1/***********************license start***************
2 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Inc. nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41
42
43
44
45
46/**
47 * @file
48 *
49 * Configuration functions for low latency memory.
50 *
51 * <hr>$Revision: 70030 $<hr>
52 */
53#include "cvmx-config.h"
54#include "cvmx.h"
55#include "cvmx-llm.h"
56#include "cvmx-sysinfo.h"
57#include "cvmx-csr-db.h"
58
59#define	MIN(a,b) (((a)<(b))?(a):(b))
60
61typedef struct
62{
63    uint32_t dfa_memcfg0_base;
64    uint32_t dfa_memcfg1_base;
65    uint32_t mrs_dat_p0bunk0;
66    uint32_t mrs_dat_p0bunk1;
67    uint32_t mrs_dat_p1bunk0;
68    uint32_t mrs_dat_p1bunk1;
69    uint8_t  p0_ena;
70    uint8_t  p1_ena;
71    uint8_t  bunkport;
72} rldram_csr_config_t;
73
74
75
76
77
78int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr);
79
80
81void print_rld_cfg(rldram_csr_config_t *cfg_ptr);
82void write_rld_cfg(rldram_csr_config_t *cfg_ptr);
83static void cn31xx_dfa_memory_init(void);
84
85static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str);
86
87
88
89#ifndef CVMX_LLM_NUM_PORTS
90#warning WARNING: default CVMX_LLM_NUM_PORTS used.  Defaults deprecated, please set in executive-config.h
91#define CVMX_LLM_NUM_PORTS 1
92#endif
93
94
95#if (CVMX_LLM_NUM_PORTS != 1) && (CVMX_LLM_NUM_PORTS != 2)
96#error "Invalid CVMX_LLM_NUM_PORTS value: must be 1 or 2\n"
97#endif
98
99int cvmx_llm_initialize()
100{
101    if (cvmx_llm_initialize_desc(NULL) < 0)
102        return -1;
103
104    return 0;
105}
106
107
108int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr)
109{
110    cvmx_sysinfo_t *sys_ptr;
111    sys_ptr = cvmx_sysinfo_get();
112
113    if (!llm_desc_ptr)
114        return -1;
115
116    memset(llm_desc_ptr, 0, sizeof(llm_descriptor_t));
117
118    llm_desc_ptr->cpu_hz = cvmx_clock_get_rate(CVMX_CLOCK_CORE);
119
120    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT3000)
121    { // N3K->RLD0 Address Swizzle
122        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
123        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
124        // N3K->RLD1 Address Swizzle
125        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
126        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
127        /* NOTE: The ebt3000 has a strange RLDRAM configuration for validation purposes.  It is not recommended to have
128        ** different amounts of memory on different ports as that renders some memory unusable */
129        llm_desc_ptr->rld0_bunks = 2;
130        llm_desc_ptr->rld1_bunks = 2;
131        llm_desc_ptr->rld0_mbytes = 128;          // RLD0: 4x 32Mx9
132        llm_desc_ptr->rld1_mbytes = 64;           // RLD1: 2x 16Mx18
133    }
134    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT5800)
135    {
136        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
137        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
138        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
139        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
140        llm_desc_ptr->rld0_bunks = 2;
141        llm_desc_ptr->rld1_bunks = 2;
142        llm_desc_ptr->rld0_mbytes = 128;
143        llm_desc_ptr->rld1_mbytes = 128;
144        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
145    }
146    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3000)
147    {
148        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
149        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
150        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
151        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
152        llm_desc_ptr->rld0_bunks = 2;
153        llm_desc_ptr->rld1_bunks = 2;
154        llm_desc_ptr->rld0_mbytes = 128;
155        llm_desc_ptr->rld1_mbytes = 128;
156    }
157    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_THUNDER)
158    {
159
160        if (sys_ptr->board_rev_major >= 4)
161        {
162            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 13 11 01 02 07 19 03 18 10 12 20 06 04 08 17 05 14 16 00 09 15");
163            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 13 04 08 17 05 14 16 00 09 15 06 01 02 07 19 03 18 10 12 20");
164            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 02 19 18 17 16 09 14 13 20 11 10 01 08 03 06 15 04 07 05 12 00");
