linux_compat.c revision 347791
1/*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/compat/linuxkpi/common/src/linux_compat.c 347791 2019-05-16 17:01:39Z hselasky $");
32
33#include "opt_stack.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/sysctl.h>
40#include <sys/proc.h>
41#include <sys/sglist.h>
42#include <sys/sleepqueue.h>
43#include <sys/refcount.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/bus.h>
47#include <sys/fcntl.h>
48#include <sys/file.h>
49#include <sys/filio.h>
50#include <sys/rwlock.h>
51#include <sys/mman.h>
52#include <sys/stack.h>
53#include <sys/user.h>
54
55#include <vm/vm.h>
56#include <vm/pmap.h>
57#include <vm/vm_object.h>
58#include <vm/vm_page.h>
59#include <vm/vm_pager.h>
60
61#include <machine/stdarg.h>
62
63#if defined(__i386__) || defined(__amd64__)
64#include <machine/md_var.h>
65#endif
66
67#include <linux/kobject.h>
68#include <linux/device.h>
69#include <linux/slab.h>
70#include <linux/module.h>
71#include <linux/moduleparam.h>
72#include <linux/cdev.h>
73#include <linux/file.h>
74#include <linux/sysfs.h>
75#include <linux/mm.h>
76#include <linux/io.h>
77#include <linux/vmalloc.h>
78#include <linux/netdevice.h>
79#include <linux/timer.h>
80#include <linux/interrupt.h>
81#include <linux/uaccess.h>
82#include <linux/list.h>
83#include <linux/kthread.h>
84#include <linux/kernel.h>
85#include <linux/compat.h>
86#include <linux/poll.h>
87#include <linux/smp.h>
88
89#if defined(__i386__) || defined(__amd64__)
90#include <asm/smp.h>
91#endif
92
93SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
94
95int linuxkpi_debug;
96SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
97    &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
98
99MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
100
101#include <linux/rbtree.h>
102/* Undo Linux compat changes. */
103#undef RB_ROOT
104#undef file
105#undef cdev
106#define	RB_ROOT(head)	(head)->rbh_root
107
108static void linux_cdev_deref(struct linux_cdev *ldev);
109static struct vm_area_struct *linux_cdev_handle_find(void *handle);
110
111struct kobject linux_class_root;
112struct device linux_root_device;
113struct class linux_class_misc;
114struct list_head pci_drivers;
115struct list_head pci_devices;
116spinlock_t pci_lock;
117
118unsigned long linux_timer_hz_mask;
119
120int
121panic_cmp(struct rb_node *one, struct rb_node *two)
122{
123	panic("no cmp");
124}
125
126RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
127
128int
129kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
130{
131	va_list tmp_va;
132	int len;
133	char *old;
134	char *name;
135	char dummy;
136
137	old = kobj->name;
138
139	if (old && fmt == NULL)
140		return (0);
141
142	/* compute length of string */
143	va_copy(tmp_va, args);
144	len = vsnprintf(&dummy, 0, fmt, tmp_va);
145	va_end(tmp_va);
146
147	/* account for zero termination */
148	len++;
149
150	/* check for error */
151	if (len < 1)
152		return (-EINVAL);
153
154	/* allocate memory for string */
155	name = kzalloc(len, GFP_KERNEL);
156	if (name == NULL)
157		return (-ENOMEM);
158	vsnprintf(name, len, fmt, args);
159	kobj->name = name;
160
161	/* free old string */
162	kfree(old);
163
164	/* filter new string */
165	for (; *name != '\0'; name++)
166		if (*name == '/')
167			*name = '!';
168	return (0);
169}
170
171int
172kobject_set_name(struct kobject *kobj, const char *fmt, ...)
173{
174	va_list args;
175	int error;
176
177	va_start(args, fmt);
178	error = kobject_set_name_vargs(kobj, fmt, args);
179	va_end(args);
180
181	return (error);
182}
183
184static int
185kobject_add_complete(struct kobject *kobj, struct kobject *parent)
186{
187	const struct kobj_type *t;
188	int error;
189
190	kobj->parent = parent;
191	error = sysfs_create_dir(kobj);
192	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
193		struct attribute **attr;
194		t = kobj->ktype;
195
196		for (attr = t->default_attrs; *attr != NULL; attr++) {
197			error = sysfs_create_file(kobj, *attr);
198			if (error)
199				break;
200		}
201		if (error)
202			sysfs_remove_dir(kobj);
203
204	}
205	return (error);
206}
207
208int
209kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
210{
211	va_list args;
212	int error;
213
214	va_start(args, fmt);
215	error = kobject_set_name_vargs(kobj, fmt, args);
216	va_end(args);
217	if (error)
218		return (error);
219
220	return kobject_add_complete(kobj, parent);
221}
222
223void
224linux_kobject_release(struct kref *kref)
225{
226	struct kobject *kobj;
227	char *name;
228
229	kobj = container_of(kref, struct kobject, kref);
230	sysfs_remove_dir(kobj);
231	name = kobj->name;
232	if (kobj->ktype && kobj->ktype->release)
233		kobj->ktype->release(kobj);
234	kfree(name);
235}
236
237static void
238linux_kobject_kfree(struct kobject *kobj)
239{
240	kfree(kobj);
241}
242
243static void
244linux_kobject_kfree_name(struct kobject *kobj)
245{
246	if (kobj) {
247		kfree(kobj->name);
248	}
249}
250
251const struct kobj_type linux_kfree_type = {
252	.release = linux_kobject_kfree
253};
254
255static void
256linux_device_release(struct device *dev)
257{
258	pr_debug("linux_device_release: %s\n", dev_name(dev));
259	kfree(dev);
260}
261
262static ssize_t
263linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
264{
265	struct class_attribute *dattr;
266	ssize_t error;
267
268	dattr = container_of(attr, struct class_attribute, attr);
269	error = -EIO;
270	if (dattr->show)
271		error = dattr->show(container_of(kobj, struct class, kobj),
272		    dattr, buf);
273	return (error);
274}
275
276static ssize_t
277linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
278    size_t count)
279{
280	struct class_attribute *dattr;
281	ssize_t error;
282
283	dattr = container_of(attr, struct class_attribute, attr);
284	error = -EIO;
285	if (dattr->store)
286		error = dattr->store(container_of(kobj, struct class, kobj),
287		    dattr, buf, count);
288	return (error);
289}
290
291static void
292linux_class_release(struct kobject *kobj)
293{
294	struct class *class;
295
296	class = container_of(kobj, struct class, kobj);
297	if (class->class_release)
298		class->class_release(class);
299}
300
301static const struct sysfs_ops linux_class_sysfs = {
302	.show  = linux_class_show,
303	.store = linux_class_store,
304};
305
306const struct kobj_type linux_class_ktype = {
307	.release = linux_class_release,
308	.sysfs_ops = &linux_class_sysfs
309};
310
311static void
312linux_dev_release(struct kobject *kobj)
313{
314	struct device *dev;
315
316	dev = container_of(kobj, struct device, kobj);
317	/* This is the precedence defined by linux. */
318	if (dev->release)
319		dev->release(dev);
320	else if (dev->class && dev->class->dev_release)
321		dev->class->dev_release(dev);
322}
323
324static ssize_t
325linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
326{
327	struct device_attribute *dattr;
328	ssize_t error;
329
330	dattr = container_of(attr, struct device_attribute, attr);
331	error = -EIO;
332	if (dattr->show)
333		error = dattr->show(container_of(kobj, struct device, kobj),
334		    dattr, buf);
335	return (error);
336}
337
338static ssize_t
339linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
340    size_t count)
341{
342	struct device_attribute *dattr;
343	ssize_t error;
344
345	dattr = container_of(attr, struct device_attribute, attr);
346	error = -EIO;
347	if (dattr->store)
348		error = dattr->store(container_of(kobj, struct device, kobj),
349		    dattr, buf, count);
350	return (error);
351}
352
353static const struct sysfs_ops linux_dev_sysfs = {
354	.show  = linux_dev_show,
355	.store = linux_dev_store,
356};
357
358const struct kobj_type linux_dev_ktype = {
359	.release = linux_dev_release,
360	.sysfs_ops = &linux_dev_sysfs
361};
362
363struct device *
364device_create(struct class *class, struct device *parent, dev_t devt,
365    void *drvdata, const char *fmt, ...)
