subr_ntoskrnl.c revision 331722
1/*-
2 * Copyright (c) 2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/compat/ndis/subr_ntoskrnl.c 331722 2018-03-29 02:50:57Z eadler $");
35
36#include <sys/ctype.h>
37#include <sys/unistd.h>
38#include <sys/param.h>
39#include <sys/types.h>
40#include <sys/errno.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45
46#include <sys/callout.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/proc.h>
50#include <sys/condvar.h>
51#include <sys/kthread.h>
52#include <sys/module.h>
53#include <sys/smp.h>
54#include <sys/sched.h>
55#include <sys/sysctl.h>
56
57#include <machine/atomic.h>
58#include <machine/bus.h>
59#include <machine/stdarg.h>
60#include <machine/resource.h>
61
62#include <sys/bus.h>
63#include <sys/rman.h>
64
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/pmap.h>
68#include <vm/uma.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_map.h>
71#include <vm/vm_extern.h>
72
73#include <compat/ndis/pe_var.h>
74#include <compat/ndis/cfg_var.h>
75#include <compat/ndis/resource_var.h>
76#include <compat/ndis/ntoskrnl_var.h>
77#include <compat/ndis/hal_var.h>
78#include <compat/ndis/ndis_var.h>
79
80#ifdef NTOSKRNL_DEBUG_TIMERS
81static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
82
83SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLTYPE_INT | CTLFLAG_RW,
84    NULL, 0, sysctl_show_timers, "I",
85    "Show ntoskrnl timer stats");
86#endif
87
88struct kdpc_queue {
89	list_entry		kq_disp;
90	struct thread		*kq_td;
91	int			kq_cpu;
92	int			kq_exit;
93	int			kq_running;
94	kspin_lock		kq_lock;
95	nt_kevent		kq_proc;
96	nt_kevent		kq_done;
97};
98
99typedef struct kdpc_queue kdpc_queue;
100
101struct wb_ext {
102	struct cv		we_cv;
103	struct thread		*we_td;
104};
105
106typedef struct wb_ext wb_ext;
107
108#define NTOSKRNL_TIMEOUTS	256
109#ifdef NTOSKRNL_DEBUG_TIMERS
110static uint64_t ntoskrnl_timer_fires;
111static uint64_t ntoskrnl_timer_sets;
112static uint64_t ntoskrnl_timer_reloads;
113static uint64_t ntoskrnl_timer_cancels;
114#endif
115
116struct callout_entry {
117	struct callout		ce_callout;
118	list_entry		ce_list;
119};
120
121typedef struct callout_entry callout_entry;
122
123static struct list_entry ntoskrnl_calllist;
124static struct mtx ntoskrnl_calllock;
125struct kuser_shared_data kuser_shared_data;
126
127static struct list_entry ntoskrnl_intlist;
128static kspin_lock ntoskrnl_intlock;
129
130static uint8_t RtlEqualUnicodeString(unicode_string *,
131	unicode_string *, uint8_t);
132static void RtlCopyString(ansi_string *, const ansi_string *);
133static void RtlCopyUnicodeString(unicode_string *,
134	unicode_string *);
135static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
136	 void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
137static irp *IoBuildAsynchronousFsdRequest(uint32_t,
138	device_object *, void *, uint32_t, uint64_t *, io_status_block *);
139static irp *IoBuildDeviceIoControlRequest(uint32_t,
140	device_object *, void *, uint32_t, void *, uint32_t,
141	uint8_t, nt_kevent *, io_status_block *);
142static irp *IoAllocateIrp(uint8_t, uint8_t);
143static void IoReuseIrp(irp *, uint32_t);
144static void IoFreeIrp(irp *);
145static void IoInitializeIrp(irp *, uint16_t, uint8_t);
146static irp *IoMakeAssociatedIrp(irp *, uint8_t);
147static uint32_t KeWaitForMultipleObjects(uint32_t,
148	nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
149	int64_t *, wait_block *);
150static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
151static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
152static void ntoskrnl_satisfy_multiple_waits(wait_block *);
153static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
154static void ntoskrnl_insert_timer(ktimer *, int);
155static void ntoskrnl_remove_timer(ktimer *);
156#ifdef NTOSKRNL_DEBUG_TIMERS
157static void ntoskrnl_show_timers(void);
158#endif
159static void ntoskrnl_timercall(void *);
160static void ntoskrnl_dpc_thread(void *);
161static void ntoskrnl_destroy_dpc_threads(void);
162static void ntoskrnl_destroy_workitem_threads(void);
163static void ntoskrnl_workitem_thread(void *);
164static void ntoskrnl_workitem(device_object *, void *);
165static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
166static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
167static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
168static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
169static uint16_t READ_REGISTER_USHORT(uint16_t *);
170static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
171static uint32_t READ_REGISTER_ULONG(uint32_t *);
172static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
173static uint8_t READ_REGISTER_UCHAR(uint8_t *);
174static int64_t _allmul(int64_t, int64_t);
175static int64_t _alldiv(int64_t, int64_t);
176static int64_t _allrem(int64_t, int64_t);
177static int64_t _allshr(int64_t, uint8_t);
178static int64_t _allshl(int64_t, uint8_t);
179static uint64_t _aullmul(uint64_t, uint64_t);
180static uint64_t _aulldiv(uint64_t, uint64_t);
181static uint64_t _aullrem(uint64_t, uint64_t);
182static uint64_t _aullshr(uint64_t, uint8_t);
183static uint64_t _aullshl(uint64_t, uint8_t);
184static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
185static void InitializeSListHead(slist_header *);
186static slist_entry *ntoskrnl_popsl(slist_header *);
187static void ExFreePoolWithTag(void *, uint32_t);
188static void ExInitializePagedLookasideList(paged_lookaside_list *,
189	lookaside_alloc_func *, lookaside_free_func *,
190	uint32_t, size_t, uint32_t, uint16_t);
191static void ExDeletePagedLookasideList(paged_lookaside_list *);
192static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
193	lookaside_alloc_func *, lookaside_free_func *,
194	uint32_t, size_t, uint32_t, uint16_t);
195static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
196static slist_entry
197	*ExInterlockedPushEntrySList(slist_header *,
198	slist_entry *, kspin_lock *);
199static slist_entry
200	*ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
201static uint32_t InterlockedIncrement(volatile uint32_t *);
202static uint32_t InterlockedDecrement(volatile uint32_t *);
203static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
204static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
205static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
206	uint64_t, uint64_t, uint64_t, enum nt_caching_type);
207static void MmFreeContiguousMemory(void *);
208static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t,
209	enum nt_caching_type);
210static uint32_t MmSizeOfMdl(void *, size_t);
211static void *MmMapLockedPages(mdl *, uint8_t);
212static void *MmMapLockedPagesSpecifyCache(mdl *,
213	uint8_t, uint32_t, void *, uint32_t, uint32_t);
214static void MmUnmapLockedPages(void *, mdl *);
215static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
216static void RtlZeroMemory(void *, size_t);
217static void RtlSecureZeroMemory(void *, size_t);
218static void RtlFillMemory(void *, size_t, uint8_t);
219static void RtlMoveMemory(void *, const void *, size_t);
220static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *);
221static void RtlCopyMemory(void *, const void *, size_t);
222static size_t RtlCompareMemory(const void *, const void *, size_t);
223static ndis_status RtlUnicodeStringToInteger(unicode_string *,
224	uint32_t, uint32_t *);
225static int atoi (const char *);
226static long atol (const char *);
227static int rand(void);
228static void srand(unsigned int);
229static void KeQuerySystemTime(uint64_t *);
230static uint32_t KeTickCount(void);
231static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
232static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t,
233    uint32_t, void **);
234static void ntoskrnl_thrfunc(void *);
235static ndis_status PsCreateSystemThread(ndis_handle *,
236	uint32_t, void *, ndis_handle, void *, void *, void *);
237static ndis_status PsTerminateSystemThread(ndis_status);
238static ndis_status IoGetDeviceObjectPointer(unicode_string *,
239	uint32_t, void *, device_object *);
240static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
241	uint32_t, void *, uint32_t *);
242static void KeInitializeMutex(kmutant *, uint32_t);
243static uint32_t KeReleaseMutex(kmutant *, uint8_t);
244static uint32_t KeReadStateMutex(kmutant *);
245static ndis_status ObReferenceObjectByHandle(ndis_handle,
246	uint32_t, void *, uint8_t, void **, void **);
247static void ObfDereferenceObject(void *);
248static uint32_t ZwClose(ndis_handle);
249static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
250	uint32_t, void *);
251static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
252static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
253static void *ntoskrnl_memset(void *, int, size_t);
254static void *ntoskrnl_memmove(void *, void *, size_t);
255static void *ntoskrnl_memchr(void *, unsigned char, size_t);
256static char *ntoskrnl_strstr(char *, char *);
257static char *ntoskrnl_strncat(char *, char *, size_t);
258static int ntoskrnl_toupper(int);
259static int ntoskrnl_tolower(int);
260static funcptr ntoskrnl_findwrap(funcptr);
261static uint32_t DbgPrint(char *, ...);
262static void DbgBreakPoint(void);
263static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
264static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
265static int32_t KeSetPriorityThread(struct thread *, int32_t);
266static void dummy(void);
267
268static struct mtx ntoskrnl_dispatchlock;
269static struct mtx ntoskrnl_interlock;
270static kspin_lock ntoskrnl_cancellock;
271static int ntoskrnl_kth = 0;
272static struct nt_objref_head ntoskrnl_reflist;
273static uma_zone_t mdl_zone;
274static uma_zone_t iw_zone;
275static struct kdpc_queue *kq_queues;
276static struct kdpc_queue *wq_queues;
277static int wq_idx = 0;
278
279int
280ntoskrnl_libinit()
281{
282	image_patch_table	*patch;
283	int			error;
284	struct proc		*p;
285	kdpc_queue		*kq;
286	callout_entry		*e;
287	int			i;
288
289	mtx_init(&ntoskrnl_dispatchlock,
290	    "ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
291	mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
292	KeInitializeSpinLock(&ntoskrnl_cancellock);
293	KeInitializeSpinLock(&ntoskrnl_intlock);
294	TAILQ_INIT(&ntoskrnl_reflist);
295
296	InitializeListHead(&ntoskrnl_calllist);
297	InitializeListHead(&ntoskrnl_intlist);
298	mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
299
300	kq_queues = ExAllocatePoolWithTag(NonPagedPool,
301#ifdef NTOSKRNL_MULTIPLE_DPCS
302	    sizeof(kdpc_queue) * mp_ncpus, 0);
303#else
304	    sizeof(kdpc_queue), 0);
305#endif
306
307	if (kq_queues == NULL)
308		return (ENOMEM);
309
310	wq_queues = ExAllocatePoolWithTag(NonPagedPool,
311	    sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
312
313	if (wq_queues == NULL)
314		return (ENOMEM);
315
316#ifdef NTOSKRNL_MULTIPLE_DPCS
317	bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
318#else
319	bzero((char *)kq_queues, sizeof(kdpc_queue));
320#endif
321	bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
322
323	/*
324	 * Launch the DPC threads.
325	 */
326
327#ifdef NTOSKRNL_MULTIPLE_DPCS
328	for (i = 0; i < mp_ncpus; i++) {
329#else
330	for (i = 0; i < 1; i++) {
331#endif
332		kq = kq_queues + i;
333		kq->kq_cpu = i;
334		error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
335		    RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i);
336		if (error)
337			panic("failed to launch DPC thread");
338	}
339
340	/*
341	 * Launch the workitem threads.
342	 */
343
344	for (i = 0; i < WORKITEM_THREADS; i++) {
345		kq = wq_queues + i;
346		error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
347		    RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i);
348		if (error)
349			panic("failed to launch workitem thread");
350	}
351
352	patch = ntoskrnl_functbl;
353	while (patch->ipt_func != NULL) {
354		windrv_wrap((funcptr)patch->ipt_func,
355		    (funcptr *)&patch->ipt_wrap,
356		    patch->ipt_argcnt, patch->ipt_ftype);
357		patch++;
358	}
359
360	for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
361		e = ExAllocatePoolWithTag(NonPagedPool,
362		    sizeof(callout_entry), 0);
363		if (e == NULL)
364			panic("failed to allocate timeouts");
365		mtx_lock_spin(&ntoskrnl_calllock);
366		InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
367		mtx_unlock_spin(&ntoskrnl_calllock);
368	}
369
370	/*
371	 * MDLs are supposed to be variable size (they describe
372	 * buffers containing some number of pages, but we don't
373	 * know ahead of time how many pages that will be). But
374	 * always allocating them off the heap is very slow. As
375	 * a compromise, we create an MDL UMA zone big enough to
376	 * handle any buffer requiring up to 16 pages, and we
377	 * use those for any MDLs for buffers of 16 pages or less
378	 * in size. For buffers larger than that (which we assume
379	 * will be few and far between, we allocate the MDLs off
380	 * the heap.
381	 */
382
383	mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
384	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
385
386	iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
387	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
388
389	return (0);
390}
391
392int
393ntoskrnl_libfini()
394{
395	image_patch_table	*patch;
396	callout_entry		*e;
397	list_entry		*l;
398
399	patch = ntoskrnl_functbl;
400	while (patch->ipt_func != NULL) {
401		windrv_unwrap(patch->ipt_wrap);
402		patch++;
403	}
404
405	/* Stop the workitem queues. */
406	ntoskrnl_destroy_workitem_threads();
407	/* Stop the DPC queues. */
408	ntoskrnl_destroy_dpc_threads();
409
410	ExFreePool(kq_queues);
411	ExFreePool(wq_queues);
412
413	uma_zdestroy(mdl_zone);
414	uma_zdestroy(iw_zone);
415
416	mtx_lock_spin(&ntoskrnl_calllock);
417	while(!IsListEmpty(&ntoskrnl_calllist)) {
418		l = RemoveHeadList(&ntoskrnl_calllist);
419		e = CONTAINING_RECORD(l, callout_entry, ce_list);
420		mtx_unlock_spin(&ntoskrnl_calllock);
421		ExFreePool(e);
422		mtx_lock_spin(&ntoskrnl_calllock);
423	}
424	mtx_unlock_spin(&ntoskrnl_calllock);
425
426	mtx_destroy(&ntoskrnl_dispatchlock);
427	mtx_destroy(&ntoskrnl_interlock);
428	mtx_destroy(&ntoskrnl_calllock);
429
430	return (0);
431}
432
433/*
434 * We need to be able to reference this externally from the wrapper;
435 * GCC only generates a local implementation of memset.