165            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 02 08 03 06 15 04 07 05 12 00 01 18 17 16 09 14 13 20 11 10");
166        }
167        else
168        {
169            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
170            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
171            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
172            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
173        }
174
175        llm_desc_ptr->rld0_bunks = 2;
176        llm_desc_ptr->rld1_bunks = 2;
177        llm_desc_ptr->rld0_mbytes = 128;
178        llm_desc_ptr->rld1_mbytes = 128;
179    }
180    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NICPRO2)
181    {
182        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
183        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
184        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
185        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
186        llm_desc_ptr->rld0_bunks = 2;
187        llm_desc_ptr->rld1_bunks = 2;
188        llm_desc_ptr->rld0_mbytes = 256;
189        llm_desc_ptr->rld1_mbytes = 256;
190        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
191    }
192    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
193    {
194        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory */
195        llm_desc_ptr->rld0_bunks = 1;
196        llm_desc_ptr->rld0_mbytes = 256;
197    }
198    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_KBP)
199    {
200        strcpy(llm_desc_ptr->addr_rld0_fb_str, "");
201        strcpy(llm_desc_ptr->addr_rld0_bb_str, "");
202        llm_desc_ptr->rld0_bunks = 0;
203        llm_desc_ptr->rld0_mbytes = 0;
204        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
205        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
206        llm_desc_ptr->rld1_bunks = 2;
207        llm_desc_ptr->rld1_mbytes = 64;
208    }
209    else
210    {
211        cvmx_dprintf("No default LLM configuration available for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);
212        return -1;
213    }
214
215    return(0);
216}
217
218int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr)
219{
220    cvmx_sysinfo_t *sys_ptr;
221    sys_ptr = cvmx_sysinfo_get();
222    llm_descriptor_t default_llm_desc;
223
224    memset(&default_llm_desc, 0, sizeof(default_llm_desc));
225    if (sys_ptr->board_type == CVMX_BOARD_TYPE_SIM)
226    {
227        cvmx_dprintf("Skipping llm configuration for simulator.\n");
228        return 0;
229    }
230
231    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
232    {
233        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory
234        ** config descriptors are not supported yet.*/
235        cvmx_dprintf("Warning: preliminary DFA memory configuration\n");
236        cn31xx_dfa_memory_init();
237        return(256*1024*1024);
238    }
239
240    /* If no descriptor passed, generate default descriptor based on board type.
241    ** Fail if no default available for given board type
242    */
243    if (!llm_desc_ptr)
244    {
245        /* Get default descriptor */
246        if (0 > cvmx_llm_get_default_descriptor(&default_llm_desc))
247            return -1;
248
249        /* Disable second port depending on CVMX config */
250        if (CVMX_LLM_NUM_PORTS == 1)
251	  default_llm_desc.rld0_bunks = 0;        // For single port: Force RLD0(P1) to appear EMPTY
252
253        cvmx_dprintf("Using default LLM configuration for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);
254
255        llm_desc_ptr = &default_llm_desc;
256    }
257
258
259
260    rldram_csr_config_t ebt3000_rld_cfg;
261    if (!rld_csr_config_generate(llm_desc_ptr, &ebt3000_rld_cfg))
262    {
263        cvmx_dprintf("Configuring %d llm port(s).\n", !!llm_desc_ptr->rld0_bunks + !!llm_desc_ptr->rld1_bunks);
264        write_rld_cfg(&ebt3000_rld_cfg);
265    }
266    else
267    {
268        cvmx_dprintf("Error creating rldram configuration\n");
269        return(-1);
270    }
271
272    /* Compute how much memory is configured
273    ** Memory is interleaved, so if one port has more than the other some memory is not usable */
274
275    /* If both ports are enabled, handle the case where one port has more than the other.