366{
367	struct device *dev;
368	va_list args;
369
370	dev = kzalloc(sizeof(*dev), M_WAITOK);
371	dev->parent = parent;
372	dev->class = class;
373	dev->devt = devt;
374	dev->driver_data = drvdata;
375	dev->release = linux_device_release;
376	va_start(args, fmt);
377	kobject_set_name_vargs(&dev->kobj, fmt, args);
378	va_end(args);
379	device_register(dev);
380
381	return (dev);
382}
383
384int
385kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
386    struct kobject *parent, const char *fmt, ...)
387{
388	va_list args;
389	int error;
390
391	kobject_init(kobj, ktype);
392	kobj->ktype = ktype;
393	kobj->parent = parent;
394	kobj->name = NULL;
395
396	va_start(args, fmt);
397	error = kobject_set_name_vargs(kobj, fmt, args);
398	va_end(args);
399	if (error)
400		return (error);
401	return kobject_add_complete(kobj, parent);
402}
403
404static void
405linux_kq_lock(void *arg)
406{
407	spinlock_t *s = arg;
408
409	spin_lock(s);
410}
411static void
412linux_kq_unlock(void *arg)
413{
414	spinlock_t *s = arg;
415
416	spin_unlock(s);
417}
418
419static void
420linux_kq_lock_owned(void *arg)
421{
422#ifdef INVARIANTS
423	spinlock_t *s = arg;
424
425	mtx_assert(&s->m, MA_OWNED);
426#endif
427}
428
429static void
430linux_kq_lock_unowned(void *arg)
431{
432#ifdef INVARIANTS
433	spinlock_t *s = arg;
434
435	mtx_assert(&s->m, MA_NOTOWNED);
436#endif
437}
438
439static void
440linux_file_kqfilter_poll(struct linux_file *, int);
441
442struct linux_file *
443linux_file_alloc(void)
444{
445	struct linux_file *filp;
446
447	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
448
449	/* set initial refcount */
450	filp->f_count = 1;
451
452	/* setup fields needed by kqueue support */
453	spin_lock_init(&filp->f_kqlock);
454	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
455	    linux_kq_lock, linux_kq_unlock,
456	    linux_kq_lock_owned, linux_kq_lock_unowned);
457
458	return (filp);
459}
460
461void
462linux_file_free(struct linux_file *filp)
463{
464	if (filp->_file == NULL) {
465		if (filp->f_shmem != NULL)
466			vm_object_deallocate(filp->f_shmem);
467		kfree(filp);
468	} else {
469		/*
470		 * The close method of the character device or file
471		 * will free the linux_file structure:
472		 */
473		_fdrop(filp->_file, curthread);
474	}
475}
476
477static int
478linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
479    vm_page_t *mres)
480{
481	struct vm_area_struct *vmap;
482
483	vmap = linux_cdev_handle_find(vm_obj->handle);
484
485	MPASS(vmap != NULL);
486	MPASS(vmap->vm_private_data == vm_obj->handle);
487
488	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
489		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
490		vm_page_t page;
491
492		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
493			/*
494			 * If the passed in result page is a fake
495			 * page, update it with the new physical
496			 * address.
497			 */
498			page = *mres;
499			vm_page_updatefake(page, paddr, vm_obj->memattr);
500		} else {
501			/*
502			 * Replace the passed in "mres" page with our
503			 * own fake page and free up the all of the
504			 * original pages.
505			 */
506			VM_OBJECT_WUNLOCK(vm_obj);
507			page = vm_page_getfake(paddr, vm_obj->memattr);
508			VM_OBJECT_WLOCK(vm_obj);
509
510			vm_page_replace_checked(page, vm_obj,
511			    (*mres)->pindex, *mres);
512
513			vm_page_lock(*mres);
514			vm_page_free(*mres);
515			vm_page_unlock(*mres);
516			*mres = page;
517		}
518		page->valid = VM_PAGE_BITS_ALL;
519		return (VM_PAGER_OK);
520	}
521	return (VM_PAGER_FAIL);
522}
523
524static int
525linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
526    vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
527{
528	struct vm_area_struct *vmap;
529	int err;
530
531	linux_set_current(curthread);
532
533	/* get VM area structure */
534	vmap = linux_cdev_handle_find(vm_obj->handle);
535	MPASS(vmap != NULL);
536	MPASS(vmap->vm_private_data == vm_obj->handle);
537
538	VM_OBJECT_WUNLOCK(vm_obj);
539
540	down_write(&vmap->vm_mm->mmap_sem);
541	if (unlikely(vmap->vm_ops == NULL)) {
542		err = VM_FAULT_SIGBUS;
543	} else {
544		struct vm_fault vmf;
545
546		/* fill out VM fault structure */
547		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
548		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
549		vmf.pgoff = 0;
550		vmf.page = NULL;
551		vmf.vma = vmap;
552
553		vmap->vm_pfn_count = 0;
554		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555		vmap->vm_obj = vm_obj;
556
557		err = vmap->vm_ops->fault(vmap, &vmf);
558
559		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560			kern_yield(PRI_USER);
561			err = vmap->vm_ops->fault(vmap, &vmf);
562		}
563	}
564
565	/* translate return code */
566	switch (err) {
567	case VM_FAULT_OOM:
568		err = VM_PAGER_AGAIN;
569		break;
570	case VM_FAULT_SIGBUS:
571		err = VM_PAGER_BAD;
572		break;
573	case VM_FAULT_NOPAGE:
574		/*
575		 * By contract the fault handler will return having
576		 * busied all the pages itself. If pidx is already
577		 * found in the object, it will simply xbusy the first
578		 * page and return with vm_pfn_count set to 1.
579		 */
580		*first = vmap->vm_pfn_first;
581		*last = *first + vmap->vm_pfn_count - 1;
582		err = VM_PAGER_OK;
583		break;
584	default:
585		err = VM_PAGER_ERROR;
586		break;
587	}
588	up_write(&vmap->vm_mm->mmap_sem);
589	VM_OBJECT_WLOCK(vm_obj);
590	return (err);
591}
592
593static struct rwlock linux_vma_lock;
594static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595    TAILQ_HEAD_INITIALIZER(linux_vma_head);
596
597static void
598linux_cdev_handle_free(struct vm_area_struct *vmap)
599{
600	/* Drop reference on vm_file */
601	if (vmap->vm_file != NULL)
602		fput(vmap->vm_file);
603
604	/* Drop reference on mm_struct */
605	mmput(vmap->vm_mm);
606
607	kfree(vmap);
608}
609
610static void
611linux_cdev_handle_remove(struct vm_area_struct *vmap)
612{
613	rw_wlock(&linux_vma_lock);
614	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
615	rw_wunlock(&linux_vma_lock);
616}
617
618static struct vm_area_struct *
619linux_cdev_handle_find(void *handle)
620{
621	struct vm_area_struct *vmap;
622
623	rw_rlock(&linux_vma_lock);
624	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
625		if (vmap->vm_private_data == handle)
626			break;
627	}
628	rw_runlock(&linux_vma_lock);
629	return (vmap);
630}
631
632static int
633linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
634		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
635{
636
637	MPASS(linux_cdev_handle_find(handle) != NULL);
638	*color = 0;
639	return (0);
640}
641
642static void
643linux_cdev_pager_dtor(void *handle)
644{
645	const struct vm_operations_struct *vm_ops;
646	struct vm_area_struct *vmap;
647
648	vmap = linux_cdev_handle_find(handle);
649	MPASS(vmap != NULL);
650
651	/*
652	 * Remove handle before calling close operation to prevent
653	 * other threads from reusing the handle pointer.
