fil.c revision 317434
1/*	$FreeBSD: stable/11/sys/contrib/ipfilter/netinet/fil.c 317434 2017-04-26 02:37:25Z cy $	*/
2
3/*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Copyright 2008 Sun Microsystems.
9 *
10 * $Id$
11 *
12 */
13#if defined(KERNEL) || defined(_KERNEL)
14# undef KERNEL
15# undef _KERNEL
16# define        KERNEL	1
17# define        _KERNEL	1
18#endif
19#include <sys/errno.h>
20#include <sys/types.h>
21#include <sys/param.h>
22#include <sys/time.h>
23#if defined(_KERNEL) && defined(__FreeBSD_version) && \
24    (__FreeBSD_version >= 220000)
25# if (__FreeBSD_version >= 400000)
26#  if !defined(IPFILTER_LKM)
27#   include "opt_inet6.h"
28#  endif
29#  if (__FreeBSD_version == 400019)
30#   define CSUM_DELAY_DATA
31#  endif
32# endif
33# include <sys/filio.h>
34#else
35# include <sys/ioctl.h>
36#endif
37#if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
38# include <sys/filio.h>
39#endif
40#if !defined(_AIX51)
41# include <sys/fcntl.h>
42#endif
43#if defined(_KERNEL)
44# include <sys/systm.h>
45# include <sys/file.h>
46#else
47# include <stdio.h>
48# include <string.h>
49# include <stdlib.h>
50# include <stddef.h>
51# include <sys/file.h>
52# define _KERNEL
53# ifdef __OpenBSD__
54struct file;
55# endif
56# include <sys/uio.h>
57# undef _KERNEL
58#endif
59#if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
60    !defined(linux)
61# include <sys/mbuf.h>
62#else
63# if !defined(linux)
64#  include <sys/byteorder.h>
65# endif
66# if (SOLARIS2 < 5) && defined(sun)
67#  include <sys/dditypes.h>
68# endif
69#endif
70#ifdef __hpux
71# define _NET_ROUTE_INCLUDED
72#endif
73#if !defined(linux)
74# include <sys/protosw.h>
75#endif
76#include <sys/socket.h>
77#include <net/if.h>
78#ifdef sun
79# include <net/af.h>
80#endif
81#include <netinet/in.h>
82#include <netinet/in_systm.h>
83#include <netinet/ip.h>
84#if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
85# include <sys/hashing.h>
86# include <netinet/in_var.h>
87#endif
88#include <netinet/tcp.h>
89#if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
90# include <netinet/udp.h>
91# include <netinet/ip_icmp.h>
92#endif
93#ifdef __hpux
94# undef _NET_ROUTE_INCLUDED
95#endif
96#ifdef __osf__
97# undef _RADIX_H_
98#endif
99#include "netinet/ip_compat.h"
100#ifdef	USE_INET6
101# include <netinet/icmp6.h>
102# if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
103#  include <netinet6/in6_var.h>
104# endif
105#endif
106#include "netinet/ip_fil.h"
107#include "netinet/ip_nat.h"
108#include "netinet/ip_frag.h"
109#include "netinet/ip_state.h"
110#include "netinet/ip_proxy.h"
111#include "netinet/ip_auth.h"
112#ifdef IPFILTER_SCAN
113# include "netinet/ip_scan.h"
114#endif
115#include "netinet/ip_sync.h"
116#include "netinet/ip_lookup.h"
117#include "netinet/ip_pool.h"
118#include "netinet/ip_htable.h"
119#ifdef IPFILTER_COMPILED
120# include "netinet/ip_rules.h"
121#endif
122#if defined(IPFILTER_BPF) && defined(_KERNEL)
123# include <net/bpf.h>
124#endif
125#if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
126# include <sys/malloc.h>
127#endif
128#include "netinet/ipl.h"
129
130#if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
131# include <sys/callout.h>
132extern struct callout ipf_slowtimer_ch;
133#endif
134#if defined(__OpenBSD__)
135# include <sys/timeout.h>
136extern struct timeout ipf_slowtimer_ch;
137#endif
138/* END OF INCLUDES */
139
140#if !defined(lint)
141static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142static const char rcsid[] = "@(#)$FreeBSD: stable/11/sys/contrib/ipfilter/netinet/fil.c 317434 2017-04-26 02:37:25Z cy $";
143/* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
144#endif
145
146#ifndef	_KERNEL
147# include "ipf.h"
148# include "ipt.h"
149extern	int	opts;
150extern	int	blockreason;
151#endif /* _KERNEL */
152
153#define	LBUMP(x)	softc->x++
154#define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
155
156static	INLINE int	ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
157static	u_32_t		ipf_checkcipso __P((fr_info_t *, u_char *, int));
158static	u_32_t		ipf_checkripso __P((u_char *));
159static	u_32_t		ipf_decaps __P((fr_info_t *, u_32_t, int));
160#ifdef IPFILTER_LOG
161static	frentry_t	*ipf_dolog __P((fr_info_t *, u_32_t *));
162#endif
163static	int		ipf_flushlist __P((ipf_main_softc_t *, int *,
164					   frentry_t **));
165static	int		ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **,
166					      int));
167static	ipfunc_t	ipf_findfunc __P((ipfunc_t));
168static	void		*ipf_findlookup __P((ipf_main_softc_t *, int,
169					     frentry_t *,
170					     i6addr_t *, i6addr_t *));
171static	frentry_t	*ipf_firewall __P((fr_info_t *, u_32_t *));
172static	int		ipf_fr_matcharray __P((fr_info_t *, int *));
173static	int		ipf_frruleiter __P((ipf_main_softc_t *, void *, int,
174					    void *));
175static	void		ipf_funcfini __P((ipf_main_softc_t *, frentry_t *));
176static	int		ipf_funcinit __P((ipf_main_softc_t *, frentry_t *));
177static	int		ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *,
178					 ipfgeniter_t *));
179static	void		ipf_getstat __P((ipf_main_softc_t *,
180					 struct friostat *, int));
181static	int		ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *));
182static	void		ipf_group_free __P((frgroup_t *));
183static	int		ipf_grpmapfini __P((struct ipf_main_softc_s *,
184					    frentry_t *));
185static	int		ipf_grpmapinit __P((struct ipf_main_softc_s *,
186					    frentry_t *));
187static	frentry_t	*ipf_nextrule __P((ipf_main_softc_t *, int, int,
188					   frentry_t *, int));
189static	int		ipf_portcheck __P((frpcmp_t *, u_32_t));
190static	INLINE int	ipf_pr_ah __P((fr_info_t *));
191static	INLINE void	ipf_pr_esp __P((fr_info_t *));
192static	INLINE void	ipf_pr_gre __P((fr_info_t *));
193static	INLINE void	ipf_pr_udp __P((fr_info_t *));
194static	INLINE void	ipf_pr_tcp __P((fr_info_t *));
195static	INLINE void	ipf_pr_icmp __P((fr_info_t *));
196static	INLINE void	ipf_pr_ipv4hdr __P((fr_info_t *));
197static	INLINE void	ipf_pr_short __P((fr_info_t *, int));
198static	INLINE int	ipf_pr_tcpcommon __P((fr_info_t *));
199static	INLINE int	ipf_pr_udpcommon __P((fr_info_t *));
200static	void		ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f,
201					     int, int));
202static	void		ipf_rule_expire_insert __P((ipf_main_softc_t *,
203						    frentry_t *, int));
204static	int		ipf_synclist __P((ipf_main_softc_t *, frentry_t *,
205					  void *));
206static	void		ipf_token_flush __P((ipf_main_softc_t *));
207static	void		ipf_token_unlink __P((ipf_main_softc_t *,
208					      ipftoken_t *));
209static	ipftuneable_t	*ipf_tune_findbyname __P((ipftuneable_t *,
210						  const char *));
211static	ipftuneable_t	*ipf_tune_findbycookie __P((ipftuneable_t **, void *,
212						    void **));
213static	int		ipf_updateipid __P((fr_info_t *));
214static	int		ipf_settimeout __P((struct ipf_main_softc_s *,
215					    struct ipftuneable *,
216					    ipftuneval_t *));
217#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
218     !defined(__FreeBSD__)) || \
219    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
220    OPENBSD_LT_REV(200006)
221static	int		ppsratecheck(struct timeval *, int *, int);
222#endif
223
224
225/*
226 * bit values for identifying presence of individual IP options
227 * All of these tables should be ordered by increasing key value on the left
228 * hand side to allow for binary searching of the array and include a trailer
229 * with a 0 for the bitmask for linear searches to easily find the end with.
230 */
231static const	struct	optlist	ipopts[20] = {
232	{ IPOPT_NOP,	0x000001 },
233	{ IPOPT_RR,	0x000002 },
234	{ IPOPT_ZSU,	0x000004 },
235	{ IPOPT_MTUP,	0x000008 },
236	{ IPOPT_MTUR,	0x000010 },
237	{ IPOPT_ENCODE,	0x000020 },
238	{ IPOPT_TS,	0x000040 },
239	{ IPOPT_TR,	0x000080 },
240	{ IPOPT_SECURITY, 0x000100 },
241	{ IPOPT_LSRR,	0x000200 },
242	{ IPOPT_E_SEC,	0x000400 },
243	{ IPOPT_CIPSO,	0x000800 },
244	{ IPOPT_SATID,	0x001000 },
245	{ IPOPT_SSRR,	0x002000 },
246	{ IPOPT_ADDEXT,	0x004000 },
247	{ IPOPT_VISA,	0x008000 },
248	{ IPOPT_IMITD,	0x010000 },
249	{ IPOPT_EIP,	0x020000 },
250	{ IPOPT_FINN,	0x040000 },
251	{ 0,		0x000000 }
252};
253
254#ifdef USE_INET6
255static const struct optlist ip6exthdr[] = {
256	{ IPPROTO_HOPOPTS,		0x000001 },
257	{ IPPROTO_IPV6,			0x000002 },
258	{ IPPROTO_ROUTING,		0x000004 },
259	{ IPPROTO_FRAGMENT,		0x000008 },
260	{ IPPROTO_ESP,			0x000010 },
261	{ IPPROTO_AH,			0x000020 },
262	{ IPPROTO_NONE,			0x000040 },
263	{ IPPROTO_DSTOPTS,		0x000080 },
264	{ IPPROTO_MOBILITY,		0x000100 },
265	{ 0,				0 }
266};
267#endif
268
269/*
270 * bit values for identifying presence of individual IP security options
271 */
272static const	struct	optlist	secopt[8] = {
273	{ IPSO_CLASS_RES4,	0x01 },
274	{ IPSO_CLASS_TOPS,	0x02 },
275	{ IPSO_CLASS_SECR,	0x04 },
276	{ IPSO_CLASS_RES3,	0x08 },
277	{ IPSO_CLASS_CONF,	0x10 },
278	{ IPSO_CLASS_UNCL,	0x20 },
279	{ IPSO_CLASS_RES2,	0x40 },
280	{ IPSO_CLASS_RES1,	0x80 }
281};
282
283char	ipfilter_version[] = IPL_VERSION;
284
285int	ipf_features = 0
286#ifdef	IPFILTER_LKM
287		| IPF_FEAT_LKM
288#endif
289#ifdef	IPFILTER_LOG
290		| IPF_FEAT_LOG
291#endif
292		| IPF_FEAT_LOOKUP
293#ifdef	IPFILTER_BPF
294		| IPF_FEAT_BPF
295#endif
296#ifdef	IPFILTER_COMPILED
297		| IPF_FEAT_COMPILED
298#endif
299#ifdef	IPFILTER_CKSUM
300		| IPF_FEAT_CKSUM
301#endif
302		| IPF_FEAT_SYNC
303#ifdef	IPFILTER_SCAN
304		| IPF_FEAT_SCAN
305#endif
306#ifdef	USE_INET6
307		| IPF_FEAT_IPV6
308#endif
309	;
310
311
312/*
313 * Table of functions available for use with call rules.
314 */
315static ipfunc_resolve_t ipf_availfuncs[] = {
316	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
317	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
318	{ "",	      NULL,	      NULL,	      NULL }
319};
320
321static ipftuneable_t ipf_main_tuneables[] = {
322	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
323		"ipf_flags",		0,	0xffffffff,
324		stsizeof(ipf_main_softc_t, ipf_flags),
325		0,			NULL,	NULL },
326	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
327		"active",		0,	0,
328		stsizeof(ipf_main_softc_t, ipf_active),
329		IPFT_RDONLY,		NULL,	NULL },
330	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
331		"control_forwarding",	0, 1,
332		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
333		0,			NULL,	NULL },
334	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
335		"update_ipid",		0,	1,
336		stsizeof(ipf_main_softc_t, ipf_update_ipid),
337		0,			NULL,	NULL },
338	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
339		"chksrc",		0,	1,
340		stsizeof(ipf_main_softc_t, ipf_chksrc),
341		0,			NULL,	NULL },
342	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
343		"min_ttl",		0,	1,
344		stsizeof(ipf_main_softc_t, ipf_minttl),
345		0,			NULL,	NULL },
346	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
347		"icmp_minfragmtu",	0,	1,
348		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
349		0,			NULL,	NULL },
350	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
351		"default_pass",		0,	0xffffffff,
352		stsizeof(ipf_main_softc_t, ipf_pass),
353		0,			NULL,	NULL },
354	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
355		"tcp_idle_timeout",	1,	0x7fffffff,
356		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
357		0,			NULL,	ipf_settimeout },
358	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
359		"tcp_close_wait",	1,	0x7fffffff,
360		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
361		0,			NULL,	ipf_settimeout },
362	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
363		"tcp_last_ack",		1,	0x7fffffff,
364		stsizeof(ipf_main_softc_t, ipf_tcplastack),
365		0,			NULL,	ipf_settimeout },
366	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
367		"tcp_timeout",		1,	0x7fffffff,
368		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
369		0,			NULL,	ipf_settimeout },
370	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
371		"tcp_syn_sent",		1,	0x7fffffff,
372		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
373		0,			NULL,	ipf_settimeout },
374	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
375		"tcp_syn_received",	1,	0x7fffffff,
376		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
377		0,			NULL,	ipf_settimeout },
378	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
379		"tcp_closed",		1,	0x7fffffff,
380		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
381		0,			NULL,	ipf_settimeout },
382	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
383		"tcp_half_closed",	1,	0x7fffffff,
384		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
385		0,			NULL,	ipf_settimeout },
386	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
387		"tcp_time_wait",	1,	0x7fffffff,
388		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
389		0,			NULL,	ipf_settimeout },
390	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
391		"udp_timeout",		1,	0x7fffffff,
392		stsizeof(ipf_main_softc_t, ipf_udptimeout),
393		0,			NULL,	ipf_settimeout },
394	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
395		"udp_ack_timeout",	1,	0x7fffffff,
396		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
397		0,			NULL,	ipf_settimeout },
398	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
399		"icmp_timeout",		1,	0x7fffffff,
400		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
401		0,			NULL,	ipf_settimeout },
402	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
403		"icmp_ack_timeout",	1,	0x7fffffff,
404		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
405		0,			NULL,	ipf_settimeout },
406	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
407		"ip_timeout",		1,	0x7fffffff,
408		stsizeof(ipf_main_softc_t, ipf_iptimeout),
409		0,			NULL,	ipf_settimeout },
410#if defined(INSTANCES) && defined(_KERNEL)
411	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
412		"intercept_loopback",	0,	1,
413		stsizeof(ipf_main_softc_t, ipf_get_loopback),
414		0,			NULL,	ipf_set_loopback },
415#endif
416	{ { 0 },
417		NULL,			0,	0,
418		0,
419		0,			NULL,	NULL }
420};
421
422
423/*
424 * The next section of code is a a collection of small routines that set
425 * fields in the fr_info_t structure passed based on properties of the
426 * current packet.  There are different routines for the same protocol
427 * for each of IPv4 and IPv6.  Adding a new protocol, for which there
428 * will "special" inspection for setup, is now more easily done by adding
429 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
430 * adding more code to a growing switch statement.
431 */
432#ifdef USE_INET6
433static	INLINE int	ipf_pr_ah6 __P((fr_info_t *));
434static	INLINE void	ipf_pr_esp6 __P((fr_info_t *));
435static	INLINE void	ipf_pr_gre6 __P((fr_info_t *));
436static	INLINE void	ipf_pr_udp6 __P((fr_info_t *));
437static	INLINE void	ipf_pr_tcp6 __P((fr_info_t *));
438static	INLINE void	ipf_pr_icmp6 __P((fr_info_t *));
439static	INLINE void	ipf_pr_ipv6hdr __P((fr_info_t *));
440static	INLINE void	ipf_pr_short6 __P((fr_info_t *, int));
441static	INLINE int	ipf_pr_hopopts6 __P((fr_info_t *));
442static	INLINE int	ipf_pr_mobility6 __P((fr_info_t *));
443static	INLINE int	ipf_pr_routing6 __P((fr_info_t *));
444static	INLINE int	ipf_pr_dstopts6 __P((fr_info_t *));
445static	INLINE int	ipf_pr_fragment6 __P((fr_info_t *));
446static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
447
448
449/* ------------------------------------------------------------------------ */
450/* Function:    ipf_pr_short6                                               */
451/* Returns:     void                                                        */
452/* Parameters:  fin(I)  - pointer to packet information                     */
453/*              xmin(I) - minimum header size                               */
454/*                                                                          */
455/* IPv6 Only                                                                */
456/* This is function enforces the 'is a packet too short to be legit' rule   */
457/* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
458/* for ipf_pr_short() for more details.                                     */
459/* ------------------------------------------------------------------------ */
460static INLINE void
461ipf_pr_short6(fin, xmin)
462	fr_info_t *fin;
463	int xmin;
464{
465
466	if (fin->fin_dlen < xmin)
467		fin->fin_flx |= FI_SHORT;
468}
469
470
471/* ------------------------------------------------------------------------ */
472/* Function:    ipf_pr_ipv6hdr                                              */
473/* Returns:     void                                                        */
474/* Parameters:  fin(I) - pointer to packet information                      */
475/*                                                                          */
476/* IPv6 Only                                                                */
477/* Copy values from the IPv6 header into the fr_info_t struct and call the  */
478/* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
479/* analyzer may pullup or free the packet itself so we need to be vigiliant */
480/* of that possibility arising.                                             */
481/* ------------------------------------------------------------------------ */
482static INLINE void
483ipf_pr_ipv6hdr(fin)
484	fr_info_t *fin;
485{
486	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
487	int p, go = 1, i, hdrcount;
488	fr_ip_t *fi = &fin->fin_fi;
489
490	fin->fin_off = 0;
491
492	fi->fi_tos = 0;
493	fi->fi_optmsk = 0;
494	fi->fi_secmsk = 0;
495	fi->fi_auth = 0;
496
497	p = ip6->ip6_nxt;
498	fin->fin_crc = p;
499	fi->fi_ttl = ip6->ip6_hlim;
500	fi->fi_src.in6 = ip6->ip6_src;
501	fin->fin_crc += fi->fi_src.i6[0];
502	fin->fin_crc += fi->fi_src.i6[1];
503	fin->fin_crc += fi->fi_src.i6[2];
504	fin->fin_crc += fi->fi_src.i6[3];
505	fi->fi_dst.in6 = ip6->ip6_dst;
506	fin->fin_crc += fi->fi_dst.i6[0];
507	fin->fin_crc += fi->fi_dst.i6[1];
508	fin->fin_crc += fi->fi_dst.i6[2];
509	fin->fin_crc += fi->fi_dst.i6[3];
510	fin->fin_id = 0;
511	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
512		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
513
514	hdrcount = 0;
515	while (go && !(fin->fin_flx & FI_SHORT)) {
516		switch (p)
517		{
518		case IPPROTO_UDP :
519			ipf_pr_udp6(fin);
520			go = 0;
521			break;
522
523		case IPPROTO_TCP :
524			ipf_pr_tcp6(fin);
525			go = 0;
526			break;
527
528		case IPPROTO_ICMPV6 :
529			ipf_pr_icmp6(fin);
530			go = 0;
531			break;
532
533		case IPPROTO_GRE :
534			ipf_pr_gre6(fin);
535			go = 0;
536			break;
537
538		case IPPROTO_HOPOPTS :
539			p = ipf_pr_hopopts6(fin);
540			break;
541
542		case IPPROTO_MOBILITY :
543			p = ipf_pr_mobility6(fin);
544			break;
545
546		case IPPROTO_DSTOPTS :
547			p = ipf_pr_dstopts6(fin);
548			break;
549
550		case IPPROTO_ROUTING :
551			p = ipf_pr_routing6(fin);
552			break;
553
554		case IPPROTO_AH :
555			p = ipf_pr_ah6(fin);
556			break;
557
558		case IPPROTO_ESP :
559			ipf_pr_esp6(fin);
560			go = 0;
561			break;
562
563		case IPPROTO_IPV6 :
564			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
565				if (ip6exthdr[i].ol_val == p) {
566					fin->fin_flx |= ip6exthdr[i].ol_bit;
567					break;
568				}
569			go = 0;
570			break;
571
572		case IPPROTO_NONE :
573			go = 0;
574			break;
575
576		case IPPROTO_FRAGMENT :
577			p = ipf_pr_fragment6(fin);
578			/*
579			 * Given that the only fragments we want to let through
580			 * (where fin_off != 0) are those where the non-first
581			 * fragments only have data, we can safely stop looking
582			 * at headers if this is a non-leading fragment.
583			 */
584			if (fin->fin_off != 0)
585				go = 0;
586			break;
587
588		default :
589			go = 0;
590			break;
591		}
592		hdrcount++;
593
594		/*
595		 * It is important to note that at this point, for the
596		 * extension headers (go != 0), the entire header may not have
597		 * been pulled up when the code gets to this point.  This is
598		 * only done for "go != 0" because the other header handlers
599		 * will all pullup their complete header.  The other indicator
600		 * of an incomplete packet is that this was just an extension
601		 * header.
602		 */
603		if ((go != 0) && (p != IPPROTO_NONE) &&
604		    (ipf_pr_pullup(fin, 0) == -1)) {
605			p = IPPROTO_NONE;
606			break;
607		}
608	}
609
610	/*
611	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
612	 * and destroy whatever packet was here.  The caller of this function
613	 * expects us to return if there is a problem with ipf_pullup.
614	 */
615	if (fin->fin_m == NULL) {
616		ipf_main_softc_t *softc = fin->fin_main_soft;
617
618		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
619		return;
620	}
621
622	fi->fi_p = p;
623
624	/*
625	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
626	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
627	 */
628	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
629		ipf_main_softc_t *softc = fin->fin_main_soft;
630
631		fin->fin_flx |= FI_BAD;
632		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
633		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
634		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
635	}
636}
637
638
639/* ------------------------------------------------------------------------ */
640/* Function:    ipf_pr_ipv6exthdr                                           */
641/* Returns:     struct ip6_ext * - pointer to the start of the next header  */
642/*                                 or NULL if there is a prolblem.          */
643/* Parameters:  fin(I)      - pointer to packet information                 */
644/*              multiple(I) - flag indicating yes/no if multiple occurances */
645/*                            of this extension header are allowed.         */
646/*              proto(I)    - protocol number for this extension header     */
647/*                                                                          */
648/* IPv6 Only                                                                */
649/* This function embodies a number of common checks that all IPv6 extension */
650/* headers must be subjected to.  For example, making sure the packet is    */
651/* big enough for it to be in, checking if it is repeated and setting a     */
652/* flag to indicate its presence.                                           */
653/* ------------------------------------------------------------------------ */
654static INLINE struct ip6_ext *
655ipf_pr_ipv6exthdr(fin, multiple, proto)
656	fr_info_t *fin;
657	int multiple, proto;
658{
659	ipf_main_softc_t *softc = fin->fin_main_soft;
660	struct ip6_ext *hdr;
661	u_short shift;
662	int i;
663
664	fin->fin_flx |= FI_V6EXTHDR;
665
666				/* 8 is default length of extension hdr */
667	if ((fin->fin_dlen - 8) < 0) {
668		fin->fin_flx |= FI_SHORT;
669		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
670		return NULL;
671	}
672
673	if (ipf_pr_pullup(fin, 8) == -1) {
674		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
675		return NULL;
676	}
677
678	hdr = fin->fin_dp;
679	switch (proto)
680	{
681	case IPPROTO_FRAGMENT :
682		shift = 8;
683		break;
684	default :
685		shift = 8 + (hdr->ip6e_len << 3);
686		break;
687	}
688
689	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
690		fin->fin_flx |= FI_BAD;
691		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
692		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
693		return NULL;
694	}
695
696	fin->fin_dp = (char *)fin->fin_dp + shift;
697	fin->fin_dlen -= shift;
698
699	/*
700	 * If we have seen a fragment header, do not set any flags to indicate
701	 * the presence of this extension header as it has no impact on the
702	 * end result until after it has been defragmented.
703	 */
704	if (fin->fin_flx & FI_FRAG)
705		return hdr;
706
707	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
708		if (ip6exthdr[i].ol_val == proto) {
709			/*
710			 * Most IPv6 extension headers are only allowed once.
711			 */
712			if ((multiple == 0) &&
713			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
714				fin->fin_flx |= FI_BAD;
715				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
716			} else
717				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
718			break;
719		}
720
721	return hdr;
722}
723
724
725/* ------------------------------------------------------------------------ */
726/* Function:    ipf_pr_hopopts6                                             */
727/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
728/* Parameters:  fin(I) - pointer to packet information                      */
729/*                                                                          */
730/* IPv6 Only                                                                */
731/* This is function checks pending hop by hop options extension header      */
732/* ------------------------------------------------------------------------ */
733static INLINE int
734ipf_pr_hopopts6(fin)
735	fr_info_t *fin;
736{
737	struct ip6_ext *hdr;
738
739	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
740	if (hdr == NULL)
741		return IPPROTO_NONE;
742	return hdr->ip6e_nxt;
743}
744
745
746/* ------------------------------------------------------------------------ */
747/* Function:    ipf_pr_mobility6                                            */
748/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
749/* Parameters:  fin(I) - pointer to packet information                      */
750/*                                                                          */
751/* IPv6 Only                                                                */
752/* This is function checks the IPv6 mobility extension header               */
753/* ------------------------------------------------------------------------ */
754static INLINE int
755ipf_pr_mobility6(fin)
756	fr_info_t *fin;
757{
758	struct ip6_ext *hdr;
759
760	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
761	if (hdr == NULL)
762		return IPPROTO_NONE;
763	return hdr->ip6e_nxt;
764}
765
766
767/* ------------------------------------------------------------------------ */
768/* Function:    ipf_pr_routing6                                             */
769/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
770/* Parameters:  fin(I) - pointer to packet information                      */
771/*                                                                          */
772/* IPv6 Only                                                                */
773/* This is function checks pending routing extension header                 */
774/* ------------------------------------------------------------------------ */
775static INLINE int
776ipf_pr_routing6(fin)
777	fr_info_t *fin;
778{
779	struct ip6_routing *hdr;
780
781	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
782	if (hdr == NULL)
783		return IPPROTO_NONE;
784
785	switch (hdr->ip6r_type)
786	{
787	case 0 :
788		/*
789		 * Nasty extension header length?
790		 */
791		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
792		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
793			ipf_main_softc_t *softc = fin->fin_main_soft;
794
795			fin->fin_flx |= FI_BAD;
796			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
797			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
798			return IPPROTO_NONE;
799		}
800		break;
801
802	default :
803		break;
804	}
805
806	return hdr->ip6r_nxt;
807}
808
809
810/* ------------------------------------------------------------------------ */
811/* Function:    ipf_pr_fragment6                                            */
812/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
813/* Parameters:  fin(I) - pointer to packet information                      */
814/*                                                                          */
815/* IPv6 Only                                                                */
816/* Examine the IPv6 fragment header and extract fragment offset information.*/
817/*                                                                          */
818/* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
819/* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
820/* packets with a fragment header can fit into.  They are as follows:       */
821/*                                                                          */
822/* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
823/* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
824/* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
825/* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
826/* 5.  [IPV6][0-n EH][FH][data]                                             */
827/*                                                                          */
828/* IPV6 = IPv6 header, FH = Fragment Header,                                */
829/* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
830/*                                                                          */
831/* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
832/* scenario in which they happen is in extreme circumstances that are most  */
833/* likely to be an indication of an attack rather than normal traffic.      */
834/* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
835/* are two rules that can be used to guard against type 3 packets: L4       */
836/* headers must always be in a packet that has the offset field set to 0    */
837/* and no packet is allowed to overlay that where offset = 0.               */
838/* ------------------------------------------------------------------------ */
839static INLINE int
840ipf_pr_fragment6(fin)
841	fr_info_t *fin;
842{
843	ipf_main_softc_t *softc = fin->fin_main_soft;
844	struct ip6_frag *frag;
845
846	fin->fin_flx |= FI_FRAG;
847
848	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
849	if (frag == NULL) {
850		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
851		return IPPROTO_NONE;
852	}
853
854	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
855		/*
856		 * Any fragment that isn't the last fragment must have its
857		 * length as a multiple of 8.
858		 */
859		if ((fin->fin_plen & 7) != 0) {
860			fin->fin_flx |= FI_BAD;
861			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
862		}
863	}
864
865	fin->fin_fraghdr = frag;
866	fin->fin_id = frag->ip6f_ident;
867	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
868	if (fin->fin_off != 0)
869		fin->fin_flx |= FI_FRAGBODY;
870
871	/*
872	 * Jumbograms aren't handled, so the max. length is 64k
873	 */
874	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
875		  fin->fin_flx |= FI_BAD;
876		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
877	}
878
879	/*
880	 * We don't know where the transport layer header (or whatever is next
881	 * is), as it could be behind destination options (amongst others) so
882	 * return the fragment header as the type of packet this is.  Note that
883	 * this effectively disables the fragment cache for > 1 protocol at a
884	 * time.
885	 */
886	return frag->ip6f_nxt;
887}
888
889
890/* ------------------------------------------------------------------------ */
891/* Function:    ipf_pr_dstopts6                                             */
892/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
893/* Parameters:  fin(I) - pointer to packet information                      */
894/*                                                                          */
895/* IPv6 Only                                                                */
896/* This is function checks pending destination options extension header     */
897/* ------------------------------------------------------------------------ */
898static INLINE int
899ipf_pr_dstopts6(fin)
900	fr_info_t *fin;
901{
902	ipf_main_softc_t *softc = fin->fin_main_soft;
903	struct ip6_ext *hdr;
904
905	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
906	if (hdr == NULL) {
907		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
908		return IPPROTO_NONE;
909	}
910	return hdr->ip6e_nxt;
911}
912
913
914/* ------------------------------------------------------------------------ */
915/* Function:    ipf_pr_icmp6                                                */
916/* Returns:     void                                                        */
917/* Parameters:  fin(I) - pointer to packet information                      */
918/*                                                                          */
919/* IPv6 Only                                                                */
920/* This routine is mainly concerned with determining the minimum valid size */
921/* for an ICMPv6 packet.                                                    */
922/* ------------------------------------------------------------------------ */
923static INLINE void
924ipf_pr_icmp6(fin)
925	fr_info_t *fin;
926{
927	int minicmpsz = sizeof(struct icmp6_hdr);
928	struct icmp6_hdr *icmp6;
929
930	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
931		ipf_main_softc_t *softc = fin->fin_main_soft;
932
933		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
934		return;
935	}
936
937	if (fin->fin_dlen > 1) {
938		ip6_t *ip6;
939
940		icmp6 = fin->fin_dp;
941
942		fin->fin_data[0] = *(u_short *)icmp6;
943
944		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
945			fin->fin_flx |= FI_ICMPQUERY;
946
947		switch (icmp6->icmp6_type)
948		{
949		case ICMP6_ECHO_REPLY :
950		case ICMP6_ECHO_REQUEST :
951			if (fin->fin_dlen >= 6)
952				fin->fin_data[1] = icmp6->icmp6_id;
953			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
954			break;
955
956		case ICMP6_DST_UNREACH :
957		case ICMP6_PACKET_TOO_BIG :
958		case ICMP6_TIME_EXCEEDED :
959		case ICMP6_PARAM_PROB :
960			fin->fin_flx |= FI_ICMPERR;
961			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
962			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
963				break;
964
965			if (M_LEN(fin->fin_m) < fin->fin_plen) {
966				if (ipf_coalesce(fin) != 1)
967					return;
968			}
969
970			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
971				return;
972
973			/*
974			 * If the destination of this packet doesn't match the
975			 * source of the original packet then this packet is
976			 * not correct.
977			 */
978			icmp6 = fin->fin_dp;
979			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
980			if (IP6_NEQ(&fin->fin_fi.fi_dst,
981				    (i6addr_t *)&ip6->ip6_src)) {
982				fin->fin_flx |= FI_BAD;
983				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
984			}
985			break;
986		default :
987			break;
988		}
989	}
990
991	ipf_pr_short6(fin, minicmpsz);
992	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
993		u_char p = fin->fin_p;
994
995		fin->fin_p = IPPROTO_ICMPV6;
996		ipf_checkv6sum(fin);
997		fin->fin_p = p;
998	}
999}
1000
1001
1002/* ------------------------------------------------------------------------ */
1003/* Function:    ipf_pr_udp6                                                 */
1004/* Returns:     void                                                        */
1005/* Parameters:  fin(I) - pointer to packet information                      */
1006/*                                                                          */
1007/* IPv6 Only                                                                */
1008/* Analyse the packet for IPv6/UDP properties.                              */
1009/* Is not expected to be called for fragmented packets.                     */
1010/* ------------------------------------------------------------------------ */
1011static INLINE void
1012ipf_pr_udp6(fin)
1013	fr_info_t *fin;
1014{
1015
1016	if (ipf_pr_udpcommon(fin) == 0) {
1017		u_char p = fin->fin_p;
1018
1019		fin->fin_p = IPPROTO_UDP;
1020		ipf_checkv6sum(fin);
1021		fin->fin_p = p;
1022	}
1023}
1024
1025
1026/* ------------------------------------------------------------------------ */
1027/* Function:    ipf_pr_tcp6                                                 */
1028/* Returns:     void                                                        */
1029/* Parameters:  fin(I) - pointer to packet information                      */
1030/*                                                                          */
1031/* IPv6 Only                                                                */
1032/* Analyse the packet for IPv6/TCP properties.                              */
1033/* Is not expected to be called for fragmented packets.                     */
1034/* ------------------------------------------------------------------------ */
1035static INLINE void
1036ipf_pr_tcp6(fin)
1037	fr_info_t *fin;
1038{
1039
1040	if (ipf_pr_tcpcommon(fin) == 0) {
1041		u_char p = fin->fin_p;
1042
1043		fin->fin_p = IPPROTO_TCP;
1044		ipf_checkv6sum(fin);
1045		fin->fin_p = p;
1046	}
1047}
1048
1049
1050/* ------------------------------------------------------------------------ */
1051/* Function:    ipf_pr_esp6                                                 */
1052/* Returns:     void                                                        */
1053/* Parameters:  fin(I) - pointer to packet information                      */
1054/*                                                                          */
1055/* IPv6 Only                                                                */
1056/* Analyse the packet for ESP properties.                                   */
1057/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1058/* even though the newer ESP packets must also have a sequence number that  */
1059/* is 32bits as well, it is not possible(?) to determine the version from a */
1060/* simple packet header.                                                    */
1061/* ------------------------------------------------------------------------ */
1062static INLINE void
1063ipf_pr_esp6(fin)
1064	fr_info_t *fin;
1065{
1066
1067	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1068		ipf_main_softc_t *softc = fin->fin_main_soft;
1069
1070		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1071		return;
1072	}
1073}
1074
1075
1076/* ------------------------------------------------------------------------ */
1077/* Function:    ipf_pr_ah6                                                  */
1078/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1079/* Parameters:  fin(I) - pointer to packet information                      */
1080/*                                                                          */
1081/* IPv6 Only                                                                */
1082/* Analyse the packet for AH properties.                                    */
1083/* The minimum length is taken to be the combination of all fields in the   */
1084/* header being present and no authentication data (null algorithm used.)   */
1085/* ------------------------------------------------------------------------ */
1086static INLINE int
1087ipf_pr_ah6(fin)
1088	fr_info_t *fin;
1089{
1090	authhdr_t *ah;
1091
1092	fin->fin_flx |= FI_AH;
1093
1094	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1095	if (ah == NULL) {
1096		ipf_main_softc_t *softc = fin->fin_main_soft;
1097
1098		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1099		return IPPROTO_NONE;
1100	}
1101
1102	ipf_pr_short6(fin, sizeof(*ah));
1103
1104	/*
1105	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1106	 * enough data to satisfy ah_next (the very first one.)
1107	 */
1108	return ah->ah_next;
1109}
1110
1111
1112/* ------------------------------------------------------------------------ */
1113/* Function:    ipf_pr_gre6                                                 */
1114/* Returns:     void                                                        */
1115/* Parameters:  fin(I) - pointer to packet information                      */
1116/*                                                                          */
1117/* Analyse the packet for GRE properties.                                   */
1118/* ------------------------------------------------------------------------ */
1119static INLINE void
1120ipf_pr_gre6(fin)
1121	fr_info_t *fin;
1122{
1123	grehdr_t *gre;
1124
1125	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1126		ipf_main_softc_t *softc = fin->fin_main_soft;
1127
1128		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1129		return;
1130	}
1131
1132	gre = fin->fin_dp;
1133	if (GRE_REV(gre->gr_flags) == 1)
1134		fin->fin_data[0] = gre->gr_call;
1135}
1136#endif	/* USE_INET6 */
1137
1138
1139/* ------------------------------------------------------------------------ */
1140/* Function:    ipf_pr_pullup                                               */
1141/* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1142/* Parameters:  fin(I)  - pointer to packet information                     */
1143/*              plen(I) - length (excluding L3 header) to pullup            */
1144/*                                                                          */
1145/* Short inline function to cut down on code duplication to perform a call  */
1146/* to ipf_pullup to ensure there is the required amount of data,            */
1147/* consecutively in the packet buffer.                                      */
1148/*                                                                          */
1149/* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1150/* points to the first byte after the complete layer 3 header, which will   */
1151/* include all of the known extension headers for IPv6 or options for IPv4. */
1152/*                                                                          */
1153/* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1154/* is necessary to add those we can already assume to be pulled up (fin_dp  */
1155/* - fin_ip) to what is passed through.                                     */
1156/* ------------------------------------------------------------------------ */
1157int
1158ipf_pr_pullup(fin, plen)
1159	fr_info_t *fin;
1160	int plen;
1161{
1162	ipf_main_softc_t *softc = fin->fin_main_soft;
1163
1164	if (fin->fin_m != NULL) {
1165		if (fin->fin_dp != NULL)
1166			plen += (char *)fin->fin_dp -
1167				((char *)fin->fin_ip + fin->fin_hlen);
1168		plen += fin->fin_hlen;
1169		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1170#if defined(_KERNEL)
1171			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1172				DT(ipf_pullup_fail);
1173				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1174				return -1;
1175			}
1176			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1177#else
1178			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1179			/*
1180			 * Fake ipf_pullup failing
1181			 */
1182			fin->fin_reason = FRB_PULLUP;
1183			*fin->fin_mp = NULL;
1184			fin->fin_m = NULL;
1185			fin->fin_ip = NULL;
1186			return -1;
1187#endif
1188		}
1189	}
1190	return 0;
1191}
1192
1193
1194/* ------------------------------------------------------------------------ */
1195/* Function:    ipf_pr_short                                                */
1196/* Returns:     void                                                        */
1197/* Parameters:  fin(I)  - pointer to packet information                     */
1198/*              xmin(I) - minimum header size                               */
1199/*                                                                          */
1200/* Check if a packet is "short" as defined by xmin.  The rule we are        */
1201/* applying here is that the packet must not be fragmented within the layer */
1202/* 4 header.  That is, it must not be a fragment that has its offset set to */
1203/* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1204/* entire layer 4 header must be present (min).                             */
1205/* ------------------------------------------------------------------------ */
1206static INLINE void
1207ipf_pr_short(fin, xmin)
1208	fr_info_t *fin;
1209	int xmin;
1210{
1211
1212	if (fin->fin_off == 0) {
1213		if (fin->fin_dlen < xmin)
1214			fin->fin_flx |= FI_SHORT;
1215	} else if (fin->fin_off < xmin) {
1216		fin->fin_flx |= FI_SHORT;
1217	}
1218}
1219
1220
1221/* ------------------------------------------------------------------------ */
1222/* Function:    ipf_pr_icmp                                                 */
1223/* Returns:     void                                                        */
1224/* Parameters:  fin(I) - pointer to packet information                      */
1225/*                                                                          */
1226/* IPv4 Only                                                                */
1227/* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1228/* except extrememly bad packets, both type and code will be present.       */
1229/* The expected minimum size of an ICMP packet is very much dependent on    */
1230/* the type of it.                                                          */
1231/*                                                                          */
1232/* XXX - other ICMP sanity checks?                                          */
1233/* ------------------------------------------------------------------------ */
1234static INLINE void
1235ipf_pr_icmp(fin)
1236	fr_info_t *fin;
1237{
1238	ipf_main_softc_t *softc = fin->fin_main_soft;
1239	int minicmpsz = sizeof(struct icmp);
1240	icmphdr_t *icmp;
1241	ip_t *oip;
1242
1243	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1244
1245	if (fin->fin_off != 0) {
1246		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1247		return;
1248	}
1249
1250	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1251		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1252		return;
1253	}
1254
1255	icmp = fin->fin_dp;
1256
1257	fin->fin_data[0] = *(u_short *)icmp;
1258	fin->fin_data[1] = icmp->icmp_id;
1259
1260	switch (icmp->icmp_type)
1261	{
1262	case ICMP_ECHOREPLY :
1263	case ICMP_ECHO :
1264	/* Router discovery messaes - RFC 1256 */
1265	case ICMP_ROUTERADVERT :
1266	case ICMP_ROUTERSOLICIT :
1267		fin->fin_flx |= FI_ICMPQUERY;
1268		minicmpsz = ICMP_MINLEN;
1269		break;
1270	/*
1271	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1272	 * 3 * timestamp(3 * 4)
1273	 */
1274	case ICMP_TSTAMP :
1275	case ICMP_TSTAMPREPLY :
1276		fin->fin_flx |= FI_ICMPQUERY;
1277		minicmpsz = 20;
1278		break;
1279	/*
1280	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1281	 * mask(4)
1282	 */
1283	case ICMP_IREQ :
1284	case ICMP_IREQREPLY :
1285	case ICMP_MASKREQ :
1286	case ICMP_MASKREPLY :
1287		fin->fin_flx |= FI_ICMPQUERY;
1288		minicmpsz = 12;
1289		break;
1290	/*
1291	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1292	 */
1293	case ICMP_UNREACH :
1294#ifdef icmp_nextmtu
1295		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1296			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1297				fin->fin_flx |= FI_BAD;
1298				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1299			}
1300		}
1301#endif
1302	case ICMP_SOURCEQUENCH :
1303	case ICMP_REDIRECT :
1304	case ICMP_TIMXCEED :
1305	case ICMP_PARAMPROB :
1306		fin->fin_flx |= FI_ICMPERR;
1307		if (ipf_coalesce(fin) != 1) {
1308			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1309			return;
1310		}
1311
1312		/*
1313		 * ICMP error packets should not be generated for IP
1314		 * packets that are a fragment that isn't the first
1315		 * fragment.