436 */
437static void *
438ntoskrnl_memset(buf, ch, size)
439	void			*buf;
440	int			ch;
441	size_t			size;
442{
443	return (memset(buf, ch, size));
444}
445
446static void *
447ntoskrnl_memmove(dst, src, size)
448	void			*src;
449	void			*dst;
450	size_t			size;
451{
452	bcopy(src, dst, size);
453	return (dst);
454}
455
456static void *
457ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
458{
459	if (len != 0) {
460		unsigned char *p = buf;
461
462		do {
463			if (*p++ == ch)
464				return (p - 1);
465		} while (--len != 0);
466	}
467	return (NULL);
468}
469
470static char *
471ntoskrnl_strstr(s, find)
472	char *s, *find;
473{
474	char c, sc;
475	size_t len;
476
477	if ((c = *find++) != 0) {
478		len = strlen(find);
479		do {
480			do {
481				if ((sc = *s++) == 0)
482					return (NULL);
483			} while (sc != c);
484		} while (strncmp(s, find, len) != 0);
485		s--;
486	}
487	return ((char *)s);
488}
489
490/* Taken from libc */
491static char *
492ntoskrnl_strncat(dst, src, n)
493	char		*dst;
494	char		*src;
495	size_t		n;
496{
497	if (n != 0) {
498		char *d = dst;
499		const char *s = src;
500
501		while (*d != 0)
502			d++;
503		do {
504			if ((*d = *s++) == 0)
505				break;
506			d++;
507		} while (--n != 0);
508		*d = 0;
509	}
510	return (dst);
511}
512
513static int
514ntoskrnl_toupper(c)
515	int			c;
516{
517	return (toupper(c));
518}
519
520static int
521ntoskrnl_tolower(c)
522	int			c;
523{
524	return (tolower(c));
525}
526
527static uint8_t
528RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
529	uint8_t caseinsensitive)
530{
531	int			i;
532
533	if (str1->us_len != str2->us_len)
534		return (FALSE);
535
536	for (i = 0; i < str1->us_len; i++) {
537		if (caseinsensitive == TRUE) {
538			if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
539			    toupper((char)(str2->us_buf[i] & 0xFF)))
540				return (FALSE);
541		} else {
542			if (str1->us_buf[i] != str2->us_buf[i])
543				return (FALSE);
544		}
545	}
546
547	return (TRUE);
548}
549
550static void
551RtlCopyString(dst, src)
552	ansi_string		*dst;
553	const ansi_string	*src;
554{
555	if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) {
556		dst->as_len = min(src->as_len, dst->as_maxlen);
557		memcpy(dst->as_buf, src->as_buf, dst->as_len);
558		if (dst->as_len < dst->as_maxlen)
559			dst->as_buf[dst->as_len] = 0;
560	} else
561		dst->as_len = 0;
562}
563
564static void
565RtlCopyUnicodeString(dest, src)
566	unicode_string		*dest;
567	unicode_string		*src;
568{
569
570	if (dest->us_maxlen >= src->us_len)
571		dest->us_len = src->us_len;
572	else
573		dest->us_len = dest->us_maxlen;
574	memcpy(dest->us_buf, src->us_buf, dest->us_len);
575}
576
577static void
578ntoskrnl_ascii_to_unicode(ascii, unicode, len)
579	char			*ascii;
580	uint16_t		*unicode;
581	int			len;
582{
583	int			i;
584	uint16_t		*ustr;
585
586	ustr = unicode;
587	for (i = 0; i < len; i++) {
588		*ustr = (uint16_t)ascii[i];
589		ustr++;
590	}
591}
592
593static void
594ntoskrnl_unicode_to_ascii(unicode, ascii, len)
595	uint16_t		*unicode;
596	char			*ascii;
597	int			len;
598{
599	int			i;
600	uint8_t			*astr;
601
602	astr = ascii;
603	for (i = 0; i < len / 2; i++) {
604		*astr = (uint8_t)unicode[i];
605		astr++;
606	}
607}
608
609uint32_t
610RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
611{
612	if (dest == NULL || src == NULL)
613		return (STATUS_INVALID_PARAMETER);
614
615	dest->as_len = src->us_len / 2;
616	if (dest->as_maxlen < dest->as_len)
617		dest->as_len = dest->as_maxlen;
618
619	if (allocate == TRUE) {
620		dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
621		    (src->us_len / 2) + 1, 0);
622		if (dest->as_buf == NULL)
623			return (STATUS_INSUFFICIENT_RESOURCES);
624		dest->as_len = dest->as_maxlen = src->us_len / 2;
625	} else {
626		dest->as_len = src->us_len / 2; /* XXX */
627		if (dest->as_maxlen < dest->as_len)
628			dest->as_len = dest->as_maxlen;
629	}
630
631	ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
632	    dest->as_len * 2);
633
634	return (STATUS_SUCCESS);
635}
636
637uint32_t
638RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
639	uint8_t allocate)
640{
641	if (dest == NULL || src == NULL)
642		return (STATUS_INVALID_PARAMETER);
643
644	if (allocate == TRUE) {
645		dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
646		    src->as_len * 2, 0);
647		if (dest->us_buf == NULL)
648			return (STATUS_INSUFFICIENT_RESOURCES);
649		dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
650	} else {
651		dest->us_len = src->as_len * 2; /* XXX */
652		if (dest->us_maxlen < dest->us_len)
653			dest->us_len = dest->us_maxlen;
654	}
655
656	ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
657	    dest->us_len / 2);
658
659	return (STATUS_SUCCESS);
660}
661
662void *
663ExAllocatePoolWithTag(pooltype, len, tag)
664	uint32_t		pooltype;
665	size_t			len;
666	uint32_t		tag;
667{
668	void			*buf;
669
670	buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
671	if (buf == NULL)
672		return (NULL);
673
674	return (buf);
675}
676
677static void
678ExFreePoolWithTag(buf, tag)
679	void		*buf;
680	uint32_t	tag;
681{
682	ExFreePool(buf);
683}
684
685void
686ExFreePool(buf)
687	void			*buf;
688{
689	free(buf, M_DEVBUF);
690}
691
692uint32_t
693IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
694	driver_object		*drv;
695	void			*clid;
696	uint32_t		extlen;
697	void			**ext;
698{
699	custom_extension	*ce;
700
701	ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
702	    + extlen, 0);
703
704	if (ce == NULL)
705		return (STATUS_INSUFFICIENT_RESOURCES);
706
707	ce->ce_clid = clid;
708	InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
709
710	*ext = (void *)(ce + 1);
711
712	return (STATUS_SUCCESS);
713}
714
715void *
716IoGetDriverObjectExtension(drv, clid)
717	driver_object		*drv;
718	void			*clid;
719{
720	list_entry		*e;
721	custom_extension	*ce;
722
723	/*
724	 * Sanity check. Our dummy bus drivers don't have
725	 * any driver extensions.
726	 */
727
728	if (drv->dro_driverext == NULL)
729		return (NULL);
730
731	e = drv->dro_driverext->dre_usrext.nle_flink;
732	while (e != &drv->dro_driverext->dre_usrext) {
733		ce = (custom_extension *)e;
734		if (ce->ce_clid == clid)
735			return ((void *)(ce + 1));
736		e = e->nle_flink;
737	}
738
739	return (NULL);
740}
741
742
743uint32_t
744IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
745	uint32_t devtype, uint32_t devchars, uint8_t exclusive,
746	device_object **newdev)
747{
748	device_object		*dev;
749
750	dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
751	if (dev == NULL)
752		return (STATUS_INSUFFICIENT_RESOURCES);
753
754	dev->do_type = devtype;
755	dev->do_drvobj = drv;
756	dev->do_currirp = NULL;
757	dev->do_flags = 0;
758
759	if (devextlen) {
760		dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
761		    devextlen, 0);
762
763		if (dev->do_devext == NULL) {
764			ExFreePool(dev);
765			return (STATUS_INSUFFICIENT_RESOURCES);
766		}
767
768		bzero(dev->do_devext, devextlen);
769	} else
770		dev->do_devext = NULL;
771
772	dev->do_size = sizeof(device_object) + devextlen;
773	dev->do_refcnt = 1;
774	dev->do_attacheddev = NULL;
775	dev->do_nextdev = NULL;
776	dev->do_devtype = devtype;
777	dev->do_stacksize = 1;
778	dev->do_alignreq = 1;
779	dev->do_characteristics = devchars;
780	dev->do_iotimer = NULL;
781	KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
782
783	/*
784	 * Vpd is used for disk/tape devices,
785	 * but we don't support those. (Yet.)
786	 */
787	dev->do_vpb = NULL;
788
789	dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
790	    sizeof(devobj_extension), 0);
791
792	if (dev->do_devobj_ext == NULL) {
793		if (dev->do_devext != NULL)
794			ExFreePool(dev->do_devext);
795		ExFreePool(dev);
796		return (STATUS_INSUFFICIENT_RESOURCES);
797	}
798
799	dev->do_devobj_ext->dve_type = 0;
800	dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
801	dev->do_devobj_ext->dve_devobj = dev;
802
803	/*
804	 * Attach this device to the driver object's list
805	 * of devices. Note: this is not the same as attaching
806	 * the device to the device stack. The driver's AddDevice
807	 * routine must explicitly call IoAddDeviceToDeviceStack()
808	 * to do that.
809	 */
810
811	if (drv->dro_devobj == NULL) {
812		drv->dro_devobj = dev;
813		dev->do_nextdev = NULL;
814	} else {
815		dev->do_nextdev = drv->dro_devobj;
816		drv->dro_devobj = dev;
817	}
818
819	*newdev = dev;
820
821	return (STATUS_SUCCESS);
822}
823
824void
825IoDeleteDevice(dev)
826	device_object		*dev;
827{
828	device_object		*prev;
829
830	if (dev == NULL)
831		return;
832
833	if (dev->do_devobj_ext != NULL)
834		ExFreePool(dev->do_devobj_ext);
835
836	if (dev->do_devext != NULL)
837		ExFreePool(dev->do_devext);
838
839	/* Unlink the device from the driver's device list. */
840
841	prev = dev->do_drvobj->dro_devobj;
842	if (prev == dev)
843		dev->do_drvobj->dro_devobj = dev->do_nextdev;
844	else {
845		while (prev->do_nextdev != dev)
846			prev = prev->do_nextdev;
847		prev->do_nextdev = dev->do_nextdev;
848	}
849
850	ExFreePool(dev);
851}
852
853device_object *
854IoGetAttachedDevice(dev)
855	device_object		*dev;
856{
857	device_object		*d;
858
859	if (dev == NULL)
860		return (NULL);
861
862	d = dev;
863
864	while (d->do_attacheddev != NULL)
865		d = d->do_attacheddev;
866
867	return (d);
868}
869
870static irp *
871IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
872	uint32_t		func;
873	device_object		*dobj;
874	void			*buf;
875	uint32_t		len;
876	uint64_t		*off;
877	nt_kevent		*event;
878	io_status_block		*status;
879{
880	irp			*ip;
881
882	ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
883	if (ip == NULL)
884		return (NULL);
885	ip->irp_usrevent = event;
886
887	return (ip);
888}
889
890static irp *
891IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
892	uint32_t		func;
893	device_object		*dobj;
894	void			*buf;
895	uint32_t		len;
896	uint64_t		*off;
897	io_status_block		*status;
898{
899	irp			*ip;
900	io_stack_location	*sl;
901
902	ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
903	if (ip == NULL)
904		return (NULL);
905
906	ip->irp_usriostat = status;
907	ip->irp_tail.irp_overlay.irp_thread = NULL;
908
909	sl = IoGetNextIrpStackLocation(ip);
910	sl->isl_major = func;
911	sl->isl_minor = 0;
912	sl->isl_flags = 0;
913	sl->isl_ctl = 0;
914	sl->isl_devobj = dobj;
915	sl->isl_fileobj = NULL;
916	sl->isl_completionfunc = NULL;
917
918	ip->irp_userbuf = buf;
919
920	if (dobj->do_flags & DO_BUFFERED_IO) {
921		ip->irp_assoc.irp_sysbuf =
922		    ExAllocatePoolWithTag(NonPagedPool, len, 0);
923		if (ip->irp_assoc.irp_sysbuf == NULL) {
924			IoFreeIrp(ip);
925			return (NULL);
926		}
927		bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
928	}
929
930	if (dobj->do_flags & DO_DIRECT_IO) {
931		ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
932		if (ip->irp_mdl == NULL) {
933			if (ip->irp_assoc.irp_sysbuf != NULL)
934				ExFreePool(ip->irp_assoc.irp_sysbuf);
935			IoFreeIrp(ip);
936			return (NULL);
937		}
938		ip->irp_userbuf = NULL;
939		ip->irp_assoc.irp_sysbuf = NULL;
940	}
941
942	if (func == IRP_MJ_READ) {
943		sl->isl_parameters.isl_read.isl_len = len;
944		if (off != NULL)
945			sl->isl_parameters.isl_read.isl_byteoff = *off;
946		else
947			sl->isl_parameters.isl_read.isl_byteoff = 0;
948	}
949
950	if (func == IRP_MJ_WRITE) {
951		sl->isl_parameters.isl_write.isl_len = len;
952		if (off != NULL)
953			sl->isl_parameters.isl_write.isl_byteoff = *off;
954		else
955			sl->isl_parameters.isl_write.isl_byteoff = 0;
956	}
957
958	return (ip);
959}
960
961static irp *
962IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
963	uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
964	nt_kevent *event, io_status_block *status)
965{
966	irp			*ip;
967	io_stack_location	*sl;
968	uint32_t		buflen;
969
970	ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
971	if (ip == NULL)
972		return (NULL);
973	ip->irp_usrevent = event;
974	ip->irp_usriostat = status;
975	ip->irp_tail.irp_overlay.irp_thread = NULL;
976
977	sl = IoGetNextIrpStackLocation(ip);
978	sl->isl_major = isinternal == TRUE ?
979	    IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
980	sl->isl_minor = 0;
981	sl->isl_flags = 0;
982	sl->isl_ctl = 0;
983	sl->isl_devobj = dobj;
984	sl->isl_fileobj = NULL;
985	sl->isl_completionfunc = NULL;
986	sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
987	sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
988	sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
989
990	switch(IO_METHOD(iocode)) {
991	case METHOD_BUFFERED:
992		if (ilen > olen)
993			buflen = ilen;
994		else
995			buflen = olen;
996		if (buflen) {
997			ip->irp_assoc.irp_sysbuf =
998			    ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
999			if (ip->irp_assoc.irp_sysbuf == NULL) {
1000				IoFreeIrp(ip);
1001				return (NULL);
1002			}
1003		}
1004		if (ilen && ibuf != NULL) {
1005			bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
1006			bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
1007			    buflen - ilen);
1008		} else
1009			bzero(ip->irp_assoc.irp_sysbuf, ilen);
1010		ip->irp_userbuf = obuf;
1011		break;
1012	case METHOD_IN_DIRECT:
1013	case METHOD_OUT_DIRECT:
1014		if (ilen && ibuf != NULL) {
1015			ip->irp_assoc.irp_sysbuf =
1016			    ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
1017			if (ip->irp_assoc.irp_sysbuf == NULL) {
1018				IoFreeIrp(ip);
1019				return (NULL);
1020			}
1021			bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
1022		}
1023		if (olen && obuf != NULL) {
1024			ip->irp_mdl = IoAllocateMdl(obuf, olen,
1025			    FALSE, FALSE, ip);
1026			/*
1027			 * Normally we would MmProbeAndLockPages()
1028			 * here, but we don't have to in our
1029			 * imlementation.
1030			 */
1031		}
1032		break;
1033	case METHOD_NEITHER:
1034		ip->irp_userbuf = obuf;
1035		sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
1036		break;
1037	default:
1038		break;
1039	}
1040
1041	/*
1042	 * Ideally, we should associate this IRP with the calling
1043	 * thread here.