654	 */
655	linux_cdev_handle_remove(vmap);
656
657	down_write(&vmap->vm_mm->mmap_sem);
658	vm_ops = vmap->vm_ops;
659	if (likely(vm_ops != NULL))
660		vm_ops->close(vmap);
661	up_write(&vmap->vm_mm->mmap_sem);
662
663	linux_cdev_handle_free(vmap);
664}
665
666static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
667  {
668	/* OBJT_MGTDEVICE */
669	.cdev_pg_populate	= linux_cdev_pager_populate,
670	.cdev_pg_ctor	= linux_cdev_pager_ctor,
671	.cdev_pg_dtor	= linux_cdev_pager_dtor
672  },
673  {
674	/* OBJT_DEVICE */
675	.cdev_pg_fault	= linux_cdev_pager_fault,
676	.cdev_pg_ctor	= linux_cdev_pager_ctor,
677	.cdev_pg_dtor	= linux_cdev_pager_dtor
678  },
679};
680
681int
682zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
683    unsigned long size)
684{
685	vm_object_t obj;
686	vm_page_t m;
687
688	obj = vma->vm_obj;
689	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
690		return (-ENOTSUP);
691	VM_OBJECT_RLOCK(obj);
692	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
693	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
694	    m = TAILQ_NEXT(m, listq))
695		pmap_remove_all(m);
696	VM_OBJECT_RUNLOCK(obj);
697	return (0);
698}
699
700static struct file_operations dummy_ldev_ops = {
701	/* XXXKIB */
702};
703
704static struct linux_cdev dummy_ldev = {
705	.ops = &dummy_ldev_ops,
706};
707
708#define	LDEV_SI_DTR	0x0001
709#define	LDEV_SI_REF	0x0002
710
711static void
712linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
713    struct linux_cdev **dev)
714{
715	struct linux_cdev *ldev;
716	u_int siref;
717
718	ldev = filp->f_cdev;
719	*fop = filp->f_op;
720	if (ldev != NULL) {
721		for (siref = ldev->siref;;) {
722			if ((siref & LDEV_SI_DTR) != 0) {
723				ldev = &dummy_ldev;
724				siref = ldev->siref;
725				*fop = ldev->ops;
726				MPASS((ldev->siref & LDEV_SI_DTR) == 0);
727			} else if (atomic_fcmpset_int(&ldev->siref, &siref,
728			    siref + LDEV_SI_REF)) {
729				break;
730			}
731		}
732	}
733	*dev = ldev;
734}
735
736static void
737linux_drop_fop(struct linux_cdev *ldev)
738{
739
740	if (ldev == NULL)
741		return;
742	MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
743	atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
744}
745
746#define	OPW(fp,td,code) ({			\
747	struct file *__fpop;			\
748	__typeof(code) __retval;		\
749						\
750	__fpop = (td)->td_fpop;			\
751	(td)->td_fpop = (fp);			\
752	__retval = (code);			\
753	(td)->td_fpop = __fpop;			\
754	__retval;				\
755})
756
757static int
758linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
759    struct file *file)
760{
761	struct linux_cdev *ldev;
762	struct linux_file *filp;
763	const struct file_operations *fop;
764	int error;
765
766	ldev = dev->si_drv1;
767
768	filp = linux_file_alloc();
769	filp->f_dentry = &filp->f_dentry_store;
770	filp->f_op = ldev->ops;
771	filp->f_mode = file->f_flag;
772	filp->f_flags = file->f_flag;
773	filp->f_vnode = file->f_vnode;
774	filp->_file = file;
775	refcount_acquire(&ldev->refs);
776	filp->f_cdev = ldev;
777
778	linux_set_current(td);
779	linux_get_fop(filp, &fop, &ldev);
780
781	if (fop->open != NULL) {
782		error = -fop->open(file->f_vnode, filp);
783		if (error != 0) {
784			linux_drop_fop(ldev);
785			linux_cdev_deref(filp->f_cdev);
786			kfree(filp);
787			return (error);
788		}
789	}
790
791	/* hold on to the vnode - used for fstat() */
792	vhold(filp->f_vnode);
793
794	/* release the file from devfs */
795	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
796	linux_drop_fop(ldev);
797	return (ENXIO);
798}
799
800#define	LINUX_IOCTL_MIN_PTR 0x10000UL
801#define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
802
803static inline int
804linux_remap_address(void **uaddr, size_t len)
805{
806	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
807
808	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
809	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
810		struct task_struct *pts = current;
811		if (pts == NULL) {
812			*uaddr = NULL;
813			return (1);
814		}
815
816		/* compute data offset */
817		uaddr_val -= LINUX_IOCTL_MIN_PTR;
818
819		/* check that length is within bounds */
820		if ((len > IOCPARM_MAX) ||
821		    (uaddr_val + len) > pts->bsd_ioctl_len) {
822			*uaddr = NULL;
823			return (1);
824		}
825
826		/* re-add kernel buffer address */
827		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
828
829		/* update address location */
830		*uaddr = (void *)uaddr_val;
831		return (1);
832	}
833	return (0);
834}
835
836int
837linux_copyin(const void *uaddr, void *kaddr, size_t len)
838{
839	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
840		if (uaddr == NULL)
841			return (-EFAULT);
842		memcpy(kaddr, uaddr, len);
843		return (0);
844	}
845	return (-copyin(uaddr, kaddr, len));
846}
847
848int
849linux_copyout(const void *kaddr, void *uaddr, size_t len)
850{
851	if (linux_remap_address(&uaddr, len)) {
852		if (uaddr == NULL)
853			return (-EFAULT);
854		memcpy(uaddr, kaddr, len);
855		return (0);
856	}
857	return (-copyout(kaddr, uaddr, len));
858}
859
860size_t
861linux_clear_user(void *_uaddr, size_t _len)
862{
863	uint8_t *uaddr = _uaddr;
864	size_t len = _len;
865
866	/* make sure uaddr is aligned before going into the fast loop */
867	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
868		if (subyte(uaddr, 0))
869			return (_len);
870		uaddr++;
871		len--;
872	}
873
874	/* zero 8 bytes at a time */
875	while (len > 7) {
876#ifdef __LP64__
877		if (suword64(uaddr, 0))
878			return (_len);
879#else
880		if (suword32(uaddr, 0))
881			return (_len);
882		if (suword32(uaddr + 4, 0))
883			return (_len);
884#endif
885		uaddr += 8;
886		len -= 8;
887	}
888
889	/* zero fill end, if any */
890	while (len > 0) {
891		if (subyte(uaddr, 0))
892			return (_len);
893		uaddr++;
894		len--;
895	}
896	return (0);
897}
898
899int
900linux_access_ok(int rw, const void *uaddr, size_t len)
901{
902	uintptr_t saddr;
903	uintptr_t eaddr;
904
905	/* get start and end address */
906	saddr = (uintptr_t)uaddr;
907	eaddr = (uintptr_t)uaddr + len;
908
909	/* verify addresses are valid for userspace */
910	return ((saddr == eaddr) ||
911	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
912}
913
914/*
915 * This function should return either EINTR or ERESTART depending on
916 * the signal type sent to this thread:
917 */
918static int
919linux_get_error(struct task_struct *task, int error)
920{
921	/* check for signal type interrupt code */
922	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
923		error = -linux_schedule_get_interrupt_value(task);
924		if (error == 0)
925			error = EINTR;
926	}
927	return (error);
928}
929
930static int
931linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
932    const struct file_operations *fop, u_long cmd, caddr_t data,
933    struct thread *td)
934{
935	struct task_struct *task = current;
936	unsigned size;
937	int error;
938
939	size = IOCPARM_LEN(cmd);
940	/* refer to logic in sys_ioctl() */
941	if (size > 0) {
942		/*
943		 * Setup hint for linux_copyin() and linux_copyout().
944		 *
945		 * Background: Linux code expects a user-space address
946		 * while FreeBSD supplies a kernel-space address.
