMX_USB_RETURN(0);
2672
2673    /* Now that the channel has halted, clear all status bits before
2674        processing. This way we don't have any race conditions caused by the
2675        channel starting up and finishing before we clear the bits */
2676    __cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
2677    //cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
2678
2679    usb->idle_hardware_channels |= (1<<channel);
2680
2681    /* Make sure this channel is tied to a valid pipe */
2682    pipe = usb->pipe_for_channel[channel];
2683    CVMX_PREFETCH(pipe, 0);
2684    CVMX_PREFETCH(pipe, 128);
2685    if (!pipe)
2686        CVMX_USB_RETURN(0);
2687    transaction = pipe->head;
2688    CVMX_PREFETCH0(transaction);
2689
2690    /* Disconnect this pipe from the HW channel. Later the schedule function will
2691        figure out which pipe needs to go */
2692    usb->pipe_for_channel[channel] = NULL;
2693    pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
2694
2695    /* Read the channel config info so we can figure out how much data
2696        transfered */
2697    usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index));
2698    usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
2699
2700    /* Calculating the number of bytes successfully transfered is dependent on
2701        the transfer direction */
2702    packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2703    if (usbc_hcchar.s.epdir)
2704    {
2705        /* IN transactions are easy. For every byte received the hardware
2706            decrements xfersize. All we need to do is subtract the current
2707            value of xfersize from its starting value and we know how many
2708            bytes were written to the buffer */
2709        bytes_this_transfer = transaction->xfersize - usbc_hctsiz.s.xfersize;
2710    }
2711    else
2712    {
2713        /* OUT transaction don't decrement xfersize. Instead pktcnt is
2714            decremented on every successful packet send. The hardware does
2715            this when it receives an ACK, or NYET. If it doesn't
2716            receive one of these responses pktcnt doesn't change */
2717        bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2718        /* The last packet may not be a full transfer if we didn't have
2719            enough data */
2720        if (bytes_this_transfer > transaction->xfersize)
2721            bytes_this_transfer = transaction->xfersize;
2722    }
2723    /* Figure out how many bytes were in the last packet of the transfer */
2724    if (packets_processed)
2725        bytes_in_last_packet = bytes_this_transfer - (packets_processed-1) * usbc_hcchar.s.mps;
2726    else
2727        bytes_in_last_packet = bytes_this_transfer;
2728
2729    /* As a special case, setup transactions output the setup header, not
2730        the user's data. For this reason we don't count setup data as bytes
2731        transfered */
2732    if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2733        (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2734        bytes_this_transfer = 0;
2735
2736    /* Optional debug output */
2737    if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
2738        (pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
2739        cvmx_dprintf("%s: Channel %d halted. Pipe %d transaction %d stage %d bytes=%d\n",
2740                     __FUNCTION__, channel,
2741                     __cvmx_usb_get_pipe_handle(usb, pipe),
2742                     __cvmx_usb_get_submit_handle(usb, transaction),
2743                     transaction->stage, bytes_this_transfer);
2744
2745    /* Add the bytes transfered to the running total. It is important that
2746        bytes_this_transfer doesn't count any data that needs to be
2747        retransmitted */
2748    transaction->actual_bytes += bytes_this_transfer;
2749    if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2750        buffer_space_left = transaction->iso_packets[0].length - transaction->actual_bytes;
2751    else
2752        buffer_space_left = transaction->buffer_length - transaction->actual_bytes;
2753
2754    /* We need to remember the PID toggle state for the next transaction. The
2755        hardware already updated it for the next transaction */
2756    pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2757
2758    /* For high speed bulk out, assume the next transaction will need to do a
2759        ping before proceeding. If this isn't true the ACK processing below
2760        will clear this flag */
2761    if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2762        (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2763        (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2764        pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
2765
2766    if (usbc_hcint.s.stall)
2767    {
2768        /* STALL as a response means this transaction cannot be completed
2769            because the device can't process transactions. Tell the user. Any
2770            data that was transfered will be counted on the actual bytes
2771            transfered */
2772        pipe->pid_toggle = 0;
2773        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_STALL);
2774    }
2775    else if (0 && usbc_hcint.s.xfercompl)
2776    {
2777        /* XferCompl is only useful in non DMA mode */
2778    }
2779    else if (usbc_hcint.s.xacterr)
2780    {
2781        /* We know at least one packet worked if we get a ACK or NAK. Reset the retry counter */
2782        if (usbc_hcint.s.nak || usbc_hcint.s.ack)
2783            transaction->retries = 0;
2784        transaction->retries++;
2785        if (transaction->retries > MAX_RETRIES)
2786        {
2787            /* XactErr as a response means the device signaled something wrong with
2788                the transfer. For example, PID toggle errors cause these */
2789            __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_XACTERR);
2790        }
2791        else
2792        {
2793            /* Rewind to the beginning of the transaction by anding off the
2794                split complete bit */
2795            transaction->stage &= ~1;
2796            pipe->split_sc_frame = -1;
2797            pipe->next_tx_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT) + pipe->interval;
2798        }
2799    }
2800    else if (0 && usbc_hcint.s.datatglerr)
2801    {
2802        /* The hardware automatically handles Data Toggle Errors for us */
2803    }
2804    else if (usbc_hcint.s.bblerr)
2805    {
2806        /* Babble Error (BblErr) */
2807        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_BABBLEERR);
2808    }
2809    else if (usbc_hcint.s.frmovrun)
2810    {
2811        /* Frame Overrun (FrmOvrun) */
2812        /* Rewind to the beginning of the transaction by anding off the
2813            split complete bit */
2814        transaction->stage &= ~1;
2815        pipe->split_sc_frame = -1;
2816    }
2817    else if (usbc_hcint.s.nyet)
2818    {
2819        /* NYET as a response is only allowed in three cases: as a response to
2820            a ping, as a response to a split transaction, and as a response to
2821            a bulk out. The ping case is handled by hardware, so we only have
2822            splits and bulk out */
2823        if (!__cvmx_usb_pipe_needs_split(usb, pipe))
2824        {
