ar9300_misc.c revision 286337
1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25
26#include "ar9300/ar9300.h"
27#include "ar9300/ar9300reg.h"
28#include "ar9300/ar9300phy.h"
29
30
31void
32ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33{
34    struct ath_hal_9300 *ahp = AH9300(ah);
35    *hangs = 0;
36
37    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38        *hangs |= HAL_RIFS_BB_HANG_WAR;
39    }
40    if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41        *hangs |= HAL_DFS_BB_HANG_WAR;
42    }
43    if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44        == HAL_OK)
45    {
46        *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47    }
48    if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49        *hangs |= HAL_MAC_HANG_WAR;
50    }
51    if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52        == HAL_OK)
53    {
54        *hangs |= HAL_PHYRESTART_CLR_WAR;
55    }
56
57    ahp->ah_hang_wars = *hangs;
58}
59
60/*
61 * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62 * HT20, HT40, fast-clock, turbo mode, etc.
63 */
64static u_int
65ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66{
67#if 0
68    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69
70    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71        return (ath_hal_mac_usec(ah, clks) / 2);
72    } else {
73        return (ath_hal_mac_usec(ah, clks));
74    }
75#endif
76    return (ath_hal_mac_usec(ah, clks));
77}
78
79u_int
80ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81{
82#if 0
83    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84
85    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86        return (ath_hal_mac_clks(ah, usecs) * 2);
87    } else {
88        return (ath_hal_mac_clks(ah, usecs));
89    }
90#endif
91    return (ath_hal_mac_clks(ah, usecs));
92}
93
94void
95ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96{
97    struct ath_hal_9300 *ahp = AH9300(ah);
98
99    OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100}
101
102HAL_BOOL
103ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104{
105    struct ath_hal_9300 *ahp = AH9300(ah);
106
107    OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108    return AH_TRUE;
109}
110
111void
112ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113{
114    struct ath_hal_9300 *ahp = AH9300(ah);
115
116    OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117}
118
119HAL_BOOL
120ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121{
122    struct ath_hal_9300 *ahp = AH9300(ah);
123
124    /* save it since it must be rewritten on reset */
125    OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126
127    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129    return AH_TRUE;
130}
131
132/*
133 * Attempt to change the cards operating regulatory domain to the given value
134 * Returns: A_EINVAL for an unsupported regulatory domain.
135 *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136 */
137HAL_BOOL
138ar9300_set_regulatory_domain(struct ath_hal *ah,
139        u_int16_t reg_domain, HAL_STATUS *status)
140{
141    HAL_STATUS ecode;
142
143    if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144        AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145        return AH_TRUE;
146    }
147    ecode = HAL_EIO;
148
149#if 0
150bad:
151#endif
152    if (status) {
153        *status = ecode;
154    }
155    return AH_FALSE;
156}
157
158/*
159 * Return the wireless modes (a,b,g,t) supported by hardware.
160 *
161 * This value is what is actually supported by the hardware
162 * and is unaffected by regulatory/country code settings.
163 *
164 */
165u_int
166ar9300_get_wireless_modes(struct ath_hal *ah)
167{
168    return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169}
170
171/*
172 * Set the interrupt and GPIO values so the ISR can disable RF
173 * on a switch signal.  Assumes GPIO port and interrupt polarity
174 * are set prior to call.
175 */
176void
177ar9300_enable_rf_kill(struct ath_hal *ah)
178{
179    /* TODO - can this really be above the hal on the GPIO interface for
180     * TODO - the client only?
181     */
182    struct ath_hal_9300    *ahp = AH9300(ah);
183
184    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185    	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186    	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187            OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                           AR_RFSILENT_FORCE);
189            OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190        }
191        else {
192            OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                           AR_RFSILENT_FORCE);
194            OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195        }
196    }
197    else {
198        /* Connect rfsilent_bb_l to baseband */
199        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200            AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201
202        /* Set input mux for rfsilent_bb_l to GPIO #0 */
203        OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204            AR_GPIO_INPUT_MUX2_RFSILENT);
205        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206            (ahp->ah_gpio_select & 0x0f) << 4);
207
208        /*
209         * Configure the desired GPIO port for input and
210         * enable baseband rf silence
211         */
212        ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213        OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214    }
215
216    /*
217     * If radio disable switch connection to GPIO bit x is enabled
218     * program GPIO interrupt.
219     * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220     * verified that it is a later version of eeprom, it has a place for
221     * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222     * connection is present.
223     */
224     /*
225      * RFKill uses polling not interrupt,
226      * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227      */
228    if (ath_hal_hasrfkill_int(ah)) {
229        if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230            /* switch already closed, set to interrupt upon open */
231            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232        } else {
233            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234        }
235    }
236}
237
238/*
239 * Change the LED blinking pattern to correspond to the connectivity
240 */
241void
242ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243{
244    static const u_int32_t ledbits[8] = {
245        AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252        AR_CFG_LED_ASSOC_NONE,
253    };
254
255    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256}
257
258/*
259 * Sets the Power LED on the cardbus without affecting the Network LED.
260 */
261void
262ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263{
264    u_int32_t    val;
265
266    val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268}
269
270/*
271 * Sets the Network LED on the cardbus without affecting the Power LED.
272 */
273void
274ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275{
276    u_int32_t    val;
277
278    val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280}
281
282/*
283 * Change association related fields programmed into the hardware.
284 * Writing a valid BSSID to the hardware effectively enables the hardware
285 * to synchronize its TSF to the correct beacons and receive frames coming
286 * from that BSSID. It is called by the SME JOIN operation.
287 */
288void
289ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290    u_int16_t assoc_id)
291{
292    struct ath_hal_9300 *ahp = AH9300(ah);
293
294    /* save bssid and assoc_id for restore on reset */
295    OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296    ahp->ah_assoc_id = assoc_id;
297
298    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299    OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                 ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301}
302
303/*
304 * Get the current hardware tsf for stamlme
305 */
306u_int64_t
307ar9300_get_tsf64(struct ath_hal *ah)
308{
309    u_int64_t tsf;
310
311    /* XXX sync multi-word read? */
312    tsf = OS_REG_READ(ah, AR_TSF_U32);
313    tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314    return tsf;
315}
316
317void
318ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319{
320    OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321    OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322}
323
324/*
325 * Get the current hardware tsf for stamlme
326 */
327u_int32_t
328ar9300_get_tsf32(struct ath_hal *ah)
329{
330    return OS_REG_READ(ah, AR_TSF_L32);
331}
332
333u_int32_t
334ar9300_get_tsf2_32(struct ath_hal *ah)
335{
336    return OS_REG_READ(ah, AR_TSF2_L32);
337}
338
339/*
340 * Reset the current hardware tsf for stamlme.
341 */
342void
343ar9300_reset_tsf(struct ath_hal *ah)
344{
345    int count;
346
347    count = 0;
348    while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349        count++;
350        if (count > 10) {
351            HALDEBUG(ah, HAL_DEBUG_RESET,
352                "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353            break;
354        }
355        OS_DELAY(10);
356    }
357    OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358}
359
360/*
361 * Set or clear hardware basic rate bit
362 * Set hardware basic rate set if basic rate is found
363 * and basic rate is equal or less than 2Mbps
364 */
365void
366ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367{
368    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369    u_int32_t reg;
370    u_int8_t xset;
371    int i;
372
373    if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374        return;
375    }
376    xset = 0;
377    for (i = 0; i < rs->rs_count; i++) {
378        u_int8_t rset = rs->rs_rates[i];
379        /* Basic rate defined? */
380        if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381            xset = rset;
382        }
383    }
384    /*
385     * Set the h/w bit to reflect whether or not the basic
386     * rate is found to be equal or less than 2Mbps.
387     */
388    reg = OS_REG_READ(ah, AR_STA_ID1);
389    if (xset && xset / 2 <= 2) {
390        OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391    } else {
392        OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393    }
394}
395
396/*
397 * Grab a semi-random value from hardware registers - may not
398 * change often
399 */
400u_int32_t
401ar9300_get_random_seed(struct ath_hal *ah)
402{
403    u_int32_t nf;
404
405    nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406    if (nf & 0x100) {
407        nf = 0 - ((nf ^ 0x1ff) + 1);
408    }
409    return (OS_REG_READ(ah, AR_TSF_U32) ^
410        OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411}
412
413/*
414 * Detect if our card is present
415 */
416HAL_BOOL
417ar9300_detect_card_present(struct ath_hal *ah)
418{
419    u_int16_t mac_version, mac_rev;
420    u_int32_t v;
421
422    /*
423     * Read the Silicon Revision register and compare that
424     * to what we read at attach time.  If the same, we say
425     * a card/device is present.
426     */
427    v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428    if (v == 0xFF) {
429        /* new SREV format */
430        v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431        /*
432         * Include 6-bit Chip Type (masked to 0) to differentiate
433         * from pre-Sowl versions
434         */
435        mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436        mac_rev = MS(v, AR_SREV_REVISION2);
437    } else {
438        mac_version = MS(v, AR_SREV_VERSION);
439        mac_rev = v & AR_SREV_REVISION;
440    }
441    return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442            AH_PRIVATE(ah)->ah_macRev == mac_rev);
443}
444
445/*
446 * Update MIB Counters
447 */
448void
449ar9300_update_mib_mac_stats(struct ath_hal *ah)
450{
451    struct ath_hal_9300 *ahp = AH9300(ah);
452    HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453
454    stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455    stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456    stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457    stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458    stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459}
460
461void
462ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463{
464    struct ath_hal_9300 *ahp = AH9300(ah);
465    HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466
467    stats->ackrcv_bad = istats->ackrcv_bad;
468    stats->rts_bad    = istats->rts_bad;
469    stats->fcs_bad    = istats->fcs_bad;
470    stats->rts_good   = istats->rts_good;
471    stats->beacons    = istats->beacons;
472}
473
474/*
475 * Detect if the HW supports spreading a CCK signal on channel 14
476 */
477HAL_BOOL
478ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479{
480    return AH_TRUE;
481}
482
483/*
484 * Get the rssi of frame curently being received.
485 */
486u_int32_t
487ar9300_get_cur_rssi(struct ath_hal *ah)
488{
489    /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490    /* get combined RSSI */
491    return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492}
493
494#if ATH_GEN_RANDOMNESS
495/*
496 * Get the rssi value from BB on ctl chain0.
497 */
498u_int32_t
499ar9300_get_rssi_chain0(struct ath_hal *ah)
500{
501    /* get ctl chain0 RSSI */
502    return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503}
504#endif
505
506u_int
507ar9300_get_def_antenna(struct ath_hal *ah)
508{
509    return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510}
511
512/* Setup coverage class */
513void
514ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515{
516}
517
518void
519ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520{
521    OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522}
523
524HAL_BOOL
525ar9300_set_antenna_switch(struct ath_hal *ah,
526    HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527    u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528{
529    struct ath_hal_9300 *ahp = AH9300(ah);
530
531    /*
532     * Owl does not support diversity or changing antennas.
533     *
534     * Instead this API and function are defined differently for AR9300.
535     * To support Tablet PC's, this interface allows the system
536     * to dramatically reduce the TX power on a particular chain.
537     *
538     * Based on the value of (redefined) diversity_control, the
539     * reset code will decrease power on chain 0 or chain 1/2.
540     *
541     * Based on the value of bit 0 of antenna_switch_swap,
542     * the mapping between OID call and chain is defined as:
543     *  0:  map A -> 0, B -> 1;
544     *  1:  map A -> 1, B -> 0;
545     *
546     * NOTE:
547     *   The devices that use this OID should use a tx_chain_mask and
548     *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549     *   used in order to ensure an active transmit antenna.  This
550     *   API will allow the host to turn off the only transmitting
551     *   antenna to ensure the antenna closest to the user's body is
552     *   powered-down.