947		 */
948		task->bsd_ioctl_data = data;
949		task->bsd_ioctl_len = size;
950		data = (void *)LINUX_IOCTL_MIN_PTR;
951	} else {
952		/* fetch user-space pointer */
953		data = *(void **)data;
954	}
955#if defined(__amd64__)
956	if (td->td_proc->p_elf_machine == EM_386) {
957		/* try the compat IOCTL handler first */
958		if (fop->compat_ioctl != NULL) {
959			error = -OPW(fp, td, fop->compat_ioctl(filp,
960			    cmd, (u_long)data));
961		} else {
962			error = ENOTTY;
963		}
964
965		/* fallback to the regular IOCTL handler, if any */
966		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
967			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
968			    cmd, (u_long)data));
969		}
970	} else
971#endif
972	{
973		if (fop->unlocked_ioctl != NULL) {
974			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
975			    cmd, (u_long)data));
976		} else {
977			error = ENOTTY;
978		}
979	}
980	if (size > 0) {
981		task->bsd_ioctl_data = NULL;
982		task->bsd_ioctl_len = 0;
983	}
984
985	if (error == EWOULDBLOCK) {
986		/* update kqfilter status, if any */
987		linux_file_kqfilter_poll(filp,
988		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
989	} else {
990		error = linux_get_error(task, error);
991	}
992	return (error);
993}
994
995#define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
996
997/*
998 * This function atomically updates the poll wakeup state and returns
999 * the previous state at the time of update.
1000 */
1001static uint8_t
1002linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1003{
1004	int c, old;
1005
1006	c = v->counter;
1007
1008	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1009		c = old;
1010
1011	return (c);
1012}
1013
1014
1015static int
1016linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1017{
1018	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1019		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1020		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1021		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1022		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1023	};
1024	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1025
1026	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1027	case LINUX_FWQ_STATE_QUEUED:
1028		linux_poll_wakeup(filp);
1029		return (1);
1030	default:
1031		return (0);
1032	}
1033}
1034
1035void
1036linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1037{
1038	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1039		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1040		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1041		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1042		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1043	};
1044
1045	/* check if we are called inside the select system call */
1046	if (p == LINUX_POLL_TABLE_NORMAL)
1047		selrecord(curthread, &filp->f_selinfo);
1048
1049	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1050	case LINUX_FWQ_STATE_INIT:
1051		/* NOTE: file handles can only belong to one wait-queue */
1052		filp->f_wait_queue.wqh = wqh;
1053		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1054		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1055		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1056		break;
1057	default:
1058		break;
1059	}
1060}
1061
1062static void
1063linux_poll_wait_dequeue(struct linux_file *filp)
1064{
1065	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1066		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1067		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1068		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1069		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1070	};
1071
1072	seldrain(&filp->f_selinfo);
1073
1074	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1075	case LINUX_FWQ_STATE_NOT_READY:
1076	case LINUX_FWQ_STATE_QUEUED:
1077	case LINUX_FWQ_STATE_READY:
1078		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1079		break;
1080	default:
1081		break;
1082	}
1083}
1084
1085void
1086linux_poll_wakeup(struct linux_file *filp)
1087{
1088	/* this function should be NULL-safe */
1089	if (filp == NULL)
1090		return;
1091
1092	selwakeup(&filp->f_selinfo);
1093
1094	spin_lock(&filp->f_kqlock);
1095	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1096	    LINUX_KQ_FLAG_NEED_WRITE;
1097
1098	/* make sure the "knote" gets woken up */
1099	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1100	spin_unlock(&filp->f_kqlock);
1101}
1102
1103static void
1104linux_file_kqfilter_detach(struct knote *kn)
1105{
1106	struct linux_file *filp = kn->kn_hook;
1107
1108	spin_lock(&filp->f_kqlock);
1109	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1110	spin_unlock(&filp->f_kqlock);
1111}
1112
1113static int
1114linux_file_kqfilter_read_event(struct knote *kn, long hint)
1115{
1116	struct linux_file *filp = kn->kn_hook;
1117
1118	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1119
1120	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1121}
1122
1123static int
1124linux_file_kqfilter_write_event(struct knote *kn, long hint)
1125{
1126	struct linux_file *filp = kn->kn_hook;
1127
1128	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1129
1130	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1131}
1132
1133static struct filterops linux_dev_kqfiltops_read = {
1134	.f_isfd = 1,
1135	.f_detach = linux_file_kqfilter_detach,
1136	.f_event = linux_file_kqfilter_read_event,
1137};
1138
1139static struct filterops linux_dev_kqfiltops_write = {
1140	.f_isfd = 1,
1141	.f_detach = linux_file_kqfilter_detach,
1142	.f_event = linux_file_kqfilter_write_event,
1143};
1144
1145static void
1146linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1147{
1148	struct thread *td;
1149	const struct file_operations *fop;
1150	struct linux_cdev *ldev;
1151	int temp;
1152
1153	if ((filp->f_kqflags & kqflags) == 0)
1154		return;
1155
1156	td = curthread;
1157
1158	linux_get_fop(filp, &fop, &ldev);
1159	/* get the latest polling state */
1160	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1161	linux_drop_fop(ldev);
1162
1163	spin_lock(&filp->f_kqlock);
1164	/* clear kqflags */
1165	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1166	    LINUX_KQ_FLAG_NEED_WRITE);
1167	/* update kqflags */
1168	if ((temp & (POLLIN | POLLOUT)) != 0) {
1169		if ((temp & POLLIN) != 0)
1170			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1171		if ((temp & POLLOUT) != 0)
1172			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1173
1174		/* make sure the "knote" gets woken up */
1175		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1176	}
1177	spin_unlock(&filp->f_kqlock);
1178}
1179
1180static int
1181linux_file_kqfilter(struct file *file, struct knote *kn)
1182{
1183	struct linux_file *filp;
1184	struct thread *td;
1185	int error;
1186
1187	td = curthread;
1188	filp = (struct linux_file *)file->f_data;
1189	filp->f_flags = file->f_flag;
1190	if (filp->f_op->poll == NULL)
1191		return (EINVAL);
1192
1193	spin_lock(&filp->f_kqlock);
1194	switch (kn->kn_filter) {
1195	case EVFILT_READ:
1196		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1197		kn->kn_fop = &linux_dev_kqfiltops_read;
1198		kn->kn_hook = filp;
1199		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1200		error = 0;
1201		break;
1202	case EVFILT_WRITE:
1203		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1204		kn->kn_fop = &linux_dev_kqfiltops_write;
1205		kn->kn_hook = filp;
1206		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1207		error = 0;
1208		break;
1209	default:
1210		error = EINVAL;
1211		break;
1212	}
1213	spin_unlock(&filp->f_kqlock);
1214
1215	if (error == 0) {
1216		linux_set_current(td);
1217
1218		/* update kqfilter status, if any */
1219		linux_file_kqfilter_poll(filp,
1220		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1221	}
1222	return (error);
1223}
1224
1225static int
1226linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1227    vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1228    int nprot, struct thread *td)
1229{
1230	struct task_struct *task;
1231	struct vm_area_struct *vmap;
1232	struct mm_struct *mm;
1233	struct linux_file *filp;
1234	vm_memattr_t attr;
1235	int error;
1236
1237	filp = (struct linux_file *)fp->f_data;
1238	filp->f_flags = fp->f_flag;
1239
1240	if (fop->mmap == NULL)
1241		return (EOPNOTSUPP);
1242
1243	linux_set_current(td);
1244
1245	/*
1246	 * The same VM object might be shared by multiple processes
1247	 * and the mm_struct is usually freed when a process exits.
1248	 *
1249	 * The atomic reference below makes sure the mm_struct is
1250	 * available as long as the vmap is in the linux_vma_head.