1316		 */
1317		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1318		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1319			fin->fin_flx |= FI_BAD;
1320			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1321		}
1322
1323		/*
1324		 * If the destination of this packet doesn't match the
1325		 * source of the original packet then this packet is
1326		 * not correct.
1327		 */
1328		if (oip->ip_src.s_addr != fin->fin_daddr) {
1329			fin->fin_flx |= FI_BAD;
1330			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1331		}
1332		break;
1333	default :
1334		break;
1335	}
1336
1337	ipf_pr_short(fin, minicmpsz);
1338
1339	ipf_checkv4sum(fin);
1340}
1341
1342
1343/* ------------------------------------------------------------------------ */
1344/* Function:    ipf_pr_tcpcommon                                            */
1345/* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1346/* Parameters:  fin(I) - pointer to packet information                      */
1347/*                                                                          */
1348/* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1349/* and make some checks with how they interact with other fields.           */
1350/* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1351/* valid and mark the packet as bad if not.                                 */
1352/* ------------------------------------------------------------------------ */
1353static INLINE int
1354ipf_pr_tcpcommon(fin)
1355	fr_info_t *fin;
1356{
1357	ipf_main_softc_t *softc = fin->fin_main_soft;
1358	int flags, tlen;
1359	tcphdr_t *tcp;
1360
1361	fin->fin_flx |= FI_TCPUDP;
1362	if (fin->fin_off != 0) {
1363		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1364		return 0;
1365	}
1366
1367	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1368		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1369		return -1;
1370	}
1371
1372	tcp = fin->fin_dp;
1373	if (fin->fin_dlen > 3) {
1374		fin->fin_sport = ntohs(tcp->th_sport);
1375		fin->fin_dport = ntohs(tcp->th_dport);
1376	}
1377
1378	if ((fin->fin_flx & FI_SHORT) != 0) {
1379		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1380		return 1;
1381	}
1382
1383	/*
1384	 * Use of the TCP data offset *must* result in a value that is at
1385	 * least the same size as the TCP header.
1386	 */
1387	tlen = TCP_OFF(tcp) << 2;
1388	if (tlen < sizeof(tcphdr_t)) {
1389		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1390		fin->fin_flx |= FI_BAD;
1391		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1392		return 1;
1393	}
1394
1395	flags = tcp->th_flags;
1396	fin->fin_tcpf = tcp->th_flags;
1397
1398	/*
1399	 * If the urgent flag is set, then the urgent pointer must
1400	 * also be set and vice versa.  Good TCP packets do not have
1401	 * just one of these set.
1402	 */
1403	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1404		fin->fin_flx |= FI_BAD;
1405		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1406#if 0
1407	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1408		/*
1409		 * Ignore this case (#if 0) as it shows up in "real"
1410		 * traffic with bogus values in the urgent pointer field.
1411		 */
1412		fin->fin_flx |= FI_BAD;
1413		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1414#endif
1415	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1416		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1417		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1418		fin->fin_flx |= FI_BAD;
1419		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1420#if 1
1421	} else if (((flags & TH_SYN) != 0) &&
1422		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1423		/*
1424		 * SYN with URG and PUSH set is not for normal TCP but it is
1425		 * possible(?) with T/TCP...but who uses T/TCP?
1426		 */
1427		fin->fin_flx |= FI_BAD;
1428		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1429#endif
1430	} else if (!(flags & TH_ACK)) {
1431		/*
1432		 * If the ack bit isn't set, then either the SYN or
1433		 * RST bit must be set.  If the SYN bit is set, then
1434		 * we expect the ACK field to be 0.  If the ACK is
1435		 * not set and if URG, PSH or FIN are set, consdier
1436		 * that to indicate a bad TCP packet.
1437		 */
1438		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1439			/*
1440			 * Cisco PIX sets the ACK field to a random value.
1441			 * In light of this, do not set FI_BAD until a patch
1442			 * is available from Cisco to ensure that
1443			 * interoperability between existing systems is
1444			 * achieved.
1445			 */
1446			/*fin->fin_flx |= FI_BAD*/;
1447			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1448		} else if (!(flags & (TH_RST|TH_SYN))) {
1449			fin->fin_flx |= FI_BAD;
1450			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1451		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1452			fin->fin_flx |= FI_BAD;
1453			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1454		}
1455	}
1456	if (fin->fin_flx & FI_BAD) {
1457		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1458		return 1;
1459	}
1460
1461	/*
1462	 * At this point, it's not exactly clear what is to be gained by
1463	 * marking up which TCP options are and are not present.  The one we
1464	 * are most interested in is the TCP window scale.  This is only in
1465	 * a SYN packet [RFC1323] so we don't need this here...?
1466	 * Now if we were to analyse the header for passive fingerprinting,
1467	 * then that might add some weight to adding this...
1468	 */
1469	if (tlen == sizeof(tcphdr_t)) {
1470		return 0;
1471	}
1472
1473	if (ipf_pr_pullup(fin, tlen) == -1) {
1474		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1475		return -1;
1476	}
1477
1478#if 0
1479	tcp = fin->fin_dp;
1480	ip = fin->fin_ip;
1481	s = (u_char *)(tcp + 1);
1482	off = IP_HL(ip) << 2;
1483# ifdef _KERNEL
1484	if (fin->fin_mp != NULL) {
1485		mb_t *m = *fin->fin_mp;
1486
1487		if (off + tlen > M_LEN(m))
1488			return;
1489	}
1490# endif
1491	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1492		opt = *s;
1493		if (opt == '\0')
1494			break;
1495		else if (opt == TCPOPT_NOP)
1496			ol = 1;
1497		else {
1498			if (tlen < 2)
1499				break;
1500			ol = (int)*(s + 1);
1501			if (ol < 2 || ol > tlen)
1502				break;
1503		}
1504
1505		for (i = 9, mv = 4; mv >= 0; ) {
1506			op = ipopts + i;
1507			if (opt == (u_char)op->ol_val) {
1508				optmsk |= op->ol_bit;
1509				break;
1510			}
1511		}
1512		tlen -= ol;
1513		s += ol;
1514	}
1515#endif /* 0 */
1516
1517	return 0;
1518}
1519
1520
1521
1522/* ------------------------------------------------------------------------ */
1523/* Function:    ipf_pr_udpcommon                                            */
1524/* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1525/* Parameters:  fin(I) - pointer to packet information                      */
1526/*                                                                          */
1527/* Extract the UDP source and destination ports, if present.  If compiled   */
1528/* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1529/* ------------------------------------------------------------------------ */
1530static INLINE int
1531ipf_pr_udpcommon(fin)
1532	fr_info_t *fin;
1533{
1534	udphdr_t *udp;
1535
1536	fin->fin_flx |= FI_TCPUDP;
1537
1538	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1539		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1540			ipf_main_softc_t *softc = fin->fin_main_soft;
1541
1542			fin->fin_flx |= FI_SHORT;
1543			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1544			return 1;
1545		}
1546
1547		udp = fin->fin_dp;
1548
1549		fin->fin_sport = ntohs(udp->uh_sport);
1550		fin->fin_dport = ntohs(udp->uh_dport);
1551	}
1552
1553	return 0;
1554}
1555
1556
1557/* ------------------------------------------------------------------------ */
1558/* Function:    ipf_pr_tcp                                                  */
1559/* Returns:     void                                                        */
1560/* Parameters:  fin(I) - pointer to packet information                      */
1561/*                                                                          */
1562/* IPv4 Only                                                                */
1563/* Analyse the packet for IPv4/TCP properties.                              */
1564/* ------------------------------------------------------------------------ */
1565static INLINE void
1566ipf_pr_tcp(fin)
1567	fr_info_t *fin;
1568{
1569
1570	ipf_pr_short(fin, sizeof(tcphdr_t));
1571
1572	if (ipf_pr_tcpcommon(fin) == 0)
1573		ipf_checkv4sum(fin);
1574}
1575
1576
1577/* ------------------------------------------------------------------------ */
1578/* Function:    ipf_pr_udp                                                  */
1579/* Returns:     void                                                        */
1580/* Parameters:  fin(I) - pointer to packet information                      */
1581/*                                                                          */
1582/* IPv4 Only                                                                */
1583/* Analyse the packet for IPv4/UDP properties.                              */
1584/* ------------------------------------------------------------------------ */
1585static INLINE void
1586ipf_pr_udp(fin)
1587	fr_info_t *fin;
1588{
1589
1590	ipf_pr_short(fin, sizeof(udphdr_t));
1591
1592	if (ipf_pr_udpcommon(fin) == 0)
1593		ipf_checkv4sum(fin);
1594}
1595
1596
1597/* ------------------------------------------------------------------------ */
1598/* Function:    ipf_pr_esp                                                  */
1599/* Returns:     void                                                        */
1600/* Parameters:  fin(I) - pointer to packet information                      */
1601/*                                                                          */
1602/* Analyse the packet for ESP properties.                                   */
1603/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1604/* even though the newer ESP packets must also have a sequence number that  */
1605/* is 32bits as well, it is not possible(?) to determine the version from a */
1606/* simple packet header.                                                    */
1607/* ------------------------------------------------------------------------ */
1608static INLINE void
1609ipf_pr_esp(fin)
1610	fr_info_t *fin;
1611{
1612
1613	if (fin->fin_off == 0) {
1614		ipf_pr_short(fin, 8);
1615		if (ipf_pr_pullup(fin, 8) == -1) {
1616			ipf_main_softc_t *softc = fin->fin_main_soft;
1617
1618			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1619		}
1620	}
1621}
1622
1623
1624/* ------------------------------------------------------------------------ */
1625/* Function:    ipf_pr_ah                                                   */
1626/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1627/* Parameters:  fin(I) - pointer to packet information                      */
1628/*                                                                          */
1629/* Analyse the packet for AH properties.                                    */
1630/* The minimum length is taken to be the combination of all fields in the   */
1631/* header being present and no authentication data (null algorithm used.)   */
1632/* ------------------------------------------------------------------------ */
1633static INLINE int
1634ipf_pr_ah(fin)
1635	fr_info_t *fin;
1636{
1637	ipf_main_softc_t *softc = fin->fin_main_soft;
1638	authhdr_t *ah;
1639	int len;
1640
1641	fin->fin_flx |= FI_AH;
1642	ipf_pr_short(fin, sizeof(*ah));
1643
1644	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1645		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1646		return IPPROTO_NONE;
1647	}
1648
1649	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1650		DT(fr_v4_ah_pullup_1);
1651		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1652		return IPPROTO_NONE;
1653	}
1654
1655	ah = (authhdr_t *)fin->fin_dp;
1656
1657	len = (ah->ah_plen + 2) << 2;
1658	ipf_pr_short(fin, len);
1659	if (ipf_pr_pullup(fin, len) == -1) {
1660		DT(fr_v4_ah_pullup_2);
1661		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1662		return IPPROTO_NONE;
1663	}
1664
1665	/*
1666	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1667	 * header.
1668	 */
1669	fin->fin_dp = (char *)fin->fin_dp + len;
1670	fin->fin_dlen -= len;
1671	return ah->ah_next;
1672}
1673
1674
1675/* ------------------------------------------------------------------------ */
1676/* Function:    ipf_pr_gre                                                  */
1677/* Returns:     void                                                        */
1678/* Parameters:  fin(I) - pointer to packet information                      */
1679/*                                                                          */
1680/* Analyse the packet for GRE properties.                                   */
1681/* ------------------------------------------------------------------------ */
1682static INLINE void
1683ipf_pr_gre(fin)
1684	fr_info_t *fin;
1685{
1686	ipf_main_softc_t *softc = fin->fin_main_soft;
1687	grehdr_t *gre;
1688
1689	ipf_pr_short(fin, sizeof(grehdr_t));
1690
1691	if (fin->fin_off != 0) {
1692		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1693		return;
1694	}
1695
1696	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1697		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1698		return;
1699	}
1700
1701	gre = fin->fin_dp;
1702	if (GRE_REV(gre->gr_flags) == 1)
1703		fin->fin_data[0] = gre->gr_call;
1704}
1705
1706
1707/* ------------------------------------------------------------------------ */
1708/* Function:    ipf_pr_ipv4hdr                                              */
1709/* Returns:     void                                                        */
1710/* Parameters:  fin(I) - pointer to packet information                      */
1711/*                                                                          */
1712/* IPv4 Only                                                                */
1713/* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1714/* Check all options present and flag their presence if any exist.          */
1715/* ------------------------------------------------------------------------ */
1716static INLINE void
1717ipf_pr_ipv4hdr(fin)
1718	fr_info_t *fin;
1719{
1720	u_short optmsk = 0, secmsk = 0, auth = 0;
1721	int hlen, ol, mv, p, i;
1722	const struct optlist *op;
1723	u_char *s, opt;
1724	u_short off;
1725	fr_ip_t *fi;
1726	ip_t *ip;
1727
1728	fi = &fin->fin_fi;
1729	hlen = fin->fin_hlen;
1730
1731	ip = fin->fin_ip;
1732	p = ip->ip_p;
1733	fi->fi_p = p;
1734	fin->fin_crc = p;
1735	fi->fi_tos = ip->ip_tos;
1736	fin->fin_id = ip->ip_id;
1737	off = ntohs(ip->ip_off);
1738
1739	/* Get both TTL and protocol */
1740	fi->fi_p = ip->ip_p;
1741	fi->fi_ttl = ip->ip_ttl;
1742
1743	/* Zero out bits not used in IPv6 address */
1744	fi->fi_src.i6[1] = 0;
1745	fi->fi_src.i6[2] = 0;
1746	fi->fi_src.i6[3] = 0;
1747	fi->fi_dst.i6[1] = 0;
1748	fi->fi_dst.i6[2] = 0;
1749	fi->fi_dst.i6[3] = 0;
1750
1751	fi->fi_saddr = ip->ip_src.s_addr;
1752	fin->fin_crc += fi->fi_saddr;
1753	fi->fi_daddr = ip->ip_dst.s_addr;
1754	fin->fin_crc += fi->fi_daddr;
1755	if (IN_CLASSD(ntohl(fi->fi_daddr)))
1756		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1757
1758	/*
1759	 * set packet attribute flags based on the offset and
1760	 * calculate the byte offset that it represents.
1761	 */
1762	off &= IP_MF|IP_OFFMASK;
1763	if (off != 0) {
1764		int morefrag = off & IP_MF;
1765
1766		fi->fi_flx |= FI_FRAG;
1767		off &= IP_OFFMASK;
1768		if (off != 0) {
1769			fin->fin_flx |= FI_FRAGBODY;
1770			off <<= 3;
1771			if ((off + fin->fin_dlen > 65535) ||
1772			    (fin->fin_dlen == 0) ||
1773			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1774				/*
1775				 * The length of the packet, starting at its
1776				 * offset cannot exceed 65535 (0xffff) as the
1777				 * length of an IP packet is only 16 bits.
1778				 *
1779				 * Any fragment that isn't the last fragment
1780				 * must have a length greater than 0 and it
1781				 * must be an even multiple of 8.
1782				 */
1783				fi->fi_flx |= FI_BAD;
1784				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1785			}
1786		}
1787	}
1788	fin->fin_off = off;
1789
1790	/*
1791	 * Call per-protocol setup and checking
1792	 */
1793	if (p == IPPROTO_AH) {
1794		/*
1795		 * Treat AH differently because we expect there to be another
1796		 * layer 4 header after it.
1797		 */
1798		p = ipf_pr_ah(fin);
1799	}
1800
1801	switch (p)
1802	{
1803	case IPPROTO_UDP :
1804		ipf_pr_udp(fin);
1805		break;
1806	case IPPROTO_TCP :
1807		ipf_pr_tcp(fin);
1808		break;
1809	case IPPROTO_ICMP :
1810		ipf_pr_icmp(fin);
1811		break;
1812	case IPPROTO_ESP :
1813		ipf_pr_esp(fin);
1814		break;
1815	case IPPROTO_GRE :
1816		ipf_pr_gre(fin);
1817		break;
1818	}
1819
1820	ip = fin->fin_ip;
1821	if (ip == NULL)
1822		return;
1823
1824	/*
1825	 * If it is a standard IP header (no options), set the flag fields
1826	 * which relate to options to 0.
1827	 */
1828	if (hlen == sizeof(*ip)) {
1829		fi->fi_optmsk = 0;
1830		fi->fi_secmsk = 0;
1831		fi->fi_auth = 0;
1832		return;
1833	}
1834
1835	/*
1836	 * So the IP header has some IP options attached.  Walk the entire
1837	 * list of options present with this packet and set flags to indicate
1838	 * which ones are here and which ones are not.  For the somewhat out
1839	 * of date and obscure security classification options, set a flag to
1840	 * represent which classification is present.
1841	 */
1842	fi->fi_flx |= FI_OPTIONS;
1843
1844	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1845		opt = *s;
1846		if (opt == '\0')
1847			break;
1848		else if (opt == IPOPT_NOP)
1849			ol = 1;
1850		else {
1851			if (hlen < 2)
1852				break;
1853			ol = (int)*(s + 1);
1854			if (ol < 2 || ol > hlen)
1855				break;
1856		}
1857		for (i = 9, mv = 4; mv >= 0; ) {
1858			op = ipopts + i;
1859
1860			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1861				u_32_t doi;
1862
1863				switch (opt)
1864				{
1865				case IPOPT_SECURITY :
1866					if (optmsk & op->ol_bit) {
1867						fin->fin_flx |= FI_BAD;
1868						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1869					} else {
1870						doi = ipf_checkripso(s);
1871						secmsk = doi >> 16;
1872						auth = doi & 0xffff;
1873					}
1874					break;
1875
1876				case IPOPT_CIPSO :
1877
1878					if (optmsk & op->ol_bit) {
1879						fin->fin_flx |= FI_BAD;
1880						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1881					} else {
1882						doi = ipf_checkcipso(fin,
1883								     s, ol);
1884						secmsk = doi >> 16;
1885						auth = doi & 0xffff;
1886					}
1887					break;
1888				}
1889				optmsk |= op->ol_bit;
1890			}
1891
1892			if (opt < op->ol_val)
1893				i -= mv;
1894			else
1895				i += mv;
1896			mv--;
1897		}
1898		hlen -= ol;
1899		s += ol;
1900	}
1901
1902	/*
1903	 *
1904	 */
1905	if (auth && !(auth & 0x0100))
1906		auth &= 0xff00;
1907	fi->fi_optmsk = optmsk;
1908	fi->fi_secmsk = secmsk;
1909	fi->fi_auth = auth;
1910}
1911
1912
1913/* ------------------------------------------------------------------------ */
1914/* Function:    ipf_checkripso                                              */
1915/* Returns:     void                                                        */
1916/* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1917/*                                                                          */
1918/* ------------------------------------------------------------------------ */
1919static u_32_t
1920ipf_checkripso(s)
1921	u_char *s;
1922{
1923	const struct optlist *sp;
1924	u_short secmsk = 0, auth = 0;
1925	u_char sec;
1926	int j, m;
1927
1928	sec = *(s + 2);	/* classification */
1929	for (j = 3, m = 2; m >= 0; ) {
1930		sp = secopt + j;
1931		if (sec == sp->ol_val) {
1932			secmsk |= sp->ol_bit;
1933			auth = *(s + 3);
1934			auth *= 256;
1935			auth += *(s + 4);
1936			break;
1937		}
1938		if (sec < sp->ol_val)
1939			j -= m;
1940		else
1941			j += m;
1942		m--;
1943	}
1944
1945	return (secmsk << 16) | auth;
1946}
1947
1948
1949/* ------------------------------------------------------------------------ */
1950/* Function:    ipf_checkcipso                                              */
1951/* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1952/* Parameters:  fin(IO) - pointer to packet information                     */
1953/*              s(I)    - pointer to start of CIPSO option                  */
1954/*              ol(I)   - length of CIPSO option field                      */
1955/*                                                                          */
1956/* This function returns the domain of integrity (DOI) field from the CIPSO */
1957/* header and returns that whilst also storing the highest sensitivity      */
1958/* value found in the fr_info_t structure.                                  */
1959/*                                                                          */
1960/* No attempt is made to extract the category bitmaps as these are defined  */
1961/* by the user (rather than the protocol) and can be rather numerous on the */
1962/* end nodes.                                                               */
1963/* ------------------------------------------------------------------------ */
1964static u_32_t
1965ipf_checkcipso(fin, s, ol)
1966	fr_info_t *fin;
1967	u_char *s;
1968	int ol;
1969{
1970	ipf_main_softc_t *softc = fin->fin_main_soft;
1971	fr_ip_t *fi;
1972	u_32_t doi;
1973	u_char *t, tag, tlen, sensitivity;
1974	int len;
1975
1976	if (ol < 6 || ol > 40) {
1977		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1978		fin->fin_flx |= FI_BAD;
1979		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1980		return 0;
1981	}
1982
1983	fi = &fin->fin_fi;
1984	fi->fi_sensitivity = 0;
1985	/*
1986	 * The DOI field MUST be there.
1987	 */
1988	bcopy(s + 2, &doi, sizeof(doi));
1989
1990	t = (u_char *)s + 6;
1991	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1992		tag = *t;
1993		tlen = *(t + 1);
1994		if (tlen > len || tlen < 4 || tlen > 34) {
1995			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1996			fin->fin_flx |= FI_BAD;
1997			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1998			return 0;
1999		}
2000
2001		sensitivity = 0;
2002		/*
2003		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
2004		 * draft (16 July 1992) that has expired.
2005		 */
2006		if (tag == 0) {
2007			fin->fin_flx |= FI_BAD;
2008			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
2009			continue;
2010		} else if (tag == 1) {
2011			if (*(t + 2) != 0) {
2012				fin->fin_flx |= FI_BAD;
2013				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
2014				continue;
2015			}
2016			sensitivity = *(t + 3);
2017			/* Category bitmap for categories 0-239 */
2018
2019		} else if (tag == 4) {
2020			if (*(t + 2) != 0) {
2021				fin->fin_flx |= FI_BAD;
2022				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
2023				continue;
2024			}
2025			sensitivity = *(t + 3);
2026			/* Enumerated categories, 16bits each, upto 15 */
2027
2028		} else if (tag == 5) {
2029			if (*(t + 2) != 0) {
2030				fin->fin_flx |= FI_BAD;
2031				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
2032				continue;
2033			}
2034			sensitivity = *(t + 3);
2035			/* Range of categories (2*16bits), up to 7 pairs */
2036
2037		} else if (tag > 127) {
2038			/* Custom defined DOI */
2039			;
2040		} else {
2041			fin->fin_flx |= FI_BAD;
2042			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
2043			continue;
2044		}
2045
2046		if (sensitivity > fi->fi_sensitivity)
2047			fi->fi_sensitivity = sensitivity;
2048	}
2049
2050	return doi;
2051}
2052
2053
2054/* ------------------------------------------------------------------------ */
2055/* Function:    ipf_makefrip                                                */
2056/* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2057/* Parameters:  hlen(I) - length of IP packet header                        */
2058/*              ip(I)   - pointer to the IP header                          */
2059/*              fin(IO) - pointer to packet information                     */
2060/*                                                                          */
2061/* Compact the IP header into a structure which contains just the info.     */
2062/* which is useful for comparing IP headers with and store this information */
2063/* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2064/* this function will be called with either an IPv4 or IPv6 packet.         */
2065/* ------------------------------------------------------------------------ */
2066int
2067ipf_makefrip(hlen, ip, fin)
2068	int hlen;
2069	ip_t *ip;
2070	fr_info_t *fin;
2071{
2072	ipf_main_softc_t *softc = fin->fin_main_soft;
2073	int v;
2074
2075	fin->fin_depth = 0;
2076	fin->fin_hlen = (u_short)hlen;
2077	fin->fin_ip = ip;
2078	fin->fin_rule = 0xffffffff;
2079	fin->fin_group[0] = -1;
2080	fin->fin_group[1] = '\0';
2081	fin->fin_dp = (char *)ip + hlen;
2082
2083	v = fin->fin_v;
2084	if (v == 4) {
2085		fin->fin_plen = ntohs(ip->ip_len);
2086		fin->fin_dlen = fin->fin_plen - hlen;
2087		ipf_pr_ipv4hdr(fin);
2088#ifdef	USE_INET6
2089	} else if (v == 6) {
2090		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2091		fin->fin_dlen = fin->fin_plen;
2092		fin->fin_plen += hlen;
2093
2094		ipf_pr_ipv6hdr(fin);
2095#endif
2096	}
2097	if (fin->fin_ip == NULL) {
2098		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2099		return -1;
2100	}
2101	return 0;
2102}
2103
2104
2105/* ------------------------------------------------------------------------ */
2106/* Function:    ipf_portcheck                                               */
2107/* Returns:     int - 1 == port matched, 0 == port match failed             */
2108/* Parameters:  frp(I) - pointer to port check `expression'                 */
2109/*              pop(I) - port number to evaluate                            */
2110/*                                                                          */
2111/* Perform a comparison of a port number against some other(s), using a     */
2112/* structure with compare information stored in it.                         */
2113/* ------------------------------------------------------------------------ */
2114static INLINE int
2115ipf_portcheck(frp, pop)
2116	frpcmp_t *frp;
2117	u_32_t pop;
2118{
2119	int err = 1;
2120	u_32_t po;
2121
2122	po = frp->frp_port;
2123
2124	/*
2125	 * Do opposite test to that required and continue if that succeeds.
2126	 */
2127	switch (frp->frp_cmp)
2128	{
2129	case FR_EQUAL :
2130		if (pop != po) /* EQUAL */
2131			err = 0;
2132		break;
2133	case FR_NEQUAL :
2134		if (pop == po) /* NOTEQUAL */
2135			err = 0;
2136		break;
2137	case FR_LESST :
2138		if (pop >= po) /* LESSTHAN */
2139			err = 0;
2140		break;
2141	case FR_GREATERT :
2142		if (pop <= po) /* GREATERTHAN */
2143			err = 0;
2144		break;
2145	case FR_LESSTE :
2146		if (pop > po) /* LT or EQ */
2147			err = 0;
2148		break;
2149	case FR_GREATERTE :
2150		if (pop < po) /* GT or EQ */
2151			err = 0;
2152		break;
2153	case FR_OUTRANGE :
2154		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2155			err = 0;
2156		break;
2157	case FR_INRANGE :
2158		if (pop <= po || pop >= frp->frp_top) /* In range */
2159			err = 0;
2160		break;
2161	case FR_INCRANGE :
2162		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2163			err = 0;
2164		break;
2165	default :
2166		break;
2167	}
2168	return err;
2169}
2170
2171
2172/* ------------------------------------------------------------------------ */
2173/* Function:    ipf_tcpudpchk                                               */
2174/* Returns:     int - 1 == protocol matched, 0 == check failed              */
2175/* Parameters:  fda(I) - pointer to packet information                      */
2176/*              ft(I)  - pointer to structure with comparison data          */
2177/*                                                                          */
2178/* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2179/* structure containing information that we want to match against.          */
2180/* ------------------------------------------------------------------------ */
2181int
2182ipf_tcpudpchk(fi, ft)
2183	fr_ip_t *fi;
2184	frtuc_t *ft;
2185{
2186	int err = 1;
2187
2188	/*
2189	 * Both ports should *always* be in the first fragment.
2190	 * So far, I cannot find any cases where they can not be.
2191	 *
2192	 * compare destination ports
2193	 */
2194	if (ft->ftu_dcmp)
2195		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2196
2197	/*
2198	 * compare source ports
2199	 */
2200	if (err && ft->ftu_scmp)
2201		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2202
2203	/*
2204	 * If we don't have all the TCP/UDP header, then how can we
2205	 * expect to do any sort of match on it ?  If we were looking for
2206	 * TCP flags, then NO match.  If not, then match (which should
2207	 * satisfy the "short" class too).
2208	 */
2209	if (err && (fi->fi_p == IPPROTO_TCP)) {
2210		if (fi->fi_flx & FI_SHORT)
2211			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2212		/*
2213		 * Match the flags ?  If not, abort this match.
2214		 */
2215		if (ft->ftu_tcpfm &&
2216		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2217			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2218				 ft->ftu_tcpfm, ft->ftu_tcpf));
2219			err = 0;
2220		}
2221	}
2222	return err;
2223}
2224
2225
2226/* ------------------------------------------------------------------------ */
2227/* Function:    ipf_check_ipf                                               */
2228/* Returns:     int - 0 == match, else no match                             */
2229/* Parameters:  fin(I)     - pointer to packet information                  */
2230/*              fr(I)      - pointer to filter rule                         */
2231/*              portcmp(I) - flag indicating whether to attempt matching on */
2232/*                           TCP/UDP port data.                             */
2233/*                                                                          */
2234/* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2235/* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2236/* this function.                                                           */
2237/* ------------------------------------------------------------------------ */
2238static INLINE int
2239ipf_check_ipf(fin, fr, portcmp)
2240	fr_info_t *fin;
2241	frentry_t *fr;
2242	int portcmp;
2243{
2244	u_32_t	*ld, *lm, *lip;
2245	fripf_t *fri;
2246	fr_ip_t *fi;
2247	int i;
2248
2249	fi = &fin->fin_fi;
2250	fri = fr->fr_ipf;
2251	lip = (u_32_t *)fi;
2252	lm = (u_32_t *)&fri->fri_mip;
2253	ld = (u_32_t *)&fri->fri_ip;
2254
2255	/*
2256	 * first 32 bits to check coversion:
2257	 * IP version, TOS, TTL, protocol
2258	 */
2259	i = ((*lip & *lm) != *ld);
2260	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2261		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2262	if (i)
2263		return 1;
2264
2265	/*
2266	 * Next 32 bits is a constructed bitmask indicating which IP options
2267	 * are present (if any) in this packet.
2268	 */
2269	lip++, lm++, ld++;
2270	i = ((*lip & *lm) != *ld);
2271	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2272		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2273	if (i != 0)
2274		return 1;
2275
2276	lip++, lm++, ld++;
2277	/*
2278	 * Unrolled loops (4 each, for 32 bits) for address checks.
2279	 */
2280	/*
2281	 * Check the source address.
2282	 */
2283	if (fr->fr_satype == FRI_LOOKUP) {
2284		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2285				      fi->fi_v, lip, fin->fin_plen);
2286		if (i == -1)
2287			return 1;
2288		lip += 3;
2289		lm += 3;
2290		ld += 3;
2291	} else {
2292		i = ((*lip & *lm) != *ld);
2293		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2294			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2295		if (fi->fi_v == 6) {
2296			lip++, lm++, ld++;
2297			i |= ((*lip & *lm) != *ld);
2298			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2299				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2300			lip++, lm++, ld++;
2301			i |= ((*lip & *lm) != *ld);
2302			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2303				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2304			lip++, lm++, ld++;
2305			i |= ((*lip & *lm) != *ld);
2306			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2307				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2308		} else {
2309			lip += 3;
2310			lm += 3;
2311			ld += 3;
2312		}
2313	}
2314	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2315	if (i != 0)
2316		return 1;
2317
2318	/*
2319	 * Check the destination address.
2320	 */
2321	lip++, lm++, ld++;
2322	if (fr->fr_datype == FRI_LOOKUP) {
2323		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2324				      fi->fi_v, lip, fin->fin_plen);
2325		if (i == -1)
2326			return 1;
2327		lip += 3;
2328		lm += 3;
2329		ld += 3;
2330	} else {
2331		i = ((*lip & *lm) != *ld);
2332		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2333			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2334		if (fi->fi_v == 6) {
2335			lip++, lm++, ld++;
2336			i |= ((*lip & *lm) != *ld);
2337			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2338				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2339			lip++, lm++, ld++;
2340			i |= ((*lip & *lm) != *ld);
2341			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2342				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2343			lip++, lm++, ld++;
2344			i |= ((*lip & *lm) != *ld);
2345			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2346				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2347		} else {
2348			lip += 3;
2349			lm += 3;
2350			ld += 3;
2351		}
2352	}
2353	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2354	if (i != 0)
2355		return 1;
2356	/*
2357	 * IP addresses matched.  The next 32bits contains:
2358	 * mast of old IP header security & authentication bits.
2359	 */
2360	lip++, lm++, ld++;
2361	i = (*ld - (*lip & *lm));
2362	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2363
2364	/*
2365	 * Next we have 32 bits of packet flags.
2366	 */
2367	lip++, lm++, ld++;
2368	i |= (*ld - (*lip & *lm));
2369	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2370
2371	if (i == 0) {
2372		/*
2373		 * If a fragment, then only the first has what we're
2374		 * looking for here...
2375		 */
2376		if (portcmp) {
2377			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2378				i = 1;
2379		} else {
2380			if (fr->fr_dcmp || fr->fr_scmp ||
2381			    fr->fr_tcpf || fr->fr_tcpfm)
2382				i = 1;
2383			if (fr->fr_icmpm || fr->fr_icmp) {
2384				if (((fi->fi_p != IPPROTO_ICMP) &&
2385				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2386				    fin->fin_off || (fin->fin_dlen < 2))
2387					i = 1;
2388				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2389					 fr->fr_icmp) {
2390					FR_DEBUG(("i. %#x & %#x != %#x\n",
2391						 fin->fin_data[0],
2392						 fr->fr_icmpm, fr->fr_icmp));
2393					i = 1;
2394				}
2395			}
2396		}
2397	}
2398	return i;
2399}
2400
2401
2402/* ------------------------------------------------------------------------ */
2403/* Function:    ipf_scanlist                                                */
2404/* Returns:     int - result flags of scanning filter list                  */
2405/* Parameters:  fin(I) - pointer to packet information                      */
2406/*              pass(I) - default result to return for filtering            */
2407/*                                                                          */
2408/* Check the input/output list of rules for a match to the current packet.  */
2409/* If a match is found, the value of fr_flags from the rule becomes the     */
2410/* return value and fin->fin_fr points to the matched rule.                 */
2411/*                                                                          */
2412/* This function may be called recusively upto 16 times (limit inbuilt.)    */
2413/* When unwinding, it should finish up with fin_depth as 0.                 */
2414/*                                                                          */
2415/* Could be per interface, but this gets real nasty when you don't have,    */
2416/* or can't easily change, the kernel source code to .                      */
2417/* ------------------------------------------------------------------------ */
2418int
2419ipf_scanlist(fin, pass)
2420	fr_info_t *fin;
2421	u_32_t pass;
2422{
2423	ipf_main_softc_t *softc = fin->fin_main_soft;
2424	int rulen, portcmp, off, skip;
2425	struct frentry *fr, *fnext;
2426	u_32_t passt, passo;
2427
2428	/*
2429	 * Do not allow nesting deeper than 16 levels.
2430	 */
2431	if (fin->fin_depth >= 16)
2432		return pass;
2433
2434	fr = fin->fin_fr;
2435
2436	/*
2437	 * If there are no rules in this list, return now.
2438	 */
2439	if (fr == NULL)
2440		return pass;
2441
2442	skip = 0;
2443	portcmp = 0;
2444	fin->fin_depth++;
2445	fin->fin_fr = NULL;
2446	off = fin->fin_off;
2447
2448	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2449		portcmp = 1;
2450
2451	for (rulen = 0; fr; fr = fnext, rulen++) {
2452		fnext = fr->fr_next;
2453		if (skip != 0) {
2454			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2455			skip--;
2456			continue;
2457		}
2458
2459		/*
2460		 * In all checks below, a null (zero) value in the
2461		 * filter struture is taken to mean a wildcard.
2462		 *
2463		 * check that we are working for the right interface
2464		 */
2465#ifdef	_KERNEL
2466		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2467			continue;
2468#else
2469		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2470			printf("\n");
2471		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2472				  FR_ISPASS(pass) ? 'p' :
2473				  FR_ISACCOUNT(pass) ? 'A' :
2474				  FR_ISAUTH(pass) ? 'a' :
2475				  (pass & FR_NOMATCH) ? 'n' :'b'));
2476		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2477			continue;
2478		FR_VERBOSE((":i"));
2479#endif
2480
2481		switch (fr->fr_type)
2482		{
2483		case FR_T_IPF :
2484		case FR_T_IPF_BUILTIN :
2485			if (ipf_check_ipf(fin, fr, portcmp))
2486				continue;
2487			break;
2488#if defined(IPFILTER_BPF)
2489		case FR_T_BPFOPC :
2490		case FR_T_BPFOPC_BUILTIN :
2491		    {
2492			u_char *mc;
2493			int wlen;
2494
2495			if (*fin->fin_mp == NULL)
2496				continue;
2497			if (fin->fin_family != fr->fr_family)
2498				continue;
2499			mc = (u_char *)fin->fin_m;
2500			wlen = fin->fin_dlen + fin->fin_hlen;
2501			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2502				continue;
2503			break;
2504		    }
2505#endif
2506		case FR_T_CALLFUNC_BUILTIN :
2507		    {
2508			frentry_t *f;
2509
2510			f = (*fr->fr_func)(fin, &pass);
2511			if (f != NULL)
2512				fr = f;
2513			else
2514				continue;
2515			break;
2516		    }
2517
2518		case FR_T_IPFEXPR :
2519		case FR_T_IPFEXPR_BUILTIN :
2520			if (fin->fin_family != fr->fr_family)
2521				continue;
2522			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2523				continue;
2524			break;
2525
2526		default :
2527			break;
2528		}
2529
2530		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2531			if (fin->fin_nattag == NULL)
2532				continue;
2533			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2534				continue;
2535		}
2536		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2537
2538		passt = fr->fr_flags;
2539
2540		/*
2541		 * If the rule is a "call now" rule, then call the function
2542		 * in the rule, if it exists and use the results from that.
2543		 * If the function pointer is bad, just make like we ignore
2544		 * it, except for increasing the hit counter.
2545		 */
2546		if ((passt & FR_CALLNOW) != 0) {
2547			frentry_t *frs;
2548
2549			ATOMIC_INC64(fr->fr_hits);
2550			if ((fr->fr_func == NULL) ||
2551			    (fr->fr_func == (ipfunc_t)-1))
2552				continue;
2553
2554			frs = fin->fin_fr;
2555			fin->fin_fr = fr;
2556			fr = (*fr->fr_func)(fin, &passt);
2557			if (fr == NULL) {
2558				fin->fin_fr = frs;
2559				continue;
2560			}
2561			passt = fr->fr_flags;
2562		}
2563		fin->fin_fr = fr;
2564
2565#ifdef  IPFILTER_LOG
2566		/*
2567		 * Just log this packet...
2568		 */
2569		if ((passt & FR_LOGMASK) == FR_LOG) {
2570			if (ipf_log_pkt(fin, passt) == -1) {
2571				if (passt & FR_LOGORBLOCK) {
2572					DT(frb_logfail);
2573					passt &= ~FR_CMDMASK;
2574					passt |= FR_BLOCK|FR_QUICK;
2575					fin->fin_reason = FRB_LOGFAIL;
2576				}
2577			}
2578		}
2579#endif /* IPFILTER_LOG */
2580
2581		MUTEX_ENTER(&fr->fr_lock);
2582		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2583		fr->fr_hits++;
2584		MUTEX_EXIT(&fr->fr_lock);
2585		fin->fin_rule = rulen;
2586
2587		passo = pass;
2588		if (FR_ISSKIP(passt)) {
2589			skip = fr->fr_arg;
2590			continue;
2591		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2592			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2593			pass = passt;
2594		}
2595
2596		if (passt & (FR_RETICMP|FR_FAKEICMP))
2597			fin->fin_icode = fr->fr_icode;
2598
2599		if (fr->fr_group != -1) {
2600			(void) strncpy(fin->fin_group,
2601				       FR_NAME(fr, fr_group),
2602				       strlen(FR_NAME(fr, fr_group)));
2603		} else {
2604			fin->fin_group[0] = '\0';
2605		}
2606
2607		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2608
2609		if (fr->fr_grphead != NULL) {
2610			fin->fin_fr = fr->fr_grphead->fg_start;
2611			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2612
2613			if (FR_ISDECAPS(passt))
2614				passt = ipf_decaps(fin, pass, fr->fr_icode);
2615			else
2616				passt = ipf_scanlist(fin, pass);
2617
2618			if (fin->fin_fr == NULL) {
2619				fin->fin_rule = rulen;
2620				if (fr->fr_group != -1)
2621					(void) strncpy(fin->fin_group,
2622						       fr->fr_names +
2623						       fr->fr_group,
2624						       strlen(fr->fr_names +
2625							      fr->fr_group));
2626				fin->fin_fr = fr;
2627				passt = pass;
2628			}
2629			pass = passt;
2630		}
2631
2632		if (pass & FR_QUICK) {
2633			/*
2634			 * Finally, if we've asked to track state for this
2635			 * packet, set it up.  Add state for "quick" rules
2636			 * here so that if the action fails we can consider
2637			 * the rule to "not match" and keep on processing
2638			 * filter rules.