1044	 */
1045
1046	return (ip);
1047}
1048
1049static irp *
1050IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
1051{
1052	irp			*i;
1053
1054	i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
1055	if (i == NULL)
1056		return (NULL);
1057
1058	IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
1059
1060	return (i);
1061}
1062
1063static irp *
1064IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
1065{
1066	irp			*associrp;
1067
1068	associrp = IoAllocateIrp(stsize, FALSE);
1069	if (associrp == NULL)
1070		return (NULL);
1071
1072	mtx_lock(&ntoskrnl_dispatchlock);
1073	associrp->irp_flags |= IRP_ASSOCIATED_IRP;
1074	associrp->irp_tail.irp_overlay.irp_thread =
1075	    ip->irp_tail.irp_overlay.irp_thread;
1076	associrp->irp_assoc.irp_master = ip;
1077	mtx_unlock(&ntoskrnl_dispatchlock);
1078
1079	return (associrp);
1080}
1081
1082static void
1083IoFreeIrp(ip)
1084	irp			*ip;
1085{
1086	ExFreePool(ip);
1087}
1088
1089static void
1090IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
1091{
1092	bzero((char *)io, IoSizeOfIrp(ssize));
1093	io->irp_size = psize;
1094	io->irp_stackcnt = ssize;
1095	io->irp_currentstackloc = ssize;
1096	InitializeListHead(&io->irp_thlist);
1097	io->irp_tail.irp_overlay.irp_csl =
1098	    (io_stack_location *)(io + 1) + ssize;
1099}
1100
1101static void
1102IoReuseIrp(ip, status)
1103	irp			*ip;
1104	uint32_t		status;
1105{
1106	uint8_t			allocflags;
1107
1108	allocflags = ip->irp_allocflags;
1109	IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
1110	ip->irp_iostat.isb_status = status;
1111	ip->irp_allocflags = allocflags;
1112}
1113
1114void
1115IoAcquireCancelSpinLock(uint8_t *irql)
1116{
1117	KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
1118}
1119
1120void
1121IoReleaseCancelSpinLock(uint8_t irql)
1122{
1123	KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
1124}
1125
1126uint8_t
1127IoCancelIrp(irp *ip)
1128{
1129	cancel_func		cfunc;
1130	uint8_t			cancelirql;
1131
1132	IoAcquireCancelSpinLock(&cancelirql);
1133	cfunc = IoSetCancelRoutine(ip, NULL);
1134	ip->irp_cancel = TRUE;
1135	if (cfunc == NULL) {
1136		IoReleaseCancelSpinLock(cancelirql);
1137		return (FALSE);
1138	}
1139	ip->irp_cancelirql = cancelirql;
1140	MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
1141	return (uint8_t)IoSetCancelValue(ip, TRUE);
1142}
1143
1144uint32_t
1145IofCallDriver(dobj, ip)
1146	device_object		*dobj;
1147	irp			*ip;
1148{
1149	driver_object		*drvobj;
1150	io_stack_location	*sl;
1151	uint32_t		status;
1152	driver_dispatch		disp;
1153
1154	drvobj = dobj->do_drvobj;
1155
1156	if (ip->irp_currentstackloc <= 0)
1157		panic("IoCallDriver(): out of stack locations");
1158
1159	IoSetNextIrpStackLocation(ip);
1160	sl = IoGetCurrentIrpStackLocation(ip);
1161
1162	sl->isl_devobj = dobj;
1163
1164	disp = drvobj->dro_dispatch[sl->isl_major];
1165	status = MSCALL2(disp, dobj, ip);
1166
1167	return (status);
1168}
1169
1170void
1171IofCompleteRequest(irp *ip, uint8_t prioboost)
1172{
1173	uint32_t		status;
1174	device_object		*dobj;
1175	io_stack_location	*sl;
1176	completion_func		cf;
1177
1178	KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
1179	    ("incorrect IRP(%p) status (STATUS_PENDING)", ip));
1180
1181	sl = IoGetCurrentIrpStackLocation(ip);
1182	IoSkipCurrentIrpStackLocation(ip);
1183
1184	do {
1185		if (sl->isl_ctl & SL_PENDING_RETURNED)
1186			ip->irp_pendingreturned = TRUE;
1187
1188		if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
1189			dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
1190		else
1191			dobj = NULL;
1192
1193		if (sl->isl_completionfunc != NULL &&
1194		    ((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
1195		    sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
1196		    (ip->irp_iostat.isb_status != STATUS_SUCCESS &&
1197		    sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
1198		    (ip->irp_cancel == TRUE &&
1199		    sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
1200			cf = sl->isl_completionfunc;
1201			status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
1202			if (status == STATUS_MORE_PROCESSING_REQUIRED)
1203				return;
1204		} else {
1205			if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
1206			    (ip->irp_pendingreturned == TRUE))
1207				IoMarkIrpPending(ip);
1208		}
1209
1210		/* move to the next.  */
1211		IoSkipCurrentIrpStackLocation(ip);
1212		sl++;
1213	} while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
1214
1215	if (ip->irp_usriostat != NULL)
1216		*ip->irp_usriostat = ip->irp_iostat;
1217	if (ip->irp_usrevent != NULL)
1218		KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
1219
1220	/* Handle any associated IRPs. */
1221
1222	if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
1223		uint32_t		masterirpcnt;
1224		irp			*masterirp;
1225		mdl			*m;
1226
1227		masterirp = ip->irp_assoc.irp_master;
1228		masterirpcnt =
1229		    InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
1230
1231		while ((m = ip->irp_mdl) != NULL) {
1232			ip->irp_mdl = m->mdl_next;
1233			IoFreeMdl(m);
1234		}
1235		IoFreeIrp(ip);
1236		if (masterirpcnt == 0)
1237			IoCompleteRequest(masterirp, IO_NO_INCREMENT);
1238		return;
1239	}
1240
1241	/* With any luck, these conditions will never arise. */
1242
1243	if (ip->irp_flags & IRP_PAGING_IO) {
1244		if (ip->irp_mdl != NULL)
1245			IoFreeMdl(ip->irp_mdl);
1246		IoFreeIrp(ip);
1247	}
1248}
1249
1250void
1251ntoskrnl_intr(arg)
1252	void			*arg;
1253{
1254	kinterrupt		*iobj;
1255	uint8_t			irql;
1256	uint8_t			claimed;
1257	list_entry		*l;
1258
1259	KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1260	l = ntoskrnl_intlist.nle_flink;
1261	while (l != &ntoskrnl_intlist) {
1262		iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
1263		claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
1264		if (claimed == TRUE)
1265			break;
1266		l = l->nle_flink;
1267	}
1268	KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1269}
1270
1271uint8_t
1272KeAcquireInterruptSpinLock(iobj)
1273	kinterrupt		*iobj;
1274{
1275	uint8_t			irql;
1276	KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1277	return (irql);
1278}
1279
1280void
1281KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
1282{
1283	KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1284}
1285
1286uint8_t
1287KeSynchronizeExecution(iobj, syncfunc, syncctx)
1288	kinterrupt		*iobj;
1289	void			*syncfunc;
1290	void			*syncctx;
1291{
1292	uint8_t			irql;
1293
1294	KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1295	MSCALL1(syncfunc, syncctx);
1296	KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1297
1298	return (TRUE);
1299}
1300
1301/*
1302 * IoConnectInterrupt() is passed only the interrupt vector and
1303 * irql that a device wants to use, but no device-specific tag
1304 * of any kind. This conflicts rather badly with FreeBSD's
1305 * bus_setup_intr(), which needs the device_t for the device
1306 * requesting interrupt delivery. In order to bypass this
1307 * inconsistency, we implement a second level of interrupt
1308 * dispatching on top of bus_setup_intr(). All devices use
1309 * ntoskrnl_intr() as their ISR, and any device requesting
1310 * interrupts will be registered with ntoskrnl_intr()'s interrupt
1311 * dispatch list. When an interrupt arrives, we walk the list
1312 * and invoke all the registered ISRs. This effectively makes all
1313 * interrupts shared, but it's the only way to duplicate the
1314 * semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
1315 */
1316
1317uint32_t
1318IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
1319	kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
1320	uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
1321{
1322	uint8_t			curirql;
1323
1324	*iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
1325	if (*iobj == NULL)
1326		return (STATUS_INSUFFICIENT_RESOURCES);
1327
1328	(*iobj)->ki_svcfunc = svcfunc;
1329	(*iobj)->ki_svcctx = svcctx;
1330
1331	if (lock == NULL) {
1332		KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
1333		(*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
1334	} else
1335		(*iobj)->ki_lock = lock;
1336
1337	KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
1338	InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
1339	KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
1340
1341	return (STATUS_SUCCESS);
1342}
1343
1344void
1345IoDisconnectInterrupt(iobj)
1346	kinterrupt		*iobj;
1347{
1348	uint8_t			irql;
1349
1350	if (iobj == NULL)
1351		return;
1352
1353	KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
1354	RemoveEntryList((&iobj->ki_list));
1355	KeReleaseSpinLock(&ntoskrnl_intlock, irql);
1356
1357	ExFreePool(iobj);
1358}
1359
1360device_object *
1361IoAttachDeviceToDeviceStack(src, dst)
1362	device_object		*src;
1363	device_object		*dst;
1364{
1365	device_object		*attached;
1366
1367	mtx_lock(&ntoskrnl_dispatchlock);
1368	attached = IoGetAttachedDevice(dst);
1369	attached->do_attacheddev = src;
1370	src->do_attacheddev = NULL;
1371	src->do_stacksize = attached->do_stacksize + 1;
1372	mtx_unlock(&ntoskrnl_dispatchlock);
1373
1374	return (attached);
1375}
1376
1377void
1378IoDetachDevice(topdev)
1379	device_object		*topdev;
1380{
1381	device_object		*tail;
1382
1383	mtx_lock(&ntoskrnl_dispatchlock);
1384
1385	/* First, break the chain. */
1386	tail = topdev->do_attacheddev;
1387	if (tail == NULL) {
1388		mtx_unlock(&ntoskrnl_dispatchlock);
1389		return;
1390	}
1391	topdev->do_attacheddev = tail->do_attacheddev;
1392	topdev->do_refcnt--;
1393
1394	/* Now reduce the stacksize count for the takm_il objects. */
1395
1396	tail = topdev->do_attacheddev;
1397	while (tail != NULL) {
1398		tail->do_stacksize--;
1399		tail = tail->do_attacheddev;
1400	}
1401
1402	mtx_unlock(&ntoskrnl_dispatchlock);
1403}
1404
1405/*
1406 * For the most part, an object is considered signalled if
1407 * dh_sigstate == TRUE. The exception is for mutant objects
1408 * (mutexes), where the logic works like this:
1409 *
1410 * - If the thread already owns the object and sigstate is
1411 *   less than or equal to 0, then the object is considered
1412 *   signalled (recursive acquisition).
1413 * - If dh_sigstate == 1, the object is also considered
1414 *   signalled.
1415 */
1416
1417static int
1418ntoskrnl_is_signalled(obj, td)
1419	nt_dispatch_header	*obj;
1420	struct thread		*td;
1421{
1422	kmutant			*km;
1423
1424	if (obj->dh_type == DISP_TYPE_MUTANT) {
1425		km = (kmutant *)obj;
1426		if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
1427		    obj->dh_sigstate == 1)
1428			return (TRUE);
1429		return (FALSE);
1430	}
1431
1432	if (obj->dh_sigstate > 0)
1433		return (TRUE);
1434	return (FALSE);
1435}
1436
1437static void
1438ntoskrnl_satisfy_wait(obj, td)
1439	nt_dispatch_header	*obj;
1440	struct thread		*td;
1441{
1442	kmutant			*km;
1443
1444	switch (obj->dh_type) {
1445	case DISP_TYPE_MUTANT:
1446		km = (struct kmutant *)obj;
1447		obj->dh_sigstate--;
1448		/*
1449		 * If sigstate reaches 0, the mutex is now
1450		 * non-signalled (the new thread owns it).
1451		 */
1452		if (obj->dh_sigstate == 0) {
1453			km->km_ownerthread = td;
1454			if (km->km_abandoned == TRUE)
1455				km->km_abandoned = FALSE;
1456		}
1457		break;
1458	/* Synchronization objects get reset to unsignalled. */
1459	case DISP_TYPE_SYNCHRONIZATION_EVENT:
1460	case DISP_TYPE_SYNCHRONIZATION_TIMER:
1461		obj->dh_sigstate = 0;
1462		break;
1463	case DISP_TYPE_SEMAPHORE:
1464		obj->dh_sigstate--;
1465		break;
1466	default:
1467		break;
1468	}
1469}
1470
1471static void
1472ntoskrnl_satisfy_multiple_waits(wb)
1473	wait_block		*wb;
1474{
1475	wait_block		*cur;
1476	struct thread		*td;
1477
1478	cur = wb;
1479	td = wb->wb_kthread;
1480
1481	do {
1482		ntoskrnl_satisfy_wait(wb->wb_object, td);
1483		cur->wb_awakened = TRUE;
1484		cur = cur->wb_next;
1485	} while (cur != wb);
1486}
1487
1488/* Always called with dispatcher lock held. */
1489static void
1490ntoskrnl_waittest(obj, increment)
1491	nt_dispatch_header	*obj;
1492	uint32_t		increment;
1493{
1494	wait_block		*w, *next;
1495	list_entry		*e;
1496	struct thread		*td;
1497	wb_ext			*we;
1498	int			satisfied;
1499
1500	/*
1501	 * Once an object has been signalled, we walk its list of
1502	 * wait blocks. If a wait block can be awakened, then satisfy
1503	 * waits as necessary and wake the thread.
1504	 *
1505	 * The rules work like this:
1506	 *
1507	 * If a wait block is marked as WAITTYPE_ANY, then
1508	 * we can satisfy the wait conditions on the current
1509	 * object and wake the thread right away. Satisfying
1510	 * the wait also has the effect of breaking us out
1511	 * of the search loop.
1512	 *
1513	 * If the object is marked as WAITTYLE_ALL, then the
1514	 * wait block will be part of a circularly linked
1515	 * list of wait blocks belonging to a waiting thread
1516	 * that's sleeping in KeWaitForMultipleObjects(). In
1517	 * order to wake the thread, all the objects in the
1518	 * wait list must be in the signalled state. If they
1519	 * are, we then satisfy all of them and wake the
1520	 * thread.
1521	 *
1522	 */
1523
1524	e = obj->dh_waitlisthead.nle_flink;
1525
1526	while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
1527		w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
1528		we = w->wb_ext;
1529		td = we->we_td;
1530		satisfied = FALSE;
1531		if (w->wb_waittype == WAITTYPE_ANY) {
1532			/*
1533			 * Thread can be awakened if
1534			 * any wait is satisfied.
1535			 */
1536			ntoskrnl_satisfy_wait(obj, td);
1537			satisfied = TRUE;
1538			w->wb_awakened = TRUE;
1539		} else {
1540			/*
1541			 * Thread can only be woken up
1542			 * if all waits are satisfied.
1543			 * If the thread is waiting on multiple
1544			 * objects, they should all be linked
1545			 * through the wb_next pointers in the
1546			 * wait blocks.
1547			 */
1548			satisfied = TRUE;
1549			next = w->wb_next;
1550			while (next != w) {
1551				if (ntoskrnl_is_signalled(obj, td) == FALSE) {
1552					satisfied = FALSE;
1553					break;
1554				}
1555				next = next->wb_next;
1556			}
1557			ntoskrnl_satisfy_multiple_waits(w);
1558		}
1559
1560		if (satisfied == TRUE)
1561			cv_broadcastpri(&we->we_cv,
1562			    (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
1563			    w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
1564
1565		e = e->nle_flink;
1566	}
1567}
1568
1569/*
1570 * Return the number of 100 nanosecond intervals since
1571 * January 1, 1601. (?!?!)
1572 */
1573void
1574ntoskrnl_time(tval)
1575	uint64_t                *tval;
1576{
1577	struct timespec		ts;
1578
1579	nanotime(&ts);
1580	*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
1581	    11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
1582}
1583
1584static void
1585KeQuerySystemTime(current_time)
1586	uint64_t		*current_time;
1587{
1588	ntoskrnl_time(current_time);
1589}
1590
1591static uint32_t
1592KeTickCount(void)
1593{
1594	struct timeval tv;
1595	getmicrouptime(&tv);
1596	return tvtohz(&tv);
1597}
1598
1599
1600/*
1601 * KeWaitForSingleObject() is a tricky beast, because it can be used
1602 * with several different object types: semaphores, timers, events,
1603 * mutexes and threads. Semaphores don't appear very often, but the
1604 * other object types are quite common. KeWaitForSingleObject() is
1605 * what's normally used to acquire a mutex, and it can be used to
1606 * wait for a thread termination.
1607 *
1608 * The Windows NDIS API is implemented in terms of Windows kernel
1609 * primitives, and some of the object manipulation is duplicated in
1610 * NDIS. For example, NDIS has timers and events, which are actually
1611 * Windows kevents and ktimers. Now, you're supposed to only use the
1612 * NDIS variants of these objects within the confines of the NDIS API,
1613 * but there are some naughty developers out there who will use
1614 * KeWaitForSingleObject() on NDIS timer and event objects, so we
1615 * have to support that as well. Conseqently, our NDIS timer and event
1616 * code has to be closely tied into our ntoskrnl timer and event code,
1617 * just as it is in Windows.
1618 *
1619 * KeWaitForSingleObject() may do different things for different kinds
1620 * of objects:
1621 *
1622 * - For events, we check if the event has been signalled. If the
1623 *   event is already in the signalled state, we just return immediately,
1624 *   otherwise we wait for it to be set to the signalled state by someone
1625 *   else calling KeSetEvent(). Events can be either synchronization or
1626 *   notification events.
1627 *
1628 * - For timers, if the timer has already fired and the timer is in
1629 *   the signalled state, we just return, otherwise we wait on the
1630 *   timer. Unlike an event, timers get signalled automatically when
1631 *   they expire rather than someone having to trip them manually.
1632 *   Timers initialized with KeInitializeTimer() are always notification
1633 *   events: KeInitializeTimerEx() lets you initialize a timer as
1634 *   either a notification or synchronization event.
1635 *
1636 * - For mutexes, we try to acquire the mutex and if we can't, we wait
1637 *   on the mutex until it's available and then grab it. When a mutex is
1638 *   released, it enters the signalled state, which wakes up one of the
1639 *   threads waiting to acquire it. Mutexes are always synchronization
1640 *   events.
1641 *
1642 * - For threads, the only thing we do is wait until the thread object
1643 *   enters a signalled state, which occurs when the thread terminates.
1644 *   Threads are always notification events.
1645 *
1646 * A notification event wakes up all threads waiting on an object. A
1647 * synchronization event wakes up just one. Also, a synchronization event
1648 * is auto-clearing, which means we automatically set the event back to
1649 * the non-signalled state once the wakeup is done.
1650 */
1651
1652uint32_t
1653KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
1654    uint8_t alertable, int64_t *duetime)
1655{
1656	wait_block		w;
1657	struct thread		*td = curthread;
1658	struct timeval		tv;
1659	int			error = 0;
1660	uint64_t		curtime;
1661	wb_ext			we;
1662	nt_dispatch_header	*obj;
1663
1664	obj = arg;
1665
1666	if (obj == NULL)
1667		return (STATUS_INVALID_PARAMETER);
1668
1669	mtx_lock(&ntoskrnl_dispatchlock);
1670
1671	cv_init(&we.we_cv, "KeWFS");
1672	we.we_td = td;
1673
1674	/*
1675	 * Check to see if this object is already signalled,
1676	 * and just return without waiting if it is.
1677	 */
1678	if (ntoskrnl_is_signalled(obj, td) == TRUE) {
1679		/* Sanity check the signal state value. */
1680		if (obj->dh_sigstate != INT32_MIN) {
1681			ntoskrnl_satisfy_wait(obj, curthread);
1682			mtx_unlock(&ntoskrnl_dispatchlock);
1683			return (STATUS_SUCCESS);
1684		} else {
1685			/*
1686			 * There's a limit to how many times we can
1687			 * recursively acquire a mutant. If we hit
1688			 * the limit, something is very wrong.