1251	 */
1252	task = current;
1253	mm = task->mm;
1254	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1255		return (EINVAL);
1256
1257	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1258	vmap->vm_start = 0;
1259	vmap->vm_end = size;
1260	vmap->vm_pgoff = *offset / PAGE_SIZE;
1261	vmap->vm_pfn = 0;
1262	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1263	vmap->vm_ops = NULL;
1264	vmap->vm_file = get_file(filp);
1265	vmap->vm_mm = mm;
1266
1267	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1268		error = linux_get_error(task, EINTR);
1269	} else {
1270		error = -OPW(fp, td, fop->mmap(filp, vmap));
1271		error = linux_get_error(task, error);
1272		up_write(&vmap->vm_mm->mmap_sem);
1273	}
1274
1275	if (error != 0) {
1276		linux_cdev_handle_free(vmap);
1277		return (error);
1278	}
1279
1280	attr = pgprot2cachemode(vmap->vm_page_prot);
1281
1282	if (vmap->vm_ops != NULL) {
1283		struct vm_area_struct *ptr;
1284		void *vm_private_data;
1285		bool vm_no_fault;
1286
1287		if (vmap->vm_ops->open == NULL ||
1288		    vmap->vm_ops->close == NULL ||
1289		    vmap->vm_private_data == NULL) {
1290			/* free allocated VM area struct */
1291			linux_cdev_handle_free(vmap);
1292			return (EINVAL);
1293		}
1294
1295		vm_private_data = vmap->vm_private_data;
1296
1297		rw_wlock(&linux_vma_lock);
1298		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1299			if (ptr->vm_private_data == vm_private_data)
1300				break;
1301		}
1302		/* check if there is an existing VM area struct */
1303		if (ptr != NULL) {
1304			/* check if the VM area structure is invalid */
1305			if (ptr->vm_ops == NULL ||
1306			    ptr->vm_ops->open == NULL ||
1307			    ptr->vm_ops->close == NULL) {
1308				error = ESTALE;
1309				vm_no_fault = 1;
1310			} else {
1311				error = EEXIST;
1312				vm_no_fault = (ptr->vm_ops->fault == NULL);
1313			}
1314		} else {
1315			/* insert VM area structure into list */
1316			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1317			error = 0;
1318			vm_no_fault = (vmap->vm_ops->fault == NULL);
1319		}
1320		rw_wunlock(&linux_vma_lock);
1321
1322		if (error != 0) {
1323			/* free allocated VM area struct */
1324			linux_cdev_handle_free(vmap);
1325			/* check for stale VM area struct */
1326			if (error != EEXIST)
1327				return (error);
1328		}
1329
1330		/* check if there is no fault handler */
1331		if (vm_no_fault) {
1332			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1333			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1334			    td->td_ucred);
1335		} else {
1336			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1337			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1338			    td->td_ucred);
1339		}
1340
1341		/* check if allocating the VM object failed */
1342		if (*object == NULL) {
1343			if (error == 0) {
1344				/* remove VM area struct from list */
1345				linux_cdev_handle_remove(vmap);
1346				/* free allocated VM area struct */
1347				linux_cdev_handle_free(vmap);
1348			}
1349			return (EINVAL);
1350		}
1351	} else {
1352		struct sglist *sg;
1353
1354		sg = sglist_alloc(1, M_WAITOK);
1355		sglist_append_phys(sg,
1356		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1357
1358		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1359		    nprot, 0, td->td_ucred);
1360
1361		linux_cdev_handle_free(vmap);
1362
1363		if (*object == NULL) {
1364			sglist_free(sg);
1365			return (EINVAL);
1366		}
1367	}
1368
1369	if (attr != VM_MEMATTR_DEFAULT) {
1370		VM_OBJECT_WLOCK(*object);
1371		vm_object_set_memattr(*object, attr);
1372		VM_OBJECT_WUNLOCK(*object);
1373	}
1374	*offset = 0;
1375	return (0);
1376}
1377
1378struct cdevsw linuxcdevsw = {
1379	.d_version = D_VERSION,
1380	.d_fdopen = linux_dev_fdopen,
1381	.d_name = "lkpidev",
1382};
1383
1384static int
1385linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1386    int flags, struct thread *td)
1387{
1388	struct linux_file *filp;
1389	const struct file_operations *fop;
1390	struct linux_cdev *ldev;
1391	ssize_t bytes;
1392	int error;
1393
1394	error = 0;
1395	filp = (struct linux_file *)file->f_data;
1396	filp->f_flags = file->f_flag;
1397	/* XXX no support for I/O vectors currently */
1398	if (uio->uio_iovcnt != 1)
1399		return (EOPNOTSUPP);
1400	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1401		return (EINVAL);
1402	linux_set_current(td);
1403	linux_get_fop(filp, &fop, &ldev);
1404	if (fop->read != NULL) {
1405		bytes = OPW(file, td, fop->read(filp,
1406		    uio->uio_iov->iov_base,
1407		    uio->uio_iov->iov_len, &uio->uio_offset));
1408		if (bytes >= 0) {
1409			uio->uio_iov->iov_base =
1410			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1411			uio->uio_iov->iov_len -= bytes;
1412			uio->uio_resid -= bytes;
1413		} else {
1414			error = linux_get_error(current, -bytes);
1415		}
1416	} else
1417		error = ENXIO;
1418
1419	/* update kqfilter status, if any */
1420	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1421	linux_drop_fop(ldev);
1422
1423	return (error);
1424}
1425
1426static int
1427linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1428    int flags, struct thread *td)
1429{
1430	struct linux_file *filp;
1431	const struct file_operations *fop;
1432	struct linux_cdev *ldev;
1433	ssize_t bytes;
1434	int error;
1435
1436	filp = (struct linux_file *)file->f_data;
1437	filp->f_flags = file->f_flag;
1438	/* XXX no support for I/O vectors currently */
1439	if (uio->uio_iovcnt != 1)
1440		return (EOPNOTSUPP);
1441	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1442		return (EINVAL);
1443	linux_set_current(td);
1444	linux_get_fop(filp, &fop, &ldev);
1445	if (fop->write != NULL) {
1446		bytes = OPW(file, td, fop->write(filp,
1447		    uio->uio_iov->iov_base,
1448		    uio->uio_iov->iov_len, &uio->uio_offset));
1449		if (bytes >= 0) {
1450			uio->uio_iov->iov_base =
1451			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1452			uio->uio_iov->iov_len -= bytes;
1453			uio->uio_resid -= bytes;
1454			error = 0;
1455		} else {
1456			error = linux_get_error(current, -bytes);
1457		}
1458	} else
1459		error = ENXIO;
1460
1461	/* update kqfilter status, if any */
1462	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1463
1464	linux_drop_fop(ldev);
1465
1466	return (error);
1467}
1468
1469static int
1470linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1471    struct thread *td)
1472{
1473	struct linux_file *filp;
1474	const struct file_operations *fop;
1475	struct linux_cdev *ldev;
1476	int revents;
1477
1478	filp = (struct linux_file *)file->f_data;
1479	filp->f_flags = file->f_flag;
1480	linux_set_current(td);
1481	linux_get_fop(filp, &fop, &ldev);
1482	if (fop->poll != NULL) {
1483		revents = OPW(file, td, fop->poll(filp,
1484		    LINUX_POLL_TABLE_NORMAL)) & events;
1485	} else {
1486		revents = 0;
1487	}
1488	linux_drop_fop(ldev);
1489	return (revents);
1490}
1491
1492static int
1493linux_file_close(struct file *file, struct thread *td)
1494{
1495	struct linux_file *filp;
1496	const struct file_operations *fop;
1497	struct linux_cdev *ldev;
1498	int error;
1499
1500	filp = (struct linux_file *)file->f_data;
1501
1502	KASSERT(file_count(filp) == 0,
1503	    ("File refcount(%d) is not zero", file_count(filp)));
1504
1505	error = 0;
1506	filp->f_flags = file->f_flag;
1507	linux_set_current(td);
1508	linux_poll_wait_dequeue(filp);
1509	linux_get_fop(filp, &fop, &ldev);
1510	if (fop->release != NULL)
1511		error = -OPW(file, td, fop->release(filp->f_vnode, filp));
1512	funsetown(&filp->f_sigio);
1513	if (filp->f_vnode != NULL)
1514		vdrop(filp->f_vnode);
1515	linux_drop_fop(ldev);
1516	if (filp->f_cdev != NULL)
1517		linux_cdev_deref(filp->f_cdev);
1518	kfree(filp);
1519
1520	return (error);
1521}
1522
1523static int
1524linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1525    struct thread *td)
1526{
1527	struct linux_file *filp;
1528	const struct file_operations *fop;
1529	struct linux_cdev *ldev;
1530	int error;
1531
1532	error = 0;
1533	filp = (struct linux_file *)fp->f_data;
1534	filp->f_flags = fp->f_flag;
1535	linux_get_fop(filp, &fop, &ldev);
1536
1537	linux_set_current(td);
1538	switch (cmd) {
1539	case FIONBIO:
1540		break;
1541	case FIOASYNC:
1542		if (fop->fasync == NULL)
1543			break;
1544		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1545		break;
1546	case FIOSETOWN:
1547		error = fsetown(*(int *)data, &filp->f_sigio);
1548		if (error == 0) {
1549			if (fop->fasync == NULL)
1550				break;
1551			error = -OPW(fp, td, fop->fasync(0, filp,
1552			    fp->f_flag & FASYNC));
1553		}
1554		break;
1555	case FIOGETOWN:
1556		*(int *)data = fgetown(&filp->f_sigio);
1557		break;
1558	default:
1559		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1560		break;
1561	}
1562	linux_drop_fop(ldev);
1563	return (error);
1564}
1565
1566static int
1567linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1568    vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1569    vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1570{
1571	/*
1572	 * Character devices do not provide private mappings
1573	 * of any kind:
1574	 */
1575	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1576	    (prot & VM_PROT_WRITE) != 0)
1577		return (EACCES);
1578	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1579		return (EINVAL);
1580
1581	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1582	    (int)prot, td));
1583}
1584
1585static int
1586linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1587    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1588    struct thread *td)
1589{
1590	struct linux_file *filp;
1591	const struct file_operations *fop;
1592	struct linux_cdev *ldev;
1593	struct mount *mp;
1594	struct vnode *vp;
1595	vm_object_t object;
1596	vm_prot_t maxprot;
1597	int error;
1598
1599	filp = (struct linux_file *)fp->f_data;
1600
1601	vp = filp->f_vnode;
1602	if (vp == NULL)
1603		return (EOPNOTSUPP);
1604
1605	/*
1606	 * Ensure that file and memory protections are
1607	 * compatible.