2639			 */
2640			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2641			    !(fin->fin_flx & FI_STATE)) {
2642				int out = fin->fin_out;
2643
2644				fin->fin_fr = fr;
2645				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2646					LBUMPD(ipf_stats[out], fr_ads);
2647				} else {
2648					LBUMPD(ipf_stats[out], fr_bads);
2649					pass = passo;
2650					continue;
2651				}
2652			}
2653			break;
2654		}
2655	}
2656	fin->fin_depth--;
2657	return pass;
2658}
2659
2660
2661/* ------------------------------------------------------------------------ */
2662/* Function:    ipf_acctpkt                                                 */
2663/* Returns:     frentry_t* - always returns NULL                            */
2664/* Parameters:  fin(I) - pointer to packet information                      */
2665/*              passp(IO) - pointer to current/new filter decision (unused) */
2666/*                                                                          */
2667/* Checks a packet against accounting rules, if there are any for the given */
2668/* IP protocol version.                                                     */
2669/*                                                                          */
2670/* N.B.: this function returns NULL to match the prototype used by other    */
2671/* functions called from the IPFilter "mainline" in ipf_check().            */
2672/* ------------------------------------------------------------------------ */
2673frentry_t *
2674ipf_acctpkt(fin, passp)
2675	fr_info_t *fin;
2676	u_32_t *passp;
2677{
2678	ipf_main_softc_t *softc = fin->fin_main_soft;
2679	char group[FR_GROUPLEN];
2680	frentry_t *fr, *frsave;
2681	u_32_t pass, rulen;
2682
2683	passp = passp;
2684	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2685
2686	if (fr != NULL) {
2687		frsave = fin->fin_fr;
2688		bcopy(fin->fin_group, group, FR_GROUPLEN);
2689		rulen = fin->fin_rule;
2690		fin->fin_fr = fr;
2691		pass = ipf_scanlist(fin, FR_NOMATCH);
2692		if (FR_ISACCOUNT(pass)) {
2693			LBUMPD(ipf_stats[0], fr_acct);
2694		}
2695		fin->fin_fr = frsave;
2696		bcopy(group, fin->fin_group, FR_GROUPLEN);
2697		fin->fin_rule = rulen;
2698	}
2699	return NULL;
2700}
2701
2702
2703/* ------------------------------------------------------------------------ */
2704/* Function:    ipf_firewall                                                */
2705/* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2706/*                           were found, returns NULL.                      */
2707/* Parameters:  fin(I) - pointer to packet information                      */
2708/*              passp(IO) - pointer to current/new filter decision (unused) */
2709/*                                                                          */
2710/* Applies an appropriate set of firewall rules to the packet, to see if    */
2711/* there are any matches.  The first check is to see if a match can be seen */
2712/* in the cache.  If not, then search an appropriate list of rules.  Once a */
2713/* matching rule is found, take any appropriate actions as defined by the   */
2714/* rule - except logging.                                                   */
2715/* ------------------------------------------------------------------------ */
2716static frentry_t *
2717ipf_firewall(fin, passp)
2718	fr_info_t *fin;
2719	u_32_t *passp;
2720{
2721	ipf_main_softc_t *softc = fin->fin_main_soft;
2722	frentry_t *fr;
2723	u_32_t pass;
2724	int out;
2725
2726	out = fin->fin_out;
2727	pass = *passp;
2728
2729	/*
2730	 * This rule cache will only affect packets that are not being
2731	 * statefully filtered.
2732	 */
2733	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2734	if (fin->fin_fr != NULL)
2735		pass = ipf_scanlist(fin, softc->ipf_pass);
2736
2737	if ((pass & FR_NOMATCH)) {
2738		LBUMPD(ipf_stats[out], fr_nom);
2739	}
2740	fr = fin->fin_fr;
2741
2742	/*
2743	 * Apply packets per second rate-limiting to a rule as required.
2744	 */
2745	if ((fr != NULL) && (fr->fr_pps != 0) &&
2746	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2747		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2748		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2749		pass |= FR_BLOCK;
2750		LBUMPD(ipf_stats[out], fr_ppshit);
2751		fin->fin_reason = FRB_PPSRATE;
2752	}
2753
2754	/*
2755	 * If we fail to add a packet to the authorization queue, then we
2756	 * drop the packet later.  However, if it was added then pretend
2757	 * we've dropped it already.
2758	 */
2759	if (FR_ISAUTH(pass)) {
2760		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2761			DT1(frb_authnew, fr_info_t *, fin);
2762			fin->fin_m = *fin->fin_mp = NULL;
2763			fin->fin_reason = FRB_AUTHNEW;
2764			fin->fin_error = 0;
2765		} else {
2766			IPFERROR(1);
2767			fin->fin_error = ENOSPC;
2768		}
2769	}
2770
2771	if ((fr != NULL) && (fr->fr_func != NULL) &&
2772	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2773		(void) (*fr->fr_func)(fin, &pass);
2774
2775	/*
2776	 * If a rule is a pre-auth rule, check again in the list of rules
2777	 * loaded for authenticated use.  It does not particulary matter
2778	 * if this search fails because a "preauth" result, from a rule,
2779	 * is treated as "not a pass", hence the packet is blocked.
2780	 */
2781	if (FR_ISPREAUTH(pass)) {
2782		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2783	}
2784
2785	/*
2786	 * If the rule has "keep frag" and the packet is actually a fragment,
2787	 * then create a fragment state entry.
2788	 */
2789	if (pass & FR_KEEPFRAG) {
2790		if (fin->fin_flx & FI_FRAG) {
2791			if (ipf_frag_new(softc, fin, pass) == -1) {
2792				LBUMP(ipf_stats[out].fr_bnfr);
2793			} else {
2794				LBUMP(ipf_stats[out].fr_nfr);
2795			}
2796		} else {
2797			LBUMP(ipf_stats[out].fr_cfr);
2798		}
2799	}
2800
2801	fr = fin->fin_fr;
2802	*passp = pass;
2803
2804	return fr;
2805}
2806
2807
2808/* ------------------------------------------------------------------------ */
2809/* Function:    ipf_check                                                   */
2810/* Returns:     int -  0 == packet allowed through,                         */
2811/*              User space:                                                 */
2812/*                    -1 == packet blocked                                  */
2813/*                     1 == packet not matched                              */
2814/*                    -2 == requires authentication                         */
2815/*              Kernel:                                                     */
2816/*                   > 0 == filter error # for packet                       */
2817/* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2818/*             hlen(I) - length of header                                   */
2819/*             ifp(I)  - pointer to interface this packet is on             */
2820/*             out(I)  - 0 == packet going in, 1 == packet going out        */
2821/*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2822/*                       IP packet.                                         */
2823/* Solaris & HP-UX ONLY :                                                   */
2824/*             qpi(I)  - pointer to STREAMS queue information for this      */
2825/*                       interface & direction.                             */
2826/*                                                                          */
2827/* ipf_check() is the master function for all IPFilter packet processing.   */
2828/* It orchestrates: Network Address Translation (NAT), checking for packet  */
2829/* authorisation (or pre-authorisation), presence of related state info.,   */
2830/* generating log entries, IP packet accounting, routing of packets as      */
2831/* directed by firewall rules and of course whether or not to allow the     */
2832/* packet to be further processed by the kernel.                            */
2833/*                                                                          */
2834/* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2835/* freed.  Packets passed may be returned with the pointer pointed to by    */
2836/* by "mp" changed to a new buffer.                                         */
2837/* ------------------------------------------------------------------------ */
2838int
2839ipf_check(ctx, ip, hlen, ifp, out
2840#if defined(_KERNEL) && defined(MENTAT)
2841	, qif, mp)
2842	void *qif;
2843#else
2844	, mp)
2845#endif
2846	mb_t **mp;
2847	ip_t *ip;
2848	int hlen;
2849	void *ifp;
2850	int out;
2851	void *ctx;
2852{
2853	/*
2854	 * The above really sucks, but short of writing a diff
2855	 */
2856	ipf_main_softc_t *softc = ctx;
2857	fr_info_t frinfo;
2858	fr_info_t *fin = &frinfo;
2859	u_32_t pass = softc->ipf_pass;
2860	frentry_t *fr = NULL;
2861	int v = IP_V(ip);
2862	mb_t *mc = NULL;
2863	mb_t *m;
2864	/*
2865	 * The first part of ipf_check() deals with making sure that what goes
2866	 * into the filtering engine makes some sense.  Information about the
2867	 * the packet is distilled, collected into a fr_info_t structure and
2868	 * the an attempt to ensure the buffer the packet is in is big enough
2869	 * to hold all the required packet headers.
2870	 */
2871#ifdef	_KERNEL
2872# ifdef MENTAT
2873	qpktinfo_t *qpi = qif;
2874
2875#  ifdef __sparc
2876	if ((u_int)ip & 0x3)
2877		return 2;
2878#  endif
2879# else
2880	SPL_INT(s);
2881# endif
2882
2883	if (softc->ipf_running <= 0) {
2884		return 0;
2885	}
2886
2887	bzero((char *)fin, sizeof(*fin));
2888
2889# ifdef MENTAT
2890	if (qpi->qpi_flags & QF_BROADCAST)
2891		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2892	if (qpi->qpi_flags & QF_MULTICAST)
2893		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2894	m = qpi->qpi_m;
2895	fin->fin_qfm = m;
2896	fin->fin_qpi = qpi;
2897# else /* MENTAT */
2898
2899	m = *mp;
2900
2901#  if defined(M_MCAST)
2902	if ((m->m_flags & M_MCAST) != 0)
2903		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2904#  endif
2905#  if defined(M_MLOOP)
2906	if ((m->m_flags & M_MLOOP) != 0)
2907		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2908#  endif
2909#  if defined(M_BCAST)
2910	if ((m->m_flags & M_BCAST) != 0)
2911		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2912#  endif
2913#  ifdef M_CANFASTFWD
2914	/*
2915	 * XXX For now, IP Filter and fast-forwarding of cached flows
2916	 * XXX are mutually exclusive.  Eventually, IP Filter should
2917	 * XXX get a "can-fast-forward" filter rule.
2918	 */
2919	m->m_flags &= ~M_CANFASTFWD;
2920#  endif /* M_CANFASTFWD */
2921#  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2922				   (__FreeBSD_version < 501108))
2923	/*
2924	 * disable delayed checksums.
2925	 */
2926	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2927		in_delayed_cksum(m);
2928		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2929	}
2930#  endif /* CSUM_DELAY_DATA */
2931# endif /* MENTAT */
2932#else
2933	bzero((char *)fin, sizeof(*fin));
2934	m = *mp;
2935# if defined(M_MCAST)
2936	if ((m->m_flags & M_MCAST) != 0)
2937		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2938# endif
2939# if defined(M_MLOOP)
2940	if ((m->m_flags & M_MLOOP) != 0)
2941		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2942# endif
2943# if defined(M_BCAST)
2944	if ((m->m_flags & M_BCAST) != 0)
2945		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2946# endif
2947#endif /* _KERNEL */
2948
2949	fin->fin_v = v;
2950	fin->fin_m = m;
2951	fin->fin_ip = ip;
2952	fin->fin_mp = mp;
2953	fin->fin_out = out;
2954	fin->fin_ifp = ifp;
2955	fin->fin_error = ENETUNREACH;
2956	fin->fin_hlen = (u_short)hlen;
2957	fin->fin_dp = (char *)ip + hlen;
2958	fin->fin_main_soft = softc;
2959
2960	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2961
2962	SPL_NET(s);
2963
2964#ifdef	USE_INET6
2965	if (v == 6) {
2966		LBUMP(ipf_stats[out].fr_ipv6);
2967		/*
2968		 * Jumbo grams are quite likely too big for internal buffer
2969		 * structures to handle comfortably, for now, so just drop
2970		 * them.
2971		 */
2972		if (((ip6_t *)ip)->ip6_plen == 0) {
2973			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2974			pass = FR_BLOCK|FR_NOMATCH;
2975			fin->fin_reason = FRB_JUMBO;
2976			goto finished;
2977		}
2978		fin->fin_family = AF_INET6;
2979	} else
2980#endif
2981	{
2982		fin->fin_family = AF_INET;
2983	}
2984
2985	if (ipf_makefrip(hlen, ip, fin) == -1) {
2986		DT1(frb_makefrip, fr_info_t *, fin);
2987		pass = FR_BLOCK|FR_NOMATCH;
2988		fin->fin_reason = FRB_MAKEFRIP;
2989		goto finished;
2990	}
2991
2992	/*
2993	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2994	 * becomes NULL and so we have no packet to free.
2995	 */
2996	if (*fin->fin_mp == NULL)
2997		goto finished;
2998
2999	if (!out) {
3000		if (v == 4) {
3001			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
3002				LBUMPD(ipf_stats[0], fr_v4_badsrc);
3003				fin->fin_flx |= FI_BADSRC;
3004			}
3005			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
3006				LBUMPD(ipf_stats[0], fr_v4_badttl);
3007				fin->fin_flx |= FI_LOWTTL;
3008			}
3009		}
3010#ifdef USE_INET6
3011		else  if (v == 6) {
3012			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
3013				LBUMPD(ipf_stats[0], fr_v6_badttl);
3014				fin->fin_flx |= FI_LOWTTL;
3015			}
3016		}
3017#endif
3018	}
3019
3020	if (fin->fin_flx & FI_SHORT) {
3021		LBUMPD(ipf_stats[out], fr_short);
3022	}
3023
3024	READ_ENTER(&softc->ipf_mutex);
3025
3026	if (!out) {
3027		switch (fin->fin_v)
3028		{
3029		case 4 :
3030			if (ipf_nat_checkin(fin, &pass) == -1) {
3031				goto filterdone;
3032			}
3033			break;
3034#ifdef USE_INET6
3035		case 6 :
3036			if (ipf_nat6_checkin(fin, &pass) == -1) {
3037				goto filterdone;
3038			}
3039			break;
3040#endif
3041		default :
3042			break;
3043		}
3044	}
3045	/*
3046	 * Check auth now.
3047	 * If a packet is found in the auth table, then skip checking
3048	 * the access lists for permission but we do need to consider
3049	 * the result as if it were from the ACL's.  In addition, being
3050	 * found in the auth table means it has been seen before, so do
3051	 * not pass it through accounting (again), lest it be counted twice.
3052	 */
3053	fr = ipf_auth_check(fin, &pass);
3054	if (!out && (fr == NULL))
3055		(void) ipf_acctpkt(fin, NULL);
3056
3057	if (fr == NULL) {
3058		if ((fin->fin_flx & FI_FRAG) != 0)
3059			fr = ipf_frag_known(fin, &pass);
3060
3061		if (fr == NULL)
3062			fr = ipf_state_check(fin, &pass);
3063	}
3064
3065	if ((pass & FR_NOMATCH) || (fr == NULL))
3066		fr = ipf_firewall(fin, &pass);
3067
3068	/*
3069	 * If we've asked to track state for this packet, set it up.
3070	 * Here rather than ipf_firewall because ipf_checkauth may decide
3071	 * to return a packet for "keep state"
3072	 */
3073	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3074	    !(fin->fin_flx & FI_STATE)) {
3075		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3076			LBUMP(ipf_stats[out].fr_ads);
3077		} else {
3078			LBUMP(ipf_stats[out].fr_bads);
3079			if (FR_ISPASS(pass)) {
3080				DT(frb_stateadd);
3081				pass &= ~FR_CMDMASK;
3082				pass |= FR_BLOCK;
3083				fin->fin_reason = FRB_STATEADD;
3084			}
3085		}
3086	}
3087
3088	fin->fin_fr = fr;
3089	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3090		fin->fin_dif = &fr->fr_dif;
3091		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3092	}
3093
3094	/*
3095	 * Only count/translate packets which will be passed on, out the
3096	 * interface.
3097	 */
3098	if (out && FR_ISPASS(pass)) {
3099		(void) ipf_acctpkt(fin, NULL);
3100
3101		switch (fin->fin_v)
3102		{
3103		case 4 :
3104			if (ipf_nat_checkout(fin, &pass) == -1) {
3105				;
3106			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3107				if (ipf_updateipid(fin) == -1) {
3108					DT(frb_updateipid);
3109					LBUMP(ipf_stats[1].fr_ipud);
3110					pass &= ~FR_CMDMASK;
3111					pass |= FR_BLOCK;
3112					fin->fin_reason = FRB_UPDATEIPID;
3113				} else {
3114					LBUMP(ipf_stats[0].fr_ipud);
3115				}
3116			}
3117			break;
3118#ifdef USE_INET6
3119		case 6 :
3120			(void) ipf_nat6_checkout(fin, &pass);
3121			break;
3122#endif
3123		default :
3124			break;
3125		}
3126	}
3127
3128filterdone:
3129#ifdef	IPFILTER_LOG
3130	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3131		(void) ipf_dolog(fin, &pass);
3132	}
3133#endif
3134
3135	/*
3136	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3137	 * will work when called from inside of fr_fastroute.  Although
3138	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3139	 * impact on code execution.
3140	 */
3141	fin->fin_flx &= ~FI_STATE;
3142
3143#if defined(FASTROUTE_RECURSION)
3144	/*
3145	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3146	 * a packet below can sometimes cause a recursive call into IPFilter.
3147	 * On those platforms where that does happen, we need to hang onto
3148	 * the filter rule just in case someone decides to remove or flush it
3149	 * in the meantime.
3150	 */
3151	if (fr != NULL) {
3152		MUTEX_ENTER(&fr->fr_lock);
3153		fr->fr_ref++;
3154		MUTEX_EXIT(&fr->fr_lock);
3155	}
3156
3157	RWLOCK_EXIT(&softc->ipf_mutex);
3158#endif
3159
3160	if ((pass & FR_RETMASK) != 0) {
3161		/*
3162		 * Should we return an ICMP packet to indicate error
3163		 * status passing through the packet filter ?
3164		 * WARNING: ICMP error packets AND TCP RST packets should
3165		 * ONLY be sent in repsonse to incoming packets.  Sending
3166		 * them in response to outbound packets can result in a
3167		 * panic on some operating systems.
3168		 */
3169		if (!out) {
3170			if (pass & FR_RETICMP) {
3171				int dst;
3172
3173				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3174					dst = 1;
3175				else
3176					dst = 0;
3177				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3178							 dst);
3179				LBUMP(ipf_stats[0].fr_ret);
3180			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3181				   !(fin->fin_flx & FI_SHORT)) {
3182				if (((fin->fin_flx & FI_OOW) != 0) ||
3183				    (ipf_send_reset(fin) == 0)) {
3184					LBUMP(ipf_stats[1].fr_ret);
3185				}
3186			}
3187
3188			/*
3189			 * When using return-* with auth rules, the auth code
3190			 * takes over disposing of this packet.
3191			 */
3192			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3193				DT1(frb_authcapture, fr_info_t *, fin);
3194				fin->fin_m = *fin->fin_mp = NULL;
3195				fin->fin_reason = FRB_AUTHCAPTURE;
3196				m = NULL;
3197			}
3198		} else {
3199			if (pass & FR_RETRST) {
3200				fin->fin_error = ECONNRESET;
3201			}
3202		}
3203	}
3204
3205	/*
3206	 * After the above so that ICMP unreachables and TCP RSTs get
3207	 * created properly.
3208	 */
3209	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3210		ipf_nat_uncreate(fin);
3211
3212	/*
3213	 * If we didn't drop off the bottom of the list of rules (and thus
3214	 * the 'current' rule fr is not NULL), then we may have some extra
3215	 * instructions about what to do with a packet.
3216	 * Once we're finished return to our caller, freeing the packet if
3217	 * we are dropping it.
3218	 */
3219	if (fr != NULL) {
3220		frdest_t *fdp;
3221
3222		/*
3223		 * Generate a duplicated packet first because ipf_fastroute
3224		 * can lead to fin_m being free'd... not good.
3225		 */
3226		fdp = fin->fin_dif;
3227		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3228		    (fdp->fd_ptr != (void *)-1)) {
3229			mc = M_COPY(fin->fin_m);
3230			if (mc != NULL)
3231				ipf_fastroute(mc, &mc, fin, fdp);
3232		}
3233
3234		fdp = fin->fin_tif;
3235		if (!out && (pass & FR_FASTROUTE)) {
3236			/*
3237			 * For fastroute rule, no destination interface defined
3238			 * so pass NULL as the frdest_t parameter
3239			 */
3240			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3241			m = *mp = NULL;
3242		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3243			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3244			/* this is for to rules: */
3245			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3246			m = *mp = NULL;
3247		}
3248
3249#if defined(FASTROUTE_RECURSION)
3250		(void) ipf_derefrule(softc, &fr);
3251#endif
3252	}
3253#if !defined(FASTROUTE_RECURSION)
3254	RWLOCK_EXIT(&softc->ipf_mutex);
3255#endif
3256
3257finished:
3258	if (!FR_ISPASS(pass)) {
3259		LBUMP(ipf_stats[out].fr_block);
3260		if (*mp != NULL) {
3261#ifdef _KERNEL
3262			FREE_MB_T(*mp);
3263#endif
3264			m = *mp = NULL;
3265		}
3266	} else {
3267		LBUMP(ipf_stats[out].fr_pass);
3268#if defined(_KERNEL) && defined(__sgi)
3269		if ((fin->fin_hbuf != NULL) &&
3270		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3271			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3272		}
3273#endif
3274	}
3275
3276	SPL_X(s);
3277
3278#ifdef _KERNEL
3279	if (FR_ISPASS(pass))
3280		return 0;
3281	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3282	return fin->fin_error;
3283#else /* _KERNEL */
3284	if (*mp != NULL)
3285		(*mp)->mb_ifp = fin->fin_ifp;
3286	blockreason = fin->fin_reason;
3287	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3288	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3289		if ((pass & FR_NOMATCH) != 0)
3290			return 1;
3291
3292	if ((pass & FR_RETMASK) != 0)
3293		switch (pass & FR_RETMASK)
3294		{
3295		case FR_RETRST :
3296			return 3;
3297		case FR_RETICMP :
3298			return 4;
3299		case FR_FAKEICMP :
3300			return 5;
3301		}
3302
3303	switch (pass & FR_CMDMASK)
3304	{
3305	case FR_PASS :
3306		return 0;
3307	case FR_BLOCK :
3308		return -1;
3309	case FR_AUTH :
3310		return -2;
3311	case FR_ACCOUNT :
3312		return -3;
3313	case FR_PREAUTH :
3314		return -4;
3315	}
3316	return 2;
3317#endif /* _KERNEL */
3318}
3319
3320
3321#ifdef	IPFILTER_LOG
3322/* ------------------------------------------------------------------------ */
3323/* Function:    ipf_dolog                                                   */
3324/* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3325/* Parameters:  fin(I) - pointer to packet information                      */
3326/*              passp(IO) - pointer to current/new filter decision (unused) */
3327/*                                                                          */
3328/* Checks flags set to see how a packet should be logged, if it is to be    */
3329/* logged.  Adjust statistics based on its success or not.                  */
3330/* ------------------------------------------------------------------------ */
3331frentry_t *
3332ipf_dolog(fin, passp)
3333	fr_info_t *fin;
3334	u_32_t *passp;
3335{
3336	ipf_main_softc_t *softc = fin->fin_main_soft;
3337	u_32_t pass;
3338	int out;
3339
3340	out = fin->fin_out;
3341	pass = *passp;
3342
3343	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3344		pass |= FF_LOGNOMATCH;
3345		LBUMPD(ipf_stats[out], fr_npkl);
3346		goto logit;
3347
3348	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3349	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3350		if ((pass & FR_LOGMASK) != FR_LOGP)
3351			pass |= FF_LOGPASS;
3352		LBUMPD(ipf_stats[out], fr_ppkl);
3353		goto logit;
3354
3355	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3356		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3357		if ((pass & FR_LOGMASK) != FR_LOGB)
3358			pass |= FF_LOGBLOCK;
3359		LBUMPD(ipf_stats[out], fr_bpkl);
3360
3361logit:
3362		if (ipf_log_pkt(fin, pass) == -1) {
3363			/*
3364			 * If the "or-block" option has been used then
3365			 * block the packet if we failed to log it.
3366			 */
3367			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3368				DT1(frb_logfail2, u_int, pass);
3369				pass &= ~FR_CMDMASK;
3370				pass |= FR_BLOCK;
3371				fin->fin_reason = FRB_LOGFAIL2;
3372			}
3373		}
3374		*passp = pass;
3375	}
3376
3377	return fin->fin_fr;
3378}
3379#endif /* IPFILTER_LOG */
3380
3381
3382/* ------------------------------------------------------------------------ */
3383/* Function:    ipf_cksum                                                   */
3384/* Returns:     u_short - IP header checksum                                */
3385/* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3386/*              len(I)  - length of buffer in bytes                         */
3387/*                                                                          */
3388/* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3389/*                                                                          */
3390/* N.B.: addr should be 16bit aligned.                                      */
3391/* ------------------------------------------------------------------------ */
3392u_short
3393ipf_cksum(addr, len)
3394	u_short *addr;
3395	int len;
3396{
3397	u_32_t sum = 0;
3398
3399	for (sum = 0; len > 1; len -= 2)
3400		sum += *addr++;
3401
3402	/* mop up an odd byte, if necessary */
3403	if (len == 1)
3404		sum += *(u_char *)addr;
3405
3406	/*
3407	 * add back carry outs from top 16 bits to low 16 bits
3408	 */
3409	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3410	sum += (sum >> 16);			/* add carry */
3411	return (u_short)(~sum);
3412}
3413
3414
3415/* ------------------------------------------------------------------------ */
3416/* Function:    fr_cksum                                                    */
3417/* Returns:     u_short - layer 4 checksum                                  */
3418/* Parameters:  fin(I)     - pointer to packet information                  */
3419/*              ip(I)      - pointer to IP header                           */
3420/*              l4proto(I) - protocol to caclulate checksum for             */
3421/*              l4hdr(I)   - pointer to layer 4 header                      */
3422/*                                                                          */
3423/* Calculates the TCP checksum for the packet held in "m", using the data   */
3424/* in the IP header "ip" to seed it.                                        */
3425/*                                                                          */
3426/* NB: This function assumes we've pullup'd enough for all of the IP header */
3427/* and the TCP header.  We also assume that data blocks aren't allocated in */
3428/* odd sizes.                                                               */
3429/*                                                                          */
3430/* Expects ip_len and ip_off to be in network byte order when called.       */
3431/* ------------------------------------------------------------------------ */
3432u_short
3433fr_cksum(fin, ip, l4proto, l4hdr)
3434	fr_info_t *fin;
3435	ip_t *ip;
3436	int l4proto;
3437	void *l4hdr;
3438{
3439	u_short *sp, slen, sumsave, *csump;
3440	u_int sum, sum2;
3441	int hlen;
3442	int off;
3443#ifdef	USE_INET6
3444	ip6_t *ip6;
3445#endif
3446
3447	csump = NULL;
3448	sumsave = 0;
3449	sp = NULL;
3450	slen = 0;
3451	hlen = 0;
3452	sum = 0;
3453
3454	sum = htons((u_short)l4proto);
3455	/*
3456	 * Add up IP Header portion
3457	 */
3458#ifdef	USE_INET6
3459	if (IP_V(ip) == 4) {
3460#endif
3461		hlen = IP_HL(ip) << 2;
3462		off = hlen;
3463		sp = (u_short *)&ip->ip_src;
3464		sum += *sp++;	/* ip_src */
3465		sum += *sp++;
3466		sum += *sp++;	/* ip_dst */
3467		sum += *sp++;
3468#ifdef	USE_INET6
3469	} else if (IP_V(ip) == 6) {
3470		ip6 = (ip6_t *)ip;
3471		hlen = sizeof(*ip6);
3472		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3473		sp = (u_short *)&ip6->ip6_src;
3474		sum += *sp++;	/* ip6_src */
3475		sum += *sp++;
3476		sum += *sp++;
3477		sum += *sp++;
3478		sum += *sp++;
3479		sum += *sp++;
3480		sum += *sp++;
3481		sum += *sp++;
3482		/* This needs to be routing header aware. */
3483		sum += *sp++;	/* ip6_dst */
3484		sum += *sp++;
3485		sum += *sp++;
3486		sum += *sp++;
3487		sum += *sp++;
3488		sum += *sp++;
3489		sum += *sp++;
3490		sum += *sp++;
3491	} else {
3492		return 0xffff;
3493	}
3494#endif
3495	slen = fin->fin_plen - off;
3496	sum += htons(slen);
3497
3498	switch (l4proto)
3499	{
3500	case IPPROTO_UDP :
3501		csump = &((udphdr_t *)l4hdr)->uh_sum;
3502		break;
3503
3504	case IPPROTO_TCP :
3505		csump = &((tcphdr_t *)l4hdr)->th_sum;
3506		break;
3507	case IPPROTO_ICMP :
3508		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3509		sum = 0;	/* Pseudo-checksum is not included */
3510		break;
3511#ifdef USE_INET6
3512	case IPPROTO_ICMPV6 :
3513		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3514		break;
3515#endif
3516	default :
3517		break;
3518	}
3519
3520	if (csump != NULL) {
3521		sumsave = *csump;
3522		*csump = 0;
3523	}
3524
3525	sum2 = ipf_pcksum(fin, off, sum);
3526	if (csump != NULL)
3527		*csump = sumsave;
3528	return sum2;
3529}
3530
3531
3532/* ------------------------------------------------------------------------ */
3533/* Function:    ipf_findgroup                                               */
3534/* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3535/* Parameters:  softc(I) - pointer to soft context main structure           */
3536/*              group(I) - group name to search for                         */
3537/*              unit(I)  - device to which this group belongs               */
3538/*              set(I)   - which set of rules (inactive/inactive) this is   */
3539/*              fgpp(O)  - pointer to place to store pointer to the pointer */
3540/*                         to where to add the next (last) group or where   */
3541/*                         to delete group from.                            */
3542/*                                                                          */
3543/* Search amongst the defined groups for a particular group number.         */
3544/* ------------------------------------------------------------------------ */
3545frgroup_t *
3546ipf_findgroup(softc, group, unit, set, fgpp)
3547	ipf_main_softc_t *softc;
3548	char *group;
3549	minor_t unit;
3550	int set;
3551	frgroup_t ***fgpp;
3552{
3553	frgroup_t *fg, **fgp;
3554
3555	/*
3556	 * Which list of groups to search in is dependent on which list of
3557	 * rules are being operated on.
3558	 */
3559	fgp = &softc->ipf_groups[unit][set];
3560
3561	while ((fg = *fgp) != NULL) {
3562		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3563			break;
3564		else
3565			fgp = &fg->fg_next;
3566	}
3567	if (fgpp != NULL)
3568		*fgpp = fgp;
3569	return fg;
3570}
3571
3572
3573/* ------------------------------------------------------------------------ */
3574/* Function:    ipf_group_add                                               */
3575/* Returns:     frgroup_t * - NULL == did not create group,                 */
3576/*                            != NULL == pointer to the group               */
3577/* Parameters:  softc(I) - pointer to soft context main structure           */
3578/*              num(I)   - group number to add                              */
3579/*              head(I)  - rule pointer that is using this as the head      */
3580/*              flags(I) - rule flags which describe the type of rule it is */
3581/*              unit(I)  - device to which this group will belong to        */
3582/*              set(I)   - which set of rules (inactive/inactive) this is   */
3583/* Write Locks: ipf_mutex                                                   */
3584/*                                                                          */
3585/* Add a new group head, or if it already exists, increase the reference    */
3586/* count to it.                                                             */
3587/* ------------------------------------------------------------------------ */
3588frgroup_t *
3589ipf_group_add(softc, group, head, flags, unit, set)
3590	ipf_main_softc_t *softc;
3591	char *group;
3592	void *head;
3593	u_32_t flags;
3594	minor_t unit;
3595	int set;
3596{
3597	frgroup_t *fg, **fgp;
3598	u_32_t gflags;
3599
3600	if (group == NULL)
3601		return NULL;
3602
3603	if (unit == IPL_LOGIPF && *group == '\0')
3604		return NULL;
3605
3606	fgp = NULL;
3607	gflags = flags & FR_INOUT;
3608
3609	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3610	if (fg != NULL) {
3611		if (fg->fg_head == NULL && head != NULL)
3612			fg->fg_head = head;
3613		if (fg->fg_flags == 0)
3614			fg->fg_flags = gflags;
3615		else if (gflags != fg->fg_flags)
3616			return NULL;
3617		fg->fg_ref++;
3618		return fg;
3619	}
3620
3621	KMALLOC(fg, frgroup_t *);
3622	if (fg != NULL) {
3623		fg->fg_head = head;
3624		fg->fg_start = NULL;
3625		fg->fg_next = *fgp;
3626		bcopy(group, fg->fg_name, strlen(group) + 1);
3627		fg->fg_flags = gflags;
3628		fg->fg_ref = 1;
3629		fg->fg_set = &softc->ipf_groups[unit][set];
3630		*fgp = fg;
3631	}
3632	return fg;
3633}
3634
3635
3636/* ------------------------------------------------------------------------ */
3637/* Function:    ipf_group_del                                               */
3638/* Returns:     int      - number of rules deleted                          */
3639/* Parameters:  softc(I) - pointer to soft context main structure           */
3640/*              group(I) - group name to delete                             */
3641/*              fr(I)    - filter rule from which group is referenced       */
3642/* Write Locks: ipf_mutex                                                   */
3643/*                                                                          */
3644/* This function is called whenever a reference to a group is to be dropped */
3645/* and thus its reference count needs to be lowered and the group free'd if */
3646/* the reference count reaches zero. Passing in fr is really for the sole   */
3647/* purpose of knowing when the head rule is being deleted.                  */
3648/* ------------------------------------------------------------------------ */
3649void
3650ipf_group_del(softc, group, fr)
3651	ipf_main_softc_t *softc;
3652	frgroup_t *group;
3653	frentry_t *fr;
3654{
3655
3656	if (group->fg_head == fr)
3657		group->fg_head = NULL;
3658
3659	group->fg_ref--;
3660	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3661		ipf_group_free(group);
3662}
3663
3664
3665/* ------------------------------------------------------------------------ */
3666/* Function:    ipf_group_free                                              */
3667/* Returns:     Nil                                                         */
3668/* Parameters:  group(I) - pointer to filter rule group                     */
3669/*                                                                          */
3670/* Remove the group from the list of groups and free it.                    */
3671/* ------------------------------------------------------------------------ */
3672static void
3673ipf_group_free(group)
3674	frgroup_t *group;
3675{
3676	frgroup_t **gp;
3677
3678	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3679		if (*gp == group) {
3680			*gp = group->fg_next;
3681			break;
3682		}
3683	}
3684	KFREE(group);
3685}
3686
3687
3688/* ------------------------------------------------------------------------ */
3689/* Function:    ipf_group_flush                                             */
3690/* Returns:     int      - number of rules flush from group                 */
3691/* Parameters:  softc(I) - pointer to soft context main structure           */
3692/* Parameters:  group(I) - pointer to filter rule group                     */
3693/*                                                                          */
3694/* Remove all of the rules that currently are listed under the given group. */
3695/* ------------------------------------------------------------------------ */
3696static int
3697ipf_group_flush(softc, group)
3698	ipf_main_softc_t *softc;
3699	frgroup_t *group;
3700{
3701	int gone = 0;
3702
3703	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3704
3705	return gone;
3706}
3707
3708
3709/* ------------------------------------------------------------------------ */
3710/* Function:    ipf_getrulen                                                */
3711/* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3712/* Parameters:  softc(I) - pointer to soft context main structure           */
3713/* Parameters:  unit(I)  - device for which to count the rule's number      */
3714/*              flags(I) - which set of rules to find the rule in           */
3715/*              group(I) - group name                                       */
3716/*              n(I)     - rule number to find                              */
3717/*                                                                          */
3718/* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3719/* group # g doesn't exist or there are less than n rules in the group.     */
3720/* ------------------------------------------------------------------------ */
3721frentry_t *
3722ipf_getrulen(softc, unit, group, n)
3723	ipf_main_softc_t *softc;
3724	int unit;
3725	char *group;
3726	u_32_t n;
3727{
3728	frentry_t *fr;
3729	frgroup_t *fg;
3730
3731	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3732	if (fg == NULL)
3733		return NULL;
3734	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3735		;
3736	if (n != 0)
3737		return NULL;
3738	return fr;
3739}
3740
3741
3742/* ------------------------------------------------------------------------ */
3743/* Function:    ipf_flushlist                                               */
3744/* Returns:     int - >= 0 - number of flushed rules                        */
3745/* Parameters:  softc(I)   - pointer to soft context main structure         */
3746/*              nfreedp(O) - pointer to int where flush count is stored     */
3747/*              listp(I)   - pointer to list to flush pointer               */
3748/* Write Locks: ipf_mutex                                                   */
3749/*                                                                          */
3750/* Recursively flush rules from the list, descending groups as they are     */
3751/* encountered.  if a rule is the head of a group and it has lost all its   */
3752/* group members, then also delete the group reference.  nfreedp is needed  */
3753/* to store the accumulating count of rules removed, whereas the returned   */
3754/* value is just the number removed from the current list.  The latter is   */
3755/* needed to correctly adjust reference counts on rules that define groups. */
3756/*                                                                          */
3757/* NOTE: Rules not loaded from user space cannot be flushed.                */
3758/* ------------------------------------------------------------------------ */
3759static int
3760ipf_flushlist(softc, nfreedp, listp)
3761	ipf_main_softc_t *softc;
3762	int *nfreedp;
3763	frentry_t **listp;
3764{
3765	int freed = 0;
3766	frentry_t *fp;
3767
3768	while ((fp = *listp) != NULL) {
3769		if ((fp->fr_type & FR_T_BUILTIN) ||
3770		    !(fp->fr_flags & FR_COPIED)) {
3771			listp = &fp->fr_next;
3772			continue;
3773		}
3774		*listp = fp->fr_next;
3775		if (fp->fr_next != NULL)
3776			fp->fr_next->fr_pnext = fp->fr_pnext;
3777		fp->fr_pnext = NULL;
3778
3779		if (fp->fr_grphead != NULL) {
3780			freed += ipf_group_flush(softc, fp->fr_grphead);
3781			fp->fr_names[fp->fr_grhead] = '\0';
3782		}
3783
3784		if (fp->fr_icmpgrp != NULL) {
3785			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3786			fp->fr_names[fp->fr_icmphead] = '\0';
3787		}
3788
3789		if (fp->fr_srctrack.ht_max_nodes)
3790			ipf_rb_ht_flush(&fp->fr_srctrack);
3791
3792		fp->fr_next = NULL;
3793
3794		ASSERT(fp->fr_ref > 0);
3795		if (ipf_derefrule(softc, &fp) == 0)
3796			freed++;
3797	}
3798	*nfreedp += freed;
3799	return freed;
3800}
3801
3802
3803/* ------------------------------------------------------------------------ */
3804/* Function:    ipf_flush                                                   */
3805/* Returns:     int - >= 0 - number of flushed rules                        */
3806/* Parameters:  softc(I) - pointer to soft context main structure           */
3807/*              unit(I)  - device for which to flush rules                  */
3808/*              flags(I) - which set of rules to flush                      */
3809/*                                                                          */
3810/* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3811/* and IPv6) as defined by the value of flags.                              */
3812/* ------------------------------------------------------------------------ */
3813int
3814ipf_flush(softc, unit, flags)
3815	ipf_main_softc_t *softc;
3816	minor_t unit;
3817	int flags;
3818{
3819	int flushed = 0, set;
3820
3821	WRITE_ENTER(&softc->ipf_mutex);
3822
3823	set = softc->ipf_active;
3824	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3825		set = 1 - set;
3826
3827	if (flags & FR_OUTQUE) {
3828		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3829		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3830	}
3831	if (flags & FR_INQUE) {
3832		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3833		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3834	}
3835
3836	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3837				    flags & (FR_INQUE|FR_OUTQUE));
3838
3839	RWLOCK_EXIT(&softc->ipf_mutex);
3840
3841	if (unit == IPL_LOGIPF) {
3842		int tmp;
3843
3844		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3845		if (tmp >= 0)
3846			flushed += tmp;
3847	}
3848	return flushed;
3849}
3850
3851
3852/* ------------------------------------------------------------------------ */
3853/* Function:    ipf_flush_groups                                            */
3854/* Returns:     int - >= 0 - number of flushed rules                        */
3855/* Parameters:  softc(I)  - soft context pointerto work with                */
3856/*              grhead(I) - pointer to the start of the group list to flush */
3857/*              flags(I)  - which set of rules to flush                     */
3858/*                                                                          */
3859/* Walk through all of the groups under the given group head and remove all */
3860/* of those that match the flags passed in. The for loop here is bit more   */
3861/* complicated than usual because the removal of a rule with ipf_derefrule  */
3862/* may end up removing not only the structure pointed to by "fg" but also   */
3863/* what is fg_next and fg_next after that. So if a filter rule is actually  */
3864/* removed from the group then it is necessary to start again.              */
3865/* ------------------------------------------------------------------------ */
3866static int
3867ipf_flush_groups(softc, grhead, flags)
3868	ipf_main_softc_t *softc;
3869	frgroup_t **grhead;
3870	int flags;
3871{
3872	frentry_t *fr, **frp;
3873	frgroup_t *fg, **fgp;
3874	int flushed = 0;
3875	int removed = 0;
3876
3877	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3878		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3879			fg = fg->fg_next;
3880		if (fg == NULL)
3881			break;
3882		removed = 0;
3883		frp = &fg->fg_start;
3884		while ((removed == 0) && ((fr = *frp) != NULL)) {
3885			if ((fr->fr_flags & flags) == 0) {
3886				frp = &fr->fr_next;
3887			} else {
3888				if (fr->fr_next != NULL)
3889					fr->fr_next->fr_pnext = fr->fr_pnext;
3890				*frp = fr->fr_next;
3891				fr->fr_pnext = NULL;
3892				fr->fr_next = NULL;
3893				(void) ipf_derefrule(softc, &fr);
3894				flushed++;
3895				removed++;
3896			}
3897		}
3898		if (removed == 0)
3899			fgp = &fg->fg_next;
3900	}
3901	return flushed;
3902}
3903
3904
3905/* ------------------------------------------------------------------------ */
3906/* Function:    memstr                                                      */
3907/* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3908/* Parameters:  src(I)  - pointer to byte sequence to match                 */
3909/*              dst(I)  - pointer to byte sequence to search                */
3910/*              slen(I) - match length                                      */
3911/*              dlen(I) - length available to search in                     */
3912/*                                                                          */
3913/* Search dst for a sequence of bytes matching those at src and extend for  */
3914/* slen bytes.                                                              */
3915/* ------------------------------------------------------------------------ */
3916char *
3917memstr(src, dst, slen, dlen)
3918	const char *src;
3919	char *dst;
3920	size_t slen, dlen;
3921{
3922	char *s = NULL;
3923
3924	while (dlen >= slen) {
3925		if (bcmp(src, dst, slen) == 0) {
3926			s = dst;
3927			break;
3928		}
3929		dst++;
3930		dlen--;
3931	}
3932	return s;
3933}
3934/* ------------------------------------------------------------------------ */
3935/* Function:    ipf_fixskip                                                 */
3936/* Returns:     Nil                                                         */
3937/* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3938/*              rp(I)        - rule added/removed with skip in it.          */
3939/*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3940/*                             depending on whether a rule was just added   */
3941/*                             or removed.                                  */
3942/*                                                                          */
3943/* Adjust all the rules in a list which would have skip'd past the position */
3944/* where we are inserting to skip to the right place given the change.      */
3945/* ------------------------------------------------------------------------ */
3946void
3947ipf_fixskip(listp, rp, addremove)
3948	frentry_t **listp, *rp;
3949	int addremove;
3950{
3951	int rules, rn;
3952	frentry_t *fp;
3953
3954	rules = 0;
3955	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3956		rules++;
3957
3958	if (!fp)
3959		return;
3960
3961	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3962		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3963			fp->fr_arg += addremove;
3964}
3965
3966
3967#ifdef	_KERNEL
3968/* ------------------------------------------------------------------------ */
3969/* Function:    count4bits                                                  */
3970/* Returns:     int - >= 0 - number of consecutive bits in input            */
3971/* Parameters:  ip(I) - 32bit IP address                                    */
3972/*                                                                          */
3973/* IPv4 ONLY                                                                */
3974/* count consecutive 1's in bit mask.  If the mask generated by counting    */
3975/* consecutive 1's is different to that passed, return -1, else return #    */
3976/* of bits.                                                                 */
3977/* ------------------------------------------------------------------------ */
3978int
3979count4bits(ip)
3980	u_32_t	ip;
3981{
3982	u_32_t	ipn;
3983	int	cnt = 0, i, j;
3984
3985	ip = ipn = ntohl(ip);
3986	for (i = 32; i; i--, ipn *= 2)
3987		if (ipn & 0x80000000)
3988			cnt++;
3989		else
3990			break;
3991	ipn = 0;
3992	for (i = 32, j = cnt; i; i--, j--) {
3993		ipn *= 2;
3994		if (j > 0)
3995			ipn++;
3996	}
3997	if (ipn == ip)
3998		return cnt;
3999	return -1;
4000}
4001
4002
4003/* ------------------------------------------------------------------------ */
4004/* Function:    count6bits                                                  */
4005/* Returns:     int - >= 0 - number of consecutive bits in input            */
4006/* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
4007/*                                                                          */
4008/* IPv6 ONLY                                                                */
4009/* count consecutive 1's in bit mask.                                       */
4010/* ------------------------------------------------------------------------ */
4011# ifdef USE_INET6
4012int
4013count6bits(msk)
4014	u_32_t *msk;
4015{
4016	int i = 0, k;
4017	u_32_t j;
4018
4019	for (k = 3; k >= 0; k--)
4020		if (msk[k] == 0xffffffff)
4021			i += 32;
4022		else {
4023			for (j = msk[k]; j; j <<= 1)
4024				if (j & 0x80000000)
4025					i++;
4026		}
4027	return i;
4028}
4029# endif
4030#endif /* _KERNEL */
4031
4032
4033/* ------------------------------------------------------------------------ */
4034/* Function:    ipf_synclist                                                */
4035/* Returns:     int    - 0 = no failures, else indication of first failure  */
4036/* Parameters:  fr(I)  - start of filter list to sync interface names for   */
4037/*              ifp(I) - interface pointer for limiting sync lookups        */
4038/* Write Locks: ipf_mutex                                                   */
4039/*                                                                          */
4040/* Walk through a list of filter rules and resolve any interface names into */
4041/* pointers.  Where dynamic addresses are used, also update the IP address  */
4042/* used in the rule.  The interface pointer is used to limit the lookups to */
4043/* a specific set of matching names if it is non-NULL.                      */
4044/* Errors can occur when resolving the destination name of to/dup-to fields */
4045/* when the name points to a pool and that pool doest not exist. If this    */
4046/* does happen then it is necessary to check if there are any lookup refs   */
4047/* that need to be dropped before returning with an error.                  */
4048/* ------------------------------------------------------------------------ */
4049static int
4050ipf_synclist(softc, fr, ifp)
4051	ipf_main_softc_t *softc;
4052	frentry_t *fr;
4053	void *ifp;
4054{
4055	frentry_t *frt, *start = fr;
4056	frdest_t *fdp;
4057	char *name;
4058	int error;
4059	void *ifa;
4060	int v, i;
4061
4062	error = 0;
4063
4064	for (; fr; fr = fr->fr_next) {
4065		if (fr->fr_family == AF_INET)
4066			v = 4;
4067		else if (fr->fr_family == AF_INET6)
4068			v = 6;
4069		else
4070			v = 0;
4071
4072		/*
4073		 * Lookup all the interface names that are part of the rule.