2825            transaction->retries = 0;
2826            /* If there is more data to go then we need to try again. Otherwise
2827                this transaction is complete */
2828            if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
2829                __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2830        }
2831        else
2832        {
2833            /* Split transactions retry the split complete 4 times then rewind
2834                to the start split and do the entire transactions again */
2835            transaction->retries++;
2836            if ((transaction->retries & 0x3) == 0)
2837            {
2838                /* Rewind to the beginning of the transaction by anding off the
2839                    split complete bit */
2840                transaction->stage &= ~1;
2841                pipe->split_sc_frame = -1;
2842            }
2843        }
2844    }
2845    else if (usbc_hcint.s.ack)
2846    {
2847        transaction->retries = 0;
2848        /* The ACK bit can only be checked after the other error bits. This is
2849            because a multi packet transfer may succeed in a number of packets
2850            and then get a different response on the last packet. In this case
2851            both ACK and the last response bit will be set. If none of the
2852            other response bits is set, then the last packet must have been an
2853            ACK */
2854
2855        /* Since we got an ACK, we know we don't need to do a ping on this
2856            pipe */
2857        pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_NEED_PING;
2858
2859        switch (transaction->type)
2860        {
2861            case CVMX_USB_TRANSFER_CONTROL:
2862                switch (transaction->stage)
2863                {
2864                    case CVMX_USB_STAGE_NON_CONTROL:
2865                    case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2866                        /* This should be impossible */
2867                        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
2868                        break;
2869                    case CVMX_USB_STAGE_SETUP:
2870                        pipe->pid_toggle = 1;
2871                        if (__cvmx_usb_pipe_needs_split(usb, pipe))
2872                            transaction->stage = CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2873                        else
2874                        {
2875                            cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
2876                            if (header->s.length)
2877                                transaction->stage = CVMX_USB_STAGE_DATA;
2878                            else
2879                                transaction->stage = CVMX_USB_STAGE_STATUS;
2880                        }
2881                        break;
2882                    case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2883                        {
2884                            cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
2885                            if (header->s.length)
2886                                transaction->stage = CVMX_USB_STAGE_DATA;
2887                            else
2888                                transaction->stage = CVMX_USB_STAGE_STATUS;
2889                        }
2890                        break;
2891                    case CVMX_USB_STAGE_DATA:
2892                        if (__cvmx_usb_pipe_needs_split(usb, pipe))
2893                            transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2894                        else if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
2895                        {
2896                            pipe->pid_toggle = 1;
2897                            transaction->stage = CVMX_USB_STAGE_STATUS;
2898                        }
2899                        break;
2900                    case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2901                        if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
2902                        {
2903                            pipe->pid_toggle = 1;
2904                            transaction->stage = CVMX_USB_STAGE_STATUS;
2905                        }
2906                        else
2907                        {
2908                            transaction->stage = CVMX_USB_STAGE_DATA;
2909                        }
2910                        break;
2911                    case CVMX_USB_STAGE_STATUS:
2912                        if (__cvmx_usb_pipe_needs_split(usb, pipe))
2913                            transaction->stage = CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2914                        else
2915                            __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2916                        break;
2917                    case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2918                        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2919                        break;
2920                }
2921                break;
2922            case CVMX_USB_TRANSFER_BULK:
2923            case CVMX_USB_TRANSFER_INTERRUPT:
2924                /* The only time a bulk transfer isn't complete when
2925                    it finishes with an ACK is during a split transaction. For
2926                    splits we need to continue the transfer if more data is
2927                    needed */
2928                if (__cvmx_usb_pipe_needs_split(usb, pipe))
2929                {
2930                    if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2931                        transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2932                    else
2933                    {
2934                        if (buffer_space_left && (bytes_in_last_packet == pipe->max_packet))
2935                            transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2936                        else
2937                        {
2938                            if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
2939                                pipe->next_tx_cycle += pipe->interval;
2940                            __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2941                        }
2942                    }
2943                }
2944                else
2945                {
2946                    if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2947                        (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2948                        (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2949                        (usbc_hcint.s.nak))
2950                        pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
2951                    if (!buffer_space_left || (bytes_in_last_packet < pipe->max_packet))
2952                    {
2953                        if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
2954                            pipe->next_tx_cycle += pipe->interval;
2955                        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2956                    }
2957                }
2958                break;
2959            case CVMX_USB_TRANSFER_ISOCHRONOUS:
2960                if (__cvmx_usb_pipe_needs_split(usb, pipe))
2961                {
2962                    /* ISOCHRONOUS OUT splits don't require a complete split stage.