553     */
554    /*
555     * Set antenna control for use during reset sequence by
556     * ar9300_decrease_chain_power()
557     */
558    ahp->ah_diversity_control = settings;
559
560    return AH_TRUE;
561}
562
563HAL_BOOL
564ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565{
566    return AH_TRUE;
567}
568
569HAL_BOOL
570ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571{
572    struct ath_hal_9300 *ahp = AH9300(ah);
573    if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575        ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576        return AH_FALSE;
577    } else {
578        /* convert to system clocks */
579        OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580        ahp->ah_slot_time = us;
581        return AH_TRUE;
582    }
583}
584
585HAL_BOOL
586ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587{
588    struct ath_hal_9300 *ahp = AH9300(ah);
589
590    if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592        ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593        return AH_FALSE;
594    } else {
595        /* convert to system clocks */
596        OS_REG_RMW_FIELD(ah,
597            AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598        ahp->ah_ack_timeout = us;
599        return AH_TRUE;
600    }
601}
602
603u_int
604ar9300_get_ack_timeout(struct ath_hal *ah)
605{
606    u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607    return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608}
609
610HAL_STATUS
611ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                 u_int32_t next_start, HAL_QUIET_FLAG flag)
613{
614#define	TU_TO_USEC(_tu)		((_tu) << 10)
615    HAL_STATUS status = HAL_EIO;
616    u_int32_t tsf = 0, j, next_start_us = 0;
617    if (flag & HAL_QUIET_ENABLE) {
618        for (j = 0; j < 2; j++) {
619            next_start_us = TU_TO_USEC(next_start);
620            tsf = OS_REG_READ(ah, AR_TSF_L32);
621            if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                next_start_us += tsf;
623            }
624            if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                next_start_us +=
626                    ah->ah_config.ah_sw_beacon_response_time;
627            }
628            OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629            OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630            OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631            OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632            OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633            if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                status = HAL_OK;
635                break;
636            }
637            HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639            /* TSF shouldn't count twice or reg access is taking forever */
640            HALASSERT(j < 1);
641        }
642    } else {
643        OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644        status = HAL_OK;
645    }
646
647    return status;
648#undef	TU_TO_USEC
649}
650#ifdef ATH_SUPPORT_DFS
651void
652ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653{
654    u32 reg1, reg2;
655
656    reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657    reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658    AH9300(ah)->ah_cac_quiet_enabled = enable;
659
660    if (enable) {
661        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                     reg1 | AR_PCU_FORCE_QUIET_COLL);
663        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                     reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665    } else {
666        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                     reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                     reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670    }
671}
672#endif /* ATH_SUPPORT_DFS */
673
674void
675ar9300_set_pcu_config(struct ath_hal *ah)
676{
677    ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678}
679
680HAL_STATUS
681ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682    u_int32_t capability, u_int32_t *result)
683{
684    struct ath_hal_9300 *ahp = AH9300(ah);
685    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686    struct ar9300_ani_state *ani;
687
688    switch (type) {
689    case HAL_CAP_CIPHER:            /* cipher handled in hardware */
690        switch (capability) {
691        case HAL_CIPHER_AES_CCM:
692        case HAL_CIPHER_AES_OCB:
693        case HAL_CIPHER_TKIP:
694        case HAL_CIPHER_WEP:
695        case HAL_CIPHER_MIC:
696        case HAL_CIPHER_CLR:
697            return HAL_OK;
698        default:
699            return HAL_ENOTSUPP;
700        }
701    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
702        switch (capability) {
703        case 0:         /* hardware capability */
704            return HAL_OK;
705        case 1:
706            return (ahp->ah_sta_id1_defaults &
707                    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
708        default:
709            return HAL_ENOTSUPP;
710        }
711    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
712        switch (capability) {
713        case 0: /* hardware capability */
714            return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
715        case 1: /* current setting */
716            return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
717                HAL_ENXIO : HAL_OK;
718        default:
719            return HAL_ENOTSUPP;
720        }
721    case HAL_CAP_WME_TKIPMIC:
722        /* hardware can do TKIP MIC when WMM is turned on */
723        return HAL_OK;
724    case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
725        return HAL_OK;
726    case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
727        switch (capability) {
728        case 0:                 /* hardware capability */
729            return HAL_OK;
730        case 1:                 /* current setting */
731            return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
732                            AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
733                            HAL_OK : HAL_ENXIO;
734        }
735        return HAL_EINVAL;
736    case HAL_CAP_TPC:
737        switch (capability) {
738        case 0:                 /* hardware capability */
739            return HAL_OK;
740        case 1:
741            return ah->ah_config.ath_hal_desc_tpc ?
742                               HAL_OK : HAL_ENXIO;
743        }
744        return HAL_OK;
745    case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
746        return HAL_OK;
747    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
748        switch (capability) {
749        case 0:                 /* hardware capability */
750            return HAL_OK;
751        case 1:
752            if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
753                /*
754                 * Owl and Merlin have problems in mcast key search.
755                 * Disable this cap. in Ad-hoc mode. see Bug 25776 and
756                 * 26802
757                 */
758                return HAL_ENXIO;
759            } else {
760                return (ahp->ah_sta_id1_defaults &
761                        AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
762            }
763        }
764        return HAL_EINVAL;
765    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
766        switch (capability) {
767        case 0:                 /* hardware capability */
768            return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
769        case 1:
770            return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
771                HAL_OK : HAL_ENXIO;
772        }
773        return HAL_EINVAL;
774    case HAL_CAP_RFSILENT:      /* rfsilent support  */
775        if (capability == 3) {  /* rfkill interrupt */
776            /*
777             * XXX: Interrupt-based notification of RF Kill state
778             *      changes not working yet. Report that this feature
779             *      is not supported so that polling is used instead.
780             */
781            return (HAL_ENOTSUPP);
782        }
783        return ath_hal_getcapability(ah, type, capability, result);
784    case HAL_CAP_4ADDR_AGGR:
785        return HAL_OK;
786    case HAL_CAP_BB_RIFS_HANG:
787        return HAL_ENOTSUPP;
788    case HAL_CAP_BB_DFS_HANG:
789        return HAL_ENOTSUPP;
790    case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
791        /* Track chips that are known to have BB hangs related
792         * to rx_clear stuck low.
793         */
794        return HAL_ENOTSUPP;
795    case HAL_CAP_MAC_HANG:
796        /* Track chips that are known to have MAC hangs.
797         */
798        return HAL_OK;
799    case HAL_CAP_RIFS_RX_ENABLED:
800        /* Is RIFS RX currently enabled */
801        return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
802#if 0
803    case HAL_CAP_ANT_CFG_2GHZ:
804        *result = p_cap->halNumAntCfg2Ghz;
805        return HAL_OK;
806    case HAL_CAP_ANT_CFG_5GHZ:
807        *result = p_cap->halNumAntCfg5Ghz;
808        return HAL_OK;
809    case HAL_CAP_RX_STBC:
810        *result = p_cap->hal_rx_stbc_support;
811        return HAL_OK;
812    case HAL_CAP_TX_STBC:
813        *result = p_cap->hal_tx_stbc_support;
814        return HAL_OK;
815#endif
816    case HAL_CAP_LDPC:
817        *result = p_cap->halLDPCSupport;
818        return HAL_OK;
819    case HAL_CAP_DYNAMIC_SMPS:
820        return HAL_OK;
821    case HAL_CAP_DS:
822        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
823                (p_cap->halTxChainMask & 0x3) != 0x3 ||
824                (p_cap->halRxChainMask & 0x3) != 0x3) ?
825            HAL_ENOTSUPP : HAL_OK;
826    case HAL_CAP_TS:
827        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
828                (p_cap->halTxChainMask & 0x7) != 0x7 ||
829                (p_cap->halRxChainMask & 0x7) != 0x7) ?
830            HAL_ENOTSUPP : HAL_OK;
831    case HAL_CAP_OL_PWRCTRL:
832        return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
833            HAL_OK : HAL_ENOTSUPP;
834    case HAL_CAP_CRDC:
835#if ATH_SUPPORT_CRDC
836        return (AR_SREV_WASP(ah) &&
837                ah->ah_config.ath_hal_crdc_enable) ?
838                    HAL_OK : HAL_ENOTSUPP;
839#else
840        return HAL_ENOTSUPP;
841#endif
842#if 0
843    case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
844        *result = (u_int32_t)(-1);
845        return HAL_OK;
846    case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
847        *result = (u_int32_t)(-1);
848        return HAL_OK;
849#endif
850    case HAL_CAP_BB_PANIC_WATCHDOG:
851        return HAL_OK;
852    case HAL_CAP_PHYRESTART_CLR_WAR:
853        if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
854            (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
855        {
856            return HAL_OK;
857        }
858        else
859        {
860            return HAL_ENOTSUPP;
861        }
862    case HAL_CAP_ENTERPRISE_MODE:
863        *result = ahp->ah_enterprise_mode >> 16;
864        /*
865         * WAR for EV 77658 - Add delimiters to first sub-frame when using
866         * RTS/CTS with aggregation and non-enterprise Osprey.
867         *
868         * Bug fixed in AR9580/Peacock, Wasp1.1 and later
869         */
870        if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
871                !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
872                AR_SREV_WASP_10(ah))) {
873            *result |= AH_ENT_RTSCTS_DELIM_WAR;
874        }
875        return HAL_OK;
876    case HAL_CAP_LDPCWAR:
877        /* WAR for RIFS+LDPC issue is required for all chips currently
878         * supported by ar9300 HAL.
879         */
880        return HAL_OK;
881    case HAL_CAP_ENABLE_APM:
882        *result = p_cap->halApmEnable;
883        return HAL_OK;
884    case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
885        return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
886    case HAL_CAP_PCIE_LCR_OFFSET:
887        *result = p_cap->hal_pcie_lcr_offset;
888        return HAL_OK;
889    case HAL_CAP_SMARTANTENNA:
890        /* FIXME A request is pending with h/w team to add feature bit in
891         * caldata to detect if board has smart antenna or not, once added
892         * we need to fix his piece of code to read and return value without
893         * any compile flags
894         */
895#if UMAC_SUPPORT_SMARTANTENNA
896        /* enable smart antenna for  Peacock, Wasp and scorpion
897           for future chips need to modify */
898        if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
899            return HAL_OK;
900        } else {
901            return HAL_ENOTSUPP;
902        }
903#else
904        return HAL_ENOTSUPP;
905#endif
906
907#ifdef ATH_TRAFFIC_FAST_RECOVER
908    case HAL_CAP_TRAFFIC_FAST_RECOVER:
909        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
910            return HAL_OK;
911        } else {
912            return HAL_ENOTSUPP;
913        }
914#endif
915
916    /* FreeBSD ANI */
917    case HAL_CAP_INTMIT:            /* interference mitigation */
918            switch (capability) {
919            case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
920                    return HAL_OK;
921            case HAL_CAP_INTMIT_ENABLE:
922                    return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
923                            HAL_OK : HAL_ENXIO;
924            case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
925            case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
926//            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
927            case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
928            case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
929                    ani = ar9300_ani_get_current_state(ah);
930                    if (ani == AH_NULL)
931                            return HAL_ENXIO;
932                    switch (capability) {
933                    /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
934                    case 2: *result = ani->ofdm_noise_immunity_level; break;
935                    case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
936 //                   case 4: *result = ani->cck_weak_sig_threshold; break;
937                    case 5: *result = ani->firstep_level; break;
938                    case 6: *result = ani->spur_immunity_level; break;
939                    }
940                    return HAL_OK;
941            }
942            return HAL_EINVAL;
943    case HAL_CAP_ENFORCE_TXOP:
944        if (capability == 0)
945            return (HAL_OK);
946        if (capability != 1)
947            return (HAL_ENOTSUPP);
948        (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
949        return (HAL_OK);
950    default:
951        return ath_hal_getcapability(ah, type, capability, result);
952    }
953}
954
955HAL_BOOL
956ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
957        u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
958{
959    struct ath_hal_9300 *ahp = AH9300(ah);
960    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
961    u_int32_t v;
962
963    switch (type) {
964    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
965        if (! p_cap->halTkipMicTxRxKeySupport)
966            return AH_FALSE;
967
968        if (setting)
969            ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
970        else
971            ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
972
973        OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
974        return AH_TRUE;
975
976    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
977        if (setting) {
978            ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
979        } else {
980            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
981        }
982        return AH_TRUE;
983    case HAL_CAP_DIVERSITY:
984        v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
985        if (setting) {
986            v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
987        } else {
988            v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
989        }
990        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
991        return AH_TRUE;
992    case HAL_CAP_DIAG:              /* hardware diagnostic support */
993        /*
994         * NB: could split this up into virtual capabilities,
995         *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
996         *     seems worth the additional complexity.
997         */
998#ifdef AH_DEBUG
999        AH_PRIVATE(ah)->ah_diagreg = setting;
1000#else
1001        AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1002#endif
1003        OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1004        return AH_TRUE;
1005    case HAL_CAP_TPC:
1006        ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1007        return AH_TRUE;
1008    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1009        if (setting) {
1010            ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1011        } else {
1012            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1013        }
1014        return AH_TRUE;
1015    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1016        if (p_cap->halTsfAddSupport) {
1017            if (setting) {
1018                ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1019            } else {
1020                ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1021            }
1022            return AH_TRUE;
1023        }
1024        return AH_FALSE;
1025
1026    /* FreeBSD interrupt mitigation / ANI */
1027    case HAL_CAP_INTMIT: {          /* interference mitigation */
1028            /* This maps the public ANI commands to the internal ANI commands */
1029            /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1030            static const HAL_ANI_CMD cmds[] = {
1031                    HAL_ANI_PRESENT,
1032                    HAL_ANI_MODE,
1033                    HAL_ANI_NOISE_IMMUNITY_LEVEL,
1034                    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1035                    HAL_ANI_CCK_WEAK_SIGNAL_THR,
1036                    HAL_ANI_FIRSTEP_LEVEL,
1037                    HAL_ANI_SPUR_IMMUNITY_LEVEL,
1038            };
1039#define N(a)    (sizeof(a) / sizeof(a[0]))
1040            return capability < N(cmds) ?