1608	 */
1609	mp = vp->v_mount;
1610	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1611		maxprot = VM_PROT_NONE;
1612		if ((prot & VM_PROT_EXECUTE) != 0)
1613			return (EACCES);
1614	} else
1615		maxprot = VM_PROT_EXECUTE;
1616	if ((fp->f_flag & FREAD) != 0)
1617		maxprot |= VM_PROT_READ;
1618	else if ((prot & VM_PROT_READ) != 0)
1619		return (EACCES);
1620
1621	/*
1622	 * If we are sharing potential changes via MAP_SHARED and we
1623	 * are trying to get write permission although we opened it
1624	 * without asking for it, bail out.
1625	 *
1626	 * Note that most character devices always share mappings.
1627	 *
1628	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1629	 * requests rather than doing it here.
1630	 */
1631	if ((flags & MAP_SHARED) != 0) {
1632		if ((fp->f_flag & FWRITE) != 0)
1633			maxprot |= VM_PROT_WRITE;
1634		else if ((prot & VM_PROT_WRITE) != 0)
1635			return (EACCES);
1636	}
1637	maxprot &= cap_maxprot;
1638
1639	linux_get_fop(filp, &fop, &ldev);
1640	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp,
1641	    &foff, fop, &object);
1642	if (error != 0)
1643		goto out;
1644
1645	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1646	    foff, FALSE, td);
1647	if (error != 0)
1648		vm_object_deallocate(object);
1649out:
1650	linux_drop_fop(ldev);
1651	return (error);
1652}
1653
1654static int
1655linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1656    struct thread *td)
1657{
1658	struct linux_file *filp;
1659	struct vnode *vp;
1660	int error;
1661
1662	filp = (struct linux_file *)fp->f_data;
1663	if (filp->f_vnode == NULL)
1664		return (EOPNOTSUPP);
1665
1666	vp = filp->f_vnode;
1667
1668	vn_lock(vp, LK_SHARED | LK_RETRY);
1669	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1670	VOP_UNLOCK(vp, 0);
1671
1672	return (error);
1673}
1674
1675static int
1676linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1677    struct filedesc *fdp)
1678{
1679	struct linux_file *filp;
1680	struct vnode *vp;
1681	int error;
1682
1683	filp = fp->f_data;
1684	vp = filp->f_vnode;
1685	if (vp == NULL) {
1686		error = 0;
1687		kif->kf_type = KF_TYPE_DEV;
1688	} else {
1689		vref(vp);
1690		FILEDESC_SUNLOCK(fdp);
1691		error = vn_fill_kinfo_vnode(vp, kif);
1692		vrele(vp);
1693		kif->kf_type = KF_TYPE_VNODE;
1694		FILEDESC_SLOCK(fdp);
1695	}
1696	return (error);
1697}
1698
1699unsigned int
1700linux_iminor(struct inode *inode)
1701{
1702	struct linux_cdev *ldev;
1703
1704	if (inode == NULL || inode->v_rdev == NULL ||
1705	    inode->v_rdev->si_devsw != &linuxcdevsw)
1706		return (-1U);
1707	ldev = inode->v_rdev->si_drv1;
1708	if (ldev == NULL)
1709		return (-1U);
1710
1711	return (minor(ldev->dev));
1712}
1713
1714struct fileops linuxfileops = {
1715	.fo_read = linux_file_read,
1716	.fo_write = linux_file_write,
1717	.fo_truncate = invfo_truncate,
1718	.fo_kqfilter = linux_file_kqfilter,
1719	.fo_stat = linux_file_stat,
1720	.fo_fill_kinfo = linux_file_fill_kinfo,
1721	.fo_poll = linux_file_poll,
1722	.fo_close = linux_file_close,
1723	.fo_ioctl = linux_file_ioctl,
1724	.fo_mmap = linux_file_mmap,
1725	.fo_chmod = invfo_chmod,
1726	.fo_chown = invfo_chown,
1727	.fo_sendfile = invfo_sendfile,
1728	.fo_flags = DFLAG_PASSABLE,
1729};
1730
1731/*
1732 * Hash of vmmap addresses.  This is infrequently accessed and does not
1733 * need to be particularly large.  This is done because we must store the
1734 * caller's idea of the map size to properly unmap.
1735 */
1736struct vmmap {
1737	LIST_ENTRY(vmmap)	vm_next;
1738	void 			*vm_addr;
1739	unsigned long		vm_size;
1740};
1741
1742struct vmmaphd {
1743	struct vmmap *lh_first;
1744};
1745#define	VMMAP_HASH_SIZE	64
1746#define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1747#define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1748static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1749static struct mtx vmmaplock;
1750
1751static void
1752vmmap_add(void *addr, unsigned long size)
1753{
1754	struct vmmap *vmmap;
1755
1756	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1757	mtx_lock(&vmmaplock);
1758	vmmap->vm_size = size;
1759	vmmap->vm_addr = addr;
1760	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1761	mtx_unlock(&vmmaplock);
1762}
1763
1764static struct vmmap *
1765vmmap_remove(void *addr)
1766{
1767	struct vmmap *vmmap;
1768
1769	mtx_lock(&vmmaplock);
1770	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1771		if (vmmap->vm_addr == addr)
1772			break;
1773	if (vmmap)
1774		LIST_REMOVE(vmmap, vm_next);
1775	mtx_unlock(&vmmaplock);
1776
1777	return (vmmap);
1778}
1779
1780#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1781void *
1782_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1783{
1784	void *addr;
1785
1786	addr = pmap_mapdev_attr(phys_addr, size, attr);
1787	if (addr == NULL)
1788		return (NULL);
1789	vmmap_add(addr, size);
1790
1791	return (addr);
1792}
1793#endif
1794
1795void
1796iounmap(void *addr)
1797{
1798	struct vmmap *vmmap;
1799
1800	vmmap = vmmap_remove(addr);
1801	if (vmmap == NULL)
1802		return;
1803#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1804	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1805#endif
1806	kfree(vmmap);
1807}
1808
1809
1810void *
1811vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1812{
1813	vm_offset_t off;
1814	size_t size;
1815
1816	size = count * PAGE_SIZE;
1817	off = kva_alloc(size);
1818	if (off == 0)
1819		return (NULL);
1820	vmmap_add((void *)off, size);
1821	pmap_qenter(off, pages, count);
1822
1823	return ((void *)off);
1824}
1825
1826void
1827vunmap(void *addr)
1828{
1829	struct vmmap *vmmap;
1830
1831	vmmap = vmmap_remove(addr);
1832	if (vmmap == NULL)
1833		return;
1834	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1835	kva_free((vm_offset_t)addr, vmmap->vm_size);
1836	kfree(vmmap);
1837}
1838
1839char *
1840kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1841{
1842	unsigned int len;
1843	char *p;
1844	va_list aq;
1845
1846	va_copy(aq, ap);
1847	len = vsnprintf(NULL, 0, fmt, aq);
1848	va_end(aq);
1849
1850	p = kmalloc(len + 1, gfp);
1851	if (p != NULL)
1852		vsnprintf(p, len + 1, fmt, ap);
1853
1854	return (p);
1855}
1856
1857char *
1858kasprintf(gfp_t gfp, const char *fmt, ...)