4074		 */
4075		for (i = 0; i < 4; i++) {
4076			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
4077				continue;
4078			if (fr->fr_ifnames[i] == -1)
4079				continue;
4080			name = FR_NAME(fr, fr_ifnames[i]);
4081			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
4082		}
4083
4084		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4085			if (fr->fr_satype != FRI_NORMAL &&
4086			    fr->fr_satype != FRI_LOOKUP) {
4087				ifa = ipf_resolvenic(softc, fr->fr_names +
4088						     fr->fr_sifpidx, v);
4089				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
4090					    &fr->fr_src6, &fr->fr_smsk6);
4091			}
4092			if (fr->fr_datype != FRI_NORMAL &&
4093			    fr->fr_datype != FRI_LOOKUP) {
4094				ifa = ipf_resolvenic(softc, fr->fr_names +
4095						     fr->fr_sifpidx, v);
4096				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
4097					    &fr->fr_dst6, &fr->fr_dmsk6);
4098			}
4099		}
4100
4101		fdp = &fr->fr_tifs[0];
4102		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4103			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4104			if (error != 0)
4105				goto unwind;
4106		}
4107
4108		fdp = &fr->fr_tifs[1];
4109		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4110			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4111			if (error != 0)
4112				goto unwind;
4113		}
4114
4115		fdp = &fr->fr_dif;
4116		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4117			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4118			if (error != 0)
4119				goto unwind;
4120		}
4121
4122		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4123		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4124			fr->fr_srcptr = ipf_lookup_res_num(softc,
4125							   fr->fr_srctype,
4126							   IPL_LOGIPF,
4127							   fr->fr_srcnum,
4128							   &fr->fr_srcfunc);
4129		}
4130		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4131		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4132			fr->fr_dstptr = ipf_lookup_res_num(softc,
4133							   fr->fr_dsttype,
4134							   IPL_LOGIPF,
4135							   fr->fr_dstnum,
4136							   &fr->fr_dstfunc);
4137		}
4138	}
4139	return 0;
4140
4141unwind:
4142	for (frt = start; frt != fr; fr = fr->fr_next) {
4143		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4144		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4145				ipf_lookup_deref(softc, frt->fr_srctype,
4146						 frt->fr_srcptr);
4147		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4148		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4149				ipf_lookup_deref(softc, frt->fr_dsttype,
4150						 frt->fr_dstptr);
4151	}
4152	return error;
4153}
4154
4155
4156/* ------------------------------------------------------------------------ */
4157/* Function:    ipf_sync                                                    */
4158/* Returns:     void                                                        */
4159/* Parameters:  Nil                                                         */
4160/*                                                                          */
4161/* ipf_sync() is called when we suspect that the interface list or          */
4162/* information about interfaces (like IP#) has changed.  Go through all     */
4163/* filter rules, NAT entries and the state table and check if anything      */
4164/* needs to be changed/updated.                                             */
4165/* ------------------------------------------------------------------------ */
4166int
4167ipf_sync(softc, ifp)
4168	ipf_main_softc_t *softc;
4169	void *ifp;
4170{
4171	int i;
4172
4173# if !SOLARIS
4174	ipf_nat_sync(softc, ifp);
4175	ipf_state_sync(softc, ifp);
4176	ipf_lookup_sync(softc, ifp);
4177# endif
4178
4179	WRITE_ENTER(&softc->ipf_mutex);
4180	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4181	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4182	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4183	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4184
4185	for (i = 0; i < IPL_LOGSIZE; i++) {
4186		frgroup_t *g;
4187
4188		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4189			(void) ipf_synclist(softc, g->fg_start, ifp);
4190		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4191			(void) ipf_synclist(softc, g->fg_start, ifp);
4192	}
4193	RWLOCK_EXIT(&softc->ipf_mutex);
4194
4195	return 0;
4196}
4197
4198
4199/*
4200 * In the functions below, bcopy() is called because the pointer being
4201 * copied _from_ in this instance is a pointer to a char buf (which could
4202 * end up being unaligned) and on the kernel's local stack.
4203 */
4204/* ------------------------------------------------------------------------ */
4205/* Function:    copyinptr                                                   */
4206/* Returns:     int - 0 = success, else failure                             */
4207/* Parameters:  src(I)  - pointer to the source address                     */
4208/*              dst(I)  - destination address                               */
4209/*              size(I) - number of bytes to copy                           */
4210/*                                                                          */
4211/* Copy a block of data in from user space, given a pointer to the pointer  */
4212/* to start copying from (src) and a pointer to where to store it (dst).    */
4213/* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4214/* ------------------------------------------------------------------------ */
4215int
4216copyinptr(softc, src, dst, size)
4217	ipf_main_softc_t *softc;
4218	void *src, *dst;
4219	size_t size;
4220{
4221	caddr_t ca;
4222	int error;
4223
4224# if SOLARIS
4225	error = COPYIN(src, &ca, sizeof(ca));
4226	if (error != 0)
4227		return error;
4228# else
4229	bcopy(src, (caddr_t)&ca, sizeof(ca));
4230# endif
4231	error = COPYIN(ca, dst, size);
4232	if (error != 0) {
4233		IPFERROR(3);
4234		error = EFAULT;
4235	}
4236	return error;
4237}
4238
4239
4240/* ------------------------------------------------------------------------ */
4241/* Function:    copyoutptr                                                  */
4242/* Returns:     int - 0 = success, else failure                             */
4243/* Parameters:  src(I)  - pointer to the source address                     */
4244/*              dst(I)  - destination address                               */
4245/*              size(I) - number of bytes to copy                           */
4246/*                                                                          */
4247/* Copy a block of data out to user space, given a pointer to the pointer   */
4248/* to start copying from (src) and a pointer to where to store it (dst).    */
4249/* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4250/* ------------------------------------------------------------------------ */
4251int
4252copyoutptr(softc, src, dst, size)
4253	ipf_main_softc_t *softc;
4254	void *src, *dst;
4255	size_t size;
4256{
4257	caddr_t ca;
4258	int error;
4259
4260	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4261	error = COPYOUT(src, ca, size);
4262	if (error != 0) {
4263		IPFERROR(4);
4264		error = EFAULT;
4265	}
4266	return error;
4267}
4268#ifdef	_KERNEL
4269#endif
4270
4271
4272/* ------------------------------------------------------------------------ */
4273/* Function:    ipf_lock                                                    */
4274/* Returns:     int      - 0 = success, else error                          */
4275/* Parameters:  data(I)  - pointer to lock value to set                     */
4276/*              lockp(O) - pointer to location to store old lock value      */
4277/*                                                                          */
4278/* Get the new value for the lock integer, set it and return the old value  */
4279/* in *lockp.                                                               */
4280/* ------------------------------------------------------------------------ */
4281int
4282ipf_lock(data, lockp)
4283	caddr_t data;
4284	int *lockp;
4285{
4286	int arg, err;
4287
4288	err = BCOPYIN(data, &arg, sizeof(arg));
4289	if (err != 0)
4290		return EFAULT;
4291	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4292	if (err != 0)
4293		return EFAULT;
4294	*lockp = arg;
4295	return 0;
4296}
4297
4298
4299/* ------------------------------------------------------------------------ */
4300/* Function:    ipf_getstat                                                 */
4301/* Returns:     Nil                                                         */
4302/* Parameters:  softc(I) - pointer to soft context main structure           */
4303/*              fiop(I)  - pointer to ipfilter stats structure              */
4304/*              rev(I)   - version claim by program doing ioctl             */
4305/*                                                                          */
4306/* Stores a copy of current pointers, counters, etc, in the friostat        */
4307/* structure.                                                               */
4308/* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4309/* program is looking for. This ensure that validation of the version it    */
4310/* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4311/* allow older binaries to work but kernels without it will not.            */
4312/* ------------------------------------------------------------------------ */
4313/*ARGSUSED*/
4314static void
4315ipf_getstat(softc, fiop, rev)
4316	ipf_main_softc_t *softc;
4317	friostat_t *fiop;
4318	int rev;
4319{
4320	int i;
4321
4322	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4323	      sizeof(ipf_statistics_t) * 2);
4324	fiop->f_locks[IPL_LOGSTATE] = -1;
4325	fiop->f_locks[IPL_LOGNAT] = -1;
4326	fiop->f_locks[IPL_LOGIPF] = -1;
4327	fiop->f_locks[IPL_LOGAUTH] = -1;
4328
4329	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4330	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4331	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4332	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4333	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4334	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4335	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4336	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4337
4338	fiop->f_ticks = softc->ipf_ticks;
4339	fiop->f_active = softc->ipf_active;
4340	fiop->f_froute[0] = softc->ipf_frouteok[0];
4341	fiop->f_froute[1] = softc->ipf_frouteok[1];
4342	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4343	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4344
4345	fiop->f_running = softc->ipf_running;
4346	for (i = 0; i < IPL_LOGSIZE; i++) {
4347		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4348		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4349	}
4350#ifdef  IPFILTER_LOG
4351	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4352	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4353	fiop->f_logging = 1;
4354#else
4355	fiop->f_log_ok = 0;
4356	fiop->f_log_fail = 0;
4357	fiop->f_logging = 0;
4358#endif
4359	fiop->f_defpass = softc->ipf_pass;
4360	fiop->f_features = ipf_features;
4361
4362#ifdef IPFILTER_COMPAT
4363	sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4364		(rev / 1000000) % 100,
4365		(rev / 10000) % 100,
4366		(rev / 100) % 100);
4367#else
4368	rev = rev;
4369	(void) strncpy(fiop->f_version, ipfilter_version,
4370		       sizeof(fiop->f_version));
4371#endif
4372}
4373
4374
4375#ifdef	USE_INET6
4376int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4377	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4378	-1,			/* 1: UNUSED */
4379	-1,			/* 2: UNUSED */
4380	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4381	-1,			/* 4: ICMP_SOURCEQUENCH */
4382	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4383	-1,			/* 6: UNUSED */
4384	-1,			/* 7: UNUSED */
4385	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4386	-1,			/* 9: UNUSED */
4387	-1,			/* 10: UNUSED */
4388	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4389	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4390	-1,			/* 13: ICMP_TSTAMP */
4391	-1,			/* 14: ICMP_TSTAMPREPLY */
4392	-1,			/* 15: ICMP_IREQ */
4393	-1,			/* 16: ICMP_IREQREPLY */
4394	-1,			/* 17: ICMP_MASKREQ */
4395	-1,			/* 18: ICMP_MASKREPLY */
4396};
4397
4398
4399int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4400	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4401	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4402	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4403	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4404	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4405	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4406	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4407	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4408	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4409	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4410	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4411	-1,				/* 11: ICMP_UNREACH_TOSNET */
4412	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4413	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4414};
4415int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4416#endif
4417
4418int	icmpreplytype4[ICMP_MAXTYPE + 1];
4419
4420
4421/* ------------------------------------------------------------------------ */
4422/* Function:    ipf_matchicmpqueryreply                                     */
4423/* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4424/* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4425/*              ic(I)   - ICMP information                                  */
4426/*              icmp(I) - ICMP packet header                                */
4427/*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4428/*                                                                          */
4429/* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4430/* reply to one as described by what's in ic.  If it is a match, return 1,  */
4431/* else return 0 for no match.                                              */
4432/* ------------------------------------------------------------------------ */
4433int
4434ipf_matchicmpqueryreply(v, ic, icmp, rev)
4435	int v;
4436	icmpinfo_t *ic;
4437	icmphdr_t *icmp;
4438	int rev;
4439{
4440	int ictype;
4441
4442	ictype = ic->ici_type;
4443
4444	if (v == 4) {
4445		/*
4446		 * If we matched its type on the way in, then when going out
4447		 * it will still be the same type.
4448		 */
4449		if ((!rev && (icmp->icmp_type == ictype)) ||
4450		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4451			if (icmp->icmp_type != ICMP_ECHOREPLY)
4452				return 1;
4453			if (icmp->icmp_id == ic->ici_id)
4454				return 1;
4455		}
4456	}
4457#ifdef	USE_INET6
4458	else if (v == 6) {
4459		if ((!rev && (icmp->icmp_type == ictype)) ||
4460		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4461			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4462				return 1;
4463			if (icmp->icmp_id == ic->ici_id)
4464				return 1;
4465		}
4466	}
4467#endif
4468	return 0;
4469}
4470
4471
4472/* ------------------------------------------------------------------------ */
4473/* Function:    ipf_rule_compare                                            */
4474/* Parameters:  fr1(I) - first rule structure to compare                    */
4475/*              fr2(I) - second rule structure to compare                   */
4476/* Returns:     int    - 0 == rules are the same, else mismatch             */
4477/*                                                                          */
4478/* Compare two rules and return 0 if they match or a number indicating      */
4479/* which of the individual checks failed.                                   */
4480/* ------------------------------------------------------------------------ */
4481static int
4482ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4483{
4484	if (fr1->fr_cksum != fr2->fr_cksum)
4485		return 1;
4486	if (fr1->fr_size != fr2->fr_size)
4487		return 2;
4488	if (fr1->fr_dsize != fr2->fr_dsize)
4489		return 3;
4490	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func,
4491		 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4492		return 4;
4493	if (fr1->fr_data && !fr2->fr_data)
4494		return 5;
4495	if (!fr1->fr_data && fr2->fr_data)
4496		return 6;
4497	if (fr1->fr_data) {
4498		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4499			return 7;
4500	}
4501	return 0;
4502}
4503
4504
4505/* ------------------------------------------------------------------------ */
4506/* Function:    frrequest                                                   */
4507/* Returns:     int - 0 == success, > 0 == errno value                      */
4508/* Parameters:  unit(I)     - device for which this is for                  */
4509/*              req(I)      - ioctl command (SIOC*)                         */
4510/*              data(I)     - pointr to ioctl data                          */
4511/*              set(I)      - 1 or 0 (filter set)                           */
4512/*              makecopy(I) - flag indicating whether data points to a rule */
4513/*                            in kernel space & hence doesn't need copying. */
4514/*                                                                          */
4515/* This function handles all the requests which operate on the list of      */
4516/* filter rules.  This includes adding, deleting, insertion.  It is also    */
4517/* responsible for creating groups when a "head" rule is loaded.  Interface */
4518/* names are resolved here and other sanity checks are made on the content  */
4519/* of the rule structure being loaded.  If a rule has user defined timeouts */
4520/* then make sure they are created and initialised before exiting.          */
4521/* ------------------------------------------------------------------------ */
4522int
4523frrequest(softc, unit, req, data, set, makecopy)
4524	ipf_main_softc_t *softc;
4525	int unit;
4526	ioctlcmd_t req;
4527	int set, makecopy;
4528	caddr_t data;
4529{
4530	int error = 0, in, family, addrem, need_free = 0;
4531	frentry_t frd, *fp, *f, **fprev, **ftail;
4532	void *ptr, *uptr, *cptr;
4533	u_int *p, *pp;
4534	frgroup_t *fg;
4535	char *group;
4536
4537	ptr = NULL;
4538	cptr = NULL;
4539	fg = NULL;
4540	fp = &frd;
4541	if (makecopy != 0) {
4542		bzero(fp, sizeof(frd));
4543		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4544		if (error) {
4545			return error;
4546		}
4547		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4548			IPFERROR(6);
4549			return EINVAL;
4550		}
4551		KMALLOCS(f, frentry_t *, fp->fr_size);
4552		if (f == NULL) {
4553			IPFERROR(131);
4554			return ENOMEM;
4555		}
4556		bzero(f, fp->fr_size);
4557		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4558				    fp->fr_size);
4559		if (error) {
4560			KFREES(f, fp->fr_size);
4561			return error;
4562		}
4563
4564		fp = f;
4565		f = NULL;
4566		fp->fr_next = NULL;
4567		fp->fr_dnext = NULL;
4568		fp->fr_pnext = NULL;
4569		fp->fr_pdnext = NULL;
4570		fp->fr_grp = NULL;
4571		fp->fr_grphead = NULL;
4572		fp->fr_icmpgrp = NULL;
4573		fp->fr_isc = (void *)-1;
4574		fp->fr_ptr = NULL;
4575		fp->fr_ref = 0;
4576		fp->fr_flags |= FR_COPIED;
4577	} else {
4578		fp = (frentry_t *)data;
4579		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4580			IPFERROR(7);
4581			return EINVAL;
4582		}
4583		fp->fr_flags &= ~FR_COPIED;
4584	}
4585
4586	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4587	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4588		IPFERROR(8);
4589		error = EINVAL;
4590		goto donenolock;
4591	}
4592
4593	family = fp->fr_family;
4594	uptr = fp->fr_data;
4595
4596	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4597	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4598		addrem = 0;
4599	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4600		addrem = 1;
4601	else if (req == (ioctlcmd_t)SIOCZRLST)
4602		addrem = 2;
4603	else {
4604		IPFERROR(9);
4605		error = EINVAL;
4606		goto donenolock;
4607	}
4608
4609	/*
4610	 * Only filter rules for IPv4 or IPv6 are accepted.
4611	 */
4612	if (family == AF_INET) {
4613		/*EMPTY*/;
4614#ifdef	USE_INET6
4615	} else if (family == AF_INET6) {
4616		/*EMPTY*/;
4617#endif
4618	} else if (family != 0) {
4619		IPFERROR(10);
4620		error = EINVAL;
4621		goto donenolock;
4622	}
4623
4624	/*
4625	 * If the rule is being loaded from user space, i.e. we had to copy it
4626	 * into kernel space, then do not trust the function pointer in the
4627	 * rule.
4628	 */
4629	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4630		if (ipf_findfunc(fp->fr_func) == NULL) {
4631			IPFERROR(11);
4632			error = ESRCH;
4633			goto donenolock;
4634		}
4635
4636		if (addrem == 0) {
4637			error = ipf_funcinit(softc, fp);
4638			if (error != 0)
4639				goto donenolock;
4640		}
4641	}
4642	if ((fp->fr_flags & FR_CALLNOW) &&
4643	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4644		IPFERROR(142);
4645		error = ESRCH;
4646		goto donenolock;
4647	}
4648	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4649	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4650		IPFERROR(143);
4651		error = ESRCH;
4652		goto donenolock;
4653	}
4654
4655	ptr = NULL;
4656	cptr = NULL;
4657
4658	if (FR_ISACCOUNT(fp->fr_flags))
4659		unit = IPL_LOGCOUNT;
4660
4661	/*
4662	 * Check that each group name in the rule has a start index that
4663	 * is valid.
4664	 */
4665	if (fp->fr_icmphead != -1) {
4666		if ((fp->fr_icmphead < 0) ||
4667		    (fp->fr_icmphead >= fp->fr_namelen)) {
4668			IPFERROR(136);
4669			error = EINVAL;
4670			goto donenolock;
4671		}
4672		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4673			fp->fr_names[fp->fr_icmphead] = '\0';
4674	}
4675
4676	if (fp->fr_grhead != -1) {
4677		if ((fp->fr_grhead < 0) ||
4678		    (fp->fr_grhead >= fp->fr_namelen)) {
4679			IPFERROR(137);
4680			error = EINVAL;
4681			goto donenolock;
4682		}
4683		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4684			fp->fr_names[fp->fr_grhead] = '\0';
4685	}
4686
4687	if (fp->fr_group != -1) {
4688		if ((fp->fr_group < 0) ||
4689		    (fp->fr_group >= fp->fr_namelen)) {
4690			IPFERROR(138);
4691			error = EINVAL;
4692			goto donenolock;
4693		}
4694		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4695			/*
4696			 * Allow loading rules that are in groups to cause
4697			 * them to be created if they don't already exit.
4698			 */
4699			group = FR_NAME(fp, fr_group);
4700			if (addrem == 0) {
4701				fg = ipf_group_add(softc, group, NULL,
4702						   fp->fr_flags, unit, set);
4703				fp->fr_grp = fg;
4704			} else {
4705				fg = ipf_findgroup(softc, group, unit,
4706						   set, NULL);
4707				if (fg == NULL) {
4708					IPFERROR(12);
4709					error = ESRCH;
4710					goto donenolock;
4711				}
4712			}
4713
4714			if (fg->fg_flags == 0) {
4715				fg->fg_flags = fp->fr_flags & FR_INOUT;
4716			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4717				IPFERROR(13);
4718				error = ESRCH;
4719				goto donenolock;
4720			}
4721		}
4722	} else {
4723		/*
4724		 * If a rule is going to be part of a group then it does
4725		 * not matter whether it is an in or out rule, but if it
4726		 * isn't in a group, then it does...
4727		 */
4728		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4729			IPFERROR(14);
4730			error = EINVAL;
4731			goto donenolock;
4732		}
4733	}
4734	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4735
4736	/*
4737	 * Work out which rule list this change is being applied to.
4738	 */
4739	ftail = NULL;
4740	fprev = NULL;
4741	if (unit == IPL_LOGAUTH) {
4742                if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4743		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4744		    (fp->fr_dif.fd_ptr != NULL) ||
4745		    (fp->fr_flags & FR_FASTROUTE)) {
4746			softc->ipf_interror = 145;
4747			error = EINVAL;
4748			goto donenolock;
4749		}
4750		fprev = ipf_auth_rulehead(softc);
4751	} else {
4752		if (FR_ISACCOUNT(fp->fr_flags))
4753			fprev = &softc->ipf_acct[in][set];
4754		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4755			fprev = &softc->ipf_rules[in][set];
4756	}
4757	if (fprev == NULL) {
4758		IPFERROR(15);
4759		error = ESRCH;
4760		goto donenolock;
4761	}
4762
4763	if (fg != NULL)
4764		fprev = &fg->fg_start;
4765
4766	/*
4767	 * Copy in extra data for the rule.
4768	 */
4769	if (fp->fr_dsize != 0) {
4770		if (makecopy != 0) {
4771			KMALLOCS(ptr, void *, fp->fr_dsize);
4772			if (ptr == NULL) {
4773				IPFERROR(16);
4774				error = ENOMEM;
4775				goto donenolock;
4776			}
4777
4778			/*
4779			 * The bcopy case is for when the data is appended
4780			 * to the rule by ipf_in_compat().
4781			 */
4782			if (uptr >= (void *)fp &&
4783			    uptr < (void *)((char *)fp + fp->fr_size)) {
4784				bcopy(uptr, ptr, fp->fr_dsize);
4785				error = 0;
4786			} else {
4787				error = COPYIN(uptr, ptr, fp->fr_dsize);
4788				if (error != 0) {
4789					IPFERROR(17);
4790					error = EFAULT;
4791					goto donenolock;
4792				}
4793			}
4794		} else {
4795			ptr = uptr;
4796		}
4797		fp->fr_data = ptr;
4798	} else {
4799		fp->fr_data = NULL;
4800	}
4801
4802	/*
4803	 * Perform per-rule type sanity checks of their members.
4804	 * All code after this needs to be aware that allocated memory
4805	 * may need to be free'd before exiting.
4806	 */
4807	switch (fp->fr_type & ~FR_T_BUILTIN)
4808	{
4809#if defined(IPFILTER_BPF)
4810	case FR_T_BPFOPC :
4811		if (fp->fr_dsize == 0) {
4812			IPFERROR(19);
4813			error = EINVAL;
4814			break;
4815		}
4816		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4817			IPFERROR(20);
4818			error = EINVAL;
4819			break;
4820		}
4821		break;
4822#endif
4823	case FR_T_IPF :
4824		/*
4825		 * Preparation for error case at the bottom of this function.
4826		 */
4827		if (fp->fr_datype == FRI_LOOKUP)
4828			fp->fr_dstptr = NULL;
4829		if (fp->fr_satype == FRI_LOOKUP)
4830			fp->fr_srcptr = NULL;
4831
4832		if (fp->fr_dsize != sizeof(fripf_t)) {
4833			IPFERROR(21);
4834			error = EINVAL;
4835			break;
4836		}
4837
4838		/*
4839		 * Allowing a rule with both "keep state" and "with oow" is
4840		 * pointless because adding a state entry to the table will
4841		 * fail with the out of window (oow) flag set.
4842		 */
4843		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4844			IPFERROR(22);
4845			error = EINVAL;
4846			break;
4847		}
4848
4849		switch (fp->fr_satype)
4850		{
4851		case FRI_BROADCAST :
4852		case FRI_DYNAMIC :
4853		case FRI_NETWORK :
4854		case FRI_NETMASKED :
4855		case FRI_PEERADDR :
4856			if (fp->fr_sifpidx < 0) {
4857				IPFERROR(23);
4858				error = EINVAL;
4859			}
4860			break;
4861		case FRI_LOOKUP :
4862			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4863						       &fp->fr_src6,
4864						       &fp->fr_smsk6);
4865			if (fp->fr_srcfunc == NULL) {
4866				IPFERROR(132);
4867				error = ESRCH;
4868				break;
4869			}
4870			break;
4871		case FRI_NORMAL :
4872			break;
4873		default :
4874			IPFERROR(133);
4875			error = EINVAL;
4876			break;
4877		}
4878		if (error != 0)
4879			break;
4880
4881		switch (fp->fr_datype)
4882		{
4883		case FRI_BROADCAST :
4884		case FRI_DYNAMIC :
4885		case FRI_NETWORK :
4886		case FRI_NETMASKED :
4887		case FRI_PEERADDR :
4888			if (fp->fr_difpidx < 0) {
4889				IPFERROR(24);
4890				error = EINVAL;
4891			}
4892			break;
4893		case FRI_LOOKUP :
4894			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4895						       &fp->fr_dst6,
4896						       &fp->fr_dmsk6);
4897			if (fp->fr_dstfunc == NULL) {
4898				IPFERROR(134);
4899				error = ESRCH;
4900			}
4901			break;
4902		case FRI_NORMAL :
4903			break;
4904		default :
4905			IPFERROR(135);
4906			error = EINVAL;
4907		}
4908		break;
4909
4910	case FR_T_NONE :
4911	case FR_T_CALLFUNC :
4912	case FR_T_COMPIPF :
4913		break;
4914
4915	case FR_T_IPFEXPR :
4916		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4917			IPFERROR(25);
4918			error = EINVAL;
4919		}
4920		break;
4921
4922	default :
4923		IPFERROR(26);
4924		error = EINVAL;
4925		break;
4926	}
4927	if (error != 0)
4928		goto donenolock;
4929
4930	if (fp->fr_tif.fd_name != -1) {
4931		if ((fp->fr_tif.fd_name < 0) ||
4932		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4933			IPFERROR(139);
4934			error = EINVAL;
4935			goto donenolock;
4936		}
4937	}
4938
4939	if (fp->fr_dif.fd_name != -1) {
4940		if ((fp->fr_dif.fd_name < 0) ||
4941		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4942			IPFERROR(140);
4943			error = EINVAL;
4944			goto donenolock;
4945		}
4946	}
4947
4948	if (fp->fr_rif.fd_name != -1) {
4949		if ((fp->fr_rif.fd_name < 0) ||
4950		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4951			IPFERROR(141);
4952			error = EINVAL;
4953			goto donenolock;
4954		}
4955	}
4956
4957	/*
4958	 * Lookup all the interface names that are part of the rule.
4959	 */
4960	error = ipf_synclist(softc, fp, NULL);
4961	if (error != 0)
4962		goto donenolock;
4963	fp->fr_statecnt = 0;
4964	if (fp->fr_srctrack.ht_max_nodes != 0)
4965		ipf_rb_ht_init(&fp->fr_srctrack);
4966
4967	/*
4968	 * Look for an existing matching filter rule, but don't include the
4969	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4970	 * This elminates rules which are indentical being loaded.  Checksum
4971	 * the constant part of the filter rule to make comparisons quicker
4972	 * (this meaning no pointers are included).
4973	 */
4974	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4975	     p < pp; p++)
4976		fp->fr_cksum += *p;
4977	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4978	for (p = (u_int *)fp->fr_data; p < pp; p++)
4979		fp->fr_cksum += *p;
4980
4981	WRITE_ENTER(&softc->ipf_mutex);
4982
4983	/*
4984	 * Now that the filter rule lists are locked, we can walk the
4985	 * chain of them without fear.
4986	 */
4987	ftail = fprev;
4988	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4989		if (fp->fr_collect <= f->fr_collect) {
4990			ftail = fprev;
4991			f = NULL;
4992			break;
4993		}
4994		fprev = ftail;
4995	}
4996
4997	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4998		if (ipf_rule_compare(fp, f) == 0)
4999			break;
5000	}
5001
5002	/*
5003	 * If zero'ing statistics, copy current to caller and zero.
5004	 */
5005	if (addrem == 2) {
5006		if (f == NULL) {
5007			IPFERROR(27);
5008			error = ESRCH;
5009		} else {
5010			/*
5011			 * Copy and reduce lock because of impending copyout.
5012			 * Well we should, but if we do then the atomicity of
5013			 * this call and the correctness of fr_hits and
5014			 * fr_bytes cannot be guaranteed.  As it is, this code
5015			 * only resets them to 0 if they are successfully
5016			 * copied out into user space.
5017			 */
5018			bcopy((char *)f, (char *)fp, f->fr_size);
5019			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
5020
5021			/*
5022			 * When we copy this rule back out, set the data
5023			 * pointer to be what it was in user space.
5024			 */
5025			fp->fr_data = uptr;
5026			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
5027
5028			if (error == 0) {
5029				if ((f->fr_dsize != 0) && (uptr != NULL))
5030					error = COPYOUT(f->fr_data, uptr,
5031							f->fr_dsize);
5032					if (error != 0) {
5033						IPFERROR(28);
5034						error = EFAULT;
5035					}
5036				if (error == 0) {
5037					f->fr_hits = 0;
5038					f->fr_bytes = 0;
5039				}
5040			}
5041		}
5042
5043		if (makecopy != 0) {
5044			if (ptr != NULL) {
5045				KFREES(ptr, fp->fr_dsize);
5046			}
5047			KFREES(fp, fp->fr_size);
5048		}
5049		RWLOCK_EXIT(&softc->ipf_mutex);
5050		return error;
5051	}
5052
5053  	if (!f) {
5054		/*
5055		 * At the end of this, ftail must point to the place where the
5056		 * new rule is to be saved/inserted/added.
5057		 * For SIOCAD*FR, this should be the last rule in the group of
5058		 * rules that have equal fr_collect fields.
5059		 * For SIOCIN*FR, ...
5060		 */
5061		if (req == (ioctlcmd_t)SIOCADAFR ||
5062		    req == (ioctlcmd_t)SIOCADIFR) {
5063
5064			for (ftail = fprev; (f = *ftail) != NULL; ) {
5065				if (f->fr_collect > fp->fr_collect)
5066					break;
5067				ftail = &f->fr_next;
5068				fprev = ftail;
5069			}
5070			ftail = fprev;
5071			f = NULL;
5072			ptr = NULL;
5073		} else if (req == (ioctlcmd_t)SIOCINAFR ||
5074			   req == (ioctlcmd_t)SIOCINIFR) {
5075			while ((f = *fprev) != NULL) {
5076				if (f->fr_collect >= fp->fr_collect)
5077					break;
5078				fprev = &f->fr_next;
5079			}
5080  			ftail = fprev;
5081  			if (fp->fr_hits != 0) {
5082				while (fp->fr_hits && (f = *ftail)) {
5083					if (f->fr_collect != fp->fr_collect)
5084						break;
5085					fprev = ftail;
5086  					ftail = &f->fr_next;
5087					fp->fr_hits--;
5088				}
5089  			}
5090  			f = NULL;
5091  			ptr = NULL;
5092		}
5093	}
5094
5095	/*
5096	 * Request to remove a rule.
5097	 */
5098	if (addrem == 1) {
5099		if (!f) {
5100			IPFERROR(29);
5101			error = ESRCH;
5102		} else {
5103			/*
5104			 * Do not allow activity from user space to interfere
5105			 * with rules not loaded that way.
5106			 */
5107			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5108				IPFERROR(30);
5109				error = EPERM;
5110				goto done;
5111			}
5112
5113			/*
5114			 * Return EBUSY if the rule is being reference by
5115			 * something else (eg state information.)
5116			 */
5117			if (f->fr_ref > 1) {
5118				IPFERROR(31);
5119				error = EBUSY;
5120				goto done;
5121			}
5122#ifdef	IPFILTER_SCAN
5123			if (f->fr_isctag != -1 &&
5124			    (f->fr_isc != (struct ipscan *)-1))
5125				ipf_scan_detachfr(f);
5126#endif
5127
5128			if (unit == IPL_LOGAUTH) {
5129				error = ipf_auth_precmd(softc, req, f, ftail);
5130				goto done;
5131			}
5132
5133			ipf_rule_delete(softc, f, unit, set);
5134
5135			need_free = makecopy;
5136		}
5137	} else {
5138		/*
5139		 * Not removing, so we must be adding/inserting a rule.
5140		 */
5141		if (f != NULL) {
5142			IPFERROR(32);
5143			error = EEXIST;
5144			goto done;
5145		}
5146		if (unit == IPL_LOGAUTH) {
5147			error = ipf_auth_precmd(softc, req, fp, ftail);
5148			goto done;
5149		}
5150
5151		MUTEX_NUKE(&fp->fr_lock);
5152		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5153		if (fp->fr_die != 0)
5154			ipf_rule_expire_insert(softc, fp, set);
5155
5156		fp->fr_hits = 0;
5157		if (makecopy != 0)
5158			fp->fr_ref = 1;
5159		fp->fr_pnext = ftail;
5160		fp->fr_next = *ftail;
5161		if (fp->fr_next != NULL)
5162			fp->fr_next->fr_pnext = &fp->fr_next;
5163		*ftail = fp;
5164		if (addrem == 0)
5165			ipf_fixskip(ftail, fp, 1);
5166
5167		fp->fr_icmpgrp = NULL;
5168		if (fp->fr_icmphead != -1) {
5169			group = FR_NAME(fp, fr_icmphead);
5170			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5171			fp->fr_icmpgrp = fg;
5172		}
5173
5174		fp->fr_grphead = NULL;
5175		if (fp->fr_grhead != -1) {
5176			group = FR_NAME(fp, fr_grhead);
5177			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5178					   unit, set);
5179			fp->fr_grphead = fg;
5180		}
5181	}
5182done:
5183	RWLOCK_EXIT(&softc->ipf_mutex);
5184donenolock:
5185	if (need_free || (error != 0)) {
5186		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5187			if ((fp->fr_satype == FRI_LOOKUP) &&
5188			    (fp->fr_srcptr != NULL))
5189				ipf_lookup_deref(softc, fp->fr_srctype,
5190						 fp->fr_srcptr);
5191			if ((fp->fr_datype == FRI_LOOKUP) &&
5192			    (fp->fr_dstptr != NULL))
5193				ipf_lookup_deref(softc, fp->fr_dsttype,
5194						 fp->fr_dstptr);
5195		}
5196		if (fp->fr_grp != NULL) {
5197			WRITE_ENTER(&softc->ipf_mutex);
5198			ipf_group_del(softc, fp->fr_grp, fp);
5199			RWLOCK_EXIT(&softc->ipf_mutex);
5200		}
5201		if ((ptr != NULL) && (makecopy != 0)) {
5202			KFREES(ptr, fp->fr_dsize);
5203		}
5204		KFREES(fp, fp->fr_size);
5205	}
5206	return (error);
5207}
5208
5209
5210/* ------------------------------------------------------------------------ */
5211/* Function:   ipf_rule_delete                                              */
5212/* Returns:    Nil                                                          */
5213/* Parameters: softc(I) - pointer to soft context main structure            */
5214/*             f(I)     - pointer to the rule being deleted                 */
5215/*             ftail(I) - pointer to the pointer to f                       */
5216/*             unit(I)  - device for which this is for                      */
5217/*             set(I)   - 1 or 0 (filter set)                               */
5218/*                                                                          */
5219/* This function attempts to do what it can to delete a filter rule: remove */
5220/* it from any linked lists and remove any groups it is responsible for.    */
5221/* But in the end, removing a rule can only drop the reference count - we   */
5222/* must use that as the guide for whether or not it can be freed.           */
5223/* ------------------------------------------------------------------------ */
5224static void
5225ipf_rule_delete(softc, f, unit, set)
5226	ipf_main_softc_t *softc;
5227	frentry_t *f;
5228	int unit, set;
5229{
5230
5231	/*
5232	 * If fr_pdnext is set, then the rule is on the expire list, so
5233	 * remove it from there.