276    ** This is an unusual and not recommended configuration that exists on the ebt3000 board */
277    if (!!llm_desc_ptr->rld0_bunks && !!llm_desc_ptr->rld1_bunks)
278        llm_desc_ptr->rld0_mbytes = llm_desc_ptr->rld1_mbytes = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
279
280    return(((!!llm_desc_ptr->rld0_bunks) * llm_desc_ptr->rld0_mbytes
281          + (!!llm_desc_ptr->rld1_bunks) * llm_desc_ptr->rld1_mbytes) * 1024*1024);
282}
283
284//======================
285// SUPPORT FUNCTIONS:
286//======================
287//======================================================================
288// Extracts srcvec[srcbitpos] and places it in return int (bit[0])
289int bit_extract ( int srcvec,         // source word (to extract)
290                  int srcbitpos       // source bit position
291                )
292{
293    return(((1 << srcbitpos) & srcvec) >> srcbitpos);
294}
295//======================================================================
296// Inserts srcvec[0] into dstvec[dstbitpos] (without affecting other bits)
297int bit_insert ( int srcvec,           // srcvec[0] = bit to be inserted
298                 int dstbitpos,        // Bit position to insert into returned int
299                 int dstvec            // dstvec (destination vector)
300               )
301{
302    return((srcvec << dstbitpos) | dstvec);      // Shift bit to insert into bit position/OR with accumulated number
303}
304//======================================================================
305
306int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr)
307{
308    char *addr_rld0_fb_str;
309    char *addr_rld0_bb_str;
310    char *addr_rld1_fb_str;
311    char *addr_rld1_bb_str;
312    int eclk_ps;
313    int mtype = 0;                           // MTYPE (0: RLDRAM/1: FCRAM
314    int trcmin = 20;                         // tRC(min) - from RLDRAM data sheet
315    int trc_cyc;                             // TRC(cyc)
316    int trc_mod;
317    int trl_cyc;                             // TRL(cyc)
318    int twl_cyc;                             // TWL(cyc)
319    int tmrsc_cyc = 6;                       // tMRSC(cyc)  [2-7]
320    int mclk_ps;                             // DFA Memory Clock(in ps) = 2x eclk
321    int rldcfg = 99;                         // RLDRAM-II CFG (1,2,3)
322    int mrs_odt = 0;                         // RLDRAM MRS A[9]=ODT (default)
323    int mrs_impmatch = 0;                    // RLDRAM MRS A[8]=Impedance Matching (default)
324    int mrs_dllrst = 1;                      // RLDRAM MRS A[7]=DLL Reset (default)
325    uint32_t mrs_dat;
326    int mrs_dat_p0bunk0 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk0)
327    int mrs_dat_p0bunk1 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk1)
328    int mrs_dat_p1bunk0 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk0)
329    int mrs_dat_p1bunk1 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk1)
330    int p0_ena = 0;                          // DFA Port#0 Enabled
331    int p1_ena = 0;                          // DFA Port#1 Enabled
332    int memport = 0;                       // Memory(MB) per Port [MAX=512]
333    int membunk;                             // Memory(MB) per Bunk
334    int bunkport = 0;                        // Bunks/Port [1/2]
335    int pbunk = 0;                               // Physical Bunk(or Rank) encoding for address bit
336    int tref_ms = 32;                        // tREF(ms) (RLDRAM-II overall device refresh interval
337    int trefi_ns;                            // tREFI(ns) = tREF(ns)/#rows/bank
338    int rows = 8;                            // #rows/bank (K) typically 8K
339    int ref512int;
340    int ref512mod;
341    int tskw_cyc = 0;
342    int fprch = 1;
343    int bprch = 0;
344    int dfa_memcfg0_base = 0;
345    int dfa_memcfg1_base = 0;
346    int tbl = 1;                             // tBL (1: 2-burst /2: 4-burst)
347    int rw_dly;
348    int wr_dly;
349    int r2r = 1;
350    int sil_lat = 1;
351    int clkdiv = 2;  /* CN38XX is fixed at 2, CN58XX supports 2,3,4 */
352    int clkdiv_enc = 0x0;  /* Encoded clock divisor, only used for CN58XX */
353
354    if (!llm_desc_ptr)
355        return -1;
356
357    /* Setup variables from descriptor */
358
359    addr_rld0_fb_str = llm_desc_ptr->addr_rld0_fb_str;
360    addr_rld0_bb_str = llm_desc_ptr->addr_rld0_bb_str;
361    addr_rld1_fb_str = llm_desc_ptr->addr_rld1_fb_str;
362    addr_rld1_bb_str = llm_desc_ptr->addr_rld1_bb_str;
363
364    p0_ena = !!llm_desc_ptr->rld1_bunks;        // NOTE: P0 == RLD1
365    p1_ena = !!llm_desc_ptr->rld0_bunks;        // NOTE: P1 == RLD0
366
367    // Massage the code, so that if the user had imbalanced memory per-port (or imbalanced bunks/port), we
368    // at least try to configure 'workable' memory.