2963                        Instead they use a sequence of begin OUT splits to transfer
2964                        the data 188 bytes at a time. Once the transfer is complete,
2965                        the pipe sleeps until the next schedule interval */
2966                    if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
2967                    {
2968                        pipe->next_tx_cycle += pipe->interval;
2969                        /* If no space left or this wasn't a max size packet then
2970                            this transfer is complete. Otherwise start it again
2971                            to send the next 188 bytes */
2972                        if (!buffer_space_left || (bytes_this_transfer < 188))
2973                            __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2974                    }
2975                    else
2976                    {
2977                        if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE)
2978                        {
2979                            /* We are in the incomming data phase. Keep getting
2980                                data until we run out of space or get a small
2981                                packet */
2982                            if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
2983                            {
2984                                pipe->next_tx_cycle += pipe->interval;
2985                                __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2986                            }
2987                        }
2988                        else
2989                            transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2990                    }
2991                }
2992                else
2993                {
2994                    pipe->next_tx_cycle += pipe->interval;
2995                    __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
2996                }
2997                break;
2998        }
2999    }
3000    else if (usbc_hcint.s.nak)
3001    {
3002        uint64_t ipd_clk_count;
3003        /* NAK as a response means the device couldn't accept the transaction,
3004            but it should be retried in the future. Rewind to the beginning of
3005            the transaction by anding off the split complete bit. Retry in the
3006            next interval */
3007        transaction->retries = 0;
3008        transaction->stage &= ~1;
3009        pipe->next_tx_cycle += pipe->interval;
3010        ipd_clk_count = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT);
3011        if (pipe->next_tx_cycle < ipd_clk_count)
3012            pipe->next_tx_cycle = ipd_clk_count + pipe->interval;
3013    }
3014    else
3015    {
3016        /* We get channel halted interrupts with no result bits sets when the
3017            cable is unplugged */
3018        __cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
3019    }
3020    CVMX_USB_RETURN(0);
3021}
3022
3023
3024/**
3025 * Poll a device mode endpoint for status
3026 *
3027 * @param usb    USB device state populated by
3028 *               cvmx_usb_initialize().
3029 * @param endpoint_num
3030 *               Endpoint to poll
3031 *
3032 * @return Zero on success
3033 */
3034static int __cvmx_usb_poll_endpoint(cvmx_usb_internal_state_t *usb, int endpoint_num)
3035{
3036    cvmx_usbcx_diepintx_t usbc_diepint;
3037    cvmx_usbcx_doepintx_t usbc_doepint;
3038
3039    CVMX_USB_LOG_CALLED();
3040    CVMX_USB_LOG_PARAM("%p", usb);
3041    CVMX_USB_LOG_PARAM("%d", endpoint_num);
3042
3043    usbc_diepint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index));
3044    __cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), usbc_diepint.u32);
3045    //cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), usbc_diepint.u32);
3046    if (usbc_diepint.s.inepnakeff)
3047    {
3048        /* IN Endpoint NAK Effective (INEPNakEff)
3049            Applies to periodic IN endpoints only.
3050            Indicates that the IN endpoint NAK bit set by the application has
3051            taken effect in the core. This bit can be cleared when the
3052            application clears the IN endpoint NAK by writing to
3053            DIEPCTLn.CNAK.
3054            This interrupt indicates that the core has sampled the NAK bit
3055            set (either by the application or by the core).
3056            This interrupt does not necessarily mean that a NAK handshake
3057            is sent on the USB. A STALL bit takes priority over a NAK bit. */
3058        /* Nothing to do */
3059    }
3060    if (usbc_diepint.s.intknepmis)
3061    {
3062        /* IN Token Received with EP Mismatch (INTknEPMis)
3063            Applies to non-periodic IN endpoints only.
3064            Indicates that the data in the top of the non-periodic TxFIFO
3065            belongs to an endpoint other than the one for which the IN
3066            token was received. This interrupt is asserted on the endpoint
3067            for which the IN token was received. */
3068        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3069            cvmx_dprintf("%s: Endpoint %d mismatch\n", __FUNCTION__, endpoint_num);
3070    }
3071    if (usbc_diepint.s.intkntxfemp)
3072    {
3073        /* IN Token Received When TxFIFO is Empty (INTknTXFEmp)
3074            Applies only to non-periodic IN endpoints.
3075            Indicates that an IN token was received when the associated
3076            TxFIFO (periodic/non-periodic) was empty. This interrupt is
3077            asserted on the endpoint for which the IN token was received. */
3078        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3079            cvmx_dprintf("%s: Received IN token on endpoint %d without data\n", __FUNCTION__, endpoint_num);
3080    }
3081    if (usbc_diepint.s.timeout)
3082    {
3083        /* Timeout Condition (TimeOUT)