5234	 */
5235	if (f->fr_pdnext != NULL) {
5236		*f->fr_pdnext = f->fr_dnext;
5237		if (f->fr_dnext != NULL)
5238			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5239		f->fr_pdnext = NULL;
5240		f->fr_dnext = NULL;
5241	}
5242
5243	ipf_fixskip(f->fr_pnext, f, -1);
5244	if (f->fr_pnext != NULL)
5245		*f->fr_pnext = f->fr_next;
5246	if (f->fr_next != NULL)
5247		f->fr_next->fr_pnext = f->fr_pnext;
5248	f->fr_pnext = NULL;
5249	f->fr_next = NULL;
5250
5251	(void) ipf_derefrule(softc, &f);
5252}
5253
5254/* ------------------------------------------------------------------------ */
5255/* Function:   ipf_rule_expire_insert                                       */
5256/* Returns:    Nil                                                          */
5257/* Parameters: softc(I) - pointer to soft context main structure            */
5258/*             f(I)     - pointer to rule to be added to expire list        */
5259/*             set(I)   - 1 or 0 (filter set)                               */
5260/*                                                                          */
5261/* If the new rule has a given expiration time, insert it into the list of  */
5262/* expiring rules with the ones to be removed first added to the front of   */
5263/* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5264/* expiration interval checks.                                              */
5265/* ------------------------------------------------------------------------ */
5266static void
5267ipf_rule_expire_insert(softc, f, set)
5268	ipf_main_softc_t *softc;
5269	frentry_t *f;
5270	int set;
5271{
5272	frentry_t *fr;
5273
5274	/*
5275	 */
5276
5277	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5278	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5279	     fr = fr->fr_dnext) {
5280		if (f->fr_die < fr->fr_die)
5281			break;
5282		if (fr->fr_dnext == NULL) {
5283			/*
5284			 * We've got to the last rule and everything
5285			 * wanted to be expired before this new node,
5286			 * so we have to tack it on the end...
5287			 */
5288			fr->fr_dnext = f;
5289			f->fr_pdnext = &fr->fr_dnext;
5290			fr = NULL;
5291			break;
5292		}
5293	}
5294
5295	if (softc->ipf_rule_explist[set] == NULL) {
5296		softc->ipf_rule_explist[set] = f;
5297		f->fr_pdnext = &softc->ipf_rule_explist[set];
5298	} else if (fr != NULL) {
5299		f->fr_dnext = fr;
5300		f->fr_pdnext = fr->fr_pdnext;
5301		fr->fr_pdnext = &f->fr_dnext;
5302	}
5303}
5304
5305
5306/* ------------------------------------------------------------------------ */
5307/* Function:   ipf_findlookup                                               */
5308/* Returns:    NULL = failure, else success                                 */
5309/* Parameters: softc(I) - pointer to soft context main structure            */
5310/*             unit(I)  - ipf device we want to find match for              */
5311/*             fp(I)    - rule for which lookup is for                      */
5312/*             addrp(I) - pointer to lookup information in address struct   */
5313/*             maskp(O) - pointer to lookup information for storage         */
5314/*                                                                          */
5315/* When using pools and hash tables to store addresses for matching in      */
5316/* rules, it is necessary to resolve both the object referred to by the     */
5317/* name or address (and return that pointer) and also provide the means by  */
5318/* which to determine if an address belongs to that object to make the      */
5319/* packet matching quicker.                                                 */
5320/* ------------------------------------------------------------------------ */
5321static void *
5322ipf_findlookup(softc, unit, fr, addrp, maskp)
5323	ipf_main_softc_t *softc;
5324	int unit;
5325	frentry_t *fr;
5326	i6addr_t *addrp, *maskp;
5327{
5328	void *ptr = NULL;
5329
5330	switch (addrp->iplookupsubtype)
5331	{
5332	case 0 :
5333		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5334					 addrp->iplookupnum,
5335					 &maskp->iplookupfunc);
5336		break;
5337	case 1 :
5338		if (addrp->iplookupname < 0)
5339			break;
5340		if (addrp->iplookupname >= fr->fr_namelen)
5341			break;
5342		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5343					  fr->fr_names + addrp->iplookupname,
5344					  &maskp->iplookupfunc);
5345		break;
5346	default :
5347		break;
5348	}
5349
5350	return ptr;
5351}
5352
5353
5354/* ------------------------------------------------------------------------ */
5355/* Function:    ipf_funcinit                                                */
5356/* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5357/* Parameters:  softc(I) - pointer to soft context main structure           */
5358/*              fr(I)    - pointer to filter rule                           */
5359/*                                                                          */
5360/* If a rule is a call rule, then check if the function it points to needs  */
5361/* an init function to be called now the rule has been loaded.              */
5362/* ------------------------------------------------------------------------ */
5363static int
5364ipf_funcinit(softc, fr)
5365	ipf_main_softc_t *softc;
5366	frentry_t *fr;
5367{
5368	ipfunc_resolve_t *ft;
5369	int err;
5370
5371	IPFERROR(34);
5372	err = ESRCH;
5373
5374	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5375		if (ft->ipfu_addr == fr->fr_func) {
5376			err = 0;
5377			if (ft->ipfu_init != NULL)
5378				err = (*ft->ipfu_init)(softc, fr);
5379			break;
5380		}
5381	return err;
5382}
5383
5384
5385/* ------------------------------------------------------------------------ */
5386/* Function:    ipf_funcfini                                                */
5387/* Returns:     Nil                                                         */
5388/* Parameters:  softc(I) - pointer to soft context main structure           */
5389/*              fr(I)    - pointer to filter rule                           */
5390/*                                                                          */
5391/* For a given filter rule, call the matching "fini" function if the rule   */
5392/* is using a known function that would have resulted in the "init" being   */
5393/* called for ealier.                                                       */
5394/* ------------------------------------------------------------------------ */
5395static void
5396ipf_funcfini(softc, fr)
5397	ipf_main_softc_t *softc;
5398	frentry_t *fr;
5399{
5400	ipfunc_resolve_t *ft;
5401
5402	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5403		if (ft->ipfu_addr == fr->fr_func) {
5404			if (ft->ipfu_fini != NULL)
5405				(void) (*ft->ipfu_fini)(softc, fr);
5406			break;
5407		}
5408}
5409
5410
5411/* ------------------------------------------------------------------------ */
5412/* Function:    ipf_findfunc                                                */
5413/* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5414/* Parameters:  funcptr(I) - function pointer to lookup                     */
5415/*                                                                          */
5416/* Look for a function in the table of known functions.                     */
5417/* ------------------------------------------------------------------------ */
5418static ipfunc_t
5419ipf_findfunc(funcptr)
5420	ipfunc_t funcptr;
5421{
5422	ipfunc_resolve_t *ft;
5423
5424	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5425		if (ft->ipfu_addr == funcptr)
5426			return funcptr;
5427	return NULL;
5428}
5429
5430
5431/* ------------------------------------------------------------------------ */
5432/* Function:    ipf_resolvefunc                                             */
5433/* Returns:     int - 0 == success, else error                              */
5434/* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5435/*                                                                          */
5436/* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5437/* This will either be the function name (if the pointer is set) or the     */
5438/* function pointer if the name is set.  When found, fill in the other one  */
5439/* so that the entire, complete, structure can be copied back to user space.*/
5440/* ------------------------------------------------------------------------ */
5441int
5442ipf_resolvefunc(softc, data)
5443	ipf_main_softc_t *softc;
5444	void *data;
5445{
5446	ipfunc_resolve_t res, *ft;
5447	int error;
5448
5449	error = BCOPYIN(data, &res, sizeof(res));
5450	if (error != 0) {
5451		IPFERROR(123);
5452		return EFAULT;
5453	}
5454
5455	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5456		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5457			if (strncmp(res.ipfu_name, ft->ipfu_name,
5458				    sizeof(res.ipfu_name)) == 0) {
5459				res.ipfu_addr = ft->ipfu_addr;
5460				res.ipfu_init = ft->ipfu_init;
5461				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5462					IPFERROR(35);
5463					return EFAULT;
5464				}
5465				return 0;
5466			}
5467	}
5468	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5469		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5470			if (ft->ipfu_addr == res.ipfu_addr) {
5471				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5472					       sizeof(res.ipfu_name));
5473				res.ipfu_init = ft->ipfu_init;
5474				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5475					IPFERROR(36);
5476					return EFAULT;
5477				}
5478				return 0;
5479			}
5480	}
5481	IPFERROR(37);
5482	return ESRCH;
5483}
5484
5485
5486#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5487     !defined(__FreeBSD__)) || \
5488    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5489    OPENBSD_LT_REV(200006)
5490/*
5491 * From: NetBSD
5492 * ppsratecheck(): packets (or events) per second limitation.
5493 */
5494int
5495ppsratecheck(lasttime, curpps, maxpps)
5496	struct timeval *lasttime;
5497	int *curpps;
5498	int maxpps;	/* maximum pps allowed */
5499{
5500	struct timeval tv, delta;
5501	int rv;
5502
5503	GETKTIME(&tv);
5504
5505	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5506	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5507	if (delta.tv_usec < 0) {
5508		delta.tv_sec--;
5509		delta.tv_usec += 1000000;
5510	}
5511
5512	/*
5513	 * check for 0,0 is so that the message will be seen at least once.
5514	 * if more than one second have passed since the last update of
5515	 * lasttime, reset the counter.
5516	 *
5517	 * we do increment *curpps even in *curpps < maxpps case, as some may
5518	 * try to use *curpps for stat purposes as well.
5519	 */
5520	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5521	    delta.tv_sec >= 1) {
5522		*lasttime = tv;
5523		*curpps = 0;
5524		rv = 1;
5525	} else if (maxpps < 0)
5526		rv = 1;
5527	else if (*curpps < maxpps)
5528		rv = 1;
5529	else
5530		rv = 0;
5531	*curpps = *curpps + 1;
5532
5533	return (rv);
5534}
5535#endif
5536
5537
5538/* ------------------------------------------------------------------------ */
5539/* Function:    ipf_derefrule                                               */
5540/* Returns:     int   - 0 == rule freed up, else rule not freed             */
5541/* Parameters:  fr(I) - pointer to filter rule                              */
5542/*                                                                          */
5543/* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5544/* free it and any associated storage space being used by it.               */
5545/* ------------------------------------------------------------------------ */
5546int
5547ipf_derefrule(softc, frp)
5548	ipf_main_softc_t *softc;
5549	frentry_t **frp;
5550{
5551	frentry_t *fr;
5552	frdest_t *fdp;
5553
5554	fr = *frp;
5555	*frp = NULL;
5556
5557	MUTEX_ENTER(&fr->fr_lock);
5558	fr->fr_ref--;
5559	if (fr->fr_ref == 0) {
5560		MUTEX_EXIT(&fr->fr_lock);
5561		MUTEX_DESTROY(&fr->fr_lock);
5562
5563		ipf_funcfini(softc, fr);
5564
5565		fdp = &fr->fr_tif;
5566		if (fdp->fd_type == FRD_DSTLIST)
5567			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5568
5569		fdp = &fr->fr_rif;
5570		if (fdp->fd_type == FRD_DSTLIST)
5571			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5572
5573		fdp = &fr->fr_dif;
5574		if (fdp->fd_type == FRD_DSTLIST)
5575			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5576
5577		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5578		    fr->fr_satype == FRI_LOOKUP)
5579			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5580		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5581		    fr->fr_datype == FRI_LOOKUP)
5582			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5583
5584		if (fr->fr_grp != NULL)
5585			ipf_group_del(softc, fr->fr_grp, fr);
5586
5587		if (fr->fr_grphead != NULL)
5588			ipf_group_del(softc, fr->fr_grphead, fr);
5589
5590		if (fr->fr_icmpgrp != NULL)
5591			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5592
5593		if ((fr->fr_flags & FR_COPIED) != 0) {
5594			if (fr->fr_dsize) {
5595				KFREES(fr->fr_data, fr->fr_dsize);
5596			}
5597			KFREES(fr, fr->fr_size);
5598			return 0;
5599		}
5600		return 1;
5601	} else {
5602		MUTEX_EXIT(&fr->fr_lock);
5603	}
5604	return -1;
5605}
5606
5607
5608/* ------------------------------------------------------------------------ */
5609/* Function:    ipf_grpmapinit                                              */
5610/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5611/* Parameters:  fr(I) - pointer to rule to find hash table for              */
5612/*                                                                          */
5613/* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5614/* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5615/* ------------------------------------------------------------------------ */
5616static int
5617ipf_grpmapinit(softc, fr)
5618	ipf_main_softc_t *softc;
5619	frentry_t *fr;
5620{
5621	char name[FR_GROUPLEN];
5622	iphtable_t *iph;
5623
5624#if defined(SNPRINTF) && defined(_KERNEL)
5625	SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5626#else
5627	(void) sprintf(name, "%d", fr->fr_arg);
5628#endif
5629	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5630	if (iph == NULL) {
5631		IPFERROR(38);
5632		return ESRCH;
5633	}
5634	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5635		IPFERROR(39);
5636		return ESRCH;
5637	}
5638	iph->iph_ref++;
5639	fr->fr_ptr = iph;
5640	return 0;
5641}
5642
5643
5644/* ------------------------------------------------------------------------ */
5645/* Function:    ipf_grpmapfini                                              */
5646/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5647/* Parameters:  softc(I) - pointer to soft context main structure           */
5648/*              fr(I)    - pointer to rule to release hash table for        */
5649/*                                                                          */
5650/* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5651/* be called to undo what ipf_grpmapinit caused to be done.                 */
5652/* ------------------------------------------------------------------------ */
5653static int
5654ipf_grpmapfini(softc, fr)
5655	ipf_main_softc_t *softc;
5656	frentry_t *fr;
5657{
5658	iphtable_t *iph;
5659	iph = fr->fr_ptr;
5660	if (iph != NULL)
5661		ipf_lookup_deref(softc, IPLT_HASH, iph);
5662	return 0;
5663}
5664
5665
5666/* ------------------------------------------------------------------------ */
5667/* Function:    ipf_srcgrpmap                                               */
5668/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5669/* Parameters:  fin(I)    - pointer to packet information                   */
5670/*              passp(IO) - pointer to current/new filter decision (unused) */
5671/*                                                                          */
5672/* Look for a rule group head in a hash table, using the source address as  */
5673/* the key, and descend into that group and continue matching rules against */
5674/* the packet.                                                              */
5675/* ------------------------------------------------------------------------ */
5676frentry_t *
5677ipf_srcgrpmap(fin, passp)
5678	fr_info_t *fin;
5679	u_32_t *passp;
5680{
5681	frgroup_t *fg;
5682	void *rval;
5683
5684	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5685				 &fin->fin_src);
5686	if (rval == NULL)
5687		return NULL;
5688
5689	fg = rval;
5690	fin->fin_fr = fg->fg_start;
5691	(void) ipf_scanlist(fin, *passp);
5692	return fin->fin_fr;
5693}
5694
5695
5696/* ------------------------------------------------------------------------ */
5697/* Function:    ipf_dstgrpmap                                               */
5698/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5699/* Parameters:  fin(I)    - pointer to packet information                   */
5700/*              passp(IO) - pointer to current/new filter decision (unused) */
5701/*                                                                          */
5702/* Look for a rule group head in a hash table, using the destination        */
5703/* address as the key, and descend into that group and continue matching    */
5704/* rules against  the packet.                                               */
5705/* ------------------------------------------------------------------------ */
5706frentry_t *
5707ipf_dstgrpmap(fin, passp)
5708	fr_info_t *fin;
5709	u_32_t *passp;
5710{
5711	frgroup_t *fg;
5712	void *rval;
5713
5714	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5715				 &fin->fin_dst);
5716	if (rval == NULL)
5717		return NULL;
5718
5719	fg = rval;
5720	fin->fin_fr = fg->fg_start;
5721	(void) ipf_scanlist(fin, *passp);
5722	return fin->fin_fr;
5723}
5724
5725/*
5726 * Queue functions
5727 * ===============
5728 * These functions manage objects on queues for efficient timeouts.  There
5729 * are a number of system defined queues as well as user defined timeouts.
5730 * It is expected that a lock is held in the domain in which the queue
5731 * belongs (i.e. either state or NAT) when calling any of these functions
5732 * that prevents ipf_freetimeoutqueue() from being called at the same time
5733 * as any other.
5734 */
5735
5736
5737/* ------------------------------------------------------------------------ */
5738/* Function:    ipf_addtimeoutqueue                                         */
5739/* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5740/*                               timeout queue with given interval.         */
5741/* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5742/*                           of interface queues.                           */
5743/*              seconds(I) - timeout value in seconds for this queue.       */
5744/*                                                                          */
5745/* This routine first looks for a timeout queue that matches the interval   */
5746/* being requested.  If it finds one, increments the reference counter and  */
5747/* returns a pointer to it.  If none are found, it allocates a new one and  */
5748/* inserts it at the top of the list.                                       */
5749/*                                                                          */
5750/* Locking.                                                                 */
5751/* It is assumed that the caller of this function has an appropriate lock   */
5752/* held (exclusively) in the domain that encompases 'parent'.               */
5753/* ------------------------------------------------------------------------ */
5754ipftq_t *
5755ipf_addtimeoutqueue(softc, parent, seconds)
5756	ipf_main_softc_t *softc;
5757	ipftq_t **parent;
5758	u_int seconds;
5759{
5760	ipftq_t *ifq;
5761	u_int period;
5762
5763	period = seconds * IPF_HZ_DIVIDE;
5764
5765	MUTEX_ENTER(&softc->ipf_timeoutlock);
5766	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5767		if (ifq->ifq_ttl == period) {
5768			/*
5769			 * Reset the delete flag, if set, so the structure
5770			 * gets reused rather than freed and reallocated.
5771			 */
5772			MUTEX_ENTER(&ifq->ifq_lock);
5773			ifq->ifq_flags &= ~IFQF_DELETE;
5774			ifq->ifq_ref++;
5775			MUTEX_EXIT(&ifq->ifq_lock);
5776			MUTEX_EXIT(&softc->ipf_timeoutlock);
5777
5778			return ifq;
5779		}
5780	}
5781
5782	KMALLOC(ifq, ipftq_t *);
5783	if (ifq != NULL) {
5784		MUTEX_NUKE(&ifq->ifq_lock);
5785		IPFTQ_INIT(ifq, period, "ipftq mutex");
5786		ifq->ifq_next = *parent;
5787		ifq->ifq_pnext = parent;
5788		ifq->ifq_flags = IFQF_USER;
5789		ifq->ifq_ref++;
5790		*parent = ifq;
5791		softc->ipf_userifqs++;
5792	}
5793	MUTEX_EXIT(&softc->ipf_timeoutlock);
5794	return ifq;
5795}
5796
5797
5798/* ------------------------------------------------------------------------ */
5799/* Function:    ipf_deletetimeoutqueue                                      */
5800/* Returns:     int    - new reference count value of the timeout queue     */
5801/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5802/* Locks:       ifq->ifq_lock                                               */
5803/*                                                                          */
5804/* This routine must be called when we're discarding a pointer to a timeout */
5805/* queue object, taking care of the reference counter.                      */
5806/*                                                                          */
5807/* Now that this just sets a DELETE flag, it requires the expire code to    */
5808/* check the list of user defined timeout queues and call the free function */
5809/* below (currently commented out) to stop memory leaking.  It is done this */
5810/* way because the locking may not be sufficient to safely do a free when   */
5811/* this function is called.                                                 */
5812/* ------------------------------------------------------------------------ */
5813int
5814ipf_deletetimeoutqueue(ifq)
5815	ipftq_t *ifq;
5816{
5817
5818	ifq->ifq_ref--;
5819	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5820		ifq->ifq_flags |= IFQF_DELETE;
5821	}
5822
5823	return ifq->ifq_ref;
5824}
5825
5826
5827/* ------------------------------------------------------------------------ */
5828/* Function:    ipf_freetimeoutqueue                                        */
5829/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5830/* Returns:     Nil                                                         */
5831/*                                                                          */
5832/* Locking:                                                                 */
5833/* It is assumed that the caller of this function has an appropriate lock   */
5834/* held (exclusively) in the domain that encompases the callers "domain".   */
5835/* The ifq_lock for this structure should not be held.                      */
5836/*                                                                          */
5837/* Remove a user defined timeout queue from the list of queues it is in and */
5838/* tidy up after this is done.                                              */
5839/* ------------------------------------------------------------------------ */
5840void
5841ipf_freetimeoutqueue(softc, ifq)
5842	ipf_main_softc_t *softc;
5843	ipftq_t *ifq;
5844{
5845
5846	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5847	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5848		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5849		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5850		       ifq->ifq_ref);
5851		return;
5852	}
5853
5854	/*
5855	 * Remove from its position in the list.
5856	 */
5857	*ifq->ifq_pnext = ifq->ifq_next;
5858	if (ifq->ifq_next != NULL)
5859		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5860	ifq->ifq_next = NULL;
5861	ifq->ifq_pnext = NULL;
5862
5863	MUTEX_DESTROY(&ifq->ifq_lock);
5864	ATOMIC_DEC(softc->ipf_userifqs);
5865	KFREE(ifq);
5866}
5867
5868
5869/* ------------------------------------------------------------------------ */
5870/* Function:    ipf_deletequeueentry                                        */
5871/* Returns:     Nil                                                         */
5872/* Parameters:  tqe(I) - timeout queue entry to delete                      */
5873/*                                                                          */
5874/* Remove a tail queue entry from its queue and make it an orphan.          */
5875/* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5876/* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5877/* the correct lock(s) may not be held that would make it safe to do so.    */
5878/* ------------------------------------------------------------------------ */
5879void
5880ipf_deletequeueentry(tqe)
5881	ipftqent_t *tqe;
5882{
5883	ipftq_t *ifq;
5884
5885	ifq = tqe->tqe_ifq;
5886
5887	MUTEX_ENTER(&ifq->ifq_lock);
5888
5889	if (tqe->tqe_pnext != NULL) {
5890		*tqe->tqe_pnext = tqe->tqe_next;
5891		if (tqe->tqe_next != NULL)
5892			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5893		else    /* we must be the tail anyway */
5894			ifq->ifq_tail = tqe->tqe_pnext;
5895
5896		tqe->tqe_pnext = NULL;
5897		tqe->tqe_ifq = NULL;
5898	}
5899
5900	(void) ipf_deletetimeoutqueue(ifq);
5901	ASSERT(ifq->ifq_ref > 0);
5902
5903	MUTEX_EXIT(&ifq->ifq_lock);
5904}
5905
5906
5907/* ------------------------------------------------------------------------ */
5908/* Function:    ipf_queuefront                                              */
5909/* Returns:     Nil                                                         */
5910/* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5911/*                                                                          */
5912/* Move a queue entry to the front of the queue, if it isn't already there. */
5913/* ------------------------------------------------------------------------ */
5914void
5915ipf_queuefront(tqe)
5916	ipftqent_t *tqe;
5917{
5918	ipftq_t *ifq;
5919
5920	ifq = tqe->tqe_ifq;
5921	if (ifq == NULL)
5922		return;
5923
5924	MUTEX_ENTER(&ifq->ifq_lock);
5925	if (ifq->ifq_head != tqe) {
5926		*tqe->tqe_pnext = tqe->tqe_next;
5927		if (tqe->tqe_next)
5928			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5929		else
5930			ifq->ifq_tail = tqe->tqe_pnext;
5931
5932		tqe->tqe_next = ifq->ifq_head;
5933		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5934		ifq->ifq_head = tqe;
5935		tqe->tqe_pnext = &ifq->ifq_head;
5936	}
5937	MUTEX_EXIT(&ifq->ifq_lock);
5938}
5939
5940
5941/* ------------------------------------------------------------------------ */
5942/* Function:    ipf_queueback                                               */
5943/* Returns:     Nil                                                         */
5944/* Parameters:  ticks(I) - ipf tick time to use with this call              */
5945/*              tqe(I)   - pointer to timeout queue entry                   */
5946/*                                                                          */
5947/* Move a queue entry to the back of the queue, if it isn't already there.  */
5948/* We use use ticks to calculate the expiration and mark for when we last   */
5949/* touched the structure.                                                   */
5950/* ------------------------------------------------------------------------ */
5951void
5952ipf_queueback(ticks, tqe)
5953	u_long ticks;
5954	ipftqent_t *tqe;
5955{
5956	ipftq_t *ifq;
5957
5958	ifq = tqe->tqe_ifq;
5959	if (ifq == NULL)
5960		return;
5961	tqe->tqe_die = ticks + ifq->ifq_ttl;
5962	tqe->tqe_touched = ticks;
5963
5964	MUTEX_ENTER(&ifq->ifq_lock);
5965	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5966		/*
5967		 * Remove from list
5968		 */
5969		*tqe->tqe_pnext = tqe->tqe_next;
5970		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5971
5972		/*
5973		 * Make it the last entry.
5974		 */
5975		tqe->tqe_next = NULL;
5976		tqe->tqe_pnext = ifq->ifq_tail;
5977		*ifq->ifq_tail = tqe;
5978		ifq->ifq_tail = &tqe->tqe_next;
5979	}
5980	MUTEX_EXIT(&ifq->ifq_lock);
5981}
5982
5983
5984/* ------------------------------------------------------------------------ */
5985/* Function:    ipf_queueappend                                             */
5986/* Returns:     Nil                                                         */
5987/* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5988/*              tqe(I)    - pointer to timeout queue entry                  */
5989/*              ifq(I)    - pointer to timeout queue                        */
5990/*              parent(I) - owing object pointer                            */
5991/*                                                                          */
5992/* Add a new item to this queue and put it on the very end.                 */
5993/* We use use ticks to calculate the expiration and mark for when we last   */
5994/* touched the structure.                                                   */
5995/* ------------------------------------------------------------------------ */
5996void
5997ipf_queueappend(ticks, tqe, ifq, parent)
5998	u_long ticks;
5999	ipftqent_t *tqe;
6000	ipftq_t *ifq;
6001	void *parent;
6002{
6003
6004	MUTEX_ENTER(&ifq->ifq_lock);
6005	tqe->tqe_parent = parent;
6006	tqe->tqe_pnext = ifq->ifq_tail;
6007	*ifq->ifq_tail = tqe;
6008	ifq->ifq_tail = &tqe->tqe_next;
6009	tqe->tqe_next = NULL;
6010	tqe->tqe_ifq = ifq;
6011	tqe->tqe_die = ticks + ifq->ifq_ttl;
6012	tqe->tqe_touched = ticks;
6013	ifq->ifq_ref++;
6014	MUTEX_EXIT(&ifq->ifq_lock);
6015}
6016
6017
6018/* ------------------------------------------------------------------------ */
6019/* Function:    ipf_movequeue                                               */
6020/* Returns:     Nil                                                         */
6021/* Parameters:  tq(I)   - pointer to timeout queue information              */
6022/*              oifp(I) - old timeout queue entry was on                    */
6023/*              nifp(I) - new timeout queue to put entry on                 */
6024/*                                                                          */
6025/* Move a queue entry from one timeout queue to another timeout queue.      */
6026/* If it notices that the current entry is already last and does not need   */
6027/* to move queue, the return.                                               */
6028/* ------------------------------------------------------------------------ */
6029void
6030ipf_movequeue(ticks, tqe, oifq, nifq)
6031	u_long ticks;
6032	ipftqent_t *tqe;
6033	ipftq_t *oifq, *nifq;
6034{
6035
6036	/*
6037	 * If the queue hasn't changed and we last touched this entry at the
6038	 * same ipf time, then we're not going to achieve anything by either
6039	 * changing the ttl or moving it on the queue.
6040	 */
6041	if (oifq == nifq && tqe->tqe_touched == ticks)
6042		return;
6043
6044	/*
6045	 * For any of this to be outside the lock, there is a risk that two
6046	 * packets entering simultaneously, with one changing to a different
6047	 * queue and one not, could end up with things in a bizarre state.
6048	 */
6049	MUTEX_ENTER(&oifq->ifq_lock);
6050
6051	tqe->tqe_touched = ticks;
6052	tqe->tqe_die = ticks + nifq->ifq_ttl;
6053	/*
6054	 * Is the operation here going to be a no-op ?
6055	 */
6056	if (oifq == nifq) {
6057		if ((tqe->tqe_next == NULL) ||
6058		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
6059			MUTEX_EXIT(&oifq->ifq_lock);
6060			return;
6061		}
6062	}
6063
6064	/*
6065	 * Remove from the old queue
6066	 */
6067	*tqe->tqe_pnext = tqe->tqe_next;
6068	if (tqe->tqe_next)
6069		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
6070	else
6071		oifq->ifq_tail = tqe->tqe_pnext;
6072	tqe->tqe_next = NULL;
6073
6074	/*
6075	 * If we're moving from one queue to another, release the
6076	 * lock on the old queue and get a lock on the new queue.
6077	 * For user defined queues, if we're moving off it, call
6078	 * delete in case it can now be freed.
6079	 */
6080	if (oifq != nifq) {
6081		tqe->tqe_ifq = NULL;
6082
6083		(void) ipf_deletetimeoutqueue(oifq);
6084
6085		MUTEX_EXIT(&oifq->ifq_lock);
6086
6087		MUTEX_ENTER(&nifq->ifq_lock);
6088
6089		tqe->tqe_ifq = nifq;
6090		nifq->ifq_ref++;
6091	}
6092
6093	/*
6094	 * Add to the bottom of the new queue
6095	 */
6096	tqe->tqe_pnext = nifq->ifq_tail;
6097	*nifq->ifq_tail = tqe;
6098	nifq->ifq_tail = &tqe->tqe_next;
6099	MUTEX_EXIT(&nifq->ifq_lock);
6100}
6101
6102
6103/* ------------------------------------------------------------------------ */
6104/* Function:    ipf_updateipid                                              */
6105/* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
6106/* Parameters:  fin(I) - pointer to packet information                      */
6107/*                                                                          */
6108/* When we are doing NAT, change the IP of every packet to represent a      */
6109/* single sequence of packets coming from the host, hiding any host         */
6110/* specific sequencing that might otherwise be revealed.  If the packet is  */
6111/* a fragment, then store the 'new' IPid in the fragment cache and look up  */
6112/* the fragment cache for non-leading fragments.  If a non-leading fragment */
6113/* has no match in the cache, return an error.                              */
6114/* ------------------------------------------------------------------------ */
6115static int
6116ipf_updateipid(fin)
6117	fr_info_t *fin;
6118{
6119	u_short id, ido, sums;
6120	u_32_t sumd, sum;
6121	ip_t *ip;
6122
6123	ip = fin->fin_ip;
6124	ido = ntohs(ip->ip_id);
6125	if (fin->fin_off != 0) {
6126		sum = ipf_frag_ipidknown(fin);
6127		if (sum == 0xffffffff)
6128			return -1;
6129		sum &= 0xffff;
6130		id = (u_short)sum;
6131		ip->ip_id = htons(id);
6132	} else {
6133		ip_fillid(ip);
6134		id = ntohs(ip->ip_id);
6135		if ((fin->fin_flx & FI_FRAG) != 0)
6136			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6137	}
6138
6139	if (id == ido)
6140		return 0;
6141	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6142	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6143	sum += sumd;
6144	sum = (sum >> 16) + (sum & 0xffff);
6145	sum = (sum >> 16) + (sum & 0xffff);
6146	sums = ~(u_short)sum;
6147	ip->ip_sum = htons(sums);
6148	return 0;
6149}
6150
6151
6152#ifdef	NEED_FRGETIFNAME
6153/* ------------------------------------------------------------------------ */
6154/* Function:    ipf_getifname                                               */
6155/* Returns:     char *    - pointer to interface name                       */
6156/* Parameters:  ifp(I)    - pointer to network interface                    */
6157/*              buffer(O) - pointer to where to store interface name        */
6158/*                                                                          */
6159/* Constructs an interface name in the buffer passed.  The buffer passed is */
6160/* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6161/* as a NULL pointer then return a pointer to a static array.               */
6162/* ------------------------------------------------------------------------ */
6163char *
6164ipf_getifname(ifp, buffer)
6165	struct ifnet *ifp;
6166	char *buffer;
6167{
6168	static char namebuf[LIFNAMSIZ];
6169# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6170     defined(__sgi) || defined(linux) || defined(_AIX51) || \
6171     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6172	int unit, space;
6173	char temp[20];
6174	char *s;
6175# endif
6176
6177	if (buffer == NULL)
6178		buffer = namebuf;
6179	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6180	buffer[LIFNAMSIZ - 1] = '\0';
6181# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6182     defined(__sgi) || defined(_AIX51) || \
6183     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6184	for (s = buffer; *s; s++)
6185		;
6186	unit = ifp->if_unit;
6187	space = LIFNAMSIZ - (s - buffer);
6188	if ((space > 0) && (unit >= 0)) {
6189#  if defined(SNPRINTF) && defined(_KERNEL)
6190		SNPRINTF(temp, sizeof(temp), "%d", unit);
6191#  else
6192		(void) sprintf(temp, "%d", unit);
6193#  endif
6194		(void) strncpy(s, temp, space);
6195	}
6196# endif
6197	return buffer;
6198}
6199#endif
6200
6201
6202/* ------------------------------------------------------------------------ */
6203/* Function:    ipf_ioctlswitch                                             */
6204/* Returns:     int     - -1 continue processing, else ioctl return value   */
6205/* Parameters:  unit(I) - device unit opened                                */
6206/*              data(I) - pointer to ioctl data                             */
6207/*              cmd(I)  - ioctl command                                     */
6208/*              mode(I) - mode value                                        */
6209/*              uid(I)  - uid making the ioctl call                         */
6210/*              ctx(I)  - pointer to context data                           */
6211/*                                                                          */
6212/* Based on the value of unit, call the appropriate ioctl handler or return */
6213/* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6214/* for the device in order to execute the ioctl.  A special case is made    */
6215/* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6216/* The context data pointer is passed through as this is used as the key    */
6217/* for locating a matching token for continued access for walking lists,    */
6218/* etc.                                                                     */
6219/* ------------------------------------------------------------------------ */
6220int
6221ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx)
6222	ipf_main_softc_t *softc;
6223	int unit, mode, uid;
6224	ioctlcmd_t cmd;
6225	void *data, *ctx;
6226{
6227	int error = 0;
6228
6229	switch (cmd)
6230	{
6231	case SIOCIPFINTERROR :
6232		error = BCOPYOUT(&softc->ipf_interror, data,
6233				 sizeof(softc->ipf_interror));
6234		if (error != 0) {
6235			IPFERROR(40);
6236			error = EFAULT;
6237		}
6238		return error;
6239	default :
6240		break;
6241	}
6242
6243	switch (unit)
6244	{
6245	case IPL_LOGIPF :
6246		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6247		break;
6248	case IPL_LOGNAT :
6249		if (softc->ipf_running > 0) {
6250			error = ipf_nat_ioctl(softc, data, cmd, mode,
6251					      uid, ctx);
6252		} else {
6253			IPFERROR(42);
6254			error = EIO;
6255		}
6256		break;
6257	case IPL_LOGSTATE :
6258		if (softc->ipf_running > 0) {
6259			error = ipf_state_ioctl(softc, data, cmd, mode,
6260						uid, ctx);
6261		} else {
6262			IPFERROR(43);
6263			error = EIO;
6264		}
6265		break;
6266	case IPL_LOGAUTH :
6267		if (softc->ipf_running > 0) {
6268			error = ipf_auth_ioctl(softc, data, cmd, mode,
6269					       uid, ctx);
6270		} else {
6271			IPFERROR(44);
6272			error = EIO;
6273		}
6274		break;
6275	case IPL_LOGSYNC :
6276		if (softc->ipf_running > 0) {
6277			error = ipf_sync_ioctl(softc, data, cmd, mode,
6278					       uid, ctx);
6279		} else {
6280			error = EIO;
6281			IPFERROR(45);
6282		}
6283		break;
6284	case IPL_LOGSCAN :
6285#ifdef IPFILTER_SCAN
6286		if (softc->ipf_running > 0)
6287			error = ipf_scan_ioctl(softc, data, cmd, mode,
6288					       uid, ctx);
6289		else
6290#endif
6291		{
6292			error = EIO;
6293			IPFERROR(46);
6294		}
6295		break;
6296	case IPL_LOGLOOKUP :
6297		if (softc->ipf_running > 0) {
6298			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6299						 uid, ctx);
6300		} else {
6301			error = EIO;
6302			IPFERROR(47);
6303		}
6304		break;
6305	default :
6306		IPFERROR(48);
6307		error = EIO;
6308		break;
6309	}
6310
6311	return error;
6312}
6313
6314
6315/*
6316 * This array defines the expected size of objects coming into the kernel
6317 * for the various recognised object types. The first column is flags (see
6318 * below), 2nd column is current size, 3rd column is the version number of
6319 * when the current size became current.