1041                    ar9300_ani_control(ah, cmds[capability], setting) :
1042                    AH_FALSE;
1043#undef N
1044    }
1045
1046    case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1047        ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1048        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1049        return AH_TRUE;
1050
1051    case HAL_CAP_ENFORCE_TXOP:
1052        if (capability != 1)
1053            return AH_FALSE;
1054        if (setting) {
1055            ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1056            OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1057        } else {
1058            ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1059            OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1060        }
1061        return AH_TRUE;
1062
1063        /* fall thru... */
1064    default:
1065        return ath_hal_setcapability(ah, type, capability, setting, status);
1066    }
1067}
1068
1069#ifdef AH_DEBUG
1070static void
1071ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1072{
1073    u_int32_t i = 0;
1074
1075    /* Read 0x80d0 to trigger pcie analyzer */
1076    HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1077        "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1078
1079    if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1080        struct ath_hal_9300 *ahp = AH9300(ah);
1081        u_int32_t tf, rf, rc, cc;
1082
1083        tf = OS_REG_READ(ah, AR_TFCNT);
1084        rf = OS_REG_READ(ah, AR_RFCNT);
1085        rc = OS_REG_READ(ah, AR_RCCNT);
1086        cc = OS_REG_READ(ah, AR_CCCNT);
1087
1088        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1089            "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1090        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1091            "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1092        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1093            "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1094        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1095            "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1096
1097        ahp->last_tf = tf;
1098        ahp->last_rf = rf;
1099        ahp->last_rc = rc;
1100        ahp->last_cc = cc;
1101
1102        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1103            "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1104        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1105            "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1106        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1107            "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1108        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1109            "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1110        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1111            "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1112        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113            "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1114        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1115            "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1116        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1117            "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1118    }
1119
1120    if (args & HAL_DIAG_PRINT_REG_ALL) {
1121        for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1122            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1123                i, OS_REG_READ(ah, i));
1124        }
1125
1126        for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1127            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1128                i, OS_REG_READ(ah, i));
1129        }
1130
1131        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132            "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1133
1134        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1135            "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1136
1137        for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1138            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1139                i, OS_REG_READ(ah, i));
1140        }
1141
1142        for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1143            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1144                i, OS_REG_READ(ah, i));
1145        }
1146
1147        for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1148            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1149                i, OS_REG_READ(ah, i));
1150        }
1151
1152        for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1153            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1154                i, OS_REG_READ(ah, i));
1155        }
1156
1157        for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1158            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1159                i, OS_REG_READ(ah, i));
1160        }
1161
1162        for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1163            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1164                i, OS_REG_READ(ah, i));
1165        }
1166
1167        for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1168            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1169                i, OS_REG_READ(ah, i));
1170        }
1171
1172        for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1173            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1174                i, OS_REG_READ(ah, i));
1175        }
1176
1177        for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1178            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1179                i, OS_REG_READ(ah, i));
1180        }
1181
1182        for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1183            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1184                i, OS_REG_READ(ah, i));
1185        }
1186
1187        for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1188            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1189                i, OS_REG_READ(ah, i));
1190        }
1191    }
1192}
1193#endif
1194
1195HAL_BOOL
1196ar9300_get_diag_state(struct ath_hal *ah, int request,
1197        const void *args, u_int32_t argsize,
1198        void **result, u_int32_t *resultsize)
1199{
1200    struct ath_hal_9300 *ahp = AH9300(ah);
1201    struct ar9300_ani_state *ani;
1202
1203    (void) ahp;
1204    if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1205        return AH_TRUE;
1206    }
1207    switch (request) {
1208#ifdef AH_PRIVATE_DIAG
1209    case HAL_DIAG_EEPROM:
1210        *result = &ahp->ah_eeprom;
1211        *resultsize = sizeof(ar9300_eeprom_t);
1212        return AH_TRUE;
1213
1214#if 0   /* XXX - TODO */
1215    case HAL_DIAG_EEPROM_EXP_11A:
1216    case HAL_DIAG_EEPROM_EXP_11B:
1217    case HAL_DIAG_EEPROM_EXP_11G:
1218        pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1219        *result = pe->p_channels;
1220        *resultsize = (*result == AH_NULL) ? 0 :
1221            roundup(sizeof(u_int16_t) * pe->num_channels,
1222            sizeof(u_int32_t)) +
1223                sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1224        return AH_TRUE;
1225#endif
1226    case HAL_DIAG_RFGAIN:
1227        *result = &ahp->ah_gain_values;
1228        *resultsize = sizeof(GAIN_VALUES);
1229        return AH_TRUE;
1230    case HAL_DIAG_RFGAIN_CURSTEP:
1231        *result = (void *) ahp->ah_gain_values.curr_step;
1232        *resultsize = (*result == AH_NULL) ?
1233                0 : sizeof(GAIN_OPTIMIZATION_STEP);
1234        return AH_TRUE;
1235#if 0   /* XXX - TODO */
1236    case HAL_DIAG_PCDAC:
1237        *result = ahp->ah_pcdac_table;
1238        *resultsize = ahp->ah_pcdac_table_size;
1239        return AH_TRUE;
1240#endif
1241    case HAL_DIAG_ANI_CURRENT:
1242
1243        ani = ar9300_ani_get_current_state(ah);
1244        if (ani == AH_NULL)
1245            return AH_FALSE;
1246        /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1247        /* XXX TODO: add all of these to the HAL ANI state structure */
1248        bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1249        /* XXX should this be OFDM or CCK noise immunity level? */
1250        ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1251        ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1252        ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1253        ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1254        /* mrc_cck_off */
1255        /* cck_noise_immunity_level */
1256
1257        ahp->ext_ani_state.listenTime = ani->listen_time;
1258
1259        *result = &ahp->ext_ani_state;
1260        *resultsize = sizeof(ahp->ext_ani_state);
1261#if 0
1262        *result = ar9300_ani_get_current_state(ah);
1263        *resultsize = (*result == AH_NULL) ?
1264            0 : sizeof(struct ar9300_ani_state);
1265#endif
1266        return AH_TRUE;
1267    case HAL_DIAG_ANI_STATS:
1268        *result = ar9300_ani_get_current_stats(ah);
1269        *resultsize = (*result == AH_NULL) ?
1270            0 : sizeof(HAL_ANI_STATS);
1271        return AH_TRUE;
1272    case HAL_DIAG_ANI_CMD:
1273        if (argsize != 2*sizeof(u_int32_t)) {
1274            return AH_FALSE;
1275        }
1276        ar9300_ani_control(
1277            ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1278        return AH_TRUE;
1279#if 0
1280    case HAL_DIAG_TXCONT:
1281        /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1282        return AH_TRUE;
1283#endif /* 0 */
1284#endif /* AH_PRIVATE_DIAG */
1285    case HAL_DIAG_CHANNELS:
1286#if 0
1287        *result = &(ahp->ah_priv.ah_channels[0]);
1288        *resultsize =
1289            sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1290#endif
1291        return AH_TRUE;
1292#ifdef AH_DEBUG
1293    case HAL_DIAG_PRINT_REG:
1294        ar9300_print_reg(ah, *((const u_int32_t *)args));
1295        return AH_TRUE;
1296#endif
1297    default:
1298        break;
1299    }
1300
1301    return AH_FALSE;
1302}
1303
1304void
1305ar9300_dma_reg_dump(struct ath_hal *ah)
1306{
1307#ifdef AH_DEBUG
1308#define NUM_DMA_DEBUG_REGS  8
1309#define NUM_QUEUES          10
1310
1311    u_int32_t val[NUM_DMA_DEBUG_REGS];
1312    int       qcu_offset = 0, dcu_offset = 0;
1313    u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1314    int       i, j, k;
1315    int16_t nfarray[HAL_NUM_NF_READINGS];
1316#ifdef	ATH_NF_PER_CHAN
1317    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1318#endif	/* ATH_NF_PER_CHAN */
1319    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1320
1321     /* selecting DMA OBS 8 */
1322    OS_REG_WRITE(ah, AR_MACMISC,
1323        ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1324         (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1325
1326    ath_hal_printf(ah, "Raw DMA Debug values:\n");
1327    for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1328        if (i % 4 == 0) {
1329            ath_hal_printf(ah, "\n");
1330        }
1331
1332        val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1333        ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1334    }
1335
1336    ath_hal_printf(ah, "\n\n");
1337    ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1338
1339    for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1340        if (i == 8) {
1341            /* only 8 QCU entries in val[0] */
1342            qcu_offset = 0;
1343            qcu_base++;
1344        }
1345
1346        if (i == 6) {
1347            /* only 6 DCU entries in val[4] */
1348            dcu_offset = 0;
1349            dcu_base++;
1350        }
1351
1352        ath_hal_printf(ah,
1353            "%2d          %2x      %1x     %2x           %2x\n",
1354            i,
1355            (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1356            (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1357            val[2] & (0x7 << (i * 3)) >> (i * 3),
1358            (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1359    }
1360
1361    ath_hal_printf(ah, "\n");
1362    ath_hal_printf(ah,
1363        "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1364        (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1365    ath_hal_printf(ah,
1366        "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1367        (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1368    ath_hal_printf(ah,
1369        "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1370        (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1371    ath_hal_printf(ah,
1372        "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1373        (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1374    ath_hal_printf(ah,
1375        "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1376        (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1377    ath_hal_printf(ah,
1378        "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1379        (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1380    ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1381    ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1382
1383    ar9300_upload_noise_floor(ah, 1, nfarray);
1384    ath_hal_printf(ah, "2G:\n");
1385    ath_hal_printf(ah, "Min CCA Out:\n");
1386    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1387    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1388                   nfarray[0], nfarray[1], nfarray[2]);
1389    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1390                   nfarray[3], nfarray[4], nfarray[5]);
1391
1392    ar9300_upload_noise_floor(ah, 0, nfarray);
1393    ath_hal_printf(ah, "5G:\n");
1394    ath_hal_printf(ah, "Min CCA Out:\n");
1395    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1396    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1397                   nfarray[0], nfarray[1], nfarray[2]);
1398    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1399                   nfarray[3], nfarray[4], nfarray[5]);
1400
1401    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1402        ath_hal_printf(ah, "%s Chain %d NF History:\n",
1403                       ((i < 3) ? "Control " : "Extension "), i%3);
1404        for (j = 0, k = h->base.curr_index;
1405             j < HAL_NF_CAL_HIST_LEN_FULL;
1406             j++, k++) {
1407            ath_hal_printf(ah, "Element %d: %d\n",
1408                j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1409        }
1410        ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1411    }
1412
1413    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1414    ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1415                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1416                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1417    reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1418    ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1419                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1420                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1421    ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1422                   MS(reg, AR_PHY_DESIRED_SZ_ADC),
1423                   MS(reg, AR_PHY_DESIRED_SZ_ADC));
1424    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1425    ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1426                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1427                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1428    reg = OS_REG_READ(ah, AR_PHY_AGC);
1429    ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1430                   MS(reg, AR_PHY_AGC_COARSE_HIGH),
1431                   MS(reg, AR_PHY_AGC_COARSE_HIGH));
1432    ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1433                   MS(reg, AR_PHY_AGC_COARSE_LOW),
1434                   MS(reg, AR_PHY_AGC_COARSE_LOW));
1435    ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1436                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1437                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1438    reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1439    ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1440                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1441    ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1442                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1443                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1444    ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1445                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1446                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1447    reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1448    ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1449                   MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1450    ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1451                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1452                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1453
1454
1455    /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1456    reg = OS_REG_READ(ah, 0xa360);
1457    reg &= ~0x00800000;
1458    OS_REG_WRITE(ah, 0xa360, reg);
1459
1460    /* Step 2a: Set register 0xa364 to 0x1000 */
1461    reg = 0x1000;
1462    OS_REG_WRITE(ah, 0xa364, reg);
1463
1464    /* Step 3a: Read bits 17:0 of register 0x9c20 */
1465    reg = OS_REG_READ(ah, 0x9c20);
1466    reg &= 0x0003ffff;
1467    ath_hal_printf(ah,
1468        "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1469        __func__, reg);
1470
1471    /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1472    reg = OS_REG_READ(ah, 0xa360);
1473    reg &= ~0x00800000;
1474    OS_REG_WRITE(ah, 0xa360, reg);
1475
1476    /* Step 2b: Set register 0xa364 to 0x1400 */
1477    reg = 0x1400;
1478    OS_REG_WRITE(ah, 0xa364, reg);
1479
1480    /* Step 3b: Read bits 17:0 of register 0x9c20 */
1481    reg = OS_REG_READ(ah, 0x9c20);
1482    reg &= 0x0003ffff;
1483    ath_hal_printf(ah,
1484        "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1485        __func__, reg);
1486
1487    /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1488    reg = OS_REG_READ(ah, 0xa360);
1489    reg &= ~0x00800000;
1490    OS_REG_WRITE(ah, 0xa360, reg);
1491
1492    /* Step 2c: Set register 0xa364 to 0x3C00 */
1493    reg = 0x3c00;
1494    OS_REG_WRITE(ah, 0xa364, reg);
1495
1496    /* Step 3c: Read bits 17:0 of register 0x9c20 */
1497    reg = OS_REG_READ(ah, 0x9c20);
1498    reg &= 0x0003ffff;
1499    ath_hal_printf(ah,
1500        "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1501        __func__, reg);
1502
1503    /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1504    reg = OS_REG_READ(ah, 0xa360);
1505    reg &= ~0x001040000;
1506    OS_REG_WRITE(ah, 0xa360, reg);
1507
1508    /* Step 2d: Set register 0xa364 to 0x5005D */
1509    reg = 0x5005D;
1510    OS_REG_WRITE(ah, 0xa364, reg);
1511
1512    /* Step 3d: Read bits 17:0 of register 0xa368 */
1513    reg = OS_REG_READ(ah, 0xa368);
1514    reg &= 0x0003ffff;
1515    ath_hal_printf(ah,
1516        "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1517        __func__, reg);
1518
1519    /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1520    reg = OS_REG_READ(ah, 0xa360);
1521    reg &= ~0x001040000;
1522    OS_REG_WRITE(ah, 0xa360, reg);
1523
1524    /* Step 2e: Set register 0xa364 to 0x7005D */
1525    reg = 0x7005D;
1526    OS_REG_WRITE(ah, 0xa364, reg);
1527
1528    /* Step 3e: Read bits 17:0 of register 0xa368 */
1529    reg = OS_REG_READ(ah, 0xa368);
1530    reg &= 0x0003ffff;
1531    ath_hal_printf(ah,
1532        "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1533       __func__, reg);
1534
1535    /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1536    reg = OS_REG_READ(ah, 0xa360);
1537    reg &= ~0x001000000;
1538    reg |= 0x40000;
1539    OS_REG_WRITE(ah, 0xa360, reg);
1540
1541    /* Step 2f: Set register 0xa364 to 0x3005D */
1542    reg = 0x3005D;
1543    OS_REG_WRITE(ah, 0xa364, reg);
1544
1545    /* Step 3f: Read bits 17:0 of register 0xa368 */
1546    reg = OS_REG_READ(ah, 0xa368);
1547    reg &= 0x0003ffff;
1548    ath_hal_printf(ah,
1549        "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1550        __func__, reg);
1551
1552    /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1553    reg = OS_REG_READ(ah, 0xa360);
1554    reg &= ~0x001000000;
1555    reg |= 0x40000;
1556    OS_REG_WRITE(ah, 0xa360, reg);
1557
1558    /* Step 2g: Set register 0xa364 to 0x6005D */
1559    reg = 0x6005D;
1560    OS_REG_WRITE(ah, 0xa364, reg);
1561
1562    /* Step 3g: Read bits 17:0 of register 0xa368 */
1563    reg = OS_REG_READ(ah, 0xa368);
1564    reg &= 0x0003ffff;
1565    ath_hal_printf(ah,
1566        "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1567        __func__, reg);
1568#endif /* AH_DEBUG */
1569}
1570
1571/*
1572 * Return the busy for rx_frame, rx_clear, and tx_frame
1573 */
1574u_int32_t
1575ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1576    u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1577{
1578    struct ath_hal_9300 *ahp = AH9300(ah);
1579    u_int32_t good = 1;
1580
1581    u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1582    u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1583    u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1584    u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1585
1586    if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1587        /*
1588         * Cycle counter wrap (or initial call); it's not possible
1589         * to accurately calculate a value because the registers
1590         * right shift rather than wrap--so punt and return 0.