3084            Applies to non-isochronous IN endpoints only.
3085            Indicates that the core has detected a timeout condition on the
3086            USB for the last IN token on this endpoint. */
3087        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3088            cvmx_dprintf("%s: Received timeout on endpoint %d\n", __FUNCTION__, endpoint_num);
3089    }
3090    if (usbc_diepint.s.ahberr)
3091    {
3092        /* AHB Error (AHBErr)
3093            This is generated only in Internal DMA mode when there is an
3094            AHB error during an AHB read/write. The application can read
3095            the corresponding endpoint DMA address register to get the
3096            error address. */
3097        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3098            cvmx_dprintf("%s: AHB error on endpoint %d\n", __FUNCTION__, endpoint_num);
3099    }
3100    if (usbc_diepint.s.epdisbld)
3101    {
3102        /* Endpoint Disabled Interrupt (EPDisbld)
3103            This bit indicates that the endpoint is disabled per the
3104            application's request. */
3105        /* Nothing to do */
3106    }
3107    if (usbc_diepint.s.xfercompl)
3108    {
3109        /* Transfer Completed Interrupt (XferCompl)
3110            Indicates that the programmed transfer is complete on the AHB
3111            as well as on the USB, for this endpoint. */
3112        __cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
3113                                    CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
3114                                    CVMX_USB_COMPLETE_SUCCESS);
3115    }
3116
3117    usbc_doepint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index));
3118    __cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), usbc_doepint.u32);
3119    //cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), usbc_doepint.u32);
3120    if (usbc_doepint.s.outtknepdis)
3121    {
3122        /* OUT Token Received When Endpoint Disabled (OUTTknEPdis)
3123            Applies only to control OUT endpoints.
3124            Indicates that an OUT token was received when the endpoint
3125            was not yet enabled. This interrupt is asserted on the endpoint
3126            for which the OUT token was received. */
3127        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3128            cvmx_dprintf("%s: Received OUT token on disabled endpoint %d\n", __FUNCTION__, endpoint_num);
3129    }
3130    if (usbc_doepint.s.setup)
3131    {
3132        /* SETUP Phase Done (SetUp)
3133            Applies to control OUT endpoints only.
3134            Indicates that the SETUP phase for the control endpoint is
3135            complete and no more back-to-back SETUP packets were
3136            received for the current control transfer. On this interrupt, the
3137            application can decode the received SETUP data packet. */
3138        __cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
3139                                    CVMX_USB_CALLBACK_DEVICE_SETUP,
3140                                    CVMX_USB_COMPLETE_SUCCESS);
3141    }
3142    if (usbc_doepint.s.ahberr)
3143    {
3144        /* AHB Error (AHBErr)
3145            This is generated only in Internal DMA mode when there is an
3146            AHB error during an AHB read/write. The application can read
3147            the corresponding endpoint DMA address register to get the
3148            error address. */
3149        if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3150            cvmx_dprintf("%s: AHB error on endpoint %d\n", __FUNCTION__, endpoint_num);
3151    }
3152    if (usbc_doepint.s.epdisbld)
3153    {
3154        /* Endpoint Disabled Interrupt (EPDisbld)
3155            This bit indicates that the endpoint is disabled per the
3156            application's request. */
3157        /* Nothing to do */
3158    }
3159    if (usbc_doepint.s.xfercompl)
3160    {
3161        /* Transfer Completed Interrupt (XferCompl)
3162            Indicates that the programmed transfer is complete on the AHB
3163            as well as on the USB, for this endpoint. */
3164        __cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
3165                                    CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
3166                                    CVMX_USB_COMPLETE_SUCCESS);
3167    }
3168
3169    CVMX_USB_RETURN(0);
3170}
3171
3172
3173/**
3174 * Poll the device mode endpoints for status
3175 *
3176 * @param usb  USB device state populated by
3177 *               cvmx_usb_initialize().
3178 *
3179 * @return Zero on success
3180 */
3181static int __cvmx_usb_poll_endpoints(cvmx_usb_internal_state_t *usb)
3182{
3183    cvmx_usbcx_daint_t usbc_daint;
3184    int active_endpoints;
3185
3186    CVMX_USB_LOG_CALLED();
3187    CVMX_USB_LOG_PARAM("%p", usb);
3188
3189    usbc_daint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DAINT(usb->index));
3190    active_endpoints = usbc_daint.s.inepint | usbc_daint.s.outepint;
3191
3192    while (active_endpoints)
3193    {
3194        int endpoint;
3195        CVMX_CLZ(endpoint, active_endpoints);
3196        endpoint = 31 - endpoint;
3197        __cvmx_usb_poll_endpoint(usb, endpoint);
3198        active_endpoints ^= 1<<endpoint;
3199    }
3200
3201    CVMX_USB_RETURN(0);
3202}
3203
3204
3205/**
3206 * Poll the USB block for status and call all needed callback
3207 * handlers. This function is meant to be called in the interrupt
3208 * handler for the USB controller. It can also be called
3209 * periodically in a loop for non-interrupt based operation.