6320 * Flags:
6321 * 1 = minimum size, not absolute size
6322 */
6323static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6324	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6325	{ 1,	sizeof(struct friostat),	5010000 },
6326	{ 0,	sizeof(struct fr_info),		5010000 },
6327	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6328	{ 0,	sizeof(struct ipfrstat),	5010000 },
6329	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6330	{ 0,	sizeof(struct natstat),		5010000 },
6331	{ 0,	sizeof(struct ipstate_save),	5010000 },
6332	{ 1,	sizeof(struct nat_save),	5010000 },
6333	{ 0,	sizeof(struct natlookup),	5010000 },
6334	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6335	{ 0,	sizeof(struct ips_stat),	5010000 },
6336	{ 0,	sizeof(struct frauth),		5010000 },
6337	{ 0,	sizeof(struct ipftune),		4010100 },
6338	{ 0,	sizeof(struct nat),		5010000 },
6339	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6340	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6341	{ 0,	sizeof(struct ipftable),	4011400 },
6342	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6343	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6344	{ 1,	0,				0	}, /* IPFEXPR */
6345	{ 0,	0,				0	}, /* PROXYCTL */
6346	{ 0,	sizeof (struct fripf),		5010000	}
6347};
6348
6349
6350/* ------------------------------------------------------------------------ */
6351/* Function:    ipf_inobj                                                   */
6352/* Returns:     int     - 0 = success, else failure                         */
6353/* Parameters:  softc(I) - soft context pointerto work with                 */
6354/*              data(I)  - pointer to ioctl data                            */
6355/*              objp(O)  - where to store ipfobj structure                  */
6356/*              ptr(I)   - pointer to data to copy out                      */
6357/*              type(I)  - type of structure being moved                    */
6358/*                                                                          */
6359/* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6360/* add things to check for version numbers, sizes, etc, to make it backward */
6361/* compatible at the ABI for user land.                                     */
6362/* If objp is not NULL then we assume that the caller wants to see what is  */
6363/* in the ipfobj_t structure being copied in. As an example, this can tell  */
6364/* the caller what version of ipfilter the ioctl program was written to.    */
6365/* ------------------------------------------------------------------------ */
6366int
6367ipf_inobj(softc, data, objp, ptr, type)
6368	ipf_main_softc_t *softc;
6369	void *data;
6370	ipfobj_t *objp;
6371	void *ptr;
6372	int type;
6373{
6374	ipfobj_t obj;
6375	int error;
6376	int size;
6377
6378	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6379		IPFERROR(49);
6380		return EINVAL;
6381	}
6382
6383	if (objp == NULL)
6384		objp = &obj;
6385	error = BCOPYIN(data, objp, sizeof(*objp));
6386	if (error != 0) {
6387		IPFERROR(124);
6388		return EFAULT;
6389	}
6390
6391	if (objp->ipfo_type != type) {
6392		IPFERROR(50);
6393		return EINVAL;
6394	}
6395
6396	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6397		if ((ipf_objbytes[type][0] & 1) != 0) {
6398			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6399				IPFERROR(51);
6400				return EINVAL;
6401			}
6402			size =  ipf_objbytes[type][1];
6403		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6404			size =  objp->ipfo_size;
6405		} else {
6406			IPFERROR(52);
6407			return EINVAL;
6408		}
6409		error = COPYIN(objp->ipfo_ptr, ptr, size);
6410		if (error != 0) {
6411			IPFERROR(55);
6412			error = EFAULT;
6413		}
6414	} else {
6415#ifdef  IPFILTER_COMPAT
6416		error = ipf_in_compat(softc, objp, ptr, 0);
6417#else
6418		IPFERROR(54);
6419		error = EINVAL;
6420#endif
6421	}
6422	return error;
6423}
6424
6425
6426/* ------------------------------------------------------------------------ */
6427/* Function:    ipf_inobjsz                                                 */
6428/* Returns:     int     - 0 = success, else failure                         */
6429/* Parameters:  softc(I) - soft context pointerto work with                 */
6430/*              data(I)  - pointer to ioctl data                            */
6431/*              ptr(I)   - pointer to store real data in                    */
6432/*              type(I)  - type of structure being moved                    */
6433/*              sz(I)    - size of data to copy                             */
6434/*                                                                          */
6435/* As per ipf_inobj, except the size of the object to copy in is passed in  */
6436/* but it must not be smaller than the size defined for the type and the    */
6437/* type must allow for varied sized objects.  The extra requirement here is */
6438/* that sz must match the size of the object being passed in - this is not  */
6439/* not possible nor required in ipf_inobj().                                */
6440/* ------------------------------------------------------------------------ */
6441int
6442ipf_inobjsz(softc, data, ptr, type, sz)
6443	ipf_main_softc_t *softc;
6444	void *data;
6445	void *ptr;
6446	int type, sz;
6447{
6448	ipfobj_t obj;
6449	int error;
6450
6451	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6452		IPFERROR(56);
6453		return EINVAL;
6454	}
6455
6456	error = BCOPYIN(data, &obj, sizeof(obj));
6457	if (error != 0) {
6458		IPFERROR(125);
6459		return EFAULT;
6460	}
6461
6462	if (obj.ipfo_type != type) {
6463		IPFERROR(58);
6464		return EINVAL;
6465	}
6466
6467	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6468		if (((ipf_objbytes[type][0] & 1) == 0) ||
6469		    (sz < ipf_objbytes[type][1])) {
6470			IPFERROR(57);
6471			return EINVAL;
6472		}
6473		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6474		if (error != 0) {
6475			IPFERROR(61);
6476			error = EFAULT;
6477		}
6478	} else {
6479#ifdef	IPFILTER_COMPAT
6480		error = ipf_in_compat(softc, &obj, ptr, sz);
6481#else
6482		IPFERROR(60);
6483		error = EINVAL;
6484#endif
6485	}
6486	return error;
6487}
6488
6489
6490/* ------------------------------------------------------------------------ */
6491/* Function:    ipf_outobjsz                                                */
6492/* Returns:     int     - 0 = success, else failure                         */
6493/* Parameters:  data(I) - pointer to ioctl data                             */
6494/*              ptr(I)  - pointer to store real data in                     */
6495/*              type(I) - type of structure being moved                     */
6496/*              sz(I)   - size of data to copy                              */
6497/*                                                                          */
6498/* As per ipf_outobj, except the size of the object to copy out is passed in*/
6499/* but it must not be smaller than the size defined for the type and the    */
6500/* type must allow for varied sized objects.  The extra requirement here is */
6501/* that sz must match the size of the object being passed in - this is not  */
6502/* not possible nor required in ipf_outobj().                               */
6503/* ------------------------------------------------------------------------ */
6504int
6505ipf_outobjsz(softc, data, ptr, type, sz)
6506	ipf_main_softc_t *softc;
6507	void *data;
6508	void *ptr;
6509	int type, sz;
6510{
6511	ipfobj_t obj;
6512	int error;
6513
6514	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6515		IPFERROR(62);
6516		return EINVAL;
6517	}
6518
6519	error = BCOPYIN(data, &obj, sizeof(obj));
6520	if (error != 0) {
6521		IPFERROR(127);
6522		return EFAULT;
6523	}
6524
6525	if (obj.ipfo_type != type) {
6526		IPFERROR(63);
6527		return EINVAL;
6528	}
6529
6530	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6531		if (((ipf_objbytes[type][0] & 1) == 0) ||
6532		    (sz < ipf_objbytes[type][1])) {
6533			IPFERROR(146);
6534			return EINVAL;
6535		}
6536		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6537		if (error != 0) {
6538			IPFERROR(66);
6539			error = EFAULT;
6540		}
6541	} else {
6542#ifdef	IPFILTER_COMPAT
6543		error = ipf_out_compat(softc, &obj, ptr);
6544#else
6545		IPFERROR(65);
6546		error = EINVAL;
6547#endif
6548	}
6549	return error;
6550}
6551
6552
6553/* ------------------------------------------------------------------------ */
6554/* Function:    ipf_outobj                                                  */
6555/* Returns:     int     - 0 = success, else failure                         */
6556/* Parameters:  data(I) - pointer to ioctl data                             */
6557/*              ptr(I)  - pointer to store real data in                     */
6558/*              type(I) - type of structure being moved                     */
6559/*                                                                          */
6560/* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6561/* future, we add things to check for version numbers, sizes, etc, to make  */
6562/* it backward  compatible at the ABI for user land.                        */
6563/* ------------------------------------------------------------------------ */
6564int
6565ipf_outobj(softc, data, ptr, type)
6566	ipf_main_softc_t *softc;
6567	void *data;
6568	void *ptr;
6569	int type;
6570{
6571	ipfobj_t obj;
6572	int error;
6573
6574	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6575		IPFERROR(67);
6576		return EINVAL;
6577	}
6578
6579	error = BCOPYIN(data, &obj, sizeof(obj));
6580	if (error != 0) {
6581		IPFERROR(126);
6582		return EFAULT;
6583	}
6584
6585	if (obj.ipfo_type != type) {
6586		IPFERROR(68);
6587		return EINVAL;
6588	}
6589
6590	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6591		if ((ipf_objbytes[type][0] & 1) != 0) {
6592			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6593				IPFERROR(69);
6594				return EINVAL;
6595			}
6596		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6597			IPFERROR(70);
6598			return EINVAL;
6599		}
6600
6601		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6602		if (error != 0) {
6603			IPFERROR(73);
6604			error = EFAULT;
6605		}
6606	} else {
6607#ifdef	IPFILTER_COMPAT
6608		error = ipf_out_compat(softc, &obj, ptr);
6609#else
6610		IPFERROR(72);
6611		error = EINVAL;
6612#endif
6613	}
6614	return error;
6615}
6616
6617
6618/* ------------------------------------------------------------------------ */
6619/* Function:    ipf_outobjk                                                 */
6620/* Returns:     int     - 0 = success, else failure                         */
6621/* Parameters:  obj(I)  - pointer to data description structure             */
6622/*              ptr(I)  - pointer to kernel data to copy out                */
6623/*                                                                          */
6624/* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6625/* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6626/* already populated with information and now we just need to use it.       */
6627/* There is no need for this function to have a "type" parameter as there   */
6628/* is no point in validating information that comes from the kernel with    */
6629/* itself.                                                                  */
6630/* ------------------------------------------------------------------------ */
6631int
6632ipf_outobjk(softc, obj, ptr)
6633	ipf_main_softc_t *softc;
6634	ipfobj_t *obj;
6635	void *ptr;
6636{
6637	int type = obj->ipfo_type;
6638	int error;
6639
6640	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6641		IPFERROR(147);
6642		return EINVAL;
6643	}
6644
6645	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6646		if ((ipf_objbytes[type][0] & 1) != 0) {
6647			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6648				IPFERROR(148);
6649				return EINVAL;
6650			}
6651
6652		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6653			IPFERROR(149);
6654			return EINVAL;
6655		}
6656
6657		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6658		if (error != 0) {
6659			IPFERROR(150);
6660			error = EFAULT;
6661		}
6662	} else {
6663#ifdef  IPFILTER_COMPAT
6664		error = ipf_out_compat(softc, obj, ptr);
6665#else
6666		IPFERROR(151);
6667		error = EINVAL;
6668#endif
6669	}
6670	return error;
6671}
6672
6673
6674/* ------------------------------------------------------------------------ */
6675/* Function:    ipf_checkl4sum                                              */
6676/* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6677/* Parameters:  fin(I) - pointer to packet information                      */
6678/*                                                                          */
6679/* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6680/* not possible, return without indicating a failure or success but in a    */
6681/* way that is ditinguishable. This function should only be called by the   */
6682/* ipf_checkv6sum() for each platform.                                      */
6683/* ------------------------------------------------------------------------ */
6684INLINE int
6685ipf_checkl4sum(fin)
6686	fr_info_t *fin;
6687{
6688	u_short sum, hdrsum, *csump;
6689	udphdr_t *udp;
6690	int dosum;
6691
6692	/*
6693	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6694	 * isn't already considered "bad", then validate the checksum.  If
6695	 * this check fails then considered the packet to be "bad".
6696	 */
6697	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6698		return 1;
6699
6700	csump = NULL;
6701	hdrsum = 0;
6702	dosum = 0;
6703	sum = 0;
6704
6705	switch (fin->fin_p)
6706	{
6707	case IPPROTO_TCP :
6708		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6709		dosum = 1;
6710		break;
6711
6712	case IPPROTO_UDP :
6713		udp = fin->fin_dp;
6714		if (udp->uh_sum != 0) {
6715			csump = &udp->uh_sum;
6716			dosum = 1;
6717		}
6718		break;
6719
6720#ifdef USE_INET6
6721	case IPPROTO_ICMPV6 :
6722		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6723		dosum = 1;
6724		break;
6725#endif
6726
6727	case IPPROTO_ICMP :
6728		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6729		dosum = 1;
6730		break;
6731
6732	default :
6733		return 1;
6734		/*NOTREACHED*/
6735	}
6736
6737	if (csump != NULL)
6738		hdrsum = *csump;
6739
6740	if (dosum) {
6741		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6742	}
6743#if !defined(_KERNEL)
6744	if (sum == hdrsum) {
6745		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6746	} else {
6747		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6748	}
6749#endif
6750	DT2(l4sums, u_short, hdrsum, u_short, sum);
6751	if (hdrsum == sum) {
6752		fin->fin_cksum = FI_CK_SUMOK;
6753		return 0;
6754	}
6755	fin->fin_cksum = FI_CK_BAD;
6756	return -1;
6757}
6758
6759
6760/* ------------------------------------------------------------------------ */
6761/* Function:    ipf_ifpfillv4addr                                           */
6762/* Returns:     int     - 0 = address update, -1 = address not updated      */
6763/* Parameters:  atype(I)   - type of network address update to perform      */
6764/*              sin(I)     - pointer to source of address information       */
6765/*              mask(I)    - pointer to source of netmask information       */
6766/*              inp(I)     - pointer to destination address store           */
6767/*              inpmask(I) - pointer to destination netmask store           */
6768/*                                                                          */
6769/* Given a type of network address update (atype) to perform, copy          */
6770/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6771/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6772/* which case the operation fails.  For all values of atype other than      */
6773/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6774/* value.                                                                   */
6775/* ------------------------------------------------------------------------ */
6776int
6777ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6778	int atype;
6779	struct sockaddr_in *sin, *mask;
6780	struct in_addr *inp, *inpmask;
6781{
6782	if (inpmask != NULL && atype != FRI_NETMASKED)
6783		inpmask->s_addr = 0xffffffff;
6784
6785	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6786		if (atype == FRI_NETMASKED) {
6787			if (inpmask == NULL)
6788				return -1;
6789			inpmask->s_addr = mask->sin_addr.s_addr;
6790		}
6791		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6792	} else {
6793		inp->s_addr = sin->sin_addr.s_addr;
6794	}
6795	return 0;
6796}
6797
6798
6799#ifdef	USE_INET6
6800/* ------------------------------------------------------------------------ */
6801/* Function:    ipf_ifpfillv6addr                                           */
6802/* Returns:     int     - 0 = address update, -1 = address not updated      */
6803/* Parameters:  atype(I)   - type of network address update to perform      */
6804/*              sin(I)     - pointer to source of address information       */
6805/*              mask(I)    - pointer to source of netmask information       */
6806/*              inp(I)     - pointer to destination address store           */
6807/*              inpmask(I) - pointer to destination netmask store           */
6808/*                                                                          */
6809/* Given a type of network address update (atype) to perform, copy          */
6810/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6811/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6812/* which case the operation fails.  For all values of atype other than      */
6813/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6814/* value.                                                                   */
6815/* ------------------------------------------------------------------------ */
6816int
6817ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6818	int atype;
6819	struct sockaddr_in6 *sin, *mask;
6820	i6addr_t *inp, *inpmask;
6821{
6822	i6addr_t *src, *and;
6823
6824	src = (i6addr_t *)&sin->sin6_addr;
6825	and = (i6addr_t *)&mask->sin6_addr;
6826
6827	if (inpmask != NULL && atype != FRI_NETMASKED) {
6828		inpmask->i6[0] = 0xffffffff;
6829		inpmask->i6[1] = 0xffffffff;
6830		inpmask->i6[2] = 0xffffffff;
6831		inpmask->i6[3] = 0xffffffff;
6832	}
6833
6834	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6835		if (atype == FRI_NETMASKED) {
6836			if (inpmask == NULL)
6837				return -1;
6838			inpmask->i6[0] = and->i6[0];
6839			inpmask->i6[1] = and->i6[1];
6840			inpmask->i6[2] = and->i6[2];
6841			inpmask->i6[3] = and->i6[3];
6842		}
6843
6844		inp->i6[0] = src->i6[0] & and->i6[0];
6845		inp->i6[1] = src->i6[1] & and->i6[1];
6846		inp->i6[2] = src->i6[2] & and->i6[2];
6847		inp->i6[3] = src->i6[3] & and->i6[3];
6848	} else {
6849		inp->i6[0] = src->i6[0];
6850		inp->i6[1] = src->i6[1];
6851		inp->i6[2] = src->i6[2];
6852		inp->i6[3] = src->i6[3];
6853	}
6854	return 0;
6855}
6856#endif
6857
6858
6859/* ------------------------------------------------------------------------ */
6860/* Function:    ipf_matchtag                                                */
6861/* Returns:     0 == mismatch, 1 == match.                                  */
6862/* Parameters:  tag1(I) - pointer to first tag to compare                   */
6863/*              tag2(I) - pointer to second tag to compare                  */
6864/*                                                                          */
6865/* Returns true (non-zero) or false(0) if the two tag structures can be     */
6866/* considered to be a match or not match, respectively.  The tag is 16      */
6867/* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6868/* compare the ints instead, for speed. tag1 is the master of the           */
6869/* comparison.  This function should only be called with both tag1 and tag2 */
6870/* as non-NULL pointers.                                                    */
6871/* ------------------------------------------------------------------------ */
6872int
6873ipf_matchtag(tag1, tag2)
6874	ipftag_t *tag1, *tag2;
6875{
6876	if (tag1 == tag2)
6877		return 1;
6878
6879	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6880		return 1;
6881
6882	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6883	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6884	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6885	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6886		return 1;
6887	return 0;
6888}
6889
6890
6891/* ------------------------------------------------------------------------ */
6892/* Function:    ipf_coalesce                                                */
6893/* Returns:     1 == success, -1 == failure, 0 == no change                 */
6894/* Parameters:  fin(I) - pointer to packet information                      */
6895/*                                                                          */
6896/* Attempt to get all of the packet data into a single, contiguous buffer.  */
6897/* If this call returns a failure then the buffers have also been freed.    */
6898/* ------------------------------------------------------------------------ */
6899int
6900ipf_coalesce(fin)
6901	fr_info_t *fin;
6902{
6903
6904	if ((fin->fin_flx & FI_COALESCE) != 0)
6905		return 1;
6906
6907	/*
6908	 * If the mbuf pointers indicate that there is no mbuf to work with,
6909	 * return but do not indicate success or failure.
6910	 */
6911	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6912		return 0;
6913
6914#if defined(_KERNEL)
6915	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6916		ipf_main_softc_t *softc = fin->fin_main_soft;
6917
6918		DT1(frb_coalesce, fr_info_t *, fin);
6919		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6920# ifdef MENTAT
6921		FREE_MB_T(*fin->fin_mp);
6922# endif
6923		fin->fin_reason = FRB_COALESCE;
6924		*fin->fin_mp = NULL;
6925		fin->fin_m = NULL;
6926		return -1;
6927	}
6928#else
6929	fin = fin;	/* LINT */
6930#endif
6931	return 1;
6932}
6933
6934
6935/*
6936 * The following table lists all of the tunable variables that can be
6937 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6938 * in the table below is as follows:
6939 *
6940 * pointer to value, name of value, minimum, maximum, size of the value's
6941 *     container, value attribute flags
6942 *
6943 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6944 * means the value can only be written to when IPFilter is loaded but disabled.
6945 * The obvious implication is if neither of these are set then the value can be
6946 * changed at any time without harm.
6947 */
6948
6949
6950/* ------------------------------------------------------------------------ */
6951/* Function:    ipf_tune_findbycookie                                       */
6952/* Returns:     NULL = search failed, else pointer to tune struct           */
6953/* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6954/*              next(O)   - pointer to place to store the cookie for the    */
6955/*                          "next" tuneable, if it is desired.              */
6956/*                                                                          */
6957/* This function is used to walk through all of the existing tunables with  */
6958/* successive calls.  It searches the known tunables for the one which has  */
6959/* a matching value for "cookie" - ie its address.  When returning a match, */
6960/* the next one to be found may be returned inside next.                    */
6961/* ------------------------------------------------------------------------ */
6962static ipftuneable_t *
6963ipf_tune_findbycookie(ptop, cookie, next)
6964	ipftuneable_t **ptop;
6965	void *cookie, **next;
6966{
6967	ipftuneable_t *ta, **tap;
6968
6969	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6970		if (ta == cookie) {
6971			if (next != NULL) {
6972				/*
6973				 * If the next entry in the array has a name
6974				 * present, then return a pointer to it for
6975				 * where to go next, else return a pointer to
6976				 * the dynaminc list as a key to search there
6977				 * next.  This facilitates a weak linking of
6978				 * the two "lists" together.
6979				 */
6980				if ((ta + 1)->ipft_name != NULL)
6981					*next = ta + 1;
6982				else
6983					*next = ptop;
6984			}
6985			return ta;
6986		}
6987
6988	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6989		if (tap == cookie) {
6990			if (next != NULL)
6991				*next = &ta->ipft_next;
6992			return ta;
6993		}
6994
6995	if (next != NULL)
6996		*next = NULL;
6997	return NULL;
6998}
6999
7000
7001/* ------------------------------------------------------------------------ */
7002/* Function:    ipf_tune_findbyname                                         */
7003/* Returns:     NULL = search failed, else pointer to tune struct           */
7004/* Parameters:  name(I) - name of the tuneable entry to find.               */
7005/*                                                                          */
7006/* Search the static array of tuneables and the list of dynamic tuneables   */
7007/* for an entry with a matching name.  If we can find one, return a pointer */
7008/* to the matching structure.                                               */
7009/* ------------------------------------------------------------------------ */
7010static ipftuneable_t *
7011ipf_tune_findbyname(top, name)
7012	ipftuneable_t *top;
7013	const char *name;
7014{
7015	ipftuneable_t *ta;
7016
7017	for (ta = top; ta != NULL; ta = ta->ipft_next)
7018		if (!strcmp(ta->ipft_name, name)) {
7019			return ta;
7020		}
7021
7022	return NULL;
7023}
7024
7025
7026/* ------------------------------------------------------------------------ */
7027/* Function:    ipf_tune_add_array                                          */
7028/* Returns:     int - 0 == success, else failure                            */
7029/* Parameters:  newtune - pointer to new tune array to add to tuneables     */
7030/*                                                                          */
7031/* Appends tune structures from the array passed in (newtune) to the end of */
7032/* the current list of "dynamic" tuneable parameters.                       */
7033/* If any entry to be added is already present (by name) then the operation */
7034/* is aborted - entries that have been added are removed before returning.  */
7035/* An entry with no name (NULL) is used as the indication that the end of   */
7036/* the array has been reached.                                              */
7037/* ------------------------------------------------------------------------ */
7038int
7039ipf_tune_add_array(softc, newtune)
7040	ipf_main_softc_t *softc;
7041	ipftuneable_t *newtune;
7042{
7043	ipftuneable_t *nt, *dt;
7044	int error = 0;
7045
7046	for (nt = newtune; nt->ipft_name != NULL; nt++) {
7047		error = ipf_tune_add(softc, nt);
7048		if (error != 0) {
7049			for (dt = newtune; dt != nt; dt++) {
7050				(void) ipf_tune_del(softc, dt);
7051			}
7052		}
7053	}
7054
7055	return error;
7056}
7057
7058
7059/* ------------------------------------------------------------------------ */
7060/* Function:    ipf_tune_array_link                                         */
7061/* Returns:     0 == success, -1 == failure                                 */
7062/* Parameters:  softc(I) - soft context pointerto work with                 */
7063/*              array(I) - pointer to an array of tuneables                 */
7064/*                                                                          */
7065/* Given an array of tunables (array), append them to the current list of   */
7066/* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
7067/* the array for being appended to the list, initialise all of the next     */
7068/* pointers so we don't need to walk parts of it with ++ and others with    */
7069/* next. The array is expected to have an entry with a NULL name as the     */
7070/* terminator. Trying to add an array with no non-NULL names will return as */
7071/* a failure.                                                               */
7072/* ------------------------------------------------------------------------ */
7073int
7074ipf_tune_array_link(softc, array)
7075	ipf_main_softc_t *softc;
7076	ipftuneable_t *array;
7077{
7078	ipftuneable_t *t, **p;
7079
7080	t = array;
7081	if (t->ipft_name == NULL)
7082		return -1;
7083
7084	for (; t[1].ipft_name != NULL; t++)
7085		t[0].ipft_next = &t[1];
7086	t->ipft_next = NULL;
7087
7088	/*
7089	 * Since a pointer to the last entry isn't kept, we need to find it
7090	 * each time we want to add new variables to the list.
7091	 */
7092	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7093		if (t->ipft_name == NULL)
7094			break;
7095	*p = array;
7096
7097	return 0;
7098}
7099
7100
7101/* ------------------------------------------------------------------------ */
7102/* Function:    ipf_tune_array_unlink                                       */
7103/* Returns:     0 == success, -1 == failure                                 */
7104/* Parameters:  softc(I) - soft context pointerto work with                 */
7105/*              array(I) - pointer to an array of tuneables                 */
7106/*                                                                          */
7107/* ------------------------------------------------------------------------ */
7108int
7109ipf_tune_array_unlink(softc, array)
7110	ipf_main_softc_t *softc;
7111	ipftuneable_t *array;
7112{
7113	ipftuneable_t *t, **p;
7114
7115	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7116		if (t == array)
7117			break;
7118	if (t == NULL)
7119		return -1;
7120
7121	for (; t[1].ipft_name != NULL; t++)
7122		;
7123
7124	*p = t->ipft_next;
7125
7126	return 0;
7127}
7128
7129
7130/* ------------------------------------------------------------------------ */
7131/* Function:   ipf_tune_array_copy                                          */
7132/* Returns:    NULL = failure, else pointer to new array                    */
7133/* Parameters: base(I)     - pointer to structure base                      */
7134/*             size(I)     - size of the array at template                  */
7135/*             template(I) - original array to copy                         */
7136/*                                                                          */
7137/* Allocate memory for a new set of tuneable values and copy everything     */
7138/* from template into the new region of memory.  The new region is full of  */
7139/* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
7140/*                                                                          */
7141/* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
7142/* In the array template, ipftp_offset is the offset (in bytes) of the      */
7143/* location of the tuneable value inside the structure pointed to by base.  */
7144/* As ipftp_offset is a union over the pointers to the tuneable values, if  */
7145/* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
7146/* ipftp_void that points to the stored value.                              */
7147/* ------------------------------------------------------------------------ */
7148ipftuneable_t *
7149ipf_tune_array_copy(base, size, template)
7150	void *base;
7151	size_t size;
7152	ipftuneable_t *template;
7153{
7154	ipftuneable_t *copy;
7155	int i;
7156
7157
7158	KMALLOCS(copy, ipftuneable_t *, size);
7159	if (copy == NULL) {
7160		return NULL;
7161	}
7162	bcopy(template, copy, size);
7163
7164	for (i = 0; copy[i].ipft_name; i++) {
7165		copy[i].ipft_una.ipftp_offset += (u_long)base;
7166		copy[i].ipft_next = copy + i + 1;
7167	}
7168
7169	return copy;
7170}
7171
7172
7173/* ------------------------------------------------------------------------ */
7174/* Function:    ipf_tune_add                                                */
7175/* Returns:     int - 0 == success, else failure                            */
7176/* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7177/*                                                                          */
7178/* Appends tune structures from the array passed in (newtune) to the end of */
7179/* the current list of "dynamic" tuneable parameters.  Once added, the      */
7180/* owner of the object is not expected to ever change "ipft_next".          */
7181/* ------------------------------------------------------------------------ */
7182int
7183ipf_tune_add(softc, newtune)
7184	ipf_main_softc_t *softc;
7185	ipftuneable_t *newtune;
7186{
7187	ipftuneable_t *ta, **tap;
7188
7189	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7190	if (ta != NULL) {
7191		IPFERROR(74);
7192		return EEXIST;
7193	}
7194
7195	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7196		;
7197
7198	newtune->ipft_next = NULL;
7199	*tap = newtune;
7200	return 0;
7201}
7202
7203
7204/* ------------------------------------------------------------------------ */
7205/* Function:    ipf_tune_del                                                */
7206/* Returns:     int - 0 == success, else failure                            */
7207/* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7208/*                        current dynamic tuneables                         */
7209/*                                                                          */
7210/* Search for the tune structure, by pointer, in the list of those that are */
7211/* dynamically added at run time.  If found, adjust the list so that this   */
7212/* structure is no longer part of it.                                       */
7213/* ------------------------------------------------------------------------ */
7214int
7215ipf_tune_del(softc, oldtune)
7216	ipf_main_softc_t *softc;
7217	ipftuneable_t *oldtune;
7218{
7219	ipftuneable_t *ta, **tap;
7220	int error = 0;
7221
7222	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7223	     tap = &ta->ipft_next) {
7224		if (ta == oldtune) {
7225			*tap = oldtune->ipft_next;
7226			oldtune->ipft_next = NULL;
7227			break;
7228		}
7229	}
7230
7231	if (ta == NULL) {
7232		error = ESRCH;
7233		IPFERROR(75);
7234	}
7235	return error;
7236}
7237
7238
7239/* ------------------------------------------------------------------------ */
7240/* Function:    ipf_tune_del_array                                          */
7241/* Returns:     int - 0 == success, else failure                            */
7242/* Parameters:  oldtune - pointer to tuneables array                        */
7243/*                                                                          */
7244/* Remove each tuneable entry in the array from the list of "dynamic"       */
7245/* tunables.  If one entry should fail to be found, an error will be        */
7246/* returned and no further ones removed.                                    */
7247/* An entry with a NULL name is used as the indicator of the last entry in  */
7248/* the array.                                                               */
7249/* ------------------------------------------------------------------------ */
7250int
7251ipf_tune_del_array(softc, oldtune)
7252	ipf_main_softc_t *softc;
7253	ipftuneable_t *oldtune;
7254{
7255	ipftuneable_t *ot;
7256	int error = 0;
7257
7258	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7259		error = ipf_tune_del(softc, ot);
7260		if (error != 0)
7261			break;
7262	}
7263
7264	return error;
7265
7266}
7267
7268
7269/* ------------------------------------------------------------------------ */
7270/* Function:    ipf_tune                                                    */
7271/* Returns:     int - 0 == success, else failure                            */
7272/* Parameters:  cmd(I)  - ioctl command number                              */
7273/*              data(I) - pointer to ioctl data structure                   */
7274/*                                                                          */
7275/* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7276/* three ioctls provide the means to access and control global variables    */
7277/* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7278/* changed without rebooting, reloading or recompiling.  The initialisation */
7279/* and 'destruction' routines of the various components of ipfilter are all */
7280/* each responsible for handling their own values being too big.            */
7281/* ------------------------------------------------------------------------ */
7282int
7283ipf_ipftune(softc, cmd, data)
7284	ipf_main_softc_t *softc;
7285	ioctlcmd_t cmd;
7286	void *data;
7287{
7288	ipftuneable_t *ta;
7289	ipftune_t tu;
7290	void *cookie;
7291	int error;
7292
7293	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7294	if (error != 0)
7295		return error;
7296
7297	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7298	cookie = tu.ipft_cookie;
7299	ta = NULL;
7300
7301	switch (cmd)
7302	{
7303	case SIOCIPFGETNEXT :
7304		/*
7305		 * If cookie is non-NULL, assume it to be a pointer to the last
7306		 * entry we looked at, so find it (if possible) and return a
7307		 * pointer to the next one after it.  The last entry in the
7308		 * the table is a NULL entry, so when we get to it, set cookie
7309		 * to NULL and return that, indicating end of list, erstwhile
7310		 * if we come in with cookie set to NULL, we are starting anew
7311		 * at the front of the list.
7312		 */
7313		if (cookie != NULL) {
7314			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7315						   cookie, &tu.ipft_cookie);
7316		} else {
7317			ta = softc->ipf_tuners;
7318			tu.ipft_cookie = ta + 1;
7319		}
7320		if (ta != NULL) {
7321			/*
7322			 * Entry found, but does the data pointed to by that
7323			 * row fit in what we can return?
7324			 */
7325			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7326				IPFERROR(76);
7327				return EINVAL;
7328			}
7329
7330			tu.ipft_vlong = 0;
7331			if (ta->ipft_sz == sizeof(u_long))
7332				tu.ipft_vlong = *ta->ipft_plong;
7333			else if (ta->ipft_sz == sizeof(u_int))
7334				tu.ipft_vint = *ta->ipft_pint;
7335			else if (ta->ipft_sz == sizeof(u_short))
7336				tu.ipft_vshort = *ta->ipft_pshort;
7337			else if (ta->ipft_sz == sizeof(u_char))
7338				tu.ipft_vchar = *ta->ipft_pchar;
7339
7340			tu.ipft_sz = ta->ipft_sz;
7341			tu.ipft_min = ta->ipft_min;
7342			tu.ipft_max = ta->ipft_max;
7343			tu.ipft_flags = ta->ipft_flags;
7344			bcopy(ta->ipft_name, tu.ipft_name,
7345			      MIN(sizeof(tu.ipft_name),
7346				  strlen(ta->ipft_name) + 1));
7347		}
7348		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7349		break;
7350
7351	case SIOCIPFGET :
7352	case SIOCIPFSET :
7353		/*
7354		 * Search by name or by cookie value for a particular entry
7355		 * in the tuning paramter table.
7356		 */
7357		IPFERROR(77);
7358		error = ESRCH;
7359		if (cookie != NULL) {
7360			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7361						   cookie, NULL);
7362			if (ta != NULL)
7363				error = 0;
7364		} else if (tu.ipft_name[0] != '\0') {
7365			ta = ipf_tune_findbyname(softc->ipf_tuners,
7366						 tu.ipft_name);
7367			if (ta != NULL)
7368				error = 0;
7369		}
7370		if (error != 0)
7371			break;
7372
7373		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7374			/*
7375			 * Fetch the tuning parameters for a particular value
7376			 */
7377			tu.ipft_vlong = 0;
7378			if (ta->ipft_sz == sizeof(u_long))
7379				tu.ipft_vlong = *ta->ipft_plong;
7380			else if (ta->ipft_sz == sizeof(u_int))
7381				tu.ipft_vint = *ta->ipft_pint;
7382			else if (ta->ipft_sz == sizeof(u_short))
7383				tu.ipft_vshort = *ta->ipft_pshort;
7384			else if (ta->ipft_sz == sizeof(u_char))
7385				tu.ipft_vchar = *ta->ipft_pchar;
7386			tu.ipft_cookie = ta;
7387			tu.ipft_sz = ta->ipft_sz;
7388			tu.ipft_min = ta->ipft_min;
7389			tu.ipft_max = ta->ipft_max;
7390			tu.ipft_flags = ta->ipft_flags;
7391			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7392
7393		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7394			/*
7395			 * Set an internal parameter.  The hard part here is
7396			 * getting the new value safely and correctly out of
7397			 * the kernel (given we only know its size, not type.)