1591         */
1592        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1593            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1594        good = 0;
1595    } else {
1596        u_int32_t cc_d = cc - ahp->ah_cycles;
1597        u_int32_t rc_d = rc - ahp->ah_rx_clear;
1598        u_int32_t rf_d = rf - ahp->ah_rx_frame;
1599        u_int32_t tf_d = tf - ahp->ah_tx_frame;
1600
1601        if (cc_d != 0) {
1602            *rxc_pcnt = rc_d * 100 / cc_d;
1603            *rxf_pcnt = rf_d * 100 / cc_d;
1604            *txf_pcnt = tf_d * 100 / cc_d;
1605        } else {
1606            good = 0;
1607        }
1608    }
1609
1610    ahp->ah_cycles = cc;
1611    ahp->ah_rx_frame = rf;
1612    ahp->ah_rx_clear = rc;
1613    ahp->ah_tx_frame = tf;
1614
1615    return good;
1616}
1617
1618/*
1619 * Return approximation of extension channel busy over an time interval
1620 * 0% (clear) -> 100% (busy)
1621 * -1 for invalid estimate
1622 */
1623uint32_t
1624ar9300_get_11n_ext_busy(struct ath_hal *ah)
1625{
1626    /*
1627     * Overflow condition to check before multiplying to get %
1628     * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1629     */
1630#define OVERFLOW_LIMIT  0x28F5C28
1631#define ERROR_CODE      -1
1632
1633    struct ath_hal_9300 *ahp = AH9300(ah);
1634    u_int32_t busy = 0; /* percentage */
1635    int8_t busyper = 0;
1636    u_int32_t cycle_count, ctl_busy, ext_busy;
1637
1638    /* cycle_count will always be the first to wrap; therefore, read it last
1639     * This sequence of reads is not atomic, and MIB counter wrap
1640     * could happen during it ?
1641     */
1642    ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1643    ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1644    cycle_count = OS_REG_READ(ah, AR_CCCNT);
1645
1646    if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1647        (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1648    {
1649        /*
1650         * Cycle counter wrap (or initial call); it's not possible
1651         * to accurately calculate a value because the registers
1652         * right shift rather than wrap--so punt and return 0.
1653         */
1654        busyper = ERROR_CODE;
1655        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1656            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1657    } else {
1658        u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1659        u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1660
1661        /*
1662         * Compute extension channel busy percentage
1663         * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1664         * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1665         * Will never happen, since (ext_busy_delta < cycle_delta) always,
1666         * and shift necessitated by large ext_busy_delta.
1667         * Due to timing difference to read the registers and counter overflow,
1668         * it may still happen that cycle_delta >> 7 = 0.
1669         *
1670         */
1671        if (cycle_delta) {
1672            if (ext_busy_delta > OVERFLOW_LIMIT) {
1673                if (cycle_delta >> 7) {
1674                    busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1675                } else {
1676                    busyper = ERROR_CODE;
1677                }
1678            } else {
1679                busy = (ext_busy_delta * 100) / cycle_delta;
1680            }
1681        } else {
1682            busyper = ERROR_CODE;
1683        }
1684
1685        if (busy > 100) {
1686            busy = 100;
1687        }
1688        if ( busyper != ERROR_CODE ) {
1689            busyper = busy;
1690        }
1691    }
1692
1693    ahp->ah_cycle_count = cycle_count;
1694    ahp->ah_ctl_busy = ctl_busy;
1695    ahp->ah_ext_busy = ext_busy;
1696
1697    return busyper;
1698#undef OVERFLOW_LIMIT
1699#undef ERROR_CODE
1700}
1701
1702/* BB Panic Watchdog declarations */
1703#define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1704#define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1705
1706void
1707ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1708{
1709#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1710    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1711    u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1712    u_int32_t val, idle_count;
1713
1714    if (idle_tmo_ms != 0) {
1715        /* enable IRQ, disable chip-reset for BB panic */
1716        val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1717            AR_PHY_BB_PANIC_CNTL2_MASK;
1718        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1719            (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1720        /* bound limit to 10 secs */
1721        if (idle_tmo_ms > 10000) {
1722            idle_tmo_ms = 10000;
1723        }
1724        if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1725            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1726        } else {
1727            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1728        }
1729        /*
1730         * enable panic in non-IDLE mode,
1731         * disable in IDLE mode,
1732         * set idle time-out
1733         */
1734
1735        // EV92527 : Enable IDLE mode panic
1736
1737        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1738                     AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1739                     AR_PHY_BB_PANIC_IDLE_ENABLE |
1740                     (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1741                     (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1742    } else {
1743        /* disable IRQ, disable chip-reset for BB panic */
1744        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1745            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1746            ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1747        /* disable panic in non-IDLE mode, disable in IDLE mode */
1748        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1749            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1750            ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1751    }
1752
1753    HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1754             __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1755#undef HAL_BB_PANIC_IDLE_TIME_OUT
1756}
1757
1758
1759void
1760ar9300_handle_bb_panic(struct ath_hal *ah)
1761{
1762    u_int32_t status;
1763    /*
1764     * we want to avoid printing in ISR context so we save
1765     * panic watchdog status to be printed later in DPC context
1766     */
1767    AH9300(ah)->ah_bb_panic_last_status = status =
1768        OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1769    /*
1770     * panic watchdog timer should reset on status read
1771     * but to make sure we write 0 to the watchdog status bit
1772     */
1773    OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1774}
1775
1776int
1777ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1778{
1779    bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1780
1781    /*
1782     * For signature 04000539 do not print anything.
1783     * This is a very common occurence as a compromise between
1784     * BB Panic and AH_FALSE detects (EV71009). It indicates
1785     * radar hang, which can be cleared by reprogramming
1786     * radar related register and does not requre a chip reset
1787     */
1788
1789    /* Suppress BB Status mesg following signature */
1790    switch (bb_panic->status) {
1791        case 0x04000539:
1792        case 0x04008009:
1793        case 0x04000b09:
1794        case 0x1300000a:
1795        return -1;
1796    }
1797
1798    bb_panic->tsf = ar9300_get_tsf32(ah);
1799    bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1800    bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1801    bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1802    bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1803    bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1804    bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1805    bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1806    bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1807    bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1808    bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1809    bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1810    bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1811    bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1812    bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1813                                        &bb_panic->rxc_pcnt,
1814                                        &bb_panic->rxf_pcnt,
1815                                        &bb_panic->txf_pcnt);
1816
1817    if (ah->ah_config.ath_hal_show_bb_panic) {
1818        ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1819            "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1820        ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1821            "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1822            bb_panic->wd, bb_panic->det, bb_panic->rdar,
1823            bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1824            bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1825        ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1826            bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1827        ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1828            bb_panic->phy_gen_ctrl);
1829        if (bb_panic->cycles) {
1830            ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1831                "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1832                bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1833        }
1834        ath_hal_printf(ah, "==== BB update: done ====\n\n");
1835    }
1836
1837    return 0; //The returned data will be stored for athstats to retrieve it
1838}
1839
1840/* set the reason for HAL reset */
1841void
1842ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1843{
1844    AH9300(ah)->ah_reset_reason = resetreason;
1845}
1846
1847/*
1848 * Configure 20/40 operation
1849 *
1850 * 20/40 = joint rx clear (control and extension)
1851 * 20    = rx clear (control)
1852 *
1853 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1854 *         when changing from 20/40 => 20 only
1855 */
1856void
1857ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1858{
1859    u_int32_t macmode;
1860
1861    /* Configure MAC for 20/40 operation */
1862    if (mode == HAL_HT_MACMODE_2040 &&
1863        !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1864        macmode = AR_2040_JOINED_RX_CLEAR;
1865    } else {
1866        macmode = 0;
1867    }
1868    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1869}
1870
1871/*
1872 * Get Rx clear (control/extension channel)
1873 *
1874 * Returns active low (busy) for ctrl/ext channel
1875 * Owl 2.0
1876 */
1877HAL_HT_RXCLEAR
1878ar9300_get_11n_rx_clear(struct ath_hal *ah)
1879{
1880    HAL_HT_RXCLEAR rxclear = 0;
1881    u_int32_t val;
1882
1883    val = OS_REG_READ(ah, AR_DIAG_SW);
1884
1885    /* control channel */
1886    if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1887        rxclear |= HAL_RX_CLEAR_CTL_LOW;
1888    }
1889    /* extension channel */
1890    if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1891        rxclear |= HAL_RX_CLEAR_EXT_LOW;
1892    }
1893    return rxclear;
1894}
1895
1896/*
1897 * Set Rx clear (control/extension channel)
1898 *
1899 * Useful for forcing the channel to appear busy for
1900 * debugging/diagnostics
1901 * Owl 2.0
1902 */
1903void
1904ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1905{
1906    /* control channel */
1907    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1908        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1909    } else {
1910        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1911    }
1912    /* extension channel */
1913    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1914        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1915    } else {
1916        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1917    }
1918}
1919
1920
1921/*
1922 * HAL support code for force ppm tracking workaround.