3210 *
3211 * @param state  USB device state populated by
3212 *               cvmx_usb_initialize().
3213 *
3214 * @return CVMX_USB_SUCCESS or a negative error code defined in
3215 *         cvmx_usb_status_t.
3216 */
3217cvmx_usb_status_t cvmx_usb_poll(cvmx_usb_state_t *state)
3218{
3219    cvmx_usbcx_gintsts_t usbc_gintsts;
3220    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
3221
3222    CVMX_PREFETCH(usb, 0);
3223    CVMX_PREFETCH(usb, 1*128);
3224    CVMX_PREFETCH(usb, 2*128);
3225    CVMX_PREFETCH(usb, 3*128);
3226    CVMX_PREFETCH(usb, 4*128);
3227
3228    CVMX_USB_LOG_CALLED();
3229    CVMX_USB_LOG_PARAM("%p", state);
3230
3231    /* Read the pending interrupts */
3232    usbc_gintsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index));
3233
3234    if (usbc_gintsts.s.wkupint)
3235    {
3236        /* Resume/Remote Wakeup Detected Interrupt (WkUpInt)
3237            In Device mode, this interrupt is asserted when a resume is
3238            detected on the USB. In Host mode, this interrupt is asserted
3239            when a remote wakeup is detected on the USB. */
3240        /* Octeon doesn't support suspend / resume */
3241    }
3242    if (usbc_gintsts.s.sessreqint)
3243    {
3244        /* Session Request/New Session Detected Interrupt (SessReqInt)
3245            In Host mode, this interrupt is asserted when a session request
3246            is detected from the device. In Device mode, this interrupt is
3247            asserted when the utmiotg_bvalid signal goes high. */
3248        /* Octeon doesn't support OTG */
3249    }
3250    if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint)
3251    {
3252        cvmx_usbcx_hprt_t usbc_hprt;
3253        /* Disconnect Detected Interrupt (DisconnInt)
3254            Asserted when a device disconnect is detected. */
3255
3256        /* Host Port Interrupt (PrtInt)
3257            The core sets this bit to indicate a change in port status of one
3258            of the O2P USB core ports in Host mode. The application must
3259            read the Host Port Control and Status (HPRT) register to
3260            determine the exact event that caused this interrupt. The
3261            application must clear the appropriate status bit in the Host Port
3262            Control and Status register to clear this bit. */
3263
3264        /* Call the user's port callback */
3265        __cvmx_usb_perform_callback(usb, NULL, NULL,
3266                                    CVMX_USB_CALLBACK_PORT_CHANGED,
3267                                    CVMX_USB_COMPLETE_SUCCESS);
3268        /* Clear the port change bits */
3269        usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
3270        usbc_hprt.s.prtena = 0;
3271        __cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), usbc_hprt.u32);
3272    }
3273    if (usbc_gintsts.s.conidstschng)
3274    {
3275        /* Connector ID Status Change (ConIDStsChng)
3276            The core sets this bit when there is a change in connector ID
3277            status. */
3278        /* The USB core currently doesn't support dynamically changing from
3279            host to device mode */
3280    }
3281    if (usbc_gintsts.s.ptxfemp)
3282    {
3283        /* Periodic TxFIFO Empty (PTxFEmp)
3284            Asserted when the Periodic Transmit FIFO is either half or
3285            completely empty and there is space for at least one entry to be
3286            written in the Periodic Request Queue. The half or completely
3287            empty status is determined by the Periodic TxFIFO Empty Level
3288            bit in the Core AHB Configuration register
3289            (GAHBCFG.PTxFEmpLvl). */
3290        /* In DMA mode we don't care */
3291    }
3292    if (usbc_gintsts.s.hchint)
3293    {
3294        /* Host Channels Interrupt (HChInt)
3295            The core sets this bit to indicate that an interrupt is pending on
3296            one of the channels of the core (in Host mode). The application
3297            must read the Host All Channels Interrupt (HAINT) register to
3298            determine the exact number of the channel on which the
3299            interrupt occurred, and then read the corresponding Host
3300            Channel-n Interrupt (HCINTn) register to determine the exact
3301            cause of the interrupt. The application must clear the
3302            appropriate status bit in the HCINTn register to clear this bit. */
3303        cvmx_usbcx_haint_t usbc_haint;
3304        usbc_haint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINT(usb->index));
3305        while (usbc_haint.u32)
3306        {
3307            int channel;
3308            CVMX_CLZ(channel, usbc_haint.u32);
3309            channel = 31 - channel;
3310            __cvmx_usb_poll_channel(usb, channel);
3311            usbc_haint.u32 ^= 1<<channel;
3312        }
3313    }
3314    if (usbc_gintsts.s.fetsusp)
3315    {
3316        /* Data Fetch Suspended (FetSusp)
3317            This interrupt is valid only in DMA mode. This interrupt indicates
3318            that the core has stopped fetching data for IN endpoints due to
3319            the unavailability of TxFIFO space or Request Queue space.