7398			 */
7399			u_long in;
7400
7401			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7402			    (softc->ipf_running > 0)) {
7403				IPFERROR(78);
7404				error = EBUSY;
7405				break;
7406			}
7407
7408			in = tu.ipft_vlong;
7409			if (in < ta->ipft_min || in > ta->ipft_max) {
7410				IPFERROR(79);
7411				error = EINVAL;
7412				break;
7413			}
7414
7415			if (ta->ipft_func != NULL) {
7416				SPL_INT(s);
7417
7418				SPL_NET(s);
7419				error = (*ta->ipft_func)(softc, ta,
7420							 &tu.ipft_un);
7421				SPL_X(s);
7422
7423			} else if (ta->ipft_sz == sizeof(u_long)) {
7424				tu.ipft_vlong = *ta->ipft_plong;
7425				*ta->ipft_plong = in;
7426
7427			} else if (ta->ipft_sz == sizeof(u_int)) {
7428				tu.ipft_vint = *ta->ipft_pint;
7429				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7430
7431			} else if (ta->ipft_sz == sizeof(u_short)) {
7432				tu.ipft_vshort = *ta->ipft_pshort;
7433				*ta->ipft_pshort = (u_short)(in & 0xffff);
7434
7435			} else if (ta->ipft_sz == sizeof(u_char)) {
7436				tu.ipft_vchar = *ta->ipft_pchar;
7437				*ta->ipft_pchar = (u_char)(in & 0xff);
7438			}
7439			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7440		}
7441		break;
7442
7443	default :
7444		IPFERROR(80);
7445		error = EINVAL;
7446		break;
7447	}
7448
7449	return error;
7450}
7451
7452
7453/* ------------------------------------------------------------------------ */
7454/* Function:    ipf_zerostats                                               */
7455/* Returns:     int - 0 = success, else failure                             */
7456/* Parameters:  data(O) - pointer to pointer for copying data back to       */
7457/*                                                                          */
7458/* Copies the current statistics out to userspace and then zero's the       */
7459/* current ones in the kernel. The lock is only held across the bzero() as  */
7460/* the copyout may result in paging (ie network activity.)                  */
7461/* ------------------------------------------------------------------------ */
7462int
7463ipf_zerostats(softc, data)
7464	ipf_main_softc_t *softc;
7465	caddr_t	data;
7466{
7467	friostat_t fio;
7468	ipfobj_t obj;
7469	int error;
7470
7471	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7472	if (error != 0)
7473		return error;
7474	ipf_getstat(softc, &fio, obj.ipfo_rev);
7475	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7476	if (error != 0)
7477		return error;
7478
7479	WRITE_ENTER(&softc->ipf_mutex);
7480	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7481	RWLOCK_EXIT(&softc->ipf_mutex);
7482
7483	return 0;
7484}
7485
7486
7487/* ------------------------------------------------------------------------ */
7488/* Function:    ipf_resolvedest                                             */
7489/* Returns:     Nil                                                         */
7490/* Parameters:  softc(I) - pointer to soft context main structure           */
7491/*              base(I)  - where strings are stored                         */
7492/*              fdp(IO)  - pointer to destination information to resolve    */
7493/*              v(I)     - IP protocol version to match                     */
7494/*                                                                          */
7495/* Looks up an interface name in the frdest structure pointed to by fdp and */
7496/* if a matching name can be found for the particular IP protocol version   */
7497/* then store the interface pointer in the frdest struct.  If no match is   */
7498/* found, then set the interface pointer to be -1 as NULL is considered to  */
7499/* indicate there is no information at all in the structure.                */
7500/* ------------------------------------------------------------------------ */
7501int
7502ipf_resolvedest(softc, base, fdp, v)
7503	ipf_main_softc_t *softc;
7504	char *base;
7505	frdest_t *fdp;
7506	int v;
7507{
7508	int errval = 0;
7509	void *ifp;
7510
7511	ifp = NULL;
7512
7513	if (fdp->fd_name != -1) {
7514		if (fdp->fd_type == FRD_DSTLIST) {
7515			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7516						  IPLT_DSTLIST,
7517						  base + fdp->fd_name,
7518						  NULL);
7519			if (ifp == NULL) {
7520				IPFERROR(144);
7521				errval = ESRCH;
7522			}
7523		} else {
7524			ifp = GETIFP(base + fdp->fd_name, v);
7525			if (ifp == NULL)
7526				ifp = (void *)-1;
7527		}
7528	}
7529	fdp->fd_ptr = ifp;
7530
7531	if ((ifp != NULL) && (ifp != (void *)-1)) {
7532		fdp->fd_local = ipf_deliverlocal(softc, v, ifp, &fdp->fd_ip6);
7533	}
7534
7535	return errval;
7536}
7537
7538
7539/* ------------------------------------------------------------------------ */
7540/* Function:    ipf_resolvenic                                              */
7541/* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7542/*                      pointer to interface structure for NIC              */
7543/* Parameters:  softc(I)- pointer to soft context main structure            */
7544/*              name(I) - complete interface name                           */
7545/*              v(I)    - IP protocol version                               */
7546/*                                                                          */
7547/* Look for a network interface structure that firstly has a matching name  */
7548/* to that passed in and that is also being used for that IP protocol       */
7549/* version (necessary on some platforms where there are separate listings   */
7550/* for both IPv4 and IPv6 on the same physical NIC.                         */
7551/* ------------------------------------------------------------------------ */
7552void *
7553ipf_resolvenic(softc, name, v)
7554	ipf_main_softc_t *softc;
7555	char *name;
7556	int v;
7557{
7558	void *nic;
7559
7560	softc = softc;	/* gcc -Wextra */
7561	if (name[0] == '\0')
7562		return NULL;
7563
7564	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7565		return NULL;
7566	}
7567
7568	nic = GETIFP(name, v);
7569	if (nic == NULL)
7570		nic = (void *)-1;
7571	return nic;
7572}
7573
7574
7575/* ------------------------------------------------------------------------ */
7576/* Function:    ipf_token_expire                                            */
7577/* Returns:     None.                                                       */
7578/* Parameters:  softc(I) - pointer to soft context main structure           */
7579/*                                                                          */
7580/* This function is run every ipf tick to see if there are any tokens that  */
7581/* have been held for too long and need to be freed up.                     */
7582/* ------------------------------------------------------------------------ */
7583void
7584ipf_token_expire(softc)
7585	ipf_main_softc_t *softc;
7586{
7587	ipftoken_t *it;
7588
7589	WRITE_ENTER(&softc->ipf_tokens);
7590	while ((it = softc->ipf_token_head) != NULL) {
7591		if (it->ipt_die > softc->ipf_ticks)
7592			break;
7593
7594		ipf_token_deref(softc, it);
7595	}
7596	RWLOCK_EXIT(&softc->ipf_tokens);
7597}
7598
7599
7600/* ------------------------------------------------------------------------ */
7601/* Function:    ipf_token_flush                                             */
7602/* Returns:     None.                                                       */
7603/* Parameters:  softc(I) - pointer to soft context main structure           */
7604/*                                                                          */
7605/* Loop through all of the existing tokens and call deref to see if they    */
7606/* can be freed. Normally a function like this might just loop on           */
7607/* ipf_token_head but there is a chance that a token might have a ref count */
7608/* of greater than one and in that case the the reference would drop twice  */
7609/* by code that is only entitled to drop it once.                           */
7610/* ------------------------------------------------------------------------ */
7611static void
7612ipf_token_flush(softc)
7613	ipf_main_softc_t *softc;
7614{
7615	ipftoken_t *it, *next;
7616
7617	WRITE_ENTER(&softc->ipf_tokens);
7618	for (it = softc->ipf_token_head; it != NULL; it = next) {
7619		next = it->ipt_next;
7620		(void) ipf_token_deref(softc, it);
7621	}
7622	RWLOCK_EXIT(&softc->ipf_tokens);
7623}
7624
7625
7626/* ------------------------------------------------------------------------ */
7627/* Function:    ipf_token_del                                               */
7628/* Returns:     int     - 0 = success, else error                           */
7629/* Parameters:  softc(I)- pointer to soft context main structure            */
7630/*              type(I) - the token type to match                           */
7631/*              uid(I)  - uid owning the token                              */
7632/*              ptr(I)  - context pointer for the token                     */
7633/*                                                                          */
7634/* This function looks for a a token in the current list that matches up    */
7635/* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7636/* call ipf_token_dewref() to remove it from the list. In the event that    */
7637/* the token has a reference held elsewhere, setting ipt_complete to 2      */
7638/* enables debugging to distinguish between the two paths that ultimately   */
7639/* lead to a token to be deleted.                                           */
7640/* ------------------------------------------------------------------------ */
7641int
7642ipf_token_del(softc, type, uid, ptr)
7643	ipf_main_softc_t *softc;
7644	int type, uid;
7645	void *ptr;
7646{
7647	ipftoken_t *it;
7648	int error;
7649
7650	IPFERROR(82);
7651	error = ESRCH;
7652
7653	WRITE_ENTER(&softc->ipf_tokens);
7654	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7655		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7656		    uid == it->ipt_uid) {
7657			it->ipt_complete = 2;
7658			ipf_token_deref(softc, it);
7659			error = 0;
7660			break;
7661		}
7662	}
7663	RWLOCK_EXIT(&softc->ipf_tokens);
7664
7665	return error;
7666}
7667
7668
7669/* ------------------------------------------------------------------------ */
7670/* Function:    ipf_token_mark_complete                                     */
7671/* Returns:     None.                                                       */
7672/* Parameters:  token(I) - pointer to token structure                       */
7673/*                                                                          */
7674/* Mark a token as being ineligable for being found with ipf_token_find.    */
7675/* ------------------------------------------------------------------------ */
7676void
7677ipf_token_mark_complete(token)
7678	ipftoken_t *token;
7679{
7680	if (token->ipt_complete == 0)
7681		token->ipt_complete = 1;
7682}
7683
7684
7685/* ------------------------------------------------------------------------ */
7686/* Function:    ipf_token_find                                               */
7687/* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7688/* Parameters:  softc(I)- pointer to soft context main structure            */
7689/*              type(I) - the token type to match                           */
7690/*              uid(I)  - uid owning the token                              */
7691/*              ptr(I)  - context pointer for the token                     */
7692/*                                                                          */
7693/* This function looks for a live token in the list of current tokens that  */
7694/* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7695/* allocated.  If one is found then it is moved to the top of the list of   */
7696/* currently active tokens.                                                 */
7697/* ------------------------------------------------------------------------ */
7698ipftoken_t *
7699ipf_token_find(softc, type, uid, ptr)
7700	ipf_main_softc_t *softc;
7701	int type, uid;
7702	void *ptr;
7703{
7704	ipftoken_t *it, *new;
7705
7706	KMALLOC(new, ipftoken_t *);
7707	if (new != NULL)
7708		bzero((char *)new, sizeof(*new));
7709
7710	WRITE_ENTER(&softc->ipf_tokens);
7711	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7712		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7713		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7714			break;
7715	}
7716
7717	if (it == NULL) {
7718		it = new;
7719		new = NULL;
7720		if (it == NULL) {
7721			RWLOCK_EXIT(&softc->ipf_tokens);
7722			return NULL;
7723		}
7724		it->ipt_ctx = ptr;
7725		it->ipt_uid = uid;
7726		it->ipt_type = type;
7727		it->ipt_ref = 1;
7728	} else {
7729		if (new != NULL) {
7730			KFREE(new);
7731			new = NULL;
7732		}
7733
7734		if (it->ipt_complete > 0)
7735			it = NULL;
7736		else
7737			ipf_token_unlink(softc, it);
7738	}
7739
7740	if (it != NULL) {
7741		it->ipt_pnext = softc->ipf_token_tail;
7742		*softc->ipf_token_tail = it;
7743		softc->ipf_token_tail = &it->ipt_next;
7744		it->ipt_next = NULL;
7745		it->ipt_ref++;
7746
7747		it->ipt_die = softc->ipf_ticks + 20;
7748	}
7749
7750	RWLOCK_EXIT(&softc->ipf_tokens);
7751
7752	return it;
7753}
7754
7755
7756/* ------------------------------------------------------------------------ */
7757/* Function:    ipf_token_unlink                                            */
7758/* Returns:     None.                                                       */
7759/* Parameters:  softc(I) - pointer to soft context main structure           */
7760/*              token(I) - pointer to token structure                       */
7761/* Write Locks: ipf_tokens                                                  */
7762/*                                                                          */
7763/* This function unlinks a token structure from the linked list of tokens   */
7764/* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7765/* but the tail does due to the linked list implementation.                 */
7766/* ------------------------------------------------------------------------ */
7767static void
7768ipf_token_unlink(softc, token)
7769	ipf_main_softc_t *softc;
7770	ipftoken_t *token;
7771{
7772
7773	if (softc->ipf_token_tail == &token->ipt_next)
7774		softc->ipf_token_tail = token->ipt_pnext;
7775
7776	*token->ipt_pnext = token->ipt_next;
7777	if (token->ipt_next != NULL)
7778		token->ipt_next->ipt_pnext = token->ipt_pnext;
7779	token->ipt_next = NULL;
7780	token->ipt_pnext = NULL;
7781}
7782
7783
7784/* ------------------------------------------------------------------------ */
7785/* Function:    ipf_token_deref                                             */
7786/* Returns:     int      - 0 == token freed, else reference count           */
7787/* Parameters:  softc(I) - pointer to soft context main structure           */
7788/*              token(I) - pointer to token structure                       */
7789/* Write Locks: ipf_tokens                                                  */
7790/*                                                                          */
7791/* Drop the reference count on the token structure and if it drops to zero, */
7792/* call the dereference function for the token type because it is then      */
7793/* possible to free the token data structure.                               */
7794/* ------------------------------------------------------------------------ */
7795int
7796ipf_token_deref(softc, token)
7797	ipf_main_softc_t *softc;
7798	ipftoken_t *token;
7799{
7800	void *data, **datap;
7801
7802	ASSERT(token->ipt_ref > 0);
7803	token->ipt_ref--;
7804	if (token->ipt_ref > 0)
7805		return token->ipt_ref;
7806
7807	data = token->ipt_data;
7808	datap = &data;
7809
7810	if ((data != NULL) && (data != (void *)-1)) {
7811		switch (token->ipt_type)
7812		{
7813		case IPFGENITER_IPF :
7814			(void) ipf_derefrule(softc, (frentry_t **)datap);
7815			break;
7816		case IPFGENITER_IPNAT :
7817			WRITE_ENTER(&softc->ipf_nat);
7818			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7819			RWLOCK_EXIT(&softc->ipf_nat);
7820			break;
7821		case IPFGENITER_NAT :
7822			ipf_nat_deref(softc, (nat_t **)datap);
7823			break;
7824		case IPFGENITER_STATE :
7825			ipf_state_deref(softc, (ipstate_t **)datap);
7826			break;
7827		case IPFGENITER_FRAG :
7828			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7829			break;
7830		case IPFGENITER_NATFRAG :
7831			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7832			break;
7833		case IPFGENITER_HOSTMAP :
7834			WRITE_ENTER(&softc->ipf_nat);
7835			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7836			RWLOCK_EXIT(&softc->ipf_nat);
7837			break;
7838		default :
7839			ipf_lookup_iterderef(softc, token->ipt_type, data);
7840			break;
7841		}
7842	}
7843
7844	ipf_token_unlink(softc, token);
7845	KFREE(token);
7846	return 0;
7847}
7848
7849
7850/* ------------------------------------------------------------------------ */
7851/* Function:    ipf_nextrule                                                */
7852/* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7853/* Parameters:  softc(I)    - pointer to soft context main structure        */
7854/*              fr(I)       - pointer to filter rule                        */
7855/*              out(I)      - 1 == out rules, 0 == input rules              */
7856/*                                                                          */
7857/* Starting with "fr", find the next rule to visit. This includes visiting  */
7858/* the list of rule groups if either fr is NULL (empty list) or it is the   */
7859/* last rule in the list. When walking rule lists, it is either input or    */
7860/* output rules that are returned, never both.                              */
7861/* ------------------------------------------------------------------------ */
7862static frentry_t *
7863ipf_nextrule(softc, active, unit, fr, out)
7864	ipf_main_softc_t *softc;
7865	int active, unit;
7866	frentry_t *fr;
7867	int out;
7868{
7869	frentry_t *next;
7870	frgroup_t *fg;
7871
7872	if (fr != NULL && fr->fr_group != -1) {
7873		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7874				   unit, active, NULL);
7875		if (fg != NULL)
7876			fg = fg->fg_next;
7877	} else {
7878		fg = softc->ipf_groups[unit][active];
7879	}
7880
7881	while (fg != NULL) {
7882		next = fg->fg_start;
7883		while (next != NULL) {
7884			if (out) {
7885				if (next->fr_flags & FR_OUTQUE)
7886					return next;
7887			} else if (next->fr_flags & FR_INQUE) {
7888				return next;
7889			}
7890			next = next->fr_next;
7891		}
7892		if (next == NULL)
7893			fg = fg->fg_next;
7894	}
7895
7896	return NULL;
7897}
7898
7899/* ------------------------------------------------------------------------ */
7900/* Function:    ipf_getnextrule                                             */
7901/* Returns:     int - 0 = success, else error                               */
7902/* Parameters:  softc(I)- pointer to soft context main structure            */
7903/*              t(I)   - pointer to destination information to resolve      */
7904/*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7905/*                                                                          */
7906/* This function's first job is to bring in the ipfruleiter_t structure via */
7907/* the ipfobj_t structure to determine what should be the next rule to      */
7908/* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7909/* find the 'next rule'.  This may include searching rule group lists or    */
7910/* just be as simple as looking at the 'next' field in the rule structure.  */
7911/* When we have found the rule to return, increase its reference count and  */
7912/* if we used an existing rule to get here, decrease its reference count.   */
7913/* ------------------------------------------------------------------------ */
7914int
7915ipf_getnextrule(softc, t, ptr)
7916	ipf_main_softc_t *softc;
7917	ipftoken_t *t;
7918	void *ptr;
7919{
7920	frentry_t *fr, *next, zero;
7921	ipfruleiter_t it;
7922	int error, out;
7923	frgroup_t *fg;
7924	ipfobj_t obj;
7925	int predict;
7926	char *dst;
7927	int unit;
7928
7929	if (t == NULL || ptr == NULL) {
7930		IPFERROR(84);
7931		return EFAULT;
7932	}
7933
7934	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7935	if (error != 0)
7936		return error;
7937
7938	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7939		IPFERROR(85);
7940		return EINVAL;
7941	}
7942	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7943		IPFERROR(86);
7944		return EINVAL;
7945	}
7946	if (it.iri_nrules == 0) {
7947		IPFERROR(87);
7948		return ENOSPC;
7949	}
7950	if (it.iri_rule == NULL) {
7951		IPFERROR(88);
7952		return EFAULT;
7953	}
7954
7955	fg = NULL;
7956	fr = t->ipt_data;
7957	if ((it.iri_inout & F_OUT) != 0)
7958		out = 1;
7959	else
7960		out = 0;
7961	if ((it.iri_inout & F_ACIN) != 0)
7962		unit = IPL_LOGCOUNT;
7963	else
7964		unit = IPL_LOGIPF;
7965
7966	READ_ENTER(&softc->ipf_mutex);
7967	if (fr == NULL) {
7968		if (*it.iri_group == '\0') {
7969			if (unit == IPL_LOGCOUNT) {
7970				next = softc->ipf_acct[out][it.iri_active];
7971			} else {
7972				next = softc->ipf_rules[out][it.iri_active];
7973			}
7974			if (next == NULL)
7975				next = ipf_nextrule(softc, it.iri_active,
7976						    unit, NULL, out);
7977		} else {
7978			fg = ipf_findgroup(softc, it.iri_group, unit,
7979					   it.iri_active, NULL);
7980			if (fg != NULL)
7981				next = fg->fg_start;
7982			else
7983				next = NULL;
7984		}
7985	} else {
7986		next = fr->fr_next;
7987		if (next == NULL)
7988			next = ipf_nextrule(softc, it.iri_active, unit,
7989					    fr, out);
7990	}
7991
7992	if (next != NULL && next->fr_next != NULL)
7993		predict = 1;
7994	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7995		predict = 1;
7996	else
7997		predict = 0;
7998
7999	if (fr != NULL)
8000		(void) ipf_derefrule(softc, &fr);
8001
8002	obj.ipfo_type = IPFOBJ_FRENTRY;
8003	dst = (char *)it.iri_rule;
8004
8005	if (next != NULL) {
8006		obj.ipfo_size = next->fr_size;
8007		MUTEX_ENTER(&next->fr_lock);
8008		next->fr_ref++;
8009		MUTEX_EXIT(&next->fr_lock);
8010		t->ipt_data = next;
8011	} else {
8012		obj.ipfo_size = sizeof(frentry_t);
8013		bzero(&zero, sizeof(zero));
8014		next = &zero;
8015		t->ipt_data = NULL;
8016	}
8017	it.iri_rule = predict ? next : NULL;
8018	if (predict == 0)
8019		ipf_token_mark_complete(t);
8020
8021	RWLOCK_EXIT(&softc->ipf_mutex);
8022
8023	obj.ipfo_ptr = dst;
8024	error = ipf_outobjk(softc, &obj, next);
8025	if (error == 0 && t->ipt_data != NULL) {
8026		dst += obj.ipfo_size;
8027		if (next->fr_data != NULL) {
8028			ipfobj_t dobj;
8029
8030			if (next->fr_type == FR_T_IPFEXPR)
8031				dobj.ipfo_type = IPFOBJ_IPFEXPR;
8032			else
8033				dobj.ipfo_type = IPFOBJ_FRIPF;
8034			dobj.ipfo_size = next->fr_dsize;
8035			dobj.ipfo_rev = obj.ipfo_rev;
8036			dobj.ipfo_ptr = dst;
8037			error = ipf_outobjk(softc, &dobj, next->fr_data);
8038		}
8039	}
8040
8041	if ((fr != NULL) && (next == &zero))
8042		(void) ipf_derefrule(softc, &fr);
8043
8044	return error;
8045}
8046
8047
8048/* ------------------------------------------------------------------------ */
8049/* Function:    ipf_frruleiter                                              */
8050/* Returns:     int - 0 = success, else error                               */
8051/* Parameters:  softc(I)- pointer to soft context main structure            */
8052/*              data(I) - the token type to match                           */
8053/*              uid(I)  - uid owning the token                              */
8054/*              ptr(I)  - context pointer for the token                     */
8055/*                                                                          */
8056/* This function serves as a stepping stone between ipf_ipf_ioctl and       */
8057/* ipf_getnextrule.  It's role is to find the right token in the kernel for */
8058/* the process doing the ioctl and use that to ask for the next rule.       */
8059/* ------------------------------------------------------------------------ */
8060static int
8061ipf_frruleiter(softc, data, uid, ctx)
8062	ipf_main_softc_t *softc;
8063	void *data, *ctx;
8064	int uid;
8065{
8066	ipftoken_t *token;
8067	ipfruleiter_t it;
8068	ipfobj_t obj;
8069	int error;
8070
8071	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
8072	if (token != NULL) {
8073		error = ipf_getnextrule(softc, token, data);
8074		WRITE_ENTER(&softc->ipf_tokens);
8075		ipf_token_deref(softc, token);
8076		RWLOCK_EXIT(&softc->ipf_tokens);
8077	} else {
8078		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
8079		if (error != 0)
8080			return error;
8081		it.iri_rule = NULL;
8082		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
8083	}
8084
8085	return error;
8086}
8087
8088
8089/* ------------------------------------------------------------------------ */
8090/* Function:    ipf_geniter                                                 */
8091/* Returns:     int - 0 = success, else error                               */
8092/* Parameters:  softc(I) - pointer to soft context main structure           */
8093/*              token(I) - pointer to ipftoken_t structure                  */
8094/*              itp(I)   - pointer to iterator data                         */
8095/*                                                                          */
8096/* Decide which iterator function to call using information passed through  */
8097/* the ipfgeniter_t structure at itp.                                       */
8098/* ------------------------------------------------------------------------ */
8099static int
8100ipf_geniter(softc, token, itp)
8101	ipf_main_softc_t *softc;
8102	ipftoken_t *token;
8103	ipfgeniter_t *itp;
8104{
8105	int error;
8106
8107	switch (itp->igi_type)
8108	{
8109	case IPFGENITER_FRAG :
8110		error = ipf_frag_pkt_next(softc, token, itp);
8111		break;
8112	default :
8113		IPFERROR(92);
8114		error = EINVAL;
8115		break;
8116	}
8117
8118	return error;
8119}
8120
8121
8122/* ------------------------------------------------------------------------ */
8123/* Function:    ipf_genericiter                                             */
8124/* Returns:     int - 0 = success, else error                               */
8125/* Parameters:  softc(I)- pointer to soft context main structure            */
8126/*              data(I) - the token type to match                           */
8127/*              uid(I)  - uid owning the token                              */
8128/*              ptr(I)  - context pointer for the token                     */
8129/*                                                                          */
8130/* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
8131/* ------------------------------------------------------------------------ */
8132int
8133ipf_genericiter(softc, data, uid, ctx)
8134	ipf_main_softc_t *softc;
8135	void *data, *ctx;
8136	int uid;
8137{
8138	ipftoken_t *token;
8139	ipfgeniter_t iter;
8140	int error;
8141
8142	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
8143	if (error != 0)
8144		return error;
8145
8146	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
8147	if (token != NULL) {
8148		token->ipt_subtype = iter.igi_type;
8149		error = ipf_geniter(softc, token, &iter);
8150		WRITE_ENTER(&softc->ipf_tokens);
8151		ipf_token_deref(softc, token);
8152		RWLOCK_EXIT(&softc->ipf_tokens);
8153	} else {
8154		IPFERROR(93);
8155		error = 0;
8156	}
8157
8158	return error;
8159}
8160
8161
8162/* ------------------------------------------------------------------------ */
8163/* Function:    ipf_ipf_ioctl                                               */
8164/* Returns:     int - 0 = success, else error                               */
8165/* Parameters:  softc(I)- pointer to soft context main structure           */
8166/*              data(I) - the token type to match                           */
8167/*              cmd(I)  - the ioctl command number                          */
8168/*              mode(I) - mode flags for the ioctl                          */
8169/*              uid(I)  - uid owning the token                              */
8170/*              ptr(I)  - context pointer for the token                     */
8171/*                                                                          */
8172/* This function handles all of the ioctl command that are actually isssued */
8173/* to the /dev/ipl device.                                                  */
8174/* ------------------------------------------------------------------------ */
8175int
8176ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx)
8177	ipf_main_softc_t *softc;
8178	caddr_t data;
8179	ioctlcmd_t cmd;
8180	int mode, uid;
8181	void *ctx;
8182{
8183	friostat_t fio;
8184	int error, tmp;
8185	ipfobj_t obj;
8186	SPL_INT(s);
8187
8188	switch (cmd)
8189	{
8190	case SIOCFRENB :
8191		if (!(mode & FWRITE)) {
8192			IPFERROR(94);
8193			error = EPERM;
8194		} else {
8195			error = BCOPYIN(data, &tmp, sizeof(tmp));
8196			if (error != 0) {
8197				IPFERROR(95);
8198				error = EFAULT;
8199				break;
8200			}
8201
8202			WRITE_ENTER(&softc->ipf_global);
8203			if (tmp) {
8204				if (softc->ipf_running > 0)
8205					error = 0;
8206				else
8207					error = ipfattach(softc);
8208				if (error == 0)
8209					softc->ipf_running = 1;
8210				else
8211					(void) ipfdetach(softc);
8212			} else {
8213				if (softc->ipf_running == 1)
8214					error = ipfdetach(softc);
8215				else
8216					error = 0;
8217				if (error == 0)
8218					softc->ipf_running = -1;
8219			}
8220			RWLOCK_EXIT(&softc->ipf_global);
8221		}
8222		break;
8223
8224	case SIOCIPFSET :
8225		if (!(mode & FWRITE)) {
8226			IPFERROR(96);
8227			error = EPERM;
8228			break;
8229		}
8230		/* FALLTHRU */
8231	case SIOCIPFGETNEXT :
8232	case SIOCIPFGET :
8233		error = ipf_ipftune(softc, cmd, (void *)data);
8234		break;
8235
8236	case SIOCSETFF :
8237		if (!(mode & FWRITE)) {
8238			IPFERROR(97);
8239			error = EPERM;
8240		} else {
8241			error = BCOPYIN(data, &softc->ipf_flags,
8242					sizeof(softc->ipf_flags));
8243			if (error != 0) {
8244				IPFERROR(98);
8245				error = EFAULT;
8246			}
8247		}
8248		break;
8249
8250	case SIOCGETFF :
8251		error = BCOPYOUT(&softc->ipf_flags, data,
8252				 sizeof(softc->ipf_flags));
8253		if (error != 0) {
8254			IPFERROR(99);
8255			error = EFAULT;
8256		}
8257		break;
8258
8259	case SIOCFUNCL :
8260		error = ipf_resolvefunc(softc, (void *)data);
8261		break;
8262
8263	case SIOCINAFR :
8264	case SIOCRMAFR :
8265	case SIOCADAFR :
8266	case SIOCZRLST :
8267		if (!(mode & FWRITE)) {
8268			IPFERROR(100);
8269			error = EPERM;
8270		} else {
8271			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8272					  softc->ipf_active, 1);
8273		}
8274		break;
8275
8276	case SIOCINIFR :
8277	case SIOCRMIFR :
8278	case SIOCADIFR :
8279		if (!(mode & FWRITE)) {
8280			IPFERROR(101);
8281			error = EPERM;
8282		} else {
8283			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8284					  1 - softc->ipf_active, 1);
8285		}
8286		break;
8287
8288	case SIOCSWAPA :
8289		if (!(mode & FWRITE)) {
8290			IPFERROR(102);
8291			error = EPERM;
8292		} else {
8293			WRITE_ENTER(&softc->ipf_mutex);
8294			error = BCOPYOUT(&softc->ipf_active, data,
8295					 sizeof(softc->ipf_active));
8296			if (error != 0) {
8297				IPFERROR(103);
8298				error = EFAULT;
8299			} else {
8300				softc->ipf_active = 1 - softc->ipf_active;
8301			}
8302			RWLOCK_EXIT(&softc->ipf_mutex);
8303		}
8304		break;
8305
8306	case SIOCGETFS :
8307		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8308				  IPFOBJ_IPFSTAT);
8309		if (error != 0)
8310			break;
8311		ipf_getstat(softc, &fio, obj.ipfo_rev);
8312		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8313		break;
8314
8315	case SIOCFRZST :
8316		if (!(mode & FWRITE)) {
8317			IPFERROR(104);
8318			error = EPERM;
8319		} else
8320			error = ipf_zerostats(softc, (caddr_t)data);
8321		break;
8322
8323	case SIOCIPFFL :
8324		if (!(mode & FWRITE)) {
8325			IPFERROR(105);
8326			error = EPERM;
8327		} else {
8328			error = BCOPYIN(data, &tmp, sizeof(tmp));
8329			if (!error) {
8330				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8331				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8332				if (error != 0) {
8333					IPFERROR(106);
8334					error = EFAULT;
8335				}
8336			} else {
8337				IPFERROR(107);
8338				error = EFAULT;
8339			}
8340		}
8341		break;
8342
8343#ifdef USE_INET6
8344	case SIOCIPFL6 :
8345		if (!(mode & FWRITE)) {
8346			IPFERROR(108);
8347			error = EPERM;
8348		} else {
8349			error = BCOPYIN(data, &tmp, sizeof(tmp));
8350			if (!error) {
8351				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8352				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8353				if (error != 0) {
8354					IPFERROR(109);
8355					error = EFAULT;
8356				}
8357			} else {
8358				IPFERROR(110);
8359				error = EFAULT;
8360			}
8361		}
8362		break;
8363#endif
8364
8365	case SIOCSTLCK :
8366		if (!(mode & FWRITE)) {
8367			IPFERROR(122);
8368			error = EPERM;
8369		} else {
8370			error = BCOPYIN(data, &tmp, sizeof(tmp));
8371			if (error == 0) {
8372				ipf_state_setlock(softc->ipf_state_soft, tmp);
8373				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8374				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8375				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8376			} else {
8377				IPFERROR(111);
8378				error = EFAULT;
8379			}
8380		}
8381		break;
8382
8383#ifdef	IPFILTER_LOG
8384	case SIOCIPFFB :
8385		if (!(mode & FWRITE)) {
8386			IPFERROR(112);
8387			error = EPERM;
8388		} else {
8389			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8390			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8391			if (error) {
8392				IPFERROR(113);
8393				error = EFAULT;
8394			}
8395		}
8396		break;
8397#endif /* IPFILTER_LOG */
8398
8399	case SIOCFRSYN :
8400		if (!(mode & FWRITE)) {
8401			IPFERROR(114);
8402			error = EPERM;
8403		} else {
8404			WRITE_ENTER(&softc->ipf_global);
8405#if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8406			error = ipfsync();
8407#else
8408			ipf_sync(softc, NULL);
8409			error = 0;
8410#endif
8411			RWLOCK_EXIT(&softc->ipf_global);
8412
8413		}
8414		break;
8415
8416	case SIOCGFRST :
8417		error = ipf_outobj(softc, (void *)data,
8418				   ipf_frag_stats(softc->ipf_frag_soft),
8419				   IPFOBJ_FRAGSTAT);
8420		break;
8421
8422#ifdef	IPFILTER_LOG
8423	case FIONREAD :
8424		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8425		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8426		break;
8427#endif
8428
8429	case SIOCIPFITER :
8430		SPL_SCHED(s);
8431		error = ipf_frruleiter(softc, data, uid, ctx);
8432		SPL_X(s);
8433		break;
8434
8435	case SIOCGENITER :
8436		SPL_SCHED(s);
8437		error = ipf_genericiter(softc, data, uid, ctx);
8438		SPL_X(s);
8439		break;
8440
8441	case SIOCIPFDELTOK :
8442		error = BCOPYIN(data, &tmp, sizeof(tmp));
8443		if (error == 0) {
8444			SPL_SCHED(s);
8445			error = ipf_token_del(softc, tmp, uid, ctx);
8446			SPL_X(s);
8447		}
8448		break;
8449
8450	default :
8451		IPFERROR(115);
8452		error = EINVAL;
8453		break;
8454	}
8455
8456	return error;
8457}
8458
8459
8460/* ------------------------------------------------------------------------ */
8461/* Function:    ipf_decaps                                                  */
8462/* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8463/*                           flags indicating packet filtering decision.    */
8464/* Parameters:  fin(I)     - pointer to packet information                  */
8465/*              pass(I)    - IP protocol version to match                   */
8466/*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8467/*                                                                          */
8468/* This function is called for packets that are wrapt up in other packets,  */
8469/* for example, an IP packet that is the entire data segment for another IP */
8470/* packet.  If the basic constraints for this are satisfied, change the     */
8471/* buffer to point to the start of the inner packet and start processing    */
8472/* rules belonging to the head group this rule specifies.                   */
8473/* ------------------------------------------------------------------------ */
8474u_32_t
8475ipf_decaps(fin, pass, l5proto)
8476	fr_info_t *fin;
8477	u_32_t pass;
8478	int l5proto;
8479{
8480	fr_info_t fin2, *fino = NULL;
8481	int elen, hlen, nh;
8482	grehdr_t gre;
8483	ip_t *ip;
8484	mb_t *m;
8485
8486	if ((fin->fin_flx & FI_COALESCE) == 0)
8487		if (ipf_coalesce(fin) == -1)
8488			goto cantdecaps;
8489
8490	m = fin->fin_m;
8491	hlen = fin->fin_hlen;
8492
8493	switch (fin->fin_p)
8494	{
8495	case IPPROTO_UDP :
8496		/*
8497		 * In this case, the specific protocol being decapsulated
8498		 * inside UDP frames comes from the rule.
8499		 */
8500		nh = fin->fin_fr->fr_icode;
8501		break;
8502
8503	case IPPROTO_GRE :	/* 47 */
8504		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8505		hlen += sizeof(grehdr_t);
8506		if (gre.gr_R|gre.gr_s)
8507			goto cantdecaps;
8508		if (gre.gr_C)
8509			hlen += 4;
8510		if (gre.gr_K)
8511			hlen += 4;
8512		if (gre.gr_S)
8513			hlen += 4;
8514
8515		nh = IPPROTO_IP;
8516
8517		/*
8518		 * If the routing options flag is set, validate that it is
8519		 * there and bounce over it.
8520		 */
8521#if 0
8522		/* This is really heavy weight and lots of room for error, */
8523		/* so for now, put it off and get the simple stuff right.  */
8524		if (gre.gr_R) {
8525			u_char off, len, *s;
8526			u_short af;
8527			int end;
8528
8529			end = 0;
8530			s = fin->fin_dp;
8531			s += hlen;
8532			aplen = fin->fin_plen - hlen;
8533			while (aplen > 3) {
8534				af = (s[0] << 8) | s[1];
8535				off = s[2];
8536				len = s[3];
8537				aplen -= 4;
8538				s += 4;
8539				if (af == 0 && len == 0) {
8540					end = 1;
8541					break;
8542				}
8543				if (aplen < len)
8544					break;
8545				s += len;
8546				aplen -= len;
8547			}
8548			if (end != 1)
8549				goto cantdecaps;
8550			hlen = s - (u_char *)fin->fin_dp;
8551		}
8552#endif
8553		break;
8554
8555#ifdef IPPROTO_IPIP
8556	case IPPROTO_IPIP :	/* 4 */
8557#endif
8558		nh = IPPROTO_IP;
8559		break;
8560
8561	default :	/* Includes ESP, AH is special for IPv4 */
8562		goto cantdecaps;
8563	}
8564
8565	switch (nh)
8566	{
8567	case IPPROTO_IP :
8568	case IPPROTO_IPV6 :
8569		break;
8570	default :
8571		goto cantdecaps;
8572	}
8573
8574	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8575	fino = fin;
8576	fin = &fin2;
8577	elen = hlen;
8578#if defined(MENTAT) && defined(_KERNEL)
8579	m->b_rptr += elen;
8580#else
8581	m->m_data += elen;
8582	m->m_len -= elen;
8583#endif
8584	fin->fin_plen -= elen;
8585
8586	ip = (ip_t *)((char *)fin->fin_ip + elen);
8587
8588	/*
8589	 * Make sure we have at least enough data for the network layer
8590	 * header.
8591	 */
8592	if (IP_V(ip) == 4)
8593		hlen = IP_HL(ip) << 2;
8594#ifdef USE_INET6
8595	else if (IP_V(ip) == 6)
8596		hlen = sizeof(ip6_t);
8597#endif
8598	else
8599		goto cantdecaps2;
8600
8601	if (fin->fin_plen < hlen)
8602		goto cantdecaps2;
8603
8604	fin->fin_dp = (char *)ip + hlen;
8605
8606	if (IP_V(ip) == 4) {
8607		/*
8608		 * Perform IPv4 header checksum validation.
8609		 */
8610		if (ipf_cksum((u_short *)ip, hlen))
8611			goto cantdecaps2;
8612	}
8613
8614	if (ipf_makefrip(hlen, ip, fin) == -1) {
8615cantdecaps2:
8616		if (m != NULL) {
8617#if defined(MENTAT) && defined(_KERNEL)
8618			m->b_rptr -= elen;
8619#else
8620			m->m_data -= elen;
8621			m->m_len += elen;
8622#endif
8623		}
8624cantdecaps:
8625		DT1(frb_decapfrip, fr_info_t *, fin);
8626		pass &= ~FR_CMDMASK;
8627		pass |= FR_BLOCK|FR_QUICK;
8628		fin->fin_reason = FRB_DECAPFRIP;
8629		return -1;
8630	}
8631
8632	pass = ipf_scanlist(fin, pass);
8633
8634	/*
8635	 * Copy the packet filter "result" fields out of the fr_info_t struct
8636	 * that is local to the decapsulation processing and back into the
8637	 * one we were called with.
8638	 */
8639	fino->fin_flx = fin->fin_flx;
8640	fino->fin_rev = fin->fin_rev;
8641	fino->fin_icode = fin->fin_icode;
8642	fino->fin_rule = fin->fin_rule;
8643	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8644	fino->fin_fr = fin->fin_fr;
8645	fino->fin_error = fin->fin_error;
8646	fino->fin_mp = fin->fin_mp;
8647	fino->fin_m = fin->fin_m;
8648	m = fin->fin_m;
8649	if (m != NULL) {
8650#if defined(MENTAT) && defined(_KERNEL)
8651		m->b_rptr -= elen;
8652#else
8653		m->m_data -= elen;
8654		m->m_len += elen;
8655#endif
8656	}
8657	return pass;
8658}
8659
8660
8661/* ------------------------------------------------------------------------ */
8662/* Function:    ipf_matcharray_load                                         */
8663/* Returns:     int         - 0 = success, else error                       */
8664/* Parameters:  softc(I)    - pointer to soft context main structure        */
8665/*              data(I)     - pointer to ioctl data                         */
8666/*              objp(I)     - ipfobj_t structure to load data into          */
8667/*              arrayptr(I) - pointer to location to store array pointer    */
8668/*                                                                          */
8669/* This function loads in a mathing array through the ipfobj_t struct that  */
8670/* describes it.  Sanity checking and array size limitations are enforced   */
8671/* in this function to prevent userspace from trying to load in something   */
8672/* that is insanely big.  Once the size of the array is known, the memory   */
8673/* required is malloc'd and returned through changing *arrayptr.  The       */
8674/* contents of the array are verified before returning.  Only in the event  */
8675/* of a successful call is the caller required to free up the malloc area.  */
8676/* ------------------------------------------------------------------------ */
8677int
8678ipf_matcharray_load(softc, data, objp, arrayptr)
8679	ipf_main_softc_t *softc;
8680	caddr_t data;
8681	ipfobj_t *objp;
8682	int **arrayptr;
8683{
8684	int arraysize, *array, error;
8685
8686	*arrayptr = NULL;
8687
8688	error = BCOPYIN(data, objp, sizeof(*objp));
8689	if (error != 0) {
8690		IPFERROR(116);
8691		return EFAULT;
8692	}
8693
8694	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8695		IPFERROR(117);
8696		return EINVAL;
8697	}
8698
8699	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8700	    (objp->ipfo_size > 1024)) {
8701		IPFERROR(118);
8702		return EINVAL;
8703	}
8704
8705	arraysize = objp->ipfo_size * sizeof(*array);
8706	KMALLOCS(array, int *, arraysize);
8707	if (array == NULL) {
8708		IPFERROR(119);
8709		return ENOMEM;
8710	}
8711
8712	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8713	if (error != 0) {
8714		KFREES(array, arraysize);
8715		IPFERROR(120);
8716		return EFAULT;
8717	}
8718
8719	if (ipf_matcharray_verify(array, arraysize) != 0) {
8720		KFREES(array, arraysize);
8721		IPFERROR(121);
8722		return EINVAL;
8723	}
8724
8725	*arrayptr = array;
8726	return 0;
8727}
8728
8729
8730/* ------------------------------------------------------------------------ */
8731/* Function:    ipf_matcharray_verify                                       */
8732/* Returns:     Nil                                                         */
8733/* Parameters:  array(I)     - pointer to matching array                    */
8734/*              arraysize(I) - number of elements in the array              */
8735/*                                                                          */
8736/* Verify the contents of a matching array by stepping through each element */
8737/* in it.  The actual commands in the array are not verified for            */
8738/* correctness, only that all of the sizes are correctly within limits.     */
8739/* ------------------------------------------------------------------------ */
8740int
8741ipf_matcharray_verify(array, arraysize)
8742	int *array, arraysize;
8743{
8744	int i, nelem, maxidx;
8745	ipfexp_t *e;
8746
8747	nelem = arraysize / sizeof(*array);
8748
8749	/*
8750	 * Currently, it makes no sense to have an array less than 6
8751	 * elements long - the initial size at the from, a single operation
8752	 * (minimum 4 in length) and a trailer, for a total of 6.
8753	 */
8754	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8755		return -1;
8756	}
8757
8758	/*
8759	 * Verify the size of data pointed to by array with how long
8760	 * the array claims to be itself.
8761	 */
8762	if (array[0] * sizeof(*array) != arraysize) {
8763		return -1;
8764	}
8765
8766	maxidx = nelem - 1;
8767	/*
8768	 * The last opcode in this array should be an IPF_EXP_END.
8769	 */
8770	if (array[maxidx] != IPF_EXP_END) {
8771		return -1;
8772	}
8773
8774	for (i = 1; i < maxidx; ) {
8775		e = (ipfexp_t *)(array + i);
8776
8777		/*
8778		 * The length of the bits to check must be at least 1
8779		 * (or else there is nothing to comapre with!) and it
8780		 * cannot exceed the length of the data present.
8781		 */
8782		if ((e->ipfe_size < 1 ) ||
8783		    (e->ipfe_size + i > maxidx)) {
8784			return -1;
8785		}
8786		i += e->ipfe_size;
8787	}
8788	return 0;
8789}
8790
8791
8792/* ------------------------------------------------------------------------ */
8793/* Function:    ipf_fr_matcharray                                           */
8794/* Returns:     int      - 0 = match failed, else positive match            */
8795/* Parameters:  fin(I)   - pointer to packet information                    */
8796/*              array(I) - pointer to matching array                        */
8797/*                                                                          */
8798/* This function is used to apply a matching array against a packet and     */
8799/* return an indication of whether or not the packet successfully matches   */
8800/* all of the commands in it.                                               */
8801/* ------------------------------------------------------------------------ */
8802static int
8803ipf_fr_matcharray(fin, array)
8804	fr_info_t *fin;
8805	int *array;
8806{
8807	int i, n, *x, rv, p;
8808	ipfexp_t *e;
8809
8810	rv = 0;
8811	n = array[0];
8812	x = array + 1;
8813
8814	for (; n > 0; x += 3 + x[3], rv = 0) {
8815		e = (ipfexp_t *)x;
8816		if (e->ipfe_cmd == IPF_EXP_END)
8817			break;
8818		n -= e->ipfe_size;
8819
8820		/*
8821		 * The upper 16 bits currently store the protocol value.
8822		 * This is currently used with TCP and UDP port compares and
8823		 * allows "tcp.port = 80" without requiring an explicit
8824		 " "ip.pr = tcp" first.
8825		 */
8826		p = e->ipfe_cmd >> 16;
8827		if ((p != 0) && (p != fin->fin_p))
8828			break;
8829
8830		switch (e->ipfe_cmd)
8831		{
8832		case IPF_EXP_IP_PR :
8833			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8834				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8835			}
8836			break;
8837
8838		case IPF_EXP_IP_SRCADDR :
8839			if (fin->fin_v != 4)
8840				break;
8841			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8842				rv |= ((fin->fin_saddr &
8843					e->ipfe_arg0[i * 2 + 1]) ==
8844				       e->ipfe_arg0[i * 2]);
8845			}
8846			break;
8847
8848		case IPF_EXP_IP_DSTADDR :
8849			if (fin->fin_v != 4)
8850				break;
8851			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8852				rv |= ((fin->fin_daddr &
8853					e->ipfe_arg0[i * 2 + 1]) ==
8854				       e->ipfe_arg0[i * 2]);
8855			}
8856			break;
8857
8858		case IPF_EXP_IP_ADDR :
8859			if (fin->fin_v != 4)
8860				break;
8861			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8862				rv |= ((fin->fin_saddr &
8863					e->ipfe_arg0[i * 2 + 1]) ==
8864				       e->ipfe_arg0[i * 2]) ||
8865				      ((fin->fin_daddr &
8866					e->ipfe_arg0[i * 2 + 1]) ==
8867				       e->ipfe_arg0[i * 2]);
8868			}
8869			break;
8870
8871#ifdef USE_INET6
8872		case IPF_EXP_IP6_SRCADDR :
8873			if (fin->fin_v != 6)
8874				break;
8875			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8876				rv |= IP6_MASKEQ(&fin->fin_src6,
8877						 &e->ipfe_arg0[i * 8 + 4],
8878						 &e->ipfe_arg0[i * 8]);
8879			}
8880			break;
8881
8882		case IPF_EXP_IP6_DSTADDR :
8883			if (fin->fin_v != 6)
8884				break;
8885			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8886				rv |= IP6_MASKEQ(&fin->fin_dst6,
8887						 &e->ipfe_arg0[i * 8 + 4],
8888						 &e->ipfe_arg0[i * 8]);
8889			}
8890			break;
8891
8892		case IPF_EXP_IP6_ADDR :
8893			if (fin->fin_v != 6)
8894				break;
8895			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8896				rv |= IP6_MASKEQ(&fin->fin_src6,
8897						 &e->ipfe_arg0[i * 8 + 4],
8898						 &e->ipfe_arg0[i * 8]) ||
8899				      IP6_MASKEQ(&fin->fin_dst6,
8900						 &e->ipfe_arg0[i * 8 + 4],
8901						 &e->ipfe_arg0[i * 8]);
8902			}
8903			break;
8904#endif
8905
8906		case IPF_EXP_UDP_PORT :
8907		case IPF_EXP_TCP_PORT :
8908			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8909				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8910				      (fin->fin_dport == e->ipfe_arg0[i]);
8911			}
8912			break;
8913
8914		case IPF_EXP_UDP_SPORT :
8915		case IPF_EXP_TCP_SPORT :
8916			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8917				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8918			}
8919			break;
8920
8921		case IPF_EXP_UDP_DPORT :
8922		case IPF_EXP_TCP_DPORT :
8923			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8924				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8925			}
8926			break;
8927
8928		case IPF_EXP_TCP_FLAGS :
8929			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8930				rv |= ((fin->fin_tcpf &
8931					e->ipfe_arg0[i * 2 + 1]) ==
8932				       e->ipfe_arg0[i * 2]);
8933			}
8934			break;
8935		}
8936		rv ^= e->ipfe_not;
8937
8938		if (rv == 0)
8939			break;
8940	}
8941
8942	return rv;
8943}
8944
8945
8946/* ------------------------------------------------------------------------ */
8947/* Function:    ipf_queueflush                                              */
8948/* Returns:     int - number of entries flushed (0 = none)                  */
8949/* Parameters:  softc(I)    - pointer to soft context main structure        */
8950/*              deletefn(I) - function to call to delete entry              */
8951/*              ipfqs(I)    - top of the list of ipf internal queues        */
8952/*              userqs(I)   - top of the list of user defined timeouts      */
8953/*                                                                          */
8954/* This fucntion gets called when the state/NAT hash tables fill up and we  */
8955/* need to try a bit harder to free up some space.  The algorithm used here */
8956/* split into two parts but both halves have the same goal: to reduce the   */
8957/* number of connections considered to be "active" to the low watermark.    */
8958/* There are two steps in doing this:                                       */
8959/* 1) Remove any TCP connections that are already considered to be "closed" */
8960/*    but have not yet been removed from the state table.  The two states   */
8961/*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8962/*    candidates for this style of removal.  If freeing up entries in       */
8963/*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8964/*    we do not go on to step 2.                                            */
8965/*                                                                          */
8966/* 2) Look for the oldest entries on each timeout queue and free them if    */
8967/*    they are within the given window we are considering.  Where the       */
8968/*    window starts and the steps taken to increase its size depend upon    */
8969/*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8970/*    last 30 seconds is not touched.                                       */
8971/*                                              touched                     */
8972/*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8973/*           |          |        |           |     |     |                  */
8974/* future <--+----------+--------+-----------+-----+-----+-----------> past */
8975/*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8976/*                                                                          */
8977/* Points to note:                                                          */
8978/* - tqe_die is the time, in the future, when entries die.                  */
8979/* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8980/*   ticks.                                                                 */
8981/* - tqe_touched is when the entry was last used by NAT/state               */
8982/* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8983/*   ipf_ticks any given timeout queue and vice versa.                      */
8984/* - both tqe_die and tqe_touched increase over time                        */
8985/* - timeout queues are sorted with the highest value of tqe_die at the     */
8986/*   bottom and therefore the smallest values of each are at the top        */
8987/* - the pointer passed in as ipfqs should point to an array of timeout     */
8988/*   queues representing each of the TCP states                             */
8989/*                                                                          */
8990/* We start by setting up a maximum range to scan for things to move of     */
8991/* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8992/* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8993/* we start again with a new value for "iend" and "istart".  This is        */
8994/* continued until we either finish the scan of 30 second intervals or the  */
8995/* low water mark is reached.                                               */
8996/* ------------------------------------------------------------------------ */
8997int
8998ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low)
8999	ipf_main_softc_t *softc;
9000	ipftq_delete_fn_t deletefn;
9001	ipftq_t *ipfqs, *userqs;
9002	u_int *activep;
9003	int size, low;
9004{
9005	u_long interval, istart, iend;
9006	ipftq_t *ifq, *ifqnext;
9007	ipftqent_t *tqe, *tqn;
9008	int removed = 0;
9009
9010	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
9011		tqn = tqe->tqe_next;
9012		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9013			removed++;
9014	}
9015	if ((*activep * 100 / size) > low) {
9016		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
9017		     ((tqe = tqn) != NULL); ) {
9018			tqn = tqe->tqe_next;
9019			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9020				removed++;
9021		}
9022	}
9023
9024	if ((*activep * 100 / size) <= low) {
9025		return removed;
9026	}
9027
9028	/*
9029	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
9030	 *       used then the operations are upgraded to floating point
9031	 *       and kernels don't like floating point...