1923 */
1924
1925u_int32_t
1926ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1927{
1928    u_int32_t retval;
1929    u_int32_t off1;
1930    u_int32_t off2;
1931
1932    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1933        off1 = 0x2000;
1934        off2 = 0x1000;
1935    } else {
1936        off1 = 0x1000;
1937        off2 = 0x2000;
1938    }
1939
1940    retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1941             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1942             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1943
1944    return retval;
1945}
1946
1947u_int32_t
1948ar9300_ppm_force(struct ath_hal *ah)
1949{
1950    u_int32_t data_fine;
1951    u_int32_t data4;
1952    //u_int32_t off1;
1953    //u_int32_t off2;
1954    HAL_BOOL signed_val = AH_FALSE;
1955
1956//    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1957//        off1 = 0x2000;
1958//        off2 = 0x1000;
1959//    } else {
1960//        off1 = 0x1000;
1961//        off2 = 0x2000;
1962//    }
1963    data_fine =
1964        AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1965        OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1966
1967    /*
1968     * bit [11-0] is new ppm value. bit 11 is the signed bit.
1969     * So check value from bit[10:0].
1970     * Now get the abs val of the ppm value read in bit[0:11].
1971     * After that do bound check on abs value.
1972     * if value is off limit, CAP the value and and restore signed bit.
1973     */
1974    if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1975    {
1976        /* get the positive value */
1977        data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1978        signed_val = AH_TRUE;
1979    }
1980    if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1981    {
1982        HALDEBUG(ah, HAL_DEBUG_REGIO,
1983            "%s Correcting ppm out of range %x\n",
1984            __func__, (data_fine & 0x7ff));
1985        data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1986    }
1987    /*
1988     * Restore signed value if changed above.
1989     * Use typecast to avoid compilation errors
1990     */
1991    if (signed_val) {
1992        data_fine = (-(int32_t)data_fine) &
1993            AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1994    }
1995
1996    /* write value */
1997    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1998        ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1999    OS_REG_WRITE(ah, AR_PHY_TIMING2,
2000        data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2001
2002    return data_fine;
2003}
2004
2005void
2006ar9300_ppm_un_force(struct ath_hal *ah)
2007{
2008    u_int32_t data4;
2009
2010    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2011    OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2012}
2013
2014u_int32_t
2015ar9300_ppm_arm_trigger(struct ath_hal *ah)
2016{
2017    u_int32_t val;
2018    u_int32_t ret;
2019
2020    val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2021    ret = OS_REG_READ(ah, AR_TSF_L32);
2022    OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2023        val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2024
2025    /* return low word of TSF at arm time */
2026    return ret;
2027}
2028
2029int
2030ar9300_ppm_get_trigger(struct ath_hal *ah)
2031{
2032    if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2033        AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2034    {
2035        /* has not triggered yet, return AH_FALSE */
2036        return 0;
2037    }
2038
2039    /* else triggered, return AH_TRUE */
2040    return 1;
2041}
2042
2043void
2044ar9300_mark_phy_inactive(struct ath_hal *ah)
2045{
2046    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2047}
2048
2049/* DEBUG */
2050u_int32_t
2051ar9300_ppm_get_force_state(struct ath_hal *ah)
2052{
2053    return
2054        OS_REG_READ(ah, AR_PHY_TIMING2) &
2055        (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2056}
2057
2058/*
2059 * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2060 */
2061HAL_BOOL
2062ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2063{
2064    /*
2065     * XXX FreeBSD todo: reimplement this
2066     */
2067#if 0
2068    p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2069    p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2070    p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2071    p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2072    p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2073                           p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2074    p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2075                           p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2076#endif
2077    return AH_FALSE;
2078}
2079
2080void
2081ar9300_clear_mib_counters(struct ath_hal *ah)
2082{
2083    u_int32_t reg_val;
2084
2085    reg_val = OS_REG_READ(ah, AR_MIBC);
2086    OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2087    OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2088}
2089
2090
2091/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2092HAL_BOOL
2093ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2094{
2095    struct ath_hal_9300 *ahp = AH9300(ah);
2096    HAL_CHANNEL_INTERNAL *ichan =
2097      ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2098    HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2099    u_int32_t tmp = 0;
2100
2101    if (enable) {
2102        if (ahp->ah_rifs_enabled == AH_TRUE) {
2103            return AH_TRUE;
2104        }
2105
2106        OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2107        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2108                     ahp->ah_rifs_reg[1]);
2109
2110        ahp->ah_rifs_enabled = AH_TRUE;
2111        OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2112    } else {
2113        if (ahp->ah_rifs_enabled == AH_TRUE) {
2114            ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2115                                              AR_PHY_SEARCH_START_DELAY);
2116            ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2117        }
2118        /* Change rifs init delay to 0 */
2119        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2120                     (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2121        tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2122        if (is_chan_2g) {
2123            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2124                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2125            } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2126                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2127            }
2128        } else {
2129            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2130                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2131            } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2132                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2133            }
2134        }
2135
2136        ahp->ah_rifs_enabled = AH_FALSE;
2137    }
2138    return AH_TRUE;
2139
2140} /* ar9300_set_rifs_delay () */
2141
2142/* Set the current RIFS Rx setting */
2143HAL_BOOL
2144ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2145{
2146    /* Non-Owl 11n chips */
2147    if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2148        if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2149            return ar9300_set_rifs_delay(ah, enable);
2150        }
2151        return AH_FALSE;
2152    }
2153
2154    return AH_TRUE;
2155} /* ar9300_set_11n_rx_rifs () */
2156
2157static hal_mac_hangs_t
2158ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2159  hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2160{
2161    int i = 0;
2162    hal_mac_hangs_t found_hangs = 0;
2163
2164    if (hangs & dcu_chain_state) {
2165        for (i = 0; i < 6; i++) {
2166            if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2167                 hang_check.dcu_chain_state)
2168            {
2169                found_hangs |= dcu_chain_state;
2170                *dcu_chain = i;
2171            }
2172        }
2173        for (i = 0; i < 4; i++) {
2174            if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2175                  hang_check.dcu_chain_state)
2176            {
2177                found_hangs |= dcu_chain_state;
2178                *dcu_chain = i + 6;
2179            }
2180        }
2181    }
2182
2183    if (hangs & dcu_complete_state) {
2184        if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2185            found_hangs |= dcu_complete_state;
2186        }
2187    }
2188
2189    return found_hangs;
2190
2191} /* end - ar9300_compare_dbg_hang */
2192
2193#define NUM_STATUS_READS 50
2194HAL_BOOL
2195ar9300_detect_mac_hang(struct ath_hal *ah)
2196{
2197    struct ath_hal_9300 *ahp = AH9300(ah);
2198    mac_dbg_regs_t mac_dbg;
2199    hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2200    hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2201    int i = 0;
2202    u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2203
2204    if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2205        return AH_FALSE;
2206    }
2207
2208    OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2209
2210    mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2211    mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2212    mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2213
2214    HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2215            mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2216            mac_dbg.dma_dbg_6);
2217
2218    if (hang_sig1 !=
2219            ar9300_compare_dbg_hang(ah, mac_dbg,
2220                 hang_sig1_val, hang_sig1, &dcu_chain))
2221    {
2222        HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2223        return AH_FALSE;
2224    }
2225
2226    shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2227    shift_val *= 5;
2228
2229    for (i = 1; i <= NUM_STATUS_READS; i++) {
2230        if (dcu_chain < 6) {
2231            mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2232            current_dcu_chain_state =
2233                     ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2234        } else {
2235            mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2236            current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2237        }
2238        mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2239
2240        if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2241            || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2242            return AH_FALSE;
2243        }
2244    }
2245    HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2246             ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2247    ahp->ah_hang[MAC_HANG_SIG1]++;
2248    return AH_TRUE;
2249
2250} /* end - ar9300_detect_mac_hang */
2251
2252/* Determine if the baseband is hung by reading the Observation Bus Register */
2253HAL_BOOL
2254ar9300_detect_bb_hang(struct ath_hal *ah)
2255{
2256#define N(a) (sizeof(a) / sizeof(a[0]))
2257    struct ath_hal_9300 *ahp = AH9300(ah);
2258    u_int32_t hang_sig = 0;
2259    int i = 0;
2260    /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2261     *
2262     * 4 known BB hang signatures -
2263     * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2264     * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2265     * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2266     * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2267     *     Rx State (bits 20-24) is 0x7.
2268     */
2269    hal_hw_hang_check_t hang_list [] =
2270    {
2271     /* Offset        Reg Value   Reg Mask    Hang Offset */
2272       {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2273       {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2274       {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2275       {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2276    };
2277
2278    if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2279                               HAL_DFS_BB_HANG_WAR |
2280                               HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2281        return AH_FALSE;
2282    }
2283
2284    hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2285    for (i = 1; i <= NUM_STATUS_READS; i++) {
2286        if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2287            return AH_FALSE;
2288        }
2289    }
2290
2291    for (i = 0; i < N(hang_list); i++) {
2292        if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2293            ahp->ah_hang[hang_list[i].hang_offset]++;
2294            HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2295                     "sig3count=%d sig4count=%d\n", __func__,
2296                     ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2297                     ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2298            return AH_TRUE;
2299        }
2300    }
2301
2302    HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2303                              "<0x806c>=0x%x\n", __func__, hang_sig);
2304
2305    return AH_FALSE;
2306
2307#undef N
2308} /* end - ar9300_detect_bb_hang () */
2309
2310#undef NUM_STATUS_READS
2311
2312HAL_STATUS
2313ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2314{
2315    struct ath_hal_9300     *ahp = AH9300(ah);
2316    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2317    HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2318    const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2319    u_int16_t               ant_config;
2320    u_int32_t               hal_num_ant_config;
2321
2322    hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2323        p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2324
2325    if (cfg < hal_num_ant_config) {
2326        if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2327            OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2328            return HAL_OK;
2329        }
2330    }
2331
2332    return HAL_EINVAL;
2333}
2334
2335/*
2336 * Functions to get/set DCS mode
2337 */
2338void
2339ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2340{
2341    AH9300(ah)->ah_dcs_enable = mode;
2342}
2343
2344u_int32_t
2345ar9300_get_dcs_mode(struct ath_hal *ah)
2346{
2347    return AH9300(ah)->ah_dcs_enable;
2348}
2349
2350#if ATH_BT_COEX
2351void
2352ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2353{
2354    struct ath_hal_9300 *ahp = AH9300(ah);
2355
2356    ahp->ah_bt_module = btinfo->bt_module;
2357    ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2358    ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2359    ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2360    ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2361    ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2362    ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2363    ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2364}
2365
2366void
2367ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2368{
2369    struct ath_hal_9300 *ahp = AH9300(ah);
2370    HAL_BOOL rx_clear_polarity;
2371
2372    /*
2373     * For Kiwi and Osprey, the polarity of rx_clear is active high.