3320            This interrupt is used by the application for an endpoint
3321            mismatch algorithm. */
3322        // FIXME
3323    }
3324    if (usbc_gintsts.s.incomplp)
3325    {
3326        /* Incomplete Periodic Transfer (incomplP)
3327            In Host mode, the core sets this interrupt bit when there are
3328            incomplete periodic transactions still pending which are
3329            scheduled for the current microframe.
3330            Incomplete Isochronous OUT Transfer (incompISOOUT)
3331            The Device mode, the core sets this interrupt to indicate that
3332            there is at least one isochronous OUT endpoint on which the
3333            transfer is not completed in the current microframe. This
3334            interrupt is asserted along with the End of Periodic Frame
3335            Interrupt (EOPF) bit in this register. */
3336        // FIXME
3337    }
3338    if (usbc_gintsts.s.incompisoin)
3339    {
3340        /* Incomplete Isochronous IN Transfer (incompISOIN)
3341            The core sets this interrupt to indicate that there is at least one
3342            isochronous IN endpoint on which the transfer is not completed
3343            in the current microframe. This interrupt is asserted along with
3344            the End of Periodic Frame Interrupt (EOPF) bit in this register. */
3345        // FIXME
3346    }
3347    if (usbc_gintsts.s.oepint)
3348    {
3349        /* OUT Endpoints Interrupt (OEPInt)
3350            The core sets this bit to indicate that an interrupt is pending on
3351            one of the OUT endpoints of the core (in Device mode). The
3352            application must read the Device All Endpoints Interrupt
3353            (DAINT) register to determine the exact number of the OUT
3354            endpoint on which the interrupt occurred, and then read the
3355            corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
3356            register to determine the exact cause of the interrupt. The
3357            application must clear the appropriate status bit in the
3358            corresponding DOEPINTn register to clear this bit. */
3359        __cvmx_usb_poll_endpoints(usb);
3360    }
3361    if (usbc_gintsts.s.iepint)
3362    {
3363        /* IN Endpoints Interrupt (IEPInt)
3364            The core sets this bit to indicate that an interrupt is pending on
3365            one of the IN endpoints of the core (in Device mode). The
3366            application must read the Device All Endpoints Interrupt
3367            (DAINT) register to determine the exact number of the IN
3368            endpoint on which the interrupt occurred, and then read the
3369            corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
3370            register to determine the exact cause of the interrupt. The
3371            application must clear the appropriate status bit in the
3372            corresponding DIEPINTn register to clear this bit. */
3373        __cvmx_usb_poll_endpoints(usb);
3374    }
3375    if (usbc_gintsts.s.epmis)
3376    {
3377        /* Endpoint Mismatch Interrupt (EPMis)
3378            Indicates that an IN token has been received for a non-periodic
3379            endpoint, but the data for another endpoint is present in the top
3380            of the Non-Periodic Transmit FIFO and the IN endpoint
3381            mismatch count programmed by the application has expired. */
3382        // FIXME
3383    }
3384    if (usbc_gintsts.s.eopf)
3385    {
3386        /* End of Periodic Frame Interrupt (EOPF)
3387            Indicates that the period specified in the Periodic Frame Interval
3388            field of the Device Configuration register (DCFG.PerFrInt) has
3389            been reached in the current microframe. */
3390        // FIXME
3391    }
3392    if (usbc_gintsts.s.isooutdrop)
3393    {
3394        /* Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
3395            The core sets this bit when it fails to write an isochronous OUT
3396            packet into the RxFIFO because the RxFIFO doesn't have
3397            enough space to accommodate a maximum packet size packet
3398            for the isochronous OUT endpoint. */
3399        // FIXME
3400    }
3401    if (usbc_gintsts.s.enumdone)
3402    {
3403        /* Enumeration Done (EnumDone)
3404            The core sets this bit to indicate that speed enumeration is
3405            complete. The application must read the Device Status (DSTS)
3406            register to obtain the enumerated speed. */
3407        if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
3408        {
3409            cvmx_usbcx_dsts_t usbc_dsts;
3410            usbc_dsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DSTS(usb->index));
3411            if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3412                cvmx_dprintf("%s: USB%d Enumeration complete with %s speed\n",
3413                             __FUNCTION__, usb->index,
3414                             (usbc_dsts.s.enumspd == CVMX_USB_SPEED_HIGH) ? "high" :
3415                             (usbc_dsts.s.enumspd == CVMX_USB_SPEED_FULL) ? "full" :
3416                             "low");
3417            USB_SET_FIELD32(CVMX_USBCX_DIEPCTLX(0, usb->index),
3418                            cvmx_usbcx_diepctlx_t, mps,
3419                            (usbc_dsts.s.enumspd == CVMX_USB_SPEED_LOW) ? 3 : 0);
3420            USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(0, usb->index),
3421                            cvmx_usbcx_doepctlx_t, epena, 1);
3422        }
3423    }
3424    if (usbc_gintsts.s.usbrst)
3425    {
3426        /* USB Reset (USBRst)
3427            The core sets this bit to indicate that a reset is
3428            detected on the USB. */
3429        if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
3430        {
3431            if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
3432                cvmx_dprintf("%s: USB%d Reset complete\n", __FUNCTION__, usb->index);
3433            __cvmx_usb_device_reset_complete(usb);
3434        }
3435    }
3436    if (usbc_gintsts.s.nptxfemp)
3437    {
3438        /* Non-Periodic TxFIFO Empty (NPTxFEmp)
3439            This interrupt is asserted when the Non-Periodic TxFIFO is
3440            either half or completely empty, and there is space for at least
3441            one entry to be written to the Non-Periodic Transmit Request
3442            Queue. The half or completely empty status is determined by
3443            the Non-Periodic TxFIFO Empty Level bit in the Core AHB
3444            Configuration register (GAHBCFG.NPTxFEmpLvl). */
3445        /* In DMA mode this is handled by hardware */
3446    }
3447    if (usbc_gintsts.s.rxflvl)
3448    {
3449        /* RxFIFO Non-Empty (RxFLvl)
3450            Indicates that there is at least one packet pending to be read
3451            from the RxFIFO. */
3452        /* In DMA mode this is handled by hardware */
3453    }
3454    if (usbc_gintsts.s.sof)
3455    {
3456        /* Start of (micro)Frame (Sof)
3457            In Host mode, the core sets this bit to indicate that an SOF
3458            (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
3459            USB. The application must write a 1 to this bit to clear the
3460            interrupt.