369    if (p0_ena && p1_ena)  // IF BOTH PORTS Enabled (imbalanced memory), select smaller of BOTH
370    {
371        memport = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
372        bunkport = MIN(llm_desc_ptr->rld0_bunks, llm_desc_ptr->rld1_bunks);
373    }
374    else if (p0_ena) // P0=RLD1 Enabled
375    {
376        memport = llm_desc_ptr->rld1_mbytes;
377        bunkport = llm_desc_ptr->rld1_bunks;
378    }
379    else if (p1_ena) // P1=RLD0 Enabled
380    {
381        memport = llm_desc_ptr->rld0_mbytes;
382        bunkport = llm_desc_ptr->rld0_bunks;
383    }
384    else
385        return -1;
386
387    uint32_t eclk_mhz = llm_desc_ptr->cpu_hz/1000000;
388
389
390
391    /* Tweak skew based on cpu clock */
392    if (eclk_mhz <= 367)
393    {
394        tskw_cyc = 0;
395    }
396    else
397    {
398        tskw_cyc = 1;
399    }
400
401    /* Determine clock divider ratio (only required for CN58XX) */
402    if (OCTEON_IS_MODEL(OCTEON_CN58XX))
403    {
404        uint32_t max_llm_clock_mhz = llm_desc_ptr->max_rld_clock_mhz;
405        if (!max_llm_clock_mhz)
406        {
407            max_llm_clock_mhz = 400;  /* Default to 400 MHz */
408            cvmx_dprintf("Warning, using default max_rld_clock_mhz of: %lu MHz\n", (unsigned long)max_llm_clock_mhz);
409        }
410
411        /* Compute the divisor, and round up */
412        clkdiv = eclk_mhz/max_llm_clock_mhz;
413        if (clkdiv * max_llm_clock_mhz < eclk_mhz)
414            clkdiv++;
415
416        if (clkdiv > 4)
417        {
418            cvmx_dprintf("ERROR: CN58XX LLM clock divisor out of range\n");
419            goto TERMINATE;
420        }
421        if (clkdiv < 2)
422            clkdiv = 2;
423
424        cvmx_dprintf("Using llm clock divisor: %d, llm clock is: %lu MHz\n", clkdiv, (unsigned long)eclk_mhz/clkdiv);
425        /* Translate divisor into bit encoding for register */
426        /* 0 -> div 2
427        ** 1 -> reserved
428        ** 2 -> div 3
429        ** 3 -> div 4
430        */
431        if (clkdiv == 2)
432            clkdiv_enc = 0;
433        else
434            clkdiv_enc = clkdiv - 1;
435
436    /* Odd divisor needs sil_lat to be 2 */
437        if (clkdiv == 0x3)
438            sil_lat = 2;
439
440        /* Increment tskw for high clock speeds */
441        if ((unsigned long)eclk_mhz/clkdiv >= 375)
442            tskw_cyc += 1;
443    }
444
445    eclk_ps = (1000000+(eclk_mhz-1)) / eclk_mhz;  // round up if nonzero remainder
446    //=======================================================================
447
448    //=======================================================================
449    // Now, Query User for DFA Memory Type
450    if (mtype != 0)
451    {
452        goto TERMINATE;         // Complete this code for FCRAM usage on N3K-P2
453    }
454    //=======================================================================
455    // Query what the tRC(min) value is from the data sheets
456    //=======================================================================
457    // Now determine the Best CFG based on Memory clock(ps) and tRCmin(ns)
458    mclk_ps = eclk_ps * clkdiv;
459    trc_cyc = ((trcmin * 1000)/mclk_ps);
460    trc_mod = ((trcmin * 1000) % mclk_ps);
461    // If remainder exists, bump up to the next integer multiple
462    if (trc_mod != 0)
463    {
464        trc_cyc = trc_cyc + 1;
465    }
466    // If tRC is now ODD, then bump it to the next EVEN integer (RLDRAM-II does not support odd tRC values at this time).
467    if (trc_cyc & 1)
468    {
469        trc_cyc = trc_cyc + 1;           // Bump it to an even #
470    }
471    // RLDRAM CFG Range Check: If the computed trc_cyc is less than 4, then set it to min CFG1 [tRC=4]
472    if (trc_cyc < 4)
473    {
474        trc_cyc = 4;             // If computed trc_cyc < 4 then clamp to 4
475    }
476    else if (trc_cyc > 8)
477    {    // If the computed trc_cyc > 8, then report an error (because RLDRAM cannot support a tRC>8
478        goto TERMINATE;
479    }
480    // Assuming all is ok(up to here)
481    // At this point the tRC_cyc has been clamped  between 4 and 8 (and is even), So it can only be 4,6,8 which are
482    // the RLDRAM valid CFG range values.