9032	 */
9033	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
9034		istart = IPF_TTLVAL(86400 * 4);
9035		interval = IPF_TTLVAL(43200);
9036	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
9037		istart = IPF_TTLVAL(43200);
9038		interval = IPF_TTLVAL(1800);
9039	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
9040		istart = IPF_TTLVAL(1800);
9041		interval = IPF_TTLVAL(30);
9042	} else {
9043		return 0;
9044	}
9045	if (istart > softc->ipf_ticks) {
9046		if (softc->ipf_ticks - interval < interval)
9047			istart = interval;
9048		else
9049			istart = (softc->ipf_ticks / interval) * interval;
9050	}
9051
9052	iend = softc->ipf_ticks - interval;
9053
9054	while ((*activep * 100 / size) > low) {
9055		u_long try;
9056
9057		try = softc->ipf_ticks - istart;
9058
9059		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
9060			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9061				if (try < tqe->tqe_touched)
9062					break;
9063				tqn = tqe->tqe_next;
9064				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9065					removed++;
9066			}
9067		}
9068
9069		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
9070			ifqnext = ifq->ifq_next;
9071
9072			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9073				if (try < tqe->tqe_touched)
9074					break;
9075				tqn = tqe->tqe_next;
9076				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9077					removed++;
9078			}
9079		}
9080
9081		if (try >= iend) {
9082			if (interval == IPF_TTLVAL(43200)) {
9083				interval = IPF_TTLVAL(1800);
9084			} else if (interval == IPF_TTLVAL(1800)) {
9085				interval = IPF_TTLVAL(30);
9086			} else {
9087				break;
9088			}
9089			if (interval >= softc->ipf_ticks)
9090				break;
9091
9092			iend = softc->ipf_ticks - interval;
9093		}
9094		istart -= interval;
9095	}
9096
9097	return removed;
9098}
9099
9100
9101/* ------------------------------------------------------------------------ */
9102/* Function:    ipf_deliverlocal                                            */
9103/* Returns:     int - 1 = local address, 0 = non-local address              */
9104/* Parameters:  softc(I)     - pointer to soft context main structure       */
9105/*              ipversion(I) - IP protocol version (4 or 6)                 */
9106/*              ifp(I)       - network interface pointer                    */
9107/*              ipaddr(I)    - IPv4/6 destination address                   */
9108/*                                                                          */
9109/* This fucntion is used to determine in the address "ipaddr" belongs to    */
9110/* the network interface represented by ifp.                                */
9111/* ------------------------------------------------------------------------ */
9112int
9113ipf_deliverlocal(softc, ipversion, ifp, ipaddr)
9114	ipf_main_softc_t *softc;
9115	int ipversion;
9116	void *ifp;
9117	i6addr_t *ipaddr;
9118{
9119	i6addr_t addr;
9120	int islocal = 0;
9121
9122	if (ipversion == 4) {
9123		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9124			if (addr.in4.s_addr == ipaddr->in4.s_addr)
9125				islocal = 1;
9126		}
9127
9128#ifdef USE_INET6
9129	} else if (ipversion == 6) {
9130		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9131			if (IP6_EQ(&addr, ipaddr))
9132				islocal = 1;
9133		}
9134#endif
9135	}
9136
9137	return islocal;
9138}
9139
9140
9141/* ------------------------------------------------------------------------ */
9142/* Function:    ipf_settimeout                                              */
9143/* Returns:     int - 0 = success, -1 = failure                             */
9144/* Parameters:  softc(I) - pointer to soft context main structure           */
9145/*              t(I)     - pointer to tuneable array entry                  */
9146/*              p(I)     - pointer to values passed in to apply             */
9147/*                                                                          */
9148/* This function is called to set the timeout values for each distinct      */
9149/* queue timeout that is available.  When called, it calls into both the    */
9150/* state and NAT code, telling them to update their timeout queues.         */
9151/* ------------------------------------------------------------------------ */
9152static int
9153ipf_settimeout(softc, t, p)
9154	struct ipf_main_softc_s *softc;
9155	ipftuneable_t *t;
9156	ipftuneval_t *p;
9157{
9158
9159	/*
9160	 * ipf_interror should be set by the functions called here, not
9161	 * by this function - it's just a middle man.
9162	 */
9163	if (ipf_state_settimeout(softc, t, p) == -1)
9164		return -1;
9165	if (ipf_nat_settimeout(softc, t, p) == -1)
9166		return -1;
9167	return 0;
9168}
9169
9170
9171/* ------------------------------------------------------------------------ */
9172/* Function:    ipf_apply_timeout                                           */
9173/* Returns:     int - 0 = success, -1 = failure                             */
9174/* Parameters:  head(I)    - pointer to tuneable array entry                */
9175/*              seconds(I) - pointer to values passed in to apply           */
9176/*                                                                          */
9177/* This function applies a timeout of "seconds" to the timeout queue that   */
9178/* is pointed to by "head".  All entries on this list have an expiration    */
9179/* set to be the current tick value of ipf plus the ttl.  Given that this   */
9180/* function should only be called when the delta is non-zero, the task is   */
9181/* to walk the entire list and apply the change.  The sort order will not   */
9182/* change.  The only catch is that this is O(n) across the list, so if the  */
9183/* queue has lots of entries (10s of thousands or 100s of thousands), it    */
9184/* could take a relatively long time to work through them all.              */
9185/* ------------------------------------------------------------------------ */
9186void
9187ipf_apply_timeout(head, seconds)
9188	ipftq_t *head;
9189	u_int seconds;
9190{
9191	u_int oldtimeout, newtimeout;
9192	ipftqent_t *tqe;
9193	int delta;
9194
9195	MUTEX_ENTER(&head->ifq_lock);
9196	oldtimeout = head->ifq_ttl;
9197	newtimeout = IPF_TTLVAL(seconds);
9198	delta = oldtimeout - newtimeout;
9199
9200	head->ifq_ttl = newtimeout;
9201
9202	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
9203		tqe->tqe_die += delta;
9204	}
9205	MUTEX_EXIT(&head->ifq_lock);
9206}
9207
9208
9209/* ------------------------------------------------------------------------ */
9210/* Function:   ipf_settimeout_tcp                                           */
9211/* Returns:    int - 0 = successfully applied, -1 = failed                  */
9212/* Parameters: t(I)   - pointer to tuneable to change                       */
9213/*             p(I)   - pointer to new timeout information                  */
9214/*             tab(I) - pointer to table of TCP queues                      */
9215/*                                                                          */
9216/* This function applies the new timeout (p) to the TCP tunable (t) and     */
9217/* updates all of the entries on the relevant timeout queue by calling      */
9218/* ipf_apply_timeout().                                                     */
9219/* ------------------------------------------------------------------------ */
9220int
9221ipf_settimeout_tcp(t, p, tab)
9222	ipftuneable_t *t;
9223	ipftuneval_t *p;
9224	ipftq_t *tab;
9225{
9226	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9227	    !strcmp(t->ipft_name, "tcp_established")) {
9228		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9229	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9230		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9231	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9232		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9233	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9234		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9235		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9236		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9237	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
9238		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9239	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9240		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9241	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
9242		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9243	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9244		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9245	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9246		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9247	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9248		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9249	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9250		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9251	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9252		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9253	} else {
9254		/*
9255		 * ipf_interror isn't set here because it should be set
9256		 * by whatever called this function.
9257		 */
9258		return -1;
9259	}
9260	return 0;
9261}
9262
9263
9264/* ------------------------------------------------------------------------ */
9265/* Function:   ipf_main_soft_create                                         */
9266/* Returns:    NULL = failure, else success                                 */
9267/* Parameters: arg(I) - pointer to soft context structure if already allocd */
9268/*                                                                          */
9269/* Create the foundation soft context structure. In circumstances where it  */
9270/* is not required to dynamically allocate the context, a pointer can be    */
9271/* passed in (rather than NULL) to a structure to be initialised.           */
9272/* The main thing of interest is that a number of locks are initialised     */
9273/* here instead of in the where might be expected - in the relevant create  */
9274/* function elsewhere.  This is done because the current locking design has */
9275/* some areas where these locks are used outside of their module.           */
9276/* Possibly the most important exercise that is done here is setting of all */
9277/* the timeout values, allowing them to be changed before init().           */
9278/* ------------------------------------------------------------------------ */
9279void *
9280ipf_main_soft_create(arg)
9281	void *arg;
9282{
9283	ipf_main_softc_t *softc;
9284
9285	if (arg == NULL) {
9286		KMALLOC(softc, ipf_main_softc_t *);
9287		if (softc == NULL)
9288			return NULL;
9289	} else {
9290		softc = arg;
9291	}
9292
9293	bzero((char *)softc, sizeof(*softc));
9294
9295	/*
9296	 * This serves as a flag as to whether or not the softc should be
9297	 * free'd when _destroy is called.
9298	 */
9299	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9300
9301	softc->ipf_tuners = ipf_tune_array_copy(softc,
9302						sizeof(ipf_main_tuneables),
9303						ipf_main_tuneables);
9304	if (softc->ipf_tuners == NULL) {
9305		ipf_main_soft_destroy(softc);
9306		return NULL;
9307	}
9308
9309	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9310	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9311	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9312	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9313	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9314	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9315	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9316	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9317	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9318
9319	softc->ipf_token_head = NULL;
9320	softc->ipf_token_tail = &softc->ipf_token_head;
9321
9322	softc->ipf_tcpidletimeout = FIVE_DAYS;
9323	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9324	softc->ipf_tcplastack = IPF_TTLVAL(30);
9325	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9326	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9327	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9328	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9329	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9330	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9331	softc->ipf_udptimeout = IPF_TTLVAL(120);
9332	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9333	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9334	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9335	softc->ipf_iptimeout = IPF_TTLVAL(60);
9336
9337#if defined(IPFILTER_DEFAULT_BLOCK)
9338	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9339#else
9340	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9341#endif
9342	softc->ipf_minttl = 4;
9343	softc->ipf_icmpminfragmtu = 68;
9344	softc->ipf_flags = IPF_LOGGING;
9345
9346	return softc;
9347}
9348
9349/* ------------------------------------------------------------------------ */
9350/* Function:   ipf_main_soft_init                                           */
9351/* Returns:    0 = success, -1 = failure                                    */
9352/* Parameters: softc(I) - pointer to soft context main structure            */
9353/*                                                                          */
9354/* A null-op function that exists as a placeholder so that the flow in      */
9355/* other functions is obvious.                                              */
9356/* ------------------------------------------------------------------------ */
9357/*ARGSUSED*/
9358int
9359ipf_main_soft_init(softc)
9360	ipf_main_softc_t *softc;
9361{
9362	return 0;
9363}
9364
9365
9366/* ------------------------------------------------------------------------ */
9367/* Function:   ipf_main_soft_destroy                                        */
9368/* Returns:    void                                                         */
9369/* Parameters: softc(I) - pointer to soft context main structure            */
9370/*                                                                          */
9371/* Undo everything that we did in ipf_main_soft_create.                     */
9372/*                                                                          */
9373/* The most important check that needs to be made here is whether or not    */
9374/* the structure was allocated by ipf_main_soft_create() by checking what   */
9375/* value is stored in ipf_dynamic_main.                                     */
9376/* ------------------------------------------------------------------------ */
9377/*ARGSUSED*/
9378void
9379ipf_main_soft_destroy(softc)
9380	ipf_main_softc_t *softc;
9381{
9382
9383	RW_DESTROY(&softc->ipf_frag);
9384	RW_DESTROY(&softc->ipf_poolrw);
9385	RW_DESTROY(&softc->ipf_nat);
9386	RW_DESTROY(&softc->ipf_state);
9387	RW_DESTROY(&softc->ipf_tokens);
9388	RW_DESTROY(&softc->ipf_mutex);
9389	RW_DESTROY(&softc->ipf_global);
9390	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9391	MUTEX_DESTROY(&softc->ipf_rw);
9392
9393	if (softc->ipf_tuners != NULL) {
9394		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9395	}
9396	if (softc->ipf_dynamic_softc == 1) {
9397		KFREE(softc);
9398	}
9399}
9400
9401
9402/* ------------------------------------------------------------------------ */
9403/* Function:   ipf_main_soft_fini                                           */
9404/* Returns:    0 = success, -1 = failure                                    */
9405/* Parameters: softc(I) - pointer to soft context main structure            */
9406/*                                                                          */
9407/* Clean out the rules which have been added since _init was last called,   */
9408/* the only dynamic part of the mainline.                                   */
9409/* ------------------------------------------------------------------------ */
9410int
9411ipf_main_soft_fini(softc)
9412	ipf_main_softc_t *softc;
9413{
9414	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9415	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9416	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9417	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9418
9419	return 0;
9420}
9421
9422
9423/* ------------------------------------------------------------------------ */
9424/* Function:   ipf_main_load                                                */
9425/* Returns:    0 = success, -1 = failure                                    */
9426/* Parameters: none                                                         */
9427/*                                                                          */
9428/* Handle global initialisation that needs to be done for the base part of  */
9429/* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9430/* arrays that get used by the state/NAT code.                              */
9431/* ------------------------------------------------------------------------ */
9432int
9433ipf_main_load()
9434{
9435	int i;
9436
9437	/* fill icmp reply type table */
9438	for (i = 0; i <= ICMP_MAXTYPE; i++)
9439		icmpreplytype4[i] = -1;
9440	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9441	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9442	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9443	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9444
9445#ifdef  USE_INET6
9446	/* fill icmp reply type table */
9447	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9448		icmpreplytype6[i] = -1;
9449	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9450	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9451	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9452	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9453	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9454#endif
9455
9456	return 0;
9457}
9458
9459
9460/* ------------------------------------------------------------------------ */
9461/* Function:   ipf_main_unload                                              */
9462/* Returns:    0 = success, -1 = failure                                    */
9463/* Parameters: none                                                         */
9464/*                                                                          */
9465/* A null-op function that exists as a placeholder so that the flow in      */
9466/* other functions is obvious.                                              */
9467/* ------------------------------------------------------------------------ */
9468int
9469ipf_main_unload()
9470{
9471	return 0;
9472}
9473
9474
9475/* ------------------------------------------------------------------------ */
9476/* Function:   ipf_load_all                                                 */
9477/* Returns:    0 = success, -1 = failure                                    */
9478/* Parameters: none                                                         */
9479/*                                                                          */
9480/* Work through all of the subsystems inside IPFilter and call the load     */
9481/* function for each in an order that won't lead to a crash :)              */
9482/* ------------------------------------------------------------------------ */
9483int
9484ipf_load_all()
9485{
9486	if (ipf_main_load() == -1)
9487		return -1;
9488
9489	if (ipf_state_main_load() == -1)
9490		return -1;
9491
9492	if (ipf_nat_main_load() == -1)
9493		return -1;
9494
9495	if (ipf_frag_main_load() == -1)
9496		return -1;
9497
9498	if (ipf_auth_main_load() == -1)
9499		return -1;
9500
9501	if (ipf_proxy_main_load() == -1)
9502		return -1;
9503
9504	return 0;
9505}
9506
9507
9508/* ------------------------------------------------------------------------ */
9509/* Function:   ipf_unload_all                                               */
9510/* Returns:    0 = success, -1 = failure                                    */
9511/* Parameters: none                                                         */
9512/*                                                                          */
9513/* Work through all of the subsystems inside IPFilter and call the unload   */
9514/* function for each in an order that won't lead to a crash :)              */
9515/* ------------------------------------------------------------------------ */
9516int
9517ipf_unload_all()
9518{
9519	if (ipf_proxy_main_unload() == -1)
9520		return -1;
9521
9522	if (ipf_auth_main_unload() == -1)
9523		return -1;
9524
9525	if (ipf_frag_main_unload() == -1)
9526		return -1;
9527
9528	if (ipf_nat_main_unload() == -1)
9529		return -1;
9530
9531	if (ipf_state_main_unload() == -1)
9532		return -1;
9533
9534	if (ipf_main_unload() == -1)
9535		return -1;
9536
9537	return 0;
9538}
9539
9540
9541/* ------------------------------------------------------------------------ */
9542/* Function:   ipf_create_all                                               */
9543/* Returns:    NULL = failure, else success                                 */
9544/* Parameters: arg(I) - pointer to soft context main structure              */
9545/*                                                                          */
9546/* Work through all of the subsystems inside IPFilter and call the create   */
9547/* function for each in an order that won't lead to a crash :)              */
9548/* ------------------------------------------------------------------------ */
9549ipf_main_softc_t *
9550ipf_create_all(arg)
9551	void *arg;
9552{
9553	ipf_main_softc_t *softc;
9554
9555	softc = ipf_main_soft_create(arg);
9556	if (softc == NULL)
9557		return NULL;
9558
9559#ifdef IPFILTER_LOG
9560	softc->ipf_log_soft = ipf_log_soft_create(softc);
9561	if (softc->ipf_log_soft == NULL) {
9562		ipf_destroy_all(softc);
9563		return NULL;
9564	}
9565#endif
9566
9567	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9568	if (softc->ipf_lookup_soft == NULL) {
9569		ipf_destroy_all(softc);
9570		return NULL;
9571	}
9572
9573	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9574	if (softc->ipf_sync_soft == NULL) {
9575		ipf_destroy_all(softc);
9576		return NULL;
9577	}
9578
9579	softc->ipf_state_soft = ipf_state_soft_create(softc);
9580	if (softc->ipf_state_soft == NULL) {
9581		ipf_destroy_all(softc);
9582		return NULL;
9583	}
9584
9585	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9586	if (softc->ipf_nat_soft == NULL) {
9587		ipf_destroy_all(softc);
9588		return NULL;
9589	}
9590
9591	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9592	if (softc->ipf_frag_soft == NULL) {
9593		ipf_destroy_all(softc);
9594		return NULL;
9595	}
9596
9597	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9598	if (softc->ipf_auth_soft == NULL) {
9599		ipf_destroy_all(softc);
9600		return NULL;
9601	}
9602
9603	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9604	if (softc->ipf_proxy_soft == NULL) {
9605		ipf_destroy_all(softc);
9606		return NULL;
9607	}
9608
9609	return softc;
9610}
9611
9612
9613/* ------------------------------------------------------------------------ */
9614/* Function:   ipf_destroy_all                                              */
9615/* Returns:    void                                                         */
9616/* Parameters: softc(I) - pointer to soft context main structure            */
9617/*                                                                          */
9618/* Work through all of the subsystems inside IPFilter and call the destroy  */
9619/* function for each in an order that won't lead to a crash :)              */
9620/*                                                                          */
9621/* Every one of these functions is expected to succeed, so there is no      */
9622/* checking of return values.                                               */
9623/* ------------------------------------------------------------------------ */
9624void
9625ipf_destroy_all(softc)
9626	ipf_main_softc_t *softc;
9627{
9628
9629	if (softc->ipf_state_soft != NULL) {
9630		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9631		softc->ipf_state_soft = NULL;
9632	}
9633
9634	if (softc->ipf_nat_soft != NULL) {
9635		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9636		softc->ipf_nat_soft = NULL;
9637	}
9638
9639	if (softc->ipf_frag_soft != NULL) {
9640		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9641		softc->ipf_frag_soft = NULL;
9642	}
9643
9644	if (softc->ipf_auth_soft != NULL) {
9645		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9646		softc->ipf_auth_soft = NULL;
9647	}
9648
9649	if (softc->ipf_proxy_soft != NULL) {
9650		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9651		softc->ipf_proxy_soft = NULL;
9652	}
9653
9654	if (softc->ipf_sync_soft != NULL) {
9655		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9656		softc->ipf_sync_soft = NULL;
9657	}
9658
9659	if (softc->ipf_lookup_soft != NULL) {
9660		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9661		softc->ipf_lookup_soft = NULL;
9662	}
9663
9664#ifdef IPFILTER_LOG
9665	if (softc->ipf_log_soft != NULL) {
9666		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9667		softc->ipf_log_soft = NULL;
9668	}
9669#endif
9670
9671	ipf_main_soft_destroy(softc);
9672}
9673
9674
9675/* ------------------------------------------------------------------------ */
9676/* Function:   ipf_init_all                                                 */
9677/* Returns:    0 = success, -1 = failure                                    */
9678/* Parameters: softc(I) - pointer to soft context main structure            */
9679/*                                                                          */
9680/* Work through all of the subsystems inside IPFilter and call the init     */
9681/* function for each in an order that won't lead to a crash :)              */
9682/* ------------------------------------------------------------------------ */
9683int
9684ipf_init_all(softc)
9685	ipf_main_softc_t *softc;
9686{
9687
9688	if (ipf_main_soft_init(softc) == -1)
9689		return -1;
9690
9691#ifdef IPFILTER_LOG
9692	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9693		return -1;
9694#endif
9695
9696	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9697		return -1;
9698
9699	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9700		return -1;
9701
9702	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9703		return -1;
9704
9705	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9706		return -1;
9707
9708	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9709		return -1;
9710
9711	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9712		return -1;
9713
9714	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9715		return -1;
9716
9717	return 0;
9718}
9719
9720
9721/* ------------------------------------------------------------------------ */
9722/* Function:   ipf_fini_all                                                 */
9723/* Returns:    0 = success, -1 = failure                                    */
9724/* Parameters: softc(I) - pointer to soft context main structure            */
9725/*                                                                          */
9726/* Work through all of the subsystems inside IPFilter and call the fini     */
9727/* function for each in an order that won't lead to a crash :)              */
9728/* ------------------------------------------------------------------------ */
9729int
9730ipf_fini_all(softc)
9731	ipf_main_softc_t *softc;
9732{
9733
9734	ipf_token_flush(softc);
9735
9736	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9737		return -1;
9738
9739	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9740		return -1;
9741
9742	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9743		return -1;
9744
9745	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9746		return -1;
9747
9748	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9749		return -1;
9750
9751	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9752		return -1;
9753
9754	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9755		return -1;
9756
9757#ifdef IPFILTER_LOG
9758	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9759		return -1;
9760#endif
9761
9762	if (ipf_main_soft_fini(softc) == -1)
9763		return -1;
9764
9765	return 0;
9766}
9767
9768
9769/* ------------------------------------------------------------------------ */
9770/* Function:    ipf_rule_expire                                             */
9771/* Returns:     Nil                                                         */
9772/* Parameters:  softc(I) - pointer to soft context main structure           */
9773/*                                                                          */
9774/* At present this function exists just to support temporary addition of    */
9775/* firewall rules. Both inactive and active lists are scanned for items to  */
9776/* purge, as by rights, the expiration is computed as soon as the rule is   */
9777/* loaded in.                                                               */
9778/* ------------------------------------------------------------------------ */
9779void
9780ipf_rule_expire(softc)
9781	ipf_main_softc_t *softc;
9782{
9783	frentry_t *fr;
9784
9785	if ((softc->ipf_rule_explist[0] == NULL) &&
9786	    (softc->ipf_rule_explist[1] == NULL))
9787		return;
9788
9789	WRITE_ENTER(&softc->ipf_mutex);
9790
9791	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9792		/*
9793		 * Because the list is kept sorted on insertion, the fist
9794		 * one that dies in the future means no more work to do.
9795		 */
9796		if (fr->fr_die > softc->ipf_ticks)
9797			break;
9798		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9799	}
9800
9801	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9802		/*
9803		 * Because the list is kept sorted on insertion, the fist
9804		 * one that dies in the future means no more work to do.
9805		 */
9806		if (fr->fr_die > softc->ipf_ticks)
9807			break;
9808		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9809	}
9810
9811	RWLOCK_EXIT(&softc->ipf_mutex);
9812}
9813
9814
9815static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *));
9816static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int,
9817				      i6addr_t *));
9818
9819host_node_t RBI_ZERO(ipf_rb);
9820RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9821
9822
9823/* ------------------------------------------------------------------------ */
9824/* Function:    ipf_ht_node_cmp                                             */
9825/* Returns:     int   - 0 == nodes are the same, ..                         */
9826/* Parameters:  k1(I) - pointer to first key to compare                     */
9827/*              k2(I) - pointer to second key to compare                    */
9828/*                                                                          */
9829/* The "key" for the node is a combination of two fields: the address       */
9830/* family and the address itself.                                           */
9831/*                                                                          */
9832/* Because we're not actually interpreting the address data, it isn't       */
9833/* necessary to convert them to/from network/host byte order. The mask is   */
9834/* just used to remove bits that aren't significant - it doesn't matter     */
9835/* where they are, as long as they're always in the same place.             */
9836/*                                                                          */
9837/* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9838/* this is where individual ones will differ the most - but not true for    */
9839/* for /48's, etc.                                                          */
9840/* ------------------------------------------------------------------------ */
9841static int
9842ipf_ht_node_cmp(k1, k2)
9843	struct host_node_s *k1, *k2;
9844{
9845	int i;
9846
9847	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9848	if (i != 0)
9849		return i;
9850
9851	if (k1->hn_addr.adf_family == AF_INET)
9852		return (k2->hn_addr.adf_addr.in4.s_addr -
9853			k1->hn_addr.adf_addr.in4.s_addr);
9854
9855	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9856	if (i != 0)
9857		return i;
9858	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9859	if (i != 0)
9860		return i;
9861	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9862	if (i != 0)
9863		return i;
9864	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9865	return i;
9866}
9867
9868
9869/* ------------------------------------------------------------------------ */
9870/* Function:    ipf_ht_node_make_key                                        */
9871/* Returns:     Nil                                                         */
9872/* parameters:  htp(I)    - pointer to address tracking structure           */
9873/*              key(I)    - where to store masked address for lookup        */
9874/*              family(I) - protocol family of address                      */
9875/*              addr(I)   - pointer to network address                      */
9876/*                                                                          */
9877/* Using the "netmask" (number of bits) stored parent host tracking struct, */
9878/* copy the address passed in into the key structure whilst masking out the */
9879/* bits that we don't want.                                                 */
9880/*                                                                          */
9881/* Because the parser will set ht_netmask to 128 if there is no protocol    */
9882/* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9883/* have to be wary of that and not allow 32-128 to happen.                  */
9884/* ------------------------------------------------------------------------ */
9885static void
9886ipf_ht_node_make_key(htp, key, family, addr)
9887	host_track_t *htp;
9888	host_node_t *key;
9889	int family;
9890	i6addr_t *addr;
9891{
9892	key->hn_addr.adf_family = family;
9893	if (family == AF_INET) {
9894		u_32_t mask;
9895		int bits;
9896
9897		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9898		bits = htp->ht_netmask;
9899		if (bits >= 32) {
9900			mask = 0xffffffff;
9901		} else {
9902			mask = htonl(0xffffffff << (32 - bits));
9903		}
9904		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9905#ifdef USE_INET6
9906	} else {
9907		int bits = htp->ht_netmask;
9908
9909		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9910		if (bits > 96) {
9911			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9912					     htonl(0xffffffff << (128 - bits));
9913			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9914			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9915			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9916		} else if (bits > 64) {
9917			key->hn_addr.adf_addr.i6[3] = 0;
9918			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9919					     htonl(0xffffffff << (96 - bits));
9920			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9921			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9922		} else if (bits > 32) {
9923			key->hn_addr.adf_addr.i6[3] = 0;
9924			key->hn_addr.adf_addr.i6[2] = 0;
9925			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9926					     htonl(0xffffffff << (64 - bits));
9927			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9928		} else {
9929			key->hn_addr.adf_addr.i6[3] = 0;
9930			key->hn_addr.adf_addr.i6[2] = 0;
9931			key->hn_addr.adf_addr.i6[1] = 0;
9932			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9933					     htonl(0xffffffff << (32 - bits));
9934		}
9935#endif
9936	}
9937}
9938
9939
9940/* ------------------------------------------------------------------------ */
9941/* Function:    ipf_ht_node_add                                             */
9942/* Returns:     int       - 0 == success,  -1 == failure                    */
9943/* Parameters:  softc(I)  - pointer to soft context main structure          */
9944/*              htp(I)    - pointer to address tracking structure           */
9945/*              family(I) - protocol family of address                      */
9946/*              addr(I)   - pointer to network address                      */
9947/*                                                                          */
9948/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9949/*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9950/*                                                                          */
9951/* After preparing the key with the address information to find, look in    */
9952/* the red-black tree to see if the address is known. A successful call to  */
9953/* this function can mean one of two things: a new node was added to the    */
9954/* tree or a matching node exists and we're able to bump up its activity.   */
9955/* ------------------------------------------------------------------------ */
9956int
9957ipf_ht_node_add(softc, htp, family, addr)
9958	ipf_main_softc_t *softc;
9959	host_track_t *htp;
9960	int family;
9961	i6addr_t *addr;
9962{
9963	host_node_t *h;
9964	host_node_t k;
9965
9966	ipf_ht_node_make_key(htp, &k, family, addr);
9967
9968	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9969	if (h == NULL) {
9970		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9971			return -1;
9972		KMALLOC(h, host_node_t *);
9973		if (h == NULL) {
9974			DT(ipf_rb_no_mem);
9975			LBUMP(ipf_rb_no_mem);
9976			return -1;
9977		}
9978
9979		/*
9980		 * If there was a macro to initialise the RB node then that
9981		 * would get used here, but there isn't...
9982		 */
9983		bzero((char *)h, sizeof(*h));
9984		h->hn_addr = k.hn_addr;
9985		h->hn_addr.adf_family = k.hn_addr.adf_family;
9986		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9987		htp->ht_cur_nodes++;
9988	} else {
9989		if ((htp->ht_max_per_node != 0) &&
9990		    (h->hn_active >= htp->ht_max_per_node)) {
9991			DT(ipf_rb_node_max);
9992			LBUMP(ipf_rb_node_max);
9993			return -1;
9994		}
9995	}
9996
9997	h->hn_active++;
9998
9999	return 0;
10000}
10001
10002
10003/* ------------------------------------------------------------------------ */
10004/* Function:    ipf_ht_node_del                                             */
10005/* Returns:     int       - 0 == success,  -1 == failure                    */
10006/* parameters:  htp(I)    - pointer to address tracking structure           */
10007/*              family(I) - protocol family of address                      */
10008/*              addr(I)   - pointer to network address                      */
10009/*                                                                          */
10010/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
10011/*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
10012/*                                                                          */
10013/* Try and find the address passed in amongst the leavese on this tree to   */
10014/* be friend. If found then drop the active account for that node drops by  */
10015/* one. If that count reaches 0, it is time to free it all up.              */
10016/* ------------------------------------------------------------------------ */
10017int
10018ipf_ht_node_del(htp, family, addr)
10019	host_track_t *htp;
10020	int family;
10021	i6addr_t *addr;
10022{
10023	host_node_t *h;
10024	host_node_t k;
10025
10026	ipf_ht_node_make_key(htp, &k, family, addr);
10027
10028	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
10029	if (h == NULL) {
10030		return -1;
10031	} else {
10032		h->hn_active--;
10033		if (h->hn_active == 0) {
10034			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
10035			htp->ht_cur_nodes--;
10036			KFREE(h);
10037		}
10038	}
10039
10040	return 0;
10041}
10042
10043
10044/* ------------------------------------------------------------------------ */
10045/* Function:    ipf_rb_ht_init                                              */
10046/* Returns:     Nil                                                         */
10047/* Parameters:  head(I) - pointer to host tracking structure                */
10048/*                                                                          */
10049/* Initialise the host tracking structure to be ready for use above.        */
10050/* ------------------------------------------------------------------------ */
10051void
10052ipf_rb_ht_init(head)
10053	host_track_t *head;
10054{
10055	RBI_INIT(ipf_rb, &head->ht_root);
10056}
10057
10058
10059/* ------------------------------------------------------------------------ */
10060/* Function:    ipf_rb_ht_freenode                                          */
10061/* Returns:     Nil                                                         */
10062/* Parameters:  head(I) - pointer to host tracking structure                */
10063/*              arg(I)  - additional argument from walk caller              */
10064/*                                                                          */
10065/* Free an actual host_node_t structure.                                    */
10066/* ------------------------------------------------------------------------ */
10067void
10068ipf_rb_ht_freenode(node, arg)
10069	host_node_t *node;
10070	void *arg;
10071{
10072	KFREE(node);
10073}
10074
10075
10076/* ------------------------------------------------------------------------ */
10077/* Function:    ipf_rb_ht_flush                                             */
10078/* Returns:     Nil                                                         */
10079/* Parameters:  head(I) - pointer to host tracking structure                */
10080/*                                                                          */
10081/* Remove all of the nodes in the tree tracking hosts by calling a walker   */
10082/* and free'ing each one.                                                   */
10083/* ------------------------------------------------------------------------ */
10084void
10085ipf_rb_ht_flush(head)
10086	host_track_t *head;
10087{
10088	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
10089}
10090
10091
10092/* ------------------------------------------------------------------------ */
10093/* Function:    ipf_slowtimer                                               */
10094/* Returns:     Nil                                                         */
10095/* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
10096/*                                                                          */
10097/* Slowly expire held state for fragments.  Timeouts are set * in           */
10098/* expectation of this being called twice per second.                       */
10099/* ------------------------------------------------------------------------ */
10100void
10101ipf_slowtimer(softc)
10102	ipf_main_softc_t *softc;
10103{
10104
10105	ipf_token_expire(softc);
10106	ipf_frag_expire(softc);
10107	ipf_state_expire(softc);
10108	ipf_nat_expire(softc);
10109	ipf_auth_expire(softc);
10110	ipf_lookup_expire(softc);
10111	ipf_rule_expire(softc);
10112	ipf_sync_expire(softc);
10113	softc->ipf_ticks++;
10114#   if defined(__OpenBSD__)
10115	timeout_add(&ipf_slowtimer_ch, hz/2);
10116#   endif
10117}
10118
10119
10120/* ------------------------------------------------------------------------ */
10121/* Function:    ipf_inet_mask_add                                           */
10122/* Returns:     Nil                                                         */
10123/* Parameters:  bits(I) - pointer to nat context information                */
10124/*              mtab(I) - pointer to mask hash table structure              */
10125/*                                                                          */
10126/* When called, bits represents the mask of a new NAT rule that has just    */
10127/* been added. This function inserts a bitmask into the array of masks to   */
10128/* search when searching for a matching NAT rule for a packet.              */
10129/* Prevention of duplicate masks is achieved by checking the use count for  */
10130/* a given netmask.                                                         */
10131/* ------------------------------------------------------------------------ */
10132void
10133ipf_inet_mask_add(bits, mtab)
10134	int bits;
10135	ipf_v4_masktab_t *mtab;
10136{
10137	u_32_t mask;
10138	int i, j;
10139
10140	mtab->imt4_masks[bits]++;
10141	if (mtab->imt4_masks[bits] > 1)
10142		return;
10143
10144	if (bits == 0)
10145		mask = 0;
10146	else
10147		mask = 0xffffffff << (32 - bits);
10148
10149	for (i = 0; i < 33; i++) {
10150		if (ntohl(mtab->imt4_active[i]) < mask) {
10151			for (j = 32; j > i; j--)
10152				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
10153			mtab->imt4_active[i] = htonl(mask);
10154			break;
10155		}
10156	}
10157	mtab->imt4_max++;
10158}
10159
10160
10161/* ------------------------------------------------------------------------ */
10162/* Function:    ipf_inet_mask_del                                           */
10163/* Returns:     Nil                                                         */
10164/* Parameters:  bits(I) - number of bits set in the netmask                 */
10165/*              mtab(I) - pointer to mask hash table structure              */
10166/*                                                                          */
10167/* Remove the 32bit bitmask represented by "bits" from the collection of    */
10168/* netmasks stored inside of mtab.                                          */
10169/* ------------------------------------------------------------------------ */
10170void
10171ipf_inet_mask_del(bits, mtab)
10172	int bits;
10173	ipf_v4_masktab_t *mtab;
10174{
10175	u_32_t mask;
10176	int i, j;
10177
10178	mtab->imt4_masks[bits]--;
10179	if (mtab->imt4_masks[bits] > 0)
10180		return;
10181
10182	mask = htonl(0xffffffff << (32 - bits));
10183	for (i = 0; i < 33; i++) {
10184		if (mtab->imt4_active[i] == mask) {
10185			for (j = i + 1; j < 33; j++)
10186				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
10187			break;
10188		}
10189	}
10190	mtab->imt4_max--;
10191	ASSERT(mtab->imt4_max >= 0);
10192}
10193
10194
10195#ifdef USE_INET6
10196/* ------------------------------------------------------------------------ */
10197/* Function:    ipf_inet6_mask_add                                          */
10198/* Returns:     Nil                                                         */
10199/* Parameters:  bits(I) - number of bits set in mask                        */
10200/*              mask(I) - pointer to mask to add                            */
10201/*              mtab(I) - pointer to mask hash table structure              */
10202/*                                                                          */
10203/* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
10204/* has just been added. This function inserts a bitmask into the array of   */
10205/* masks to search when searching for a matching NAT rule for a packet.     */
10206/* Prevention of duplicate masks is achieved by checking the use count for  */
10207/* a given netmask.                                                         */
10208/* ------------------------------------------------------------------------ */
10209void
10210ipf_inet6_mask_add(bits, mask, mtab)
10211	int bits;
10212	i6addr_t *mask;
10213	ipf_v6_masktab_t *mtab;
10214{
10215	i6addr_t zero;
10216	int i, j;
10217
10218	mtab->imt6_masks[bits]++;
10219	if (mtab->imt6_masks[bits] > 1)
10220		return;
10221
10222	if (bits == 0) {
10223		mask = &zero;
10224		zero.i6[0] = 0;
10225		zero.i6[1] = 0;
10226		zero.i6[2] = 0;
10227		zero.i6[3] = 0;
10228	}
10229
10230	for (i = 0; i < 129; i++) {
10231		if (IP6_LT(&mtab->imt6_active[i], mask)) {
10232			for (j = 128; j > i; j--)
10233				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
10234			mtab->imt6_active[i] = *mask;
10235			break;
10236		}
10237	}
10238	mtab->imt6_max++;
10239}
10240
10241
10242/* ------------------------------------------------------------------------ */
10243/* Function:    ipf_inet6_mask_del                                          */
10244/* Returns:     Nil                                                         */
10245/* Parameters:  bits(I) - number of bits set in mask                        */
10246/*              mask(I) - pointer to mask to remove                         */
10247/*              mtab(I) - pointer to mask hash table structure              */
10248/*                                                                          */
10249/* Remove the 128bit bitmask represented by "bits" from the collection of   */
10250/* netmasks stored inside of mtab.                                          */
10251/* ------------------------------------------------------------------------ */
10252void
10253ipf_inet6_mask_del(bits, mask, mtab)
10254	int bits;
10255	i6addr_t *mask;
10256	ipf_v6_masktab_t *mtab;
10257{
10258	i6addr_t zero;
10259	int i, j;
10260
10261	mtab->imt6_masks[bits]--;
10262	if (mtab->imt6_masks[bits] > 0)
10263		return;
10264
10265	if (bits == 0)
10266		mask = &zero;
10267	zero.i6[0] = 0;
10268	zero.i6[1] = 0;
10269	zero.i6[2] = 0;
10270	zero.i6[3] = 0;
10271
10272	for (i = 0; i < 129; i++) {
10273		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10274			for (j = i + 1; j < 129; j++) {
10275				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10276				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10277					break;
10278			}
10279			break;
10280		}
10281	}
10282	mtab->imt6_max--;
10283	ASSERT(mtab->imt6_max >= 0);
10284}
10285#endif
10286