3461            In Device mode, in the core sets this bit to indicate that an SOF
3462            token has been received on the USB. The application can read
3463            the Device Status register to get the current (micro)frame
3464            number. This interrupt is seen only when the core is operating
3465            at either HS or FS. */
3466    }
3467    if (usbc_gintsts.s.otgint)
3468    {
3469        /* OTG Interrupt (OTGInt)
3470            The core sets this bit to indicate an OTG protocol event. The
3471            application must read the OTG Interrupt Status (GOTGINT)
3472            register to determine the exact event that caused this interrupt.
3473            The application must clear the appropriate status bit in the
3474            GOTGINT register to clear this bit. */
3475        /* Octeon doesn't support OTG, so ignore */
3476    }
3477    if (usbc_gintsts.s.modemis)
3478    {
3479        /* Mode Mismatch Interrupt (ModeMis)
3480            The core sets this bit when the application is trying to access:
3481            * A Host mode register, when the core is operating in Device
3482            mode
3483            * A Device mode register, when the core is operating in Host
3484            mode
3485            The register access is completed on the AHB with an OKAY
3486            response, but is ignored by the core internally and doesn't
3487            affect the operation of the core. */
3488        /* Ignored for now */
3489    }
3490
3491    __cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3492
3493    /* Clear the interrupts now that we know about them */
3494    __cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32);
3495
3496    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
3497}
3498
3499
3500/**
3501 * Enable an endpoint for use in device mode. After this call
3502 * transactions will be allowed over the endpoint. This must be
3503 * called after every usb reset.
3504 *
3505 * @param state  USB device state populated by
3506 *               cvmx_usb_initialize().
3507 * @param endpoint_num
3508 *               The endpoint number to enable (0-4)
3509 * @param transfer_type
3510 *               USB transfer type of this endpoint
3511 * @param transfer_dir
3512 *               Direction of transfer relative to Octeon
3513 * @param max_packet_size
3514 *               Maximum packet size support by this endpoint
3515 * @param buffer Buffer to send/receive
3516 * @param buffer_length
3517 *               Length of the buffer in bytes
3518 *
3519 * @return CVMX_USB_SUCCESS or a negative error code defined in
3520 *         cvmx_usb_status_t.