1689			 */
1690			if (obj->dh_type == DISP_TYPE_MUTANT) {
1691				mtx_unlock(&ntoskrnl_dispatchlock);
1692				panic("mutant limit exceeded");
1693			}
1694		}
1695	}
1696
1697	bzero((char *)&w, sizeof(wait_block));
1698	w.wb_object = obj;
1699	w.wb_ext = &we;
1700	w.wb_waittype = WAITTYPE_ANY;
1701	w.wb_next = &w;
1702	w.wb_waitkey = 0;
1703	w.wb_awakened = FALSE;
1704	w.wb_oldpri = td->td_priority;
1705
1706	InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
1707
1708	/*
1709	 * The timeout value is specified in 100 nanosecond units
1710	 * and can be a positive or negative number. If it's positive,
1711	 * then the duetime is absolute, and we need to convert it
1712	 * to an absolute offset relative to now in order to use it.
1713	 * If it's negative, then the duetime is relative and we
1714	 * just have to convert the units.
1715	 */
1716
1717	if (duetime != NULL) {
1718		if (*duetime < 0) {
1719			tv.tv_sec = - (*duetime) / 10000000;
1720			tv.tv_usec = (- (*duetime) / 10) -
1721			    (tv.tv_sec * 1000000);
1722		} else {
1723			ntoskrnl_time(&curtime);
1724			if (*duetime < curtime)
1725				tv.tv_sec = tv.tv_usec = 0;
1726			else {
1727				tv.tv_sec = ((*duetime) - curtime) / 10000000;
1728				tv.tv_usec = ((*duetime) - curtime) / 10 -
1729				    (tv.tv_sec * 1000000);
1730			}
1731		}
1732	}
1733
1734	if (duetime == NULL)
1735		cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
1736	else
1737		error = cv_timedwait(&we.we_cv,
1738		    &ntoskrnl_dispatchlock, tvtohz(&tv));
1739
1740	RemoveEntryList(&w.wb_waitlist);
1741
1742	cv_destroy(&we.we_cv);
1743
1744	/* We timed out. Leave the object alone and return status. */
1745
1746	if (error == EWOULDBLOCK) {
1747		mtx_unlock(&ntoskrnl_dispatchlock);
1748		return (STATUS_TIMEOUT);
1749	}
1750
1751	mtx_unlock(&ntoskrnl_dispatchlock);
1752
1753	return (STATUS_SUCCESS);
1754/*
1755	return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
1756	    mode, alertable, duetime, &w));
1757*/
1758}
1759
1760static uint32_t
1761KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
1762	uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
1763	wait_block *wb_array)
1764{
1765	struct thread		*td = curthread;
1766	wait_block		*whead, *w;
1767	wait_block		_wb_array[MAX_WAIT_OBJECTS];
1768	nt_dispatch_header	*cur;
1769	struct timeval		tv;
1770	int			i, wcnt = 0, error = 0;
1771	uint64_t		curtime;
1772	struct timespec		t1, t2;
1773	uint32_t		status = STATUS_SUCCESS;
1774	wb_ext			we;
1775
1776	if (cnt > MAX_WAIT_OBJECTS)
1777		return (STATUS_INVALID_PARAMETER);
1778	if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
1779		return (STATUS_INVALID_PARAMETER);
1780
1781	mtx_lock(&ntoskrnl_dispatchlock);
1782
1783	cv_init(&we.we_cv, "KeWFM");
1784	we.we_td = td;
1785
1786	if (wb_array == NULL)
1787		whead = _wb_array;
1788	else
1789		whead = wb_array;
1790
1791	bzero((char *)whead, sizeof(wait_block) * cnt);
1792
1793	/* First pass: see if we can satisfy any waits immediately. */
1794
1795	wcnt = 0;
1796	w = whead;
1797
1798	for (i = 0; i < cnt; i++) {
1799		InsertTailList((&obj[i]->dh_waitlisthead),
1800		    (&w->wb_waitlist));
1801		w->wb_ext = &we;
1802		w->wb_object = obj[i];
1803		w->wb_waittype = wtype;
1804		w->wb_waitkey = i;
1805		w->wb_awakened = FALSE;
1806		w->wb_oldpri = td->td_priority;
1807		w->wb_next = w + 1;
1808		w++;
1809		wcnt++;
1810		if (ntoskrnl_is_signalled(obj[i], td)) {
1811			/*
1812			 * There's a limit to how many times
1813			 * we can recursively acquire a mutant.
1814			 * If we hit the limit, something
1815			 * is very wrong.
1816			 */
1817			if (obj[i]->dh_sigstate == INT32_MIN &&
1818			    obj[i]->dh_type == DISP_TYPE_MUTANT) {
1819				mtx_unlock(&ntoskrnl_dispatchlock);
1820				panic("mutant limit exceeded");
1821			}
1822
1823			/*
1824			 * If this is a WAITTYPE_ANY wait, then
1825			 * satisfy the waited object and exit
1826			 * right now.
1827			 */
1828
1829			if (wtype == WAITTYPE_ANY) {
1830				ntoskrnl_satisfy_wait(obj[i], td);
1831				status = STATUS_WAIT_0 + i;
1832				goto wait_done;
1833			} else {
1834				w--;
1835				wcnt--;
1836				w->wb_object = NULL;
1837				RemoveEntryList(&w->wb_waitlist);
1838			}
1839		}
1840	}
1841
1842	/*
1843	 * If this is a WAITTYPE_ALL wait and all objects are
1844	 * already signalled, satisfy the waits and exit now.
1845	 */
1846
1847	if (wtype == WAITTYPE_ALL && wcnt == 0) {
1848		for (i = 0; i < cnt; i++)
1849			ntoskrnl_satisfy_wait(obj[i], td);
1850		status = STATUS_SUCCESS;
1851		goto wait_done;
1852	}
1853
1854	/*
1855	 * Create a circular waitblock list. The waitcount
1856	 * must always be non-zero when we get here.
1857	 */
1858
1859	(w - 1)->wb_next = whead;
1860
1861	/* Wait on any objects that aren't yet signalled. */
1862
1863	/* Calculate timeout, if any. */
1864
1865	if (duetime != NULL) {
1866		if (*duetime < 0) {
1867			tv.tv_sec = - (*duetime) / 10000000;
1868			tv.tv_usec = (- (*duetime) / 10) -
1869			    (tv.tv_sec * 1000000);
1870		} else {
1871			ntoskrnl_time(&curtime);
1872			if (*duetime < curtime)
1873				tv.tv_sec = tv.tv_usec = 0;
1874			else {
1875				tv.tv_sec = ((*duetime) - curtime) / 10000000;
1876				tv.tv_usec = ((*duetime) - curtime) / 10 -
1877				    (tv.tv_sec * 1000000);
1878			}
1879		}
1880	}
1881
1882	while (wcnt) {
1883		nanotime(&t1);
1884
1885		if (duetime == NULL)
1886			cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
1887		else
1888			error = cv_timedwait(&we.we_cv,
1889			    &ntoskrnl_dispatchlock, tvtohz(&tv));
1890
1891		/* Wait with timeout expired. */
1892
1893		if (error) {
1894			status = STATUS_TIMEOUT;
1895			goto wait_done;
1896		}
1897
1898		nanotime(&t2);
1899
1900		/* See what's been signalled. */
1901
1902		w = whead;
1903		do {
1904			cur = w->wb_object;
1905			if (ntoskrnl_is_signalled(cur, td) == TRUE ||
1906			    w->wb_awakened == TRUE) {
1907				/* Sanity check the signal state value. */
1908				if (cur->dh_sigstate == INT32_MIN &&
1909				    cur->dh_type == DISP_TYPE_MUTANT) {
1910					mtx_unlock(&ntoskrnl_dispatchlock);
1911					panic("mutant limit exceeded");
1912				}
1913				wcnt--;
1914				if (wtype == WAITTYPE_ANY) {
1915					status = w->wb_waitkey &
1916					    STATUS_WAIT_0;
1917					goto wait_done;
1918				}
1919			}
1920			w = w->wb_next;
1921		} while (w != whead);
1922
1923		/*
1924		 * If all objects have been signalled, or if this
1925		 * is a WAITTYPE_ANY wait and we were woke up by
1926		 * someone, we can bail.
1927		 */
1928
1929		if (wcnt == 0) {
1930			status = STATUS_SUCCESS;
1931			goto wait_done;
1932		}
1933
1934		/*
1935		 * If this is WAITTYPE_ALL wait, and there's still
1936		 * objects that haven't been signalled, deduct the
1937		 * time that's elapsed so far from the timeout and
1938		 * wait again (or continue waiting indefinitely if
1939		 * there's no timeout).
1940		 */
1941
1942		if (duetime != NULL) {
1943			tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
1944			tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
1945		}
1946	}
1947
1948
1949wait_done:
1950
1951	cv_destroy(&we.we_cv);
1952
1953	for (i = 0; i < cnt; i++) {
1954		if (whead[i].wb_object != NULL)
1955			RemoveEntryList(&whead[i].wb_waitlist);
1956
1957	}
1958	mtx_unlock(&ntoskrnl_dispatchlock);
1959
1960	return (status);
1961}
1962
1963static void
1964WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
1965{
1966	bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
1967}
1968
1969static uint16_t
1970READ_REGISTER_USHORT(reg)
1971	uint16_t		*reg;
1972{
1973	return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1974}
1975
1976static void
1977WRITE_REGISTER_ULONG(reg, val)
1978	uint32_t		*reg;
1979	uint32_t		val;
1980{
1981	bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
1982}
1983
1984static uint32_t
1985READ_REGISTER_ULONG(reg)
1986	uint32_t		*reg;
1987{
1988	return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1989}
1990
1991static uint8_t
1992READ_REGISTER_UCHAR(uint8_t *reg)
1993{
1994	return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
1995}
1996
1997static void
1998WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
1999{
2000	bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
2001}
2002
2003static int64_t
2004_allmul(a, b)
2005	int64_t			a;
2006	int64_t			b;
2007{
2008	return (a * b);
2009}
2010
2011static int64_t
2012_alldiv(a, b)
2013	int64_t			a;
2014	int64_t			b;
2015{
2016	return (a / b);
2017}
2018
2019static int64_t
2020_allrem(a, b)
2021	int64_t			a;
2022	int64_t			b;
2023{
2024	return (a % b);
2025}
2026
2027static uint64_t
2028_aullmul(a, b)
2029	uint64_t		a;
2030	uint64_t		b;
2031{
2032	return (a * b);
2033}
2034
2035static uint64_t
2036_aulldiv(a, b)
2037	uint64_t		a;
2038	uint64_t		b;
2039{
2040	return (a / b);
2041}
2042
2043static uint64_t
2044_aullrem(a, b)
2045	uint64_t		a;
2046	uint64_t		b;
2047{
2048	return (a % b);
2049}
2050
2051static int64_t
2052_allshl(int64_t a, uint8_t b)
2053{
2054	return (a << b);
2055}
2056
2057static uint64_t
2058_aullshl(uint64_t a, uint8_t b)
2059{
2060	return (a << b);
2061}
2062
2063static int64_t
2064_allshr(int64_t a, uint8_t b)
2065{
2066	return (a >> b);
2067}
2068
2069static uint64_t
2070_aullshr(uint64_t a, uint8_t b)
2071{
2072	return (a >> b);
2073}
2074
2075static slist_entry *
2076ntoskrnl_pushsl(head, entry)
2077	slist_header		*head;
2078	slist_entry		*entry;
2079{
2080	slist_entry		*oldhead;
2081
2082	oldhead = head->slh_list.slh_next;
2083	entry->sl_next = head->slh_list.slh_next;
2084	head->slh_list.slh_next = entry;
2085	head->slh_list.slh_depth++;
2086	head->slh_list.slh_seq++;
2087
2088	return (oldhead);
2089}
2090
2091static void
2092InitializeSListHead(head)
2093	slist_header		*head;
2094{
2095	memset(head, 0, sizeof(*head));
2096}
2097
2098static slist_entry *
2099ntoskrnl_popsl(head)
2100	slist_header		*head;
2101{
2102	slist_entry		*first;
2103
2104	first = head->slh_list.slh_next;
2105	if (first != NULL) {
2106		head->slh_list.slh_next = first->sl_next;
2107		head->slh_list.slh_depth--;
2108		head->slh_list.slh_seq++;
2109	}
2110
2111	return (first);
2112}
2113
2114/*
2115 * We need this to make lookaside lists work for amd64.
2116 * We pass a pointer to ExAllocatePoolWithTag() the lookaside
2117 * list structure. For amd64 to work right, this has to be a
2118 * pointer to the wrapped version of the routine, not the
2119 * original. Letting the Windows driver invoke the original
2120 * function directly will result in a convention calling
2121 * mismatch and a pretty crash. On x86, this effectively
2122 * becomes a no-op since ipt_func and ipt_wrap are the same.
2123 */
2124
2125static funcptr
2126ntoskrnl_findwrap(func)
2127	funcptr			func;
2128{
2129	image_patch_table	*patch;
2130
2131	patch = ntoskrnl_functbl;
2132	while (patch->ipt_func != NULL) {
2133		if ((funcptr)patch->ipt_func == func)
2134			return ((funcptr)patch->ipt_wrap);
2135		patch++;
2136	}
2137
2138	return (NULL);
2139}
2140
2141static void
2142ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
2143	lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
2144	uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
2145{
2146	bzero((char *)lookaside, sizeof(paged_lookaside_list));
2147
2148	if (size < sizeof(slist_entry))
2149		lookaside->nll_l.gl_size = sizeof(slist_entry);
2150	else
2151		lookaside->nll_l.gl_size = size;
2152	lookaside->nll_l.gl_tag = tag;
2153	if (allocfunc == NULL)
2154		lookaside->nll_l.gl_allocfunc =
2155		    ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
2156	else
2157		lookaside->nll_l.gl_allocfunc = allocfunc;
2158
2159	if (freefunc == NULL)
2160		lookaside->nll_l.gl_freefunc =
2161		    ntoskrnl_findwrap((funcptr)ExFreePool);
2162	else
2163		lookaside->nll_l.gl_freefunc = freefunc;
2164
2165#ifdef __i386__
2166	KeInitializeSpinLock(&lookaside->nll_obsoletelock);
2167#endif
2168
2169	lookaside->nll_l.gl_type = NonPagedPool;
2170	lookaside->nll_l.gl_depth = depth;
2171	lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
2172}
2173
2174static void
2175ExDeletePagedLookasideList(lookaside)
2176	paged_lookaside_list   *lookaside;
2177{
2178	void			*buf;
2179	void		(*freefunc)(void *);
2180
2181	freefunc = lookaside->nll_l.gl_freefunc;
2182	while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
2183		MSCALL1(freefunc, buf);
2184}
2185
2186static void
2187ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
2188	lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
2189	uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
2190{
2191	bzero((char *)lookaside, sizeof(npaged_lookaside_list));
2192
2193	if (size < sizeof(slist_entry))
2194		lookaside->nll_l.gl_size = sizeof(slist_entry);
2195	else
2196		lookaside->nll_l.gl_size = size;
2197	lookaside->nll_l.gl_tag = tag;
2198	if (allocfunc == NULL)
2199		lookaside->nll_l.gl_allocfunc =
2200		    ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
2201	else
2202		lookaside->nll_l.gl_allocfunc = allocfunc;
2203
2204	if (freefunc == NULL)
2205		lookaside->nll_l.gl_freefunc =
2206		    ntoskrnl_findwrap((funcptr)ExFreePool);
2207	else
2208		lookaside->nll_l.gl_freefunc = freefunc;
2209
2210#ifdef __i386__
2211	KeInitializeSpinLock(&lookaside->nll_obsoletelock);
2212#endif
2213
2214	lookaside->nll_l.gl_type = NonPagedPool;
2215	lookaside->nll_l.gl_depth = depth;
2216	lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
2217}
2218
2219static void
2220ExDeleteNPagedLookasideList(lookaside)
2221	npaged_lookaside_list   *lookaside;
2222{
2223	void			*buf;
2224	void		(*freefunc)(void *);
2225
2226	freefunc = lookaside->nll_l.gl_freefunc;
2227	while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
2228		MSCALL1(freefunc, buf);
2229}
2230
2231slist_entry *
2232InterlockedPushEntrySList(head, entry)
2233	slist_header		*head;
2234	slist_entry		*entry;
2235{
2236	slist_entry		*oldhead;
2237
2238	mtx_lock_spin(&ntoskrnl_interlock);
2239	oldhead = ntoskrnl_pushsl(head, entry);
2240	mtx_unlock_spin(&ntoskrnl_interlock);
2241
2242	return (oldhead);
2243}
2244
2245slist_entry *
2246InterlockedPopEntrySList(head)
2247	slist_header		*head;
2248{
2249	slist_entry		*first;
2250
2251	mtx_lock_spin(&ntoskrnl_interlock);
2252	first = ntoskrnl_popsl(head);
2253	mtx_unlock_spin(&ntoskrnl_interlock);
2254
2255	return (first);
2256}
2257
2258static slist_entry *
2259ExInterlockedPushEntrySList(head, entry, lock)
2260	slist_header		*head;
2261	slist_entry		*entry;
2262	kspin_lock		*lock;
2263{
2264	return (InterlockedPushEntrySList(head, entry));
2265}
2266
2267static slist_entry *
2268ExInterlockedPopEntrySList(head, lock)
2269	slist_header		*head;
2270	kspin_lock		*lock;
2271{
2272	return (InterlockedPopEntrySList(head));
2273}
2274
2275uint16_t
2276ExQueryDepthSList(head)
2277	slist_header		*head;
2278{
2279	uint16_t		depth;
2280
2281	mtx_lock_spin(&ntoskrnl_interlock);
2282	depth = head->slh_list.slh_depth;
2283	mtx_unlock_spin(&ntoskrnl_interlock);
2284
2285	return (depth);
2286}
2287
2288void
2289KeInitializeSpinLock(lock)
2290	kspin_lock		*lock;
2291{
2292	*lock = 0;
2293}
2294
2295#ifdef __i386__
2296void
2297KefAcquireSpinLockAtDpcLevel(lock)
2298	kspin_lock		*lock;
2299{
2300#ifdef NTOSKRNL_DEBUG_SPINLOCKS
2301	int			i = 0;
2302#endif
2303
2304	while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
2305		/* sit and spin */;
2306#ifdef NTOSKRNL_DEBUG_SPINLOCKS
2307		i++;
2308		if (i > 200000000)
2309			panic("DEADLOCK!");
2310#endif
2311	}
2312}
2313
2314void
2315KefReleaseSpinLockFromDpcLevel(lock)
2316	kspin_lock		*lock;
2317{
2318	atomic_store_rel_int((volatile u_int *)lock, 0);
2319}
2320
2321uint8_t
2322KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
2323{
2324	uint8_t			oldirql;
2325
2326	if (KeGetCurrentIrql() > DISPATCH_LEVEL)
2327		panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
2328
2329	KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
2330	KeAcquireSpinLockAtDpcLevel(lock);
2331
2332	return (oldirql);
2333}
2334#else
2335void
2336KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
2337{
2338	while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
2339		/* sit and spin */;
2340}
2341
2342void
2343KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
2344{
2345	atomic_store_rel_int((volatile u_int *)lock, 0);
2346}
2347#endif /* __i386__ */
2348
2349uintptr_t
2350InterlockedExchange(dst, val)
2351	volatile uint32_t	*dst;
2352	uintptr_t		val;
2353{
2354	uintptr_t		r;
2355
2356	mtx_lock_spin(&ntoskrnl_interlock);
2357	r = *dst;
2358	*dst = val;
2359	mtx_unlock_spin(&ntoskrnl_interlock);
2360
2361	return (r);
2362}
2363
2364static uint32_t
2365InterlockedIncrement(addend)
2366	volatile uint32_t	*addend;
2367{
2368	atomic_add_long((volatile u_long *)addend, 1);
2369	return (*addend);
2370}
2371
2372static uint32_t
2373InterlockedDecrement(addend)
2374	volatile uint32_t	*addend;
2375{
2376	atomic_subtract_long((volatile u_long *)addend, 1);
2377	return (*addend);
2378}
2379
2380static void
2381ExInterlockedAddLargeStatistic(addend, inc)
2382	uint64_t		*addend;
2383	uint32_t		inc;
2384{
2385	mtx_lock_spin(&ntoskrnl_interlock);
2386	*addend += inc;
2387	mtx_unlock_spin(&ntoskrnl_interlock);
2388};
2389
2390mdl *
2391IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
2392	uint8_t chargequota, irp *iopkt)
2393{
2394	mdl			*m;
2395	int			zone = 0;
2396
2397	if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
2398		m = ExAllocatePoolWithTag(NonPagedPool,
2399		    MmSizeOfMdl(vaddr, len), 0);
2400	else {
2401		m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
2402		zone++;
2403	}
2404
2405	if (m == NULL)
2406		return (NULL);
2407
2408	MmInitializeMdl(m, vaddr, len);
2409
2410	/*
2411	 * MmInitializMdl() clears the flags field, so we
2412	 * have to set this here. If the MDL came from the
2413	 * MDL UMA zone, tag it so we can release it to
2414	 * the right place later.