483    trl_cyc = trc_cyc;                 // tRL = tRC (for RLDRAM=II)
484    twl_cyc = trl_cyc + 1;             // tWL = tRL + 1 (for RLDRAM-II)
485    // NOTE: RLDRAM-II (as of 4/25/05) only have 3 supported CFG encodings:
486    if (trc_cyc == 4)
487    {
488        rldcfg = 1;           // CFG #1 (tRL=4/tRC=4/tWL=5)
489    }
490    else if (trc_cyc == 6)
491    {
492        rldcfg = 2;           // CFG #2 (tRL=6/tRC=6/tWL=7)
493    }
494    else if (trc_cyc == 8)
495    {
496        rldcfg = 3;           // CFG #3 (tRL=8/tRC=8/tWL=9)
497    }
498    else
499    {
500        goto TERMINATE;
501    }
502    //=======================================================================
503    mrs_dat = ( (mrs_odt << 9) | (mrs_impmatch << 8) | (mrs_dllrst << 7) | rldcfg );
504    //=======================================================================
505    // If there is only a single bunk, then skip over address mapping queries (which are not required)
506    if (bunkport == 1)
507    {
508        goto CALC_PBUNK;
509    }
510
511    /* Process the address mappings */
512    /* Note that that RLD0 pins corresponds to Port#1, and
513    **                RLD1 pins corresponds to Port#0.
514    */
515    mrs_dat_p1bunk0 = process_address_map_str(mrs_dat, addr_rld0_fb_str);
516    mrs_dat_p1bunk1 = process_address_map_str(mrs_dat, addr_rld0_bb_str);
517    mrs_dat_p0bunk0 = process_address_map_str(mrs_dat, addr_rld1_fb_str);
518    mrs_dat_p0bunk1 = process_address_map_str(mrs_dat, addr_rld1_bb_str);
519
520
521    //=======================================================================
522    CALC_PBUNK:
523    // Determine the PBUNK field (based on Memory/Bunk)
524    // This determines the addr bit used to distinguish when crossing a bunk.
525    // NOTE: For RLDRAM, the bunk bit is extracted from 'a' programmably selected high
526    // order addr bit. [linear address per-bunk]
527    if (bunkport == 2)
528    {
529        membunk = (memport / 2);
530    }
531    else
532    {
533        membunk = memport;
534    }
535    if (membunk == 16)
536    {       // 16MB/bunk MA[19]
537        pbunk = 0;
538    }
539    else if (membunk == 32)
540    {  // 32MB/bunk MA[20]
541        pbunk = 1;
542    }
543    else if (membunk == 64)
544    {  // 64MB/bunk MA[21]
545        pbunk = 2;
546    }
547    else if (membunk == 128)
548    { // 128MB/bunk MA[22]
549        pbunk = 3;
550    }
551    else if (membunk == 256)
552    { // 256MB/bunk MA[23]
553        pbunk = 4;
554    }
555    else if (membunk == 512)
556    { // 512MB/bunk
557    }
558    //=======================================================================
559    //=======================================================================
560    //=======================================================================
561    // Now determine N3K REFINT
562    trefi_ns = (tref_ms * 1000 * 1000) / (rows * 1024);
563    ref512int = ((trefi_ns * 1000) / (eclk_ps * 512));
564    ref512mod = ((trefi_ns * 1000) % (eclk_ps * 512));
565    //=======================================================================
566    // Ask about tSKW
567#if 0
568    if (tskw_ps ==  0)
569    {
570        tskw_cyc = 0;
571    }
572    else
573    { // CEILING function
574        tskw_cyc = (tskw_ps / eclk_ps);
575        tskw_mod = (tskw_ps % eclk_ps);
576        if (tskw_mod != 0)
577        {  // If there's a remainder - then bump to next (+1)
578            tskw_cyc = tskw_cyc + 1;
579        }
580    }
581#endif
582    if (tskw_cyc > 3)
583    {
584        goto TERMINATE;
585    }
586