2374     * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2375     */
2376    rx_clear_polarity = !btconf->bt_rxclear_polarity;
2377
2378    ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2379        SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2380        SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2381        SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2382        SM(btconf->bt_mode, AR_BT_MODE) |
2383        SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2384        SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2385        SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2386        SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2387
2388    ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2389
2390    if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2391        /* Enable ACK to go out even though BT has higher priority. */
2392        ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2393    }
2394}
2395
2396void
2397ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2398{
2399    struct ath_hal_9300 *ahp = AH9300(ah);
2400
2401    /* clear the old value, then set the new value */
2402    ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2403    ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2404}
2405
2406void
2407ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2408{
2409    struct ath_hal_9300 *ahp = AH9300(ah);
2410
2411    ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2412    ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2413    ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2414    ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2415
2416    switch (stomp_type) {
2417    case HAL_BT_COEX_STOMP_ALL:
2418        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2419        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2420        break;
2421    case HAL_BT_COEX_STOMP_LOW:
2422        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2423        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2424        break;
2425    case HAL_BT_COEX_STOMP_ALL_FORCE:
2426        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2427        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2428        break;
2429    case HAL_BT_COEX_STOMP_LOW_FORCE:
2430        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2431        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2432        break;
2433    case HAL_BT_COEX_STOMP_NONE:
2434    case HAL_BT_COEX_NO_STOMP:
2435        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2436        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2437        break;
2438    default:
2439        /* There is a force_weight from registry */
2440        ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2441        ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2442        break;
2443    }
2444}
2445
2446void
2447ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2448{
2449    struct ath_hal_9300 *ahp = AH9300(ah);
2450
2451    /* clear the old value, then set the new value */
2452    ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2453    ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2454}
2455
2456static void
2457ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2458{
2459    struct ath_hal_9300 *ahp = AH9300(ah);
2460#if ATH_ANT_DIV_COMB
2461    //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2462    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2463#endif
2464
2465    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2466    {
2467        if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2468        {
2469            /* Config antenna diversity */
2470#if ATH_ANT_DIV_COMB
2471            ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2472#endif
2473        }
2474    }
2475}
2476
2477
2478void
2479ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2480    u_int32_t value)
2481{
2482    struct ath_hal_9300 *ahp = AH9300(ah);
2483    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2484
2485    switch (type) {
2486        case HAL_BT_COEX_SET_ACK_PWR:
2487            if (value) {
2488                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2489            } else {
2490                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2491            }
2492            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2493                ahpriv->ah_extraTxPow, 0);
2494            break;
2495
2496        case HAL_BT_COEX_ANTENNA_DIVERSITY:
2497            if (AR_SREV_POSEIDON(ah)) {
2498                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2499                if (value) {
2500                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2501                }
2502                else {
2503                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2504                }
2505                ar9300_bt_coex_antenna_diversity(ah, value);
2506            }
2507            break;
2508        case HAL_BT_COEX_LOWER_TX_PWR:
2509            if (value) {
2510                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2511            }
2512            else {
2513                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2514            }
2515            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2516                                      ahpriv->ah_extraTxPow, 0);
2517            break;
2518#if ATH_SUPPORT_MCI
2519        case HAL_BT_COEX_MCI_MAX_TX_PWR:
2520            if ((ah->ah_config.ath_hal_mci_config &
2521                 ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2522            {
2523                if (value) {
2524                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2525                    ahp->ah_mci_concur_tx_en = AH_TRUE;
2526                }
2527                else {
2528                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2529                    ahp->ah_mci_concur_tx_en = AH_FALSE;
2530                }
2531                ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2532                                          ahpriv->ah_extraTxPow, 0);
2533            }
2534            HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2535                     ahp->ah_mci_concur_tx_en);
2536            break;
2537        case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2538            if (value) {
2539                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2540            }
2541            else {
2542                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2543            }
2544            break;
2545#endif
2546        default:
2547            break;
2548    }
2549}
2550
2551void
2552ar9300_bt_coex_disable(struct ath_hal *ah)
2553{
2554    struct ath_hal_9300 *ahp = AH9300(ah);
2555
2556    /* Always drive rx_clear_external output as 0 */
2557    ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2558        HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2559
2560    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2561        OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2562        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2563    }
2564
2565    OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2566    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2567    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2568    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2569    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2570    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2571    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2572    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2573
2574    ahp->ah_bt_coex_enabled = AH_FALSE;
2575}
2576
2577int
2578ar9300_bt_coex_enable(struct ath_hal *ah)
2579{
2580    struct ath_hal_9300 *ahp = AH9300(ah);
2581
2582    /* Program coex mode and weight registers to actually enable coex */
2583    OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2584    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2585    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2586    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2587    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2588    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2589    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2590    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2591
2592    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2593        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2594    } else {
2595        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2596    }
2597
2598    OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2599    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2600        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2601    } else {
2602        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2603    }
2604
2605    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2606        /* For 3-wire, configure the desired GPIO port for rx_clear */
2607        ath_hal_gpioCfgOutput(ah,
2608            ahp->ah_wlan_active_gpio_select,
2609            HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2610    }
2611    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2612        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2613    {
2614        /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2615        ath_hal_gpioCfgOutput(ah,
2616            ahp->ah_wlan_active_gpio_select,
2617            HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2618    }
2619
2620    /*
2621     * Enable a weak pull down on BT_ACTIVE.
2622     * When BT device is disabled, BT_ACTIVE might be floating.
2623     */
2624    OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2625        (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2626        (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2627
2628    ahp->ah_bt_coex_enabled = AH_TRUE;
2629
2630    return 0;
2631}
2632
2633u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2634{
2635    return 0;
2636}
2637
2638u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2639{
2640    return bOn;
2641}
2642
2643void
2644ar9300_init_bt_coex(struct ath_hal *ah)
2645{
2646    struct ath_hal_9300 *ahp = AH9300(ah);
2647
2648    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2649        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2650                   (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2651                    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2652
2653        /*
2654         * Set input mux for bt_prority_async and
2655         * bt_active_async to GPIO pins
2656         */
2657        OS_REG_RMW_FIELD(ah,
2658            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2659            AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2660            ahp->ah_bt_active_gpio_select);
2661        OS_REG_RMW_FIELD(ah,
2662            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2663            AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2664            ahp->ah_bt_priority_gpio_select);
2665
2666        /* Configure the desired GPIO ports for input */
2667        ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2668        ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2669
2670        if (ahp->ah_bt_coex_enabled) {
2671            ar9300_bt_coex_enable(ah);
2672        } else {
2673            ar9300_bt_coex_disable(ah);
2674        }
2675    }
2676    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2677        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2678    {
2679        /* 2-wire */
2680        if (ahp->ah_bt_coex_enabled) {
2681            /* Connect bt_active_async to baseband */
2682            OS_REG_CLR_BIT(ah,
2683                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2684                (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2685                 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2686            OS_REG_SET_BIT(ah,
2687                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2688                AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2689
2690            /*
2691             * Set input mux for bt_prority_async and
2692             * bt_active_async to GPIO pins
2693             */
2694            OS_REG_RMW_FIELD(ah,
2695                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2696                AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2697                ahp->ah_bt_active_gpio_select);
2698
2699            /* Configure the desired GPIO ports for input */
2700            ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2701
2702            /* Enable coexistence on initialization */
2703            ar9300_bt_coex_enable(ah);
2704        }
2705    }
2706#if ATH_SUPPORT_MCI
2707    else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2708        if (ahp->ah_bt_coex_enabled) {
2709            ar9300_mci_bt_coex_enable(ah);
2710        }
2711        else {
2712            ar9300_mci_bt_coex_disable(ah);
2713        }
2714    }
2715#endif /* ATH_SUPPORT_MCI */
2716}
2717
2718#endif /* ATH_BT_COEX */
2719
2720HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2721{
2722    u_int32_t val;
2723    int wasp_mm_rev;
2724
2725#define AR_SOC_RST_REVISION_ID      0xB8060090
2726#define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2727    wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2728            AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2729            AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2730#undef AR_SOC_RST_REVISION_ID
2731#undef REG_READ
2732
2733    /*
2734     * Azimuth (ProxySTA) Mode is only supported correctly by
2735     * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2736     *
2737     * Enable this feature for Scorpion at this time. The silicon
2738     * still needs to be validated.
2739     */
2740    if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2741        !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2742        !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2743          ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2744           (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2745            wasp_mm_rev >= 0 /* 1 */))))
2746    {
2747        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2748                "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2749                __func__, AH_PRIVATE((ah))->ah_macVersion,
2750                AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2751        return HAL_ENOTSUPP;
2752    }
2753
2754    OS_REG_WRITE(ah,
2755        AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2756
2757    /* turn on mode bit[24] for proxy sta */
2758    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2759        OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2760
2761    val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2762    if (enable) {
2763        val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2764               AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2765               AR_AZIMUTH_BA_USES_AD1;
2766        /* turn off filter pass hold (bit 9) */
2767        val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2768    } else {
2769        val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2770                 AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2771                 AR_AZIMUTH_BA_USES_AD1);
2772    }
2773    OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2774
2775    /* enable promiscous mode */
2776    OS_REG_WRITE(ah, AR_RX_FILTER,
2777        OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2778    /* enable promiscous in azimuth mode */
2779    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2780    OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2781
2782    /* turn on filter pass hold (bit 9) */
2783    OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2784        OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2785
2786    return HAL_OK;
2787}
2788
2789#if 0
2790void ar9300_mat_enable(struct ath_hal *ah, int enable)
2791{
2792    /*
2793     * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2794     * mitigation and turn on key search always for better performance.
2795     */
2796    struct ath_hal_9300 *ahp = AH9300(ah);
2797    struct ath_hal_private *ap = AH_PRIVATE(ah);
2798
2799    ahp->ah_intr_mitigation_rx = !enable;
2800    if (ahp->ah_intr_mitigation_rx) {
2801        /*
2802         * Enable Interrupt Mitigation for Rx.
2803         * If no build-specific limits for the rx interrupt mitigation
2804         * timer have been specified, use conservative defaults.
2805         */
2806        #ifndef AH_RIMT_VAL_LAST
2807            #define AH_RIMT_LAST_MICROSEC 500
2808        #endif
2809        #ifndef AH_RIMT_VAL_FIRST
2810            #define AH_RIMT_FIRST_MICROSEC 2000
2811        #endif
2812        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2813        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2814    } else {
2815        OS_REG_WRITE(ah, AR_RIMT, 0);
2816    }
2817
2818    ahp->ah_enable_keysearch_always = !!enable;
2819    ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2820}
2821#endif
2822
2823void ar9300_enable_tpc(struct ath_hal *ah)
2824{
2825    u_int32_t val = 0;
2826
2827    ah->ah_config.ath_hal_desc_tpc = 1;
2828
2829    /* Enable TPC */
2830    OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2831
2832    /*
2833     * Disable per chain power reduction since we are already
2834     * accounting for this in our calculations
2835     */
2836    val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2837    if (AR_SREV_WASP(ah)) {
2838        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2839                         val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2840    } else {
2841        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2842                         val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2843    }
2844}
2845
2846
2847/*
2848 * ar9300_force_tsf_sync
2849 * This function forces the TSF sync to the given bssid, this is implemented
2850 * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2851 * mode of operation, where we sync the TSF to RootAP TSF values
2852 */
2853void
2854ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2855    u_int16_t assoc_id)
2856{
2857    ar9300_set_operating_mode(ah, HAL_M_STA);
2858    ar9300_write_associd(ah, bssid, assoc_id);
2859}
2860
2861void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2862{
2863    struct ath_hal_9300 *ahp = AH9300(ah);
2864    u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2865    u_int32_t           temp_powertx_rate9_reg_val;
2866    int8_t              olpc_power_offset = 0;
2867    int8_t              tmp_olpc_val = 0;
2868    HAL_RSSI_TX_POWER   old_greentx_status;
2869    u_int8_t            target_power_val_t[ar9300_rate_size];
2870    int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2871
2872    if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2873        !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2874        return;
2875    }
2876
2877    old_greentx_status = AH9300(ah)->green_tx_status;
2878    if (ahp->ah_hw_green_tx_enable) {
2879        tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2880        tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2881    } else {
2882        tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2883        tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2884    }
2885
2886    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2887        && (rssi > tmp_rss1_thr1))
2888    {
2889        if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2890            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2891        }
2892    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2893        && (rssi > tmp_rss1_thr2))
2894    {
2895        if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2896            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2897        }
2898    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2899        if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2900            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2901        }
2902    }
2903
2904    /* If status is not change, don't do anything */
2905    if (old_greentx_status == AH9300(ah)->green_tx_status) {
2906        return;
2907    }
2908
2909    /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2910    if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2911        && AR_SREV_POSEIDON(ah))
2912    {
2913        if (ahp->ah_hw_green_tx_enable) {
2914            switch (AH9300(ah)->green_tx_status) {
2915            case HAL_RSSI_TX_POWER_SHORT:
2916                /* 1. TxPower Config */
2917                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2918                    sizeof(target_power_val_t));
2919                /* 1.1 Store OLPC Delta Calibration Offset*/
2920                olpc_power_offset = 0;
2921                /* 2. Store OB/DB */
2922                /* 3. Store TPC settting */
2923                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2924                                    SM(14, AR_TPC_CTS) |
2925                                    SM(14, AR_TPC_CHIRP) |
2926                                    SM(14, AR_TPC_RPT));
2927                /* 4. Store BB_powertx_rate9 value */
2928                temp_powertx_rate9_reg_val =
2929                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2930                break;
2931            case HAL_RSSI_TX_POWER_MIDDLE:
2932                /* 1. TxPower Config */
2933                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2934                    sizeof(target_power_val_t));
2935                /* 1.1 Store OLPC Delta Calibration Offset*/
2936                olpc_power_offset = 0;
2937                /* 2. Store OB/DB */
2938                /* 3. Store TPC settting */
2939                temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2940                                    SM(18, AR_TPC_CTS) |
2941                                    SM(18, AR_TPC_CHIRP) |
2942                                    SM(18, AR_TPC_RPT));
2943                /* 4. Store BB_powertx_rate9 value */
2944                temp_powertx_rate9_reg_val =
2945                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2946                break;
2947            case HAL_RSSI_TX_POWER_LONG:
2948            default:
2949                /* 1. TxPower Config */
2950                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2951                    sizeof(target_power_val_t));
2952                /* 1.1 Store OLPC Delta Calibration Offset*/
2953                olpc_power_offset = 0;
2954                /* 2. Store OB/DB1/DB2 */
2955                /* 3. Store TPC settting */
2956                temp_tcp_reg_val =
2957                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2958                /* 4. Store BB_powertx_rate9 value */
2959                temp_powertx_rate9_reg_val =
2960                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2961                break;
2962            }
2963        } else {
2964            switch (AH9300(ah)->green_tx_status) {
2965            case HAL_RSSI_TX_POWER_SHORT:
2966                /* 1. TxPower Config */
2967                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2968                    sizeof(target_power_val_t));
2969                /* 1.1 Store OLPC Delta Calibration Offset*/
2970                olpc_power_offset =
2971                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2972                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2973                /* 2. Store OB/DB */
2974                temp_obdb_reg_val =
2975                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2976                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2977                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2978                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2979                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2980                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2981                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2982                    AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2983                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2984                    AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2985                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2986                    AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2987                /* 3. Store TPC settting */
2988                temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2989                                    SM(6, AR_TPC_CTS) |
2990                                    SM(6, AR_TPC_CHIRP) |
2991                                    SM(6, AR_TPC_RPT));
2992                /* 4. Store BB_powertx_rate9 value */
2993                temp_powertx_rate9_reg_val =
2994                    WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2995                break;
2996            case HAL_RSSI_TX_POWER_MIDDLE:
2997                /* 1. TxPower Config */
2998                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2999                    sizeof(target_power_val_t));
3000                /* 1.1 Store OLPC Delta Calibration Offset*/
3001                olpc_power_offset =
3002                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3003                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3004                /* 2. Store OB/DB */
3005                temp_obdb_reg_val =
3006                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3007                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3008                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3009                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3010                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3011                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3012                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3013                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3014                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3015                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3016                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3017                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3018                /* 3. Store TPC settting */
3019                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3020                                    SM(14, AR_TPC_CTS) |
3021                                    SM(14, AR_TPC_CHIRP) |
3022                                    SM(14, AR_TPC_RPT));
3023                /* 4. Store BB_powertx_rate9 value */
3024                temp_powertx_rate9_reg_val =
3025                    WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3026                break;
3027            case HAL_RSSI_TX_POWER_LONG:
3028            default:
3029                /* 1. TxPower Config */
3030                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3031                    sizeof(target_power_val_t));
3032                /* 1.1 Store OLPC Delta Calibration Offset*/
3033                olpc_power_offset =
3034                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3035                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3036                /* 2. Store OB/DB1/DB2 */
3037                temp_obdb_reg_val =
3038                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3039                /* 3. Store TPC settting */
3040                temp_tcp_reg_val =
3041                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3042                /* 4. Store BB_powertx_rate9 value */
3043                temp_powertx_rate9_reg_val =
3044                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3045                break;
3046            }
3047        }
3048        /* 1.1 Do OLPC Delta Calibration Offset */
3049        tmp_olpc_val =
3050            (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3051        tmp_olpc_val += olpc_power_offset;
3052        OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3053            (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3054            AR_PHY_TPC_OLPC_GAIN_DELTA);
3055
3056        /* 1.2 TxPower Config */
3057        ar9300_transmit_power_reg_write(ah, target_power_val_t);
3058        /* 2. Config OB/DB */
3059        if (!ahp->ah_hw_green_tx_enable) {
3060            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3061        }
3062        /* 3. config TPC settting */
3063        OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3064        /* 4. config BB_powertx_rate9 value */
3065        OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3066    }
3067}
3068
3069#if 0
3070void
3071ar9300_get_vow_stats(
3072    struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3073{
3074    if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3075        p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3076    }
3077    if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3078        p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3079    }
3080    if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3081        p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3082    }
3083    if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3084        p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3085    }
3086    if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3087        p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3088    }
3089}
3090#endif
3091
3092/*
3093 * ar9300_is_skip_paprd_by_greentx
3094 *
3095 * This function check if we need to skip PAPRD tuning
3096 * when GreenTx in specific state.