2415	 */
2416	if (zone)
2417		m->mdl_flags = MDL_ZONE_ALLOCED;
2418
2419	if (iopkt != NULL) {
2420		if (secondarybuf == TRUE) {
2421			mdl			*last;
2422			last = iopkt->irp_mdl;
2423			while (last->mdl_next != NULL)
2424				last = last->mdl_next;
2425			last->mdl_next = m;
2426		} else {
2427			if (iopkt->irp_mdl != NULL)
2428				panic("leaking an MDL in IoAllocateMdl()");
2429			iopkt->irp_mdl = m;
2430		}
2431	}
2432
2433	return (m);
2434}
2435
2436void
2437IoFreeMdl(m)
2438	mdl			*m;
2439{
2440	if (m == NULL)
2441		return;
2442
2443	if (m->mdl_flags & MDL_ZONE_ALLOCED)
2444		uma_zfree(mdl_zone, m);
2445	else
2446		ExFreePool(m);
2447}
2448
2449static void *
2450MmAllocateContiguousMemory(size, highest)
2451	uint32_t		size;
2452	uint64_t		highest;
2453{
2454	void *addr;
2455	size_t pagelength = roundup(size, PAGE_SIZE);
2456
2457	addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
2458
2459	return (addr);
2460}
2461
2462static void *
2463MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
2464    boundary, cachetype)
2465	uint32_t		size;
2466	uint64_t		lowest;
2467	uint64_t		highest;
2468	uint64_t		boundary;
2469	enum nt_caching_type	cachetype;
2470{
2471	vm_memattr_t		memattr;
2472	void			*ret;
2473
2474	switch (cachetype) {
2475	case MmNonCached:
2476		memattr = VM_MEMATTR_UNCACHEABLE;
2477		break;
2478	case MmWriteCombined:
2479		memattr = VM_MEMATTR_WRITE_COMBINING;
2480		break;
2481	case MmNonCachedUnordered:
2482		memattr = VM_MEMATTR_UNCACHEABLE;
2483		break;
2484	case MmCached:
2485	case MmHardwareCoherentCached:
2486	case MmUSWCCached:
2487	default:
2488		memattr = VM_MEMATTR_DEFAULT;
2489		break;
2490	}
2491
2492	ret = (void *)kmem_alloc_contig(kernel_arena, size, M_ZERO | M_NOWAIT,
2493	    lowest, highest, PAGE_SIZE, boundary, memattr);
2494	if (ret != NULL)
2495		malloc_type_allocated(M_DEVBUF, round_page(size));
2496	return (ret);
2497}
2498
2499static void
2500MmFreeContiguousMemory(base)
2501	void			*base;
2502{
2503	ExFreePool(base);
2504}
2505
2506static void
2507MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
2508	void			*base;
2509	uint32_t		size;
2510	enum nt_caching_type	cachetype;
2511{
2512	contigfree(base, size, M_DEVBUF);
2513}
2514
2515static uint32_t
2516MmSizeOfMdl(vaddr, len)
2517	void			*vaddr;
2518	size_t			len;
2519{
2520	uint32_t		l;
2521
2522	l = sizeof(struct mdl) +
2523	    (sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
2524
2525	return (l);
2526}
2527
2528/*
2529 * The Microsoft documentation says this routine fills in the
2530 * page array of an MDL with the _physical_ page addresses that
2531 * comprise the buffer, but we don't really want to do that here.
2532 * Instead, we just fill in the page array with the kernel virtual
2533 * addresses of the buffers.
2534 */
2535void
2536MmBuildMdlForNonPagedPool(m)
2537	mdl			*m;
2538{
2539	vm_offset_t		*mdl_pages;
2540	int			pagecnt, i;
2541
2542	pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
2543
2544	if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
2545		panic("not enough pages in MDL to describe buffer");
2546
2547	mdl_pages = MmGetMdlPfnArray(m);
2548
2549	for (i = 0; i < pagecnt; i++)
2550		*mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
2551
2552	m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
2553	m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
2554}
2555
2556static void *
2557MmMapLockedPages(mdl *buf, uint8_t accessmode)
2558{
2559	buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
2560	return (MmGetMdlVirtualAddress(buf));
2561}
2562
2563static void *
2564MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
2565	void *vaddr, uint32_t bugcheck, uint32_t prio)
2566{
2567	return (MmMapLockedPages(buf, accessmode));
2568}
2569
2570static void
2571MmUnmapLockedPages(vaddr, buf)
2572	void			*vaddr;
2573	mdl			*buf;
2574{
2575	buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
2576}
2577
2578/*
2579 * This function has a problem in that it will break if you
2580 * compile this module without PAE and try to use it on a PAE
2581 * kernel. Unfortunately, there's no way around this at the
2582 * moment. It's slightly less broken that using pmap_kextract().
2583 * You'd think the virtual memory subsystem would help us out
2584 * here, but it doesn't.
2585 */
2586
2587static uint64_t
2588MmGetPhysicalAddress(void *base)
2589{
2590	return (pmap_extract(kernel_map->pmap, (vm_offset_t)base));
2591}
2592
2593void *
2594MmGetSystemRoutineAddress(ustr)
2595	unicode_string		*ustr;
2596{
2597	ansi_string		astr;
2598
2599	if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE))
2600		return (NULL);
2601	return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf));
2602}
2603
2604uint8_t
2605MmIsAddressValid(vaddr)
2606	void			*vaddr;
2607{
2608	if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
2609		return (TRUE);
2610
2611	return (FALSE);
2612}
2613
2614void *
2615MmMapIoSpace(paddr, len, cachetype)
2616	uint64_t		paddr;
2617	uint32_t		len;
2618	uint32_t		cachetype;
2619{
2620	devclass_t		nexus_class;
2621	device_t		*nexus_devs, devp;
2622	int			nexus_count = 0;
2623	device_t		matching_dev = NULL;
2624	struct resource		*res;
2625	int			i;
2626	vm_offset_t		v;
2627
2628	/* There will always be at least one nexus. */
2629
2630	nexus_class = devclass_find("nexus");
2631	devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
2632
2633	for (i = 0; i < nexus_count; i++) {
2634		devp = nexus_devs[i];
2635		matching_dev = ntoskrnl_finddev(devp, paddr, &res);
2636		if (matching_dev)
2637			break;
2638	}
2639
2640	free(nexus_devs, M_TEMP);
2641
2642	if (matching_dev == NULL)
2643		return (NULL);
2644
2645	v = (vm_offset_t)rman_get_virtual(res);
2646	if (paddr > rman_get_start(res))
2647		v += paddr - rman_get_start(res);
2648
2649	return ((void *)v);
2650}
2651
2652void
2653MmUnmapIoSpace(vaddr, len)
2654	void			*vaddr;
2655	size_t			len;
2656{
2657}
2658
2659
2660static device_t
2661ntoskrnl_finddev(dev, paddr, res)
2662	device_t		dev;
2663	uint64_t		paddr;
2664	struct resource		**res;
2665{
2666	device_t		*children = NULL;
2667	device_t		matching_dev;
2668	int			childcnt;
2669	struct resource		*r;
2670	struct resource_list	*rl;
2671	struct resource_list_entry	*rle;
2672	uint32_t		flags;
2673	int			i;
2674
2675	/* We only want devices that have been successfully probed. */
2676
2677	if (device_is_alive(dev) == FALSE)
2678		return (NULL);
2679
2680	rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
2681	if (rl != NULL) {
2682		STAILQ_FOREACH(rle, rl, link) {
2683			r = rle->res;
2684
2685			if (r == NULL)
2686				continue;
2687
2688			flags = rman_get_flags(r);
2689
2690			if (rle->type == SYS_RES_MEMORY &&
2691			    paddr >= rman_get_start(r) &&
2692			    paddr <= rman_get_end(r)) {
2693				if (!(flags & RF_ACTIVE))
2694					bus_activate_resource(dev,
2695					    SYS_RES_MEMORY, 0, r);
2696				*res = r;
2697				return (dev);
2698			}
2699		}
2700	}
2701
2702	/*
2703	 * If this device has children, do another
2704	 * level of recursion to inspect them.
2705	 */
2706
2707	device_get_children(dev, &children, &childcnt);
2708
2709	for (i = 0; i < childcnt; i++) {
2710		matching_dev = ntoskrnl_finddev(children[i], paddr, res);
2711		if (matching_dev != NULL) {
2712			free(children, M_TEMP);
2713			return (matching_dev);
2714		}
2715	}
2716
2717
2718	/* Won't somebody please think of the children! */
2719
2720	if (children != NULL)
2721		free(children, M_TEMP);
2722
2723	return (NULL);
2724}
2725
2726/*
2727 * Workitems are unlike DPCs, in that they run in a user-mode thread
2728 * context rather than at DISPATCH_LEVEL in kernel context. In our
2729 * case we run them in kernel context anyway.
2730 */
2731static void
2732ntoskrnl_workitem_thread(arg)
2733	void			*arg;
2734{
2735	kdpc_queue		*kq;
2736	list_entry		*l;
2737	io_workitem		*iw;
2738	uint8_t			irql;
2739
2740	kq = arg;
2741
2742	InitializeListHead(&kq->kq_disp);
2743	kq->kq_td = curthread;
2744	kq->kq_exit = 0;
2745	KeInitializeSpinLock(&kq->kq_lock);
2746	KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
2747
2748	while (1) {
2749		KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
2750
2751		KeAcquireSpinLock(&kq->kq_lock, &irql);
2752
2753		if (kq->kq_exit) {
2754			kq->kq_exit = 0;
2755			KeReleaseSpinLock(&kq->kq_lock, irql);
2756			break;
2757		}
2758
2759		while (!IsListEmpty(&kq->kq_disp)) {
2760			l = RemoveHeadList(&kq->kq_disp);
2761			iw = CONTAINING_RECORD(l,
2762			    io_workitem, iw_listentry);
2763			InitializeListHead((&iw->iw_listentry));
2764			if (iw->iw_func == NULL)
2765				continue;
2766			KeReleaseSpinLock(&kq->kq_lock, irql);
2767			MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
2768			KeAcquireSpinLock(&kq->kq_lock, &irql);
2769		}
2770
2771		KeReleaseSpinLock(&kq->kq_lock, irql);
2772	}
2773
2774	kproc_exit(0);
2775	return; /* notreached */
2776}
2777
2778static ndis_status
2779RtlCharToInteger(src, base, val)
2780	const char		*src;
2781	uint32_t		base;
2782	uint32_t		*val;
2783{
2784	int negative = 0;
2785	uint32_t res;
2786
2787	if (!src || !val)
2788		return (STATUS_ACCESS_VIOLATION);
2789	while (*src != '\0' && *src <= ' ')
2790		src++;
2791	if (*src == '+')
2792		src++;
2793	else if (*src == '-') {
2794		src++;
2795		negative = 1;
2796	}
2797	if (base == 0) {
2798		base = 10;
2799		if (*src == '0') {
2800			src++;
2801			if (*src == 'b') {
2802				base = 2;
2803				src++;
2804			} else if (*src == 'o') {
2805				base = 8;
2806				src++;
2807			} else if (*src == 'x') {
2808				base = 16;
2809				src++;
2810			}
2811		}
2812	} else if (!(base == 2 || base == 8 || base == 10 || base == 16))
2813		return (STATUS_INVALID_PARAMETER);
2814
2815	for (res = 0; *src; src++) {
2816		int v;
2817		if (isdigit(*src))
2818			v = *src - '0';
2819		else if (isxdigit(*src))
2820			v = tolower(*src) - 'a' + 10;
2821		else
2822			v = base;
2823		if (v >= base)
2824			return (STATUS_INVALID_PARAMETER);
2825		res = res * base + v;
2826	}
2827	*val = negative ? -res : res;
2828	return (STATUS_SUCCESS);
2829}
2830
2831static void
2832ntoskrnl_destroy_workitem_threads(void)
2833{
2834	kdpc_queue		*kq;
2835	int			i;
2836
2837	for (i = 0; i < WORKITEM_THREADS; i++) {
2838		kq = wq_queues + i;
2839		kq->kq_exit = 1;
2840		KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
2841		while (kq->kq_exit)
2842			tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
2843	}
2844}
2845
2846io_workitem *
2847IoAllocateWorkItem(dobj)
2848	device_object		*dobj;
2849{
2850	io_workitem		*iw;
2851
2852	iw = uma_zalloc(iw_zone, M_NOWAIT);
2853	if (iw == NULL)
2854		return (NULL);
2855
2856	InitializeListHead(&iw->iw_listentry);
2857	iw->iw_dobj = dobj;
2858
2859	mtx_lock(&ntoskrnl_dispatchlock);
2860	iw->iw_idx = wq_idx;
2861	WORKIDX_INC(wq_idx);
2862	mtx_unlock(&ntoskrnl_dispatchlock);
2863
2864	return (iw);
2865}
2866
2867void
2868IoFreeWorkItem(iw)
2869	io_workitem		*iw;
2870{
2871	uma_zfree(iw_zone, iw);
2872}
2873
2874void
2875IoQueueWorkItem(iw, iw_func, qtype, ctx)
2876	io_workitem		*iw;
2877	io_workitem_func	iw_func;
2878	uint32_t		qtype;
2879	void			*ctx;
2880{
2881	kdpc_queue		*kq;
2882	list_entry		*l;
2883	io_workitem		*cur;
2884	uint8_t			irql;
2885
2886	kq = wq_queues + iw->iw_idx;
2887
2888	KeAcquireSpinLock(&kq->kq_lock, &irql);
2889
2890	/*
2891	 * Traverse the list and make sure this workitem hasn't
2892	 * already been inserted. Queuing the same workitem
2893	 * twice will hose the list but good.