587    tbl = 1;        // BLEN=2 (ALWAYs for RLDRAM)
588    //=======================================================================
589    // RW_DLY = (ROUND_UP{[[(TRL+TBL)*2 + tSKW + BPRCH] + 1] / 2}) - tWL
590    rw_dly = ((((trl_cyc + tbl) * 2 + tskw_cyc + bprch) + 1) / 2);
591    if (rw_dly & 1)
592    { // If it's ODD then round up
593        rw_dly = rw_dly + 1;
594    }
595    rw_dly = rw_dly - twl_cyc +1 ;
596    if (rw_dly < 0)
597    { // range check - is it positive
598        goto TERMINATE;
599    }
600    //=======================================================================
601    // WR_DLY = (ROUND_UP[[(tWL + tBL)*2 - tSKW + FPRCH] / 2]) - tRL
602    wr_dly = (((twl_cyc + tbl) * 2 - tskw_cyc + fprch) / 2);
603    if (wr_dly & 1)
604    { // If it's ODD then round up
605        wr_dly = wr_dly + 1;
606    }
607    wr_dly = wr_dly - trl_cyc + 1;
608    if (wr_dly < 0)
609    { // range check - is it positive
610        goto TERMINATE;
611    }
612
613
614    dfa_memcfg0_base = 0;
615    dfa_memcfg0_base = ( p0_ena |
616                         (p1_ena << 1) |
617                         (mtype << 3) |
618                         (sil_lat << 4) |
619                         (rw_dly << 6) |
620                         (wr_dly << 10) |
621                         (fprch << 14) |
622                         (bprch << 16) |
623                         (0 << 18) |         // BLEN=0(2-burst for RLDRAM)
624                         (pbunk << 19) |
625                         (r2r << 22) |       // R2R=1
626    			 (clkdiv_enc << 28 )
627                       );
628
629
630    dfa_memcfg1_base = 0;
631    dfa_memcfg1_base = ( ref512int |
632                         (tskw_cyc << 4) |
633                         (trl_cyc << 8) |
634                         (twl_cyc << 12) |
635                         (trc_cyc << 16) |
636                         (tmrsc_cyc << 20)
637                       );
638
639
640
641
642    cfg_ptr->dfa_memcfg0_base = dfa_memcfg0_base;
643    cfg_ptr->dfa_memcfg1_base = dfa_memcfg1_base;
644    cfg_ptr->mrs_dat_p0bunk0 =  mrs_dat_p0bunk0;
645    cfg_ptr->mrs_dat_p1bunk0 =  mrs_dat_p1bunk0;
646    cfg_ptr->mrs_dat_p0bunk1 =  mrs_dat_p0bunk1;
647    cfg_ptr->mrs_dat_p1bunk1 =  mrs_dat_p1bunk1;
648    cfg_ptr->p0_ena =           p0_ena;
649    cfg_ptr->p1_ena =           p1_ena;
650    cfg_ptr->bunkport =         bunkport;
651    //=======================================================================
652
653    return(0);
654    TERMINATE:
655    return(-1);
656
657}
658
659
660
661static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str)
662{
663    int count = 0;
664    int amap [23];
665    uint32_t new_mrs_dat = 0;
666
667//    cvmx_dprintf("mrs_dat: 0x%x, str: %x\n", mrs_dat, addr_str);
668    char *charptr = strtok(addr_str," ");
669    while ((charptr != NULL) & (count <= 22))
670    {
671        amap[22-count] = atoi(charptr);         // Assign the AMAP Array
672        charptr = strtok(NULL," ");             // Get Next char string (which represents next addr bit mapping)
673        count++;
674    }
675    // Now do the bit swap of MRSDAT (based on address mapping)
676    uint32_t mrsdat_bit;
677    for (count=0;count<=22;count++)
678    {
679        mrsdat_bit = bit_extract(mrs_dat, count);
680        new_mrs_dat = bit_insert(mrsdat_bit, amap[count], new_mrs_dat);
681    }
682
683    return new_mrs_dat;
684}
685
686
687//#define PRINT_LLM_CONFIG
688#ifdef PRINT_LLM_CONFIG
689#define ll_printf printf
690#else
691#define ll_printf(...)
692#define cvmx_csr_db_decode(...)