3097 */
3098HAL_BOOL
3099ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3100{
3101    if (AR_SREV_POSEIDON(ah) &&
3102        ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3103        ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3104         (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3105    {
3106        return AH_TRUE;
3107    }
3108    return AH_FALSE;
3109}
3110
3111void
3112ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3113{
3114    unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3115    unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3116    unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3117    unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3118    unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3119    struct ath_hal_9300 *ahp = AH9300(ah);
3120
3121    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3122        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3123                             AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3124        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3125                             AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3126        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3127                             AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3128        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3129                             AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3130        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3131                             AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3132    }
3133}
3134
3135void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3136{
3137    struct ath_hal_9300 *ahp = AH9300(ah);
3138
3139    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3140        if ((value == 0) || (value == 1)) {
3141            OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3142                             AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3143        }
3144    }
3145}
3146
3147void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3148{
3149    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3150}
3151
3152int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3153{
3154    int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3155
3156    /* RSSI format is 8.4.  Ignore lowest four bits */
3157    val = val >> 4;
3158    return val;
3159}
3160
3161void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3162                                        u_int32_t rssi_threshold)
3163{
3164    struct ath_hal_9300 *ahp = AH9300(ah);
3165
3166    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3167
3168    /* save value for restoring after chip reset */
3169    ahp->ah_beacon_rssi_threshold = rssi_threshold;
3170}
3171
3172void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3173{
3174    OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3175}
3176
3177void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3178{
3179    if (on) {
3180        OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3181                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3182    }
3183    else {
3184        OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3185                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3186    }
3187}
3188/*
3189 * Gets the contents of the specified key cache entry.
3190 */
3191HAL_BOOL
3192ar9300_print_keycache(struct ath_hal *ah)
3193{
3194
3195    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3196    u_int32_t key0, key1, key2, key3, key4;
3197    u_int32_t mac_hi, mac_lo;
3198    u_int16_t entry = 0;
3199    u_int32_t valid = 0;
3200    u_int32_t key_type;
3201
3202    ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3203
3204    for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3205        key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3206        key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3207        key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3208        key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3209        key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3210
3211        key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3212
3213        mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3214        mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3215
3216        if (mac_hi & AR_KEYTABLE_VALID) {
3217            valid = 1;
3218        } else {
3219            valid = 0;
3220        }
3221
3222        if ((mac_hi != 0) && (mac_lo != 0)) {
3223            mac_hi &= ~0x8000;
3224            mac_hi <<= 1;
3225            mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3226            mac_lo <<= 1;
3227        }
3228
3229        ath_hal_printf(ah,
3230            "%03d    "
3231            "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3232            "   %02d     %02d    "
3233            "%02x:%02x:%02x:%02x:%02x:%02x \n",
3234            entry,
3235            (key0 << 24) >> 24, (key0 << 16) >> 24,
3236            (key0 << 8) >> 24, key0 >> 24,
3237            (key1 << 24) >> 24, (key1 << 16) >> 24,
3238            //(key1 << 8) >> 24, key1 >> 24,
3239            (key2 << 24) >> 24, (key2 << 16) >> 24,
3240            (key2 << 8) >> 24, key2 >> 24,
3241            (key3 << 24) >> 24, (key3 << 16) >> 24,
3242            //(key3 << 8) >> 24, key3 >> 24,
3243            (key4 << 24) >> 24, (key4 << 16) >> 24,
3244            (key4 << 8) >> 24, key4 >> 24,
3245            valid, key_type,
3246            (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3247            (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3248    }
3249
3250    return AH_TRUE;
3251}
3252
3253/* enable/disable smart antenna mode */
3254HAL_BOOL
3255ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3256{
3257    struct ath_hal_9300 *ahp = AH9300(ah);
3258
3259    if (enable) {
3260        OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3261    } else {
3262        OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3263    }
3264
3265    /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3266     * and swcom2 with 0
3267     * FIXME Ideally these registers need to be made read from caldata.
3268     * Until the calibration team gets them, keep them along with board
3269     * configuration.
3270     */
3271    if (enable && AR_SREV_SCORPION(ah) &&
3272           (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3273
3274       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3275       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3276    }
3277
3278    ahp->ah_smartantenna_enable = enable;
3279    return 1;
3280}
3281
3282#ifdef ATH_TX99_DIAG
3283#ifndef ATH_SUPPORT_HTC
3284void
3285ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3286    u_int32_t txpower)
3287{
3288#define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3289    static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3290    int32_t i;
3291
3292    /* The max power is limited to 63 */
3293    if (txpower <= AR9300_MAX_RATE_POWER) {
3294        for (i = 0; i < ar9300_rate_size; i++) {
3295            p_pwr_array[i] = txpower;
3296        }
3297    } else {
3298        for (i = 0; i < ar9300_rate_size; i++) {
3299            p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3300        }
3301    }
3302
3303    OS_REG_WRITE(ah, 0xa458, 0);
3304
3305    /* Write the OFDM power per rate set */
3306    /* 6 (LSB), 9, 12, 18 (MSB) */
3307    OS_REG_WRITE(ah, 0xa3c0,
3308        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3309          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3310          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3311          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3312    );
3313    /* 24 (LSB), 36, 48, 54 (MSB) */
3314    OS_REG_WRITE(ah, 0xa3c4,
3315        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3316          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3317          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3318          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3319    );
3320
3321    /* Write the CCK power per rate set */
3322    /* 1L (LSB), reserved, 2L, 2S (MSB) */
3323    OS_REG_WRITE(ah, 0xa3c8,
3324        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3325          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3326          /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3327          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3328    );
3329    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3330    OS_REG_WRITE(ah, 0xa3cc,
3331        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3332          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3333          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3334          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3335    );
3336
3337    /* Write the HT20 power per rate set */
3338    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3339    OS_REG_WRITE(ah, 0xa3d0,
3340        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3341          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3342          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3343          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3344    );
3345
3346    /* 6 (LSB), 7, 12, 13 (MSB) */
3347    OS_REG_WRITE(ah, 0xa3d4,
3348        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3349          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3350          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3351          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3352    );
3353
3354    /* 14 (LSB), 15, 20, 21 */
3355    OS_REG_WRITE(ah, 0xa3e4,
3356        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3357          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3358          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3359          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3360    );
3361
3362    /* Mixed HT20 and HT40 rates */
3363    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3364    OS_REG_WRITE(ah, 0xa3e8,
3365        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3366          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3367          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3368          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3369    );
3370
3371    /* Write the HT40 power per rate set */
3372    /* correct PAR difference between HT40 and HT20/LEGACY */
3373    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3374    OS_REG_WRITE(ah, 0xa3d8,
3375        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3376          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3377          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3378          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3379    );
3380
3381    /* 6 (LSB), 7, 12, 13 (MSB) */
3382    OS_REG_WRITE(ah, 0xa3dc,
3383        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3384          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3385          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3386          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3387    );
3388
3389    /* 14 (LSB), 15, 20, 21 */
3390    OS_REG_WRITE(ah, 0xa3ec,
3391        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3392          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3393          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3394          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3395    );
3396#undef PWR_MAS
3397}
3398
3399void
3400ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3401{
3402    if (tx_chainmask == 0x5) {
3403        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3404            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3405    }
3406    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3407    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3408
3409    OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3410    if (tx_chainmask == 0x5) {
3411        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3412            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3413    }
3414}
3415
3416void
3417ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3418    int chtype)
3419{
3420    OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3421    OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3422    OS_REG_WRITE(ah, 0xa350,
3423        (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3424
3425    /* 11G mode */
3426    if (!chtype) {
3427        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3428            OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3429        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3430            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3431                OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3432            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3433                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3434                        | (0x1 << 26)  | (0x7 << 24))
3435                        & ~(0x1 << 22));
3436        } else {
3437            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3438                OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3439            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3440                (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3441                        | (0x1 << 26)  | (0x7 << 24))
3442                        & ~(0x1 << 22));
3443        }
3444
3445        /* chain zero */
3446        if ((tx_chain_mask & 0x01) == 0x01) {
3447            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3448                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3449                      | (0x1 << 31) | (0x5 << 15)
3450                      | (0x3 << 9)) & ~(0x1 << 27)
3451                      & ~(0x1 << 12));
3452            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3453                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3454                      | (0x1 << 12) | (0x1 << 10)
3455                      | (0x1 << 9)  | (0x1 << 8)
3456                      | (0x1 << 7)) & ~(0x1 << 11));
3457            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3458                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3459                      | (0x1 << 29) | (0x1 << 25)
3460                      | (0x1 << 23) | (0x1 << 19)
3461                      | (0x1 << 10) | (0x1 << 9)
3462                      | (0x1 << 8)  | (0x1 << 3))
3463                      & ~(0x1 << 28)& ~(0x1 << 24)
3464                      & ~(0x1 << 22)& ~(0x1 << 7));
3465            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3466                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3467                      | (0x1 << 23))& ~(0x1 << 21));
3468            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3469                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3470                      | (0x1 << 12) | (0x1 << 10)
3471                      | (0x1 << 9)  | (0x1 << 8)
3472                      | (0x1 << 6)  | (0x1 << 5)
3473                      | (0x1 << 4)  | (0x1 << 3)
3474                      | (0x1 << 2));
3475            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3476                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3477        }
3478        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3479            /* chain one */
3480            if ((tx_chain_mask & 0x02) == 0x02 ) {
3481                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3482                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3483                          | (0x1 << 31) | (0x5 << 15)
3484                          | (0x3 << 9)) & ~(0x1 << 27)
3485                          & ~(0x1 << 12));
3486                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3487                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3488                          | (0x1 << 12) | (0x1 << 10)
3489                          | (0x1 << 9)  | (0x1 << 8)
3490                          | (0x1 << 7)) & ~(0x1 << 11));
3491                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3492                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3493                          | (0x1 << 29) | (0x1 << 25)
3494                          | (0x1 << 23) | (0x1 << 19)
3495                          | (0x1 << 10) | (0x1 << 9)
3496                          | (0x1 << 8)  | (0x1 << 3))
3497                          & ~(0x1 << 28)& ~(0x1 << 24)
3498                          & ~(0x1 << 22)& ~(0x1 << 7));
3499                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3500                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3501                          | (0x1 << 23))& ~(0x1 << 21));
3502                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3503                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3504                          | (0x1 << 12) | (0x1 << 10)
3505                          | (0x1 << 9)  | (0x1 << 8)
3506                          | (0x1 << 6)  | (0x1 << 5)
3507                          | (0x1 << 4)  | (0x1 << 3)
3508                          | (0x1 << 2));
3509                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3510                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3511            }
3512        }
3513        if (AR_SREV_OSPREY(ah)) {
3514            /* chain two */
3515            if ((tx_chain_mask & 0x04) == 0x04 ) {
3516                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3517                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3518                          | (0x1 << 31) | (0x5 << 15)
3519                          | (0x3 << 9)) & ~(0x1 << 27)
3520                          & ~(0x1 << 12));
3521                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3522                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3523                          | (0x1 << 12) | (0x1 << 10)
3524                          | (0x1 << 9)  | (0x1 << 8)
3525                          | (0x1 << 7)) & ~(0x1 << 11));
3526                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3527                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3528                          | (0x1 << 29) | (0x1 << 25)
3529                          | (0x1 << 23) | (0x1 << 19)
3530                          | (0x1 << 10) | (0x1 << 9)
3531                          | (0x1 << 8)  | (0x1 << 3))
3532                          & ~(0x1 << 28)& ~(0x1 << 24)