2894	 */
2895
2896	l = kq->kq_disp.nle_flink;
2897	while (l != &kq->kq_disp) {
2898		cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
2899		if (cur == iw) {
2900			/* Already queued -- do nothing. */
2901			KeReleaseSpinLock(&kq->kq_lock, irql);
2902			return;
2903		}
2904		l = l->nle_flink;
2905	}
2906
2907	iw->iw_func = iw_func;
2908	iw->iw_ctx = ctx;
2909
2910	InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
2911	KeReleaseSpinLock(&kq->kq_lock, irql);
2912
2913	KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
2914}
2915
2916static void
2917ntoskrnl_workitem(dobj, arg)
2918	device_object		*dobj;
2919	void			*arg;
2920{
2921	io_workitem		*iw;
2922	work_queue_item		*w;
2923	work_item_func		f;
2924
2925	iw = arg;
2926	w = (work_queue_item *)dobj;
2927	f = (work_item_func)w->wqi_func;
2928	uma_zfree(iw_zone, iw);
2929	MSCALL2(f, w, w->wqi_ctx);
2930}
2931
2932/*
2933 * The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
2934 * warns that it's unsafe and to use IoQueueWorkItem() instead. The
2935 * problem with ExQueueWorkItem() is that it can't guard against
2936 * the condition where a driver submits a job to the work queue and
2937 * is then unloaded before the job is able to run. IoQueueWorkItem()
2938 * acquires a reference to the device's device_object via the
2939 * object manager and retains it until after the job has completed,
2940 * which prevents the driver from being unloaded before the job
2941 * runs. (We don't currently support this behavior, though hopefully
2942 * that will change once the object manager API is fleshed out a bit.)
2943 *
2944 * Having said all that, the ExQueueWorkItem() API remains, because
2945 * there are still other parts of Windows that use it, including
2946 * NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
2947 * We fake up the ExQueueWorkItem() API on top of our implementation
2948 * of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
2949 * for ExQueueWorkItem() jobs, and we pass a pointer to the work
2950 * queue item (provided by the caller) in to IoAllocateWorkItem()
2951 * instead of the device_object. We need to save this pointer so
2952 * we can apply a sanity check: as with the DPC queue and other
2953 * workitem queues, we can't allow the same work queue item to
2954 * be queued twice. If it's already pending, we silently return
2955 */
2956
2957void
2958ExQueueWorkItem(w, qtype)
2959	work_queue_item		*w;
2960	uint32_t		qtype;
2961{
2962	io_workitem		*iw;
2963	io_workitem_func	iwf;
2964	kdpc_queue		*kq;
2965	list_entry		*l;
2966	io_workitem		*cur;
2967	uint8_t			irql;
2968
2969
2970	/*
2971	 * We need to do a special sanity test to make sure
2972	 * the ExQueueWorkItem() API isn't used to queue
2973	 * the same workitem twice. Rather than checking the
2974	 * io_workitem pointer itself, we test the attached
2975	 * device object, which is really a pointer to the
2976	 * legacy work queue item structure.
2977	 */
2978
2979	kq = wq_queues + WORKITEM_LEGACY_THREAD;
2980	KeAcquireSpinLock(&kq->kq_lock, &irql);
2981	l = kq->kq_disp.nle_flink;
2982	while (l != &kq->kq_disp) {
2983		cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
2984		if (cur->iw_dobj == (device_object *)w) {
2985			/* Already queued -- do nothing. */
2986			KeReleaseSpinLock(&kq->kq_lock, irql);
2987			return;
2988		}
2989		l = l->nle_flink;
2990	}
2991	KeReleaseSpinLock(&kq->kq_lock, irql);
2992
2993	iw = IoAllocateWorkItem((device_object *)w);
2994	if (iw == NULL)
2995		return;
2996
2997	iw->iw_idx = WORKITEM_LEGACY_THREAD;
2998	iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
2999	IoQueueWorkItem(iw, iwf, qtype, iw);
3000}
3001
3002static void
3003RtlZeroMemory(dst, len)
3004	void			*dst;
3005	size_t			len;
3006{
3007	bzero(dst, len);
3008}
3009
3010static void
3011RtlSecureZeroMemory(dst, len)
3012	void			*dst;
3013	size_t			len;
3014{
3015	memset(dst, 0, len);
3016}
3017
3018static void
3019RtlFillMemory(void *dst, size_t len, uint8_t c)
3020{
3021	memset(dst, c, len);
3022}
3023
3024static void
3025RtlMoveMemory(dst, src, len)
3026	void			*dst;
3027	const void		*src;
3028	size_t			len;
3029{
3030	memmove(dst, src, len);
3031}
3032
3033static void
3034RtlCopyMemory(dst, src, len)
3035	void			*dst;
3036	const void		*src;
3037	size_t			len;
3038{
3039	bcopy(src, dst, len);
3040}
3041
3042static size_t
3043RtlCompareMemory(s1, s2, len)
3044	const void		*s1;
3045	const void		*s2;
3046	size_t			len;
3047{
3048	size_t			i;
3049	uint8_t			*m1, *m2;
3050
3051	m1 = __DECONST(char *, s1);
3052	m2 = __DECONST(char *, s2);
3053
3054	for (i = 0; i < len && m1[i] == m2[i]; i++);
3055	return (i);
3056}
3057
3058void
3059RtlInitAnsiString(dst, src)
3060	ansi_string		*dst;
3061	char			*src;
3062{
3063	ansi_string		*a;
3064
3065	a = dst;
3066	if (a == NULL)
3067		return;
3068	if (src == NULL) {
3069		a->as_len = a->as_maxlen = 0;
3070		a->as_buf = NULL;
3071	} else {
3072		a->as_buf = src;
3073		a->as_len = a->as_maxlen = strlen(src);
3074	}
3075}
3076
3077void
3078RtlInitUnicodeString(dst, src)
3079	unicode_string		*dst;
3080	uint16_t		*src;
3081{
3082	unicode_string		*u;
3083	int			i;
3084
3085	u = dst;
3086	if (u == NULL)
3087		return;
3088	if (src == NULL) {
3089		u->us_len = u->us_maxlen = 0;
3090		u->us_buf = NULL;
3091	} else {
3092		i = 0;
3093		while(src[i] != 0)
3094			i++;
3095		u->us_buf = src;
3096		u->us_len = u->us_maxlen = i * 2;
3097	}
3098}
3099
3100ndis_status
3101RtlUnicodeStringToInteger(ustr, base, val)
3102	unicode_string		*ustr;
3103	uint32_t		base;
3104	uint32_t		*val;
3105{
3106	uint16_t		*uchr;
3107	int			len, neg = 0;
3108	char			abuf[64];
3109	char			*astr;
3110
3111	uchr = ustr->us_buf;
3112	len = ustr->us_len;
3113	bzero(abuf, sizeof(abuf));
3114
3115	if ((char)((*uchr) & 0xFF) == '-') {
3116		neg = 1;
3117		uchr++;
3118		len -= 2;
3119	} else if ((char)((*uchr) & 0xFF) == '+') {
3120		neg = 0;
3121		uchr++;
3122		len -= 2;
3123	}
3124
3125	if (base == 0) {
3126		if ((char)((*uchr) & 0xFF) == 'b') {
3127			base = 2;
3128			uchr++;
3129			len -= 2;
3130		} else if ((char)((*uchr) & 0xFF) == 'o') {
3131			base = 8;
3132			uchr++;
3133			len -= 2;
3134		} else if ((char)((*uchr) & 0xFF) == 'x') {
3135			base = 16;
3136			uchr++;
3137			len -= 2;
3138		} else
3139			base = 10;
3140	}
3141
3142	astr = abuf;
3143	if (neg) {
3144		strcpy(astr, "-");
3145		astr++;
3146	}
3147
3148	ntoskrnl_unicode_to_ascii(uchr, astr, len);
3149	*val = strtoul(abuf, NULL, base);
3150
3151	return (STATUS_SUCCESS);
3152}
3153
3154void
3155RtlFreeUnicodeString(ustr)
3156	unicode_string		*ustr;
3157{
3158	if (ustr->us_buf == NULL)
3159		return;
3160	ExFreePool(ustr->us_buf);
3161	ustr->us_buf = NULL;
3162}
3163
3164void
3165RtlFreeAnsiString(astr)
3166	ansi_string		*astr;
3167{
3168	if (astr->as_buf == NULL)
3169		return;
3170	ExFreePool(astr->as_buf);
3171	astr->as_buf = NULL;
3172}
3173
3174static int
3175atoi(str)
3176	const char		*str;
3177{
3178	return (int)strtol(str, (char **)NULL, 10);
3179}
3180
3181static long
3182atol(str)
3183	const char		*str;
3184{
3185	return strtol(str, (char **)NULL, 10);
3186}
3187
3188static int
3189rand(void)
3190{
3191
3192	return (random());
3193}
3194
3195static void
3196srand(unsigned int seed)
3197{
3198
3199	srandom(seed);
3200}
3201
3202static uint8_t
3203IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
3204{
3205	if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
3206		return (TRUE);
3207	return (FALSE);
3208}
3209
3210static int32_t
3211IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type,
3212    uint32_t mask, void **key)
3213{
3214	return (NDIS_STATUS_INVALID_DEVICE_REQUEST);
3215}
3216
3217static ndis_status
3218IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
3219	unicode_string		*name;
3220	uint32_t		reqaccess;
3221	void			*fileobj;
3222	device_object		*devobj;
3223{
3224	return (STATUS_SUCCESS);
3225}
3226
3227static ndis_status
3228IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
3229	device_object		*devobj;
3230	uint32_t		regprop;
3231	uint32_t		buflen;
3232	void			*prop;
3233	uint32_t		*reslen;
3234{
3235	driver_object		*drv;
3236	uint16_t		**name;
3237
3238	drv = devobj->do_drvobj;
3239
3240	switch (regprop) {
3241	case DEVPROP_DRIVER_KEYNAME:
3242		name = prop;
3243		*name = drv->dro_drivername.us_buf;
3244		*reslen = drv->dro_drivername.us_len;
3245		break;
3246	default:
3247		return (STATUS_INVALID_PARAMETER_2);
3248		break;
3249	}
3250
3251	return (STATUS_SUCCESS);
3252}
3253
3254static void
3255KeInitializeMutex(kmutex, level)
3256	kmutant			*kmutex;
3257	uint32_t		level;
3258{
3259	InitializeListHead((&kmutex->km_header.dh_waitlisthead));
3260	kmutex->km_abandoned = FALSE;
3261	kmutex->km_apcdisable = 1;
3262	kmutex->km_header.dh_sigstate = 1;
3263	kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
3264	kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
3265	kmutex->km_ownerthread = NULL;
3266}
3267
3268static uint32_t
3269KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
3270{
3271	uint32_t		prevstate;
3272
3273	mtx_lock(&ntoskrnl_dispatchlock);
3274	prevstate = kmutex->km_header.dh_sigstate;
3275	if (kmutex->km_ownerthread != curthread) {
3276		mtx_unlock(&ntoskrnl_dispatchlock);
3277		return (STATUS_MUTANT_NOT_OWNED);
3278	}
3279
3280	kmutex->km_header.dh_sigstate++;
3281	kmutex->km_abandoned = FALSE;
3282
3283	if (kmutex->km_header.dh_sigstate == 1) {
3284		kmutex->km_ownerthread = NULL;
3285		ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
3286	}
3287
3288	mtx_unlock(&ntoskrnl_dispatchlock);
3289
3290	return (prevstate);
3291}
3292
3293static uint32_t
3294KeReadStateMutex(kmutex)
3295	kmutant			*kmutex;
3296{
3297	return (kmutex->km_header.dh_sigstate);
3298}
3299
3300void
3301KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
3302{
3303	InitializeListHead((&kevent->k_header.dh_waitlisthead));
3304	kevent->k_header.dh_sigstate = state;
3305	if (type == EVENT_TYPE_NOTIFY)
3306		kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
3307	else
3308		kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
3309	kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
3310}
3311
3312uint32_t
3313KeResetEvent(kevent)
3314	nt_kevent		*kevent;
3315{
3316	uint32_t		prevstate;
3317
3318	mtx_lock(&ntoskrnl_dispatchlock);
3319	prevstate = kevent->k_header.dh_sigstate;
3320	kevent->k_header.dh_sigstate = FALSE;
3321	mtx_unlock(&ntoskrnl_dispatchlock);
3322
3323	return (prevstate);
3324}
3325
3326uint32_t
3327KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
3328{
3329	uint32_t		prevstate;
3330	wait_block		*w;
3331	nt_dispatch_header	*dh;
3332	struct thread		*td;
3333	wb_ext			*we;
3334
3335	mtx_lock(&ntoskrnl_dispatchlock);
3336	prevstate = kevent->k_header.dh_sigstate;
3337	dh = &kevent->k_header;
3338
3339	if (IsListEmpty(&dh->dh_waitlisthead))
3340		/*
3341		 * If there's nobody in the waitlist, just set
3342		 * the state to signalled.
3343		 */
3344		dh->dh_sigstate = 1;
3345	else {
3346		/*
3347		 * Get the first waiter. If this is a synchronization
3348		 * event, just wake up that one thread (don't bother
3349		 * setting the state to signalled since we're supposed
3350		 * to automatically clear synchronization events anyway).
3351		 *
3352		 * If it's a notification event, or the first
3353		 * waiter is doing a WAITTYPE_ALL wait, go through
3354		 * the full wait satisfaction process.
3355		 */
3356		w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
3357		    wait_block, wb_waitlist);
3358		we = w->wb_ext;
3359		td = we->we_td;
3360		if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
3361		    w->wb_waittype == WAITTYPE_ALL) {
3362			if (prevstate == 0) {
3363				dh->dh_sigstate = 1;
3364				ntoskrnl_waittest(dh, increment);
3365			}
3366		} else {
3367			w->wb_awakened |= TRUE;
3368			cv_broadcastpri(&we->we_cv,
3369			    (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
3370			    w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
3371		}
3372	}
3373
3374	mtx_unlock(&ntoskrnl_dispatchlock);
3375
3376	return (prevstate);
3377}
3378
3379void
3380KeClearEvent(kevent)
3381	nt_kevent		*kevent;
3382{
3383	kevent->k_header.dh_sigstate = FALSE;
3384}
3385
3386uint32_t
3387KeReadStateEvent(kevent)
3388	nt_kevent		*kevent;
3389{
3390	return (kevent->k_header.dh_sigstate);
3391}
3392
3393/*
3394 * The object manager in Windows is responsible for managing
3395 * references and access to various types of objects, including
3396 * device_objects, events, threads, timers and so on. However,
3397 * there's a difference in the way objects are handled in user
3398 * mode versus kernel mode.
3399 *
3400 * In user mode (i.e. Win32 applications), all objects are
3401 * managed by the object manager. For example, when you create
3402 * a timer or event object, you actually end up with an
3403 * object_header (for the object manager's bookkeeping
3404 * purposes) and an object body (which contains the actual object
3405 * structure, e.g. ktimer, kevent, etc...). This allows Windows
3406 * to manage resource quotas and to enforce access restrictions
3407 * on basically every kind of system object handled by the kernel.
3408 *
3409 * However, in kernel mode, you only end up using the object
3410 * manager some of the time. For example, in a driver, you create
3411 * a timer object by simply allocating the memory for a ktimer
3412 * structure and initializing it with KeInitializeTimer(). Hence,
3413 * the timer has no object_header and no reference counting or
3414 * security/resource checks are done on it. The assumption in
3415 * this case is that if you're running in kernel mode, you know
3416 * what you're doing, and you're already at an elevated privilege
3417 * anyway.
3418 *
3419 * There are some exceptions to this. The two most important ones
3420 * for our purposes are device_objects and threads. We need to use
3421 * the object manager to do reference counting on device_objects,
3422 * and for threads, you can only get a pointer to a thread's
3423 * dispatch header by using ObReferenceObjectByHandle() on the
3424 * handle returned by PsCreateSystemThread().