1859{
1860	va_list ap;
1861	char *p;
1862
1863	va_start(ap, fmt);
1864	p = kvasprintf(gfp, fmt, ap);
1865	va_end(ap);
1866
1867	return (p);
1868}
1869
1870static void
1871linux_timer_callback_wrapper(void *context)
1872{
1873	struct timer_list *timer;
1874
1875	linux_set_current(curthread);
1876
1877	timer = context;
1878	timer->function(timer->data);
1879}
1880
1881void
1882mod_timer(struct timer_list *timer, int expires)
1883{
1884
1885	timer->expires = expires;
1886	callout_reset(&timer->callout,
1887	    linux_timer_jiffies_until(expires),
1888	    &linux_timer_callback_wrapper, timer);
1889}
1890
1891void
1892add_timer(struct timer_list *timer)
1893{
1894
1895	callout_reset(&timer->callout,
1896	    linux_timer_jiffies_until(timer->expires),
1897	    &linux_timer_callback_wrapper, timer);
1898}
1899
1900void
1901add_timer_on(struct timer_list *timer, int cpu)
1902{
1903
1904	callout_reset_on(&timer->callout,
1905	    linux_timer_jiffies_until(timer->expires),
1906	    &linux_timer_callback_wrapper, timer, cpu);
1907}
1908
1909static void
1910linux_timer_init(void *arg)
1911{
1912
1913	/*
1914	 * Compute an internal HZ value which can divide 2**32 to
1915	 * avoid timer rounding problems when the tick value wraps
1916	 * around 2**32:
1917	 */
1918	linux_timer_hz_mask = 1;
1919	while (linux_timer_hz_mask < (unsigned long)hz)
1920		linux_timer_hz_mask *= 2;
1921	linux_timer_hz_mask--;
1922}
1923SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1924
1925void
1926linux_complete_common(struct completion *c, int all)
1927{
1928	int wakeup_swapper;
1929
1930	sleepq_lock(c);
1931	if (all) {
1932		c->done = UINT_MAX;
1933		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1934	} else {
1935		if (c->done != UINT_MAX)
1936			c->done++;
1937		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1938	}
1939	sleepq_release(c);
1940	if (wakeup_swapper)
1941		kick_proc0();
1942}
1943
1944/*
1945 * Indefinite wait for done != 0 with or without signals.
1946 */
1947int
1948linux_wait_for_common(struct completion *c, int flags)
1949{
1950	struct task_struct *task;
1951	int error;
1952
1953	if (SCHEDULER_STOPPED())
1954		return (0);
1955
1956	task = current;
1957
1958	if (flags != 0)
1959		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1960	else
1961		flags = SLEEPQ_SLEEP;
1962	error = 0;
1963	for (;;) {
1964		sleepq_lock(c);
1965		if (c->done)
1966			break;
1967		sleepq_add(c, NULL, "completion", flags, 0);
1968		if (flags & SLEEPQ_INTERRUPTIBLE) {
1969			DROP_GIANT();
1970			error = -sleepq_wait_sig(c, 0);
1971			PICKUP_GIANT();
1972			if (error != 0) {
1973				linux_schedule_save_interrupt_value(task, error);
1974				error = -ERESTARTSYS;
1975				goto intr;
1976			}
1977		} else {
1978			DROP_GIANT();
1979			sleepq_wait(c, 0);
1980			PICKUP_GIANT();
1981		}
1982	}
1983	if (c->done != UINT_MAX)
1984		c->done--;
1985	sleepq_release(c);
1986
1987intr:
1988	return (error);
1989}
1990
1991/*
1992 * Time limited wait for done != 0 with or without signals.
1993 */
1994int
1995linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1996{
1997	struct task_struct *task;
1998	int end = jiffies + timeout;
1999	int error;
2000
2001	if (SCHEDULER_STOPPED())
2002		return (0);
2003
2004	task = current;
2005
2006	if (flags != 0)
2007		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2008	else
2009		flags = SLEEPQ_SLEEP;
2010
2011	for (;;) {
2012		sleepq_lock(c);
2013		if (c->done)
2014			break;
2015		sleepq_add(c, NULL, "completion", flags, 0);
2016		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2017
2018		DROP_GIANT();
2019		if (flags & SLEEPQ_INTERRUPTIBLE)
2020			error = -sleepq_timedwait_sig(c, 0);
2021		else
2022			error = -sleepq_timedwait(c, 0);
2023		PICKUP_GIANT();
2024
2025		if (error != 0) {
2026			/* check for timeout */
2027			if (error == -EWOULDBLOCK) {
2028				error = 0;	/* timeout */
2029			} else {
2030				/* signal happened */
2031				linux_schedule_save_interrupt_value(task, error);
2032				error = -ERESTARTSYS;
2033			}
2034			goto done;
2035		}
2036	}
2037	if (c->done != UINT_MAX)
2038		c->done--;
2039	sleepq_release(c);
2040
2041	/* return how many jiffies are left */
2042	error = linux_timer_jiffies_until(end);
2043done:
2044	return (error);
2045}
2046
2047int
2048linux_try_wait_for_completion(struct completion *c)
2049{
2050	int isdone;
2051
2052	sleepq_lock(c);
2053	isdone = (c->done != 0);
2054	if (c->done != 0 && c->done != UINT_MAX)
2055		c->done--;
2056	sleepq_release(c);
2057	return (isdone);
2058}
2059
2060int
2061linux_completion_done(struct completion *c)
2062{
2063	int isdone;
2064
2065	sleepq_lock(c);
2066	isdone = (c->done != 0);
2067	sleepq_release(c);
2068	return (isdone);
2069}
2070
2071static void
2072linux_cdev_deref(struct linux_cdev *ldev)
2073{
2074
2075	if (refcount_release(&ldev->refs))
2076		kfree(ldev);
2077}
2078
2079static void
2080linux_cdev_release(struct kobject *kobj)
2081{
2082	struct linux_cdev *cdev;
2083	struct kobject *parent;
2084
2085	cdev = container_of(kobj, struct linux_cdev, kobj);
2086	parent = kobj->parent;
2087	linux_destroy_dev(cdev);
2088	linux_cdev_deref(cdev);
2089	kobject_put(parent);
2090}
2091
2092static void
2093linux_cdev_static_release(struct kobject *kobj)
2094{
2095	struct linux_cdev *cdev;
2096	struct kobject *parent;
2097
2098	cdev = container_of(kobj, struct linux_cdev, kobj);
2099	parent = kobj->parent;
2100	linux_destroy_dev(cdev);
2101	kobject_put(parent);
2102}
2103
2104void
2105linux_destroy_dev(struct linux_cdev *ldev)
2106{
2107
2108	if (ldev->cdev == NULL)
2109		return;
2110
2111	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2112	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2113	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2114		pause("ldevdtr", hz / 4);
2115
2116	destroy_dev(ldev->cdev);
2117	ldev->cdev = NULL;
2118}
2119
2120const struct kobj_type linux_cdev_ktype = {
2121	.release = linux_cdev_release,
2122};
2123
2124const struct kobj_type linux_cdev_static_ktype = {
2125	.release = linux_cdev_static_release,
2126};
2127
2128static void
2129linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2130{
2131	struct notifier_block *nb;
2132
2133	nb = arg;
2134	if (linkstate == LINK_STATE_UP)
2135		nb->notifier_call(nb, NETDEV_UP, ifp);
2136	else
2137		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2138}
2139
2140static void
2141linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2142{
2143	struct notifier_block *nb;
2144
2145	nb = arg;
2146	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2147}
2148
2149static void
2150linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2151{
2152	struct notifier_block *nb;
2153
2154	nb = arg;
2155	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2156}
2157
2158static void
2159linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2160{
2161	struct notifier_block *nb;
2162
2163	nb = arg;
2164	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2165}
2166
2167static void
2168linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2169{
2170	struct notifier_block *nb;
2171
2172	nb = arg;
2173	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2174}
2175
2176int
2177register_netdevice_notifier(struct notifier_block *nb)
2178{
2179