3533                          & ~(0x1 << 22)& ~(0x1 << 7));
3534                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3535                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3536                          | (0x1 << 23))& ~(0x1 << 21));
3537                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3538                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3539                          | (0x1 << 12) | (0x1 << 10)
3540                          | (0x1 << 9)  | (0x1 << 8)
3541                          | (0x1 << 6)  | (0x1 << 5)
3542                          | (0x1 << 4)  | (0x1 << 3)
3543                          | (0x1 << 2));
3544                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3545                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3546            }
3547        }
3548
3549        OS_REG_WRITE(ah, 0xa28c, 0x11111);
3550        OS_REG_WRITE(ah, 0xa288, 0x111);
3551    } else {
3552        /* chain zero */
3553        if ((tx_chain_mask & 0x01) == 0x01) {
3554            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3555                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3556                      | (0x1 << 31) | (0x1 << 27)
3557                      | (0x3 << 23) | (0x1 << 19)
3558                      | (0x1 << 15) | (0x3 << 9))
3559                      & ~(0x1 << 12));
3560            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3561                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3562                      | (0x1 << 12) | (0x1 << 10)
3563                      | (0x1 << 9)  | (0x1 << 8)
3564                      | (0x1 << 7)  | (0x1 << 3)
3565                      | (0x1 << 2)  | (0x1 << 1))
3566                      & ~(0x1 << 11)& ~(0x1 << 0));
3567            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3568                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3569                      | (0x1 << 29) | (0x1 << 25)
3570                      | (0x1 << 23) | (0x1 << 19)
3571                      | (0x1 << 10) | (0x1 << 9)
3572                      | (0x1 << 8)  | (0x1 << 3))
3573                      & ~(0x1 << 28)& ~(0x1 << 24)
3574                      & ~(0x1 << 22)& ~(0x1 << 7));
3575            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3576                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3577                      | (0x1 << 23))& ~(0x1 << 21));
3578            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3579                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3580                      | (0x3 << 3)  | (0x3 << 0));
3581            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3582                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3583                      | (0x3 << 29) | (0x3 << 26)
3584                      | (0x2 << 23) | (0x2 << 20)
3585                      | (0x2 << 17))& ~(0x1 << 14));
3586            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3587                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3588                      | (0x1 << 12) | (0x1 << 10)
3589                      | (0x1 << 9)  | (0x1 << 8)
3590                      | (0x1 << 6)  | (0x1 << 5)
3591                      | (0x1 << 4)  | (0x1 << 3)
3592                      | (0x1 << 2));
3593            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3594                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3595            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3596                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3597                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3598                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3599                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3600                          | (0x1 << 26) | (0x7 << 24)
3601                          | (0x3 << 22));
3602            } else {
3603                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3604                    OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3605                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3606                    OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3607                          | (0x1 << 26) | (0x7 << 24)
3608                          | (0x3 << 22));
3609            }
3610
3611            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3612                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3613                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3614                          | (0x1 << 3)  | (0x1 << 2)
3615                          | (0x1 << 1)) & ~(0x1 << 0));
3616                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3617                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3618                          | (0x1 << 19) | (0x1 << 3));
3619                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3620                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3621            }
3622            if (AR_SREV_OSPREY(ah)) {
3623                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3624                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3625                          | (0x1 << 3)  | (0x1 << 2)
3626                          | (0x1 << 1)) & ~(0x1 << 0));
3627                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3628                    OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3629                          | (0x1 << 19) | (0x1 << 3));
3630                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3631                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3632            }
3633        }
3634        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3635            /* chain one */
3636            if ((tx_chain_mask & 0x02) == 0x02 ) {
3637                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3638                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3639                          | (0x1 << 3)  | (0x1 << 2)
3640                          | (0x1 << 1)) & ~(0x1 << 0));
3641                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3642                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3643                          | (0x1 << 19) | (0x1 << 3));
3644                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3645                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3646                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3647                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3648                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3649                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3650                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3651                              | (0x1 << 26) | (0x7 << 24)
3652                              | (0x3 << 22));
3653                } else {
3654                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3655                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3656                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3657                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3658                              | (0x1 << 26) | (0x7 << 24)
3659                              | (0x3 << 22));
3660                }
3661
3662                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3663                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3664                          | (0x1 << 31) | (0x1 << 27)
3665                          | (0x3 << 23) | (0x1 << 19)
3666                          | (0x1 << 15) | (0x3 << 9))
3667                          & ~(0x1 << 12));
3668                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3669                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3670                          | (0x1 << 12) | (0x1 << 10)
3671                          | (0x1 << 9)  | (0x1 << 8)
3672                          | (0x1 << 7)  | (0x1 << 3)
3673                          | (0x1 << 2)  | (0x1 << 1))
3674                          & ~(0x1 << 11)& ~(0x1 << 0));
3675                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3676                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3677                          | (0x1 << 29) | (0x1 << 25)
3678                          | (0x1 << 23) | (0x1 << 19)
3679                          | (0x1 << 10) | (0x1 << 9)
3680                          | (0x1 << 8)  | (0x1 << 3))
3681                          & ~(0x1 << 28)& ~(0x1 << 24)
3682                          & ~(0x1 << 22)& ~(0x1 << 7));
3683                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3684                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3685                          | (0x1 << 23))& ~(0x1 << 21));
3686                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3687                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3688                          | (0x3 << 3)  | (0x3 << 0));
3689                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3690                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3691                          | (0x3 << 29) | (0x3 << 26)
3692                          | (0x2 << 23) | (0x2 << 20)
3693                          | (0x2 << 17))& ~(0x1 << 14));
3694                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3695                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3696                          | (0x1 << 12) | (0x1 << 10)
3697                          | (0x1 << 9)  | (0x1 << 8)
3698                          | (0x1 << 6)  | (0x1 << 5)
3699                          | (0x1 << 4)  | (0x1 << 3)
3700                          | (0x1 << 2));
3701                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3702                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3703
3704                if (AR_SREV_OSPREY(ah)) {
3705                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3706                        (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3707                              | (0x1 << 3)  | (0x1 << 2)
3708                              | (0x1 << 1)) & ~(0x1 << 0));
3709                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3710                        OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3711                              | (0x1 << 19) | (0x1 << 3));
3712                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3713                        OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3714                }
3715            }
3716        }
3717        if (AR_SREV_OSPREY(ah)) {
3718            /* chain two */
3719            if ((tx_chain_mask & 0x04) == 0x04 ) {
3720                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3721                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3722                          | (0x1 << 3)  | (0x1 << 2)
3723                          | (0x1 << 1)) & ~(0x1 << 0));
3724                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3725                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3726                          | (0x1 << 19) | (0x1 << 3));
3727                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3728                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3729                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3730                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3731                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3732                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3733                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3734                              | (0x1 << 26) | (0x7 << 24)
3735                              | (0x3 << 22));
3736                } else {
3737                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3738                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3739                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3740                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3741                              | (0x1 << 26) | (0x7 << 24)
3742                              | (0x3 << 22));
3743                }
3744
3745                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3746                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3747                          | (0x1 << 3)  | (0x1 << 2)
3748                          | (0x1 << 1)) & ~(0x1 << 0));
3749                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3750                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3751                          | (0x1 << 19) | (0x1 << 3));
3752                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3753                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3754
3755                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3756                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3757                          | (0x1 << 31) | (0x1 << 27)
3758                          | (0x3 << 23) | (0x1 << 19)
3759                          | (0x1 << 15) | (0x3 << 9))
3760                          & ~(0x1 << 12));
3761                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3762                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3763                          | (0x1 << 12) | (0x1 << 10)
3764                          | (0x1 << 9)  | (0x1 << 8)
3765                          | (0x1 << 7)  | (0x1 << 3)
3766                          | (0x1 << 2)  | (0x1 << 1))
3767                          & ~(0x1 << 11)& ~(0x1 << 0));
3768                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3769                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3770                          | (0x1 << 29) | (0x1 << 25)
3771                          | (0x1 << 23) | (0x1 << 19)
3772                          | (0x1 << 10) | (0x1 << 9)
3773                          | (0x1 << 8)  | (0x1 << 3))
3774                          & ~(0x1 << 28)& ~(0x1 << 24)
3775                          & ~(0x1 << 22)& ~(0x1 << 7));
3776                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3777                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3778                          | (0x1 << 23))& ~(0x1 << 21));
3779                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3780                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3781                          | (0x3 << 3)  | (0x3 << 0));
3782                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3783                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3784                          | (0x3 << 29) | (0x3 << 26)
3785                          | (0x2 << 23) | (0x2 << 20)
3786                          | (0x2 << 17))& ~(0x1 << 14));
3787                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3788                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3789                          | (0x1 << 12) | (0x1 << 10)
3790                          | (0x1 << 9)  | (0x1 << 8)
3791                          | (0x1 << 6)  | (0x1 << 5)
3792                          | (0x1 << 4)  | (0x1 << 3)
3793                          | (0x1 << 2));
3794                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3795                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3796            }
3797        }
3798
3799        OS_REG_WRITE(ah, 0xa28c, 0x22222);
3800        OS_REG_WRITE(ah, 0xa288, 0x222);
3801    }
3802}
3803
3804void
3805ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3806{
3807    u_int32_t val;
3808    u_int32_t qnum = (u_int32_t)data;
3809
3810    /* Disable AGC to A2 */
3811    OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3812    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3813
3814    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3815    /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3816    OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3817    OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3818    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3819    /* 200 ok for HT20, 400 ok for HT40 */
3820    OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3821    OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3822
3823    /* set QCU modes to early termination */
3824    val = OS_REG_READ(ah, AR_QMISC(qnum));
3825    OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3826}
3827
3828void
3829ar9300_tx99_stop(struct ath_hal *ah)
3830{
3831    /* this should follow the setting of start */
3832    OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3833    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3834}
3835#endif /* ATH_TX99_DIAG */
3836#endif /* ATH_SUPPORT_HTC */
3837
3838HAL_BOOL
3839ar9300Get3StreamSignature(struct ath_hal *ah)
3840{
3841    return AH_FALSE;
3842}
3843
3844HAL_BOOL
3845ar9300ForceVCS(struct ath_hal *ah)
3846{
3847   return AH_FALSE;
3848}
3849
3850HAL_BOOL
3851ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3852{
3853   return AH_FALSE;
3854}
3855
3856HAL_BOOL
3857ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3858{
3859    struct ath_hal_9300 *ahp = AH9300(ah);
3860    ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3861    u_int8_t *ctl_index;
3862    u_int32_t offset = 0;
3863
3864    if (!ctl_array)
3865        return AH_FALSE;
3866
3867    /* copy 2G ctl freqbin and power data */
3868    ctl_index = p_eep_data->ctl_index_2g;
3869    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3870                OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3871                OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3872    offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3873            ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3874
3875
3876    /* copy 2G ctl freqbin and power data */
3877    ctl_index = p_eep_data->ctl_index_5g;
3878    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3879                OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3880                OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3881
3882    return AH_FALSE;
3883}
3884
3885void
3886ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3887{
3888    struct ath_hal_9300 *ahp = AH9300(ah);
3889
3890    /* optional txchainmask should be subset of primary txchainmask */
3891    if ((mask & ahp->ah_tx_chainmask) != mask) {
3892        ahp->ah_tx_chainmaskopt = 0;
3893        ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3894        return;
3895    }
3896
3897    ahp->ah_tx_chainmaskopt = mask;
3898}
3899