3425 */
3426
3427static ndis_status
3428ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
3429	uint8_t accessmode, void **object, void **handleinfo)
3430{
3431	nt_objref		*nr;
3432
3433	nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
3434	if (nr == NULL)
3435		return (STATUS_INSUFFICIENT_RESOURCES);
3436
3437	InitializeListHead((&nr->no_dh.dh_waitlisthead));
3438	nr->no_obj = handle;
3439	nr->no_dh.dh_type = DISP_TYPE_THREAD;
3440	nr->no_dh.dh_sigstate = 0;
3441	nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
3442	    sizeof(uint32_t));
3443	TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
3444	*object = nr;
3445
3446	return (STATUS_SUCCESS);
3447}
3448
3449static void
3450ObfDereferenceObject(object)
3451	void			*object;
3452{
3453	nt_objref		*nr;
3454
3455	nr = object;
3456	TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
3457	free(nr, M_DEVBUF);
3458}
3459
3460static uint32_t
3461ZwClose(handle)
3462	ndis_handle		handle;
3463{
3464	return (STATUS_SUCCESS);
3465}
3466
3467static uint32_t
3468WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
3469	uint32_t		traceclass;
3470	void			*traceinfo;
3471	uint32_t		infolen;
3472	uint32_t		reqlen;
3473	void			*buf;
3474{
3475	return (STATUS_NOT_FOUND);
3476}
3477
3478static uint32_t
3479WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
3480	void *guid, uint16_t messagenum, ...)
3481{
3482	return (STATUS_SUCCESS);
3483}
3484
3485static uint32_t
3486IoWMIRegistrationControl(dobj, action)
3487	device_object		*dobj;
3488	uint32_t		action;
3489{
3490	return (STATUS_SUCCESS);
3491}
3492
3493/*
3494 * This is here just in case the thread returns without calling
3495 * PsTerminateSystemThread().
3496 */
3497static void
3498ntoskrnl_thrfunc(arg)
3499	void			*arg;
3500{
3501	thread_context		*thrctx;
3502	uint32_t (*tfunc)(void *);
3503	void			*tctx;
3504	uint32_t		rval;
3505
3506	thrctx = arg;
3507	tfunc = thrctx->tc_thrfunc;
3508	tctx = thrctx->tc_thrctx;
3509	free(thrctx, M_TEMP);
3510
3511	rval = MSCALL1(tfunc, tctx);
3512
3513	PsTerminateSystemThread(rval);
3514	return; /* notreached */
3515}
3516
3517static ndis_status
3518PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
3519	clientid, thrfunc, thrctx)
3520	ndis_handle		*handle;
3521	uint32_t		reqaccess;
3522	void			*objattrs;
3523	ndis_handle		phandle;
3524	void			*clientid;
3525	void			*thrfunc;
3526	void			*thrctx;
3527{
3528	int			error;
3529	thread_context		*tc;
3530	struct proc		*p;
3531
3532	tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
3533	if (tc == NULL)
3534		return (STATUS_INSUFFICIENT_RESOURCES);
3535
3536	tc->tc_thrctx = thrctx;
3537	tc->tc_thrfunc = thrfunc;
3538
3539	error = kproc_create(ntoskrnl_thrfunc, tc, &p,
3540	    RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth);
3541
3542	if (error) {
3543		free(tc, M_TEMP);
3544		return (STATUS_INSUFFICIENT_RESOURCES);
3545	}
3546
3547	*handle = p;
3548	ntoskrnl_kth++;
3549
3550	return (STATUS_SUCCESS);
3551}
3552
3553/*
3554 * In Windows, the exit of a thread is an event that you're allowed
3555 * to wait on, assuming you've obtained a reference to the thread using
3556 * ObReferenceObjectByHandle(). Unfortunately, the only way we can
3557 * simulate this behavior is to register each thread we create in a
3558 * reference list, and if someone holds a reference to us, we poke
3559 * them.
3560 */
3561static ndis_status
3562PsTerminateSystemThread(status)
3563	ndis_status		status;
3564{
3565	struct nt_objref	*nr;
3566
3567	mtx_lock(&ntoskrnl_dispatchlock);
3568	TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
3569		if (nr->no_obj != curthread->td_proc)
3570			continue;
3571		nr->no_dh.dh_sigstate = 1;
3572		ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
3573		break;
3574	}
3575	mtx_unlock(&ntoskrnl_dispatchlock);
3576
3577	ntoskrnl_kth--;
3578
3579	kproc_exit(0);
3580	return (0);	/* notreached */
3581}
3582
3583static uint32_t
3584DbgPrint(char *fmt, ...)
3585{
3586	va_list			ap;
3587
3588	if (bootverbose) {
3589		va_start(ap, fmt);
3590		vprintf(fmt, ap);
3591		va_end(ap);
3592	}
3593
3594	return (STATUS_SUCCESS);
3595}
3596
3597static void
3598DbgBreakPoint(void)
3599{
3600
3601	kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
3602}
3603
3604static void
3605KeBugCheckEx(code, param1, param2, param3, param4)
3606    uint32_t			code;
3607    u_long			param1;
3608    u_long			param2;
3609    u_long			param3;
3610    u_long			param4;
3611{
3612	panic("KeBugCheckEx: STOP 0x%X", code);
3613}
3614
3615static void
3616ntoskrnl_timercall(arg)
3617	void			*arg;
3618{
3619	ktimer			*timer;
3620	struct timeval		tv;
3621	kdpc			*dpc;
3622
3623	mtx_lock(&ntoskrnl_dispatchlock);
3624
3625	timer = arg;
3626
3627#ifdef NTOSKRNL_DEBUG_TIMERS
3628	ntoskrnl_timer_fires++;
3629#endif
3630	ntoskrnl_remove_timer(timer);
3631
3632	/*
3633	 * This should never happen, but complain
3634	 * if it does.
3635	 */
3636
3637	if (timer->k_header.dh_inserted == FALSE) {
3638		mtx_unlock(&ntoskrnl_dispatchlock);
3639		printf("NTOS: timer %p fired even though "
3640		    "it was canceled\n", timer);
3641		return;
3642	}
3643
3644	/* Mark the timer as no longer being on the timer queue. */
3645
3646	timer->k_header.dh_inserted = FALSE;
3647
3648	/* Now signal the object and satisfy any waits on it. */
3649
3650	timer->k_header.dh_sigstate = 1;
3651	ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
3652
3653	/*
3654	 * If this is a periodic timer, re-arm it
3655	 * so it will fire again. We do this before
3656	 * calling any deferred procedure calls because
3657	 * it's possible the DPC might cancel the timer,
3658	 * in which case it would be wrong for us to
3659	 * re-arm it again afterwards.
3660	 */
3661
3662	if (timer->k_period) {
3663		tv.tv_sec = 0;
3664		tv.tv_usec = timer->k_period * 1000;
3665		timer->k_header.dh_inserted = TRUE;
3666		ntoskrnl_insert_timer(timer, tvtohz(&tv));
3667#ifdef NTOSKRNL_DEBUG_TIMERS
3668		ntoskrnl_timer_reloads++;
3669#endif
3670	}
3671
3672	dpc = timer->k_dpc;
3673
3674	mtx_unlock(&ntoskrnl_dispatchlock);
3675
3676	/* If there's a DPC associated with the timer, queue it up. */
3677
3678	if (dpc != NULL)
3679		KeInsertQueueDpc(dpc, NULL, NULL);
3680}
3681
3682#ifdef NTOSKRNL_DEBUG_TIMERS
3683static int
3684sysctl_show_timers(SYSCTL_HANDLER_ARGS)
3685{
3686	int			ret;
3687
3688	ret = 0;
3689	ntoskrnl_show_timers();
3690	return (sysctl_handle_int(oidp, &ret, 0, req));
3691}
3692
3693static void
3694ntoskrnl_show_timers()
3695{
3696	int			i = 0;
3697	list_entry		*l;
3698
3699	mtx_lock_spin(&ntoskrnl_calllock);
3700	l = ntoskrnl_calllist.nle_flink;
3701	while(l != &ntoskrnl_calllist) {
3702		i++;
3703		l = l->nle_flink;
3704	}
3705	mtx_unlock_spin(&ntoskrnl_calllock);
3706
3707	printf("\n");
3708	printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
3709	printf("timer sets: %qu\n", ntoskrnl_timer_sets);
3710	printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
3711	printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
3712	printf("timer fires: %qu\n", ntoskrnl_timer_fires);
3713	printf("\n");
3714}
3715#endif
3716
3717/*
3718 * Must be called with dispatcher lock held.
3719 */
3720
3721static void
3722ntoskrnl_insert_timer(timer, ticks)
3723	ktimer			*timer;
3724	int			ticks;
3725{
3726	callout_entry		*e;
3727	list_entry		*l;
3728	struct callout		*c;
3729
3730	/*
3731	 * Try and allocate a timer.
3732	 */
3733	mtx_lock_spin(&ntoskrnl_calllock);
3734	if (IsListEmpty(&ntoskrnl_calllist)) {
3735		mtx_unlock_spin(&ntoskrnl_calllock);
3736#ifdef NTOSKRNL_DEBUG_TIMERS
3737		ntoskrnl_show_timers();
3738#endif
3739		panic("out of timers!");
3740	}
3741	l = RemoveHeadList(&ntoskrnl_calllist);
3742	mtx_unlock_spin(&ntoskrnl_calllock);
3743
3744	e = CONTAINING_RECORD(l, callout_entry, ce_list);
3745	c = &e->ce_callout;
3746
3747	timer->k_callout = c;
3748
3749	callout_init(c, 1);
3750	callout_reset(c, ticks, ntoskrnl_timercall, timer);
3751}
3752
3753static void
3754ntoskrnl_remove_timer(timer)
3755	ktimer			*timer;
3756{
3757	callout_entry		*e;
3758
3759	e = (callout_entry *)timer->k_callout;
3760	callout_stop(timer->k_callout);
3761
3762	mtx_lock_spin(&ntoskrnl_calllock);
3763	InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
3764	mtx_unlock_spin(&ntoskrnl_calllock);
3765}
3766
3767void
3768KeInitializeTimer(timer)
3769	ktimer			*timer;
3770{
3771	if (timer == NULL)
3772		return;
3773
3774	KeInitializeTimerEx(timer,  EVENT_TYPE_NOTIFY);
3775}
3776
3777void
3778KeInitializeTimerEx(timer, type)
3779	ktimer			*timer;
3780	uint32_t		type;
3781{
3782	if (timer == NULL)
3783		return;
3784
3785	bzero((char *)timer, sizeof(ktimer));
3786	InitializeListHead((&timer->k_header.dh_waitlisthead));
3787	timer->k_header.dh_sigstate = FALSE;
3788	timer->k_header.dh_inserted = FALSE;
3789	if (type == EVENT_TYPE_NOTIFY)
3790		timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
3791	else
3792		timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
3793	timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
3794}
3795
3796/*
3797 * DPC subsystem. A Windows Defered Procedure Call has the following
3798 * properties:
3799 * - It runs at DISPATCH_LEVEL.
3800 * - It can have one of 3 importance values that control when it
3801 *   runs relative to other DPCs in the queue.
3802 * - On SMP systems, it can be set to run on a specific processor.
3803 * In order to satisfy the last property, we create a DPC thread for
3804 * each CPU in the system and bind it to that CPU. Each thread
3805 * maintains three queues with different importance levels, which
3806 * will be processed in order from lowest to highest.
3807 *
3808 * In Windows, interrupt handlers run as DPCs. (Not to be confused
3809 * with ISRs, which run in interrupt context and can preempt DPCs.)
3810 * ISRs are given the highest importance so that they'll take
3811 * precedence over timers and other things.
3812 */
3813
3814static void
3815ntoskrnl_dpc_thread(arg)
3816	void			*arg;
3817{
3818	kdpc_queue		*kq;
3819	kdpc			*d;
3820	list_entry		*l;
3821	uint8_t			irql;
3822
3823	kq = arg;
3824
3825	InitializeListHead(&kq->kq_disp);
3826	kq->kq_td = curthread;
3827	kq->kq_exit = 0;
3828	kq->kq_running = FALSE;
3829	KeInitializeSpinLock(&kq->kq_lock);
3830	KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
3831	KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
3832
3833	/*
3834	 * Elevate our priority. DPCs are used to run interrupt
3835	 * handlers, and they should trigger as soon as possible
3836	 * once scheduled by an ISR.
3837	 */
3838
3839	thread_lock(curthread);
3840#ifdef NTOSKRNL_MULTIPLE_DPCS
3841	sched_bind(curthread, kq->kq_cpu);
3842#endif
3843	sched_prio(curthread, PRI_MIN_KERN);
3844	thread_unlock(curthread);
3845
3846	while (1) {
3847		KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
3848
3849		KeAcquireSpinLock(&kq->kq_lock, &irql);
3850
3851		if (kq->kq_exit) {
3852			kq->kq_exit = 0;
3853			KeReleaseSpinLock(&kq->kq_lock, irql);
3854			break;
3855		}
3856
3857		kq->kq_running = TRUE;
3858
3859		while (!IsListEmpty(&kq->kq_disp)) {
3860			l = RemoveHeadList((&kq->kq_disp));
3861			d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
3862			InitializeListHead((&d->k_dpclistentry));
3863			KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
3864			MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
3865			    d->k_sysarg1, d->k_sysarg2);
3866			KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
3867		}
3868
3869		kq->kq_running = FALSE;
3870
3871		KeReleaseSpinLock(&kq->kq_lock, irql);
3872
3873		KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
3874	}
3875
3876	kproc_exit(0);
3877	return; /* notreached */
3878}
3879
3880static void
3881ntoskrnl_destroy_dpc_threads(void)
3882{
3883	kdpc_queue		*kq;
3884	kdpc			dpc;
3885	int			i;
3886
3887	kq = kq_queues;
3888#ifdef NTOSKRNL_MULTIPLE_DPCS
3889	for (i = 0; i < mp_ncpus; i++) {
3890#else
3891	for (i = 0; i < 1; i++) {
3892#endif
3893		kq += i;
3894
3895		kq->kq_exit = 1;
3896		KeInitializeDpc(&dpc, NULL, NULL);
3897		KeSetTargetProcessorDpc(&dpc, i);
3898		KeInsertQueueDpc(&dpc, NULL, NULL);
3899		while (kq->kq_exit)
3900			tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
3901	}
3902}
3903
3904static uint8_t
3905ntoskrnl_insert_dpc(head, dpc)
3906	list_entry		*head;
3907	kdpc			*dpc;
3908{
3909	list_entry		*l;
3910	kdpc			*d;
3911
3912	l = head->nle_flink;
3913	while (l != head) {
3914		d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
3915		if (d == dpc)
3916			return (FALSE);
3917		l = l->nle_flink;
3918	}
3919
3920	if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
3921		InsertTailList((head), (&dpc->k_dpclistentry));
3922	else
3923		InsertHeadList((head), (&dpc->k_dpclistentry));
3924
3925	return (TRUE);
3926}
3927
3928void
3929KeInitializeDpc(dpc, dpcfunc, dpcctx)
3930	kdpc			*dpc;
3931	void			*dpcfunc;
3932	void			*dpcctx;
3933{
3934
3935	if (dpc == NULL)
3936		return;
3937
3938	dpc->k_deferedfunc = dpcfunc;
3939	dpc->k_deferredctx = dpcctx;
3940	dpc->k_num = KDPC_CPU_DEFAULT;
3941	dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
3942	InitializeListHead((&dpc->k_dpclistentry));
3943}
3944
3945uint8_t
3946KeInsertQueueDpc(dpc, sysarg1, sysarg2)
3947	kdpc			*dpc;
3948	void			*sysarg1;
3949	void			*sysarg2;
3950{
3951	kdpc_queue		*kq;
3952	uint8_t			r;
3953	uint8_t			irql;
3954
3955	if (dpc == NULL)
3956		return (FALSE);
3957
3958	kq = kq_queues;
3959
3960#ifdef NTOSKRNL_MULTIPLE_DPCS
3961	KeRaiseIrql(DISPATCH_LEVEL, &irql);
3962
3963	/*
3964	 * By default, the DPC is queued to run on the same CPU
3965	 * that scheduled it.