2180	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2181	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2182	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2183	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2184	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2185	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2186	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2187	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2188
2189	return (0);
2190}
2191
2192int
2193register_inetaddr_notifier(struct notifier_block *nb)
2194{
2195
2196	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2197	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2198	return (0);
2199}
2200
2201int
2202unregister_netdevice_notifier(struct notifier_block *nb)
2203{
2204
2205	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2206	    nb->tags[NETDEV_UP]);
2207	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2208	    nb->tags[NETDEV_REGISTER]);
2209	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2210	    nb->tags[NETDEV_UNREGISTER]);
2211	EVENTHANDLER_DEREGISTER(iflladdr_event,
2212	    nb->tags[NETDEV_CHANGEADDR]);
2213
2214	return (0);
2215}
2216
2217int
2218unregister_inetaddr_notifier(struct notifier_block *nb)
2219{
2220
2221	EVENTHANDLER_DEREGISTER(ifaddr_event,
2222	    nb->tags[NETDEV_CHANGEIFADDR]);
2223
2224	return (0);
2225}
2226
2227struct list_sort_thunk {
2228	int (*cmp)(void *, struct list_head *, struct list_head *);
2229	void *priv;
2230};
2231
2232static inline int
2233linux_le_cmp(void *priv, const void *d1, const void *d2)
2234{
2235	struct list_head *le1, *le2;
2236	struct list_sort_thunk *thunk;
2237
2238	thunk = priv;
2239	le1 = *(__DECONST(struct list_head **, d1));
2240	le2 = *(__DECONST(struct list_head **, d2));
2241	return ((thunk->cmp)(thunk->priv, le1, le2));
2242}
2243
2244void
2245list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2246    struct list_head *a, struct list_head *b))
2247{
2248	struct list_sort_thunk thunk;
2249	struct list_head **ar, *le;
2250	size_t count, i;
2251
2252	count = 0;
2253	list_for_each(le, head)
2254		count++;
2255	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2256	i = 0;
2257	list_for_each(le, head)
2258		ar[i++] = le;
2259	thunk.cmp = cmp;
2260	thunk.priv = priv;
2261	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2262	INIT_LIST_HEAD(head);
2263	for (i = 0; i < count; i++)
2264		list_add_tail(ar[i], head);
2265	free(ar, M_KMALLOC);
2266}
2267
2268void
2269linux_irq_handler(void *ent)
2270{
2271	struct irq_ent *irqe;
2272
2273	linux_set_current(curthread);
2274
2275	irqe = ent;
2276	irqe->handler(irqe->irq, irqe->arg);
2277}
2278
2279#if defined(__i386__) || defined(__amd64__)
2280int
2281linux_wbinvd_on_all_cpus(void)
2282{
2283
2284	pmap_invalidate_cache();
2285	return (0);
2286}
2287#endif
2288
2289int
2290linux_on_each_cpu(void callback(void *), void *data)
2291{
2292
2293	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2294	    smp_no_rendezvous_barrier, data);
2295	return (0);
2296}
2297
2298int
2299linux_in_atomic(void)
2300{
2301
2302	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2303}
2304
2305struct linux_cdev *
2306linux_find_cdev(const char *name, unsigned major, unsigned minor)
2307{
2308	dev_t dev = MKDEV(major, minor);
2309	struct cdev *cdev;
2310
2311	dev_lock();
2312	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2313		struct linux_cdev *ldev = cdev->si_drv1;
2314		if (ldev->dev == dev &&
2315		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2316			break;
2317		}
2318	}
2319	dev_unlock();
2320
2321	return (cdev != NULL ? cdev->si_drv1 : NULL);
2322}
2323
2324int
2325__register_chrdev(unsigned int major, unsigned int baseminor,
2326    unsigned int count, const char *name,
2327    const struct file_operations *fops)
2328{
2329	struct linux_cdev *cdev;
2330	int ret = 0;
2331	int i;
2332
2333	for (i = baseminor; i < baseminor + count; i++) {
2334		cdev = cdev_alloc();
2335		cdev->ops = fops;
2336		kobject_set_name(&cdev->kobj, name);
2337
2338		ret = cdev_add(cdev, makedev(major, i), 1);
2339		if (ret != 0)
2340			break;
2341	}
2342	return (ret);
2343}
2344
2345int
2346__register_chrdev_p(unsigned int major, unsigned int baseminor,
2347    unsigned int count, const char *name,
2348    const struct file_operations *fops, uid_t uid,
2349    gid_t gid, int mode)
2350{
2351	struct linux_cdev *cdev;
2352	int ret = 0;
2353	int i;
2354
2355	for (i = baseminor; i < baseminor + count; i++) {
2356		cdev = cdev_alloc();
2357		cdev->ops = fops;
2358		kobject_set_name(&cdev->kobj, name);
2359
2360		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2361		if (ret != 0)
2362			break;
2363	}
2364	return (ret);
2365}
2366
2367void
2368__unregister_chrdev(unsigned int major, unsigned int baseminor,
2369    unsigned int count, const char *name)
2370{
2371	struct linux_cdev *cdevp;
2372	int i;
2373
2374	for (i = baseminor; i < baseminor + count; i++) {
2375		cdevp = linux_find_cdev(name, major, i);
2376		if (cdevp != NULL)
2377			cdev_del(cdevp);
2378	}
2379}
2380
2381void
2382linux_dump_stack(void)
2383{
2384#ifdef STACK
2385	struct stack st;
2386
2387	stack_zero(&st);
2388	stack_save(&st);
2389	stack_print(&st);
2390#endif
2391}
2392
2393#if defined(__i386__) || defined(__amd64__)
2394bool linux_cpu_has_clflush;
2395#endif
2396
2397static void
2398linux_compat_init(void *arg)
2399{
2400	struct sysctl_oid *rootoid;
2401	int i;
2402
2403#if defined(__i386__) || defined(__amd64__)
2404	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2405#endif
2406	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2407
2408	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2409	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2410	kobject_init(&linux_class_root, &linux_class_ktype);
2411	kobject_set_name(&linux_class_root, "class");
2412	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2413	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2414	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2415	kobject_set_name(&linux_root_device.kobj, "device");
2416	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2417	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2418	    "device");
2419	linux_root_device.bsddev = root_bus;
2420	linux_class_misc.name = "misc";
2421	class_register(&linux_class_misc);
2422	INIT_LIST_HEAD(&pci_drivers);
2423	INIT_LIST_HEAD(&pci_devices);
2424	spin_lock_init(&pci_lock);
2425	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2426	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2427		LIST_INIT(&vmmaphead[i]);
2428}
2429SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2430
2431static void
2432linux_compat_uninit(void *arg)
2433{
2434	linux_kobject_kfree_name(&linux_class_root);
2435	linux_kobject_kfree_name(&linux_root_device.kobj);
2436	linux_kobject_kfree_name(&linux_class_misc.kobj);
2437
2438	mtx_destroy(&vmmaplock);
2439	spin_lock_destroy(&pci_lock);
2440	rw_destroy(&linux_vma_lock);
2441}
2442SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2443
2444/*
2445 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2446 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2447 * used. Assert these types have the same size, else some parts of the
2448 * LinuxKPI may not work like expected:
2449 */
2450CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2451