693#endif
694
695static void cn31xx_dfa_memory_init(void)
696{
697    if (OCTEON_IS_MODEL(OCTEON_CN31XX))
698    {
699        cvmx_dfa_ddr2_cfg_t  dfaCfg;
700        cvmx_dfa_eclkcfg_t   dfaEcklCfg;
701        cvmx_dfa_ddr2_addr_t dfaAddr;
702        cvmx_dfa_ddr2_tmg_t  dfaTmg;
703        cvmx_dfa_ddr2_pll_t  dfaPll;
704        int mem_freq_hz = 533*1000000;
705        int ref_freq_hz = cvmx_sysinfo_get()->dfa_ref_clock_hz;
706        if (!ref_freq_hz)
707            ref_freq_hz = 33*1000000;
708
709        cvmx_dprintf ("Configuring DFA memory for %d MHz operation.\n",mem_freq_hz/1000000);
710
711          /* Turn on the DFA memory port. */
712        dfaCfg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_CFG);
713        dfaCfg.s.prtena = 1;
714        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
715
716          /* Start the PLL alignment sequence */
717        dfaPll.u64 = 0;
718        dfaPll.s.pll_ratio  = mem_freq_hz/ref_freq_hz         /*400Mhz / 33MHz*/;
719        dfaPll.s.pll_div2   = 1              /*400 - 1 */;
720        dfaPll.s.pll_bypass = 0;
721        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
722
723        dfaPll.s.pll_init = 1;
724        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
725
726        cvmx_wait (RLD_INIT_DELAY); //want 150uS
727        dfaPll.s.qdll_ena = 1;
728        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
729
730        cvmx_wait (RLD_INIT_DELAY); //want 10us
731        dfaEcklCfg.u64 = 0;
732        dfaEcklCfg.s.dfa_frstn = 1;
733        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
734
735          /* Configure the DFA Memory */
736        dfaCfg.s.silo_hc = 1 /*400 - 1 */;
737        dfaCfg.s.silo_qc = 0 /*400 - 0 */;
738        dfaCfg.s.tskw    = 1 /*400 - 1 */;
739        dfaCfg.s.ref_int = 0x820 /*533 - 0x820  400 - 0x618*/;
740        dfaCfg.s.trfc    = 0x1A  /*533 - 0x23   400 - 0x1A*/;
741        dfaCfg.s.fprch   = 0; /* 1 more conservative*/
742        dfaCfg.s.bprch   = 0; /* 1 */
743        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
744
745        dfaEcklCfg.u64 = cvmx_read_csr (CVMX_DFA_ECLKCFG);
746        dfaEcklCfg.s.maxbnk = 1;
747        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
748
749        dfaAddr.u64 = cvmx_read_csr (CVMX_DFA_DDR2_ADDR);
750        dfaAddr.s.num_cols    = 0x1;
751        dfaAddr.s.num_colrows = 0x2;
752        dfaAddr.s.num_rnks    = 0x1;
753        cvmx_write_csr (CVMX_DFA_DDR2_ADDR, dfaAddr.u64);
754
755        dfaTmg.u64 =  cvmx_read_csr (CVMX_DFA_DDR2_TMG);
756        dfaTmg.s.ddr2t    = 0;
757        dfaTmg.s.tmrd     = 0x2;
758        dfaTmg.s.caslat   = 0x4 /*400 - 0x3, 500 - 0x4*/;
759        dfaTmg.s.pocas    = 0;
760        dfaTmg.s.addlat   = 0;
761        dfaTmg.s.trcd     = 4   /*400 - 3, 500 - 4*/;
762        dfaTmg.s.trrd     = 2;
763        dfaTmg.s.tras     = 0xB /*400 - 8, 500 - 0xB*/;
764        dfaTmg.s.trp      = 4   /*400 - 3, 500 - 4*/;
765        dfaTmg.s.twr      = 4   /*400 - 3, 500 - 4*/;
766        dfaTmg.s.twtr     = 2   /*400 - 2 */;
767        dfaTmg.s.tfaw     = 0xE /*400 - 0xA, 500 - 0xE*/;
768        dfaTmg.s.r2r_slot = 0;
769        dfaTmg.s.dic      = 0;  /*400 - 0 */
770        dfaTmg.s.dqsn_ena = 0;
771        dfaTmg.s.odt_rtt  = 0;
772        cvmx_write_csr (CVMX_DFA_DDR2_TMG, dfaTmg.u64);
773
774          /* Turn on the DDR2 interface and wait a bit for the hardware to setup. */
775        dfaCfg.s.init = 1;
776        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
777        cvmx_wait(RLD_INIT_DELAY); // want at least 64K cycles
778    }
779}
780
781void write_rld_cfg(rldram_csr_config_t *cfg_ptr)
782{
783    cvmx_dfa_memcfg0_t    memcfg0;
784    cvmx_dfa_memcfg2_t    memcfg2;
785
786    memcfg0.u64 = cfg_ptr->dfa_memcfg0_base;
787
788    if ((OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
789    {
790        uint32_t dfa_memcfg0;
791
792        if (OCTEON_IS_MODEL (OCTEON_CN58XX)) {
793	      // Set RLDQK90_RST and RDLCK_RST to reset all three DLLs.