3966	 */
3967
3968	if (dpc->k_num == KDPC_CPU_DEFAULT)
3969		kq += curthread->td_oncpu;
3970	else
3971		kq += dpc->k_num;
3972	KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
3973#else
3974	KeAcquireSpinLock(&kq->kq_lock, &irql);
3975#endif
3976
3977	r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
3978	if (r == TRUE) {
3979		dpc->k_sysarg1 = sysarg1;
3980		dpc->k_sysarg2 = sysarg2;
3981	}
3982	KeReleaseSpinLock(&kq->kq_lock, irql);
3983
3984	if (r == FALSE)
3985		return (r);
3986
3987	KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
3988
3989	return (r);
3990}
3991
3992uint8_t
3993KeRemoveQueueDpc(dpc)
3994	kdpc			*dpc;
3995{
3996	kdpc_queue		*kq;
3997	uint8_t			irql;
3998
3999	if (dpc == NULL)
4000		return (FALSE);
4001
4002#ifdef NTOSKRNL_MULTIPLE_DPCS
4003	KeRaiseIrql(DISPATCH_LEVEL, &irql);
4004
4005	kq = kq_queues + dpc->k_num;
4006
4007	KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
4008#else
4009	kq = kq_queues;
4010	KeAcquireSpinLock(&kq->kq_lock, &irql);
4011#endif
4012
4013	if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
4014		KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
4015		KeLowerIrql(irql);
4016		return (FALSE);
4017	}
4018
4019	RemoveEntryList((&dpc->k_dpclistentry));
4020	InitializeListHead((&dpc->k_dpclistentry));
4021
4022	KeReleaseSpinLock(&kq->kq_lock, irql);
4023
4024	return (TRUE);
4025}
4026
4027void
4028KeSetImportanceDpc(dpc, imp)
4029	kdpc			*dpc;
4030	uint32_t		imp;
4031{
4032	if (imp != KDPC_IMPORTANCE_LOW &&
4033	    imp != KDPC_IMPORTANCE_MEDIUM &&
4034	    imp != KDPC_IMPORTANCE_HIGH)
4035		return;
4036
4037	dpc->k_importance = (uint8_t)imp;
4038}
4039
4040void
4041KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
4042{
4043	if (cpu > mp_ncpus)
4044		return;
4045
4046	dpc->k_num = cpu;
4047}
4048
4049void
4050KeFlushQueuedDpcs(void)
4051{
4052	kdpc_queue		*kq;
4053	int			i;
4054
4055	/*
4056	 * Poke each DPC queue and wait
4057	 * for them to drain.
4058	 */
4059
4060#ifdef NTOSKRNL_MULTIPLE_DPCS
4061	for (i = 0; i < mp_ncpus; i++) {
4062#else
4063	for (i = 0; i < 1; i++) {
4064#endif
4065		kq = kq_queues + i;
4066		KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
4067		KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
4068	}
4069}
4070
4071uint32_t
4072KeGetCurrentProcessorNumber(void)
4073{
4074	return ((uint32_t)curthread->td_oncpu);
4075}
4076
4077uint8_t
4078KeSetTimerEx(timer, duetime, period, dpc)
4079	ktimer			*timer;
4080	int64_t			duetime;
4081	uint32_t		period;
4082	kdpc			*dpc;
4083{
4084	struct timeval		tv;
4085	uint64_t		curtime;
4086	uint8_t			pending;
4087
4088	if (timer == NULL)
4089		return (FALSE);
4090
4091	mtx_lock(&ntoskrnl_dispatchlock);
4092
4093	if (timer->k_header.dh_inserted == TRUE) {
4094		ntoskrnl_remove_timer(timer);
4095#ifdef NTOSKRNL_DEBUG_TIMERS
4096		ntoskrnl_timer_cancels++;
4097#endif
4098		timer->k_header.dh_inserted = FALSE;
4099		pending = TRUE;
4100	} else
4101		pending = FALSE;
4102
4103	timer->k_duetime = duetime;
4104	timer->k_period = period;
4105	timer->k_header.dh_sigstate = FALSE;
4106	timer->k_dpc = dpc;
4107
4108	if (duetime < 0) {
4109		tv.tv_sec = - (duetime) / 10000000;
4110		tv.tv_usec = (- (duetime) / 10) -
4111		    (tv.tv_sec * 1000000);
4112	} else {
4113		ntoskrnl_time(&curtime);
4114		if (duetime < curtime)
4115			tv.tv_sec = tv.tv_usec = 0;
4116		else {
4117			tv.tv_sec = ((duetime) - curtime) / 10000000;
4118			tv.tv_usec = ((duetime) - curtime) / 10 -
4119			    (tv.tv_sec * 1000000);
4120		}
4121	}
4122
4123	timer->k_header.dh_inserted = TRUE;
4124	ntoskrnl_insert_timer(timer, tvtohz(&tv));
4125#ifdef NTOSKRNL_DEBUG_TIMERS
4126	ntoskrnl_timer_sets++;
4127#endif
4128
4129	mtx_unlock(&ntoskrnl_dispatchlock);
4130
4131	return (pending);
4132}
4133
4134uint8_t
4135KeSetTimer(timer, duetime, dpc)
4136	ktimer			*timer;
4137	int64_t			duetime;
4138	kdpc			*dpc;
4139{
4140	return (KeSetTimerEx(timer, duetime, 0, dpc));
4141}
4142
4143/*
4144 * The Windows DDK documentation seems to say that cancelling
4145 * a timer that has a DPC will result in the DPC also being
4146 * cancelled, but this isn't really the case.
4147 */
4148
4149uint8_t
4150KeCancelTimer(timer)
4151	ktimer			*timer;
4152{
4153	uint8_t			pending;
4154
4155	if (timer == NULL)
4156		return (FALSE);
4157
4158	mtx_lock(&ntoskrnl_dispatchlock);
4159
4160	pending = timer->k_header.dh_inserted;
4161
4162	if (timer->k_header.dh_inserted == TRUE) {
4163		timer->k_header.dh_inserted = FALSE;
4164		ntoskrnl_remove_timer(timer);
4165#ifdef NTOSKRNL_DEBUG_TIMERS
4166		ntoskrnl_timer_cancels++;
4167#endif
4168	}
4169
4170	mtx_unlock(&ntoskrnl_dispatchlock);
4171
4172	return (pending);
4173}
4174
4175uint8_t
4176KeReadStateTimer(timer)
4177	ktimer			*timer;
4178{
4179	return (timer->k_header.dh_sigstate);
4180}
4181
4182static int32_t
4183KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
4184{
4185	ktimer                  timer;
4186
4187	if (wait_mode != 0)
4188		panic("invalid wait_mode %d", wait_mode);
4189
4190	KeInitializeTimer(&timer);
4191	KeSetTimer(&timer, *interval, NULL);
4192	KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
4193
4194	return STATUS_SUCCESS;
4195}
4196
4197static uint64_t
4198KeQueryInterruptTime(void)
4199{
4200	int ticks;
4201	struct timeval tv;
4202
4203	getmicrouptime(&tv);
4204
4205	ticks = tvtohz(&tv);
4206
4207	return ticks * howmany(10000000, hz);
4208}
4209
4210static struct thread *
4211KeGetCurrentThread(void)
4212{
4213
4214	return curthread;
4215}
4216
4217static int32_t
4218KeSetPriorityThread(td, pri)
4219	struct thread	*td;
4220	int32_t		pri;
4221{
4222	int32_t old;
4223
4224	if (td == NULL)
4225		return LOW_REALTIME_PRIORITY;
4226
4227	if (td->td_priority <= PRI_MIN_KERN)
4228		old = HIGH_PRIORITY;
4229	else if (td->td_priority >= PRI_MAX_KERN)
4230		old = LOW_PRIORITY;
4231	else
4232		old = LOW_REALTIME_PRIORITY;
4233
4234	thread_lock(td);
4235	if (pri == HIGH_PRIORITY)
4236		sched_prio(td, PRI_MIN_KERN);
4237	if (pri == LOW_REALTIME_PRIORITY)
4238		sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
4239	if (pri == LOW_PRIORITY)
4240		sched_prio(td, PRI_MAX_KERN);
4241	thread_unlock(td);
4242
4243	return old;
4244}
4245
4246static void
4247dummy()
4248{
4249	printf("ntoskrnl dummy called...\n");
4250}
4251
4252
4253image_patch_table ntoskrnl_functbl[] = {
4254	IMPORT_SFUNC(RtlZeroMemory, 2),
4255	IMPORT_SFUNC(RtlSecureZeroMemory, 2),
4256	IMPORT_SFUNC(RtlFillMemory, 3),
4257	IMPORT_SFUNC(RtlMoveMemory, 3),
4258	IMPORT_SFUNC(RtlCharToInteger, 3),
4259	IMPORT_SFUNC(RtlCopyMemory, 3),
4260	IMPORT_SFUNC(RtlCopyString, 2),
4261	IMPORT_SFUNC(RtlCompareMemory, 3),
4262	IMPORT_SFUNC(RtlEqualUnicodeString, 3),
4263	IMPORT_SFUNC(RtlCopyUnicodeString, 2),
4264	IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
4265	IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
4266	IMPORT_SFUNC(RtlInitAnsiString, 2),
4267	IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
4268	IMPORT_SFUNC(RtlInitUnicodeString, 2),
4269	IMPORT_SFUNC(RtlFreeAnsiString, 1),
4270	IMPORT_SFUNC(RtlFreeUnicodeString, 1),
4271	IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
4272	IMPORT_CFUNC(sprintf, 0),
4273	IMPORT_CFUNC(vsprintf, 0),
4274	IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
4275	IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
4276	IMPORT_CFUNC(DbgPrint, 0),
4277	IMPORT_SFUNC(DbgBreakPoint, 0),
4278	IMPORT_SFUNC(KeBugCheckEx, 5),
4279	IMPORT_CFUNC(strncmp, 0),
4280	IMPORT_CFUNC(strcmp, 0),
4281	IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
4282	IMPORT_CFUNC(strncpy, 0),
4283	IMPORT_CFUNC(strcpy, 0),
4284	IMPORT_CFUNC(strlen, 0),
4285	IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
4286	IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
4287	IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
4288	IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
4289	IMPORT_CFUNC_MAP(strchr, index, 0),
4290	IMPORT_CFUNC_MAP(strrchr, rindex, 0),
4291	IMPORT_CFUNC(memcpy, 0),
4292	IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
4293	IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
4294	IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
4295	IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
4296	IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
4297	IMPORT_FFUNC(IofCallDriver, 2),
4298	IMPORT_FFUNC(IofCompleteRequest, 2),
4299	IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
4300	IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
4301	IMPORT_SFUNC(IoCancelIrp, 1),
4302	IMPORT_SFUNC(IoConnectInterrupt, 11),
4303	IMPORT_SFUNC(IoDisconnectInterrupt, 1),
4304	IMPORT_SFUNC(IoCreateDevice, 7),
4305	IMPORT_SFUNC(IoDeleteDevice, 1),
4306	IMPORT_SFUNC(IoGetAttachedDevice, 1),
4307	IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
4308	IMPORT_SFUNC(IoDetachDevice, 1),
4309	IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
4310	IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
4311	IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
4312	IMPORT_SFUNC(IoAllocateIrp, 2),
4313	IMPORT_SFUNC(IoReuseIrp, 2),
4314	IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
4315	IMPORT_SFUNC(IoFreeIrp, 1),
4316	IMPORT_SFUNC(IoInitializeIrp, 3),
4317	IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
4318	IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
4319	IMPORT_SFUNC(KeSynchronizeExecution, 3),
4320	IMPORT_SFUNC(KeWaitForSingleObject, 5),
4321	IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
4322	IMPORT_SFUNC(_allmul, 4),
4323	IMPORT_SFUNC(_alldiv, 4),
4324	IMPORT_SFUNC(_allrem, 4),
4325	IMPORT_RFUNC(_allshr, 0),
4326	IMPORT_RFUNC(_allshl, 0),
4327	IMPORT_SFUNC(_aullmul, 4),
4328	IMPORT_SFUNC(_aulldiv, 4),
4329	IMPORT_SFUNC(_aullrem, 4),
4330	IMPORT_RFUNC(_aullshr, 0),
4331	IMPORT_RFUNC(_aullshl, 0),
4332	IMPORT_CFUNC(atoi, 0),
4333	IMPORT_CFUNC(atol, 0),
4334	IMPORT_CFUNC(rand, 0),
4335	IMPORT_CFUNC(srand, 0),
4336	IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
4337	IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
4338	IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
4339	IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
4340	IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
4341	IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
4342	IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
4343	IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
4344	IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
4345	IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
4346	IMPORT_FFUNC(InterlockedPopEntrySList, 1),
4347	IMPORT_FFUNC(InitializeSListHead, 1),
4348	IMPORT_FFUNC(InterlockedPushEntrySList, 2),
4349	IMPORT_SFUNC(ExQueryDepthSList, 1),
4350	IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
4351		InterlockedPopEntrySList, 1),
4352	IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
4353		InterlockedPushEntrySList, 2),
4354	IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
4355	IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
4356	IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
4357	IMPORT_SFUNC(ExFreePoolWithTag, 2),
4358	IMPORT_SFUNC(ExFreePool, 1),
4359#ifdef __i386__
4360	IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
4361	IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
4362	IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
4363#else
4364	/*
4365	 * For AMD64, we can get away with just mapping
4366	 * KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
4367	 * because the calling conventions end up being the same.
4368	 * On i386, we have to be careful because KfAcquireSpinLock()
4369	 * is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
4370	 */
4371	IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
4372	IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
4373	IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
4374#endif
4375	IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
4376	IMPORT_FFUNC(InterlockedIncrement, 1),
4377	IMPORT_FFUNC(InterlockedDecrement, 1),
4378	IMPORT_FFUNC(InterlockedExchange, 2),
4379	IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
4380	IMPORT_SFUNC(IoAllocateMdl, 5),
4381	IMPORT_SFUNC(IoFreeMdl, 1),
4382	IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1),
4383	IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3),
4384	IMPORT_SFUNC(MmFreeContiguousMemory, 1),
4385	IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
4386	IMPORT_SFUNC(MmSizeOfMdl, 1),
4387	IMPORT_SFUNC(MmMapLockedPages, 2),
4388	IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
4389	IMPORT_SFUNC(MmUnmapLockedPages, 2),
4390	IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
4391	IMPORT_SFUNC(MmGetPhysicalAddress, 1),
4392	IMPORT_SFUNC(MmGetSystemRoutineAddress, 1),
4393	IMPORT_SFUNC(MmIsAddressValid, 1),
4394	IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
4395	IMPORT_SFUNC(MmUnmapIoSpace, 2),
4396	IMPORT_SFUNC(KeInitializeSpinLock, 1),
4397	IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
4398	IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4),
4399	IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
4400	IMPORT_SFUNC(IoGetDeviceProperty, 5),
4401	IMPORT_SFUNC(IoAllocateWorkItem, 1),
4402	IMPORT_SFUNC(IoFreeWorkItem, 1),
4403	IMPORT_SFUNC(IoQueueWorkItem, 4),
4404	IMPORT_SFUNC(ExQueueWorkItem, 2),
4405	IMPORT_SFUNC(ntoskrnl_workitem, 2),
4406	IMPORT_SFUNC(KeInitializeMutex, 2),
4407	IMPORT_SFUNC(KeReleaseMutex, 2),
4408	IMPORT_SFUNC(KeReadStateMutex, 1),
4409	IMPORT_SFUNC(KeInitializeEvent, 3),
4410	IMPORT_SFUNC(KeSetEvent, 3),
4411	IMPORT_SFUNC(KeResetEvent, 1),
4412	IMPORT_SFUNC(KeClearEvent, 1),
4413	IMPORT_SFUNC(KeReadStateEvent, 1),
4414	IMPORT_SFUNC(KeInitializeTimer, 1),
4415	IMPORT_SFUNC(KeInitializeTimerEx, 2),
4416	IMPORT_SFUNC(KeSetTimer, 3),
4417	IMPORT_SFUNC(KeSetTimerEx, 4),
4418	IMPORT_SFUNC(KeCancelTimer, 1),
4419	IMPORT_SFUNC(KeReadStateTimer, 1),
4420	IMPORT_SFUNC(KeInitializeDpc, 3),
4421	IMPORT_SFUNC(KeInsertQueueDpc, 3),
4422	IMPORT_SFUNC(KeRemoveQueueDpc, 1),
4423	IMPORT_SFUNC(KeSetImportanceDpc, 2),
4424	IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
4425	IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
4426	IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
4427	IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
4428	IMPORT_FFUNC(ObfDereferenceObject, 1),
4429	IMPORT_SFUNC(ZwClose, 1),
4430	IMPORT_SFUNC(PsCreateSystemThread, 7),
4431	IMPORT_SFUNC(PsTerminateSystemThread, 1),
4432	IMPORT_SFUNC(IoWMIRegistrationControl, 2),
4433	IMPORT_SFUNC(WmiQueryTraceInformation, 5),
4434	IMPORT_CFUNC(WmiTraceMessage, 0),
4435	IMPORT_SFUNC(KeQuerySystemTime, 1),
4436	IMPORT_CFUNC(KeTickCount, 0),
4437	IMPORT_SFUNC(KeDelayExecutionThread, 3),
4438	IMPORT_SFUNC(KeQueryInterruptTime, 0),
4439	IMPORT_SFUNC(KeGetCurrentThread, 0),
4440	IMPORT_SFUNC(KeSetPriorityThread, 2),
4441
4442	/*
4443	 * This last entry is a catch-all for any function we haven't
4444	 * implemented yet. The PE import list patching routine will
4445	 * use it for any function that doesn't have an explicit match
4446	 * in this table.
4447	 */
4448
4449	{ NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
4450
4451	/* End of list. */
4452
4453	{ NULL, NULL, NULL }
4454};
4455