3521 */
3522cvmx_usb_status_t cvmx_usb_device_enable_endpoint(cvmx_usb_state_t *state,
3523                                                  int endpoint_num,
3524                                                  cvmx_usb_transfer_t transfer_type,
3525                                                  cvmx_usb_direction_t transfer_dir,
3526                                                  int max_packet_size,
3527                                                  uint64_t buffer,
3528                                                  int buffer_length)
3529{
3530    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
3531
3532    CVMX_USB_LOG_CALLED();
3533    CVMX_USB_LOG_PARAM("%p", state);
3534    CVMX_USB_LOG_PARAM("%d", endpoint_num);
3535    CVMX_USB_LOG_PARAM("%d", transfer_type);
3536    CVMX_USB_LOG_PARAM("%d", transfer_dir);
3537    CVMX_USB_LOG_PARAM("%d", max_packet_size);
3538    CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
3539    CVMX_USB_LOG_PARAM("%d", buffer_length);
3540
3541    if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > 4)))
3542        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3543    if (cvmx_unlikely(transfer_type > CVMX_USB_TRANSFER_INTERRUPT))
3544        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3545    if (cvmx_unlikely((transfer_dir != CVMX_USB_DIRECTION_OUT) &&
3546        (transfer_dir != CVMX_USB_DIRECTION_IN)))
3547        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3548    if (cvmx_unlikely((max_packet_size < 0) || (max_packet_size > 512)))
3549        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3550    if (cvmx_unlikely(!buffer))
3551        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3552    if (cvmx_unlikely(buffer_length < 0))
3553        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3554    if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0))
3555        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
3556
3557    if (transfer_dir == CVMX_USB_DIRECTION_IN)
3558    {
3559        cvmx_usbcx_doepctlx_t usbc_doepctl;
3560        cvmx_usbcx_doeptsizx_t usbc_doeptsiz;
3561
3562        /* Setup the locations the DMA engines use  */
3563        __cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + endpoint_num*8, buffer);
3564        usbc_doeptsiz.u32 = 0;
3565        usbc_doeptsiz.s.mc = 1; // FIXME
3566        usbc_doeptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size;
3567        if (usbc_doeptsiz.s.pktcnt == 0)
3568            usbc_doeptsiz.s.pktcnt = 1;
3569        usbc_doeptsiz.s.xfersize = buffer_length;
3570        __cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPTSIZX(endpoint_num, usb->index), usbc_doeptsiz.u32);
3571
3572        usbc_doepctl.u32 = 0;
3573        usbc_doepctl.s.epena = 1;
3574        usbc_doepctl.s.setd1pid = 0; // FIXME
3575        usbc_doepctl.s.setd0pid = 0; // FIXME
3576        usbc_doepctl.s.cnak = 1;
3577        usbc_doepctl.s.eptype = transfer_type;
3578        usbc_doepctl.s.usbactep = 1;
3579        usbc_doepctl.s.mps = max_packet_size;
3580        __cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index), usbc_doepctl.u32);
3581    }
3582    else
3583    {
3584        cvmx_usbcx_diepctlx_t usbc_diepctl;
3585        cvmx_usbcx_dieptsizx_t usbc_dieptsiz;
3586
3587        /* Setup the locations the DMA engines use  */
3588        __cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + endpoint_num*8, buffer);
3589        usbc_dieptsiz.u32 = 0;
3590        usbc_dieptsiz.s.mc = 1; // FIXME
3591        usbc_dieptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size;
3592        if (usbc_dieptsiz.s.pktcnt == 0)
3593            usbc_dieptsiz.s.pktcnt = 1;
3594        usbc_dieptsiz.s.xfersize = buffer_length;
3595        __cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPTSIZX(endpoint_num, usb->index), usbc_dieptsiz.u32);
3596
3597        usbc_diepctl.u32 = 0;
3598        usbc_diepctl.s.epena = 1;
3599        usbc_diepctl.s.setd1pid = 0; // FIXME
3600        usbc_diepctl.s.setd0pid = 0; // FIXME
3601        usbc_diepctl.s.cnak = 1;
3602        if ((transfer_type == CVMX_USB_TRANSFER_INTERRUPT) ||
3603            (transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS))
3604            usbc_diepctl.s.txfnum = endpoint_num; // FIXME
3605        else
3606            usbc_diepctl.s.txfnum = 0;
3607        usbc_diepctl.s.eptype = transfer_type;
3608        usbc_diepctl.s.usbactep = 1;
3609        usbc_diepctl.s.nextep = endpoint_num - 1; // FIXME
3610        usbc_diepctl.s.mps = max_packet_size;
3611        __cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index), usbc_diepctl.u32);
3612    }
3613
3614    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
3615}
3616
3617
3618/**
3619 * Disable an endpoint in device mode.
3620 *
3621 * @param state  USB device state populated by
3622 *               cvmx_usb_initialize().
3623 * @param endpoint_num
3624 *               The endpoint number to disable (0-4)
3625 *
3626 * @return CVMX_USB_SUCCESS or a negative error code defined in
3627 *         cvmx_usb_status_t.
3628 */
3629cvmx_usb_status_t cvmx_usb_device_disable_endpoint(cvmx_usb_state_t *state,
3630                                                   int endpoint_num)
3631{
3632    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
3633
3634    CVMX_USB_LOG_CALLED();
3635    CVMX_USB_LOG_PARAM("%p", state);
3636    CVMX_USB_LOG_PARAM("%d", endpoint_num);
3637
3638    if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > 4)))
3639        CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
3640    if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0))
3641        CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
3642
3643    USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index),
3644                    cvmx_usbcx_doepctlx_t, epdis, 1);
3645    USB_SET_FIELD32(CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index),
3646                    cvmx_usbcx_diepctlx_t, epdis, 1);
3647
3648    CVMX_USB_RETURN(CVMX_USB_SUCCESS);
3649}
3650
3651extern void cvmx_usb_set_toggle(cvmx_usb_state_t *state, int endpoint_num, int toggle)
3652{
3653    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
3654    cvmx_usb_pipe_t *pipe = usb->pipe + endpoint_num;
3655
3656    pipe->pid_toggle = !!toggle;
3657}
3658
3659extern int cvmx_usb_get_toggle(cvmx_usb_state_t *state, int endpoint_num)
3660{
3661    cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
3662    cvmx_usb_pipe_t *pipe = usb->pipe + endpoint_num;
3663
3664    if (pipe->pid_toggle)
3665	    return (1);
3666    return (0);
3667}
3668