794	    memcfg0.s.rldck_rst    = 1;
795	    memcfg0.s.rldqck90_rst = 1;
796            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
797            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  clk/qk90 reset\n", (uint32_t) memcfg0.u64);
798            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
799
800	      // Clear RDLCK_RST while asserting RLDQK90_RST to bring RLDCK DLL out of reset.
801	    memcfg0.s.rldck_rst    = 0;
802	    memcfg0.s.rldqck90_rst = 1;
803            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
804            cvmx_wait(4000000);  /* Wait  */
805            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  qk90 reset\n", (uint32_t) memcfg0.u64);
806            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
807
808	      // Clear both RDLCK90_RST and RLDQK90_RST to bring the RLDQK90 DLL out of reset.
809	    memcfg0.s.rldck_rst    = 0;
810	    memcfg0.s.rldqck90_rst = 0;
811	    cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
812            cvmx_wait(4000000);  /* Wait  */
813            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  DLL out of reset\n", (uint32_t) memcfg0.u64);
814            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
815	}
816
817        //=======================================================================
818        // Now print out the sequence of events:
819        cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
820        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  port enables\n", cfg_ptr->dfa_memcfg0_base);
821        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
822        cvmx_wait(4000000);  /* Wait  */
823
824        cvmx_write_csr(CVMX_DFA_MEMCFG1, cfg_ptr->dfa_memcfg1_base);
825        ll_printf("CVMX_DFA_MEMCFG1: 0x%08x\n", cfg_ptr->dfa_memcfg1_base);
826        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG1 & ~(1ull<<63), cfg_ptr->dfa_memcfg1_base);
827
828        if (cfg_ptr->p0_ena ==1)
829        {
830            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk0);
831            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk0);
832            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk0);
833
834            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
835                            (1 << 23) |   // P0_INIT
836                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
837                          );
838
839            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
840            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
841            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
842            cvmx_wait(RLD_INIT_DELAY);
843            ll_printf("Delay.....\n");
844            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
845            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
846            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
847        }
848
849        if (cfg_ptr->p1_ena ==1)
850        {
851            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk0);
852            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk0);
853            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk0);
854
855            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
856                            (1 << 24) |   // P1_INIT
857                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
858                          );
859            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
860            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
861            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
862            cvmx_wait(RLD_INIT_DELAY);
863            ll_printf("Delay.....\n");
864            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
865            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
866            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
867	}
868
869        // P0 Bunk#1
870        if ((cfg_ptr->p0_ena ==1) && (cfg_ptr->bunkport == 2))
871        {
872            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk1);
873            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk1);
874            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk1);
875
876            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
877                            (1 << 23) |   // P0_INIT
878                            (2 << 25)     // BUNK_INIT[1:0]=Bunk#1
879                          );
880            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
881            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
882            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
883            cvmx_wait(RLD_INIT_DELAY);
884            ll_printf("Delay.....\n");
885
886            if (cfg_ptr->p1_ena == 1)
887            { // Re-arm Px_INIT if P1-B1 init is required
888                cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
889                ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  px_init rearm\n", cfg_ptr->dfa_memcfg0_base);
890                cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
891            }
892        }
893
894        if ((cfg_ptr->p1_ena == 1) && (cfg_ptr->bunkport == 2))
895        {
896            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk1);
897            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk1);
898            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk1);
899
900            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
901                            (1 << 24) |   // P1_INIT
902                            (2 << 25)     // BUNK_INIT[1:0]=10
903                          );
904            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
905            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
906            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
907        }
908        cvmx_wait(4000000);  // 1/100S, 0.01S, 10mS
909        ll_printf("Delay.....\n");
910
911          /* Enable bunks */
912        dfa_memcfg0 = cfg_ptr->dfa_memcfg0_base |((cfg_ptr->bunkport >= 1) << 25) | ((cfg_ptr->bunkport == 2) << 26);
913        cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
914        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  enable bunks\n", dfa_memcfg0);
915        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
916        cvmx_wait(RLD_INIT_DELAY);
917        ll_printf("Delay.....\n");
918
919          /* Issue a Silo reset by toggling SILRST in memcfg2. */
920        memcfg2.u64 = cvmx_read_csr (CVMX_DFA_MEMCFG2);
921        memcfg2.s.silrst = 1;
922	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
923        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset start\n", (uint32_t) memcfg2.u64);
924        memcfg2.s.silrst = 0;
925	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
926        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset done\n", (uint32_t) memcfg2.u64);
927    }
928}
929
930